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Abstract

The recent contribution by Edwards to the stability analysis of
multi-pass processes using the familiar inverse-Nyquist method is
discussed using the techniques of functional analysis. It is noted
that the modelling procedure suggested by Edwards neglects the finite
pass length nature of the processes and takes no accout of the initial
conditions for each pass. Atnatural and physically meaningful definition
of multi-pass stability is proposed and characterized by conditions on
the system operator. Application of the results to a cogging process
and a class of linear, time-invariant system indicates that previous
results are highly pessimistic. The anomaly is explained in terms of

a defined notion of stability along the pass.
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INTRODUCTION

(1)

In a recent paper ~°, the general characteristics of multipass
processes were discussed and an approach to stability analysis was
suggested using the well-known inverse Nyquist method. It was claimed
that the processes suffer from stability problems arising from their
multi-pass nature and stability criteria were suggested for several
situations including long-wall coal-cutting, ploughing and metal rolling,

The essential characteristic of a multi-pass process can be illus-—

(1)

trated by consideration of machining operations where the material,

or workpiece, involved is processed by a sequence of passes of the

(1) the

processing tool. Assuming that the pass-length o is constant
output vector yk(x), 0s xg a (x="distance' variable), generated
during the ktb pass acts as a forcing function on the next pass and hence
contributes to the dynamics of the new output yk+1(x), o.$ X <s'a, For.

(1)

example, a simplified scalar model of a cogging process with control’

action takes the form
yk+l(x) = - kl yk+1(x -X) + k2 yk(x) ¥ k1 r(x)

X>o , 0S$Xga s k>0 (L)
where X is the sensor delay, kl, kz are real parameters and r(x) is the
desired system output. The process is assumed to be subject to the
initial conditions

yk(x) =0 , .—X £x<o (2)

(1)

The essence of the stability analysis previously suggested is to

convert the system into an infinite single-pass process by expressing the
L)

relationships between the process by a single coordinate £ = ka + x and °

identify yk(x) as a function y(&) defined for , o0 € & < + », The

variable & can be interpreted as the total distance traversed. Equation

(1) is then expressed in the form,
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y& = -ky(k - x) + ky y(k —e¢) + k x(%) (3)

and the multipass process of equations (1) - (2) is said to be stable
if, and only if, the system of equation (3) is asymptotically stable,
It is disturbing to note, however, that the initial conditions for each
pass (equation (2)) are totally neglected in this approach. Intuitively
the 'resetting' action of the initial conditions on each pass could be
a form of 'stabilizing' action preventing the growth of disturbances
which suggests that it is necessary in these cases to recognise the true
multipass nature of the problem. In the authors opinion, this observa-

(1)

tion requires that previous work should be subjected to careful scrutiny
and interpretation to highlight what is meant by the term multi-pass
stability.

The analfsis presented in this paper considers the problem of the
definition of stability of a linear multipass process and the charac-—
terisation of stability in terms of properties of the system operators.
A distinction is-made between the concept of multi-pass stability and
the idea of stability along the pass, and application of the results is
illustrated by a consideration of the cogging process of equations (1)-
(2) and a general form of linear, time—invariant multi-pass process. The
approach used is that of functional analysis(z) which has the advantage
of revealing the essential structural properties of the process and
enables the discussion of a large class of processes using the same

mathematical results and intuitive concepts,

2. THE STABILITY OF LINEAR MULTI-PASS PROCESSES

2.1 An Abstract Model of a Linear Multi-pass Process.

The multipass process of equations (1) - (2) can be regarded as a
linear relation between elements of a Banach space E, of continuous,
complex-valued functions on the interval o € x £ @ satisfying the

constraint y(o) = 0. The norm on E, is taken to be
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The system equations can be written in the form

ya(k +1) = L.“ ya(k) + ba , k

W

)
where ya(k)EE Ea represents the pass profile on the kth pass,
bu & Ea is the term representing the effect of reference (or known

disturbance) signals and Ld is a linear operator in EOl s bounded in

the sense that(z) l[ |[
L y
all, & ap 2= ...
|Iy||a51 IIY|Ia

With this motivation, the following definition is taken as a
characterisation of a general linear multipass process.

Definition 2.1

A linear multi-pass process S(Lx) of pass length o consists of a
Banach space Ea’ a linear subspace Wa of Ea and a bounded linear operator
Lu of Ea into itself. The dynamics of the process are described by the
recursion relations of equation (5) where the initial profile ya(o)GE:EOi
and the disturbance term b, [ W,

This definition is of a general nature, including the process (1) -
(2) as a special case and, as will be seen later, many other processes of
practical interest.

Multi-pass Stability

The simplest and most natural definition of the stability of the
linear multipass process defined by equation (5) is to demand that, given
any initial profile ya(o)GE Ea and known disturbance ba = Wa’ the
sequence of pass profiles ya(k) , k 2 o '"settles down' to an equilibrium

profile ya(W) as k + + o, satisfying

(4)

(5)

(6)
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o =1 -] + b
ya( ) ayu( ) s
More precisely, the sequence ya(k), k > o is required to converge to

y (@) in the sense of the norm on Ea:
o

Lim ||y @) -y, @], =0

(when, in fact, ya(w) does satisfy equation (7)).

Although the above definition has a strong intuitive motivation,
it is recognized that, in practical applications, the effect of modelling
errors and uncertainties will produce more uncertainty in the structure of

L, and hence the following definition of stability is preferred.

Definition 2.2

A linear multipass process S(Ea) is said to be uniformly asymptoti-
cally stable if there exists a real number & > o such that, given any
initial profile ya(o)EEEaand disturbance h]GEWh, the sequence

ya(k) » k 2 o, generated by the recursion relations

Yk + 1) = (L, +7) y () + b 9

converges strongly (i.e. with respect to the norm) for all bounded
linear operators vy mapping Eu into itself and satisfying f]y]la < o,

Intuitively, the definition requires that the process settles down
to an equilibrium profile despite the prescence of small modelling errors.
The use of the term asymptotically stable can be justified by considering
the case when b, =0 and y =:Hxs/||Lal|a‘- By definition, the sequence

k i

(La +v) ya(o) = yu(k) has a strong limitas k + + = for all ya(o)egEa.
The sequence is hence bounded for all ya(o)GE Ea' Applying the Banach-
(2)

Steinhaus theorem there exists a real number Ma > 0 such that

@, + Y)k’la $ M, k3o, ie.
-8 K.k :
o

(o

- TR

W
o

|[L

o

(7

(8)

(10)
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and hence, returning to the real system, when y = 0, taking b = o,
o

') -1
nd defining A = (1 ¥ TITTT ) & 1,
i & N HIgllg

Lk
[y, @11, = Ly v411,
k
s z,llg - g1l
k
s Mo [ly @Il (11)

so that, in the absence of disturbance terms, ya(k) converges strongly to
zero for all initial profiles. In physical terms the effect of the initial
profile is attenuated after a large number of passes.

A superficial consideration of equation (5) indicates a similarity
between the structure of the multi-pass process S(La) and the well-known

linear, time-invariant discrete time-system. In this sense, the stability

of the process can be expected to depend explicitly on the spectrum(z) of

(2)

Lu' The spectrum o(La) can be defined to be the smallest subset of

the complex plane such that A€£ia(Lm) implies that the bounded linear

operator AL - Lu (I = identity map in Ea> has range dense in Ea and a

(2)

bounded inverse (AX - La)_l. The spectral radius EJL&)is defined by

‘ﬁ”(La) =  sup _|A[ (12)
A€o (Ly)
and is positive and finite. An equivalent expression for the spectral .
(2) ‘ i
1/
To(L,) = lim N T - (13)
Yo g Lo

radius is

The following theorem provides an explicit characterisation of the uniform

asymptotic stability of S(Lu)'

Theorem 2.1
S(La) is uniformly asymptotically stable if, and only if, ﬁ;(Lu) % =l

Proof

If S(Lu) is uniformly asymptotically stable then equation (10) with

Aa = (1 + TTézTT; )_1 indicates that
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. k1 . !
™~ (L) =1lim ||L7]] /k < lim Ml/kA = A <1 (14)

Conversely, ifﬁn(La) < 1, then there exists a real number € > 0 such that
tn(La) + ¢ <1, and a real number & > 0 such that ]IyllOl < § implies that
T;D(Lu +y) < r;o(La) +eg <1 (15)
Using (13) it follows directly that there exists an integer NY(E) 21
k k 5 .
such that II(Lu + ) I’u s(ﬁn(Lu) +e) , k& NY(E). Considering the

solution of equation (9)

7,00 = @, + Sy (o) + i}il @, + 7o (16)
then
k k =1
1y @I < 1, w11, - lly@1l + X la, + i |1 (i),
(17)

which converges absolutely as k++» i,e. ya(k) » kK 20, is a Cauchy
sequence in E, and hence has a strong limit XKGD) c %‘. This completes

the proof of the result.

°

The above result is obvious of %x is finite dimensional when L. !
can be represented by a complex square matrix and.t}Lu) is simply the
maximum of the moduli of the eigenvalues of La' In this case the
stability criterion requires that all the eigenvalue of Lu lie in the

open unit disc in the complex plane.

2.3 Uniform Asymptotic Stability of a Cogging Process(l)

Consider the multipass process by equations (1),(2), with Wa = Ea
as defined in section 2.1. The operator La is defined by the relation

Ve1® =~k ¥ () + Koy (%) ﬂ

yk(x) = o s, =X x&0 . (18)
It is easily checked that La maps Ea into itself and is bounded. The
calculation of the spectral values of La is undertaken by considering

solutions (if they exist) of the relations
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AI-L)y =y, »y& E (19)
Noting that X > O by assumption , there exists an integer n » 1 such that

(n~1)X <o s nX i.e. using equation (18), equation (19) takes the form,

[ y(x) 1 [y, rt
y(X+x) yO(X+x)
QL - K ; . : e e X (20)
j y((n—l)X+xl i yo((n—l)X+x1
unit

where In is the nxn/matrix, and the nxn matrix K is lower triangular of
the form,

i ~%

Ko 8 ™ S5 > e
If X # k2 then‘(J\In - K) is invertible so that equation (20) specifies

y(x) uniquely point by point , o £ x € a. In particular

i = k2) y(x) = YO(X) y 0§ ;s X (22)
so that y(o) = yo(o) = 0, Equation (21) can also be used to show that
y(x) is continuous on o ¢ X € a i.e. y-G?_-,EOI and (\I - La) has range
dense in Ea and a bounded inverse. The only remaining candidate for a

spectral value of Lu is A =k In this case (AIn— K) is singular and

9
hence (A\I - L ) cannot have range dense in Eu i.e.

o

+ (L) =k

oo(a) I 2|
Applying theorem 2.1., the system is uniformly asymptotically stable if,
and only if,
k| <1 | (23)
2

It is noted that the stability is independent of pass length ot (provided
it is finite) and the stability conditions differ significantly from that
predicted previously(l) (equation 48). A more detailed discussion of this
discrepancy is given in section 3. At this stage it is sufficient to
state that the difference arises from the inclusion of the initial condi-

tions at the beginning of each pass and the natural definition 2.1, of the

concept of uniform asymptotic stability.
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2.4 Linear Time-invariant Multi-pass Processes

Consider a multipass process described by the linear, time-

(1)

invariant model
¥ (t) = Ax, (£) + Blykft) + Byr(r) x (o) = X
yk+1(t) =C xk(t) + Dyk(t) (24)
where x(t) & R" 5 yk(t)GE R s k20 ,ando gt o<+ o, An

equivalent formulation is,

&
B At A(t-s)
yk+1(t) =Ce x o+ Dyk(t) + i Ce {Blyk(s) + Bzr(s)}ds (25)
Considering the problem in the context of the Banach space Ea = Cm(o,a)

of continuous mappings from the interval , o g t g o, into the vector

m ;
space C of complex m-vectors, with norm

sl & sw [ly@]|! o
1 og tg U-m
(I[.|| is any suitable norm in C ), then La is defined by the relation

t
Ly) (©) =D y(e) + rcetE™)

(8]
Calculation of the spectrum of Lu is undertaken by consideration of the

Bly(s)ds , 05t ga @27

solutions of equation (19). Let A, 1 € j € m, be the eigenvalues of D

and write equation (19) in the form

t
QI_-D) y(t) = /¢ gAies]

o

B1 yv(s)ds = yo(t) i DL tigaavii(28)

If ) # Aj, 1< 3j<m then (AIm - D) is invertible and equation (28) can

be written in the form

]

z(t) = Az(t) + Biy(e) , z(0) =o

]

y(t) {AImjD)"l {Cz(t) +'y0(t)} § 0.8 Eighu (29)

After some rearrangement,

5(t) 1

(A +B,Q0I - D) cla(t) + B,OI-D) "y (£)

y(£) = A1 - D)7 (Ca(e) +y_(8)) (30)

i.e. (AT - La) has range equal to Ea and a bounded inverse and hence
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g-(La)c:{)\j}1 & 34 o It follows diwectly that a sufficient condition
for uniform asymptotic stability is that max |x.] < 1. 26 prove this is
lcjsm
necessary, consider the sequence defined by equation (24) for B =iy
t =0
k
¥ (0) =D y,(00 , kzo (31)
If the process is uniformly asymptotically stable, this sequence should
have a strong limit independent of any 'small' perturbation to D i.e.
it is necessary that max‘ll.[ < 1. Combining the results with theorem
lsjsm
2.1 it follows that a necessary and sufficient condition for the multi-
pass process of equation (24) to be uniformly asymptotically stable is

that

to L) =max [ < 1 (32)
lsjsm:

It is interesting to note that uniform asymptotic stability is inde-
pendent of A, Bl’ BZ’ C and, in particular, independent of the eigen-
values of A, 1In fact, if D = 0, the process is always uniformly asymp-
totically stable. The equilibrium profile is obtained by setting
yk+l(t) = yk(t) = ¥,(t) in equation (24) and rewriting the expression
in the form

X(t) = {4 + B (1 D)7'C} x(t) + Byr(B) , x(0) = x_
Y (£) = (1_-D) lex(e) (33)

ALONG-PASS STABILITY

The notion of uniform asymptotic stability discussed in section 2
is, in essence, a mathematiqal formulation of the idea that the process
settles down to some equilibrium profile satisfying equation (7),
convergence being guaranteed“despite the presence of small modelling or
simulation errors. For example, considering the linear time-invariant
multi-pass process of equation (24) then, if the eigenvalue of D lie in

the open unit disc in the complex plane, the process settles down to an

&
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equilibrium profile described by equation (33). The equilibrium profile
can be used to obtain information on the along pass dynamics and to
reveal control difficulties or the need for control action. For example,
consider the simple multi-pass process described by the relations
i (8) = -x (6) + (LR)y, () + x(t) , x (o) =0

Vi (B) = % (£) s, 0s§tsa<+ o (34)
with reference signal r(t) £ 1. Using the initial profile yo(t) = o,
o€ tgx , the profile along the first pass is given by

y (&) =1-e " « GREEW (35)
i.e. the process appears to be following the demand signal. The process
is uniformly asymptotically stable ( D = o) and has limit profile

satisfying,

5.(t) =By () +1 y_(0) =0

-l{ eBt

18 ym(t) B -1} , 05 tsa (36)
If B is large and positive then, although the process settles down to a:_
bounded limit profile on o £ t £ o, the limit profile does not track,

the demand signal. The process can hence be regarded as being 'unstable
along the pass' in some sense. An intuitive approach to the notion of
along-pass stability for the generallinear, time-invariant process of
equation (24) is to demand that the limit profile (equation (33)) be

stable as a++» i,e. the eigenvalues of A + Bl(Im—D)nlc all have negative
real parts. In general, however, multi-pass processes can possess a

(3) due, for example, to smoothing effects

form of longitudinal interaction
between the interpass dynamics. In such cases, this intuitive approach

can no longer be applied. The following discussion suggests a definition
of along~pass stability based on the rate of disturbance rejection as the

pass lengths a4,

Consider for simplicity, the multi-pass process,
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Yk+1(t) “—'yk(t) s O< t $0£<+ o0 s O :;1

v (6) = 1 » By lo)=G k

W
—

(37)
in the complex Banach space E(x= Qfo,a). It is easily shown that
yk(t) = tk/k! s 0 £t g oand hence lbk HOL =(xk /e!+ o (k++) ,
The process is uniformly asymptotically stable but, if the pass length
o is increased, the rate of rejection of the initial disturbance yo(t)
is reduced. For the general multi-pass process, with qx = o,
y (k+l) =L oY k)
e y O =Ly @ , kzo | (38)

If the system is uniformly asymptotically stable then (equation (10))

i~

there exists fo >0 and 0 < Au < 1 such that [ILt lkL\ Muli and hence
v @I ua Sy @I, k3o ' (39)

Equivalently, the process rejects the initial disturbance at a rate
described by a geometric progression of upper bounds.

Considering a = family {S(La) }a 5 % of models of the process
(termed an extended multi-pass process) ogtained by modelling the
dynamics over a physical range of pass lengths @ € a < +=, then each
model will be characterized by real numbers Ma’ Aa.

Definition 3.1

The extended multi-pass process {S(L )} is said to be stable
o o ;'lb
along the pass if there exists real numbers M >0,0<4i_ < 1, such

that
k
], s ua , k20 ,aza (40)
ollg,
In effect the definition demands that the disturbance rejection
rate for each element of the extended process has a guaranteed geometric

upper bound independent of the length of the process. Note, in particular

that
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, k1 .1
M (L) = lim ||L ||m/k < lim Mw/k)\w = Ay < 1 (41)
o e koo = k0

and hence a necessary condition for the system to be stable along the

pass is that S(Lu) is uniformly asymptotically stable for all o > o

e

Theorem 3.1

The extended multi-pass process {S(La)}a & is stable along the
= g
pass if, and only if,

(a) v

w0 - Sup 1;0(1.&) <1

o0l
[e]

ne

(b) M sup sup ||(nI - La)_llla < + wfor some

aze n|=A
real number A in the range <A <1
Proof
To prove necessity, note that equation (41) implies that

r,$ A < 1. Also

20
=1 =1 o 1 i
eor -t =l E L ek
1=0 n
1 0 1 i
E
|ﬂ| 1=0 nl
1 o Aocl _ Moo (42)

A

Moz . =
TnT i=o |n|t  A(l-Ae/A)

if we choose |n[= A, A> Ap . To prove sufficiency, suppose that o< 1

‘and consider the contour C in the complex plane defined by the relation

|n| = A, ol A= L, Writing(z)
k 1 k =1
T = e it —
L H e i' (nI La) dn (43)

i6 : ;
where n=lel and hence, taking norms, ][LE[J g (M A)Ak which proves the
a

result.

The proof of necessity immediately indicates that
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Corollary 3.1

A necessary condition for {S(La)}u>u to be stable along the pass

=

o
is that

=1
sup  sup [|(n1 - Lu) I
: 1
u?ao n[;
To illustrate the application of the result consider the process
defined by equation (1)-(2) and discussed in detail in section 2.3.
Note thatl;(Lu) - 'k2| s OB a, 8o that't‘= |k2| and |k2| RS e
required for stability along the pass. Consider the solution of the
relation,
(I -~ L)y = ¢ , r & E (44)
o (o} o
or, equivalently,
ny, () =73 (x =r (x)

yd(x) = —kl yu(x—X) + kzym(x) . 0 £ X< a

v, (%) = r, (%) 2‘505};) =y ~X§ X&LO (45:)
After some rearranging A
B ],( I'!.' {kerI(x_X) + ]_&(X)} (46)
y (x) = - ==t y (xX) +
o n-k o n-k
2 2
A necessary and sufficient condition for condition (b) of theorem 3.1
HEI\C(':
to hold is{that there exists a real number )\ in the range lkzl A T
/
such that
sup = < 1 (47)
Inj=a | 77K,

or, equivalently, the process is stable along the pass if, and only if,

|k2[ £ 1 |k1| <1 - [sz (48)
Equation (48) is the stability criterion obtained by Edwards(l). LE 1g
seen therefore that the modelling and stability analysis techniques
suggested by Edwards here, in fact, produced a stability criterion involving
the idea of along-pass stability and the notion of disturbance rejection,

In the authors opinion, this type of stability is very strong and may, in
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= 1% =
many practical applications, be unnecessary and possibly unobtainable.
In most cases the uniform asymptotic stability of the system, coupled
perhaps with control action to produce an acceptable limit profile
will produce acceptable dynamic characteristics.
Finally, consider the problem of characterising the stability along
the pass of the linear time-invariable multi-pass process of equation (24)

It is easily seen that r_ = max IA.Iwhich is necessarily less than unity,
g3

The solution of (44) in thislcisg can be represented by the differential
equations

2(t) = (A + B ("L -D)"C) z(t) + B.(MI-D) L r (&) , z(0) = o

1 m 1 m o !

¥y lt)= (ﬂIm—D)_l {cz(t) + ru(t)} , 0 £t %0 (49)
and hence, a necessary and sufficient condition for condition (b) of
theorem 3.1 to hold is that there exists a real number A, EL oo A
such that the eigenvalues of A + Bl(ﬂIm - D)_1C have strictly negative
real parts for all [n| = A, 1In particular, applying corollary 3.1 and
letting In| » e » 1t is necessary that A be a stability matrix.

The stability along the pass can hence be represented b3 the

characteristic polynomial

=, ~i : -1
lsIn = A= B1 (nIme) C| = ISIH—AI . ,In & (sIn— A) Bl(nlme) Cl
! =1
= ]sln =~ B . ]Im ~ Glal~A) B, (nIm—Dl
[sIn—AI -1
= « [nI_ - {D+C(sI_~-A) "B } (50)
M m n 1
0D
Equivalently, defining the transfer function matrix
G(s) =D + C (sI_ - A)_lBl (51)

then, a necessary and sufficient condition for stability along the

pass is that A is a stability matrix and there exists a real number A,
; r_ < A < 1 such that the zerosof the numerator of nIm = G(s)% have

negative real parts for all |n| = X. A convenient technique for

. (4)

checking this criterion is to calculate the «haracteristic loci

9:(8) , £ $j $m, of G(s) and note that
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m
nIm - G(S)E = R

(n - q.(s)) (52)
j=1 .
In particular, if m = 1, it follows directly from the Nyquist stability
criterion that the frequency response G(iw) , 0 £ w < + = should not
intersect the circle |n| = X. That is, if m =Al, a necessary and
sufficient condition for stability along the pass is that A is a
stability matrix and
[6Gw)| <1 , ogwc<+ow (53)

The physical interpretation of this criterion can be obtained by
taking the Laplace transform of equation (24) with zero initial conditions
and r(t) = 0, when , yk+l(5) = G(s)yk(s) i.e. the process can only be
stable along the pass if each frequency component is attenuated from pass
to pass, Edwards(l) has suggested a similar result on intuitive grounds
only. The above analysis provides a rigorous treatment of the problem,
and provides a rigorous mathematical and intuitive formulation of the

result.

CONCLUSIONS

Following the work by Edwards(l) on the stability of linear multi-
pass process, it has been noted that the modelling approach and stabi-

(1)

lity analysis suggested suffers from the neglect of pass initial
conditions and neglects the essential finite length nature of the processes
by the use of anapproximate single pass model of infinite length . A
natural definition (Definition 2.1) of multipass stability has been
proposed by demanding that the system settles down to an equilibrium e
profile for all possible initial pass profiles and reference signals

and independent of small system modelling ervors. Necessary and suffi-

cient conditions for multi-pass stability have been derived in terms of

the spectral radius of the system operator and the results illustrated
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b ; . ; . (1)

y application to a cogging process considered by Edwards and a
general class of linear, time-invariant multipass processes., Some
surprising results are obtained:

(a) In the case of the multi-pass cogging process, the results

(1)

differ significantly from those obtained by Edwards indicating that
the concept of stability used by Edwards differs from the natural

definition used in this paper. In particular, the results obtained

by Edwards require much stronger conditions indicating that his results
are pesimistic.

(b) In the case of the linear, time-invariant multi-pass process,
stability depends only upon the high frequency component of the system
dynamics. This suggests in particular that, a multi-pass process is
stable from pass to pass if it can be represented by a low pass filter.
(i.e. D = 0).

In an attempt to explain these features, a concept of stability
along the pass (Definition 3.1) has been introduced based on the idea
of disturbance rejection as the pass length a -+ + «. Necessary and
sufficient conditions for stability along the pass have been derived.
In the case of the cogging process it is seen that Edwards results(l)
are equivalent to a condition for along pass stability. In the case
of linear time-~invariant multi-pass processes, a necessary and sufficient
condition for stability along the pass is that the process is stable along
the first_pass as o + +-@ and that the frequency response of the system
lies in the cpea unit circle in the complex plane.

Finally, as the results are presented in the abstract language of
functional analysis, the theory can be applied to multipass processes of

(3)

more complex type involving interpass smoothing effects and delay-

differential models.




