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a b s t r a c t

The generation of unit-level test cases for structural code coverage is a task well-suited to Genetic Algorithms.

Method call sequences must be created that construct objects, put them into the right state and then execute

uncovered code. However, the generation of primitive values, such as integers and doubles, characters that

appear in strings, and arrays of primitive values, are not so straightforward. Often, small local changes are

required to drive the value toward the one needed to execute some target structure. However, global searches

like Genetic Algorithms tend to make larger changes that are not concentrated on any particular aspect of a test

case. In this paper, we extend the Genetic Algorithm behind the EvoSuite test generation tool into a Memetic

Algorithm, by equipping it with several local search operators. These operators are designed to efficiently

optimize primitive values and other aspects of a test suite that allow the search for test cases to function

more effectively. We evaluate our operators using a rigorous experimental methodology on over 12,000 Java

classes, comprising open source classes of various different kinds, including numerical applications and text

processors. Our study shows that increases in branch coverage of up to 53% are possible for an individual

class in practice.

© 2014 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Search-based testing uses optimization techniques such as

Genetic Algorithms to generate test cases. Traditionally, the tech-

nique has been applied to test inputs for procedural programs, such as

those written in C (McMinn, 2004). More recently, the technique has

been applied to the generation of unit test cases for object-oriented

software (Fraser and Arcuri, 2013b). The problem of generating such

test cases is much more complicated than for procedural code. To

generate tests that cover all of the branches in a class, for exam-

ple, the class must be instantiated, and a method call sequence may

need to be generated to put the object into a certain state. These

method calls may themselves require further objects as parameters,

or primitive values such as integers and doubles, or strings, or arrays

of values. The EvoSuite tool (Fraser and Arcuri, 2011) uses Genetic

Algorithms to generate a whole test suite, composed of a number

of test cases. Although empirical experiments have shown that it is

practically usable on a wide range of programs (Fraser and Arcuri,

2012), Genetic Algorithms are a global search technique, which tend

to induce macro-changes on the test suite. In order to cover cer-

tain branches, more focused changes are required. If, for example,
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somewhere in the test suite there is a particular integer variable, the

probability of it being mutated during the search with a Genetic Al-

gorithm is low, and so the optimization toward particular branches

dependent on this value will take a long time. The difficulty of this

problem becomes even more apparent when one takes into account

string variables. Consider the example test case in Fig. 1: transfor-

mations of the string-based branching statement (see Section 3.3)

provide guidance to the search for an input to reach the true-branch.

However, even under very strong simplifications, a “basic” Genetic

Algorithm would need an average of at least 768,000 costly fitness

evaluations (i.e., test executions) to cover the target branch. If the

budget is limited, then the approach may fail to cover such goals.

To overcome this problem, we extend the Genetic Algorithm used in

the whole test suite generation approach to a Memetic Algorithm: at

regular intervals, the search inspects the primitive variables and tries

to apply local search to improve them. Although these extensions are

intuitively useful and tempting, they add additional parameters to

the already large parameter space. In fact, misusing these techniques

can even lead to worse results, and so we conducted a detailed study

to find the best parameter settings. In detail, the contributions of this

paper are:

1 Memetic Algorithm for test suite optimization: We present a novel

approach to integrate local search on test cases and primitive val-

ues in a global search for test suites.

http://dx.doi.org/10.1016/j.jss.2014.05.032

0164-1212/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Fig. 1. Example class and test case: in theory, four edits of s can lead to the target branch being covered. However, with a Genetic Algorithm where each statement of the

test is mutated with a certain probability (e.g., 1/3 when there are three statements) one would have to be really lucky: if the test is part of a test suite (size 10) of a Genetic

Algorithm (population 50) and we only assume a character range of 128, then even if we ignore all the complexities of Genetic Algorithms, we would still need on average at least

50 × 4 ×1/((1/10) × (1/3) × (1/128)) = 768, 000 fitness evaluations before covering the target branch.

2 Local search for complex values: We extend the notion of local

search as commonly performed on numerical inputs to string in-

puts, arrays, and objects.

3 Test suite improvement: We define operators on test suites that

allow test suites to improve themselves during phases of Lamar-

ckian learning.

4 Sensitivity analysis: We have implemented the approach as an ex-

tension to the EvoSuite tool (Fraser and Arcuri, 2013b), and ana-

lyze the effects of the different parameters involved in the local

search, and determine the best configuration.

5 Empirical evaluation: We evaluate our approach in detail on a set

of 16 open source classes as well as two large benchmarks (com-

prising more than 12,000 classes), and compare the results to

the standard search-based approach that does not include local

search.

This paper is an extension of Fraser et al. (2013), and it is organized

as follows: Section 2 presents relevant background to search-based

testing, and the different types of search that may be applied, includ-

ing local search and search using Genetic and Memetic Algorithms.

Section 3 discusses the global search and fitness function applied

to optimize test suites for classes toward high code coverage with

EvoSuite. Section 4 discusses how to extend this approach with lo-

cal operators designed to optimize primitive values such as integers

and floating point values, strings and arrays. Section 5 then presents

our experiments and discusses our findings, showing how our local

search operators, incorporated into a Memetic Algorithm, result in

higher code coverage. A discussion on the threats to validity of this

study follows in Section 6. Finally, Section 7 concludes the paper.

2. Search-based test case generation

Search-based testing applies meta-heuristic search techniques to

the task of test case generation (McMinn, 2004). In this section, we

briefly review local and global search approaches to testing, and the

combination of the two in the form of Memetic Algorithms.

2.1. Local search algorithms

With local search algorithms (Arcuri, 2009) one only considers

the neighborhood of a candidate solution. For example, a hill climb-

ing search is usually started with a random solution, of which all

neighbors are evaluated with respect to their fitness for the search

objective. The search then continues on either the first neighbor that

has improved the fitness, or the best neighbor, and again consid-

ers its neighborhood. The search can easily get stuck in local op-

tima, which are typically overcome by restarting the search with

new random values, or with some other form of escape mecha-

nism (e.g., by accepting a worse solution temporarily, as with sim-

ulated annealing). Different types of local search algorithms exist,

including simulated annealing, tabu search, iterated local search

and variable neighborhood search (see Gendreau and Potvin, 2010,

for example, for further details). A popular version of local search

often used in test data generation is Korel’s Alternating Variable

Method (Korel, 1990; Ferguson and Korel, 1996). The Alternating

Variable Method (AVM) is a local search technique similar to hill

climbing, and was introduced by Korel (1990). The AVM considers

each input variable of an optimization function in isolation, and tries

to optimize it locally. Initially, variables are set to random values.

Then, the AVM starts with “exploratory moves” on the first vari-

able. For example, in the case of an integer an exploratory move

consists of adding a delta of +1 or −1. If the exploratory move was

successful (i.e., the fitness improved), then the search accelerates

movement in the direction of improvement with so-called “pattern

moves”. For example, in the case of an integer, the search would

next try +2, then +4, etc. Once the next step of the pattern search

does not improve the fitness any further, the search goes back to

exploratory moves on this variable. If successful, pattern search is

again applied in the direction of the exploratory move. Once no

further improvement of the variable value is possible, the search

moves on to the next variable. If no variable can be improved the

search restarts at another randomly chosen location to overcome local

optima.

2.2. Global search algorithms

In contrast to local search algorithms, global search algorithms try

to overcome local optima in order to find more globally optimal so-

lutions. Harman and McMinn (2010) recently determined that global

search is more effective than local search, but less efficient, as it is

more costly. With evolutionary testing, one of the most commonly ap-

plied global search algorithms is a Genetic Algorithm (GA). A GA tries

to imitate the natural processes of evolution: an initial population

of usually randomly produced candidate solutions is evolved using

search operators that resemble natural processes. Selection of par-

ents for reproduction is based on their fitness (survival of the fittest).

Reproduction is performed using crossover and mutation with certain

probabilities. With each iteration of the GA, the fitness of the popu-

lation improves until either an optimal solution has been found, or

some other stopping condition has been met (e.g., a maximum time

limit or a certain number of fitness evaluations). In evolutionary test-

ing, the population would for example consist of test cases, and the

fitness estimates how close a candidate solution is to satisfying a cov-

erage goal. The initial population is usually generated randomly, i.e.,

a fixed number of random input values is generated. The operators

used in the evolution of this initial population depend on the chosen

representation. A fitness function guides the search in choosing indi-

viduals for reproduction, gradually improving the fitness values with

each generation until a solution is found. For example, to generate

tests for specific branches—to achieve branch coverage of a program—

a common fitness function (McMinn, 2004) integrates the approach

level (number of unsatisfied control dependencies) and the branch
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distance (estimation of how close a branching condition is to being

evaluated as desired). Such search techniques have not only been

applied in the context of primitive datatypes, but also to test object-

oriented software using method sequences (Tonella, 2004; Fraser and

Zeller, 2012).

2.3. Memetic Algorithms

A Memetic Algorithm (MA) hybridizes global and local search,

such that the individuals of a population in a global search algorithm

have the opportunity for local improvement in terms of local search.

With Lamarckian-style learning local improvement achieved by indi-

viduals is encoded in the genotype and thus passed on to the next

generation. In contrast, with Baldwinian learning, the improvement

is only encoded in terms of the fitness value, whereas the genotype

remains unchanged. The Baldwin effect describes that as a result,

individuals with more potential for improvement are favored dur-

ing evolution, which essentially smoothes the fitness landscape. Yao

et al. (2005) report no difference between the two types of learning,

whereas other experiments showed that Baldwinian learning may

lead to better results but takes significantly longer (Whitley et al.,

1994). The use of MAs for test generation was originally proposed by

Wang and Jeng (2006) in the context of test generation for procedu-

ral code, and has since then been applied in different domains, such

as combinatorial testing (Rodriguez-Tello and Torres-Jimenez, 2010).

Harman and McMinn (2010) analyzed the effects of global and lo-

cal search, and concluded that MAs achieve better performance than

global search and local search. In the context of generating unit tests

for object-oriented code, Arcuri and Yao (2007) combined a GA with

hill climbing to form an MA when generating unit tests for container

classes. Liaskos and Roper (2008) also confirmed that the combina-

tion of global and local search algorithms leads to improved coverage

when generating test cases for classes. Baresi et al. (2010) also use a

hybrid evolutionary search in their TestFul test generation tool, where

at the global search level a single test case aims to maximize cover-

age, while at the local search level the optimization targets individual

branch conditions. Although MAs have been already used in the past

for unit test generation, their applications have been mainly focused

on numerical data types and covering specific testing targets (e.g., a

branch) with a single test case. In this paper, we rather provide a com-

prehensive approach for object-oriented software, targeting whole

test suites, handling different kinds of test data like strings and ar-

rays, and also considering adaptive parameter control. Furthermore,

we provide an extensive empirical evaluation to determine how to

best combine the local and global search parts of the presented MA.

3. Whole test suite generation

With whole test suite generation, the optimization target is not

to produce a test that reaches one particular coverage goal, but it

is to produce a complete test suite that maximizes coverage, while

minimizing the size at the same time.

3.1. Representation

An individual of the search is a test suite, which is represented

as a set T of test cases ti. Given |T| = n, we have T = {t1, t2, . . . , tn}.

A test case is a sequence of statements t = 〈s1, s2, . . . , sl〉, where

the length of a test case is defined as length(〈s1, s2, . . . , sl〉) = l. The

length of a test suite is defined as the sum of the lengths of its test

cases, i.e., length(T) = �t�Tlength(t). There are several different types

of statements in a test case: primitive statements define primitive val-

ues, such as Booleans, integers, or strings; constructor statements in-

voke constructors to produce new values; method statements invoke

Fig. 2. How the crossover operator works with test suites. Given two parent test suites

(shown on the “before” side of the figure), two offspring test suites are produced

(depicted on the “after” side of the figure) following splicing of the parent test suites

at a given crossover point.

methods on existing objects, using existing objects as parameters;

field statements retrieve values from public members of existing ob-

jects; array statements define arrays; assignment statements assign

values to array indexes or public member fields of existing objects.

Each of these statements defines a new variable, with the exception

of void method calls and assignment statements. Variables used as

parameters of constructor and method calls and as source objects

for field assignments or retrievals need to be already defined by the

point at which they are used in the sequence. Crossover of test suites

means that offspring recombine test cases from parent test suites, as

Fig. 2 shows. For two selected parents P1 and P2, a random value

α is chosen from [0, 1], and on one hand, the first offspring O1 will

contain the first α|P1| test cases from the first parent, followed by the

last (1 − α)|P2| test cases from the second parent. On the other hand,

the second offspring O2 will contain the first α|P2| test cases from

the second parent, followed by the last (1 − α)|P1| test cases from the

first parent. Mutation of test suites means that test cases are inserted,

deleted, or changed. With probability σ , a test case is added. If it is

added, then a second test case is added with probability σ 2, and so

on until the ith test case is not added (which happens with proba-

bility 1 − σ i). Each test case is changed with probability 1/|T|. There

are many different options to change a test case: one can delete or

alter existing statements, or insert new statements. We perform each

of these three operations with probability 1/3; on average, only one

of them is applied, although with probability (1/3)3 all of them are

applied. When removing statements from a test it is important that

this operation ensures that all dependencies are satisfied. Inserting

statements into a test case means inserting method calls on existing

calls, or adding new calls on the class under test. For details on the

mutation operators we refer the reader to Fraser and Arcuri (2013b).

3.2. Fitness function

In this paper, we consider branch coverage as the optimization

target, although the approach can be applied to any coverage cri-

terion that can be expressed with a fitness function. Typically, fit-

ness functions for other coverage criteria are based on the branch

coverage fitness function. Branch coverage requires that for every

conditional statement in the code there is at least one test that

makes it evaluate to true, and one that makes it evaluate to false.

For this, we can use a standard metric used in search-based test-

ing, the branch distance. For every branch, the branch distance esti-

mates how close that branch was to evaluating to true or to false.

For example, if we have the branch x = 17, and a concrete test case

where x has the value 10, then the branch distance to make this
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branch true would be 17 − 10 = 7, while the branch distance to mak-

ing this branch false is 0. To achieve branch coverage in whole test

suite generation, the fitness function tries to optimize the sum of all

normalized, minimal branch distances to 0—if for each branch there

exists a test such that the execution leads to a branch distance of 0,

then all branches have been covered. Let d(b, T) be the branch distance

of branch b on test suite T:

d(b, T) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if the branch has been covered,

ν(dmin(b, T)) if the predicate has been
executed at least twice,

1 otherwise.

We require each branching statement to be executed twice to avoid

the situation where the search oscillates between the two poten-

tial evaluations of the branch predicate. ν is a normalization func-

tion (Arcuri, 2013) with the range [0, 1]. Assuming the set of branches

B for a given class under test, this leads to the following fitness func-

tion, which is to be minimized by the search:

fitness(T) = |M| − |MT | +
∑
b∈B

d(b, T)

Here, M is the set of methods in the class under test, while MT is the

set of methods executed by T.

3.3. Search guidance on strings

The fitness function in whole test suite generation is based on

branch distances. EvoSuite works directly on Java bytecode, where

except for reference comparisons, the branching instructions are

all based on numerical values. Comparisons on strings first map to

Boolean values, which are then used in further computations; e.g.,

a source code branch like if(string1.equals(string2)) consists of

a method call on String.equals followed by a comparison of the

Boolean return value with true. To offer guidance on string based

branches we replace calls to the String.equals method with a cus-

tom method that returns a distance measurement (Li and Fraser,

2011). The branching conditions comparing the Boolean with true
thus have to be changed to check whether this distance measurement

is greater than 0 or not (i.e., == true is changed to == 0, and == false
is changed to 0). The distance measurement itself depends on the

search operators used; for example, if the search operators support

inserts, changes, and deletions, then the Levenshtein distance mea-

surement can be used. This transformation is an instance of testability

transformation (Harman et al., 2004), which is commonly applied to

improve the guidance offered by the search landscape of programs.

Search operators for string values have initially been proposed by

Alshraideh and Bottaci (2006). Based on our distance measurement,

when a primitive statement defining a string value is mutated, each

of the following is applied with probability 1/3 (i.e., with probability

(1/3)3 all are applied):

Deletion: Every character in the string is deleted with probability 1/n,

where n is the length of the string. Thus, on average, one character is

deleted.

Change: Every character in the string is changed with probability 1/n;

if it is changed, then it is replaced with a random character.

Insertion: With probability α = 0.5, a random character is inserted at a

random position p within the string. If a character was inserted, then

another character is inserted with probability α2, and so on, until no

more characters are inserted.

4. Applying Memetic Algorithms

The whole test suite generation presented in the previous section

is a global optimization technique, which means that we are trying

to optimize an entire candidate solution toward the global optimum

(maximum coverage). Search operations in global search can lead to

large jumps in the search space. In contrast, local search explores

the immediate neighborhood. For example, if we have a test suite

consisting of X test cases of average length L, then the probability of

mutating one particular primitive value featuring in one of those test

cases is (1/X) × (1/L). However, evolving a primitive value to a target

value may require many steps, and so global search can easily exceed

the search budget before finding a solution. This is a problem that

local search can overcome.

4.1. Local search on method call sequences

The aim of the local search is to optimize the values in one par-

ticular test case of a test suite. When local search is applied to a test

case, EvoSuite iterates over its sequence of statements from the last

to the first, and for each statement applies a local search dependent on

the type of the statement. Local search is performed for the follow-

ing types of statements: primitive statements, method statements,

constructor statements, field statements and array statements. Cal-

culating the fitness value after a local search operator has been applied

only requires partial fitness evaluation: EvoSuite stores the last exe-

cution trace with each test case, and from this the fitness value can be

calculated. Whenever a test case is modified during the search, either

by regular mutation or by local search, the cached execution trace is

deleted. Thus, a fitness evaluation for local search only requires that

one test out of a test suite is actually executed.

4.1.1. Primitive statements

Booleans and enumerations: for Boolean variables the only option

is to flip the value. For enumerations, an exploratory move consists of

replacing the enum value with any other value, and if the exploratory

move was successful, we iterate over all enumeration values. Integer

datatypes: for integer variables (which includes all flavors such as

byte, short, char, int, long) the possible exploratory moves are +1

and −1. The exploratory move decides the direction of the pattern

move. If an exploratory move to +1 was successful, then with every

iteration I of the pattern search we add δ = 2I to the variable. If +1

was not successful, −1 is used as exploratory move, and if successful,

subsequently δ is subtracted. Floating point datatypes: for floating

point variables (float,double) we use the same approach as originally

defined by Harman and McMinn (2007) for handling floating point

numbers with the AVM. Exploratory moves are performed for a range

of precision values p, where the precision ranges from 0 to 7 for float
variables, and from 0 to 15 for double values. Exploratory moves are

applied using δ = 2I × dir × 10−p. Here dir denotes either +1 or −1,

and I is the number of the iteration, which is 0 during exploratory

moves. If an exploratory move was successful, then pattern moves

are made by increasing I when calculating δ.

4.1.2. String statements

For string variables, exploratory moves are slightly more com-

plicated than in the case of primitive statements: to determine if

local search on a string variable is necessary, we first apply n ran-

dom mutations on the string.1 These mutations are the same as

1 In theory, static analysis could also be used to determine when a string is a data

dependency of one of the target branches; however, as the method sequences may use

many different classes that are not known ahead of time, this is non-trivial.
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described in Section 3.3. If any of the n probing mutations changed

the fitness, then we know that modifying the string has some effect,

regardless of whether the change resulted in an improvement in fit-

ness or not. As discussed in Section 3.3, string values affect the fitness

through a range of Boolean conditions that are used in branches; these

conditions are transformed such that the branch distance also gives

guidance on strings. If the probing on a string showed that it affects

the fitness, then we apply a systematic local search on the string. The

operations on the string must reflect the distance estimation applied

on string comparisons:

Deletion: First, every single character is removed and the fitness value

is checked. If the fitness did not improve, the character is kept in the

string.

Change: Second, every single character is replaced with every pos-

sible other character; for practical reasons, we restrict the search to

ASCII characters. If a replacement is successful, we move to the next

character. If a character was not successfully replaced, the original

character stays in place.

Insertion: Third, we insert new characters. Because the fitness evalua-

tion requires test execution, trying to insert every possible character

at every possible position would be too expensive—yet this is what

would be required when using the standard Levenshtein distance

(edit distance) as distance metric. Consequently, we only attempt to

insert characters at the front and the back, and adapt the distance

function for strings accordingly.

The distance function for two strings s1 and s2 used during the

search is (c.f. Kapfhammer et al., 2013):

distance(s1, s2) = |length(s1)− length(s2)|

+
min(length(s1),length(s2))∑

i=0

distance(s1 [i] , s2 [i])

4.1.3. Array statements

Local search on arrays concerns the length of an array and the val-

ues assigned to the slots of the array. To allow efficient search on the

array length, the first step of the local search is to try to remove as-

signments to array slots. For an array of length n, we first try to remove

the assignment at slot n − 1. If the fitness value remains unchanged,

we try to remove the assignment at slot n − 2, and so on, until we find

the highest index n′ for which an assignment positively contributes to

the fitness value. Then, we apply a regular integer-based local search

on the length value of the array, making sure the length does not get

smaller than n′ + 1. Once the search has found the best length, we

expand the test case with assignments to all slots of the array that

are not already assigned in the test case (such assignments may be

deleted as part of the regular search). Then, on each assignment to the

array we perform a local search, depending on the component type

of the array.

4.1.4. Reference type statements

Statements related to reference values (method statement, con-

structor statement, field statement) do not allow traditional local

search in terms of primitive values. The neighborhood of a com-

plex type in a sequence of calls is huge (e.g., all possible calls on

an object with all possible parameter combinations, etc.), such that

exhaustive search is not a viable option. Therefore, we apply ran-

domized hill climbing on such statements. This local search consists

of repeatedly applying random mutations to the statement, and it is

stopped if there are R consecutive mutations that did not improve

the fitness (in our experiments, R = 10). We use the following muta-

tions for this randomized hill climbing:

• Replace the statement with a random call returning the same type.

• Replace a parameter (for method and constructor statements) or

the receiving object (for field and method statements) with any

other value of the same type available in the test case.

• If the call creates a non-primitive object, add a random method

call on the object after the statement.

4.2. Local search on test suites

While the smallest possible search steps in the neighborhood of

a test suite are defined by the tests’ statements as discussed in the

previous section, Lamarckian evolution in principle permits individ-

uals to improve with any local refinements, and not just local search

algorithms. This section describes some local improvements that can

be performed on test suites with respect to the goal of achieving high

code coverage.

4.2.1. Primitive value expansion

The search operators creating sequences of method calls allow

variables to be reused in several statements. This is beneficial for cer-

tain types of coverage problems: for example, the case of an equilat-

eral triangle (thus requiring three equal integer inputs) in the famous

triangle example becomes a trivial problem when allowing variable

reuse. However, variable reuse can also inhibit local exploration. In

the case of the triangle example, given a test that creates an equilateral

triangle using only a single variable, it is impossible for local search

on the primitive values in the test to derive any other type of triangle.

Therefore, a possible local improvement of test suite lies in making

all variables uniquely used. That is, the triangle case would be con-

verted to a test with three variables that have the same value, thus

permitting local search to optimize each side independently again

(Fig. 3).

4.2.2. Ensuring double execution

The branch coverage fitness function (Section 3.2) requires that

each branching statement is executed twice, in order to avoid that the

search oscillates between the true/false outcomes at the branching

statement. If for a given test suite a branching predicate is covered

only once, then it is possible to improve the test suite simply by

duplicating the test that covers the predicate.

4.2.3. Restoring coverage

The fitness function captures the overall coverage of a test suite,

and how close it is to covering more branches. This means that the

fitness value does not capture which branches are covered, and so

a test suite with worse fitness than another might still cover some

branches the “better” test suite does not cover. Again it is possible to

apply a local improvement measure to counter this issue: we keep a

global archive of tests, and whenever a new branch is covered for the

first time, this test is added to the archive. If a test suite determines

that it is not covering branches that have been covered in the past, it

can take the according test cases from that archive.

4.3. A Memetic Algorithm for test suites

Given the ability to perform local search on the individuals of a

global optimization there is the question of how to integrate these

techniques. Considering the high costs of fitness evaluations in the

test generation scenario, a generally preferred choice (El-Mihoub

et al., 2006) is Lamarckian learning, i.e., the local search changes the

genotype and its fitness value, rather than just the fitness value. A

common implementation of MAs applies this learning immediately
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Fig. 3. Expanding primitive values. In the left-hand test case, only equilateral triangles are possible. Ensuring the method receives distinct primitive values for each of its parameters,

as for the right-hand test case, allows for greater effectiveness when applying local search.

after reproduction (Moscato, 1989). However, there remain several

different parameters (El-Mihoub et al., 2006): How often to apply the

individual learning? On which individuals should it be applied? How

long should it should be performed? In EvoSuite, the choice of how

often to apply local learning depends on two parameters:

• Rate: The application of individual learning is only considered ev-

ery r generations. For example, if r = 1, then it is considered in

every generation.

• Probability: If the rate parameter decides that the current iteration

is a candidate the local search, then this is done with a probability

p. For example, if p = 1, then local search is applied at all genera-

tions selected by r.

Algorithm 1. A basic Memetic Algorithm, where a regular GA is

extended by local search before regular reproduction on selected

generations.

Require: Class under test C

Ensure: Test suite T

1: procedure MAC

2: current _ population← random population

3: iteration← 1

4: repeat

5: if iteration mod local search rate = 0

6: � local search probability then

7: while budget for local search available do

8: x← select next individual from Z

9: x′← local search on x

10: if local search successful then

11: Z ← Z � {x′} � {x}

12: Increase local search probability

13: else

14: Decrease local search probability

15: end if

16: end while

17: end if

18: while |Z| � |current _ population| do

19: P1, P2← select two parents

20: if crossover probability then

21: O1, O2← crossover P1, P2

22: else

23: O1, O2← P1, P2

24: end if

25: if mutation probability then

26: O1, O2← mutate O1, O2

27: end if

28: fP = min(fitness(P1), fitness(P2))

29: fO = min(fitness(O1), fitness(O2))

30: if fO � fP then

31: Z ← Z � {O1, O2}

32: else

33: Z ← Z � {P1, P2}

34: end if

35: iteration ← iteration + 1

36: end while

37: current _ population ← Z

38: until solution found or maximum resources spent

39: end procedure

Algorithm 1 shows how these parameters are used in the MA:

except for Lines 5–17, this algorithm represents a regular GA. If the

current iteration matches the rate with which local search should be

applied, then with a given probability the local search is applied to

one individual of the current population after the other, until the local

search budget is used up. One possible strategy to select individuals

for local search is to apply it to the worst individuals (El-Mihoub et al.,

2006), which supports exploration. However, we expect fitness eval-

uations and local search in the test generation scenario to be very

expensive, such that it can be applied only to few individuals of the

population. Furthermore, test suite generation is a scenario where

the global optimization alone may not succeed in finding a solution

(e.g., consider the string example in Fig. 1). Therefore, we direct the

learning toward the better individuals of the population, such that

newly generated genetic material is more likely to directly contribute

toward the solution. The strategy implemented in EvoSuite is thus

to start applying local search to the best individual of the popula-

tion, then the second best, etc., until the available budget for local

search is used up. The local search budget in EvoSuite can be defined

in terms of fitness evaluations, test executions, number of executed

statements, number of individuals on which local search is applied,

or time. Finally, a further parameter determines the adaptation rate:

if local search was successful, then the probability of applying it at ev-

ery rth generation is increased, whereas an unsuccessful local search

leads to a reduction of the probability. For this we use the approach

that EvoSuite successfully applied to combine search-based testing

and dynamic symbolic execution (Galeotti et al., 2013). The adapta-

tion rate a updates the probability p after a successful (i.e., fitness was

improved) local search as follows:

p = min(p × a, 1) (1)

whereas on unsuccessful local search it is updated to:

p = p

a
. (2)

Optionally, EvoSuite implements a strategy where local search is re-

stricted to those statements where a mutation in the reproduction

phase has led to a fitness change (Galeotti et al., 2013).

5. Evaluation

The techniques presented in this paper depend on a number of

different parameters, and so evaluation needs to take these into ac-

count. As the problem is too complex to perform a theoretical runtime

analysis (e.g., such as that presented by Arcuri (2009)), we therefore

aim to empirically answer the following research questions:

RQ1: Does local search improve the performance of whole test suite

generation?

RQ2: How does the configuration of the Memetic Algorithm influence

the results?

RQ3: How does the available search budget influence the results?

RQ4: What is the influence of each individual type of local search oper-

ator?

RQ5: Which combination of local search operators achieves the best

results?

RQ6: Does adaptive local search improve the performance?

RQ7: Do results generalize to other classes?
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Table 1

Case study classes.

Project Class LOC Branches

Roops IntArrayWithoutExceptions 64 43

Roops LinearWithoutOverflow 223 93

Roops FloatArithmetic 68 49

Roops IA.WithArrayParameters 30 29

SCS Cookie 18 13

SCS DateParse 32 39

SCS Stemmer 345 344

SCS Ordered4 11 29

NanoXML XMLElement 661 310

Commons CLI CommandLine 87 45

JDOM Attribute 138 65

Commons Codec DoubleMetaphone 579 504

java.util ArrayList 151 70

NCS Bessj 80 29

Commons Math FastFourierTransformer 290 135

Joda Time DateTimeFormat 356 434

“Branches” is the number of branches reported by EvoSuite; “LOC” refers

to the number of non-commenting source code lines reported by JavaNCSS

(http://www.kclee.de/clemens/java/javancss).

5.1. Case study selection

For RQ1–RQ6 we need a small set of classes on which to perform

extensive experiments with many different combinations of param-

eters. Therefore, we chose classes already used in previous experi-

ments (Arcuri and Fraser, 2013), but excluded those on which Evo-

Suite trivially already achieves 100% coverage, as there was no scope

for improvement with local search. In order to ensure that the set of

classes for experimentation was variegated, we tried to strike a bal-

ance among different kinds of classes. To this end, beside classes taken

from the case study in Arcuri and Fraser (2013), we also included four

benchmark classes on integer and floating point calculations from the

Roops2 benchmark suite for object-oriented testing, This results in a

total of 16 classes, of which some characteristics are given in Table 1.

For RQ7 we need large sets of classes with different properties. First,

we used the SF100 corpus of classes (Fraser and Arcuri, 2012). The

SF100 corpus is a random selection of 100 Java projects from Source-

Forge, one of the largest repositories of open source projects. In total,

the SF100 corpus consists of 11,088 Java classes. On one hand, the

SF100 corpus is an ideal case study to show how a novel technique

would affect software engineering practitioners. On the other hand,

there are several research questions in unit test generation that are

still open and may influence the degree of achievable improvement,

like handling of files, network connections, databases, GUI events, etc.

Therefore, we used the case study of the Carfast (Park et al., 2012) test

generation tool3 as a second case study, as it represents a specific type

of difficult classes that could be efficiently addressed with a hybrid

local search algorithm. Table 2 summarizes the properties of this case

study. Note that the Carfast paper mentions a second case study with

about 1k LOC, which is not included in the archive on the website and

therefore not part of our experiments.

5.2. Experiment parameters

In addition to the parameters of the MA, local search is influ-

enced by several other parameters of the search algorithm. Be-

cause how often we apply local search depends on the number

X of generations, how much local search is actually performed is

dependent on the population size. Consequently, we also had to

consider the population size when designing the experiments. We

2 http://code.google.com/p/roops/.
3 Available at: http://www.carfast.org, accessed June 2013.

Table 2

Details of the generated case study. For each project, we report how many classes

it is composed of, and the total number of bytecode branches.

Name # Classes # Branches

tp1m 751 758,717

sp500k 301 307,546

tp10k 101 12,744

tp80k 81 61,560

tp50k 51 31,554

tp5k 31 2,850

tp7k 31 4,045

tp2k 21 1,041

tp1k 16 659

tp300 4 177

tp600 4 341

Total: 1,392 1,181,234

also considered seeding from bytecode (Fraser and Arcuri, 2012) as a

further parameter to experiment with. In bytecode seeding, all con-

stant values (e.g., numbers and strings) in the code of the class under

test are added to a special pool of values that the search algorithm can

employ when sampling new values, instead of doing that at random.

We ran experiment with and without seeding because we expected it

to have a large impact on the performance for case studies where local

search is successful (as we later found to be confirmed by the experi-

ments). In total, we ran four different sets of experiments to answer

the different research questions, each requiring different parameter

configurations: Experiment 1 (RQ1–RQ3): for population size, local

search budget and rate we considered five different values, i.e., {5, 25,

50, 75, 100}, while the interpretation chosen for the local search bud-

get was “seconds”. We controlled the use of constant seeding by set-

ting the probability of EvoSuite using seeded constants to either 0.0

or 0.2. We also included further configurations without local search

(i.e., the default GA in EvoSuite), but still considering the different

combinations of population size and seeding. In total, EvoSuite was

run on (2 × 53) + (2 × 5) = 260 configurations. For each class we used

an overall search budget of 10 min, but for RQ3 we also look at inter-

mediate values of the search. Experiment 2 (RQ4–RQ5): we considered

all possible combinations of the local search operators defined in

Section 4, i.e., search on strings, numbers, arrays, reference types, as

well as ensuring double execution, expanding test cases, and restoring

coverage. Together with the seeding option, this results in 28 = 256

different combinations. The values chosen for population size, rate,

and budget are those that gave the best result in RQ2. As we do not

consider the behavior of the search over time, we use a search budget

of 2 min per class, a value which our past experience has shown to

be a reasonable compromise between a runtime practitioners would

accept and allowing for good coverage results. Experiment 3 (RQ6):

we considered the probabilities {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.7, 1.0}

and adaptation rates of {1.0, 1.2, 1.5, 1.7, 2.0, 5.0, 10} (i.e., a suitable

coverage of values between the minimum and maximum plausible

values), while the local search rate is set to 1. We also experimented

whether selective mode was active or not, as well as seeding, which

led to 8 × 7 ×22 = 224 configurations. The overall search budget is

again 2 min per class. Experiment 4 (RQ7): for the experiments on the

SF100 corpus and Carfast case study we only considered two con-

figurations: default GA in EvoSuite and the best MA configuration

from the analyses of the previous research questions. Search budget

is 2 min per class also in this set of experiments.

5.3. Experiment procedure

On each class, for each parameter combination and algorithm,

we ran EvoSuite 10 times with different random seeds to take

into account their random nature. This means that the first set

http://www.kclee.de/clemens/java/javancss
http://code.google.com/p/roops/
http://www.carfast.org
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Table 3

Results for RQ1. Average coverage obtained by the tuned MA is compared with the tuned GA, using a 10 min search budget. Effect sizes (Â12) with statistically significant

difference at 0.05 level are shown in bold. Data are divided based on whether seeding was used or not.

Case study Without seeding With seeding

MA GA Â12 MA GA Â12

IntArrayWithoutExceptions 0.93 0.88 1.00 0.93 0.93 0.50

LinearWithoutOverflow 0.99 0.73 1.00 0.99 0.91 1.00

FloatArithmetic 0.65 0.49 1.00 0.86 0.86 0.50

IA.WithArrayParameters 1.00 1.00 0.49 1.00 1.00 0.50

Cookie 0.98 0.45 0.99 1.00 0.95 0.85

DateParse 0.97 0.77 1.00 1.00 1.00 0.50

Stemmer 0.76 0.72 0.82 0.76 0.71 0.89

Ordered4 1.00 0.97 0.85 1.00 0.98 0.65

XMLElement 0.98 0.98 0.27 0.98 0.99 0.27

CommandLine 0.98 0.98 0.50 0.98 0.98 0.50

Attribute 0.86 0.76 1.00 0.89 0.85 1.00

DoubleMetaphone 0.76 0.75 0.72 0.84 0.80 1.00

ArrayList 0.91 0.92 0.45 0.93 0.93 0.55

Bessj 0.95 0.96 0.45 0.96 0.95 0.55

FastFourierTransformer 0.74 0.71 0.64 0.76 0.78 0.53

DateTimeFormat 0.80 0.78 0.74 0.79 0.77 0.86

Average 0.89 0.80 0.75 0.92 0.90 0.67

of experiments required (260 × 16 × 10 × 10)/(60 × 24) = 288

days of computational time, the second required (256 × 16 × 2 ×10)/

(60 × 24) = 57 days, the third (224 × 16 × 2 ×10)/(60 × 24) = 50 days,

and finally the last set of experiments needed (1392 + 11, 088) ×
(2 × 2 ×10)/(60 × 24) = 347 days. Thus, in total all the experiments

together took 742 days of computational time, which required the use

of a cluster of computers. We used the University of Sheffield’s Linux

based high performance computing cluster which has a total of 1544

CPUs. The nodes of the cluster have either AMD or Intel CPUs at around

2.6 GHz, and 4 GB of memory per CPU core. During all these runs, Evo-

Suite was configured using the optimal configuration determined in

our previous experiments on tuning (Arcuri and Fraser, 2013). To

evaluate the statistical and practical differences among the differ-

ent settings, we followed the guidelines by Arcuri and Briand (2014).

Statistical difference is evaluated with a two-tailed Mann–Whitney–

Wilcoxon U-test (at 0.05 significant level), whereas the magnitude

of improvement is quantified with the Vargha–Delaney standard-

ized effect size Â12. In some cases, it is sufficient to determine which

configuration gives best result. In other cases, it is useful to ana-

lyze trends among the different configuration parameters and their

combinations. However, when there are hundreds of configuration

settings based on several parameters, the issue of how to visualize

them is not so straightforward. In this paper, when we do this kind

of analysis, we create rank tables, in a similar way as we did in previ-

ous work (Fraser and Arcuri, 2013). In a rank table, we compare the

effectiveness of each configuration against all other configurations,

one at a time. For example, if we have X = 250 configurations, we

will have X × (X − 1) comparisons, which can be reduced by half due

to the symmetric property of the comparisons. Initially, we assign

a score of 0 to each configuration. For each comparison in which a

configuration is statistically better (using a U-test at 0.05 level), we

increase its score by one, and we reduce it by one in case it is sta-

tistically worse. Therefore, in the end each configuration has a score

between −X and +X. The higher the score, the better the configu-

ration is. After this first phase, we rank these scores, such that the

highest score has the best rank, where better ranks have lower val-

ues. In case of ties, we average the ranks. For example, if we have

five configurations with scores {10, 0, 0, 20, − 30}, then their ranks

will be {2, 3.5, 3.5, 1, 5}. We repeat this procedure for all the Z classes

in the case study, and we calculate the average of these ranks for

each configuration, for a total of Z × X × (X − 1)/2 statistical compar-

isons. For example, if we consider X = 250 configurations and Z = 16

classes, this results in 498, 000 statistical comparisons. This a very

large number of comparisons, which can lead to a high probability

of Type I error if we consider the hypothesis that all tests are sig-

nificant at the same time. The issue of applying adjustments such as

Bonferroni corrections, however, is a complex one, and there is no

full consensus amongst statisticians as to their application. In this

paper we have not to applied such corrections, for reasons discussed

by Arcuri and Briand (2014), Perneger (1998) and Nakagawa (2004),

with which we are in agreement with.

5.4. RQ1: Does local search improve the performance?

For both cases where seeding was applied and where it was not,

we analyzed the 53 = 125 configurations using the MA, and chose the

one that resulted with highest average coverage over the 16 classes

in the case study. We did the same for the basic GA, i.e., we evalu-

ated which configuration of the population size gave best results. We

call these four configurations (two for MA, and two for GA) “tuned”.

Table 3 shows the comparison between the tuned MA and tuned GA

configuration based on whether seeding was used. Results in Table 3

answer RQ1 by clearly showing, with high statistical confidence, that

the MA outperforms the standard GA in many, but not all, cases. For

classes such as Cookie, improvements are as high as a 98 − 45 = 53%

average coverage difference (when seeding is not used). When con-

sidering the case without seeding

RQ1: The MA achieved up to 53% higher branch coverage than
the standard GA.

enabled, there are no classes where the MA resulted in signifi-

cantly lower coverage; however, the effect size is worse for the MA

for the classes IntArrayWithoutExceptionsWithArrayParameters,

XMLElement, ArrayList and Bessj, although difference in coverage

are no more than 1%. Some local search operators may thus lead to

lower coverage, and this will be analyzed in detail as part of RQ4. With

seeding enabled MA is still clearly better overall. Only for XMLElement
the results are slightly worse, but these are not statistically significant.

5.5. RQ2: How does the configuration of the MA influence the results?

One thing that is clearly visible in Table 3 is that seeding, as

expected (Fraser and Arcuri, 2012), leads to higher results. On one

hand, when seeding is not used, the difference in average coverage
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between the MA and the GA is 89 − 80 = 9%. On the other hand,

when seeding is used, the difference is 92 − 90 = 2%. At a first look,

such an improvement might be considered low. But the statistics

in Table 3 point out a relatively high average effect size of 0.67,

with six classes having a strong statistical difference. This is not in

contrast with the 2% difference in the raw values of the achieved

coverage. What the data in Table 3 suggest is that, when seed-

ing is employed, there are still some branches that are not cov-

ered with the GA, and so require the local search of the MA to be

reached.

To answer RQ2 we can look at the configuration that gave the best

result on average. This configuration uses an MA algorithm with seed-

ing, large population size (100 individuals), low rate of local search

(every 100 generations) and a small budget of 25 s for local search. In

other words, on average the best result is achieved using local search

infrequently and with not a large budget. This is different from the

result of our initial experiment (Fraser et al., 2013), where the best

configuration used seeding, small population size (five individuals),

low rate of local search (every 75 generations), and a small budget of

five fitness evaluations for local search. Table 4 shows the results of

the rank analysis on those 250 MA configurations. For space reasons,

we only show the results of 50 configurations: the 25 top configu-

rations using seeding, and the top 25 that do not use seeding. The

results in Table 4 clearly show that, on average, seeding has a strong

impact on performance (all the 25 top configurations using seeding

achieve better results than the top 25 not using seeding). Among the

top configurations, there is a clear trend pointing to large population

values, local search applied infrequently, and for a short period of

time (i.e., low budget). This may seem in slight contrast to the results

of our initial experiments in Fraser et al. (2013), where the best re-

sult was achieved with seeding, small population size (5), low rate of

local search (every 75 generations), and a small budget (5) for local

search. However, this difference can be attributed to (a) the variance

in the results (the top configurations are all very similar in terms of

achieved coverage), (b) differences in the local search operators, (c)

optimizations introduced in this paper that make it feasible to apply

local search on larger populations, e.g. the original experiments did

not include primitive value expansion and restoring coverage. In gen-

eral, these results suggest that, although local search does improve

performance, one has to strike the right balance between the effort

spent on local search and the one spent on global search (i.e., the

search operators in the GA). Considering Table 3, we see that the re-

sults change significantly between individual classes. This suggests

that the benefit of local search is highly dependent on the problem

at hand. For example, in a class with many string inputs, much of the

budget may be devoted to local search, even if the input strings have

no effect on code coverage levels. Although we do see an improve-

ment, even on average, this clearly points out the need for parameter

control—in order to adaptively change the local search configuration

to the class under test and current state of the search. At any rate, one

problem with parameter tuning is that, given a large set of experi-

ments from which we choose the best configuration, such a configu-

ration could be too specific for the employed case study (Arcuri and

Fraser, 2013). This is a common problem that in Machine Learning is

called overfitting (Mitchell, 1997). To reduce the threats of this possi-

ble issue, we applied a k-fold cross validation on our case study (for

more details, see for example (Mitchell, 1997)). Briefly, we divided

the case study in k = 16 groups, chose the best configuration out of

the 250 on k − 1 groups (training), and calculated its performance

on the remaining group (validation). This process is then repeated

k times, each time using a different group for the validation. Then,

the average of these k performance values on the validation groups

is used as an estimate of actual performance of tuning on the entire

case study (the “tuned” configuration) when applied on other new

classes (i.e., does the tuning process overfit the data?). Note, we used

a 16-fold cross validation instead of a typical 10-fold cross valida-

tion as we have only 16 classes, and dividing them into 10 groups

would had partitioned them in very unbalanced groups (i.e., some

groups with only one element whereas others with twice as much).

The obtained estimate for the best MA configuration was 0.91, which

is close to the average value 0.92 in Table 3. Therefore, the best pa-

rameter configuration we found is not overfitted to the case study

examples.

RQ2: The MA gives the best results when local search is applied
infrequently with a small search budget.

5.6. RQ3: How does the search budget influence the results?

The time spent for test data generation (i.e., the testing budget)

is perhaps the only parameter that practitioners would need to set.

For a successful technology transfer from academic research to in-

dustrial practice, the internal details (i.e., how often and how long

to run local search inside EvoSuite) of a tool should be hidden from

the users, and thus this choice should be made before the tools are

released to the public. However, usually the best parameter config-

uration is strongly related to the testing budget (Arcuri and Fraser,

2013). To answer RQ3, we studied the performance of the tuned MA

and the tuned GA at different time intervals. In particular, during

the execution of EvoSuite, for all the configurations we kept track

of the best solution found so far at every minute (for both the GA

and the MA). With all these data, at every minute we also calculated

the “best” MA configuration (out of 250) and the “best” GA (out of

10) at that particular point in time. By definition, the performance

of the “tuned” MA is equal or lower than the one of the “best” MA.

Recall that “tuned” is the configuration that gives the “best” results

at 10 min.

From a practical stand point, it is important to study whether the

“tuned” MA is stable compared to the “best” MA. In other words, if

we tune a configuration considering a 10 min timeout, are we still

going to get good results (compared to the “best” MA and GA) if the

practitioner decides to stop the search beforehand? Or was 10 min

just a lucky choice? Fig. 4 answers these questions by showing that,

already from 2 min on, “tuned” performs very similar to the “best”

configuration. Furthermore, regardless of the time, there is always

a large gap between the “tuned” MA and GA. Fig. 4 shows the re-

sults averaged on all 16 classes in the case study. Thanks to the

relatively small number of classes, in Figs. 5 and 6 we can show

the time analysis for each class individually. The results provide
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Fig. 5. For the first eight classes in the case study, average coverage at different points in time for the “best” GA (dotted line), “best” MA (dashed line) and “tuned” MA at 10 min

(solid line).
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Fig. 6. For the second eight classes in the case study, average coverage at different points in time for the “best” GA (dotted line), “best” MA (dashed line) and “tuned” MA at 10 min

(solid line).
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Table 4

Rank analysis for RQ2. Out of the 250 configurations for MA, only the top 25 using seeding and the 25 without are displayed.

Seeding Population Rate Budget Rank Coverage

	 100 100 25 55.062 0.917

	 100 100 50 55.531 0.915

	 75 100 50 58.625 0.910

	 100 75 50 58.875 0.914

	 100 75 75 60.438 0.910

	 75 100 75 61.438 0.912

	 100 75 25 61.656 0.912

	 25 75 5 65.750 0.909

	 100 100 5 67.938 0.910

	 50 100 5 68.281 0.911

	 100 75 5 68.438 0.910

	 75 100 5 68.562 0.910

	 75 75 5 69.531 0.909

	 50 100 25 69.938 0.908

	 25 100 5 70.219 0.908

	 75 100 100 70.875 0.908

	 25 100 25 70.906 0.908

	 50 75 5 71.312 0.912

	 75 100 25 71.500 0.907

	 50 50 5 71.750 0.907

	 50 100 75 72.062 0.906

	 75 50 5 73.094 0.909

	 75 75 50 73.188 0.908

	 100 100 75 73.750 0.908

	 100 50 5 74.031 0.908

25 100 5 98.250 0.889

100 75 25 99.438 0.889

100 75 75 104.688 0.885

100 100 25 105.688 0.887

100 100 50 106.500 0.887

75 100 5 106.688 0.889

50 100 25 107.125 0.888

50 75 5 110.188 0.885

100 100 5 110.625 0.887

25 75 5 110.906 0.884

75 100 25 111.281 0.891

50 25 5 113.500 0.883

50 75 25 114.688 0.885

75 75 5 114.719 0.884

50 100 5 114.938 0.883

75 100 50 115.344 0.885

25 100 25 116.375 0.885

25 100 50 116.406 0.884

25 75 100 117.156 0.886

75 75 25 117.250 0.884

50 100 50 118.031 0.887

100 100 100 118.312 0.884

100 75 100 119.719 0.885

75 75 50 120.000 0.885

75 50 25 121.000 0.881

interesting further insight by showing very different behaviors among

classes. For example, a peculiar result in Figs. 5 and 6 is that, for the

best MA, the performance is not monotonically increasing through

time (as it is in Fig. 4). This is particularly evident for the class

FastFourierTransformer. The reason is that, at each point (minute)

in time, we are considering the configuration with highest coverage

averaged over all the 16 classes. Although on average the perfor-

mance improves monotonically (Fig. 4), on single classes in isolation

everything could in theory happen (Figs. 5 and 6).

RQ3: The best configuration only differs for small search budgets,
and is consistent across higher budgets.

5.7. RQ4: What is the influence of each individual type of local search

operator?

Table 5 shows the average coverage achieved for each individ-

ual type of local search. To study the effects individually and not

conflate them with the effects of seeding, all results shown in the

table are based on runs without seeding activated. If applied inde-

pendently, then the techniques of ensuring double execution and

expanding test cases have only a minor effect. However, they can

be beneficial for all other types of local search. In the table they are

activated for all types of local search.

In other words, results presented Table 5 are based only on six

configurations out of the 28 = 256 we ran. In all these six con-

figurations, seeding was off, whereas double execution and test

expansion were on. In the “Base” configuration, all the five local

search operators were off. For each of the remaining five configu-

rations, one local search operator was on, whereas the other four

were off.

• IntArrayWithoutExceptions benefits mainly from numeric

search, and the local search on arrays has no benefit. Indeed, as

long as there are explicit assignments to array elements in the

tests then numeric local search can improve array contents as

well, whereas search on all array elements may waste resources.
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Table 5

Results for RQ4. For each class, the table reports the coverage effectiveness of each operator in isolation. Values in bold are the maxima for each class.

Case study Base Primitives Strings Arrays References Restore

IntArrayWithoutExceptions 0.84 0.91 0.84 0.84 0.84 0.83

LinearWithoutOverflow 0.68 0.98 0.68 0.68 0.68 0.68

FloatArithmetic 0.48 0.57 0.48 0.48 0.48 0.48

IA.WithArrayParameters 0.94 0.99 0.93 0.93 0.94 0.92

Cookie 0.33 0.30 0.94 0.33 0.30 0.30

DateParse 0.54 0.53 0.85 0.54 0.52 0.53

Stemmer 0.56 0.68 0.55 0.56 0.56 0.58

Ordered4 0.99 0.99 0.98 0.99 0.99 0.99

XMLElement 0.86 0.84 0.86 0.87 0.90 0.94

CommandLine 0.97 0.96 0.96 0.96 0.97 0.97

Attribute 0.71 0.71 0.74 0.72 0.72 0.72

DoubleMetaphone 0.62 0.62 0.64 0.62 0.65 0.70

ArrayList 0.88 0.88 0.89 0.88 0.90 0.89

Bessj 0.91 0.91 0.91 0.91 0.91 0.91

FastFourierTransformer 0.63 0.63 0.63 0.61 0.65 0.61

DateTimeFormat 0.63 0.62 0.71 0.63 0.68 0.72

• LinearWithoutOverflow is a class that consists almost exclusively

of numerical constraints, thus numeric search brings the most

benefits.

• FloatArithmetic represents numeric problems with floating

point inputs; numeric search brings the expected improvement.

• IntArrayWithoutExceptionsWithArrayParameters repeats the

pattern seen in IntArrayWithtoutExceptions: search on numbers

improved coverage, search on arrays made things worse.

• Cookie is a pure string problem, and string local search behaves

as expected.

• DateParse is also a string problem (which becomes trivial with

seeding—see the flat-lined graph in Fig. 5); string local search

works as expected.

• Stemmer is a class that works with text input, yet it takes its input

in terms of character arrays and integers. Consequently, string

local search does not help, whereas numeric search improves

it a lot.

• Ordered4 is a surprising case: it is a string problem, yet the only

type of local search that achieves a worse result than pure global

search is search on strings. The reason for this is that the string

constraints in this class are based on the compareTomethod, which

returns −1, 0, or 1. While EvoSuite transforms all boolean string

comparison operators and replaces them with functions that pro-

vide guidance, it currently does not do this for compareTo. Con-

sequently, local search on the strings will in many cases not

get beyond exploration, which nevertheless consumes search

budget.

• XMLElement has strings dependencies, yet the are few constraints

on these strings; they mainly represent the names of tags. How-

ever, some string-related inputs are represented as character ar-

rays (char[]), which explains why the array search is more bene-

ficial than the string search for this example. The class has many

methods, which is likely why reference search is beneficial, as is

restoring coverage.

• Most methods of CommandLine have either string or character pa-

rameters, which offers potential to apply local search on strings

and numbers. However, again this is a class where the actual val-

ues of these strings and characters do not matter, and so these

types of local search have a negative effect.

• Attribute has several string dependencies, for example one can

set a string value for an XML attribute and then call methods to

convert it to numbers or booleans. Consequently, local search on

strings is beneficial.

• DoubleMetaphone has many string related parameters, given

that it implements an algorithm to encode strings. String lo-

cal search has a small beneficial effect, as does search on

references.

• ArrayList has methods with string and numerical inputs, yet only

few branches depend on these parameters (e.g., the capacity of

an ArrayList needs to be larger than 0). Consequently, the only

type of local search that has an effect on this class is search on

references.

• Bessj is a class with many branches on numerical dependencies;

however, even with significantly higher search budget EvoSuite is

not able to achieve higher coverage than 91%, therefore it is likely

that this is already the maximum possible, and none of the types

of local search have a negative impact on reaching this.

• FastFourierTransformer has many array parameters, yet it seems

to perform more transformative calculations on these arrays

rather than depending on their content. Consequently, the array

local search has a negative effect.

• DateTimeFormat has functionality to parse date formatting pat-

terns, and consequently benefits significantly from string local

search. It also has many methods, which is reflected in the im-

provement with reference local search.

Restoring coverage had a negative effect only in five out of the 16

cases, whereas it had a very strong effect in many of them.

RQ4: Numeric and string local search work well on their relevant
problem instances, whereas array search can have negative im-
pact. Reference local search is beneficial for large classes.

5.8. RQ5: Which combination of local search operators achieves the

best results?

There can be subtle effects and interactions between different

types of local search. Consequently, for RQ5 we looked at all pos-

sible combinations of the local search operators. Table 6 presents

a rank analysis where we list the top 25 configurations with seed-

ing enabled and 25 configurations without seeding. All top ranked

configurations restore coverage, most of them apply numeric lo-

cal search, and most of them apply primitive value expansion

(Section 4.2.1). This confirms the intuition that expansion is im-

portant to make local search on primitive values effective. The ta-

ble clearly shows how seeding influences the search, as all seed-

ing configurations are ranked higher than those without seeding.

All top ranked configurations without seeding apply numerical lo-

cal search, whereas there exist some in the seeding ranks that do

not use numerical search. The top ranked configurations without
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Table 6

Rank analysis for RQ5. Out of the 256 configurations, only the top 25 using seeding and the 25 without are displayed. The table considers whether seeding was employed

(seeding). It also considers the four types of local search operators at test case level: on primitives (Section 4.1.1), on strings (Section 4.1.2), on arrays (Section 4.1.3) and

on references (Section 4.1.4). For the test suite level, it considers primitive value expansion (expand, Section 4.2.1), double execution (double, Section 4.2.2) and restoring

coverage (restore, Section 4.2.3).

Seeding Primitives Strings Arrays References Expand Double Restore Rank Coverage

	 	 	 	 	 	 45.250 0.883

	 	 	 	 	 45.469 0.883

	 	 	 	 	 	 	 	 50.469 0.885

	 	 	 	 	 	 	 54.344 0.879

	 	 	 	 	 56.812 0.882

	 	 	 	 	 	 58.062 0.882

	 	 	 	 59.188 0.882

	 	 	 60.844 0.864

	 	 	 	 	 	 	 62.250 0.881

	 	 	 	 	 	 63.406 0.882

	 	 	 	 	 65.406 0.875

	 	 	 	 	 	 	 65.469 0.881

	 	 	 	 	 	 65.625 0.880

	 	 	 	 	 	 	 65.812 0.881

	 	 	 	 	 	 	 65.938 0.875

	 	 	 	 	 66.938 0.881

	 	 	 68.562 0.867

	 	 	 	 	 	 68.781 0.881

	 	 	 	 	 	 70.125 0.874

	 	 	 	 	 	 70.312 0.880

	 	 	 	 71.219 0.863

	 	 	 	 	 	 71.562 0.872

	 	 	 	 	 72.719 0.871

	 	 	 	 73.062 0.867

	 	 	 	 	 73.188 0.867

	 	 	 	 	 94.656 0.851

	 	 	 	 	 	 103.625 0.847

	 	 	 	 	 	 106.656 0.843

	 	 	 	 	 	 	 109.625 0.843

	 	 	 	 	 	 112.250 0.843

	 	 	 	 	 116.469 0.841

	 	 	 	 116.656 0.848

	 	 	 	 	 116.719 0.842

	 	 	 	 	 	 122.688 0.835

	 	 	 	 122.969 0.779

	 	 	 	 	 124.156 0.777

	 	 	 	 124.500 0.832

	 	 	 	 128.031 0.781

	 	 	 	 	 	 128.156 0.780

	 	 	 	 	 128.250 0.779

	 	 	 	 131.562 0.773

	 	 	 	 132.031 0.836

	 	 	 	 132.875 0.782

	 	 	 	 	 133.156 0.832

	 	 	 	 133.719 0.777

	 	 	 	 	 135.094 0.776

	 	 	 135.594 0.777

	 	 	 	 	 136.406 0.780

	 	 	 	 	 136.562 0.831

	 	 	 137.062 0.832

seeding use string local search, whereas fewer of the top ranked

configurations with seeding use string local search. Indeed, in sev-

eral of the 16 example classes the string constraints are partially

trivially solved with seeding, such that string local search in con-

junction with seeding seems to waste resources and has a nega-

tive effect. The top ranked configuration without seeding excludes

array local search, as one would expect from the analysis of RQ4.

However, surprisingly reference search is also excluded, whereas in

RQ4 we saw that there were only two cases where reference local

search applied individually led to a worse result, suggesting inter-

actions with the other operators. However, the configurations with

array search and reference search enabled are ranked directly below

that configuration with only marginally lower coverage, suggesting

that the impact is only minor. The top ranked configuration with

seeding also excludes array local search as expected, but it does in-

clude reference local search. However, the configuration with all types

of local search enabled ranks third, with even a minimally higher av-

erage coverage.

RQ5: Applying all local search operators leads to good results,
although string, array, and reference search can have minor neg-
ative effects.

5.9. RQ6: Does adaptive local search improve the performance?

RQ4 showed how different classes influence the effectiveness of

local search. Consequently, instead of applying local search with a

fixed configuration, we next consider how doing so in an adaptive

way influences results. As described in Section 4.3, we use the adap-

tive methods introduced by Galeotti et al. (2013). Table 7 shows
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Table 7

Rank analysis for RQ6. Out of the 224 configurations, only the top 25 using seeding and the 25 without are displayed.

Seeding Selective Rate Probability Rank Coverage

	 10.0 0.01 42.688 0.881

	 5.0 0.01 45.812 0.877

	 1.5 0.02 47.594 0.877

	 10.0 0.02 48.219 0.880

	 	 1.0 0.05 51.750 0.868

	 1.0 0.01 52.781 0.876

	 	 1.2 0.01 52.781 0.868

	 	 10.0 0.01 54.031 0.866

	 	 1.2 0.05 54.500 0.865

	 5.0 0.02 55.219 0.875

	 	 1.5 0.05 56.156 0.867

	 	 1.7 0.05 56.656 0.866

	 2.0 0.01 57.156 0.873

	 1.7 0.01 59.344 0.874

	 	 1.7 0.01 59.531 0.866

	 	 5.0 0.01 60.500 0.865

	 1.5 0.01 60.781 0.877

	 	 1.0 0.10 62.594 0.864

	 	 2.0 0.01 62.688 0.865

	 1.2 0.01 63.125 0.869

	 10.0 0.05 63.250 0.875

	 	 1.7 0.10 65.781 0.861

	 1.7 0.02 67.031 0.874

	 	 10.0 0.05 67.156 0.860

	 	 2.0 0.05 67.500 0.862

1.2 0.01 80.750 0.853

1.7 0.01 85.625 0.845

1.5 0.01 86.594 0.850

1.5 0.02 87.469 0.854

10.0 0.02 88.438 0.842

1.0 0.01 93.812 0.845

5.0 0.01 95.375 0.840

5.0 0.02 95.625 0.841

2.0 0.01 98.656 0.842

	 1.0 0.01 98.656 0.774

1.7 0.05 99.531 0.838

1.7 0.02 102.500 0.842

10.0 0.05 102.906 0.838

	 1.0 0.10 103.250 0.804

1.2 0.02 103.781 0.839

10.0 0.01 105.438 0.836

2.0 0.05 105.500 0.839

1.0 0.02 106.062 0.840

1.5 0.05 106.406 0.832

2.0 0.02 111.156 0.839

1.5 0.10 111.281 0.833

1.0 0.05 111.875 0.834

	 1.0 0.20 112.219 0.801

	 1.7 0.01 113.250 0.769

1.2 0.10 113.312 0.830

Table 8

For each class, comparisons without seeding of Base GA configuration with best non-adaptive MA from Table 6 and with best adaptive MA from Table 7. Effect sizes Â12 are

calculated for when non-adaptive is compared with base (Ânb), and adaptive compared to base (Âab) and to non-adaptive (Âan). Effect sizes that are statistically significant at

0.05 level are in bold.

Case study Base Non-adaptive Ânb Adaptive Âab Âan

IntArrayWithoutExceptions 0.85 0.92 1.00 0.93 1.00 0.65

LinearWithoutOverflow 0.69 0.98 1.00 0.99 1.00 0.65

FloatArithmetic 0.49 0.59 1.00 0.63 1.00 0.62

IA.WithArrayParameters 0.98 1.00 0.67 1.00 0.67 0.50

Cookie 0.26 0.95 1.00 0.98 1.00 0.61

DateParse 0.55 0.89 1.00 0.91 1.00 0.58

Stemmer 0.59 0.70 1.00 0.70 1.00 0.48

Ordered4 0.92 1.00 0.99 1.00 1.00 0.55

XMLElement 0.91 0.95 0.89 0.91 0.43 0.21

CommandLine 0.96 0.96 0.45 0.97 0.54 0.59

Attribute 0.72 0.76 0.99 0.78 1.00 0.69

DoubleMetaphone 0.63 0.72 1.00 0.71 0.98 0.44

ArrayList 0.90 0.90 0.56 0.88 0.33 0.29

Bessj 0.91 0.91 0.50 0.91 0.50 0.50

FastFourierTransformer 0.66 0.64 0.44 0.61 0.40 0.45

DateTimeFormat 0.69 0.74 1.00 0.76 1.00 0.74
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the top ranked configurations for the combinations of adaptiveness

parameters we considered. Again the configurations using seeding

are ranked higher than those without. Applying local search selec-

tively, i.e., only on statements that led to a fitness change after the

last mutation, is not included in the top configurations. The likely rea-

son for this is that this optimization is designed for a scenario where

DSE is applied to the primitive values in a test suite (cf. (Galeotti

et al., 2013)) and will thus only select some of the cases where lo-

cal search can lead to an improvement. As seen in the discussion of

RQ4, local search operators that are not directly related to primitive

values can still have a strong positive influence on the performance,

and these would not benefit from this selective strategy. The proba-

bilities in the top ranks confirm the results of RQ1, where in the best

configuration local search was applied every 100 generations. With

a probability of 0.01, on average local search will also be applied ev-

ery 100 generations. The best configuration shows a high adaptation

rate of 10, followed by the second best configuration with the second

highest configuration rate used in the experiment. Consequently, we

can conclude that adaptation is an important factor in achieving high

coverage. To compare the results between the adaptive configura-

tions, the GA, and the tuned MA, Table 8 summarizes the coverage

and Â12 for each pair of configurations. To show the effects of adap-

tiveness more clearly without interference of other optimizations,

this table shows the results without seeding. Note that in contrast to

Table 3, the non-adaptive configuration is for 2 min of search time

using the best configuration of local search operators as obtained in

RQ5. For this particular configuration, the non-adaptive MA is signif-

icantly better than the GA in 11 out of the 16 cases. Interestingly, it is

even better on XMLElement, whereas in RQ1 the MA showed a slightly

worse result after 10 min using all local search operators. Compar-

ing the adaptive MA to GA shows significantly better results in 10

out of 16 cases, but interestingly slightly worse results in ArrayList
and FastFourierTransformer, although not significant in any of the

cases. The adaptive MA achieves higher average coverage than the

non-adaptive tuned MA in eight cases, although none of them are

statistically significant, and the coverage loss in XMLElement is statis-

tically significant (however, on average it is still the same as the base

GA).

Thus, on average the adaptive configuration is only slightly better

than the best fixed configuration (average coverage of 85.44% for

adaptive vs. 85.06% for tuned fixed configuration, and the average

effect size is 0.53). However, the implementation of adaptiveness

used in these experiments is of course rather simplistic, and ideally

one would apply adaptiveness also to the choice of operators. With

this in mind, and considering that adaptive configurations have a

higher chance of generalizing to new classes, it is fair to assume that

adaptively in local search is beneficial in the general case.

RQ5: Applying all local search operators leads to good results,
although string, array, and reference search can have minor neg-
ative effects.

5.10. RQ7: Do results generalize to other classes?

All experiments so far were conducted on 16 classes selected

under the assumption that they are representative of difficult

search problems. However, there remains the question on how

these findings generalize (RQ7). To answer this question, we take

the overall best configuration of local search, and apply Evo-

Suite with that configuration to two different benchmarks. The

SF100 corpus of classes is a random sample of 100 SourceForge

Table 9

Comparison of results of default GA with best MA for both SF100 and Carfast

case studies. The average number of covered branches is reported, and the

difference between the two configurations.

Case study Classes Total GA MA Diff.

Carfast 1,392 1,181,234 513,669 558,521 44,853

SF100 11,088 238,760 93,600 94,240 639

open source projects. A particular aspect of this real-life, unbiased

sample of classes is that the problems it represents are quite different

to those considered as difficult search problems (Fraser and Arcuri,

2012): for example, a large share of the classes have environmental

dependencies that make high coverage with EvoSuite impossible. In

contrast, the Carfast (Park et al., 2012) case study is devoid of such

environmental dependencies, but still consists of a set of automat-

ically generated software projects that are intended to be realistic.

We applied EvoSuite on both benchmarks for 2 min per class with

10 iterations to accommodate for randomness. Table 9 summarizes

the results: on the CarFast benchmark, the use of local search cov-

ers on average 44,853 more branches than pure global search. On

SF100 the increase is smaller; 639 additional branches were covered

by the Memetic Algorithm. This is not unexpected; SF100 consists of

many trivial classes and many branches cannot be covered until the

test generator can handle the environmental dependencies, so the

potential for improvement is smaller in the first place.

RQ7: The improvements with local search generalize to other
classes, but in practice other technical problems may be preva-
lent to pure search problems.

6. Threats to validity

This paper compares the whole test suite generation approach

based on a Genetic Algorithm to a hybrid version that uses a Memetic

Algorithm with local search. Threats to construct validity are on how

the performance of a testing technique is defined. We measured the

performance in terms of branch coverage. However, in practice we

might not want a much larger test suite if the achieved coverage

is only slightly higher. Furthermore, this performance measure does

not take into account how difficult it will be to manually evaluate the

test cases and the generated assert statements (i.e., to check the cor-

rectness of the outputs). Threats to internal validity might come from

how the empirical study was carried out. To reduce the probability of

having faults in our testing framework, it has been carefully tested.

But it is well known that testing alone cannot prove the absence of

defects. Furthermore, randomized algorithms are affected by chance.

To cope with this problem, we ran each experiment 10 times, and

we followed rigorous statistical procedures to evaluate their results.

There is also the threat to external validity regarding the generaliza-

tion to other types of software, which is common for any empirical

analysis. Because of the large number of experiments required (in the

order of hundreds of days of computational resources), we only used

16 classes for our in depth evaluations. Those classes were manually

chosen. To reduce this threat to validity, we also carried out a set of

experiments with best found settings on the SF100 corpus, which is a

random selection of 100 projects from SourceForge. We also carried

out further experiments on a large case study (Carfast) previously

used in the literature.
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7. Conclusions

The EvoSuite tool applies Genetic Algorithms to the problem of

generating unit-level test suites for Java classes with high branch cov-

erage. However, genetic mutations on particular parts of the test cases

tend to be undirected. This means that for variables of primitive types,

strings, and arrays, small adjustments needed for certain branches to

be covered are unlikely to occur. This paper therefore defined a se-

ries of local search operators, extending the Genetic Algorithm used

in EvoSuite to a Memetic Algorithm. Although Memetic Algorithms

have already been used in the past for unit test generation, this paper

is the first to provide a comprehensive approach for object-oriented

software, targeting whole test suites, handling different kinds of test

data like strings and arrays. Our empirical study shows that, using

these local search operators, branch coverage of classes may be sig-

nificantly improved, in some cases even up by 53%. A sound evalu-

ation on more than 12,000 Java classes confirms the results are of

practical value for practitioners. Adding an adaptive parameter con-

trol technique showed improvements in our experiments. However,

the technique we applied in our experiments was simple, and there is

potential for further improvements using more advanced parameter

control techniques (Eiben et al., 1999). For more information about

EvoSuite please visit: http://www.evosuite.org/.
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