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THE TOPOLOGICAL PIGEONHOLE PRINCIPLE FOR ORDINALS

JACOB HILTON

Abstract. Given a cardinal κ and a sequence (αi )i∈κ of ordinals, we determine the least ordinal �
(when one exists) such that the topological partition relation

� → (topαi )
1
i∈κ

holds, including an independence result for one class of cases. Here the prefix “top” means that the
homogeneous set must be of the correct homeomorphism class rather than the correct order type. The
answer is linked to the nontopological pigeonhole principle of Milner and Rado.

§1. Introduction. Dirichlet’s pigeonhole principle describes how if a large enough
number of items are put into few enough containers, then there is some container
that contains not too small a number of items. Milner and Rado [3] generalised this
principle to ordinals by answering the following question. Given a cardinal κ and
a sequence (αi)i∈κ of ordinals, what is the least ordinal � such that whenever � is
partitioned into κ pieces, there is some i ∈ κ such that the order type of the ith
piece is at least αi? In the partition calculus of Erdős and Rado, this is written as
� → (αi)1i∈κ.
With the development of structural Ramsey theory, questions of this character
have become much more diverse. In particular, people have asked for various topo-
logical spaces X and Y whether it is the case that whenever Y is partitioned into
κ pieces, one of the pieces has a subspace homeomorphic to X . This is written as
Y → (topX )1κ. Ordinals have been studied in this context by endowing them with
the order topology, but the focus has been on a fairly small number of key cases.
In this article we answer the topological question for ordinals in full generality.
Given a cardinalκ and a sequence (αi)i∈κ of ordinals, we determine the least ordinal
� (when one exists) such that whenever � is partitioned into κ pieces, there is some
i ∈ κ such that the ith piece has a subset homeomorphic to αi under the subspace
topology. We write this as � → (topαi)1i∈κ .
Many of the cases of this question that have already been answered are given
in a summary article by Weiss [6]. These include the following; here we write
� → (topα)1κ for � → (topαi)1i∈κ when αi = α for all i ∈ κ.
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(1) If α ∈ �1 \{0, 1}, then α → (topα)12 if and only if α = ��
�

for some � ∈ �1.
(2) �1 → (topα)1ℵ0 for all α ∈ �1.
(3) If α ∈ �2, then α � (top�1)

1
2.

(4) If V = L then α � (top�1)
1
2 for all ordinals α [4], but it is equiconsistent

with the existence of a Mahlo cardinal that �2 → (top�1)12 [5].
Note that for α ∈ �1 \ {0}, α → (α)12 if and only if α = �� for some � ∈ �1.
Thus in view of (1) it is natural to ask whether or not there is a link between the
topological and nontopological pigeonhole principles. Our main breakthrough is
a full analysis of the case in which κ is finite and αi ∈ �1 for all i ∈ κ, where we
bring this link to light. Here # denotes the natural sum operation, and Ptop (αi)i∈κ
(respectively Pord (αi)i∈κ) denotes the least ordinal � such that � → (topαi)

1
i∈κ

(respectively � → (αi)1i∈κ).
Theorem 1.1. Let α1, α2 . . . αk ∈ �1 \ {0}.
(1) Ptop (�α1 + 1, �α2 + 1, . . . , �αk + 1) = �α1#α2#···#αk + 1.
(2) Ptop (�α1 , �α2 , . . . , �αk ) = �P

ord (α1,α2,...,αk ).

We prove this using a result of Weiss [1, Theorem 2.3]. This was published by
Baumgartner, who used it to show that��

α ·(2m+1) → (
top��

α ·(m+1))1
2 for allm ∈ �

and allα ∈ �1 [1, Corollary 2.5]. The above theorem greatly generalises this, thereby
utilising the full potential of Weiss’s result.
The only case in which we provide no answer in ZFC is when 1 < αi ≤ �1 for
all i ∈ κ and we have equality in at least two instances. In this case we have an
independence result. Prikry and Solovay showed that if V = L then α � (top�1)

1
2

for all ordinals α, from which it follows that it is consistent for Ptop (αi)i∈κ not to
exist. On the other hand, we show that Ptop (αi)i∈κ ≥ max {�2, κ+} and deduce
from a result of Shelah that it is consistent to have equality in every case, assuming
the consistency of the existence of a supercompact cardinal.
It remains open which intermediate values can consistently be taken by these
topological pigeonhole numbers, and whether or not Shelah’s consistency result
can be strengthened to equiconsistency.

§2. Preliminaries.

2.1. Partition relation notation.

Notation.We use the von Neumann definitions of ordinals and cardinals, namely
that each is the set of all smaller ordinals, and unless stated otherwise all arithmetic
will be ordinal arithmetic. We denote the cardinal successor of a cardinal κ by κ+,
and we use interval notation in the usual fashion, so that for example if α and �
are ordinals then [α, �) = {x : α ≤ x < �}. We denote the cardinality of a set X
by |X |, and we use the symbol ∼= to denote the homeomorphism relation.
In this article we study two different notions of partition relation. We begin by
defining both of these; here n is a positive integer, κ is a cardinal, and [X ]n denotes
the set of subsets of X of size n (except that for simplicity we take [X ]1 to be X ).
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Definition 2.1. Let � be an ordinal and let αi be an ordinal for each i ∈ κ.
We write

� → (αi)ni∈κ
to mean that for every function c : [�]n → κ there exists some subset X ⊆ � and
some i ∈ κ such that X is order-isomorphic to αi and [X ]n ⊆ c−1 ({i}).
Definition 2.2. Let Y be a topological space and let Xi be a topological space
for each i ∈ κ. We write

Y → (topXi)ni∈κ
to mean that for every function c : [Y ]n → κ there exists some subspace X ⊆ Y
and some i ∈ κ such that X ∼= Xi and [X ]n ⊆ c−1 ({i}).
When ordinals are used as topological spaces, they are assumed to have the order
topology. When αi = α for all i ∈ κ we write � → (α)nκ for � → (αi)

n
i∈κ, and

similarly for the topological relation.
The function c in these definitions will often be referred to as a colouring, and we
may say that x is coloured with i simply to mean that c (x) = i .
In this article we will be concerned with these partition relations exclusively in
the case n = 1. Clearly if � → (αi)ni∈κ and � > � then � → (αi)ni∈κ , and similarly
for the topological relation. Thus it is sensible to make the following definition.

Definition 2.3. Let αi be an ordinal for each i ∈ κ.
Wedefine the nontopological pigeonhole numberPord (αi)i∈κ to be the least ordinal
� such that � → (αi)1i∈κ , and the topological pigeonhole number Ptop (αi)i∈κ to be
the least ordinal � such that � → (topαi)1i∈κ.
We extend the usual ordering on the ordinals to include ∞ as a maximum. If
there is no ordinal � such that � → (topαi)1i∈κ , then we say that Ptop (αi)i∈κ does
not exist and write Ptop (αi)i∈κ =∞.
Thus for example if n1, n2, . . . , nk ∈ � \ {0}, then

Pord (n1, n2, . . . , nk) = Ptop (n1, n2, . . . , nk) =
k∑
i=1

(ni − 1) + 1.

Note thatPtop
(
(αi)i∈κ , (1)�

)
= Ptop (αi)i∈κ for any cardinal �, and that for fixed

κ, Ptop (αi)i∈κ is a monotonically increasing function of (αi)i∈κ (pointwise).

2.2. The Cantor–Bendixson rank of an ordinal. Central to the study of ordinal
topologies are the notions of Cantor–Bendixson derivative and rank.

Definition 2.4. Let X be a topological space. The Cantor–Bendixson derivative
X ′ of X is defined by

X ′ = X \ {x ∈ X : x is isolated} .
The iterated derivatives of X are defined for � an ordinal by

(1) X (0) = X ,
(2) X (�+1) =

(
X (�)

)′
, and

(3) X (�) =
⋂
�<� X

(�) when � is a nonzero limit.
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Note that if Y ⊆ X then Y ′ ⊆ X ′ and hence by transfinite induction Y (�) ⊆ X (�)
for all ordinals �.

Definition 2.5. Let x be an ordinal. Then there is a sequence of ordinals
�1 > �2 > · · · > �n and m1, m2, . . . , mn ∈ � \ {0} such that

x = ��1 ·m1 + ��2 ·m2 + · · ·+ ��n ·mn
(the Cantor normal form of x). The Cantor–Bendixson rank of x is defined by

CB (x) =

{
�n, if x > 0,
0, if x = 0.

This defines a function CB : �� → � for each nonzero ordinal � .
The relationship between these two notions is given by the following simple result,
which provides us with an alternative definition of Cantor–Bendixson rank that is
entirely topological (though the two definitions need not agree on proper subspaces
of ordinals).

Lemma 2.6. Let α be an ordinal endowed with the order topology, and let x ∈ α.
Then the Cantor–Bendixson rank of x is the greatest ordinal � such that x ∈ α(�).
Proof. This is straightforward to prove by induction on the Cantor–Bendixson
rank of x. 	
2.3. Biembeddability of ordinals. The notion of biembeddability is a weakening
of the notion of homeomorphism that is useful for simplifying the calculation of
topological pigeonhole numbers.

Definition 2.7. Let X and Y be topological spaces. We say that X and Y are
biembeddable, and write X � Y , if and only if X is homeomorphic to a subspace
of Y and Y is homeomorphic to a subspace of X .

Clearly � is an equivalence relation. Its relevance is given by the following easy
result.

Lemma 2.8. If Y � Ỹ and Xi � X̃i for all i ∈ κ, then Y → (topXi)ni∈κ if and
only if Ỹ →

(
top X̃i

)n
i∈κ
. 	

Wewill now classify the ordinals up to biembeddability, beginning with a positive
result.

Lemma 2.9. Let �, m, and � be nonzero ordinals with m ∈ � and � < �� . Then
�� ·m + 1 � �� ·m + �.

Proof. Clearly �� · m + 1 is homeomorphic to a subspace of �� · m + �, so it
is enough to show that �� · m + � is homeomorphic to a subspace of �� · m + 1.
In fact, we show that �� · m + 1 + � + 1 is homeomorphic to �� ·m + 1, which is
sufficient.
Now if α and � are successor ordinals, then α + � is homeomorphic to the
topological disjoint union of α and � , and thus α+ � ∼= � +α. Hence �� ·m+1+
� + 1 ∼= � + 1 + �� ·m + 1 = �� ·m + 1 since � < �� . 	
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Lemmas 2.8 and 2.9 have the following immediate consequence, which will be
useful.

Proposition 2.10. Let κ be a cardinal and let αi be an ordinal for each i ∈ κ.
Suppose that for some nonzero ordinal � and some m ∈ � \ {0} we have

�� ·m + 1 ≤ Ptop (αi)i∈κ < �� · (m + 1) .
Then in fact

Ptop (αi)i∈κ = �
� ·m + 1. 	

We now show that Lemma 2.9 is best possible. The proof makes use of Cantor–
Bendixson derivatives.

Proposition 2.11. Let �, m, and � be nonzero ordinals with m ∈ � and � < �� .
Then

(1) �� ·m + 1 
� �� ·m;
(2) �� 
� �; and
(3) �� · (m + 1) 
� �� ·m + 1.
Proof.

(1) By Lemma 2.6, we have
∣∣∣(�� ·m + 1)(�)∣∣∣ = m while ∣∣∣(�� ·m)(�)∣∣∣ = m − 1.

Therefore no subspace of �� ·m can be homeomorphic to �� ·m + 1.
(2) If � = 	 + 1, then by Lemma 2.6, (��)(	) is infinite while �(	) is finite
(or empty). If � is a limit ordinal, then by Lemma 2.6, (��)(	) 
= ∅ for all
	 < � while �(	) = ∅ for some 	 < �. In either case no subspace of � can be
homeomorphic to �� .

(3) Let X = �� · (m + 1). By Lemma 2.6, X has the following two properties:
firstly,

∣∣X (�)∣∣ = m; and secondly, X has a closed subset Z with Z ∩X (�) = ∅
and Z ∼= �� , namely Z = [�� ·m + 1, �� · (m + 1)).
Suppose then that Y is a subspace of �� · m + 1 with ∣∣Y (�)∣∣ = m, and
thatW is a closed subset of Y withW ∩ Y (�) = ∅. We show thatW � �� ,

which suffices. Since
∣∣Y (�)∣∣ = m = ∣∣∣(�� ·m + 1)(�)∣∣∣, we must have Y (�) =

(�� ·m + 1)(�) = {��,�� · 2, . . . , �� ·m}. Therefore since W is closed, for
each i ∈ {0, . . . , m − 1} there exists xi ∈ [�� · i + 1, �� · (i + 1)) such that
W ∩ (xi , �� · (i + 1)) = ∅. It follows thatW is homeomorphic to the disjoint
union of a finite number of subspaces of 
 for some 
 < �� . The argument
of part 2 then shows thatW � �� . 	

Although we will not make use of the following result, it is of interest nonetheless.
It is an immediate consequence of Lemma 2.9 and Proposition 2.11.

Corollary 2.12 (Classification of ordinals up to biembeddability). Two ordinals
α ≤ � are biembeddable if and only if either α = � = �� ·m for some ordinal � and
some m ∈ �, or �� ·m + 1 ≤ α ≤ � < �� · (m + 1) for some nonzero ordinal � and
some m ∈ � \ {0}. 	
2.4. The order-homeomorphism relation. It will sometimes be necessary to make
use of the order structure of a homeomorphic copy of an ordinal, for which the
notion of order-homeomorphism will be useful.
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Definition 2.13. Let X and Y be sets of ordinals. We say that X and Y are
order-homeomorphic if and only if there is a order-preserving homeomorphism from
X to Y .

Note that a set of ordinals is always assumed to have the subspace topology
induced from the order topology on any ordinal containing it, which need not
coincide with the order topology on the set itself. In fact it is easy to see that these
topologies coincide if and only if X is order-homeomorphic to its order type.
The following simple result provides us with an equivalent criterion for this
scenario in terms of closed sets. The proof is left as an exercise.

Proposition 2.14. Let X be a set of ordinals, and let 	 be the least ordinal with
X ⊆ 	. Then X is a closed subset of 	 if and only if X is order-homeomorphic to its
order type.

At one point, we will be able to make use of the notion of order-homeomorphism
because of the following property held by certain ordinals.

Definition 2.15. Let α be an ordinal. We say that α is order-reinforcing if and
only if, whenever X is a set of ordinals with X ∼= α, there is a subset Y ⊆ X such
that Y is order-homeomorphic to α.

Baumgartner [1, Theorem 0.2] showed that every countable ordinal of the form
�� + 1 or �� is order-reinforcing. We now extend this result.

Theorem 2.16. Let � be a nonzero ordinal and let m ∈ � \ {0}. Then
(1) �� ·m + 1 is order-reinforcing; and
(2) �� is order-reinforcing.

Baumgartner’s proof for ordinals of the form�� +1 is also valid for uncountable
ordinals of this form, and our proof of part 1 is almost identical. Baumgartner’s
proof for ordinals of the form �� is valid for uncountable ordinals of this form
providing they have countable cofinality, so we provide a new proof to cover the
remaining case.
In the proof, given a topological space A and a subset B ⊆ A, we write clA (B)
for the closure of B in A.

Proof.

(1) Let α = �� · m + 1, let X be a set of ordinals with X ∼= α, and let 	 be the
least ordinal with X ⊆ 	. Then X is compact and therefore a closed subset
of the Hausdorff space 	. So by Proposition 2.14, X is order-homeomorphic
to its order type. This order type must be at least α in order for

∣∣X (�)∣∣ = m.
Hence we may take Y to be the initial segment of X of order type α.

(2) Let α = �� . Baumgartner’s proof covers the case in which α has countable
cofinality, so assume that α has uncountable cofinality.
Let X be a set of ordinals with X ∼= α, and let 	 be the least ordinal with
X ⊆ 	. Then X is not compact and is therefore not a closed subset of the
compact space 	+1. So wemay let x be theminimal element of cl	+1 (X )\X .
Let Z = X ∩ [0, x), so that Z is a closed cofinal subset of [0, x). Then by
Proposition 2.14,Z is order-homeomorphic to its order type, say the ordinal
� . Observe now that Z is a closed open subset of X but is not compact.
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We claim that any closed open subset of α that is not compact must be
homeomorphic to α. From this it follows that � ∼= α and hence � ≥ α by
Proposition 2.11 part 2. Hence we may take Y to be the initial segment of Z
of order type α.
To prove the claim, suppose W is a closed open subset of α that is not
compact. Then W and α \W are both closed subsets of α, but they are
disjoint and so cannot both be club in α. Now any closed bounded subset of
α is compact, so it must be thatW is unbounded inα whileα\W is bounded.
It follows thatW is a closed subset of α of order type α, and soW ∼= α by
Proposition 2.14. This proves the claim, which completes the proof. 	

Although we will not make use of the fact, it is interesting to note that this result
is best possible for infinite ordinals, as we now show.

Corollary 2.17 (Classification of order-reinforcing ordinals). An ordinal α is
order-reinforcing if and only if either α is finite, or α = �� ·m + 1 for some nonzero
ordinal � and some m ∈ � \ {0}, or α = �� for some nonzero ordinal �.
Proof. The “if” statement follows from Theorem 2.16 and the fact that every
finite ordinal is order-reinforcing.
For the “only if” statement, if α is infinite then we may write α = �� · m + �
with � a nonzero ordinal, m ∈ � \ {0} and � < �� . Assume that α does not have
one of the given forms, so that either � > 1, or � = 0 and m > 1. If � > 1, then by
Lemma 2.9 we may take X to be a subspace of �� ·m+1 withX ∼= α. If � = 0 and
m > 1, then we may take X = (�� ·m + 1) \ {��}. In either case X is a witness to
the fact that α is not order-reinforcing. 	
2.5. The Milner–Rado sum of ordinals. In our calculation of the topological
pigeonhole numbers of finite sequences of countable ordinals, we will make use of
two different binary operations on ordinals: the natural sum, due to Hessenberg,
and the Milner–Rado sum.

Definition 2.18. Let α and � be ordinals. Then we may choose a sequence of
ordinals �1 > �2 > · · · > �n and l1, l2, . . . , ln,m1, m2, . . . , mn ∈ � such that

α = ��1 · l1 + ��2 · l2 + · · ·+ ��n · ln
and

� = ��1 ·m1 + ��2 ·m2 + · · ·+ ��n ·mn.
We define the natural sum of α and � by

α # � = ��1 · (l1 +m1) + ��2 · (l2 +m2) + · · ·+ ��n · (ln +mn) .
Definition 2.19. Let α and � be ordinals. Then we define theMilner–Rado sum
of α and � , denoted by α
� , to be the least ordinal � such that if α̃ < α and �̃ < �
then � 
= α̃ # �̃ .
Milner andRado [3] observed that if 
 > α
� , α̃ < α and �̃ < � , then 
 
= α̃#�̃ .
They also observed that both # and 
 are commutative and associative, and so
brackets may be omitted when three or more ordinals are summed. Notice that if
α1, α2, . . . , αk are ordinals, then α1
α2
· · ·
αk is simply the least ordinal � such
that if α̃i < αi for all i ∈ {1, 2, . . . , k} then � 
= α̃1 # α̃2 # · · · # α̃k .
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As part of their computation of the nontopological pigeonhole numbers, Milner
and Rado computed the Milner–Rado sum of an arbitrary finite sequence of
ordinals.
Theorem 2.20 (Milner–Rado). Let α1, α2 . . . αk be nonzero ordinals. We may
choose a sequence of ordinals �1 > �2 > · · · > �N and, for each i ∈ {1, 2, . . . , k},
mi1, mi2, . . . , mini ∈ � such that for each i ∈ {1, 2, . . . , k}, mini > 0 and

αi = ��1 ·mi1 + ��2 ·mi2 + · · ·+ ��ni ·mini .
Let n = min {n1, n2, . . . , nk} and let sj =

∑k
i=1mij for each j ∈ {1, 2, . . . , n}.

Finally let t = |{i ∈ {1, 2, . . . , k} : ni = n}|. Then
Pord (α1, α2, . . . , αk) = α1 
 α2 
 · · · 
 αk

= ��1 · s1 + ��2 · s2 + · · ·+ ��n−1 · sn−1 + ��n · (sn − t + 1) .
This result permits us to reduce the calculation of certain topological pigeonhole
numbers to corresponding nontopological pigeonhole numbers as in Theorem 1.1.

2.6. A simple example. We conclude this section by proving the following special
case of Theorem 1.1 in order to illustrate the character of many later proofs.
Proposition 2.21. Let k be a positive integer. Then

Ptop (� + 1)k = �
k + 1.

The main idea in the proof is the following result, which says that any finite
colouring of�n is in some sense similar to a colouring which is constant on ordinals
of the same Cantor–Bendixson rank.

Lemma 2.22. Let k and n be positive integers and let c : �n → k. Then there is
some subset X ⊆ �n such that X ∼= �n and c is constant on X (i) \ X (i+1) for each
i ∈ n.
Proof. The proof is by induction on n. The case n = 1 is simply the ordinary
pigeonhole principle � → (top�)1k , so assume n > 1. Consider first the restriction
of c to

{
� · α : α ∈ �n−1}. By the inductive hypothesis, passing to a subset we may

assume that c is constant on (�n)(i) \ (�n)(i+1) for each i ∈ n \ {0}. By considering
the restriction of c to

[
�n−1 ·m + 1, �n−1 · (m + 1)] for each m ∈ �, we may

likewise assume that c is constant on
(
�n \ (�n)′)∩ [�n−1 ·m + 1, �n−1 · (m + 1)]

for each m ∈ �, taking the value cm, say. To finish, simply choose an infinite subset
S ⊆ � such that cl = cm for all l, m ∈ S, and take X to be⋃

m∈S

[
�n−1 ·m + 1, �n−1 · (m + 1)] . 	

Proof of Proposition 2.21. To see that �k � (top� + 1)1k , simply colour each
x ∈ �k with colour CB (x), and observe that each colour class is discrete.
To see that �k + 1 → (top� + 1)1k , let c : �

k + 1 → k. Choose X ⊆ �k
as in Lemma 2.22, and let Y = X ∪ {�k}. Since Y (k) is simply the singleton{
�k
}
, we in fact have that c is constant on Y (i) \ Y (i+1) for each i ∈ k + 1.

By the finite pigeonhole principle k + 1 → (2)1k , it follows that c is constant on(
Y (i) \ Y (i+1)) ∪ (Y (j) \ Y (j+1)) for some distinct i, j ∈ k + 1, a set which is easily
seen to contain a homeomorphic copy of � + 1. 	
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The key idea to take from this proof is the importance of colourings of the form
c̃ ◦CB for some c̃ : k → k. The negative relation was proved using a counterexample
of this form. The positive relation was proved by showing in the Lemma that
any colouring must be similar to some colouring of this form, and applying the
pigeonhole principle to k + 1. The proof of Theorem 1.1 will be similar, with this
use of the Lemma and the pigeonhole principle replaced by Weiss’s result.

§3. Statement of the principle. We now state the main theorem of this article.
Although it may not be necessary to go through the details of every case at this
stage, they are included here for completeness and for reference.
Observe first that if αr = 0 for some r ∈ κ, then Ptop (αi)i∈κ = 0, and if I ⊆ κ
with αi = 1 for all i ∈ I , then Ptop (αi)i∈κ = Ptop (αi)i∈κ\I . Thus it is sufficient to
consider the cases in which αi ≥ 2 for all i ∈ κ.
Theorem 3.1 (The topological pigeonhole principle for ordinals). Let κ be a
cardinal, and let αi be an ordinal with αi ≥ 2 for all i ∈ κ.
(1) Ifαr ≥ �1+1 andαs ≥ �+1 for some distinct r, s ∈ κ, thenPtop (αi)i∈κ =∞.
(2) If αr ≥ �1 + 1 for some r ∈ κ and αi ≤ � for all i ∈ κ \ {r}:
(a) if κ ≥ ℵ0:

(i) if αr is a not a power of �, then Ptop (αi)i∈κ = αr · κ+;
(ii) if αr is a power of �:
(A) if cf (αr) > κ, then Ptop (αi)i∈κ = αr ;
(B) if ℵ0 < cf (αr) ≤ κ, then Ptop (αi)i∈κ = αr · κ+;
(C) if cf (αr) = ℵ0, then we may write αr = �� and � = � +�� with
� not a limit ordinal of uncountable cofinality; then
• if � < κ+, then Ptop (αi)i∈κ = αr · κ+;
• if � > κ+, then Ptop (αi)i∈κ = αr ;

(b) if κ < ℵ0 and αs = � for some s ∈ κ \ {r}:
(i) if αr is a power of �, then Ptop (αi)i∈κ = αr ;
(ii) if αr is not a power of �, then Ptop (αi)i∈κ = αr ·�;

(c) if κ < ℵ0 and αi < � for all i ∈ κ \ {r}:
(i) if αr is a power of � or κ = 1, then Ptop (αi)i∈κ = αr ;
(ii) ifκ > 1 andαr is not a power of�, then�� ·m+1 ≤ αr ≤ �� ·(m + 1)
for some ordinal � and some m ∈ � \ {0}; then

Ptop (αi)i∈κ = �
� ·
⎛⎝ ∑
i∈κ\{r}

(αi − 1) +m
⎞⎠+ 1.

(3) If αi ≤ �1 for all i ∈ κ and αr, αs = �1 for some distinct r, s ∈ κ, then the
value of Ptop (αi)i∈κ is independent of ZFC in the following sense.
Write “Pκ = x” for the statement, “κ is a cardinal, and for all sequences
(αi)i∈κ of ordinals, if 2 ≤ αi ≤ �1 for all i ∈ κ and αr, αs = �1 for some
distinct r, s ∈ κ, then Ptop (αi)i∈κ = x”. Likewise for “Pκ ≥ x”.
Firstly,

“for all cardinals κ ≥ 2, Pκ ≥ max
{
�2, κ

+}”
is a theorem of ZFC. Secondly, if ZFC is consistent, then so is

ZFC+ “for all cardinals κ ≥ 2, Pκ =∞”.
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Thirdly, if ZFC+“there exists a supercompact cardinal” is consistent, then so is

ZFC+ “for all cardinals κ ≥ 2, Pκ = max
{
�2, κ

+}”.
Moreover, some large cardinal assumption is required, since ZFC+“there exists
a Mahlo cardinal” is consistent if and only if

ZFC+ “�2 → (top�1)12”
is consistent.

(4) If αr = �1 for some r ∈ κ and αi < �1 for all i ∈ κ \ {r}, then Ptop (αi)i∈κ =
max {�1, κ+}.

(5) If αi < �1 for all i ∈ κ and κ ≥ ℵ0, then Ptop (αi)i∈κ = κ+.
(6) If αi < �1 for all i ∈ κ and κ < ℵ0:
(a) if αi < � for all i ∈ κ, then

Ptop (αi)i∈κ =
∑
i∈κ
(αi − 1) + 1;

(b) if αr is a power of � for some r ∈ κ, then
Ptop (αi)i∈κ = �

�0��1�···��κ−1 ,

where for each i ∈ κ, �i is minimal subject to the condition that αi ≤ ��i ;
(c) if αi is not a power of � for any i ∈ κ and αr ≥ � for some r ∈ κ, then
for each i ∈ κ we can find an ordinal �i andmi ∈ � \ {0} such that either
αi = mi and �i = 0, or ��i · mi + 1 ≤ αi ≤ ��i · (mi + 1) and �i > 0;
then:
(i) if there exists s ∈ κ such that αs = ��s · (ms + 1),CB (�s) ≤ CB (�i)
for all i ∈ κ, and mi = 1 for all i ∈ κ \ {s}, then

Ptop (αi)i∈κ = �
�0#�1#···#�κ−1 · (ms + 1) ;

(ii) otherwise,

Ptop (αi)i∈κ = �
�0#�1#···#�κ−1 ·

(∑
i∈κ
(mi − 1) + 1

)
+ 1.

§4. Proof of the principle. We will now go through the cases of the principle
in roughly reverse order, providing the key ingredients for the proof. We will then
combine them to complete the proof.

4.1. Finite sequences of countable ordinals. We begin with case 6 of the principle,
including the proof ofTheorem 1.1. First of all we stateWeiss’s result, which requires
us to introduce some notation.

Definition 4.1. Let �1 ≥ �2 ≥ · · · ≥ �n be ordinals and S ⊆ {1, 2, . . . , n}, say
S = {s1, s2, . . . , sl} with s1 < s2 < · · · < sl . Then we write∑

i∈S
��i = ��s1 + ��s2 + · · ·+ ��sl

and (
��

�1+��2+···+��n
)
S
=

{
�
∑
i∈S �

�i
, if S 
= ∅,

0, if S = ∅.
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Weiss’s result is our key tool for proving positive relations in this section, and was
first published by Baumgartner [1, Theorem 2.3].

Theorem 4.2 (Weiss). Let �1 ≥ �2 ≥ · · · ≥ �n be countable ordinals, let
� = ��

�1+��2+···+��n ,

and let c : � → 2. Then there exists S ⊆ {1, 2, . . . , n}, X ⊆ c−1 ({0}) and Y ⊆
c−1 ({1}) such that X ∼= �S , Y ∼= �({1,2,...,n}\S) and X and Y are both either empty
or cofinal in � .
A careful reading of Baumgartner’s proof reveals that “homeomorphic” can in
fact be strengthened to “order-homeomorphic”. Furthermore, we will be interested
in colourings using more than 2 colours. It will therefore be more convenient to use
this result in the following form.

Corollary 4.3. Let � be as in Weiss’s theorem, let k be a positive integer and let
c : � → k. Then there exists a partition of {1, 2, . . . , n} into k pieces S0, S1, . . . , Sk−1
and for each i ∈ k a subset Xi ⊆ c−1 ({i}) such that for all i ∈ k, Xi is order-
homeomorphic to �Si and Xi is either empty or cofinal in � .
Proof. This follows immediately from the “order-homeomorphic” version of
Weiss’s theorem by induction on k. 	
To prove negative relations we will frequently consider colourings based on those
of the form c̃ ◦CB for some c̃ : � → κ, where � is a nonzero ordinal. The following
result is our key tool for analysing these colourings.

Proposition 4.4. Let α and 	 be ordinals. Let Y be a set of ordinals of order type
α, and let X = {x ∈ 	 : CB (x) ∈ Y}. Then X (α) = ∅.
Proof. For each 
 ≤ α, let Y
 be the initial segment of Y of order type 
 and
let X
 = {x ∈ 	 : CB (x) ∈ Y
}. It is easy to prove by induction on 
 ≤ α that
X (
) = X \ X
 . Hence X (α) = X \ Xα = ∅. 	
We can now apply these two tools to prove Theorem 1.1, beginning with part 1.

Theorem 4.5. Let α0, α1 . . . αk−1 ∈ �1 \ {0}. Then
Ptop (�α0 + 1, �α1 + 1, . . . , �αk−1 + 1) = �α0#α1#···#αk−1 + 1.

Proof. Writeα0#α1#· · ·#αk−1 = � = ��1 +��2 +· · ·+��n with �1 ≥ �2 ≥ · · · ≥
�n , and write � = �� .
To see that � � (top�α0 + 1, �α1 + 1, . . . , �αk−1 + 1)1, first observe that by
definition of the natural sum, there is a partition of {1, 2, . . . , n} into k pieces
S0, S1, . . . , Sk−1 such that for all i ∈ k, αi =

∑
j∈Si �

�j . Now define a colouring
c : � → k as follows. For each i ∈ k, set c (x) = i if and only if

��1 + ��2 + · · ·+��j−1 ≤ CB (x) < ��1 +��2 + · · ·+ ��j
for some j ∈ Si . Observe that c−1 ({i}) = {x ∈ � : CB (x) ∈ Yi} for some set Yi
of ordinals of order type αi . Thus by Proposition 4.4, c−1 ({i})(αi ) = ∅, whereas
(�αi + 1)(αi ) = {�αi }. Hence c−1 ({i}) cannot contain a homeomorphic copy of
�αi + 1.
To see that � + 1 → (top�α0 + 1, �α1 + 1, . . . , �αk−1 + 1)1, let c : � + 1 → k.
Choose S0, S1, . . . , Sk−1 ⊆ {1, 2, . . . , n} and X0, X1, . . . , Xk−1 ⊆ � as in Corol-
lary 4.3. If �Si > �

αi for some i ∈ k, then we are done. So we may assume
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�Si ≤ �αi for all i ∈ k. But then we must in fact have �Si = �αi for all i ∈ k,
else � < �α0#α1#···#αk−1 . To finish, suppose c (�) = j. Then since Xj is cofinal in � ,
Xj ∪ {�} is a homeomorphic copy of �αj + 1 in colour j. 	
The proof of part 2 of Theorem 1.1 is similar but a little more compli-
cated as it makes use of the Milner–Rado sum. We make use of the fact that
Pord (α0, α1, . . . , αk−1) = α0
α1
· · ·
αk−1 by using the first expression to prove
the negative relation and the second expression to prove the positive relation.

Theorem 4.6. Let α0, α1 . . . αk−1 ∈ �1 \ {0}. Then
Ptop (�α0 , �α1 , . . . , �αk−1 ) = �α0�α1�···�αk−1 .

Proof. First recall from Theorem 2.20 that Pord (α0, α1, . . . , αk−1) = α0 
 α1 

· · · 
 αk−1. Write � for their common value, write � = ��1 + ��2 + · · · + ��n with
�1 ≥ �2 ≥ · · · ≥ �n , and write � = �� .
Suppose 
 < � . To see that 
 � (top�α0 , �α1 , . . . , �αk−1 )1, first observe that

 ≤ �	 · m + 1 for some 	 < � and some m ∈ �, so it is sufficient to consider the
case in which 
 = �	 ·m+1. Since 	 < Pord (α0, α1, . . . , αk−1), there is a colouring
c̃ : 	 → k such that for all i ∈ k, the order type of c̃−1 ({i}) is α̃i < αi . Let c : 
 → k
be a colouring with c (x) = c̃ (CB (x)) for all x ∈ 
 \ {�	,�	 · 2, . . . , �	 ·m}
(it doesn’t matter how the points �	,�	 · 2, . . . , �	 · m are coloured). By Proposi-
tion 4.4, c−1 ({i})(α̃i ) ⊆ {�	,�	 · 2, . . . , �	 ·m} for all i ∈ k, whereas (�αi )(α̃i ) is
infinite since α̃i < αi .Hence c−1 ({i}) cannot contain a homeomorphic copy of�αi .
To see that � → (top�α0 , �α1 , . . . , �αk−1 )1, let c : � → k. Choose
S0, S1, . . . , Sk−1 ⊆ {1, 2, . . . , n} and X0, X1, . . . , Xk−1 ⊆ � as in Corollary 4.3. If
�Si ≥ �αi for some i ∈ k, then we are done, so suppose for contradiction that �Si <
�αi for all i ∈ k.Write α̃i =

∑
j∈Si �

�i , so that�α̃i = �Si and α̃0#α̃1#· · ·#α̃k−1 = �
by definition. Then since �Si < �

αi for all i ∈ k and � = α0 
 α1 
 · · · 
 αk−1,
we have α̃i < αi for all i ∈ k while α̃0 # α̃1 # · · · # α̃k−1 = α0 
 α1 
 · · · 
 αk−1,
contrary to the definition of the Milner–Rado sum. 	
This completes the proof of Theorem 1.1, which provides us with the topological
pigeonhole numbers for finite sequences of countable ordinals when either each
ordinal is a power of � or each ordinal is a power of � plus 1.
Our next result generalises Theorem 4.6 by considering mixtures of such ordinals
including at least one power of �. Using monotonicity, this will provide us with
the topological pigeonhole numbers for all finite sequences of countable ordinals
in which one of the ordinals is a power of �, thereby completing case 6b of the
principle. The result essentially says that in this case, the topological pigeonhole
number is the same as if the other ordinals were “rounded up” to the next largest
power of �.
The proof involves proving two negative relations, the first of which uses ideas
from Theorem 4.5 and the second of which uses ideas from Theorem 4.6.

Theorem 4.7. Let α0, α1 . . . αl , �l+1, �l+2, . . . , �k−1 ∈ �1 \ {0}, where l ∈ k. Then

Ptop
(
�α0 , �α1 , . . . , �αl , ��l+1 + 1, ��l+2 + 1, . . . , ��k−1 + 1

)
= �α0�α1�...αl�(�l+1+1)�(�l+2+1)�···�(�k−1+1).
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Proof. WriteP for the left-hand side and � for the right-hand side. ClearlyP ≤ �
by Theorem 4.6 and monotonicity, so we prove that P ≥ � .
Suppose first thatαi is a successor ordinal for all i ∈ {0, 1, . . . , l}, sayαi = �i+1.
Then by Theorem 2.20, � = ��0#�1#···#�k−1+1. Suppose 
 < � . We will show that


 �
(
top��0+1, ��1 + 1, ��2 + 1, . . . , ��k−1 + 1

)1
,

which suffices. Write � = �0 # �1 # · · · # �k−1, and observe first that 
 ≤ �� ·m + 1
for somem ∈ �, so it is sufficient to consider the case in which 
 = �� ·m+1. Next
recall from the proof of Theorem 4.5 that there is a colouring d : �� → k with the
property that d−1 ({i})(�i ) = ∅ for all i ∈ k. Now define a colouring c : 
 → k by

c (x) =

{
d (y) , if x = �� · l + y with l ∈ � and 0 < y < ��,
0, if x ∈ {0, ��, �� · 2, . . . , �� ·m}.

Then for all i ∈ {1, 2, . . . , k − 1}, c−1 ({i})(�i ) = ∅, whereas (��i + 1)(�i ) = {��i},
so c−1 ({i}) cannot contain a homeomorphic copy of ��i + 1. On the other hand,
c−1 ({0})(�0) ⊆ {��,�� · 2, . . . , �� ·m}, whereas (��0+1)(�0) is infinite, so c−1 ({0})
cannot contain a homeomorphic copy of ��0+1. This completes the proof for this
case.
Suppose instead thatαj is a limit ordinal for some j ∈ {0, 1, . . . , l}.Write� = �� .
Then by Theorem 2.20, � is a limit ordinal. This observation enables us to complete
the proof using simpler version of the argument from Theorem 4.6. Suppose 
 < � .
We will show that


 �
(
top�α0 , �α1 , . . . , �αl , ��l+1 + 1, ��l+2 + 1, . . . , ��k−1 + 1

)1
.

Observe first that since � is a limit ordinal, 
 ≤ �	 for some 	 < �, so
it is sufficient to consider the case in which 
 = �	. Write αi = �i + 1
for all i ∈ {l + 1, l + 2, . . . , k − 1}, and recall from Theorem 2.20 that � =
Pord (α0, α1, . . . , αk−1). Since 	 < �, there is a colouring c̃ : 	 → k such that
for all i ∈ k, the order type of c̃−1 ({i}) is α̃i < αi . Define a colouring c : 
 → k
by c = c̃ ◦ CB. By Proposition 4.4, c−1 ({i})(α̃i ) = ∅ for all i ∈ k. However,
(�αi )(α̃i ) is infinite for all i ∈ {0, 1, . . . , l}, and (��i + 1)(α̃i ) ⊇ {

��i
}
for all

i ∈ {l + 1, l + 2, . . . , k − 1}. Hence c−1 ({i}) cannot contain a homeomorphic
copy of �αi (if i ∈ {0, 1, . . . , l}) or ��i + 1 (if i ∈ {l + 1, l + 2, . . . , k − 1}). 	
Next we move beyond powers of� and powers of� plus 1 to consider ordinals of
the form�α ·m+1 with α ∈ �1 \{0} andm ∈ � \{0}. At this point considerations
from the finite pigeonhole principle come into play.
At the same time we will also consider finite ordinals, since they behave in a
similar fashion: just as �α · m + 1 is homeomorphic to the topological disjoint
union ofm copies of�α +1, som ∈ � is homeomorphic to the topological disjoint
union ofm copies of 1. In order to consider both forms of ordinal at the same time
we therefore make the following definition.



THE TOPOLOGICAL PIGEONHOLE PRINCIPLE FOR ORDINALS 675

Definition 4.8. Let α be an ordinal and m ∈ � \ {0}. We define

� [α,m] =

{
�α ·m + 1, if α > 0,
m, if α = 0.

The following result deals with finite sequences of countable ordinals of the form
� [α,m]. It generalises both Theorem 4.5 and the finite pigeonhole principle, and
the proof essentially combines these two theorems.

Theorem 4.9. Let α0, α1 . . . αk−1 ∈ �1 andm1, m2, . . . , mk−1 ∈ � \ {0}. Then
Ptop (� [α0, m0] , � [α1, m1] , . . . , � [αk−1, mk−1]) = � [α,m] ,

where α = α0 # α1 # · · · # αk−1 andm =
∑k−1
i=0 (mi − 1) + 1.

Proof. We assume for simplicity that αi > 0 for all i ∈ k, the other case being
no harder. Thus � [αi ,mi ] = �αi ·mi + 1 for all i ∈ k and � [α,m] = �α ·m + 1.
To see that

�α ·m � (top�α0 ·m0 + 1, �α1 ·m1 + 1, . . . , �αk−1 ·mk−1 + 1)1 ,
recall from the proof of Theorem 4.5 that there is a colouring d : �α → k with
the property that d−1 ({i})(αi ) = ∅ for all i ∈ k. Additionally observe that since
m − 1 � (m0, m1, . . . , mk−1)1, there is a colouring e : {1, 2, . . . , m − 1} → k with
the property that

∣∣e−1 ({i})∣∣ ≤ mi − 1 for all i ∈ k. Now define a colouring
c : �α ·m → k by

c (x) =

⎧⎪⎨⎪⎩
d (y) , if x = �α · l + y with l ∈ � and 0 < y < �α,
e (l) , if x = �α · l with l ∈ {1, 2, . . . , m − 1},
0, if x = 0.

Then for all i ∈ k, ∣∣∣c−1 ({i})(αi )∣∣∣ ≤ mi − 1
by construction, whereas ∣∣∣(�αi ·mi + 1)(αi )∣∣∣ = mi .
Hence c−1 ({i}) cannot contain a homeomorphic copy of �αi ·mi + 1.
To see that

�α ·m + 1→ (top�α0 ·m0 + 1, �α1 ·m1 + 1, . . . , �αk−1 ·mk−1 + 1)1 ,
let c : �α · m + 1 → k. Observe that for each j ∈ m, [�α · j + 1, �α · (j + 1)] ∼=
�α + 1. Therefore by Theorem 4.5 there exists ij ∈ k and Xj ⊆ c−1 ({ij}) ∩
[�α · j + 1, �α · (j + 1)] with Xj ∼= �αij + 1. Next observe that by the finite
pigeonhole principle, m → (m0, m1, . . . , mk−1)

1. Hence there exists i ∈ k such
that |{j ∈ m : ij = i}| ≥ mi , say S ⊆ {j ∈ m : ij = i} satisfies |S| = mi . But then⋃
j∈S Xj is a homeomorphic copy of �

αi ·mi + 1 in colour i . 	
We conclude this section by considering at last ordinals of the form �α · (m + 1)
with α ∈ �1 \ {0} and m ∈ � \ {0}. Such an ordinal is homeomorphic to the
topological disjoint union of�α ·m+1 and�α and behaves similarly to �α ·m+1,
but there are additional complications.
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The following simple consequence of Theorem 4.6 will be useful for finding extra
homeomorphic copies of �α in the required colour.

Lemma 4.10. Let α0, α1, . . . , αk−1 ∈ �1 \ {0}, let α = α0 # α1 # · · · # αk−1 and
let c : �α → k be a colouring. Then either c−1 ({j}) contains a homeomorphic copy
of �αj+1 for some j ∈ k, or c−1 ({i}) contains a homeomorphic copy of �αi for all
i ∈ k.
Proof. Fix i ∈ k. It is sufficient to prove that either c−1 ({i}) contains a homeo-
morphic copy of�αi , or c−1 ({j}) contains a homeomorphic copy of�αj+1 for some
j ∈ k \ {i}. To see this, simply observe that by Theorem 2.20 (or by inspection),

(α0 + 1)
 · · · 
 (αi−1 + 1)
 αi 
 (αi+1 + 1)
 · · · 
 (αk−1 + 1) ≤ α
and hence by Theorem 4.6,

�α → (
top�α0+1, . . . , �αi−1+1, �αi , �αi+1+1, . . . , �αk−1+1

)1
. 	

In our next result we use this to narrow the topological pigeonhole number down
to one of two possibilities.

Theorem 4.11. Let α0, α1, . . . , αl ∈ �1 \ {0}, αl+1, αl+2, . . . , αk−1 ∈ �1 and
m0, m1, . . . , mk−1 ∈ � \ {0}, where l ∈ k. Then
Ptop (�α0 · (m0 + 1) , . . . , �αl · (ml + 1) , � [αl+1, ml+1] , . . . , � [αk−1, mk−1])

is equal to either �α · m + 1 or �α · (m + 1), where α = α0 # α1 # · · · # αk−1 and
m =

∑k−1
i=0 (mi − 1) + 1.

Proof. Write P for the topological pigeonhole number in the statement of the
theorem. Recall that by Proposition 2.10, it is sufficient to prove that �α ·m + 1 ≤
P ≤ �α · (m + 1). The first inequality follows immediately from Theorem 4.9 and
monotonicity since �αi · (m0 + 1) > � [αi ,mi ] for all i ∈ {0, 1, . . . , l}. The second
inequality states that

�α ·(m + 1)→
(
top�α0 · (m0 + 1) , . . . , �αl · (ml + 1) , � [αl+1, ml+1] , . . . , �

[
αk−1, mk−1

])1
.

To see this, let c : �α · (m + 1) → k. First note that for i ∈ {0, 1, . . . , l},
�αi · (mi + 1) is homeomorphic to the topological disjoint union of � [αi ,mi ] =
�αi · mi + 1 and �αi . Now by Theorem 4.9, there exists i ∈ k and X ⊆
c−1 ({i}) ∩ (�α ·m + 1) with X ∼= � [αi ,mi ]. If i ∈ {l + 1, l + 2, . . . , k − 1},
then we are done, so assume i ∈ {0, 1, . . . , l}. Next consider the restriction
of c to [�α ·m + 1, �α · (m + 1)), which is homeomorphic to �α . By Lemma
4.10, either c−1 ({j}) ∩ [�α ·m + 1, �α · (m + 1)) contains a homeomorphic copy
of �αj+1 for some j ∈ k, in which case we are done, or there exists Y ⊆
c−1 ({i}) ∩ [�α ·m + 1, �α · (m + 1)) with Y ∼= �αi , in which case X ∪ Y is a
homeomorphic copy of �αi · (mi + 1) in colour i . 	
Recall that by Lemmas 2.8 and 2.9 it is enough to consider ordinals of the form
�α · m and �α · m + 1 with m ∈ � \ {0}. It follows that Theorems 4.9 and 4.11
together cover case 6c of the principle. Thus to complete case 6 it remains only to
distinguish between the two possibilities presented by Theorem 4.11.
In our final result of this section we do this for the case in which mi = 1 for
all i ∈ k \ {0}. In particular this completes case 6(c)i. At this point the Cantor–
Bendixson ranks of ordinal exponents come into play. They essentially determine
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whether or not the negative relation can be proved using the type of colouring given
in the first half of the proof of Theorem 4.5.

Theorem 4.12. Let α0, α1, . . . , αk−1 ∈ �1 \ {0}, m0 ∈ � \ {0} and l ∈ k.
Assume without loss of generality that if m0 = 1 then CB(α0) ≤ CB (αi) for all
i ∈ {1, 2, . . . , l}. Then
�α ·m0 + 1→ (top�α0 · (m0 + 1) , �α1 · 2, . . . , �αl · 2, �αl+1 + 1, . . . , �αk−1 + 1)1

if and only if CB (αh) < CB (α0) for some h ∈ k, where α = α0 # α1 # · · · # αk−1.
We will prove the “if” part by combining Lemma 4.10 with the following result.

Lemma 4.13. Let α0, α1, . . . , αk−1 ∈ �1 \ {0}, let α = α0 # α1 # · · · # αk−1 and
let c : �α + 1→ k be a colouring. Then there exists j ∈ k such that either c−1 ({j})
contains a homeomorphic copy of�αj ·2, or c−1 ({j}) contains a homeomorphic copy
of �αj + 1 and CB (αj) ≤ CB (αi) for all i ∈ k.
The proof of this lemma uses ideas from the proof of Weiss’s theorem
[1, Theorem 2.3]. In particular we will make use of the following result, which
was also published by Baumgartner [1, Lemma 2.6].

Lemma 4.14 (Weiss). Let α ∈ �1 not be a power of�. Writeα = ��1 +��2 + · · ·+
��n with �1 ≥ �2 ≥ · · · ≥ �n and n > 1, and let � = ���1+��2+···+��n−1 and ε = ���n .
Suppose Z ⊆ {� · x : x ∈ ε} is order-homeomorphic to ε, say Z = {z	 : 	 ∈ ε}.
Then for each 	 ∈ ε there exists Y	 ⊆ (z	, z	+1) such that Y	 is order-homeomorphic
to � and Y	 is cofinal in (z	, z	+1).
Proof of Lemma 4.13. Write α = ��1 +��2 + · · ·+��n with �1 ≥ �2 ≥ · · · ≥ �n ,
and observe that for j ∈ k, the condition that CB (αj) ≤ CB (αi) for all i ∈ k is
equivalent to the condition that CB (αj) = �n. The case k = 1 is trivial, so assume
k > 1 (and hence n > 1) and let � = ��

�1+��2+···+��n−1 and ε = ��
�n as in Weiss’s

lemma.
First let c (�α) = j0. Next, by Corollary 4.3 there exists j1 ∈ k and Z ⊆
c−1 ({j1}) ∩ {� · x : x ∈ ε} such that Z is cofinal in {� · x : x ∈ ε} (and hence in
�α) and Z is order-homeomorphic to ε, say Z = {z	 : 	 ∈ ε}. For each 	 ∈ ε
choose Y	 as in Weiss’s lemma. Then for each 	 ∈ ε, by Corollary 4.3 there exists
a partition of {1, 2, . . . , n − 1} into k pieces S	0 , S	1 , . . . , S	k−1 and for each i ∈ k
a subset X	i ⊆ c−1 ({i}) ∩ Y	 such that for all i ∈ k, X	i is order-homeomorphic
to �S	i and X

	
i is either empty or cofinal in Y	 (and hence in (z	, z	+1)). Moreover

since ε → (ε)1r for all r ∈ � \ {0} (either using Theorem 4.6 or simply from the fact
that ε is a power of �), there exists T ⊆ ε of order type ε and a single partition of
{1, 2, . . . , n − 1} into k pieces S0, S1, . . . , Sk−1 such that S	i = Si for all 	 ∈ T and
all i ∈ k.
Now if �Sj > �

αj for some j ∈ k, then we are done. So we may assume �Si ≤ �αi
for all i ∈ k. But then there must exist j2 ∈ k with CB (αj2 ) = �n such that in fact
�Si = �

αi for all i ∈ k \ {j2} and �Sj2∪{n} = �αj2 .
There are now three possibilities.

• If j1 
= j2, then take j = j1. Pick 	1, 	2 ∈ T and take
X = X	1j ∪ {z	1+1} ∪X	2j .

Then X is a homeomorphic copy of �αj · 2 in colour j.
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• If j0 
= j2, then take j = j0. We now use an argument from the proof of
Weiss’s theorem. Let (	r)r∈� be a strictly increasing cofinal sequence from
T and let (
r)r∈�\{0} be a strictly increasing cofinal sequence from �

αj , so
that �αj is homeomorphic to the topological disjoint union of the collection
(
r + 1)r∈�\{0}. For each r ∈ � \ {0}, chooseWr ⊆ X	rj withWr ∼= 
r +1, and
take

X = X	0j ∪
⋃

r∈�\{0}
Wr ∪ {�α} .

Then X is a homeomorphic copy of �αj · 2 in colour j.
• If j0 = j1 = j2, then take j to be their commonvalue.Wenowuse another argu-
ment from the proof ofWeiss’s theorem. LetZ1 be the closure of {z	+1 : 	 ∈ T}
in Z and take

X =
⋃
	∈T
X 	j ∪ Z1 ∪ {�α} .

Then X is a homeomorphic copy of �αj + 1 in colour j, and since j = j2 we
have CB (αj) = �n . 	
Proof of Theorem 4.12. Writeα = ��1 +��2 +· · ·+��n with �1 ≥ �2 ≥ · · · ≥ �n,
and let � = �α ·m0 + 1.
Suppose first thatCB (α0) ≤ CB (αi) for all i ∈ k. As in the proof ofTheorem 4.5,
observe that by definition of the natural sum, there is a partition of {1, 2, . . . , n}
into k pieces S0, S1, . . . , Sk−1 such that for all i ∈ k, αi =

∑
j∈Si �

�j . Moreover,
since CB (α0) ≤ CB (αi) for all i ∈ k we may assume that n ∈ S0. Now define a
colouring c : � → k as follows. If CB (x) < α (i.e. x /∈ {�α,�α · 2, . . . , �α ·m0}),
then as in Theorem 4.5, for each i ∈ k set c (x) = i if and only if

��1 + ��2 + · · ·+��j−1 ≤ CB (x) < ��1 +��2 + · · ·+ ��j
for some j ∈ Si . If CB (x) = α, then set c (x) = 0. If i ∈ k \ {0}, then as in
Theorem 4.5 c−1 ({i}) cannot contain a homeomorphic copy of �αi + 1. To deal
with the case i = 0, let 	 =

∑
j∈S0\{n}�

�j . By the proof of Proposition 4.4,

c−1 ({0})(	) = {x ∈ � : CB (x) ≥ ��1 + ��2 + · · ·+ ��n−1} ∼= ���n ·m0 + 1,
whereas (�α0 · (m0 + 1))(	) ∼= ���n ·(m0 + 1). It follows by part 3 of Proposition 2.11
that c−1 ({0}) cannot contain a homeomorphic copy of �α0 · (m0 + 1).
Suppose instead that CB (αh) < CB (α0) for some h ∈ k. If m0 = 1, then by
assumption CB (α0) ≤ CB (αi) for all i ∈ {1, 2, . . . , l}, so CB (αh) < CB (αi) for
all i ∈ {1, 2, . . . , l} and we are done by Lemma 4.13. So assume m0 > 1. Then
for each p ∈ m0 apply Lemma 4.13 to obtain jp ∈ k and Xp ⊆ c−1 ({jp}) ∩
[�α · p + 1, �α · (p + 1)] such that either Xp ∼= �αjp · 2, or Xp ∼= �αjp + 1 and
CB
(
αjp
) ≤ CB (αi) for all i ∈ k. If jp = 0 for all p ∈ m0, then Xp ∼= �α0 · 2 for

all p ∈ m0 and so
⋃m0−1
p=0 Xp contains a homeomorphic copy of �

α0 · (m0 + 1), and
we are done. So assume jq 
= 0 for some q ∈ m0. Now pick any r ∈ m0 \ {q} and
apply Lemma 4.10 to [�α · r + 1, �α · (r + 1)). Since we would be done if c−1 ({j})
contained a homeomorphic copy of �αj+1 for some j ∈ k, we may assume that
there existsY ⊆ c−1 ({jq})∩ [�α · r + 1, �α · (r + 1)) withY ∼= �αjq . ThenXq∪Y
is a homeomorphic copy of �αjq · 2 in colour jq , which suffices. 	
We leave the final few considerations pertaining to case 6(c)ii for later.
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4.2. Arbitrary sequences of ordinals at most �1. We now move on to cases 3, 4,
and 5 of the principle, in which no ordinal exceeds �1 but either there are infinitely
many ordinals or there is at least one ordinal equal to �1. Here the arguments
are less combinatorial and more set-theoretical than in the previous section, and
stationary sets are ubiquitous.
We will cover cases 4 and 5 in this section and leave the independence results of
part 3 to the next section.
To understand the relevance of club sets, recall Proposition 2.14. From that result
it follows that givenX ⊆ �1, if X is club thenX ∼= �1, and in fact the converse also
holds in this case.
The essential reason for the ubiquity of stationary sets in this section is the
following result of Friedman [2].

Theorem 4.15 (Friedman). Let S ⊆ �1 be a stationary set, and let α ∈ �1. Then
S has a subset order-homeomorphic to α.

We will need a slightly more general version of this result. In order to state it we
make the following definition.

Definition 4.16. Let � be an uncountable regular cardinal. Define

E�� = {x ∈ � : cf (x) = �} .

Note that E�� is stationary in �.
Here is our generalisation of Friedman’s theorem.

Theorem 4.17. Let � be an uncountable regular cardinal, let S ⊆ E�� be stationary
in �, and let α ∈ �1. Then S has a subset order-homeomorphic to α.
Proof. The proof is essentially identical to the proof of Friedman’s theorem [2]. 	
Our final introductory result is a well-known property of stationary sets.

Lemma 4.18. Let � be an uncountable regular cardinal, let S ⊆ � be stationary,
and let c : S → κ for some cardinal κ < �. Then c−1 ({i}) is stationary in � for some
i ∈ κ.
Proof. This follows easily from the fact that if Ci ⊆ � is club for all i ∈ κ then⋂
i∈κ Ci is also club. 	
We are now ready to deal with cases 4 and 5 of the principle. The result for case
5 is an easy consequence of Theorem 4.17 and Lemma 4.18.

Theorem 4.19. Let κ ≥ ℵ0 be a cardinal, and let αi be an ordinal with 2 ≤ αi < �1
for all i ∈ κ. Then

Ptop (αi)i∈κ = κ
+.

Proof. Clearly if 
 < κ+ then 
 � (topαi)
1
i∈κ by considering an injection 
 → κ.

To see that κ+ → (topαi)1i∈κ , let c : κ+ → κ. Then by Lemma 4.18 there exists
i ∈ κ such that c−1 ({i})∩Eκ+� is stationary in κ+, which by Theorem 4.17 contains
a homeomorphic copy of αi . 	
The proof for case 4 is a little trickier.
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Theorem 4.20. Let κ be a cardinal, let αr = �1 for some r ∈ κ, and let αi be an
ordinal with 2 ≤ αi < �1 for all i ∈ κ \ {r}. Then

Ptop (αi)i∈κ = max
{
�1, κ

+} .
Proof. As in the proof of Theorem 4.19, if 
 < κ+ then 
 � (topαi)

1
i∈κ . Addi-

tionally, if 
 < �1 then 
 � (topαi)
1
i∈κ by considering the constant colouring with

colour r.
To see that max {�1, κ+} → (topαi)

1
i∈κ , first observe that the case κ < ℵ0

follows from the case κ = ℵ0. So we may assume κ ≥ ℵ0, implying that
max {�1, κ+} = κ+. So let c : κ+ → κ. Then let

Z =
(
c−1 ({r}) ∩ Eκ+�

)
∪
(
κ+ \ Eκ+�

)
.

Suppose first thatZ has a subset C that is club in κ+. Then C ∩{� · x : x ∈ κ+}
is also club. Let the initial segment of this set of order type �1 be Y , and let
X = Y ′. Then X ∼= �1 by Proposition 2.14, but in addition X ⊆ Eκ+� and hence
X ⊆ c−1 ({r}) by definition of Z.
Suppose instead thatZ has no subset that is club in κ+. Then κ+ \Z is stationary
in κ+. But by definition of Z,

κ+ \ Z =
⋃

i∈κ\{r}

(
c−1 ({i}) ∩ Eκ+�

)
.

Hence by Lemma 4.18 there exists i ∈ κ\{r} such that c−1 ({i})∩Eκ+� is stationary
in κ+, which by Theorem 4.17 contains a homeomorphic copy of αi . 	
4.3. Independence results. We now move on to case 3 of the principle, in which
no ordinal exceeds �1 and two or more ordinals are equal to �1. To begin with
we quote the following result, a proof of which can be found in Weiss’s article [6,
Theorem 2.8].

Proposition 4.21. If � ∈ �2 then � � (top�1)
1
2.

Corollary 4.22. Let κ be a cardinal, and let αi be an ordinal with 2 ≤ αi ≤ �1
for all i ∈ κ. Suppose αr, αs = �1 for some distinct r, s ∈ κ. Then

Ptop (αi)i∈κ ≥ max
{
�2, κ

+} .
Proof. Clearly if 
 < κ+ then 
 � (topαi)

1
i∈κ , and if 
 < �2 then 
 � (top�1)

1
2

by Proposition 4.21 and hence 
 � (topαi)
1
i∈κ . 	

We shall now see that, modulo a large cardinal assumption, this is the strongest
ZFC-provable statement applicable to case 3. Recall from the statement of the
principle that we write “Pκ = x” for the statement, “κ is a cardinal, and for all
sequences (αi)i∈κ of ordinals, if 2 ≤ αi ≤ �1 for all i ∈ κ and αr, αs = �1 for some
distinct r, s ∈ κ, then Ptop (αi)i∈κ = x”, and likewise for “Pκ ≥ x”.
In one direction, we use the following result of Prikry and Solovay [4].

Theorem 4.23 (Prikry–Solovay). Suppose V = L and let � be any ordinal. Then

� � (top�1)
1
2 .
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Corollary 4.24. If ZFC is consistent, then so is

ZFC+ “for all cardinals κ ≥ 2, Pκ =∞”. 	
Proof. This follows immediately from the Prikry–Solovay theorem and mono-
tonicity of pigeonhole numbers. 	
In the other direction, we use a result of Shelah, who introduced the following
notation [5, Chapter X, §7].
Definition 4.25 (Shelah). Let � be an uncountable regular cardinal. Write
Fr+ (�) to mean that every subset of E�� that is stationary in � has a subset
order-homeomorphic to �1.

Note the similarity between this notion and Theorem 4.17. In fact the letters “Fr”
here refer to Friedman, who first asked whether or not there exists an ordinal � with
� → (top�1)12 [2].
Here is the result of Shelah [5, Chapter XI, Theorem 7.6].

Theorem 4.26 (Shelah). If ZFC+“there exists a supercompact cardinal” is
consistent, then so is

ZFC+ “Fr+ (�) holds for every regular cardinal � ≥ ℵ2”.
In order to apply Shelah’s result to case 3 we make the following observation.

Lemma 4.27. Let κ ≥ ℵ1 be a cardinal. If Fr+ (κ+) holds, then
κ+ → (top�1)1κ .

Proof. Simply apply Lemma 4.18. 	
Corollary 4.28. If ZFC+“there exists a supercompact cardinal” is consistent,
then so is

ZFC+ “for all cardinals κ ≥ 2, Pκ = max
{
�2, κ

+}”.
Proof. Observe that by Corollary 4.22, the following is a theorem of ZFC: “for
all cardinals κ ≥ 2, Pκ ≥ max {�2, κ+}”. To finish, simply combine Theorem 4.26
with Lemma 4.27. 	
To conclude this section, we address the question of whether a large cardinal
assumption is required. To this end we give an equiconsistency result essentially due
to Silver and Shelah.
According to Friedman [2], Silver proved the following result by showing that if
�2 → (top�1)12 then ��1 does not hold, a proof of which can be found in Weiss’s
article [6, Theorem 2.10].

Theorem 4.29 (Silver). If �2 → (top�1)12 then �2 is Mahlo in L.
Here is the result of Shelah [5, Chapter XI, Theorem 7.1].

Theorem 4.30 (Shelah). If ZFC+“there exists a Mahlo cardinal” is consistent,
then so is ZFC+ “Fr+ (ℵ2)”.
Corollary 4.31. ZFC+“there exists a Mahlo cardinal” is consistent if and only if

ZFC+ “�2 → (top�1)12”
is consistent.
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Proof. Theorem 4.29 gives the “if” statement. The “only if” statement follows
by combining Theorem 4.30 with Lemma 4.27. 	
4.4. Sequences including an ordinal larger than�1. It remains to cover cases 1 and
2 of the principle, in which one of the ordinals exceeds �1. Although this appears to
be a very large class of cases, the situation is dramatically simplified by the following
elementary argument covering case 1. It is our only result in which the topological
pigeonhole number (ZFC-provably) does not exist.
Proposition 4.32. Ptop (�1 + 1, � + 1) =∞.
Proof. Let � be any ordinal. We show that � � (top�1 + 1, � + 1)

1. First
observe that a homeomorphic copy of �1 + 1 must contain a point of cofinality
�1, while a homeomorphic copy of �+1 must contain a point of cofinality �. The
result is then witnessed by the colouring c : � → 2 given by

c (x) =

{
1, if cf (x) ≥ �1,
0, otherwise. 	

We conclude this section by simplifying case 2 using another elementary
argument. We leave the rest of the proof for this case for the next section.
Lemma 4.33. Let κ be a cardinal and let αi be an ordinal for each i ∈ κ. Suppose
αr ≥ �1 + 1 for some r ∈ κ and 2 ≤ αi ≤ � for all i ∈ κ \ {r}, and let

� =

⎧⎪⎨⎪⎩
κ+, if κ ≥ ℵ0,
ℵ0, if κ < ℵ0 and αs = � for some s ∈ κ \ {r},∑
i∈κ\{r} (αi − 1) + 1, if κ < ℵ0 and αi < � for all i ∈ κ \ {r}.

Let � be any ordinal. Then
� → (topαi)1i∈κ

if and only if for every subsetA ⊆ � with |A| < � there existsX ⊆ � \AwithX ∼= αr .
Proof. First suppose that � → (topαi)1i∈κ and letA ⊆ � with |A| < �. If κ ≥ ℵ0,
then take f : A → κ \ {r} to be any injection; if κ < ℵ0 and αs = � for some
s ∈ κ \ {r}, then take f : A → {s} to be the constant function; and if κ < ℵ0
and αi < � for all i ∈ κ \ {r}, then take f : A → κ \ {r} to be any function with∣∣f−1 ({i})

∣∣ ≤ αi − 1 for all i ∈ κ \ {r}. Now define a colouring c : � → κ by

c (x) =

{
r, if x /∈ A,
f (x) , if x ∈ A.

Then by construction
∣∣c−1 ({i})∣∣ < αi for all i ∈ κ \ {r}, so since � → (topαi)1i∈κ

there exists X ⊆ c−1 ({r}) = � \ A with X ∼= αr .
Conversely, suppose that for every subset A ⊆ � with |A| < � there exists
X ⊆ � \ A with X ∼= αr . Let c : � → κ be a colouring, and let A = c−1 (κ \ {r}).
If |A| < � then by assumption there exists X ⊆ � \ A = c−1 ({r}) with X ∼= αr
and we are done, so assume |A| ≥ �. If κ ≥ ℵ0, then

∣∣c−1 ({j})∣∣ ≥ κ+ for some
j ∈ κ \ {r}; if κ < ℵ0 and αs = � for some s ∈ κ \ {r}, then ∣∣c−1 ({j})∣∣ ≥ ℵ0
for some j ∈ κ \ {r}; and if κ < ℵ0 and αi < � for all i ∈ κ \ {r}, then by the
finite pigeonhole principle

∣∣c−1 ({j})∣∣ ≥ αj for some j ∈ κ \ {r}. In every case∣∣c−1 ({j})∣∣ ≥ |αj | and we are done. 	
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4.5. Proof of the principle. Having provided the key ingredients, we now complete
the proof of the principle.

Proof of Theorem 3.1. We split into the same cases as in the statement of the
theorem.

(1) This follows from Proposition 4.32.
(2) Let � be as in Lemma 4.33, and note first of all that if αr is a power of � then
Ptop (αi)i∈κ ≥ αr by part 2 of Proposition 2.11.
(a) In this case � = κ+.

(i) Write �� · m + 1 ≤ αr ≤ �� · (m + 1) with � an ordinal and
m ∈ � \ {0}, and note that αr · κ+ = �� · κ+.
Suppose 
 < �� · κ+. To see that 
 � (topαi)

1
i∈κ , let A = 
 ∩{

�� · 	 : 	 ∈ κ+ \ {0}}, so |A| < κ+. Then (
 \ A)(�) = ∅ whereas∣∣∣α(�)r ∣∣∣ = m, so 
 \ A cannot contain a homeomorphic copy of αr .
To see that �� · κ+ → (topαi)1i∈κ , let A ⊆ �� · κ+ with |A| < κ+.
Then

A ⊆
⎛⎝⋃
	∈S

[
�� · 	 + 1, �� · (	 + 1)

]⎞⎠ ∪
{
��+1 · 	 : 	 ∈ κ+

}
for some S ⊆ κ+ with |S| < κ+. Let T ⊆ κ+ \ S with |T | = m + 1.
Then ⋃

	∈T

[
�� · 	 + 1, �� · (	 + 1)

]
is a homeomorphic copy of �� · (m + 1) + 1 disjoint from A, which
suffices.

(ii) Write αr = �� . To see that αr · κ+ → (topαi)
1
i∈κ , simply observe

that αr · κ+ = (αr + 1) · κ+ →
(
topαr + 1, (αi)i∈κ\{r}

)1
by the

previous case and use monotonicity. It remains to show either that
αr → (topαi)1i∈κ , or that if 
 < αr · κ+ then 
 � (topαi)1i∈κ .
(A) To see that αr → (topαi)

1
i∈κ, simply observe that if A ⊆ αr

with |A| < κ+, then supA < αr since cf (αr) ≥ κ+, and so
αr \ [0, supA] ∼= αr since αr is a power of �.

(B) Suppose 
 < αr · κ+. To see that 
 � (topαi)1i∈κ, let B ⊆ αr be
club with |B| = cf (αr), and let

A = 
 ∩ {αr · 	 + x : 	 ∈ κ+, x ∈ B ∪ {0}} .
Then |A| < κ+ since cf (αr) < κ+. Suppose for contradic-
tion X ⊆ 
 \ A with X ∼= αr . Since αr is a power of �,
using Theorem 2.16 and passing to a subspace if necessary,
we may assume that X is order-homeomorphic to αr . Let
Y = X ∪ {supX} ∼= αr + 1. Then Y (�) = {supX}, so by
Lemma 2.6 supX = αr · 	 for some 	 ∈ κ+ \ {0}. It fol-
lows using Proposition 2.14 that X is club in αr · 	. But then
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cf (αr · 	) = cf (αr) > ℵ0 and A is also club in αr · 	, so
X ∩ A 
= ∅, contrary to the definition of X .

(C) • Suppose 
 < αr · κ+. To see that 
 � (topαi)1i∈κ , let

A = 
 ∩
{
αr · 	 + �� · x : 	 ∈ κ+, x ∈ ���

}
,

so |A| < κ+ since � < κ+. Then (
 \ A)(�) = ∅ whereas
α(
�)
r

∼= ��� , so 
 \A cannot contain a homeomorphic copy
of αr .

• First note that since � > 0, either � is a successor ordinal
or cf (�) = ℵ0. To see that αr → (topαi)

1
i∈κ, let A ⊆

αr with |A| < κ+. Using the fact that � > κ+, we now
choose a strictly increasing cofinal sequence (�n)n∈� from
� with cf

(
��n
)
= cf (�n) = κ+ for all n ∈ �. If � =

ε + 1, then take �n = � + �ε · n + κ+ for all n ∈ �.
If cf (�) = ℵ0, then let (�n)n∈� be a strictly increasing
cofinal sequence from � with �n > κ+ for all n ∈ �, and
take �n = � + ��n + κ+ for all n ∈ �. Then for each
n ∈ �, let xn = max

{
��n , sup

(
A ∩ ��n+1)} and let Xn =(

xn,�
�n+1
)
. Then Xn ∼= ��n+1, so there exists Yn ⊆ Xn with

Yn ∼= ��n + 1. Then
⋃
n∈� Yn is a homeomorphic copy of

αr disjoint from A.
(b) In this case � = ℵ0.

(i) To see that αr → (topαi)
1
i∈κ, simply observe that if A ⊆ αr with

|A| < ℵ0 then αr \ [0,maxA] ∼= αr .
(ii) Write �� · m + 1 ≤ αr ≤ �� · (m + 1) with � an ordinal and
m ∈ � \ {0}, and note that αr · � = ��+1.
Suppose 
 < ��+1. To see that 
 � (topαi)

1
i∈κ , let A = 
 ∩{

�� · n : n ∈ � \ {0}}, which is finite. Then (
 \ A)(�) = ∅ whereas∣∣∣α(�)r ∣∣∣ = m, so 
 \ A cannot contain a homeomorphic copy of αr .
To see that ��+1 → (topαi)

1
i∈κ , simply observe that �

�+1 →(
top��+1, (αi)i∈κ\{r}

)1
by the previous case and use monotonicity.

(c) In this case � =
∑
i∈κ\{r} (αi − 1) + 1.

(i) The result is trivial if κ = 1, and if αr is a power of � then the
argument of case 2(b)i suffices.

(ii) Suppose 
 < �� ·(�− 1 +m)+1.To see that 
 � (topαi)1i∈κ , letA =

 ∩ {��,�� · 2, . . . , �� · (�− 1)}, so |A| < �. Then ∣∣∣(
 \ A)(�)∣∣∣ ≤
m− 1 whereas

∣∣∣α(�)r ∣∣∣ = m, so 
 \A cannot contain a homeomorphic
copy of αr .
To see that �� · (�− 1 +m) + 1 → (topαi)

1
i∈κ , suppose A ⊆

�� · (�− 1 +m) + 1 with |A| < �. Then by the argument of
case 2(b)i we may assume A =

{
�� · n : n ∈ S} for some S ⊆

{1, 2, . . . , �− 1 +m} with S ≤ �. Since κ > 1 we have S 
= ∅, say
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s ∈ S. Then⎛⎝ ⋃
n∈{1,2,...,�−1+m}\S

[
�� · n + 1, �� · (n + 1)

]⎞⎠∪
[
�� · s + 1, �� · (s + 1)

)

is a homeomorphic copy of �� · (m + 1) disjoint from A, which
suffices.

(3) This is Corollaries 4.22, 4.24, 4.28, and 4.31.
(4) This is Theorem 4.20.
(5) This is Theorem 4.19.
(6) (a) This is the finite pigeonhole principle.
(b) This follows from Theorems 4.6 and 4.7 using monotonicity of
pigeonhole numbers.

(c) By Lemmas 2.8 and 2.9, we may assume that for each i ∈ κ, either
αi = � [�i ,mi ] or αi = ��i · (mi + 1) and �i > 0. It follows that
one of Theorems 4.9 and 4.11 applies, and thus Ptop (αi)i∈κ is equal
to either �� · m + 1 or �� · (m + 1), where � = �0 # �1 # · · · # �κ−1
and m =

∑
i∈κ (mi − 1) + 1. It remains to determine whether or not

�� ·m + 1→ (topαi)1i∈κ.
(i) This is the “only if” part of Theorem 4.12.
(ii) • If there is no s ∈ κ such that αs = ��s · (ms + 1), then αi =

� [�i ,mi ] for all i ∈ κ and the result is given by Theorem 4.9.
• If there exists s ∈ κ with αs = ��s · (ms + 1) and mi = 1
for all i ∈ κ \ {s}, then assume without loss of generality that
CB (�s) is minimal among any s ∈ κ with these properties. By
definition of case 6(c)ii, there must still exist t ∈ κ such that
CB (�t) < CB (�s ), and so the result is given by the “if” part of
Theorem 4.12.

• Otherwise, let c : �� · m + 1 → κ be a colouring, and assume
for simplicity that �i > 0 for all i ∈ κ, the other case being no
harder. First note that if c−1 ({j}) contains a homeomorphic
copy of ��j+1 for some j ∈ κ, then we are done. Therefore
by Lemma 4.10 we may assume that for each l ∈ m and each
i ∈ κ, there exists Yi,l ⊆ c−1 ({i}) ∩

[
�� · l + 1, �� · (l + 1))

with Yi,l ∼= ��i . Now by Theorem 4.9, there exists j ∈ κ and
X ⊆ c−1 ({j}) with X ∼= ��j · mj + 1, and moreover by the
proof of that theorem we may assume that

X ⊆
⋃
l∈S

[
�� · l + 1, �� · (l + 1)

]
for some S ⊆ m with |S| = mj . Two possibilities now remain.
– If there exist distinct s, t ∈ κ with ms,mt ≥ 2, then m > mi
for all i ∈ κ.
– If there exists s ∈ κ with αs = � [�s ,ms ],ms ≥ 2 andmi = 1
for all i ∈ κ \ {s}, then m > mi for all i ∈ κ \ {s}. If j = s
then we are done, so we may assume that j 
= s .
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In either case we havem > mj . Therefore there exists l ∈ m \S,
whence X ∪ Yj,l is a homeomorphic copy of ��j · (mj + 1) in
colour j, which suffices. 	
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