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Reovirus type 3 (Dearing) (RT3D) infection is selective 
for cells harboring a mutated/activated RAS pathway. 
Therefore, in a panel of melanoma cell lines (including 
RAS mutant, BRAF mutant and RAS/BRAF wild-type), 
we assessed therapeutic combinations that enhance/ 
suppress ERK1/2 signaling through use of BRAF/MEK 
inhibitors. In RAS mutant cells, the combination of RT3D 
with the BRAF inhibitor PLX4720 (paradoxically increas-
ing ERK1/2 signaling in this context) did not enhance 
reoviral cytotoxicity. Instead, and somewhat surprisingly, 
RT3D and BRAF inhibition led to enhanced cell kill in BRAF 
mutated cell lines. Likewise, ERK1/2 inhibition, using the 
MEK inhibitor PD184352, in combination with RT3D 
resulted in enhanced cell kill in the entire panel. Interest-
ingly, TCID

50
 assays showed that BRAF and MEK inhibi-

tors did not affect viral replication. Instead, enhanced 
efficacy was mediated through ER stress-induced apo-
ptosis, induced by the combination of ERK1/2 inhibition 
and reovirus infection. In vivo, combined treatments of 
RT3D and PLX4720 showed significantly increased activ-
ity in BRAF mutant tumors in both immune-deficient 
and immune-competent models. These data provide a 
strong rationale for clinical translation of strategies in 
which RT3D is combined with BRAF inhibitors (in BRAF 
mutant melanoma) and/or MEK inhibitors (in BRAF and 
RAS mutant melanoma).

Received 4 August 2014; accepted 15 December 2014; advance online  
publication 10 March 2015. doi:10.1038/mt.2015.15

INTRODUCTION
Until relatively recently, there were few efective therapeu-

tic options for patients with metastatic malignant melanoma 

(MMM). Standard systemic chemotherapy for MMM, mostly 

using dacarbazine-based regimens, resulted in response rates of 

only 10–20% and these were likely to be of short duration.1

In the last 5 years, treatment strategies for metastatic malignant 

melanoma (MMM) have altered radically, such that MMM is now 

seen as an exemplar of the power of targeted therapy. he discov-

ery that the majority of MMMs harbor an activating mutation in 

the RAS-RAF-MEK-ERK signaling pathway has led directly to the 

development of novel agents for therapy. NRASQ61 and BRAFV600 

mutations are the most common mutations in MMM (together 

account for ~70% of cases) but they are mutually exclusive unless 

put under selective pressure of BRAF-inhibitors (http://can-

cer.sanger.ac.uk/cancergenome/projects/cosmic/). BRAFV600E/K 

mutation occurs in ~50% of melanomas2 and can be targeted by 

potent, selective inhibitors such as vemurafenib (PLX4032) and 

dabrafenib (GSK2118436).3–7 Randomized studies in patients 

with BRAF mutant tumors have shown that BRAF inhibition can 

improve progression-free and overall survival rates, when com-

pared to the previous gold-standard of single-agent dacarbazine.8 

In addition, speciic inhibitors of downstream components of the 

RAS-RAF-MEK-ERK pathway (e.g., MEK inhibitor, trametinib, 

selumetinib) have shown single agent activity in BRAF mutant 

MMM (clinicaltrials.gov).9 A further reinement of this approach 

has been to combine both BRAF and MEK inhibition to achieve 

double blockade on the pathway. Using this approach, the com-

bination of dabrafenib and trametinib was shown to be superior 

to single-agent dabrafenib in patients with BRAFV600E/D mutant 

melanoma.10 However, despite the dramatic successes in the con-

text of BRAF mutant melanoma, the vast majority of responding 

patients will relapse following the development of BRAF inhib-

itor-resistant disease. Such patients have a very poor prognosis. 

Moreover, for the 15–20% of patients with NRASQ61 and the 2% 

of patients with KRASG12 mutant tumors, the therapeutic outlook 

is not so promising. In such patients, BRAF inhibition leads to 

paradoxical activation of the RAS-RAF-MEK-ERK pathway11 and 

it is uncertain if single-agent MEK inhibition can achieve clini-

cally beneicial pathway blockade at maximum tolerated doses.12 

MEK inhibitors are currently under evaluation in RAS mutant 

melanomas and may represent an important therapeutic advance 
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in this genetic context. here is a continued need to develop new 

treatment approaches that will be able to optimize therapeutic 

outcomes for patients with RAS-RAF-MEK-ERK pathway-driven 

MMM.

Oncolytic virotherapy represents a novel therapeutic approach 

to melanoma. he importance of RAS-RAF-MEK-ERK pathway 

activation to the biology and natural history of melanoma makes 

it an excellent model in which to test a RAS-targeted oncolytic 

virus, such as reovirus Type 3 (Dearing) (RT3D). As a single 

agent, RT3D is safe and tolerable, but lacks signiicant antitumor 

eicacy—either in phase 1 (refs. 13,14) or phase 2 studies.15 In the 

latter study, we reported no objective responses in 15 patients with 

metastatic melanoma with median progression-free and overall 

survivals of only 45 and 165 days, respectively. Importantly, how-

ever, RT3D has been extensively tested preclinically and clinically 

in combination with conventional cytotoxic drugs and these stud-

ies have shown it to be safe and tolerable.16–18 Critically, this work 

has shown that by combining RT3D with conventional anticancer 

drugs or radiation, we can achieve synergistic interactions.19–23

As a direct extension of this work, we explored the possibil-

ity that combining RT3D with drugs that target the RAS-RAF-

MEK-ERK pathway may be efective in malignant melanoma. 

We tested interactions between RT3D and agents that enhance or 

inhibit BRAF and/or MEK in various melanoma genotypes (RAS 

mutant, BRAF mutant and RAS/BRAF wild-type) with a view 

to understanding the nature of any combinatorial interactions 

between the treatments. In planning these studies, we recognized 

the possibility of a number of diferent interactions. Speciically, 

we predicted that the viral and small molecule therapeutics might 

simply act independently of one another to mediate an additive 

efect. Alternatively, we considered the possibility that MEK and/

or BRAF inhibition might antagonize the activity of RT3D by 

shutting of RAS pathway-driven viral replication and cytotoxic-

ity. Finally, we hypothesized that a synergistic interaction might 

occur in RAS mutant cell lines, through BRAF inhibitor-medi-

ated paradoxical activation of MAPK signaling with consequent 

enhancement of RT3D replication and cytotoxicity. In fact, these 

studies revealed interactions of increased cell kill between RT3D 

and inhibition (rather than enhancement) of the RAS-RAF-MEK-

ERK signaling pathway. hese indings were contrary to our origi-

nal hypothesis, and provide a clear rationale for translational 

clinical studies of RT3D with drugs that inhibit RAS-RAF-MEK-

ERK signaling in MMM.

RESULTS
RT3D, PLX4720, and PD184352 are selective for 
melanoma relative to normal skin fibroblasts, and 
melanoma with a range of genetic backgrounds vary 
in sensitivity to RT3D
Malme-3 (normal skin ibroblasts) and Malme-3M (BRAF 

mutant melanoma) are both derived from the same patient, thus 

providing tumor and normal tissue counterparts for comparative 

in vitro studies. Following RT3D treatment, maximum levels of 

cell death were observed in the melanoma cell line at doses as low 

as multiplicity of infection (MOI) 3. he normal skin ibroblasts 

were refractory to RT3D, even at MOI 350. Similar tests were car-

ried out for the PLX4720 and PD184352 inhibitors on these cell 

lines. PLX4720 and PD184352 were toxic at concentrations of 

0.4 µmol/l or greater, with no toxicity on normal skin ibroblasts 

(Figure 1a,b, Supplementary Figure S1). To conirm on-target 

efect, pERK1/2 levels, downstream of RAS/MEK, were assessed in 

PMWK, MeWo (RAS/BRAF wild-type), A375, Mel624 (BRAFV600E 

mutant), WM266.4 (BRAFV600D mutant), DO4 (NRASQ61L mutant) 

and WM1791c (KRASQ61H) cells treated with inhibitors by west-

ern blot (Figure 1c). he BRAF inhibitor PLX4720 switched of 

ERK1/2 signaling in BRAFV600E mutant cell lines at 0.3 µmol/l, but 

this was less apparent in the WM266.4 BRAFV600D mutant cell line. 

In RAS mutant cell lines, PLX4720 at 0.3 µmol/l paradoxically 

enhanced ERK1/2 signaling, as previously reported.11 he MEK 

inhibitor PD184352 completely abrogated ERK1/2 signaling in all 

cell lines at 1 µmol/l.

his panel of seven melanoma cell lines with varying genetic 

backgrounds were analyzed for their sensitivity to RT3D. RT3D 

sensitivity was not dependent on mutational status. he cell 

line panel was also assessed for sensitivity to the BRAF inhibi-

tor PLX4720 and the MEK inhibitor PD184352 (Figure 1d, 

Supplementary Table S1). BRAF mutant cell lines were sensitive 

to PLX4720 and most sensitive to PD184352 relative to the BRAF 

wild-type cells tested. In RAS/BRAF wild-type and RAS mutant 

cell lines, it was not possible to derive an IC
50

 for PLX4720, as 

expected.

Further activation of MEK-ERK signaling does not 
enhance RT3D cytotoxicity in RAS mutant cells
Heidorn et al. demonstrated that treating RAS mutated cell lines 

(DO4, WM1791c) with the BRAF inhibitor (PLX4720) causes 

paradoxical enhancement of MEK-ERK signaling, through 

BRAF:CRAF heterodimerization and CRAF activation (see 

Figure 1c). We hypothesized that such signaling events would 

provide a favorable environment for RT3D-induced replication 

and cytotoxicity and, in efect, represent a situation in which com-

bined RT3D and BRAF inhibition would exert synthetic lethal-

ity in RAS mutant melanoma. hus, RT3D was titrated on DO4 

and WM1791c cells (NRASQ61L and KRASQ61H mutant, respec-

tively) in the presence of PLX4720. Interestingly, RT3D-induced 

cytotoxicity was not enhanced by MEK-ERK up-regulation and, 

if anything, was reduced in DO4 cells. Similarly, in RAS/BRAF 

wild-type melanoma cells (PMWK, MeWo), the combination did 

not mediate increased cytotoxicity (Figure 1e).

Inhibition of MEK-ERK signaling with RT3D enhances 
cell kill in melanoma
We also hypothesized that abrogation of RAS-RAF-MEK-ERK 

signaling by PLX4720 in BRAF mutant cell lines could create an 

adverse environment for RT3D-induced cytotoxicity. Cells with 

oncogenic BRAF were treated with RT3D and BRAF inhibitor 

PLX4720, which switches of MEK-ERK signaling, contrary to 

the RAS mutant setting (see Figure 1c). Surprisingly, the com-

bination of BRAF inhibition and RT3D infection resulted in the 

greatest levels of cell kill (Figure 2a). When these surviving frac-

tions were entered into calcysyn sotware to calculate CI (com-

bination index) values, derived by the Chou and Talalay method 

to assess for synergy, addition or antagonism, a synergistic reac-

tion was recorded in the BRAFV600E mutant (A375 and Mel624) 
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cell lines (Supplementary Figure S2). To conirm this observa-

tion, similar experiments combining RT3D with downstream 

MEK inhibition (with PD184352) were performed in BRAF 

mutant melanoma (Figure 2b), and in BRAF wild-type melanoma 

(Figure 2c). hese surviving fractions also translated to a syner-

gistic interaction when entered into calcusyn across all cell lines, 

Figure 1 RT3D, PLX4720, and PD184352 are selective for melanoma relative to normal skin fibroblasts. Driving paradoxical p-ERK signaling 
using PLX4720 in BRAF wild-type melanoma cell lines does not enhance RT3D cell kill. (a) RT3D, PLX4720, or PD184352 was titrated along Malme 
3 (normal skin fibroblast) and Malme-3M (BRAF mutant melanoma) cells, both derived from the same patient. Cell survival was measured 96 hours 
later by MTT assay. (b) Pictomicrograph of cytopathic effect of RT3D at a low dose (MOI 3) and high dose (MOI 350) on Malme-3 and Malme-3M 
cells. (c) PMWK and MeWo (wild-type BRAF/RAS), A375 and Mel624 (BRAFV600E mutant), WM266.4 (BRAFV600D mutant), DO4 (NRASQ61L mutant) and 
WM1791c (KRASQ61H mutant) melanoma cells were treated with PLX4720 (0.3 µmol/l) or PD184352 (0.001–1 µmol/l) for 6 hours before harvesting 
for western blot and probing for pERK1/2 downstream of RAS/MEK signaling. (d) Melanoma cells were treated with dilutions of RT3D, PLX4720, 
or PD184352 and cell survival was measured at 96 hours by MTT assay. (e) BRAF wild-type cells (PMWK, MeWo, DO4, WM1791c) were assessed 
for RT3D cytoxoicity in the presence (red) and absence (black) of PLX4720 (0.3 µmol/l), whereby p-ERK signaling is enhanced in the RAS mutant 
background (DO4, WM1791c). Cell survival was measured 96 hours later by MTT. Data are derived from three independent experiments ± SEM.
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with the exception of BRAFV600D mutant WM226.4, and PMWK 

(at doses of PD184352 at 10 µmol/l and above) (Supplementary 

Figure S2). To conirm that this was a cell-speciic phenomenon 

in PMWK cells, the combination of RT3D and PD184352 was 

assessed with another RAS/BRAF wild-type melanoma cell line, 

MeWo. In this cell line, RT3D and PD184352 gave greatest levels 

of cell kill across all doses (Supplementary Figure S3).

It has been previously reported that the combination of both 

BRAF and MEK inhibition leads to improved progression-free 

survival in patients with BRAF mutant melanoma.10 We tested the 

Figure 2 Combining RT3D with BRAF and/or MEK inhibition enhances cell kill in melanoma cell lines. BRAF mutant melanoma cells were treated 
with 4×, 2×, 1×, 0.5×, and 0.25× IC

50
 doses of (a) RT3D, PLX4720, or the combination at equal ratios. (b) RT3D, PD184352, or the combination at 

equal ratios. (c) BRAF wild-type melanoma cell lines were treated with 4×, 2×, 1×, 0.5×, and 0.25× IC
50

 doses of RT3D, PD184352, or the combination 
at equal ratios. (d) Wild-type BRAF/RAS (PMWK), BRAFV600E mutant (A375) and BRAF wild-type/NRASQ61L mutant (DO4) cell lines were treated with 
RT3D, PLX4720 (PLX), PD184352 (PD), the combination of PLX4720 and PD184352, or the triple combination of RT3D, PLX4720, and PD184352 at 
4×, 2×, 1×, 0.5×, and 0.25× IC

50
 doses. For all experiments, cell survival was measured at 96 hours by MTT assay and data are derived from three inde-

pendent experiments ± SEM. (e) BRAFV600E mutant (A375 and Mel624) cells were treated with BRAF and/or MEK inhibitors (PLX4720 and PD184352 
respectively), followed by infection with RT3D at various MOI. 48 hours later, cells were stained with crystal violet.
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PLX4720/PD184352 combination with RT3D in PMWK (wild-

type), A375 (BRAFV600E mutant), and DO4 (NRASQ61L mutant) cell 

lines. he triple combination again caused most cell death com-

pared to the BRAF plus MEK inhibitor doublet therapy, and the 

single agent counterparts. hese data translated to synergy using 

the Chou and Talalay method, again with the exception of PMWK 

cells at high ratios of the IC
50

 (two- and fourfold) (Figure  2d, 

Supplementary Figure S2).

Taken together, the BRAFV600E mutant cell lines showed the 

greatest levels of cell death with BRAF/MEK inhibition and 

RT3D, as further illustrated by crystal violet assay (Figure 2e). 

If RT3D is titrated on BRAFV600E mutant melanoma, we esti-

mate almost a log reduction in RT3D particles needed to cause 

similar cell kill with the presence of PLX4720 (Supplementary 

Figure S4).

To support these results, experiments were carried out with 

an alternative BRAF inhibitor (Dabrafenib) and MEK inhibitor 

(Trametinib). Similar levels of increased cell kill with combination 

therapy were observed (Supplementary Figure S5).

To assess whether the ordering of virus and inhibitors had 

any efect on results, RT3D was added either 6 hours before, at 

the same time, or ater PLX4720. hese various schedules had no 

efect on cell kill (Supplementary Figure S6).

Therapeutic concentrations of BRAF or MEK 
inhibitors do not affect RT3D replication
To explain the enhanced cell kill with RT3D in combination 

with PLX4720 and/or PD184352, we explored whether BRAF/

MEK inhibition was helping to increase reoviral replication. A 

RAS/BRAF wild-type (PMWK), a BRAFV600E mutant (A375), 

and NRASQ61L mutant (DO4) melanoma were analyzed for viral 

replication in the presence of PLX4720 or PD184352 by one-step 

growth curves (Figure 3a). he presence of BRAF or MEK inhibi-

tors had no efect on reoviral replication.

Figure 3 RT3D replication is not affected in the presence of BRAF/MEK inhibition; however, cleaved caspase 3/7 is enhanced in BRAF mutant 
melanoma. In RAS mutant melanoma, enhancing p-ERK signaling with PLX4720 prevents RT3D-induced caspase 3/7 activation. (a) RT3D replica-
tion was measured in the presence of PLX4720 (0.3 µmol/l) or PD1843522 (1 µmol/l) by one step viral growth assay in PMWK, A375 and DO4. (b) 
Wild-type BRAF (PMWK, DO4) were treated with PD184352 (1 µmol/l) (PD), followed by RT3D (MOI 0.1), and BRAFV600E mutant (A375) were treated 
with PLX4720 (0.3 µmol/l) (PLX) followed by RT3D (MOI 0.1). At 6, 24, 30, 48, and 54 hours after infection samples were harvested and probed for 
cleaved caspase 3 and 7 by western blot. (c) Cells were treated with BRAF/MEK inhibition and various doses of RT3D depending on sensitivity. At 72 
hours cleaved caspase 3/7 (luminescence) was analyzed by caspase glo assay. Alongside these assays, cells were treated with inhibitors in combina-
tion with RT3D at an MOI of 0.04 (PMWK, A375), or 0.01 (DO4), and at 48 hours cells were harvested and probed for cleaved caspase 3 and 7 by 
western blot.
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RT3D-induced caspase 3/7 activation is enhanced in 
BRAF mutant melanoma in the presence of PLX4720 
and/or PD184352
RT3D has been previously shown to induce apoptotic cell death. 

To explain the observed enhanced cell kill, we wanted to test 

whether the efects of BRAF or MEK inhibition with RT3D caused 

any changes in apoptotic events. Samples were collected at 6, 24, 

30, 48, and 54 hours, from BRAF wild-type melanoma (PMWK, 

DO4) treated with RT3D in combination with PD184352, or 

BRAFV600E mutant melanoma (A375) treated with RT3D in com-

bination with PLX4720. Samples were probed for cleaved caspase 

3 and 7 by western blot. By 48 hours, RT3D caused caspase 3 and 7 

cleavage in all three cell lines by western blot. However, the kinet-

ics of this activation was unchanged by the addition of a BRAF/

MEK inhibitor. Strikingly, cleaved caspase 3 and 7 was dramati-

cally enhanced in BRAFV600E mutant A375 cells treated with the 

combination of RT3D and BRAF inhibition, compared to single 

agent treatment (Figure 3b).

To conirm this observation, the same panel of cell lines was 

treated with a variety of RT3D doses (depending on their RT3D 

sensitivity), in the presence of either or both BRAF/MEK inhibi-

tors, and cleaved caspase 3/7 was measured by caspase glo assay 

(Figure 3c). In A375V600E BRAF mutant cells, inhibition of BRAF, 

MEK or both BRAF and MEK resulted in an increase in caspase 

3/7 cleavage, correlating to results observed by western blot. 

Interestingly, when RT3D is in an environment in which ERK1/2 

signaling is paradoxically enhanced instead of switched of (by 

BRAF inhibitor PLX4720 in RAS mutant DO4 cells), cleaved cas-

pase 3/7 appears to be reduced (Figure 3c).

Enhanced apoptosis is not mediated through p-JNK/
TNF-α signaling
We have previously reported that vaccinia virus (GLV-1h68) acti-

vates MAPK and JNK/TNF-α (prosurvival) signaling and that 

inhibition of these pathways during vaccinia viral infection leads 

to synthetic lethality through enhanced apoptosis, speciically in 

BRAF mutant melanoma.24 Because RT3D is also capable of acti-

vating ERK1/2 signaling (Figure 4a), we tested RT3D’s efect on 

JNK/TNF-α pathway activity and looked for of-target inhibitory 

efects of BRAF and MEK inhibitors on antiapoptotic p-JNK.

In contrast to GLV-1h68 vaccinia, RT3D does not induce p-JNK 

in BRAF mutant melanoma, and TNF-α was also undetectable in 

PMWK, A375 and DO4 cells treated with RT3D, with and without 

the addition of BRAF/MEK inhibitors (Supplementary Figure S7). 

herefore, we were able to exclude a synthetic lethal interaction 

between BRAF/MEK inhibition and JNK/TNF-α signaling.

Figure 4 Enhanced apoptosis observed with RT3D and BRAF/MEK inhibition is mediated by ER stress. (a) BRAFV600E mutant (A375) and NRASQ61L 
mutant (DO4) cell lines were treated with increasing doses of RT3D in the presence of PLX4720 (0.3 µmol/l), PD184352 (1 µmol/l), or the combi-
nation of both inhibitors. At 48 hours, lysates were collected and analyzed for p-ERK and p-EIF2α by western blot. (b) Densitometry of p-EIF2α by 
western analysis is shown for A375 and DO4 cells treated with inhibitors and RT3D (MOI 0.1) at 48 hours. Data are averaged for three independent 
repeats ± SEM (c) A375 and DO4 cells were treated with PLX4720 and/or PD184352 followed by various doses of RT3D. CHOP gene expression was 
determined by qRT-PCR at 40 hours. Levels of mRNA were standardized to the expression of beta actin. Mean ± SEM, n = 3.
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Enhanced apoptosis through RT3D and BRAF/MEK 
inhibition is due to ER stress-induced apoptosis
BRAFV600E mutant (A375) and NRASQ61L mutant (DO4) mela-

noma both respond to RT3D by switching on ERK1/2, and antivi-

ral EIF2α (Figure 4a,b).

EIF2α is also phosphorylated in response to BRAF and/

or MEK inhibition in BRAF V600E mutant A375 cells, and with 

MEK inhibition in NRASQ61L mutant DO4 cells. However, com-

binations of RT3D with BRAF/MEK inhibition downregulated 

phosphorylated EIF2α in both A375 and DO4 cells, correlating 

with a situation that yielded the greatest level of cell death (see 

Figure 2). In DO4 cells, where ERK1/2 is enhanced paradoxically 

by PLX4720 treatment, in contrast, an increase in p-EIF2α was 

observed, correlating with a situation that did not enhance cell kill 

(see Figure 1e).

EIF2α is phosphorylated in response to ER stress, and dephos-

phorylated in a proapoptotic fashion when ER stress is sustained 

and unresolvable, by CHOP-mediated upregulation of GADD34.25 

We hypothesized that BRAF or MEK inhibition would sensitize 

melanoma to ER stress induced by RT3D. RT3D has been previ-

ously shown to induce ER stress-mediated apoptosis in pancre-

atic cancer,26 and MEK inhibition sensitizes melanoma cells to ER 

stress-induced apoptosis.27

A375 and DO4 cells were treated with various doses of RT3D 

in combination with BRAF or MEK inhibition, and analyzed 

for CHOP mRNA by Q-PCR (Figure 4c). Both PLX4720 and 

PD184352 in combination with RT3D in BRAF mutant A375 

cells induced CHOP mRNA levels above those seen with just the 

single agent counterparts. In DO4 cells, CHOP mRNA levels were 

elevated signiicantly with RT3D in combination with the MEK 

inhibitor.

Enhanced cell kill caused by BRAF/MEK inhibition in 
combination with RT3D can be reversed by salubrinal 
in BRAF mutant melanoma
We next assessed if the synergistic interaction between BRAF/

MEK inhibition and RT3D could be reversed by salubrinal, an 

inhibitor of the phosphatases that dephosphorylate EIF2α (and, 

thus, antagonize ER stress-induced apoptosis). Salubrinal was 

able to sustain EIF2α phosphorylation throughout combinational 

therapy in A375 BRAFV600E melanoma, preventing the cells ability 

to “tip” into ER stress-induced apoptosis, and was able to partially 

rescue cells from the enhanced cell kill of the combinatorial treat-

ments (Figure 5a,b Supplementary Figure S8).

Next, we assessed other pro-apoptotic genes downstream of 

CHOP, such as PUMA and NOXA, which have previously been 

implicated in reovirus-mediated ER stress-induced apoptosis,28 

and whether the expression of these could be reduced by salubri-

nal. NOXA was strongly induced by RT3D, and expression was 

enhanced further by BRAF or MEK inhibition. With the addi-

tion of salubrinal, the expression of proapoptotic NOXA, but not 

PUMA, was reduced (Figure 5c).

To establish a link between EIF2α phosphorylation and cas-

pase activation, caspase 3/7 was measured by luminescence assay 

with therapeutic RT3D plus BRAF/MEK inhibitor combina-

tions either with or without salubrinal. he addition of salubrinal 

reduced the amount of cleaved caspase 3/7, which was otherwise 

increased with combination treatments (Figure 5d). Since cas-

pase 4 activation has been implicated in ER stress-induced apo-

ptosis, we also hypothesized that by using a caspase 4 inhibitor 

(Z-YVAD), we would be able to rescue cells from RT3D + BRAF/

MEK inhibition-induced cytotoxicity. Cell survival of BRAFV600E 

mutant A375 melanoma treated with the combination of RT3D 

and the BRAF inhibitor PLX4720 was partially restored by the 

addition of the caspase 4 inhibitor (Figure 5e).

Taken together, these data show that the enhanced cytotox-

icity of RT3D with BRAF/MEK inhibition is due to enhanced 

ER stress-induced apoptosis, mediated through EIF2α, in BRAF 

mutant melanoma.

In vivo combination of RT3D and BRAF inhibition is 
therapeutic in BRAF mutant melanoma
he therapeutic eicacy of BRAF inhibition in combination with 

RT3D was assessed in A375 (BRAFV600E mutant) xenograts in 

CD1 nude mice. Animals were treated with PLX4720 daily by oral 

gavage, either alone or in combination with a single intratumoral 

injection of RT3D. Combined treatment reduced tumor burden 

and survival was 100% by day 60 (Figure 6a, Supplementary 

Figure S9). At the termination of the experiment (day 60), 

tumors were harvested and analyzed for RT3D by TCID
50

 assay. 

Despite increased therapeutic eicacy in tumors treated with 

RT3D and PLX4720, viral titres per mg of tumor were similar 

to those treated with RT3D alone at the end of the experiment 

(Figure 6b). his inding supports the in vitro data suggesting 

that the increased therapy seen with combinations of RT3D and 

BRAF inhibition is not due to enhanced viral replication. Next, 

we assessed therapeutic eicacy of BRAF inhibition in combina-

tion with RT3D in immune-competent C57BL/6 mice bearing 

4434 murine BRAF mutant melanoma cells. Combination ther-

apy resulted in the lowest tumor burden compared to the sin-

gle agent treatments (Figure 6c). he efects of pharmaceutical 

inhibitors and RT3D on this cell line were also analyzed in vitro, 

with combination treatment resulting in enhanced cell death over 

and above that observed in single agent counterparts (Figure 6d, 

Supplementary Figure S2).

DISCUSSION
his study addresses the important issue of how oncolytic viro-

therapy can be used in combination with targeted therapy (kinase 

inhibitors) to increase eicacy of single agent treatments in BRAF 

and RAS mutant melanoma.

First, we evaluated the potential tumor speciicity of RT3D, 

PLX4720 and PD184352 treatments on benign melanocytes ver-

sus malignant melanoma cells derived from the same patient. All 

treatments were essentially inactive against the non-malignant 

Malme-3 cells, such that IC
50

 values could not be derived (preclud-

ing subsequent combination studies) (Figure 1a,b). In contrast, 

the melanoma cells (Malme-3M) were sensitive to all three agents. 

Moreover, assessment of single agent activities indicated that 

malignant melanoma cell lines were sensitive to RT3D-induced 

cytotoxicity, but exhibited an almost 4-log range of IC
50

 values that 

was not clearly associated with any speciic genotype (Figure 1d). 

Interestingly, in the panel of seven cell lines, the least and most 

sensitive cell lines were KRAS and NRAS mutated cell lines, 
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respectively. he BRAF mutant cell lines were more similar in 

their sensitivities, although even they showed a 40-fold diference 

in IC
50

 values for RT3D. For PLX4720 and PD184352, the BRAF 

mutant cell lines were most sensitive to each of the drugs and, as 

expected, it was not possible to deine IC
50

 values for PLX4720 

in the RAS mutant or RAS/BRAF wild-type cell lines. Our data 

corroborate previous reports on BRAF inhibitor-induced reduced 

ERK1/2 signaling in BRAFV600E mutant cell lines, but increased 

signaling in RAS mutant cells (Figure 1c).11

As BRAF inhibitors are known to paradoxically increase RAS-

RAF-MEK-ERK signaling downstream of oncogenic RAS in RAS 

mutant melanoma cell lines, and RT3D has been shown to repli-

cate selectively in cells with mutated or activated RAS signaling, 

we expected to see enhanced RT3D cytotoxicity in this context. 

Figure 5 Salubrinal can partially rescue cells from enhanced cytotoxicity observed with RT3D and BRAF/MEK inhibition in BRAF mutant mela-
noma. (a) BRAFV600E mutant (A375) cells were treated with PLX4720 (0.3 µmol/l) or PD184352 (1 µmol/l) prior to infection with RT3D, 24 hours later, 
cells were treated with 20 µmol/l salubrinal (as to not interfere with replication), and cell survival measured at 72 hours by MTT assay (top panel). 
In a similar experiment, cells were stained with crystal violet at 48 hours (bottom panel). (b) To confirm on-target effect, cells that were treated with 
inhibitors, followed by RT3D (MOI 0.1), and salubrinal 24 hours after infection, were also harvested at 40, 44, and 48 hours and probed with p-EIF2α 
by western blot. (c) A375 cells treated with inhibitors and RT3D (MOI 0.1), and at 40 hours were analyzed by qRT-PCR for PUMA and NOXA, with 
or without the addition of salubrinal 24 hours after infection. For all qRT-PCR analysis, levels of mRNA were standardized to the expression of beta 
actin. Mean ± SEM, n = 3. (d) Cells treated with inhibitors, followed by RT3D, and salubrinal 24 hours post infection were analyzed for presence of 
cleaved caspase 3/7 at 72 hours by caspase glo assay. (e) Cells were treated with the caspase 4 inhibitor Z-YVAD prior to treatment with PLX4720 
and RT3D (MOI 3). Cell survival was then measured 72 hours later by MTT assay, or harvested 48 hours later and probed with caspase 3 to confirm 
on-target effect.

1.0

0.5

S
u
rv

iv
in

g
 f

ra
c
ti
o
n

0.0

1.0

0.5

S
u
rv

iv
in

g
 f
ra

c
ti
o
n

0.0

RT3D: − + − +

+PLX

20

B
a
s
a
l

P
L
X

P
D

B
a
s
a
l

P
L
X

P
D

A375 A375

15

10

d
d
C

T
 (

P
U

M
A

)

5

+ RT3D

0.1 MOI

0

20 200

100

150

50

0

15

10

d
d
C

T
 (

P
U

M
A

)

d
d
C

T
 (

N
O

X
A

)

100

150

50

0

3 1
0
.3

0
.1 0 3 1

0
.3

0
.1 0 3 1

0
.3

0
.1 0

L
u
m

in
e
s
c
e
n
c
e
/p

e
r 

c
e
ll

5

0

+ Salubrinal + Salubrinal*
*

RT3D (MOI)

40 hours

44 hours

48 hours

38

+ + + +

+ + − +

− − + +

+

RT3D

Salubrinal

PD184352

PLX4720 + − −

+ + + +

+ + − +

− − + +

+ + − −

42

42

42

β-actin

38

38
+ PLX + PD + PLX + PD

+ Salubrinal

+ Salubrinal

+
 R

T
3
D

M
O

I 
0
.1

:

+PLX4720

0
.0

0
0
.3

0
1
.0

0
3
.0

0

0
.0

0
0
.3

0
1
.0

0
3
.0

0
+PD184352

0
.0

0
0
.3

0
1
.0

0
3
.0

0

+PLX4720

0
.0

0
0
.3

0
1
.0

0
3
.0

0

0
.0

0
0
.3

0
1
.0

0
3
.0

0

+PD184352

0
.0

0
0
.3

0
1
.0

0
3
.0

0

+PLX4720

+Z-YVAD

RT3D:

PLX4720:

DMSO 19 42

42

β actin

17

19
17+Z-YVAD

−

−

+

−

+

+

−

−

+

−

+

+

+PD184352

3 1
0
.3

0
.1 0 3 1

0
.3

0
.1 0 3 1

0
.3

0
.1 0

+PLX4720

RT3D (MOI)

+PD184352

+ Salubrinal

pEIF2α

B
a
s
a
l

P
L
X

P
D

B
a
s
a
l

P
L
X

P
D

+ RT3D

0.1 MOI

B
a
s
a
l

P
L
X

P
D

B
a
s
a
l

P
L
X

P
D

+ RT3D

0.1 MOI

200

100

150

50

0d
d
C

T
 (

N
O

X
A

)

B
a
s
a
l

P
L
X

P
D

B
a
s
a
l

P
L
X

P
D

+ RT3D

0.1 MOI

Cleaved caspase 3

− + − +

+PLX

a

b

c

d e

938 www.moleculartherapy.org vol. 23 no. 5 may 2015



© The American Society of Gene & Cell Therapy
Reovirus Plus BRAF and MEK Inhibition

However, to the contrary, RT3D in combination with PLX4720 in 

a RAS mutant cell line produced neither the anticipated “synthetic 

lethal” interaction, nor increased viral replication in response to 

paradoxical activation of ERK1/2 signaling (Figures 1e and 3a). 

In contrast, there appeared to be a reduction in RT3D-induced 

apoptosis (Figure 3c). In fact, the greatest degree of cell kill corre-

lated to suppression of ERK1/2 signaling rather than its paradoxi-

cal induction. he combination of RT3D and BRAF inhibition led 

to greater cell kill in the BRAFV600E mutant cell lines (Figure 2a,e), 

with the combination of MEK inhibition and RT3D resulting in 

the greatest levels of cell death in both BRAF and RAS mutants 

(Figure 2b,c).

Given the success of combined BRAF and MEK inhibi-

tion in clinical studies in BRAF mutant melanoma, we next 

studied  double pathway blockade in combination with RT3D. 

Similarly, greatest levels of cell kill were seen with the triple 

therapy in the RAS (DO4) and BRAF (A375) mutant cells 

across all ratios of IC
50

—and in the PMWK wild-type cells at 

IC
50

 ratios of 1 or lower (Figure 2d). Again, correlation was 

observed between enhanced cell kill and suppression of ERK1/2 

signaling, with MEK inhibition able to suppress paradoxical 

activation of ERK by BRAF inhibition in RAS mutant cell lines 

(Figure 4a).

Whilst the presence of inhibitors had no efect on viral rep-

lication, apoptosis was enhanced with the combination of RT3D 

with BRAF/MEK inhibition, most strikingly in BRAF mutant 

melanoma (Figure 3b,c). We observed that levels of p-EIF2α 

closely followed those of p-ERK1/2, with cell kill due to RT3D 

plus BRAF/MEK inhibition corresponding to a decrease in both. 

EIF2α phosphorylation by RT3D is normally associated with an 

anti-viral response mediated by PKR that acts to halt viral pro-

tein production. However, constitutive activation of RAS/RAF 

is linked to PKR inactivation.29 However, without any observed 

changes in viral replication, we investigated a potential role of 

Figure 6 PLX4720 enhances RT3D-mediated antitumor activity in BRAF mutant tumors. (a) CD1 nude mice bearing A375 (BRAFV600E mutant) 
tumors received PLX4720 (20 mg/kg) administered daily or vehicle, followed by a single intratumoral injection of 5 × 107 pfu RT3D or PBS sham 3 days 
later (day 1). Data show tumor volumes per treatment group (n = 10 for each group) and survival rates. A log-Rank (Mantel-Cox) test was used to 
compare groups to the doublet therapy (RT3D plus PLX4720) (b) At day 60, tumors were analyzed for RT3D viral titre by TCID

50
 assay. Data shown 

are for tumors treated with RT3D or combination treatments of RT3D with PLX4720 and are relative to tumor weight (viral titre per mg). Titres were 
compared by ranked Mann-Whitney test. (c) Immune-competent C57BL/6 mice bearing 4434 (BRAF mutant murine) tumors were treated daily with 
PLX4720 (PLX 40 mg/kg) followed by a single intra-tumoral injection of 5x106 pfu RT3D or PBS sham 3 days later. Data show tumor volumes per 
treatment group (n = 10 for each group). (d) In vitro, 4434 cells were treated with 4×, 2×, 1×, 0.5× and 0.25× IC

50
 doses of RT3D, PLX4720 or the 

combination at equal ratios. Data show surviving fractions (left panel) and photography of representative cell survival (right panel) measured at 96 
hours by MTT assay where presence of purple crystals that have been solubilized denotes working mitochondria. Surviving fractions are derived from 
three independent experiments ± SEM.
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EIF2α phosphorylation in ER stress and the unfolded protein 

response (UPR).

he unfolded protein response (UPR) is initially a prosurvival 

response, acting to reduce the burden of unfolded proteins and 

restore normal ER function. In the initial phase of ER stress, PERK 

activation (through GRP78 dissociation) leads to phosphorylation 

of EIF2α, which inhibits protein translation and aids survival by 

reducing the protein load in the ER. However, if the ER stress per-

sists and cannot be resolved, signaling becomes pro-apoptotic.30 

In this instance, EIF2α is dephosphorylated by CHOP-mediated 

upregulation of GADD34.

Recently RT3D has been shown to induce ER stress and 

induce the UPR in multiple myeloma in vitro and in vivo. RT3D 

induced canonical upregulation of the ER stress linked proteins 

GRP78, CHOP, and GADD34, splicing of the UPR transcrip-

tional regulator XBP1, swelling of the ER and apoptotic signal-

ing through upregulation of NOXA and PUMA, efects that 

have been shown in multiple myeloma cells but not PBMCs.28 

Our observed RT3D-associated phosphorylation of EIF2α and 

upregulation of CHOP in both NRAS and BRAF mutant mela-

noma (Figure 4) is in keeping with this previously observed ER 

stress response.

he toxicity of RT3D in multiple myeloma and KRAS mutant 

pancreatic cancer was further enhanced by blocking the degrada-

tion of misfolded proteins using the proteosomal inhibitor bor-

tezomib both in vitro and in vivo.26,28 he mechanism of action of 

bortezomib in combination with RT3D is likely due to a backlog 

of unfolded viral proteins, which eventually tip the UPR into a 

proapoptotic signaling state.

Existing evidence also supports a role for MEK-ERK signal-

ing in responding to ER stress. he MEK inhibitor U0126, as 

well as MEK siRNA, is able to sensitize cell lines, including mela-

noma, to the ER stress agents tunicamycin and thapsigargin.27,31 

Tolerance to ER stress due to upregulation of the BCL-2 family 

member MCL-1 has also been shown in melanoma.32 Suppression 

of ERK1/2 signaling corresponds to a reduction in active XBP-

1, GRP78 abundance and MCL-1 expression in melanoma cell 

lines.32,33 his is in keeping with the idea that signaling through 

ERK1/2 mediates an anti-apoptotic adaptive response to ER stress. 

Conversely, reduced ERK1/2 signaling sensitizes melanoma cells 

to apoptosis induced by ER stress.

Our data further conirm that cytotoxicity through RT3D plus 

BRAF/MEK inhibition was mediated by ER stress was revealed by 

the use of salubrinal, an inhibitor of EIF2α dephosphorylation. 

Knockdown or pharmacological inhibition of EIF2α dephosphor-

ylation that maintains EIF2α in a phosphorylated state, prevent-

ing entry of newly synthesized proteins into an already stressed 

ER, has been shown to protect cells from ER stress-mediated 

apoptosis.33–35 Our observation of salubrinal-mediated reversal of 

enhanced cell death due to combined BRAF/MEK inhibition and 

RT3D was consistent with the concept of this combination ther-

apy as an ER stressing agent (Figure 5a). Furthermore, salubri-

nal appeared to reduce gene expression of downstream ER stress 

linked pro-apoptotic NOXA, and caspase 3/7 activation, which 

was otherwise enhanced with RT3D plus BRAF/MEK inhibition 

(Figure 5c,d). We also report that by inhibiting Caspase 4, which 

initiates the ER stress triggered caspase cascade, we could partially 

rescue cells from the enhanced cell death resulting from RT3D 

plus BRAF/MEK inhibition (Figure 5e)

he potential role of increased ERK1/2 signaling as a protec-

tive response to ER stress27,31,33 was also supported by the observa-

tion that paradoxical activation of mutant RAS signaling by BRAF 

inhibition in BRAF wild-type cells decreased RT3D induced 

apoptosis (Figure 3c), and increased p-EIF2α (Figure 4a). his 

is the irst indication that paradoxical activation of mutant RAS 

may also enhance tolerance of ER stress through increased down-

stream ERK1/2 signaling.

In a proof-of-principle therapeutic experiment in A375 BRAF 

mutant xenograts, the combination of RT3D plus PLX4720 was 

signiicantly more potent than either of the single agents—consis-

tent with the in vitro demonstration of enhanced cell kill (Figure 

6a). Importantly, to study the efect of this combination treatment 

in conditions more closely resembling the clinical situation, we 

performed therapy-allograt experiments using immune-compe-

tent mice and obtained similar results.

Taken together, these data provide a very strong rationale 

for biomarker-led clinical translational studies of RT3D with 

BRAF and/or MEK inhibition in malignant melanoma. From 

irst principles, in BRAF mutant melanomas, there are good rea-

sons to assess RT3D either with BRAF inhibition alone or double 

pathway blockade with BRAF and MEK inhibition. Instead, in 

RAS mutant melanoma, combining RT3D with MEK inhibition 

appears attractive. However, even though there was no evidence 

of synthetic lethality when BRAF inhibition was used with RT3D 

in RAS mutant cells, the triple combination showed very signii-

cant cell death in NRAS mutant DO4 cells. herefore, it would 

be interesting to further evaluate this treatment combination in 

preclinical and clinical studies.

MATERIALS AND METHODS
Cell lines. PMWK, MeWo, (both RAS and BRAF wild-type), A375, 

Mel624 (both BRAFV600E mutant), WM266.4 (BRAFV600D mutant), DO4 

(NRASQ61L mutant) and WM1791c (KRASQ61H mutant) melanoma cell 

lines, and 4434 (murine BRAF mutant melanoma)36 were obtained from 

Prof. Richard Marais (Cancer Research UK Manchester Institute). L929 

(mouse ibroblast; Oncolytics Biotech, Calgary, Alberta, Canada) were 

used as reovirus-sensitive target cells. Malme-3 (normal skin ibroblasts, 

ATCC, Teddington, UK) and Malme-3M (melanoma) are cell lines both 

derived from the same patient. PMWK, MeWo, A375, Mel624, WM266.4, 

and L929 cells were cultured in DMEM. Media was supplemented with 

5% (v/v) FCS, 1% (v/v) glutamine, and 0.5% (v/v) penicillin/streptomy-

cin. DO4, WM1791c and Malme-3M cells were cultured in RPMI, supple-

mented with 10% (v/v) FCS, 1% (v/v) glutamine, and 0.5% (v/v) penicillin/

streptomycin. Malme-3 were cultured in McCoy’s 5a Medium, with 15% 

(v/v) FCS, 1% (v/v) glutamine, and 0.5% (v/v) penicillin/streptomycin.

Reagents. For western blotting the following antibodies were used: 

Phospho-p44/42 MAPK (ERK1/2), Caspase 3, Caspase 7, p-EIF2α, 

GAPDH (Cell signaling Technology, Danvers), Mouse anti-human 

GAPDH (AbD Serotec, Kidlington, UK), and Anti-β-actin (Abcam). 

PLX4720 (SelleckBio, Houston), PD184352 (LC Laboratories, Woburn), 

Dabrafenib, Trametinib (both from Selleckchem, Sufolk, UK), Salubrinal 

(Enzo Life Sciences), and Z-YVAD (R&D Systems, Abingdon, UK) were 

prepared in DMSO.

RT3D stocks. Reovirus (type 3 Dearing) stocks at 4.6 × 109 pfu/ml were 

obtained from Oncolytics Biotech and stored at −80 °C in PBS. 1:10 
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dilutions were made in DMEM with 2% (v/v) FCS, 1% (v/v) glutamine, 

and 0.5% (v/v) penicillin/streptomycin, and titred by TCID
50

 assay on 

L929 cells.

Cell survival assays. Cells were plated at 5 × 103 per well in 96-well plates 

and incubated at 37 °C for 24 hours before treatment with inhibitors or 

RT3D, in 200 µl. Cell survival was measured by 3-(4,5-dimethythiazol-

2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay according to the 

manufacturer’s instructions. For crystal violet assays, cells were plated 

at 3 × 105 per well in six-well plates, and then treated the next day with 

inhibitors in 2 ml for 1–2 hours before infection. Cells were stained 48 

ater infection. For salubrinal experiments, salubrinal was added 24 hours 

ater infection as to not interfere with replication. For caspase 4 inhibi-

tor experiments, Z-YVAD was added 1 hour before therapeutic treatment 

commenced.

Western blotting. Cells were plated at 1 × 106 per 10 cm dish, 5 × 105 per 

6 cm dish, or 3 × 105 per six-well plate and incubated at 37 °C for 24 hours 

before treatment with PLX4720, PD184352 followed by RT3D infection 

1–2 hours later. Samples were harvested for western blotting 6 hours or 48 

hours ater treatment. For caspase 4 inhibitor experiments, Z-YVAD was 

added 1 hour before therapeutic treatment commenced. Density readings 

of bands were measured using ImageJ sotware.

Synergy testing. Cells were plated at 5 × 103 per well in 96-well plates and 

incubated at 37 °C for 24 hours before treatment with PLX4720, PD184352 

or RT3D as single agents or in combinations at various IC
50

 doses at equal 

ratios in 200 µl. Cell survival was measured at 96 hours by MTT assay. 

Interactions were assessed by the method of Chou and Talalay, and CI val-

ues were generated using CalcuSyn sotware (Biosot, Cambridge, UK).

One-step viral growth assays. Cells were plated at 1 × 105 in 24-well plates 

and treated the following day with PLX4720 (0.3 µmol/l) or PD184352 (1 

µmol/l) and incubated at 37 °C for 1–2 hours. RT3D was then added at 

MOI 5 (to ensure infection of all cells). Ater another 2 hours, cells were 

washed twice with media and the inhibitors replaced. At 4, 24, and 48 

hours ater infection, cells were harvested into the media and the lysate 

was subjected to 3× freeze/thawing between −80 and 37 °C, centrifuged at 

13,000 rpm for 5 minutes and stored at −80 °C. he supernatant was used 

to titre for RT3D by TCID
50

 assay on L929 cells.

qRT-PCR experiments. RNA was extracted from samples using Qiagen 

RNeasy kit, and cDNA synthesized using SensiFAST cDNA synthesis kit 

(Bioline). Samples were then ampliied against transcripts by qRT-PCR 

with SYBR green. Primers used (CHOP, PUMA, NOXA) were commer-

cially available QuantiTect primer assays (Qiagen). Primers for beta actin 

were as follows: beta actin Forward 5’-GGCACCCAGCACAATGAA-3’, 

beta actin Reverse 5’-GCCGATCCACACGGAGTACT-3’. Relative gene 

expression was calculated with the 2-ddCT method using beta actin as a 

house keeping gene. All kits were used as per manufacturers’ instructions.

Caspase-Glo assay. Cells were plated at 5 × 103 cells per well in 96-well 

plates and treated the next day with inhibitors 1–2 hours before infection. 

For salubrinal experiments, salubrinal was added 24 hours ater infection 

as to not interfere with replication. At 72 hours post treatment, caspase 3/7 

activity was measured by the luminescence based reporter assay Caspase-

Glo 3/7 (Promega, Southampton, UK) following the protocol stated by the 

manufacturer.

TNF-a ELISA assays. Cells were plated at 3 × 105 per well in six-well plates, 

and then treated the next day with inhibitors in 2 ml for 1–2 hours before 

infection. 48 hours later cells were collected and ELISA assay was per-

formed according to manufacturers protocol (DTA00C, R&D systems).

In vivo assays. CD1 nude mice (Charles Rivers, Kent, UK) were subcu-

taneously injected with 3 × 106 A375 cells suspended in PBS in the right 

lank. C57BL/6 mice (Charles Rivers) were subcutaneously injected with 

4 × 106 4434 cells suspended in PBS in the right lank. Once tumors were 

established to ~6 mm in diameter, mice were allocated treatment groups 

stratiied by tumor size. Mice bearing A375 tumors were treated daily with 

20 mg/kg PLX4720 and C57BL/6 mice bearing 4434 tumors were treated 

daily with 40 mg/kg PLX4720 (or vehicle: 2.5% DMSO, 97.5% water) by 

oral gavage. 5 × 107 pfu RT3D (A375) or 5 × 106 pfu RT3D (4434) dissolved 

in PBS (or a PBS sham) was administered as an intra-tumoral injection 3 

days ater drug administration commenced.

Established A375/4434 tumor volumes were measured at least twice-

weekly using Vernier calipers and the tumor volume was estimated 

from the formula: V = 0.5 × (length × width2). Tumors were harvested 

by dissection and snap frozen and stored at −80 °C. Samples were 

homogenized in 400 µl PBS containing protease cocktail inhibitor (Roche, 

South San Francisco, 1 tablet dissolved in 50 ml PBS). Samples were then 

centrifuged at 1,000 rcf for 5 minutes and the supernatant was used to titre 

for RT3D by TCID
50

 assay on L929 cells. All experiments were carried 

out in compliance with the NCRI guidelines, with animals judged to have 

failed treatment if tumor diameter exceeded 10 mm.

Statistical analysis. T tests or one-way ANOVA tests were used to make 

comparisons between groups. Survival curves were compared using the 

Kaplan–Meier method and signiicance was assessed using the χ2 test. 

P values were derived where P > 0.05 ns, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, 

and ****P ≤ 0.0001.

SUPPLEMENTARY MATERIAL
Figure S1. RT3D, PLX4720 and PD184352 are selectively toxic to 

melanoma cells.

Figure S2. Combining RT3D with BRAF or MEK inhibition is synergis-

tic in melanoma cell lines.

Figure S3. MEK inhibition with RT3D enhances cell kill in wild-type 

MeWo cells.

Figure S4. RT3D causes almost 10-fold greater cell kill in the presence 

of PLX4720 in BRAFV600E mutant melanoma.

Figure S5. RT3D in combination with Dabrafenib or Trametinib leads 

to increased cell kill compared to their single agent counterparts.

Figure S6. Various scheduling of RT3D and BRAF inhibitor does not 

alter cell kill.

Figure S7. RT3D does not mediate enhanced cell death with BRAF/

MEK inhibition through abrogation of p-JNK/TNF-α signaling.

Figure S8. Salubrinal trends towards rescuing cells from enhanced 

cytotoxicity observed with RT3D and MEK inhibition in RAS mutant 

melanoma.

Figure S9. PLX4720 enhances RT3D-mediated anti-tumor activity in 

BRAF mutant tumors in vivo.

Table S1. RT3D, PLX4720 and PD184352 IC50 doses for a panel of 

melanoma cell lines of various mutation status.
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