UNIVERSITY OF LEEDS

This is a repository copy of A model for integrating home-work tour scheduling with time-varying network congestion and marginal utility profiles for home and work activities. .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/84662/

Version: Accepted Version

Article:

Adnan, M, Watling, DP and Fowkes, AS (2009) A model for integrating home-work tour scheduling with time-varying network congestion and marginal utility profiles for home and work activities. Transportation Research Record, 2134. 21 - 30. ISSN 0361-1981
https://doi.org/10.3141/2134-03

Abstract

Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Paper for Submission in the TRB 88 ${ }^{\text {th }}$ Annual meeting January 11-15, 2009

Paper No: 09-0174
Submission date: $1^{\text {st }}$ August, 2008

Abstract

: The existing literature in the activity-based modelling have emphasised the fact that individuals schedule their activities keeping whole-day activity pattern in their mind. Several attempts have been made to integrate this with the network congestion; however, for explicit explanation of travel behaviour of individuals, further improvements are inevitable. In this paper, a combined model is proposed that deals with the scheduling of the home-work tour with time-varied network congestion in a fixed point problem framework. Marginal utility profiles that represent individual time-of-day preferences and satiation effect of the activities are incorporated for the measurement of utility of activity engagement along with the disutility of travel. It has been noticed that consideration of only time-of-day dependent marginal utility profiles of activities in the utility function does not appropriately integrate the activities and travel within the tour. The proof of this has been shown analytically and numerically. This finding contradicts with the earlier researches that have been done to integrate morning-evening commutes together with the network congestion. Additionally, two numerical experiments are conducted and the results are presented in the paper. In the first experiment, an arbitrary dynamic tolling strategy is assumed and then a detailed analysis is performed to show the variation in the balance of trade-offs involved in the process. The second experiment is conducted to assess the sensitivity of the combined model through incorporation of different dynamic traffic loading models. Some meaningful observations are drawn from these experiments and are discussed with the identification of avenues for future research.

INTRODUCTION:

Modelling congestion in conjunction with trip scheduling has been an active area of research over the last four decades. The work presented by Vickrey [1] has remained seminal in this regard. Further extensions and refinement of his work in many dimensions have resulted in a well-known scheduling theory for the morning commute(MC). Attempts have also been made to integrate the MC with the evening commute(EC) through the same framework, with an argument that scheduling of the MC may well depend on the travel cost of the return to home trip, the duration of the work activity and variation of the utility of the work activity with its start and end times [2,3]. Several empirical studies have also recognised the fact that due to growing concerns about congestion on the road network and policies that are aimed at reducing it (e.g. road pricing), people tend to change their activity schedules. Such changes may involve change in departure times, work activity duration, changes in modes and route choice etc[4,5]. Recently, Lam and Yin [6] and Lam and Huang [7] proposed a discrete choice framework in discrete times to model activity, destination and route choice together. They adopted a variational inequalitybased formulation in order to assign traffic dynamically and brought out mutual consistency between activity choices and travel times. However, the modelling framework does not model activity duration, which is considered as a vital dimension for linking the MC and EC together [2]. Abdelghany and Mahmassani [8] formulated and analyzed a stochastic dynamic user equilibrium (SDUE) problem in which drivers simultaneously seek to determine their departure time, route choice and sequence of their intermediate activities at the origin to minimize their disutility for travel. Their modelling framework is limited to the MC only with three intermediate stops i.e. it does not deal with the complete activity pattern of an individual for a whole day and also in their model duration at intermediate stops of the MC is treated as exogenously.

To overcome the deficiencies of earlier works, Zhang et al [2] investigated variation in the departure time within-a-day for the home-work tour as a trade-off between travel cost and the utility of participation in the work activity. The home-work tour is linked with work duration and the model follows a hierarchical nested logit structure utilising a utility framework proposed by Ettema et al [3]. In addition to this, they established an equilibrium condition between the schedule choice pattern and network congestion by solving a fixed-point problem. Their modelling framework utilised bottleneck model for estimation of travel time on a single link between home and work locations, which was then fed into the utility function. A similar sort of work has been presented by Kim et al [9] with the only difference that instead of using the Bottleneck model at supply side, they have utilised DYNASMART (dynamic traffic assignment package) to assign traffic and obtain time-dependent travel times which are feedback to demand model to achieve demand-supply equilibrium. Polak and Heydecker [10] also presented a similar kind of work i.e. combined modelling of home-work tour with dynamic network congestion, with a difference that utility function of their model do not incorporate a random error term i.e. they model home-work tour in manner that it provides deterministic user equilibrium. In all recent work of activity scheduling modelling with network congestion i.e. [2,7,9,10], it has been noticed that the utility specification of their model includes a component that measures the utility of activity engagement. This has been calculated through predetermined time-of-day dependent marginal utility (MU) function/profile for a particular activity. However, in a recent paper of Ettema et al [11], a model is proposed which only deals with the demand side. It is reported that duration based MU function (which represents activity satiation effects) and incorporation of scheduling constraint may also make significant contribution in combination with clock-time based MU function for proper measurement of utility of activity engagement.

In this paper, a combined home-work tour scheduling model is presented, which brings the system in stochastic dynamic user equilibrium (SDUE), under the above mentioned framework and a detailed investigation is carried out for time-of-day dependent MU functions. It has been proved analytically and numerically that clock-time based MU function for home and work activities do not able to integrate MC and EC together and thus not serve the purpose of the combined modelling. This finding supports the recent Ettema et al [11] work, however, contradicts with the earlier attempts that were made to integrate home-work tour scheduling with network congestion. Additionally, the model presented here can be considered as a generalised model as various forms of discrete choice models can be incorporated at the demand side and in a similar manner variety of supply models (dynamic network loading models) that fulfils the desirable properties for dynamic traffic assignment [12] (e.g. flow propagation, conservation, First-in-First-out, causality, etc.) can also be assimilated. The paper is structured as follows; second section contains a generic illustration of the combined model. Third section describes details of the utility framework of the model with proposed model refinements. Fourth section presents results obtained from the numerical experiments with some meaningful observations and finally conclusion is made with some discussion on future research.

HOME-WORK TOUR COMBINED MODEL

Generic Mathematical Illustration:

We are considering the home-work tour; that contains an origin-destination pair representing home and work locations, connected with a single link between them, and car as only mode of travel. In the context of the above simplified version of home-work tour, the scheduling dimensions involved here are the choice of departure times for work and from work Also there is no question of modelling activity sequence as only two activities are involved. Durations of work and home activities are implicit in this structure and are derived from departure times along with the travel time to get to work and home. Figure 1 further explains this framework in detail. Activity scheduling for this tour can be defined by a pair of discrete departure times from home and work activity denoted by i and j respectively.

i and j are departure times (i.e. clock-times) from home and work location respectively
R_{i} and R_{j} are travel times on the link at their respective departure times for the morning and evening commute respectively
τ_{w} and τ_{h} are duration of work and home activity and are given by
$\tau_{w}=j-\left(i-R_{i}\right), \tau_{h}=1440-\left(\tau_{w}+R_{i}+R_{j}\right)$
Time unit is taken in minutes and a full day is considered that comprises 1440minutes

FIGURE 1 Home-Work Tour Time Cycle

Scheduling for home-work tour $=($ departure time from home, departure time from CBD $)$

$$
=(i, j) \in \mathbb{Z}^{2}
$$

are fixed in number. The choice rate of individuals who will depart from home and work at time i and j respectively is given by

$$
\begin{equation*}
q_{i j}=Q P_{i j} \tag{8}
\end{equation*}
$$

The number of trips at departure time i from home to work q_{i} can be determined by summing over all the combined choices $q_{i j}$ over the departure time j and the same strategy can be applied to determine the number of trips at departure time j from work to home q_{j}, Mathematically,

$$
\begin{align*}
& q_{i}=\sum_{j} q_{i j} \tag{9}\\
& q_{j}=\sum_{i} q_{i j}
\end{align*}
$$

As already mentioned, the supply side of the combined model provides dynamic representation of congestion on the network through estimation of time-dependent travel times. For this purpose, whole-link models have been utilised that requires inflow profiles which are basically the outcome of demand side i.e. equation (9) and (10). Here we are using whole link models in which travel time of the vehicle entering at time i is considered as a linear function of number of vehicles exist on the link at time i. Therefore, for the morning trip i.e. trip from home to work, travel time R_{i} is given by

$$
\begin{equation*}
R_{i}=f f+c\left(x_{i}\right) \tag{10}
\end{equation*}
$$

where, x_{i} represents the number of vehicles on the link at departure time $i, f f$ is the free-flow travel time on the link and c represents inverse of the capacity of the link. According, to the linear whole-link model formulation [20], x_{i} is given by the flow conservation equation (i.e. difference between the cumulative inflows and outflows at time i assuming that link is empty at initial time) and according to the flow propagation equation, outflows from the link at time i are function of inflows, therefore it can be written as

$$
\begin{equation*}
x_{i}=\phi_{i}\left(\underline{q}_{i}\right) \tag{11}
\end{equation*}
$$

where, \underline{q}_{i} is the vector that represents inflow q_{i} for the $\mathrm{MC},{ }_{i}$ is the functional parameter that ensures the compatibility of the above equation. From the above equation it can be shown that travel time experienced by vehicles at time i on the link is basically a function of inflows provided from demand side of the model such as

$$
\begin{equation*}
R_{i}=v_{i}\left(\underline{q}_{i}\right) \tag{12}
\end{equation*}
$$

And in the similar manner, the travel time for the EC can be written as

$$
\begin{equation*}
R_{j}=v_{j}\left(\underline{q}_{j}\right) \tag{13}
\end{equation*}
$$

Suppose that \underline{R}_{i} and \underline{R}_{j} are the vectors that represents profiles of travel times for trip to work and home respectively, and \underline{R} is a vector that contains \underline{R}_{i} and \underline{R}_{j} as its elements and in the same manner q represents a vector whose elements are and then a fixed point problem can be formulated in a general way i.e.

$$
\begin{equation*}
\underline{q}=Q \underline{P}(\underline{V}(\underline{R}(\underline{q}))) \tag{14}
\end{equation*}
$$

where, \underline{P} and \underline{V} are two dimensional vectors containing elements $P_{i j}$ and $V_{i j}$ respectively, the above equation can be also be expressed as
at office and work most efficiently at about mid-day. In the afternoon, workers efficiency keeps declining until one leaves office. This is given by

$$
V^{\prime w}(t)=\frac{\beta \gamma U_{0}}{\exp [\beta(t-\alpha)][1+\exp (-\beta(t-\alpha))]^{\gamma+1}}
$$

where, $h_{0}, \alpha, \beta, \gamma, U_{0}$ are the parameters that controls the shape of the bell-shaped MU profiles, figure 2 a and 2 b shows the MU distribution with the following parameters values considered for the numerical proof
Home Activity: $h_{0}=0.03, \alpha=700, \beta=0.01, \gamma=1.0, U_{0}=10 £$.
Work Activity: $\alpha=720, \beta=0.01, \gamma=1.0, U_{0}=30 £$.

FIGURE 2 Marginal Utility of Activities, Demand and travel time profiles for combined and separate modelling cases

$$
\begin{equation*}
\sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} q_{i j}=q_{i} \tag{24}
\end{equation*}
$$

where, $q_{(i, j)}$ is the demand predicted for an alternative (i, j) using (21) and q_{i} is the demand predicted from the separate modelling of the MC for an alternative i using (22a). Equation (24) can be written in the probabilistic terms as

$$
\begin{equation*}
\sum_{j=\left(x+R_{X}+\tau_{w}^{\prime}\right)}^{1440} P_{i j}=P_{i} \tag{25}
\end{equation*}
$$

where, $P_{i j}$ is the calculated probability for an alternative (i, j) and p_{i} is the calculated probability from the separate modelling of the MC for an alternative i. If it is supposed that MNL model is used to calculate the probabilities shown in (25) then we can write as follows

$$
\begin{equation*}
\sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \frac{\exp \left(V_{i j}\right)}{\sum_{i=1}^{X} \sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \exp \left(V_{i j}\right)}=\frac{\exp \left(V_{i}\right)}{\sum_{i=1}^{X} \exp \left(V_{i}\right)} \tag{26}
\end{equation*}
$$

Now consider the left side of the above equation, we will show that with the use of (23) and some application of algebraic operations, the left side of (26) is equal to its right side. Using (23) we can write down the left side of the equation (26) as

$$
\Rightarrow \sum_{j=\left(X+R_{x}+\tau_{w}^{\prime}\right)}^{1440} \frac{\exp \left(V_{i j}\right)}{\sum_{i=1}^{X} \sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \exp \left(V_{i j}\right)}=\sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \frac{\exp \left(V_{i}+V_{j}\right)}{\sum_{i=1}^{X} \sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \exp \left(V_{i}+V_{j}\right)}
$$

By using properties of exp, we can write down further as

$$
\begin{aligned}
& =\sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \frac{\exp \left(V_{i}\right) \cdot \exp \left(V_{j}\right)}{\sum_{i=1}^{X} \sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \exp \left(V_{i}\right) \cdot \exp \left(V_{j}\right)}=\exp \left(V_{i}\right)\left[\sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \frac{\exp \left(V_{j}\right)}{\sum_{i=1}^{X} \sum_{j=\left(X+R_{X}+\tau_{w}\right)}^{1440} \exp \left(V_{i}\right) \cdot \exp \left(V_{j}\right)}\right] \\
& \operatorname{since} \sum_{v}^{V} \sum_{w}^{W} a_{v} \cdot b_{w}=\sum_{v}^{V} a_{v} \sum_{w}^{W} b_{w} \\
& =\exp \left(V_{i}\right)\left[\frac{\sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \exp \left(V_{j}\right)}{\sum_{i=1}^{X} \exp \left(V_{i}\right) \sum_{j=\left(X+R_{X}+\tau_{w}^{\prime}\right)}^{1440} \exp \left(V_{j}\right)}\right]=\frac{\exp \left(V_{i}\right)}{\sum_{i=1}^{X} \exp \left(V_{i}\right)}=\text { Right side of the equation } 26
\end{aligned}
$$

The above analytical proof shows that equation (23) plays vital role in detaching the MC and EC in a combined model. Equation (11) also suggest that utility of choosing departure time for MC and EC is independent to each other, this is the consequence of using only time-of-day specific MU for home and work activities. As in these MU functions assumes that one unit of activity engagement at time-of-day t will always yield the same utility, irrespective of the activity start and end times. This suggests that only time-of-day specific MU of activities are not
enough to model scheduling of home-work tour, therefore, it is necessary to look for other possible alternatives to measure utility of participation in an activity.

Model Refinement

In the activity scheduling literature it has been found out that time-of-day dependent MU is criticised by various authors, as it does not incorporate the activity fatigue or satiation effect which is a very likely phenomenon for most of the activities. This implies that the utility derived from one additional time unit of activity participation diminishes with increasing duration. This is also in line with the basic principle of economics. If MU of an activity is taken as a function of duration for scheduling of home to work tour, then it is very obvious that it interlinks the utility of MC and EC as both utilities are dependent on each other. And the combined utility of the tour cannot be detached into two parts as shown above for time-of-day specific MU function, therefore, equation (23) would not hold in this case. Yamamoto et al [16] and Bhat and Misra [17] presented duration based MU profiles for activities that follows a logarithmic function, with an argument that these utility profiles are in line with the economic theory of diminishing MU. According to them, utility of an activity, for example work is given by

$$
\begin{equation*}
V^{w}\left(\tau_{w}\right)=\eta_{w} \ln \left(\tau_{w}\right) \tag{27}
\end{equation*}
$$

This gives MU function for work activity as

$$
\begin{equation*}
V^{\prime w}\left(\tau_{w}\right)=\eta_{w} \frac{1}{\tau_{w}} \quad\left(\tau_{w} \geq 1\right) \tag{28}
\end{equation*}
$$

where, τ_{w} denotes the duration of work activity and η_{w} is the scaling parameter.
Although, the duration based MU of activity is able to addresses the short comings of the time-of-day dependent MU, but it should be noted that relying entirely on duration based MU for modelling scheduling of the home-work tour is not practicable as in that case individuals time-of-day preferences in participating work and home activities are completely ignored. Therefore, both of these ingredients are important to accurately model the scheduling of home-work tour. Recently, Ettema et al [11] argued that time-of-day dependent MU functions proposed in the literature are continuous in their nature. These functions neglect the fact that most of the every day activities are not flexible in terms of time-of-day, e.g. work and school arrangement and opening hours of stores are the constraints that play vital role in determining the schedule of the various fixed in time activities. They mentioned that schedule delay formulation presented by Small [18] is efficient to deal with such discontinuities, as it is assumed that there exist a certain preferred start time of each activity, and deviations from that time result in a negative utility and these are termed as early and late arrival penalty. Moreover, Ettema et al [11] estimated a model to empirically test their approach for home to work tour. It has been shown in the results that some correlation exist between parameters of time-of-day and duration based MU profiles which shows that time-of-day component also implicitly address duration dependency. Furthermore, parameters of schedule delay are found significant only for work activity due to its relatively less flexible nature than other activities. They concluded that there are rather subtle relationship between the components of the utility and trips, which may partly overlap and correlate.

Based on the above, we can conclude that the scheduling of whole-day activity pattern is dependent on the types of activities actually involved in the pattern. And it is due to the nature of these activities because of which different components shows their significance in the total utility measurement e.g. non-flexible nature of work activity causes significance of schedule delays parameters and fatigue-less nature of home activity in comparison to other out-home activities cause irrelevance to duration component. Therefore, modelling schedules of entire activity
pattern is specific to the nature and type of activities involved in the whole pattern. Therefore for the Home-Work tour scheduling model, the following is proposed
$>\quad$ For the home activity; MU based on time-of-day would be the most significant. So the overall home participation activity can be given as

$$
V^{h}=\int_{0}^{i} V^{\prime h}(t) d t+\int_{j+R_{j}}^{1440} V^{\prime h}(t) d t
$$

$>\quad$ For work activity; duration based MU function and schedule delay constraints specification would be the most significant i.e. the utility for work activity is given by

$$
V^{w}=\left(\int_{i+R_{i}}^{j} V^{\prime w}\left(i+R_{i}+t\right) d t\right)+g\left(i+R_{i}-a\right)
$$

where, $V^{\prime w}\left(i+R_{i}+t\right)$ is the duration dependent MU function, s is the activity start time and t is the current time at which utility is measured for this activity. Another function in the above expression, $g\left(i+R_{i}-a\right)$ represent the scheduling cost posed on an individual in the form of penalty, here a represents the preferred start time of an activity. Therefore, in accordance with the above MU and utility specification for home and work activity, the complete home-work tour utility can be given as a combination of above

$$
\begin{array}{r}
V_{i j}=\int_{0}^{i} V^{\prime h}(t) d t+\left(\int_{i+R_{i}}^{j} V^{\prime w}\left(i+R_{i}+t\right) d t\right)+g\left(i+R_{i}-a\right)+\int_{j+R_{j}}^{1440} V^{\prime h}(t) d t \tag{29}\\
+\lambda R_{i}+\lambda R_{j}
\end{array}
$$

The following section presents and discusses the results obtained from the numerical experiments conducted with the model proposed in (29).

NUMERICAL EXPERIMENTS

Analysis of the model with Dynamic Tolls

To conduct this experiment, it is assumed that the arbitrary dynamic tolls are induced to reduce congestion on the link at peak periods. This has been done by adding a term (in monetary units) for the MC and EC in expression (29). The same setup is followed as presented in the numerical example proof. Figure 3 represents the dynamic tolls assumed in this experiment. The utility expression shown in (29) is used here with the same assumption of different parameters as mentioned under the numerical proof above with the difference that MU of work activity is considered here as a function of its duration and its functional form is taken as (28) with the parameter $\eta_{w}=18 £$-min and preferred start time for work activity is taken as 0830 am with equal parameter value of early and late arrival penalties, $-0.04 £ / \mathrm{min}$.

It is revealed from figure 3 that when there is no toll the middle departure periods contains higher volume of traffic and when dynamic tolls are introduced in a manner that higher demand departure periods have higher value of tolls, then as a result of this traffic volume has been shifted towards early departure periods in the MC and in the EC it is shifted to the later departure periods to a considerable extent. This suggests that peak is dispersed significantly due to the introduction of tolls and as a result individuals change their departure times in order to
13. Polak, J. and P. Jones. Traveller's choice of time of travel under road pricing. in 73 rd Annual Meeting of the Transportation Research Board. 1994. Washington DC.
14. Heydecker, B.G. and J.D. Addison, Analysis of dynamic traffic assignment, in DTA2006, First International Symposium on Dynamic Traffic Assignment. 2006: University of Leeds, Leeds, England.
15. Lam, W.H.K. and H.-j. Huang, A combined activity/travel choice model for congested road networks with queues Transportation, 2002. 29(1): p. 5-29.
16. Yamamoto, T., et al., Analysis of Time Allocation, Departure Time, and Route Choice Behavior Under Congestion Pricing. Transportation Research Record, 2000. 1725(1): p. 95-101.
17. Bhat, C.R. and R. Misra, Discretionary activity time allocation of individuals between inhome and out-of-home and between weekdays and weekends. Transportation, 1999. 26(2): p. 193-229.
18. Small, K.A., The Scheduling of Consumer Activities: Work trips. American Economic Review, 1982. 72(3): p. 467-479.
19. Mun, J.-S., A Divided Linear Travel-time model for Dynamic Traffic Assignment, in 9th WCTR, World Conference on Transport Research. 2001: Seoul, Korea.

