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Abstract: A novel modelling framework is proposed for constructing parsimonious and flexible radial
basis function network (RBF) models. Unlike a conventional standard Gaussian kernel based RBEF
network, where all the basis functions have the same scale (kernel width), or each basis function has a
single individual scale, the new network construction approach adopts multiscale kernels (with multiple
kernel widths for each selected centre) as the basis functions to provide more flexible representations with
better generalization properties for general nonlinear dynamical systems. A standard orthogonal least
squares (OLS) algorithm is then applied to select significant model terms (basis functions) to obtain
parsimonious models.

Keywords: dynamical modelling, model term selection, neural network, nonlinear system identification,

orthogonal least squares, radial basis function, regression

1. Introduction

Radial basis function (RBF) networks, as a special class of single hidden-layer feedforward neural networks,
have been proved to be universal approximators [1-3]. One advantage of RBF networks compared with multi-
layer perceptrons (MLP) is that the linearly weighted structure of RBF networks, where parameters in the units
of the hidden layer can often be pre-fixed, can be easily trained with a fast speed without involving nonlinear
optimization. Another advantage of RBF networks, compared with other basis function networks, is that each
basis function in the hidden units is 2 nonlinear mapping which maps a multiyariable input to a scalar value, and
thus the total number of candidate basis functions involved in a RBF network model is not very large and does
not increase when the number of input variables increases. With these attractive properties, RBF networks are an
important and popular network model for function approximation [4, 5], classification and pattern recognition
[6-10], dynamical modelling and control [11-15].

The training of RBF networks involves the optimization of three parameters: kernel centres, kernel widths
and the connecting weights between these kernels (neurons). These parameters can be determined by performing
either separate or combined procedures [10, 16]. While several efficient algorithms have been introduced to
determine kernel centres [10, 16-20], few algorithms are available to determine kernel widths [21]. The kernel
widths are thus often determined on the basis of some heuristics [17, 22]. Recently, Benoudjit and Verleysen [21]
investigated the kernel width selection problem and proposed a one-dimensional search algorithm as a
compromise between an exhaustive search on all basis function widths and a non-optimal a priori choice. Wang
et al. [23] studied the problem of constructing generalized Gaussian kernel models for nonlinear dynamical
modelling and proposed a repeatedly guided random search algorithm for calculating the individual diagonal

covariance matrices based on boosting optimization.
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- The present study mainly concerns the construction and training of a novel class of RBF networks for
nonlinear dynamical system modelling and identification. Unlike a conventional RBF, where all the basis
functions have a common single scale (kernel width), or each basis function has a single individual scale, the
new RBF network uses a set of multiscale basis functions, where each basis function has multiple scale
parameters( kernel widths). The new network will be referred to as the multiscale RBF network. The positions
(centres) of the basis functions can often be pre-clustered or pre-selected using some unsupervised clustering
algorithms [10, 16-20], and for each selected centre, the associated multiple widths can often be restricted to a
fixed grid, thus multiscale RBF networks can be easily converted into a linear-in-the-parameters model form.

The standard orthogonal least squares algorithms [12, 24-26] can then be used to train a multiscale RBF network.

2. The Nonlinear Dynamical Modelling Problem
Consider the identification problem for nonlinear systems given N pairs of input-output observations,
{u(1), y(t)}fi] . Under some mild conditions a discrete-time nonlinear system can be described by the following

NARMAX model [27]

y(t) :f(y(t—l),--‘,y(t—ny),u(r—1),---,u(t—nu),e(t—l),---,e(t-ne))+e(t) (1)

whereu(?) , y(¢) and e(t) are the system input, output and noise variables, 7, , n , and n, are the maximum
lags in input, output and noise, respectively, and f is some vector-valued and in general unknown nonlinear
mapping. In practice it is usually assumed that e(t) is an independent noise sequence. Model (1) relates the
inputs and outputs and takes into account the combined effects of measurement noise, modelling errors and
unmeasured disturbances represented by the noise variable e(t) .One of the reasons that the moving average

terms are included in the NARMAX model (1) is to ensure unbiased estimation.
In practice, the unknown nonlinear function f in model (1) often consists of two parts: the deterministic

(noise independent) and the stochastic (noise correlated) submodels shown as below

.

YO = f, 8Tl Ty 4 f Tt ity o) #)

where the vector ' is defined as z!™"") = [z(t ~1),---,2(t —=n)]" . Note that each term of the submodel Fsie

is dependent on at least one of the noise signalse(t —1),e(t - 2),---,e(t - n,) . For a linear-in-the-parameters

basis function network, model (2) can be expressed as

y(O=®,(5)0, +o ()0 e T€(2) 3)

yue

are unknown parameter vectors.

where @ (¢) and D, () are regression matrices, and G')yu and ©

The central objective for any identification problem is to find approximators fyu and f),ue for the unknown

functions and in (2) so that and can be used for system analysis, prediction and control. In
yu yue »u yue ¥ p
practice, several types of basis functions including radial basis functions have been employed to construct the

approximator |’ yu - In the present study, however, a new multiscale RBF network model with Gaussian kernels




will be used to construct the approximator ]‘yu , and power-form polynomial models will be used to construct the

noise related approximator f,, -

3. Multiscale RBF Networks

Prior to presenting the new multiscale RBF networks, conventional RBF networks are briefly reviewed and the

drawbacks associated with conventional RBF networks for dynamical modelling are discussed.

3.1 Conventional RBF networks

Let d:ny+m‘mdxﬁ)zhﬂﬂgnxﬂﬂfWMa

' y(t - k) 1<k<n,
x,(t)= 4

u(t-(k-n,)) n, +1<k<n,+n,

A traditionally adopted RBF network with Gaussian kernels for approximating the nonlinear function f w0

maodel (2) is given below

M
Fu(x0) = Y00, (x(1):85,¢; 5)

i=l

where @; .RY 1> R is the standard Gaussian kernel
0, (x(1);6,,¢;) = exp[— %(K(r) —¢,) A (x(0) - c,.)} (6)

where ©, =[O.i.l!“':o-i,d]T are the scale (or dilation) parameters to determine the kernel widths,

c, ={c‘.,1,---,|:'jld]]r are the location (or translation) parameters to determine the kernel positions (centres),
and A, :diag[afl,'--,o’ﬁd] are referred to as the covariance matrices. The network model (5) can then be
written as

M 1 Tl
~ ——(x(1)-¢)" AT (x(1)-¢;
Fax@)=> e

i=l

(N

In practice, the location (or translation) parameters C; can often be pre-selected, for example all given

observational data points can be considered as candidate kernel centres providing that the observational data sct

is not very long, or alternatively a set of clustered points can be chosen as the candidate kernel centres if the
observational data set is long. As for the determination of the scale (or dilation) parameters o, , two cases are
often considered [21]:

i) All the diagonal covariance matrices are set to the identical diagonal form, A= diag[c&'2 3 wot].

ii) A general casc wherc A = diag{o‘f,,---,o'jzld 1.

A‘_‘_L




Case 1) is in the class of the most commonly used Gaussian kernel based RBF networks. Although it has been
proved that the simple cases i) can often provide a universal approximation [3], these may not be a good choice
for nonlinear dynamicai modelling. This can be explained by observing the operating range features of the
elements in the input vector X(¢) =[x, (¢),:-+,x, (O] with x, () defined by (4). An implicit assumption on the
input vector is that all the elements should play an equal role in constructing the network. This assumption is
reasonable for black-box modelling, where no prior knowledge is known about which elements in the input

vector X(¢) are more significant and which elements are insignificant compared with others. Assume that the
system input u(#) and the output y(¢) are bounded in [u,u] and [y, ¥], respectively, and let r, =# ~u and

r,=y- Y . Consider two commonly encountered cases: (a) 7, >>7, and (b)7, <<r,. Expanding the function

@, in (6) as
. , ,
=1~ 1= “Lin
0,(x();6,,¢,) = exp _l [J’(f ) C,,,J +(J’( ny) C,y] —
2 a; o;
+{M—‘Jz++[wjz (8)
& o,

For case (a), the roles of the lagged output variables y(z ~ p) may be exaggerated or the roles of the lagged input
variables #(f — g) may be downplayed (especially for large o; ). Similarly, for case (b), the roles of the lagged
input variables #(¢ ~g) may be exaggerated or the roles of the lagged output variables y(t — p) may be

downplayed. To overcome this dilemma, a reasonable solution is to set different scale parameters for the input

and output related elements in the basis function (8).

A good choice for the scale parameters o, to balance the roles of the lagged output and input variables is to
use the generalized RBF network, where the scale parameters o, are determined adaptively. But the

determination of the scale parameters o, in an adaptive way usually involves global optimization procedures,

which are much complex when the number of candidate model terms is large in the network. Motivated by the
observations above, the present study proposes a new class of Gaussian kernel based RNF networks, which
provide a trade-off between cases i) and ii), and which can easily be trained using standard linear learning

algorithms for instance the well known OLS algorithms [12, 24-26].

3.2 Multiscale RBF networks

Inspired by the successful applications of multiresoution wavelet decompositions [28, 29], which have excellent
local properties both in the time and the frequency domain, and which provide a remarkable tool for data
processing in a hierarchical multiscale way, a multiscale modelling framework will be introduced into RBF
networks, where a set of scale parameters (kernel widths) will be assigned to each selected kemnel centre.

A multiscale RBF network possesses the following structure




g N

fyu (X(t)) = zzzai,j.mqpi,j,m (X(t);cf:r'j) ’cm) (9)

=0 j=0 m=1

where the basis functions ¢, (x(¢);0, ¢, ) are defined as

A
T . x,()-c,
@i (X107 €,) =exp "Z[L—(TLJ (10)

k=1 O ik

Note that the factor -1/2 which appears in (6)-(8) is accommodated into O'g:i:} in (10). In practice, all given

observations can be considered as candidate kernel centres ¢,, providing that the observational data set is not

very long. For a long data set, both self-organized and supervised learning approaches [16, 17, 20] including the
well-known k-means clustering algorithm [30] can be used to locate the centres of the basis functions in only

those regimens of the input space where significant data are presented. The determination of the kemnel

widthsaf,';’j) is discussed below.

For given N pairs of input-output observations, {u(t), y(OIL,, let x(£) = [x,(£)s++, %, ()]" be defined as in
4). Let o, = flmax{y()} -min{y(£)}] and o, = Blmax{u(t)} —min{u(r)}] , where f is a positive
t t I3 &

constant which can typically be set to between 1 and 10. In the multiscale RBF networks, the diagonal

covariance matrices are chosen as below:

f) s () 42 &) 2 () 2 () 2
A,;J "dzag[(o-yj,m,l) ’lI'ﬂ(G-yl,m,ny) ’(O-uj'M,l ’“-’(O-u‘,,m,nu) ] (11)
wherea‘i';)mp =a“‘cry,cri{;‘q =0:r".0‘u, a >1 is a constant, and =0, ..., L, /=0, 1, ..., J; m=12, ... M ;

p=12, ..., n,and g=1.2, ..., m,. A typical choice for the constant&is set@ = 2. The basis functiens @, ; ,,

defined by (10) thus reduces to

.'1}’ ] 1 g ~ 2
g I o MZ{U;T] 5 [Jf)_] )

()
k=1 y k=n,+1 g,

where o\ =@~ 0 and e =aa,. LetDy={g; ;1600 e, )i =0, 05 j =0, Jym =14, N}
The triple indexed set D, is referred to as the dictionary associated with the new multiscale networks. For
convenience of description, rearrange the elements of D, so that the double index (i, /,m) can be indicated by
a single index m=1,2,..., M , where M =(/+I1}(J+1)N, , to form a single indexed dictionary
D, ={¢,(): @, €Dy,m=1-,M}. This study will not distinguish the two type of dictionaries D, and D5,
instead, a uniform symbol D will be used to indicate both of them. The network (9) can then be expressed as

I M
Fra(x(0) = 0,8,(x(2) (13)

m=l




4. Model Structure Detection
Model structure detection, or mode] subset selection, is a key step in any identification procedure and consists of
detecting and selecting significant model terms from a redundant candidate model term set to determine a

parsimonious final model. As will be seen in the examples later, the multiscale RBF network (13) may involve a
great number of candidate model terms (basis functions) when the parameters [, J, and N, are large. Many of

these candidate model terms, however, may be redundant and only a subset of these model terms is significant.
Including redundant model terms might lead to a large number of free parameters in the model, and as a
consequence the model may become oversensitive to the training data and is likely to exhibit poor generalisation
properties. Therefore, it is important to determine which terms should be included in the model. In the present
study, the OLS algorithm [12, 24-26] will be used to solve the model structure detection problem for the

multiscale RBF network models.
Lety :[y(l),---,y(N)]T be a vector of measured outputs at N time instants, and a,, =[g,,(1),-+-,4, (M)

be a vector associated with the mth candidate model term, where ¢, € D for m=1,2, ..., M, and D is a dictionary
produced by lagged outputs, inputs and the noise terms involved. From the viewpoint of practical modelling and

identification, the finite dimensional set S = {a,,---,@,,} is often redundant. The model term selection problem
is equivalent to finding a full dimensional subset S, ={f,---,5,} ={a;,,-,&; } =S, where §, = a, .

i, €{1,2,--,M} and m=1,2, ..., n, so that y can be satisfactorily approximated using a linear combination of

B, B, as below

y=6p5++8.0 +e (14)
or in a compact matrix form

y=PO+e (15)

where the matrix P =[/f,,---, 8.] is of full column rank, 8 = [91,---,6"”]T is a parameter vector, ande is an

approximation error. From matrix theory, the full rank matrix P can be orthogonally decomposed as
P=0R (16)

where R is an 71X unit upper triangular matrix and Q is an Ax 7 matrix with orthogonal columns

qy,45, "4, - Substituting (16) into (15), yields
y=(PR)RO)+e=Qg +e (17)

where g =[g,,~,g,]" =R isan auxiliary parameter vector. Using the orthogonal property of (J, g, can be

directly calculated from y and Q as g, :(qu,.)/(ql.qu) for i=1,2, ..., n. The unknown parameter vector
@ can then be casily calculated from g and R by substitution using the special structure of R . Several

orthogonal transforms including Gram-Schmidt, modified Gram-Schmidt and Householder transformations can

be applied to implement the orthogonal decomposition [12, 24-26].




Assume that the errore in model (17) is uncorrelated with vectors ﬂj for /=1,2, ..., n, the total sum of
squares of the output from the origin can then be expressed as
n
T 2T T
y'y=)g'q/q +e'e (18)
i=l

Note that the total sum of squares yTy consists of two parts, the desired output Zn . gf q‘.T g; , which can be
ied

explained by the selected regressors (model terms), and the part ee , which represents the residual sum of
squares. Thus, gl-?'g,-Tq,» is the increment to the desired total sum of squares of the output brought by ¢, . The ith

error reduction ratio (ERR) introduced by g, (or equally by including £, ), is defined as

(yT‘L‘)Z
v'y)a/q)

g

T,
BRR(i] = £-49) , 100v, = x100%, =12, ..., n, (19)
¥y

This ratio provides a simple but an effective index to indicate the significance of adding the ith term into the

model.

The orthogonalization procedure for model term selection is usually implemented in a stepwise way, one

term at a time. The sum of error reduction ratio (SERR) and the error-to-signal ratio (ESR) at step j due

to gy, ,q; (or equally due to fBy,-++, ;) are defined as

J
SERR[j]= Y ERR[i] (20)
i=l
T Jo, i T el
ESR[j]=——=1- £89 _| S ERR[i] =1-SERR[/] @1
¥y =t Y'Y i=1

The selection procedure will be terminated when ESR of an identified model satisfies some specified conditions.
In the present study, the following modified version of the generalized crossevalidation (GCV) is considered as

the criterion for model size determination

2

Fijl= (1 # —R,—) ESR[/] (22)

where 4 = max {l, @V} and 0.002 < p <0.01. The selection procedure will be terminated at the step where

the index function F(j) is minimized.

5. A Three-Stage Modelling Procedure

As mentioned in Section 2, a typical NARMAX model often consists of two parts: the deterministic (noise
independent) and the stochastic (noise correlated) submodels as shown by (2) and (3). In the present study, a
three-stage modelling approach is proposed to construct multiscale RBF based NARMX models. The main idea

of the three-stage modelling scheme is as follows:

e Initially, construct a multiscale based NARX model.




e The effects of correlated noise and unmeasured disturbances must be accommodated using in the model

residuals (errors) from the identified NARX model. Viewing the modelling error &(¢) as the output and
treating the lagged system outputs y(t —1) and inputs #(# — j), coupled with the lagged error &(f — k), as the

inputs, fit a polynomial model for the error £(¢) .

e Combine the identified error model with the network NARX model, and re-estimate all the model parameters

recursively. An unbiased model should then be obtained.

Stage 1. Implementation of the NARX model using Multiscale RBF networks

For a given identification problem, the objective is to build a multiscale network to identify the unknown

nonlinear mapping [, in (2). Assuming that N input-output data points, {u(r)}il and {y(r)},"; have been
observed, let x(¢) = [x,(£),++,x, (1)]" with x4 () being defined by (4). The nonlinear function £, (x(#)) can be

approximated using a multiscale network model (13). Assume that a total of m , significant basis functions are

U

selected so that the nonlinear function £, (x(?)) = f,,, (y[rgl'"’ ],u['_l'""]) can then be approximated by

T @)= "6, 4, (x(t) (23)
m=1

Stage 2. Noise modelling

In many cases the noise terms in the NARMAX model (3) will form a correlated or coloured noise sequence.
This is likely to be the case for most real data sets. In this case the approximation (23) is likely to fail to give a
sufficient description due to the bias in the parameter estimates. The effects of correlated noise and unmeasured
disturbances must then be characterized by modelling the residuals associated with the identified NARX model.

The NARX modelling error is defined as
£(t) = y(6) - £, (x(1)) , (24)

The residual signal £(¢) can be related to the input #(f) and the out y(¢) by a nonlinear model. In the present

study, the following polynomial model of degree £ is applied to model the residual sequence as below

E(f) - fyue (y[f-l.n,],u[r—l.n"],g[rft.n,])

d d d
= nyi‘xg', (f) +ZZT'}":I‘] (t)xr,_ (f)) fnels
i=l

=1 iy=i,
d o
Y Y Vi X (D%, () x, (O + £, (1) (25)

=l ig=ig_y
This form of model is used because if the system is nonlinear it is also highly likely that the noise will involve

nonlinear cross product terms with both system input and the output. Assume that a total of m,,.significant




basis functions are selected for the noise model, the nonlinear * function S e (X(2))

= fyye (JJ[H’"’] el E[H’"’I) in (3) can then be approximated by

My

e &) =Y 74, pi, (X)) | (26)
m=1

where p, (-) are selected model terms of the form zi ()2} (t) , where zj," (B)€ 1)y P8, )
u(t=1),-, u(t—mn,), e(t=1),--, e(t-n,)} for j=1, ..., £, with 07, <{ and 0<i; +---+i, £ . Note
that at least one zj? (t) is related to £(t — k) for k =1,2,---,n,. The elements of the extended regression vector
X(¢) is defined as

y(t—k) 1<k<n,

X, () =u(t—(k-n,)) n,+1<k<n, +n, @27

e(t—(k—n,-n)) n,+n, +1<k<n,+n, +n,

Stage 3. Parameter re-estimation
In order to obtain an unbiased network model, the identified model )A‘yu and fwe should be combined as a
whole and the model parameters should then be re-calculated. Let ¢, (¢),- --,¢mw (#) be them,, selected model

terms in (23) with ¢, (1) =4, (x(¢)), and letd (1) = [pﬁl(t),"-,g#mw (0] and @, () =[P (1) P, )].

An unbiased model can often be obtained by re-estimating the model parameters in a recursive way as described

below.

(a) Calculate the model parameter estimate [éyu ,ém ]T of the model

y(0) =D, (18, +®,,. (D6, (28)
Let
£,(t) = y(O) = HE @) = 1) ~[@,, (0, + D, ()0,,,.] (29)

(b) If “E‘.l " / HE” =1, stop the parameter re-estimation procedure; otherwise, go to (c).
N N
(c) Set {e(£)},o, = {&,(£)}},<, , repeat (a).

Note that the residual signal defined by (24) and (29) is in fact the one-step-ahead prediction error, which is

different from the often used model prediction error defined as
E(t) = Y(8) = Piypo (1) (30)

where 3, (¢) is recursively calculated from an identified estimator f,, from some given initial values in the

sense that




PO = Fou Qo =10, Do (£ =1, )it = 1), u(t =) (€39)

A key step following the above three-stage modelling is model validation. A commonly used approach to
check the validity of the identified model is to use higher order statistical correlation analysis [31]. An

alternative for model validity tests is to check both the short and the long term predictive ability of the model.

6. Applications in Nonlinear Dynamical Modelling

Three examples, which are all related to real data sets, are described to illustrate the applicability and
effectiveness of the new multiscale RBF network for the identification of nonlinear dynamical systems. In all the
three examples, significant model terms were selected and the model size was determined using the orthogonal
least squares algorithm given in Section 4. The performance of the identified networks will be measured by both

the mean-squared-errors (MSE) and the normalized root-mean-squared-errors (NRMSE) defined as below:

1 NIE‘.H ~
MSE =—— “[(t)-$(1)])° (32)
NA‘ESP -
fMSE
NRMSE =, |—— (33)
SST
where NV, is the length of a test data set, y(¢) and j(¢) are the measurements and associated predictions,

respectively, over the test data set, and SST = (1/ N, )Z::‘:" [y()-y) with 5 = (1/ N, )ZZ’:‘" y(t).

6.1 Example 1—a thermoplastic auxetic foam

An experimental data set relating to the testing and nonlinear design of a polyurethane foam has been obtained.
This data set contained 1000 input-output data points and was used in this example to identify a mathematical
model for this foam. The 1000 observations are shown in Fig.1, where the input, u(#), indicates the displacement
(unit: mm) of the servo hydraulic actuator of a machine, and the output, y(¢), indicates the force (unit: AN) due to
the foam response. The 1000 input-output data points were split in two parts! the first 500 input-output points
were used for model estimation, and the remaining points were used for model testing.

To construct a multiscale RBF network model on the basis of the estimation data set, the input vector for the
network was chosen as x(z) =[u(t),u(t —1),u(t —2),u(t —3)]T . To save time for training the network, the 500
points in the estimation data set were classified into 100 groups using the k-means clustering algorithm. These
clustered points, symbolized by c(m)=[c,(m),c,(m),c;(m), ¢, (m)]” for m=1,2, ..., 100, were used as the

candidate kernel centres. The multiscale parameters O';J; 3( in the network (9) were chosen as follows:

D) 0y, ={max(u(t)) - min(u(¢))} % ~5.0.

”) O—u = 50—0,14 :

i) ol =3, wherem=l,d; ..., 100:8=1,23400,1,....6

10




TABLE 1
THE SELECTED CENTERS AND WIDTHS, ESTIMATED PARAMETERS AND THE ESR VALUES IN THE MULTISCALE RBF
NETWORK MODEL FOR THE FoAM DATA SET IN EXAMPLE |

Step iy € i3 €4 g, 9}. ESR[/]
1 -6.9515 -6.9345 6.1589 -5.5324 1.5625 176.1613 0.2569
2 -6.3540 -4.5590 -4.0830 -3.9000 1.5625 -81.7875 0.2202
3 -7.3586 6.9763 -6.6937 6.4911 1.5625 477.3835 0.1746
4 -6.6366 -6.9672 -6.8309 -6.1688 1.5625 -14.0225 0.1016
5 -6.9284 6.1570 -5.5160 -5.4496 1.5625 266.1140 0.0603
6 -5.3587 -5.7007 -5.0783 -4.4187 1.5625 50.2678 0.0522
7 -7.0130 -7.1230 -6.3540 -4,5590 3.1250 -215.3419 0.0391
] -6.8717 -7.0758 -6.7815 -6.8248 1.5625 243.7460 0.0318
9 -5.4429 -5.8990 -5.6366 -5.9418 1.5625 125.3605 0.0202
10 6.8116 -6.5477 -6.6869 -6.9347 1.5625 -81.3019 0.0148
1 -5.4473 -5.5985 5.3282 -5.1270 1.5625 -115.6347 0.0125
12 -5.1766 -5.4931 -6.4767 -5.9013 3.1250 58.1285 0.0114
13 -6.4967 -6.3046 -5.6053 -5.1156 1.5625 163.4745 0.0108
14 -6.8020 71775 -7.0770 -7.9285 1.5625 60.7656 0.0098
15 -5.4837 -4.8660 -5.3282 -5.1590 1.5625 -26.9015 0.0094
16 -6.9158 73115 -7.1299 -6.5904 1.5625 327.4159 0.0090
17 -6.8101 -6.8680 -7.2617 -7.0924 1.5625 -200.8561 0.0084
18 -5.1088 -5.0690 -5.5297 -6.5767 1.5625 -57.2841 0.0079
19 -5.9052 -6.5587 -6.7583 -6.4984 1.5625 -63.3750 0.0075

20 -5.7650 -6.5678 -6.1002 -5.7891 1.5625 -87.3694 0.0071
21 -5.7310 -5.0598 4.4220 -4.6662 1.5625 49.6644 0.0068
22 -7.3586 -6.9763 -6.6937 -6.4911 6.2500 -199.2928 0.0066
23 -6.0068 -6.4545 -7.0995 -7.1941 1.5625 319.4106 0.0062
24 -6.0565 -6.6102 -6.7566 -7.0200 1.5625 -333.0986 0.0058
25 -5.3976 -6.2704 -5.8128 -5.5299 3.1250 253.5972 0.0056
26 -6.6125 -6.6334 -6.2769 -6.5832 1.5625 237.6314 0.0055

Although a total of 700 candidate model terms were involved in the initial multiscale network model, only 26
significant model terms were selected using the orthogonal least squares algorithm. To eliminate the bias on the

estimated parameters, the three-stage modelling approach was performed by setting an extended input vector as
() =[u(t), - u(t=3), &t-1),,&(—5)]", and choosing a full noise model as (25) with a nonlinear

degree £ =2. The finally identified multiscale RBF network model contained 25 process model terms and 9 noise
related model terms. The kemnel centres and widths, estimated model parameters and the ESR values defined by
(21) are shown in Table 1, where the noise related model terms have been omitted. The MSE and NRMSE
values with respect to model predicted outputs produced by the identified model over the estimation data set
were 32.2881 and 0.1129, respectively, and the values were 33.8371 and 0.1136, respectively, over the test data
set (points from 501 to 1000). The model predicted outputs and prediction errors are shown in Fig. 2.

Simulation studies showed that a standard Gaussian RBF network with a common single kernel width could
also be fitted to the foam data set, but as expected more model terms were required in the final identified
standard network model to achieve the same approximation accuracy as that produced by the new multiscale

network model.
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Fig‘ 2 The model predicted output and prediction error for the thermoplastic auxetic foam described in Example 1. The solid line in (a)
indicates the measurements, and the dashed line indicates the model predicted outputs.
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6.2 Example 2—a gas furnace system

Figure 3 shows 296 input-output data points to indicate the variation of the input gas feed rate and corresponding
output CO, concentration measured as the percentage of the outlet gas from a gas furnace [32]. Previous results

have shown that it was difficult for existing state-of-art regression techniques to train a standard Gaussian kernel
based RBF network for this data set using a single common kernel width [23, 33]. In the following, however, it
was shown that this data set can be well described using a multiscale RBF network.

All the 296 input-output data points were used for network training and the input vector was chosen as
x(£) =[p(e 1), p(t =2),u(t =1),--,u(t—=4)]" , where u and y indicate the system input and output,
respectively. The 296 points were classified into 50 groups using the k-means clustering algorithm. These
clustered points, symbolized by e(m) =[c,(m),-,c,(m)]" for m=1,2, ..., 50, were used as the candidate kernel
centres. The basis functions in the multiscale network model were of the form (12), and the scale

O]

i and O‘L(‘j; + were chosen as follows:

parameters o
i) oy, ={max(y(t)) - min(y(1))} 2y ~14.90, and o, = {max(u(t)) - min(u(1)} 2 ~5.55.

i) o, =40, ,,ando, =40,

i) o$) =270, andcll), =27 o, withm=1, ..., 50; i=0,..., 4;/=0,1,..., 5; k=1,....6.
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Fig. 3 The input (a) and output (b) signals for the gas furnace system described in Example 2.
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TABLE 2
THE SELECTED CENTERS AND WIDTHS, ESTIMATED PARAMETERS AND THE ESR VALUES IN THE MULTISCALE RBF NETWORK
MODEL FOR THE GAS FURNACE DATA SET IN EXAMPLE 2

SE gy Cia Ci3 Cia Cjs ¢s o ol o, ESR{{ 1
J x10
| 581556 57.0000 -1.6936 -2.0033 21969 -2.2186 596 222 01953  7.5522
2 500286 497143 09813 -0.5891 -0.0743 04024 149 555  -55682 14321
3 536308 539231 03075 02727  0.1496 00266 596 2775 29811 09386
4 516000 508000 -1.5203 -12613 08615 03533 745 555  7.0282  0.8339
5 546000 552750 0.6238 0.6906 07045 05946  7.45 222 687932  0.7289
6 546900 541400 -17681 -17000 -14630 -1.0162 745 222 273027  0.6923
7 593375 59.3875 07873 -1.0107 -13084 -1.6531 208 222 477286 05927
8 473333 475333 0.1637 0.4823 12050 1.8153 745 2775 23036  0.5595
9 59.3375 59.3875 07873 -1.0107 -1.3084 -1.6531 745 2775  0.5695  0.4600

10 55.1214  54.9857  0.1898 -0.0194 -0.2816 -0.5118 7.45 11.1 54.6500 0.3995
11 53.9778 52.9667 -1.1330  -1.3351  -1.2371  -0.9826 7.45 3.55 -16.3038 0.3261
12 52.8500  52.1875  -1.2479  -1.1481  -0.9204  -0.5880 14.9 11.1 -9.5552 0.2885
13 54,6900 54.1400 -1.7681 -1.7000 -1.4630 -1.0162 7.45 2.775 3.7231 0.2604
14 54.6900 54.1400 -1.7681 -1.7000  -1.4630  -1.0162 59.6 2.715 -2.6528 0.2493
15 55.9800 56.3333  0.1495  0.0626 -0.0877  -0.3893 14.9 555 -19.2078 0.2413
16 51.4200 50.8800 -0.4012 -0.4754 -04016 -0.0212  59.6 11.1 34.2387 0.2346
17 52.8500 52.1875 -1.2479  -1.1481  -0.9204 0.5880  7.45 2.775 1.6988 0.2258

Although a total of 1500 candidate model terms were involved in the initial multiscale network model, only
17 significant model terms were selected using the orthogonal least squares algorithm. To eliminate the bias on

model estimation, the three-stage modelling approach was performed by setting an extended input vector as
() = [y 1), y(t — 2),u(t =1),--,u(t —4), &(t =1),-+-,£(t =10)]" , and choosing a full noise model as (25)

with a nonlinear degree £ =1. This was equivalent to setting a linear noise model. The kernel centres and widths,
estimated model parameters and the ESR values defined by (21) are shown in Table 2, where the noise related
model terms have been omitted. The MSE and NRMSE values for one-step-ahead predictions were 0.0588 and
0.0759, respectively, and the two values for model predicted outputs were 0.7078 and 0.2632, respectively. The
one-step-ahead prediction and the model residual are shown in Fig. 4, and the model predicted output and the
prediction error are shown in Fig. 5. The result produced by the identified multiscale network model was nearly
equivalent to that in [23], where a weighted boosting optimization algorithm was used to train a generalized
Gaussian kernel model, and where the MSE value for one-step-ahead predictions was 0.054 but the MSE value

for model predicted output was not given.

6.3 Example 3—a terrestrial magnetosphere dynamical system

The Dst index is used to measure the disturbance of the geomagnetic field during geomagnetic storms. The
forecasting of the Dst index is very important in helping to prevent the negative effects of geomagnetic storms.
Fig. 6 shows 800 data points of measurements of the solar wind parameter ¥B; (input, measured unit: mV/m)
and the Dst index (output, measured unit: nT) with a sampling interval T=1hour. Inspection of the Fig. 6 shows
that several strong magnetospheric storms (Dst < -100 nT) and substrong stroms (Dst < -50 nT) took place
during the time period under investigation. This data set was separated into the estimation set consisting of 400

input-output data points and the validation set consisting of the remaining data points. The objective was to
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identify input-output nonlinear model based on the estimation data set. This model was then used to predict the

Dst index.
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Fig. 4 The one-step-ahead prediction and model residual for the gas fumnace data set described in Example 2. In (a), the solid line indicates
the measurements, and the dashed line indicates one-step-ahead prediction.
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Fig.5 The model predicted output and the prediction error for the gas furnace data set described in Example 2. In (a), the solid line indicates
the measurements, and the dashed line indicates the model predicted output.
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Fig. 6 The measurements for the input (VBs) and output (Dst) of the terrestrial magnetosphere dynamical system described in Example 3.

Previous studies have shown that the data set can be adequately fitted by choosing the input vector as
x(2)=[y@-1),, y(t = 4)ult -1),u(t- 2)]", where y(-) and u(-) indicate the measurements of the system
output (Dst )and input (VB; ), respectively. For this data set, numerical experimental results show that it was
difficult to train a standard Gaussian kernel based RBF network with only a single common kernel width. In fact,
many different kernel widths have been tested to identify a standard network model using only a single common
kernel width, but all the resulting models either involved too many model terms or produced poor generalization
properties. The multiscale modelling framework, however, can be used to describe this data set.

The 400 points in the estimation data set were classified into 50 groups using the A-means clustering
algorithm. These clustered points, symbolized by e(m) =[e,(m),---,cs(m)]” for m=1,2, ..., 50, were used as the
candidate kernel centres. The basis functions in the multiscale network model were of the form (12), and the

scale parameters 0')(,’.3"‘;‘ and O'an)t.k were chosen as follows:

i) o, ={max(y()) - min(y(¢))} 1 ~ 200, and Gy, = {max(u(t)) - min(u(t))} 2 ~15.
i) o,=0,,,ando, =0,
iy ol) =270, andol)), =270, withm=1, ..., 50; i=0,..., 4, /=0,1,..., 4 k=1,....6.
Although a total of 1250 candidate model terms were involved in the initial multiscale network model, only

16 significant model terms were selected using the orthogonal least algorithm. To eliminate the bias on the

estimated parameters, the three-stage modelling approach was performed by setting an extended input vector as
X() =[p@ =1, -yt —4),u(t-D,ut-2), et -1),-, &t~ 3)]", and choosing a full noise model as (25)

with a nonlinear degree £ =2. The kernel centres and widths, model parameters, estimated model parameters and
the ESR values defined by (21) are shown in Table 3, where the noise related model terms were omitted. The

two-hour-ahead prediction is shown in Fig. 7.
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TABLE 3
THE SELECTED CENTERS AND WIDTHS, ESTIMATED PARAMETERS AND THE ESR VALUES IN THE MULTISCALE RBF NETWORK
MODEL FOR THE MAGNEOSPHERE SYSTEM IN EXAMPLE 3

S‘fp €4 €ja €3 Cja ¢;s5 € o) o 6,  ESRL)]
| -159.6000 -145.8030 -126.1750 -113.0700 8.5046  9.4793 200 15 -181.2023  0.0807
3 1746194 -177.1950 -178.2351 -173.0579 47456 53740 50 15 736629  0.0606
3 1.6930 22000 1.8676 01383 09820 08503 50 375 160137  0.0455
4 611040 493255  -66.6260  -669575  3.8423 46915 200 1875 334176  0.0413
s .129.5895 -124.1915 -105.9675 -102.3870 6.6749 7.1847 50 375 62.6576  0.0381
6 211705 476470  -60.9250  -64.6740  3.3863 09060 25 375 306993 0.0354
7 07605  -144600 402070  -68.3700  0.1095 19697 25 75 323289 0.0336
s 757863 217183 203560  22.5823  5.9604 9.6060 50 15 -185.7504  0.0320
9 105493 201333  -50.0877  -35.1720 20550 26419 100 375  13.0834  0.0300
10 757863 217183 203560  -22.5823 59604 9.6060 50 75 2061002  0.0290
Il 471329 435356  -28.5761  26.6370 17431  2.0069 50 375 479005  0.0280
12 395377 381117  47.1173  55.1880 22130 22641 25 375 -19.8037  0.0273
13 890360 671750 707150  -68.8700 49944 42966 100 1875 211147  0.0266
14 757863 217183 203560 225823 59604  9.6060 200 1875  -79.2633  0.0261
s 471329  -45.5356  -28.5761 266370 17431 20069 100 1875  -19.1104 0.0255
6 433495 513098  -544737 552028 17041 1.6938 S0 1875  11.5482  0.0251
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7. Conclusions

There many cases where commonly used conventional Gaussian kernel based RBF networks may not work well
to produce a reliable model with good generalization properties for nonlinear dynamical systems. This motivated
the introduction of the multiscale concept to construct new RBF networks by observing the successful
applications of multiresolution decompositions as in wavelet theory. Compared with commonly used
conventional RBF networks, the new multiscale RBF networks are more flexible and can often provide
parsimonious models for a wide class of nonlinear dynamical systems. Examples using three real data sets have
clearly shown that the modelling capability of conventional RBF networks has been significantly enhanced by
introducing the multiscale concept into RBF networks. In many cases the NARX model may fail to give a
sufficient description due to effects of the noise signal, which may be a correlated or coloured noise sequence.

The bias problem has been solved by performing the three-stage modelling procedure.
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