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Abstract

A recently developed algorithm for the solution of linear constrained
differential-algebraic systems is extended to provide a systematic compu-—
tational procedure for the solution of quadratic optimization problems
with bounded linear constraints. The technique has rapid convergence and
can be applied to minimum norm solution of algebraic equations, minimum
energy control problems and linear quadratic optimal control problems

with linear control and state constraints.




Introduction

uadratic optimization problems with bounded linear ¢ :
onstraints have
layed an important role in the understanding of control s ste .
play mp ystems behaviour,

The standard problem takes the form of the computation of %o 8olving

[Ix&l]z = inf { [fxllz :Lx=b} , Lx_ =hb (1)
where x is regarded as a point in a real Hilbert space H (with inner products
<+ , *> and induced norm |['|I =< '>%) and L is a bounded linear map
from H into a real Hilbert space Hl' The choice of well-defined and rapidly
converging algorithms for the solution of this problem has been a major
topic of research (Luenberger, 1969). This paper extends the application of
a recently developed algorithm (Owens and Jomes, 1978) for the calculation
of feasible solutions of constrained differential-algebraic systems to the

solution of the control problem

1,112

T3k
100

inf {||x|[2 : L.x & bi 5 1<€1igmt

1
bi < 1£1ism (m 2 2) (2)

where Li » 1 £1 ¢ m, are bounded linear operators mapping H into real

Hilbert spaces H, 1 £ i< m, respectively. Problem (2) can be regarded

as a decomposition of (1) by splitting the comstraint Lx = b into m simpler
o

constraints Lix = bi’ 1§ i€ m or as an extended version of (1) with

L1 =L, bl = b and the inclusion of the additional constraints. The

techniques proposed are capable of rapid convergence and has application

to both finite and infinite-dimensional control problems.

Problem Formulation

With the notation of section 1, define the closed and convex linear

varieties

D, = Ix&cu Lix=b.} , 1

A
-
A
=

(3)




so that (2) takes the form,
m m
' + 2
[1x_ 1% = inf  1]]x]] : x €() D;} , x, € )\, (4)

which' is simply a minimum norm problem on the closed, convex set le\ D2

o wowilY D . The solution exists and is unique (Luenberger, 1969) and

N

is characterised by the stationary points of a Lagranaiqn functional.
In practice this formulation can present computational problems and an
iterative technique is to be preferred.

The following easily proven lemma is fundamental to the discussion:

Lemma

x & Dlr\ D2 N.e o F\Dm solves (2) if, and only if, it is orthogonal to
the subspace N(Ll)!W N(LZ) N, .N N(Lm). Moreover x_ (if it exists)-'is

unique.,

With this in mind the following result provides an iterative solution

of (2) as the weak limit of a sequence of optimization problems.,

Theorem
Suppose that Dlr\ D2 0 s o« 0 Dm is nonempty and define the sequence
of linear varieties 5
i = D -Dmod (1) + 2 > J2 1 )
Then the sequences Ti 4 {r{i) s réi) s eses } 5,1 =1,2, defined by the
relations
rj“)e D, ,rj(z)e K, . i1
||rl(1)Hz=min {||rH2 - rEDl}
e R R =T S SR
[[sg ;z)l[z = min { lls—réz)rlz rEED} L2221
1 2 % 2 1 2 #
O L L T W T,




Ty .
L, s A y, & 2 &
(1) (1) : o 1) ‘ "
Foal T8y Ay ARyt xR 1 Eagr 6D
are well-defined and converge weakly to the unique point r, & Dlr\ ...I\‘Dm
solving problem (2). Moreover, if L, is compact ;;{Liggl)}j'> | converges

strongly to b, and, if H is finite-dimensional, both T1 and T2 converge
strongly to r_.

Finally, for all j 2 1, rgl)e Dl solves the minimum norm problem

12 = min Ulxl1? i x€D, , Lx=1:D  2cism ()
Proof

Noting that Di s 1 £ 1 ¢ m are closed linear varieties then the

*
seugences T1 o are well defined if A > 1 for & > 1. If IISQ, _ rél)n =0
for some f 3 1, then the assumption D, N D:2 Y is s _n])m # @ ensures that

*
llrﬂfz) s rp(‘l)ll =0 and we may Choose AE = 1. ) Hence, Without IOSS Of

generality assume that |[sg - rél)[[ > 0 for all & > 1. Usiug standard

results (Luenberger, 1969).

r{l) , X> =0 \d XEN(LI) (8)

and, for i 2 1,

<r.(2)—r.(1) ,x-r.(z)'«" =0 HXEK.
i i i i
i -ri(z) y T, B “wg VXEDI . (9)

It follows directly that

@ - 2 D)2 2 (1.2 _ 5 112 D)2 5 g,y QO
1 1 1 o i 1

o li = e
. *
from which Ai z 1.
Choosing x & DN... N DmC'- D, N K, we obtain

(1) (1)_ (I)

i+1°Ti417% >

(11)

2
D12 < a2 12D D] 42 ¢ 2

-«

and, using (9),

(1) 1) 1) . _ (D (L) (1
NN AR > = Ai < x r. ‘Ai(si ry ),si TS >




o 4 o
= A, 7{ <x"r€1) s 8 “l( )
‘L 1
= A (Saghe, “rél)’si"r§2)+r§2) §1)> Al s (l)ll }
RN R L T W [ PR O TIL
1 1 L 1 1 1 1

(2)+r£2)_r(1) r(2)_r(1) > = 1| |8 ‘ril)llz

A {<x~r, : y i ; .
i 1 1 1 1 1 1

2 1)q2
= 0P - D) 0 (12)

equality holding if, and only if, Ai o hi - Applying (12) to (11) yields

1 2 1
[l = 2212 5 = 117+ 1) - O 2 13)
so that T1 is a bounded sequence in H and
2 v 1 1) 2
[ - {2 > 1| ) - V| (14)
Noting that
(1) _ ()2 (1) . (D
L i e - Field Tien T Ty >
- (1) (1) (1)
CEESE T amay T
= A < X Fl) g (1) >
- & i i i
= A, <®X-35, +g, - rgl) s B = er) o+ rFZ) = rgl) >
i i i i i i i i
= A, < X ~ rFl) 5 rFZ) i rfl) >
i i i i
= A, < x - rgz) + rgz) =~ rgl) 5 rfz) = rfl) >
i i i i i i
= A, ][rgz) - rgl)flz
i i i
SIBCINONE as)
.then, combining with (11) and (12) yields
|1 - r(l)llz ) l?riz) = rfl)lfz ' (16)

i=1
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(4R]

Le¥ R be the closure 0? Spﬁm ‘il" 5. Sy in \'\ Rs T ".; hounded n

]

R, pessesses a weqh_\ﬁ conmvergenl sul:se%ence z f” '§ b.:-r—‘*““" a  weok

‘R
himit . 0, € R. Marewver , Y inclicabes ok £+ P Eb Converges wealtly o

9 ‘Rt
§o0 oMl £20. Noting that (equatlon (16)) ||r£ )w (1)|| 0 (i » »), it follows
that'{rgz?'i convetrges weakly to r . Examination of < g , r(l) -r s
IE* ka2t k'ﬂ )
with g = Ll(b1 L rw) (whose L1 is the adjoint gf Ll) yields Llrm = bl'
%
In a similar manner, examination of <g , r(z)'— r> withg =L.(b, - L.xr )
k’!‘ﬂ el 11 1 »
indicates that L;r =b; , 2¢i¢m, from which rWEE bADyn. . .ND.
*
From (12) with A T A we obtain
_ LD w _ @)y _ L .
<X = Xo s Ty T E > =0 ,V xe. ) Dj e ] a7
J=
so that
1) 1 : -
ax sy - x> =0 ,\!xeq N@) L is 1 - (18)
In particular, independent of the choice of As in the specified range
L M LS .
<X, rop - s =0 V XGQ N(Lj) s Azl (19)

Using (8), it follows by induction that R is.contained in the orthogonal
complement of N(Ll)f\. o s N N(Lm) in H. Applying the lemma, r_ solves
problem (2) and is unique. In particular, every weakly convergent sub-
sequence of T1 converges weakly to T, i.e. T1 converges weakly to r .

By definition rJ EE R, for all j » 1, and hence solves problem (7)
by the lemma. The theorem is now proven by noting that compact operators
map weakly convergent sequences into.strongly convergent sequences and
that weak convergence and strong convergence coincide in finit€ dimen-

sional spaces.

Q.E.D.

In practical terms the resultzﬂyerates a sequence Il = {r ( )}J>1

D1 converging weakly to the unqiue solution of (2). It has the interesting

(1)

property that, for each j » 1, the point r is the unique solution of the

approximate optimization problem (7). In partlcular, if L 3, .o Lm are
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compact, rj(l) solves problem {7) and, for sufficiently large j % 1,
Li rgl) lies in an arbitrarily small neighbourhood of bi_(in the norm
L,

topology of Hi), 2¢ig¢m In this sense, j # 1, can be regarded

as the unique solution of the approximation (7) to problem (2).

Finally, the fleiibility in the choice of_li, i >'1, inherent in (6)
will be of great practical significance in the sense that,1i can be
regarded as an accelerating extrapolation factor for the algorithm (Owens
and Jones, 1978) if_li 2.h: > 1. Alternatively, the choice of 1 € Ai<< 1:
will prevent the growth of numerical errors if they are a problem.

Illustrative Applications

The abstract formulation of the algorithm described in section 2 leaves
open the possibility of its application to a wide variety of finite and.-

infinite-dimensional optimization problems. For simplicity, attention is

" restricted to the case m = 2 when (equation 5) Kj = D2 for all j = 1.

Finité Dimensional Optimization

Consider the solution of the optimization problem in H = R' (with suitable.
inner product and norm)
2 P 2
|| x“JI = inf { l| xll : Lx = bl ) (20)
+n

n
where L : R® +R e > g+ n2$ n. By decomposing L into block matrices

Lx = b can be written in the form

X = ‘ (21)

where Li : %> R , 1 = 1,2, Application of the algorithm (6) yields the

sequence,
ril) =k By
@ LD L, {b, - L, 5y
5 - r(ﬁz) + L“{{b1 = Ly r’fz)}
rﬁi{ = rgl) + Ay 1 5, ﬁ;l)}




Jed

(2) (1) 2
=™ = =30
- 15 _ (22)

1. & Ao o r
gl “-S o r(l)
L ! [
+ . : . s k1)
where Pi is the pseudo-inverse of Li s 1 =1,2. Moreover , {xi }i;.l

tends strongly to the unique solution rE le\ D2 solving (20).

Quadratic Optimal Control with State and Control Constraints

Consider the iterative solution of the linear quadratic optimal control

problem (T fixed),

x(t) = Ax(t) + Bu(t) , y(t) = Cx(t) , x(o) = X

J =1 J'T'{ <y(t) , y() > + < u(e), u(t) > }de (23)
subject to equalgty constraints either of the form,. (d(t) known)
Eu(t) + Fy(t) = d(¥V , o€ tgT (24)
of of the form (d fixed in RP)
T
g { Bu(t) + Fy(t) } dt = d ; (25)

where A,B, are nxn, nx{ (possibly time-varying) matrices respectively, C is
an mxn matrix and E,F are pxl, pxm matrices regpectively, Consider, for
example, the problem generated by (23) and (25) in thea{ilbert space

H= Lg [O,T] X Lg [O,Tﬁ with norm generated by the performance criterion.
In this case, assuming that A,B are constant matrices for simplicity, L,

is the map
t

L ¢ (0 >y - [ ¢AES)

B u(s)ds | (26)

o
from H into Hl'g L?’[O,T} and by = C eAtx(o). The map L, is defined by

2

B,
L, : (y,u) * | {Bu(t) + Fy(t)} dt (27)
o
with range in H2 = RP and b2 = d

In computational terms, defining rgl) =‘f?§1)(t) ¥ ugl)(t)} s i=142,-
3 > 1 , then r§1) is the solution pair to the optimization problem defined
by (23) with no constraints and hence take the form u{l)(t) = - BTK(t)xfl)(t)

where K(t) is the solution of a matrix Riccati equation. The iterates

(2)

: o solve
i)
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T
min () [ {ey(®)-y{" (®) y©-y P @>+a-u @6 - u&(‘“(+\>§ v
: ,

0 :
subject to [ {Bu(t) + Fy(c)} dt = d (28)
A :
which is a simple algebraic exercise. The iterate S, is the sdlution of

the problem

min {4 [ {<y(t>—y( Y0, y(©)-y; ’(t>>+<u<t)-u‘ )y, u<t>—u‘ ) (t)>1dt
subJect to the state equations (23) (29)

(2)

The solution to this problem takes the form u(t) = uj —ﬁT{K(t)x(t)+g(t)}
where g(t) is the solution of a well-defined vector differential equation.
In practical terms this analysis illustrates that the algorithm is generated
by the Riccati matrix of the unconstrained optimal control problem plus
sequential integration of the state equations and the auxiliary equationms
defining g(t). That is, the algorithm can be easily implemented using

standard optimization routines.

Simultaneous Control of Independent Processes

Consider a system described by the relations, i=1,2,

]

n.
k. (€) = A, x,(£) + By a(t) , x(0) =x ER 3

m, 3
() = ¢ x®ERT |, u®ER | (30)
with performance criterion (T fixed)

T
J =14 J’ {<y, (£),37(8) > + < 7, (E)y,(€) > + < u(t),u(t) >}de (31)

Such a model could arise in the s1multaneous optimal control of independent
processes with a common input u(t). Alternatively the composite model
generated by (30) can be regarded as a partial modal decomposition of an

g=input, (m +m ) output model of a process of state dimension n—nl & n2

'
2

[O Tﬂ X L [0 ?] of triples (yl “ tX\Wlth norm specified by the performance

my
The problem can be formulated in the Hilbert space H = L [0 f]X L

criterion (31). The spaces H,, i = 1,2 required are H, = L [0 7],

and Li i HA Hi are defined by the relations




3.4

L; : (yl,yz,u) > yi(t) = fci e t Biu(s) ds (32)

| At
with bi = Ci e xi(o),l =1,2,

Comparing the difect matrix Ricatti solution of (30)-(31) with Ricatti
solution of the individual problem inherent in the technique defined by
Theorem 1, it is easily seen that computer storage requirements can be
halved if n, i=1,2, are large i.e. the algorithm provides a decémposition
technique for the solution of large scale problems of this type.

Linear Optimal Control with Quadratic Criterion and Linear Terminal Constraints

Consider the optimal control problem

x(t)

Ax(t) + Bu(t) , x() =x €R" , u(t) €&

I

y(£) = cx(t) , y)ER" (33)
with performance criterion, (T fixed)
T T
J=1<y@, y(T) > + } [ < ule),ult) > dt (34)

0
subject to the terminal constraints

Ey(m) =f€RrP . (35)
and the bracketed terms in (34) are suitable inner products in Rm, RE

respectively. Is this case, take H = R" X Lg [0,1] with notm specified by

(34), H = R™ and H, = RP where

2
I Acr-g5)
L, s (y,u) »y - ¢f e Bu(s) ds
0
L, 5 (y,u) + Ey (36)

and bi = C eAT x(o) , b, = f. Noting that L, is compact, it follows directly
that E y(T) converge strongly to f. If,-after k iterations, the algorithms
is terminated and E y(T) = fk with Hfk = f|[ < &, then (y,u) is the unique
solution of the problem defined by (33), (34) with the constraint E y(f) = fk'
If ¢ is small, then the solution of this approximate optimization problem

will, in practice, be a useful approximate solution to the original problem.
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3.5 Minimum Energy Control

Consider the minimum energy problem defined by equation (33), the
performance criterion
i
J =1 f < u(t) , u(t) > dt (37)

0
and the constraint

x(T) = g ; (38) ,
This problem can be transformed into a linear optimal control problem with
quadratic criterion and linear terminal constraints (section 3.4) by .
augme?ting J by the additional term }{ < =x(T), x{T)i;and_ghoosing C=E =-In
and f = X Applying the proposed algorithm to tﬂe augmented problem generates

* "
a sequence (xj(T),u&) converging weakly to a weak limit (xf,u ) where u solves

the minimum energy problem (33), (37),(38). Moreover xﬁ(T) converges strongly

to Xee

In more detail, defining r;i} = (x§i)(T),u§i)) CH=R"X Lg [O,Tﬂ ¢ 1=1,2
j 2 1, and assuming that the norms in (34) are Euclidean norms for simplicity,
then r{l) is defined by the relation,

uP® = 8"k xP ) , osgter (39)
where K(t) is the unique solution of the matrix Ricatti equation

R(£) + K(t) A + AT K(t) - K(t) BE® K(t) = 0

R(T) = I (40)
Moreover, for j 2 1,
(2) _ (1)
£ = (kg s u ) (41)

(2)

Given rj » the iterate Sj is the solution pair minimizing

||s.-x

ZFR
ij

T
= 1<x(T)~x_,x(T)-x_> + |} f < u(t)*ugl)(t),u(t)—ufl)(t)>dt
f i 0 3 J

(42)

subject to the state equation constraints (33). Applying the Minimum Principle,
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u(t) = ugl)(t) - B p(t)

() = - AT p(©)

p(T) = x(T) = X (43)
or, equivalently,

w(e) = uf (@) - B {K(e) x(e) + g(e) | (44)
where g(t) is the uniquely defined solution of the vector differential
equations

B(6) = - A7 g(e) + R(x) BB’ g(0) - K(®) B uV(®)

g(I) = - x, (45)

Implementation of the algorithm simply requires computation of K(t) and
sequential integration of the state equations and equation (45).

Finally it is noted that the augmentation of the performance criterion
is similar in concept to the penalty function method (Luenberger, 1969). In
contrast, however, the proposed algorithm uses a constant penalty function,
a modified eriterion (equation (42)) at each iteration and is guarantéeJcon—
vergence from the initial condition (39).

Illustrative Examples

Minimum Energy Control of an Integrator

Consider the simple problem of choosing a control policy to transfer the
scalar system i(t) = u(t) from the initial state x(o) = o to the final state
x(1) = 1 and minimizing the performance criterion

1 9 | '
J() = { 4 u"(t)de (46)
Using the formulagion of section 3.5, consider the equivalent problem of
minimizing

2 2 L,
N, (2 =t can? + 1f  wBoae 7)
[e]




..12._

subject to the state equations and the terminal coﬁstraint x(1) = 1. Using
the notation, rgl} = (xgl)(l), u§1)), i=1,2, j2 1, then u}l)(t) is given
by (39) where K(t) solve the Ricatti equation

R(t) = R(E))Z , K(1) =1 48)

That is K(t) = 1/(2-t) and it is easily shown that u{l)(t) 0, x{l)(l) =0

and hence that x{z)(l) =1, u{z)(t) £ 0. The point 8y is obtained from (44)

where g(t) is the solution of

BE) = o), () = -1 (49)

so that g(t) = -1/(2-t). Substitution into the state equations yields

D -

= le\ D, and the problem is solved in two iteratioms.

i ® _ - (1) i
8 = (4,1) and hence Al = 2 giving r =Ty ) = (1,1)

1

*
To illustrate the accelerating effect of the use of Al consider the

choice of li =1, 12l. It is easily shown by induction that
s ML, S ' (1)
rj =(1-4 ,1=14Y) so that-”rj+1

and the convergence is geometric.

- @] =4 lIr}l) - (1,1)]], j % 1,

Minimum Energy Control of a 2nd Order Integrator Plant

Consider now, the second order system
xl(t) = xz(t) -
iz(t) = u(t)
where it is desired to transfer the state x(t) = [xl(t),x (t)]T-from the
initial condition
x(0) = lo,0l", (51)
to the final condition
x(1) = |1,0]%, (52)
whilst minimising the energy functional given by (46). Again, with the

formulation of section 3.5, this is equivalent to minimizing the norm
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2 o Low
[[(x(D),0)|]“ =} w x (M=) + §f u(t)dt , 4> o (53)
o i

subject to the state equation (50), with associated initial condition (51)
and the terminal equality constraint (52). Note that an arbitrary positiﬁe
weighting factor ﬁ ﬁas been introduced into the norm which, intuitively,
can be chosen to improve the conditioning of the algorithm.

A discrete formulation of the problem (100 time steps) was solved
numerically via the method outlined in section 3.5. With n=10x 104
the algorithm gave a control u(t) which had converged to within 1% of the
exact value of 6-12t in 3 iterations. Convergence data for this case is
given in Table 1. As the value of u was reduced the algorithm converged
more slowly, exhibitng similar convergence in 7 iterations as shown in.-
Table 2 for the case of u = 1.0 x 103 and eventually displaying an oscil-
latory behaviour with p=1.0 x 10? as described in Table 3. It is interesting

to note from Tables 2 and 3 that in each case the extrapolation factor took

on one of only two alternate values. Finally, the algorithm suffered from

numerical problems for values of y > 1.0 x 105 as was revealed by the
extrapolation factor having become less than the theoretical minimum of 1.0.
" References
LuenbergeD.G.: 1969, 'Optimization using vector space methods',
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— TH w-
) . (2) _ (1) (2)
ITERATION (i) e, = 7] [ls; = =]
0.707 x 102 0.228 x 102
0.408 x 10 0.769
" 0.219 0.706 x 10" %
. 4
Table 1 : p =1.0 x 10
. 2 @ @
ITERATION (i) ]Iri rs | I]si r [
2 . 2
1 0.224 x 10 0.156 x 10
2 0.958 x 10 0.419 x 10
3 0.261 x 10 0.182 x 10
4 0,112 x 10 0.490
5 0.306 0.213
6 0.131 . 0.570 x 101
7 0.357 x 101 0.249 x 10}
3
Table 2 : 1 = 1,0 x 10
5 (2) _ (@) L JE2)
ITERATION (i) IIri z; [ ]]si % | ]
1 0.707 x 10 0.643 x 10
2 0.849 x 10 0.630 x 10
3 0.392 x 10 0.356 x 10
4 0.470 x 10 0.349 x 10
5 0.217 % 10 0.197 x 10
Table 3¢ p = 1.0 % 102

1.12
l1.04 -
1.12

1.94
1.24
1.94
1.24
1.94
1.24
1.94

5.8
2.23
558
2.23
5.8




