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Abstract: Hepatocellular carcinoma (HCC) carries a dismal prognosis, with advanced disease
being resistant to both radiotherapy and conventional cytotoxic drugs, whilst anti-
angiogenic drugs are marginally efficacious. Oncolytic viruses (OV) offer the promise of
selective cancer therapy through direct and immune-mediated mechanisms. The
premise of OV lies in their preferential genomic replication, protein expression and
productive infection of malignant cells. Numerous oncolytic viruses are being tested in
pre-clinical models of HCC, with good evidence of direct and immune-mediated anti-
tumour efficacy. Efforts to enhance the performance of these agents have
concentrated on engineering OV cellular specificity, immune evasion, enhancing anti-
tumour potency and improving delivery. The lead agent in HCC clinical trials, JX-594, a
recombinant Wyeth strain Vaccinia virus has demonstrated evidence for significant
benefit and earned orphan drug status. Thus, JX-594 appears to be transcending the
barrier between novel laboratory science and credible clinical therapy. Otherwise,
relatively few other OV have entered clinical testing, a hurdle that must be overcome if
significant progress is to be made in this field.

This review summarises the pre-clinical and clinical experience of OV therapy in the
difficult-to-treat area of HCC.
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Abstract 16 

Hepatocellular carcinoma (HCC) carries a dismal prognosis, with advanced disease being resistant to 17 

both radiotherapy and conventional cytotoxic drugs, whilst anti-angiogenic drugs are marginally 18 

efficacious. Oncolytic viruses (OV) offer the promise of selective cancer therapy through direct and 19 

immune-mediated mechanisms. The premise of OV lies in their preferential genomic replication, 20 

protein expression and productive infection of malignant cells. Numerous oncolytic viruses are being 21 

tested in pre-clinical models of HCC, with good evidence of direct and immune-mediated anti-tumour 22 

efficacy. Efforts to enhance the performance of these agents have concentrated on engineering OV 23 

cellular specificity, immune evasion, enhancing anti-tumour potency and improving delivery. The 24 

lead agent in HCC clinical trials, JX-594, a recombinant Wyeth strain Vaccinia virus has 25 

demonstrated evidence for significant benefit and earned orphan drug status. Thus, JX-594 appears to 26 

be transcending the barrier between novel laboratory science and credible clinical therapy. Otherwise, 27 

relatively few other OV have entered clinical testing, a hurdle that must be overcome if significant 28 

progress is to be made in this field.  29 

This review summarises the pre-clinical and clinical experience of OV therapy in the difficult-to-treat 30 

area of HCC.  31 

Introduction 32 

HCC is a malignancy of hepatocytes with an annual incidence over 500,000 (Boyle et al., 2008). The 33 

majority of HCC cases can be attributed to defined environmental risks; worldwide, the proportion of 34 

HCC caused by chronic hepatitis B virus (HBV) infection is approximately 54%, with 31% being 35 

attributed to hepatitis C virus (HCV) (Boyle et al., 2008). A safe and effective vaccine exists for HBV 36 

with good global coverage (“WHO | Immunization coverage,” β014). In contrast, the highly 37 

heterogeneous nature of HCV has hampered attempts at vaccine development. In the UK, HCC 38 

caused by alcohol and non-alcohol-related fatty liver disease is on the rise (CRUK, 2013). The 39 

majority of patients present with advanced incurable disease and the overall 5 year survival rate is 40 

between 5 and 9% (Boyle et al., 2008). Early diagnosis is critical, as patients with localised HCC and 41 

a good performance status may be offered potentially curative liver resection or transplantation. The 42 

management of patients with advanced HCC is complicated by underlying liver disease and the need 43 

to avoid undue toxicity in patients with a poor prognosis. For patients with inoperable predominantly 44 

hepatic disease, locoregional therapies offer the potential for disease control, symptomatic relief and 45 

improved survival times (Cammà et al., 2002) (Bouza et al., 2009) (Memon et al., 2011). Clinical 46 

studies evaluating the use of cytotoxic chemotherapy have typically reported low response rates, with 47 

no impact on overall survival (Wrzesinski et al., 2011). The current standard of care for patients with 48 

metastatic HCC is sorafenib, an oral multi-kinase inhibitor with anti-proliferative and anti-angiogenic 49 
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properties. It confers a mean survival advantage of 3 months in comparison to best supportive care 50 

(BSC), but rarely induces radiological responses, and is associated with significant toxicity (Cheng et 51 

al., 2009) (Llovet et al., 2008).  52 

Immunotherapies are a promising class of drugs that include OV, therapeutically useful viruses that 53 

preferentially replicate in, and kill cancerous cells. Growing evidence suggests that effective oncolytic 54 

virotherapy is unlikely to be achieved merely by direct infection and cell lysis, but rather through 55 

efficient stimulation of an anti-cancer immune-response as reviewed by Melcher et al., 2011. To date, 56 

hundreds of patients with HCC have been treated using OV in phase 1 and 2 clinical trials. The 57 

emerging data is encouraging both in terms of the relatively favourable side-effect profiles and early 58 

signs of efficacy. The current lead agent, JX-594 also known as Pexa-Vec (pexastimogene 59 

devacirepvec) was granted orphan drug status in HCC by the U.S. Food and Drug Administration in 60 

2013 and by the European Medicines Agency in 2009 (France, 2013). Orphan drug designation 61 

(ODD) is approved for drugs that seek to treat rare diseases for which there may be few adequate 62 

therapies, and comes with incentives that include marketing exclusivity, grant funding for clinical 63 

trials and tax credits for clinical research expenses. Whilst these incentives assert the dominance of 64 

JX-594 in the field, they have not perturbed the translational development of other OV for HCC 65 

therapy. In addition to JX-594, three other OV have been or are currently being tested in HCC-66 

directed clinical trials, including two based on type 5 adenoviruses, dl1520 (ONYX-015) (Habib et 67 

al., 2002) and H101 (Oncorine) [NCT01869088] as well as a vesicular stomatitis virus (VSV) 68 

encoding the human interferon (IFN)-ȕ gene (VSV-hIFN-ȕ) [NCT01628640].  69 

This review summarises the pre-clinical and clinical progress of oncolytic virotherapy in HCC, 70 

focussing on the molecular methods employed to improve virus targeting to malignant hepatocytes, 71 

the use of virus-encoded therapeutic genes, and methods to improve viral survival. We also 72 

summarise the completed and ongoing clinical trials, routes of clinical viral delivery, and published 73 

clinical safety and efficacy data. 74 

Engineering Oncolytic Viruses for HCC Therapy 75 

Although the first wave of OV clinical trials took place in the 1950s and 1960s, it was not until the 76 

1990s that engineered OV blossomed alongside advances in DNA manipulation and molecular 77 

biology techniques.  78 

Targeting Malignant Hepatocytes 79 

The specificity of any given drug determines its side-effect profile and greatly influences its efficacy. 80 

JX-594, dl1520, H101 and VSV-hIFN-ȕ have all been engineered for pan-cancer specificity, targeting 81 

hallmark cancer characteristics, such as TP53 deletion and upregulated thymidine kinase (TK) 82 
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expression. Other engineered pan-cancer specific OV have also shown efficacy in pre-clinical HCC 83 

models, including those whose genome expression is driven by survivin, an inhibitor of apoptosis 84 

protein family that is overexpressed in the majority of HCC cases (survivin promoter-regulated 85 

oncolytic adenovirus vector carrying TP53 gene, AdSurp-P53) and human telomerase reverse 86 

transcriptase (hTERT), expressed in up to 90% of HCCs, but only some 20% of non-malignant liver 87 

cells (hTERT promoter-regulated replicative adenovirus, SG300) (Kannangai et al., 2005) (He et al., 88 

2012) (Nagao et al., 1999) (Liu et al., 2011). More recently, OV that preferentially target tumour 89 

initiating cells have been engineered, including oncolytic measles virus retargeted to CD133 positive 90 

cells (Bach et al., 2013). In the liver, CD133 expression is limited to cancerous tissue, and is 91 

associated with colony formation and high proliferative capacity (Kohga et al., 2010)  (Zhu et al., 92 

2010).   93 

In contrast to pan-cancer specific OV, numerous pre-clinical OV have been engineered to specifically 94 

target HCC (table 1). Commonly, HCC-specific viral promoters are inserted into the viral genomes 95 

that restrict the transcription of viral genes to HCC cells and hence limit the destruction of healthy 96 

cells (Ohguchi et al., 1998) (Foka et al., 2010). Viral gene expression in these systems can be further 97 

increased by the insertion of an insulator element upstream of the HCC specific promoter, to shield 98 

from viral silencers, while retaining specific gene expression in hepatoma cells (Ye et al., 2003).  99 

A further approach to specifically target malignant hepatocytes is to exploit the differential expression 100 

of micro-RNA (miRNA) transcripts; recently, a 30 miRNA signature consisting of 10 down-regulated 101 

and 20 up-regulated miRNAs was established for distinguishing HCC from non-cancerous liver 102 

tissues (Wei et al., 2013). Complementary sequences to miRNA transcripts that are specifically down-103 

regulated in HCC e.g. mir-122 and mir-199 have been inserted into the γ’untranslated regions of OV 104 

including oncolytic type 5 adenovirus and HSV (Cawood et al., 2009) (Fu et al., 2012) (Khalid 105 

Elamin Elhag, 2012). The resulting selective viral RNA degradation in normal hepatocytes led to 106 

decreased hepatotoxicity, whilst retaining anti-HCC potency in animal models.  107 

These methods are not without their problems as shown in table 1, and the protein or miRNA-binding 108 

site to be engineered into the OV genome must be chosen wisely. 109 

Enhancing Anti-Cancer Efficacy 110 

Numerous therapeutic anti-cancer genes have been engineered into oncolytic viruses in a bid to 111 

enhance efficacy. In particular, replication competent adenovirus vectors have been extensively 112 

modified and tested in pre-clinical models of HCC as illustrated in Fig. 1. The engineered therapeutic 113 

genes fall under one of two broad categories: those that modify the tumour microenvironment 114 

including stimulation of anti-HCC immune responses, and those acting directly on HCC cells to 115 

induce apoptosis and reduce cell growth and survival. In addition to the examples shown in figure 1, 116 

http://europepmc.org/abstract/MED/16273304/?whatizit_url=http://europepmc.org/search/?page=1&query=%22hepatoma%22
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both oncolytic measles and Newcastle disease viruses have been engineered to express enzymes that 117 

convert the prodrug 5-fluorocytosine into the active chemotherapeutic 5-fluorouracil, enabling OV-118 

mediated targeted chemotherapy, significantly enhancing OV efficacy (Lv et al., 2013) (Lampe et al., 119 

2013). The majority of approaches to arming OV can be equally applied in the treatment of any solid 120 

malignancy. Exceptions include recombinant human erythropoietin (rhEPO), which was recently 121 

engineered into an oncolytic Lister strain Vaccinia virus (GLV-1h210) and tested in lung cancer 122 

xenografts (Nguyen et al., 2013). rhEPO is essential for erythropoiesis and significantly improves 123 

quality of life in anaemic cancer patients, but is associated with angiogenesis, limiting its use in 124 

highly vascularised tumours, such as HCC (Yasuda et al., 2003) (Crawford et al., 2002).  125 

A large body of evidence gathered both from pre-clinical and clinical studies in various cancer types 126 

points to the potential of OV to stimulate both innate and adaptive anti-cancer immune responses 127 

(Melcher et al., 2011) (Prestwich et al., 2008a) (Prestwich et al., 2009). This could also be important 128 

for OV therapy in HCC. However, the liver is an immunologically privileged organ, skewed towards 129 

an environment of immunological tolerance rather than immunity, as evidenced, for example, by 130 

reports of the acceptance of liver allografts across major histocompatibility barriers without 131 

immunosuppressive therapy (Seyfert-Margolis & Turka, 2008). This immunosuppressive 132 

microenvironment is further compounded in HCCs that frequently harbour enriched regulatory T-133 

cells, elevated immunosuppressive cytokines such as transforming growth factor (TGF)-ȕ and 134 

interleukin (IL)-10, and decreased immunostimulatory cytokines such as IL-2 and IFN-Ȗ (Shirabe et 135 

al., 2010). In addition, frequently impaired functional activities of NK cells in HCC are associated 136 

with poor prognosis (Wada et al., 1998) (Wu et al., 2013).  137 

Encouragingly, HCCs with a more favourable immune microenvironment, including NK cell 138 

accumulation are associated with improved survival, and pre-clinical evidence exists for the 139 

infiltration of HCC by NK cells following OV therapy, whilst the depletion of NK cells inhibits OV-140 

mediated anti-HCC effects (Chew et al., 2009) (Gentschev et al., 2011) (Tsuchiyama et al., 2007) 141 

(Kwon et al., 2001). Several cytokines that have the potential to stimulate anti-cancer NK cell 142 

responses have been engineered into OV; IL-12 induces the proliferation and activation of NK cells, 143 

in addition to the differentiation of naïve CD4+ T-cells into Th1 cells (Hamza et al., 2010). Similarly, 144 

chemokine (C-C motif) ligand 5 (CCL5) also drives the cytolytic activity of NK cells, and induces 145 

NK cell proliferation through T-cell mediated IL-2 secretion (Taub et al., 1995) (Maghazachi et al., 146 

1996). Whilst IL-12 and CCL5 have shown promising anti-HCC effects in pre-clinical models, others 147 

including IFN-ȕ, a powerful stimulator of NK cell activation, are currently being tested in patients 148 

with advanced HCC (NCT01628640).  149 

Key to priming successful T-cell anti-HCC responses are antigen presenting cells (APCs), of which 150 

dendritic cells (DCs) are of utmost importance. It is known that DCs from HCC patients have 151 
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significantly lower capacity to stimulate T-cells than DCs from patients with liver cirrhosis or normal 152 

controls (Ninomiya et al., 1999). Furthermore in chronic viral hepatitis, there are decreased DC liver 153 

populations and impairment in DC capacity to prime naïve T-cells, contributing to the inadequate 154 

adaptive immune responses observed (Kanto et al., 2004) (Averill et al., 2007). OV are capable of 155 

driving successful T-cell anti-cancer therapy as shown in melanoma models utilising oncolytic wild-156 

type reovirus and VSV-GFP (Prestwich et al., 2008b) (Wongthida et al., 2011). In HCC pre-clinical 157 

models, the oncolytic Vaccinia virus GLV-1h68, encoding several biomarker genes only (see table 3), 158 

has been shown to promote the intense infiltration of DCs into both HBV positive and hepatitis virus 159 

negative xenografts, whilst VSV-GFP promoted the infiltration of DCs into HCC tumours in an 160 

orthotopic immunocompetent animal model (Gentschev et al., 2011) (Shinozaki et al., 2005). 161 

Although not a prerequisite for successful T-cell therapy, the OV-mediated expression of engineered 162 

immunostimulatory genes has the potential to greatly improve efficacy. Several approaches to 163 

enhance DC maturation/activation have been tested in pre-clinical HCC models, and include arming 164 

viruses with granulocyte macrophage colony-stimulating factor (GM-CSF) or CpG-rich sequences, 165 

the latter of which has been shown to increase IFN-Ȗ and DC activation in draining lymph nodes, 166 

resulting in improved therapy against hepatoma lung metastases in comparison to the wild-type virus 167 

(Raykov et al., 2008). Other groups have shown enhanced DC and CD4+ T-cell tumour infiltration 168 

using Vaccinia viruses encoding CCL5 or a secretory bispecific T-cell engager consisting of two 169 

single- chain variable fragments specific for CD3 and the tumour cell surface antigen EphA2 (Li et 170 

al., 2011) (Yu et al., 2014).  171 

Immune cell recruitment and activation also plays a prominent role in the OV-induced disruption of 172 

tumour-associated vasculature. Indeed, inflammation-mediated disruption of vasculature is a well-173 

documented phenomenon (Bryant et al., 2005) (Lee & Slutsky, 2010). VSV infection of subcutaneous 174 

tumours resulted in transcriptional activation of the neutrophil chemoattractants CXCL1 and CXCL5, 175 

inducing tumour infiltration by neutrophils, vascular shutdown and the apoptosis of uninfected tumour 176 

cells (Breitbach et al., 2007). The depletion of neutrophils prior to VSV infection abrogated these 177 

effects. In addition to the role played by OV-induced inflammation, JX-594 has been shown to 178 

directly infect and kill tumour-associated vascular endothelial cells in mice following intravenous 179 

delivery (Breitbach et al., 2013). These findings have been confirmed in human HCC trials, 180 

demonstrating disruption of tumour perfusion following JX-594 therapy (Liu et al., 2008) (Heo et al., 181 

2011).   182 

The effects of OV on the wider HCC microenvironment is complex and has recently been reviewed 183 

elsewhere (Altomonte & Ebert, 2014). 184 
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Enhancing viral delivery and viral survival  185 

Perhaps the biggest challenge to successful oncolytic virotherapy in HCC is the ability to infect 186 

sufficient numbers of malignant hepatocytes with a sufficiently high multiplicity of infection and to 187 

maintain viral propagation. It is well established that the immune response to OV is likely to play a 188 

dual role; simultaneously clearing the virus and hence limiting efficacy, whilst at the same time 189 

becoming more activated and primed to attack malignant cells (Melcher et al., 2011). It is known that 190 

adenovirus is rapidly removed following IV delivery by Kupffer cells, liver resident macrophages, 191 

and the same may be true of other viruses (Tao et al., 2001). A number of novel methods have been 192 

employed to enhance systemic viral delivery to the desired target including Kupffer cell depletion 193 

using replication-defective adenovirus, prior to replication-competent adenovirus therapy, and 194 

warfarinisation to block coagulation factor and complement dependent binding of adenovirus to 195 

hepatocytes (Shashkova et al., 2008). Combined Kupffer cell depletion and warfarinisation resulted in 196 

decreased hepatotoxicity and increased anti-tumour potency, albeit in subcutaneous xenografts 197 

(Shashkova et al., 2008). A different approach that has been tested in pre-clinical models of HCC is to 198 

engineer OV to evade immune inactivation (table 2). These engineered OV are yet to be tested in 199 

clinical trials and it remains to be seen whether they paradoxically result in reduced immune-mediated 200 

anti-cancer efficacy. 201 

Engineered OV Tested in HCC-Directed Clinical Trials 202 

In addition to the plethora of engineered oncolytic adenoviruses, a large number of wild-type and 203 

recombinant OV have been investigated in pre-clinical models of HCC, but are yet to enter HCC-204 

directed clinical trials (table 3). Some of these viruses are clinical-grade agents that have been 205 

employed in other anti-cancer clinical trials, and are hence the more likely to proceed to HCC-206 

directed trials.  207 

The following sections describe the OV that have entered HCC-directed clinical trials to date: 208 

JX-594 209 

JX-594 was first filed for patent in 2005 by Jennerex Biotherapeutics ULC; a company that entered 210 

into a commercialization and development agreement for JX-594 with Transgene in 2010 and was 211 

later acquired by SillaJen Inc. in 2013 (Kirn, 2006) (Transgene, 2010) (Transgene, 2013a). The Wyeth 212 

strain of Vaccinia virus, that forms the backbone of JX-594 was derived from the poorly pathogenic 213 

New York City Board of Health strain. The Wyeth strain was extensively employed as a smallpox 214 

vaccine in the U.S. until routine vaccination was rescinded in 1971 (ODC, 1971). JX-594 has been 215 

genetically modified by the homologous recombination of a pSC65 plasmid with the Vaccinia virus 216 

TK gene. The plasmid sequence contains the human GM-CSF gene under the control of a synthetic 217 
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early-late promoter and the LacZ reporter gene (Mastrangelo et al., 1998). GM-CSF induces direct 218 

anti-tumour effects and importantly influences the immune system through the stimulation, 219 

recruitment and maturation of dendritic cells (Urdinguio et al., 2013) (Mach et al., 2000).  220 

The expression of TK, an enzyme of the DNA precursor pathway, is strictly regulated during the 221 

normal cellular cycle, but is much higher and permanently expressed in malignant growing cells 222 

(Hengstschläger et al., 1998). Being TK deleted, JX-594 cancer-selectivity was believed to be 223 

dependent on elevated cellular TK levels in cancers. However, recent work has shown JX-594 cancer 224 

specificity to be multi-mechanistic, with replication being dependent on epidermal growth factor 225 

receptor/Ras /mitogen-activated protein kinase pathway signalling, cancer cell resistance to type-I 226 

interferons, as well as cellular TK levels (Parato et al., 2012).  227 

VSV-hIFN-ȕ 228 

VSV is a negative-strand RNA virus that is non-pathogenic to humans. Effective immune defence to 229 

VSV is dependent on the host interferon response, with mice harbouring defective interferon systems 230 

succumbing to normally harmless VSV exposure (Durbin et al., 1996). Insertion of genes between the 231 

viral glycoprotein and polymerase genes does not affect the fitness of the resultant recombinant virus 232 

(Fernandez et al., 2002). Generation of VSV-hIFN-ȕ is achieved by insertion of the human (h)IFN-ȕ 233 

gene into the same position of the full-length viral antigenomic cDNA, pVSV-XN2, using unique 234 

restriction enzyme sites (Obuchi et al., 2003). The expression of hIFN-ȕ renders successful virus 235 

propagation dependent on defective cellular interferon response pathways, as found in many cancers 236 

(Barber, 2004). In addition, expression of hIFN-ȕ is envisaged to activate NK and T-cells and 237 

facilitate the maturation of DCs for immune-mediated anti-tumour therapy, as well as directly 238 

inhibiting malignant cell proliferation (Odaka et al., 2001) (Ferrantini & Belardelli, 2000) (Kadowaki 239 

et al., 2000). VSV-hIFN-ȕ is patented and being developed by the Mayo Foundation for Medical 240 

Education and Research (Federspiel et al., 2010). 241 

dl1520 (ONYX-015) and H101 (Oncorine) 242 

The adenovirus type 5 early regions 1A (E1A) and 1B (E1B) can be exploited to engineer cancer 243 

specificity; the protein products of E1A induce cellular DNA synthesis and transformation, but trigger 244 

apoptosis mediated by the mammalian tumour cell suppressor protein p53, with a resultant reduction 245 

in the yield of progeny (Bayley & Mymryk, 1994) (Debbas & White, 1993). The 55-kDa E1B protein 246 

binds to the p53 protein and blocks p53-mediated transcriptional activation, hence limiting p53-247 

dependent cell cycle arrest and apoptosis (Sarnow et al., 1982) (Yew & Berk, 1992). Early gene-248 

therapy adenoviral type 5 vectors were modified to disable productive infection by the deletion of 249 

both E1A and E1B. These replication deficient adenovirus vectors were extensively used in cancer 250 

gene therapy trials, however evidence for efficacy was restricted due to self-limiting transgene 251 
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expression, poor target cell transduction and lack of tumour cell targeting (Vile et al., 2000). On the 252 

other hand, disabling the E1B region alone theoretically leads to selective replication in p53-deficient 253 

cells. One of the first such replication-selective type 5 adenoviruses, dl1520 has an 827-base pair 254 

deletion in the E1B region and a point mutation at codon 2022 that generates a stop codon preventing 255 

expression of a truncated protein from the deleted gene (Barker & Berk, 1987).  256 

Initial data suggested that dl1520 does indeed selectively replicate in TP53-deficient cells (Bischoff et 257 

al., 1996). However, it is now accepted that TP53 status is in fact a poor predictor of the sensitivity of 258 

tumour cells to dl1520 with tumour specificity being determined by other factors such as the 259 

inhibition of viral RNA export in non-malignant cells (Edwards et al., 2002) (O’Shea et al., 2004). An 260 

incomplete understanding of the mechanisms of OV cancer specificity can hamper clinical progress, 261 

as exemplified by a trial testing dl1520 in hepatobiliary cancers, where patients with HBV infections 262 

were in hindsight unnecessarily excluded due to theoretical risks that HBV protein X can inactivate 263 

p53 protein in non-malignant hepatocytes, rendering them susceptible to dl1520 productive infection 264 

(Makower et al., 2003). 265 

dl1520 was clinically developed by Onyx Pharmaceuticals under the name ONYX-015 until 2003 266 

when a promising phase 3 trial in head and neck cancer was suspended. Exclusive rights to ONYX-267 

015 were sold to Shanghai Sunway Biotech in 2005 (Investis, 2005). In the years preceding this 268 

acquisition, Shanghai Sunway Biotech was simultaneously developing H101 (Oncorine), a 269 

recombinant human adenovirus type 5 similar to ONYX-015. In November 2005, the Chinese State 270 

Food and Drug Administration approved H101 for advanced nasopharyngeal carcinoma in 271 

combination with chemotherapy (Medscape, 2005). Like dl1520, H101 is E1B gene deleted, but 272 

unlike dl1520, H101 has an additional partial E3 78.3-85.8ȝm gene segment deletion (Lu et al., 273 

2004). E3 gene products prevent T-cell and NK cell recognition of infected cells by preventing 274 

transport of MHC class I to the plasma membrane and by sequestration of MHC class I-related 275 

molecules A and B respectively (Burgert & Kvist, 1985) (McSharry et al., 2008). The partial E3 gene 276 

deletion in H101 is thought to enhance its safety profile, although this may be at the cost of decreased 277 

anti-cancer potency (Suzuki et al., 2002).  278 

Clinical Experience of Oncolytic Virus-Based Therapy in 279 

HCC 280 

To date only 4 HCC-directed clinical trials using two different OV, JX-594 and dl1520 have been 281 

undertaken and completed follow-up (table 4). Early phase trials that include a mixed population of 282 

patients with digestive tract tumours, have typically recruited very small numbers of patients with 283 

HCC, making it difficult to adequately characterise the performance of these agents (Park et al., 2008) 284 
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(Habib et al., 2001). It is also noteworthy that patients with significant chronic infections including 285 

HIV, HBV and HCV infection are frequently excluded from trials of OV that include multiple disease 286 

sites, primarily due to the perceived risk of increased adverse events (Pecora, 2002) (Vidal et al., 287 

2008). Encouragingly, at least 3 other OV trials exclusively for HCC are either underway or nearing 288 

completion (table 5). 289 

Route of Delivery 290 

The safety and efficacy of OV therapy is dependent not only on viral specifics, but also on numerous 291 

clinical considerations, including the administered dose of virus, the rate of infusion, the anatomical 292 

distribution of disease and the route of delivery.  293 

Intratumoural Injection 294 

Numerous intratumoural (ITu) therapies have been trialled in liver tumours, and it is a popular OV 295 

delivery method in HCC (see tables 4 and 5) (Venook, 2000). The advantages of the ITu route are the 296 

delivery of a high concentration of drug to the target, whilst minimising off-target side-effects, an 297 

important consideration in HCC where the background liver is frequently cirrhotic with reduced 298 

functional capacity. However, direct ITu injection carries significant risks of bleeding, infection, 299 

peritoneal tumour seeding as well as technical challenges. It is frequently impossible to inject all HCC 300 

foci, but this is not necessarily a limitation of the technique; Park et al reported that ITu injection of 301 

JX-594 led to the initial release of virus into the bloodstream, that was rapidly cleared (Park et al., 302 

2008). This was then followed by the re-emergence of circulating JX-594 days to weeks later, 303 

consistent with productive infection. In keeping with these observations, replicating JX-594 infection 304 

was found in a non-injected HCC focus metastatic to the neck following ITu liver injection (Park et 305 

al., 2008).  306 

Intravenous Injection 307 

The IV delivery of OV avoids the local injection-site side-effects associated with invasive ITu 308 

therapy. IV injection is also more likely to be acceptable to both patients and their physicians when 309 

administered at regular intervals as part of a scheduled course of treatment. Intravenous 310 

administration of JX-594 has been shown to result in viral delivery to tumours, with the key 311 

determinant of tumour infection being the administered dose (Breitbach et al., 2011). Of the patients 312 

treated with doses ≥1.5x107 PFU kg-1 and subsequently biopsied, 87% showed JX-594 positivity in 313 

tumour by IHC or qPCR, whereas those treated with lower doses were negative. All patients on this 314 

trial had a history of vaccination with live Vaccinia virus as children, and delivery was demonstrated 315 

in a patient despite the presence of neutralizing antibodies at baseline. This finding lends support for 316 

the need to establish the maximum tolerated dose in trials of oncolytic virotherapy and to use the 317 

maximum tolerated dose in subsequent phase 2 and 3 trials. The IV route is further supported by a 318 

translational trial where oncolytic reovirus was recovered post-surgery from colorectal cancer liver 319 
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metastases following IV delivery, and shown to be capable of plaque formation ex-vivo (Adair et al., 320 

2012). In the same trial, no replicating reovirus was recovered from normal liver samples, but faint 321 

staining for reovirus sigma 3 protein was seen by IHC, supporting the notion of preferential 322 

productive infection in cancerous tissue.  323 

Several trials have employed an initial IV injection of OV followed by ITu injections. The theory 324 

behind this approach is that initial IV injection will prime an immune response that is then amplified 325 

at the target site upon further ITu injections.  326 

Hepatic Artery Injection (HAI) 327 

HAI using cytotoxic agents is in routine clinical practice for patients with HCC and warrants further 328 

investigation in oncolytic virotherapy. This is commonly employed in the form of transarterial 329 

chemoembolization (TACE), either as a palliative technique per se, or as a ‘bridging’ modality before 330 

liver transplantation (Jelic & Sotiropoulos, 2010). The TACE principle employs HAI of cytotoxic 331 

drug combinations followed by lipiodol or degradable microsphere injection for vessel occlusion, 332 

resulting in tumour cell ischaemia and necrosis.  333 

It is debateable whether HAI enhances viral delivery to localised targets over the simpler method of 334 

ITu injection. HAI also does not prevent systemic side-effects as was significantly highlighted by the 335 

well-publicised death of the teenager Jesse Gelsinger secondary to systemic inflammatory response 336 

syndrome (SIRS) induced by the hepatic artery injection of 3.8x1013 virus particles of replication 337 

incompetent adenovirus type 5 (E1 and E4 deleted) encoding ornithine transcarbamylase cDNA 338 

(Raper et al., 2003). The strength of HAI lies in the opportunity to improve on existing locoregional 339 

therapies in combination with TACE, and encouragingly, a phase 3 trial of H101 in combination with 340 

TACE in patients with HCC is currently recruiting (table 5). Clearly, further trials testing OV by HAI 341 

are warranted and it remains to be seen which route of delivery is preferable in terms of safety, 342 

efficacy and patient acceptability.  343 

Clinical Safety Data 344 

As can be seen from table 4, both ITu and IV injections of JX-594 have been tested in patients with 345 

HCC. The most common adverse events are an influenza-like illness comprising headache, nausea, 346 

vomiting and fatigue (Park et al., 2008) (Breitbach et al., 2011) (Heo et al., 2013a). A mild fever 347 

occurs in all patients and is dose-related (Heo et al., 2013a). A maximum tolerated dose was reached 348 

at 109 PFU due to grade III hyperbilirubinaemia subsequent to transient tumour swelling inducing 349 

biliary obstruction (Park et al., 2008). Peri-tumoural oedema, induced by acute inflammation has been 350 

commonly reported in trials using OV and in fact response after initial tumour flare is a class effect of 351 

immune therapies in general (Pecora, 2002) (Senzer et al., 2009) (Wolchok et al., 2009). The absence 352 
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of substantial changes in AST and ALT suggest that direct destruction of healthy hepatocytes 353 

following JX-594 injection is mild (Park et al., 2008).  354 

Habib et al reported safety data from 10 patients with HCC treated with dl1520. Following a dose-355 

escalation study in patients with either primary or secondary liver tumours in which no maximum 356 

tolerated dose was reached, a further small HCC-directed trial was undertaken in Egypt (Habib et al., 357 

2001). In the latter study 10 patients were randomised in a 1:1 ratio to receive either a single IV dose 358 

of 3x1011 PFU of dl1520 followed by 5 ITu doses, or standard of care therapy with 95% ethanol by 359 

ITu injection (Habib et al., 2002). Of the five patients treated with dl1520, three suffered from 360 

CTCAE grade I-II fever and rigors, and 2 patients suffered from transient hypotension at the time of 361 

the infusions. Very minor changes in AST and ALT were observed for patients treated with dl1520, in 362 

comparison to the much higher levels of serum transaminases observed following ethanol treatment 363 

(Habib et al., 2002). 364 

Assessing Efficacy in OV Therapy for HCC 365 

For the approval of new anti-cancer drugs, the FDA accepts improved survival, as well as surrogate 366 

markers that predict clinical benefit.  The Response Evaluation Criteria in Solid Tumours (RECIST) 367 

use single linear summation of target lesions to define response to therapy (Therasse et al., 2000). 368 

However, the clinical benefit provided by anti-cancer therapy in HCC correlates poorly with 369 

conventional methods of response assessment (Llovet et al., 2008) (Forner et al., 2009). In 2008, the 370 

American Association for the Study of Liver Diseases (AASLD) developed a set of guidelines, termed 371 

the modified RECIST or mRECIST criteria aimed at providing a common framework for the design 372 

of clinical trials in HCC (Lencioni & Llovet, 2010). These guidelines consider estimation of the 373 

reduction in viable tumour area using contrast-enhanced radiologic imaging to be the optimal method 374 

to assess treatment response in HCC. Nonetheless, both RECIST and mRECIST criteria must be 375 

employed with caution in trials using immunotherapies; in particular, OV may cause transitory 376 

tumour-flare secondary to inflammatory cytokine release, leading to tumour enlargement and 377 

increased contrast enhancement, prior to tumour necrosis and shrinking (Senzer et al., 2009). 378 

Delaying radiologic assessment following OV therapy could potentially avoid this issue (Hales et al., 379 

2010).  380 

Clinical Evidence of Anti-Tumour Efficacy 381 

In a recent pivotal study, 30 patients with advanced HCC were randomised to low (108 PFU) or high 382 

dose (109 PFU) intratumoural JX-594 administered every 2 weeks (Heo et al., 2013a). The majority of 383 

patients in both groups had previously received locoregional therapy, but more patients in the high 384 

dose group had previously failed sorafenib therapy, a poor prognostic factor. Median overall survival 385 

was 14.1 months for the high dose arm and 6.7 months for the low dose arm. Despite the relatively 386 
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small sample size, a statistically significant survival benefit (P=0.020) was demonstrated because of 387 

the large effect size. Both doses were associated with mRECIST responses, decreased tumour 388 

perfusion and decreased tumour contrast enhancement. This is the first study to show a statistically 389 

significant benefit derived from OV therapy in patients with HCC.  390 

JX-594 has been tested as second line therapy in two phase 2 HCC trials (see table 4). In the larger of 391 

these studies (TRAVERSE), patients who had previously failed sorafenib therapy were treated with 392 

JX-594 and BSC or BSC alone (Transgene, 2013b). Sadly, the primary endpoint of improved overall 393 

survival was negative. The failure of JX-594 in the TRAVERSE trial following promising randomised 394 

dose-finding trial data remains to be fully explained. Patients recruited to the TRAVERSE trial were 395 

more likely to have sorafenib-resistant cancers. Acquired cellular resistance mechanisms to sorafenib 396 

following long-term exposure include compensatory crosstalk between PI3K/Akt and MAPK 397 

pathways, upregulation of the JAK-STAT pathway and enhanced epithelial-mesenchymal transition 398 

(Zhai & Sun, 2013). These changes could theoretically affect OV infection and anti-cancer efficacy, 399 

although recently, the modified Lister strain Vaccinia virus, GLV-1h68, was shown to effectively 400 

infect and kill sorafenib-resistant HCC cell lines (Ady et al., 2014). Alternatively, the failure of JX-401 

594 in the TRAVERSE trial could be attributed to more advanced disease in the second line setting; 402 

fitter patients carrying a smaller HCC disease burden are most likely to respond to OV therapy, as has 403 

been the experience with other immunotherapies (Coppin et al., 2005).  Furthermore, the relatively 404 

small number of patients included in phase 2 trials presents a challenge when seeking outcomes of 405 

study drug superiority over standard care. Nonetheless, Transgene recently announced a shift in 406 

strategy, moving JX-594 trials away from the second-line setting in HCC. Instead, a phase 3 trial 407 

which is expected to enrol approximately 600 patients and is anticipated to begin recruitment in 2015, 408 

will be testing whether first line IT JX-594 (weeks 0, 2 and 4) followed by sorafenib (week 6 409 

onwards) improves overall survival in comparison to sorafenib alone (Transgene, 2014).  410 

In contrast, no meaningful efficacy data can be derived from the dl1520 trial by Habib et al; one 411 

patient who received dl1520 experienced a partial response with reduction in tumour volume from 412 

306 to 22.5 cm3 associated with a concomitant decrease in AFP level from 7604 to 300 ng mL-1 413 

(Habib et al., 2002). The remaining four patients demonstrated progressive disease with an increase in 414 

both tumour volume and AFP levels. Larger randomised trials are needed to determine whether 415 

recombinant type 5 adenoviruses are efficacious in HCC. 416 

Clinical Evidence of Anti-cancer Immune Stimulation 417 

Anti-cancer immune stimulation could be at least partially responsible for the reported decreases in 418 

the size and contrast enhancement of non-injected tumours following intratumoural JX-594 injection 419 

elsewhere (Park et al., 2008) (Heo et al., 2013a). However, little ex-vivo evidence has been gathered 420 

to date from clinical trials for anti-HCC immune responses. In their randomised dose-comparison 421 
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phase 2 trial, Heo et al demonstrated HCC immune infiltration following JX-594 injection by both 422 

radiographic peripheral tumour enhancement and histologically confirmed diffuse lymphocyte 423 

infiltration from biopsied tumours (Heo et al., 2013a). In the same trial, Heo et al assessed antibody-424 

mediated complement-dependent cytotoxicity (CDC) by the addition of serum from JX-594 treated 425 

patients to HCC cell lines, resulting in cytotoxicity from 11 of the 16 subjects tested (Heo et al., 426 

2013a). Indeed, CDC could be of vital importance in OV therapy as evidenced by a recent JX-594 427 

study in patients with a variety of cancer types, where patients with the longest survival duration had 428 

the highest CDC activity (Kim et al., 2013). Evidence was also gathered for antibody development 429 

and T-cell immunity against JX-594 encoded proteins including ȕ-galactosidase, an observation of 430 

likely importance in the elimination of virus-infected tumour cells (Heo et al., 2013a). Whilst 431 

encouraging, these results do not constitute an adaptive anti-HCC immune response. At least 6 432 

different HCC-specific tumour associated antigens (TAA) that are targeted by T-cells have been 433 

identified and future OV trials should assess whether specific T-cell responses against these antigens 434 

are induced (Breous & Thimme, 2011).  435 

Other evidence for immune stimulation is similarly encouraging, though sparse; both elevated TNF-Į 436 

and IFN-Ȗ  have been observed in the serum of HCC patients treated with JX-594 (Liu et al., 2008) 437 

(Park et al., 2008). These are likely to contribute to DC maturation, cancer growth inhibition and 438 

apoptosis. Of interest, the presence of type I interferons, powerful stimulators of NK cell activity and 439 

DC maturation, has not been reported in JX-594-treated patients, perhaps due to efficient Vaccinia 440 

virus-mediated inhibition of the interferon system (Perdiguero & Esteban, 2009). In contrast, other 441 

viruses e.g. measles, reovirus and VSV, are known to efficiently induce type I interferons, wetting the 442 

appetite for HCC clinical trials in HCC with thorough translational read-outs using such agents 443 

(Steele et al., 2011) (Diaz et al., 2007) (Donnelly et al., 2013). One potential concern is that co-444 

infection of HCV infected hepatocytes with OV will not lead to robust interferon induction due to the 445 

interferon evasion mechanisms employed by HCV. For example, HCV NS3/NS4a protease disrupts 446 

pattern recognition receptor signalling by cleaving the RIG-I and TLR3 downstream adaptors, MAVS 447 

and TRIF respectively (Foy et al., 2005) (Li et al., 2005b) (Ferreon et al., 2005). NS3/NS4A also 448 

perturbs RIG-I downstream signalling through disruption of virus-induced NF-țB binding to the DNA 449 

PRDII element, hence limiting IFN-ȕ gene expression (Foy et al., 2005) (Li et al., 2005c). 450 

Realistically however, the scenario of reovirus co-infection with HCV is unlikely to be a major factor 451 

in HCC patients, as the majority of patients only have detectable HCV proteins or genomes in a 452 

minority of clustered hepatocytes (Stiffler et al., 2009) A further concern is that HCV and HBV could 453 

supress OV-mediated adaptive anti-tumour immune responses, however, no clinical evidence for this 454 

yet exists, and future HCC-directed trials cannot afford to exclude the majority of HCC patients, with 455 

a viral aetiology. 456 
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Future Perspectives 457 

The clinical progress of JX-594 in HCC therapy provides much optimism in the field. This agent 458 

appears to be transcending the barrier between novel laboratory science and credible clinical therapy. 459 

From this clinical progress have come clues to support existing laboratory research into the 460 

mechanisms of OV-mediated anti-HCC efficacy including the direct, immune and anti-vascular 461 

effects. However, much remains to be discovered in terms of the differential response to OV therapy 462 

in subsets of patients, the optimal route of delivery and combinations with other anti-cancer therapies. 463 

Furthermore, biomarkers predictive of treatment response are greatly needed, as are continued efforts 464 

to establish early diagnoses of cirrhosis and HCC using technologies such as the non-invasive 465 

enhanced liver fibrosis test (Lichtinghagen et al., 2013). 466 

The combination of OV with sorafenib warrants particular mention. These drug combinations have 467 

non-overlapping toxicities, and potentially synergistic mechanisms of action, hence forming the focus 468 

of past and future trials. For JX-594, the sequence of this combination is of paramount importance; 469 

upfront JX-594 therapy is thought to induce acute vascular disruption, sensitising tumours to the anti-470 

angiogenic effects of subsequent sorafenib treatment. In murine tumour models, sequential JX-594 471 

followed by sorafenib therapy was superior to either simultaneous therapy or sorafenib followed by 472 

JX-594 (Heo et al., 2011). In vitro, sorafenib, a multi-kinase inhibitor, perturbs JX-594 productive 473 

infection of HCC cell lines, a result that can be predicted as sorafenib inhibits a wide range of cellular 474 

kinases in addition to its principal targets, whereas Vaccinia viruses are known to encode kinases, 475 

including B1R and TK that are essential for productive infection (Rempel & Traktman, 1992) (Parato 476 

et al., 2012) (Kitagawa et al., 2013). The very fact that the cancer specificity of JX-594 is partially 477 

dependent on elevated TK levels in malignant cells highlights the reliance of this OV on functional 478 

viral and cellular kinases. Hence, sequential scheduling works best for this OV, as was employed in 479 

the second line trial using JX-594 followed by sorafenib therapy, and a similar schedule is planned for 480 

the first line phase 3 trial (Heo et al., 2011) (Transgene, 2014).  481 

The combination of other OV that are less reliant on cellular kinase functions with sorafenib should 482 

form the focus of future studies. The precise scheduling should be determined by preclinical studies in 483 

immunocompetent animal models. Kottke et al., showed that tumours treated in vivo with VEGF 484 

inhibitors became highly susceptible to systemic treatment with reovirus, but only if the drugs were 485 

withdrawn 24–48 hours before virus delivery. The authors concluded that the rebound of VEGF 486 

signalling upon drug withdrawal conditions tumour-associated endothelium for productive infection 487 

of reovirus (Kottke et al., 2010).  488 

The complex immunomodulatory effects of sorafenib are also likely to be critical determinants of 489 

success. One report cited that sorafenib significantly reduced the number of NK cells and inhibited 490 
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their reactivity against tumour targets in animal models, whilst a contradictory report stated that 491 

sorafenib enhances IL-12 secretion from human liver-derived macrophages, hence activating NK cells 492 

(Sprinzl et al., 2013) (Zhang et al., 2013). The efficacy of OV in combination with sorafenib will 493 

therefore be partially dependent on the stimulation or suppression of immune responses. Sorafenib 494 

could theoretically enhance  OV therapy through a number of mechanisms including the synergistic 495 

activation of NK cells, and inhibition of the OV-directed humoral response, thus enhancing IV 496 

delivery, as has been the experience with chemotherapy (Lolkema et al., 2011). Alternatively, 497 

sorafenib-induced immunosuppression could limit the immune-mediated efficacy of OV, whilst 498 

immune stimulation could limit virus propagation, both resulting in reduced efficacy. Orthotopic 499 

immunocompetent animal models could begin to answer these questions, but the lack of concordance 500 

between animal models and human research highlights the need to pursue early phase clinical trials 501 

using sorafenib-OV combinations.  502 

In addition to sorafenib, numerous successful preclinical  studies have been conducted, using  OV in 503 

combination with cytotoxic agents, radiotherapy and targeted biotherapies including other pre-clinical 504 

OV (Mao et al., 2009) (Zheng et al., 2009) (Chung et al., 2002). More recently, antibodies targeting 505 

the immune checkpoint molecules, CTLA-4 and PD-1/PD-L1 have been tested in early-phase HCC-506 

directed clinical trials (Sangro et al., 2013a) (Sangro et al., 2013b). CTLA-4 is expressed on T-cells 507 

and inhibits T-cell activation, whilst PD-1/PD-L1 interactions limit the activation of NK, B- and T-508 

cells (Pardoll, 2012). Combinations of OV with immune checkpoint inhibitors are being explored in 509 

solid and haematological malignancies and should also be tested in HCC, with the premise that OV-510 

mediated tumour vaccination, followed by immune activation through checkpoint inhibition may 511 

prove highly beneficial (Engeland et al., 2014) (Minev et al., 2014). As with all combination 512 

regimens, overlapping side effects are of concern, especially severe immune-related toxicity. HCC 513 

therapy provides the opportunity to limit systemic side-effects by HAI, a delivery method that is 514 

likely to become increasingly important in future trials. 515 

Taking these combinations one step further, future studies should assess the efficacy of OV carrying 516 

cDNA libraries, in combination with checkpoint inhibitors. Effective cancer immunotherapy requires 517 

the release of TAA in the context of potent immune activation. Kottke et al., showed that a cDNA 518 

library of normal tissue, expressed from oncolytic VSV, acting as an immune adjuvant, cured 519 

established tumours of the same histological type from which the cDNA library was derived (Kottke 520 

et al., 2011). In HCC therapy, such broad antigenic stimulation can potentially lead to the attack of 521 

healthy hepatocytes. This problem can be avoided by engineering OV to express specific TAA 522 

including AFP, EpCAM and SSX-2. Clues to indicate the likely efficacy of the latter approach can be 523 

found in patients with HCC who have a better prognosis, associated with the expression of such TAA 524 

(Liang et al., 2013). Unleashing specific T-cell responses against OV-expressed TAA through 525 

combination with checkpoint inhibitors could prove to be a very valuable strategy. 526 
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Other than JX-594, a large number of clinically active and pre-clinical oncolytic viruses have been 527 

tested in HCC models, yet precious few of these agents have progressed into HCC-directed clinical 528 

trials. As in other fields, OV laboratory science races well ahead of clinical practice, and in this 529 

respect, anti-HCC oncolytic virotherapy is no different. The potential exists for the medicines 530 

regulatory authorities to approve multiple efficacious OV in HCC clinical practice, paving the way for 531 

stratified therapy. In order to realise this potential and reap the rewards, we must first push these pre-532 

clinical agents into the clinic.  533 
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Table 1 – HCC-specific oncolytic viruses; mechanisms of targeting  

Targeting 
principle 

Example Description Issues  Reference 

Liver specific viral 
promoter 

Transthyretin-
promoter 
driven 
adenovirus 

Transthyretin is a thyroid 
hormone transport protein, 
secreted into serum by 
hepatocytes. 

Requires additional cancer specificity (Hsieh et 
al., 2009) 

HCC specific viral 
promoter 

AFP-
promoter-
driven 
adenovirus 

AFP is produced in high levels 
from the foetal liver and yolk sac, 
but not normally in adults. 

AFP is frequently only expressed in a sparse 
population of HCC cells, and can also be 
expressed from non-malignant hepatocytes in 
chronic hepatitis and cirrhosis (Ohguchi et 
al., 1998) (Johnson, 2001). 

(Zhang et 
al., 2012) 

Enzyme-activated 
viral protein 

MMP-
activated 
MVF protein   

MMP substrate site is inserted 
into MVF.   

Efficacy dependent on tumour MMP 
expression.  

Could have broader cancer specificity 

(Muhleba
ch et al., 
2010) 

miRNA mediated 
control of virus 
gene expression in 
normal liver cells 

mir-122 
regulated 
adenovirus 

mir-122 binding sites inserted 
into the γ’untranslated region of 
an adenovirus type 5 E1A-
luciferase transcription cassette. 

mir-122 expression is preserved in HCV-
induced HCC, potentially rendering mir-122 
regulated adenovirus ineffective in this subset 
of patients (Varnholt et al., 2008). 

(Cawood 
et al., 
2009) 

AFP (alpha fetoprotein); MMP (membrane metalloproteinase); MVF (Measles virus fusion); miRNA (micro-RNA) 
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Figure 1 – Therapeutic gene products expressed by engineered replication-competent adenoviruses and tested in pre-
clinical models of HCC. Infection of a malignant hepatocyte (illustrated by the large blue rectangular cell) by replication 
competent adenovirus results in the expression of engineered therapeutic genes. Suppressor of cytokine signalling (SOCS)-1 
and SOCS3 inhibit JAK phosphorylation of STAT, thus attenuating cytokine signal transduction and suppressing tumour 
growth (Wei et al., 2011) (Liu et al., 2013). Tumour suppressor in lung cancer 1 (TSLC1) is a cell adhesion molecule whose 
overexpression inhibits cell growth and migration, and induces apoptosis (He et al., 2012). Numerous engineered genes enhance 
apoptosis: Melanoma differentiation associated gene (mda)-7/IL-24 binding to its receptor triggers mitochondrial dysfunction 
and apoptosis, whilst receptor-independent tumour suppression is achieved via the induction of sustained ER stress (Xiao et al., 
2010).The hepatocellular carcinoma suppressor 1 (HCCS1) gene product activates the mitochondrial apoptotic pathway by 
inducing lysosomal protease efflux (Gan et al., 2008) (Zhang et al., 2008). SMAC (second mitochondria-derived activator of 
caspase) inhibits the activity of XIAP, a potent inhibitor of caspase activation that prevents apoptosis (Pan et al., 2007) (Pei et 
al., 2004). XIAP protein translation can also be knocked down using targeted short hairpin RNA (shRNA), sensitizing cells to 
pro-apoptotic signals such as tumour necrosis factor-related apoptosis inducing ligand (TRAIL) (Ye et al., 2005) (Pan et al., 
2008). Other OV-encoded  therapeutic proteins that act directly on malignant cells are the pro-apoptotic apoptin and the 
sodium-iodide symporter (NIS), a transmembrane glycoprotein, which transports out two sodium cations in return for one 
iodide anion. NIS proteins allow the intracellular concentration of radioactive iodide, inducing apoptosis (Zhang et al., 2012) 
(Grunwald et al., 2013). Several OV-encoded therapeutic proteins are secreted for paracrine effects on other cells within the 
tumour microenvironment; IL-12 drives the activation/differentiation of NK and T-cells, whilst the C-C chemokine ligand 5 
(CCL5) induces NK cell activation and T-cell chemotaxis (Yang et al., 2012) (Li et al., 2013). Secreted endostatin acts on 
endothelial cells to inhibit migration and proliferation, and to induce apoptosis (Li et al., 2005a).  
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Table 2 – Engineering OV to enhance delivery and survival in pre-clinical HCC models 

Mechanism Description Potential advantages Reference 

Viral surface 
modification using 
polymers 

Arginine-grafted bioreducible polymer or 
high molecular weight polyethylene glycol 
chemically conjugated to oncolytic 
adenovirus surface 

Reduced hepatocyte infection and 
liver toxicity 

Reduced neutralisation by antibodies 

(Kim et al., 
2011) 
(Doronin et 
al., 2009) 

Virus-mediated 
inhibition of NK 
and NKT cells 

VSV expressing a protein from human 
cytomegalovirus known to downregulate 
CD155. 

Reduced NK and NKT cell 
recruitment to the site of viral 
infection, reducing virus inactivation 

(Altomonte 
et al., 2009) 

Virus-mediated 
expression of 
chemokine-binding 
proteins 

Recombinant VSV expressing high affinity 
chemokine-binding proteins; M3, from 
murine gammaherpesvirus-68, or equine 
herpes virus-1 glycoprotein G 

Reduced neutrophil, NK and NKT 
cell recruitment to the site of viral 
infection, enhancing virus titres. 

(Wu et al., 
2008) 
(Altomonte 
et al., 2008) 
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Table 3 – OV Tested in Pre-clinical Models of HCC 

Virus species Name Modifications Assessed in Clinical Trials? Pre-clinical HCC 
Model 

Reference 

Parvovirus H-1 H-1PV Wild-type Yes, glioma Cell lines (Moehler et al., 
2001) 

 
 
HSV-1 
 
 

G207 Deletion of both ICP34.5 neurovirulence genes & inactivation of ICP6 (ribonucleotide 
reductase) by insertion of the E.coli lacZ gene. 

Yes; glioma 
Cell lines and 
subcutaneous 
murine xenografts 

(Song et al., 2006)       
(Xue et al., 2005) 

Cgal-Luc Derived by repair of ICP4 (positive and negative regulation of virus genome) from Cgalǻγ 
virus, insertion of the LacZ gene into IGR54 and luciferase gene into IGR20. 

No 
Subcutaneous 
murine xenografts 
 

(Argnani et al., 
2011) 
 H6-Luc Derived from the H6 mutant; syncytium forming (Syn-), benzhydrazone (glycosylation 

inhibitor) resistant. Luciferase cassette inserted into IGR20. 

The closely related HF10 mutant 
has been tested in multiple solid 
tumours 

G92A 
ICP4 regulated by the albumin enhancer/promoter, mutated US3 gene (inhibitor of virus-
induced apoptosis), disrupted thymidine kinase gene and insertion of the E.coli lacZ gene.  No Orthotopic murine 

xenografts 
 

(Chung et al., 2006) 
 

hrR3 ICP6 LacZ insertion mutant. No 

Blue tongue 
virus 

BTV-10 Wild-type, cell-culture adapted  No Hep3B cell line (Hu et al., 2008)  

BTV-HC3 Wild-type, cell-culture adapted No Cell lines (Chen et al., 2007) 

Measles virus 
(Edmonston) 

MV-CEA Expresses extracellular domain of the human carcinoembryonic antigen (CEA) Yes, glioma and ovarian cancer Cell lines and 
subcutaneous 
murine xenografts 

(Blechacz et al., 
2006) MV-NIS Expresses the human sodium iodide symporter (hNIS) Yes, myeloma and multiple solid 

tumours 

MV-GFP 
Expresses green fluorescence protein. Human bone marrow-derived mesenchymal stem 
cells were infected with MV-GFP and systemically delivered in passively-immunised 
mice. 

No 
Orthotopic patient-
derived HCC tissue 
xenografts 

(Ong et al., 2013) 

Newcastle 
Disease Virus 
 

NDFLtag-
EGFP 

Derived from the wild-type LaSota vaccine strain. Carrying enhanced green fluorescence 
protein. 

No Human and murine 
hepatic stellate cells 
 

(Li et al., 2009) 
 NDV-

Italien 
Wild-type No 

rNDV/F3a
a(L289A) 

L289A mutation within the F (fusion) glycoprotein No 
Immunocompetent 
orthotopic murine 
model 

(Altomonte et al., 
2010) 

NDV/Anh
-EGFP 

Derived from the wild-type Anhinga strain. Carrying enhanced green fluorescence protein. No 

Cell lines and 
subcutaneous 
immunocompetent 
murine model 

(Wu et al., 2014) 

Vaccinia 
 

GLV-
1h68 

Derived from the Lister strain and carries three gene cassettes: a Renilla luciferase-GFP 
(RUC-GFP) fusion cassette at the F14.5L locus, a reverse inserted human transferrin 
receptor and ȕ-galactosidase cassette at the JβR locus (encodes thymidine kinase), and a ȕ-
glucuronidase cassette at the A56R locus (encoding hemagglutinin). 

Yes, multiple solid tumours 

Cell lines and 
murine xenografts 

(Gentschev et al., 
2011) 

Sorafenib-resistant 
cell lines 

(Ady et al., 2014) 

JX963 
Western reserve expressing GM-CSF, with double deleted thymidine kinase and vaccinia 
growth factor genes.  

The closely related vvDD-CDSR 
expressing cytosine deaminase 
and somatostatin receptor is being 
tested in solid tumours 

Orthotopic 
immunocompetent 
rabbit model 

(Lee et al., 2009) 
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Table 4 – Completed HCC-directed clinical trials using oncolytic viruses. Searches were performed on ClinicalTrials.gov, Current Controlled Trials, EU Clinical Trials Register and medline. 

Virus Phase  No of  

patients 

Route Delivered  

dose 

Study Design Anti-Cancer Effect Grade III or IV  

Adverse Events 

Reference 

JX-594 2 25 IV followed 

by ITu 

1x109 PFU Single treatment group. IV day 1, ITu 

days 8 and 22, sorafenib day 25 

mRECIST disease control rate 62% for JX-594 

and 59% after initiation of sorafenib 

Not available (Heo et al., 

2013b) 

JX-594 2 30 ITu 1x108 or 

1x109 PFU 

Randomised comparison between low 

and high dose JX-594 

OS 14.1 months in high dose group Vs 6.7 

months in low dose group (P=0.020) 

Lymphopaenia, 

pyrexia 

hyperbilirubinaemia 

(Heo et al., 

2013a) 

JX-594 2* 120 IV followed 
by ITu 

1x109 PFU JX-594 plus BSC or BSC only. IV 
day 1 followed by five ITu treatments 

No significant overall survival advantage Not available (Transgene, 

2013b) 

Ad5 dl1520 2 10 IV followed 

by ITu 

3x1011 PFU Randomised comparison between PEI 

and Ad5 dl1520 

1 patient had PR by RECIST and 4 had PD None (Habib et al., 

2002) 

PEI (percutaneous ethanol injection); BSC (best supportive care); IV (intravenous); ITu (intratumoural); OS (overall survival); PFU (plaque forming units); PR (partial response); PD (progressive disease);  
RECIST(Response Evaluation Criteria in Solid Tumours); mRECIST (modified RECIST); * TRAVERSE trial 
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Table 5 – Ongoing HCC-directed clinical trials using oncolytic viruses. Searches were performed on ClinicalTrials.gov, Current Controlled Trials and EU Clinical Trials Register. 

Virus Phase  No of patients Route Study Design Primary objective(s) Progress 
Trial 
identifier 

JX-594 2 21 IV  Single treatment group 5 x weekly infusions Tumour response Enrolment completed NCT01636284 

H101 recombinant human  

adenovirus type 5 

3 120 HAI  Randomisation to adenovirus and TACE or  

TACE only 

Overall survival Recruiting NCT01869088 

VSV-hIFN-ȕ 1 48 ITu Modified "3+3" Fibonacci dose escalation Maximum tolerated dose Recruiting NCT01628640 

HAI (hepatic artery injection); TACE (trans-arterial chemo-embolization);  
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