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INVESTIGATION

Reconstructing Past Admixture Processes from Local
Genomic Ancestry Using Wavelet Transformation

Jean Sanderson,*'' Herawati Sudoyo,’ Tatiana M. Karafet,* Michael F. Hammer,** and Murray P. Cox*-
*Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand,
TEijkman Institute for Molecular Biology, Jakarta, Indonesia, *Division of Biotechnology, Arizona Research Laboratories and
§Depar‘[ment of Anthropology, University of Arizona, Tucson, Arizona 85721

ABSTRACT Admixture between long-separated populations is a defining feature of the genomes of many species. The mosaic block
structure of admixed genomes can provide information about past contact events, including the time and extent of admixture. Here,
we describe an improved wavelet-based technique that better characterizes ancestry block structure from observed genomic patterns.
principal components analysis is first applied to genomic data to identify the primary population structure, followed by wavelet
decomposition to develop a new characterization of local ancestry information along the chromosomes. For testing purposes, this
method is applied to human genome-wide genotype data from Indonesia, as well as virtual genetic data generated using genome-
scale sequential coalescent simulations under a wide range of admixture scenarios. Time of admixture is inferred using an approximate
Bayesian computation framework, providing robust estimates of both admixture times and their associated levels of uncertainty.
Crucially, we demonstrate that this revised wavelet approach, which we have released as the R package adwave, provides improved

statistical power over existing wavelet-based techniques and can be used to address a broad range of admixture questions.

KEYWORDS wavelets; principal component analysis (PCA); admixture; local ancestry; dating

ADMIXT URE occurs when previously separated popula-
tions interact and merge. This process has been instru-
mental in human history, with most global groups showing at
least some signals of population merger (Hellenthal et al.
2014). The admixture process produces “mosaic” genomes
with alternating blocks of DNA from each ancestral popula-
tion. Over time, recombination decreases the length of these
ancestry blocks, and therefore the distribution of block sizes is
informative about the time of admixture. However, the extent
to which these patterns can provide additional information
about historic admixture processes is still a young area of
exploration.

A range of methods have been developed to partition the
genome of an admixed individual into ancestry blocks based
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on raw genomic data (Falush et al. 2003; Price et al. 2009).
Some methods assign ancestry directly. For instance, HAPMIX
uses a hidden Markov model to estimate the break points
of ancestry blocks, while other approaches define ancestry
blocks using simple empirical criteria, such as strings of
shared vs. nonshared polymorphisms (Pool and Nielsen
2009) or the differential presence of population-specific var-
iants (Brown and Pasaniuc 2014). Another set of methods
is more indirect. ROLLOFF (Moorjani et al. 2011), LAMP
(Baran et al. 2012), and ALDER (Loh et al. 2013) all search
for rapid changes in linkage disequilibrium to define the
borders of ancestry blocks, while other approaches assign
ancestry for predefined genomic windows using conditional
random fields (Maples et al. 2013) or principal component
analysis (PCA) (Gravel 2012).

These methods vary in their effectiveness. Simple empir-
ical criteria perform surprisingly well for admixture between
species (as for the mouse admixture zone studied by Pool
and Nielsen 2009). Similarly, most of these methods tend to
be highly accurate for recent admixture between well-separated
human groups (such as African Americans or American La-
tinos). Indeed, in these settings, subtleties such as multiple
waves of admixture have even be detected (Gravel 2012).
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However, reconstructing complex demographic features for
much older admixture events (i.e., thousands rather than
hundreds of years in the past) remains extremely challenging
(Moorjani et al. 2011). While methods have in principle been
proposed to detect multiple waves of ancient admixture, in
many realistic settings they are still restricted to single admix-
ture events (Loh et al. 2013), although some evidence for
multiple ancient admixture events has been presented for
several Indian populations (Moorjani et al. 2011).

Other indirect methods look increasingly promising in
this “old admixture” space. Approaches based on principal
components analysis and wavelets have been employed with
some success. PCA is a nonparametric data-reduction tech-
nique, which has been used widely to identify patterns of
population structure in genetic data (Patterson et al. 2006;
Novembre and Stephens 2008; McVean 2009; Bryc et al.
2010; Ma and Amos 2012). Dispersion of admixed individ-
uals along the first principal component connecting ancestral
populations can be used as a diagnostic for two-way admix-
ture (Patterson et al. 2006; Mcvean 2009). For instance,
PCAdmix employs PCA to assign ancestry to localized win-
dows along the genome for each individual (Brisbin et al.
2012). Pugach et al. (2011) also use PCA, but do not directly
assign ancestry to genomic regions, instead applying a wavelet
transform to obtain an indirect measure of the average ad-
mixture block length. While this approach has been shown to
be powerful for dating old admixture events, there remains
considerable scope for (i) the development of more sophisti-
cated wavelet constructions, (ii) examining the resulting
wavelet decompositions in greater detail (particularly to iden-
tify aspects of non-time-related information in the transformed
data), and (iii) to provide a more user-friendly software solu-
tion for wavelet analysis.

Wavelet techniques themselves are an active and evolving
area, with much potential for novel application in population
genetics, as highlighted in the review article by Lio (2003).
Wavelets can be thought of as localized, oscillatory functions
and are particularly useful for representing data that has
local features such as sharp changes and discontinuities. In
the context of genome-wide single nucleotide polymorphism
(SNP) data, wavelets can be used to represent the mosaic
pattern of ancestry blocks. A wavelet decomposition of
the data provides information on the size of the ancestry
blocks and, importantly, how they are distributed along
the chromosomes. Summary measures of the wavelet de-
composition allow aspects of the admixture process to be
reconstructed, such as the time of admixture and admixture
proportions.

Here, we present a substantially revised wavelet-based
approach to describe population admixture that builds on the
work of Pugach et al. (2011). This new method has signifi-
cantly fewer model assumptions and allows us to identify
more complex demographic processes, such as multiple
admixture events. As with previous methods, PCA is first
employed to describe the population structure. The maximal
overlap discrete wavelet transform (MODWT) is then applied
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directly to the SNP-level data, without the need to compute
averages over localized genomic windows as implemented in
related procedures (Pugach et al. 2011; Brisbin et al. 2012).
Instead, windowing is performed naturally and objectively as
part of the wavelet decomposition procedure. We show that
this new method provides robust estimates of admixture time
(including improved control of uncertainty estimates), as well
as recognizing other aspects of admixture processes that pre-
vious wavelet-based methods have not been able to identify
with any accuracy.

Methods
General framework

Initially, we consider a simple admixture scenario where two
ancestral populations P, and Pg merged T generations ago
to form the admixed population Pc. The ancestral popula-
tions contribute to the admixed population with probabili-
ties p and 1 — p. The sizes of the populations, the admixture
time, and the admixture proportions are free to vary.

To quantify patterns of genomic block size variation,
a three-step analysis procedure was used: (i) PCA was applied
to the genomic data to describe population structure; (ii) the
wavelet variance was computed to provide a scale-by-scale
decomposition of the variance for each population; and (iii)
the portion of this measure that is informative for admixture
processes was extracted relative to background levels ob-
served in the ancestral populations.

Data simulation

Genome-wide SNP data were simulated using the sequential
coalescent simulator MaCS (Chen et al. 2009). Because our
primary interest is in the admixture history of Island South-
east Asia (see Real genomic data section below), we chose
parameter settings that produce genomic data that broadly
fit observed patterns of genetic diversity in this study region
(Cox et al. 2008). The demographic model, parameters, and
information sources are described in more detail in the Sup-
porting Information (Figure S1). We emphasize, however,
that the method we describe is general and can be applied to
most admixed genomic systems.

Data setup

Given an admixed population P derived from two ancestral
populations P, and Pp, the number of individuals in the
analysis (i.e., present day samples) is n = ny = ng + nc.
For each individual i, we observe a collection of T SNPs
along a chromosome. Thus the raw data matrix X is
a T X n matrix with T genotype counts in columns and n
individuals in rows. The SNPs s are ordered by their physical
positions along the chromosome, with the cells of the data
matrix X ; taking the value 0 if heterozygous, and arbitrarily
—1 or 1 for the alternative homozygous states. Prior to prin-
cipal components analysis, the data matrix is centered such
that the column mean with respect to the ancestral refer-
ence populations is zero, giving
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Principal components analysis

PCA is performed using only individuals from the ancestral
populations. Rather than performing PCA on all samples
combined, this approach has the advantage that other features
of the admixed sample (such as admixture from additional
ancestral populations) will not influence the projection
(McVean 2009). The first eigenvector v; reflects the primary
population structure. Projection of individuals onto this axis
of variation is given by

. T B
Vi=Y  Xvis o))

The proportion of ancestry inherited from population P, can
be estimated for each individual (or population) using the
distance from the centroids of the ancestral populations; that
is, pi = (ca —¥})/(ca — ca). Where cx = (1/na)Y;cp, ¥4 and
s = (1/np)> _icp, y1 are the centroids of the ancestral popula-
tions along the first principal axis (Bryc et al. 2010). Note that
variation between individuals within a population is repre-
sented by the smaller eigenvalues and corresponding eigenvec-
tors (Ma and Amos 2010).

This representation of admixed individuals in PCA space,
as shown in Figure 1A, provides a genome-wide estimate of
average ancestry, but does not indicate how admixture tracts
are distributed along the chromosomes. To obtain localized
estimates, the projection is performed at the SNP level rather
than summing over the length of the genome as in Equation
1. The raw SNP-level admixture signals are given by
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where ¢ = (1/ n6)Y icp,XsV1s for G € A, B. The additional
terms in Equation 2 ensure that the signals are normalized
such that the mean of the ancestral populations are arbi-
trarily 1 and —1. This normalization step makes the mea-
sure robust to uneven sample sizes, which can affect the
structure of the PCA (Novembre and Stephens 2008;
Mcvean 2009). Stability of the signals is maintained by spec-
ifying a tolerance & for separating the ancestral populations
at a given SNP. This ensures that SNPs with poor discrimi-
nation are treated as uninformative in the next step of the
analysis.

Wavelet transform

The resulting SNP-level admixture signals indicate how
ancestry varies along the genome, but they invariably
exhibit a high noise-to-information ratio. To interpret the
signal, its frequency content can be described using the
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Figure 1 Simulated example with 13,000 SNPs, 15 diploid individuals in
ancestral populations (Pa, Pg), and 20 diploid individuals in the admixed
population (Pc). Populations are shown in green (P,), blue (Pg), and red
(Pc). (A) PCA is used to describe the primary population structure; (B) raw
wavelet variance for each population illustrates high frequency noise; (C)
informative variation in the admixed population after standard correction
for noise estimated from the ancestral populations. Note that this exam-
ple uses the default threshold u = 1.

wavelet variance (Percival 1995). The wavelet variance
S; for scales j=1,...,J provides a scale-by-scale decompo-
sition of the variance of the signal. The first scale (j = 1)
captures the highest frequency patterns, representing very
local information. Increasing the scale index provides suc-
cessively coarser, or lower frequency information, equivalent
to “zooming out” on the signal until the level of the entire
chromosome is reached. A plot of S; vs. j indicates which
scales are important contributors to the process variance
and indirectly provides information about the distribution
of admixture tracts. For example, recent admixture produces
a peak in the wavelet variance at a large wavelet scale,
reflecting long admixture tracts, while more ancient admix-
ture events produce peaks at lower wavelet scales, reflecting
shorter admixture tracts.
The wavelet variance for an individual i is given by

;1 L P2

where d; = > Yy, are the wavelet coefficients for

the signal Y? constructed using the wavelet system . To
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appreciate the methodology, it is sufficient to understand
that the wavelet variance reflects the frequency content of
the signal, but more detailed background material is pro-
vided in the Supporting Information (Figure S5, Figure S6,
Figure S7, Figure S8, Figure S9, and File S1). Our imple-
mentation employs Daubechies’ least asymmetric wavelet
number 8 in the waveslim (Whitcher 2013) package of the
statistical software R (R Development Core Team 2014). We
emphasize, however, that the methods proposed here are
robust to other choices of analyzing wavelet (see Supporting
Information, Figure S5, Figure S6, Figure S7, Figure S8, Figure
S9, and File S1).
Population averages are computed as

= 8

nc i€Pc

(and similarly for populations P, and Pg). An example of the
average wavelet variance for each population is shown in
Figure 1B. The wavelet variance is highest at fine scales, but
as the ancestral populations also show this pattern, it should
be considered background noise. It is intuitive that the very
finest wavelet scales are uninformative because small num-
bers of SNPs should be insufficient to differentiate between
populations. The raw wavelet variance is therefore consid-
ered as a combination of informative variation and back-
ground noise

Sf =IF +Nj. 4)

To extract the informative variance I$, we subtract the pro-
portion that can be attributed to noise. This is estimated
from the variation observed in the ancestral populations;
N = max(gf‘, EJB), where u is a multiplicative factor that
allows the degree of thresholding to be controlled. Under
almost all conditions, a default value of u = 1 may be as-
sumed, and this threshold should be raised only if the ad-
mixture signals exhibit high levels of noise (see Supporting
Information, Figure S5, Figure S6, Figure S7, Figure S8,
Figure S9, and File S1 for details). Population characteristics
that influence noise levels in the admixture signals are ex-
plored in the next section. The final measure of the infor-
mative variance is given by

1§ = max(s§ - N;,0), (5)

which describes the frequency content that is unique to the
admixed population (in contrast to the ancestral populations).

Real genomic data

To illustrate that our method performs well in real-world
situations, it was applied to a SNP genotyping chip data set
of 394 individuals from 16 communities spread across the
Indonesian archipelago (Table 1). Equivalent SNP data from
Southern Han Chinese and Papua New Guinea Highlanders
were used as proxies for the ancestral populations. Permis-
sion to conduct research in Indonesia was granted by the
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Indonesian Institute of Sciences. Blood samples or buccal
swabs were collected from consenting, closely unrelated,
and seemingly healthy individuals by J. Stephen Lansing
(University of Arizona) and Herawati Sudoyo (Eijkman In-
stitute for Molecular Biology, Indonesia), with the assistance
of Indonesian Public Health clinic staff. All sample collection
followed protocols for the protection of human subjects
established by both the Eijkman Institute and the University
of Arizona institutional review boards. Participant inter-
views confirmed local residence for at least two generations
into the past. Samples were genotyped with the Affymetrix
Axiom chip, yielding 548,994 SNPs across the autosomes.
(Sex-linked markers were excluded from the analysis.) The
SNP data were cleaned using standard protocols in PLINK v.
1.07 (Purcell et al. 2007; Purcell 2009) and the wavelet
transform performed as described above.

The approximate Bayesian computation analysis employed
1000 data sets with sample sizes and SNP numbers set to
those of the real data. These data sets were simulated by
drawing from a uniform prior of admixture times between
10 and 300 generations. The admixture proportion for
the Bena population (used as our primary test case) was
set to 0.6, as estimated previously from the real data. The
ABS metric was calculated for each simulation, and the
multiple chromosome structure of the data were mimicked
by sampling each individual repeatedly with different data
densities.

Results

As proof of concept, we first applied our wavelet method to
simulated data. A range of admixture scenarios was ex-
plored by varying parameters of the demographic model,
particularly the time of admixture, admixture proportion,
and single vs. multiple admixture events. Fifty simulations
were performed for each scenario with modest (but there-
fore realistic) ancestral sample sizes of ny = ng = 15 and an
admixed sample size nc = 20.

Admixture time

Because the ability of wavelet methods to calculate the time
of admixture is well known from earlier work (Pugach et al.
2011), we explored this feature first. Simulations were per-
formed for admixture times ranging from 10 to 320 gener-
ations (i.e., from the recent past to ~10,000 years ago, using
a generation interval of 30 years; Fenner 2005). Admixture
at 10 generations shows the highest informative wavelet
variance at scale 13, reflecting relatively few, long admixture
blocks (Figure 2). As the time of admixture occurs further
back in the past, the peak in wavelet variance shifts toward
successively lower wavelet scales, reflecting ever-smaller ad-
mixture blocks driven by cumulative recombination along
the chromosome. The average frequency content can be
characterized by the average block size metric ABS, termed
the “wavelet center” by Pugach et al. (2011), which as
shown later, can be used to date the admixture event
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Table 1 Summary of case study populations describing sample size
(n), proportion of Asian ancestry as inferred by PCA (p), and the
average block size metric (ABS, for admixed populations only)

Average block

Population n p size metric (ABS)
Southern Han Chinese 13 1.00 —
Nias 28 0.87 4.26
Mentawai 29 0.87 4.30
Java 21 0.84 4.41
Sumatra 30 0.83 4.49
Bali 19 0.83 4.90
Sulawesi 21 0.80 6.57
Sumba, Wunga 30 0.67 7.90
Sumba, Anakalang 30 0.66 7.83
Flores, Rampasasa 12 0.66 8.05
Flores, Bena 30 0.57 8.14
Flores, Bama 30 0.55 8.34
Timor, Umanen Lawalu 17 0.55 8.44
Timor, Kamanasa 19 0.53 8.42
Lembata 28 0.53 8.39
Pantar 27 0.45 8.47
Alor 23 0.42 8.46
Papua New Guinea Highlands 13 0.00 -
S 148
ABS = TJA% (6)

Admixture proportion

Admixture proportions were varied between 0.5 (equal
ancestry from P, and Pg) and 0.025 (ancestry predominately
from P,). For this analysis, the time of admixture was fixed at
160 generations. As the proportion of admixture decreases,
the raw wavelet variance exhibits increasing levels of noise
relative to informative variation. This is shown by the
reduced magnitude of the informative wavelet variance
(Figure 3) and emphasizes that, as expected, it is increasingly
difficult to extract informative variation at low admixture
proportions (small p) even where the signal is technically
present. In this example, informative estimates were obtained
for admixture proportions as low as 2.5%, although in
general, the range of p for which this method is applicable
will also depend on other characteristics of the data, such
as the SNP density and sample size, as considered in the
next section.

Sensitivity analyses

The sensitivity of the method to a wide range of data
characteristics was considered by repeating the results of the
admixture time example with a large number of simulated
data sets. Results are summarized in Table 2 and Figure 4.

Condition 1 shows the original results, exactly as de-
scribed above. New simulations were then performed to
mimic realistic linkage disequilibrium (LD) (condition 2). To
do so as accurately as possible, we applied the real re-
combination rates observed along the first 100 Mb of
chromosome 1, as recombination rates for chromosome 1

are near the average of all chromosome-level recombination
rates (Figure S2). The effect of lower sample size (condition
3) was investigated by reducing the number of individuals
sampled from each population by 5, thus yielding sample
sizes that would be smaller than almost any published pop-
ulation genetics study (na, ng = 10, nc = 15). The effect of
more recent divergence between the ancestral populations
(condition 4) was investigated by decreasing Tancestral from
2000 to 1200 generations ago (50,000-30,000 years ago).
The effect of using a misrepresentative modern population
as a proxy for an ancestral population (condition 5) was
investigated by studying ancestral populations with mixed
(rather than “pure”) ancestry. Rather than using samples
from the true ancestral population P4, an admixed ancestral
population P, was employed instead (p = 0.1). A wide
range of parameters was applied for sensitivity testing, but
for clarity, only results for single parameter values are shown
on Figure 4. These examples are representative of all the
tests that were run.

Variation in summary measures between simulations was
compared by computing the relative standard deviation
(RSD) at each admixture time. For all of the error conditions
above, the computed ABS metrics are consistent with the
reference case (condition 1), but with slightly larger relative
standard deviations. Only for one case (condition 4; reduced
divergence between the ancestral populations and admixture
at 320 generations) are the ABS metrics biased, with the
mean falling outside the range of values observed for the
reference example. We emphasize that this is expected:
admixture should be more difficult to detect when it occurs
between two ancestral populations that diverged only recently.
Stability of the ABS metrics in this particular scenario could be
improved by applying a higher level of thresholding. However,
the default value of u = 1 was retained here to provide consis-
tency across scenarios, to demonstrate the deterioration in res-
olution, and to illustrate that the thresholding parameter can be
ignored for all but the most extreme admixture cases.

In all of these examples, including the standard reference
case, the localized admixture signals provide a noisy in-
dication of how ancestry varies along the chromosome.
Indeed, the inherent stochasticity of the block structure is
the primary reason why other sources of variance, such as
the cases discussed above, have relatively little additional
effect on the overall results. This noise is addressed using
wavelets to capture the distribution of block sizes, coupled
with a correction based on the ancestral populations to
distinguish informative signals from background variation.
The cases considered above all slightly increase noise levels
relative to informative variation, which, as demonstrated by
the admixture proportion example in Figure 3, reduces the
magnitude of the extracted informative wavelet variance. As
noise increases, it naturally becomes more difficult to extract
informative variation. However, this increase in noise levels
is minimal for all but the most extreme confounds, thus
allowing the technique to be applied robustly to a very wide
range of scenarios.
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Figure 2 Informative wavelet variance for each time of admixture (10-320 generations using default thresholding u = 1). Shaded bars represent the
average over 50 simulations at each admixture time; black bars represent the range across individual simulations. The average block size metric for each

scenario is indicated by a dotted blue line.

The effect of SNP density (which is always a known
variable) is demonstrated by down sampling the data
(conditions 6-8). The original density of 4306 SNPs (condi-
tion 6) was chosen to correspond to the size of our real
chromosome 22 data set. Reducing the SNP density of this
data set means that the resulting wavelet decomposition is
given over 11 wavelet scales rather than the earlier 13, and
so as expected, the computed mean ABS metrics are corre-
spondingly much smaller. However, this has no effect on the
inference, as the data size is always known and simulations
are simply run to match the size of the observed data. Fur-
ther reductions in SNP density to 3250 SNPs (condition 7)
and 1625 SNPs (condition 8) are also shown. Note that
although the absolute values of the ABS metrics are shifted,
the trend with admixture time remains consistent.

Method comparison

The original StepPCO method (Pugach et al. 2011) has al-
ready been tested extensively against other admixture de-
tection methods, particularly HAPMIX (Price et al. 2009).
We therefore focus here on comparing our improved wave-
let method against the StepPCO procedure. Figure 5 shows
that the summary measure (wavelet center) used in
StepPCO is comparable to the adwave ABS metrics, as both
exhibit a strong trend with time of admixture. However, the
dispersion is consistently smaller for the adwave ABS met-
rics. For example, the wavelet centers (StepPCO) computed
for T =320 and T = 160 show substantial overlap, while
the ABS metrics (adwave) for the same populations show
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only minimal overlap. This illustrates that adwave offers in-
creased power to differentiate between older admixture sce-
narios, with substantially reduced uncertainty in dating.

We also emphasize that adwave requires far fewer user
specifications with regard to runtime options. The only vari-
able for adwave is the thresholding parameter, and as shown
above, the default value of uw = 1 should be used for almost
all admixture scenarios. In contrast, the StepPCO results re-
quired a signal length parameter (K = 1024), a window size
parameter (A = 5), and two thresholding parameters (thresh-
old = 0.1, maxlevel = 6) (all notations from Pugach et al.
2011). A detailed demonstration of this method comparison,
with explanation of the settings chosen for StepPCO, is pro-
vided in Figure S3.

Admixture in Indonesian populations

Populations across Indonesia show genomic admixture
between Asian and Melanesian ancestral sources (Cox
et al. 2010), which has been dated using other methods to
an admixture event ~4000 years ago (~130 generations)
(Xu et al. 2012). We calculated wavelet summary measures
for 16 communities across the Indonesian archipelago using
548,994 autosomal SNPs screened in 394 individuals (Table
1). Equivalent data from Southern Han Chinese and Papua
New Guinea Highlanders was used as proxies for ancestral
populations, as described in Cox et al. (2010).

The PCA for all individuals, where only the ancestral
populations were used to define the axes, is shown in Figure
6. Admixed individuals dispersed along the first principal
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Figure 3 Relationship between proportion of admixture and informa-
tive wavelet variance. For this example only, a nondefault value for the
threshold u = 1.1 was used to account for increased noise in the ad-
mixture signals due to low proportions of admixture, as described in the
text. The magnitude of the wavelet variance decreases with the admix-
ture proportion, shown as colored bars from black (P = 0.50) to yellow
(P =0.025).

component illustrate the primary genomic signal, a strong
gradient in Asian-Melanesian ancestry that has previously
been observed across the region (Cox et al. 2010). The in-
formative wavelet variance was computed separately for
each chromosome and individual and subsequently com-
bined to provide a single measure for each population (Fig-
ure S4). To combine information across chromosomes,
which vary considerably in size, the raw admixture signals
were windowed: all signals were reduced to the size of the
smallest chromosome (importantly without discarding any
data) by computing averages over a window of SNPs
(details of the windowing procedure are provided in Sup-
porting Information, Figure S5, Figure S6, Figure S7, Figure
S8, Figure S9, and File S1). The SNP density and window
size for each chromosome are shown in Table S1. This win-
dowing procedure is used only to standardize chromosomes
to the same length and utilizes very short windows of SNPs
(unlike the approach of Pugach et al. 2011).

The average block size metrics calculated for each pop-
ulation are shown in Table 1. The first six Indonesian popu-
lations (Nias, Mentawai, Java, Sumatra, Bali, and Sulawesi)
exhibit predominantly Asian ancestry, with high-frequency
noise in the signals causing some bias in the computed ABS
metrics (Figure S4). The remaining Indonesian populations
exhibit less extreme Asian ancestry proportions (42-67%),
with the resulting ABS metrics appearing broadly similar
between populations.

Under the assumption of a single admixture time (relaxed
in later sections), the average block size metric can be used
to date the time of admixture using approximate Bayesian
computation (ABC). A general introduction to ABC can be
found in Csilléry et al. (2010) and Sunnaker et al. (2013),
while ABC in the context of parameter estimation for popu-
lation admixture has been considered by Sousa et al. (2009)
and Robinson et al. (2014).

The ABC inference procedure allows us to capture un-
certainty in admixture time estimates more robustly than
earlier wavelet dating approaches (Pugach et al. 2011; Xu
et al. 2012). To illustrate this process, dating was performed
on the Bena population of Flores in eastern Indonesia,
resulting in an estimated median admixture time of 147
generations (95% credible region: 122-178 generations),
or 4410 years before present (95% CR: 3660-5340 years
BP). This almost exactly matches earlier point estimates of
the admixture time (Xu et al. 2012) and is consistent with
our current understanding of Island Southeast Asian prehis-
tory (Bellwood 2007).

The relationship between time of admixture and the ABS
metric across all simulations is illustrated in Figure 7A. ABC
was implemented using the R package abc (Csilléry et al.
2012), and the posterior distribution of admixture time
was computed using a local linear regression (Beaumont
et al. 2002) with a tolerance rate of 0.2. Cross validation
was used to evaluate the accuracy of this estimate: the pre-
diction error was low (0.038) and insensitive to the exact
tolerance value. For future research focusing on parameter
inference, this procedure could be modified to use a larger
number of simulated data sets and a lower tolerance rate.
However, this simple example clearly illustrates that the
adwave method has good statistical power to date admixture
using a relatively small number of simulations.

Multiple admixture events

Another aim of this work is to show that our improved
wavelet approach can be used to study other features of the
admixture process beyond the well-explored question of
admixture time. In the examples covered thus far, it has
been assumed that admixture occurred as a single event.
However, additional waves of admixture will result in the
introduction of new ancestry tracts, replacing a proportion
of older, shorter ancestry blocks with newer, longer ones.
Pugach et al. (2011) briefly considered the effects of contin-
uous admixture within a wavelet setting, showing that this
leads to underestimated admixture times in their original
methodological framework. In contrast, we instead consider
scenarios with two distinct admixture events. We show that
this process creates distinctive patterns in the observed in-
formative variation, which can be used to reconstruct more
complex demographic processes (as opposed to being trea-
ted solely as a potential source of bias).

In the following dual-admixture scenarios, the first admix-
ture event always occurs at 160 generations. To investigate
the effect of separation between admixture events, the second
admixture event varies between 10 and 80 generations. In the
extreme case of admixture at 160 and 10 generations ago, the
localized admixture signals contain two dominant frequencies.
Single admixture events at 160 and 10 generations lead to
peaks in the informative wavelet variance at wavelet scales
of 9 and 13, respectively. When two admixture events occur,
the informative wavelet variance is instead spread between
these scales (Figure 8A). As the admixture events occur closer
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Table 2 Sensitivity of the adwave method to a range of data limitations

Data limitations

Admixture time (generations)

Condition Description 10 40 80 160 320

1 Reference 11.55 (0.69) 11.14 (0.58) 10.65 (0.7) 10.13 (0.66) 9.54 (1.12) 8.84 (1.72)

2 Realistic LD 11.71 (0.84) 11.31 (0.88) 10.85 (1.08) 10.32 (1.04) 9.82 (1.23) 9.09 (2.28)

3 Reduced sample size 11.66 (0.90) 11.25 (0.63) 10.74 (0.88) 10.20 (0.85) 9.58 (1.19) 8.85 (1.78)

4 Reduced divergence between 11.64 (0.83) 11.24 (0.69) 10.76 (0.82) 10.21 (1.02) 9.49 (1.35) 8.32 (3.59)
ancestral populations

5 Non-representative ancestral 11.73 (1.34) 11.23 (1.42) 10.77 (1.51) 10.21 (1.45) 9.58 (1.94) 8.60 (3.06)
populations

6 SNP density T = 4036 10.47 (0.91) 10.04 (0.73) 9.55 (0.92) 8.98 (1.22) 8.37 (1.62) 7.60 (3.13)

7 SNP density T = 3250 9.96 (0.76) 9.60 (0.60) 9.19 (0.76) 8.68 (1.08) 8.12 (1.41) 7.37 (2.6)

8 SNP density T = 1625 8.99 (1.23) 8.63 (1.09) 8.20 (1.50) 7.68 (2.29) 7.10 (3.15) 6.33 (5.86)

Mean average block size values (relative standard deviation in parentheses) are shown for each admixture time. Reference data were simulated with 7 = 13,000 SNPs,
populations sizes of na, ng = 15, nc = 15, and divergence between the ancestral populations at Tancestral = 2000 generations ago.

together, this spread in the observed informative wavelet var-
iance decreases (Figures 8, B-D).

For one admixture event, a single dominant peak is
observed in the informative wavelet variance, and the ABS
metric therefore provides a convenient summary measure.
For multiple admixture events, the ABS metric describes the
average admixture time, but provides no information about
the duration over which admixture occurred. In contrast, the
informative wavelet variance should provide additional in-
formation about the peak dispersion. To explore the potential
for identifying more complex admixture scenarios, a simple
classification rule was implemented. An admixed population
P is assigned to one of two groups G;, Ga, which are char-
acterized by the summary measures My, M,. This scheme is
described with abstract choice of summary measure, but be-
low, we consider how different summary measures (taking
M, M; to be either the ABS metric or wavelet informative
variance) affect the success of classification.

The classification rule is implemented as follows:

1. The “true” summary measures M;, M, are computed for
each group using values obtained from the first 25
simulations.

2. For each of the remaining 25 trial data sets (s = 1,...,25),
estimated summary statistics M; are calculated. The di-
vergence measures are defined as

S
D= |M, - M, %
s=1

fori=1,2.

3. If D; <D,, classify to G;; otherwise classify to Gs.

The classification rates are shown in Table 3 for scenario
1 (a single admixture event at 60 generations; mean ABS
10.47, range 10.30-10.64) and scenario 2 (two admixture
events at 160 and 10 generations; mean ABS 10.57, range
10.35-10.90). With a sample size of just 10 individuals for
the admixed population, perfect classification is achieved
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using the informative wavelet variance, while the ABS met-
ric correctly classifies only 60% of cases. For real multiple
admixture situations, this classification framework could be
extended to a more complex inferential setting (such as
ABQC), but this simple example demonstrates the potential
for reconstructing complex admixture scenarios from the full
wavelet variance profile.

Discussion

Wavelet techniques provide information on the ancestry block
structure of admixed genomes and hence can be used to
reconstruct the processes involved in past admixture events.
Ancestry blocks are strictly unobservable and can be inferred
only from the data. Wavelets provide indirect information
on the block structure, thus providing an alternative over
methods that assign ancestry directly (Sankararaman et al.
2008; Price et al. 2009). A growing body of methods now
assign ancestry indirectly using various unrelated approaches
(Moorjani et al. 2011; Baran et al. 2012; Gravel 2012; Loh
et al. 2013; Maples et al. 2013; Brown and Pasaniuc 2014),
but here we extend the use of wavelet techniques as intro-
duced by Pugach et al. (2011). Importantly, our implemen-
tation differs markedly from the original StepPCO program,
with the main differences at each stage of the analysis high-
lighted below:

e Localized admixture signal formation: StepPCO (Pugach
et al. 2011) uses large windows of SNPs to produce an
averaged admixture signal in localized windows along
the genome. Our work demonstrates that wavelet meth-
ods are equally applicable to the raw unwindowed signals,
with the windowing procedure performed intrinsically as
part of the wavelet analysis, and therefore not requiring
arbitrary a priori decisions on window size.

e Wavelet analysis: The wavelet methods we describe are
based on the MODWT, which offers more flexibility in its
application since there is no restriction on the length of the
signals. Conversely, StepPCO employs the discrete wavelet
transform (DWT), which has the strict requirement that
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signals be of length 2n. Data must therefore be windowed,
or discarded, to meet the restrictive length requirements of
the DWT framework. Another advantage of the MODWT
is that the resulting wavelet coefficients are translation
equivariant, meaning that circularly shifting the data
results in the same shifting of the coefficients. Said differ-
ently, changing the starting point—for instance, to avoid
a poor quality SNP—does not affect the resulting wavelet
coefficients, whereas this is not true under the DWT frame-
work. This property is particularly important if the results
are to be used for specific localized genomic regions (as
discussed briefly below) and thus provides a solid statistical
foundation for future work.

Extraction of relevant information: The portion of the
resulting wavelet decomposition that is informative
about the admixture process is extracted in a simple
procedure with reference to the ancestral populations,
offering greater simplicity and objectivity than the mul-
tistage thresholding procedure described by Pugach
et al. (2011).

Software: The adwave software, which implements the
method described in this article, is an official package in
the R project (http://cran.r-project.org/web/packages/
adwave/index.html). This allows extremely easy installa-
tion and use, as well as providing a series of simple
worked examples as a learning exercise. The adwave
package is also faster than the existing StepPCO code
and offers more flexibility in the choice of analyzing
wavelet (unlike StepPCO, which employs only the sim-
plest “square-shaped” Haar wavelet).

admixture time (generations)

accounted for in an inference setting because the SNP
density is always a known variable. Condition descrip-
tions and numeric values are presented in Table 2.

T T T
200 250 300

The work presented here also makes several other
advances. The average block size metric has previously been
shown to capture the time of admixture. Here, we have
implemented a more formal dating procedure using ABC
under the assumption of a single admixture event. In reality,
populations may have experienced multiple admixture events
leading to complex patterns of genetic variation. We have
shown that the wavelet variance contains additional in-
formation to identify these more complex admixture scenar-
ios. This highlights the potential of wavelet-based techniques
to be coupled with formal statistical inference procedures to
robustly distinguish between the range of scenarios that
could have resulted in any observed genetic pattern.

Method performance for the StepPCO procedure has al-
ready been tested against other admixture detection meth-
ods, most extensively with HAPMIX (Price et al. 2009), with
favorable results. This is especially true for older admixture
events (Pugach et al. 2011). While an in-depth comparison
with other local ancestry detection methods would be of
great interest (Moorjani et al. 2011; Baran et al. 2012;
Gravel 2012; Loh et al. 2013; Maples et al. 2013; Brown
and Pasaniuc 2014), such an analysis is beyond the scope
of this manuscript. We have therefore focused instead on
showing how adwave markedly improves on the original
wavelet method implemented in StepPCO. As shown above,
adwave offers improved statistical power to differentiate be-
tween admixture scenarios, offers much reduced uncertainty
in model parameter estimates, and importantly, is far easier
to use than StepPCO, especially by requiring far fewer user-
specified runtime parameters.

Figure 5 Comparing StepPCO and adwave showing the
relationship between wavelet transform summaries and
time of admixture. (A) Adwave using u = 1; (B) StepPCO
using K = 1024, A = 5, threshold = 0.1, and maxlevel =
6. Numbers indicate the relative standard deviation (RSD,
%) for each admixture time. Note the difference in dis-
crimination power between the two methods for older
admixture events (95% confidence intervals as dashed

blue and green horizontal lines).
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In the future, considering the full wavelet periodogram,
rather than the genome-wide summary measures used in
both adwave and StepPCO, may yield promising results wher-
ever the distribution of ancestry tracts along the genome is
substantially nonstationary. Bryc et al. (2010) use their for-
mulation of localized admixture signals to address whether
regions of the genome show predominant ancestry from
a given population. Wavelets are well suited to distinguishing
local features in data and could be helpful in this regard,
identifying features that may not be easily detected by con-
sidering the localized admixture signals in their raw form.

Other prospective areas for further work include the
extension of these methods to the more general case of
multipopulation admixture. Ma and Amos (2012) describe the
use of PCA as a diagnostic in this setting, and PCA has been
used to assign multipopulation ancestry in the software PCAd-
mix (Brisbin et al. 2012). The wavelet methods described here
could be extended in a similar way by considering pairwise
combinations of any number of ancestral populations.

In contrast, key restrictions that determine our ability to
reconstruct admixture events include the degree of differ-
entiation between the ancestral populations and the repre-
sentativeness of samples used as surrogate ancestral groups.
As the ancestral populations become more similar or the

A B

ABS
20 25 30

Frequency
15

10

surrogate populations become more different from the true
ancestral populations, the localized admixture signals become
increasingly noisy. Although this ultimately leads to a loss
of identifiability in extreme cases, the method is remarkably
robust to moderate deviations from these assumptions.
As shown above for low admixture proportions, through
judicial choice of the thresholding parameter even ex-
tremely noisy data can still provide meaningful estimates
(the only situation in which we encourage deviation from
the default setting).

Sample size (both in terms of SNPs and individuals) is also
important and affects the PCA step of the procedure. The
purpose of the PCA step is to summarize the overall variability
among individuals, which includes both between-population
and within-population variability. In reconstructing popula-
tion ancestry, we aim to describe between-population vari-
ation, while ignoring within-population variation. This is
achieved by selecting the first principal component, as long
as the sample sizes are sufficiently large. Within-population
fluctuations of individual coordinates on the PCA scatterplot
can be caused by subtle population substructure. Assuming
that no such substructure is present, these fluctuations
decrease as the total sample size increases, and an asymp-
totically stable pattern of the eigenvector plot results (Ma and

Figure 7 Dating time of admixture for Bena (Flores,
eastern Indonesia) using approximate Bayesian com-
putation. (A) Relationship between admixture time
and average block size metric for all simulations; (B)
weighted posterior distribution of admixture time. Me-
dian estimated time of admixture, indicated by the
blue line, is 147 generations (95% credible region:

122-178 generations).
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Amos 2010). When the number of individuals is large, vari-
ation between individuals from the same population is small
compared to that of the different populations, so that the first
eigenvector describes the primary population structure of the
data. However, as the sample size decreases, individual vari-
ation carries more weight, which may be addressed in more
than the first principal component. Note that the use of meth-
ods other than PCA may be helpful in this regard. For exam-
ple, Jombart et al. (2010) introduced discriminant analysis of
principal components to achieve separation of individuals in-
to predefined groups. In practice, as long as the sizes of the
ancestral population samples is sufficiently large, discrimi-
nant analysis provides the same result as PCA (unpublished
data). The two methods may, however, perform differently for
small sample sizes.

How far back in time admixture processes can be reliably
identified is strongly influenced by the number of genotyped
SNPs. The relationship between the number of admixture
blocks, time of admixture and wavelet scale is summarized
in Table 4. The shaded column indicates the findings de-
scribed in the Results, using simulated data sets of 13,000
SNPs (chosen for a region ~100 Mb in length, comparable
to the SNP content of our 100 Mb chromosome 15 data set).
For admixture at 10 generations, the informative wavelet
variance is highest at scale 13, reflecting a small number
of large admixture blocks. As the time of admixture
increases, the peak shifts toward lower scales, reflecting
a larger number of smaller admixture blocks. This pattern
is illustrated for admixture up to 320 generations (~10,000
years), but importantly, it is possible to reconstruct even
older admixture events. The highest frequency (relating to

scale(j)

the smallest admixture blocks) that can be detected, as de-
termined purely by the data density, is termed the Nyquist
frequency (Chatfield 2003). However, resolution power is
likely to deteriorate well before this point and will be
strongly influenced by the degree of differentiation between
the ancestral populations. The more closely related the an-
cestral populations, the less well they can be discriminated
using only a small number of SNPs. Increasing the SNP
density allows detection of higher frequency information,
relating to shorter (more ancient) admixture tracts. To illus-
trate this, the mapping to wavelet scale is illustrated for
a hypothetical twofold and fourfold increase in the number
of genotyped SNPs (26,000 and 104,000 SNPs, respec-
tively). As genetic data sets improve (particularly through
whole-genome sequencing), wavelet methods will therefore

Table 3 Classification rate for the summary measures average
block size and informative wavelet variance with increasing
sample size (1 < nc < 10)

Correct classification (%)

Sample size (individuals) Wavelet variance  Average block size

1 76 56
2 84 58
3 89 59
4 92 60
5 94 61
6 96 61
7 97 62
8 98 62
9 99 61
10 100 60
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Table 4 Relationship between the number of admixture blocks, time of admixture, and wavelet scale

Wavelet scale (no. of SNPs)

Admixture blocks Time of admixture (generations) 13,000 26,000 104,000
8,192-16,384 163,840 — — 1
4,096-8,192 81,920 — 1 2
2,048-4,096 40,960 1 2 3
1,024-2,048 20,480 2 3 4
512-1,024 10,240 3 4 5
256-512 5,120 4 5 6
128-256 2,560 5 6 7
64-128 1,280 6 7 8
32-64 640 7 8 9
16-32 320 8 9 10
8-16 160 9 10 11
4-8 80 10 11 12
2-4 40 [ 12 13
1-2 20 12 13 14
0-1 10 13 14 15

The dominant admixture block size decreases with time since admixture, while conversely, the number of admixture blocks
increases. Underlined numbers are from the example presented in the Results section (13,000 SNPs from a genomic region ~100
Mb in length, comparable to the data set for chromosome 15). Columns to the right show how mapping to wavelet scale depends
heavily on SNP density: increasing the number of SNPs two- and fourfold allows higher frequency information to be detected,
which in turn informs about shorter (more ancient) admixture tracts.

gain substantial resolution. It seems entirely feasible that
wavelet approaches will have sufficient statistical power to
reconstruct admixture events far deeper in time than those
currently studied. Advances in wavelet methods therefore
offer exciting potential for future research, particularly for
ancient and complex human admixture processes.

Software

Software for the analyses described here has been released
in the form of an R package, adwave, which is freely avail-
able from the R project’s central package repository: http://
cran.r-project.org/web/packages/adwave/index.html
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File S1

SUPPLEMENTARY INFORMATION

Wavelet transform method

Wavelets can be thought of as localized waves or oscillations, where localization in this
context refers to a region of SNPs along the genome (see Figure S5). Our
implementation utilizes families of discrete non-decimated wavelets {; ; }, where j =
1, ..., ] denotes the scale of the wavelet (related to Fourier frequency) and k denotes
the location (i.e., SNP number). For detailed introductions to wavelets and their use in
statistics, see Nason (2008) and Vidakovic (2009), or the review by Lio (2003) for an

introduction to the use of wavelets in biostatistics.

The importance of localization can be appreciated by contrasting wavelets to the
sinusoids (big waves) used in classical Fourier analysis. Sinusoids are associated with a
particular frequency, but do not have the location component provided by wavelets.
The fact that each wavelet is associated with a particular small genomic region means
that they can capture the structure of the data, especially where the admixture tracts

are not uniformly distributed over the chromosome.

The wavelet periodogram of a signal is given by the square of the raw wavelet

coefficients
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The wavelet periodogram for one individual is shown in Figure S6A. The wavelet
transform provides a decomposition of the data in terms of location along the genome

on the x-axis and wavelet scale on the y-axis.

For the simulated data with 13,000 SNPs, the maximum number of wavelet scales in
the decomposition is 13 (J < log,(13000)). Scale 1 captures the highest frequency,
very local information. Increasing the scale index provides successively coarser, or
lower frequency information, zooming out of the signal until we reach the level of the
entire chromosome. For an individual chromosome, the information is nonstationary
in that the width of the admixture tracts can vary over the chromosome. At the
population level, the wavelet transforms show greater evidence of stationarity, as
demonstrated in Figure S6B. The population average periodogram has a smoother
appearance when examined from left to right (i.e., along the genome) within each
scale. The information can therefore be conveniently summarized by summing the

wavelet coefficients within each scale to give the wavelet variance.

The discrete wavelet transform (DWT) has also been used in a similar context. Our
implementation makes use of the Maximal Overlap Discrete Wavelet Transform
(MODWT), which has several benefits over the DWT. First, there is no restriction that
the data need be a power of two, which means it can be applied directly to the

available genetic data without first windowing the signal or down-sampling the data.
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The resulting wavelet coefficients are translation-equivariant, meaning that circularly
shifting the data results in the same shifting of the coefficients. With the DWT, shifting
the data could lead to a different decomposition. We note that other localized
decompositions, such as the short time Fourier transform or continuous wavelet

transform, could also be applied.

Pre-windowing of the admixture signal and visualization

Both PCAdmix (Brisbin et al. 2012) and StepPCO (Pugach et al. 2011) compute an
averaged admixture signal in predefined localized windows along the genome. Our
approach instead uses the SNP level information and offers several advantages. It
avoids the subjective choice of properties of the signal (window width and number of
bins), and ensures that the information is considered at the most detailed level
possible. Subsequent wavelet analysis then considers the data in localized windows,
the width of the window increasing as we zoom out to coarser scales. Whether
information at a particular window size is informative is determined by reference to
the variation observed in the ancestral populations. The informative variation is

therefore extracted in an objective, data driven manner.

One possible advantage of pre-windowing the signals is in visualizing local ancestry.
Windowing reduces high frequency noise and produces signals that are more easily
related to ancestry by eye. For example, applying a window of W SNPs, the signals can

be computed as
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windowed signals would have the same interpretation, as illustrated in Figure S7.

Choice of measurement scale

The raw admixture signals are estimated at each SNP location (see equation 2) or for
each SNP window if pre-windowing is implemented (equations 8 and 9). It is also
possible to construct the signals in terms of genetic distance along the chromosome
(as opposed to physical distance). Both options are implemented in the adwave

software.

Threshold choices

To extract the informative variation in cases where high levels of noise are present in
the signals (e.g., at very low admixture proportions), a higher threshold for u could be
selected. In setting a tougher criterion, this ensures that the raw wavelet variance
must be larger before we are willing to accept that it is informative about the

admixture process rather than simply being noise. Choice of threshold is a balance
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between two extremes: too high a threshold may remove informative variation along
with the noise, while a weak threshold may result in noise contamination and
potentially biased summary measures, such as the ABS metric. The choice of threshold
is necessarily data dependent, but we advocate altering the default value only for rare

cases that exhibit evidence of high noise.

The effects of varying u are illustrated in Figure S8 for two simulated data sets; one
with low levels of noise in the resulting admixture signals, and the other with high
levels. In this example, a low admixture proportion from one of the ancestral
populations is used to mimic the effect of “high noise” in the admixture signals, but the
results are also applicable to other sources of noise, such as short divergence times
between the ancestral populations (see Discussion in the main text). In low noise
situations, the ABS metrics are strongly robust to the choice of u, while for high noise
situations, a larger value of u is necessary to avoid bias in the summary measures. The
recommended procedure for selecting u is to produce initial results using the default
value, and then increase u only if there is evidence of low-scale noise. An automatic

method for selecting u may be considered in future work.

Also note that any bias due to non-optimal choice of u is avoided in the ABC dating

procedure by ensuring that the same value is used for both the simulated and sampled

data.
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Sensitivity to method options

The default method options are to estimate the raw admixture signals for each SNP
location, constructed according to physical distance (as opposed to genetic distance)
without windowing the signals, and using Daubechies’ Least Asymmetric wavelet

number 8.

Other options are also implemented in the adwave software, providing flexibility that
may be required for different applications. Sensitivity to the different options was
considered by mimicking the results of the admixture time example for variations on

the default options. A summary of these results is presented in Table S2 and Figure S9.

In this instance, results using the Haar wavelet (condition 9) are very similar to the
MOWDT default. The slight variation in the ABS metrics is expected since different
wavelets cover slightly different frequency ranges, although the effect on the results is

insubstantial.

The effect of pre-windowing the signals is illustrated for two window sizes: 130 SNPs
(condition 10) and 65 SNPs (condition 11). Choice of window size clearly modifies the
relationship between admixture time and the resulting ABS metrics. As illustrated by
condition 10, if the window size is too large, it will not be able to capture the small
admixture blocks characteristic of ancient admixture. Lack of windowing as the default

approach is a major point of advantage of adwave over StepPCO.
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When constructing signals in terms of genetic distance, it is necessary to specify the
number of bins for the signal and the size of the analyzing window. The example
represented by condition 12 utilizes 13,000 bins (i.e., one per SNP), and small windows
of 13 SNPs so that the resulting decomposition is over the same number of wavelet
scales and the effect of windowing is minimized. This choice of options provides results

that are consistent with the default.

The default options provide ease of implementation, avoiding the subjective choice of
properties of the signal (window width and number of bins), and ensuring that the
signal information is considered at the most detailed level possible. Nevertheless,

experienced users are free to vary these parameters.

Method comparison: a demonstration for one population

Using StepPCO, formation of the localized admixture signals requires specification of
the number of bins in the signal and a tolerance for the window size. Pugach et al.
(2011) recommend that the number of bins should be chosen so that the windows
span the entire chromosome, leaving no gaps in between. For their wavelet analysis, it

is a strict requirement that the number of bins is a power of two.

Window size is allowed to vary along the chromosome and is specified via an
automatic method, for which it is necessary to set a tolerance A. Starting with a small
window of SNPs, window size is increased until the mean PCA coordinates of the

ancestral populations are separated by A standard deviations. Pugach et al. (2011) use
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K = 1024 and A = 3 for their implementation. For our demonstration, we have used a
stronger window criterion of A = 5 to ensure that the localized windows cover the

entire chromosome.

To produce the wavelet summaries, StepPCO uses a three stage filtering procedure:

1. Coefficients smaller than a specified threshold are set to zero, to remove low
amplitude oscillations. This parameter was set to 0.1 for our application,
following advice stated in the accompanying software manual.

2. Wavelet scales that correspond to high frequencies are deemed characteristic
of noise and removed completely. For guidance on setting this option, the
manual states that it depends on the length of the chromosome and suggests a
maximum scale of 7, 6 and 5 for chromosomes 1-5, 6-20 and 21-22,
respectively. For our example, we truncate at 6 scales, since the number of
SNPs in the example is comparable to chromosomes 6-10 in the StepPCO paper.

3. A scale dependent threshold is then applied. The threshold is computed by
averaging the wavelet coefficients across each scale, and subtracting the

maximum value observed in the ancestral populations.

Stage 3 in this procedure is similar to the adwave thresholding process described by
Equation 5, but in adwave, this correction is based on population averages rather than
individual-level values. StepPCO therefore uses a stronger threshold than the adwave

procedure (i.e., it removes more of the raw information).
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With adwave, it is not necessary to pre-window the signal. A method demonstration is
shown in Figure 1, using the raw SNP-level data and default threshold value of u = 1.
However, in order to provide a closer comparison with StepPCO, we also provide
results using options similar to those applied by Pugach et al. (2011). The localized
admixture signals were formed using N = 1024 points along the chromosome,
sampled according to genetic distance with a fixed window size of 13,000 x 0.0025 =

37 SNPs (chosen to mimic the mean window size obtained by StepPCO).

A comparison of both methods for one simulated population with T = 160 is
provided in Figure S3. The admixture signals produced by StepPCO have a variable
window size of 2 to 195 SNPs with mean 39.2 and median 29. The variable window size
can sometimes lead to instability in the signals (shown by the ‘spikes’ in Figure S3A,
which correspond to windows with small numbers of SNPs). It is possible to set upper
and lower bounds for the number of SNPs per window, but this requires more user

choice of runtime settings.

The raw StepPCO wavelet summaries presented in Figure S3B are similar to those
obtained by adwave (Figure S3E), but exhibit a larger amount of high-frequency noise,
as is apparent in all three populations. The final StepPCO wavelet summaries (Figure
S3C) look similar to the final informative wavelet variance of adwave (Figure S3F), but

without the four highest-frequency scales. Truncation of these high-frequency scales
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will have a particularly large influence for older admixture events, an issue that is

mentioned in the Pugach et al. (2011) paper.
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NAnceslraI

TAncestraI

TAdmixlure

Asian NAdmi:(ed N

Melanesian
Parameter Value Reason
Nancestral 10,500 Average Na from Cox et al. (2008)
Nasian 2,050 Average N, for Han Chinese from Cox et al. (2008)
Nwmelanesian 800 Average N, for Melanesians from Cox et al. (2008)
Nadmixed 1,425 Average of Nasian and Nuelanesian
T Admixture 160 gen ~4,000 years ago; starting value, varied in simulations
Tancestral 2,000 gen ~50,000 years ago from Cox et al. (2008)
P Admixure 0.5 Starting value; varied in simulations between (0,1)

Figure S1 Demographic model and parameters.
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Figure S7 Visualization of ancestral block structure by windowing the admixture
signal, using the same data as in Figure 1, but pre-windowing signals with W = 130. A)
Admixture signal for one individual; B) raw wavelet variance for each population
showing less high frequency noise than the non-windowed version in Figure 1B; C)
informative variation after correcting for noise estimated from the ancestral
populations.
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Figure S8 Relationship between choice of thresholding parameter u and the resulting
informative wavelet variance and ABS metrics for two simulated examples. A) For
admixture signals with low noise levels (p = 0.5), increasing u results in a decrease in
the magnitude of the extracted informative wavelet variance, but the location of the
peak remains unchanged. B) For admixture signals with high noise levels (p = 0.05),
increasing u successfully eliminates the noise observed at low scales, while
maintaining the peak in the informative wavelet variance that is attributed to the
admixture process. C) The resulting ABS metrics for both the low and high noise
examples. For low levels of noise, the ABS metrics are robust to choice of u, while for
high levels of noise, a larger value is necessary to avoid bias.
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Figure S9 Sensitivity to different method options. The grey area reflects the range of
ABS values observed under the default method options (condition 1). Condition
descriptions and numeric values are presented in Table S2.
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Table S1 Chromosome level information. The reported number of SNPs for each
chromosome reflects SNPs that are not fixed in both of the ancestral reference
populations; percentage missing data due to failed genotyping; size of analyzing
window used to combine information across chromosomes.

Chromosome Number of SNPs Missing data (%) Analyzing window
1 32,417 0.75 7.52
2 35,221 0.69 8.17
3 32,005 0.62 7.43
4 29,117 0.65 6.76
5 28,179 0.70 6.54
6 33,862 0.72 7.86
7 24,676 0.73 5.73
8 25,025 0.67 5.81
9 20,914 0.65 4.85
10 21,755 0.76 5.05
11 20,494 0.77 4.76
12 21,398 0.74 4.97
13 17,564 0.63 4.08
14 14,552 0.77 3.38
15 13,856 0.75 3.22
16 13,402 0.81 3.11
17 9,348 0.90 2.17
18 14,246 0.74 3.31
19 5,733 1.12 1.33
20 10,553 0.87 2.45
21 6,403 0.74 1.49
22 4,309 1.16 1.00
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Table S2 Sensitivity to different method options. The mean ABS (relative standard
deviation in parentheses) is given for each admixture time.

Method option

Admixture time (generations)

Condition Description 10 20 40 80 160 320
1 Reference 11.68(0.69)  11.27(0.58) 10.76(0.70)  10.22(0.66)  9.61(1.12) 8.82(1.72)
9 Haar wavelet 11.55(0.65) 11.14(0.56) 10.65(0.70) 10.13 (0.68) 9.54 (1.08) 8.84 (1.61)
10 Pre-windowing 11.51(0.73) 11.10(0.56) 10.62 (0.58) 10.14(0.57) 9.70(0.79) 9.34 (0.99)
signal (130 SNPs)
17 Pre-windowing 11.50(0.78) 11.07(0.60) 10.54 (0.61) 9.99 (0.64)  9.44(0.85) 8.95(1.10)
signal (65 SNPs)
12 Genetic distance 11.74 (0.66) 11.32(0.58) 10.83(0.64) 10.28(0.65) 9.74(0.98) 9.16 (1.33)
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