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Abstract

We prove versions of the Phragmén–Lindelöf strong maximum

principle for generalized analytic functions defined on unbounded do-

mains. A version of Hadamard’s three-lines theorem is also derived.
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1 Introduction

Versions of the maximum principle for complex-valued functions defined on
a domain in C have been of interest since the development of the classical
maximum modulus theorem and Phragmén–Lindelöf principle for holomor-
phic functions (see, e.g. [10, Chap. V]). It is important to distinguish be-
tween two types of result here. First, there is the weak maximum principle
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asserting that under certain circumstances a nonconstant function f : Ω → C

cannot attain a local maximum in its domain Ω: thus if Ω is bounded and f
is continuous on Ω we have

sup
z∈Ω

|f(z)| = sup
z∈∂Ω

|f(z)|. (1)

Second – and this will be our main concern in this paper – there is the
strong maximum principle or Phragmén–Lindelöf principle. This generally
applies to unbounded domains, and generally a supplementary hypothesis on
f is required for the conclusion (1) to hold. For example, if f : Ω → C is
analytic, where Ω = C+, the right-hand half-plane {z ∈ C : Re z > 0}, then
if f is known to be bounded we may conclude that (1) holds, whereas the
example f(z) = exp(z) shows that it does not hold in general.

We shall use the following standard notation:

∂f =
∂f

∂z
=

1

2
(fx − ify) and ∂f =

∂f

∂z
=

1

2
(fx + ify).

For quasi-conformal mappings f , that is, those satisfying the Beltrami
equation ∂f = ν∂f with |ν| ≤ κ < 1, the weak maximum principle holds
(see, for example [4]). This fact was used in [1, Prop. 4.3.1] to deduce a weak
maximum principle for functions solving the conjugate Beltrami equation

∂f = ν∂f. (2)

Their argument is based on the fact that if f is a solution to (2), then
it also satisfies a classical Beltrami equation ∂f = νf∂f , where νf (z) =

ν(z)∂f(z)/∂f(z), and hence f = G ◦ h where G is holomorphic and h is a
quasi-conformal mapping (cf. [7, Thm. 11.1.2]).

Carl [3] considered functions w satisfying equations of the form

∂w(z) + A(z)w(z) + B(z)w(z) = 0 (3)

and deduced a weak maximum principle for such functions, analogous to (1),
under certain hypotheses on the functions A and B. We shall take this as
our starting point.

For general background on generalized analytic functions (pseudo-analytic
functions) we refer to the books [2, 9, 11]. The following definitions are taken
from the recent paper [1].
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Definition 1.1. Let 1 ≤ p < ∞. For ν ∈ W 1,∞(D) (i.e., a Lipschitz func-
tion with bounded partial derivatives), the class Hp

ν consists of all measurable
functions f : D → C satisfying the conjugate Beltrami equation (2) in a
distributional sense, such that the norm

‖f‖Hp

ν
=

(

ess sup0<r<1

1

2π

∫ 2π

0

|f(reit)|p dt
)1/p

is finite. Clearly for ν = 0 we obtain the classical Hardy space Hp(D). If
instead ν is defined on an arbitrary subdomain Ω ⊂ C, we may define the
class H∞

ν (Ω) as the space of all bounded measurable functions satisfying (2),
equipped with the supremum norm.

We may analogously define spaces Gp
α(D), where α ∈ L∞(D), and in

general G∞
α (Ω), where now, for a function w we replace (2) by

∂w = αw. (4)

Once again, the case α = 0 is classical.

When ν is real (the most commonly-encountered situation), there is a
link between the two notions: suppose that ‖ν‖L∞(Ω) with ‖ν‖∞ ≤ κ < 1,

and set σ =
1− ν

1 + ν
and α = ∂σ

2σ
, so that σ ∈ W 1,∞

R
(Ω). Then f ∈ Lp(D)

satisfies (2) if and only if w :=
f − νf√
1− ν2

satisfies (4).

We shall mainly be considering the class G∞
α , for which it is possible to

prove a strong maximum principle and a generalization of the Hadamard
three-lines theorem under mild hypotheses on α, which are satisfied in stan-
dard examples. The referee has suggested that there may be a link between
these assumptions and the strict ellipticity of σ, although we have not been
able to show this.

2 Functions defined on unbounded domains

The following result is an immediate consequence of [3, Thm. 1], taking
A = 0 and B(z) = −α(z) in (3) in order to obtain (4).
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Proposition 2.1. Suppose that Ω is a bounded domain in C and that w
is a continuous function on Ω such that (4) holds in Ω, where α satisfies
2|α|2 ≥ |∂α|. Then |w(z)| ≤ supζ∈∂Ω |w(ζ)| for all z ∈ Ω.

Proof. Taking k = 2 in [3, Thm. 1], we require that the matrix M =
(mij)

2
i,j=1 be negative semi-definite, where, with a = −2|α|2 and b = −∂α,

we have

M =

(

a+ Re b Im b
Im b a− Re b

)

.

On calculating m11, m22 (which must be non-positive) and detM (which
must be non-negative) we obtain the sufficient conditions −2|α|2±Re ∂α ≤ 0
and 2|α|2 ≥ |∂α|: clearly the second condition implies the first.

Example 2.1. In the example σ = 1/x, occurring in the study of the toka-
mak reactor [5, 6], we have α(x) = − 1

4x
and ∂α = 1

8x2 ; thus the inequality
2|α|2 ≥ |∂α| is always an equality.

Note that by rescaling z we may transform the equation (4) to one with
α = − 1

λx
for any λ > 0 (with the domain also changing); then the inequality

requires that 2/λ2 ≥ 1/2λ, so that if we take 0 < λ < 4 the inequality is
strict.

Now for ε > 0 we write hε(z) = 1/(1 + εz), and note that whenever
Ω ⊂ C+ is a domain, we have that the functions hε satisfy

(i) For all ε > 0, hε ∈ Hol(Ω) ∩ C(Ω).

(ii) For all ε > 0, lim|z|→∞,z∈Ω hε(z) = 0.

(iii) For all z ∈ Ω, limε→0 |hε(z)| = 1.

(iv) For all ε > 0, for all z ∈ ∂Ω, |hε(z)| ≤ 1.

Suppose that ∂w = αw and that h is holomorphic; then ∂(hw) = βhw,
where β = αh/h. Moreover,

∂β = ∂(αh)/h = (∂α)(h/h) + α(∂h)/h.

That is, with h = hε, we have |β| = |α| and |∂β| ≤ |∂α|+ |α||∂hε|/|hε|.
Theorem 2.1. Suppose that Ω ⊂ C+ (not necessarily bounded) and that w
is a continuous bounded function on Ω such that (4) holds in Ω where α is
a C1 function satisfying 2|α|2 ≥ |∂α| + |α||∂hε|/|hε| for all ε > 0. Then
|w(z)| ≤ supζ∈∂Ω |w(ζ)| for all z ∈ Ω.
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Proof. Fix ε > 0 and M = supζ∈∂Ω |w(ζ)|. Suppose that M > 0. Then by

property (ii) there is an η > 0 such that for all z ∈ Ω with |z| ≥ η we have
|w(z)hε(z)| ≤ M .

Now, by property (i) and Proposition 2.1 we have

sup
z∈Ω∩D(0,η)

|w(z)hε(z)| = sup
z∈∂(Ω∩D(0,η))

|w(z)hε(z)|,

at least if 2|α|2 ≥ |∂α|+ |α||∂hε|/|hε|.

Now ∂(Ω ∩D(0, η)) ⊂ (∂Ω ∩D(0, η)) ∪ (∂D(0, η) ∩ Ω).
By hypothesis, |w(z)| ≤ M if z ∈ ∂Ω, and by property (iv), |hε(z)| ≤ 1

for z ∈ ∂Ω. So supz∈∂Ω∩D(0,η) |w(z)hε(z)| ≤ M .

By the definition of η we also have |w(z)hε(z)| ≤ M if |z| ≥ η with z ∈ Ω,
and in particular for z ∈ Ω ∩ ∂D(0, η).

We conclude that supz∈Ω∩D(0,η) |w(z)hε(z)| ≤ M . However, |w(z)hε(z)| ≤
M whenever z ∈ Ω with |z| ≥ η, and hence supz∈Ω |w(z)hε(z)| ≤ M . Now,
letting ε tend to 0, and using property (iii), we have the result in the case
M > 0.

IfM = 0, then by the above we have that supz∈∂Ω |w(z)| ≤ γ for all γ > 0,
and the same holds for z ∈ Ω by the above. Letting γ → 0 we conclude that
w is identically 0 on Ω.

Example 2.2. Consider the case α = − 1
λx

and ∂α = 1
2λx2 . For the hypothe-

ses of the theorem to be valid we require

2

λx2
≥ 1

2λx2
+

1

λx

ε

|1 + εz| .

If λ = 1 (and by rescaling the domain we can assume this) then this always
holds, since |1 + λz| ≥ λx.

In the following theorem, it will be helpful to note that we shall be con-
sidering composite mappings as follow:

Λ
h−→ Ω

w−→ C and Λ
h−→ Ω

α−→ C.
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Theorem 2.2. Suppose that Ω ⊂ C is simply-connected and that the disc
D(a, r) is contained in C \ Ω. Let h : C → C be defined by h(z) = rez + a,
and let Λ be a component of h−1(Ω). Set gε(z) = 1/(1 + εg(z)), where

g(z) = log

(

z − a

r

)

is a single-valued inverse to h defined on Ω. Suppose

that w is a continuous bounded function on Ω such that (4) holds in Ω with
α a C1 function satisfying

2|α|2 ≥ |∂α|+ |α||∂gε|/|gε| (5)

for all ε > 0. Then |w(z)| ≤ supζ∈∂Ω |w(ζ)| for all z ∈ Ω.

Proof. First we identify the equation satisfied by v = w ◦ h, where h is
holomorphic. Namely,

∂v = ∂(w ◦ h) = ∂(w ◦ h) = (∂w ◦ h)(∂h) = (∂w ◦ h)(∂h)
= ((αw) ◦ h)(∂h) = (α ◦ h)(w ◦ h)(∂h) = βv,

where β = (α ◦ h)(∂h). Note that ∂β = (∂α ◦ h)|∂h|2, since ∂(∂h) = 0.
The condition

2|β|2 ≥ |∂β|+ |β||∂hε|/|hε| (6)

at a point of Λ can be rewritten

2|α ◦ h|2|∂h|2 ≥ |∂α ◦ h| |∂h|2 + |α ◦ h| |∂h||∂hε|/|hε|.

Now gε = hε ◦ g; thus ∂hε = (∂gε ◦ h)(∂h).
That is, (6) is equivalent to

2|α ◦ h|2|∂h|2 ≥ |∂α ◦ h| |∂h|2 + |α ◦ h| |∂h|2|∂gε ◦ h|/|gε ◦ h|,

or
2|α ◦ h|2 ≥ |∂α ◦ h|+ |α ◦ h||∂gε ◦ h|/|gε ◦ h|.

The set Λ is open, and thus ∂Λ∩Λ = ∅ and also h(∂Λ)∩Ω = ∅. Moreover,
since h(∂Λ) ⊂ h(Λ) ⊂ h(Λ), we get h(∂Λ) ⊂ Ω \ Ω = ∂Ω.

Since w is bounded on Ω, the function v = w ◦ h is bounded on Λ, and
using the calculations above and Theorem 2.1 with condition (6), we see that

sup
z∈Λ

|v(z)| = sup
z∈∂Λ

|v(z)|.
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Since h(Λ) = Ω, supz∈Λ |v(z)| = supz∈Ω |w(z)|. Moreover, since h(∂Λ) ⊂ ∂Ω,
we have also

sup
z∈∂Λ

|v(z)| ≤ sup
z∈∂Ω

|w(z)|.

It follows that supz∈Ω |w(z)| ≤ supz∈∂Ω |w(z)| and we obtain equality.

We now provide a generalization of the three-lines theorem of Hadamard
(see, for example [8, Thm. 9.4.8] for the classical formulation with α = 0).

Theorem 2.3. Suppose that a and b are real numbers with 0 < a < b, and
let Ω = {z ∈ C : a < Re z < b}. Suppose that w is a continuous bounded
function on Ω such that (4) holds in Ω where α is a C1 function satisfying

2|α|2 ≥ |∂α|+ |α|| log(M(a)/M(b))|
b− a

+ |α||∂hε|/|hε| (7)

for each ε > 0. Then the function M defined on [a, b] by

M(x) = sup
y∈R

|w(x+ iy)|

satisfies, for all x ∈ (a, b),

M(x)b−a ≤ M(a)b−xM(b)x−a.

That is, logM is convex on (a, b).

Proof. Consider the function g defined on Ω by

h(z) = M(a)(z−b)/(b−a)M(b)(a−z)/(b−a),

where quantities of the form Mω are defined for M > 0 and ω ∈ C as
exp(ω logM), taking the principle value of the logarithm.

Now v := hw satisfies |v(z)| ≤ 1 for z ∈ ∂Ω, since |h(a + iy)| = 1/M(a)
and |h(b+ iy)| = 1/M(b).

Given that ∂w = αw and that h is holomorphic, then, as we have seen,
∂(hw) = βhw, where β = αh/h. Moreover, ∂β = ∂(αh)/h = (∂α)(h/h) +
α(∂h)/h.

Now log h = z−b
b−a

logM(a) + a−z
b−a

logM(b), and so

∣

∣

∣

∣

∂h

h

∣

∣

∣

∣

=
| logM(a)/M(b)|

b− a
.
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Thus the condition (7) on α implies that β satisfies 2|β|2 ≥ |∂β|+|β||∂hε|/|hε|.
Hence we can apply Theorem 2.1 to v, and the result follow.

Remark 2.1. As in Example 2.2, rescaling z is helpful here, since if z is
reparametrized as λz, then ∂α is divided by λ and b − a is also divided by
λ: thus the inequality (7) becomes easier to satisfy.

3 Weights depending on one variable

We look at two cases here, for functions defined on a subdomain of C+,
namely weights α = α(x) and radial weights α = α(r). We revisit Theo-
rem 2.1.

Since we now have ∂α = α′/2, we obtain the following corollary.

Corollary 3.1. Suppose that Ω ⊂ C+ (not necessarily bounded) and that
w is a continuous bounded function on Ω such that (4) holds in Ω where
α = α(x) is a C1 function satisfying 2|α|2 ≥ |α′|/2 + |α||∂hε|/|hε| for all
ε > 0. Then |w(z)| ≤ supζ∈∂Ω |w(ζ)| for all z ∈ Ω.

Likewise, in polar coordinates (r, θ) we have

∂ =
1

2

(

e−iθ∂r −
ie−iθ

r
∂θ

)

,

giving the following result.

Corollary 3.2. Suppose that Ω ⊂ C+ (not necessarily bounded) and that
w is a continuous bounded function on Ω such that (4) holds in Ω where
α = α(r) is a C1 function satisfying 2|α|2 ≥ |α′|/2 + |α||∂hε|/|hε| for all
ε > 0. Then |w(z)| ≤ supζ∈∂Ω |w(ζ)| for all z ∈ Ω.

Suppose now that α(x) = axµ. The condition we require is then

2|a|2x2µ ≥ |aµ|xµ−1/2 + |a|xµ ε

|1 + εz| ,

which is only possible for µ = −1. However, it is easy to write down poly-
nomials in x that do not vanish at 0 but which satisfy the conditions of
Corollary 3.2.
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