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Abstract. The paper proposes new modified multi-objective genetic algorithm for the problem of op-
timal TV advertising campaign generation for multiple products. This NP-hard combinatorial optimi-
zation problem with numerous constraints is one of the key issues for an advertising agency when
producing the optimal television mediaplan. The classical approach to the solution of this problem is
the greedy heuristic, which relies on the strength of the preceding commercial breaks when selecting
the next break to add to the campaign. While the greedy heuristic is capable of generating only a
group of solutions that are closely related in the objective space, the proposed modified multi-
objective genetic algorithm produces a Pareto-optimal set of chromosomes that (i) outperform the
greedy heuristic; and (ii) let the mediaplanner choose from a variety of uniformly distributed trade-off
solutions. To achieve these results, the special problem-specific solution encoding, genetic operators,
and original local optimization routine were developed for the algorithm. These techniques allow the
algorithm manipulating with only feasible individuals, thus significantly improving its performance
that is complicated by the problem constraints. The efficiency of the developed optimization method
is verified using the real data sets from the Canadian advertising industry.

Key words: multi-objective; combinatorial optimization; genetic algorithms; mediaplanning.

1. Introduction

Every year, an enormous amount of money is spent on advertising. In 2003, the total cost of adver-
tising the United States was about 200 billion dollars, and about 50% of this money was spent on
TV commercials. Since the advertising involves “big money”, media planners are responsible for
making the media plans as effective as possible, and increasing the efficiency of the mediaplanning
results in huge profits for advertising agencies and television networks. For example, Bollapragada
et al. (2002) describe the case where their effective optimization of the sales processes for the US

National Broadcasting Network (NBC) resulted in increase of revenues by over 15 million dollars
annually.

TV mediaplanning involves two major participants that are television networks (stations) and adver-
tising agencies, and can be briefly outlined as follows. After announcing program schedules, the TV
networks finalize their rating forecasts, estimate market demand and set the rate cards for the avail-
able advertising breaks. The rate cards contain one-second price and expected rating of a spot in a
particular TV show. Mediaplanning agencies buy advertising time for each of their clients from the
networks, and then produce advertising campaigns (media plans) for the products of clients.

Both networks and agencies face a number of time-consuming mathematical problems during this
planning process. The networks, on one hand, have to develop optimal program schedule, accu-
rately predict ratings of the programs and expected demand for the commercial breaks in the shows.
Besides, they are faced with a problem of optimal advertising breaks distribution between the agen-
cies subject to the required by the agencies constraints and limited advertising inventory restric-
tions. A simplified flow chart of the TV network planning process is given in Figure 1. In real life,
advertising agencies can buy commercial breaks by parts and negotiate with the network on the per-
centage of the spots that will be aired in the fist and in the last positions of the break. This creates
additional cumbersome problem of re-scheduling commercials during the last week before they are
broadcasted (Bollapragada and Garbiras, 2004).
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Figure 1. Simplified flow chart of the mediaplanning process for a TV network

The advertising agencies, on the other hand, develop their own buying strategies and intend to bring
their customers the most efficient media plans possible. They deal with a number of clients, with
each client having a set of products to be advertised subject to brand-specific restrictions. A simpli-
fied flow chart of the advertising agency planning process is presented in Figure 2, The first impor-
tant problem for the agency is efficient purchasing of advertising time. Besides, since major adver-
tisers (such as Proctor and Gamble, for example) buy hundreds of commercial breaks and decide on
the actual distribution of the breaks between the advertising products later, the agency meets a prob-
lem of optimal assigning breaks in pool purchased for a client to the client’s brands, subject to
budget, minimum impact and other constraints. This problem includes two sub-problems, both of
them being quite non-trivial. The first difficulty is to develop a model that would allow accurately
forecast impact efficiency for the future advertising campaigns. The second issue (that is a subject
of this paper) is generating optimal media plans (advertising schedules) for the client brands that
maximize the impact on the TV viewers while satisfying all the required restrictions.

Forecasting the efficiency of future advertising campaigns is a statistical problem that usually in-
volves longitudinal (panel) data analysis techniques. A number of papers were published on this
topic, a good review of the approaches proposed can be found in (Sissors and Lincoln 2002). Be-
sides, Weber (2002) published some encouraging results on application of neural networks to fore-
casting of viewing patterns based on German telemetric viewing data for specific target audiences.
Recently, Pashkevich and Kharin (2004) proposed a robust version of the beta-binomial model that
was successfully applied for increasing forecasting accuracy in case when the past exposure data
was available in binary form (a real data set from the German advertising market).

Optimization of advertising campaign efficiency is a NP-hard combinatorial multi-objective optimi-
zation problem that involves a number of complicated constraints. A classical approach to the solu-
tion of this problem is the greedy heuristic that relies on the strength of the preceding breaks when
selecting the next break to add to the campaign. Literature review presented in the following section
indicates that very little research was done on this topic. Besides, the proposed optimization algo-
rithms were developed either for generating campaigns for one advertising product or were based
on reducing the multi-objective optimization problem to a single-objective by the weighted sum ap-
proach (a common way to select weights is based on budgets of products being advertised) (Rust,
1986). This usually leads to discriminating the brands with smaller budgets, that is undesirable from
the media-planners point of view. Hence, there is a need for a true multi-objective optimization al-
gorithm that would provide the planner with a set of Pareto-optimal solutions and let him decide
which one should be used as a final solution, based on his expertise and experience.

In this paper, we propose to use the multi-objective genetic approach (Fonseca and Fleming, 1993)

to generate a set of Pareto-optimal solutions for the problem of the advertising campaign efficiency
optimization.
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For major clients, the agency buys advertising time from the networks for the total budget
defined by the client, and performs the actual distribution of the breaks between the brands
on a later stage. This problem is one of the key issues the agency has to deal with.
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Figure 2. Simplified flow chart of the mediaplanning process for an advertising agency

2. Related Works

A majority of literature on using the optimization techniques in mediaplanning deals with schedul-
ing programs for television networks in order to optimize audience ratings. The common method is
the “lead-in” strategy that relies on the strength of the preceding programs to boost the ratings of a
newly introduced one. This approach was successfully applied in a number of papers, for details see
Goodhardt et al. (1975), Headen et al. (1979), Henry and Rinnie (1984), and Webster (1985). Sev-
eral publications, such as Gensch and Shaman (1980), Rust and Alpert (1984) deal with individual’s
television viewing choice. A comprehensive review of the viewing choice models can be found in
(Rust, 1986; Danaher and Mawhinney, 2001). Rust and Echambadi (1989) developed a heuristic
algorithm for scheduling a television network’s program to maximize a network’s share of audi-
ences. Reddu, Aronson, and Stam (1998) developed an optimal prime time TV program scheduler
based on the mixed-integer near-network flow model that was successfully tested using the 1990
data from a US cable TV network. Several authors dealt with advertising scheduling strategies, a
review of this approaches is presented in Lilien, Kotler, and Moorthy (1992). Recently, Bollapra-
gada et al. (2002) developed an optimization system for the sales processes of the US National
Broadcasting Network (NBC). They used integer and mixed-integer programming techniques to
automatically develop schedules of commercials that meet all the requirements (Bollapragada and
Garbiras, 2004), and to schedule the commercials evenly throughout the advertising campaign (Bol-
lapragada et al., 2004).

Although the mediaplanning issues for the advertising agency and the TV network have much in
common, they essentially differ in mathematical formulation that opposes using common optimiza-
tion tools, including the mentioned above. In contrast to the network mediaplanning, the problem of
optimal campaign generation for the advertising agency received very little attention in scientific
literature, although a number of papers were published on audience perception forecasting (Cannon
et al.,, 2002; Weber, 2002; Kim and Leckenby, 2001). Classical approach to the optimal advertising
campaign generation utilizes greedy heuristic that selects the most promising admissible break (for
a particular brand campaign, step-by-step) (Sissors and Lincoln, 2002). The breaks are assigned to
brands one-by-one and can be ordered in different manner (randomly, depending on a distance to
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goals, ctc.). Within this approach, the multi-objective problem is reduced to a single objective one
by the weighted sum technique, and the weights are calculated as normalized brand budgets (Good-
rich and Sissors, 2001). Being very simple to implement, this approach is not robust to the local dy-
namic restrictions, and usually uses some kind of rollbacks to overcome the violated constraints.

Recently, Pashkevich and Kharin (2001) proposed a multi-stage technique based on the hybrid ge-
netic algorithm for generating optimal advertising campaigns for multiple brands. Although this ap-
proach proved to be successful in real-world applications, it still relies on the weighted sum tech-
nique to improve the solution after all the goals are attained. To our knowledge, there were no re-

sults published on applying the multi-objective methodology to the problem of optimal advertising
campaign generation for multiple brands.

It should be noted that other advertising problems, that involve newspapers advertising and web-
page commercials, were also considered by the optimization research community. Merelo et al.
(1997) used the GA for optimal advertisement placement in different media. Naik et al. (1998) util-
ized the GA for developing the optimal pulsing mediaplans. Van Buer et al. (1999) considered solv-
ing the medium newspaper production/distribution problem by means of the GA. Collins and Harris
(1999) proposed to use the evolutionary approach to optimal generation of print and multi-media
advertising campaigns. Ohkura et al. (2001) employed an extended genetic algorithm for the Japa-
nese newspapers advertisement optimization. Carter and Ragsdale (2002) addressed the problem of
scheduling the pre-printed newspaper advertising inserts using the GA. Dawande et al. (2003) pro-
posed special heuristics for optimal advertisement scheduling on a web page. A lot of this research
was inspired by the paper (Hurley et al., 1995), which advocated using the genetic algorithms para-
digm for solving time-consuming marketing problems.

As follows from the presented above literature review, the single-objective genetic algorithms were
efficiently used to solve various mediaplanning optimization problems. Since the theory of multi-
objective genetic algorithms was efficiently evolving over the last decade, and had shown to be very
valuable for practical applications, the authors propose to rely on the multi-objective evolutionary
paradigm to solve the problem considered in this paper.

3. Problem Description

Before presenting a mathematical problem statement, let us give its informal problem description
focusing on some practical details. When an advertising agency buys commercial breaks for major
advertisers like Proctor & Gamble, Coca-Cola, etc., it sums the budgets of all the brands that the
client wants to advertise, and purchases common advertising time from the TV networks. Then, the
corresponding set of commercial slots bought, usually referred to as a pool, must be distributed be-

tween the brands, taken into a count a number of specific constraints and goals (as shown in Fig-
ure 3.) -

The major constraints associated with the brand are the maximum budget allowed to spend, the
minimum gross rating points (GRP), and the effective reach to be gained from broadcasting. There
are also several minor constraints, which can be divided into two types. The first of them, the
search space constraints, can be taken into account prior to the optimization by narrowing the brand
search space. Some common examples are the genre of a TV show, its day part and weekday, and
the commercial break length (since a brand commercial length must not exceed the break length).
Besides, it is prohibited to expose competitive brand commercials in the same TV advertising break
(Coca-Cola and Pepsi-Cola, for example). The second type, the solution space constraints, highly
depends on the mutual positions of the brand commercials in the entire adverting campaign plan.
They can be also subdivided into local and global ones, depending on the relationship between the
brands. Examples of the first subtype include minimum time interval between the successive brand
exposures, and maximum number of the brand commercials in the same TV show. The second




The pool of commercial breaks purchased for the client must be optimally distributed among the client’s brands
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Figure 3. Generating optimal advertising campaigns for multiple brands
based on the purchased pool of the commercial breaks

subtype arises when separate advertising campaigns (for single brands) are combined together.
Relevant examples comprise maximum sum of the brand commercial lengths within the same TV
break, and taboo on exposing competing brand commercials in the same TV advertising break (for
instance, washing powders Ariel and Dash of Proctor and Gamble).

For each brand, the efficiency of an advertising campaign is measured by two performance indices:
(i) gross rating points (GRP), and (ii) effective reach (Reach). These indices are computed for a par-
ticular segment of the viewing audience (targer group) defined by the agency client. By definition
(Sissors and Lincoln, 2002), the GRP is the cumulative sum of audience percentages that watched
the brand commercial, which was exposed several times. It is obvious, that this index may overesti-
mate the commercial impact, since it duplicates (triplicates, etc.) the percentage of regular viewers,
who were covered by all the exposures. In contrast, the Reach index measures the unduplicated au-
dience and is defined as the percentage of the viewers that watched the brand commercial at least
once (twice, thrice, etc.). It should be noted that the Reach index saturates up to 100% as the cam-
paign size increases, while the GRP index is additive and may exceed 100%. An example of the cli-
ent requirements for a brand can be given as follows: (i) target group “Men 35+, i.e. males of age
35 years and older; (ii) contact class “2+”, i.e. only target group members who watched the com-
mercial at least twice are included; (jii) minimum Reach 65%; (iv) minimum GRP 240%.

The primary goals of the advertising campaigns optimization are achieving the best GRP and Reach
for each separate brand, while satisfying the lower bounds on both of them, as defined by the client.
Usually, media-planners optimize only one of these criteria (Reach or GRP), and use the second one
as a lower bound constraint. Nevertheless, these leads to multi-objective setting with highly com-
peting objectives for different brands and numerous constraints. It should be noted that when as-
sessing the efficiency of the mediaplan, the media-planners often rely on additional criteria that can
not be formalized and, therefore, embedded into the optimization algorithm in full scale. This may
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be caused by rapid changes on the advertising market or some short-term strategical issues that
make the planers partially rely on their intuition. For this reason, it seems prudent to propose to the
decision maker a set of Pareto-optimal solutions satisfying the formal goals and constraints and let
him make final decision relying on his expertise, experience and intuition. This motivates applica-
tion of the multi-objective genetic algorithms, which are capable to undertake such a problem.

4. Problem Formulation

Basic Notation, The following notation is used to formally introduce the problem.

the set of commercial breaks, B= {b,, b1, ..., bn};

the number of commercial breaks;

an index of a commercial break;

the length of the commercial break b;, in seconds;

the set of products being advertised, P = {p\, pa, ..., pa};

the number of products being advertised;

an index of an advertising product;

the number of commercials for the product pj;

the set of commercials for the product p, ;= {#, 13, ...,tqu} sorted in ascending order;
the length of the commercial v for the product p;;

the advertising budget of the product py;

the budget share of the commercial v for the product pj, 2.k, =1;

the minimum time length between two consecutive commercials for the product py;
the maximum number of commercials in one show for the product p;;

the GRP goal for the product p;;

the Reach goal for the product p;

the advertising price of one second in the break b; for the product pj;

the mxn matrix of the decision variables, X = {x;};

the commercial length if the product p; is advertised in the break b;, and 0 otherwise;
the advertising campaign for the product p;, X; = {x;, x2j, ..., Xuj};

the admissible breaks for the product p; after applying the search space constraints;

1 if the product p; can be advertised in the break b;, 0 otherwise, D;= (dy;, dy, ..., dm);
the Reach of the campaign X; for the product pj;

the GRP of the campaign X; for the product p;;

the set of commercial breaks grouped by TV shows, §= {51, 52, ..., 54}, I_[,’;ls, =B
the number of distinct TV shows;

an index of a TV show;
the nxn binary symmetric matrix of competing brands constraints, F = {5}
1 if the products j; and j; compete, and 0 otherwise;

the absolute airing time of the break b,.




Problem Statement. The mathematical problem formulation may be presented as follows.

Optimize reach for each product

R i T s
subject to the
e budget constraints:
m )xpe, ShoM, j=12,0m, v=l2i.,9,; )
e goal attainment constraints:
R(X)2R,, GX)2G, j=12,..,n; (3)

commercial break length constraints:

n

R o C] e S (4)

=1
e minimum time length between two consecutive commercials constraints:
[1B)—t(B )1 (x, ;x, )SA,, @iy =12,...,m, i\#iy; (5)
e maximum number of commercials in one TV show constraints:

e[Sk =120k, j=12,0m; (6)

competing products constraints:

ZZI Z:,zl Z;[z x'.h ) x"fz 'lefz = 0’ (7)

where I(x)={1 if x>0, and 0 otherwise}, I,(x)={1 if x=y, and 0 otherwise}, and the functions are
applied componentwise in the case if x and y are vectors.

The objective function (1) simultaneously maximizes Reach index for all advertising products
{p1, P2, ..., Pn} that compete over the pool of commercial breaks {b,, by, ..., b}. Each product p; has
g; different commercials {f1, (3, ..., 14 } available for it, and each commercial #, has a budget share

assigned (meaning that the sub-budget of this commercial is 4;,-M; ). Hence, the budget constraints
(2) for every product are formulated as a set of inequalities (one for each of the product commer-
cials). Goal attainment constraints (3) ensure that in the generated set of Pareto-optimal solutions,
every product gains at least minimum value of Reach and GRP indices. Commercial break length
constraints (4) guarantee that the total length of commercials placed into a break does not exceeds
its length. Equation (5) describes the constraints for the minimum time length between two con-
secutive commercials for the same brand, while formula (6) limits the number of commercials of a
brand placed to the same break. Competing brands constraints (7) make sure that only one of the
competing products can be placed to the same commercial break.

In addition to the hard constraints described above, there are additional soft problem constraints that
are not mandatory but are desired to be accomplished. The budget for each commercial length of
every advertising product should be spent as completely as possible. This requirement arises from

the practical aspects of the problem, since the profit of the media planning agency depends on the
advertising budgets of their clients.

The formulated mathematical problem is an NP-hard multi-objective optimization problem of high
dimension (usual values for n and m are 1500-125000 breaks and 30-75 brands for one month opti-
mization depending on a country). Hence, applying the branch-and-bound or other exact technique
does not seem prudent, and the problem is solved by means of metaheuristics. In this paper, a spe-




cially designed version of the multi-objective genetic algorithm (MOGA) of Fonseca and Fleming
(1993) is applied to solve the problem (1).

5. Multi-Objective Evolutionary Approach

The evolutionary computation employs biology concepts of natural selection and population genet-
ics to solve optimization problems that are hard or impossible to solve using traditional optimiza-
tion techniques (Michalewicz and Fogel, 2000). The major difference of the evolutionary algo-
rithms (EA) and other heuristical methods is that the EA rely on a population of solutions rather
then on a single individual in the decision variable space. This research direction was started by the
pioneer work of Rechenberg (1973) who proposed the Evolutionary Strategies to solve complex
optimization problems, and was followed by Fogel (1991) with the Evolutionary Programming, and
Holland (1975) with the Genetic Algorithms (GA). The theoretical results for the GA obtained by
Goldberg (1989), such as Schema Theorem, made them very popular search techniques, that re-
sulted in numerous applications and enhancements of this optimization paradigm (Man et al, 1999).

The genetic algorithms maintain a population of individuals that compete with each other for sur-
vival. After evaluation, individuals are given a probability of recombination that depends on their
fitness. Offsprings are produced via crossover, where they inherit some features from the ancestors,
and via mutation, where some innovative features can appear. At the next iteration, the offsprings
compete with each other (and possibly also with their parents), and etc. Population improvement
happens due to the repeated selection of the best parents, which are likely to produce better off-
springs, and elimination of solutions that have low performance.

The multi-objective genetic algorithms use the GA ideas to solve the multi-criteria optimization
problems. Historically, the population-based non-Pareto approaches were used to deal with this
problem to start with. The first version of this technique was proposed by Schaffer (1985), whose
vector evaluated genetic algorithm (VEGA) had modified selection procedure so that, at each gen-
eration, a number of subpopulations is generated according to each objective. Fourman (1985) pro-
posed to use the selection scheme based on the lexicographical ordering of the objectives according
to the user priorities. Another version of the Fourman’s algorithm consisted of randomly selecting
the objective to be used for comparison of individuals in the tournament selection. Kursawe (1991)
proposed a multi-objective version of the evolutionary strategies, with each objective used to delete
an appropriate fraction of the population during selection. Hajela and Lin (1992) combined the GA
with the weighted sum approach by explicitly including the weights into the chromosome, and us-
ing the fitness sharing to promote their diversity.

The Pareto-based multi-objective genetic algorithms use the concept of Pareto optimality to rank
the individuals in the population. The first version of the Pareto ranking was proposed by Goldberg
(1989), and was based on the consecutive computing the dominating sub-populations, thus assign-
ing the individuals the ranks according to the sub-population index. Fonseca and Fleming (1993)
proposed an extension of this approach, where a solution’s rank corresponds to the number of indi-
viduals in the current population by which it is dominated. Therefore, the non-dominating individu-
als are all assigned the same rank, while the dominated ones are penalized according to the density
of the population around them. The calculated ranks are then sorted and mapped into fitness, and
the Stochastic Universal Sampling (SUS) is used to perform the selection (Baker, 1987). Besides,
Horn and Nafpliotis (1993) proposed a modification of the tournament selection based on the Pareto

dominance. Cieniawski (1993) and Ritzel et al. (1994) used the tournament selection that relied on
the Goldverg’s Pareto-optimal ranking scheme.

The multi-objective genetic algorithm (MOGA) of Fonseca and Fleming (1993) was the first
Pareto-based evolutionary technique proposed for the multi-criteria optimization problems. In addi-
tion to the special ranking procedure described above, it relies on the niche-formation methods to
distribute the solutions uniformly over the Pareto-optimal region, with the fitness sharing performed
in the objective function space, and special method for the niche size calculation. Besides, the deci-
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sion maker (DM) can incorporate the goal attainment information into the ranking procedure. The
algorithm extensions proposed in (Fonseca and Fleming, 1998) also allow including to the ranking
the DM preferences for the objectives. The MOGA was successfully used to solve a number of ap-
plied problems, for example design of a multivariable control system for a gas turbine engine
(Chipperfield and Fleming, 1995), multi-objective optimization of ULTIC controller (Tan and Li,
1997), design of a coal burning gasification plant (Griffin et al, 2000), and other applications.

Other well-known versions of the evolutionary multi-objective algorithms include the niched Pareto
genetic algorithm (NPGA) of Horn and Nafpliotis (1993), and the non-dominated sorting genetic
algorithm (NSGA) of Srinivas and Deb (1994). In the late 1990-s, there was developed a number of
new methods for the considered problem, which focused on improving the selection-for-survival
aspect, including techniques for population density estimation. The developed techniques include
the strength Pareto evolutionary algorithm (SPEA) of Zitzler and Thiele (1998), the Pareto enve-
lope-based selection algorithm (PESA) of Corne, Knowles and Oates’s (2000), and the elitist non-
dominated sorting genetic algorithm (NSGA-II) of Deb, Pratap, Ararwal and Meyarivan (2002). It
should be noted that a more detailed review of the evolutionary approaches to multi-objective opti-
mization problems can be found in (Fonseca and Fleming, 1995; Coello, 2000; Purshouse, 2004).

This paper proposes an application-specific modification of the MOGA for the described above
mediaplanning optimization problem. The developed algorithm uses the original MOGA frame-
work, but employs the specially developed encoding procedure and genetic operators, as well as the
original local optimization routine. These modifications allow manipulating only with feasible solu-
tions on each algorithm iteration. The efficiency of the developed optimization technique is verified
using the real data sets from the Canadian advertising industry.

6. Developed Modified Multi-Objective Genetic Algorithm

The major challenge in developing the efficient MOGA for the problem of optimal advertising
campaign generation for multiple brands is effective constraints handling. A modification of the
multi-objective genetic algorithm of Fonseca and Fleming (1993) is proposed, which takes into ac-
count the problem specificity by using specially developed solution encoding scheme and related
genetic operators. Another innovation deals with the local optimization routine, which employs an
original approximation procedure for the problem objective functions.

To handle the constraints (2)-(7), they are divided into four groups and are processed in the follow-
ing way:

(i) The search space constraints {D;}, the commercial break length constraints (4) and the com-
peting products constraints (7), are taken into account by the solution encoding.

(ii) The solution space constraints, i.e. the budget constraints (2), the minimum time length be-
tween two consecutive commercials constraints (5) and the maximum number of commercials
in one TV show constraints, are taken in consideration via the genetic operators.

(iii) The goal attainment constraints are handled via special ranking procedure that is used to calcu-
late the solution fitness.

(iv) The soft budget constraints are accomplished by rejecting the solutions that have the commer-
cials with the budget surpluses more a user-defined threshold.

The authors believes that the “death penalty” approach used in (iv) is suitable here, since the large
budget overplus in a solution usually means ineffective handling of the commercial break length
constraints, and thus is not expected to contribute to the trade-off surface.

The following subsections describe in details the proposed solution encoding, initial population

generation, genetic operators, local optimization routine, as well as the fitness and population man-
agement used in the developed algorithm.




6.1. Encoding and Decoding

To encode the problem solution, let us introduce the following notation.

G = the chromosome (solution, individual) of the algorithm, G = {gi, g2, ..., gn};
g = the gene that corresponds to the commercial break b;, g, € {0, | , ..., r;};
ri = the number of possible states for the gene g;;

W; = the set of possible states for the gene g;, |W)|=ri, W, ={w | z=0,1,...,r};

z = the break state index;
w; = the state number z for the gene g;, w/ ={v;,v},...,v.};
v, = 0if the state z of the gene g; does not include the product p;, else index of a commercial.

The notation implies that the advertisements for the break b; are coded in the gene g; by a break
state index z, and there is a bijective mapping between this index and the actual commercials that
are aired in the break. The set of possible states W for the gene g; is defined as

v,>0=4d =1
z _ [T 2 z " z v
w ={v,v5,...,Vv.}eW, & ZFII(VU)",-V; T

v:f|> 0’ v;z> 0= fh.’z: 0’

and the states are numbered from 0 to r; for implementation convenience. For example, assuming
the states lexicographical ordering and two products with all the commercial lengths admissible for
a break, the zero break state means that the break is empty, the states z=1, ..., ¢, correspond to air-
ing the commercials 1y, v=1, ...,4y, in the break, while the states z> g, +g; stand for airing a mix
of commercials for both products in the break. The Pascal-like summary of the routines employed
for encoding and decoding is given below, with the first procedure used to prepare the data.

procedure PrepareCodingData
input:  the breaks pool B={b,, b, ..., b,} and the problem constraints;
output: the encoding data {W), W,, ..., W,};
begin
1. for b;e Bdo
begin
initialize the encoding data for the break b;: W, =, z=0;
for {p,,p,,,....p, }  Psuch that dm.= 1, fjw= 0, /,,=12,...,y do

I=1"Ji"
add new state for bi: z«~z+1; wi ={v; = 0,3l j=j, = vi=v}; W, W ow;
end

. return the encoding data { W, W, ..., W,};
end.

2
3
4
5. fort,et,I=12,.,ysuchthat ) ¢ <T do
6
7
8

procedure EncodeSolution

input:  the matrix of the decision variables X = {x;};
output: the encoded chromosome G = {g, g3, ..., Zn};
begin

1. fori=1tomdo
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begin

find wj e W, such that v; >0 < le=%,) = | e

2
3
4.  set the value of the i-th gene: g, « z;
5. end

6

. return the encoded chromosome G = {g1, 22, ..., 2n};

procedure DecodeSolution

input:  the encoded chromosome G = {g1, 22, ..., gm};
output: the matrix of the decision variables X' = {x;};
begin

1. fori=1tomdo

2. forj=1tondo

3. set the value of the decision variable x;: x, « 1
4, end

5. return the matrix of the decision variables X = {x;};
end.

(]
Vi

As mentioned above, the proposed encoding takes into account the search space constraints, the
commercial break length constraints (4) and the competing products constraints (7); thus minimiz-
ing restrictions to be handled during the algorithm run. Another advantage of the proposed encoding
approach is the ability to quickly code and decode solutions, since the sets of the possible states
{W;} have to be computed only once before the genetic algorithm iterations start. Having a set of
tables of this kind for each break enables fast coding and decoding of the solutions during the algo-
rithm run, as shown in the routines given above.

6.2. Initial Population

To generate the initial population, the classical greedy heuristic is used. In the case when the heuris-
tic is not able to generate a defined number of distinct solutions, multiple mutations of the obtained
individuals are use to fill the gap. This approach has shown to be substantially more efficient when
compared to various random initial population generation techniques, while still being able to de-
velop even distribution of the Pareto-optimal solutions along the trade-off surface. The idea of the
greedy heuristic is to assign the values to the decision variable one by one, making the best avail-
able decision at every step (Michalewicz and Fogel, 2000). In the case of the problem considered in
this paper, at each greedy algorithm step, the current advertising product picks an admissible com-
mercial break that ensures the minimum cost per one incremental Reach point, and adds it to the
campaign. The order in which the products are scheduled to select the breaks is defined by a ran-
dom permutation at each algorithm round, and thus the heuristic can produce different solutions in
different runs. The summary of the greedy heuristic is presented below.

procedure GreedyHeuristic
input:  the breaks pool B={b,, by, ..., bm} and the problem constraints;
output: the matrix of the decision variables X = {x;};
begin

1. initialize the advertising campaigns: x; < 0,i=1,2, ...,m,j=1,2, ..., n;
2. initialize the status of the products: aj« 1,/=1,2, ..., n;
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3. while 37 a,>0 do
4.  begin
. generate random permutation Y = {y,, y,, ..., yn} of the numbers {1, 2, ..., n};
6. for u := | to n such that Jj<y,a,=1do
7. begin
8. find the current set of admissible breaks A4 for the product j:
d, =1, x,=0, Zj. x,f,,=0; Zh,,e..-,l(x'u)ﬂ Sk, bes;
bed < I, 37 I (%)%, ¢, +,¢,ShM, i ¥ ETs (B
[t(,)-tb)|-I(x,,)SA,, iy =12,...,m;
9. for all b, € Ado
10. begin (comment: longer commercials are given priority due to soft constraints)
11, Jfind the longest commercial 1, that can be placed to the break b;:
v, (—ar'lgzmax{tj‘, :Z::’:I],ﬂ(x,]j)-x,u-c,”. +t 0 ShyoM Z:,ﬂ Xy iy, S T};
v=l.2,..q4,
12. select the best pair (i, v") by minimizing the unit-Reach cost:
_ )
(i*,v") < argmin Ln Y : 9)
bed,v, R(Xj'f’tjvm‘],)"R(Xj)
13. end
14. if the pair (i', v') was not found then a; < 0; continue;
15. add the commercial ¢,. of the product p; to the break 5. : X s
16. end
17. end
18. return the matrix of decision variable X;
end.

It should be noted that there exist other versions of the greedy heuristic for the considered optimiza-
tion problem. For example, each brand can be allowed spending a defined share of the budget (5%,
for instance) on each algorithm round. For the case studies considered in this paper, the described
above version of the version algorithm has showed to be the most efficient one. However, both ver-

sions were implemented, and the preliminary analysis of their efficiency was performed before each
computational study.

The mutation procedure, which is used to complete the initial “greedy” population, is described in
the following subsection. It is employed only if the classical heuristic fails to generate a defined
number of distinct individuals. This may lead to the undesired leak of population diversity during
the first iterations of the algorithm, so adaptive tuning of crossover and mutation rates might be
needed to overcome this difficulty (see the case study #1).

6.3. Genetic Operators

MUTATION. The mutation of the solution G={g|,g,...,gn} is performed on componentwise
bases, with all the genes having a small fixed probability to be modified. If the gene g; is selected
for the mutation, then its value is randomly changed to the one of the equiprobable states
{0,1,2...,r;}. In the phenotype terms, it means that different products and commercials that satisfy
the break length, search space and competitive brands constraints, are assigned to the break b; in-
stead of the old ones. After the genes modifications, there exists a possibility of the budget, mini-
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mum time interval and maximum number of commercials constraints violation, so the obtained so-
lution may be infeasible. To overcome this problem, the approach of “repairing” the infeasible indi-
viduals is utilized by the mutation operator. The repairing is performed by withdrawing some com-
mercials from the breaks, while selecting the ones that lead to the minimum objective function de-
crease per unit cost. Besides, some brands can have their budgets under-spent after the genes modi-
fications, and it is intuitively appealing that spending the rest of the budget will make the solution
more feasible. Hence, a special version of the greedy heuristic is used to optimally distribute the
budget surpluses. The summary of the mutation genetic operator is presented below.

procedure MutationOperator

input: the original chromosome G°={g/,g3,...,g°};

output: the mutated chromosome G ={g,g;,...,g.};

3

parameter: the gene mutation probability O,
begin
1. initialize the mutated chromosome: G « G° 3
2. for b; € B such that {random number from [0, 11} £Qndo
3 begin (comment: modify the gene with the probability O,,)
4 generate a random integer s in the range from 0 to r; with equal probabilities;
5 modify the gene g/ : g’ «s;
6. end
7. decode the chromosome G to the matrix of the decision variable X= {xi};
8. for p;e Psuch that 37 x,.c,>M do
9

iy
while 37 x,-c, > M do

10.  begin (comment: repairing the budget constraints)

11. select the break b, with the minimum objective function decrease per unit cost:
R(X)-R(X,-x, -1
i‘eargmin{ (X)) R, =, ‘)}; (10)
x>0 x,j- CU
12. remove the break b;. from the campaign for the product p;: x;;=0;
13.  end

14. for p;e P do
15. while 3b,,b, € B:|1(b,)-1(b )| (x, x, ;)>A, v IbeB: L el (%) >k, bes, do

16.  begin (comment: repairing the time interval and number of commercials constraints)
17 select the break b;. that satisfies (10) from the conflicting breaks;

18. remove the break b;. from the campaign for the product p;: x;,;=0;

19. end

20. for p; € P such that 37 x
21.  run BudgetFix(X,|)
22. code the matrix of the decision variable X to the chromosome G'={g’, Ersees &}

;¢; <M, do (comment: optimally spent the budget surpluses)

23. return the mutated solution G*;
end.

The procedure BudgetFixed(X,)) optimally distributes the budget surpluses for the product p; using

a modified greedy approach; it is also used by the crossover operator. Its detailed description is
given in the following subsection.
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Fig. 4. Mutation and crossover operators (before “repairing”)

CROSSOVER. The crossover of the solutions G'={g,,g;,....g,} and G*={gl,g2,...,g2} is

performed by (i) copying the equal genes of the individuals G' and G? to the new chromosome; and
(ii) optimally distributing the rest of the budget for the offspring solution by means of the greedy
heuristic. The summary of the crossover genetic operator is given below.

procedure CrossoverOperator

input: the ancestor chromosomes G'={g|, g,,....g.} and G’={g?,g2,...,g};
output: the offspring chromosome G'={g/,g;.....g.};
begin

—

initialize the offspring chromosome: g' =0, i=12,...,m;

2. for b; e Bsuch that g/ =g’ do

3 begin (comment: copy the identical genes to the offspring)

4 set the offspring gene g': gl « g ;

5 end )

6. decode the chromosome G to the matrix of the decision variable X= {x;};
7

8

9

for p; € P such that 37 x,-c, < M,do (comment: optimally spent the budget surpluses)
run BudgetFix(X,))
code the matrix of the decision variable X to the chromosome G'={g/,g},...,2.};

10. return the offspring solution G;
end.

Figure 4 illustrates the ideas of the proposed mutation and crossover operators before the resulted
solutions are repaired with respect to violated constraints.

To optimally distribute the budget surpluses for the offspring chromosome, a modification of the
greedy heuristic is applied. To handle the soft budget constraints of the problem, longer commer-
cials are given priority when purchasing the advertising time, so the algorithm starts from distribut-
ing the rest of the budget for the longest commercial, and proceeds step by step to the shortest. The
summary of the heuristic for the optimal budget surpluses spending is presented below.

procedure BudgetFix

input:  the matrix of the decision variables X = {x;} and the product index j;

output: the matrix of the decision variables X = {x;} with the optimally distributed
budget surplus for the product p;;

begin
14




for v=g;down to | do
begin (comment: longer commercials are given priority due to the soft constraints)
while 37,1, (x,)-x,-¢, <h, M, do
begin
find the current set of admissible breaks 4 for the product j according to (8);

select the best break b;s € 4 for the commercial £, using (9) assuming v’ = v;
end

if the break b;» was not found then break;

add the commercial 4, of the product p; to the break b,.: x,, « Ly <
10. end
11. return the matrix of decision variable .X;

end.

% B e @ B

o

To avoid lethal offsprings, mating restrictions were introduced to the crossover process. The simi-
larity measure between two chromosomes was defined as

D(G.GY=m"3" 1.(g}),

and the individuals were allowed to mate only if their similarity measure was above a defined
threshold. The empirically defined value of the threshold for both case studies was 0.9.

The developed genetic operators and the solution encoding technique allow having feasible solu-
tions at each iteration of the developed MOGA (for hard problem constraints). The soft problem
constraints are taken care of by the “death penalty” approach. In the following subsection, it is pre-
sented a local optimization routine that is used to speed-up the performance of the algorithm.

6.4. Local Optimization Routine

To improve the performance of the algorithm, it is hybridized with a specially developed local op-
timization routine. The basic idea of the proposed technique is to generate a set of close promising
feasible solutions for the individual, that can be then used to develop a part of the trade-off surface
in the neighbourhood of this individual. Thus, the developed local optimization procedure was sub-
ject to the following requirements:

(i) the generation of the neighbourhood solutions process must not be time consuming;
(ii) each solution in the generated set must be feasible;

(iii) from all the solutions close to the individual, the promising ones must be favoured;
(iv) the technique must not be limited to the greedy heuristic philosophy.

The first requirement is to enable the algorithm to apply the local optimization search to all new in-
dividuals generated by the genetic operators (memetic approach). The last requirement is meant to

overcome the limitation of the mutation and crossover operators that both rely on the BudgetFix(.)
procedure, with the greedy heuristic ideas in it.

The following approach, that takes into account all the mentioned above properties, is proposed.
First, a defined small share of the budget (5% was used for the case studies) is unloaded for each
product, using the same approach as for the mutation operator. Then, for each product D, the com-
mercial £, and the admissible break b; Reach per cost RpCjy is calculated (or set to zero if this
combination is not admissible). This value is considered to measure the validity of adding the break
bi to the campaign of the product p; using the commercial #,. Afterwards, the Reach per cost is
transferred to the “attractiveness” probability for every product using the following function:
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Py(iuo¥) = £ J¥) T 0 £ ). £ o) =( RpCG, o) min RC( o, )) (n

where a2 | defines the importance that is assigned to the breaks with higher Reach per cost (o.=2
was used for the case studies). Finally, at each procedure step, the products randomly select breaks
from the corresponding distributions (11); with products order being also defined randomly on each
step. The summary of the proposed local optimization routine is presented below.

procedure LocalOptimizationOperator

input: the original chromosome G’={g/,g7,...,g>} with small budget surpluses:
output: the neighbourhood chromosomes © = {G*={g{,...,g:}, z=1,...,Z, . };
parameter: the neighbourhood size Z,;

begin

1. decode the chromosome G° to the matrix of the decision variable X° = {xy};

2. initialize the set of the neighbourhood chromosomes: @ = J;

3. forp;e P, 1 e tjdo

4. begin (comment: calculate the cost per Reach point for admissible breaks)

5 initialize the cost per Reach point: CpR;,=0, i=1,2,...,m;

6.  find the set of admissible breaks A4 for the pair (p;, ;) according to (8);

7 for b,e Ado

8 begin (comment: calculate the efficiency of adding ¢, to b))

9 calculate the cost per Reach point for the break b; and the commercial 4,
RpC(i, j,v) = (R(Xj+tjv-l,) - R(Xj))-(z‘j‘,-c,J i

10. end

11. end

12. transform the cost per Reach point to “attractiveness” probabilities according to (11);

13. forz=1to Z,u do
14. begin

15.  initialize the solution: X < X°, and the status of the products: dpe= 1,751,200 1
16.  while 3"_a, >0 do

17. begin
18. generate random permutation ¥ = {y, ...,y,} of the numbers {1, ...,n};
19. for u :== 1 to nsuch that j«y, a,=1do
20. begin
21. if P4(i,j,v)=0 for V i, v then a; < 0; continue;
22. generate the random pair (i, v) from the probability distribution Py(.,,.) for p;
23, add the commercial ¢, of the product p; to the break b;: x;; «— 1;,;
24, reset the probability to all pairs (i1, v;) that became infeasible: P4(i\,j,v;) < 0;
25, normalize the probability distributions P,(.) for all the products;
26. end
21 end
28.  code the matrix of the decision variable X to the chromosome G*={g},g:,...,g};
29. end
30. return the set of the neighbourhood chromosomes ®;
end.
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Figure 5. Contribution of the local optimization operator to the developed modified MOGA

The developed local optimization technique contributes both to the improvement of the objective
function values, and to the uniform distribution of the solutions in the Pareto-Optimal set. Figure 5
illustrates the key ideas that make this additional genetic operator useful for the considered prob-
lem. The local optimization is applied to all new solutions that were generated by the crossover and
mutation (Figure 5a). For each of these solutions, the neighbourhood of promising individuals is
produced, that results in the new Pareto-optimal chromosomes being added to the archive (Fig-
ure 5b). Besides, these Pareto-optimal individuals are uniformly distributed around the solution that
was used for local optimization, thus increasing the result of the classical genetic operators (since
instead of getting a single point for each new solution, there is also a sub-Pareto-optimal surface
piece for this individual). Finally, after applying the selection with the fitness sharing and stochastic

universal sampling (SUS), the new generation contains the solutions that tend to distribute evenly
along the developed trade-off set (Figure 5c).

6.5. Fitness and Population Management

Following the comparison results reported in (Purshouse, 2004), the combination of the adaptive
fitness sharing (Fonseca and Fleming, 1993) and the elitist selection (Eshelman, 1991) is used to
manage the population. The performed simulation results has supported this approach, with the
adaptive fitness sharing ensuring better individuals distribution along the trade-off surface, and the
elitist selection speeding up the algorithm convergence. Besides, the modified multi-objective rank-
ing procedure that allows including the goal attainment information was used when ranking the in-
dividuals. A brief overview of the techniques employed is presented below.

In the multi-objective ranking of Fonseca and Fleming (1993), an individual is assigned rank based
on a number of solutions in the population that dominate it. Consider a chromosome G' of the gen-

eration ¢ that is dominated by p{” solutions in the current population. Then the rank of the individ-

ual G' is defined as
rank(G',t) =1+ p*

i

According to the given above expression, all the non-dominated individuals will be assigned rank 1,
while the dominated ones will be penalized according to the population density of the correspond-
ing region of the trade-off surface. Besides, this ranking technique is extended to the case when
each objective is assigned a goal and priority. For example, a dominated solution that satisfies all
the goals may be considered more preferable to the non-dominated solution that does not meet all
the objectives. In this paper, the described ranking procedure is used to take into account the goal

attainment constraints (3). Subsequently, the exponential rank-to-fitness mapping with the selective
pressure e is used to calculate the fitness.
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The fitness sharing in the MOGA is aimed at providing the uniform sampling of the solutions in the
Pareto-optimal set (Goldberg and Richardson, 1987). During the GA iterations, the diversity of the
population can be lost duc to the effect of the random genetic drift (Goldberg, 1989), where the so-
lutions tend to converge to a single point that represents the optimum solution. While being accept-
able for the single-objective unimodal optimization problem, this phenomenon can lead to identify-
ing only a small region of the trade-off surface for the multi-criteria setting. To overcome this diffi-
culty, niche induction techniques were introduced to improve the diversity in the population (Gold-
berg and Wang, 1998). According to this approach, the solutions tend to distribute themselves
around the multiple optima and form regions that are referred to as niches. Fitness sharing is one of
the niching techniques that lowers each individual’s fitness by an amount that depends on the num-
ber of “similar” individuals according to some measure (Sareni and Kraahenbuhl, 1998). For the
multi-objective optimization problems, the similarity measure is usually introduced in the objective

function space, since the goal is to achieve even distribution of the Pareto-optimal solutions along
the trade-off surface (Fonseca and Fleming, 1998).

In the fitness sharing approach, the shared fitness of the individual / is defined as f= f,/m, , where

the niche count m; measures the approximate number of individuals with whom the fitness f; is
shared:

m=Y" shd,).

Here N is the population size, dj is a distance between the individuals / and ¢, and sh(.) is the func-
tion that measures the individuals similarity:

l={d, /)", ifd,<06;
N (XY <o

0, otherwise.

The parameter a regulates the shape of the sharing function and is commonly set to one, with the
resulting sharing function referred to as the triangular function (Goldberg, 1989).

The developed in this paper algorithm relies on the phenotypic sharing that measures the distance dj,
in the objective function space. Euclidian measure is employed to compute dj,, and the estimation of
the niche size parameter oy is performed by solving the equation

n=1 _H;:i(!‘/f}_m] +U-")—H1=1(Mi_mj) i)

o)

&

No

where M; and m; are the maximum and minimum of each objective respectively.

Elitism can be summarized as preserving the high-performance solutions from one generation to the
next. This approach have proved to be an powerful tool for improving the efficiency of the evolu-
tionary algorithms [Zitzler et al, 2000; Deb et al, 2001]. The conducted simulation study has shown
that this fact also holds for the optimization problem considered in this paper, so one individual
with the highest fitness was always kept in the population.

The algorithm relles on specially developed
genetic operators and Is hybridized with the

original local optimization routine New generation of potential solutions No Is maximum number
7 " of iterations reached?
epi e o Update the archive of .
(_ors.\{::amr.s C .rJu'm!f detta Pareto-optimal solutions Re.\'po'rfdenr viewing data  Reach an‘d GRP goals
Q4 4 w L L
Prepare coding data and Decode the genotypic Calculate Reach Perform ranking, fitness Perform crossover, mutation
create initial population —>{ representation into the [—3»{ for each product —>~ sharing and selection using and local optimization of all
using the greedy heuristic advertising campaigns in every solution stochastic universal sampling new individuals

Figure 6. Flow chart of the developed modified multi-objective genetic algorithm
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Figure 6 summarizes the work-flow of the developed modified multi-objective genetic algorithm.
Using the classification employed in (Ishibuchi and Yoshida, 2002), the proposed routine is based
of the generic framework when the local search is applied to all new solutions generated by the
multi-objective evolutionary algorithm. The following section presents the application example that
confirms the efficiency of the proposed technique.

7. Computational Results

The presented in this paper modified MOGA for the problem of optimal advertising campaign gen-
eration for multiple brands was tested using the real data for the Canadian advertising market. There
was used a mediaplan for September 2004, which was generated by an advertising agency for one
of the major advertisers in Canada. To develop the optimal advertising campaigns, the agency was
using the greedy heuristic described in the previous section. The efficiency of the developed in this
paper modified multi-objective algorithm is demonstrated below by improving the advertising ef-
fectiveness for subsets of products from the original campaign, and thus increasing the overall im-
pact of the mediaplan.

The specificity of the considered optimization problem for the Canadian market with respect to the
general problem statement is that all the commercial breaks and brand commercials can be only ei-
ther 15 or 30 seconds long. This is not always the case in other countries, for example in Germany
there is no defined length for the break or brand commercials, the breaks are usually much longer
(90-100 seconds), and the commercials can have various length. Although the described specificity
of the Canadian version of the problem might seem to simplify it, the trade-off is that the number of
breaks significantly increases due to their short length, thus increasing the dimension of the problem
dramatically. Another reason for this increase is the different TV broadcasting systems in Canada
and Germany. For instance, the usual values for n (the number of breaks) and m (the number of
products) are 125000 and 75 for one month optimization for Canada, while only 1500 and 30 for
Germany.

In the following subsections, there are considered two case studies that investigate the performance
of the developed heuristic algorithm. Both studies are performed for the Ontario region of Canada
for the first week of September, 2004 (30.08.2004-05.09.2004). The study #1 was conducted for
two low-budget non-competing products, while the study #2 was held for three products with budg-
ets of average size, and two of the products were competing. The idea of both case studies was to
demonstrate how the developed multi-objective optimization algorithm could be used to improve

the original mediaplan generated by the advertising agency. The obtained results and their detailed
analysis follow.

7.1. Case Study #1: Two Low-Budget Products

In the case study #1, there were selected two low-budget non-competing products p; and p,, and the
pool of commercial breaks was generated as all the advertising time that was assigned to these two

products by the agency in the original mediaplan. Afterwards, this pool was distributed between the
products

(i) by means of the greedy heuristic; and
(ii) using the developed modified multi-objective genetic algorithm.

Finally, the trade-off surface generated by the developed modified MOGA was compared to the
“greedy” solution. It should be noted that in this case, the multiple runs of the greedy heuristic pro-
duced very similar individuals that resulted in low diversity during the first algorithm iterations.

The selected products p; and p; had the budgets $3,740 and $7,332 respectively, and were aimed at
the heavily intersecting target groups “Women 18-34” and “Women 18-49 with kids under 12”. The
first product p; had the commercials of length 15 and 30 sec with the corresponding budget shares
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20% and 80%, whilc the second product p; had only the commercials of 15 seconds long. The
minimum Reach constraints were set at 10% and 13% respectively, while the GRP goals for these
products were defined as 15% and 40%. The pool consisted of 112 commercial breaks with about
73% of 15 seconds and 27% of 30 seconds long.

The following parameter values were selected for the developed modified MOGA: the population
of 50 individuals, 250 iteration count, adaptive crossover rate 0.1+0.7-y/250, adaptive mutation
rate 0.8 —0.7-y/250, mutation parameter 0.2, where y denotes the iteration number. As follows from
the algorithm settings given above, the very high mutation rate that decreases with the iterations,
and the very low crossover rate that increases as the algorithm runs, were used for the computa-
tional study. Since the usual GA recommendation consider very low mutation rate and high cross-
over rate, the explanation of this distinction follows.

The developed algorithm is hybridized in a number of ways, in particular, the initial population is
constructed by the multiple runs of the classical heuristic (that has some stochastic features and
might produce different solutions in various runs). However, the considered in this study two prod-
ucts circumstances can be seen as a very extreme problem case, when the number of the products n
is the minimum possible. This fact together with the Canadian problem specificity (15 and 30 sec-
onds breaks and commercials), and the test-specific data leads to the situation when the greedy heu-
ristic produces very similar solutions at every run. The outcome is a very low population diversity
during the first iterations of the algorithm, that makes the cross-over not efficient. Hence, to boost
up the diversity, very high mutation rate is used to start with. Assuming that the diversity increases
as the algorithm runs, the mutation rate decreases in favour of the crossover rate with every itera-
tion. Finally, the rates converge to the settings that are consistent with the usual MOGA parameter
selection recommendations (Purshouse, 2004). It should be noted that in the case study for three
products (that will be presented in the following section), the greedy heuristic produces a number of
diverse solutions, and the described above “rates tuning” procedure is not necessary.

Algorithm performance for two low-budget products
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Figure 7. Classical greedy heuristic vs. the developed modified multi-objective genetic algorithm
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To develop intuition about the encoding technique proposed for the algorithm, Table 1 enumerates
the states of a 30 seconds long break, where both of the products p, and p; can be aired. As follows
from the table, the state 0 corresponds to the empty break, the states 1-3 stand for airing a single

commercial, while the state 4 refers to advertising both products in the break, using 15 seconds long
commercials.

Table 1. Encoding example for the case study #1

Break state z 0 ] 2 3 4
Product #1 commercials- | — 15sec 30 sec - 15 sec
Product #2 commercials | — - — 15sec 15sec

The results of the study are presented in Figure 7. As follows from the figure, the solution of the
classical greedy heuristic can be essentially improved and is dominated by the Pareto-optimal solu-
tions generated by the developed modified MOGA. An aggregated improvement of the MOGA vs.
the classical approach can be roughly estimated as $1,000 vs. about $11,000 total budget of the
product, that is a very significant increase. This figure was calculated based on the cost per gained
Reach point of the greedy solution, and can be interpreted as how much money the agency would
have to spend to achieve the results of the developed technique while using the greedy heuristic to -
solve the problem.

Table 2 compares the greedy heuristic solutions (only one is shown due to their extreme similarity)
to the solutions from the Pareto-optimal set that dominate it. As follows from the table, the solu-
tions generated by the developed in the paper algorithm ensure not only the superior Reach index
values, but also better GRP gain, as well as lower cost per Reach point and cost per GRP. Besides,
the mediaplanner can choose the most attractive solution from the Pareto-optimal set and it is not
limited to a single point, as for the classical approach.

Figure 8 shows the percent gain of the Pareto-optimal individuals generated by the developed modi-
fied multi-objective genetic algorithm, over the greedy solution. In addition to Reach and GRP, the
following performance indices are shown for each brand: cost per Reach (CpR) and cost per GRP
(CpG). As follows from the parallel axis visualization, all but one Pareto-optimal individuals out-
perform the greedy heuristic for all efficiency indices, and the excepted solution has slightly lower
GRP for the product p,, while possessing extremely high Reach value for the product p,. Besides,
the developed Pareto-optimal solutions are clearly better then the original mediaplan, that did not
satisfy the minimum Reach constraint for the product p,. These results also confirm the superiority
of the developed optimization technique over the classical heuristic.

Table 2. The greedy solution (GS) vs. the developed Pareto-optimal solutions (PO)
for the case study #1, compared to the original mediaplan

Brand #1 Brand #2

Solution Reach GRP Cost C;:;E;r C‘g&gﬂ Reach GRP Cost C;:;Eﬁr ch&gcr
PO # 1 10.51 15.65 3,612 343.79 230.76 15.04 41.36 7,310 486.08 176.74
PO # 2 10.51 15.04 3,508 333.68 233.24 15.02 40.43 7,324 487.73 181.16
PO # 3 10.52 15.68 3,606 342.86 230.01 15.02 41.36 7,317 487.27 176.89
PO # 4 10.55 15.71 3,629 343.93 230.95 14.93 42.25 7,327 490.85 173.41
PO # 5 10.57 15.73 3,607 341.14 229.21 14.87 41.18 7,315 491.86 177.64
PO # 6 10.58 15.70 3,621 342.13 230.62 14.86 41.16 7,306 491.66 177.47
PO # 7 10.60 15.77 3,629 342.34 230.19 14,81 42.10 7,327 494.60 174.03
PO # 8 10.61 15.77 3,638 343.07 230.71 14.75 42.03 7,318 495.94 174.09
PO # 9 10.63 15.79 3,629 341.51 229.79 14.74 42.00 7,321 496.80 174.30
PO #10 10.63 15.76 3,643 342.62 231.24 14.62 41.59 7,317 500.44 175.94
PO #11 10.66 15.83 3,652 342,75 230.76 14.60 41.55 7,313 500.79 175.99
PO #12 10.67 15.84 3,681 344.92 232.35 14.55 42.47 7,323 503.35 172.43
PO #13 10.68 15.85 3,692 345.72 232.94 14.40 42.26 7,311 507.67 172.99
PO #14 10.69 15.86 3,714 347.41 234.14 14.31 42.16 7,285 509.11 172.80

GS 10.49 15.24 3,721 354.72 244.16 13.76 40.04 7,329 532.63 183.04
Original 10.23 15.51 3,740 365.59 241.13 12.81 39.01 7,332 572.37 187.95
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Figure 8. Parallel axis representation for the percent gain of the
Pareto-optimal solutions over the greedy solution, case study #1
(for two primary objectives and six additional performance indices)

7.2. Case Study #2: Three Products with Averages Budget Sizes and Competing Constraints

In the case study #2, there were selected three products p, p, and p; with average budget sizes, and
the products p and p, were competing with each other. As in the previous example, the pool of the
commercial breaks was generated as all the advertising time that was assigned to these three prod-
ucts by the agency in the original mediaplan. Subsequently, this pool was distributed between the
products using two optimization approaches:

(i) the greedy heuristic;

(ii) the developed modified multi-objective genetic algorithm.

Finally, the Pareto-optimal solutions generated by the developed modified MOGA were compared
to the “greedy” solutions.

The selected products py, p2 and p3 had the budgets $34,384, $15,312 and $42,351 respectively, and
were aimed at the very similar target groups “Women 18-34”, “Women 25-54” and “Women 25-
54, The first product p; had the commercials of length 15 and 30 sec with the corresponding
budget shares 40% and 60%, the second product p; had only the commercials of 30 seconds long,
and the third product p; had the commercials of length 15 and 30 sec with the shares 60% and 40%.
The minimum Reach constraints were set at 40%, 30%, 30% respectively, while the GRP goals
were defined as 90%, 50% and 100%. The pool consisted of 1,364 commercial breaks with about
8% of 15 seconds and 92% of 30 seconds long.

The following parameter values were selected for the developed modified MOGA: the population
of 50 individuals, 250 iteration count. The initial population was generated by running the greedy
heuristic 50 times. Also the obtained solutions were quite diverse in the decision variable space
(similarity from 50% to 77%), they all were very close in the objectives space. Standard crossover
and mutation rates of 0.8 and 0.1 were used, while still relying on the high mutation parameter
value 0.2 to stimulate the exploration of new regions of the search space. Table 3 presents an encod-
ing example for a 30 seconds break that was admissible for all of the considered products.

Table 3. Encoding example for the case study #2

Break state z 0 1 2 3 4 5 6
Product #1 commercials | — 15sec 30 sec - - 15 sec
Product #2 commercials | — - - 30 sec -

Product #3 commercials | — -~ - - 15sec 30sec 15sec
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Figure 9 shows the parallel axis representation for the relative difference of the greedy solutions
from their mean. As follows from the figure, the greedy solutions are very close in the objective
space, and have similar values of the additional performance indices: GRP, Reach per Cost (RpC),
GRP per Cost (GpC). For this reason, the mean of the greedy solutions was used when assessing the
performance of the developed modified MOGA.

Table 4 and Figure 10 compare the Pareto-optimal solutions developed by the modified multi-
objective genetic algorithm with the greedy solutions, as well as with the original mediaplan. Due to
the similarity of the greedy solutions in the objective space, twenty typical solutions are given in the
table. The Pareto-optimal set of solutions generated by the developed algorithm consisted of 1,304
individuals. Twenty solutions, that seem the most promising from the practical view point, are pre-
sented in the table. Eleven of these solutions were selected based on the maximum sum of Reaches

for all the brands, and for each product, three solutions, that ensure the maximum value of its
Reach, were picked.

From Table 4, it is clearly seen that the greedy heuristic fails to produce good Reach for the product
p3 (also it has large budget surpluses), while outperforming the original mediaplan for the products
p1 and p,. In comparison, the developed multi-objective optimization technique produces solutions
that provide slightly lower Reach for p; or p,, when compared to the greedy heuristic, but leads to
very good Reach for the product p;. For example, the solution PO #16 leads to the Reach of 44.02%
for the product p, (when the mean of greedy solutions is 44.33%), the value 35.60% for the product
P2 (33.72% for the greedy heuristic), and the value 50.29 for the product ps (vs. 33.84% for the
classical technique). Thus, by allowing a negligible decrease of the first objective, the modified
MOGA ensures the better value of the second objective and significantly increase the third
objective. Besides, it outperforms the original mediaplan for absolutely all performance indices, and
is not limited to a single point in the objective space.

Figure 10 shows the percent gain of the Pareto-optimal individuals generated by the developed
modified multi-objective genetic algorithm, over the greedy solution. As follows from the parallel
axis visualization, the Pareto-Optimal solutions are significantly better then the mean of the greedy
solutions for all criteria, except of the Reach per Cost index for the product ps. This inconsistency is

explained by the saturation property of the Reach index, and the heavily underspent budget of the
product ps in the greedy solutions.

Hence, as in the case study #1, the obtained computation results confirm the superiority of the de-
veloped multi-objective genetic algorithm over the classical optimization technique.

8. Conclusions

A multi-objective algorithm approach has been proposed for the problem of optimal TV advertising
campaign generation for multiple products. To solve this NP-hard combinatorial optimization prob-
lem with numerous constraints, the greedy heuristic is used by the advertising agencies. While this
traditional approach is limited to the solutions that are closely related in the objective space, the de-
veloped modified multi-objective genetic algorithm produces a Pareto-optimal set of solutions that

(i) outperforms the greedy heuristic;
(i) allows the decision maker choosing from a variety of optimal trade-off alternatives.

To achieve the high performance, the problem-specific solution encoding, the genetic operators, and
the original local optimization routine were developed for the algorithm. These techniques allow the
algorithm manipulating with only feasible individuals, thus significantly improving its convergence
that is complicated by the problem constraints. The efficiency of the developed modified multi-

objective genetic algorithm is verified using the case studies for the real data sets from the Canadian
advertising market.
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Future work will deal with improving the algorithm operators to let them take into account addi-
tional constraints that may arise in the considered problem. Besides, an additional study needs to be
performed to allow choosing the best algorithm parameters in different application settings. Another
challenge will be including to the problem additional optimization objectives for each of the brands.

After this work is accomplished, an evolutionary multi-objective reasoning will be employed in a

mediaplanning optimization system, thus providing the advertising agency with significantly more
advanced technique for developing the optimal mediaplans.
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