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Abstract

In Part 1 of this paper the concepts of input and output frequency
subdomains were introduced to give insight into the relation between
one dimensional and multi-dimensional frequency spaces. The
visualisation of both magnitude and phase responses of third order
generalised frequency response functions was also presented. In this, the
second part, symbolic expansion techniques are introduced and together
with the results achieved in Part 1, yield new methods for analysing the
properties of generalised frequency response functions. Case studies are
included to illustrate the application of the new methods.

Keywords: Nonlinear Systems, Generalized Frequency Response
Functions, Frequency Domain Analysis

1. Introduction

The great success of linear frequency domain analysis for describing the dynamic
behaviour and assessing system stability in the linear systems case can be attributed to the
simple analytical expressions and the transparent relationship between time and frequency
domain behaviours. Intuitively therefore if the closed-from expressions for the generalised
response functions of a class of nonlinear systems could be obtained, a similar analysis might
be carried out on the properties of the GFRFs and an extension of the whole methodology of
linear systems in the frequency domain to the nonlinear case may be possible. The method
proposed by Billings and Tsang (1989a) for evaluating the GFRFs provides such a possibility.
The approach involves estimating a discrete-time polynomial NARMAX model of a nonlinear
system and obtaining the GFRFs directly by probing the model. The closed form of analytical
expressions for the GFRFs can be obtained with this approach. Later, Peyton Jones and
Billings (1989) completed this approach by developing a recursive algorithm for computer
implementation. In this, Part 2 of the paper, the results from those previous studies will be
used and combined with symbolic computations and graphical techmiques in higher
dimensions to give a unified study of the properties of the GFRFs for a broad class of
nonlinear systems. Case study examples are included to illustrate the effectiveness of the new
methods. For the sake of completeness, the parametric model based method for estimating the
GFRFs are briefly reviewed first. The map from wavelet NARMAX models to GFRFs has
also been derived by Boaghe and Billings (2000) but these results will not be discussed here.




2. Investigating the GFRFs Using Symbolic Expansions and Graphical Techniques in
Higher Dimensions

2.1 The NARX Model and Generalised Frequency Response Functions

A wide class of nonlinear systems can be described by the NARMAX (Nonlinear
AutoRegressive Moving Average with eXogenous inputs) model (Leontaritis and Billings
1985)

yly= Flyte= D -k Jia@=Dpwumlr=k Ry (t~Do L5~k (21)

where F[-]denotes some discrete nonlinear function of the lagged input signalsu(t —%, ),
outputs y( — k_v) , and noise (1 — kg) ; ¢ is used to enumerate the sampling intervals and & the

lags. Algorithms for detecting the model structure, estimating the parameters and validating
these models have been well developed (Korenberg et al 1988, Billings et al 1988) and have
been used to identify many physical systems from real plant data.

Once this identification process is complete, the moving average noise terms (which were
included to ensure unbiased estimation) may be discarded, yielding a deterministic ‘NARX’
model containing input and output terms only. The polynomial structural form of the NARX
model can be described by

M
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where y (k) , the NARX mth-order output of the system, is given by
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contains a pth-order factor in y(k —k,) and a gth-order factor in u(k — k;) and is multiplied by

the coefficient o A "km) :

The successive generalized frequency response functions can be obtained (Billings and
Tsang 1989a) and the recursive computation formula of these is given by (Peyton and Billings
1989):
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where H, (j&, -, j@,)is given by
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The recursion in the above equation finishes with p=1 where H,,(j@,, -, j@,)has the
property
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Note that (2.4) gives the asymmetric generalised frequency response functions, although it
is a simple matter to obtain unique symmetric values by adding all the asymmetric GFRFs
over all permutations of the arguments and dividing by the number (Schetzen 1980) to give.
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2.2 Symbolic Expansion Of the GFRFs and the Interpretation of the Basic Elements

Equation (2.4) provides a means of obtaining the higher order GFRFs in terms of the lower
order functions. This parametric method has particular significance in the sense that closed
form expressions involving the parameters of the system time domain model are obtained and
this makes it possible to investigate the link between the system time domain dynamic
behaviour and the characteristics of the GFRFs. However, as noted in the introduction, the
structure of the GFRFs remain concealed in this recursive form, which limits further
exploitation of significant results in the frequency domain analysis of nonlinear systems.
While it is straightforward to tackle this problem by directly expanding the recursive
expression of (2.4), exercising such manipulations by pen and paper can be tedious and hard
work especially when dealing with higher order functions. In this study, symbolic
computations will be used to automatically derive the fundamental structure of the GFRFs
from (2.4). In symbolic computations the basic data type for representing the mathematical
quantities is a character string or formula rather than a sequence of numerical values and the
mathematical information and structure of the model are therefore retained. Most importantly,
the final results obtained in this way, for the first time, clearly show how the structure and
properties of the GFRFs depend on the parameters of the system model.

To illustrate the development, consider a nonlinear system described by the NARX model
with a quadratic nonlinearity in the output,

y(k)= 07y(k-1) + 03u(k-1) — 0.08y(k-1)y(k—3) 2.8)
linear outpur rerml linear inpur rerm1 pure outpur nonlinearity of Degree2 term 1
p=l,g=0 p=0,g=1 p=2,4=0
lagl=1 lagl=1 lagl=l,lag2=3

which is a specific instance of the general NARX model (2.3) with
¢ =07, ¢,;(1)=0.3, ¢,,(1,3)=-0.08 (2.9}

For convenience in the symbolic manipulations, a slightly modified notation will be
mntroduced to denote the coefficients and lags of each term in the NARX model (2.3), which,
using the new notation, becomes
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where the subscript g ~ » means the hAth term in the class of terms with p output factors and
q input factors. Correspondingly the coefficient and the ith lag of this term are denoted by

w




B and k
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respectively. To make this clear, the NARX model (2.8) is re-written in this
manner as,
Y(k) = o Yk = Kygy )+ Conptt (B =Ky )+ Cop V(K = kg Y=k, ,) (211
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From (2.4), the first, second and third order frequency response functions of the system
(2.8) are given by
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where @, ,w, and @, are frequency variables. FigsFig. 1, Fig. 2 and Fig. 3 show the
H, H,and H, above respectively. Both the expression and the plot for the first order

frequency response H, are straightforward and can be well understood from a knowledge of

linear systems theory. Fig. 1 indicates that the linear frequency response of the system (2.8)
behaves like a low pass system with gain at zero frequency equal to unity. Unfortunately the
higher order GFRFs H,and H,are not transparent due to the recursive form in equation

(2.14) and (2.15). This makes it difficult to investigate the properties of H,and H; and or to

give a simplified explanation of the sophisticated plots shown in FigsFig. 2 and Fig. 3.
Symbolic manipulation can be employed to substitute the lower order GFRFs into the
expressions of the higher order GFRFs and to perform the complicated procedure of
simplification to-obtain the expanding forms of expressions (2.14) and (2.15). These are given
by
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Fig. 1 The first order generalised frequency response function H, of the nonlinear system (2.8)
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Fig. 2 The second order generalised frequency response function F, of the nonlinear system (2.8)

The obvious advantage of expressing the GFRFs in expanded form is that this explicitly
reveals the relationship between the time-domain model parameters and the GFRFs of a
nonlinear system. Hence the contributing effect of individual time domain terms on the
properties of GFRFs becomes explicit. As will be seen later, a small change in the coefficient
or the lag of some terms in the time-domain model can result in a new set of GFRFs with
totally different properties, which in turn produce distinct nonlinear effects for a fixed input.
Observe that the expanding forms of H,and H, along with the expression of H, display

a similar structure and can be written as follows in a unified form
R n
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where the coefficients of the exponential terms in the numerator, ¢, --,c, are decided
solely by the coefficients of the terms in the time-domain model ¢y, ¢, andc,,, while
the lags in the time-domain model k., ;. ko i+ Koy andk,y , ,alone contribute to the

coefficients, (k!,---,k'),-+, (k,,---,k") which are associated with frequency variables in the
numerator. The constant g in the denominator of equation (2.18) is the'number of the terms in
the form of an me-variable function 1-c¢y,,expl-jk,,, (@, +--+@;")] , where

(@] ,---,w")is a subset of (@,,---,@,) with m elements. In general, g will be less than the

total number of the combination of n frequencies taken m at a time. The inequality becomes
an equality when the symmetric form of the GFRF is considered. Clearly the denominator in
(2.18) is determined only by the linear output terms.

For a deep insight into the structure of an nth-order GFRF as well as the dependence of the
GFRF on the model coefficients, the right-hand side of equation (2.18) can be further
decomposed into some basic elements,

R n
B The summation of exponential phasors: Zq expl—J Zk;wi], which determines the
=1 i=1
minima of the nth-order GFRF
W The factors in the denominator, which jointly determine the maxima of the nth-order
GFRF:

1
- Jd=1--,n , which are n-dimensional functions
L= ¢yg,, eXp(=j kg _1@;)
dependent only on one of n frequency variables.

" 1 . A . i
(ii). , Which are n-dimensional functions

1—-c, expl-jkyg (@, +-+@, )]
dependent on m distinct frequency variables taken from (@, -, @)
1

(iii). - , which is an n-variable function
L=cy, eXpl=j kg 1 (@, +- - +T,)]

(0).
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Fig. 3 The third order generalised frequency response function H, of the nonlinear
system (2.8)

These elements provide a means of interpreting the complicated plots of the higher order
GFRFs. For the second order GFRF H, in this case, substituting the numerical values of the
coefficients into (2.16), the corresponding basic elements in (2.16) can be obtained
straightway as follows:

The exponential phasor : 0.0072exp[~j (4@, +2w,)] (2.19)
1 1
1-0.7exp(~jm,) 1-0.7exp(~ j@,)

The factors in the denominator : (2.20)

1
1-0.7exp[—j(@, +@,)]

Fig. 4 shows the gain and phase plots of the basic elements above. If
1/[1-0.7exp(—j@,)]is defined as a one-dimensional function, the gain plot is exactly the

same as the gain plot of H, shown in Fig. 1(a). The gain plot of the factor
1/[1-0.7exp(—jw,)] in (2.20), which is defined as a two-dimensional function dependent
only on the variable @,, can be viewed as the extension of Fig. 1(2) to a two-dimensional
space. Any plane defined by @,=constant in Fig. 4(a) is the same as Fig. 1(a). Similarly, for
the gain plots of 1/[1-0.7exp(-jw,)]and 1/{1-0.7exp[-j(@, +@,)]}, any slice cut by




@, =constant and @, =®, + constant displays the same curve as in Fig. 1(a). Since a

logarithm scale is employed in calculating the magnitude frequency response, the gain of H,
is the sum of the gain of each individual element in (2.19) and (2.20). This fact is reflected in
Fig. 2(a) and Fig. 4(a) (c) (e) (g), wheére it can be observed that the gain plot of H, is
actually the superposition of the gain plots of all the basic elements. It follows that the three
distinct ridges in Fig. 2(a) are the ridge along @, =0 in Fig. 4(a), the ridge along @, =0 in
Fig. 4(c) and the ridge @, +w, =0in Fig. 4(e) respectively. The effect produced by the
second order GFRF will first become significant at those peaks and ridges in Fig. 2(a), where
the gain is at a maximum. The ridges corresponding to @, =0or @, =0 indicate that there
will be significant intermodulation effects on the output response if the input signal contains a
significant d.c. bias while the ridge along @ + @, =0, which corresponds to zero frequency
in the output frequency domain described in §4, indicates that there will be a significant
d.c.shift in the output response. The peak area close to the origin, which results from the
intersection of these three ridges, indicates that there will be a strong intermodulation effect at
low frequencies for low frequency excitations.

The features of the gain plot for H,can therefore be well understood based on this type of
analysis. Note that the phasor in the numerator of (2.16) makes no contribution to the
characteristics of the gain plot of H, and only affects the d.c. offset on the gain level. A
superposition relation also exists between the phase plot of H,and the phase plots of the
constituent elements due to the fact that the phase of the product of phasors is the sum of the
phase of each phasor. Note that the main contribution to the features of the phase plotin H,
comes from the phasor element in the numerator.

In the case where the symmetric form of H, is needed, an expression for H.," can be
given from (2.7) and (2.16) as follows,

o 0.0036{exp[—j (4@, +2m,)]+exp[-j (2w, +4w@,)]} 221)

2

2 T [1-0.7exp(- j@)][1-0.7exp(~ j@,)]{1 - 0.7 expl— j(@, +T,)]}

which takes a very similar form to the asymmetric H,. The only difference is that now the
numerator is replaced by a sum of two phasors. This difference however results in a
significant change to the gain and phase plots of H,, which are shown in Fig. 5. Compared
with Fig. 2(a), two deep gorges appear in the gain plot of the symmetric second order GFRF
as seen in Fig. 5(a). The new features are generated by the numerator element of (2.21) where
now the two phasors interact with each other. The gain plot of the numerator of (2.21) shown
in Fig. 6(a) confirms the explanation above.
For the third-order GFRF, substituting the coefficients in (2.17) with numeric values and
separating the basic elements gives the results below
B The numerator
0.0001728x{exp[—j (4w, + 5@, +3w,)]+exp[~j (7w, + 5w, +2w,)]
—0.7x{exp[-j (5w, +6@,+3w,)]+exp[-j(Tw, + 6w, +3w;)]} }
B The factors in the denominator
(1) 1/[1-0.7exp(—=j @,)], 1/[1-0.7exp(~j @,)], 1/[1-0.7exp(~j @,)]
i) 1/{1-07exp[-j (@, +w,)]}, 1/{1-0.7exp[-j (w,+w@;)]} (2:23)

(i) 1/{1-0.7expl-j (@, +w,+w,)]}

(2.22)




Gain{db})

2 (normalised)

0.2

f1 (nomalised) 0.2

(a)

Gain{db)

£.2

1 frommalised) 02

(©)

Galn(db)

2 (nomalised)

i (normalised) 0.2 o2

(e)

Gain{db)

IS A
T TE RN

& 1
n
o
o

0.2

12 (nomalised)
1l (ommaliseay 02 02

g

(b)

(d

Phase(degree)

Phase(degree)

w0
(=]

. J
@
=3
@
kT
- ’
w
B
e 1

-50

-0.2

0
g 0.2 -0.2 :
1 (normalised) f2 (normalised)

Phase(degree)

0.2

0
02 f2(nomalised)

: 0.2
02 ¥

0
#1 (normalised) -0.1 12 (normalised)

(b)

0.2 -0.2

Fig. 4 (2)(b) the gain and phase plots of the element 1/[1- 0.7 exp(—j@,)]
(c)(d) the gain and phase plots of the element 1/[1-0.7 exp(- jw@, )]
{e)(f) the gain and phase plots of the element 1/[1-0.7 exp(—j(w, + @,))]
(g)(h) the gain and phase plots of the element 0.0072exp[-; (4@, +2w,)]

10




Galn(dB)

Gain(db)

0.1 -0.1 {2 (normalised)

0
1 (nomalised)®:! 0z -0.2

(a)

200

Phase
o

f1 (normalised) g2 -0.2

(b)

Fig. 5 The gain and phase plots of H ™" given by (2.21). (a) gain; (b) phase

40+

-50 4

&
o

&
(=]
.

&
=}
/

0

-0.2
f2 (normalised)

f1 (nomalised) 0.2 02

©

Phase(degree)
o

01 ,
f (nomalised) 0.2 02 B (romalised)

(d)

Fig. 6 The gain and phase plots of the numerator element of (2.21). (2) gain; (b) phase

11

f2 (normalised)




[ =558

o

GF\\J ‘/ f2nommalised)
a4

an

Hirormaisez) 81

| = 7600
|
&
=
10005
=014
g
2 ;
B g x
N \ ,
£ | k) /
g0 I 4
| o1
- N

015 3 ¥ 3 ‘1; ‘
4
o Iy
Pt B
g by oy \ ;
Eoad iy
T I £
oo T} R
i |
kS
]

TH{noamai
Serp f1{nomalised)

(c) (@

Fig. 7 The gain and phase plot of the numerator element of H;™" in (2.17)
0.0001728 % {exp[— j (4@, + 5@, + 3w, )] + expl—j (7@, + 5@, + 2w,)]
- 0.7x{exp[-j (5w, + 6w, +3w,)] +exp[- j(Tw, + 6w, + 3w,)]}}

(a) The gain plot. (b) Isoplanes of the gain.
(¢) The phase plot (d) Isoplanes of the phase




The numerator element (2.22) is shown in Fig. 7 and the factors in the denomuinator are
displayed in Fig. 8. The plots of the basic elements reveal the individual features that are
not evident in Fig. 3 where the whole third order GFRF is depicted. A prominent feature of
the gain plot in Fig. 7 is the appearance of two distinct holes, which, like the two gorges in
Fig. 6(a), are generated wherever the phasors in the numerator element cancel with each
other. Note that Fig. 3(a) displays two holes at exactly the same position as in Fig. 7(a).
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The gain responses plotted in Fig. 8(a) (c) and (e) present the peak planes along @, =0,
w+a,=0 and @, +w, +@,=0 where the corresponding gains reach maximum values.
Similar peak planes also exist in the gains of other elements in the denominator which, for the
sake of saving space, are not shown in Fig. 8. The peak planes indicate that the third order
GFRF will produce strong nonlinear effects for an input with low frequency or d.c.
components.

The analysis in this way can be readily extended to higher order GFRFs of three and above.
In general, the expanded form of higher order GFRFs is obtained first and then the basic
elements with simple forms are extracted. A clear image of higher order GFRF can finally be
achieved through examining the features of each individual element.

The contributions of the terms in the system time domain model to the characteristics of the
GFRFs have been made clear through the analysis above using a combination of symbolic
expansions, decomposition and graphical techniques. While the coefficients and lags of the
linear output terms together with nonlinear terms determine the prominent features of the
magnitude of the GFRFs, which indicate where strong nonlinear intermodulations will take
place, the nonlinear terms also contribute to the phase response. In order to assess such
dependence of the GFRFs on the model structure and coefficients, it is important to see what
changes in the model terms will have on the GFRFs. This can also easily be achieved using

the methods above. For example, if k,,, ;, the lag of the linear output term in (2.11) is

changed from 1 to 3, the GFRFs will present quite different features. In this case, the GFRFs

of the first three orders become,

_ 0.3exp(—j @,) (2.24)
1-0.7exp(—j 3a,)

1

Asym

_ 0.0072exp[~; (4w, +2w,)]
: [1-0.7 exp(— j3@)1[1-0.7 exp(- j3w@,)]{1 - 0.7 exp[- j3(w, +@,)]}

(2.25)

0.0001728x{exp[~j (4w, +5w, +3w;)]+exp[—j (Tw,+5w,+2w;)]
asm _ —0.7x{expl-j (7@, +8w, +3w,)]+exp[-j(T@, + 8w, + 5w;)]}} (2.26)
: [1-0.7exp(—j 3w,)] [1-0.7exp(—j 3w@,)][1-0.7exp(~j 3w,)]
{1-07exp[~j 3(@, +@,)]}{1-0Texp[~j 3(@,+w,)]}
{1-0.7exp[-j 3w, +@,+@;)]}

The linear output term dominates the structure of the basic elements in the denominator of
the GFRFs and hence has a significant effect on the gain of the GFRFs. Fig. 9(a) shows the
first order GFRF which now exhibits two resonant peaks at @, =+0.33in addition to the

resonant peak at zero frequency in Fig. 1(a). The second order GFRF is shown in Fig. 9(c)
where the ridges in Fig. 2(a) are replaced by new ridges as indicated by the marked curves B,
C, D and E in Fig. 9(d), which also displays the corresponding contour plot.

Fig.20 (c) (d) and (e) shows the basic elements in the denominator of H, . Compared to Fig.
8 the gains of the elements change considerably, especially the -elements
1/{1-0.7exp[~j3(w, +w,)]}and 1/{l-0.7exp[- j3(w, + @, + @,)]} which represent new peak
planes along @ +@, =+0.33 and @, +a, +@, =+0.33 in Fig. 10(d) and (e) respectively.
Such changes also bring new features to the third order GFRF which is plotted in Fig. 10(a)
where marked areas A, B, C and D indicate the new peak planes. Notice that the change to the
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lag of the linear output term also has an influence on the numerator element of H., see Fig.
10(f), though not as much as it does to the elements in the denominator.
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Fig. 9 The GFRFs of the system (2.11) with the k10>-1_1 changed to be 3:
(2)(b) The gain and phase of H;
(c) The gain of H, ; (d) The contour plot of (c).
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3. Case Study Examples
3.1 A Simulation Example

Consider the Duffing oscillator, which can be expressed by
mD*y+cDy+ky+k,y* +ky’ = x(z) (2.27)

where D =d/dt and the constant parameters are chosen as: m=1, ¢=20, % =10*,
k,=10"  k,=5x10°. In this case, the system has a resonant frequency of

f. =vk/m/27r =15.75Hz . A simulation was implemented using a fourth-order Runge-Kutta
algorithm under excitation by a Gaussian noise x(r) of bandwidth 90Hz with r.m.s. 10.0.
The input/output data were recorded at a sampling interval of 5msec. The estimation and
validation methods described in Worden er al (1992) were employed on 1000 pairs of
input/output data to yield the NARMAX model

y(k) =1.6696 y(k —1)—0.90348 y (k — 2) +3.0027 x 107 x(k) +1.8040x107° x(k —1) (2.28)
+2.7676 X107 x(k — 2) —218.30y* (k —1) —106650° (k —1) N

or by the new notations,
y(k) = ¥k — kg )+ €Yk =k, )+ Epipi U= Ky 1) Copalhe —k[)h—Z_l)

FCopast(k — Kopys 1)+ Caguy Yk — kg, Iy (k—Kppy o) (2.29)
FCspm Yk —ksgy )Yk —ksp,y 5}y (K=K, 5)

where
€100y =1.6696, ¢, , =—0.90348, ¢, = 3.0027x10°, Copnn = 1.8040x107
Cotrs = 2-7676X10_6’Czo>—1 = —218.30, ¢5,, = 106650 (2.30)
k10>—1_1 =1, k10>2_1 =2, k01>—l_1 =l k01>-2_1 =1, k01>3_1 =2 k20>1_1 = kﬁﬂ)—lwz =]

k’;’DH_I = k30>1_2 = k30>-1_3 =1

The corresponding generalised frequency response functions are obtained first from (2.4)
and then the procedure of symbolic expansion is carried out to yield the expanded expression.
The first three order GFRFs are given below

Coi EXD(=T  Rugy 0 ) F sy BP=T  Kipos 1)+ 0y 5 BXPL=F K

1=y €Xp(—J  Kypyy 1@1) = Cioer €XD(=J Ky 1)

H,(jo,)= w30@) 5 31
HE™ (j, o) =
Cagn1[Cors1 €XP(— Ky (@) + oy €XP(— Ry, p @) + Co1s3 exp(— jko13 1@2)]
{50 BXpl— 7R 0 K o P Ky 10553)]
Fogen €XP—7(oney s+ (Ragyy o + 00 1 JER)]
5 OXPI=J (R 400 F (R 3 Thoiny 138501}
[1—cyg, €xP(=J ki) (@) = Cio0 €XP(=J  kigrp @)1
[1-cig €Xp(—J Kooy 1T,) — Ciona €XP(=] Kigry 1775))]

{1- ¢y, €xP[-J km>-1_1 (@, +@,)]— Cpr €XD-]  Kigys (@, +@,)]}

1




(.s\m

(j@,, j@,, jo;) =
—{CIOH exp(']”"omﬁxml} T Cyppn exp("jkowz_lwl) + Cyg,5 EXP(— jkops @))]
[C10>1 exp(_jkow B2 )+ Cip2 exp(_jkmw 1@7*) + Cors exp(—jkm»? 1, ]
(€101 €XP(= kg1, 1T5) + Cigp €XP(= o1 1T @)+ Ciop3 €XP(— jKops_15)]
{—CSOH expl—j (Kypi 2@, + (kagy_y + Koy 2)T, + 2Ky, 15 )N+
Coos1Cr0m1 €XPI=J (Ko 1 F sy o) + (ki y kg g+ Kagey o) + 2k, (175 ]+
C§0>1C10>2 exp[—j ((k10>~2_1 & k20>lu2)wl + (k10>2_1 e k?.();—]_l + k20>1_2 )@, + 2k20>1_1‘73 N+
~C0ry €Xp[~J (2ky01 o) + (kygyy 1 +Kagey o) + Kopy 105 )+
CaoiCions OXPI=]  (Zhingsy o + (Kygyy s T Koy 1+ Kagy 2 )5 + (Rygyy s +Kggyy )3)]+
C220>1‘310>v exp[—Jj (2}{20»1?2@'—1 + (kygrs 1 F Kager 1 F Kagr 2 )T, + (kygn y + ko, )T, )]+
Cs0,1 €XPl—j (ksgyy 3T + Koy T kg @5)]+
Csps1Ciomt EXPL=7 (g 1 F Kago )T + Ry F Koy )@, + ks 5]+
Ca001C1om €XP[ = ((kigya_1 + Kspmy_3 )1 + (Kigny_; + Kopa 2 )@, + kg, 5)]+
C30m1C1gm1 EXPL—J (ks 3T + (Kigy_y + sy o) + (Kigmr 1 T Ksge_ )31+
CsomCiona EXPL=J (kg s, + (i s sy 2 ), + (Rigun o + Ky 1)@5)]+
C3091Cios1 EXPL— T ((Rigy_s + Kagny_3 )T, +(2hig, o+ gy )T, + (Koo g + s )T3)]+
s, il SXD— 1K g w7k k30>—1_3)m1 +
(kg1 Kignz_1 + Ksgrr_2 ), + (Kigyy_y + Kgy 1 )T3)]+
CaoniCioriCr0r2 EXPI—F((Kgy | +Hapq 3 ), +

(Rygor 1 T higs 1 T Ksgmy 2002 + (Kigps  +Rsg0 )w;)] }

U—c exp(=Jj ks @)~ Cipnn €XP(—J kg2 @)
(L1—cipps €XP(=] Kipi_@2) = Cip0n €XP(=J  Kyg ()]
(=i €XP(=J  Kigmy 1 @3) = Cro02 €XP(= ] Kigp 1 @5)]
[1—Ciop, €XP(=] Ky (@, +,)) = C gy €XP(—jkiyo, 5 1 (@, +,))]
1= €XP(=] kygy (@, +T3)) = Cpp, 5 €XD(— jhig s (@, +T5))]
[—cy, eXp(—j kg, (@ +@T, +@;)) = Cyppp EXP(= Ky p (@, + T, + ;)] } 233}

An insight into the nonlinear behaviour of the Duffing Oscillator can now be gained by
investigating the GFRFs above with the aid of the graphical techniques. From eqn. (2.31), the
linear FRF of the estimated Duffing oscillator has two poles corresponding to the normalised
resonant frequency f =*(15.57/200)=%0.079 , which can easily be identified in the

magnitude plot of H,. This is shown in Fig. 11(a) where two resonant peaks are apparent.

The linear part of the system response therefore has a maximum gain when the excitation
coincides with the resonant frequency. The denominator elements of the second order GFRF
in eqn. (2.32) have the same structure as H,; and the magnitude hence possesses maxima at

f,=10.079, f,=%0.079 and f; + f, =+0.079 respectively which are indicated by the
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ridges in the two-dimensional magnitude plots, Fig. 12(c) (d) and (e). The maxima of the
denominator elements serve as the local maxima of £, .

19




Gain(dB)

Gain(dl)

Gain(db)

f1 (normalised)

(2)

(b)

f1 (normalised)

Fig. 11 H,(jw,) for the estimated Duffing oscillator system (2.28): (a) Magnitude: (b) Phase
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This fact is reflected in the H,magnitude plot where there are six ridges along the lines
f1=20.079, f,=20.079and f, + f, =%0.079. The characteristics of H,indicates that

there will be a significant contribution from the second order GFRF to the system output if the
input contains a Duffing oscillator resonant frequency component and if any two input
components conform to the relation, f; + f, =+0.079. In this case, the energy will be
transferred by intermodualtion to the output component at the resonant frequency. Fig. 12(e)
shows the magnitude of the numerator element of H, which is an almost flat surface. This

means the numerator has very little influence on the features in the magnitude of H,, though
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it does reduce the gain level of H, . The analysis of the third order GFRF is very similar. The

maxima of the denominator elements of H,again determine the local maxima of H;which
are located at f,=%0.079 . f,=x0079 , f =+0.079 , f;+/f,=%0.079

fo+ £, =%0.079, fi+ f, + f; =20.079. The magnitude graph of H,exhibits several peak
planes as seen in Fig. 13(a), and these correspond to the maxima of H. The magnitude plots
of the denominator elements help to reveal an accurate identification of the features of H,.

Fig. 13(b) indicates that for an excitation at the Duffing oscillator resonant frequency, which
means f,(f,or f;) =+0.079, there will be a significant contribution to the system response

from the third-order output y,. It can be further observed from Fig. 13(c)(d) that input
components whose  frequencies  meet  the  condition, fi+ f, =20.079
or f, + f, + f; =£0.079, will transfer energy to output components at the system resonant

frequency. Fig 24(b) shows the phase of i
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Fig. 14 Phase Response for H,, (2.32)and Hj, (2.33): (@) H, phase; (b) H,phase

3.2 An Experimental Example Using real Data

This example relates to a study of the dynamic effects of wave forces on a large offshore
structure of the type used for oil extraction in the North Sea. Worden et al. (1994) applied the
NARMAX modelling technique to identify the wave force dynamics of U-tube, De-Voorst
and Christchurch Bay data with the aim of improving the accuracy for predicting the forces.
One of the results from Worden et al. (1994) will be used here and the new methods described
above are employed to analyse the frequency response characteristics of the estimated
nonlinear wave force model. A NARMAX model was fitted to the velocity (input) and force
(output) data set which were measured at a sampling rate of 10Hz on a smooth cylinder fixed
in the Delta flume of the De Voorst facility. The resulting model of the form was

y(k) = ¢ (k= kg )+ Crora Yk —Kigen 1)+ Cop (K = JTco1>u1_1) + gy a1t (K _k01>-2_1)
+Cop, 5k~ kg5 1)+ Cozmtt (k= koz.:—:_l)“(k — k512 Yu(k = kg _5)

2

+Cp, Yk — k21>1_1)y(k — kzm_z)u(k —kyp 5)

where




= 0.85124,c,,, = —0.29028,¢,,,, = —25.433,¢y,,, = 736.79

ST
Cops = —7115.81, ¢y, =47.754,c,,,, =0.0010364
: i - (2.35)
k10>1 1 zl?kl()»!_] = Jvkowu =4, kox»»z 1 =0,kg. 3= kos»u = kos»x,z = k03>1"3 =4

= k‘rm_z = 1=k21»1_3 =4

’Jl:a-l ook
The first three generalised frequency response functions of the model (2.34) are given in the
expanded form as follows
. Cotn1 €XD(— ] Kooy 1) F Copa OXP(=] Kppn @)+ Copps €XP(—J  Kgys 1)
H,(jm,)=

(2.36)
1=y, €XP(=]  Kigey 1) — Ciopz EXP(—J Kiowa @)

H; =)

5 (J@,y, jo,, jo) = exp(= jkosq_sT3) X

{C21>IC§1>-] expl—j ((kgpa_y +Kyr 2T + (g o + Ky 1 )@5)]+
Cmﬂcéb-z exp[—Jj ((kﬂb—’_’_l & k21>1_2}w1 + (k01>z_1 + k21>-1_1 )@z, )]+
CZ]>1C[?1>-3 expl—j (Chops  + Kopa 2 )T, + (Kyps k21>-1_1)w2] *
Car1CunsaCorsz EXD[—] ((Rggy o+ Ky 2 @, + (kg k21>—1‘1)m?,)] 3
Cm1CorCora EXPI=J  ((Roys 1 +Roiyy ), + (Kopy  + Ky )51+
Cao1ConiCors EXD[=F (Koo s +Kain_2 ), + sy Koy )T,)]+
CoiiConiCors EXPI=]  (Koys_y + Kapyy_2); + Koy 4 Kypyy )T,)]+
ComiComaCorss EXPL=J (ka1 oy 2 ) + (Rops 1 TRy ),)]1+
CogriConaCores EXPI=T  ((Rypssy T g o) + (kgra_y T ks )T5)]+
Cozrs EXPL—J (Kozoy 1T T Kosy 2T, Al

Cosr1C10m1 EXPL— TKggps_ @) + (Kigyy_y T Kogor_2)T3)] = (
CosriCror1 EXPL— J((Rgzyy_y + Kigoy )Ty + Koz ,5)] =

CoziCiora EXPI— J((kyg,y_y + Koz )T+ Kosy o175)] =

CosriCior2 OXPL— j(Kgyy @, + (Kyg,p_y T Kz 2)T5)] =

Cosr1Crors EXPL~ j (kg _y + Koy ) + (g o + Kz _2)@2)]+
COBrlclzm-?. exp[—J ((kmuj +kgsy )+ (k10>-2_1 + ks, )T, )+
CosriCiomCrors EXPL= J((Kigyn s + Kz )T + (higyy_y + Koso_2)T)]+

Coa1C10-1 1052 EXP[— ((kub—u + ko3>-1_1 )@, + (k10>2_£ + k03>1_2 )@,)]}

[1 ¢y, €Xp(=J km>-1_1m'1 )= Cio0 €XP(—J k10>-2_1w1 )
[1=¢p0, €XP(—J Kyiguy @) ~Cip OXP(= ] Kigps 1@, )]

[1=co,, €Xp(—] Ky (@, + T, +@5)) = Cgpr SXD(— g,y 4 (@ + T, +T3))] ]

Notice that the second order GFRF is absent in this case because there are no quadratic
nonlinear terms in the time domain model. The linear FRF of the estimated nonlinear wave
force dynamics is shown in Fig. 15(a) where the shape of a high-pass filter can be observed.
This new feature can be attributed to the numerator element of H,; which presents the
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features of a standard high-pass filter as seen in Fig. 15(c). Another fact which can be seen
from Fig. 15 (c) and (d) is that the numerator has a much higher gain level than the
denominator and this confirms the leading role of the numerator element in shaping the
characteristics of H,. However, the presence of resonant peaks at f, =0.09651 Fig. 15(a)
indicates that the denominator does make its own contribution although it is not as significant
as the numerator. The dominating role of the numerator element can also be found in the third
order GFRF. Fig. 16(e) shows the magnitude of the numerator element of H, . which exhibits

the same number of peak areas in exactly the same positions as the magnitude of H,in Fig.
16(a). Both plots indicate that there will be significant effects for high frequency excitations.
However, H, becomes more significant along it Lt Es +0.0965 in the high
frequency range due to the contribution from the denominator clements which are shown in
Fig. 16(c) and (d). This example suggests that the GFRFs of nonlinear system where the time
domain model has dominant ponlinear input terms aré more likely to be denominated by
numerator elements rather than the denominator elements.
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Fig. 15 H,(j@,) for the estimated dynamics of nonlinear wave force model eqn(2.34):

() magnitude; (b) phase; (c) magnitude of numerator; (d) magnitude of denominator
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4. Conclusions

A symbolic expansion technique has been introduced to give non-recursive forms to the
GFRFs in terms of the nonlinear system time domain model. The structure of GFRFs can
therefore be revealed in terms of new analytical expressions and the consistency on the
structure can be observed. Both the results in here and from Part 1 provide new means of
investigating the characteristics of generalised frequency response functions and the analysis
of nonlinear systems in the frequency domain. Results using both simulated examples and real
data sets show that the proposed method makes the identification of features in the GFRFs
easy and straightforward. Most importantly, the effects of the time domain model terms on
nonlinear system behaviours are exposed using the new approach. The analysis using the new
methods on nonlinear continuous time models is related to the results above and will appear «
in a later publication.
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