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Permeability characterisation of low permeability, clay-rich gas sandstones is part of production forecasting 

and reservoir management. The physically based Kozeny (1927) equation linking permeability with porosity 

and pore size is derived for a porous medium with a homogeneous pore size, whereas the pore sizes in tight 

sandstones can range from nm to �m. Nuclear magnetic resonance (NMR) transverse relaxation was used to 

estimate a pore size distribution for 63 samples of Rotliegend sandstone. The surface relaxation parameter 

required to relate NMR to pore size is estimated by combination of NMR and mercury injection data. To 

estimate which pores control permeability to gas, gas permeability was calculated for each pore size 

increment by using the Kozeny equation. Permeability to brine is modelled by assuming a bound water layer 

on the mineral pore interface. The measured brine permeabilities are lower than predicted based on bound 

water alone for these illite rich samples. Based on the fibrous textures of illite as visible in electron 

microscopy we speculate that these may contribute to a lower brine permeability.  

Keywords: permeability; tight sandstone; bound water; image analysis; NMR 

Nomenclature 

� = slip factor, t2L/m, 1/Pa 

�� = pore shape parameter, - 

� = parameter relating porosity to permeability and specific surface area, - 

����,	 = fraction of pore volume corresponding to 
��	�� time ��,	, - 

���,	 = fraction of pore volume corresponding to 
�� capillary pressure increment for mercury injection, - 

�����
 = fraction of pore volume that controls permeability, - 

�����,	 = fraction of mobile pore water corresponding to 
��	��,	 time, - 

� = absolute permeability, L2, m2, mD 

�� = apparent permeability to gas flow, L2, m2, mD 
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�� = brine permeability, L2, m2, mD 

� = molar mass, m/n, g/mol 

�� = capillary pressure, m/t2L, Pa 

� = pore radius, L, m 

� !!
 = effective pore radius for pores that control permeability � !! = 2/%&, !!, L, m 

���',��(
 = maximum pore radius that controls permeability to gas, L, m 

���',)�	� 
 = maximum pore radius that controls permeability to brine, L, m 

*�	= gas constant, L2m/(s2Tn), J/mol K 

% = specific surface area per bulk volume, L-1, m2/cm3 

%&
 = specific surface area per pore volume, L-1, m2/cm3 

%&,	
 = specific surface area per pore volume for pores with ��	, L

-1, m2/cm3 

%&, !!
 = specific surface area per pore volume for pores that control permeability, L-1, m2/cm3 

%�+,	 = specific surface area per pore volume for mobile water, L-1, m2/cm3 

� = temperature, T, K  

��,	 = 
�� �� time, t, s 

��,	,-.
	= cut-off �� time, t, s  

��,/� ��	= geometric mean �� time, t, s  

0 = bulk volume of sample, L3, m3 
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0��= volume of mercury injected, L3, m3 

1 = surface tension, m/t2, N/m 

2= contact angle, ° 

3 = mean free path length gas, L, m 

4 = viscosity, m/tL, Pa.s 

5 = surface relaxivity, L/t, m/s 

6 = thickness of immobile water, L, m 

7 = tortuosity, - 

8 = porosity, - 

8 !! = porosity that controls permeability, 8�����
, - 
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1. Introduction 

The Permian Rotliegend sandstones remain a significant source of gas within Europe. Historically, 

production has been primarily from reservoirs with moderate to high permeability, 10 mD-1D, in fields such 

as the Groningen gas field in the north of the Netherlands, which has a high productivity. For future supply, 

exploration targets gas sandstone reservoirs that have less favourable properties (Gaupp and Okkerman, 

2011).  

Porosity and permeability may be reduced by quartz cementation in sandstones with a low clay content. The 

percolation threshold is a minimum porosity below which intergranular pores no longer form a connected 

flow path (Hunt 2009). For rocks with a porosity close to the percolation threshold larger intergranular pores 

may only be connected through thin fractures, microcracks; therefore thin microcracks, and not larger 

intergranular pores, would control the permeability (Brower and Morrow, 1985; Mavko and Nur, 1997; 

Ostensen, 1983). Larger intergranular pores may also not form a connected flow path in clay-rich sandstones 

with a higher porosity. When clay minerals occlude the intergranular pore space, this may disconnect larger 

pores (Desbois et al. 2011). In such sandstones, micropores among clay minerals would control permeability.  

Permeability as measured using brine is often lower than permeability as measured using gas (Heid et al., 

1950; Jones and Owens, 1980). Gas slip may contribute to a higher gas permeability, and this effect is larger 

in samples with a small equivalent pore size (Klinkenberg, 1941). Bound water may reduce the mobile fluid 

volume for brine flow as compared to gas flow (Andreassen and Fabricius, 2010; Byerlee, 1990; Heid et al., 

1950; Luffel et al., 1993; Solymar et al., 2003). An immobile water layer would have a greater effect in 

smaller pores. Therefore the size of the pores that control permeability is relevant to the difference between 

permeability to brine and to gas.  

Clay minerals may also affect permeability to brine by other mechanisms. Delicate clay minerals, such as 

thin illite clay fibres that grow perpendicular to the grain surface, may collapse onto the grain surface during 

drying (Luffel et al. 1993; de Waal et al. 1988). This effect is found to be partially reversible when samples 

are saturated again (Luffel et al., 1993). Mobilisation of clay particles may occur when clay minerals and 
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quartz grains have a similar sign surface charge. Dissolved ions shield the surface charge by forming an 

electrical double layer (EDL) (Lyklema 1995). In low salinity brine, there is less shielding, resulting in a 

high EDL repulsion between surfaces that could mobilise particles and reduce permeability (Khilar and 

Fogler, 1984).  

In this study we investigate permeability of 63 Rotliegend sandstones to gas and to brine; samples contain 

over 6 wt.% clay minerals, which allows for an investigation of textural effects on permeability. Mineralogy 

was quantified using X-ray diffraction (XRD) (Hillier, 1999, 2000). Backscatter electron microscopy 

(BSEM) images were analysed to characterise clay morphology and to quantify clay-free porosity to estimate 

percolation effects. Pore size distributions were measured using mercury (Hg) injection porosimetry and low 

field nuclear magnetic resonance (NMR). The surface relaxivity, which is needed to convert NMR to 

equivalent pore size, is estimated by comparing Hg injection data to NMR. Gas permeability was modelled 

from the pore size distribution from NMR as in Hossain et al (2011). The fraction of the pores that control 

permeability was estimated by comparison of measured and modelled permeability. Brine permeability was 

modelled by reducing the porosity to brine by an immobilised layer on the mineral-fluid interface, but in 

several cases an unrealistically thick immobile water layer was predicted. This indicates that bound water is 

not the only cause of the lower brine permeability, which might also be due to the presence of fibrous illite.  

 

1.2 Geological setting 

The Rotliegend sandstones were deposited in the South Permian Basin (SPB), which is bounded by the Mid-

North Sea High and the Ringkøbing-Fyn High in the north and by the London-Brabant Massif and the 

Rhenish High in the South. In an East-West direction, the SPB ranges from the eastern UK to central Europe 

(Gaupp and Okkerman, 2011).  

Diagenetic processes in the Rotliegend sandstones were studied by several authors and Gaupp and Okkerman 

(2011) review how these processes affect reservoir quality. Authigenic minerals that are abundant throughout 

the SPB include quartz, carbonates, iron oxides, illite, chlorite and kaolin (Gaupp and Okkerman, 2011). The 
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red colour of many samples is due to the presence of hematite (an iron oxide) (Torrent and Schwertmann, 

1987). The sandstones are sometimes grey due to bleaching during diagenesis (Gaupp and Okkerman, 2011); 

however hematite may still be present in the form of small grains between clay particles (Desbois et al., 

2011). Regional diagenetic processes were affected by the chemistry of ground waters, uplift, temperature 

history, and later fluid flow, resulting in variations in the clay mineral distribution (Gaupp and Okkerman, 

2011).  

 

1.3 Pore space from NMR and Hg injection 

The pore size, or 9:, distribution can be obtained from NMR (Coates et al. 1999). In NMR, hydrogen nuclei 

in water saturated samples are aligned in a permanent magnetic field and flipped in a temporary magnetic 

field. The consequent rate of decay of magnetisation is measured and converted to a transverse relaxation 

time, ;< (Coates et al., 1999). The decay rate of magnetisation is higher near the water-mineral interface than 

in the bulk water. So in the fast diffusion regime, in which the majority of hydrogen nuclei are relaxed at the 

water mineral interface by surface relaxation, the ;< time reflects 9: (Eq. 1)  

 

2

1
p

S
Tρ

=  

Eq. 1 

where 5 is the surface relaxivity, which is a measure of the rate at which relaxation occurs at the surface. For 

samples with a range of pore sizes, NMR yields a �� distribution where the amplitude, ����,	 is the fraction 

of the total porosity that corresponds to a given ��, ��,	, thus 8	����,	 is the pore volume that corresponds to 

��,	.  



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

The surface relaxivity is required in order to estimate an %& distribution from the �� distribution The surface 

relaxivity depends on the mineral-fluid interaction, and in particular on the presence of iron, which increases 

5 (Keating and Knight, 2007, 2010; Matteson and Tomanic, 2000). Several authors combined NMR with Hg 

injection to estimate an effective 5 (Coates et al., 1999; Dastidar et al., 2006; Mbia et al., 2014).  

In Hg injection the fraction of the porosity, ���,	 which is injected for each successive capillary pressure 

increment, ��,	, is measured. Capillary pressure can be related to pore radius, �, by the Washburn (1921) 

equation: 

 
( )2 cos

c

r
P

γ θ
= −    

Eq. 2 

where �� is the capillary pressure, 1 is the surface tension and 2 is the contact angle. For mercury injection 

1 = 0.48 N/m and 2 = 140°. Capillary pressure from Hg-injection can be integrated over the volume of 

mercury injected to obtain the specific surface, %, in Eq. 3 (Giesche, 2006; Rootare and Prenzlow, 1967). 

 ( )
1

cos c HgS P dV
Vγ θ

= − ∫    

Eq. 3 

where 0�� is the volume of mercury injected, and 0 is the sample bulk volume. For stepwise injection of 

mercury where ���,	 is the fraction of the porosity that is filled by mercury for the pore pressure 

increment	��,	, so that 8���,	 = B0��,	/0, then S is given by Eq. 4.	

 

 ( ) , ,cos c i Hg iS P f
φ

γ θ
= − ∑    

Eq. 4 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

The specific surface area in each �� increment from NMR is the product of the pore volume in the increment 

and the specific surface area per pore volume:  

 
,

, ,

2,

NMR i

i NMR i p i

i

f
S f S

T

φ
φ

ρ
= =   

Eq. 5 

The total specific surface area from NMR is given by summation of the surface area for each �� time over 

the pore volume. When 5 is assumed homogeneous, S is given by   

 
,

2,

NMR i

i

f
S

T

φ
ρ

= ∑    

Eq. 6 

Where ����,	 is the fraction of the porosity that corresponds to ��,	. Assuming 100% mercury saturation, 5 is 

given by Eq. 7. 

 

( ) ,

2,

, ,

cos NMR i

i

c i Hg i

f

T

P f

θ
ρ

γ
=

− ∑

∑
   

Eq. 7 

 

1.4 Permeability modelling 

Kozeny (1927) derived Eq. 8 to model permeability in porous media based on flow in capillaries with a 

uniform pore size.  

 
2
p

c
k

S

φ=     
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Eq. 8   

where � is permeability, 8 is porosity, � is a parameter that accounts for pore geometry (� = 1
2C  for straight 

cylindrical pores), and %& is the specific surface area, %, per unit pore volume: 

 p

S
S

φ
=    

Eq. 9 

 %& is inversely proportional to the equivalent pore radius, �. For a cylindrical pore: 

 

2

p

r
S

=    

Eq. 10 

As flow does not follow a straight flow path, Carman (1937) modified the Kozeny Equation by expressing c 

as a function of tortuosity 7 and pore shape ��, i.e., � = ��7 (�� = 1
2C  and 7 = 1 for straight cylindrical 

pores). Forms of the Kozeny equation in which the parameter � reflects tortuosity are often referred to as 

Kozeny-Carman equations (e.g., Bear, 1972; Berryman and Blair, 1987; Mavko and Nur, 1997). A value of 

� = 0.2 was fit to experimental data of powders and crushed sand packs (Carman, 1937; Donaldson, 1975). 

Electrical resistivity or diffusion measurements are used to estimate Γ by some authors e.g., Berryman and 

Blair (1987), Cornell and Katz (1953), Dullien (1975), Pape et al. (2006), Walsh and Brace, (1984). 

However, tortuosity for hydraulic flow would not necessarily be the same as tortuosity for diffusion and 

electrical conduction (Bear, 1972; Carman, 1937; Pape et al., 2006). Whereas diffusion and electrical 

conduction in a pore have a piston-like displacement, fluid flow has a velocity profile with a lower velocity 

on the fluid-mineral interface.  

Rather than considering a tortuous flow path, Mortensen et al. (1998) used a conceptual model of the rock 

where only a fraction of 8 contributes to flow. Their c (cf. Eq. 11) reduces 8 so that only porosity parallel to 
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the sample axis conducts flow (Mortensen et al., 1998). This equation is derived for straight cylindrical 

capillaries and accounts for the area in the intersections among capillaries.  

 

1

3

1 64 4
4cos arccos 1 4

3 3
c φ π

π

−
   = − + +   

   
   

Eq. 11 

The value of �	is 0.20 ± 0.02 for 2%	 < 	8	 < 	32%, which is similar to the empirical ��7 by Carman (1937).  

Kozeny’s (1927) equation can be used to calculate the permeability from NMR by substitution of Eq. 1  into 

Eq. 8 (Hossain et al. 2011). The permeability �	 for the porosity 8����,	 that corresponds to each ��,	 

interval is given by Eq. 12 (Hossain et al., 2011).  

 2 2
; 2,i i NMR i ik c f Tρ φ=    

Eq. 12 

where � is  estimated as a function of porosity (cf. Eq. 11) to avoid introducing a tortuosity parameter. Those 

authors sum the permeability of all pore size increments to predict the sample permeability, for sandstones 

with a clay-free porosity > 20%. This would suggest that the larger pores form a connected flow path in 

those samples. For sandstones where larger pores do not form a connected flow path, the permeability in the 

largest pore would not be expected to contribute to the sample permeability. 

 

1.4.1 Permeability modelling: gas slip 

Gas slip contributes to a higher apparent permeability to gas, due to a non-zero velocity on the pore fluid 

interface (Klinkenberg, 1941). The higher apparent permeability due to gas slip is related to the true 

permeability by Eq. 13 and Eq. 14(Klinkenberg. 1941). 
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 1a

b
k k

P

 = + 
 

   

Eq. 13 

 
4c P

b
r

λ=         

Eq. 14 

where 3 is the mean free path length. Various authors use Eq. 15 by Loeb (1927)  to estimate the mean free 

path length e.g., Florence et al. (2007), Civan (2010).  

 
2

g
R T

P M

πµλ =    

Eq. 15 

where 4 is the gas viscosity, � is the mean pore pressure, *� is the gas constant, � is temperature and � is 

the molar mass of the gas. Therefore, when the size of the pores which control permeability is known, the 

effect of gas slip on the apparent permeability can be estimated. 

 

1.4.2 Permeability modelling: immobile water 

The effect of bound water can be modelled as a reduction of the effective pore size; therefore we model the 

effect of bound water on the pore size distribution from NMR. The free pore volume that is available to 

water, 8�����,	, is given by the fraction that is available to air, 8����,	, minus the thickness of bound 

water, 6, on the grain surface:  

 , ,NMR i NMR i i
fw f Sφ φ τ= −    

Eq. 16 
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Substitution of Eq. 1 where %& = %/8	gives: 

 , ,

2,

NMR iNMR i

i

ffw
T

τφφ φ
ρ

= −    

Eq. 17 

Whereas ∑�		= 1, i.e. all porosity is available for gas flow, due to bound water ∑�	,� < 1. As a first 

approximation, % is constant so that the specific surface per pore volume of mobile water, %�&,	 is obtained 

by substituting the porosity of mobile water, 8�����,	, for the total porosity, 8����,	, in Eq. 9 yielding: 

 
, ,

, ,

, , , ,

NMR i NMR ii i
p i p i

NMR i NMR i NMR i NMR i

f fS S
Sw S

fw f fw fwφ φ
= = =    

Eq. 18 

Substitution into Eq. 12 yields the brine permeability, ��,	, of pores for a given ��	 in Eq. 19, where ��,	 is 

cf. Eq. 11  using �����,	. 

 

2

,2 2
, , , 2,

,

NMR i

w i w i NMR i i

NMR i

fw
k c fw T

f
ρ φ

 
=   

 
   

Eq. 19 

 

2. Experimental methods 

We studied 63 samples from six wells from sectors in the North Sea and from sectors in Poland. Samples 

have a current burial depth in the range of 2440-3961 m. Cylindrical plugs with ~3.8 cm diameter and 4-6 

cm length were cut from reservoir cores. Plugs were cleaned using a Soxhlet extractor using a mixture of 

methanol and dichloromethane.  
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Polished thin sections for BSEM were produced from side trims. Polished thin sections and stubs of fractured 

samples were examined using a CAMSCAN CS44 high performance scanning electron microscope equipped 

with a secondary electron detector and a high resolution solid state four quadrant back scattered electron 

(BSE) detector. Representative images using BSE were taken for each sample and saved with 256 grey 

levels. 

Mineralogy was quantified using XRD, using a spray technique as described in Hillier (1999, 2000) in order 

to produce samples without significant preferred orientations. The samples were dried in an oven at 60°C for 

48 hours prior to measurements. 

Porosity was measured using a helium gas expansion porosimeter. Gas permeability was measured by flow 

of helium gas parallel to the plug axis. Samples were subjected to in situ confining stress in order to close 

fractures that resulted from unloading, and at 6.7 MPa pore pressure in order to minimise the effect of gas 

slip. For samples with permeability below 0.1 mD, permeability was measured using a pulse-decay technique 

(Jones, 1997) using a modified Corelabs PDP 200 pulse decay permeameter that has been adapted so that 

measurements can be made at up to 70 MPa confining pressure. Permeability was calculated using the 

software for the PDP 200 supplied by Corelabs as in Jones (1997). Samples with a higher permeability were 

measured using steady state permeametry (API, 1998). Brine permeability was measured using 200,000 ppm 

NaCl solution to avoid particle mobilisation and full saturation was verified by using NMR.  

Mercury (Hg) was injected into the evacuated core plugs by increasing the pressure stepwise up to 413.7 

MPa (60 000 psi). Mercury measurements were performance corrected.   

NMR �� relaxation time measurements were performed on brine saturated samples using a MARAN 

ULTRA from Oxford Instruments, which has a 51 mm probe and a 2 MHz operating frequency. The Carr-

Purcel-Meiboom-Gill (CPMG) pulse sequence was used to generate the magnetization decay with an echo 

spacing of 0.1 ms, and repeat delay of 10 s between successive scans. The decaying magnetization was 

mapped to a �� distribution using the WinDXP programme software provided by Oxford Instruments. The 

signal amplitude was calibrated using standards with a known volume of doped water.  
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3. Image Analysis 

Image analysis was performed on images with a pixel length of 3 �m using Matlab 2012b (The MathWorks). 

Pores between clay particles or microfractures can be smaller than the pixel size. Pixels that contain both 

clay minerals and porosity have a lower brightness than pixels that contain only minerals (Peters, 2009). 

Therefore a first threshold was used to segment the image in to the darker porosity and clay fraction and the 

lighter other minerals. A second lower threshold was used to segment clay-free porosity and the clay 

fraction, whereby the clay fraction consists of pixels containing both clay minerals and pores between clay 

particles. Thresholds were selected based on the histogram of pixel intensity (Figure 1). We did not equalise 

histograms for different samples as these have different shapes; e.g., some samples have a distinct peak of 

clay-free porosity and others do not. BSEM images with a pixel length of 0.6 �m, and SEM images were 

used in order to characterise clay morphology.  

 

Figure 1: Histogram of pixel intensity for a backscatter electron microscopy image of sample 1A. Threshold 

1 separates solid grains, with a higher intensity, from clay minerals and pore volume. Threshold 2 separates 

pixels that contain clay minerals and pore volume, with a higher intensity, from pore volume without clay 

minerals.  

 

4. Results 
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4.1 Mineralogy 

Samples are subarkoses or arkoses according to the classification of McBride (1963). Illite/mica is present in 

all samples, additionally some samples contain kaolin and other samples contain chlorite. Although 

distinction between chlorite and kaolin clay minerals based on XRD may be difficult for iron rich chlorite 

minerals (Grim, 1953), petrographical analysis did not indicate errors in the XRD analysis of these minerals. 

The sum of the clay mineral contents ranges from 6% to 16% of the solid mass. 

The main variation among samples is due to differences in clay content. Accordingly, some authors have 

described regional variation in the clay mineralogy of Rotliegend sandstones in the Netherlands in terms of 

clay provinces (Gaupp and Okkerman, 2011). As the effect of clay minerals on the pore space is related to 

the morphology of the clays, i.e. the type of clay mineral and the abundance (Landrot et al. 2012; Wilson and 

Pittman, 1977; Wilson et al. 2014) samples were grouped based clay mineralogy.  Groups 1 and 3 are kaolin 

bearing sandstones; kaolin is the dominant clay mineral in Group 1, whereas illite/mica is dominant in Group 

3. Samples in groups 2 and 5 both contain grain lining chlorite and illite clay minerals; due to the relatively 

low clay content in these samples, clay minerals only account for a small fraction of the intergranular 

porosity in Group 5. Samples in Group 4 contain only illite/mica. The average mineralogy from XRD for the 

five groups of samples is shown in Table 1.  
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Table 1: Average mineral content for the five groups from XRD given as mass %. Standard deviation within 

groups is given in brackets. 

  Gr. 1 Gr. 2 Gr. 3 Gr. 4 Gr. 5 
Quartz 72      (4) 78       (5) 75        (3) 79        (3) 76        (5) 
Albite 0.6     (0.9) 4.3      (0.7) 1.6       (0.4) 2.7       (1.4) 4.4       (1.2) 
Microcline 5.4     (0.3) 0.2      (0.4) 1.9       (1.4) 4.9       (0.7) 5.4       (1.3) 
Calcite 0        (0) 0         (0) 0.06     (0.13) 0.04     (0.07) 0.07     (0.13) 
Dolomite 6        (4) 4         (2) 6          (4) 5.5       (1.3) 3.6       (1.3) 
Siderite 0.5     (0.5) 0.01   (0.03) 2          (2) 0          (0) 0.8       (0.7) 
Illite/Mica 5        (1.0) 10       (2) 9          (3) 6.7       (1.1) 8          (2) 
Kaolinite 10.8   (1.0) 0         (0) 3.4       (1.3) 0          (0) 0          (0) 
Chlorite 0        (0) 6         (2) 0          (0) 0          (0) 2.2       (0.7) 
Pyrite 0.4     (0.4) 0.1      (0.2) 0.3       (0.4) 0.01    (0.04) 0          (0) 
Anhydrite 0.01  (0.02) 0.02    (0.03) 0.4       (0.8) 0.3      (0.9) 0          (0) 
Barite 0        (0) 0          (0) 0.08     (0.2) 0         (0) 0          (0) 

no samples 9 11 14 22 7 

 

4.2 Pore space 

4.2.1 Image analysis 

Figure 2 shows the BSEM images and the segmented BSEM images for two characteristic samples from 

each group. The A samples represent samples with a relatively low mean ��, and samples B represent a 

higher mean ��, Table 2 shows how many samples have a �� distribution that is similar to sample A and 

sample B for each group. The area fractions of clay minerals and all pores, and of only clay-free pores, are 

also shown in Table 2. The area of the clay fraction including all pores equals the sum of the He-porosity and 

the clay solid volume from XRD for all ten samples. This indicates that the interrogation area in image 

analysis was representative. Images at 0.6 �m/pixel resolution were acquired in order to characterise clay 

morphology, therefore no quantitative analysis was applied to these.  

Microcracks along grain boundaries or through clay aggregates can be observed in BSEM images. These 

microcracks might be due to unloading as the thin sections are prepared at ambient stress. Permeability 

measurements were made at in situ stress to minimise the effect of flow through microcracks. Therefore the 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

BSEM images may not represent the connectivity of the sample during the permeability test; so that the 

segmented images in which microcracks are largely eliminated might better represent the pore space during 

the permeability tests.  
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s t  

 

u     v     w 

x y  

Figure 2: Representative backscatter electron microscopy (BSEM) images for a sample with a lower mean 

NMR ��	(samples A) and a sample with a higher mean �� (samples B) from each of the five groups. Below 

BSEM images are processed images where white pixels are grains, grey pixels contain clay minerals and 

porosity and black pixels are clay-free porosity. Pixel length of images used for image analysis is 3 �m/pixel, 

and for close up images 0.6�m/pixel. Orientation unknown.  

Table 2: Image analysis with a resolution of 3 �m/pixel was used to quantify the area fractions. Error 

margins in brackets on image analysis data are based on the maximum difference among two or three images 
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of the same sample. Clay mineral volume per sample from XRD is calculated by taking porosity and mineral 

density into account (Durand et al., 2000; Grim, 1953). 

    
 Experimental 

 
Images 

 

    

Nr of 
samples  
with similar 

He-
porosity 

Clay 
(XRD) 

Clay 
all pores 

Clay-free 
pores 

    
NMR �� 
distribution 

(m3/m3)
%a 

(m3/m3)
% 

(m2/m2)
% 

(m2/m2)   
% 

Gr 1 
A 7  12.2  16   (3) 32 (3) 1.0   (0.2) 

B 2 19.5  12   (2) 37 (2) 2.5   (0.4) 

Gr 2 
A 5 10.3  13   (3) 19 (1.1) 1.4   (0.3) 

B 6 11.1  11   (3) 17 (1.0) 4.2   (1.1) 

Gr 3 
A 8 9.2    11   (2) 20 (0.8) 0.3   (0.5) 

B 6 17.5  12   (3) 31 (2) 4.1   (0.7) 

Gr 4 
A 

4 
9.2    4.5  (1) 17 (3) 

0.49 
(0.04) 

B 
16 

10.6  5.1  (1) 19 (3) 
1.17 
(0.11) 

Gr 5 
A 3 16.4  7.0  (2) 19 (0.9) 4.6   (0.3) 

B 4 17.9  6.6  (2) 23 (0.9) 13.2 (0.9) 
 

4.2.2 NMR and mercury injection porosimetry 

Figure 3 shows the NMR curves and the differential Hg saturation curves. To compare the logarithmically 

spaced NMR data to mercury data, the pore diameters on mercury injection are equally spaced on the 

logarithmic axis (Lenormand, 2003).  
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d     e     f  

g h  

i j  

Figure 3: Differential NMR T2-plots and radii obtained from incremental mercury injection (Hg) using the 

Washburn equation for representative samples with a lower mean �� (samples A) and a higher mean  �� 

(samples B). The fraction of the porosity, �	 that corresponds to a given ��		or �	 is multiplied by the sample 

porosity in order to show differences among the total porosity of the samples as well as their pore size 

distribution. (The legend in the mercury plots also applies to the NMR plots.) 

4.3 Permeability 
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Figure 4a shows that scatter in the permeability-porosity trend is largest in groups 3 and 5 and least in groups 

1 and 4. The relation between porosity and the ratio of gas permeability to brine permeability likewise shows 

scatter (Figure 4b). Samples with a higher permeability in Group 5 represent intervals with a low illite 

content. Samples in Group 1 with a high porosity have low carbonate content, however, due to the high 

kaolinite and illite contents, these samples have a relatively low permeability.  

a b  

Figure 4: a) Porosity and gas permeability, ��, at in situ confining stress for 63 samples divided into five 

subgroups based on mineralogy. b) The ratio of gas permeability to brine permeability, �), ranges between 1 

and 30 and shows no correlation with porosity. 

 

5. Discussion  

5.1 Mineralogy and pore space 

The NMR curves cannot directly be related to the texture that is observed in images. Samples can have 

similar NMR curves but a different distribution of clay minerals in the pore space, e.g. samples 2A and 3A 

(Figure 3b, 3c), where the former sample contains grain lining illite/mica (Figure 2f, 2h, 2i), whereas the 

latter sample contains illite fibres and kaolinite platelets filling pore bodies (Figure 2k, 2m, 2n). Also, 

samples that have similar pore size can have different NMR curves, e.g. samples 5A and 5B which have only 
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a limited amount of grain lining illite/mica and similar Hg-curves, yet the NMR curves are different (Figure 

2u, 2v, 2x, 2y, 3h, 3j).The mineralogy and abundance of clay minerals as determined from XRD were 

observed to reflect sandstone texture as observed in BSEM images, so therefore samples are grouped based 

on clay mineralogy.  

In Group 1 sandstones kaolin platelets are distributed throughout the pore space, and there is little clay-free 

porosity in the segmented images (Figure 2d and e; Table 2). These samples have a single broad �� peak, 

which indicates a continuous range of pore sizes (Figure 3a). As compared to sample 1A, sample 1B has 

more clay-free porosity in images, and accordingly the modes of both the NMR and the Hg data  correspond 

to a larger equivalent pore size.  

In Group 2 illite/mica and chlorite platelets line the grain surface (Figure 2f-h). We observed both clay 

platelets in random orientation to the grains and a thin layer of clay minerals parallel to the grain surface 

(Figure 2h). Other authors have also observed sheets of illite parallel to the grain surface, from which thin 

illite laths or fibres protrude into the pore space (Desbois et al., 2011; Wilson and Pittman, 1977). This 

morphology of illite, forming sheets that extend into laths was also observed in SEM and BSEM images of 

Group 3 (Figure 2m, 5).  

The mode of the NMR curves of samples 2A and 2B is smaller than the mode of samples 1A, 1B, 4A and 

4B; whereas the mode of the Hg-curves is higher in Group 2 samples than in the Group 2 and Group 4 

samples (Figure 3). The difference might be due to the fibrous illite in Group 2, which may collapse on the 

grain surface during drying (Luffel et al., 1993), or deform during the Hg-injection. This would result in a 

larger equivalent pore size from Hg injection data than from NMR-testing of these samples. 

A larger pore size for Hg-injection than for NMR is also observed in the samples from Group 3. Scanning 

electron microscopy (SEM) images of dried samples show illite protruding into the pore volume and illite 

fibres that might have collapsed during drying (Figure 5). The Hg-curve for sample 3B shows only one peak 

at large pore sizes, as opposed to the two approximately equal peaks in NMR (Figure 3c and f). The lack of a 

peak for smaller pore sizes in the Hg-curve could be due to deformation of illite, and in principle also be due 
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to incomplete mercury saturation. However with a maximum capillary pressure of 413.7 MPa, the minimum 

accessible pore size would be 2 nm cf. Eq.2.   

 

Figure 5: Scanning electron microscopy (SEM) image of illite in sample 3B. Dense tangential mats of illite 

can be seen on the grain surface as well as illite fibres that protrude into the pore space perpendicular to 

grains.  

Group 4 samples contain illite/mica particles, which are mainly observed as thin fibres that bridge the pores 

(Figure 2r). This results in a small clay-free pore area, despite the relatively low clay mineral content (Figure 

2s and t; Table 2). The NMR curve (Figure 2g) of sample 4A shows distinct peaks, indicating a 

discontinuous pore size distribution, which could be related to poor sorting (Figure 2p). The maximum pore 

size would be expected to reflect pores among the clay particles, as there is little clay-free porosity (Figure 2s 

and 2t). The maximum pore sizes from mercury injection are 1.5 �m and 0.8 �m in samples 4A and 4B 

respectively (Figure 3i), which is in the same order of size as the pores in fibrous illite observed by Desbois 

et al. (2011) in high resolution focussed ion beam scanning electron microscopy (FIB-SEM) images of 

Rotliegend gas sandstone. Whereas the maximum T2 in sample 4B is larger than in sample 4A, the maximum 

equivalent pore size on the Hg-curve is higher in sample 4A. This might be due to the ‘ink-bottle’ effect: 

when mercury enters larger pores through connecting smaller pores, the size of the larger pores is not 

reflected in the Hg-curve.  
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In Group 5 only a very thin layer of chlorite or illite fibres that are perpendicular to the grain surface is 

observed (Figure 2w). Whereas samples in Group 4 have a similar clay content per pore volume, clay 

minerals bridge the pores in those samples, which results in a lower clay-free porosity than in Group 5 

samples (Table 2). Whereas the Hg-curves of samples 5A and 5B have a similar shape, the NMR curves 

have different shapes (Figure 3h 3j). The prominent peak for smaller �� that is observed in NMR for sample 

5A is missing in the Hg-curve. This might be due to incomplete Hg saturation or alteration of the clay 

morphology during sample drying, or be due to deformation of illite during Hg-injection.  

5.2 Surface relaxivity from NMR and Hg-injection 

In order to relate T2 time to equivalent pore size or %& the value of 5 is required. Surface relaxivity was 

estimated from surface area per bulk volume, %, from Hg-injection and % from NMR. Groups 1, 2 and 5 have 

a mean 5 of 8-9 �m/s; groups 3 and 4 have mean 5 of 12-13 �m/s. For the entire dataset 5	= 10 �m/s with 

standard deviation 4 �m/s.  

The surface relaxivity of quartz (99.5% SiO2) and kaolin samples (purity 99.9%) measured using high 

salinity NaCl solution are only 3.6 �m/s and 3.9 �m/s respectively (Alam et al., 2014). Those authors 

calculated relaxivity in tests with distilled water, NaCl, CaCl2,  MgCl2 and Na2SO4 solutions with different 

salinities. Relaxivity varies between 2.9 �m/s – 3.9 �m/s for quartz and 1.1 �m/s - 5.0 �m/s for kaolin, 

however, no consistent trend with ion type or salinity was observed. The higher relaxivities estimated may be 

due to the presence of iron-bearing minerals in the sandstone samples.  

Iron bearing minerals, such as siderite, chlorite, or hematite, can increase the surface relaxivity (Keating and 

Knight, 2007, 2010; Matteson and Tomanic, 2000). Keating and Knight (2010) measured 5 exceeding 

19 �m/s for mixtures of quartz and siderite with an iron content of 0.6 wt.%, and they found that 5 increases 

with increasing iron content. Keating and Knight (2007) showed that quartz sand coated with hematite has 5 

greater than 18 �m/s, whereas sand coated with goethite with the same iron content has 5 of only 1.6 �m/s, 

indicating that the structural relation in which iron is present affects 5. All 63 samples contain Fe-dolomite, 

and additionally samples in groups 2 and 5 contain chlorite, and samples in groups 3 and 5 contain siderite. 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

Figure 6 shows no correlation between the content of iron bearing minerals from XRD and 5, presumably 

because the effect of iron on 5 depends on the type of iron bearing minerals.  

 

Figure 6: The iron bearing mineral content (dolomite, siderite, pyrite and chlorite) from X-ray diffraction 

(XRD) and surface relaxivity as calculated from Hg-injection data.  

 

Differences among 5 for different groups could also be due to the experimental methods. Hg-injection 

reflects the size of pore throats through which pore bodies, are accessed, whereas NMR reflects the pore 

bodies (Coates et al., 1999; Dastidar et al., 2006). Incomplete mercury saturation would yield a higher 5. 

Some authors match the modes for the differential Hg-curve and the differential NMR curve to estimate 5, 

(Coates et al., 1999; Dastidar et al., 2006). For samples in Group 5, this results in 5 ranging from 1 �m/s to 

300 �m/s, as opposed to 5 �m/s to 12 �m/s. The large range, and the outliers where 5 exceeds values 

reported by Keating and Knight (2007, 2010) suggest that 5 estimated from the modes of the curves are more 

sensitive to experimental artefacts than 5 estimated from %. Presumably because connectivity among pore 

bodies primarily affect larger pores, whereas % in Eq. 4 is controlled by smaller pores. Other authors match 

the cumulative curves (Mbia et al., 2014). For samples whose NMR and Hg- curves have different shapes, 
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e.g., 1B, 4A, 3B, and 5A, only a segment of the total curves overlaps for a given 5. When 5 is chosen so that 

the curves overlap for the smallest pores, the results are comparable to 5 calculated from %.  

5.3 Permeability modelling  

Permeability is modelled per pore size increment from NMR cf. Eq. 12. As differences in the surface 

relaxivity among samples could be due to experimental artefacts, the average and standard deviation of 5 for 

the dataset, 10 �m/s ± 4 �m/s, are used.  

The permeability per �� increment (Eq. 12), and the cumulative sum of permeability are shown for samples 

1A and 5B in Figure 7a and 7b. Permeability per increment increases steeply with increasing ��, therefore 

the contribution of the smallest pores to the cumulative permeability is negligible. However, the cumulative 

permeability in sample 1A is three orders of magnitude higher than the measured permeability: 21 mD as 

opposed to 0.021 mD. Even the permeability in the individual increments with a �� > 20 ms  exceeds the 

measured permeability (Figure 7c).This indicates that the larger pores do not form a percolating flow path.  

 

 a     b    c 

Figure 7: The permeability for each increment of the porosity distribution kI and the cumulative permeability 

are shown for sample 1A (a) and sample 5b (b). For sample 1A the measured permeability is significantly 

lower than the permeability in the larger pores; the cumulative permeability is three orders of magnitude 

higher than the measured permeability (c). For sample 5B cumulative permeability is of the same order of 

magnitude as the measured permeability (Figure 8c) (Surface relaxivity is 10 �m/s).  
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When smaller pores, with a high %& and a low permeability, limit flow through larger pores, the sample 

permeability would not reflect the size of the larger pores. Therefore we do the opposite of what is done in 

general practice and define a cut-off T2, ��,	,-.
 where the cumulative permeability equals the measured 

permeability. The fraction of the porosity in the pores up to ��,	,-.
 is then considered effective to 

permeability. and this fraction ��, !! will be given by:  

 

max

, ,
1

i

NMRe f i

i

f
ffφ

=

=∑
   

Eq. 20 

Within the fraction of pores that is effective to permeability the largest pores make the largest contribution to 

the measured permeability, due to the steep increase in permeability with increasing ��. Figure 8 shows the 

cumulative permeability up to the cut-off for representative samples with different NMR curves. Sample 1A 

represents samples that have a broad single peak in the NMR curve. The cut-off �� approximately coincides 

with the mode of the �� distribution, which also coincides with the geometrical mean ��, ��,/� ��. Sample 

4A represents samples with multiple peaks where pores with ��	<	��,/� �� control permeability, whereas 

sample 5B represents samples where larger pores with ��	>	��,/� �� also contribute to permeability. The 

shape of the curve does not indicate the fraction of pores contributing to permeability, e.g., for Sample 5A 

with a shape similar to Sample 4A larger pores do contribute to permeability. 

 

a     b     c 
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Figure 8: The permeability for each segment of the porosity distribution �	 is shown for the pores that 

dominate permeability by assuming surface relaxivity ρ =10�m/s. To achieve the measured permeability 

only a part of the porosity is required. This is 50%, 40% and 90% of the total porosity in samples 1A, 4A and 

5B respectively. The full pore size distribution, 8	�	 is shown by the dashed grey line; vertical dashed black 

lines indicate the cut-off ��, ��,��' when permeability is modelled using 5 = 6	�m/s and 5 = 14 �m/s. 

Connectivity cannot be directly measured from 2D images; however, the fraction of clay-free porosity 

indicates in which samples clay-free pores are connected, and the clay-free porosity exceeds 2 % for samples 

where ��,��' > ��/� �� (1B, 2B, 3B, 5A, 5B, Table 2). This is in the same order as percolation porosity 

values for clay-free sandstones found by Mavko and Nur (1997) and by Walderhaug et al. (2012). In clay-

free samples below the percolation threshold, intergranular pores might only be connected by microcracks. 

Similarly, in clay-rich samples where the clay-free porosity is below a threshold, the intergranular pores 

might only be connected by pores among clay minerals.  

Microcracks along grain boundaries and through clay particle aggregates are observed in images, these could 

affect permeability. Accordingly permeability measurements with a lower confining stress show a higher 

permeability in these samples. Therefore, permeability was measured at in situ stress levels, to minimise the 

effect of microcracks. As a first approximation, flow in microcracks is not included in the permeability 

modelling.   

The fraction of the clay-free porosity does however not predict ��, !!, e.g., Samples 5A and 5B have the 

same ��, !!, although sample 5B has a three times higher clay-free porosity (Tables 2 and 3). The extent to 

which larger pores contribute to flow would depend on the pore shape and 3D connectivity, which is not 

characterised by only clay-free porosity. The image resolution and thresholds would also affect 

quantification of clay-free porosity. Nonetheless, for a comparison among a set of sandstones using the same 
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images, image segmentation, rather than the shape of the NMR curve or the clay content from XRD, gave the 

best prediction of samples in which permeability would be controlled by smaller pores. 

Table 3: Effective fraction of porosity is the fraction of porosity that accounts for the measured permeability. 

The maximum effective pore radius corresponds to maximum �� of the effective fraction of porosity, and 

effective specific surface %&, !! is calculated from the measured permeability and the total effective porosity. 

Immobile layer thickness is the thickness of bound water that would result in the measured brine 

permeability if the maximum effective pore radius to brine flow were the same as to gas flow. Refer to text 

for details. Error margins in brackets indicate result range for 5 6-14 �m/s. 

Group  Measured 
Permeability 

Effective 
fraction of 
porosity 

Maximum 
effective 

radius to gas 
�m 

%&, !! 
m2/cm3 

 

Immobile 
layer 

thickness 

  mD  rho=10�m/s rho=10�m/s nm 

1 
A 0.021 0.49 (0.07) 0.20   (0.02) 23     (2) 40     (10) 

B 0.55 0.55 (0.09) 0.70   (0.04) 6.1    (0.5) 120   (30) 

2 
A 0.0052 0.55 (0.11) 0.09   (0.02) 45     (5) 10     (2) 

B 0.099 0.68 (0.12) 0.35   (0.05) 12.0  (1.1) 100   (20) 

3 
A 0.0096 0.70 (0.12) 0.11   (0.03) 35     (3) 22     (4) 

B 0.45 0.76 (0.08) 0.81   (0.07) 7.6    (0.4) 210   (20) 

4 
A 0.0094 0.40 (0.10) 0.15   (0.03) 27     (4) 35     (5) 

B 0.022 0.46 (0.07) 0.231 (0.010) 20     (2) 45     (5) 

5 
A 31 0.87 (0.11) 5.0     (0.3) 0.96 (0.06) 1100 (100) 

B 43 0.87 (0.14) 5.7     (0.7) 0.85 (0.07) 550   (50) 
 

When permeability is controlled by a fraction of the pore volume, the specific surface that is effective with 

regards to permeability would be the specific surface relative to the fraction of pores that control 

permeability. The mean effective specific surface, %&, !!, was calculated from the effective porosity and 

permeability:  

 ,  
eff

p eff

c f
S

k

φφ
=    

Eq. 21 
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Figure 9 shows %&, !! as a function of volumetric clay content per intergranular volume (porosity + clay 

mineral volume). Samples in different groups fall on different trends. As %&, !! characterises the specific 

surface that controls permeability, samples with different clay mineralogy would fall on different trends 

when micropores among clay minerals control permeability. Accordingly, samples dominated by illite fibres, 

which have a high specific surface, in Group 4 have the highest %&, !! for a given clay content; samples 

containing kaolin or mica/illite platelets with a lower specific surface (Group 1 and 3) show a lower %&, !!. 

In samples from Group 5 intergranular pores appear to control permeability; therefore these have the lowest 

%&, !! reflecting the larger intergranular pores.  

 

Figure 9: Effective specific surface area versus clay volume scaled by intergranular volume (0�L�M)/N1 −

0���	�(P. Samples from different groups have different clay types and different clay morphologies. This 

results in a different effective specific surface area for a given clay content.  

 

5.3.1 Permeability modelling: gas slip 

As a first approximation to characterize the effect of gas slip on our results we used the mean effective radius 

� !!  in Eq. 14. In these tests with a pore pressure of 6.7 MPa, 3 ≈ 3 nm for helium (Eq. 15). The effect of 

gas slip cf. Eq. 13and Eq. 14 would be largest for sample 2A, which has the smallest � !! (Table 3); in this 
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sample ��/�	 = 1.3. The summation of �	 up to the lower true permeability � yields ���' = 0.076 ± 0.007 

�m as compared to the ���' = 0.087 ± 0.008 �m for the measured permeability and ��, !!	= 0.51 ± 0.11 as 

compared to 0.55 ± 0.11. The difference due to slip is smaller than the difference due to the error margin on 

5. For the other samples that have a larger � !! the effect of gas slip would be even smaller.  

5.3.2 Permeability modelling: immobile water 

The measured brine permeability is lower than the measured gas permeability for all samples (Figure 4b). On 

average gas permeability is eight times higher than brine permeability; which is significantly larger than the 

effect of gas slip estimated in Section 4.4. One reason for the difference in permeability to brine and water 

could be a layer of bound water on the mineral surface that reduces the pore volume that is available to brine 

flow (Andreassen and Fabricius, 2010; Heid et al., 1950; Luffel et al., 1993; Solymar et al., 2003). Another 

reason could be the reversible collapse of fibrous illite during drying (De Waal et al., 1988; Luffel et al., 

1993).  

To model the permeability in the presence of a layer of immobile water, we assumed that the same size pores 

are effective for flow of gas and brine. Therefore, from summation of ��,	 (cf. Eq. 19) up to the same cut-off 

��,		that was obtained from gas permeability and the measured brine permeability we estimated the value of 6 

that would be required to account for the measured permeability difference between gas and brine. Figure 10 

shows the gas and the brine porosity and permeability distributions for representative samples.  

 

a     b     c 
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Figure 10: The permeability �	 is shown up to the maximum ��, ��,��', where the cumulative �	 equals the 

measured permeability for gas. Brine permeability is shown for the immobile layer thickness,  6, which 

accounts for the measured water permeability. The porosity to brine is lower than the porosity to gas due to 

the immobile water on the pore walls.  

For samples in groups 1, 3 and 4, 6 is in the order of 50 nm, whereas for samples in Group 5, 6 ranges up to 1 

�m (Fig. 11). Measurements of the bound water layer are affected by the experimental techniques used 

(Goertz et al., 2007), however, experiments with flow through thin quartz capillaries indicate a bound water 

layer thickness of 8 nm (Zheleznyi et al., 1972). Other authors have suggested even lower values, in a range 

of 0.5-4 nm (Grim, 1953; Khilar and Fogler, 1984).The higher estimated 6 suggests that other factors 

contribute to the lower brine permeability.  

Fines mobilisation might occur when the EDL repulsion between fines and the pores walls is high (Khilar 

and Fogler, 1984). During flow with concentrated (>5000 ppm) NaCl solution, Khilar and Fogler (1984) 

observed no mobilisation; the permeability was only reduced when the salinity fell below 4000 ppm. 

Therefore, we would not expect fines migration with the 200,000 ppm NaCl solution that was used in the 

current tests. Precipitation of salts might alter the pore geometry, however, no precipitates were observed in 

BSEM images. 

Alteration or collapse of fibrous illite clay mineral as suggested by Luffel et al. (1993) could account for the 

observed differences between gas and brine permeability. Those authors observed a five times higher 

permeability to gas than to brine in a sample with 0.7 mD permeability; they report that the effect of drying 

was larger in samples with a lower permeability. All groups contain 5% illite or more, and clay fibres 

perpendicular to the grain surface can be observed in BSEM and SEM images (Figures 3 and 5). The 

presence of illite perpendicular to the grains in Figure 5 indicates that not all illite fibres collapsed during 
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drying, which was also observed in North Sea samples by Wilson et al. (2014). 

 

Figure 11: The thickness of bound water, 6, that would need to be invoked in order to account for the 

measured difference between gas and brine permeability if the same pores controlled flow. The mobile 

porosity to brine may be lower than to gas due to a combination of bound water on the mineral surface and to 

illite fibres that are perpendicular to the grain surface in a saturated sample but collapse on the grain surface 

during drying. 

 

6. Conclusions 

We analysed permeability to brine and to gas for 63 Rotliegend sandstone samples by means of nuclear 

magnetic resonance transverse relaxivity data, mercury injection, X-ray diffraction, and image analysis.  

•  Permeability to gas was modelled using the pore size distribution from NMR to estimate which pores 

control flow. In samples with a low clay-free porosity, larger pores do not form a connected flow 

path and permeability is controlled by the smaller pores. In 38 out of 63 samples the measured gas 

permeability could be accounted for by the fraction of porosity with a pore size smaller than the 

mean pore size. 

•  Permeability to brine was modelled by taking a supposed immobile water layer into account; 

however, in several samples a bound water layer greater than 100 nm was required to account for 

measured brine permeability. This indicates that other factors, such as the presence of fibrous illite 

also contribute to the lower brine permeability.  
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•  Surface relaxivity was estimated from the specific surface area as calculated from mercury injection 

data and the specific surface area from NMR data. The average surface relaxivity for 63 samples was 

10 µm/s. 
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Highlights 

•  Permeability of 63 Rotliegend sandstone samples is analysed. 

•  Permeability is modelled using pore size distributions from NMR. 

•  Surface relaxivity is estimated from NMR and Hg injection.  

•  Brine permeabilities are modelled by estimating a bound water layer. 

•  The presence of illite clays may contribute to a lower brine permeability.  


