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“Abstract
1,
The concept of an mxm invertible continuous first order lag
is extended to define an equivalent formulation for multivariable
sampled-data-systems. A large class of proportional plus summation

output feedback controllers is constructed. Each controller

_ Buarantees the stability of the closed-loop system and also low-

closed-loop interaction effects if the sampling rate is high enough.
The results are extended to show that a multivariable discrete first
order lag is,,in many gases of practical interest, a quite adequate
approximation for the purpose Qf controller design provided that tHe
plant is minimum-phase and satisfies a contraction-mapping condition.
In particular, any discrete model of a minimum-phase, continuous,

linear, time-invariant plant with CB nonsingular will satisfy the

contraction condition provided the sammling rate is high enough.
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Introduction

It is well-known in classical feedback control that many large-
Scale continuous linear, time-invariant systems can be approximated,
for the purpose of feedback design, by a low-order state-space model
due to the presence of approximately cancelling pole-zero pairs in the
system transfer function. Furthermore, the validity of such approxi-
mations can improve in the closed-loop situation due to the attraction
éf poles to system zeros. As might be expected intuitively, these
ideas can be gemeralized to the multivariable case. Consider a unity
negative feedback system for the control of the m—input, m-output plant
described by the mxm transfer function matrix Gks) and let K(s) be the
mxm forward path controller. The generalization of the classical con-
Cepts requires the solution of the following problems if it is to have
any direct relevance to design studies:

(a) Relationships must be derived between G(s), R(s) and the reduced
plant GA(S), ensuring that the stability of the unity feedback
system with forward path transfer funetion matrix GA(S) K(s)

~ guarantees that the original feadback system 1s stable. In this
[}

situation GA(S) can be confidently used as a basis for the design

of K(s).

(b) A large class of reduced model structures must be constructed
whose parameters. are easiiy identified in terms of plant dynamics.
They should be general enough to enable the systematic and useful
approximation of a large class of engineering systems but simple
enough to enable direct analytic techniques to be used in the
search for an appropriate control structure K(s).

x 1,2)
A useful solution to (a) has been suggested< LA

based on the
technical machinery of contraction mapping algorithms on Ranach spaces

of matrix-valued functions of the complex variable, analy:ic and
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bounded on a defined open set in the compnlex plane., The solution

to (b) is not so apparent. A partial solution has been suggested

(3-6)

based on the use of reduced models with polynomial matrix inverses

For example, if G(s) takes the form

=l
G (s) =sA +A +A H(s) , |A]#0, H@) =0 (1)

where Ho(s) is proper and asymptotically stable (i.e. G(s) is minimum-

phase), then the multivariable first-order 1ag(3—6)

=1
G, (s) = s A_ 4 A (2)

can be a suitable approximation for feedback design studiescﬁ), and
matches both the high and low frequency characteristics of the
original plant.

This paper considers the natural genenalization of these ideas
to the case of unity negative feedback control of controllable and
observable m~input, m~output linear, time invariant discrete systems

with state space models S(6,A,C) of the form

I

a — pR
® X, Ay . xk{“ R

xk+1

m

m
yk = X s ka R™, u,kc R " k=20 (3)
with mxm z-transfer function matrix
. -1
G(z) = C(z L™ d) A , (4)

The results should have application, for example, to the design of
simple computér control schemes for multivariable process plant usiﬁg
periodically sampled data and piecewise-constant control.

]
The fundamental approximation theorem is derived in section 2. 1In

section 3 the concept of a multivariable discrete first—order lag is

introduced and the stability of the closed-loop system ensured by the
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choice of suitable proportional or proportional plus summation forward
path controllers. It is demonstrated that low interaction properties
of the closed-loop system in response to unift step demands is only
achieved if the sampling rate is fast when compared with the open-loop
poles of the underlying continuous system.

In section 4 the results of sections 2 and 3 are cormhined It
is shown that a large class of mxm minimum-phase discrete plant can
be successfully approximated by a discrete first—order lag provided
that the underlying continuous systempossesses certain simple struc-—

tural properties and that the sampling rate is high enough,

" 'Feedback Stability and Fundamental Approximation Theorem

Consider the mwm discrete system Q{(z) subiected o unity negative
feedback. For simplicity, suppose that Q(z) is derived from the

discrete model S(4,A,C). The open~loop characteristic polynomial

po(z) - ]Z L, - o] (5)

and the closed-loop characteristic polynomial
=z —(ﬁ-}- C
p.(2) = |2 T_- @ + Ac| (6)

are related by the well-known formula

p.(2)

OB ] i
(8]

The closed loop system is asymptotically stable if, and only if, the
roots of pc(z) lie in the open unit circle in the complex plane.
The‘zefé’polynnmial of S(&, A,C) can be defined, by analogy with

(2)

: ; : . 8
continuous systems , to be ghe polynomial in complex variable z,

zI - & il

$(2) & o _(2) |a)] = (8)
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The discrete system will be termed invertible if ¢(z) # 0 or,
equivalently |Q(z)| # 0 when in(z) exists and is termed the inverse
system, If Q(z) is invertibla then fhe polynomial ¢(z) has only a
finite number of roots. These roots (including multiplicities) will
be termed the zeros of 5(%,A,C). The system will be termed 'minimum-
phase' if, and only if, all the zeros lie in the open unit circle in
the complex plane. An important observation is that the inverse system
is analytic and bounded in the region ]z] >1 if, and only if, Q(z)
is minimum phase.

We are now in a position to stafte the fundamental theorem of this

section.

Theorem 2.1.

Suppose that the controllable and observable mxm invertible,
minimum-phase discrete system Q(z) is to be approximated by the mxm
invertible, minimum-phase discrete system QA(Z), Suppose that Qﬁ(E)
is stable in the presence of unity negative feadback and that the poles
of the closed-loop system gemerated by Q(z) (subject to unity negative
feedback) lie in the open bal]B |z| < R vhere R > 1. Then the system

Q(z) is stable in the presence of unity negative feedback if

=

[, + Q@ et ) - o @] <1
' (the contraction condition) (9)

where, if L(z) is any ‘mxm matrix function of =z,

| Lz) || b ax max ) [L.i(g)‘ (10)
1zigm |z|= 1 i=1 -

‘Proof |z;== R

The proof is a direct parallel of the constructions in references
1 and 2 for continucus feedback systems. The controllability and
observability assumption emsures that the closed-loop system is

. " ~1 Ly
asymptotically stable if, and only if, the matrix (Im + Q(z)) "Q(z)=
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< R

(Im + Q_l(z))—l is analytic and bounded in the region 1 < |z

i.e. if, and only if, the solution of

y(z) == Q" y(2) *a

is anmalytic and bounded in 1 <« Izl < R independent of the choice of
m ot o 2 .
o & R. Writing equation (11) in the form,
=171 =1 =]

y=@@+Q") "((Q -Qy+oa)
the remainder of the proof is identical to previous methods(z) with
the Nyquist contour and its interior replaced by the closed ring
1< |z| €R.

Q.E.D.

In practice R is, of course, unknown. This does not limit the
applicability of the fesult as we can always take R >> 1,

Given Q and QA’ the contraction condition (equation (9)) can,
in principle, be checked numerically. The primary value of equation
9) in tﬁisapaper is, however, that of a theoretical tool for

closed-loop stability%analysis based on somz approximation QA to %.

€
In practice Q(z) = G(z)X(z) where G and K are the z~transfer function
matrices of the plant and forward path controllers raspactively. Ue
will use the definition QA(Z) = GA(Z)K(Z) vhere GA(Z) ig some
approximation to the plant dynamics. In the case of G, GA and K
all minimum phase and supposing that K is designed on the basis of
the approximate plant GA to ensure closed-loop stability, then the
contraction condition (equation (9)) provides sufficient conditions

for the design K to generate a stable closed-loop system for the

real plant G,

(11)

(12)
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Unfortunately, the results described above provide no guidelines

for the choice of GA' In the next section a useful class of approxi-

mate plant is analysed in defail.

Multivariable Discrete First—oxder Lags

(3-5)

By an obvious extension of previous results s we define an
mxm discrete first order lag to be a controllable and observable m—

input, m~output discrete time system with inverse transfer function

matrix

8 Nty w Gt B+ B (13)

where Bo’ B, are real mxm matrices and ]BD]# 0. An equivalent
definition is that of an m—input, m-output discrete model of state
dimension n = m and |CAl# O as is easily verified by noting that G(z)

has a minimal realization of the form

A =B (14)

Propmrtional Control: ,

Consider a unity negative-feedback system for the control of the

first-order lag G(z) with forward path proporiional controller of the

general parametric forn,

K(z) = B diag {1 -k.} -~ B (15)
hy Y1giom

Noting that the open-loop characteristic polynomial
. , L | 1,
p,(®) = |21 '~ ¢|=|B | |¢ " (2)] , (16)

it follows directly that the closed-loop characteristic polynomial

i
@
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DC(Z) = po(ﬁ) lIm + G(z) K(z)
- IP~:1I .G_]'(::) + R(z)|
n o 7
- _H]_'[11('z - kj) (17)

i.e. the closed-loop system is asymototically stable if, and only if,
-1 < k. <1 i lgjgm

The closed~loop transient performance can be assessedby evaluation

of the closed-loop transfer function matrix

H (2) = (I + G(REND T alz)k(z)
C ™ .
- =1
o (&) & B Rez)
. 1 : -
= diag{ } (diag {1-k.} - B "By) (18)
o - Kk, i 1gis s R ;
1 1536m i

In particular the closed-loop system possesses small steady state errors
and small interaction effects in response to unit step demands only if
the elements of the matrix 3;151 are small enough: This is not a

severe restriction on the practical application of the results if it is
remembered that, a priori or a postiori, the discrete model defined by
equation (14) can be reparded as‘heing derived from a continuous time

model S(A,B,C) of the form,

Hl

x(t) = Ax(t) + Bu(t) . x(t)E

cx(£) , y(£)E R" , u(t) ©R™ (19)

il

y(£)
with sampling period h,

%, éx{kh} kS 0. (20)
and piecewise constant input

. khgts (k#1) h (21)

u(t) = Y

if such a plant is subject to the constrgintsn = m and [CB[# 0.

@
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Without loss of generality, suppose that C = Im and note that

» = EAh 5 A = & f a Rdt (22)
[a]

Substituting into equation (14) it follows that

tm, BT B, = lim I - oAl
h>o+ . T hrot L

} =0 (23)

and hence that the closed-loop system represented by equation (18) will
possess small interaction effects and steady state errors in response
to unit step demands if the sampling rate is fast enough. Assuming,

for simplicity, that A has a diagonal canonical form with eigenvalues

A

IE 1 ¢ j ¢ m, and eigenvector matrix E, then

.h
A.h ~1

2 : 1
¢ = E diag {e " } leiam E (24)

. .ot i y '
suggesting that a necessary condition for Bo B1 to be small is that

|2;h 2“1 s 1gigm (25)
Equivalently the sampling rate must be fast in comparison to the

poles of the underlying continuous opén-loop plant.

" ‘Proportional plus Summation Control:

The above analysis is easily extended to the case of controllable
and observable proportional plus summation controllers of the general
parametric form

; : ) (lukJ) (l-vc:j)z :
Rial = By dipg{legey =G o1y g T 0 0

Suppose that only 2 of the parameters cy, ¢y, ... , C  are mnot equal to
unity, It follows that the controller has minimal realization of’state
dimension % and hence that the overall open—loop characteristic’
polynomial is

p(2) = (z-1)*|a1_ - o] = EP L IO 27
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Note , in partiéular, that this analysis reduces to the case of
proportional control if L= 0, The stability of the closed-loop
system is described by the characteristic polynomial
p.(2) = p (2) [Im + G(z) K(z)|
&
=D 5] @) + K@)
= {7 (z=k)H = (z=c.) } (28)
= J cj%l J
lethe closedloop system is asymptotically stable if, and only LE:
-l<kj<1,lsj5mand—1<cj$1 . l‘SjSm.
The inclusion of summation action would normally be considered
only in cases where the proportional design displayed large steady
state errors. Also the rééet times will normally be considerably

longer than the rise times. In mathematical terms it is likely that
i L]
|1 - cj] << |1 - kjl , 1€ j€m (29)

and hence that equation (18) is still a good representation of closed-
@
loop dynamics with the exception that steady state errors in respogse

to step demands-will be zero in all outputs vy. (t) corresponding to
P puts y, 3

parameters cj # 1 as is easily verified by noting that

lin H (z) = lin (€ '(2) + K(2)) 'K(z)
z+31 z+1
s P s WErE (20)
“m o 1 7
where
M =.§1ag {Hﬁ} 15 §®
%
5 5 E» 1
m, 4 #
: " c, =1 (31)
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On the Effect of Delays:

The abowe analysis represents a ;ather idealized concept of
control action. In practice there may be significant delays in the
control loops due, for examnle, to measurement or actuator delays
in the system. Intuitively these dalays will not adversely affect
system performance provided that the sampling rate is fast . compared
with the closed—loop system responses. This fact can be illustrated
by considering the presence of measurement delays represented by the

simple diagonal matrix

T(z) =2 ° L. (=20) (32)

in the feedback path. Using, for simplicity, the proportional
controller of equation (15) the closed-loop characteristic polynomial

is given by

o (2) = 2B e M@ | * |1+ eR(IF()|
™D =L -1
=z" [B7] " ]6 7 (2) + K(2)F()]
= ](7*?)1 -+ BnlB + zhp{diab{l~k } = BﬁlB }[
S i R PN i e

]

]diag{zp(z—1)+1—k.} : +{zp—1}B;1B

j l€j€m (33)

1

_Equation (23) indicates that, at all high enough sampling rates, ve

| . ;
can neglect the term in B0 B1 yielding

Pe (z) = (P (z-1)+(1- k ) (h ~0 +) (35)
Coqsidering the sclutions of zp(z—l) # 1 = kj = 0 in the vieinity
of z = ki = 1, the relation

: y :

gj%a ‘- 1 (25)

guarantees the existence of positive real numbers € >0, 1] sm,

such that the roots of oc(z) lie in the open unit circle for
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L e Ej < kj <1, 1¢£js<m and all high enough sampling rates.

First-order Approximations for Feedback Design

It is the purpose of this section to bring the analvses of
sections 2 and 3 together in a systematic approach to design based
on first order approximations to open-~loop plant dynamics.

Consider a unity negative feedbaék system for the control of the
mxm invertible, minimum-phase discrete plant S( ,A ,C) having inverse

z=transfer function matrix

=]
G (z) = Bo(z~l) + By + B H(z)

1
H(z) proper, , H(1) =0 , Bl #0 (36)
0

and suppose that the mxm first order lag GA(Z) defined by
G 1 (z) = (z=1)B_ + B (37)
A M ¢ 1

is to be used as a reduced model for the purposesof controller design.

Note that GA is a good:approximation to the high frequency and steady
. L

state behaviour of the plant, but contains no information on its

zero structure. In fact, GA has no zeros!

Suppose that the analysis of section 3 is used to design a
proportional plus summation controller of the form given in equation

(26) for the approximata plant GA° The contraction condition

(equation (9)) can now be used to assess the closed-loop stability
of the original plant G with the designed control system., The

relevant matrix is

L@ & @ gt ) TG @0 @) = ®ee6 )6 () -6 L ()
& ' g

- 1) (33)

(ZHki)(z~c?) 1€ism H(z)

= (-1) diag {

and a sufficient condition for closed-loop stability is that ||L(z)||< 1.

This condition could be directly investigated if the inverse system 1s
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computed from the matrix triple (8,A,C) using knovn - techniques .

noting that the condition anl# 0 is equivalent to the condition
ICAI # 0. Note also that the contraction condition can be replaced
by the simpler condition,

max
1gism

il D1

max |L.i(z)| @ 1 (39)
nl=t i=1 4

by letting R tend to + o and observing that L(z) = O(Z_l). In
practice, however, it is probably more efficient simply to simulate
the closed-loop system responses to a number of unit step demands, say,
The remaining - question is whether or not‘the contraction condi-
tion can be satisfied for a large class of process plant. The iden~
tification of the important parameters governing the behaviour of [ 1% ]
is also of particular importance if a deotailed state vector model is
not available. These questions are answered in the following analysis.
Suppose now that the model 8(®,A,C) can be regarded as a discfete
representation of the continuous plant S(A,B,0) (see equations (19)-(21))
with sampling period h > 0. The following theoren is proven in

appendix §;

‘Theorem 4.1
Let the continuous system S(A,B,C) be minimum phase and |cB|# 0.

j £ m, in the interval

A

Then for each choice of parameters kj’ cj, 1
®11), there exists a real positive number h* such that, for o < h < h#*,

the discrete system S(6,A,C) is minimum phase with inverse of the form

given in (36) and the contraction condition is satisfied.

In effect, the theorem states that the contraction condition is always

satisfied (and hence the closed-loop system is stable) if the unde=lying
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3) and the

continuous system is minimum phase, uniform rank one(
sampling rate is fast enough. These conditions are only sufficient,
however, and do not necessarily prevent application of the technique
if they are not satisfied.

The technique is very easily applied in a step by step manner:
'STEP ONE:

Evaluate the matrices Bos Bye This is easily dome from the
matrice §,A,C using known formulae(?) for the inverse system given
in appendix 8, Alternative, if the system is open~loop stable, the
matrices can be deduced by simulation or experim;ntal racording of
the system response to step inputs with zero initial conditions.

More precisely, the output.responses from zero initial conditions

to the vector step demand o at k=l and k=+o are

~T i, :
yp "8, , y, = Ry (40)
¢ -
B and Bl are easily evaluated from this data by taking m

linearly independent step demands @ihm2,..,ngmn
STEP “TWO:

Choose a proportional plus summation controller of the form
discussed in section 3,for the approximate plant obtained Zrom BO
and B1 (equation (37)) to ensu#e the required response spend, steady
state errors and, if possible, interaction effects.
STEP THREE:

Check the stability of the unity feedback system for +he
original plant G using K by numerical check of the contraction condi-
tion (equations (38),(39)) or, more generally, by simulation on

experimental studies. If the system is unstable, consider the possi-

bility of increasing the sampling rate.
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The above theory will remain essentiallythe same in the presence
of sensor or actuator delays, provided that the sampling rate is fast
relative to the designed closed-loop responses. Also the requirement
that H(1) = O can be dropped from the specification of the system in
equation (36) without altering the results as is verified in Appendix
9. Although this can simplify the analysis of the first-order approxi-
mation and the structure of the controller (for example, choose H(z)
such that B1 = 0) it does mean that the reduced model no longer

represents the steady state characteristics of the plant.
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Illustrative Examples

Control of a First-order Process:

Suppose that the continuous, invertible system specified by the

matrix triple

A= | , B= | , €= (41)

is to be controlled by discrete feedback with sampling period h.
Note that the eigenvalues of A are 0 and -3 and hence that the open—
loop system real time-constants are all greater‘than 1/3;

It is easily verified that the derived discrete plant is described

by the triple

. " i
1
i =g | -3 ~3h|
- {2 ~ 2e T 1+ 2e 7 |
( "
. fon w @ s § 6k % B = G0
A=x0 ;‘
¥ |6h + 2 = 270 6h + 4e P — 4
i i
(1s o
C = i Za ¥
0 1 (42)

and is a discrete Zx2 first-order lag with Bos B1 obtained from
equation (14). Consider the application of the results of section 3
to this system. Glancing at equations (18) and (14) the important
matrix in feedback performance is
e SR B CNAp - i {1-9“3]“} (43)
o 1 3 -9 2
which is small if,- and only if, 3h << 1 indicating the need for, fast

@

sampling if low closed=-loop interaction is desired.

usl.‘-—'
Q

Suppose that the sampling period h = and consider the easn %

‘ L
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proportional control with forward path controller spacified by
equation (15). Assuming, for simolicity , that similar responsa

speeds are desired from each loop, then equation (i8) suggests the

33

choice of kl = k? A k when the closed~loop transfer function matrix

ftakes the form

0.032 - 0.032
1 7
2 TR } (44)

=0,064 0,064

(1 - k)
~ k)

Hc(z) = {T

L&

]

An - examination of this identity ﬂuggésﬁs that the smallest attainable

steady state errors and transient interaction effects in response to
unit step demands are approximately 0.06 (obtainad hy examining the
case of a dead-beat closed~loon system with k=0) when rhe closed-loop
system real-time response tﬁme is of the oxder of the samling period,

If, however, it is required that the closed-loop rasponse fime is

[

much longer than the samnling period, it is immediately apparent (by

letting k + 1-) from equation (44) tha: interaction effects and steady

1 & A

state errors can bhe large,. ’
Choosing, for simlicity, k = 0,5 the closed~loop responsaes to

unit step demands are shown in Fig. 1. DNote that interaction and steady

state errors are of peak magnitude 0.13. The steady state e=rors can

be eliminated;by the intreduction of a summation term in“n “he ~on-
g

4 \ < @

troller (see equation (26)) with parametars By ™0 ron 0.0, nrs
The resulting closed-loop unit step responses are ~lio o in Tz, L.

The final design is highly satisfactory and enn ha o awnd b

reducing k (i.e. increasing response speeds). The desig+ in nlnimately
limited, however by the assumed sampling rate.

Finally the forward path conmiroller has z—transfer Sumas’ -y = ieeix

K(z) = {1 = ke + GLG-c)z; B - B



15.775

I

0.725

1.5252

(z—L)
0.025z

(=-1)

1.0

1.015

-

]

=1,015

\

0.725 ='0.025z

(2=1){

7.51 + 0,775z
&L

Lz

'\..4

which could be simplified for implemrentation by neglecting

small off-diagonal te

5.2 First-order Approxima

rms .

tion:

Consider a system with discrefe model

(
0.908
Ay ™ [00E8
- 0.15
.
1. "0
y =
% 0o 1

.

0,002

0,906

0.04

0,06 %

0.9 {
k=0

[0.0328

0.0011

0

4
H
i
3
S

= 1.0

3

l
)
the

0.0011
0.0646

0

¥

(45)

i

46)

which is minimum-phase (¥7ith one zero at z = 0.9) and invertible with

inverse system of the

¢ 1) = (z-1)

+

form (after some elementary manipulation)

-0.,5
iy
15-5'} ;‘-
-0.5
{z=1)
(z - 0.9)
15:5 J '

1.0 -~1.0I
i

1.015  1.015]
{O.ﬂé 0.02]
|0-09 0.03]

~1
so that G = has the form given in equation (36) with

30.5

=0.5

N

H(z)

=0.5

15.5

(=~
0.9)

o™

{z =

4

D ”

1 -1.0
-1.015 * 1.015
0.06 0.02 }
0.00 0.02 |

(47)

Ihn)

" ' \‘ 3 3 o Y
Consider the application of the approximntion mathed of secticn (/)

to this system.

Tha first order anproximation to plant dynamics in




G, (z) = (=-1) *+ (49)
~0:5 155 -1.015 1.015|

; /
which is identical to the system considzred in section 5.1. Assuming,

) 30.5 -0.5 1,6 1

for simplicity, the case of proportional control with kl = k2 = 0.5

(as in section 5.1), the forward path ‘controller (equation (15))

.
30.5 ~0.5] [0.5 0 1.0 ﬂl.ol
K(z) = _ i
~0.5 5.5 0 0.5 =1:015 12015
i EJ L L5 ,}
14,25 0,75
= ' (50)
[ﬂ@765 h.735

yields the approximate closed-loop system with closed-loop responses
as . obtained in section S.i'and illustrated in Fig. 1. ;

The closed-loop responses of the real system (equation (46)) with
this controller to umit step demands are illustrated in Fig, 2. As can
be seen the responses are stable and very similar to those obtained from
the first-order approximation. The stability can also be predicted

S
theoretically by evaluating f{equations (3)-(39))

LG [| = 0,12 max | SEot) < 0.2526 < 1 (51)

!z[=l (2*0!9)(z~0.5)'
so that the contraction condition is satisfied and hence the closad-
loop system is stable.

6, Conclusions
‘The material presgnted in this paper is a complete generalization
of the concepts and approximation procedures previously publishad hy

(2-6)

the author for thg design of unity negative feedback systems fZox

A )
mxm invertible, minimum-phase continuous systems using first oxdnz

@
approximations, to the diecrete case. In particular a detailed
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analysis of proportional and proportional plus summation controllers

for the defined disecrete first order lags has been provided. Previous

~~
o]
St

=

contraction mapping resulis

mve baen generalinmad to provida con-
ditions for assessing the usefulness of plant anproximations in fead-

back design and it has Fean daronstrated i“1‘ under wall-defined
conditions, discrete firast-ordar lags are a usafnl model for design
studies, Thesa condizions relate o the properzies of the underlving

continuous~tim? systen and, in partienlar, sugaest that the results

are only strictly = applieable if the samoling rate is fast enough
(although it does not recm to ha pnssible fo oh%ain erplicift results

concerning the requized samnling rate). These rastrictions are

however, typical of contraction mapping type ranulis aad directly

parallel thz resd to use

(63

case ' . Certainly they shonld not preven: apnlienfion o

A S N = L eyt 5 - L
deiently high gain” in the conftinuous

to a large class of process plant,
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"APPENDIXES

"Probf of Theorem 4.1

(a) The discrete system S(%,A,C) has an inverse of the form given in
equation (36) if, and only if, Cap(= Bgl) is nonsingular. Using
equation (22),
1im hhcy = cB (52)
h+o
whicﬁ, by assumption, is nonsingular. It follows that equation (36)
is the correct parametric representation of the inverse system at all
high enough sampling rates.

(b)  Applying the work of KouVaritakis(7), note that
@) = 0w - @) o1y acem™!

~ (cn) Tego - IM@EL ~No 07N {o =L} (ca)7t

(53)
where N,M are (n—m)xﬁ and nx(n-m) full rank matrices respectively
satisfying the relations

4 = o0 , N .= 0 , W = I__ (54)
It follows direct®y .that '
=1
H(z) = C{e ~ T} M (I, - NeM
=1 -1
- (zI_-N oM N {o = I_} A(CA)
n n
, -1 - -1_.. -1
= C{6 - LI MGEDA, -NoM) ~ (zI, ~N o M) N'{o-1} a(Ca)
(55)
Consider the behaviour of H(z) as h»o+ on the unit circle ]zl =1,
The eigenvalues Xl,.;., An—m of N ® M are simply the n-m zeros(7) of

S(¢,A,C). Equivalently, they are the n-m solutions of the relation




- 2] =
AL - @ = A
n .
z(\) = =0 (56)
C 0
Noting that
o = In + Ah + o(hz)
A = hB + o(h?) (57)
it follows that
Ay =14 zhe o) , 1lgjgnm (58)

where zl,...,zn_m are the zeros of the continﬁbus system S(A,B,C).

By assumption ZpreeesZ have strictly negative real parts and hence
 {Aj} lie in the open ﬁnit‘circle for all fast enough sampling rates
i.e. 5(9,A,C) is minimum phase for all fast enough sampling rates.
(c) Without loss of generality, it is possible to assume that M is
constant. The assump;ioh that ]CB] # 0 ensureé that the limit No 2

9
ﬁig N exists, that N0 M = In—m and that NoB = 0. The minimum phase

(n°

nature of S(A,B,C) ensures that No A M is nonsingular. This,

together with the equations (52) and (57) and the identity

(zI_ ~NOM) L= ((z-1)I -N AMh + o(n2))"L (59)
n n o
guarantees the existence of h* > o0 and k > o such that
-1
sup || (z-1) "H(2)]|| < k (60)
o<h<h#* )

In particular, - (znl)—lﬂ(z) converges uniformly to zero as h+o+ on any
relatively open subset T of the unit circle not containing the point

. from which H(z) : _
z = 1/(and hence L(z)) converges uniformly to zero on |z]= 1 as

'h + o+. This proves the desired result as suitahle choice of h* ensures

i ., @
that ||L]] < 1, o < h < h*,
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Effect of the Choice of B

1}

As B1 represents steady state response characteristics, it follows
that it is independent of sampling rate. Let ﬁl be some other constant
matrix -used . in place of Bl. Noting that the theoretical development
is, with the exception of theorem 4.1., independent of the assumption

H(1) = 0, the analysis follows through with H(z) replaced by

-1 . g .
H(z) + BO (Bl - Bl). But B0 = CA = 0(h) vyields
i =1 - . :
lim B (Bl - Bl) =0 (61)
hso+ ©
is

It follows that theorem 4.1/valid if B1 is replaced by any constant

matrix,
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Fig, 1 Closed loop responses

(a) to a unit step demand in output one

(b) to a unit step demand in output two

x = proportion control, k; = k2 = 0.5

]

® = propertional plus summation control ¢ =e,y = 0.9
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Fig. 2 Closed-loop responsée

(a) to a unit step demand in output one

(b) to a unit step demand in output two
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