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Abstract

Hepatitis C is a common viral infection of the liver. The degree of inflammation as-
sociated with the infection is normally estimated manually from a liver biopsy, by
considering the quantity and nature of inflammatory cells. This paper presents an
automated pattern recognition system for the quantification of inflammatory cells in
liver biopsies. Initially, images are corrected for colour variation. Features are then
extracted from colour biopsy images at positions of interest identified by adaptive
thresholding and clump decomposition. A sequential floating search method and prin-
cipal component analysis are used to reduce the dimensionality of the feature vector.
Manually annotated training images allow supervised training by providing the class
membership for each position of interest. Gaussian parametric and gaussian mixture
model density estimation methods are compared, and are used to classify cells as
either inflammatory or healthy via Bayes’ theorem. The system is optimised using a
response surface method, where the response or system performance is derived from
the area under the receiver operating characteristic curve. The optimised system is
then tested on test images previously ranked by a number of observers with varying
levels of pathology experience. The observers results are compared to the automated
system using Spearman rank correlation. Results show that this system can rank
15 test images, with varying degrees of inflammation, in strong agreement with five
expert pathologists.




1 Introduction

“It is called the silent epidemic and it has infected an estimated 500,000 people in
Britain, and 170 million worldwide, without attracting the kind of tabloid headlines
devoted to HIV/Aids. It can lay dormant in a carrier for up to 25 years, and health
professionals fear it could be a timebomb ticking away with no one knowing when
it might explode. It is the hepatitis C virus, or HCV [16]. ”

— Paul Humphries, The Guardian, Wednesday March 6,2002.

Although the above newspaper extract is sensational, the figures quoted can be sub-
stantiated. The World Health Organisation (WHO) estimates that 170 million people,
3% of the world’s population, are currently infected with the hepatitis C virus (HCV)
[37]. This virus is usually transmitted by exposure to the blood or blood products
of an infected person. In the majority of cases infected people do not develop symp-
toms for a number of years, leaving them totally unaware of their situation [38]. Liver
damage is not caused by the virus itself but by the body’s immune response to the at-
tack. This damage can be extremely serious, resulting in liver failure and death of the
patient. The current treatment for HCV, according to the UK clinical guidelines, is
with a combination therapy of two drugs, Interferon—alpha and Ribavirin [5]. A major
factor in prescribing combination therapy is that both drugs produce side effects in
most people {5]. The cost of combination therapy is between £3000 and £12000 per
patient per year [5]. It is generally thought that treating patients with expensive drugs
with potentially serious side-effects may be inappropriate unless there is evidence of
disease activity ! . A liver biopsy is currently the only method available to assess HCV
activity. The biopsy, involves removing a small core of tissue, approximately 15mm
in length by 2-3mm in diameter, as shown in figure 1. This core is then processed in
paraffin wax, cut into slices along its length and then stained. At this stage a trained
histopathologist 2 will examine the samples under a light microscope and use his/her
experience, combined with a detailed definition, to assess the level of damage. The
damage can normally be categorised into two types and it is common to assign a
numerical score relative to the level of damage for each type. One of the most widely
used scoring method is the Ishak system [17], which can be summarised as

(1) Inflammation: assigned a necroinflammatory ® (activity) score from 0-18.
(2) Scarring: assigned a fibrosis* (stage) score in the range 0-6.

Scarring is an indication of long-term disease activity and as a result remains relatively
constant. For this reason, it is the assessment of inflammation that is normally the
determining factor for a patient to receive treatment. The scoring process is time con-

L HCYV is particularly likely to be associated with chronic disease[28]; for 20% of people with this form, liver disease
will slowly progress to cirrhosis of the liver during the first 10 to 20 years.

? A person who studies the tissue changes associated with disease.
% Cell death caused by the body’s inflammatory response.
4 The formation of fibrous tissue.
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Fig. 1. An illustration of the liver biopsy procedure [1].

suming and requires highly experienced and qualified personnel. Studies have shown
that it is often difficult for observers to agree on disease activity and stage scores
when evaluating the same samples, and it is common for the same observer to assign
different scores at a later date [11]. This inter- and intra-observer variability has been
studied in depth by [11], who found that observer agreement was far better for the
assessment of fibrosis (stage) than for inflammation (activity). This finding, together
with emphasis on inflammatory activity when considering treatment, stresses the ur-
gent need for improved reliability in the assessment of inflammation. It is proposed
that an automated system could be developed using image processing and pattern

recognition techniques, to assess, systematically, the level of inflammation in liver
biopsies.

This paper presents research on the design, optimisation and testing of an automated
pattern recognition system, to quantify, reliably, the amount of liver inflammation.
Initially, the liver biopsy is examined in more detail with particular consideration
given to the colour variation in biopsy samples. Next, previous approaches to this
problem are discussed and a new pattern recognition system is presented. A method
of system optimisation is then outlined. Finally, the optimised system is tested using
images previously evaluated by human observers.

2 Liver Biopsy Interpretation

This section introduces the image characteristics of an HCV infected liver biopsy and
discusses the colour variation between biopsy samples. To understand this investi-
gation in more detail it is first necessary to consider the histopathological elements
of a normal liver biopsy and the different forms of damage. A microscopic view of a
standard liver biopsy from a healthy person shows liver cells (hepatocytes) forming
interconnecting walls created by the close contact of cell membranes [34], as shown
in figure 2. The nucleus is the dark mass located at the centre of each cell. The array
of hepatocytes is only interrupted by other structural elements of the liver, such as




Fig. 2. Microscopic (10x objective) view of a normal liver biopsy.

portal tracts®, hepatic veins® and bile ducts” (not shown). The damage caused by
HCV alters this structure and can normally be categorised into two types:

(1) Inflammation - Cell death (necrosis), caused by the viral attack, evokes an in-
flammatory response which is manifested by the appearance of inflammatory
cells. The majority of these inflammatory cells are lymphocytes [29]. Figure 3(a)
shows a region of lymphocyte cells. The lymphocyte cells are generally smaller,
with the cell nuclei smaller and darker than those of hepatocyte cells.

(2) Fibrosis - The death of small groups of hepatocytes may leave the reticulum (cell
membrane system) intact and the resulting regeneration will repair the damage.
However if the reticulum is damaged, healing can only occur by scar and will
lead to fibrosis. If scars are produced throughout the liver the lack of blood
circulation leads to cirrhosis [29]. Figure 3(b) shows an example of scarring. The
remainder of the cells are lymphocytes.

As explained in section 1, the focus of this work is to measure the degree of inflamma-
tion relative to the amount of other tissue, not including the background. This means
the main task of this system is to group the cells into two classes, inflammatory (Ch)
and healthy (C;). Scar tissue will therefore be classified as ‘healthy’ for our purpose.

The biopsies used in this study are all stained using haematoxylin and eosin. This
usually causes lymphocyte nuclei to appear dark purple, the hepatocyte nuclei to ap-
pear light purple and the background to appear white. Haematoxylin and eosin stain
is commonly used by many pathology departments. This method can produce high
colour variability across different samples as the stain mixture varies at different hos-
pitals and laboratories. Another factor producing image variability is the illumination

at the time of image capture. A system must be robust to these factors in order to
interpret, adequately, new images.

5 A tract of the portal system of the liver, which is a network of veins that begin and end in capillaries.
% Blood vessel in the liver that returns blood to the heart.
7 Pathway for the transportation of bile from the liver to the gallbladder.
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Fig. 3. Microscopic (10x objective) view of a liver biopsy. (a) Healthy and inflammatory
liver cells (b) A region of fibrous scarring.

2.1 Colour Correction

Cardei et al [7] propose a method of colour correction to counteract illumination vari-
ability. This involves using the difference between the background of images viewed
under different illumination to colour correct the whole image. This simple technique
can be expanded to correct colour variation in tissue caused by stain and illumination
change. In brief, a reference image is selected by eye, using the natural human ability
to determine mid-range colour attributes. A raw image requiring colour correction is
also selected. Q4. is the raw RGB image reshaped into an N x 3 matrix, where N is
the total number of pixels in the image. Similarly, Q.. is a matrix containing values
of the colour corrected image. Applying the diagonal model of illumination change
|7] shows that

Qcc = Qm.w-M (1)
where
AE. A& A8
- ref ref ref
s dlag (A:{Ezw’ aw l?;w) . (2)

Thresholding each image to remove the background leaves only the tissue portion,
which is defined by a region, R:, where i € {R, G, B} and j € {ref, raw}. The mean
vahues, )\j-, are then derived from the tissue portion by




, 1 X
A= i Zl(Rj) (3)

J m=

where M, is the number of pixels in each region. Figure 5 shows the result of colour
correction on the images presented in figure 4. Qualitatively, the colour corrected
images can be seen to be more similar that the raw images.

3 Pattern Recognition System

In this section we first discuss previous approaches to the cell classification problem.
Next, details of the images used during the training process are presented and finally,
a new pattern recognition system for cell classification is introduced.

3.1 Previous Approaches

The development of pattern recognition systems for cell classification is an active
research field. Although no previous work as been identified which directly addresses
the tasks outlined in section 1, a number of related studies have been completed.

Zhang et al [40] propose an image analysis system for the quantification of stellate cells
in rat liver. This system is simpler than that required for inflammatory cells, because
stellate cells have an auto-fluorescence property which allows them to be clearly iden-
tified using a fluorescence microscope. The resulting homogeneous objects are then
simply segmented by thresholding. This work was conducted using macros written for
an existing image analysis suite (computer-NIH) [27]. Quantification occurs by pixel
counting. As the stellate cells are the only cells to fluoresce, no classification is re-
quired. This work is primarily of interest because of its use of the image analysis suite.

This software is commonly used by researchers in this field for pattern recognition
tasks.

Masseroli et al [23] investigate the quantification of liver fibrosis. The authors propose
a novel image analysis system, ‘FibroQuant’, to segment semi-automatically regions
of fibrosis tissue. The samples are first corrected for colour variation by a background
subtraction technique. The system uses adaptive thresholding and area measurements
to segment and classify different types of fibrosis. Results are then compared to the
semi-quantitative scoring methods discussed in section 1 and show good correlation.
Although the usefulness of fibrosis quantification for the assessment of HCV progres-
sion is discounted in section 1, this work is useful in demonstrating the importance
of validation to existing manual methods.
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Fig. 5. After colour correction




Lake-Bakaar et al [21] address the very relevant problem of hepatocyte quantifica-
tion. Hepatocytes are the cells crudely referred to as ‘healthy cells’ in section 1.
This study prefers a histological approach to cell segmentation with the use of high
contrasting stains, rather than pattern recognition techniques. The non-conventional
staining allows much simpler segmentation than that required for the assessment of
inflammation.

Santos et al [32] propose a more complete pattern recognition study for the detection
of cellular necrosis (cell death) in cell cultures from swine. The feature vector is pro-
duced from 12 parameters derived from the local histogram and co-occurrence [14]
matrix of a sliding window. No segmentation is performed. The authors use Fisher
linear discriminant analysis to classify regions as either ‘alive’, ‘dead’ or ‘background’.
The number of cells is approximated by dividing the total cell area by a user defined
size. The automatic method is then compared to manual identification using contin-
gency table analysis.

3.2  Training Images

To train the system, two sets of 86 colour images of liver biopsies are used. Set 1
contains the raw images and set 2 contains an annotated version of the raw images.
Annotated images show regions of inflammation, as demonstrated in figure 6(b). To
simplify the time consuming manual annotation process, inflammation was only an-
notated for close groups of six or more inflammatory (lymphocyte) cells. Each image
is a 1000 x 1280 pixels bitmap of red/green/blue (RGB) layers, taken at 10x objec-
tive magnification and shows only a part of the whole liver biopsy. The images have
been specially selected to show a cross section of inflammatory and healthy cells, with
variation in stain and illumination. The liver biopsy images were supplied and anno-
tated by Dr Simon S. Cross (SSC), a consultant pathologist in the Academic Unit
of Pathology, at the University of Sheflield, UK. During preprocessing, the closed
annotated regions shown in figure 6(b) are converted into binary masks, as demon-
strated in figure 6(c). This is later overlaid on the raw image to provide supervised
cell classification during the training process.

3.3 New Approach

After completing the preprocessing steps of colour correction and the creation of the
binary masks, the system is trained using the steps detailed in sections 3.3.1 to 3.3.4.
The evaluation of new images using the trained system is then discussed in section
3.3.5.
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Fig. 6. Method to generate the binary mask images for supervised training. (a)A raw liver
biopsy image. (b) Annotation showing regions of inflammation. Portal tract inflammation
is shown in black and non-portal tract inflammation in blue. For this study, black and
blue regions are considered of equal interest.(c) The binary mask image derived from the
annotated image.

3.3.1 Thresholding

The image is thresholded to highlight the points of interest (POI) within each region
e.g. all the cell nuclei. The method of thresholding uses histogram analysis. To describe
this method in more detail, it is necessary to consider a greyscale representation of the
raw RGB image. The histogram of grey levels taken across the whole image is either
unimodal or bimodal, depending on the amount of background included in the original
image, as shown in figure 7. This method uses the histogram lobe corresponding to the
tissue region to calculate the threshold level. Therefore, it is first necessary to identify
the tissue lobe and tissue lobe maximum. This is done by hill climbing a smoothed
version of the original greyscale histogram, starting at the zero greyscale value (left
side of figures 7(a) and 7(b)). Once a peak is found, local checks are performed to




ensure this is the true lobe maximum. With the tissue lobe identified, thresholding at
a suitable value within the lobe allows the darker cell nuclei to be segmented from the
other tissue. Through experimentation, it was found that thresholding at 1.2 standard
deviations (o) below the tissue lobe maximum produces the best segmentation of cell
nuclei across all training images. This method is illustrated in figure 8. Because of
the non-gaussian form of the original histogram, o is calculated by mirroring the
lower half of the tissue lobe about the tissue lobe maximum and assuming a gaussian
distribution.

3.8.2 Clump decomposition

Thresholding produces a binary representation of the cell nuclei. These nuclei are
often touching or merged. This prevents identification of the true cell centroid® and
makes it impossible to accurately quantify the number of cells. Clump decomposi-
tion is a technique to separate merged parts by the morphology of the combined or
clumped parts [36]. In this study, a method of uniform recursive erosion is imple-
mented based on the well known watershed [31] technique. This method is used to
identify merged or marginally touching nuclei by splitting clumps at narrow points
within the component. This method is demonstrated in figure 9 and discussed in more
detail below:

(1) Initially, the morphological opening [33] operator is used to remove noise from
the thresholded image (see figure 9(b)). An opening consists of an erosion [33]
followed by a dilation [33)].

(2) Each component (or clump) is then labelled using connected component analysis
(CCA) [15]. This means each pixel within the image is allocated to an individual
component and each component centroid is identified.

8 The centre of mass of the region.
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Fig. 7. Two examples of greyscale biopsy histograms. (a) dark image with no background
(b) lighter image with background.
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Fig. 8. Experiments show that thresholding at 1.2 standard deviations below the tissue lobe
maximum produce the optimum thresholding results.

(3) The binary image is then uniformly eroded using an array structuring element
of 3 x 3 pixels. The erosion splits the components at narrow sections which
correspond to marginally touching cells. If a component splits by this process,
CCA is used to calculate the centroids of the newly created ‘child’ components.
If a component does not split, the original ‘parent’ centroid remains.

(4) The image is then recursively eroded, using the methods described in step 3,
until no more components remain (see figure 9(d)).

(5) The final list of component centroids, containing the resulting mixture of ‘parent’
and ‘child’ details, is superimposed onto the image produced in step 1. Each pixel
in this binary image is then re-allocated to the nearest component centroid, thus
creating the patch work effect illustrated in figure 9(c).

Although more complex clump decomposition methods are now available (see [36,39,22]),
this study has found the erosion technique effective and computationally efficient.

3.3.3 Eztracting Image Features

Outputs from the clump decomposition process (the component centroids and the
patch work of cells) are used to identify the POI within the colour biopsy image.
Features are then calculated from image data extracted about these POI, using one
of two methods: (1) kx kX3 blocks of image data centred on each component centroid.
(2) all pixels belonging to the region supplied by the patch-work of cells. Features can
be defined as the measurements or attributes describing an object of interest. For this
study, a collection of image features is used to generate a D-dimensional feature vector
to discriminate between inflammatory and healthy cells. A full list of the features
used is presented in Appendix A. Common sense would suggest that the greater the

10
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Fig. 9. Dlustration of the clump decomposition technique. (a) Raw image. (b) Thresh-
olded image after opening. (c) After clump decomposition. The markers show the new cell
centroids and the patch-work effect illustrates the pixel allocation about those centroids.
(d) A close-up of the erosion technique. The clump of cells is eroded until the component
disappears. Any resulting break-up of the component is used to generate new or ‘child’ com-
ponents. Using these new ‘child’ components, pixels from the original thresholded image are
then re-allocated to the closest centroid.

number of features the easier it becomes to classify an object. However, in reality
classification accuracy can decrease as a result of having too many features, owing to
a phenomenon commonly called the ‘curse of dimensionality’ [35]. The term ‘curse of
dimensionality’ was first coined by Bellman [2] in 1961 and describes a characteristic of
high-dimensional data sets [3]. In brief, the hyper-volume of the feature space increases
exponentially as a function of dimensionality. As most problems are dealing with
a limited amount of data this rapidly leads to sparsely populated high-dimensional
spaces which are difficult to characterise [12]. For this reason, dimensionality reduction
is seen as a key step in any pattern recognition system. This system uses two main
approaches to dimensionality reduction and these are discussed below.

11




3.3.3.1 Feature Selection In feature selection a subset of input features is se-
lected for their suitability to a classification problem. This reduces dimensionality and
the computational cost of feature gathering. The only guaranteed method of finding
an optimal subset of d features from an original D-dimensional feature vector, is to
perform an exhaustive search of all d!(DLid)! subsets of the reduced feature vector [19].
However, this is impractical because the number of subsets grows combinatorially.
To demonstrate this effect, the analysis of approximately 1.4 million subsets would
be required in order to generate an optimal 12-dimensional feature vector from an
original 23-dimensional set. A number of suboptimal selection methods are available
which are discussed in [19]. Of these, Jain et al [18] found that the sequential forward
floating search (SFFS) [30] method produced the best results, performing close to the
optimal, and demanding lower computational resources than other feature selection
methods. The SFF'S method is a bottom up search procedure, where the term floating
identifies that the number of features dynamically changes, with one feature included
and/or excluded, at each iteration. The SFFS method is used for feature selection in
this system.

To summarise this method, Xy = {z;|i = 1,2,...,d,z; € Y} is a subset of d features
taken from a set ¥ = {y;|j = 1,2,...,D} of D available features. J(Xj;) is the
criterion function used to evaluate the effectiveness of X;. For this study .J is chosen
to be the area under the receiver operating characteristic (ROC) curve, a commonly
used test of classifier performance [35]. The method of ROC curves is discussed in
more detail in section 4.1. The algorithm is initialised with an empty feature subset
Xo = 0. The most significant feature from ¥ (max J(Y)) is then added to the subset
Xp. This step is then repeated once more, taking the most significant feature from
the remaining available features ¥ — X;. The following steps are then performed:

(1) The most significant feature from Y — X, is added to the current subset, Xg .

(2) The least significant feature (min J(X4 — {z;})) is conditionally excluded from
the current subset, Xg. If the newly added feature is the least significant or joint
least significant with another feature, then step 1 is repeated. Otherwise, the
least significant feature from the current subset, X, is excluded and step 3 is
performed.

(3) This step is a continuation of the conditional exclusion in step 2. Once again the
least significant feature, z;, from X} is located. If the resulting subset X; — {z;}
is better than the previous best subset of the same cardinality, then feature, z;,
is excluded from X, and step 3 is repeated. Otherwise, the feature is retained
and step 1 is repeated.

If the cardinality of X  returns to 2 at either exclusion step (2 or 3), then the al-
gorithm goes to step 1. The algorithm terminates when the required cardinality is
achieved. Through experimentation, a final cardinality not exceeding 12 provides the
best results here. Table 1 demonstrates the progression of the SFFS algorithm and
presents the final reduce subset of features in bold-face.
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Iteration | Feature subset

1| {4}

2 | {4,11}

3| {4,11,3}

4 | {4,11,3,16}

5 | {4,11,3,16,1}

6 | {4,11,3,16,1,13}

7 | {4,11,3,16,1,13,21}

8 | {4,11,3,16,1,13,21,22}

9 | {4,11,3,16,1,13,21, 22,6}
10 | {4,11,3,16,1,13,21,22,6,18}
11 | {4,11,3,16,1,13,21,22,6,18,14}
12 | {4,11,3,16,1,13,21,22,6,18,14,7}
13 | {4,11,3,16,1,13,21,22,6,14,7}
14 | {4,11,3,16,1,13,21,22,6,14,7,2}
15 | {4,11,3,16,1,13,21,22,14,7,2}
16 | {4,11,3,16,1,13,21,14,7,2}
17 | {4,11,3,16,1,13,14,7,2}
18 | {4,11,3,1,13,14,7,2}
19 | {4,11,3,1,13,14,7,2,16}
20 | {4,11,3,1,13,14,7,2,16,21}
21 | {4,11,3,1,13,14,7,2,16,21,22}
22 | {4,11,3,1,13,14,7,2,16,21,22,20}

Table 1

The feature subsets considered by the SFFS method. The final subset is in bold-face, the
previous subsets demonstrate the floating nature of the SFFS technique. Features corre-
sponding to the numbers shown, are defined in Appendix A.

3.3.3.2 Feature Extraction Although, there are many feature extraction tech-
niques available (see [19] for a review), this study implements principal component
analysis (PCA) [10], one of the most widely used methods. The dimensionality of
the d-dimensional (d = 12) feature vector derived from feature selection is further
reduced using PCA. PCA or the Karhunen-Logve transform is an unsupervised linear
transformation technique, which seeks to project the high-dimensional input data into
lower dimensional space [3]. In simple terms this means that new features are created
from a transformation of the input features. The feature vector, x = (z1,...,24)T, is
first normalised for all N data points using

ynz@fl(xn__i-)? (nmla"'aN) (4)

where

X= (E],...,fd;) (5)




& = diag(o1,...,04) (7)
2oL Sz (8)
i N — _— 1 z

This normalisation is intended to counter the intolerance of PCA to data with different
orders of magnitude(p.298 [3]). For PCA, the mean vector, ¥, and covariance matrix,
Y., are then computed for the normalised feature vector, y™.

1 N
- N g
Y=x RE:IIy 9)

1 e n < n =\T
B= g L0 =00 -7) (10)

The eigen-decomposition of the covariance matrix

EU.J' = Aju_?' (11)

is then calculated and sorted according to decreasing eigenvalue. Because X is a co-
variance matrix its eigenvalues are real and non-negative [3]. In most cases a small
number of eigenvalues will dominate, indicating the inherent dimensionality of the
data [10]. By forming a matrix, U, whose columns are the pc < d eigenvectors corre-
sponding to the pc largest eigenvalues

U= (uy,...,u), (12)

it is possible to define

z=UNy-9y) (13)

a pe-dimensional vector of linearly transformed variables. The optimum number of
principal components, pc, will be discussed in section 4. Although, in principle, PCA
should provide optimal dimensionality reduction without feature selection. The pro-
hibitive cost of generating large numbers of features makes the inclusion of feature
selection desirable for this study.

14




3.3.4 Probability Density Estimation

: The conclusion of training process is to derive the class-conditional probability den-
% sities, p(z|C;). The density estimate can then be used for the Bayesian classification
discussed in section 3.3.5.1. The binary masks (see figure 6) can be overlayed onto
the output from the clump decomposition process to provide the class (C;, j = 1,2)
labels for each transformed feature vector z;. As a result, we can approximate the
required probability distribution for each class. In this study two methods of density
estimation are compared:

(1) Gaussian parametric model (GPM)—This is a parametric method where a fixed
gaussian functional form of density estimation is assumed. This technique is
easy to compute and simple to implement. For the multivariate case, the density

‘ estimation takes the form

. p(2|C;) = W%_E;Tlﬁe}[p {—%(Z —%) %5 (z— fj)} (14)

where the class covariance matrix £; and mean vector Z; are derived from the
transformed feature vectors of the training set.

(2) Gaussian mixture model (GMM)—This is a semi-parametric [3] method where
mixtures of gaussians are used to build more complex density models e.g. mul-
timodal [10]. For the multivariate case, the probability density function for each
class is estimated by a linear combination of K; (j = 1,2) gaussian basis func-
tions of the form

K
p(z|Cs) = Y Pup;(zlk), (z€Cj) (15)
- where
Plelk) = G e { —5E - e -} (9)

where E;; is the covariance matrix for the £* gaussian for the j** class and
Zji is the mean vector for the k*" gaussian for the j*! class. Typically, the GMM

parameters are determined using the ezpectation-mazimisation (EM) algorithm
[26].

The performance of each estimator is evaluated during the optimisation process out-
lined in section 4.
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3.8.5 FEvaluating new images

When a new image is presented to the system, it is first necessary to perform the
following, previously discussed, steps:

Colour correct the new image (using the original reference image).
Threshold the image.

Apply clump decomposition.

Extract the feature vector x (the reduced subset of features) from each POL
Apply PCA to produce the projected feature vector z.

The projected feature vector z can then be applied to one of the density estimation
techniques (GPM or GMM) detailed in section 3.3.4, to give the likelihood of the cell
at each POI belonging to a particular class. Bayes theorem (17) can then be used to
calculate the posterior probability of class membership, which allows a decision to be
made regarding class membership of the individual nuclei. This method is discussed
in more detail below.

3.3.5.1 Classification Bayesian decision theory is the fundamental approach to
the classification problem [3]. Considering this approach for supervised classification,
Bayes theorem (17) permits the posterior probability, P(C;|z), to be expressed in
terms of the prior probability, P(Cj), the likelihood, p(z|C;), and a normalisation
factor, p(z) [10].

p(z|C;) P(C;)

P(Cj|z) = o(e)

(17)

P(C;) is the probability of each class occurring based on a priori knowledge of the
training set. p(z|C;) is the class-conditional probability density function. In practice,
an estimate of the probability density function for each class is required, as discussed
in section 3.3.4. By assuming that new nuclei belong to one of the two classes Cy—
inflammatory or Co-healthy, then the posterior probabilities obey

P(Cy|z) =1 - P(Cs|2) (18)

Each nucleus may then be assigned class membership according to a user defined
classification threshold T, as follows

P(Cy|z) > T, then assign to C;

(19)
P(Ci|z) < T, then assign to C;
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where 0 <« T < 1. The method of selecting a suitable classification threshold is
discussed in section 4.1.

4 Optimisation

The role of optimisation in this study is to select a good set of the adjustable system
parameters. To determine the optimum system performance it is necessary to evaluate
images with pre-classified cells. As the training images discussed in section 3.2 already
provide pre-classified cells, the system is optimised by the m-fold cross validation (m =
10) of these training images. This simply means the training images are randomly
divided into m equally sized subsets [10]. The system then evaluates one subset, with
the remainder used for training. This operation is then repeated until all subsets
have been evaluated. It can be shown [10] that applying m performance measures
gives an estimate of the true system performance. A method of quantifying system
performance from the results of m-fold cross validation is discussed in section 4.1.
The optimisation method and the final optimised system parameters are presented in
section 4.2.

4.1 The Receiver Operating Characteristic

System performance may be evaluated using contingency table data derived from the
m-fold cross validation of the training set. The contingency table is defined in table
2 and an example of the results obtained from cross validation of the training set is
shown in figure 10.

Test results

Class 1 Class 2

Observer Results Class 1 | True Positive (T'P) | False Negative (FN)
Class 2 | False Positive (F'P) | True Negative (T'N)

Table 2

Contingency table definition. The observer results are derived from the annotated test

images and the test results are derived from cell classification at a particular classification
threshold.

For a two class problem it is possible to evaluate the system more robustly by plot-
ting the receiver operating characteristic (ROC) curve, a technique commonly used
in medical imaging [13]. The ROC curve is constructed from contingency table data
by plotting sensitivity (Tﬂ—%) against one minus specificity (ﬁ%) as the clas-
sifier threshold varies from 0 to 1. The area under the ROC curve (AUROC) can
be considered to be a measure of the overall quality of the classification model [35].
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(a) Raw image

File=67, Totak=2192 (TP=859, TN=1019, FP=140, FN=174), Threshold=0.220
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(b) Experimental result

Fig. 10. Experimental result for training image RAWO00067 generated from 10-fold cross
validation of the training set. Inflamed cells are shown in black, healthy cells are grey and
the annotated regions provided by SSC are in blue. This image shows good correlation
between automatic and observed cell classification.
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Maximising the area by changing important system variables should lead to the op-
timum cell classification. As each point lying on the curve corresponds to a different
threshold, the final classification threshold may be chosen based on desired levels
of sensitivity and/or specificity. Using the Neyman-Pearson criterion (NPC) for this
purpose [35], a maximum false positive rate (one minus specificity) is specified by the
user, as shown in figure 12. A final classification threshold is then selected with the
highest false positive rate, which is less than the NPC. For the purpose of illustration
in this study, the maximum permitted false-positive rate is set at 0.1.

4.2 Response Surface Methodology

Response surface methodology (RSM) is a technique to reduce the cost of optimisation
by searching for combinations of variables (factors) that maximise the performance of
the system [25]. In this study RSM is used to maximise the AUROC by searching for
the optimum value of key system factors. The first stage of this technique is to develop
a strategy for gathering experimental data, known as the ‘design of experiments’
(DoE) [6]. This involves identifying factors which have a significant effect on the
response of the system, a procedure which is normally carried out by screening out
insignificant factors during the development process. Once identified, the factors are
constrained to an allowable range by identifying suitable upper and lower limits for
each factor. The range is then discretised at equal spacing to generate levels within
the allowable range. A common approach, when considering a small number of input
factors (less than five), is to evaluate the system at all combinations of factors and
corresponding levels. This approach is known as a full factorial design [6]. The next
stage of RSM is to develop a model of the system response. This model can then
be searched to find the maximum predicted response and thus the optimal factor
values. For an example with two input factors, the full factorial design provides a
2-dimensional grid of system evaluation points. The model can then be visualised as
a response surface constructed on the grid. Considering a system more formally

y = f(v) (20)

where y is the system response, f is an unknown function and v = (vy,vs,...,7,) is a
vector of ¢ independent factors. It is common to construct a model of this system by
fitting a low-order (either linear, quadratic or cubic) polynomial to the experimental

data. For a cubic polynomial with p combinations of factors and levels, this takes the
form

g 49 4q

q q q
Y =bo+ Y b+ Y bul v} + .. Y DS bigofulup (21)
i=1

i=1 j=1 i=1 j=1 k=1
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where bg, b;, b;; and b;;; are the unknown polynomial coefficients. y™ is the experimen-
tal observed response value and n = (1, ...,p). This model can be written in matrix
notation as

y=Vb (22)

where

y=,v%. . 9),
b= (bO:-bla---1bq=b111---abqt;1b111a---1bqqq)

and V is the experimental design matrix constructed from p rows of v", a vector
corresponding to the factor terms in 21, of the form

rur, vr T g, .. ., v;*v,’;v;’) (24)

An n n o, n,n
V= (1,27, ..., vg, 0007, . . ., Up T,

e q’i

The coefficients b can then be estimated using the least squares method

b=Vly (25)

where VT is the pseudo-inverse of V [3]. The value of the input variables that provide
the maximum system response can then be derived from the polynomial given by Vb.
Considering the DoE for this study, the following system factors have a significant
effect on the system response.

(1) Block size (k)—Features 1-6 defined in Appendix A rely on square blocks of
data extracted from around each cell centroid. This factor represents the block
size and is constrained between 1 and 81 pixels. The discretised levels of this
allowable range are {21,41,61,81}.

(2) Number of Principal components (pc)—Principal component analysis is used for
dimensionality reduction and discussed in section 3.3.3.2. This factor governs
the number of dimensions that the reduced feature vector is mapped to and is
constrained between 1 and 12 (levels = {3,6,9,12}).

(3) Density estimation method—Either GPM or GMM, as discussed in section 3.3.4.
For GMM only, the following extra factor requires optimisation:

(a) Number of basis functions (bf)—The number of gaussian basis functions to
fit the data. This is constrained to be between 1 and 8 (levels = {2, 4,6, 8}).

The final cardinality of the feature selection method, discussed in section 3.3.3.1,
should also be treated as a factor. However, this is impractical because of the high
computational cost of combining the SFFS technique with the full factorial design. To
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Fig. 11. The theoretical response surface derived by RSM for GPM estimation. This surface
is generated by least squares fitting a cubic polynomial to experimental data.

compare the GPM and GMM density estimation (DE) methods discussed in section
3.3.4, two response surfaces are generated. This allows the system to be independently
optimised for each DE method. The optimised systems are then compared for the
maximum system response by re-evaluating the AUROC. A cubic polynomial is used
to model the response in both cases. With this in mind, the two forms of DE will now
be considered.

e GPM—only variables k& and pc are applicable. Evaluating these variables using a
full factorial design requires 16 evaluations of the AUROC. The response surface
generated from this data is shown in figure 11.

e GMM—all the above variables (k, pc,bf) are applicable. Evaluating this set using
a full factorial design requires 64 evaluations of the AUROC.

As all the factors under discussion can take only integer values within the constraints
discussed previously, the maximum predicted response may be derived by evaluating
the model at all variable combinations between the upper and lower bounds for each
variable. Although this is a combinatorial problem, the task of evaluating the model
is computationally trivial in comparison to evaluating the AUROC. Searching each
model for the maximum response using this method provides the factor values listed
in table 3. Evaluating the AUROC at these parameters shows that GMM provides the
optimum DE method. However the improvement gained by using the GMM method
rather than the computationally more efficient GPM method is only marginal (0.65%).
As the intended end-users of this system are pathologists, it is thought that adopting
the conceptually simpler GPM method will aid the understanding and trust of this
system by medical professionals who may not be familiar with pattern recognition
theory. Therefore the GPM method is applied in this study. The ROC curve for
the optimum GPM configuration is illustrated in figure 12. By applying the NPC
technique discussed in section 4.1, the final classification threshold of 0.22 can be
derived from the curve.
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Variable Value (GPM) | Value (GMM)
1 | Block size (k) 55 53
2 | Number of principal components (pc) 5 6
3 | Number of gaussian basis functions (bf) N/A 5
AUROC 0.9559 0.9619

Table 3

Table showing the optimised system factors for both GPM and GMM density estimation
methods and the corresponding AUROC.
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Fig. 12. ROC curve for the optimised system. For the purpose of illustration the maximmum
false-positive rate is set at 0.1.

5 Testing

It is common to test a system of this type against a ‘gold standard’, a set of univer-
sally accepted test images where the amount of inflammation is accurately quantified.
However, no ‘gold standard’ exists for liver biopsy inflammation. The closest alterna-
tive is the Ishak scoring system [17] discussed in section 1, but as previously shown,
this suffers from high inter- and intra-observer variability. With this in mind, our
system is tested using a separate group of 15 test images previously evaluated in a
study by Cross at al [9]. In this study, 25 observers (including 5 consultant pathol-
ogists, 4 trainee pathologists and 16 control observers) were asked to compare 15
liver biopsy images with varying degrees of inflammation. It can be assumed that
consultant pathologists have the most experience in identifying cell inflammation,
followed by the trainee pathologists and finally the 16 control observers. The images
are named ‘mild1, ..., mild5, modl, ..., mod5, sevl, ..., sevd’. Each of the 15 images
is compared to each other image producing 105 pairs. The observers are then asked
to identify the image containing the most inflammation from each pair. A rank or-
der of images is then produced for each observer using a ranking algorithm normally
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used to rank competitive chess players [8]. Finally, Spearman rank correlation (SRC)
[41] is used to assess, statistically, the level of agreement between the observers. As
the results show good inter-observer agreement using this comparison technique, it
is proposed that image ranks from each observer can be used to test the automated
system.

Initially, the optimised system is trained on all 86 training images. Each test image is
then processed using the methods outlined in section 3.3.5 and using the classification
threshold determined by NPC (see figure 12). The test images are the same size and
magnification as the training images. Quantification of the inflammation is carried out
by counting the number of cells classified either C;-inflammatory or C,-healthy. The
percentage of inflammatory cells is then computed. The results from processing all 15
test images are shown in Appendix B. Quantifying the inflammation in percentage
form, allows the images to be placed in rank order of severity and compared to the
image ranks from the previous study [9]. The results are shown in Appendix C, tables
1 and 2. As in [9], SRC can then be used to assess the level of agreement between
the image rank produced by this automated system and the image ranks produced
by the 25 observers. SRC is defined by

6 0 4

=1 N -

(26)

where d, is the difference between each pair of ranks and N is the number of paired
observations. The resulting values of r, are presented in Appendix C, tables 3 and 4.
They show good agreement between the observers and the automated system. Using
a null hypothesis that there is no correlation between any of the ranks presented in
Appendix C, tables 1 and 2, the significance of each r, value can be determined by
calculating the probability (P-value) that this hypothesis is true [41]. For N > 10
(N =15 in this case), 7, has a Normal distribution with a mean of zero and a variance
of (anl) [4]. To test the significance of r, the z value is first calculated as follows [41]

— =rgy/(n—1) (27)

(n—1)

The P-value is then determined from 2, using tables of the area under the Normal
distribution curve [4]. Focusing on the relationship between consultant pathologists
and this automated system, table 4 shows a sample of the r, values given in Appendix
C, and the corresponding probability that the null hypothesis is true in each case. P-
values were also calculated for all other observers (not shown). Table 4 shows that P <
107 is the maximum probability that the null hypothesis is true when considering
the correlation between consultants and this system. This is also the maximum when
considering the correlation between our system and the trainee pathologists. However
the P-value rises to P < 1072, when considering the correlation between control
observers and our system. Historically P < 1072 or a ‘one percent probability level’
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suggests the null hypothesis may be rejected [20]. Although, this means that the null
hypothesis may be rejected for all observer groups, the low P-values seen in table 4,
suggest a strong correlation with consultants. It can also be shown that consultants
have the lowest inter-observer variability with each other. This means our system can
rank 15 test images in correlation to five consultant pathologists, who in turn strongly
agree with each other, indicating this system has an expert capability in this test.

For completeness the above tests were also conducted using the GMM density estima-
tion method discussed in sections 3.3.4 and 4. Although the GMM method produces
a better system performance (greater AUROC) when considering 10-fold cross valida-
tion of the training set, results here show a similar performance to the GPM method
when considering the correlation between our system and the three observer groups.
This confirms the decision, made in section 4.2, to use GPM density estimation.

6 Conclusions

An effective and systematic method of evaluating the liver biopsies of patients with
hepatitis C will become increasingly important owing to the large number of people
currently infected with the disease. Previous approaches to similar cell classification
problems do not adequately address the specific issues associated with the automatic
segmentation and classification of inflammatory cells in HCV infected liver biopsies.
The system outlined in this study, offers a fully automatic pattern recognition solution
to quantify inflammatory cells. The simplicity of the pattern recognition techniques
used aids the understanding and trust of this system by pathologists and facilitate
the implementation of this system on a standard desktop PC in a pathology labo-
ratory. Important steps forward have been made in: (1) colour correcting images for

ILConsu]tant. 1 | Consultant 2 l Consultant 3 | Consultant 4 | Consultant 5 | Computer |

Consultant 1 1.000 0.946 0.936 0.936 0.971 0.943
(P<107®) | (P<107%) | (P<107®) | (P<107®) | (P<107%)

Consultant 2 0.946 1.000 0.950 0.968 0.971 0.989
(P <1073) (P < 10~%) (P<107%) | (P<107®) | (P<107%)

Consultant 3 0.936 0.950 1.000 0.911 0.943 0.971
(P<107%) | (P<107?) (P<107®) | (P<107%) | (P<107%)

Consultant 4 0.936 0.968 0.911 1.000 0.975 0.964
(P < 107%) (P<107%) | (P<1079) (P<107®) | (P<107%)

Consultant 5 0.971 0.971 0.943 0.975 1.000 0.971
(P<107®) | (P<1073) | (P<1073) | (P<107%) (P <1079

Computer 0.943 0.989 0.971 0.964 0.971 1.000

(P<1073) | (P<107®) | (P<107%) | (P<107%) | (P<107%)
Table 4

SRC between the automated system (computer) and five consultant pathologists. The sig-
nificance (P-value) of each result is shown parentheses. ‘
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stain and illumination variability, (2) the segmentation of individual cells via clump
decomposition and (3) the application of feature selection and extraction methods to
reduce the cost of feature gathering and the dimensionality of the feature vector.

The comparison of two commonly used density estimation methods, GPM and GMM,
shows that the simpler GPM technique provides an equivalent system performance
when considering novel images. The implementation of the GPM method shows the
system can rank a set of 15 previously unseen test images in correlation to five consul-
tant pathologists and four trainee pathologists with a level of significance of P < 107>.
Although the level of significance is reduced when considering the relationship between
this system and the control observers (P < 1072), the consultants have the lowest
inter-observer variability and have the most experience of interpreting biopsy images.
Therefore, the correlation between consultants can be considered a ‘gold standard’
for this test. Although results show an expert capability of the system, equivalent to
consultants, improvements can be made to its robustness. First, a major weakness is
that the training images are annotated by a single pathologist (SSC). This means the
system is trained by single expert who may or may not suffer from the inter- and intra-
observer variability found by [11]. This will be corrected in future studies by using
training images annotated by a number of experts. Second, as the effectiveness of the
system is reduced by poor quality images, it is planned to screen unsuitable images
presented for evaluation. This means that outliers, images with colour characteristics
which do not match the majority of the training images, will be referred back to the
user. Finally, it is also intended that future work in this area will use biopsy images
taken at a higher magnification (40x objective). This will allow a greater number
and more appropriate features to be extracted by combining the low magnification
techniques discussed in this study and a high magnification examination of each cell.
In particular it is hoped to gather textural information from each cell nuclei.
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Appendix A: Features

Notation

S = A region of RGB data defined by a block of k x & x 3
pixels centred on each position of interest (POI).

L = A region of RGB data defined by all pixels belonging to

each component, segmented by clump decomposition (see
section 3.3.2).

i€ {R,G,B} = -each layer of RGB data.

cell_density(O,r) = The number of cells contained with in a circle of radius
T pixels, centred at the centroid of O.

|O] = number of pixels in O.
O(x) ‘= The value of O at z.
sort(O) = A sorted version of O

CH(O) = A binary image representing the convex hull of O. The
convex hull is the smallest convex polygon that fully sur-
rounds the region [24].

greyscale(O) = A grey scale representation of O.
ELL(O) = An ellipse with the same second-moments as region O.
major_axis(F) = The length in pixels of the major axis of ellipse E.
minor_axis(£) = The length in pixels of the minor axis of ellipse E.
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Feature Definitions

Feature No. Definition Description
1-3 plleck = L2V S, where M =k x k Block mean
4-6 oblock = L5200 (8" — pdlek)? Block standard
deviation
7 A= %’1 Cell area
8 ECC = %% Cell eccentricity
9 ED = % Equivalent circle
diameter
10 SOL = & Solidity
11 CD = cell_density(L, 120) Cell density
12-14 pet = LN L?, where N =A Cell mean
15-17 g = sort(L;)(h), where h = (N + 1)/2 for Cell median
odd N and h = Hﬁﬁ%iﬂlﬂl for even N
18-20 o = TN (L? — pet)? Cell standard de-
viation
21 ™ = L TN greyscale(L)" grey scale mean
22 67" = sort(greyscale(L))(h), where h = Grey scale me-
(N +1)/2 for odd N and h = Q2D djan
for even N
23 of ¥ =5 TN (greyscale(L)™ — pu9mev)? Grey scale stan-
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Appendix B: Test Results

(b) Test result (‘mod 1').
Showing 22.3% inflammation.

(c) Raw image (‘mod 2) (d) Test result (‘mod 2’).
Showing 45.9% inflammation.

(e) Raw image (‘mod 3’) (f) Test result (‘mod 3’).
Showing 19.3% inflammation.

Fig. .1. Experimental test results. Inflamed cells are shown in black and healthy cells are
grey.
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(b) Test result (‘mod 4).
Showing 30.8% inflammation.

(d) Test result (‘mod %)
Showing 14.6% inflammation.

(f) Test result (‘mild 17).
Showing 49.4% inflammation.

(g) Raw image (‘mild 27) (h) Test result (‘mild 27).
Showing 62.9% inflammation.

Fig. .2. Experimental test results. Inflamed cells are shown in black and healthy cells are
Erey:
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(b) Test result (‘mild 3).
Showing 61.6% inflammation.

(d) Test result (‘mild 47).
Showing 57.1% inflammation.

(e) Raw image (‘mild 5') (f) Test result (‘mild 5’).
Showing 66.2% inflammation.

(g) Raw image (‘sev 17) (h) Test result (‘sev 1’). Show-
ing 88.1% inflammation.

Fig. .3. Experimental test results. Inflamed cells are shown in black and healthy cells are
grey.
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(a) Raw image (‘sev 2') (b) Test result (‘sev 2"). Show-
ing 78.9% inflammation.

(c) Raw image (‘sev 3’) (d) Test result (‘sev 3'). Show-
ing 53.2% inflammation.

(e) Raw image (‘sev 4') (f) Test result (‘sev 4’). Show-
ing 75.9% inflammation.

(g) Raw image (‘sev 5°) (h) Test result (‘sev 5'). Show-
ing 72.8% inflammation.

Fig. .4. Experimental test results. Inflamed cells are shown in black and healthy cells are
Brey.
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Appendix C: Rank Correlation
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