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ABSTRACT: Spectral clustering involves placing objects into
clusters based on the eigenvectors and eigenvalues of an
associated matrix. The technique was first applied to molecular
data by Brewer [J. Chem. Inf. Model. 2007, 47, 1727−1733]
who demonstrated its use on a very small dataset of 125 COX-
2 inhibitors. We have determined suitable parameters for
spectral clustering using a wide variety of molecular descriptors
and several datasets of a few thousand compounds and com-
pared the results of clustering using a nonoverlapping version
of Brewer’s use of Sarker and Boyer’s algorithm with that of Ward’s and k-means clustering. We then replaced the exact
eigendecomposition method with two different approximate methods and concluded that Singular Value Decomposition is the
most appropriate method for clustering larger compound collections of up to 100 000 compounds. We have also used spectral
clustering with the Tversky coefficient to generate two sets of clusters linked by a common set of eigenvalues and have used this
novel approach to cluster sets of fragments such as those used in fragment-based drug design.

■ INTRODUCTION

Clustering is the division of a collection of objects into sets,
clusters, such that objects within a cluster are similar and objects
taken from different clusters are dissimilar. Compound collec-
tions are routinely clustered based on structural or other fea-
tures of the compounds. A representative can then be selected
from within a cluster with the expectation that the compound is
typical of those within the cluster. Clustering is routinely used
for the analysis of chemical information, in, for example, high-
throughput screening1 and diverse subset selection.2,3 A review
of clustering algorithms used in analyzing chemical datasets is
given by Downs and Barnard.4

Common clustering methods include sequential agglomer-
ative hierarchical nonoverlapping (SAHN) clustering, of which
the most commonly used are probably Ward’s method, relo-
cation methods such as K-means clustering, and single-pass
clustering.4,5 Hierarchical methods produce the typical cluster
tree diagram where the clustering is produced either by regard-
ing the dataset as a single cluster which is successively parti-
tioned into subclusters or by initially regarding each object as a
cluster and successively merging clusters. The most common
single-pass algorithm is the leader algorithm.6 Molecular
clustering requires a molecular descriptor, such as a fingerprint,
and a metric for quantifying the similarity between descriptors,
such as the Tanimoto coefficient The similarity metric is usually
a symmetric one (i.e., for molecules a,b, sim(a, b) = sim(b, a))
but asymmetric measures can be used for clustering. For
example, the hierarchical clustering method of Tarjan is suitable
for use with an asymmetric measure.7 In this case a single cut of
the hierarchy will generate a single clustering. An overview of

asymmetric clustering within the chemoinformatics literature is
given by MacCuish and MacCuish.8 Clusters may be crisp
(nonoverlapping) or fuzzy (objects can belong to more than
one cluster). In fuzzy clustering the degree of membership of a
cluster is usually given by a probability function. An alternative
method of forming overlapping clusters is given by Nicolaou
et al.,9 whereby molecules which are equidistant from two clus-
ters are placed in both.
There has recently been significant interest in the use of

spectral clustering methods for the analysis of both biological
and chemical data. Paccanaro et al. used the eigensolver algo-
rithm of Ng et al.10 to assign the sequences of the SCOP data-
base11 to superfamilies which compared extremely well with the
manually curated superfamilies in SCOP and with the
superfamilies assigned by three other methods.12 Paccanaro
concluded that the success of spectral clustering was due to the
global nature of the method which meant it did not require the
“hard” cut-offs used by predominately distance-based local
methods, which assign cluster membership based on a similarity
threshold. Indeed he demonstrated that a hard cutoff could not
produce a perfect clustering for SCOP. The method has now
been incorporated into the free SCPS (Spectral Clustering of
Protein Sequences) software.13 Spectral clustering has also been
used to cluster protein conformations from MD simulations14

and for cancer class discovery from gene expression profiles.15

In 2007, Brewer published the first use of a spectral clus-
tering algorithm for analyzing molecular data, the motivation
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being the selection of representative scaffolds from within a
chemical dataset.16 He used an algorithm published by Sarkar
and Boyer17 which was demonstrated on a set of 125 COX-2
inhibitors. Subsequent work at Evotec has used Brewer’s clus-
tering: to cluster 1800 potential Trypanosoma cruzi trans-
sialidase inhibitors into 690 clusters;18 to cluster 2700 com-
pounds into 126 clusters during the development of a model
for MCH-1R antagonists;19 and in fragment-based drug
discovery.20

Brewer made several suggestions for further investigation:
that spectral clustering using different descriptors and similarity
metrics be considered; that the method be parametrized in a
systematic manner; that a comparison should be made with
other clustering techniques; and that a different method for
finding eigenvalues, the Lanczos algorithm,21 be considered for
use with larger datasets. We have undertaken some of these
investigations and here report our results. We have chosen to
compare spectral clustering with Ward’s and k-means clustering
methods since these two are commonly used for the clustering
of chemical compound data. In our investigations the Lanczos
algorithm was found to be effective if the number of clusters
required is small but did not prove to be a suitable algorithm in
general. We therefore turned to Singular Value Decomposition
(SVD) which became our method of choice for spectral
clustering. The remainder of the paper is structured as follows.
We first give a brief overview of spectral clustering, followed by
an overview of the Lanczos algorithm and of the relationship
between SVD and spectral clustering. We then detail our
parametrization experiments and compare spectral clustering
with Ward’s and k-means clustering. Next we describe our use
of the Lanczos algorithm and show its limitations. Finally, we
demonstrate the application of our SVD spectral clustering
software on datasets of up to 100 000 compounds as well as on
smaller fragment-based data.

■ METHODS
Introduction to Spectral Clustering. In linear algebra, a

matrix represents a function that acts upon a vector, altering its
magnitude and/or its direction. Vectors whose directions are
left unaltered or inverted by a matrix are known as the eigen-
vectors of the matrix. More formally, if x is a nonzero column
vector then x is an eigenvector of matrix A if and only if there is a
scalar λ such that

λ=Ax x (1)

λ is the eigenvalue of A associated with the eigenvector x.
The eigenvalues and their associated eigenvectors, together

known as eigenpairs, can be identified using an eigendecompo-
sition algorithm, which is the term given to a procedure for
identifying eigenpairs from an input matrix. The term spectral
clustering is used to describe any clustering algorithm that
utilizes the eigenvectors of a matrix as the basis for partitioning
a dataset.10 The approach to spectral clustering can vary in
several ways, including the type of matrix that is formed from
the dataset and the way in which the eigenvectors are used as
the basis for the clustering. In general, the eigenvectors of the
matrix (which can be a similarity, Laplacian or any other input
matrix) constitute a set of weights, which can be used to cluster
similar nodes.17 Brewer made the key step of recognizing that
one method to partition a set of N molecules by spectral
clustering is to

(1) Form an N × N similarity matrix S = (sij), where sij is the
similarity between molecules i and j, where 1 indicates

identity and 0 indicates maximally dissimilar; S is a real
symmetric matrix.

(2) Transform the similarity matrix into a matrix, of the
form, A = (aij),

= γ− −a eij
s( 1)ij

2

(2)

where γ is a scaling parameter. Matrices of this form are
sometimes known as af f inity matrices,7 although it is
more usual for affinity matrices to have the leading dia-
gonal set to zeroes; in Brewer’s case the leading diagonal
is set to 1. The effect of this Gaussian filtering function
is to minimize low similarity scores and emphasize the
spread of the higher scores.

(3) The eigenvalues of A are given by the solution to the
matrix equation

λ=AX X (3)

where X = [x1, x2, ..., xN] is the matrix whose columns are

eigenvectors of A and λ is a diagonal matrix of eigen-
values, λ = diag (λ1, ..., λN). Since A is real and symmetric,
it is possible to decompose A into the product

λ=A X XT (4)

We can choose both the columns (eigenvectors) and the

rows of X to be normalized so that Σj = 1
N x2ij = 1, and the

entries of λ are ordered so that λ1 ≥.. ≥ λN.
Eigenvalues and eigenvector elements are not always

positive numbers. However, there is no physical meaning
to negative values in the context of clustering since clus-
ter membership cannot have a negative value.14 Thus, the
eigenpairs are then subjected to the 95% positive rule.17

This states that an eigenvector can only be considered to
represent a meaningful cluster if two conditions hold:
(i) the associated eigenvalue is positive;
(ii) 95% of the eigenvector’s magnitude is contributed

by either the squared values of the negative or
positive components only.

(4) In matrix X, the rows represent the molecules and the
columns (the eigenvectors) represent the clusters. Thus,
the ijth entry gives the contribution of molecule i to
cluster j. Each column is associated with an eigenvalue,
with the size of the eigenvalue being related to the
significance of the cluster. Since the eigenvalues are
ordered, the first clusters are the most significant. Unless
otherwise modified, spectral clustering is an overlapping
clustering method. In general there are as many clusters
as molecules and all molecules will contribute to all
clusters. Clusters obtained using a spectral method are
sometimes referred to as eigenclusters.

Spectral clustering can be considered a global clustering
method since all objects are considered at the same time, and
the assignment of an object to a cluster takes into account not
only its relationship to every other object but also the
relationship between any other pair of objects in the dataset.
This leaves the question “how does an eigenvector give an
insight into the relationships between chemical compounds”.
Imagine a theoretical chemical space that contains the mole-
cules. If the eigenspace (the space spanned by the eigenvectors)
is superimposed over the chemical space, an eigenvector de-
scribes a movement through this space between two points.
Looking down the vector gives a view into chemical space from
the perspective of that eigenvector, with molecules that provide

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci500480b | J. Chem. Inf. Model. 2014, 54, 3302−33193303



the largest eigenvector components being located closest to the
vector and molecules that make the smallest contribution being
located the furthest away. Looking down individual eigenvec-
tors allows the data to be viewed from different perspectives.
The eigenvalue associated with an eigencluster provides a

means of quantifying the cluster’s cohesiveness. In spectral clus-
tering, cluster cohesiveness defines the number of connections
between molecules, and the weights of the connections, such
that a set of identical molecules would produce an eigenvalue of
N − 1 reflecting the presence of a maximum number of con-
nections between the molecules, each weighted with the
maximum value of one. In Figure 1 each black point represents
a molecule in chemical space and the red point indicates
the location where the eigenvector passes through the set of
molecules. In cluster A, the eigenvector passes close to the
center of the cluster giving a large eigenvalue, as the point
where the vector passes through the molecules minimizes the
mean distance between the vector and the molecules.
Conversely, in cluster B the eigenvector travels through the
cluster in a position that is far away from the bulk of the data
points giving a small eigenvalue. As this discussion indicates,
spectral clustering is closely related to principal components
analysis. Given a real symmetric matrix X, the covariance matrix
of X, CX is given by

=
n

C XX
1

X
T

(5)

Then the principal components of X are the eigenvectors of
CX.

22

The Lanczos Algorithm. Decomposition into the form
of eq 3 is referred to as a full matrix diagonalization (FMD).
Algorithms which approximate the eigenpairs from an incom-
plete diagonalization of a matrix are often called eigensolvers.
The most stable algorithms for identifying eigenpairs from a
symmetric matrix are based on a FMD, where stability refers
to the extent that an algorithm is affected by the presence of
roundoff errors.23 Unfortunately FMD is a time-consuming
operation, being O(N3). However, there are more efficient
eigensolvers, such as that by Lanczos,21 which was suggested
by Brewer for further investigation. The Lanczos algorithm is
designed for use with sparse matrices. It uses a matrix tri-
diagonalization procedure, i.e., it reduces the matrix to one
where only the diagonal and first off-diagonal elements are

nonzero (see Figure 2a). A tridiagonal matrix, T, is used as a
simple representation of any symmetric matrix, A, since it has
a number of advantages, including: the eigenpairs of T can be
elucidated in significantly fewer arithmetic operations than are
required for A; every A can be reduced to T in a finite number
of elementary orthogonal transformations, whereas (in principle
if not in practice), an FMD of A can require an infinite number
of transformations.
Any real matrix A can be written in the form

=A QL (6)

where Q is an orthogonal matrix and L is a lower triangular
matrix (i.e., L is zero above the diagonal). This decomposition
is known as a QL procedure, and where A is tridiagonal, it is of
O(N).24 (NB There is, of course, an analogous QR procedure.)
Initially the Lanczos algorithm was regarded as a simple way

to reduce a matrix to its tridiagonal form but the algorithm
proved very susceptible to roundoff error and other issues that
occur when using the algorithm for finite precision arithmetic
problems.25 However, Paige showed that despite its mathe-
matical instability, the simple Lanczos algorithm is still an
effective tool for the computation of a low number eigenpairs of
a matrix,26 which led to a considerable amount of research into
improving the performance of the algorithm.
One of the most common implementations of the symmetric

Lanczos algorithm uses an iterative procedure, based on two
major steps per iteration, to identify k of the eigenpairs from a
matrix A. In the initial step, the Lanczos algorithm is applied
to A, identifying the diagonal elements, α, and the first off-
diagonal elements, β, associated with each of the k first-to-
converge eigenvalues along with a set of Lanczos vectors. It is
important to understand that the value of k that is input to the
Lanczos method specifies the number of eigenpairs that are
calculated by the algorithm and that each of the k eigenpairs
can be related to either a positive or a negative eigenvalue
depending on which eigenvalues are converged upon first.
Hence, k can be divided into two sets: the pos set, which are the
elements associated with the positive eigenvalues, which form
eigenclusters; and the neg set, that is related to the negative
eigenvalues that do not form eigenclusters. The second step in
this process is the use of an iterative solver, such as the QL
procedure, to identify the k eigenpairs of A from the elements
of T and the Lanczos vectors. One iteration of the Lanczos

Figure 1. Cohesiveness of eigenclusters. The red spots represent eigenvectors, and the black spots, molecules. Cluster A would have a large
eigenvalue, and cluster B, a small eigenvalue.
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algorithm is illustrated in Figure 2. During subsequent itera-
tions, the eigenvalue/vector approximations already generated
are refined and improved. When using the Lanczos algorithm,
the eigenvalues tend to be found in order of decreasing abso-
lute magnitude, which is a desirable feature of the algorithm.26

When the Lanczos algorithm is applied to a problem in finite
precision mathematics, “during its first few iterations, some-
times three, other times as many as 30,” the algorithm produces
results that are indistinguishable to those calculated by the exact
process.25 This continues, until a new Lanczos vector, q, is cal-
culated that is not orthogonal, to working precision, to its
predecessors. After a few more steps, the roundoff errors are
compounded such that each of the new Lanczos vectors
generated is linearly dependent on those that precede it. This in
turn leads to the approximation of new incorrect eigenvalues.23

These problems are compounded as the algorithm begins to
recalculate the largest eigenvalues, leading to the calculation of
both degenerate eigenvalues and associated eigenvectors that
are multiples of previous vectors. The end result is that the
Lanczos algorithm in this form is not suitable for use in finding
more than the outermost eigenpairs of a matrix.25 The loss of
orthogonality between the Lanczos vectors can be overcome by
applying a reorthogonalization procedure to the vectors, for
example, using the Gram−Schmidt method.24

Eigendecomposition Using Singular Value Decom-
position. Other methods exist for approximate eigenvalue/
eigenvector calculation, including Singular Value Decomposition

(SVD). SVD is a commonly used method of matrix factori-
zation according to the equation:27

=A U S Vmn mm mn nn
T

(7)

Where A is a matrix of size m × n, U is a unitary matrix of size
m × m, S is a matrix of size m × n containing the singular
values, and VT is the conjugate transpose of an n × n unitary
matrix V. S = diag(σ1, ... σp) where p = min(m, n). σ1, ..., σp are
the singular values of A.28

Interest in SVD methods stems from their close association
with eigendecomposition algorithms, i.e.

• The left singular vectors of A, i.e., the columns of U, are
equal to the eigenvectors of matrix AAT.

• The right singular vectors of A, i.e., the columns of VT,
are equal to the eigenvectors of matrix ATA.

• The nonzero singular values of A, the diagonal elements
of S, are the square roots of the nonzero eigenvalues of
both AAT and ATA.24 As the eigenvalues are equal to
the roots of the singular values, one can select either
the positive or negative roots to represent the
eigenvalues. In the case of SVD, the positive roots are
always selected.

The augmented matrix

=
⎛
⎝⎜

⎞
⎠⎟

A

A
A

0

0
aug T

Figure 2. Schematic of eigendecomposition. (a) Idealized tridiagonalization of a sparse symmetric matrix. In matrix A the light blue elements
represent zero elements, the mid blue elements the nonzero elements before triadiagonalization, and the dark blue elements are the tridiagonal
values. (b) Identifying the top k eigenpairs of matrix A, using repeated iterations of the Lanczos algorithm coupled with a QL decomposition. The
blue elements have the same meaning as in part a.The elements in white are those for which eigenpairs will not be calculated. The output eigenvalues
and vectors are shown in green.
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has eigenvalues ±σ1, ..., ±σn with corresponding eigenvectors

±
⎛
⎝⎜

⎞
⎠⎟

u
v

1
2

i

i

Thus, an eigenproblem can be reformulated in the form of a
SVD, leading to a solution that produces two distinct sets of
eigenvectors linked through a common set of eigenvalues.28 In
the case of symmetric matrices the two sets of eigenvectors,
U and VT, are equal. One advantage of the SVD method is that
since all positive eigenvalues are selected, the number of
eigenvalues is the same as the number of clusters.

■ EXPERIMENTAL SECTION
Programs. We have investigated the performance of

the three different eigendecomposition methods described
above for spectral clustering of datasets of molecules in
three programs developed in-house. For all of the programs,
computations were performed using double precision
arithmetic.
The first is called NOSC (Non-Overlapping Spectral Clus-

tering) and is based on the FMD eigendecomposition algo-
rithm of Sarker and Boyer17 which was also used by Brewer.
Brewer followed the usual implementation of spectral clustering
in which all molecules make a contribution to all clusters. Here,
we have implemented a nonoverlapping spectral clustering
method to enable comparison with Ward’s and k-means clus-
tering. This can be achieved by assigning molecules to the
cluster to which they make the largest contribution (based on
the corresponding eigenvector element). However, initial tests
showed that this frequently resulted in molecules being as-
signed to clusters to which, upon inspection, they did not
belong, if their eigenvalue contribution was very small. We
therefore introduced a postprocessing eigenvector threshold,
whereby a molecule whose largest contribution to any cluster
was less than the eigenvector threshold was not assigned to any
cluster.
Our Lanczos-based spectral clustering method is called

L_NOSC and is based on the Lanczos eigendecomposition
algorithm implemented in the COLT matrix package29 along
with a full reorthogonalization of the Lanczos vectors based on
the Gram−Schmidt method.24

Our SVD-based spectral clustering program uses the
SVBLIBC library, a C/C++ library, based on SVDPACKC.30

SVDLIBC is designed solely for application in large sparse
matrix problems and hence employs a single SVD algorithm,
las2, to carry out operations. las2 has been shown to be
consistently the fastest algorithm available for the identification
of singular values from large sparse matrices. We have imple-
mented both a nonoverlapping spectral clustering program,
SVD-NOSC and an overlapping method, SVD-OSC. The SVD
spectral clustering algorithms, together with an implementation
of k-means clustering, are included in a freely available clus-
tering software program, svdclus, which is available via the
Supporting Information.
Data. Brewer used one very small dataset, containing only

125 COX-2 inhibitors. Most of the subsequent reports of the
use of spectral clustering involve datasets containing 2000−
3000 compounds18,19 which is a typical size for a diverse set
of presumed active compounds, such as those obtained from
postfiltering in silico docking results. We therefore selected four
activity classes (5HT1A antagonists, Matrix Metalloprotease
inhibitors, Renin inhibitors, and Substance P antagonists), each

containing between 2000 and 4000 compounds, which were
extracted from the ChEMBL database32 using the Pipeline Pilot
software.33 Each dataset was cleaned by deleting any duplicate
molecules, removing all counterions from salts and neutralizing
the remaining cations/anions using Pipeline Pilot. A molecule
was classified as active if the corresponding IC50 ≤ 10 000 nM
or −log(IC50) ≥ 5, otherwise it was classed as inactive. The
homogeneity of each of these activity classes was characterized
using the mean pairwise similarity among the molecules
calculated using Unity fingerprints and the Tanimoto similarity
coefficient. Data sets that have a high mean pairwise similarity
(larger than 0.5) are described as homogeneous, whereas a
mean pairwise similarity of less than 0.5 indicates a dataset is
heterogeneous. Table 1 provides further information on the
datasets.

Molecular Representation. The five fingerprints exam-
ined were Unity, BCI, Daylight, ECFP4, and MDL public keys.
Brewer used Unity fingerprints, the remainder were chosen to
represent a good selection of those available, from very simple
(MDL public keys) to highly selective (ECFP4). Although
MDL public keys use only 166 bits they have been shown, in
some cases, to be more discriminating than structural key
fingerprints using many more features,34,35 while extended
connectivity fingerprints have shown the best performance in
recent comparative tests including virtual screening,36 scaffold-
hopping,37 and clustering.38 BCI fingerprints were generated
within the BCI software and are represented by a bitstring
of 1052 binary variables derived using a fragment dictionary.
Each bit represents a different structural fragment selected for
its ability to discriminate between molecules; the presence/
absence of a fragment within a molecule is denoted by 1/0,
respectively.39 The default settings were used within the
Daylight toolkit to calculate all sequences to a maximum path
length of 7, generating Daylight fingerprints of length 2048.40

Extended connectivity fingerprints, ECFPs, are generated using
a circular substructure approach to encoding moleculesthe
number that is appended to the name refers to the number of
bonds that the circular substructures span.41 The ECFP4
fingerprints were generated using the Pipeline Pilot software
and folded to give 1024-element fingerprints. MDL public keys
are small two-dimensional fingerprints based upon the use of a
structural key, with a one-to-one mapping between predefined
chemical features and bits set. These were generated within the
Pipeline Pilot software and are represented by a 166 binary
bitstring.42 The Unity fingerprint system uses a combination of
both a structural key and a hashed fingerprint system. Unity finger-
prints are represented by a bitstring of 992 binary variables and
were generated within the Sybyl software.43

Parameters Investigated. We consider the following:
homogeneity of the dataset; molecular representation;

Table 1. Datasets

activity class abbreviation
number of
molecules

percentage
of actives

mean
pairwise
similarity

matrix
metalloprotease
inhibitors

MMP1 3482 51 0.381

5HT1A
antagonists

5HT1A 2784 11 0.354

Renin inhibitors Renin 2166 81 0.520
substance P
antagonists

SubP 2760 54 0.411

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci500480b | J. Chem. Inf. Model. 2014, 54, 3302−33193306



the parameter γ in the Gaussian filtering function; a threshold
on the size of the eigenvector elements; and the size of the
dataset. A Gaussian filtering function, which depends on the
value of a single tunable parameter, γ, is used to minimize low
similarity scores and emphasize the spread of the higher scores.
Brewer used a value of 25 for γ showing that it was satisfactory
for the small set of COX-2 inhibitors, represented by Unity
fingerprints, which formed his test data. Clearly there may not
be a single optimum value for γ. It may depend upon the
dataset composition or size, or the molecular representation
(or other variables). Figure 3a shows the distribution of similarity

scores for the SubP dataset for each fingerprint type, and
Figure 3b shows the distribution of the scores when
transformed into affinity scores using a value of γ = 25. The
skewing of the data toward very low values is shown by the use
of the log scale on the vertical axis in Figure 3b. Using γ = 25, a
similarity score of 0.3 becomes an affinity score of 4.785 × 10−6.
Table 2 shows the percentage of similarity scores which
are below 0.3 for each of the fingerprint types for the each of
the four datasets. So, for example, in the SubP dataset, 95%
of the ECFP4 affinity scores are lower than 4.785 × 10−6.
Figure 3a and Table 2 show that the ECFP4 fingerprints are the
most skewed toward small values in the untransformed state.
This poses the question: “Do ECFP4 values need transforming
at all?” We initially attempted spectral clustering using the
raw ECFP4 scores and, as did Brewer when using Unity

fingerprints, we found that all molecules belonged to all
clusters with approximately equal contribution, and thus con-
cluded that a filtering function was still necessary for the ECFP4
measure.
Figure 4 shows the effect on the ECFP4 and MDL scores of

the SubP dataset for various values of γ and demonstrates that

the main effect of increasing γ is to make already low scores
lower, while having relatively little effect on the higher scores.
As well as the homogeneity of a dataset we expect dataset

size to be a significant factor in the ability of a spectral clus-
tering algorithm to cluster the data in a reasonable amount
of time, since full matrix diagonalization requires O(N3)
operations.

Measuring Clustering Success. The clustering of each
dataset was evaluated using the quality clustering index measure,
QCI. The QCI measure was developed by Varin et al.38,44 and
evaluates the performance of a clustering algorithm in terms of

Figure 3. Effect of the Gaussian filtering function. (a) Distribution of
similarity scores in the SubP dataset. (b) Distribution of the affinity
scores in the SubP dataset, when γ = 25.

Table 2. Percentage of Similarity Scores Less than 0.3

5HT1A MMP1 Renin SubP

BCI 50 54 19 41
Daylight 74 76 35 55
ECFP4 97 94 71 95
MDL 3 7 3 6
Unity 49 35 9 19

Figure 4. Effect of varying γ on the distribution of scores of the SubP
dataset. The x-axis represents binned affinity scores for different values
of γ in the Gaussian filtering function and represents binned similarity
scores in the unfiltered case, which is why there is no frequency for
unfiltered similarity scores below 0.05. (a) ECPF4. (b) MDL.
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its ability to separate active and inactive molecules within a
dataset, using the equation:

=
+ + +

×
p

p q r s
QCI 100

(8)

Where, p is the number of active molecules in active clusters.
q is the number of inactive molecules in active clusters. r is the
number of active molecules in inactive clusters. s is the number
of active singleton clusters.
An active cluster is defined as a cluster containing a greater

percentage of active molecules than the dataset as a whole.
The value of the QCI measure depends on both the dataset

and the quality of the clustering produced. Since it rates a
clustering by considering the position of active and inactive
molecules, it varies depending on the proportion of active
molecules. In the extreme case where all molecules are active
then the QCI score is inversely proportional to the number of
singleton clusters. We obtained estimates for the mean and
variance of the QCI score for the MMP1 dataset as follows:
a set of 2000 MMP1 compounds were drawn at random from
the dataset and 51% (the percentage of active compounds in the
dataset) of these were selected at random and labeled as active.
These compounds were clustered using NOSC and the QCI
score calculated. This was repeated 50 times (with new selec-
tions of 2000 compounds) and a mean QCI score of 48 with
variance of 5.5 was obtained. The same procedure was used for
the other three datasets giving: a mean QCI score of 55 with
variance 7.4 for the Renin dataset, which contains 80% actives;
a mean QCI score of 49 with variance 4.8 for the SubP dataset
which has 54% actives; and a mean QCI score of 22 of with
variance 1.1 for the 5HT1A dataset which has 11% active
compounds.

■ RESULTS AND DISCUSSION

Parameterization of FMD Spectral Clustering using
NOSC. Each of the four data sets was represented using each
descriptor and similarities were calculated using the Tanimoto
coefficient. In the Gaussian filtering function, γ was varied from
25 to 400 in increments of 25, while the eigenvector threshold
used for assigning molecules to clusters was set at values of 0.1,
0.001, ..., 10−6. As γ increases, more emphasis is placed on the
biggest similarity scores. In practice this means that the most
significant eigenvalues become larger, and the next eigenvalues
are relatively small. If these differences are too big then artificial
clusters are created. We are therefore looking for the smallest
value of γ for which a “reasonable” number of nonsingleton
clusters are produced.
Table 3 shows the variation in the number of clusters and

singletons for all four datasets, represented by ECFP4 finger-
prints, at all eigenvector thresholds for γ = 25 and γ = 75. We
see that, at all values of the eigenvector threshold, using γ = 75
gave many more clusters and a decrease in the number of
unclassified compounds, but at the expense of the creation of
more singleton clusters. Decreasing the eigenvector threshold
from 0.1 to 0.0001 clearly has the effect of allowing molecules
to be placed in clusters based on lower eigenvector con-
tributions, while lowering the threshold further has no effect
since all molecules have already been placed in clusters. The
only exception is for SubP where, for γ = 75, a very few mole-
cules remain unclassified. For these four datasets, represented
by ECFP4 fingerprints, γ = 25, 50, or 75 seems a reasonable
choice, depending on the number of clusters required. An
eigenvector threshold of 0.001 or 1.00 × 10−04 is sufficient
to allow most or all compounds to be clustered, for both
values of γ.

Table 3. Analysis of Cluster Types Produced Using ECFP4 Fingerprints

γ = 25 γ = 75

eig. thr. clustersa singletons unclassified clustersa singletons unclassified

5HT1A 0.1 343 30 892 724 120 356
0.01 353 20 65 731 113 22
0.001 353 20 3 731 113 3
1.00 × 10−04 353 20 0 731 113 2
1.00 × 10−05 353 20 0 731 113 1
1.00 × 10−06 353 20 0 731 113 1

MMP1 0.1 273 18 1365 802 168 544
0.01 279 12 157 825 145 43
0.001 279 12 2 827 143 2
1.00 × 10−04 279 12 0 827 143 0
1.00 × 10−05 279 12 0 827 143 0
1.00 × 10−06 279 12 0 827 143 0

Renin 0.1 81 3 1305 344 56 637
0.01 81 3 269 360 40 57
0.001 81 3 12 360 40 1
1.00 × 10−04 81 3 0 360 40 0
1.00 × 10−05 81 3 0 360 40 0
1.00 × 10−06 81 3 0 360 40 0

SubP 0.1 217 17 990 571 104 523
0.01 223 11 107 587 88 53
0.001 224 10 11 588 87 15
1.00 × 10−04 224 10 0 588 87 10
1.00 × 10−05 224 10 0 588 87 8
1.00 × 10−06 224 10 0 589 86 4

aClusters is the total number of clusters including singletons.
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The outcome of the parametrization experiments is given
in Table 4. The results show that the different molecular
representations require different sets of parameters. Generally,
NOSC was able to cluster the heterogeneous datasets effec-
tively using a low γ value for more specific fingerprints, such as
ECFP4 and Daylight (e.g., γ = 25 or 50), while BCI or Unity
required a higher value (e.g. γ = 75) and MDL Public keys a
very high value (e.g. γ = 100). The required value of γ reflects
the distribution of the similarity scores in Figure 3a. For
ECFP4, Figure 4a shows that a value of γ = 25 means that only
a few thousand affinity scores are above 0.6 and 97% of scores
are below 10−4. At the opposite extreme are the MDL public
keys. Figure 4b shows that, even when γ = 100, many more
of the scores are above 0.6 and only 11% of the scores are
below 10−4. The homogeneity of the dataset also plays a part,
with the homogeneous Renin data set generally needing a
higher γ value (e.g., γ = 75 for ECFP4) and also needing a lower
value for the eigenvector threshold. Values of 10−3 or 10−4 were
appropriate for the eigenvector threshold. However, these
parameter values are likely to be dataset dependent, and we
recommend that parametrization be carried out before using
spectral clustering methods with any new dataset.
Table 5 shows the number of clusters, number of singletons,

and QCI values when each of the data sets was clustered using

the parameter values taken from Table 4. It is clear that
using ECFP4 with the NOSC algorithm produced the best
clustering of each of the datasets, at least as measured using

the QCI value. ECFP4 always gives more clusters and, although
there are more singletons, the majority of the additional clusters
are nonsingletons.
Table 6 shows the time required for a FMD for each of

the datasets, for each fingerprint type when γ = 25. The
FMDs were run on an Intel Core2 with 3 GHz processor and
4 Gb memory running Linux. There is some variation
between the different descriptors, but the size of the data
set has a much greater effect on the time required for the
FMD, with the time varying from about 10 min for Renin,
to up to an hour for MMP1. The number of operations
required to decompose the Renin similarity matrices is
≈1.06 × 1010 while ≈4.22 × 1010 operations are needed for
the MMP1 similarity matrices. Note that the same value of
γ = 25 was used in all these runs, since altering γ has little
effect on the timing of FMD for these relatively small
matrices.
NOSC was then compared with more conventional clus-

tering methods as follows. The Ward’s and k-means clustering
algorithms were applied to each of the activity classes using
the relevant programs from Digital Chemistry.39 Both Ward’s
and k-means require the user to specify the number of clusters
required. Therefore, for this investigation each of the activity
classes was clustered twice, at two different choices of clustering
level. The OPTCLUS program from Digital Chemistry uses
the Kelley measure45 to identify the optimal level of hierarchy
for the clustering of a dataset. The Kelley measure was initially

Table 4. Parameter Values for the NOSC Algorithm

5HT1A MMP1 Renin SubP

γ threshold γ threshold γ threshold γ threshold

BCI 75 0.001 75 0.001 175 1 × 10−6 75 0.001
Daylight 75 0.001 50 0.001 175 1 × 10−6 50 0.001
ECFP4 50 0.001 50 0.001 75 1 × 10−4 50 0.001
MDL 100 0.001 100 0.001 200 1 × 10−6 100 0.001
Unity 75 0.001 75 0.001 175 1 × 10−6 75 0.001

Table 5. Results of Clustering Using NOSCa

dataset fingerprint type clusters singletons QCI

5HT1A BCI 391 67 34.1
Daylight 460 86 35.2
ECFP4 604 82 57.4
MDL 181 15 31.1
Unity 401 61 32.3

MMP1 BCI 308 51 71.0
Daylight 369 49 72.8
ECFP4 631 76 81.7
MDL 143 14 66.2
Unity 280 43 73.4

Renin BCI 228 24 60.7
Daylight 325 69 61.0
ECFP4 360 40 80.9
MDL 131 16 72.7
Unity 220 36 56.7

SubP BCI 262 30 59.0
Daylight 237 28 61.8
ECFP4 450 53 65.8
MDL 166 14 46.3
Unity 233 26 57.0

aNOSC was run using the parameters detailed in Table 4.

Table 6. Time Taken to Perform an FMD Using the Optimal
Parameters Given in Table 4a

dataset fingerprint mean time (s)

5HT1A BCI 1627
Daylight 1637
ECFP4 1524
MDL 1502
Unity 1592

MMP1 BCI 3299
Daylight 3384
ECFP4 3204
MDL 3305
Unity 3392

Renin BCI 687
Daylight 650
ECFP4 634
MDL 652
Unity 679

SubP BCI 1513
Daylight 1497
ECFP4 1530
MDL 1465
Unity 1593

aThe timings are the mean of five runs, with γ = 25.
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derived to select optimal clusters of protein NMR ensembles.
It uses the following equation:
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Where: N is the number of objects; dw̅l is the mean of distances
between points in the same cluster at level l; max(d̅w) is the
maximum distance value across all cluster levels; min(dw̅) is the
minimum distance value across all cluster levels; kl is a user
defined value which is used to penalize cluster levels which
contain a large number of singletons.
The Kelley measure requires the calculation of the Kelley

score for each clustering level and subsequent identification of
the level which has the maximum score. Initially the OPTCLUS
program was used to select an optimal number of clusters for
each combination of activity class and fingerprint type when
using the Ward’s algorithm. The k-means algorithm was then
configured to generate the same number of clusters. The
optimal hierarchy level selected by OPTCLUS depends on the
clustering algorithm being used and generally gave a different
number of clusters from that produced by the NOSC
algorithm. Thus, to ensure that the difference in the QCI
scores between clustering methods was not solely due to the
difference in the number of clusters produced by the respective
algorithms, both the Ward’s and k-means methods were also
configured to generate the same number of clusters as
produced by the NOSC algorithm. The scores for the NOSC
number of clusters are given in Table 7, and the QCI scores for
the OPTCLUS number of clusters are given in Table 8.

Considering first Table 7, all fingerprints and all clustering
methods gave QCI scores significantly better than random for

the MMP1 and SubP datasets. For the 5HT1A dataset, MDL
fingerprints gave QCI scores which were no better than
randomly assigning compounds to be active no matter which
clustering method was used but all other fingerprint/clustering
method combinations were significantly better than random.
For the Renin dataset, clustering using ECFP4 fingerprints gave
better than random QCI scores for all methods and using
NOSC with MDL fingerprints was also better than random but
all other fingerprint/clustering method combinations gave QCI
values within random variation of the estimated mean of 55. In
Table 8 where the OPTCLUS number of clusters is used for
Ward’s and k-means, the performance of these two methods is
in some cases better than in Table 7. So for the 5HT1A dataset,
the MDL fingerprints now give significant QCI scores while for
the Renin dataset only the BCI fingerprints now give QCI
scores no better than random.
Table 7 shows that when the NOSC algorithm “chooses” the

number of clusters, the spectral clustering NOSC method
consistently gave the highest QCI score of the three methods.
ECFP4 gave the best results of all five fingerprints and in some
cases was much better than all other fingerprints. For example,
in the case of the 5HT1A dataset, the ECFP4 QCI score
was 57 and the next best score was 35. When the OPTCLUS
number of clusters was used there is a single instance, for
MMP1, where both Ward’s and k-means score slightly higher
than NOSC, but in general the NOSC method is at least as
good as the other two methods and is often significantly better.
ECFP4 again gave the best QCI values for each dataset, for
both Ward’s and k-means clustering, and we therefore only
report results using ECPF4 in the remainder of the paper.

Lanczos-Based Spectral Clustering. The main limitation
of the NOSC algorithm is that it does not scale well to larger
datasets, being of O(N3) in the number of compounds, N.
In order to move to a more efficient algorithm, such as the
Lanczos, it is necessary to use a sparse input matrix. Sparsity is
defined as the percentage of zero entries. There were no (off-
diagonal) zero entries in the affinity matrices thus the initial

Table 7. Results of Clustering Using NOSC, Ward’s, and
k-Meansa

NOSC Ward’s k-means

dataset fingerprint type clusters QCI QCI QCI

5HT1A BCI 391 34.1 33.3 34.3
Daylight 460 35.2 31.0 31.9
ECFP4 604 57.4 35.6 34.6
MDL 181 31.1 26.1 22.7
Unity 401 32.3 32.2 30.8

MMP1 BCI 308 71.0 69.9 73.3
Daylight 369 72.8 70.2 74.5
ECFP4 631 81.7 76.8 80.6
MDL 143 66.2 73.3 70.6
Unity 280 73.4 76.9 75.4

Renin BCI 228 60.7 60.4 60.0
Daylight 325 61.0 60.8 61.6
ECFP4 360 80.9 69.7 66.8
MDL 131 72.7 60.3 62.7
Unity 220 56.7 63.0 62.3

SubP BCI 262 59.0 63.7 62.4
Daylight 237 61.8 61.7 61.3
ECFP4 450 65.8 65.6 65.4
MDL 166 46.3 58.9 55.6
Unity 233 57.0 60.0 60.0

aNOSC was run using the parameters detailed in Table 4, giving the
number of clusters in the clusters column. Ward’s and k-means were
run to give the same number of clusters. Values in bold indicate that
NOSC noticeably outperformed Ward’s and k-means.

Table 8. Results of Clustering to Generate the Number of
Clusters Determined Using the Kelley Measure

OPTCLUS Ward’s k-means

dataset fingerprint type clusters QCI QCI

5HT1A BCI 359 29.7 30.6
Daylight 375 30.9 27.4
ECFP4 396 33.5 31.8
MDL 361 31.1 29.5
Unity 396 31.7 29.1

MMP1 BCI 329 74.5 72.8
Daylight 359 74.2 72.1
ECFP4 413 82.7 81.7
MDL 362 78.5 77.5
Unity 362 79.3 77.3

Renin BCI 194 59.0 57.5
Daylight 224 63.9 59.6
ECFP4 255 64.8 65.7
MDL 208 64.6 63.0
Unity 237 64.8 64.0

SubP BCI 278 64.4 62.9
Daylight 279 62.5 61.3
ECFP4 323 65.5 63.7
MDL 312 61.8 59.4
Unity 269 62.0 60.6
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sparsity was 0%, although at high values of γ many values are
extremely small. We therefore applied an af f inity threshold, t, to
each affinity matrix, setting affinity values less than t to 0.
The affinity threshold required depends on the value of γ. For
γ = 50 or greater, preliminary experiments showed that, when
represented by ECFP4 fingerprints, an affinity threshold of
1.0 × 10−6 removed sufficient entries that the matrices were at
least 95% sparse for the more heterogeneous 5HT1A, MMP1,
and SubP datasets. For the Renin dataset, a threshold of 0.001
was required to make the affinity matrix 95% sparse. When
γ = 25, a higher threshold of 1.0 × 10−4 was required for 95%
sparsity, except for the Renin dataset which required a thresh-
old of 0.01. Thus, a threshold of 0.001 ensured that all matrices
were at least 95% sparse for γ ≥ 50. When the NOSC algorithm
was rerun with the affinity threshold set at 0.001, using the
optimal parameter settings of Table 4, very similar QCI scores
were obtained, demonstrating that the affinity threshold does
not have a detrimental effect on the NOSC algorithm.
When using the Lanczos algorithm (L-NOSC) for clustering

purposes, it is necessary to specify the number of clusters
required. This is a difficult problem in clustering in general, but
with the Lanczos algorithm there is an added complication.
As previously mentioned, eigenpairs that are calculated by
L-NOSC can include both positive and negative eigenvalues.
However, clusters are only generated from eigenvectors with
positive eigenvalues.17 Therefore, the relationship between the
number of eigenvalues found, k, and the number of positive
eigenvalues, p, was investigated. This relationship is not trivial,
and the ratio of positive to negative eigenvalues varies based on
the characteristics of the dataset being clustered.
Affinity matrices for each of the datasets were generated,

using values of the Gaussian filtering parameter γ = 25, 50, 75,
and 100. These affinity matrices were then made sparse using
different affinity thresholds, and the L-NOSC algorithm was
applied for different values of k and the percentage of positive
eigenvalues recorded. Results are given in Table 9. In most
cases the percentage of positive eigenvalues increases with
the number of eigenvalues sought and also increases as γ is
increased. Thus, it was decided that if p clusters, corresponding
to p positive eigenvalues, were required, then k should be set at
120% of p. This ensures that approximately p clusters are found.
Another important consideration is how to decide on an

appropriate value of p. Unfortunately there is no hard and fast
rule for this and instead a balance must be struck between
finding enough eigenpairs to give a good separation of the data
and avoiding the identification of too many eigenpairs due to
the additional computational cost. Factors to consider are the
magnitudes of the eigenvalues generated and also the char-
acteristics of the clusters that are generated.
In the L-NOSC algorithm, the eigenvalues are generally

found in decreasing order. This is a desirable feature, as the
eigenpairs that contain the “most” information will be found
first, as in principal component analysis where the first few
principal components contain the greatest share of the infor-
mation. Figure 5 is a plot of the positive eigenvalues obtained
for the SubP dataset, with γ = 50, which shows that the slope
of the eigenvalue distribution decreases to a plateau where
the eigenvalues are close to 1, before the eigenvalues begin to
decrease again at about the 1500th eigenvalue.
The second factor to consider is the nature of the clusters

generated. Four different types of clusters are formed during
spectral clustering:

• A positive cluster is an eigencluster that contains at least
two compounds.

• An empty cluster is formed when the requirements are
met to generate an eigencluster but no compounds are
assigned to it based upon their eigenvector score.

• A true singleton is a singleton cluster that is naturally
formed, i.e., formed as a result of one compound having a
chemical scaffold significantly different to all others
which produces an eigenvector dominated by a single
molecule.

• A forced singleton/unclassified molecule is formed when
a molecule does not make a contribution large enough
to be assigned to an eigencluster and, as a result, is forced
into a cluster on its own.

Figure 6 shows the distribution of the different types of
clusters formed for the SubP data set as the number of positive
eigenvalues increases. As the number of eigenvalues reaches
850, there is an obvious change in the gradient of the curve
representing the number of positive clusters. This represents
the point at which finding further eigenvalues becomes
undesirable as the quality of the clustering begins to decrease
rapidly, which is shown by the lack of new clusters containing

Table 9. Percentage of Positive Eigenvalues for Different
Values of γ and Number of Eigenvalues, ka

MMP1 Renin SubP 5HT1A

γ k %p %p %p %p

25 100 83 89 84 81
200 82.5 86 81 81.5
300 80.7 80.7 79.3 83
400 84 78.5 80.7 87

50 100 85 78 81 87
200 89.5 83.5 83.5 91.5
300 93 88.7 88.3 94.3
400 93.5 91.5 91.2 95

75 100 90 84 88 91
200 94 91 92.5 97.5
300 95.7 95 95 96
400 96.5 95.2 94.7 96.7

100 100 95 91 91 97
200 98 94 95.5 97.5
300 97.6 96.3 95 97
400 98.2 96.5 96.7 97.2

aThe affinity threshold is 0.001.

Figure 5. Eigenvalues in decreasing order. The eigenvalues were
obtained from the SubP data set using γ = 50. The dashed red line
represents eigenvalue = 1.0.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci500480b | J. Chem. Inf. Model. 2014, 54, 3302−33193311



more than a single molecule, and the rapid increase in the
number of singletons formed. The eigenvalues associated
with clusters beyond this point have magnitudes of 1.01 or less.
This correlates with the leveling off of the slope in Figure 5.
This trend was also found in the other datasets, with the
number of singleton clusters increasing rapidly when more than
750 eigenvalues are found for Renin, and 1000 eigenvalues for
both MMP1 and 5HT1A, corresponding to eigenvalues of 1.0,
1.02, and 1.0, respectively. This allows us to conclude that
clusters related to eigenvalues ≤1 can be discounted for these
datasets. However, it is not clear that all the clusters associated
with positive eigenvalues greater than 1 are meaningful clusters.
We note that in the reported uses of spectral clustering,
typically only a few hundred clusters are required,18,19 in order
that a representative set of compounds may be selected.
As noted in the Methods section, the basic Lanczos algo-

rithm is a very good algorithm for finding a few eigenvalues of a
large sparse matrix.46 However, the need for reorthogonaliz-
ation when more eigenpairs are required means that the time
(and space) requirements of the algorithm can increase signi-
ficantly. To investigate the time requirements of the algorithm,
affinity matrices were generated for each of the four datasets,
represented by each of the descriptors, using a value of γ = 25.
These matrices were then made sparse through the application
of an affinity threshold of 0.001. The L-NOSC algorithm was
applied to each of these sparse affinity matrices for different
values of k, and the time required to identify the top k first-to-
converge eigenpairs recorded. These times were then compared
against the time taken to carry out a FMD of the activity
classes. The aim was to identify the point at which the Lanczos
based approach becomes more time-consuming than using the
full eigenvalue decomposition.
Table 10 shows that, for the ECFP4 fingerprints, the Lanczos

algorithm is faster than a FMD for only up to between 300 and
400 eigenvalues, which equates to about 300 clusters (since to
find 300 clusters requires approximately 350 eigenvalues).
Thus, for datasets of up to 4000 compounds (the size of the
MMP1 dataset) where more than 300 clusters are required,
then a FMD is a better option than the use of the approximate
Lanczos algorithm. Interestingly, the time required to calculate k

eigenpairs for ECFP4 fingerprints was found to be considerably
longer than for any other fingerprint type. This result was
unexpected as in general ECFP4 fingerprints produce the most
sparsely populated input matrices, and therefore, we would
expect their decomposition to take significantly less time than
other fingerprint types which produce more densely populated
input matrices. The reason seems to be the problems encoun-
tered by the Lanczos algorithm when it is applied to finite
precision mathematical problems. These issues mean that the
generation of eigenvectors from ECFP4 similarity matrices,
which produce eigenvectors containing a large number of
extremely small elements, leads to the need for more operations
per iteration to be carried out in order to elucidate and opti-
mize the calculated eigenvectors, significantly increasing the
execution time of the algorithm.
Although FMD appears better suited than the Lanczos

algorithm to finding more than about 300 clusters from sets of
2000−3000 molecules, FMD is unsuitable for larger datasets.
Hence, experiments were carried out aimed at identifying, first,
if it was possible to cluster datasets up to 10 000 molecules
using L-NOSC and, second, the times required to calculate the
top k eigenpairs of each dataset. In order to generate data for
these experiments the four datasets (5HT1A, MMP1, Renin,
and SubP which contain 2784, 3482, 2166, and 2760 molecules,
respectively) were agglomerated, and random selections of
between 1000−10 000 molecules identified. Up to 600 eigen-
pairs, giving up to ∼500 clusters, were identified using the
Lanczos algorithm.
The timings for the Lanczos algorithm are given in Table 11.

For comparison, 5000 molecules took about 9150 seconds

using FMD and 10 000 compounds took about 46 500 seconds
(∼13 hours). Table 11 shows that if 500 or fewer clusters are
required then the Lanczos algorithm is faster for datasets
of 5000 or more molecules. However, it is still not fast enough
for larger scale clustering since it took about 5 hours to cluster

Figure 6. Distribution of different cluster types for the SubP activity
class.

Table 10. Comparison of Execution Times (Seconds) for the
Lanczos and FMD Algorithms

time taken for FMD largest k value for which L-NOSC is faster

5HT1A 1616.19 350
MMP1 3584.63 400
Renin 758.82 300
SubP 1645.95 350

Table 11. Increase in Time with Dataset Sizea

k

dataset size 100 200 300 400 500 600

1000 4 16 49 159 159 509
2000 11 70 135 579 1007 1742
3000 20 93 588 905 1743 3476
4000 35 207 811 1981 2964 4791
5000 59 335 853 3631 7101 8746
6000 73 261 1213 3275 6997 15181
7000 92 374 1305 4153 8448 15776
8000 124 430 1547 5532 12614 18518
9000 168 521 1875 6494 15425 23289
10000 221 548 2051 7013 18909 27695

aTime (seconds) required to identify the top k eigenpairs using
L-NOSC. Molecules represented by ECFP4 fingerprints using a
γ value of 25.
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10 000 molecules into 500 clusters. Brewer recommended the
Lanczos algorithm, based on the work of Shi and Malik, but the
circumstances in which they use Lanczos are very different47 to
the molecular clustering being considered here.
Singular Value Decomposition. While the performance

of the Lanczos algorithm is acceptable for clustering up to
10 000 molecules, it is disappointing to conclude that it is not
really suitable for replacement of an FMD procedure since it
also scales badly with dataset size. Additionally, the Lanczos
algorithm is slower when more clusters are required, which is
not a problem for FMD. However, SVD offers an alternative
approximate eigendecomposition.
We first wanted to check that SVD-NOSC was a direct

replacement for the NOSC algorithm. We therefore used SVD-
NOSC to cluster the 125-compound COX-2 dataset used by
Brewer. As expected, this gave identical results, in terms both
of cluster membership and of eigenvector contribution to each
cluster, to those obtained by Brewer. In order to assess the
scalability of SVD-NOSC to large datasets we used subsets of
compounds extracted from the MDL Drug Data Report
database (MDDR).48 The database contained 102 513 bio-
logically relevant molecules and their structural analogues.
Random subsets of N, in 10 000 increments, molecules were
extracted from the MDDR database using Pipeline Pilot. The
compounds were represented using RDKit circular fingerprints31

(an open source implementation of the ECFP fingerprint) and
similarity was calculated using the Tanimoto coefficient. Each
subset was clustered at two different values of k, 100 and 1000,
using SVD-NOSC. The time required to cluster each dataset
when γ = 100 and both the similarity and eigenvector thresholds
were set to 1 × 10−6 was recorded. Figure 7 shows the increase

in time with subset size. Above about 60 000 compounds the
increase in time was approximately linear and there is not much
increase in time in going from k = 100 to 1000. It took about
12 hours to cluster the full set of 100 000 compounds,
demonstrating that SVD-based spectral clustering is indeed
applicable to larger datasets.
The value of γ = 100 was chosen for this experiment since

large datasets were under consideration and a consistent value
for γ was needed for a fair time comparison. However, the
earlier discussion showed the need for different values of γ
depending on the dataset size and this is borne out by a closer
analysis of the clusters produced during the timing experiments.
Examination of the 100 clusters produced for the 5000
molecule dataset showed that the molecules were placed into

a set of clusters mainly comprised of singletons. This oc-
curred since the relatively high value for γ led to the formation
of a matrix which was too sparse, and therefore did not contain
sufficient information, leaving a minimal number of eigenvector
contributions above the eigenvector threshold which is used to
place molecules into clusters. By reducing the value of γ to 10,
the clusters produced using SVD-NOSC significantly improved
with compounds based on similar scaffolds being clustered
together. The superior clustering obtained by decreasing the
value of γ from 100 to 10 comes with a time penalty, with the
time taken increasing from 58 seconds when γ = 100 to 328
seconds when γ = 10 for 5000 compounds and 100 clusters.
Examination of the clusters produced for datasets of increasing
size leads us to conclude that for sets of 10 000 to 50 000
molecules a value of γ = 100 is appropriate while for 50 000 or
more molecules a value of γ = 200 is more appropriate.

Asymmetric Clustering using SVD. A potential advan-
tage of using an SVD for clustering is that two sets of eigen-
vectors are produced, linked by a common set of eigenvalues.
This allows the possibility of basing clustering on an asym-
metric similarity measure, which is generally not possible with
more conventional clustering algorithms. The Tversky Index is
an asymmetric similarity measure calculated using the formula

α β
=

− + − +
S

c
a c b c c( ) ( )AB

where a is the number of bits set in molecule A and not
molecule B, b is the number of bits set in molecule B and not
molecule A, and c is the number of bits in common. The two
weighting functions, α and β, determine the relationship
between the three variables a, b, and c. When both α and β are
set to 0.5, the similarity scores are equal to those obtained when
using the Dice coefficient, and when both are set to 1, the
similarity scores are equal to those of the Tanimoto
coefficient.49 Setting α and β to be unequal produces similarity
scores where the similarity of molecule A to B does not equal
that of B to A. If α is 1.0 and β is 0.0, a high value of SAB means
that A is a superstructure of B. Conversely, if α is 0.0 and β is
1.0, a high value of SAB means that A is a substructure of B. The
Tanimoto score is dependent on the number of bits set which
renders it a poor measure of similarity when used with small
molecules, such as fragments,50 and it has been suggested that
the substructure/superstructure possibilities of the Tversky
index might be more appropriate for calculating the similarities
of chemical fragments. For example, the Tversky index can be
used to select larger compounds that contain substructures
similar to a fragment of interest. On the other hand, if one
wishes to find smaller fragments that might show similar activ-
ity to a large molecule hit, the Tversky index can be used in
“superstructure mode”. The Tversky index with α > 0.5 has also
been reported to be a better measure of similarity than the
Tanimoto coefficient in a recent large scale study.51

The availability of SVD-based clustering therefore led us to
investigate the use of the Tversky index in clustering a set of
fragments such as those used in fragment-based drug discovery
(FBDD).52 A fragment in FBDD is usually considered to be a
molecule containing 12 or fewer non-hydrogen atoms. We
wanted to see if the SVD-based methods could produce mean-
ingful clusters using the Tversky index and chose to investigate
this with a set of chemical fragments which we correctly
anticipated would be poorly clustered by the Tanimoto index.
The hope was that one of the U or V clusters would contain
sets of molecules linked by superstructure, and the other linked

Figure 7. Clustering datasets of increasing size extracted from MDDR
using RDKit circular fingerprints and SVD-NOSC. γ = 100.
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by substructure. The two sets of eigenvectors produced by SVD
are commonly denoted U and V. If a symmetric similarity
measure, such as the Tanimoto coefficient, is used then U = V
and a single set of clusters is found. If, however, the affinity
matrix is asymmetric U ≠ V, and this gives two distinct sets of
clusters which we term the U and V clusters. As far as we are
aware, this use of the U and V clusters represents a novel
approach to clustering.
A set of 100 chemical fragments, here called the DC100

dataset, was extracted from FBDD screens carried out at
AstraZeneca. The DC100 dataset is shown in the Supporting
Information. This fragment set was manually clustered into 14
clusters. The fragments were represented by RDKit circular
fingerprints31 and clustered into 14 clusters using the SVD-
NOSC algorithm using different values of α and β in the
Tversky similarity coefficient. The value of γ =10 was used in
the Gaussian filtering function since the dataset was very small,
and both the affinity and eigenvector thresholds were set to
0.0001. The Jaccard coefficient, was used to compare the
clusters produced with the ideal set, where for cluster methods
C1 and C2:

=
+ +

C C
a

a b c
Jaccard( )1 2

a is the number of pairs of molecules that are clustered together
in both C1 and C2; b is the number of pairs of molecules that
are clustered together in C1 but not in C2; and c is the number
of pairs of molecules that are clustered together in C2 but
not in C1. The Jaccard scores are given in Table 12.

Table 12 shows that all methods give a reasonable approxi-
mation of the manual clustering since all Jaccard scores are at
least 0.6. However, use of the Tanimoto coefficient, with SVD-
NOSC (α = β = 1), gives the worst agreement with the manual
clustering. Using SVD-NOSC with α = 0.9, β = 0.1, and with
α = β = 0.5 (the Dice coefficient) gave the highest Jaccard
scores. In fact use of the SVD-NOSC algorithm with the
Tanimoto coefficient places most molecules (64 of 100) into a
single large cluster, which is clearly undesirable and also
produces 2 singleton clusters. In contrast, use of other Tversky
combinations produce sets of clusters varying in size from
5−13, with no singletons. Visual inspection of the “manual”
clusters shows that they are indeed clustered such that most
members of each cluster show a large substructure in com-
mon. In cluster 1, for example, all the molecules are phenyl
sulfonamides and most also have an aniline group. Cluster 3
contains quinolines and isoquinolines, cluster 6 is benzoic acids,
etc. This gives initial reassurance that the asymmetric clustering
is behaving as hoped. The similarly improved behavior of the

Dice coefficient is interesting. It might also be viewed as favor-
ing compounds with a common substructure as it gives twice as
much weight to features in common between the two com-
pounds than those in one and not the other.
A larger set of 741 fragments screened against a single bio-

logical target at AstraZeneca (referred to as Target X for
anonymity) was then selected. 215 of them had measured
activity less than 300 in a scaled, arbitrary unit of activity related
to percent inhibitionthese fragments were deemed active,
and the remainder, inactive. The Target X dataset, represented
by RDKit circular fingerprints, was clustered using the SVD-
NOSC algorithm (similarities calculated using the Tanimoto
coefficient) to obtain sets of clusters. In order to determine
how many clusters should be specified the eigenvalues were
plotted as shown in Figure 8. This plot was obtained with

γ = 15 and the similarity threshold set to 0.001. We observe
the same leveling off of the curve as in Figure 5, but this
time the leveling corresponds to much smaller eigenvalues. The
precise point at which the difference between successive
eigenvalues becomes insignificant is hard to assess but is in
the region of the 250th eigenvalue. Similar plots were obtained
for other values of γ and the similarity threshold, although
the leveling off point varied between the 200th and 400th
eigenvalue. If 200 clusters are selected then 431 molecules are
placed into 178 clusters, of which 61 are singletons.
In Table 13 we give the results of specifying 200 non-

overlapping clusters using γ = 15 and several different values of
both α and β in the Tversky index. The clusters calculated for
sets of Tversky parameters were analyzed using the QCI mea-
sure. There are some obvious conclusions. First, when using
asymmetric values for Tversky, all the molecules are clustered,
whereas using the symmetric Tanimoto and Dice coefficients,
significant numbers of molecules were not placed in clusters.
Second, the lower values of the QCI scores for the asymmetric
clustering probably reflect the fact that more molecules
are clustered, since omitting molecules which are hard to
place certainly improves a clustering method’s ability to cluster
correctly. Third, when using asymmetric Tversky similarities,
there are fewer singletons than obtained using the symmetric
measures. This raises the possibility of the asymmetric mea-
sures producing a “better” clustering. However, inspection of
the clusters produced did not always bear out this conclusion.
An example is given in Figure 9a for α = 0.9 and β = 0.1. This
shows the U clusters associated with eigenvalues 7−9. U-cluster
8 is a mixture of mostly phthalazine and indazole derivatives.
The V clusters associated with the same eigenvalues are also

Table 12. Comparison between the Ideal and SVD-NOSC
Clustering of the DC100 Fragment Seta

clustering 2 Jaccard

clustering 1 α β U V

ideal 1 1 0.604 0.604
0.9 0.1 0.655 0.627
0.8 0.2 0.627 0.627
0.7 0.3 0.627 0.627
0.6 0.4 0.627 0.612
0.5 0.5 0.645 0.645

aα and β are the values used in the Tversky measure for the SVD-
NOSC clustering. Where α = β, the U and V clusters are the same.

Figure 8. Eigenvalues of the Target X dataset.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci500480b | J. Chem. Inf. Model. 2014, 54, 3302−33193314



shown. V clusters 7 and 8 look coherent, while the fragments in
V cluster 9 have a mixture of 3 main chemotypes; phthalazine-
diones, indazolones and benzimidazolones. However, it does
seem that the molecules in each cluster in both sets contain a
large similar substructure.
Overlapping Clustering. Our discussion so far has con-

centrated on the nonoverlapping NOSC. The main reason for

this is that it is more straightforward to evaluate the clusters
produced in a quantitative manner. However, one of the main
advantages of spectral clustering is that it naturally provides a
method for assigning molecules to more than one cluster. We
refer to our overlapping spectral clustering using singular value
decomposition as SVD-OSC. The Target X fragment set was
clustered into overlapping clusters using SVD-OSC with values
of γ = 15, affinity threshold = 0.001, and cluster threshold =
0.01 as before and using the Tanimoto coefficient. The first
thing to report is that, even when overlapping clusters are
allowed, not all molecules can be placed into sensible clusters.
Specifying more clusters results in more molecules being
“clustered”, but clusters which are essentially combinations of
existing clusters are formed with the addition of only a few
more molecules. Thus, specifying 100 clusters resulted in 332
molecules being clustered whereas specifying 200 clusters
resulted in 431 molecules being clustered, i.e. no more addi-
tional molecules than additional clusters. The best sets of
clusters, determined by visual inspection, resulted in only half
or fewer of the molecules being placed into clusters. In order to
cluster most (90%) of the molecules 500 clusters were required.
This resulted in a set of very large clusters, with the mean
number of molecules per cluster being 53 and a molecule
belonging, on average, to 40 clusters. However, if all molecules
are clustered, the chemist can browse the clusters intelligently
since the eigenvalues and eigenvector contributions give a

Table 13. Clustering of Target X Fragment Set into 200
Clusters Using the Tversky Indexa

α β QCI n clus n sing largest in clusters

1 1 53.4 178 61 13 431
U 0.9 0.1 44.3 188 16 14 741
V 0.9 0.1 41.7 192 22 12 740
U 0.8 0.2 44.2 192 21 11 741
V 0.8 0.2 43.5 188 18 11 740
U 0.7 0.3 43.4 192 19 11 741
V 0.7 0.3 42.5 188 18 11 740
U 0.6 0.4 41.8 184 12 10 741
V 0.6 0.4 43.5 190 22 13 740

0.5 0.5 45.7 175 46 12 523
aγ = 15 and α and β are the values used in the Tversky measure for the
SVD-NOSC clustering. “n clus” is the number of clusters; “n sing” is
the number of singletons; “largest” is the size of the largest cluster; and
“in clusters” is the number of compounds clustered. Where α = β, the
U and V clusters are the same.

Figure 9. Clusters associated with eigenvalues 7−9. (a) U clusters. (b) V clusters.
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natural order both for cluster exploration and for molecule
consideration within a cluster. For the Target X fragment set
interpretable results were obtained when 100 clusters were
selected. This resulted in only 43% of molecules being clustered
with an average of 22 molecules per cluster and each molecule
contributing to an average of 7 clusters.
Comparing overlapping and nonoverlapping clustering, recall

that our implementation of NOSC involves placing molecules
in the cluster to which they make the largest eigenvector
contribution. However, the mode of calculation involves a

normalization of this quantity, meaning that molecules make
apparently larger contributions to smaller clusters. An example
of this can be seen in Figure 10. These five molecules from the
Target X set are placed into two clusters as shown, when NOSC
is used, but when overlapping spectral clustering (OSC) is used
(with the same values for all parameters), they are all placed into
a single cluster (with no other molecules). This is an advantage
of the OSC method. Of course the disadvantage is that the
molecules are also placed into other clusters, with always some
subset or superset of these compounds being found.

Figure 10. Comparison of overlapping and nonoverlapping clustering. Each row represents a cluster produced by the NOSC method, whereas the
overlapping method placed all molecules in the same cluster. Cont is the eigenvector contribution to the cluster.

Figure 11. Heat map representation of clusters. The map on the left shows overlapping clusters, on the right are nonoverlapping clusters. Green cells
represent active fragments, and red, inactive.
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In fact, overlapping clustering produced better clustering,
as measured by QCI, than nonoverlapping. For example, when
100 clusters were selected, 332 molecules were placed into
clusters using both methods, giving QCI scores of 56 for OSC
and 47 for NOSC. The clusters were represented as heat maps
and are shown in Figure 11. Rows represent clusters, with cells
representing individual molecules. Green cells are active and
red inactive. The cells are ordered left to right by decreasing
normalized eigenvector contribution to the cluster, so from a
clustering perspective, it is preferable to see green cells at the
left of a mixed row.
As was noted by Brewer, another advantage of overlapping

clusters is the potential for scaffold-hopping. As can be seen
from the heat map, there are many clusters which are predo-
minantly active or inactive. Moreover, looking along the rows,
the actives and inactives are also grouped together by contri-
bution within a cluster, so that even a cluster composed of both
actives and inactives has, in many cases, the actives grouped
together within the cluster. The large size of many of the
clusters means that there is a potential for containing different
scaffolds within an active (or inactive) cluster. Part of one such
cluster is shown in Figure 12 which shows the first eight
fragments (of 32 in the cluster), all but one of which are active.
The only inactive is fragment 7.

■ CONCLUSIONS

We have presented a nonoverlapping version, NOSC, of
the spectral clustering method proposed by Brewer16 and
performed a systematic investigation into the appropriate
parameter values required for the optimum performance of the
method. We conclude that, of the molecular representations
under consideration, ECFP gave superior performance. We
found optimal sets of parameters for the compound classes
we considered but concluded that some parameter values
were really dataset-dependent and therefore recommend that
parametrization experiments are carried out before using spec-
tral clustering. We compared the performance of NOSC with
that of both Ward’s and k-means clustering using the Quality
Clustering Index and demonstrated its superiority over these
methods on our datasets. Given the computational cost of the
full matrix diagonalization used in NOSC, we then investigated
the replacement of this step with an approximate diagonaliz-
ation using the Lanczos algorithm, as recommended by Brewer

and others. We showed that, although this increased the
size of the dataset which could be clustered by a factor of 2,
it was not suitable for use on large datasets of more than
10 000 compounds when more than a few clusters were
required. We therefore moved to the use of a SVD-based
spectral clustering approach and demonstrated that this was
able to partition datasets of up to 100 000 molecules in
moderate time.
We compared the performance of spectral clustering with

Ward’s and k-means since these are the methods most com-
monly used in the chemoinformatics community. However,
Ward’s and k-means both return clusterings that are typically
hyper-spherical or elliptical in nature with only modest chaining
at best. Spectral clustering, however, has been shown to be very
good at finding convoluted and chained clusters10 which may
account for the good performance of the NOSC algorithm in
our tests. In the light of this performance it would be of interest
to compare the use of SVD clustering for molecular data both
with other spectral clustering algorithms such as that of Ng
et al.10 and with other algorithms known to perform well on
nonconvex data, such as DBSCAN.53 The SVD-OSC scaled
reasonably well with the number of molecules, However, there
is always scope for improvement. There are now GPU imple-
mentations of SVD54 which would enable much larger datasets
to be clustered.
One of the main advantages of spectral clustering over more

conventional crisp clustering methods is that is provides a way
of assigning molecules to more than one cluster. Therefore, we
also implemented overlapping spectral clustering using our
SVD method, SVD-OSC, and showed some of its advantages
and disadvantages vis-a-̀vis the nonoverlapping version. We
have also investigated the ability of spectral clustering to
cluster based on an asymmetric similarity index. There was
some evidence that for small molecules (“molecular fragments”)
this produced a helpful way of visualizing the contents of a
dataset.
As a general rule, it is difficult to form a quantitative assess-

ment of the superiority of one clustering method over another.
We certainly cannot claim that spectral clustering, in either its
overlapping or nonoverlapping form, is better than other,
less expensive, clustering methods. However, we believe that it
does produce a different insight into the contents of a set of
compounds that might be useful in some cases.

Figure 12. Cluster showing potential for scaffold hopping. Molecules 1−6 and 8 are active; molecule 7 is inactive.
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DC100 fragment set. This material is available free of charge via
the Internet at http://pubs.acs.org. Both the SVD spectral
clustering algorithm and the k-means algorithm have been
included in a free clustering software program, svdclus. The
software can also use activity data and evaluate the clusters
produced using both the QCI measure and the Silhouette
score.55 The code can be downloaded from https://github.
com/DavidACosgrove/SVDClus.git.
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