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This paper addresses the problem of designing low-order and linear robust feedback
controllers that provide a priori guarantees with respect to stability and performance
when applied to a fluid flow. This is challenging since whilst many flows are governed by a
set of nonlinear, partial differential-algebraic equations (the Navier-Stokes equations), the
majority of established control system design assumes models of much greater simplicity,
in that they are firstly: linear, secondly: described by ordinary differential equations, and
thirdly: finite-dimensional. With this in mind, we present a set of techniques that enables
the disparity between such models and the underlying flow system to be quantified in a
fashion that informs the subsequent design of feedback flow controllers, specifically those
based on the H∞ loop-shaping approach. Highlights include the application of a model
refinement technique as a means of obtaining low-order models with an associated bound
that quantifies the closed-loop degradation incurred by using such finite-dimensional
approximations of the underlying flow. In addition, we demonstrate how the influence
of the nonlinearity of the flow can be attenuated by a linear feedback controller that
employs high loop gain over a select frequency range, and offer an explanation for this
in terms of Landahl’s theory of sheared turbulence. To illustrate the application of these
techniques, a H∞ loop-shaping controller is designed and applied to the problem of
reducing perturbation wall-shear stress in plane channel flow. DNS results demonstrate
robust attenuation of the perturbation shear-stresses across a wide range of Reynolds
numbers with a single, linear controller.

Key words:

1. Introduction

The ability to exert control over fluid flows has received renewed attention in recent
years, with the potential to improve the efficiency of fluid-based systems thereby of-
fering wide-ranging economic and environmental benefits across a range of industries.
Examples include the lowering of fuel costs and greenhouse gas emissions via the drag
reduction of aircraft (Bushnell 2003) and shipping (Corbett & Koehler 2003), optimal
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mixing of chemical reagents (Couchman & Kerrigan 2010) and wind turbine gust alle-
viation (Frederick et al. 2010), with many more examples stemming from the natural
world (Fish & Lauder 2006). Attempts to control fluid flow are typically classified into
three broad categories (Gad-el-Hak 2000): passive (e.g. Choi et al. (1993)), active open-
loop (e.g. Sturzebecher & Nitsche (2003); Hanson et al. (2010)) and active closed-loop
control (e.g. Bewley (2001); Hogberg et al. (2003); Kim (2003); Kim & Bewley (2007);
Semeraro et al. (2011)), each with their own merits and extensively discussed in many
review papers and textbooks (e.g. Bewley (2001); Collis et al. (2004); Gad-el-Hak (2000)).

This paper is concerned with the use of active (in the sense that powered actuators are
assumed) closed-loop control of fluid flows. There are compelling reasons for employing
such control, despite it being the most difficult to implement practically, owing to the
dual requirements of sensing and actuation. Principal amongst these reasons is the unique
ability of feedback controllers to reject the effects of uncertainty upon the desired outputs
of a system (Vinnicombe 2001), a concept that is of central importance in obtaining
suitable control models for fluid flows, and which is the primary focus of this paper.

Uncertainties arise not only from the intrinsic model assumptions but also from exoge-
nous disturbances inherent to practical problems. To synthesise a feedback controller for
a fluid flow, a model describing the dynamics of the system is required, where the system
(or “plant”) comprises actuators, sensors and the flow itself, in addition to the spatial
interconnections between these subsystems. The dynamics of electromechanical compo-
nents, such as pressure sensors (Arthur et al. 2006) and synthetic jet actuators (Gallas
et al. 2003), are typically well approximated by lumped-parameter models consisting of
a few ordinary differential equations (ODEs). However, this is seldom the case for fluid
flows, described in many cases by the incompressible Navier-Stokes equations:

∂V (x, t)

∂t
= −V (x, t) · ∇V (x, t)−∇P (x, t) +

1

Re
∇

2V (x, t) + g(x, t), (1.1a)

0 = ∇ · V (x, t), (1.1b)

where V (x, t) and P (x, t) are the velocity and pressure fields, respectively, evolving in
domain Ω ∈ R

3 under the influence of an external forcing g(x, t), with x ∈ Ω and t ∈ R+.
Boundary and initial conditions are given as:

V (x, t) = V ∂(x, t) with x ∈ ∂Ω, V (x, 0) = V 0,

where ∂Ω is the boundary of the domain. In contrast to (1.1), the majority of existing
modern control systems theory relies upon models in standard, linear state-space form:

ẋ(t) = Ax(t) + Bu(t), (1.2a)

y(t) = Cx(t) + Du(t), (1.2b)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
q×n, D ∈ R

q×m, x(t) ∈ R
n is the state vector with

initial state x(0) = x0, u(t) ∈ R
m is the vector of control inputs and y(t) ∈ R

q is the
measurement vector. The states in (1.2a) evolve according to a finite-dimensional set of
linear ODEs, and for the purposes of practical controller implementation it is desirable
that the number of states be small, typically no more than n ∼ O(102). This means that
in order to apply standard controller synthesis algorithms, the control model (1.2) must
be of much greater simplicity than the underlying flow model (1.1).
Attempts to approximate the plant (1.1) by the control model (1.2) represents a trade-

off between reduced complexity for increased plant/model uncertainty. The process by
which this is achieved gives rise to a further challenge, that is, the details of the trans-
formation process itself. Although the ability to reduce the effects of uncertainty is an
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inherent feature of any control system employing feedback, certain branches of control
theory handle the effects of uncertainty in a more rigorous fashion than others. Robust
control (Zhou et al. 1996; Zhou & Doyle 1998; Dullerud & Paganini 2000), comprising a
family of H∞ design methods (Glad & Ljung 2000; Skogestad & Postlethwaite 2005) are
of particular importance in this respect, and successful application of these methods has
been demonstrated upon fluid flows (Bewley & Liu 1998; Baramov et al. 2004; Luaga &
Bewley 2004; Bobba 2004). An attractive feature of robust control is its ability to provide
a priori guarantees concerning the degree of stability of the closed-loop system, subject
to model uncertainty and exogenous disturbances. The starting point for generating such
controllers is a model of the form (1.2) that describes the linear dynamics of the flow.

1.1. The importance of linear dynamics

A question that naturally arises is under what circumstances can a linear feedback con-
troller, synthesised from a linear model (1.2), actually stabilise a flow governed by (1.1)?
Although linearisations of (1.1) are inevitably unable to capture the nonlinear dynam-
ics that endow turbulent flows with their ‘multiscale’ characteristics (Kim & Bewley
2007), they are widely accepted as being relevant in explaining such phenomena as tran-
sition to turbulence in wall-bounded flows (Semeraro et al. 2011; Butler & Farrell 1992;
Trefethen et al. 1993; Schmid & Henningson 2000), as well as at least some of the mech-
anisms that sustain turbulence in such flows. In this respect, linear effects have received
some attention since Batchelor and Proudman’s seminal work on rapid distortion the-
ory (RDT) (Hunt & Carruthers 1990; Lee et al. 1990). Farrell & Ioannou (1993, 1996)
have suggested that the linearised Navier-Stokes equations in plane channel flow un-
der stochastic forcing can exhibit behaviour reminiscent of the streamwise vortices and
streaks characteristic of turbulent flow. Transient growth studies have highlighted the im-
portance of the linear operator to streak formation (Butler & Farrell 1992; Chernyshenko
& Baig 2005). The input-output (gain-based) analysis by Jovanovic & Bamieh (2005)
of the linearised Navier-Stokes equations also revealed the importance of long streaky
structures. Kim & Lim (2000) demonstrated in simulations of turbulent channel flow
that the turbulence decays without the term coupling the wall-normal vorticity and the
wall-normal velocity in the linearised Navier-Stokes equations.
More recently McKeon & Sharma (2010); McKeon et al. (2013) explained how the

structure of turbulence and its sustainment arises from a feedback interconnection be-
tween the linear and nonlinear terms of (1.1a). This is depicted in Figure 1, wherein the
energy conserving nonlinearity forces a linear subsystem that describes the dynamics of
fluctuations around a mean velocity profile (Sharma & McKeon 2013), with the linear
dynamics playing a key role in selectively amplifying certain structures in the flow. In
their analysis, McKeon & Sharma (2010) treated the nonlinearity of the flow arising
from the interaction between scales as an unstructured forcing that acts to produce a
turbulent mean profile of the appropriate form. By studying the singular vectors of the
resolvent operator relating this input forcing to an output velocity field, these authors
were able to predict coherent structures within the turbulent flow under study, that were
in good agreement with experimental observations. The same authors also argued that
the decomposition of the Navier-Stokes equations into a linear system driven by an un-
known forcing was justifiable owing to high gain at the critical layer resulting in the linear
system being selective to the point where the exact form of the forcing was unimportant.
Sharma et al. (2011) have also proved, using the passivity theorem, that a linear feedback
controller can always be found to relaminarise a turbulent flow, given sufficient actuation
and sensing. This was explained in physical terms with respect to Landahl’s theory of
sheared turbulence (Landahl 1977, 1975, 1967). Since the interaction of shear fluctua-
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Figure 1. System-level description of the turbulence process. The nonlinearity produces a
force f := −V · ∇V that acts as a disturbance input to the linear subsystem.

tions is linear and underpins the generation of turbulent fluctuations, the linear control
strategy is effective. Shear interaction is a linear RDT approximation embodied in the
Orr-Sommerfeld-Squire (OSS) equations: it is governed by the wall-normal disturbance
velocity which appears in the coupling term and which is related to the pressure via the
linear ‘fast’ source term in the Poisson equation for pressure fluctuations (Kim 1989;
Dunn & Morrison 2003). As a result, the response to forcing of the wall-normal velocity
and pressure is rather quicker than that of both the streamwise or spanwise velocities.
This occurs because the shear interaction timescale is considerably shorter than either
the viscous or turbulence timescales (Landahl 1977) so that the Reynolds stresses are
less effective. Batchelor & Townsend (1956) have shown that pressure-gradient fluctua-
tions drive the momentum field, appearing as spikes in the instantaneous mean-square
acceleration. Sharma et al. (2011) have also shown that first, these fluctuations reach a
maximum at y+ ≈ 20, and second, the forcing is at a maximum at the same location.
This explains why the linear controller is effective even though it is operating on the
wall-normal component alone. Landahl’s theory (Landahl 1975, 1967) also provides a
‘wave-guide’ model of the viscous sublayer in which the least dispersive components are
those of the wall-normal velocity component and pressure fields. Clearly, understand-
ing these linear mechanisms and the extent to which they are local to the wall has a
significant bearing on potential drag-reduction strategies: for active, linear control, a
fundamental appreciation of the shear-interaction timescale is a prerequisite and clearly,
pressure is a key component to the interaction between the inner, wall region and the
outer layer (Townsend 1961; Bradshaw 1967; Morrison 2007).
Given the importance of suppressing turbulence for reducing skin-friction drag, much

attention has been focussed on designing controllers for wall-bounded flows, particularly
plane channel-flows (Bewley & Liu 1998; Lee et al. 2001; Hogberg et al. 2003; Baramov
et al. 2004; Hoepffner et al. 2005; Kim & Bewley 2007). Kim (2003) examined different
types of Linear Quadratic Regulator (LQR), also for turbulent channel flow, to minimise
(1) wall-shear stress fluctuations, (2) turbulent kinetic energy, and (3), the linear coupling
term. All resulted in significant drag reduction, a common feature being a weakening of
quasi-streamwise vortices resulting in reduced high skin-friction extrema at the wall.
There are many models of the near-wall cycle (see, for example, Hamilton et al. (2006))
but all suggest that transient energy growth, as described by the OSS equations, provides
a linear paradigm of near-wall turbulence (Butler & Farrell 1992). Central to our approach
is that, for a model-based feedback controller to be successful, the role of linear dynamics
can be exploited. A key challenge is that much of our knowledge derives from direct
numerical simulations at low Reynolds number (Robinson 1991) and, as a result, our
understanding is primarily kinematic. Here the approach is dynamic, in the sense that
any form of control implies the selective response of a flow to forcing.
We conclude this section with an acknowledgement that despite the importance of

linear mechanisms in wall-bounded turbulence, much research has also focussed on the
importance of nonlinear effects. Notable examples include the role that nonlinear mech-
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Figure 2. Robust flow control configuration, including disturbance inputs w and f arising
from model uncertainty and the nonlinear forcing of the flow, respectively.

anisms play in the transition process (Pringle & Kerswell 2010; Pringle et al. 2012;
Cherubini et al. 2010, 2011) wherein the optimal perturbations differ considerably in
terms of structure and energy growth, compared to their linear counterparts.

1.2. Robust control and uncertainty in fluid flows

With respect to the preceding discussion, linear approximation of the flow dynamics
represents just one source of uncertainty between the actual flow (1.1) and state-space
models (1.2) employed for controller design. It is therefore important to identify and
model the other sources of uncertainty, as such information can guide the controller
design process. An illustrative robust control problem is shown in Figure 2, where K
denotes the feedback controller, U represents model uncertainty and Pgen is the nominal
(approximate) model of the ‘generalised’ plant, that is, the linearised dynamical model of
the fluid flow, the sensors and actuators, as well as the interconnection structure between
the plant and controller.
The generalised plant consists of individual partitions that map the control, nonlinear

forcing and model uncertainty disturbance input signals, u, f and w , respectively, to the
measured output signal, y , according to:

y = Pww + Pff + Pu. (1.3a)

It is worth noting that the individual partitions are transfer function matrices, obtainable
from a Laplace transform of a time-domain model. For example, P can be obtained from
the Laplace transform of (1.2) as follows:

P = C (sI − A)−1B + D, (1.3b)

where s ∈ C and I is the identity matrix. The aim of the present work is to design a
stabilising controller K, so as to make the H∞ norm ‖·‖∞ of the closed-loop transfer
functions from w and f to y , Pyw and Pyf , respectively, both small, where:

‖Pyw‖∞ := sup
w 6=0

‖y(t)‖2
‖w(t)‖2

, ‖Pyf‖∞ := sup
f 6=0

‖y(t)‖2
‖f(t)‖2

. (1.3c)

Furthermore, in the interests of robustness, the controller should achieve these aims in
the presence of model uncertainty U , which represents a set of norm bounded transfer
function matrices that captures this class of uncertainty. Modelling the uncertainty set
again represents a trade-off between complexity and achievable performance, since U
should be general enough so that the actual plant lies within the set of all perturbed
plants defined by the interconnection of U with the nominal model Pgen, but not so
general that closed-loop performance is sacrificed. Within a flow control context, it is de-
sirable that the uncertainty set U captures the discrepancy between the actual flow and a
simpler control model. Bobba (2004) was amongst the first to categorise the uncertainty
that arises when approximating (1.1) by a model in linear, state-space form (1.2). These
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sources of uncertainty are summarised as follows:

• Model uncertainty. This takes two forms. The first of these is parametric uncer-
tainty that arises owing to a lack of precise knowledge of the parameters (e.g. Reynolds
number) of the system. Also, if the governing equations are linearised around an equi-
librium flow solution, then the theoretical and actual mean flows may differ. Another
source of parametric error might arise from numerical errors incurred during the process
of eliminating the algebraic constraint (1.1b) to obtain an unconstrained system (1.2a).
This arises, for example, when inverting an ill-conditioned discretised Laplacian to ob-
tain the Orr-Sommerfeld matrix. Secondly, dynamic uncertainty, which is inherent in
any finite-dimensional approximation of an infinite-dimensional system. Spatial discreti-
sations of (1.1) only resolve a finite number of dynamic modes, typically those of low-
est spatial frequency, and consequently neglect all higher frequency modes. Of those
modes that are retained by a spatial discretisation, some will be better resolved than
others (Boyd 2001). The problem of determining a suitable level of spatial refinement
(and hence which modes are of dynamical importance) is of fundamental importance in
designing controllers that can tolerate the uncertainty arising from the use of a finite-
dimensional flow model. Addressing this issue is an important contribution of this paper.

• Disturbance uncertainty. In practice, a flow will be subjected to disturbances arising
from a number of sources, such as uncertain boundary conditions, forcing from acoustic
noise and the coupling of sensor noise into the flow via a feedback controller. Such dis-
turbances may be impractical to model in any great detail, other than perhaps knowing
a bound on their magnitude and the point at which they enter the closed-loop system. In
addition, and as discussed in Section 1.1, the nonlinearity of the Navier-Stokes equations
can be treated as an uncertain disturbance forcing acting upon the linear system. From a
control systems perspective this is important, since it enables the problem of suppressing
turbulence to be formulated as a disturbance rejection problem.

In summary, in order for a feedback controller to guarantee robustness to these sources
of model uncertainty, the controller design process must account for each uncertainty in
some way. The manner in which this can be achieved is discussed in the following section.

1.3. Addressing sources of uncertainty

If bounds on all the uncertainties listed above are known, then each uncertainty can be
‘extracted’ from the plant model to form a structured perturbation matrix U , and this
structure can then be exploited in subsequent controller designs, based on structured-
singular-value synthesis algorithms (Skogestad & Postlethwaite 2005). An alternative,
and simpler class of uncertainty model exists in the form of unstructured uncertainty,
whereby the perturbation matrix U is ‘full’. Many different unstructured uncertainty
models exist (Vinnicombe 2001), such as additive uncertainty, multiplicative input un-
certainty and inverse multiplicative output uncertainty, each with their own merits in
terms of representing parametric, dynamic and disturbance uncertainty. An appropriate
uncertainty model for closed-loop flow control, for reasons that will be discussed below,
is that of coprime factor uncertainty. Background material on this subject is presented
in Appendix A, but we note, briefly, that coprime factor perturbations take the form:

Pp :=
{
(N + UN )(M+ UM)−1

}
, (1.4)

where the nominal plant P := NM−1 is separated into its stable coprime factors N
and M, each of which are perturbed by norm bounded perturbations UN , and UM,
respectively, to form a set of perturbed plants Pp.
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Figure 3. Feedback control diagram for disturbance rejection. The objective is to design the
loop-shaping controller K to reject the disturbance, arising form the nonlinear forcing f , upon
the measured outputs y (e.g. wall shear-stress) of the flow system. The system within the shaded
region is the closed-loop transfer function matrix Pyf (1.5) from disturbance forcing to output.

Although seemingly abstract, this class of uncertainty is particularly useful as it can be
regarded as a blend of multiplicative and inverse multiplicative type uncertainties that
naturally account for dynamic and parametric uncertainty, respectively (Vinnicombe
2001). It also accounts for uncertainty in the number of right-half plane system poles
and zeroes, both of which impose fundamental performance limitations upon feedback
controllers. It is worth emphasising that the use of such an unstructured uncertainty
description greatly reduces the difficulty of modelling the uncertainty set, and hence
reduces the difficulty of designing a robust controller. Indeed, in the case of coprime
factor uncertainty, no effort is required at all since controller synthesis techniques that
employ this description, such as the H∞ loop-shaping procedure of McFarlane & Glover
(1992), automatically synthesise controllers that maximise the amount of coprime factor
uncertainty that a closed-loop system can tolerate. In doing so, and as explained further
in Appendix A, H∞ loop-shaping controllers also attenuate the effect of disturbances
entering at different points in the system (including sensor noise). To see this is the case
for rejecting the influence of the forcing arising from the nonlinearity of the flow, consider
again the system described by the model (1.3a). Assuming an output feedback control
law of the form u = −Ky leads to the following expression for the closed-loop transfer
function Pyf that relates f to y :

y = (I + PK)
−1 Pf

︸ ︷︷ ︸

Pyf

f . (1.5)

The relevant closed-loop system is depicted in Figure 3. The control objective is to re-
duce the influence of f upon y , and this is achieved by making the gain of Pyf small (in
terms of ‖Pyf‖∞), which in turn amounts to designing the loop-shaping controller K to
ensure that the gain of the open-loop system PK is greater than unity, as can be seen
from inspection of (1.5). Such loop-shaping controllers therefore provide a convenient
framework for dealing with the parametric, dynamic and disturbance uncertainties en-
countered when attempting to control flows (1.1) from controllers designed upon simpler
models (1.2). This simplicity of designing robust controllers has thus meant that H∞

loop-shaping controllers have found use in a variety of applications, ranging from the
flight control of vertical take-off aircraft (Hyde et al. 1995), control of combustion os-
cillations (Chu et al. 2003), bluff body form-drag reduction (Dahan et al. 2012) and
wind-turbine active blade-pitch control (Lu et al. 2014).
Of the many studies conducted into feedback control of wall-bounded flows, few have

explicitly addressed the issue of uncertainty modelling with respect to the class of uncer-
tainties listed above. This is not to say that such feedback controllers have not been robust
(at least to some extent), but such assessment has only been possible after closed-loop
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testing, rather than at the controller design stage. The focus of this paper, therefore, is
upon obtaining state-space models (1.2) of flows described by linearisations of (1.1), that
are of sufficient simplicity to enable straightforward synthesis of controllers with a priori
stability and performance guarantees.
The remainder of this paper is organised as follows. We begin in Section 2 by formulat-

ing the modelling problem. The starting point is the linearised Navier-Stokes equations
and the finishing point is a low-order, state-space model suitable for controller synthesis.
On the way we show how to numerically convert a system of DAEs to one of ODEs, and
the motivation for doing so. We also introduce the ν-gap metric as a useful tool from
feedback control theory and show how it can be used to efficiently derive low-order state-
space models from spatial discretisations of the linearised flow system. In Section 3, a H∞

loop-shaping controller is designed from a low-order model and applied to plane channel-
flow. Significant portions of this paper are expository in nature and assume little prior
knowledge from the reader of feedback control, other than a rudimentary appreciation of
classical loop-shaping techniques such as PID control and lead/lag compensation (Åström
& Murray 2008). To preserve clarity of exposition, some control systems material is in-
cluded as appendices. In particular, background material on coprime-factor uncertainty
and H∞-loop shaping is presented, as are the algorithms employed to firstly convert the
semi-discretised Navier-Stokes equations into a standard state-space model.

2. Formulation of low-order control models

The dynamics of infinitesimal perturbations in a viscous, incompressible, wall-bounded
flow can be described by linearisation of the Navier-Stokes equations (1.1) around a mean
flow solution. Subsequent spatial discretisation yields a system in the generalised state-
space (or descriptor) form:

[
E11 0
0 0

]

︸ ︷︷ ︸

ED

d

dt

[
v(t)
p(t)

]

︸ ︷︷ ︸

ẋD(t)

=

[
A11 A12

A21 0

]

︸ ︷︷ ︸

AD

[
v(t)
p(t)

]

︸ ︷︷ ︸

xD(t)

+

[
B1

B2

]

︸ ︷︷ ︸

BD

u(t), (2.1)

where v(t) ∈ C
nv and p(t) ∈ C

np are the semi-discretised vectors of (perturbation)
velocities and pressure, respectively, and u(t) ∈ C

m is a vector of control inputs. The
state vector is xD(t), E11 ∈ C

nv×nv is the symmetric, positive definite mass matrix
and A11 ∈ C

nv×nv contains a mixture of discrete diffusion and linearised convective
terms. The matrices A12 ∈ C

nv×np and A21 ∈ C
np×nv represent the discrete gradient

and divergence operators, respectively, and B1 ∈ C
nv×m and B2 ∈ C

np×m describe how
the control inputs influence the states. Note that the subscript ‘D’, denotes vectors and
matrices pertaining to descriptor state-space systems.
The state evolution equation (2.1), together with the measurement equation y(t) =

CDxD(t) + DDu(t), can be written as a descriptor state-space system:

EDẋD(t) = ADxD(t) + BDu(t), (2.2a)

y(t) = CDxD(t) + DDu(t), (2.2b)

where ED, AD ∈ C
nD×nD , CD ∈ C

q×nD , DD ∈ C
q×m and y(t) ∈ C

q is the vector of
measured outputs. The order nD = nv+np of the state vector depends on the resolution,
but is typically very large for simulation models (e.g. nD > 106). For control models,
however, the number of states need not be the same, and can in fact be much lower, as
discussed in more detail in Section 2.3.
As an example of the above formulation, consider the fully developed flow between
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Figure 4. Side view of plane channel flow and conceptual sketch of the control system. Spatially
continuous actuation (transpiration) and sensing (streamwise shear stress) occurs at both walls.
For a given wavenumber pair, the feedback controller K takes, as inputs, the sensor measure-
ments ỹ , and outputs a control signal ũ to the actuators.

two infinite, parallel, planar and stationary boundaries, as shown in Figure 4. Non-
dimensionalising length scales by the channel half-height, h, velocities by the centre-line
velocity Ucl and pressure by ρU2

cl, the linearised Navier-Stokes equations for incompress-
ible plane channel flow are (Aamo & Krstic 2003; McKernan 2006):

∂u

∂t
= −U

∂u

∂x
− v

∂U

∂y
− ∂p

∂x
+

1

Re
∇2u, (2.3a)

∂v

∂t
= −U

∂v

∂x
− ∂p

∂y
+

1

Re
∇2v, (2.3b)

∂w

∂t
= −U

∂w

∂x
− ∂p

∂z
+

1

Re
∇2w, (2.3c)

0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
, (2.3d)

where Re = ρUclh/µ is the Reynolds number and the mean velocity profile satisfies
U = 1 − y2. In non-dimensional co-ordinates the upper and lower walls are located at
y = ±1. The streamwise, wall-normal and spanwise perturbation velocities u, v and w,
respectively, and perturbation pressure p are functions of x, y, z and t . The initial and
boundary conditions are as follows:

u(x, y, z, 0) = u0, v(x, y, z, 0) = v0, w(x, y, z, 0) = w0, (2.4a)

u(x,±1, z, t) = 0, v(x,±1, z, t) = 0, w(x,±1, z, t) = 0. (2.4b)

For the purposes of the current investigation, it is sufficient to employ actuators and
sensors that render the system (2.3) controllable and observable (Åström & Murray 2008;
Bewley & Liu 1998). Therefore, the walls are assumed continuously distributed with wall
transpiration actuators and sensors capable of measuring the streamwise component of
the wall-shear stress (Aamo & Krstic 2003; Bewley & Liu 1998; McKernan et al. 2006).
A conceptual sketch of this arrangement is shown in Figure 4. The control objective of
the present study is to attenuate the streamwise wall-shear stress perturbations. Such
a control objective was employed by Lee et al. (2001) and Lim (2003), where linear
controllers were synthesised that significantly reduced the wall-shear stress perturbations,
leading to significant reductions in the mean drag.
Actuator dynamics are accounted for by modelling the dynamics of the actuation

surfaces as first-order systems with a time constant ς ∈ R. For effective control, the
actuators should possess sufficient bandwidth to counter the disturbances within the
flow. For the present study, a value of ς = 1 was found sufficient. Assuming the control
inputs u(x, y, z, t) are voltages supplied to each actuation surface, then the control input
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can be modelled by the following inhomogenous boundary conditions on the upper and
lower walls, respectively:

∂v(x,+1, z, t)

∂t
:= −1

ς
v(x,+1, z, t) +

1

ς
u(x,+1, z, t), (2.5a)

∂v(x,−1, z, t)

∂t
:= −1

ς
v(x,−1, z, t) +

1

ς
u(x,−1, z, t). (2.5b)

In terms of measurements we consider the streamwise component of the wall shear
stress τxy at both walls:

y(x, y, z, t) :=

[
τyx|y=+1

τyx|y=−1

]

=
1

Re





(
∂u
∂y

+ ∂v
∂x

)∣
∣
y=+1(

∂u
∂y

+ ∂v
∂x

)∣
∣
y=−1



 . (2.6)

Having defined inputs and outputs, the infinite-dimensional system (2.3) is then rendered
finite-dimensional via spatial discretisation. The flow is Fourier-transformed in the spa-
tially homogenous x and z directions, in which case the distributed control input u is
approximated as follows:

u(x,±1, z, t) ≈ R

(
Nx∑

nx=1

Nz∑

nz=1

ũ(±1, t)ei(αx+βz)

)

, (2.7)

where i :=
√
−1, α and β are streamwise and spanwise wavenumbers, respectively,

and ũ ∈ C
2 are the Fourier-transformed inputs at each wavenumber pair (α, β). The

output equation (2.6) is similarly approximated. In the inhomogenous y direction the
flow is discretised on Ny Chebyshev collocation nodes (Weideman & Reddy 2000) and

the spatial y-derivatives ∂
∂y

, ∂2

∂y2 are approximated by Chebyshev differentiation ma-

trices Ych, Y 2
ch, respectively (Weideman & Reddy 2000). Application of the Fourier-

transform decouples the system dynamics by wavenumber, and so the flow dynamics for
each individual pair (α, β) can now be expressed as a linear, finite-dimensional descriptor
state-space system:






ED11
0 0 0

0 ED22
0 0

0 0 ED33
0

0 0 0 0







︸ ︷︷ ︸

ED

d

dt







ũny
(t)

ṽny (t)
w̃ny

(t)
p̃ny (t)







︸ ︷︷ ︸

ẋD(t)

=







AD11
AD12

0 AD14

0 AD22
0 AD24

0 0 AD33
AD34

AD41
AD42

AD43
0







︸ ︷︷ ︸

AD







ũny
(t)

ṽny (t)
w̃ny

(t)
p̃ny (t)







︸ ︷︷ ︸

xD(t)

+







0 0
BD21

BD22

0 0
0 0







︸ ︷︷ ︸

BD

ũ(t),

(2.8a)

ỹ(t) =

[
CD11

CD12
0 0

CD21
CD22

0 0

]

︸ ︷︷ ︸

CD

xD(t), (2.8b)

where ũny
(t), ṽny (t), w̃ny

(t) and p̃ny (t) are vectors containing the Fourier transformed
velocity and pressure coefficients at the ny-th collocation node (where 1 6 ny 6 Ny) for
a given wavenumber pair. The elements of the dynamics matrix are defined as: AD11

:=

AD22
:= AD33

:= −iαUny
+ 1

Re∆, AD12
:= −dUny

dy
, AD14

:= −AD41
:= −αI , AD24

:=
−AD42

:= −Ych, AD34
:= −AD43

:= −βI , and ED11
:= ED22

:= ED33
:= I , where i :=√

−1, Uny
:= 1 − y2

ny
and ∆ := −α2 + Y 2

ch − β2 is the discrete Laplacian operator. The

control input influences the states via BD21
:= [ 1

ς
0 ... 0 ]

T
and BD22

:=[ 0 ... 0 1
ς ]

T
. In the

case of streamwise shear-stress measurements CD11
:= 1

ReYch 1,1:Ny
(1/Re times the top
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row of Ych), CD12
:= 1

Re [ iα 0 ... 0 ], CD21
:= 1

ReYch Ny,1:Ny
, and CD22

:= 1

Re [ 0 ... 0 iα ].

Boundary conditions (2.4b)–(2.5b) are enforced in a straightforward fashion by modifying
the top and bottom rows of the submatrices in ED and AD. For example, the no slip
condition u(x,+1, z, t) = 0 is enforced by setting the top rows of ED11

, AD11
, AD12

and AD14
equal to zero, except for the (1, 1) element of AD11

which is set equal to 1,
whist (2.5a) is satisfied by setting the top rows of AD22

and AD24
to zero, with the

exception of the (1, 1) element of AD22
, which is set to −1/ς.

2.1. Dealing with descriptor systems: Eliminating the incompressibility constraint

Control of descriptor state-space systems (2.2) is less well understood than that for stan-
dard state-space systems (1.2), and so controller synthesis becomes more straightforward
if the former can be converted into the latter. This is trivial when the inverse of ED ex-
ists, since both sides of (2.2a) can be premultiplied by E−1

D . However, this is not possible
in (2.1) since ED is singular, owing to the assumption of incompressibility. To overcome
this difficulty, the system (2.3) is usually reformulated so that the resulting ED matrix is
non-singular and can be inverted to yield a standard state-space system. For the case of
plane channel flow, it is possible to analytically eliminate the divergence constraint (2.3d)
by reformulating the system in terms of a divergence-free basis described in terms of wall-
normal velocities and wall-normal vorticities. A non-singular ED can then be obtained by
using a set of basis functions that individually satisfy the boundary conditions, yielding
the familiar OSS system (Schmid & Henningson 2000; Kim & Lim 2000):

d

dt

[
ṽny (t)

ζ̃ny (t)

]

=

[
LOS 0
LC LS

]

︸ ︷︷ ︸

AOSS

[
ṽny (t)

ζ̃ny (t)

]

, (2.9a)

where ζ̃ny (t) is the vector of Fourier transformed wall-normal vorticities at a particular
wavenumber pair. The OSS matrix AOSS consists of the Orr-Sommerfeld matrix LOS, the
Coupling matrix LC and the Squire matrix LS:

LOS := ∆−1

(

−iαUny
∆+ iα

d2Uny

dy2
+

1

Re
∆2

)

, (2.9b)

LC := −iβ
dUny

dy
, (2.9c)

LS := −iαUny
+

1

Re
∆, (2.9d)

Although this reformulation has proven itself invaluable for hydrodynamic stability
analyses, its use for control system design is not without limitation. For instance, it is
difficult to analytically obtain divergence-free bases for more complicated flows, such
as those with variable fluid properties, or those with complex geometries (Ferziger &
Perić 1997). This is one of the main reasons why the majority of feedback flows control
studies have concentrated on channel flows or similar, parallel, shear flows. Also, satisfying
boundary conditions in a divergence-free basis is considerably more difficult than in
the original primitive-variable basis, particularly for complex geometries. The boundary
conditions, naturally expressed in terms of primitive variables, must be transformed
to equivalent conditions in a divergence-free basis that is subject to higher-order spatial
derivatives (e.g. fourth-order in (2.9b)). Failure to satisfy these conditions precisely results
in an unphysical system, contaminated by ‘spurious’ eigenmodes (Bewley & Liu 1998).
For these reasons we suggest that the modelling burden is substantially reduced by

discretising the flow model and satisfying boundary conditions (in their original, primitive
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variable form) before converting the resulting finite-dimensional descriptor system (2.2)
into standard state-space form (1.2). Furthermore, this final step of projecting from
descriptor to standard state space form can be performed efficiently via a numerical
method (Schön et al. 2003; Gerdin 2006; Shahzad et al. 2011). This is summarised in
Appendix B, and has been applied successfully to the problem of flow field estimation
in a non-parallel boundary layer (Jones et al. 2011). From a high-level perspective, the
algorithm takes, as inputs, the matrices of the descriptor system (ED,AD,BD,CD,DD),
and outputs the matrices of an equivalent (in the sense that the input-output response
is identical) standard state-space system (A,B ,C ,D), together with a transformation
matrix that relates the states xD of the former, to those of the latter x . Applying this
algorithm to the system (2.8) thus yields a standard state-space system of the form (1.2):

ẋ(t) = Ax(t) + Bũ(t), (2.10a)

ỹ(t) = Cx(t) + Dũ(t). (2.10b)

The accuracy of this projection technique can be assessed via a comparison of the
spectra and pseudospectra (Trefethen & Embree 2005) of AOSS in (2.9a), with those of
the equivalent operator A in (2.10a). Computing the pseudospectra of AOSS in (2.9a) is
complicated by the fact that the kinetic energy of the perturbations is naturally defined in
terms of the streamwise, wall-normal and spanwise velocities, thus requiring the energy to
be redefined in terms of wall-normal velocity and vorticity (see Butler & Farrell (1992)
for details). The eigenvalues and ǫ-pseudospectra of AOSS and A, for the case Re =
1000, α = β = 1, are shown in Figure 5 and begin to show increasing convergence
as wall-normal resolution is increased, implying that both operators exhibit the same
open-loop transient and asymptotic behaviour. However, an important question to ask is
whether or not such reproduction of the open-loop dynamics really matters? Specifically,
to what extent does a model employed for closed-loop control need to accurately capture
the open-loop dynamics of the actual flow? This issue is discussed in the following section.

2.2. Modelling for feedback control and the ν-gap metric

As noted by Kim & Bewley (2007), a model that is good enough for the purpose of
designing a feedback controller, need not necessarily be a good simulation model. How-
ever, the converse is also true, in that a good simulation model is not always a suitable
model for feedback control design (see e.g. Åström & Murray (2008)). It may therefore be
misleading to compare the open-loop responses of systems if the objective is to design a
feedback controller. This is relevant since most approaches to obtaining low-order models
are based on open-loop model-reduction techniques such as balanced truncation (Zhou
et al. 1996), proper orthogonal decomposition (POD) (Holmes et al. 1996) and balanced
POD (Rowley 2005; Willcox & Peraire 2002). Such methods yield models that come with
no strict guarantees of being suitable for closed-loop control (Curtain & Morris 2009).

In order to establish whether or not a model is suitable for feedback control, a measure
of ‘closeness’ is required, and fortunately such a measure exists in the form of the ν-gap
metric (Vinnicombe 2001; Åström & Murray 2008; Zhou & Doyle 1998). The definition
of the ν-gap metric is beyond the scope of the present work, but it suffices to state that
the ν-gap between two systems, denoted δν(Pa,Pb), is a metric and thus satisfies the
following important properties:

0 6 δν(Pa,Pb) 6 1, (2.11a)

δν(Pa,Pc) 6 δν(Pa,Pb) + δν(Pb,Pc) (Triangle inequality). (2.11b)
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Figure 5. Eigenvalues (dots) and ǫ-pseudospectra (contours) in lower-left quadrant of the com-
plex plane for (a), (b) AOSS in (2.9a), and (c), (d) A in (2.10a). Pseudospectral contours plotted
for ǫ = 10−3.5, 10−3, . . . , 10−2 (outermost contour). Left plots are computed for low wall-normal
resolution (Ny = 20 grid-points), right plots are for higher resolution (Ny = 40). Computed
values are for Reynolds number Re = 103 and wavenumbers α = β = 1. Also shown are the
values of the eigenvalues with maximum real part λmax, corresponding to those eigenmodes that
are least stable in the sense that their eigenvalues are closest to the right-half of the complex
plane.

The ν-gap assumes systems are connected in feedback by a unity gain controller (K = I ).
This is a restrictive assumption, but is easily overcome by shaping the systems with
compensators, as in Figure 6, that are designed to shape the open-loop system in a
desirable fashion (e.g. high gain at low frequencies, low gain at high frequencies, etc.) in
a similar manner to classical control methods, such as PID or lag-lead control. The ν-
gap is then computed between the shaped systems δν(Pa,W ,Pb,W). Thus, the ν-gap is
very much dependent on the closed-loop objectives encapsulated by the compensator
functions. This is important since determining whether or not a model is suitable for
designing feedback controllers depends not just on the nominal system, but also upon
the closed-loop control objectives. Lastly, the ν-gap metric is of considerable practical
use in designing H∞ loop-shaping controllers, as explained in more detail in Vinnicombe
(2001).
Now, suppose P∞ represents the infinite-dimensional flow system obtained from a

linearisation of the Navier-Stokes equations (1.1), whilst Pn denotes the spatial discreti-
sation of this system upon n grid nodes (or finite elements, etc.). The ability to com-
pute δν(Pn,P∞) is important in determining to what extent a spatial discretisation of



14 B. Ll. Jones, P. H. Heins, E. C. Kerrigan, J. F. Morrison and A. S. Sharma

Figure 6. The loop-shaping design procedure. (a) The nominal flow model P is augmented with
a precompensator W to form a shaped (weighted) plant PW := PW with a desirable loop-shape.
(b) For practical implementation, the precompensator is absorbed back into the controller to
form the shaped (weighted) controller KW := WK.

an infinite-dimensional system yields a suitable model for feedback control. This problem
is addressed in the next section.

2.3. Model refinement and knowing when a spatial discretisation is good enough for
closed-loop control

One of the main difficulties in designing feedback controllers for fluid flows, based upon
finite-dimensional approximations of (1.1), is deciding what level of spatial discretisation
is sufficient. Very fine discretisations are likely to resolve the key dynamics, but the
resulting state-space models may be of too great a complexity to enable direct controller
synthesis. Model reduction must then be employed to reduce the state-dimension to a
more amenable size. Model reduction of large-scale systems (e.g. Antoulas (2005)) is an
active research field and various methods exist as mentioned above. Numerical difficulties
aside, most of these methods attempt to preserve the open-loop, rather than the closed-
loop properties of a system, a choice that may lead to the use of unsuitable models, as
discussed in the previous section. Furthermore, and as noted by Kim (2003), most model
reduction techniques do not account for the control objective, and yet model ‘closeness’,
in a feedback sense, is heavily dependent upon such objectives, as explained previously. It
is also important to note that most model reduction techniques attempt to reduce high-
dimensional models that in themselves are approximations of an infinite-dimensional
system. There is therefore the risk that a control system, designed upon the former, will
fail to stabilise the latter, owing to a phenomenon known as ‘spillover’ (Balas 1978),
whereby a controller excites unmodelled plant dynamics.
Jones & Kerrigan (2010) developed an alternative method for obtaining low-order

control models of spatially distributed systems, that circumvented each of the problems
described above. The method involved computing a sequence of ν-gaps between low-order
plant-models of successively finer spatial resolution, starting from a coarsely discretised
(and thus low-order) model. This gradual refinement of model resolution is the conceptual
opposite of model reduction-based approaches, and can hence be thought of as model
refinement. Generally speaking, as spatial resolution is increased, the sequence of ν-gaps
between successive plant-models asymptotes towards zero, reflecting the fact that from
a closed-loop perspective there are diminishing returns to be obtained from employing
highly resolved models. The rate at which the sequence converges to zero is dependent
upon the flow, the control objective and the method of spatial discretisation, but can
be very great. Establishing the rate of convergence enables the construction of an upper
bound on the ν-gap between the models in the computed sequence and the infinite
dimensional plant, which then informs the selection of a suitable low-order model (Jones
& Kerrigan 2010). This enables the synthesis, on low-order models, of robust controllers
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that are guaranteed to stabilise the actual plant, a feature not shared by model reduction
methods where the gap between the high-order model (e.g. a DNS flow model) and
plant (e.g. Navier-Stokes equations) is not known, and where the gap between high-
order and reduced models may be too expensive to compute. Since the calculation of
the bound is based on shaped plant-models of small state-dimension, model refinement
avoids the numerical problems inherent in large-scale model reduction-based approaches.
Its application here is the first that we are aware of upon a flow control problem.

The design procedure is summarised as follows. Firstly, closed-loop objectives are spec-
ified by the construction of a precompensator to form the weighted (infinite-dimensional)
plant P∞,W . This is then discretised on an initial grid of ni nodes (where ni is small),
using an appropriate means of spatial discretisation (finite-difference, finite-element,
spectral, etc.), producing a low-order, finite-dimensional plant model Pni,W . Ideally,
one would compute δν(Pni,W ,P∞,W) directly, but in general this is not possible. How-
ever, it is straightforward to form an upper bound as follows. Starting from n = ni,
compute the ν-gaps between models of successively finer discretisation to form a se-
quence {δν(Pn,W ,Pn+1,W)} and stop when this sequence begins to asymptote towards
zero, at some number of grid points n = n0. Then construct a sequence {an} with a
finite series (such as a geometric progression) that upper bounds the ν-gap sequence for
all n > n0. The triangle inequality property of the ν-gap metric (2.11b) can then be
exploited as follows:

δν(Pn0,W ,P∞,W) 6
∞∑

n=n0

δν(Pn,W ,Pn+1,W) 6
∞∑

n=n0

an. (2.12)

Thus, the ν-gap between the low-order, finite dimensional plant-model Pn0,W and the
infinite-dimensional plant P∞,W can be bounded by computing the series of the se-
quence {an}. Then, provided the robust stability margin of a H∞ loop-shaping controller
(synthesised from Pn0,W) exceeds this bound by a reasonable margin, then robust closed-
loop performance is guaranteed. The assumptions and technical details underpinning this
process are fully discussed in Jones & Kerrigan (2010), and a sketch of the procedure is
shown in Figure 7.

The model refinement method embodies the fact that sensibly designed feedback con-
trol systems are insensitive to unmodelled dynamics occurring at frequencies above the
unity gain crossover frequency of the system. These unmodelled dynamics are precisely
the type of model uncertainty that arises as a result of spatial discretisation. Referring
to Figure 5 as an example, the poles and zeros of a spatially distributed system tend to
converge to regions in the complex plane upon refinement of spatial discretisation. Finer
discretisations resolve dynamics that evolve over shorter timescales, and these correspond
to poles further away from the imaginary axis. Sensibly designed loop-shaping controllers
show two distinct regions in the frequency domain; low frequencies at which the loop gain
is greater than unity, and high frequencies where the gain is less than unity. Generally
speaking, the unity gain crossover frequency dictates the region in the complex plane for
which the poles and zeros need to be resolved with accuracy. Above this frequency, one
can tolerate uncertainty since the loop-gain is less than unity at these frequencies, ren-
dering the closed-loop system insensitive to such uncertainty. Application of the model
refinement technique is demonstrated in the following section.
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Figure 7. The model refinement process. The top row shows a sequence of spatially discretised
plant-models {Pn,W}, plotted in the space of transfer function matrices, converging to the under-
lying plant P∞,W upon refinement of the discretisation. The bottom row shows the construction
of the corresponding sequence of ν-gaps between the plant-models. The refinement process be-
gins in (a) with the ν-gap between a coarsely discretised model Pni,W and an incrementally
more refined model Pni+1,W , plotted against the number of grid points n. In (b) the process is
repeated for successively finer discretisations until the ν-gaps begin to approach zero. In (c),
at some level of refinement n0 an analytical sequence is plotted (squares) that upper bounds
the ν-gap sequence. The summation to infinity of the former provides a bound on the ν-gap
between the finite-dimensional plant-model Pn0,W and the infinite-dimensional plant P∞,W that
subsequently informs the design of H∞ loop-shaping controllers.

3. Design of a perturbation wall-shear stress controller

In this section the model refinement technique is applied to the state-space approxima-
tions (2.10) of the channel flow perturbation equations (2.3), to inform the selection of a
low order model from which aH∞ loop-shaping controller is subsequently synthesised. As
mentioned in Section 2, the control inputs to the flow system are voltage signals applied
to wall transpiration actuators, with measurements of the streamwise component of the
wall-shear stress. The control objective is to attenuate the streamwise wall-shear stress
perturbations. In this example, the channel-flow models for controller design assume a
Reynolds number of Re = 5000, and a single wavenumber pair of α = 0 and β = 2.044.
This corresponds to the optimal conditions for transient energy growth (Butler & Farrell
1992), and so allows for comparisons to be made with other controllers that have been
designed for this case (e.g. Bewley & Liu (1998)). This is described in more detail in the
linear simulation results of Section 3.2. However, we emphasise that the control objective
in the present study is not a function of the initial condition, and so the synthesised
controllers should not be viewed purely as transition delay controllers, but rather as con-
trollers that, in this particular instance, attenuate shear stress perturbations, regardless
of the source of the perturbation (initial condition, turbulent forcing, etc.). Lastly, we
make the point that the same design procedures can be applied to design controllers for
flows of arbitrary wavenumber.
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Figure 8. (a) Open-loop maximum singular value plots of PNy for Ny = 15 (·−), Ny = 50 (−),
and (b) maximum singular values of the respective compensated system PNy,W .

3.1. Controller design

The state-space model (2.10) is transformed into the following transfer function matrix:

PNy
(s) := C (sI − A)−1B + D, (3.1)

where PNy
is the transfer function matrix obtained from a wall-normal discretisation

on Ny collocation points. The design procedure begins by inspecting the frequency re-
sponse plots of the maximum singular values of (3.1), denoted σ̄

(
PNy

(iω)
)
. These are

plotted in Figure 8(a) for two different wall-normal resolutions. Note how the difference
in singular value plots for the two different discretisations only becomes pronounced at
high frequencies, in this case for temporal frequencies above ω = 1. In terms of con-
trol objectives, standard loop-shaping principles are followed in specifying the following
design criteria:
• Loop crossover frequency at unity gain ωc ≈ 0.3. Although better performance, in

terms of disturbance rejection can be achieved with higher ωc, good robustness requires
a crossover slope of not much less than −1. Referring to Figure 8(a) the gradient of
the singular-value plots decreases rapidly above ωc ≈ 0.3, as higher frequency poles are
encountered, thus limiting the achievable bandwidth of the system.

• High loop gain at frequencies below ωc. This reduces the effects of disturbances and
uncertain parameters in low frequency ranges, noting inparticular that a slope of −1
at ω = 0 provides ‘integral’ control, i.e. complete rejection of input disturbances of
constant magnitude.

• Slope of −1 around ωc, for good robustness to coprime factor uncertainty.
• Low loop gain at frequencies above ωc. This ensures the closed loop is insensitive

to noise on sensors, as well as unmodelled high frequency dynamics. Low loop gain is
naturally provided by the high frequency poles of the system, but can be augmented with
extra poles from the controller, if necessary.
These requirements are met by augmenting PNy

with the following precompensator W:

W(s) :=








2(10s+1)
s

0 0 0

0 2(10s+1)
s

0 0

0 0 2(10s+1)
s

0

0 0 0 2(10s+1)
s







, (3.2)
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Figure 9. The model refinement process, showing a plot of (a) δν

(

PNy,W ,PNy+1,W

)

against
grid resolution Ny, (b) the same data (·) plotted on a logarithmic scale, together with a plot (×)
of the sequence {log10

(

1.2(0.82)Ny
)

}.

Singular value plots of the compensated (weighted) system PNy,W := PNy
W are shown

in Figure 8(b). Note the greater low-frequency gain, low high-frequency gain, and gentle
roll-off at the crossover frequency.
Having designed a precompensator, the model refinement procedure is then employed

to determine a suitable level of model discretisation. The sequence of ν-gaps between
plant models PNy,W of successively finer spatial resolution is computed, starting from a
low-order model with only Ny = 4 colocation points. The gap between this model, and
the next most refined model is δν(P4,W ,P5,W) = 0.69, which is large and means that a
controller designed upon P4,W may not be guaranteed to robustly stabilise P5,W , let alone
the infinite-dimensional plant P∞,W . However, as the level of discretisation increases,
the gaps between models decreases. For example, the gap between P30,W and P31,W

is equal to 0.02, which is negligible from a robust control perspective. The sequence
of ν-gaps is plotted in Figure 9(a), from which it is apparent that the ν-gaps between
successive models rapidly becomes small as model resolution is increased. The same
sequence is plotted on a logarithmic scale in Figure 9(b), together with a plot of the
following geometric sequence:

{aNy
} := 1.2(0.82)Ny . (3.3)

This sequence forms an upper bound on the ν-gap sequence {δν(PNy,W ,PNy+1,W)}
for 5 6 Ny 6 30. Assuming this holds true for all higher resolutions enables a bound
between low-order model and infinite dimensional plant to be computed. For example, se-
lecting a nominal value of Ny = 15, the following bound on δν(P15,W ,P∞,W) is obtained
from (2.12):

δν(P15,W ,P∞,W) 6
∞∑

Ny=15

1.2(0.82)Ny =
1.2(0.82)15

1− 0.82
= 0.34. (3.4)

It is important to note the bound in (3.4) was calculated from computations upon
low-order models only. This bound was then used to inform the design of a H∞ loop-
shaping controller. Direct controller synthesis, based upon the low-order model P15,W ,
yielded a loop-shaping controller K15 with a robust stability margin of bopt(P15,W) =
0.68. A-priori robust performance guarantees (of the controller working well upon the
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infinite-dimensional plant) are therefore obtained by observing that bopt(P15,W) ex-
ceeds δν(P15,W ,P∞,W) by a reasonable margin of 0.34. This is verified by the simulation
results in the following sections.

3.2. Linear simulation results

The controller and precompensator computed in the previous section were combined to
form the weighted controller WK15. This was connected in feedback to a higher-fidelity
(linear) flow model (2.8) employing Ny = 100 wall-normal grid-points, and denoted P100.
The flow was seeded from the optimal initial condition for plane channel flow as com-
puted by Butler & Farrell (1992), whilst the state vector of the weighted controller
was initialised to zero, thus ensuring the controller possessed no prior knowledge of the
initial state of the flow. Figure 10(a) shows the evolution of wall-shear stress perturba-
tions τ̃yx against time for both the controlled and uncontrolled flows. After an initial
transient period, the perturbations asymptote quickly towards zero under the action of
the loop-shaping controller. This is despite the uncertainties arising from the initial state
of the controller and from the discretisation error between low and higher-order mod-
els employed for controller synthesis and simulation, respectively. In turn, and referring
to Figure 10(b), significant attenuation of the perturbation kinetic energy is achieved
despite this not being an explicit control objective. The energy gain of the closed-loop
system reaches a maximum value of E(t)/E0 = 2857 at an earlier time of t = 293. This
represents a 40% reduction in perturbation energy growth compared to the uncontrolled
case. The output from the weighted controller is shown in Figure 10(c). For the sake of
comparison, a higher-order controller WK35 was synthesised and tested on the P100 flow
model. The closed-loop response and control input signal were indistinguishable from
those in Figure 10 obtained from the lower-order controller WK15. This again underlines
the point that spatial refinement of a flow model typically yields diminishing returns in
terms of obtaining benefits in closed-loop performance.
The velocities and their wall-normal derivatives at t = 293 are plotted in Figure 11,

which illustrates the influence of the controller upon the flow, particularly in the near-
wall region. From Figure 11(b) it is clear that the controller has achieved its objective
of attenuating the streamwise wall-shear stress perturbations. Flow visualisations for the
controlled case are shown in Figure 12, which demonstrates how the wall transpiration
acts to attenuate streak formation, and thus attenuate the perturbation energy. Indeed,
the control at the walls creates the small ‘buffer’ vortices observed by Bewley & Liu
(1998) in their application of transient energy controllers. Such vortices interfere with the
shear interaction mechanism that enables velocity perturbations in the channel interior
to induce near-wall streaks. A plot of streamwise vorticity against channel height is shown
in Figure 13 and shows the variation, particularly in the near-wall region between the
controlled and uncontrolled flows.
It is interesting to compare the buffer vortices produced by the present controller to

those produced by transient energy controllers. Although precise comparisons between
different controllers requires the same sensing, actuation and penalty on control effort, the
qualitative differences that emerge as a result of employing different control objectives
can be inferred. In Bewley & Liu (1998), a H2 controller was synthesised upon the
same flow as studied here, and achieved a peak energy gain of 1313 - approximately
half that achieved by the present controller. The buffer vortices induced by the transient
energy controller were of sufficient magnitude to produce streamwise streaks that opposed
and thus weakened the streaks in the channel centre. However, the presence of these
near-wall streaks meant that the streamwise component of the wall shear-stress was
considerably greater. Thus the present wall-shear controller can be viewed as a particular
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Figure 10. Linear simulation results. (a) Streamwise wall shear-stresses perturbations against
time for the uncontrolled (- -) and controlled (−) flows. (b) Perturbation energy gain E(t)/E(0)
against time for the uncontrolled (- -) and controlled (−) flows. (c) Controller output ũ(t)
against time. All control signals are from a weighted controller WK15 based on Re = 5000
and (α, β) := (0, 2.044).

case of transient energy controller with a control input penalty of sufficient magnitude to
prevent the buffer vortices from inducing opposing near-wall streaks, thus maintaining
zero perturbation shear-stress at the wall.
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Figure 11. Velocity components and wall normal derivatives at t = 293 for the controlled (–)
and uncontrolled (- -) flows.

3.3. Robustness to Reynolds number variations

For a controller to work well in practice, it must be robust to sources of uncertainty such
as model parameter variations. In a flow control context, such variations might include
perturbations to the Reynolds number. A controller that offers good performance upon a
nominal flow, but destabilises a flow with a slightly different Reynolds number is clearly
impractical. Thus, it is important to quantify the performance degradation incurred by
attaching a controller to flows with Reynolds numbers different to that employed by
the nominal plant model. Such information can be used to ascertain the range of flows
for which a controller will provide acceptable performance. For flows outside this range,
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Figure 12. Evolution of the optimal initial condition in channel flow under the action of the H∞

loop-shaping controller. The controller is designed to attenuate the magnitude of streamwise
perturbation wall shear-stresses. Filled contours represent streamwise perturbation velocities
whilst vectors depict the wall-normal and spanwise velocity perturbation fields. Perturbation
energy gain E(t)/E0 is also shown. Re = 5000, α = 0, β = 2.044. Notice the appearance of the
buffer vortices close to the walls for t > 0.

other controllers will need to be synthesised, to produce a family of controllers that can be
switched between (gain-scheduled) according to the Reynolds number. Again, the ν-gap
can be used to ascertain bounds on the performance degradation incurred by connecting
a nominal controller to a perturbed flow.

We begin by computing the ν-gaps between the nominal 15 grid-point, Re = 5000
shaped model, denoted P5000

15,W , and a set of higher fidelity (100 grid-point) shaped models

at Reynolds numbers in the range 500 6 Re 6 50, 000, denoted
{

PRe
100,W

}

. A plot

of δν

(

P5000
15,W ,PRe

100,W

)

is shown in Figure 14. As expected, the ν-gaps are smallest for

perturbed flows with Reynolds numbers close to that of the nominal flow and gradually
increase as the Reynolds number of the perturbed flows departs from the nominal value.
Such information can be used, in conjunction with the controller’s stability margin to
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Figure 13. Streamwise vorticity ζ̃x at t = 293 for controlled (–) and uncontrolled (- -) flows.

Figure 14. Variation of the ν-gap metric between nominal and perturbed flows. The nominal
system is a 15 grid-point model based on Re = 5000, α = 0, β = 2.044. Perturbed models are
based on 100 grid points and Reynolds numbers in the range 500 6 Re 6 50, 000.

determine the range of Reynolds numbers over which the nominal controller can be
expected to perform well. For example, the robust stability margin of the loop-shaping
controller from Section 3.1 was computed as bopt(P5000

15,W) = 0.68. Provided this exceeds
the ν-gap between the nominal and perturbed flows by a reasonable margin (typically
taken to be 0.3 - see Appendix A for further details) then one can expect reasonable
performance from the controller. The performance requirement is thus bopt(P5000

15,W) −
δν

(

P5000
15,W ,PRe

100,W

)

> 0.3 and, referring to Figure 14, this is satisfied for flows in the
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Figure 15. Streamwise wall-shear stress perturbations against time for the uncontrolled (- -)
and controlled (–) systems. Here, the controller based on P5000

15,W is applied to a perturbed system

of higher fidelity and higher Reynolds number, P20,000
100,W .

range 500 / Re / 20, 000. One would therefore expect the nominal controller to work
well upon Re = 20, 000 flows, and this is confirmed in Figure 15, which shows effective
attenuation of the streamwise wall-shear stress perturbations for a linearised flow at this
Reynolds number.

3.4. DNS results

The results from the previous section were based on a linear model of the flow, and
hence neglected the nonlinearity of the Navier-Stokes equations. In this section, the H∞

loop-shaping controller is tested upon a nonlinear simulation of a channel flow. Non-
linear simulations were performed using a modified version of Channelflow, a spectral
DNS code for analysis of incompressible Navier-Stokes flow in channel geometries writ-
ten by Gibson (2012). Velocity and pressure are represented as Fourier expansions in
the periodic streamwise and spanwise directions and as Chebyshev polynomials in the
wall-normal direction. Channelflow uses the influence-matrix method of Kleiser & Schu-
mann (1980) to integrate the Navier-Stokes equations forward in time. This method
solves the Navier-Stokes equations at each time step via solutions of a sequence of one-
dimensional scalar Helmholtz equations for ũ, ṽ, w̃ and p̃ for each wavenumber pair, with
homogenous Dirichlet boundary conditions at the walls. The code was modified in this
respect to allow for inhomogeneous boundary conditions to be set at each time step by
the controller. The nonlinear terms were computed in skew-symmetric format with 2/3
dealiasing in the streamwise and spanwise directions. A domain size of 4πh×2h×1.96πh,
in x, y, z was employed in all testing. The flow field was advanced in time via a third-order
semi-implicit backward differentiation algorithm. Testing was performed for a range of
Reynolds numbers. Grid resolutions were chosen such that ∆x+ = 12, ∆y+min = 0.05
and ∆z+ = 7, where ·+ notation is used for values expressed in wall units. This led to
grid resolutions ranging from 184 × 129 × 158 grid points in x, y, z for the Reτ = 175
case, to 394 × 193 × 338 grid points in x, y, z for the Reτ = 360 case. Initial condi-
tions consisting of small random perturbations to a laminar mean profile were employed
to transition the flow to a fully turbulent state. This latter condition was validated by
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Figure 16. Time evolution of the magnitude of the wall-shear stress perturbations for uncon-
trolled (- -) and controlled (–) cases. Values are normalised by the wall-shear stress magnitude
at the time when the controller is switched on (t = 0).

comparing the mean velocity profiles and perturbation root-mean-square profiles from
each test case to the benchmark data of Moser et al. (1999) and Iwamoto (2002). We
emphasise that it was only once the flow was fully turbulent (at a nominal time t = 0)
that the controllers were activated.
The H∞ loop-shaping controller was applied to a Reτ = 210 flow. Figure 16 shows the

effect of this controller upon the magnitudes of the streamwise perturbation wall-shear
stresses, computed for wavenumber pair (α, β) = (0, 2.044). The controller was activated
at time t = 0 and quickly acted to attenuate the wall shear-stress perturbations at both
walls, achieving an 87% reduction in the RMS wall-shear stress perturbations. Snapshots
of the controlled and uncontrolled flows are displayed in Figure 17, from which it is evident
that the near-wall streaks are significantly attenuated by the action of the controller. The
figure shows the appearance of buffer vortices extremely close to the wall, created by the
controller. They are of just sufficient amplitude to attenuate the wall shear stress.

Further insight can be gained by studying the effects of the controller in the frequency
domain. With reference to (1.3a), Figure 18 displays the gain vs frequency plots for the
open and closed-loop disturbance responses, Pf and Pyf , respectively, where Pf shares
the same dynamic model as (2.8), with the exception of homogenous boundary conditions
in AD and a disturbance input matrix BD of the following form:

BD :=

[
H−1

0

]

,

where H is a Cholesky factor of a discretised perturbation energy matrix (see e.g. Schmid
(2007)). Figure 18 shows that the controller provides attenuation of the input distur-
bances f , arising from the nonlinear forcing of the flow, across all frequencies. Com-
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Figure 17. Representative snapshot of the controlled (top) and uncontrolled (bottom) flows
at the lower wall, taken at t = 1000. The figure shows contours of perturbation streamwise
velocity (shaded regions) and perturbation streamwise vorticity (solid and dashed lines) in wall
units. The near-wall streaks are significantly attenuated by the controller. The near-wall buffer
vortices induce just enough streak formation of reverse sign to reduce the wall shear stress.

pared to the uncontrolled flow, the controller attenuates disturbances up to a frequency
of ω = 1, just above the designed unity gain crossover frequency of the compensated
system (ωc = 0.3 in Figure 8(b)). Again, and with reference to (1.5), this is to be ex-
pected since the design of high loop-gain (σ̄(PW(iω)) ≫ 1) ensures that the effect of
disturbances upon the system outputs are attenuated over a frequency range extend-
ing up to the vicinity of the unity-gain crossover frequency. Inspection of the spectral
content of the wall-shear stress signals confirms this to be the case. Figure 19 displays
the single-sided amplitude spectrum of the DNS perturbation wall-shear stresses, from
which it is apparent that the controller provides significant attenuation of these pertur-
bations up to a frequency of around ω = 1, after which the control action dies away. The
disturbance attenuation of the controller is particularly noticeable at frequencies below
the crossover frequency. This is entirely consistent with the design of the precompensator
in Section 3.1, where the use of integral control action provides high loop-gain, and hence
high disturbance rejection, at low frequencies. The attenuation of low frequency distur-
bances is relevant since the forcing arising from the nonlinearity of the flow evolves over a
longer timescale than the shear interaction timescale (Landahl 1977), and hence contains
lower frequencies. This explains why a linear controller, such as the one employed in this
study, is able to attenuate the effects of the nonlinear forcing upon the wall-shear stress.

The same controller was then applied to flows perturbed across a range of Reynolds
numbers. At each Reynolds number, the perturbation RMS shear-stress was computed
for the controlled and uncontrolled cases, and the percentage reductions are shown in Ta-
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Figure 18. Open (- -) and closed-loop (–) disturbance responses, showing the range of tem-
poral frequencies over which the loop-shaping controller attenuates the worst-case disturbance
forcing f , arising form the nonlinearity of the flow, upon the wall-shear stress output y . Dis-
turbance amplification is plotted in terms of σ̄ (Pf (iω)) and σ̄ (Pyf (iω)), the respective singular
value plots of the open and closed-loop transfer function matrices Pf and Pyf , defined in (1.3a).

Figure 19. Single-sided amplitude spectrum of the streamwise wall-shear stress perturbations
for Reτ = 210. The magnitudes of the wall-shear stress perturbations are significantly lower for
the controlled case (–) at frequencies below the loop crossover frequency (ω = 0.3), compared to
the uncontrolled flow (- -). This is consistent with the linear system responses shown in Figure 18.

ble 1. Computational limitations limited the DNS simulations to Reτ = 360 and under,
but from Table 1 it is clear that the controller is providing effective attenuation of the
wall-shear stress perturbations across a wide range of Reynolds numbers. The controller
is robust, not only to the parametric uncertainty induced by perturbing the Reynolds
number of the flow, but also to the unmodelled dynamics arising form the use of a low-
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Reτ = 175 Reτ = 210 Reτ = 247 Reτ = 281 Reτ = 315 Reτ = 360

87.9% 89.3% 87.5% 87.0% 88.1% 87.9%

Table 1. Percentage RMS reductions in perturbation wall-shear stresses under the control of
the H∞ loop-shaping controller synthesised from the nominal flow model P5000

15,W .

order spatially discretised model. This is to be expected following on from the results
of the ν-gap analysis in Figure 14. In addition, the controller demonstrates robustness
to the dynamic uncertainty arising from the nonlinearity of the flow, providing effective
regulation of the wall-shear stress despite a turbulent initial condition in which the flow
is significantly perturbed away from the laminar state assumed in the control model.

4. Conclusions

We have addressed the problem of obtaining models of systems based on the Navier-
Stokes equations that provide a priori robust stability and performance bounds for closed-
loop flow control. It is suggested that, from the point of view of employing existing linear
control systems theory, there are essentially three problems to be tackled: linearisation,
spatial discretisation and conversion from a system of DAEs to one of ODEs. We have
presented results that add further evidence to suggest that linear control is effective in the
control of wall turbulence even though turbulence is intrinsically nonlinear. Reasons for
this are encapsulated in theories such as RDT, Landahl’s ideas on sheared turbulence or
gain-based analyses of turbulence formation. Specifically, by modelling the forcing arising
from the nonlinearity of the flow as a disturbance input to the linear flow dynamics, we
showed how the effects of such forcing could be heavily attenuated by designing a feedback
controller with high loop-gain over a certain frequency range, and justified this range in
terms of the timescale separation between linear and nonlinear mechanisms.

The present paper applied two methods for addressing the further issues of discretisa-
tion and conversion of equations from physical to state space. For the first, the model-
refinement procedure was applied to efficiently obtain spatially discretised models of low
state dimension, from which robust controllers could be readily synthesised, with guaran-
teed performance bounds when applied to the actual flow. This is the first instance of this
technique being applied to a flow control problem. Model refinement is the conceptual
opposite of model-reduction based methods, since the starting point of the former ap-
proach lay with models of low, rather than high order, and where the emphasis lay upon
obtaining models suitable for closed-loop, as opposed to open-loop control. This new
approach to flow control employed established tools from robust control theory, such as
the ν-gap metric and the robust stability margin. In addition, it was argued that coprime
factor uncertainty represents an appropriate choice of uncertainty model for capturing
the inevitable discrepancies that exist between an actual fluid-flow system and a simpler
control model, hence motivating the use of H∞ loop-shaping control, a technique that to
the best of our knowledge has not previously been applied to the problem of controlling
wall turbulence. The problem of converting from physical to state space was overcome
using a numerical approach that eased the prescription of boundary conditions, compared
to traditional velocity vorticity-based methods.
These techniques were demonstrated upon a simplified problem of skin-friction drag

reduction where the controller was based on a linearised, low-order model of the flow.
A robust controller was synthesised that provided high attenuation of the perturbation
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streamwise wall-shear stresses across a wide range of Reynolds numbers, as evidenced by
results from high fidelity linear simulations and nonlinear DNS. Actuation in the form of
wall-based blowing/suction, vwall, was based on sensing in τyx such that perturbations
of τyx for a given wavenumber pair were minimised. In doing so, the control exerted an
influence over τyz by setting up near-wall ‘buffer’ vortices.
Future research should address the problem of optimal actuator and sensor placement.

Importantly, the framework of gap-metrics and H∞ loop-shaping can be extended to
address this very issue, as demonstrated by Reinschke & Smith (2003). Loop shaping
design is a (temporal) frequency domain approach to control systems design. However,
it should be noted that frequency does not unambiguously distinguish large structure
moving quickly from small structure moving slowly, and it is the former that makes
the greater contribution to skin friction. In the present work, we have assumed, for
simplicity, that the walls are densely populated with sensors. As a result, the linearised
system is rendered observable. Similarly, if in the control objective, small structure plays
an important part in generating skin-friction drag then the techniques described in this
paper ensures mesh refinement to an appropriate level by increasing the spatial fidelity
of the model. Hence, the model refinement process indicates the appropriate degree of
refinement required to meet the control objective. For more realistic configurations, future
research should also address the consequences of non-conservative domains, i.e. those
in which the nonlinearity of the disturbance field may be taken to be significant, and
the extent to which it may be accommodated by the disturbance rejection framework.
For flows exhibiting a more broadband forcing, such as in a turbulent mixing layer for
example, our approach would require a high bandwidth controller to reject high frequency
disturbances, which would likely necessitate the use of fast actuation, which may or may
not be possible. The leads onto the final point that despite the potential effectiveness of
the linear controllers developed in this paper, it is possible that some form of nonlinear
control may provide enhanced performance by selectively exploiting the nonlinearity of
the flow in some desirable fashion, and designing such controllers could be an interesting
avenue of future research.

Appendix A. Quantifying the unknown with coprime factor

uncertainty

Coprime factor perturbations take the form:

Pp :=
{
(N + UN )(M+ UM)−1

}
, such that

∥
∥
∥
∥

[
UN

UM

]∥
∥
∥
∥
∞

<
1

γ
, (A 1)

with γ > 1 and where P = NM−1 is a normalised right coprime factorisation of the
unperturbed plant model P, meaning M∗M+N ∗N = I . The relevant block diagram is
depicted in Figure 20 where the signals v1 and v2 represent disturbances on the control
inputs u and measurements y , respectively, whilst w1 and w2 represent disturbances
acting upon the plant. The transfer functions relating u and y , to the disturbances, are:

[
y

u

]

=

[
P
I

]
(I −KP)−1

[
−K I

] [
v2
v1

]

+

[
I

K

]
(I − PK)−1

[
I −P

] [
w2

w1

]

, (A 2)

It can be shown (Vinnicombe 2001) that it is precisely the norm of the first of these
transfer function matrices that should be minimised in order to obtain robust stabil-
ity with respect to perturbations to the normalised coprime factors of the model. This
motivates the following definition:
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Figure 20. Coprime factor uncertainty. The shaded box represents the perturbed plant,
and v1, v2, w1, w2 represent disturbances entering the system at different points.

Definition A.1. The stability margin for coprime factor perturbations bP,K is defined
as follows (Vinnicombe 2001):

bP,K :=







∥
∥
∥
∥

[
P
I

]
(I −KP)−1

[
−K I

]∥
∥
∥
∥

−1

∞

if [P, K] is stable,

0 otherwise,

(A 3)

If follows that bP,K > 1
γ
and so a natural objective is to make bP,K as large as possible,

subject to design criteria (McFarlane & Glover 1992). By way of illustration, for single
input single output (SISO) systems it can be shown (Vinnicombe 2001) that a feedback
system with bP,K = 0.3 provides reasonable gain and phase margins (Åström & Murray
2008) of at least 2 and 35◦, respectively. Hence, bP,K can be thought of as a generalisation
of classical gain and phase margins to systems with multiple inputs and multiple outputs.

It can also be shown (Vinnicombe 2001) that the H∞ norm of the second transfer
function in (A 2) is equal to that of the first, i.e.

∥
∥
∥
∥

[
P
I

]
(I −KP)−1

[
−K I

]∥
∥
∥
∥
∞

=

∥
∥
∥
∥

[
I

K

]
(I − PK)−1

[
I −P

]∥
∥
∥
∥
∞

. (A 4)

Consequently the use of bP,K as a measure of robust stability as well as robust per-
formance is easily motivated by noting that it bounds the gain of all eight closed-loop
transfer functions, between inputs and outputs at any point in the loop.

Appendix B. Computing a standard state-space system from

descriptor form

Let ED, AD ∈ C
nD×nD . The pair (ED,AD) is said to be regular if there exists an s ∈ C

such that det(sED − AD) 6= 0 (Dai 1989). If (ED,AD) in (2.2a) is regular, there exist
nonsingular matrices T , S ∈ C

r×r such that the transformation:

TEDSS
−1ẋD(t) = TADSS

−1xD(t) + TBDu(t), (B 1a)

yields the following system in standard form Gerdin (2006, Lem. 2.3):
[
I 0
0 N

] [
ẋ(t)
χ̇(t)

]

=

[
A 0
0 I

] [
x(t)
χ(t)

]

+

[
B

G

]

u(t), (B 1b)

where N ∈ C
(nD−n)×(nD−n) is nilpotent (meaning that Ninp = 0 for some inp ∈ N), A

and B are as in (1.2), G ∈ C
(nD−n)×m, I are identity matrices of compatible dimensions

and
[
x(t)
χ(t)

]

= S−1xD(t). The matrices in (B 1) are computed as follows (Gerdin 2006;

Schön et al. 2003; Shahzad et al. 2011):
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(i) Compute the generalised Schur form of the matrix pencil λED − AD so that:

T1(λED − AD)S1 = λ
[
E1 E2

0 E3

]
+
[
A1 A2

0 A3

]
, (B 2)

where T1 and S1 are unitary matrices i.e. T ∗
1T1 = T1T

∗
1 = I , and are not to be confused

with T and S in (B 1a). The generalised eigenvalues should be sorted so that the diagonal
elements of E1 contain only non-zero elements. The generalised Schur form and the
subsequent reordering can be computed using a QZ algorithm (Golub & Van Loan 1996).
(ii) Solve the following coupled Sylvester equation to obtain the matrices L and R :

E1R + LE3 = −E2, (B 3a)

A1R + LA3 = −A2. (B 3b)

The solution to (B 3) can be obtained by solving for L in:

A1E
−1
1 LE3A

−1
3 − L−

(
A2 − A1E

−1
1 E2

)
A−1
3 = 0, (B 4a)

and substituting to obtain R :

R = −E−1
1 E2 − E−1

1 LE3. (B 4b)

(iii) Form the matrices in (B 1) as follows:

T =

[
E−1
1 0
0 A−1

3

] [
I L

0 I

]

T1, S = S1

[
I R

0 I

]

, (B 5a)

A = E−1
1 A1,

[
B

G

]

= TBD, N = A−1
3 E3. (B 5b)

(iv) Provided (Gerdin 2006) NjG = 0 for all j ∈ N > 1, then (2.2b) is given by:

y(t) = CDS

[
x(t)
χ(t)

]

=
[
C J

]
[
x(t)
χ(t)

]

= Cx(t) + Du(t). (B 6)

where J ∈ C
q×(nD−n) and D := −JG . This completes the numerical conversion of a

descriptor state-space system (2.2) into a standard state-space system (1.2).
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