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Code and its Image: the functions of text and

visualization in a code-based design studio

Mark Meagher, Jeffrey Huang, Nathaniel Zuelzke, Trevor Patt,

Guillaume Labelle, Julien Nembrini

Abstract

Traditionally, design learning in the architecture studio has taken place

through a combination of individual work and joint projects. The intro-

duction of code-based design practices in the design studio has altered

this balance, introducing new models of joint authorship and new ways

for individuals to contribute to co-authored projects. This paper presents

a case study describing four design studios in a higher education setting

that used code as a tool for generating architectural geometry. The for-

mat of the studios encouraged the students to reflect critically on their

role as authors and to creatively address the multiple opportunities for

shared authorship available with code-based production. The research

question addressed in this study involved the role of code-based practices

in altering the model of architectural education in the design studio, in

particular the role of visual representations of a code-based design process

in the production of shared knowledge.

Key words: [design studio, architectural education, code-based design, ver-
sioning software, visualization.]

1 Introduction

Much has changed in design practices around the world as a result of the broad
introduction of digital design tools. The use of design software has facilitated
sharing of documents with collaborators in remote locations and the integra-
tion of analytical tools at multiple stages of the design process[1][2]. Code-
based/algorithmic approaches to the design process have introduced methods
for precisely controlling the outcomes of design and automating elements of the
design process. Innovative construction processes have been enabled through the
establishment of a direct link between digital data and the computer-controlled
fabrication process[3].

Despite such transformative changes in the practice of architecture, the
methods of design teaching have in most places been largely unaffected. Follow-
ing a formative period in the early 20th century, the basic principles of design
education have remained comparatively constant. While the actual tools used in
the design process have changed, for example through the replacement of hand

1



drawing with computer-aided design software, there have been few attempts to
question the underlying presuppositions of design education in light of changes
resulting from digital design practices.

The code-based design studio differs from a traditional studio in the use of
text instructions to the computer as a primary tool for design development. In
the studios considered here code was used alongside hand-drawing and standard
3D modeling software. The educational benefits of code include the necessity
for the student to understand geometric principles and logical structures which
are concealed from the user of most 3D modeling and CAAD software[4]. In
addition, the software used in the code-based design studios described here
(Processing) provides considerable capacity for modular expansion through the
addition of software libraries that provide specific functionality such as physics
simulation or energy simulation. Certain aspects of working with code can
be used to support collaborative work: the modularity of well-structured code
makes it relatively easy for students to share functional blocks of code, and
the ability to embed comments and other forms of metadata result in a rich
and searchable database of information recording design intent.[5] Although
Processing was used as a development environment in these studios, the concepts
discussed in this paper apply to any coding tool applied in a spatial design
context.

The case study described here presents a three-year investigation of the po-
tential for transformation of the design studio based on digital innovations in
architectural practice. The project, known as ’Superstudio’ involved partici-
pants from three Swiss schools of architecture: the EPF Lausanne (EPFL),
ETH Zurich (ETHZ) and USI Mendrisio. Between 2008 and 2010, four design
studios were offered in the Media and Design Lab at EPFL as a means of testing
hypotheses developed by the Superstudio initiative. Students in the four studios
were encouraged to work with code-based design processes, using computer pro-
gramming to advance design ideas and to make constraint-based (parametric)
simulation and fabrication a part of their design process. Each studio in this
series was organized as a means of testing the implications of integrating code-
based design methods in the studio. Among the implications considered were
forms of communication enabled by the digital design process; the integration
of bespoke parametric tools as an integral part of the design process; and the
implications for design authorship of using code-based design methods.

In this paper we focus on the design use of text-based tools based on mastery
of computer programming languages, and the opportunities for new forms of
studio-based learning afforded by the use of these tools. In particular, we look
at the use of data visualisation as a means of bridging between text-based design
methods such as code and visual representation of the outcomes of design. We
use the Superstudio visual interface as an example of three important uses of
images in a code-based design studio: for communication, for persuasion, and
for analysis. We propose that the code-based design studio is a development
consistent with the principles underlying the design studio, one which can assist
in linking the architectural design process with input from other disciplines, in
particular the applied sciences.
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1.1 The design studio: Conceptual background

The studio method of education is widely acknowledged as the primary means
of transmitting knowledge in the design professions. Many of the studio’s defin-
ing characteristics are inherited from one of two historical sources: the ‘atelier’
tradition of the 19th century Ecole des Beaux Arts in Paris and the workshops
of the Bauhaus introduced in the 1920’s. The design education of the Ecole
des Beaux Arts centered on the ’ateliers’ or studios, rented spaces outside the
formal context of the Ecole in which a group of students would conduct their
design work assisted by an instructor or ‘maitre’ who provided regular critiques
of work in progress[6]. The intellectual life of the ateliers consisted of constant
interaction around design ideas. Over the course of the 20th century the atelier
model emerged as the preferred method of design education in schools through-
out the world, overtaking in most places the problem-solving method of the
scientific disciplines.

A significant evolutionary step in the history of the studio was introduced
with the workshop-based teaching method of the Bauhaus in Weimar and the
Vhutemas in Moscow. New techniques introduced by industrialization fed a
growing separation between the methods of the craftsman and techniques avail-
able through industrial production; the Bauhaus proposed to fill this gap through
the reintroduction of a cultural practice within industrial development, combin-
ing both fine arts and the industrial practices. The Bauhaus workshop aimed to
re-create the conditions of practice by according less importance to theoretical
teaching than to the method of resolving a problem.

Although often based on ’real’ problems and complexities, the design studio
as a pedagogical instrument remains in most schools of architecture purposefully
distinct from the practice of architecture and the other design professions[7].
The studio provides a risk-free environment in which students can safely try out
ideas, learn the vocabulary and working methods of their profession, and learn
design thinking through hands-on work and trial and error. The design studio
introduces students to the processes, materials and theory of design: students
learn to design by confronting complex problems using the tools, thought pro-
cesses and practices specific to their profession. The studio master provides a
model of professional and artistic excellence that students are encouraged to
emulate, while much of the actual learning and refinement of skills takes place
through peer-to-peer interaction. As Donald Schön pointed out in a series of
seminal essays, the design studio combines scientific problem solving with a pro-
cess of ’problem setting’ that requires artistry, ingenuity and creativity[8]. As
such, it can serve as a model for all professions that involve elements of both
problem solving and creativity, or making.

1.2 Constructionism and code as artifact

One theory of education that provides a framework for understanding code-
based design as a link between intuitive, creative thinking and scientific problem-
solving is Constructionism, a theory of learning developed by Seymour Papert.
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Constructionism was used in the studios described in the case studies as a model
for the integration of computer programming in the design process.

Papert’s Constructionism is based on the Constructivism of educational the-
orists such as Jean Piaget, who emphasized the role of interaction with the world
and with objects in the child’s acquisition of knowledge:

To Piaget, knowledge is not information to be delivered at one end,
and encoded, memorized, retrieved, and applied at the other end.
Instead, knowledge is experience that is acquired through interaction
with the world, people and things.1

Constructivism presents itself as an alternative to the model of learning as a
pipeline between instructor and student, a model in which the most important
factor in learning is the quality of instruction. In the Constructivist model, the
emphasis is more on setting up environments that promote learning through in-
teraction. To this Constructivist concept of learning, Papert added the concept
that learning happens best when it involves the construction of public artifacts
of some personal significance. In other words, children (and adults) learn best
according to Papert when working on self-directed projects that involve the con-
struction of objects and/or concepts that can be appropriated and engaged with
by their peers. Inherent to this approach to learning is a decentralized structure
in which it is understood that the instructor does not have all the answers; and
a definition of learning as progression toward a recognition that every student
contributes in their own way to the project of shared knowledge[10].

Specific aspects of Constructionism have been developed further by other
researchers. Marlene Scardamalia has explored the “social structures and dy-
namics required for progressive, communal knowledge building”[11], developing
a model of primary and secondary level education modeled on the practice of
scientific research. In her proposal for ‘knowledge communities’, students be-
come experts in particular areas of knowledge that they choose and which are of
particular individual interest. Other research has emphasized Constructionism’s
opportunistic collaboration, which involves “small teams forming and disband-
ing under the volition of community members, based on emergent goals”[12].

1.3 The code-based design studio

In the case of the code-based design studio, the medium for interacting with the
world and with ’real’ problems of immediate relevance to students is code itself
and the capabilities it offers to model the building and its physical behavior.
The computational design studio differs from a traditional studio in the use
of code as one of the primary tools in design development. In the studios
considered here code was used alongside hand-drawing and standard computer-
aided design software, although code was prioritized and encouraged over other
types of digital design tools.

1[9], p. 3.
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Code consists of a sequence of text-based instructions that are both computer-
readable and human-readable; when ’run’ on a computer these instructions pro-
duce outputs in one or more structured formats such as images, 3D geometry
or tabular data. Through the use of dynamic parameters, code-based design
facilitates the generation of variations based on a set of constraints in a process
of parametric design. Code also provides access to tools of analysis and form
generation such as libraries for environmental and physics simulation and al-
gorithmic design methods such as generative design. Through this integration
of powerful simulation techniques with generative design models, code has the
potential to enable a shift in the role of the designer toward the control of an
iterative design process in which automated generative mechanisms are used to
achieve a meaningful interplay of form and function[5]. In such a design con-
text the product of design is the code itself, more than any particular design
outcome: this is due to the fact that the designer is fully in control of the code,
but not necessarily in control of the designs produced using code[13].

In the design studio described in this paper it was understood that the code
was a form of artefact produced by the students, one which served the role of
Piaget and Papert’s object in allowing the student to engage in learning about
the world through a process of making. The code produced by the students also
represented a condensed expression of design intent. The code contained in-
structions for the production of a range of possible geometries based on specific
parameters set while the code is running. And, the code contained metadata
describing attributes of the building (materials, construction types) and com-
ments (human-readable but not interpreted as instructions by the computer).
All these elements make the kind of parametric code used in these design studios
a valuable source of information about the designer’s intentions and the process
followed to reach a given design outcome.

1.4 Version tracking in the code-based design studio

Another way in which the use of code-based design techniques can have signif-
icant implications for understanding the dynamics of the design studio is the
capacity they introduce for detailed tracking of design decisions. Because text
files can be read using a range of open source tools for comparing file versions,
the use of text-based data files allows the integration of detailed version track-
ing in the design process. Data collected during the process of design can be
mined using quantitative analytical tools or visualized as a means of qualita-
tively identifying patterns of collaboration during the design process. Even in
situations where group work is not part of the design process, version tracking
can provide valuable feedback to the individual designer about the stages in
their own process of design. Finally, version tracking tools such as Subversion
or SVN (the platform chosen in the EPFL studios) provide a means of remotely
backing up each stage in a design process. SVN has been used by designers as a
means to work together on a shared parametric model[14] and as a transparent
record of authorship within a collaborative design process[15].

The three primary purposes of the SVN repository in the studios described
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in this paper were 1) to allow students to publish their work in a forum that is
monitored by their peers and an audience beyond the studio; 2) to keep track
of individual contributions to jointly-authored code, or to track the stages in a
sole-authored design process; and 3) to maintain a repository of the code itself
alongside the files (images, 3D geometry, data) produced by the code.

First, the SVN repository provided a visual interface for students to actively
’publish’ their code and design ideas. Students were encouraged to publish
their work as frequently and as compellingly as possible using the online forum:
this act of publication was both a record of authorship, a ’proof’ of the origin
of a particular idea with a given author or group of authors, and a means of
soliciting feedback from peers and instructors. Essential to this ’explicit’ form
of information gathering were the comments students wrote to accompany their
submissions to the online repository and the images they chose to represent
their work.

The second purpose of the SVN repository was to capture information about
authorship. The version control software maintains a detailed record of the
differences between each version of a given piece of code (hereafter referred to
as a ‘script’), and in cases where there is shared authorship stores a record of
the author responsible for contributing each line of the script to the repository.
This information is recorded tacitly in the sense that once a line of code had
been submitted to the repository by a given author that line could then be
tracked if it was re-used by others in their scripts. This mechanism for keeping
track of individual contributions to group projects was an effective motivator
for students to give time to the group work in the knowledge that their effort
would be recognized by the studio community.

The third purpose of the SVN repository was to maintain a record of the
files associated with each script at every stage in its development. As mentioned
previously, the output of a script in the code-based design studio is typically a
file such as an image, a 3D model and/or a set of tabular data. These files are an
essential key to understanding the code itself, and provide a shorthand under-
standing of the design intentions behind a given script. Often these associated
files are used to provide the designer with essential feedback about the aesthetic
and performative aspects of their design, allowing the designer to develop their
idea through a series of design iterations. These associated files also can provide
a visual analog to development in code.

1.5 Information visualization in the code-based design stu-

dio

Information visualization is the branch of computer science research which deals
with the communication of information in the digital medium. It involves the
translation of data into a visual language, revealing inherent characteristics of
the data that become legible as visually-recognizable patterns. As its name im-
plies, information visualization focuses on visual representation of information,
as distinct from other means of representing information such as sonorization.
The field of information visualization is distinguished from scientific visualiza-
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tion by Card et al.[16] by its preoccupation with “abstract, nonphysically based
data”. Finally, information visualization is based on the use of computation to
support data analysis, the generation of graphic output, and interactivity.

In the code-based design studio, the visual representation of the design pro-
cess is particularly important because code is not a visual medium and in itself
offers only a highly abstracted representation of the design. Physical artifacts
such as drawings and models can be produced using code, but these may not
be present at all stages of the design process. The purpose of visualization is
to present data produced by the code in a way that can easily be understood
and put to use; and to provide a format for presenting the visual outputs of
code as a browsable and searchable database. The data extracted from the
code could relate to information about script authorship from the SVN repos-
itory, or simulation results based on the geometry and metadata produced as
an outcome of the code-based design process. In addition, the visual represen-
tation of information describing the digital design process has the potential to
encourage participation in collaborative design exercises and to facilitate the
understanding of changing models of interaction within design teams[17].

Information visualization of the code-based design process offers the follow-
ing potential benefits in the design studio:

• The designs are visible to all: once work has been committed to the SVN
repository it is public and available for all members of the studio to view
and appropriate.

• The history of the design process is visually represented: data from the
SVN repository is presented as a record of stages in the development of a
design using code.

• Information about authorship is visually represented: when scripts have
multiple authors the contribution of each designer can be recognized.

• Images and data can be presented alongside the code: associated files such
as images or simulation results can be viewed alongside the code used to
produce them.

The visualization of data related to the code-based architectural design pro-
cess has been explored in numerous research projects which have taken advan-
tage of the activity logs generated whenever design work is produced digitally.
By extracting relevant information from chat transcripts, email logs, version
tracking software logs, and online collaboration tools such as wikis and blogs it
can be possible to piece together a quantitative and qualitative understanding
of the development of the code-based design process over time and models of
authorship of projects produced by design teams. Beyond their use as a backup
solution and file browser, the real importance of online collaboration platforms
for the design process may lie in the insights they will eventually offer concerning
the nature of the digital design process. Among the precedent projects consid-
ered in the current study were Phase(x)[18] and OpenD[17], visualizations of
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the code-based design process developed at ETH Zurich and Harvard Design
School.

1.5.1 ETH Zurich – Phase(x)

Phase(x) was an experiment in the visualization of digital design activity in large
CAAD classes at ETH Zurich[19]. Students were asked to begin each week’s
assignment with the files from another student’s work in the previous week as
a starting point: in this way students could focus their energy on adapting and
learning from the work of their peers. This model of shared authorship based
on the appropriation of another’s work was reinforced by the online interface,
which provided students with the ability to publish their work online, comment
on the work of others, and trace the chronology of design ideas (figure 1). By
making it easier to identify the specific contribution of each individual, the
visualization aimed to create an improved understanding of the collaborative
design process, an understanding that can lead to the identification of shared
interests within a large group of designers thereby encouraging joint projects[20].
The connections drawn between projects are in Phase(x) based entirely on each
individual author’s choice to give credit for their use of another student’s design
material. The nature of the connection between the works is not automatically
captured; it may be captured if the author indicates in a comment the extent
to which they re-used the code from the previous work in their own submission.

1.5.2 OpenD

OpenD is a visualization of activity in an online shared workspace that focuses
on presenting a global overview of interaction among the members of a design
team; the software was developed at the Harvard Design School where it was
tested in several classes[17]. The platform represents submissions to the online
shared workspace as nodes which are connected based on an affiliation expressed
by the author at the time of submitting the work to the shared database. The
content of a single ‘node’ was left completely indeterminate in the design of
this system: the node could represent a single file or collection of files, with or
without a text description.

As part of the process of submitting their work to the database authors
were asked to specify one or two previous nodes as precedents for the current
submission. As with Phase(x) the information about connections between works
is based solely on the author’s assertion, which could be based on extensive re-
use of code or on the basis of an inspiring idea contained in the previous project.
The visualization of connections between works is similar to that of Phase(x)
with the exception that previous work is not categorized in phases (and thus a
current work can establish a connection with any previous work, not just one in
the preceding phase); and also in the fact that a work can claim either one or two
previous works as precedent. The strength of this system is its flexibility: the
fact that users can choose to use the visualization of nodes and connections to
structure almost any kind of project data. The primary context in which OpenD
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Figure 1: The Phase(x) visual browser of student work during the semester,
arranged according to themes. Image: Urs Hirschberg.
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was used was a class in Information Visualization at the Harvard Design School,
a context where the software was used to store code, data, and associated visual
representations of data.

There are three basic visualization options in OpenD: nodes organized by
time (chronological genealogy of ideas), by people (who contributed what), and
by keywords (as specified by contributors)[21]. The time organization provides
a chronology of the emerging knowledge repository; the people view is a graphic
representation that clearly identifies the contributions of each individual; and
the keywords organization structures the knowledge base according to topics
specified by contributors. At any stage in the design process it is evident from
the visualization who has contributed what to a given design output, and which
ideas have been most influential in the shared knowledge base (figure 2).

Figure 2: The OpenD visual browser of student work during the semester, ar-
ranged chronologically (y-axis) and according to themes (x-axis). Image: Mark
Meagher.

2 A studio case study: Superstudio at EPFL

The Superstudio project focused on the generative uses of code in the design
process and the implications of code for understanding contemporary changes in
the atelier model of the design studio. Code was prioritized over other types of
digital design tools such as CAD software packages because of perceived benefits
in terms of both creative freedom and opportunities for collaboration.
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Between 2008 and 2010, a series of four architectural design studios were
offered by the Media x Design Lab at the Ecole Polytechnique Fédérale de
Lausanne (EPFL) as an experiment in the integration of digital design methods
in the design studio and as a tool for studying the changes taking place in
the structure of the studio as a result of this integration. In particular, these
studios have been used a means of investigating the models of authorship in the
design studio and the ways in which these models are changing in response to
a code-based design process.

2.1 Bespoke digital tools in the design process

A new coding library for architects, ‘anar+’, was developed by Guillaume La-
belle and Julien Nembrini with the goal of creating a parametric design tool
sufficiently powerful for expert use while forgiving enough for introduction to
beginners[4]. The anar+ library for Processing was introduced to students in
each of the four EPFL design studios, and was used to address specific design
questions, enabling users to create their own tools to address particular design
questions at discrete moments in the design process.

The anar+ library supports the parametric definition of 3D geometry us-
ing constraints based on geometry, simulated environmental performance, or
other factors defined by the user. Once the geometry has been created, the
anar+ graphical interface allows continuous variation of parameters using slid-
ers. anar+ is designed to be used in conjunction with software for 3D modeling,
2D drafting, and rendering, and includes export capability to common design
software file formats such as OBJ, RhinoRhino, Sketchup, and DXF.

In the Superstudio spring 2009 studio the anar+ library was used in the early
stage of design to generate concepts for massing and interior plan organization of
a skyscraper. The building envelope and floor plans were generated based on a
range of programme-related and environmental performance criteria which were
researched and implemented as geometric constraints by the students. Following
the development of these overall concepts for the massing and interior the model
was exported and the detail design stage was later carried out using standard
3D modeling software packages for eventual rendering and export for fabrication
of physical models (figure 3).

The students in the Superstudio studios were encouraged to share the code
produced using anar+ in an online shared workplace set up for this purpose.
Questions about particular aspects of using the software could be addressed
with peers and instructors using this online interface, which was conceived and
implemented by Guillaume Labelle and consisted of an integrated platform of
blogs, wikis, and a ’subversion’ (SVN) version tracking system. The online plat-
form was intended as a means of encouraging collaboration among the students:
by providing a means for students to share their work and a visual interface for
browsing the work of others it was expected that students would more readily
find others with shared interests or technical challenges with whom to collabo-
rate. The organization of the studio also encouraged students to form ad-hoc
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Figure 3: Skyscraper model by Osamu Moser. Image: c©2009 Alain Herzog.

12



groups for the completion of a particular task or for the production of a partic-
ular design concept.

In addition to this emphasis on group work, an ’open source’ ethos of shar-
ing one’s work and learning from the work of others was promoted in all the
Superstudio studios. Students were encouraged to post their code online at mul-
tiple stages in the design process, and to download and use code produced by
their peers. This borrowing of code was tracked using a version control software
which logged the ’use’ of any given file in the online repository and kept track of
the authorship of code on a line-by-line basis, providing a detailed record of who
had contributed to a jointly-authored work. In this way, a record of individual
authorship was preserved within the collaborative design process.

2.2 Methods for capturing design data

In addition to its utility as a tool for communication in the studio, the Super-
studio online interface was also used as a means of collecting data relevant to
understanding the digital design process. The students interacted with the SVN
server through a client application: students on Windows were recommended
to use TortoiseSVN, a software that integrates SVN functions directly into the
Windows explorer window; RapidSVN and Versions are equivalent packages for
the Mac OS. Using the client software, students were able to interact with the
SVN repository in several ways using the following commands:

• Checkout: This downloads the current state of the selected directories
from the SVN repository. Each student in Superstudio had their own
directory within the studio directory, and students would typically check
out only those files that were directly relevant for their work although it
was also possible to check out the entire studio repository at once.

• Commit: This is the action for uploading edited files to the database,
along with an explanatory text commenting on the changes. The name
is apt: this is the moment of commitment when your changes become
public and replace the previous version of the files, resulting in a new
version of the section of the repository that you have been working on. A
commit can involve a single file or hundreds of files; SVN keeps track of
which files have changed in relation to the versions in the repository and
uploads only the changed files. The text output from a sample commit is
shown in figure 6: each commit corresponds to a new version number for
the repository and records the files that have edited/added/removed, the
author of the commit, a timestamp, and a comment. Because all commits
were immediately published in the online interface, the text was often used
to ask for a quick response in the form of help with a coding question or
an announcement of changed functionality or other updates to the code.

• Update: This downloads the latest version of files from the SVN repository
of files that have already been checked out. This command is run prior to
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Figure 4: Superstudio blog showing the use of a persuasive image accompanied
by explanatory text.
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Figure 5: Superstudio blog visual interface showing an array of thumbnails, each
of which links to a blog post.
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committing one’s files to assure that someone else hasn’t changed the file
while you were working on it.

• Status: Gives a list of files in your working directory with an indication
of which files have been edited/added/removed in relation to the versions
in the shared repository.

• SVN Copy: The ’svn copy’ command allows users of the repository to
create a new version of a file or directory: this is called ‘branching’ and
results in an alternate path of development for the original code. The svn
copy command assures that the ‘genealogy’ of the files is retained. The
act of branching represents one of the most powerful functions of a version
control system: the ability to track multiple parallel developments with a
common starting point.

• Merge: This command is used to reconcile a branch back with the main
stream of development, called the ‘trunk’. Merging allows alternative
development paths to have a broad influence, even to determine the path
of future development.

In the Superstudio project we used the SVN repository as a way to support
a distributed, non-hierarchical approach to coordination of design teams that
allowed (in principle) for anyone in the studio to borrow the work of anyone
else and develop their own version, with complete transparency of the history of
authorship. In reality, students did not make extensive use of branching, perhaps
because the concept of version control was difficult for students to grasp and
students tended to continue familiar methods of file management rather than
adapting their practice based on the capacities of version control. For example,
students would often rename their files with each commit (‘myFile1’, ‘myFile2’,
‘myFile3’), not realizing that the software would automatically retain a record
of changes and previous versions if they kept the name constant. Similarly,
the logic of branching and merging was difficult for students to understand,
and the conflicts that sometimes resulted when they tried to merge their work
discouraged students from making extensive use of this function.

A visualization of the SVN log was designed and implemented by Thomas
Favre-Bulle and Simon Potier, and this was used in two iterations of the Su-
perstudio studio series. This visualization is shown in figure 7: the diagram
describes the authorship of a project produced by a number of different students
over the course of the semester. Each horizontal line represents an individual
file; the each colour represents an author who contributed lines to the file. As
the visualization indicates, some files are individually authored while in a num-
ber of cases there are multiple authors; the profile images for each of the authors
is displayed on the right. It is possible for students to click on each section of
the line and see exactly what lines of code were written by whom. The files can
be sorted by timestamp or by commit ID. Selecting an author from the list of
icons of the right brings up a list of files to which that author has contributed.

16



Figure 6: SVN log showing the result from one commit. In this commit four
files were modified including one image. The comment explains the motivation
for the changes made to the files.

Figure 7: Visualization of the SVN file repository developed by Thomas Favre-
Bulle and Simon Potier. Image:
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3 Discussion

We observed three primary functions of visualizations of data from the Super-
studio online repository: 1) for communication with teachers and students in
the studio; 2) to persuade other students to join in a project or to use their code;
and 3) to for analysis of the design process itself, and of individual submissions
to the shared repository.

First, the online repository provided a visual interface for students to ’pub-
lish’ their code and design ideas to a shared blog site where anyone could browse
the latest work from the studio (figure 5). Students were encouraged to publish
their work as frequently and as compellingly as possible using the online forum:
this act of publication was both a record of authorship, a ’proof’ of the origin
of a particular idea with a given author or group of authors, and a means of
soliciting feedback from peers and instructors. Essential to this ’explicit’ form
of information gathering were the comments students wrote to accompany their
submissions to the online repository and the images they chose to represent
their work. This communication function of the blog and SVN repository was
frequently used by students to ask for help with technical and design questions.
In addition to the blog, a wiki was also implemented by Guillaume Labelle
on which SVN activity was automatically published, providing a visual online
record of changes to the shared repository. Students could browse and download
individual files from within this interface.

The second goal of these Superstudio online environments was for persuasion.
Students were free to form and dissolve teams as needed to accomplish specific
design goals, and one tool for recruiting other students to join in a project
was the use of persuasive images and accompanying text (figure 4). The code
itself, which requires some time and effort to understand and use, was not as
compelling a representation of the project and its ideas as a single iconic image,
even though in many cases the design projects were realized primarily though
code. Another motivation for presenting one’s code compellingly was the wish
to have as many people as possible using your code and adding functionality
that could become valuable to the original author.

The third purpose of the Superstudio online environments was to provide
tools for analysis of the data contained in the repository. For the ethos of
sharing and collaboration to remain compelling to students, there had to be
a mechanism in place for keeping track of individual contributions to group
projects. This is much easier to do with code than with traditional design
practice - because a significant element of design intention is encapsulated in
modular units of code which can be tracked. The Superstudio interface provided
a visual representation of authorship over time in the SVN repository which was
prominently featured in the online interface (figure 7). Students could also post
images representing data visualization, usually environmental simulation data
although students also employed physics simulation and other tools for analyzing
the building’s performance. The association of these visual representations of
data with the code used to produce the model was accomplished through the
SVN interface, which allowed students to submit ‘collections’ of files containing
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code, data and images.
A primary limitation of the versioning approach used in the studios was the

fact that not all files used by the students could be ’understood’ by the version
tracking software. While the authorship of a text file was recorded at the level
of individual lines of text, any binary file such as images or proprietary CAD
formats could only be stored as a monolithic block of content. Changes to binary
files were recorded with the identity of the author(s) responsible, but it was not
possible using the SVN software to automate the process of identifying which
changes had been made. Students were discouraged from submitting images
and other binary files to the SVN repository, and used online file server instead
for this purpose. The limitation of version tracking to text files underlines the
value of integrating the creation of text-based metadata into the design process
as a basis for the automated extraction of information about the history of the
design process.

Another potential limitation of a version tracking approach is the difficulty
of automating the identification of ’important’ contributions of code, i.e. those
lines which are particularly valued by the community of designers. It is possible
in our version tracking setup to measure the frequency with which a given line of
code or entire script has been copied by others for use in their code: providing a
rough measure of the value placed by others on this contribution to the shared
repository. But, in the future a more robust system of peer review to identify
code that is useful and free of errors will be an important addition to this version
tracking infrastructure.

Although the examples described in this paper are all in an educational
context, there are clear applications of version tracking in design practice as a
tool supporting increased transparency and accountability. In design processes
that invite public participation version tracking could provide a public record of
stages in the design process and accountability through a record of the people in-
volved in each decision. Version tracking tools have been used for many years in
the software development community to support large, distributed open source
projects and has the potential for use on public architectural projects that invite
community participation.

The work described in this paper has been extended in recent work to include
a record of simulation data as part of the version tracking database. It was the
intention in the Superstudio version tracking to capture metadata related to
the designer’s intentions through text-based comments submitted to the repos-
itory, but ideally these intentions for design would be supplemented with The
tracking of design data has been extended to include a record of whole building
energy simulations conducted to anticipate the future energy consumption due
to heating and cooling systems ([22]). The visualization of the relation between
the design process and design decisions with the performance data that partly
informed those decisions is the focus of continuing research by the authors ([23]).
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4 Conclusion and future work

The three online interfaces employed in the Superstudio project were designed
to establish a persistent link between the code produced by the students and
the outputs of the code in images, 3D model geometry and data. These online
interfaces were important to the studio as a public venue for ‘publishing’ design
work, as a place for conversation about work in progress, and as a visualization
of data collected about the design process. By providing a format in which mul-
tiple types of metadata were stored with the code, the SVN repository offered
functionality associated with a building information modeling (BIM) design
process, using a light open source infrastructure. Because the software infras-
tructure used is far more flexible and adaptable than commercial BIM, it will
be interesting in future work to investigate the application of this versioning
system to the early stage design process.

In future implementations of the Superstudio online repository it will be
important to gather data related to the influence of the visualization itself on
the students and their own understanding of the digital design process. In
the studios discussed here the visualization was used to present students with
a visual representation of certain aspects of their own digital design process,
and it will be important in future work to evaluate the extent to which the
availability of this visual representation has an impact on the students and
their own understanding of the design process.

Among the primary challenges in the visualization of the digital design ac-
tivity is the capture of meaningful information during the design process. Tacit
methods of information capture such as data mining of server logs, version con-
trol software logs, email logs and chat transcripts can be quite effective and
reliable, and this has been the preferred method in the examples cited above.
The limitation of tacit methods is the nature of the information captured in
logs, which seldom provides insight into the motivation and thought process
behind a given design idea. For this reason tacit methods can sometimes lead
to misleading or overly simplistic conclusions due to the absence of a context for
interpreting results. Among the challenges to be addressed in future studies is
the development of a better method for collecting meaningful information about
the design process through a combination of tacit and explicit data collection
methods.

Like the design studio, code facilitates both problem solving and making:
artefacts are produced as a means of testing hypotheses and developing one’s
design ideas. Producing artefacts in a studio design context is also the only
means of communicating one’s intentions and soliciting feedback from instruc-
tors and one’s peers. Through the process of making, one’s ideas become pub-
licly viewable and are for the first time available in a form that can be critiqued
by others and incorporated into their own work. As a result of the experiences
described in this paper, the authors’ teaching practice has become more focused
on the production of images and physical artefacts in courses on design comput-
ing. These images and physical artefacts provide a bridge for students between
the abstraction of code and the desired design outcomes. Unlike computer pro-
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grammers most designers have a low tolerance for working in a purely text-based
interface for long periods of time, and need to work constantly between text and
image in order to understand the consequences of decisions made in code on de-
sign. There is also the issue of the time needed to ’understand’ text vs. the
image, which provides an immediately comprehensible summary of the code’s
content, one that is particularly legible to the visual designer.

Donald Schön has addressed the potential conceptual benefits for designers
of learning the highly constrained language of computer programming, propos-
ing that the latter can become a link between design thinking and the kind of
’rational thinking’ that one engages in as a scientific researcher. As such, code
is a form of expression that is ideally suited for design students whose mindset
and way of approaching problems is also related to the practices of the sciences.
Code has a strong intuitive and creative dimension, but also requires a strict
adherence to rules of syntax and logical structures. This allows it to function
in some instances as a bridge between design thinking and scientific thinking:
”Might it be possible to help students make the sort of crossover this student
made for himself [i.e. between architectural design and computer programming]?
If it were possible, there might be important consequences for broadening studio
education and bridging between it and education in physical and social science.
Certainly it will be important, in pursuing this question, to explore new ways
of helping students reflect on their designing. There may be some particular
merit in exploring computer programming as a transitional activity linking ar-
chitectural design to verbal argumentation.“2 In a context of practice in which
architecture is increasingly an activity requiring the coordination of multiple
disciplines in the applied sciences, there are significant advantages in learning
a design method such as code that bridges between the thought processes and
working methods of architectural design and the applied sciences.
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