
This is a repository copy of General Seismic Load Distribution for Optimum 
Performance-Based Design of Shear-Buildings.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85516/

Version: Accepted Version

Article:

Hajirasouliha, I. and Pilakoutas, K. (2012) General Seismic Load Distribution for Optimum 
Performance-Based Design of Shear-Buildings. Journal of Earthquake Engineering, 16 (4).
443 - 462. ISSN 1363-2469 

https://doi.org/10.1080/13632469.2012.654897

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Hajirasouliha I, Pilakoutas K (2012) General seismic load distribution for optimum performance-based 

design of shear-buildings. Journal of Earthquake Engineering, 16(4), 443-462. 

 

General seismic load distribution for optimum performance-

based design of shear-buildings 

Iman Hajirasouliha 1 

Department of Civil Engineering, The University of Nottingham, Nottingham, UK 

Kypros Pilakoutas 

Department of Civil & Structural Engineering, The University of Sheffield, Sheffield, UK 

Abstract 

An optimisation method based on uniform damage distribution is used to find optimum design load 

distribution for seismic design of regular and irregular shear-buildings to achieve minimum structural 

damage. By using 75 synthetic spectrum-compatible earthquakes, optimum design load distributions 

are obtained for different performance targets, dynamic characteristics and site soil classifications. For 

the same structural weight, optimum designed buildings experience up to 40% less global damage 

compared to code-based designed buildings. A new general load distribution equation is presented for 

optimum performance-based seismic design of structures which leads to a more efficient use of 

structural materials and better seismic performance. 
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1.  Introduction 

The preliminary design of most buildings is normally based on equivalent static forces obtained 

from seismic design guidelines and codes of practice. The height-wise distribution of these static 

forces is implicitly based on the first-mode dynamic response of elastic structures [Hart, 2000; Chopra, 

2001]. As structures exceed their elastic limits in severe earthquakes, the use of inertia forces 

corresponding to the elastic modes may not lead to the uniform distribution of ductility demands 

[Chopra, 2001]. The seismic behaviour of different code-based designed structural systems have 

been extensively investigated over the last two decades [Anderson et al., 1991; Gilmore and Bertero, 

1993; Martinelli et al., 2000; Lee and Foutch, 2002; Goulet et al., 2007]. The results of these studies 

showed that, in general, buildings designed based on new seismic design guidelines satisfy the 

collapse prevention and immediate occupancy performance levels. However, the lateral load 

distribution used by current seismic design guidelines does not always lead to the optimum use of 

structural materials [Chopra, 2001; Moghaddam and Hajirasouliha, 2006]. 

In an attempt to find optimum distribution of structural properties, Takewaki (1996, 1997) 

developed an analytical method to find stiffness (and strength) distribution that leads to a constant 

storey-ductility demand for a shear-building structure subjected to a given design spectrum. This 

method is based on an elastic equivalent linearization technique, and the results showed that for tall 

buildings it does not lead to a uniform ductility demand distribution when the structure is subjected to a 

time-history excitation. Gantes et al. (2000) used the Euler�Bernoulli beam theory to find optimum 

bending and shear distribution of multi-storey steel frames to obtain uniform height-wise drift 

distribution. Although their proposed method is simple and practical, it is not capable of considering 

the non-linear behaviour of structures.    

Lee and Goel (2001) and Chao et al. (2007) analyzed a series of steel moment and braced 

frames subjected to various earthquake excitations. They showed that in general there is a 

discrepancy between the earthquake induced shear forces and the forces determined by assuming 

code-based design load distribution patterns. Based on the results of their studies, they suggested a 

new lateral force distribution for seismic loads to address the influence of increasing higher mode 
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effects in the inelastic state. However, the effects of ground motion characteristics and the degree of 

nonlinearity were not considered in their suggested load distribution.   

Moghaddam and Hajirasouliha (2006) and Hajirasouliha and Moghaddam (2009) developed an 

effective optimisation method to find optimum lateral load distribution for seismic design of regular 

shear-building structures to obtain uniform storey ductility. They showed that, for the same target 

storey-ductility demand, structures designed with the average of optimum load patterns for a set of 

earthquakes with similar characteristics, have relatively lower structural weight compared to those 

designed conventionally. This lead to the following equation for preliminary design of height-wise 

regular shear-buildings based on the results of twenty earthquake excitations recorded on soft rock:  
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where φi is the ratio of optimum design force at i
th
 storey to the base shear for a regular structure 

with fundamental period of T and maximum ductility demand of µt . ai, bi, ci, and di are constant 

coefficients at i
th
 storey that should be calculated for each set of design earthquakes.  

The above load pattern is a function of structural performance level (i.e. storey ductility), and 

therefore, is suitable for performance-based seismic design of structures. However, the load pattern 

adopted cannot be used directly in practical design of structures, as the utilized seismic records were 

not compatible with modern building code design spectra (such as Eurocode 8 and IBC-2009), and 

the effects of height-wise irregularity and site soil profile were not considered in the above equation. 

This may lead to structures with unacceptable seismic performance under design spectrum- 

compatible earthquakes, and hence, needs further development.  

In this study, the above mentioned optimisation method is further developed to optimize both 

regular and height-wise irregular structures to exhibit minimum structural damage under a design 

spectrum. By using 200 shear-building models subjected to 75 synthetic earthquakes compatible with 
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IBC-2009 design spectra, the effects of using different damage criteria, height-wise irregularity and 

site soil classification are investigated. Based on the results of this study, a more realistic lateral 

design load distribution is proposed and its efficiency is assessed by using a design example.  

 

2.  Modelling and assumptions 

In spite of some drawbacks, shear-building models have been widely used to study the seismic 

response of multi-storey buildings [Diaz et al., 1994] because of simplicity and low computational effort 

that enables a wide range of parametric studies. In shear-building models, each floor is assumed to be 

a lumped mass that is connected by perfect elastic-plastic springs which only have shear 

deformations when subjected to lateral forces as shown in Fig. 1. All parameters required to define a 

shear-building model corresponding to a full-frame model can be determined by performing a single 

pushover analysis [Hajirasouliha and Doostan, 2010]. The shear-building model is capable of 

considering both non-linear behaviour and higher mode effects for the first few effective modes, and 

therefore, can represent well the actual behaviour of several types of multi-storey buildings [Diaz et 

al., 1994]. In shear-building models, the strength of each floor is obtained from the corresponding 

storey shear force, and therefore, the height-wise distribution of storey strength can be easily 

converted to the height-wise distribution of lateral forces. This makes shear-buildings a very suitable 

model for calculating the optimum seismic design load pattern for multi-storey structures with different 

dynamic characteristics and performance targets. In the present study, 200 regular and irregular 5, 10 

and 15-storey shear-building models with fundamental period ranging from 0.1 sec to 3 sec, and 

maximum ductility demand equal to 1, 1.5, 2, 3, 4, 5, 6 and 8 are utilized. Prior studies by 

Hajirasouliha and Moghaddam (2009) showed that, for a specific fundamental period and target 

ductility demand, optimum load pattern can be considered independent of number of stories. 

Therefore, 5, 10 and 10 storey shear-building models with different fundamental periods can be 

representative of a wider range of structural systems. The range of the fundamental period considered 

in this study is wider than that of real structures to cover special cases. The Rayleigh damping model 

with a constant damping ratio of 0.05 is assigned to the first mode and to the first mode at which the 

cumulative mass participation exceeds 95%. To predict the seismic response of the shear-building 
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models, nonlinear time-history analyses were carried out using computer program DRAIN-2DX 

[Parakash et al., 1992]. 

To investigate the effects of different soil profiles on the optimum design load distributions, five 

sets of spectrum-compatible synthetic earthquakes were generated using the SIMQKE program 

[Vanmarke, 1976] to represent the elastic design response spectra of IBC-2009 (and ASCE 7-05) soil 

types A, B, C, D and E (Table 1). These design response spectra are assumed to be an envelope of 

the many possible ground motions that could occur at the site. To include the ground motion 

variability, each set of synthetic earthquakes consists of 15 generated seismic excitations, with a PGA 

of 0.4g. It is shown in Fig. 2 that the average acceleration response spectrum of each set of synthetic 

earthquakes compares well with its corresponding IBC-2009 design spectrum. 

 

3.  Optimum seismic load distribution for a design earthquake 

In this study, the optimisation target is to obtain a seismic design load that leads to minimum 

structural damage (i.e. optimum distribution of structural material) using a fixed amount of structural 

material. In shear-building structures, any increase in structural material is normally accompanied by 

an increase in storey strength. Therefore, total structural weight could be considered proportional to 

the sum of all storey shear strengths. Consequently, the storey shear strength can be considered as a 

design variable to optimise the seismic behaviour of shear-building structures. 

3.1. Optimisation methodology 

During strong earthquakes the deformation demand (that is corresponding to structural and non-

structural damage) in code-based designed structures is not expected to be uniform [Chopra, 2001]. 

As a result, in some parts of the structures the maximum level of seismic capacity is not necessarily 

utilized. If the strength of underused elements is decreased incrementally, for a ductile structure, it is 

expected to eventually obtain a status of uniform damage distribution. In such a case, the dissipation 

of seismic energy in each structural element is maximized and the material capacity is fully exploited. 

Therefore, in general, it can be assumed that a status of uniform distribution of structural damage is a 
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direct consequence of the optimum use of material. The optimisation of a non-linear structure 

subjected to a dynamic excitation is a complex problem; however, the use of the concept of uniform 

damage distribution simplifies the mathematics of the optimisation algorithm to a large extent. In the 

present study, in an attempt to reach uniform damage distribution through the structure, the following 

optimisation procedure is adopted: 

1- The initial structure is designed for seismic loads based on a design guidelines, such as IBC-

2009. The distribution of storey shear strength along the structure is then determined. 

 2- A model of the structure is subjected to the design seismic excitation, and a suitable local 

damage index (such as storey ductility, inter-storey drift and cumulative damage) is calculated for 

all stories. 

3- The Coefficient of Variation (COV) of damage indices of all stories is calculated. If this COV is 

small enough (e.g. less than 0.1), the structure is considered to be practically optimum. 

Otherwise, the optimisation algorithm proceeds to iterations. 

4- During the iterations, the distribution of storey shear strength is modified. The shear strength is 

reduced in the stories with lower-than-average damage index and increased in the stories which 

experienced higher-than-average damage. To obtain convergence in numerical calculations, this 

alteration needs to be applied incrementally using the following equation: 
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where (Si)n is the shear strength of the i
th
 storey at n

th
 iteration, DIi and DIave are damage index for 

the i
th
 storey and average of damage indices for all stories, respectively. a is convergence 

parameter ranging from 0 to 1. Analyses carried out in this study on different models and seismic 

excitations indicated that an acceptable convergence is usually obtained by using a values of 0.1 

to 0.2. The results presented in this paper are based on a value of 0.15. 

5- The shear strength of all stories are scaled such that the sum of storey shear strengths (and 

structural weight) remains unchanged. The optimisation procedure is then repeated from step 2 
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until the COV of damage indices become small enough. The final solution is considered to be 

practically optimum. Analyses carried out by the authors showed that the optimum distribution of 

storey shear strengths is independent of the seismic load distribution used for initial design.  

The concept of uniform damage distribution can also be used to find the optimum distribution of 

storey shear strengths for a specific performance target (DItarget). In this case, the equation (2) in the 

optimisation process should be replaced by the following equation, and there is no need to scale the 

sum of storey shear strengths in the step 5. 
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In performance-based design methods, design criteria are expressed in terms of achieving 

specific performance targets during a design level earthquake. Performance targets could be satisfied 

by controlling the level of stress, displacement or structural and non-structural damage. The proposed 

method can optimise the design using different types of performance parameters as discussed in the 

following sections. 

 

3.2. Minimum storey ductility 

Storey ductility has been widely used to assess the level of damage in non-linear shear-building 

structures (Chopra 2001). In this section, storey ductility is considered as the damage index in the 

optimisation process (Equation 2). To show the efficiency of the proposed method, the above 

optimisation algorithm is used for the optimum design of a 10-storey shear-building with fundamental 

period of 1.1 sec subjected to a ground motion recorded at the Canoga Park station in the Northridge 

earthquake 1994 (CNP196).  

Based on the concept of uniform damage distribution, the proposed optimisation method is 

expected to lead to a structure with minimum storey ductility (selected response parameter). Fig. 3 

shows the variation of maximum storey ductility and COV of storey ductility demands from IBC-2009 

to optimum designed model. It is shown that decreasing the COV was always accompanied by 
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reduction of maximum storey ductility, and the proposed method practically converged to the optimum 

solution in less than 7 steps without any fluctuation.  

Fig. 4-a compares the storey ductility distribution of IBC-2009 and optimum designed model 

(minimum storey ductility). It is shown that the proposed optimisation method resulted in a design with 

an almost perfectly uniform storey ductility distribution. The results indicate that, for the same 

structural weight, the optimum designed structure experienced 52% less maximum storey ductility (i.e. 

less structural damage) compared to the conventionally designed structure.   

As it is mentioned before, the final height-wise distribution of storey strength in a shear-building 

model can be easily converted to the height-wise distribution of design lateral forces. Such pattern 

may be regarded as the optimum distribution pattern for seismic design forces (Opteq). The lateral 

force distribution of IBC-2009 and optimum designed models are compared in Fig. 4-b. The results 

indicate that to improve the seismic performance under this specific earthquake, the above mentioned 

model should be designed based on an equivalent lateral load distribution different from one used by 

conventional code patterns. However, this optimum load distribution may not be suitable for other 

cases as it depends on the characteristics of the structure and seismic excitation. 

3.3.  Minimum cumulative damage  

To investigate the effect of selected damage criteria on the optimum design load pattern, the 

damage index proposed by Baik et al. (1988) based on the classical low-cycle fatigue approach is 

used in the optimisation process (Equation 2). The inter-storey inelastic deformation is chosen as the 

basic damage quantity, and the cumulative damage index after N excursions of plastic deformation is 

calculated as: 

c
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where DIi is the cumulative damage index at i
th
 storey, ranging from 0 for undamaged to 1 for 

severely damaged stories, N is the number of plastic excursions, Dδpj is the plastic deformation of i
th
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storey in j
th
 excursion, δy is the nominal yield deformation, and c is a parameter that accounts for the 

effect of plastic deformation magnitude which is taken to be 1.5 [Krawinkler and Zohrei, 1984]. 

To assess the damage experienced by the full structure, the global damage index is obtained as a 

weighted average of the damage indices at the storey levels, with the energy dissipated being the 

weighting function. 
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where DIg is the global damage index, Wpi is the energy dissipated at i
th
 storey, DIi is the damage 

index at i
th
 storey, and n is the number of stories.  

The previous 10-storey example was solved by considering the cumulative damage (Equation 4) 

as the local damage index. As shown in Fig. 5, the optimum designed structure in this case exhibits 

minimum cumulative damage during the design earthquake. Based on the results, for the same 

structural weight, 10-storey buildings optimised for minimum storey-ductility and cumulative damage 

experience on average 40% less global damage index as compared to the IBC-2009 designed 

structure.  

The results shown in Figures 4 and 5 indicate that, in general, changing the damage assessment 

criteria does not have a major effect on the optimum design load distribution, as well as the maximum 

storey-ductility demand and the cumulative damage of optimum designed structures. This conclusion 

has been confirmed by analysis of different structures and ground motion records. 

 

4.  Optimum seismic design load distribution for building code design spectra 

Based on the work presented in the previous sections, it was found that for every building there is 

a specific optimum load distribution that leads to optimum seismic performance during the design 
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earthquake (Opteq). This optimum pattern depends on the characteristics of the design earthquake, 

and therefore, varies from one earthquake to another. However, there is no guarantee that the 

structure will experience seismic events with the exact characteristics of the design ground motion. 

Therefore, for practical applications, appropriate design load distributions should be developed for 

typical building code design spectra.  

Using the proposed optimization algorithm, the optimum load distribution patterns for the 200 

shear-building models presented earlier were calculated for the five sets of selected synthetic 

earthquakes representing different soil types (15,000 optimum load patterns). The average of the 

optimum load patterns for each set of synthetic records was then used to design new shear-buildings 

(Optave). For each seismic excitation, the required structural weight to obtain a target storey-ductility 

demand was determined for 60,000 shear-buildings designed with: a) optimum load pattern 

corresponding to the design earthquake (Opteq); b) IBC 2009 design; c) Hajirasouliha and Moghaddam 

(2009) load pattern; and d) the average of optimum load patterns (Optave). As expected, the results of 

this study showed that, for the same storey-ductility demand, structures designed with the optimum 

load patterns corresponding to the design earthquake (Opteq) always have less structural weight 

(optimum structural weight) compared to the other structures. However, these optimum load patterns 

are specific to the particular design earthquake, and therefore, are not appropriate for general design 

purposes which rely on a design spectrum.   

To compare the adequacy of different design load patterns, Fig. 6 compares the ratio of required 

to optimum structural weight (based on Opteq) for structures with fundamental period of 0.5 and 1 sec 

and maximum ductility demands of 1 to 8. This figure is based on the average weights required for 

each of the 15 synthetic earthquakes representing soil type C. It is shown that in the elastic range of 

response (i.e. µt=1), the total structural weight for models designed based on IBC-2009 load 

distribution is on average around 8% above the optimum value. Therefore, it is confirmed that using 

conventional loading patterns leads to acceptable designs for elastic structures. However, the 

efficiency of the code load distribution deteriorates increasingly in the non-linear range of behaviour.  

In the low ductility range (i.e. µt<3), Hajirasouliha and Moghaddam (2009) load pattern leads to 

structures with less structural weight compared to IBC-2009 designed models. However, this load 
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pattern gets worse in the high ductility range as it can result in structural weights up to 80% more than 

the optimum values. This is attributed to the fact that Hajirasouliha and Moghaddam (2009) load 

pattern was mainly developed based on a limited number of seismic records rather than a group of 

design spectrum-compatible earthquakes.  

Structures designed with the average of optimum load distributions for a set of spectrum-

compatible earthquakes (Optave) always have less (up to 37%) structural weights compared to IBC 

designed structures. The results indicate that the average of the optimum load distributions can be 

used for seismic design of buildings in a wide range of target ductility demands (i.e. different 

performance targets). However, calculation of the average load patterns requires a lot of 

computational effort, and therefore, for practical design purposes it is necessary to develop a simple 

method to estimate the average of optimum load patterns for different structures and performance 

targets.  

The results of this study show that the general form of Equation (1) can be adopted to represent 

the average of optimum load patterns corresponding to different building code design spectra (Optave). 

For this purpose, the constant coefficients ai, bi, ci, and di in Equation (1) should be calculated based 

on the average of the results for a set of synthetic spectrum-compatible earthquakes representing a 

specific design spectrum. For example, Table 2 shows the constant coefficients corresponding to the 

design response spectrum of IBC-2009 soil type C. These coefficients can be obtained at each level 

of the structure by interpolating the values given in Table 2. Fig. 6 shows that structures designed with 

the modified coefficients (Table 2) always require less structural weight compared to similar structures 

designed with IBC-2009 and Hajirasouliha and Moghaddam (2009) load patterns. The results also 

indicate that structures designed with the proposed equation behave very similar to those designed 

with the average of optimum load patterns (Optave).  

Fig. 7 compares the new general load distributions (calculated by using Equation 1 and modified 

coefficients given in Table 2) and the corresponding load distributions obtained from nonlinear 

dynamic analysis. The results of the proposed equation compare very well with the analytical results, 

and the equation works well for different periods and ductility demands. 
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5.  Efficiency of the proposed design load pattern 

The adequacy of different design load patterns can be assessed by evaluating their correlation 

with the average of optimum load patterns corresponding to the typical building code design spectra. 

For this purpose, the following efficiency factor is defined in this study: 

       
n

EF

n

i

aveidesigni∑
=

−
= 1

2])()[( φφ
                                         (6)                                

where n is the number of stories, and (φi)design and (φi)ave are the scaled lateral load pattern at i
th
 

storey calculated based on the selected design load pattern and the average of optimum load 

patterns, respectively.  

Fig. 8 compares the EF factor for structures designed with IBC-2009, Hajirasouliha and 

Moghaddam (2009) load pattern, and the general load pattern proposed in this study. This figure 

shows the average of the results for ten 10-storey structures with fundamental periods between 0.1 to 

3 sec. It is shown that the general load pattern has better agreement with the average of the optimum 

load patterns compared to IBC-2009 and Hajirasouliha and Moghaddam (2009) load patterns. The 

efficiency of the proposed equation is further assessed by using a design example in the upcoming 

sections. 

  

6. Effect of site soil profile on optimum design load distribution 

To investigate the effect of site soil classification on the optimum seismic design load distribution, 

five sets of 15 synthetic earthquakes were considered as introduced in section 2. For each synthetic 

ground motion record, the optimum design load distribution was derived for the 200 shear-building 

models with different fundamental periods and target ductility demands. Using the suggested formula 

for optimum design load distributions, the constant coefficients ai, bi, ci, and di were determined for 

each group of synthetic earthquakes representing a site soil classification, and compared in Fig. 9. 
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The results indicate that the optimum load distributions for structures with similar fundamental period 

and maximum ductility demand sited on soil profiles type A, B, C and D are practically identical. 

However, the optimum load distributions for soft soil profiles (type E) are slightly different. Therefore, 

for practical applications, it is suggested to provide two sets of coefficients ai, bi, ci, and di  for hard 

rock to stiff soil profiles and for soft soil.  

 

7. Design load distribution for height-wise irregular structures 

To investigate the effect of height-wise irregularity on the design load distribution, six 10-storey 

shear-buildings with different mass distribution patterns were considered as shown in Fig. 10. Using 

the proposed optimisation algorithm, the buildings were designed to have a fundamental period of 1 

sec and uniform storey ductility of 4 when subjected to the Northridge earthquake of 1994 (CNP196). 

For each height-wise mass distribution, there is a specific load distribution that leads to a uniform 

storey ductility demand. Using the proposed optimisation method, the optimum seismic design load 

distribution for the irregular shear-building models (type A to F) were calculated as shown in Fig. 11 .  

To evaluate the efficiency of the proposed optimum design load distributions, the shear-building 

models shown in Fig. 10 were also designed with the IBC-2009 load distribution using the same 

structural weight as the optimum designed models. Storey ductility distribution of IBC-2009 and 

optimum designed models are compared in Fig. 12. The results indicate that, for the same structural 

weight, optimum designed models experience less maximum storey ductility (up to 55% less), and 

therefore, less structural damage during the design earthquake (Northridge earthquake of 1994). 

Lateral seismic design load in most of design guidelines is considered to be proportional to the 

storey weight (UBC-97, Eurocode 8, IBC-2009 and ASCE 7-05). In this study, a similar concept is 

used to normalize the optimum design load distribution of height-wise irregular structures. Fig. 13 

compares the optimum design load distributions of different height-wise irregular structures (shown in 

Fig. 10) after being normalized to the relative storey weight. Despite the big difference between 

height-wise mass distributions of the examined shear-building structures, the results indicate that the 

normalized optimum design loads are almost identical for buildings with similar fundamental period 
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and maximum ductility demand. The small difference between the normalized optimum design load 

distributions may be due to the effect of higher modes.  

By knowing the optimum load distribution for a height-wise regular structure, the optimum load 

distribution for an irregular structure with similar fundamental period and maximum ductility demand 

can be calculated by using the following equation: 
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(7)                            

where φi and φ'i are the ratio of optimum design force at i
th
 storey to the base shear (load 

distribution pattern) of regular and irregular structures, respectively; wi is the weight of the i
th
 storey; 

and n is the number of stories. To calculate the optimum load distribution for an irregular shear-

building, first the optimum load distribution for a regular building with similar fundamental period and 

maximum ductility demand should be calculated by using Equation (1) with appropriate coefficients for 

site soil classification (shown in Fig. 9). Subsequently, Equation (7) should be used to convert the 

optimum design load distribution for the equivalent irregular structure.     

 

8.  Verification using an irregular shear-building design example 

The efficiency of the general load pattern proposed in this study is demonstrated through the 

seismic design of an irregular five-storey shear-building shown in Fig. 14-a. The building is assumed 

to be located on a soil type B of IBC-2009 with fundamental period of 0.6 sec and maximum storey 

ductility demand of 6. The proposed design load pattern was calculated by using Equations (1) and (6) 

as explained in the previous section. Two shear buildings were designed based on the IBC-2009 and 

the proposed load pattern (shown in Fig. 14-b), and subjected to 15 synthetic earthquakes 

representing the IBC-2009 soil type B design spectrum. For each seismic excitation, the required 

structural weight (i.e. sum of storey shear strengths) was calculated to obtain target ductility demand 

of 6. The average and 95
th
 percentile (average plus 1.65 times the standard deviation) of the required 

storey shear strengths were 4570 kN and 6290 kN for the IBC-2009 structure, and 3660 kN and 4710 
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kN for the structure designed based on the proposed load pattern, respectively. Therefore, for the 

same maximum ductility demand, the shear-building designed by the proposed load pattern requires 

considerably less (up to 34% less) structural material.    

The average and envelope of maximum storey ductility demands for the IBC-2009 and the 

structure designed by the proposed load pattern are compared in Fig. 15. It is shown that by using the 

proposed load pattern, the seismic capacity of the designed structure was fully utilized as the 

maximum ductility demand of all stories reached the target ductility of 6 at least at one earthquake. 

The results indicate that, in general, the proposed load pattern leads to shear-buildings with a more 

uniform storey ductility demand.  

 

9.  Verification using concentrically braced frames 

The efficiency of the proposed load pattern is further examined for the seismic design of three 

concentrically braced steel frames of 5, 10 and 15 stories (shown in Fig. 16). The buildings were 

assumed to be located on a soil type C of IBC-2009 (and ASCE 7-05) category, with the design 

spectral response acceleration at short and 1-sec periods equal to 1.1g and 0.64g, respectively. 

Ordinary concentrically braced frames (OCBF) were designed to support gravity and lateral loads in 

accordance with the minimum requirements of ANSI/AISC 360-5 and ANSI/AISC 341-05. Simple 

beam to column connections were used such that no moment is transmitted from beams to supporting 

columns. In all models, the top storey was considered to be 25% lighter than the rest. IPB (wide flange 

I-section), IPE (medium flange I-section) and UNP (U-Channel) sections, according to DIN-1025, were 

chosen for columns, beams and bracings, respectively. To eliminate the effect of discrete section 

sizes, auxiliary sections were artificially developed by assuming a continuous variation of section 

properties based on DIN-1025. In the code based designed models, once the members were seized, 

the entire design was checked for the code drift limitations and refined to meet the code requirements 

when necessary. A beam-column element which allows for the formation of P-M hinges near its ends 

was employed to model the columns. The post-buckling behaviour of brace members was taken into 

account by utilizing the hysteretic model suggested by Jain et al. (1980). In this section, shear inter-
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storey drift is considered as the main performance parameter to assess the level of structural and non-

structural damage as suggested by Bertero et al. (1991) and Moghaddam et al. (2005).  

The 5, 10 and 15 storey concentrically braced frames were designed based on IBC-2009 and the 

proposed load patterns (Figures 17-a to 19-a) and subjected to 15 synthetic earthquakes representing 

the IBC-2009 soil type C design spectrum. The proposed design load pattern for each model was 

scaled to obtain the same structural weight as the IBC-2009 frames. The average and envelope of 

maximum shear inter-storey drifts for the IBC-2009 and the structures designed by the proposed load 

pattern are compared in Figures 17-b to 19-b. The results indicate that the efficiency of the proposed 

load pattern for seismic design of a concentrically braced frame is less than for shear-building models 

as the distribution of shear storey drift is not fully uniform. However, for the same structural weights, 

concentrically braced frames designed with the proposed load pattern always undergo lower shear 

inter-storey drifts (up to 20%) under design earthquakes, and therefore, exhibit an overall better 

seismic performance compared to IBC-2009 designed models. 

 

10.  Application of the proposed design load pattern 

In performance-based design methods, different multiple limit states (e.g. service event, rare 

event, very rare event) are usually considered. The optimum design for a specific limit state does not 

guarantee the optimum behaviour in other conditions. In this case, it is usually accepted to use the 

very rare event as the governing criterion for the initial design, and then check the design for other 

limit states.  

The results of this study indicate that the general loading pattern proposed in this paper is 

efficient for structural systems that exhibit shear-building like behaviour, such as buckling-restrained 

braced frames and moment resisting frames with high beam-to-column stiffness ratio. The efficiency 

of the proposed load pattern reduces slightly for conventional concentrically braced frames, since the 

seismic behaviour of the frames is significantly influenced by the slenderness of the brace elements 

(Karavasilis et al. 2007). However, the proposed load pattern can still improve the seismic 

performance of the designed frames, and should prove useful in the conceptual design phase.  
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Initial studies show that the proposed loading pattern cannot be directly applied to some 

structural systems such as structural walls, as they behave substantially different from shear-building 

type of structures. Further research is required to extend the proposed load pattern to different 

structural systems and different performance targets. 

 

11.  Conclusions 

A method based on the concept of uniform damage distribution is adopted for optimum seismic 

design of regular and irregular structures subjected to a design seismic excitation. It is shown that, for 

the same structural weight, structures designed with the optimum load distribution experience up to 

50% less maximum storey ductility and 40% less global damage compared to code-based designed 

structures. 

It is shown that optimum design load distribution, storey ductility demand and global damage 

index for buildings optimised for minimum storey ductility and minimum cumulative damage are 

relatively similar. 

For a set of synthetic earthquakes representing a typical building code design spectrum, optimum 

seismic design load distributions were determined. It is shown that structures designed with the 

average of optimum load distributions have up to 37% less structural weight compared to similar 

conventionally designed structures. 

The results indicate that the optimum load distributions for structures with similar fundamental 

period and maximum ductility demand sited on IBC-2009 soil profiles type A, B, C and D (hard rock to 

stiff soil) are nearly identical. However, the optimum load distributions for soft soil profiles (type E) are 

slightly different.   

Based on the results of this study, a general load distribution is introduced for seismic design of 

height-wise regular and irregular structures that is a function of soil type, fundamental period of the 

structure and maximum ductility demand. It is shown that using the proposed loading pattern leads to 

a more efficient use of structural materials, and therefore, better seismic performance for shear-
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building like structures and concentrically braced frames. Further work is required to extend the 

proposed design load pattern to other types of structural systems and performance targets. 
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Table 1- Site soil classifications according to IBC-2009 

Site class Soil profile name Soil shear wave velocity 

A Hard rock > 1500 m/s 

B Rock 760 to 1500 m/s 

C Very dense soil and soft rock 370 to 760 m/s 

D Stiff soil profile 180 to 370 m/s 

E Soft soil profile < 180 m/s 

 

 

Table 2- Modified coefficients for Equation (1) as a function of relative height (site class C) 

Relative 
Height 

a b c d 

0 6.14 20.15 6.89 62.35 

0.1 3.17 32.81 6.40 45.75 

0.2 0.24 45.50 5.91 29.19 

0.3 -1.92 58.78 5.03 16.09 

0.4 -2.86 71.75 2.63 7.89 

0.5 -4.33 87.18 0.85 0.90 

0.6 -5.71 104.33 -0.33 -5.23 

0.7 -5.79 122.37 -1.76 -8.52 

0.8 -2.95 141.16 -3.20 -10.23 

0.9 4.79 160.50 -4.70 -10.46 

1 21.96 184.07 -6.84 -8.61 
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Fig. 1- Typical shear-building model 
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Fig. 2- Comparison between IBC-2009 design spectrum and average response spectra of 15 

synthetic earthquakes 
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Fig. 3- Variation of maximum storey ductility and COV of storey ductility demands from IBC-2009 to 

optimum model 
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Fig. 4- (a) Storey ductility, and (b) lateral force distribution of IBC-2009 model and optimum models 

designed for minimum storey ductility and cumulative damage 
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Fig. 5- Global damage index for IBC-2009 model and optimum models designed for minimum storey 

ductility and cumulative damage 
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Fig. 6- The ratio of required to optimum structural weight for structures designed with IBC-2009, 

Hajirasouliha and Moghaddam (2009), average of optimum load patterns (Optave), and the general 

load pattern proposed in this study, average of 15 synthetic earthquakes (soil type C) 
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Fig. 7- Correlation between the proposed equation and analytical results 
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Fig. 8- Efficiency Factor (EF) for structures designed with IBC-2009, Hajirasouliha and Moghaddam 

(2009), and the general load pattern proposed in this study 
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Fig. 9- Constant coefficients ai, bi, ci, and di (Equation 1) for different site soil classifications 
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Fig. 10- Shear-building models with different height-wise mass distribution  
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Fig. 11- Optimum seismic design load distribution for shear-buildings with different height-wise mass 

distribution  
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Fig. 12- Storey ductility distribution of IBC-2009 and optimum designed buildings having different 

height-wise mass distribution 
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Fig. 13- Normalized optimum seismic design load distribution for shear-buildings with different height-

wise mass distributions  

 

 

 

 

 

 

Fig. 14- (a) Storey weight, and (b) Comparison between IBC-2009 and the proposed load pattern 
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Fig. 15- Maximum and average of storey ductility demands for 15 synthetic earthquakes representing 

IBC-2009 design spectrum  
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Fig. 16- Typical geometry of concentrically braced frames 

 

 

 

 

 

Fig. 17- (a) IBC-2009 and optimum seismic design load distribution, and (b) Maximum and average of 

shear storey drifts for the 5-storey concentrically braced frame 

 

 

 

 

 

Fig. 18- (a) IBC-2009 and optimum seismic design load distribution, and (b) Maximum and average of 

shear storey drifts for the 10-storey concentrically braced frame 
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Fig. 19- (a) IBC-2009 and optimum seismic design load distribution, and (b) Maximum and average of 

shear storey drifts for the 15-storey concentrically braced frame 
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