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There are very few useful work and exergy analysis studies for China, and fewer still that consider how
the results inform drivers of past and future energy consumption. This is surprising: China is the world’s
largest energy consumer, whilst exergy analysis provides a robust thermodynamic framework for analys-
ing the technical efficiency of energy use. In response, we develop three novel sub-analyses. First we per-
form a long-term whole economy time-series exergy analysis for China (1971–2010). We find a 10-fold
growth in China’s useful work since 1971, which is supplied by a 4-fold increase in primary energy cou-
pled to a 2.5-fold gain in aggregate exergy conversion efficiency to useful work: from 5% to 12.5%. Second,
using index decomposition we expose the key driver of efficiency growth as not ‘technological leapfrog-
ging’ but structural change: i.e. increasing reliance on thermodynamically efficient (but very energy
intensive) heavy industrial activities. Third, we extend our useful work analysis to estimate China’s future
primary energy demand, and find values for 2030 that are significantly above mainstream projections.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

As the world’s economic powerhouse and largest energy
consumer [1], much effort is spent understanding China’s historical
energy consumption (e.g. [2–4]) and future energy demand [5–7].
However these studies typically examine primary or final energy
data, rather than useful work values obtained using an exergy anal-
ysis based technique. This is the research gap that this paper seeks
to address. Exergy analysis takes a broader, whole system
approach to energy analysis, giving ‘‘a measure of the thermody-
namic quality of an energy carrier’’ (p. 686, [8]), thereby enabling
a robust view of useful work consumed in provision of energy ser-
vices. Exergy analysis also has the benefit of taking into account
more aspects of the energy supply chain than traditional energy
analysis, and in a more consistent way. A flow visualisation of pri-
mary exergy to useful work is given in Fig. 1.

A key assumption in this study is that useful work is a better
‘energy parameter’ than primary energy on which to analyse end
energy use and economic activity, since – as Fig. 1 shows – it is
the last thermodynamic place where energy is measured before
it is exchanged for energy services. We are not alone in this view.
Numerous authors (e.g. [8–10]) suggest second law exergy analy-
ses can help understand national-scale energy use. For economic
insights, Percebois [11] suggested in 1979 that energy intensity
metrics (i.e. energy consumption relative to GDP) were better
undertaken at the energy output stage, since it ‘‘allows us to anal-
yse structural change in energy supply and situates our analysis at
the level of satisfied needs’’. Serrenho et al. [12] recent work on
useful work intensity supports this assertion. Meanwhile, Warr
and Ayres [13], Santos et al. [14] and Guevara et al. [15], all found
empirical evidence suggesting useful work is a better candidate as
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Fig. 1. Conceptual diagram of primary exergy to useful work.
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a factor of production (than primary energy) to explain economic
growth. This gets us to the crux of our argument: if it is useful work
and not primary energy that supplies economic needs, then we
should conduct energy and economic analyses at that level.

The few published time-series studies of useful work account-
ing have focussed largely on industrialised countries including
the US, UK and Japan (e.g. [16–18] and later all EU-15 countries
[12]. Somewhat curiously, these country-scale analyses typically
focus on economic implications and linkages, rather than
energy-based conclusions. Brockway et al. [19] set out to address
this imbalance, by undertaking a 50 year time-series analysis
(1960–2010) of the US and UK. They found the US and UK may
no longer be increasing their aggregate exergy efficiency, as
increases in process level efficiencies are offset by efficiency dilu-
tion taking place [19], following the case of Japan [17]. In short:
individual technology gains in efficiency are being overtaken by
using increasing amounts of less efficient processes, such as
air-conditioning. This raises the question: could the same be hap-
pening in China?

Numerous Extended Exergy Accounting (EEA) studies have been
published on China (e.g. [20–32]). EEA is a biophysical exergy anal-
ysis method, developed largely by Wall and Sciubba in the 1990s
(e.g. [33–35]) to examine the embedded exergy of all natural
resources inputs (e.g. energy, natural materials) and associated
outputs of the economy (e.g. food, materials, wastes). This valuable
technique helps understand societal exergy consumption. It is
complementary to the useful work accounting method applied
here, which is based on an ‘‘energy carriers for energy use’’
approach [36] introduced at a national-scale by Reistad [37] in
1975, which examines the exergy destruction of energy conversion
processes from primary exergy to end useful work. The key distinc-
tion is that EEA is akin to a mass-balance analysis (except it studies
eij ¼
Useful work;Uij

Primary Exergy;Eij
¼ The minimum exergy input to achieve that task work transfer

Maximum amount of reversible work done as system reaches equlibrium
ð1Þ
exergy content not mass) whereas Reistad’s approach estimates
the thermodynamic work done by the energy system to deliver
energy services. It is the latter approach we require for detailed
energy system analysis – and such national-scale useful work
accounting studies for China are rare (e.g. [38]), and none to date
examine a long time-series.

To address the lack of exergy-based analyses in China which
examine time-series results through an energy demand lens, we
pose the following research question: What new insights can useful
work analysis provide for historical and future energy demand in
China? In response, we provide three novel, linked analyses. To
start, we undertake the first historical exergy efficiency and useful
work analysis for China, covering the period 1971–2010. Next, we
adopt an index decomposition analysis to identify the key drivers
of change in China’s useful work. Last, we develop a useful work
based method for projecting China’s primary energy demand to
2030, and also test implications of potential future declines in
the rate of exergy efficiency improvement.

The paper proceeds as follows. After the Introduction, Section 2
contains Methods and Data, Results and Discussions are in
Section 3, with Conclusions in Section 4.
2. Methods and data

2.1. Historical useful work analysis (1971–2010)

2.1.1. Method Summary
Reistad [37] defined exergy as ‘available energy’. As depicted

in Fig. 1, at a country-scale, primary exergy of energy carriers
(e.g. coal, oil, gas, renewables, food and feed) is transformed into
ready to use ‘final energy’ (e.g., diesel or electricity), which is
then used to provide ‘useful work’ (i.e. through heat, mechanical
drive, manual labour or electrical devices), to ultimately provide
energy services (e.g. warmth, light, cooling, sustenance).
Carnahan et al. [39] defined task-level ‘useful work’ ðUijÞ as
‘‘the minimum exergy input to achieve that task work transfer’’.
For our purposes, task-level means sub-class (j) (e.g. diesel road
transport or low temperature heat) levels nesting within overall
main classes (i) of energy use (i.e. heat, muscle work, transport,
mechanical drive). Task-level exergy efficiency ðeijÞ represents
the second law thermodynamic efficiency of the energy conver-
sion from primary exergy to end useful work, defined by
Carnahan et al. [39] as:
Primary exergy values at task-level ðEijÞ are then multiplied
with their associated task-level exergy efficiencies (eij) to give an
estimate for task-level useful work ðUijÞ. When summed, we derive
an overall estimate for the total national-scale useful work
ðUtot ¼

P
UijÞ via Eq. (2). Finally, national exergy (second law) effi-

ciency (etot) is given by Eq. (3), which – following Carnahan et al.
[39] – we adopt as a country-scale measure of energy efficiency,
and use it as a term throughout this paper for consistency. Eq.
(2) also reveals the obvious (but important, as we see later) obser-
vation that useful work changes are supplied by changes in pri-
mary exergy and/or exergy efficiency.
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X
Uij ¼

X
ðEijeijÞ ð2Þ
etot ¼
P

UijP
Eij

ð3Þ

Our country-scale useful work accounting approach builds on
the methodology developed by numerous authors including
Reistad [37], Wall [40], Ayres and Warr [41], and more recently
Serrenho et al. [42], who introduced a consistent International
Energy Agency (IEA) based input energy mapping framework.
Brockway et al. [19] made further advances to electricity applica-
tions and mechanical drive classes, which is also used in this study
for consistency and comparability. We apply these advances to
produce a first time-series analysis of China. Fig. 2 gives an over-
view of the basic stages:

2.1.2. Input data
Primary exergy inputs, Eij; are first derived. IEA energy datasets

1971–2010 (1) for fossil fuel and biomass (combustible renew-
ables) provided much of the base data. IEA primary energy values
are converted to primary exergy inputs using chemical exergy
coefficients [43]. At an aggregate level, total primary exergy is
around 5% higher than the IEA’s Total Primary Energy Supply
(TPES) values. The inputs Eij are then mapped to three main classes
(heat, mechanical drive and electricity) and to task-levels where
possible (e.g. Low Temperature Heat (LTH)), following recent
approaches [19,42]. The task-levels are listed in Appendix A. In
some cases, we extend the IEA end energy use breakdown to more
granular levels (e.g. road fuel split between transport modes) by
supplementing Chinese end consumption data in three key areas:
buildings [3,44–48]; transport [49–53]; and industry [54–58].

Next, task-level exergy efficiencies ðeijÞ for transport, heat, and
electricity are added. Previous US–UK values [19] are modified by
Chinese data as follows. For transport, local fuel economy data
was used for road and rail [52,53,59,60]. For calculating Carnot effi-
ciencies (for heat exergy efficiencies), for external temperatures we
used 1971–2010 China monthly air temperature data [61], whilst
indoor temperatures (for LTH efficiencies) were weighted for
China’s city/rural split and assume a 20 year lag in comfort levels
versus UK data [62]. LTH first law efficiencies are based on Warr
et al. [18], Chen et al. [30] and Edwards et al. [63]. Steel and ammo-
nia industries are adopted (as with US–UK study) as representative
of High Temperature Heat (HTH) efficiencies, by virtue of having
the two highest proportions of Chinese industrial energy use
[58]. Process (GJ/tes) efficiency data for steel [54–57,64,65] and
ammonia (taken as 75% of UK values, based on average values from
Phylipsen et al. [65]) and the IEA [66] are combined with temper-
ature data to calculate time-series exergy efficiencies. For electric-
ity application efficiencies, values of 80% of those from the US–UK
IEA Primary Energy data
(fossil fuels and biomass)

IEA Primary energy mapping 
to task-level end uses

Food and feed data

Exergy chemica
conversion

Primary exergy
Useful Wo

Local country e
(e.g. electricit

Fig. 2. Useful work an
analysis were typically used, based on evidence that China’s aver-
age devices were 10–20 years behind US–UK values across indus-
try, commerce and residential sectors [3,67].

Then, we calculated primary exergy and useful work values for
a fourth main class: muscle work. For human labour, estimates fol-
low Brockway et al. approach [68]: using manual labour popula-
tion [69,70], food intake data [71,72], and Smil’s estimated 13%
conversion efficiency of food to human useful work [73]. For
draught animals, we assumed 100 million draught animals in
China in 1990 [74], and a 1% annual decline in numbers from
1971 to 2010, mirroring India [75]. For animal useful work outputs,
we assumed 400 W average power output for a 5 h working day
over 120 working days/year, based on published data [74,76,77].
Estimates of intake feed requirements were based on
Ramaswamy and Krausmann [74,78].

Last, a note on data quality. For input energy data, two system-
atic discrepancies mean our national-level datasets underestimate
actual primary energy use. First, at a national-scale, IEA-based TPES
values are �5% lower than those of Lawrence Berkeley National
Laboratory (LBNL) China Energy Databook [46]. Second, reported
aggregate primary energy consumption in China is �10% higher
from aggregated regional versus national datasets [79]. However,
these differences are expected to be systematic, and thus have lim-
ited overall effect for our trends analysis. For task-level efficiencies,
whilst the China data sources are weaker in many instances than
the previous US–UK studies [19], overall trends and comparison
to US–UK results remain valid.

2.1.3. Useful work accounting outputs
Appendix A shows the task-level outputs of useful work, pri-

mary exergy and exergy efficiency. This data serves as task-level
inputs to the Logarithmic Mean Divisia Index (LMDI) decomposi-
tion analysis, or is summed to give useful work or exergy efficien-
cies at main class level (i.e. heat, mechanical drive, electricity and
muscle work) and country-scale.

2.2. LMDI decomposition (1971–2010)

LMDI decomposition is now the mainstream Index
Decomposition Analysis (IDA) technique for analysing drivers of
changes in CO2 emissions (e.g. [80,81]) and sectoral energy use
such as manufacturing and transport (e.g. [82,83]). Using the
LMDI approach, we develop a new approach to reveal the relative
contribution of energy and efficiency drivers to China’s historical
useful work (U). First, we expand Eq. (2) (U =

P
Eijeij) to yield Eq.

(4), which is based on task-level useful work (Uij) and primary
exergy (Eij), enabling the historical results to act as the input data
for the LMDI analysis. Eqs. (5)–(9) give the four drivers of useful
work changes: Input Exergy (DeX); Main class structure (DStr);
l equivalent 
 values 

 mapping to 
rk, Eij

nergy data 
y end use)

Task level exergy 
efficiencies, εij

Useful Work 
results, U ij

alysis flowchart.
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sub-class (i.e. task) level structural change (Ddil); and task-level
efficiency (Deff). This shows how LMDI decomposition can be used
to breakdown the overall exergy efficiency changes (from the main
analysis results in Section 3.1) into three parts (Dstr, Ddil, Deff).

U ¼
X

ij

Uij ¼
X

ij

E
Ei

E
Eij

Ei

Uij

Eij
ð4Þ
Dtot ¼ UT=U0 ¼ DeXDStrDdiLDefF ð5Þ
DeX ¼ exp
X

ij

ŵij ln
XT

X0

 ! !
ð6Þ
DStr ¼ exp
X

ij

ŵij ln
ST

i

S0
i

 ! !
ð7Þ
DdiL ¼ exp
X

ij

ŵij ln
LT

ij

L0
ij

 ! !
ð8Þ
DeFF ¼ exp
X

ij

ŵij ln
FT

ij

F0
ij

 ! !
ð9Þ
ŵij ¼
ðUT

ij � U0
ijÞ=ðln UT

ij � ln U0
ijÞ

ðUT � U0Þ=ðln UT � ln U0ÞÞ

 !
ð10Þ

where
� E = Primary exergy input to economy
� Ei = Main class exergy input
� Eij = Task-level exergy input
� Uij = Task-level useful work output
� ŵij = log mean weighting function
� X = Exergy input
� S = Main class share of exergy input (Ei/E)
� L = Task-level share of exergy input within main class (Eij/Ei)
� F = Task-level exergy efficiency(Uij/Eij)
� DeX = change in overall exergy input (E)
� DStr = change in share of exergy inputs between main classes (Ei)
� DdiL = change in task-level shares (Eij) of exergy inputs within

each main class
Fig. 3. China (1971–2030) and US (186
2.3. China energy demand scenarios 2010–2030

After conducting the historical and decomposition analyses, we
develop and trial a new useful work-based methodology to esti-
mate primary energy demand to 2030, based on projections of
GDP and extrapolations of task-level exergy efficiencies under
illustrative constant and declining exergy efficiency growth rate
scenarios. Four steps were required. The first estimates China’s
useful work requirement for 2010–2030. To do this, 1971–2010
overall useful work energy intensity (UW/GDP) – calculated from
historical GDP data [84] – is extrapolated using a best-fitting curve
to 2030. Using World Bank forecasts of GDP for 2011–2030 [85] –
see also the Supplementary Information – Section S1, China’s total
useful work (to deliver that GDP) in 2030 is then estimated.

Second, total projected useful work to 2030 is allocated to
task-levels. To start, useful work proportions from main classes
are estimated based on historic trend comparison in UK, US and
China. China and US allocations are shown in Fig. 3. Then, task level
allocations are derived, also based on comparisons to previous
US-UK values, which place China as �40 years behind US–UK allo-
cations. These results at task-level are given in the Supplementary
Information – Section S2.

Third, task-level exergy efficiencies are projected to 2030 under
two illustrative scenarios which have different efficiency gains
assumptions. In Scenario 1 (constant efficiency gains), China’s
1990–2010 task-level exergy efficiency changes are extended to
2010–2030. Typically this places China’s task-level efficiencies in
2030 as those of average US-UK values in 2010. In Scenario 2
(declining efficiency gains), only half of China’s 1990–2010 effi-
ciency gains are extended to 2010–2030, with two thirds of these
reduced gains assumed to occur in 2010–2020. There is some jus-
tification for the declining gains scenario, as Brockway et al. [19]
found that efficiency gains in important task-levels (e.g. residential
electricity and LTH) slowed or reversed in 1990–2010 (versus
1970–1990). Assuming an average 20 year lag for China, this could
mean similar effects exhibited in China by 2030. More detailed effi-
ciency results at task-level are given in the Supplementary
Information – Section S3. Whilst other efficiency scenarios are pos-
sible (and indeed probable), our two selected cases are intended to
represent the possible envelope of task-level efficiencies for 2010–
2030, and are thus valid to study the effects of declining efficiency
gains.

Fourth, estimates of total primary energy demand for 2010–
2030 are made at task-level (Eq. (11)) and aggregate level (Eq.
(12)). Suffix 1 and 2 refer to Scenario 1 and 2. Finally, the chemical
exergy conversion ratios [43] are removed to reveal primary
0–2010) useful work allocations.
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energy (i.e. TPES) projections to 2030 under these two scenarios,
with differences suggesting impacts of declining exergy efficiency
gains on primary energy demand.

E1ij ¼
Uij

e1ij
; E2ij ¼

Uij

e2ij
ð11Þ

E1 ¼
X

E1ij; E2 ¼
X

E2ij ð12Þ
3. Results and discussion

3.1. 1971–2010. useful work accounting results

Table 1 summarises useful work, primary exergy and exergy
efficiency results for 1971–2010, with task-level results given in
Appendix A for 1971 and 2010. China’s end useful work has
increased 10-fold since 1971, with electricity applications and
HTH industrial uses growing from 30% to 53% of total useful work.
Conversely, muscle work and low temperature heat have together
declined from 40% of total useful work to 8%.

Aggregate exergy efficiency has grown almost linearly from
5.3% to 12.5%. Table 1 (together with Appendix A) suggest a key
factor is the structural shift from (low efficiency) muscle work
Table 1
Summary of useful work analysis results 1971–2010.

Useful work analysis: output category 1971 1980

Main category end use PJ % of total PJ % of to

Useful work
Direct heat 1087 71 1848 71
Mechanical Drive 126 8 268 10
Electricity end uses 154 10 343 13
Muscle work 157 10 151 6

Total 1524 100 2610 100

Primary exergy
Direct heat 15370 54 21560 56
Mechanical Drive 1090 4 1971 5
Electricity end uses 1592 6 3519 9
Muscle work 10661 37 11760 30

Total 28713 100 38810 100

Exergy efficiency (useful work/primary exergy)
Main category end use % efficiency % efficiency

Direct heat 7.1 8.6
Mechanical Drive 11.6 13.6
Electricity end uses 9.7 9.7
Muscle work 1.5 1.3

Total 5.3 6.7

Fig. 4. China’s exergy efficiency by end use 1971
and low temperature heat (20 �C) to (high efficiency) HTH. Fig. 4
illustrates a second reason: the strong growth in mechanical drive
and heat class efficiencies – which make up over half of total pri-
mary exergy inputs. The question of whether this linear aggregate
efficiency trend can continue is considered via the future scenario
analysis in Section 3.3.

Fig. 4 also compares China’s aggregate efficiency growth to the
stable US (10–11%) values from the previous US-UK study [19].
China’s exergy efficiency overtakes the US by around 2004. At first,
it is tempting to see China’s overtaking of the US’s aggregate effi-
ciency as ‘technological leapfrogging’ (e.g. [86]) – i.e. rapidly adopt-
ing high-efficiency technologies without having to deal with the
legacy of past low efficiency capital stock. In fact this is not the
case, since task-level exergy efficiencies are generally lower than
the US (except mechanical drive, which is a small component of
China’s energy use). This result implies structural differences make
a significant contribution to China’s increasing efficiency: i.e. its
production-focused industrial economy uses more high tempera-
ture heat and industrial processes versus the US’s mature con-
sumer economy. The index decomposition results in Section 3.2
support this view. In turn, this implies as China’s economy also
matures and its structure shifts towards that of the US, that this
may have a diluting effect on future overall exergy efficiency, as
seen later in Section 3.3.
1990 2000 2010

tal PJ % of total PJ % of total PJ % of total

2787 68 3901 59 7602 51
477 12 1140 17 2633 18
684 17 1460 22 4665 31
148 4 137 2 127 1

4096 100 6638 100 15027 100

28271 55 31504 49 51983 43
2988 6 5625 9 12720 11
6283 12 13951 22 42507 35
13489 26 13398 21 13159 11

51032 100 64478 100 120,369 100

% efficiency % efficiency % efficiency

9.9 12.4 14.6
16.0 20.3 20.7
10.9 10.5 11.0
1.1 1.0 1.0

8.0 10.3 12.5

–2010, compared to US aggregate efficiency.



Table 2
Summary of LMDI decomposition factors 1971–2010 for China, US, UK.

Country U Dex Dstr Ddil Deff
Useful
work

Primary
Exergy

Main class
structural
change

Sub-class
structural
change

Task-level
efficiency

China 9.76 3.96 1.39 1.19 1.48
US 1.53 1.32 1.03 0.88 1.29
UK 1.43 1.01 1.04 0.87 1.58

Country U Dex Dstr ⁄ Ddil Deff

Useful
work

Primary
exergy

Overall structural change Task-level
efficiency

China 9.76 3.96 1.66 1.48
US 1.53 1.32 0.90 1.29
UK 1.43 1.01 0.90 1.58
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Few comparative estimates are available of aggregate Chinese
efficiencies. Chen and Chen [30] calculate a value of 20%, twice that
of our 10% value for China in 2000. The main reasons are due their
exclusion of muscle work, and higher industry efficiency (e.g. 78%
for the chemical sector). Nakicenovic [87] estimated reforming
countries (e.g. China) exergy efficiencies in 1990 to be �10%, of a
similar order to our 8% estimate for 1990.

Fig. 5 shows how China’s 10-fold useful work growth was sup-
plied by a 4-fold increase in primary energy coupled to a 2.5-fold
gain in aggregate exergy efficiency: from 5% to 12.5%. In other
words, if China’s exergy efficiency had stayed at 5%, a 10-fold gain
in primary exergy would have been required to achieve the same
useful work supply level.

Finally, to understand the overall flow of exergy to end useful
work, and the exergy losses that occur during the various conver-
sion processes, useful work-based Sankey diagrams of China are
constructed for 1971 and 2010, as shown in Appendix B. They
show the transformation of China in 40 years from a largely agri-
cultural to industrial economy. By 2010, China is dominated by
energy dense fossil fuel inputs (versus food and feed for muscle
work) and energy intensive end uses, particularly in industry,
which underpins the rise in overall exergy efficiency.

3.2. LMDI decomposition results 1971–2010

The multiplicative factors are summarised in Table 2 for the
period 1971–2010, comparing three countries: China, the UK and
US. For China, the largest contribution to useful work growth is pri-
mary exergy, confirming the result of Fig. 5 Importantly, the overall
efficiency gain factor (2.5) is now split into three parts. First, the
main class structural change (1.39) tracks the move from less effi-
cient (i.e. muscle work) to more efficient (i.e. heat) main classes.
Second, we find sub-class structural change (1.19) is above 1.00,
which means that within each main class there has also been an
efficiency ‘concentration’ effect. (In contrast note the efficiency
‘dilution’ values of 0.87–0.88 for the US and UK). This is due to
China’s transition from agricultural society to industrial powerhouse,
causing structural shifts within main classes from lower to higher
efficiency categories (e.g. LTH to HTH). Third, task-level efficiency
gains (1.48) are the largest of the three efficiency gain factors.

The value of using the LMDI approach is also highlighted by
Table 2. Firstly, it confirms and quantifies the assertion stated in
Section 3.2: that overall structural change (1.66) is at least as
important to overall efficiency gains as task-level efficiency gains
(1.48). Secondly, we can directly compare factors to other coun-
tries. In this case, we see that China has not reached the point of
efficiency ‘dilution’ that can be seen in the US and UK – where
Ddil would be below 1.00 – as found earlier by Williams et al.
[17] for Japan. China’s improvements to task-level efficiencies
(1.48) are similar to US (1.29) and UK (1.58) values, confirming that
instead of technological leapfrogging, it is overall structural change
Fig. 5. China 1971–2010 useful work
(1.66 for China versus 0.90 for US and UK) that has been responsi-
ble for China’s rise in overall aggregate efficiency to overtake the
US.
3.3. Future exergy efficiency: impacts on primary energy projections

3.3.1. Step 1 – Useful work projection to 2030
China’s useful work and primary energy intensities (of eco-

nomic activity) are shown in Fig. 6, based on constant price GDP.
It shows a 66% reduction in useful work intensity from 12.0
(GJ/2005$US) in 1971 to 3.9 (GJ/2005$US) in 2010, compared to
an 86% reduction in primary energy intensity (210.7 to
29.8 GJ/2005$US) – the standard metric for energy intensity (e.g.
[88]) – over the same period. The greater stability of useful work
intensity suggests useful work is more closely linked to GDP than
primary energy – supporting the key assumption noted earlier.
Useful work and primary energy intensities are projected to 2030
using best-fitting trendlines as shown in Fig. 6.

The World Bank’s GDP forecast for China in 2030 [85] is
$13.5 Trillion(US2005), a 3.5-fold increase from the
$3.8 Trillion(US2005) value in 2010. Using the useful work inten-
sity projection of 2.45 (GJ/US$2005) for 2030, this gives a useful
work estimate of 33.1EJ in 2030 (just over double the 15.0EJ con-
sumed in 2010) – to deliver that level of GDP.
3.3.2. Step 2 – Allocation of task-level useful work
Fig. 7 shows the projected annual useful work growth to 2030 is

almost linearly �27–28 Mtoe/year. This is due to two effects can-
celling each other out: a slowdown in GDP growth mirroring useful
work intensity reductions. At a main class level, as China’s econ-
omy matures, a slowdown in heat’s contribution to useful work
is offset by growth in electricity and mechanical drive (mainly
transport) classes. This appears broadly consistent with other eco-
nomic forecasts for China used in energy modelling (e.g. [6]).
analysis results vs 1971 datum.
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Fig. 6. Comparison of China primary energy and useful work intensities.

Fig. 7. China – useful work projection to 2030.
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3.3.3. Step 3 – Task-level exergy efficiencies
Next, task-level exergy efficiencies are projected based on the

linear and declining gains scenarios described earlier – see
Supplementary Information. The results at main class level are
shown in Fig. 8. In Scenario 1, stable gains in task-level exergy effi-
ciencies are combined with structural change in China in 2011–
2030 – moving towards a more service sector-based economy,
with associated decreases in higher efficiency processes (e.g. high
temperature heat) and increases in low-efficiency activities (e.g.
residential and commercial electricity), as shown earlier in Fig. 3.
This results in only a small increase in national aggregate exergy
efficiency from 12.5% to 13.0% in 2030. The green wedge in Fig. 8
illustrates the effect of this structural change, compared to a sim-
ple extrapolation of China’s 1990–2010 aggregate efficiency, which
would result in aggregate exergy efficiency of around 17% in 2030.
Fig. 8. China – exergy effic
In Scenario 2, which includes both structural change and slowing
of task-level efficiency gains, aggregate exergy efficiency peaks at
12.8% before 2025, then reduces to 12.5% by 2030. Therefore most
of the reduction in overall efficiency is due to assumed structural
change than the difference in task-level efficiencies under the
two scenarios.

For heat and mechanical drive classes, the projected efficiency
dilution is so strong (i.e. less industrial usage and more consumer/
commercial use), their efficiencies decline by 2030 under both sce-
narios. As electricity provides an increasing share of useful work by
2030, this accelerates the slowdown (scenario 1) and decline (sce-
nario 2) in overall exergy efficiency. Mechanical drive efficiency
stagnates in this analysis under both scenarios, since it balances
task-level efficiencies that were increasing (e.g. static motors and
aviation) and decreasing (e.g. road transport – due to more
Efficiency scenario differences

Structural change 

iency scenario results.
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cars/less motorcycles, and more heavy duty-trucks). However, as
the smallest of the three main classes, this effect has limited
impact on the aggregate exergy efficiency.

3.3.4. Step 4 – Primary end demand in 2030
Finally, the useful work-based primary energy estimates are cal-

culated based on the assumed efficiency scenarios. The results are
compared in Fig. 9 to five published reference (i.e. current policies)
scenarios [67,89–92] and a top-down primary energy intensity
(TPES/GDP) based estimate (derived econometrically via the
best-fit TPES/GDP projection shown earlier in Fig. 6). By 2030, our
Scenario 1 (6000 Mtoe/year) requires 900 Mtoe/year more primary
energy than the econometric estimate, whilst Scenario 2 – due to
assumed declining efficiency gains – requires an additional
300 Mtoe/year (compared to Scenario 1). The TPES/GDP derived pri-
mary energy estimate (as with the other five reference projections)
slows over time, following the assumed slow-down in GDP growth.
In contrast, our useful work derived projections show more linear
increases, as with flat overall exergy efficiencies (shown earlier in
Fig. 8), the linear projected growth in useful work required (see ear-
lier Fig. 7) is passed on to required primary energy inputs.

Our useful work-based projections are significantly higher than
the five reference cases. The three reference scenarios using a 2010
base year [89–91] produce estimates of 4300–5000 Mtoe/year in
2030, whilst the two scenarios with a 2005 base year [67,92] esti-
mate primary energy consumption as 3200 Mtoe in 2030. A key
aspect therefore appears the choice of base year, with the 2005
base year models missing China’s step up in energy consumption,
and so undercut the projections of later base year models.
Perhaps this illustrates how tricky energy forecasting is, as Smil
[93] notes: ‘‘long-range energy forecasters have missed every
important shift of the past 2 generations..[and they]..will continue
to be wrong’’.

Nevertheless, the fact remains the traditional energy models
give lower estimates of primary energy than our simple useful
work-based approach – so it’s worth reflecting on this. Most
importantly, we base our projections on a different energy inten-
sity metric versus mainstream models – ours is based on useful
work (U/GDP), as this measures the energy level delivered to eco-
nomic activities, rather than on primary energy (TPES/GDP) enter-
ing the economy. Moreover, our TPES/GDP based projection is 20%
below our U/GDP based projections – showing that this distinction
is an important one. The GDP projections that we use are consis-
tent with other models (e.g. [6]). Our methodology is also
top-down: it starts from an aggregate demand estimation, and
then builds up its constituent elements from task-share trends.
Other energy models tend to be bottom-up, using demand and
technology trends of various sectors. We attach more detailed sce-
nario data in the Supplementary Information.
Fig. 9. China – primary energy
Whilst we believe the useful work based approach to primary
energy forecasting is justified by the observed links between
aggregate economic activity and useful work, significant caveats
exist around the accuracy of the underlying data to our energy pro-
jection conclusions. For the useful work calculations for 1971–
2010, though the primary exergy data is relatively robust (relying
mainly on IEA energy balance data), the task-level efficiencies have
greater uncertainty, being based on often partial data. In turn, pro-
jecting task-level useful work allocations and exergy efficiencies to
2030 amplifies any data inaccuracies. However the driving ratio-
nale of the paper was to develop a new technique based on useful
work. The result highlights the possible importance of this method
and thus mandate for further study.

4. Conclusions

To address the lack of time-series exergy analyses for China
which examine energy demand drivers and implications, we set
the following research question: What new insights can useful work
analysis provide for historical and future energy demand in China?
First, our historical analysis found China’s exergy efficiency grew
linearly from 5.3% (1971) to an impressive 12.5% (2010), placing
it between the US (11%) and the UK (15%). In addition, a striking
10-fold rise in China’s useful work occurred from 1971 to 2010,
supplied by a 4-fold increase in primary exergy and a 2.5-fold
increase in exergy efficiency. Second, using LMDI decomposition
we found efficiency growth was split evenly between task-level
efficiency gains and structural change (e.g. moving from muscle
work to mechanical drive). Third, a new useful work-based energy
forecasting technique is developed and trialled, which – based on
two illustrative exergy efficiency scenarios – projects China’s
2030 primary energy demand in the range of 6000–6300 Mtoe, sig-
nificantly higher than the 4500–5200 Mtoe estimates from pub-
lished sources using traditional energy models which use the
same 2010 baseline year.

The results allow several key insights. Firstly, if China’s exergy
efficiency had stayed at 5%, a 10-fold (rather than 4-fold) gain in pri-
mary exergy would have been required to achieve the same useful
work supply level. Through the mechanism of the macro-economic
rebound effect, however, as Ayres et al. [94] and Schipper and
Grubb [95] established, lower efficiency gains may in fact translate
to lower economic growth, and hence lower required useful work.
Second, the application of LMDI decomposition to useful work
results provided robust insights: revealing China’s efficiency rise
above the US was not due to technological leapfrogging, but greater
use of energy intensive (yet more exergy efficient) industrial pro-
cesses. Third, in common with the US and UK, China may approach
an asymptotic exergy efficiency maximum by 2030, as its economy
matures and efficiency dilution starts. Such dilution is already
(TPES) forecasts to 2030.
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forecast: the modal shift to cars [67] will reduce mechanical drive
exergy efficiency; a rapid increase in residential electricity [3];
and a peaking in the share of HTH allied to a shift to greater residen-
tial LTH. Fourth, our extension of useful work based technique pro-
jects higher primary energy demand in China by 2030 versus
traditional bottom-up energy model estimates (i.e. based on pri-
mary or final energy). Further studies investigating the possible
reasons (e.g. differences in assumed future energy efficiency sav-
ings, structural consumption, energy rebound and efficiency dilu-
tion) would therefore be beneficial.

Overall, the useful work method appears a valuable technique to
give new insights into Chinese energy consumption and efficiency –
past, present and future. Given the implications to future energy
demand and associated policies, further research is encouraged.
First, work to improve the consistency of the useful work method
would be of benefit – such as the treatment of renewables,
non-energy use, active/passive system efficiencies, or extending the
analysis boundary to include energy services, as others suggest
[38,87,96]. Second, contrast the construction of traditional (primary
and final energy) versus useful work energy models, to uncover the
reasons for energy projection differences. Third, undertake further
economic analysis to test the key assumption underpinning this
work: that useful work is a more suitable parameter for energy and
economic analysis than primary energy. Lastly, policy implications
Table A1
Useful work accounting outputs: China – 1971, 2010.

Main class, i Task level, j 1971

Useful
work
Uij

PJ

Heat LTH (Low Temperature Heating 20 �C) 435
MTH1 (Medium Temperature Heating 100 �C) 30
MTH2 (Medium Temperature Heating 200 �C) 301
HTH (High Temperature Heating 600 �C) 283
Sub total 1049

Mechanical
Drive

Mechanical drive – Gas/diesel oil (assume diesel road
vehicles

20

Mechanical drive – Domestic Aviation fuel, jet fuel 0
Mechanical drive – Gasoline fuel (Petrol road vehicles 42
Mechanical drive – Diesel/gas oil fuel (Boat engines) 2
Mechanical drive – Industry static motors (diesel
engines)

28

Mechanical drive – Gas/diesel fuel (diesel trains) 1
Mechanical drive – Gas/diesel fuel (tractors) 26
Mechanical Drive – bio-diesel/bio-gasoline (road
transport)

0

Mechanical drive – bio-diesel/bio-gasoline (road
transport)

0

Mechanical drive – Gas/diesel oil (assume diesel cars) 0
Mechanical drive – Gas fired engines (for pipeline
transport)

0

Mechanical drive – Coal (steam powered trains) 7
Mechanical drive – Coal (steam powered boats) 0
Mechanical drive sub-total 126

Electricity Lighting 1
Domestic/commercial – Space heating 0
Domestic – Hot water/cooking 1
Industry – HTH process heating 16
Electrolytic end use – Industry 11
Communications/electric devices 0
Refrigeration/air conditioning 4
Domestic – Wet/dry motor driven appliances 0
Other mechanical drive motors 123
Electricity – Sub-total 156

Muscle work Human 26
Draught animals 131
Muscle work – Sub-total 157

Total Grand total 1488
could be explored – such as how to meet higher (than expected) pri-
mary energy demand, or how to amend micro-efficiency policies to
capture energy savings before rebound occurs.
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Appendix A. Useful work accounting outputs: China – 1971,
2010

(see Table A1)
2010

Primary
exergy

Exergy
efficiency

Useful
work

Primary
exergy

Exergy
efficiency

Eij eij Uij Eij eij

PJ (%) PJ PJ (%)

10,103 4.3 973 20,281 4.8
247 12.1 592 4428 13.4
2657 11.3 1913 10,506 18.2
2362 12.0 3963 16,695 23.7
15,370 6.8 7441 51,910 14.3

114 17.3 821 3728 22.0

0 n/a 158 642 24.6
242 17.3 691 3920 17.6
17 13.0 188 915 20.5
118 23.5 522 1934 27.0

8 13.0 64 310 20.5
255 10.2 88 799 11.0
0 n/a 16 80 n/a

0 n/a 0 0 n/a

1 20.4 85 385 22.0
0 n/a 2 7 n/a

333 2.2 0 0 n/a
0 n/a 0 0 n/a
1090 11.6 2633 12,720 20.7

84 0.8 46 2836 1.6
31 1.3 57 3303 1.7
21 3.0 47 1272 3.7
199 7.9 443 4537 9.8
153 7.5 370 3490 10.6
0 0.1 1 267 0.3
307 1.4 144 8221 1.7
0 10.0 17 138 12.6
797 15.4 3537 18,442 19.2
1592 9.8 4662 42507 11.0

5432 0.5 38 9626 0.5
5229 2.5 88 3533 2.5
10,661 1.5 127 13,159 1.0

28,713 5.2 14,863 120,296 12.4



Fig. B1. China E-Sankey Diagram (1971).

Fig. B2. China E-Sankey Diagram (2010).

Appendix B. Primary exergy to useful work E-Sankey flowmaps: China – 1971 and 2010

(see Figs. B1 and B2)
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Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.apenergy.2015.
05.082.
Appendix D. Data Statement. Supplementary material

A complete results file, produced following the methodology
and sources described in this paper, has been deposited at the
University of Leeds Data Repository at http://doi.org/10.5518/7.
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