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Abstract
Due to the increasing burden on healthcare budgets of 
musculoskeletal system disease and injury, there is a 
growing need for safe, effective and simple therapies. 
Conditions such as osteoporosis severely impact on 

quality of life and result in hundreds of hours of hospital 
time and resources. There is growing interest in the use 
of low magnitude, high frequency vibration (LMHFV) 
to improve bone structure and muscle performance 
in a variety of different patient groups. The technique 
has shown promise in a number of different diseases, 
but is poorly understood in terms of the mechanism 
of action. Scientific papers concerning both the in vivo 
and in vitro  use of LMHFV are growing fast, but they 
cover a wide range of study types, outcomes measured 
and regimens tested. This paper aims to provide an 
overview of some effects of LMHFV found during in vivo 
studies. Furthermore we will review research concerning 
the effects of vibration on the cellular responses, in 
particular for cells within the musculoskeletal system. 
This includes both osteogenesis and adipogenesis, as 
well as the interaction between MSCs and other cell 
types within bone tissue. 

Key words: Mesenchymal stem cells; Mechanobiology; 
Osteogenesis; Whole body vibration; Adipogenesis, 
osteoporosis; Low magnitude, high frequency vibration 
loading
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Core tip: Low magnitude, high frequency vibrations are 
attracting growing interest as a non-invasive therapy 
for a variety of different disorders. The number of 
studies aimed at elucidating the effects of vibration both 
in vivo  and in vitro  is increasing rapidly. This review 
aims to provide an introductory overview of the in 
vivo  data for a broad range of human applications and 
animal models. In vitro  work is covered in more detail, 
focusing in particular on studies concerning the effects 
of vibration on cells derived from the musculoskeletal 
system. 
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INTRODUCTION
Vibration or low-magnitude-high-frequency vibration 
(LMHFV) loading can be induced clinically by standing 
a subject on a vibrating platform or in vivo by applying 
LMHFV to cells within culture plates or 3D constructs. 
It is emerging as a potential stimulus for repair and 
regeneration of the musculoskeletal system with some 
preliminary evidence that the mechanism of action 
is via effects on mesenchymal stem cells[1,2]. Clinical 
trial results are variable, however, as are the results 
in animal models and cell cultures. Differing loading 
procedures and parameters make it very difficult to 
compare between experiments. In this review we aim 
to provide a series of snapshots of human, animal and 
cell based trials on the effects on LMHFV loading and 
related stimuli, with a focus on mesenchymal cells 
and effects on the musculoskeletal system. This is not 
intended to be a meta-analysis or a comprehensive 
review of all studies in this area, but rather to indicate 
how much further interdisciplinary research needs to 
be done before we can elucidate the effects of vibration 
on stem cells. 

Within the musculoskeletal (MSK) system, there 
are a variety of different tissues which work together 
to allow movement. These include bone, muscle, 
tendon and ligament, as well as other associated 
tissues such as blood vessels and nerves. All of these 
tissues are important in locomotion and posture and 
are affected by a variety of diseases and by age-
related degeneration. It has been well demonstrated 
and reviewed elsewhere[3-5] that mechanical stimuli 
are involved in maintaining the structure of these 
tissues. Too little or too much mechanical stimulation 
can perturb the cells’ mechanobiological signalling 
pathways, ultimately leading to disruption in tissue 
structure. In bone, such studies have shown changes 
in bone formation due to unloading[6], increased 
osteoblast activity with single periods of dynamic 
loading[7] or the well-known example of humeral 
hypertrophy in the playing arm of professional tennis 
players[8]. Due to an increasing population which is 
living longer, there is a growing burden on healthcare 
providers of age related diseases and disorders. In 
addition to this, many of the aging population are 
remaining active longer into their lives, putting more 
stress on their musculoskeletal systems and desiring 
more effective treatments for injury or degeneration. 

One of the major problems for healthcare systems 
with an aging population is the incidence of osteoporosis, 
particularly in post-menopausal women. It is estimated 
to affect one third of women over 50, with changes in 

oestrogen levels causing a reduction in the bone mass, 
leading to an increase risk of fractures. In Canada in 
2010, it was estimated that $2.3 billion dollars was spent 
on osteoporosis treatment (1.3% of the total healthcare 
expenditure). This estimate rises to $3.9 billion when 
those in long term care with osteoporosis are included. 
Between 2007 and 2008, Canadian healthcare systems 
dealt with over 57000 acute care admissions and over 
800000 hospitalised days[9]. In Europe, there were 
3.79 million osteoporotic fractures and 0.89 million hip 
fractures in the year 2000. The direct costs of treatment 
for such fractures is estimated at €31.7 billion and these 
costs are expected to rise to €76.7 billion by 2050[10]. 
There is therefore great economic benefit to be derived 
from improving osteoporosis treatment and care.

There are many other MSK malfunctions which can 
lead to problems in mobility. Some, such as stroke-
induced paralysis, may happen later in life and require 
suitable rehabilitation methods for older patients. 
Others, such as cystic fibrosis and osteogenesis 
imperfecta occur at birth and treatments are required 
to improve the quality of life in disabled children and 
adults. Degeneration of the MSK system is also a 
problem in patients with restricted movement, such as 
those under long term hospital care. There is a need 
in all of these situations to improve or maintain the 
structure and function of the different MSK tissues. It is 
also desirable in many cases that this is done without 
the need for an intensive exercise, particularly in those 
at high risk of fractures or falls or with limited mobility. 

In the MSK system, many of the cells which produce 
and maintain the tissues come from a lineage of 
progenitor cells contained within the bone marrow. These 
cells are known as mesenchymal stem cells (MSCs) 
and similar cells are found in umbilical cord blood[11] and 
vein[12] and many adult tissues including skin[13] and 
adipose tissue[14,15]. Therefore, interventions that act 
on the whole body to improve MSK tissue structure 
likely have an effect on MSCs as well as mature MSK 
cells. MSCs are a multipotent stem cell, capable 
of differentiation along osteogenic, chondrogenic, 
adipogenic and myogenic lineages[16-18]. Because they 
are multi- rather than pluripotent some researchers 
in the field prefer to use terms such as “multipotent 
stromal cell” or “mesenchymal stromal cell”. It is thought 
that MSCs could be a potent tool for regenerative 
medicine, allowing the repair of many tissue types 
within the body. Regenerative medicine aims to develop 
methods to recruit or guide the MSC pool of cells in vivo, 
enabling them to more effectively augment healing. The 
related field of tissue engineering is a repair strategy in 
which stem cells are stimulated to differentiate towards 
a required lineage, usually in vitro and then implanted 
into a patient. Expansion of a patient’s own cells may 
necessary for such therapies, due to the relatively low 
frequency with which these cells are encountered within 
the bone marrow (0.01%-0.001%)[19,20]. These cells are 
also known to be immunomodulatory, reducing strong 
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inflammatory responses within tissues[21-23]. There is 
some hope that allogeneic MSCs may be of use during 
therapy, allowing for a more immediate source of cells 
than patient expanded MSCs. 

In vitro, the most commonly used methods to induce 
differentiation of MSCs involve glucocorticoids such 
as dexamethasone[24], growth factors such as bone 
morphogenic proteins (BMPs)[25,26] and other biochemicals 
such as ascorbic acid[27] and β-glycerophosphate[28] (for 
the deposition and mineralisation of bone matrix). For 
a general review of such methods, see Delaine-Smith 
and Reilly (2011)[29]. For transplantation of stem cells 
or their use in tissue engineering, it may be possible 
to use chemical means to direct differentiation. For in 
vivo applications, the use of chemical agents will have 
other systemic effects and the cost of growth factors 
is prohibitive for most health services. Therefore non-
biochemical means of stimulating MSCs could be very 
useful. 

There is growing evidence that mechanical stimuli can 
be used to direct stem cell differentiation towards a variety 
of different tissue lineages, reviewed elsewhere[30-33]. 
For example, in MSCs it has been demonstrated that 
the application of compression[34], tension[35] or bending 
of scaffolds[36] can increase osteogenic differentiation. 
Other work has shown that microgravity can reduce 
the osteoblastic differentiation of human MSCS[37]. In 
vitro work on such stimulation techniques may allow the 
development of methods to enhance recruitment and 
differentiation of such cells in vivo and allow more targeted 
therapies. The principle behind LMHF loading is that such 
vibrations are similar in to the tiny, short duration forces 
which are applied to bones through muscle action in 
resting. There is evidence that these small motions may 
be more important than high impact events in maintaining 
bone mass and aiding repair[38]. 

The following sections of this review will cover the in 
vivo and in vitro use of LMHFV. The range of measures 
for in vivo treatments will be covered briefly, with a 
more in depth look at studies concerning cell behaviour 
and progenitor recruitment or differentiation in the MSK 
system. The final in vitro section will include studies on 
differentiated cells before continuing to consider the 
growing body of literature on progenitor differentiation.

WHOLE BODY VIBRATION - LMHFV IN 
VIVO
In the treatment of bone breakages, there is a need to 
ensure that appropriate mechanical cues are provided 
to the tissue in order that it is properly maintained 
and able to regenerate. Fixation devices, both internal 
and external, may be used to maintain the position of 
the broken bones in order to facilitate healing. Such 
devices can reduce the need to avoid weight-bearing 
on the limb, preventing disuse which is detrimental 
to the bone tissue. There are also defects that will 
not heal with fixation alone, leading to non-union 

fractures. Where standard treatments have proved 
ineffective in repairing the bone tissue, there is a 
need to find alternative therapies for such patients. In 
addition, people with osteoporosis are at high risk of 
fracture and the best method of fracture prevention in 
this group is to maintain bone mass. 

These clinical problems have led to the investigation 
of methods of mechanical stimulation to improve 
bone mass and healing, including LMHFV, applied by 
having the subject stand on a vibrating platform[39-41]. 
The acceleration used during these experiments is 
usually very low (less than the acceleration due to 
gravity) and the magnitude is typically less than 1 
mm. The frequency varies between studies, commonly 
ranging from 10 to 150 Hz. In addition to different 
inputs, a variety of different outcomes have been 
measured. These include bone mineral density (BMD), 
trabecular width or trabecular spacing and bone 
formation rate (BFR), but also include measures of 
balance[42], likelihood of falls[43] and jump height[44]. 
In addition, other groups have considered the effects 
on MSC populations, such as number, location and 
differentiation capability[1,45].

There are many in vivo studies which have looked 
at the amount and quality of bone after LMHFV 
stimulation. Large and small animal models have 
been used, as well as clinical human studies. In such 
clinical studies, LMHFV is often referred to as “whole 
body vibration”[43,46-49]. Such studies have covered 
healthy patients or those with compromised skeletal 
systems, in particular post-menopausal women. The 
efficacy in treating other conditions, such as recovery 
after stroke[50], improving the quality of life for disabled 
children (see Matute-Ilorente et al[51] for a review on 
this topic) or limb function in patients with chronic 
obstructive pulmonary disease[52] have also attracted 
interest. Some studies have also included the ability 
of LMHFV to improve performance and training in 
athletes[53] and cognitive performance in adults with 
or without attention deficit hyperactivity disorder[47]. 
Studies have also used microvibration (20 Hz rocking 
platform) to improve the implantation rates of embryos 
undergoing IVF treatment[54]. 

In the case of in vivo murine studies, animals are 
usually confined in a box or cage which can be vibrated 
in order to apply the LMHFV stimulation[1,55-59]. It is 
worth noting that in such experiments the animals are 
able to move about freely during the stimulation period. 
As human participants are usually asked to stand still on 
a vibrating platform, this may explain some differences 
in results between the two species. Compliance in 
animal trials is assured as their whole environment is 
often vibrated, but is often low with human patients and 
may affect the potency of the treatment. The normal 
movement of the animals during the stimulation, such 
as running, resting or standing on two legs, will affect 
the transmissibility of the vibrations through the body, 
further altering the response to loading. The breadth of 
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controls. Miokovic et al[62] looked at vibration combined 
with resistive exercise over 60 d bed rest, finding 
slightly improved pain scores in the vibrated compared 
to exercise along groups but no other significant 
differences. Holguin et al[63] found that LMHFV (30 Hz, 
10 min per day) was able to reduce swelling in the 
intervertebral disc of human volunteers due to 90 d of 
bed rest, as well as reducing the reported incidence 
of back pain by 46%. Other work by the authors has 
shown that shown that LMHFV (90 Hz, 0.2g, 15 min/d 
for 4 wk) can preserve spinal disc mechanics during 
periods of unloading[64]. This work was carried out 
using an animal model however, other examples of 
which are discussed later in this review.

From the current body of clinical data, LMHFV shows 
promise in a variety of disease states to improve tissue 
structure or quality of life. There are fewer studies 
showing beneficial effects of LMHFV in healthy patients, 
suggesting that LMHFV may be not be suitable for 
improving already healthy tissue. 

TRANSMISSIBILITY
An important factor in the use of whole body vibration 
as LMHFV is the transmissibility of the vibrations 
through the rest of the skeleton. Work in human 
subjects by Rubin et al[65] studied the transmissibility 
of LMHFV through the spine and hip (15-35 Hz, 36 
N). They found that for frequencies lower than 20 Hz, 
there was low transmission of the forces through the 
body. However, resonances of the vibrations occurred at 
higher frequencies, which may help explain why higher 
frequencies appear to be more effective. Kiiski et al[66] 
also investigated transmissibility of LMHFV, ranging 
from 0.05-3 mm amplitude and 10-90 Hz. They found 
amplification of the peak amplitude at low frequencies 
at the ankle, knee, hip and spine. At the spine, this 
occurred only for 10 Hz acceleration, rising to include 
40 Hz by the ankle. Above 40 Hz, transmissibility 
was reduced 10 to 1000-fold. All subjects reported 
discomfort for vibration between 20 and 25 Hz for 
displacements larger than 0.5 mm (peak acceleration of 
0.8-7.5g), with one suffering numbness in the feet at 40 
Hz (3 mm amplitude, 19g). These observations suggest 
that high acceleration vibrations may not be suitable for 
LMHFV therapy as patients may be less likely to comply 
if the treatment was uncomfortable. The effects of these 
high acceleration conditions over the longer term are not 
well studied and it is not known whether this discomfort 
will translate to negative effects on the MSK system. The 
trial had a very small number of participants however 
and the use of external accelerometers may have 
affected the results. A recent review of the literature 
concerning osteoporosis treatments[67] included a 
section on LMHFV, recommending parameters of 
0.3g, 25-45 Hz, as most positive studies fall within 
this range of frequencies stated, and upright posture. 
There were also several recommendations regarding 
contraindications, including cancer, severe diabetes and 

studies reported in the literature cover different vibration 
conditions, with differing frequencies and accelerations 
(often provided as a multiple of the acceleration due 
to gravity, g). Ranges include 0.3-1.5g and up to 90 
Hz, applied over different timescales, in mice ranging 
from juvenile to old. With murine studies, researchers 
often consider several sites of interest (several bones 
for example) due to the ease of analysis after sacrifice. 
mRNA levels of markers of osteogenic activity are often 
measured, as well as the density of bone in different 
regions. 

In young healthy patients, a study by Torvinen 
et al[44] noted an increase in jump height for patients 
after 8 mo of LMHFV treatment [25-40 Hz (2-8g), 4 
min/d, 3-5 d/wk]. This was not accompanied by any 
changes to bone mass, structure or turnover however. 
In studies of post-menopausal (PM) women, reported 
results include small increases in bone mineral density 
with high compliance (0.2g, 30 Hz, up to 20 min per 
day, every day for one year)[40], slight increase in 
BMD and no change in bone markers (0.2g, 30 Hz, 
2/d for one year)[39] or improvements in femoral neck 
BMD and balance of the participants (12.6 Hz, 3 cm 
amplitude, 6 min x 1 min bouts, 3 sessions per week 
for 8 wk)[42]. In another study combining exercise 
and LMHFV, a reduction in the number of falls in PM 
women was noted[43]. The study included 15 min of 
LMHFV during a 60 min exercise program and also 
found no significant differences in the BMD of the 
spine or hip in the subjects. Such studies suggest 
that the LMHFV may be having effects on other parts 
of the musculoskeletal system to improve a variety 
of measured outcomes. LMHFV has also been shown 
to cause a small improvement in muscle power in PM 
women in a short term study, despite low compliance[60]. 
Such studies vary in terms of length of treatment, 
outcomes measured and conditions applied however, 
creating many difficulties in analysing the usefulness of 
LMHFV. These differences are often compounded by low 
compliance and small study size, making it difficult to 
draw conclusions about the efficiency of LMHFV on the 
MSK system. 

DISUSE AND DISABILITY
Vibration has been shown to be effective in the 
prevention of bone loss due to bed rest. Healthy 
students were subjected to 56 d of bed rest with or 
without treatment of vibration combined with resistive 
exercise[46]. Vibration treatment was found to prevent 
the changes in muscles size and function, as well as 
bone volume, compared to the start of the study. Bone 
mineral content was also reduced in the control subjects 
but not those treated. 

Muir et al[61] studied the effects of 30 Hz LMHFV 
(10 min per day, 0.3 and 0.5g) during periods of bed 
rest and found that subjects retained muscle flexion 
strength but not extension strength. Subjects were 
also found to have better postural stability compared to 
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recent surgery or implantation. The authors suggest 
that lower frequencies may be unsuitable as they can 
cause vibration in the internal organs and notes that 
accelerations higher than 1g have been observed to 
cause side effects such as back pain.

One study in disabled children used short bouts of 
LMHFV treatment (0.3g, 90 Hz, 10 min/d) 5 d per week 
over 6 mo and found increases in BMD in tibial and 
spinal regions compared to a placebo device[68]. There 
were however no observed changes in diaphyseal 
bone or muscle parameters. The study noted problems 
with compliance and stance of the children during 
the vibration and speculated that variation in posture 
of the children during vibration therapy may have 
been one factor in the relatively minor benefits seen. 
This suggests that transmissibility is an important 
and unresolved issue for the successful application of 
LMHFV for therapeutic use.

ANIMAL MODELS AND LMHFV
Much as there have been a range of conditions tested 
in human trials of LMHFV, there are a broad spread of 
in vivo animal studies. These cover the use of large 
animal models in sheep to small animal models in 
rats and mice. Some studies use healthy animals 
while others have included ovariectomised animals 
to emulate post-menopausal conditions. Outcome 
measures and study lengths also vary greatly and 
this next section provides an overview of the animal 
models used so far with LMHFV studies. 

In a large animal model of LMHFV, the application 
of vibration to the hind legs of sheep (30 Hz, 0.3g, 20 
min/d) 5 d a week for one year showed improvements 
in the bone structure[69]. Bone mineral content and 
trabecular number were increased, as well as the 
longitudinal stiffness and strength of the tissue. The 
trabecular spacing was seen to decrease, demonstrating 
bone adaptation and strengthening. Following on from 
this work, Judex et al[70] looked at the same vibration 
conditions and modelled the trabecular stiffness in 
different directions from the femoral condoyle. The 
models predicted increases in the stiffness in longitudinal, 
anterior-posterior and medial-lateral directions through 
the tissue and more uniform distribution of off-axis 
loading. They also noted that the bone volume and 
connectedness of the tissue were increased in the 
vibrated group, demonstrating adaptations requiring 
bone remodelling. 

OSTEOPOROSIS MODELS AND AGING 
MICE
As LMHFV offers a simple, non-invasive treatment with 
the potential to improve bone mass and structure, 
there many studies investigating its use for the 
treatment of osteoporosis. Therefore there are a large 
number of animal studies attempting to clarify the 

possible benefits of vibration by using Ovariectomised 
(OVX) or aged rodents.

OVX rats or mice are a commonly used animal 
model of osteoporosis, where the animals develop 
osteoporosis-like symptoms (such as reduced BMD 
and decrease in trabecular number) in the months 
after ovariectomy[71]. Work by Flieger et al[72] followed 
OVX rats for 5 or 12 wk post-surgery, some of which 
were treated with LMHFV 5 d per week (50 Hz, 2g, 30 
min/d). Significant increases in BMD were found in the 
femur and tibia (vibrated compared to non-vibrated), 
which gave a non-significant increase in the fracture 
load of the femur. The strength of the femur, however, 
was lower for vibrated animals than for any of the 
SHAM groups, although there was a non-significant 
increase for OVX combined with vibration compared 
to OVX only. Oxlund et al[73] found that vibration was 
able to prevent the loss of bending and compressive 
strength seen in OVX rats. Vibration (0.5g 17 Hx, 1.5g 
30 Hz, 3.0g 45 Hz) given for 30 min per day over 90 d 
prevented endocortical resorption and increased bone 
formation. Although an increase in BFR was also seen 
in the OVX only animals, the increase was greatest for 
the 45 Hz vibration condition.

A later study also demonstrated the prevention of 
the detrimental effects of ovariectomy by LMHFV[58]. 
3-mo-old rats underwent ovariectomy (OVX) or a sham 
surgical procedure (SHAM), after which they were left 
untreated for 3 mo such that the OVX group developed 
osteoporosis. At this time, half of the animals from 
the OVX and SHAM treatment groups received LMHFV 
therapy at 90 Hz (2 × 15 min/d, 7 d/wk for 35 d). Yield 
load and Young's modulus of the fourth lumbar vertical 
body were restored to the level of SHAM animals. These 
changes were accompanied by increases in density 
(particularly for lumbar trabecular bone). Increases 
were also found in trabecular bone area, trabecular 
number and width and both the percentage of cortical 
bone and BMD. The vibration stimulus was found to 
be anabolic regardless of the oestrogen levels in the 
animals.

LMHFV has also been tested to try and reduce 
the effects of secondary osteoporosis caused by 
glucocorticoid treatment[74]. Three-month-old mice 
were placed into three groups-control, glucocorticoid 
treatment and glucocorticoid treatment with LMHFV. 
Five days per week for 9 wk animals were given saline 
(control group) or methylprednisolone (glucocorticoid 
groups) injections. Vibrations were applied at 60 Hz 
during the same period (1g, 30 min per day, 5 d per 
week for 9 wk). Glucocorticoids alone reduced weight 
gain, tibial bone mineral content (BMC) and trabecular 
number and increased trabecular spacing compared 
to controls. The animals given vibration therapy 
showed no difference in BMC compared to controls but 
higher trabecular number and lower spacing than the 
glucocorticoid only group. This suggests that LMHFV 
may be a suitable therapy for limiting drug induced 
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changes in bone quality, although further studies on 
this topic are necessary.

A longer term study by Wenger et al[59] in elderly 
mice (18-mo-old) found no change in the bone volume 
or strength but increased mineralisation in vibrated 
animals (0.5 and 1.5g, 32 Hz, 30 min/d for 12 wk). 
Mineralising surface was calculated histologically 
and the research examined the femur, radius and 
lumbar vertebrae of the animals. No changes due to 
vibration were seen in the lumbar spine, however in 
the femur there was an increase in high density bone. 
Vibration also reduced the number of pyridinoline 
crosslinks at both accelerations, suggesting a reduction 
in the breakdown of collagen. High density bone 
volume was increased at 0.5g, with an increase in 
osteoclast numbers at the higher acceleration. Both 
vibration conditions showed significant increases in 
mineralisation surface compared to controls. There 
was however no significant difference in failure load 
or stiffness of the radius between any vibration or 
control condition. This demonstrates that not only are 
the correct conditions necessary to have an effect on 
bone turnover, but slight changes to a regimen may be 
enough to alter the outcome.

Other studies have considered the site specificity 
of the responses to LMHFV[75]. They used 0.7g LMHFV 
at a variety of different frequencies applied for 4 wk 
(10 min per day, 5 d per week) and studied several 
skeletal sites in mature male mice. They found that the 
low frequency used (8 Hz) increased resorption and 
reduced mineral apposition, weakening the skeleton. 
90 Hz vibrations increased trabecular reorganisation 
and mineral apposition without affecting resorption. 
These effects occurred for different magnitudes in the 
vertebrae, tibia and femur, demonstrating the variable 
effects of LMHFV through the MSK system. The results 
also demonstrate that, under the wrong conditions, 
LMHFV may have negative effects on bone tissue.

  Judex et al[76] studied vibration (45 Hz, 0.3g) for 
10 min per day (5 d/wk, 21 d) compared to hindlimb 
unloading in a murine model. They found increased 
bone formation and mineralisation in the trabecular 
and periosteal regions of the vibrated tibia. After 4 
d in the disuse condition, there were lower levels of 
mRNA expression for several markers of osteogenesis 
(col-I, osteonectin, osterix and MMP-2) but no changes 
were seen for the vibrated group. At 21 d, significant 
increases were seen for nitric oxide synthase, MMP-2 
and RANKL in the vibrated group. The work suggests 
that short periods of vibration may be able to prevent 
the bone loss and reduction in osteogenesis which 
occurs during disuse. As has been seen in human 
studies, the best results in animal models are obtained 
in subjects with a lower than normal BMD. Animal 
models often show better results than human studies, 
which may be due to guaranteed compliance in the 
animals and lower rates in human cohorts. There are 
still many unanswered questions, particularly regarding 
the efficacy of higher acceleration vibration stimuli. 

OSTEOGENESIS IMPERFECTA
Osteogenesis imperfecta (OI), in which the structural 
protein type 1 collagen is mutated, is another condition 
which may benefit from LMHFV intervention to improve 
bone mass and structure. The “brittle bones” which 
characterise the condition can cause limited to severe 
changes in stature, skeletal deformities and moderate 
to severe bone fragility[77]. The condition is difficult to 
treat and while bisphosphonate drugs can be used 
to inhibit resorption, these affect the normal bone 
remodelling process and can prevent maintenance of 
healthy tissue. In a young mouse genetic model of OI, 
LMHFV (0.3g, 45 Hz) was applied 5 d a week for 5 wk, 
starting when the mice were 3-wk-old[57]. They found 
that cortical bone thickness and area was increased 
for both OI and wild type mice in the tibia and femur, 
whereas trabecular bone volume was increased for 
the vibrated mice in the tibia. These changes were 
accompanied with an increase in femoral stiffness 
and yield load. They noted that there were only minor 
differences in bone apposition between the vibrated 
and sham groups, suggesting that the vibration 
reduced bone resorption. 

FRACTURE HEALING
Several groups have studied the effects of LMHFV on 
the healing of fractures in murine models. Leung et 
al[78] used LMHFV at 35 Hz (0.3g, 20 min per day, 5 d 
per week) beginning 5 d after the creation of femoral 
fractures in 3 mo old rats. They found that a larger 
callus was formed by 2 wk of treatment and increased 
remodelling had occurred after 4 wk in the vibrated 
animals compared to those in a sham treatment group. 
The mechanical strength of the femur was also higher 
in the LMHFV group, suggesting that the treatment 
was able to enhance the fracture healing by altering 
accelerating callus formation and turnover. 

Later work using the same vibration conditions 
studied the effects of LMHFV on fracture healing in 
rats treated with ibandronate (a bisphosphonate) to 
suppress bone remodelling[79]. In this study, 6 mo old 
rats underwent ovariectomy and were left for 3 mo to 
develop osteoporosis. Rats then underwent surgery 
to create closed femoral fractures before receiving 
ibandronate treatment (with or without LMHFV), LMHFV 
alone or sham treatment. The vibration only group 
showed improved speed of callus reduction, increased 
mineral apposition and increased serum markers of 
bone turnover compared to all other treatment groups. 
This remodelling was disrupted by the bisphosphonate 
treatment, but the application of LMHFV during bis
phosphonate treatment was able to reduce the delay 
in bone remodelling caused by the drug. This provides 
further evidence that LMHFV may be useful in mitigating 
the effects of bisphosphonate treatment by reducing the 
negative effects on bone remodelling.

In an OVX rat model, Shi et al[80] used LMHFV to 
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augment fracture healing in OVX rats compared to 
SHAM control animals. Animals were treated with 
LMHFV (35 Hz, 0.3g, 20 min/d) for 5 d per week up to 8 
wk. In OVX animals, callus formation and mineralisation, 
as well as remodelling activity and energy to failure 
were reduced compared to the SHAM animals. LMHFV 
was found to improve fracture healing, with OVX + vib 
showing improved fracture healing compared to SHAM 
+ vib. This suggests that the mechanical stimulus 
is more effective in animals with reduced oestrogen 
levels, but is anabolic regardless, similar to the findings 
by Sehmisch et al[58]. The effects of LMHFV on fracture 
healing in osteoporotic and normal bone have also 
been investigated in terms of angiogenesis[81]. Vibration 
treatment improved blood flow and angiogenesis for 
both sham and OVX animals, and overall improved 
fracture healing. 

Work at a higher vibration frequency (90 Hz, 4g, 
15 min twice per day, 30 d) demonstrated some 
beneficial effects of LMHFV on fracture healing in OVX 
rats[82]. Three months old rats underwent ovariectomy 
and showed severe osteopenia 10 wk post-surgery. 
At this point, both OVX and untreated rats underwent 
bilateral metaphyseal osteotomy of the tibia, before 
beginning LMHFV or sham treatment 5 d later. After 
30 d of LMHFV or sham treatment, the group found 
that LMHFV had improved bridging of the fracture in 
the OVX but not the intact rats, as well as improving 
the densities of cortical bone and callus. They found 
a reduction in the stiffness and yield load of the tibia 
after vibration and suggest that this may be due to the 
high acceleration used for the LMHFV treatment, which 
is similar to the result seen by Flieger et al[72]. These 
studies suggest that it may be possible to use LMHFV 
to improve fracture healing, whilst reinforcing the idea 
that the conditions must be carefully tailored in order 
to prevent detrimental effects of LMHFV. 

TENDON AND MUSCLE
Work investigating the effects of LMHFV on tendon 
structure has shown an increase in cross-sectional 
area, stiffness and strain to ultimate load. Sandhu et 
al[83] used a rat model and 5 wk of LMHFV (0.3g, 30 
Hz, 5 d/wk) to study the flexor carpi ulnaris tendon. 
Their results suggest that LMHFV may also affect 
tendon tissue within the MSK system which may be 
useful for tendon healing if damage has occurred to a 
joint.

LMHFV has also been shown to affect muscle 
tissue. In skeletally immature mice, LMHFV was found 
to affect muscle structure in the soleus muscle[56]. After 
6 wk of stimulation for 15 min per day (0.3g, 45 Hz), 
the number of arterioles, venules and capilliaries within 
the muscle fibre were reduced. This was significant in 
the end regions of the muscle. Although a reduction 
in vasculature to the muscle tissue may appear to be 
an undesirable adaptation to LMHFV, a study by Xie et 
al[84] under the same conditions showed increases in 

the moment of inertia and area of the soleus muscle. 
The same study also found increases in trabecular and 
periosteal bone volume, bone marrow and cortical 
bone area but no change in osteoclast activity. These 
studies provide early evidence that LMHFV is capable 
of effecting different parts of the MSK system and 
may be able to aid regeneration in complex injuries to 
multiple tissues. 

The variety of animal studies considered above 
demonstrate the range of interest in LMHFV as a 
therapy to affect the musculoskeletal system. These 
studies have been conducted in small, quadruped 
animals and as such may not be directly applicable to 
human conditions. Many of the studies also use 0.3g 
acceleration or 45 Hz, with results suggesting that these 
conditions in particular may provide beneficial effects. 
This matches with the recommendations of Katsuri for 
the use of LMHFV to treat osteoporosis in humans[67]. 
The research does suggest that the technique is able to 
affect many different cell types to alter the properties of 
a variety of tissues including bone, tendon and muscle. 
In the case of bone, evidence suggests that LMHFV may 
be able to improve poor bone structure or aid in healing. 
If the conditions used in these studies are translated 
directly into human trials, such as in the work by Luu et 
al[85] discussed in the next section, it may help develop 
the understanding of LMHFV as a therapy.

LMHFV AND CELLS IN VIVO
The effects of LMHFV on cells in vivo have also been 
investigated in a range of studies, often in combination 
with measures of bone properties. Over 5 wk of 
vibration, Christiansen and Silva[1] found several site 
specific responses to loading for a range of stimulation 
conditions. Adult mice (7-mo-old) were vibrated with 
accelerations of 0.1, 0.3 and 1g at 45 Hz (15 min/d, 
7 d/wk) for 5 wk before sacrifice. Bone marrow was 
extracted and tibiae, femurs and L5 vertebrae scanned 
using micro CT. The 0.3g vibration condition showed 
no differences in bone volume over total volume 
compared to controls at any site, but was significantly 
lower than other vibration conditions in the L5 vertebra 
and proximal tibial metaphysis. Researchers noted 
that the distance from the vibration platform did 
not dictate the efficacy, nor was the response seen 
dose dependant. Although there was a decrease in 
the presence of progenitor cells, no increase in bone 
formation was seen. The ALP activity of adherent 
BMSCs, extracted from the bone marrow of these 
animals and cultured for 2 wk was not significantly 
different between any groups, however alizarin red 
staining showed a reduction in mineralisation for 0.1g 
(compared to 1.0g) and 0.3g (compared to control 
and 1.0g samples). 

Work in mice has demonstrated that LMHFV may 
be used to inhibit adipogeneis, with 7 wk old mice 
undergoing a 15 wk treatment protocol[86]. They 
applied LMHFV at 90 Hz (0.2g, 15 min per day, 5 d 

574 April 26, 2015|Volume 7|Issue 3|WJSC|www.wjgnet.com

Edwards JH et al . Biological responses to vibration



per week) and found lower volumes of fat (normalised 
to body mass) for the vibrated compared to sham 
control groups. Their fat also contained lower levels of 
triglycerides, indicating a lower risk for the development 
of diabetes. The work also looked at the differentiation 
of adipogenic precursors in a separate experiment. 
Eight weeks old mice were irradiated with 15 kGy 
of gamma irradiation to kill the bone marrow before 
receiving an injection of MSCs from donor mice. The 
donor mice express green fluorescent protein in all their 
tissues, allowing the donor cells to be monitored in vivo. 
Mice were allowed one week to recover before receiving 
LMHFV or sham treatment for 6 wk. The group found 
that the vibrated mice had a lower ration of GFP 
expressing adipocytes to MSCs compared to controls, 
as well as reduced weights of the epididymal fat pad, 
suggesting the MSCs were less disposed to adipogenic 
differentiation. 

Work by Luu et al[85] demonstrated the effects of 
LMHFV on the osteogenic and adipogenic differentiation 
of MSCs in a diet-induced obesity mouse model. They 
also applied LMHFV at 90 Hz (0.2g, 15 min per day, 
5 d/wk) to 7-wk-old mice, in this case for 12 wk and 
compared this to a sham control with no vibration. 
Twelve mice received a high fat diet only during the 
vibration period (prevention of dietary obesity), while 
another 8 started the diet at 4 wk of age (reversal of 
obesity). In the prevention group, mice treated with 
LMHFV for 6 wk showed increased MSC numbers 
compared to controls, upregulated transcription of 
Runx2 and downregulation of peroxisome proliferator-
activated receptor γ (PPARγ), suggesting a more 
osteogenic lineage with reduced adipogenic behaviour. 
After 12 wk of treatment this translated to increased 
bone volume fraction and reduced weight gain compared 
to the controls. However, in the mice starting the high 
fat diet at 4 wk of age, there were no differences in 
adiposity or bone volume between control and vibrated 
animals, suggesting LMHFV is not able to reduce 
existing obesity. 

Interestingly, the group translated this work into a 
human trial in young women with low BMD, reported in 
the same study[85]. After 12 mo treatment they found 
an increase in BMD in the spine and no significant 
change in visceral fat area compared to the start of the 
study in LMHVF treated patients. In the control group, 
there was no change in BMD and an increase in fat, 
suggesting that the technique is also able to increase 
osteogenesis and reduce adipogenesis in humans. 
Both this work and that by Rubin et al[86] suggest 
that LMHFV is able to inhibit adipogenesis in MSCs 
as well as increasing osteogenesis. This reduction in 
adipogenesis may be a beneficial side effects of LMHFV 
treatment, but the research also suggests it will not be 
suitable as a method to reduce pre-existing obesity.

In a hindlimb unloading murine model, Ozcivici et 
al[45] compared 15 min of weight bearing each day (HU 
animals) to the same period of vibration (HU + vib, 0.2g, 
90 Hz). This was carried out for 3 wk, at which point 

animals were sacrificed or underwent a further 3 wk 
period of reambulation, continuing with the same sham 
(RA) or vibration (RA + vib) treatments. For animals 
sacrificed prior to reambulation, the study found no 
difference between sham and HU + vib conditions for 
trabecular bone fraction. However, the animals which 
had received the vibration stimulus showed several 
changes at a cellular level. The osteogenic MSC and 
osteoblast populations were found to be greater and 
HU + vib animals also showed a smaller osteoclast 
surface. Reambulation magnified these differences, with 
a greater increase in bone volume, MSC population, 
osteoblast surfaces, BFR and a higher ratio of bone-
lining osteoblasts to marrow adipocytes (RA + vib 
compared to RA). They conclude that, although vibration 
does not prevent the bone loss due to disuse, there are 
improvements in cellular function which may enhance 
long term recovery. The work suggests that the overall 
effects on bone fraction may be due to an effect of 
LMHFV on MSCs within the bone marrow. 

A recent study investigated the use of LMHFV 
to accelerate wound healing in a diabetic mouse 
model[55]. 30 min of LMHFV (0.4g, 45 Hz) was applied 
for 7 or 14 d after wounding of the skin and compared 
to sham loading controls. There was an increase in 
angiogenesis and granulation tissue formation seen at 
day 7 in vibrated animals. By day 14, this had led to 
accelerated wound closure and re-epithelialisation. The 
study monitored levels of growth factors and cytokines 
associated with promoting healing, with increases 
in the vibrated group for IGF-1, VEGF, monocytes 
chemotactic protein-1. Additionally, while there was 
no effect of vibration on CD11b+ cells in the wounds, 
CD11b- cells displayed a less inflammatory phenotype.

In a model of granulosa cell tumours in mice, 
LMHFV has been shown to help mitigate the associated 
osteopenia[2]. LMHFV (0.3g, 90 Hz, 15 min bouts) was 
applied 5 d per week over the course of a year and 
found no significant changes in survival rates of the 
animals. They found increases in the bone volume 
in vibrated mice, as well as reductions in tumour 
incidence and the number of organ systems involved. 
The research also found that the number of MSCs in 
the bone marrow were significantly lower in vibrated 
mice and those lacking pathology, suggesting that they 
may play a role in the disease progression.

All of these studies suggest that LMHFV is having 
effects on a variety of cell types in vivo, particularly 
the proliferation and differentiation of MSCs. Possible 
benefits include increasing osteogenesis and reduction of 
adipogenesis. The studies suggest that higher frequency 
LMHFV (90 Hz) at a lower acceleration (0.2g) may be 
able to stimulate progenitor cells within the bone marrow. 
However, more studies at 0.3g covering the effects on 
MSCs in vivo will help to clarify the effects. 

LMHFV AND IN VITRO CELL STUDIES
In order to better understand the mechanisms of 
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responses to LMHFV and to identify which cells types are 
involved, many in vitro studies have been undertaken. 
For bone, there are several possible responsive cell 
types including osteoblasts, osteoclasts or their 
progenitors. As a variety of other effects have been 
seen in vivo, such as those on muscle and tendon, 
there may be further cell types which are responsive to 
LMHFV. In vivo stimulation of tissue forming cells also 
has applications in the field of tissue engineering where 
mechanical forces have been well demonstrated to 
modulate tissue formation by cells, but it is difficult to 
design bioreactors and stimulation regimens that could 
be scaled up for clinical and commercial use. LMHVF 
stimulation may be an appropriate method for the 
application of mechanical forces to variety of scaffold 
types and complex geometries, as well as allowing the 
stimulation of multiple samples within standard culture 
apparatus. 

Experiments conducted in vitro include the use 
of different cell types as well as vibration parameters 
(frequency, amplitude, duration, number of applications, 
timeframe). One cell type often used to study osteogenic 
differentiation with LMHFV is the MC3T3-E1 cell line, a 
murine osteoblast precursor line. A variety of different 
outcomes have also been measured, including mRNA 
expression of different molecules, matrix expression 
and deposition and prostaglandin E2 (PGE2) release. 

Dumas et al[87] looked at the effects of LMHFV on 
MC3T3-E1 cells and also the ability of the ECM they 
deposited to affect MSC attachment and differentiation. 
The cells were stimulated with 15-40 microstrain 
(measured as deformation of the cell culture dish) at 400 
Hz (20 min per day for 1, 3 or 7 d) and demonstrated 
increased nitric oxide (NO) secretion, upregulated 
mRNA for fibronectin, osteopontin, bone sialoprotein 
and collagen I, with no changes to cell number or 
viability. The matrix produced by these cells was then 
decellularised and used to culture C3H10T1/2 cells, a 
murine MSC cell line. The cells on these matrices were 
cultured for 7 d with or without LMHFV treatment and 
exhibited increases in cell attachment, focal adhesions 
and osteogenic mRNA on the matrices from vibrated 
cells. The cells also reduced expression of adipogenic 
mRNA, suggesting the matrix and vibration treatment 
may promote osteogenesis of recruited MSCs as 
well as inhibiting adipogenesis. This is in agreement 
with the in vivo work discussed earlier within this 
review[86,88], providing further evidence for the effects 
of LMHFV on adipogenesis in MSCs. 

Rat BMSCs have also been seeded into scaffolds 
derived from human bone and subjected to LMHFV 
(0.3g, 40 Hz, ± 50 mm) for 30 min every 12 h, up 
to 2 d[89]. Cells were found to attach to the scaffolds 
and produced higher levels of ALP than those 
cultured in 2D. LMHFV decreased the cell proliferation 
rate (measured on days 7 and 10), but increased 
expression of Cbfa1, ALP, col I and OCN. They also 
studied extracellular signal-regulated kinase 1 and 2 
(ERK1/2) involvement and found that ALP activity was 

reduced when the ERK1/2 pathway was inhibited.
Short bouts of LMHFV (5 min, 5, 30, 60 or 100 

Hz) of varying amplitude were shown to promote the 
release of NO and PGE2 in MC3T3-E1 cells[90], molecules 
involved in the in vivo response of bone to mechanical 
loading. The study found no changes in cell shape, 
alignment or detachment with any of the treatments. 
When measured 30 min post vibration, there were 
correlations with increasing maximum acceleration for 
NO (increasing) and PGE2 (decreasing) secretion. mRNA 
for Cyclooxygenase 2 (COX-2), a signalling molecule 
downstream of PGE2, was also increased 2 fold by 100 
Hz vibration compared to 5 and 30 Hz and 1.5 fold vs 
60 Hz. It may be important to note that the vibration in 
this case was applied along the plane of cell attachment, 
whereas in many studies the LMHFV are applied per
pendicular to this. It is not yet know whether this may 
produce differential effects as there have been no 
studies directly comparing the two planes of vibration.

After one hour treatment of MLO-Y4 osteocyte-like 
cells with LMHFV (0.3g, 30, 60 or 90 Hz), Lau et al[91] 
found increases in the amount of mRNA for COX-2, 
particularly at a 90 Hz vibration condition (344% 
increase). mRNA levels of receptor activator of nuclear 
factor kappa-B ligand (RANKL), an osteoclastogenic 
factor, as well as the soluble receptor protein RANKL 
and PGE2 secretion, were found to be reduced in the 
vibrated cells. Conditioned media from the vibrated 
cells was also found to inhibit osteoclast formation 
(number of multi-nucleated cells present) and resorption. 
This suggests that LMHFV may be able to stimulate 
osteocytes to inhibit resorption in response to the 
LMHFV. Li et al[92] investigated the effects of low 
intensity pulsed ultrasound (LIPUS) on the interaction 
between osteocytic and pre-osteoblast like cells. They 
used 1.5 MHz stimulation on MLO-Y4 murine osteocyte-
like cells (3 mm from the LIPUS source) and placed 
the conditioned media onto MC3T3-E1 pre-osteoblastic 
cells. Twenty four hours after vibration they saw 
increased NO and PGE2 secretion in the MLO-Y4 cells. 
Conditioned media (collected one hour post vibration) 
inhibited proliferation in the MC3T3-E1 cells, also 
causing an increase in the ALP activity of these cells, 
suggesting osteoblastic differentiation.

Work looking directly at osteoclast precursors found 
a possible inhibition of osteoclast formation[93]. They 
used murine osteoclast-like cells RAW264.7 and applied 
LMHFV (4 Hz, 20 µm displacement) for one hour a day 
over 3 d and examined the mRNA and protein levels 
for DC-STAMP (dendritic cell-specific transmembrane 
protein) and the P2X7 receptor P2X7R, both membrane 
bound markers of osteoclast fusion. They saw inhibition 
of mRNA and protein production for DC-STAMP, which 
suggests the inhibition of osteoclast fusion had occurred. 
In a model of a BRU using scales taken from goldfish 
and placed in culture, LMHFV of varying acceleration 
(0.5, 1, 2, 4, 6g) for 5 or 20 min per day showed 
changes in osteoblast and osteoclast activity after 6 
and 24 h[94]. The ALP activity in scales was found to 
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increase with increasing acceleration, accompanied by 
a decrease in osteoclast activity (measured by tartrate-
resistant acid phosphatase activity). These results were 
evident at 24 h, with the largest decrease in osteoclast 
activity for 2g. However, although the goldfish scale 
contains both osteoblasts and osteoclasts, it has a very 
different macrostructure to that of bones making it 
difficult to compare with other model systems. 

Other studies have compared the effects of LMHFV 
with high magnitude strain (HMS) on the adipogenic 
differentiation of MSCs. Sen et al[95] used C3H10T1/2 
cells and 90 Hz vibration (< 10 microstrain) compared 
to low frequency HMS (0.17 Hz, 20000 microstrain). 
They compared pauses within the loading regimen to 
longer periods of vibration and followed adiponectin 
expression as a measure of adipogenesis. They found 
that HMS over 2 or 6 h prevented adipogenesis in the 
cells, as well as two 20 min bouts separated by at 
least one hour rest period. The LMHFV was only able 
to suppress adipogenesis with the two 20 min bouts 
separated by more than one hour, with a 3 h pause 
proving better than one or two hours. The inclusion 
of indomethacin to induce adipogenesis inhibited the 
effects of the LMHFV but not the HMS treatment. The 
addition of BMP-2 promoted an osteogenic response 
with the LMHFV treatment.

A further study was carried out investigating the 
effects of LMHFV (termed sub sonic vibrations) on 
3T3-L1 pre-adipocytes, an embryonic derived cell 
line[96]. This study used horizontal vibration looking 
at cell proliferation (3 d, 10, 20, 30 and 40 Hz) and 
adipogenic maturation (6 d, 10, 20, 30 and 45 Hz). 
They found that 20 and 30 Hz LMHFV decreased cell 
proliferation and increased adipogenic gene expression. 
Increased triglyceride levels within cells were seen for 
the 10, 20 and 30 Hz vibration conditions. Although 
the work discussed previously[86-88] showed a reduction 
in adipogenic gene expression in MSCs, this evidence 
suggests that LMHFV may increase adipogenesis in 
cells that are already of the adipose lineage, which 
would not be a desirable effect in vivo. The in vivo 
data on obesity and LMHFV, which demonstrated a 
lack of reduction in already obese animals[85,86], seems 
to confirm that LMHFV cause more activity in cells of 
the adipose lineage, but may be able to mitigate their 
commitment to this lineage initially. 

Interestingly and contradicting the theory that 
vibration promotes osteogenesis; MSCs from rat bone 
marrow were found to have lower matrix mineralisation 
and mRNA for osterix after 6 d period of vibration[97] 
compared to controls. The cells were subjected to 
vibration at 0.3g and 60 Hz for one hour per day (6 
d with one rest day). There were no changes to cell 
proliferation, ALP activity or mRNA levels for a variety 
of osteogenic genes (ALP, col-I, OPN, BSP, RUNX-2, 
OCN). The group hypothesise that, rather than having 
a direct effect on MSC differentiation, LMHFV may 
have anabolic effects on bone by causing osteocyte 
signalling, which in turn affects MSC differentiation. 

However, many of the in vivo studies which have 
looked at differentiation of MSCs following LMHFV 
have found increased osteogenic behaviour. This may 
be due to the differences in cellular environment and 
vibration transmission between 2D cultures and cells in 
the 3D in vivo environment. 

C2C12 murine myoblasts were found to undergo 
changes following short periods of LMHFV stimulation 
(5, 8 or 10 Hz, 0.4 mm amplitude, 10 min/d)[98]. 
After 3 d, expression of collagen Ⅰ and decorin were 
increased for the 8 and 10 Hz vibration conditions. 
MyoD and myogenin expression was seen to increase 
in a time- and dose-dependent manner. There were 
no changes observed in the cell cycle, but 8 and 10 Hz 
vibration increase myotube number and length (6 and 
9 d of vibration). Vibration also increased the fusion of 
myocytes in a dose dependant manner. This suggests 
that the cells are promoting vascularisation, which may 
aid tissue regeneration in vivo. 

Much of the in vitro work discussed above shows 
beneficial effects on osteogenic cells, which may lead 
to the beneficial effects seen in some animal models 
in vivo. The lack of interaction between different 
cell types however means that it is difficult to know 
whether the effects seen in vitro can help direct 
therapies in vivo. Transmission of LMHFV through 
muscle, fat and bone may alter the effects on MSCs 
and differentiated cells, leading to reductions in the 
efficacy of treatment compared to cell signalling 
responses and differentiation markers seen in cultured 
cells.

HUMAN CELLS IN VITRO
Reported effects of vibration on human cells are 
summarised in Table 1. As well as the large number 
of studies on animal cells and cell lines, there is a 
growing body of work using human cells and cell lines 
to investigate the possible mechanisms of action of 
LMHFV. SAOS-2 cells, a human osteosarcoma cell 
line, were subjected to 30 Hz vibrations (11 mm 
displacement) once per day for 4 d[99]. The cells 
displayed decreased proliferation and increasing mRNA 
levels for ALP, collagens Ⅰ and Ⅲ, osteonectin and 
fibronectin, suggesting more osteogenic behaviour. 
Further work by the group looked at the osteoblastic 
differentiation of human adipose derived MSCs[100]. 
They applied LMHFV at 30 Hz to cells for 28 d and 
found evidence of improved matrix calcification at 
day 21. They also noted strong increased in the 
expression of collagen I and osteopontin on day 14 
in the vibrated samples when cultured in osteogenic 
medium, which was not maintained at 21 d. Slightly 
higher total protein levels were found in vibrated 
samples compared to non at 21 d, but this effect was 
lost by 28 d. As many in vivo studies do not show any 
benefits of LMHFV in healthy patients, it is possible 
that the therapy affects disrupted bone balance, but 
does not provide any further benefit when normal 
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bone formation is achieved. The ability to accelerate 
the initial healing or rebalance of bone formation still 
has the potential to be a useful therapy.

Our own research with LMHFV and a mesenchymal 
progenitor cell line, hES-MP 002.5 (Cellartis) has 
shown promising effects on osteogenic differentiation 
in 2D[101]. We found evidence that LMHFV at 0.3g was 
able to affect the cell number and osteogenic activity 
of these cells in 2D culture. Forty-eight hours following 
a single 45 min bout of vibration, ALP activity was 
significantly increased for vibration at 60 Hz. This 
was not seen at lower frequencies tested or 24 h post 
vibration. 

  Kim et al[102] investigated the use of LMHFV for 
osteogenic differentiation of hMSCs from two different 
donors. They applied vibration for 10 min per day (5 
d per week to 21 d) at a variety of frequencies and 
accelerations (10, 20, 30 and 40 Hz and 0.1-0.6g in 
0.1g increments) before choosing 0.3g and 30 Hz for 
the main experiments. Cell proliferation was affected by 
vibration in a dose dependant manner, with increases 
in cell number at 30 and 40 Hz conditions on day 2. 
This increase was not maintained at 5 d however. ALP 
activity was increased in vibrated samples on days 7, 14 
and 21, with mRNA for ALP, osteopontin and VEGF also 
upregulated at day 7. There were no changes to bone 
sialoprotein or osteonectin mRNA at this timepoint. 
When cells were cultured in osteogenic media, LMHFV 
increased the calcium deposition in cultures, suggesting 
the vibration has increased osteogenesis.

With LMHFV in vitro, there is the likelihood of 
shear stress occurring in the culture plate due to the 
movement of media within wells. Uzer et al[103] used 
LMHFV to apply shear stress to human adipose derived 
stem cells for 30 min a day (3-14 d). They looked at 
several vibration conditions (0.15, 1 and 2g, frequencies 

of 30 and 100 Hz) and characterised the resulting shear 
stress (0.04-5 Pa). Over the first 3 d of culture, cell 
number increased for all conditions, with the greatest 
increases seen for the conditions with lowest induced 
fluid shear. After 14 d, mineralisation was increased for 
all accelerations at 100 Hz and for the 2g acceleration 
at 30 Hz. By disrupting cytoskeletal remodelling, 
they demonstrated that MSC differentiation was not 
only regulated by shear stress (as occurred in low 
stress conditions), but is influenced by cytoskeletal 
remodelling.  

Work by Zhang et al[104] on human peridontal 
ligament cells studied a large range of frequencies (10, 
20, 30, 40, 50, 60, 90 and 120, 150 and 180 Hz) at 0.3g 
acceleration. They applied the vibration stimulus for 20 
min per day for up to 5 d. The study found decreased 
proliferation and a frequency dependant increase in 
osteogenic markers. ALP activity was highest at 30 Hz, 
while osteocalcin expression was higher at 40, 50, 60, 
90 and 120 Hz. Levels of col-I, RUNX-2 and osterix 
increased at 40 and 50 Hz. 

Other research studying horizontal vibration 
investigated the effects of paused vibration on human 
laryngeal fibroblasts[105]. This study involved vibration at 
100 Hz and 3.4g (1 s vibration followed by 2 s pause) 
for up to 21 d. Vibration was applied for 6 h followed 
by an 18 h rest and was shown to increase gene 
expression for matrix and matrix related molecules. 
These included TIMP1, TIMP3, col1 and col IX, lysyl 
osidase, TGFB1, syndecan, laminin, connective tissue 
growth factor and PDGF. In addition, there was 
enhanced secretion of TGFB-1, fibronectin, collagen and 
an increase in construct stiffness for low values of strain.  

In one study[106], LMHFV (termed sub sonic vibration) 
was applied at a variety of frequencies (10, 20, 30 and 
40 Hz) to human umbilical cord MSCs continuously for 
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Table 1  Summary of effects of low magnitude, high frequency vibration on human cells in vitro

Prè et al[100] Adipose derived 
MSCs

30 Hz, 45 min/d, 28 d Increase in col-I and osteonectin expression in vibrated group on day 14, lost by day 
21. Increased mineralisation in vibrated group at 21 d, lost by day 28

Kim et al[102] MSCs (2 donors) 0.3g, 30 Hz for main study. 
Applied for 10 min/d, 5 d a week 
for 21 d

Vibration increased ALP activity (days 7, 14 and 21), mRNA (ALP, osteopontin and 
VEGF) upregulated at day 7. No changes (bone sialoprotein or osteonectin mRNA). 
In osteogenic media, LMHFV increased the calcium deposition in cultures

Uzer et al[103] Adipose derived 
MSCs

30 and 100 Hz, 0.15, 1 and 2g. 30 
min per day for 3-14 d

Cell number increased over 3 d for all conditions. Mineralisation at 14 d increased 
for 100 Hz and 30 Hz (2g). Prevented cytoskeletal remodelling to negate the effects

Zhang et al[104] Peridontal 
ligament stem 
cells

0.3g (10, 20, 30, 40, 50, 60, 90 and 
120, 150 and 180 Hz), 20 min/d to 
5 d

LMHFV decreased proliferation, ALP activity highest at 30 Hz. Osteocalcin 
expression was highest at 40, 50, 60, 90 and 120 Hz. Levels of col-I, RUNX-2 and 
osterix increased at 40 and 50 Hz

Wolchok et 
al[105]

laryngeal 
fibroblasts 

100 Hz and 3.4g (1 s vibration 
followed by 2 s pause), 6 h 
followed by an 18 h rest for 21 d

Enhanced secretion of TGFB-1, fibronectin, collagen, increased construct stiffness. 
Increased gene expression of range of matrix molecules

Cho et al[106] Umbilical cord 
stem cells

10, 20, 30 and 40 Hz, continuous 
for 5 d

Increased mRNA and protein levels (MAP2, NF-L and NeuroD1). Time dependant 
increases in O4 and ERK (12 h at 40 Hz)

Choi et al[107] Adipose derived 
MSCs

10, 20, 30 and 40 Hz, continuous 
for 4 d

30 Hz increased astrocyte, oligodendrocyte and neuronal markers, inhibited 
adipogenesis. Increasing frequency reduced cell proliferation. Time dependant 
changes in ERK phosphorylation

Edwards and 
Reilly[101]

hES-MP 002.5 
cells

0.3g and 15, 30, 45, 60 Hz, one 
bout 4 min

Increased ALP activity at 60 Hz 48 h post vibration

LMHFV: Low magnitude, high frequency vibration; VEGF: Vascular endothelial growth factor; ALP: Alkaline phosphatase; ERK: Extracellular regulated 
protein kinases.
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5 d. In this case, the group was interested in neuronal 
differentiation and found increased in both mRNA and 
protein levels for several factors including MAP2, NF-L 
and NeuroD1. They also found time dependant increases 
in O4 and ERK for 12 h of LMHFV at 40 Hz. A second 
study[107] assessed the neuronal differentiation of human 
adipose-derived MSCs, applying LMHFV at the same 
frequencies over 4 d. RT-PCR was used to investigate 
both neuronal and adipogenic markers with upregulation 
at 30 Hz and found that astrocyte, oligodendrocyte, and 
neuronal markers were significantly increased while 
inhibiting adipogenesis. Increasing frequency was shown 
to reduce the cell proliferation. They also noted time 
dependant changes in ERK phosphorylation, concluding 
that the LMHFV promoted differentiation to astrocytes 
and oligodendrocytes through activation of the ERK 
pathway.

CONCLUSION
The appeal of low magnitude, high frequency vibrations 
to act as a mechanical stimulus and improve a range 
of functions within the MSK system has led to an ever 
growing body of research. The technique is relatively 
simple to apply, often needs only short periods of 
stimulation to show some effect and is suitable 
for those with fragile bones or limited motion. The 
response varies between different studies, patients 
and conditions, however, making it problematic to 
define a predictable set of responses. For healthy 
subjects, there are often no apparent benefits to the 
treatment, which suggests that the LMHFV stimulus 
provides similar mechanical cues to normal daily 
activities in healthy patients and therefore provide no 
benefit to bone mass or structure unless there is an 
underlying condition. There are many studies showing 
benefits of LMHFV using an acceleration of 0.3g or 
45 Hz vibration, suggesting these conditions may 
be particularly effective for the MSK system. Higher 
frequency vibration, such as 90 Hz, has also show 
some efficacy at low accelerations (0.2g). Evidence is 
building to suggest that accelerations higher than that 
due to gravity (> 1.0g) may be undesirable, causing 
some negative effects on bone and mild discomfort in 
human patients. 

In vitro investigation of LMHFV has also produced 
a wide variety of data, with new research being 
published at an increasing rate. As with the in vivo 
studies, the range of conditions tested, outcomes 
measured and goals of the research is very varied, 
making it difficult to identify common trends. There 
is increasing evidence that LMHFV has the power to 
affect the differentiation of stem cells, particularly 
MSCs. When more of this data is made available, it 
may be possible to understand how LMHFV might 
improve the MSK system and aid in the repair of 
other tissues in the body. Work with primary human 
cells from multiple donors may provide insights into 
which patients may be most likely to benefit from 

LMHFV treatments when conducted alongside in vivo 
investigations. There is also a need for more human 
trials based directly on small animal studies, using the 
same outcome measures where possible, to further 
our understanding of the applicability of these animal 
models and their relevance to human treatment with 
LMHFV. Both types of work may help stratification of 
the therapy to target patients who are likely benefit 
from the treatment. In general, the use of LMHFV to 
improve the condition of the MSK system in patients 
who are not able to maintain high levels of activity or 
exercise therapy shows promise, but there is still much 
work to be done on understanding the mechanisms, 
side effects and benefits to patients. 
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