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Science and Technology; dUniversità degli Studi di Salerno, Italy; eUniversity of Leeds UK

Abstract The dynamical behaviour of deterministic process, day-to-day traffic assignment models is

sometimes characterized by convergence to a variety of different fixed equilibrium points dependent

upon the initial flow pattern, even though individual trajectories are unique for a given start point. This

non-uniqueness is seemingly in sharp contrast to the evolution of stochastic process, day-to-day models;

under certain assumptions these converge in law to a unique stationary distribution, irrespective of the

start point. In this paper we show how models may be constructed which exhibit characteristics of both

deterministic models and stochastic models, and illustrate the ideas by using a simple example network.

Keywords: control, deterministic, dynamics, stochastic

1 Introduction

1.1 The Basic Idea

Bie and Lo [2010] and Watling [1999] give examples of smooth, deterministic process, day-to-day dy-

namical systems where different start points lead to different basins of attraction and ultimately different

equilibria. Sets of unstable states separate the different basins of attraction. These sepatrices are thin;

i.e. not of full dimension. Such properties may be expected regardless of the kind of point equilib-

rium reached, notably whether Wardrop user equilibrium or stochastic user equilibrium or some other

kind of fixed point. A quite different kind of approach is the stochastic process approach to day-to-day

dynamical systems, whereby the trajectory (and ultimate states) can only be determined in terms of a

probability law. When the same examples that produced non-uniqueness in the deterministic process

case are analysed using some forms of stochastic process model, there is a unique equilibrium limiting

probability distribution spread over the whole state space, whatever the starting point; Cascetta [1989]

and Watling [1996] provide a series of examples illustrating this point. Separating sets do not exist in

such stochastic models; the only irreducible stable set is the whole space.

This paper demonstrates different ways of combining deterministic process and stochastic process no-

tions within a single stochastic process, day-to-day dynamic model. It is shown that in such stochastic

process models, depending on the particular model assumptions made, there may naturally be distinct,
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non-communicating, basins of attraction (as in standard deterministic process models); or thick/full

dimension separating sets of transient states (as in standard stochastic process models). Thus the new

stochastic process models introduced here sometimes have at least some of the properties normally asso-

ciated with deterministic process models while retaining some of the properties of previously-proposed

stochastic process models.

To illustrate the concepts clearly the paper considers variations on one simple modal split model already

considered in the literature.

1.2 A Control Implication

The difference between deterministic and stochastic process model characteristics above has a variety

of implications. One implication is as follows. With a deterministic model having two or more basins

of attraction, if an intervention moves the flow vector from one basin of attraction to another and the

intervention is then removed then this may result in a different long run future [e.g. Bie and Lo, 2010].

However, with the usual stochastic process models the limiting or long-run future is unchanged by

any temporary intervention as there is only one basin of attraction and so no possibility of moving to

another. This is shown, for example, in the control example in Watling [1996], where we see that the

explanation is that the stochastic process model instead ‘moves’ its prediction in respect to control by

rebalancing the probabilities of system states arising. However, even though the process may almost

appear to separate (the probability of some states communicating can be almost vanishingly small, but

still non-zero) irreducibility is maintained in theory and so no theoretical separation occurs.

In contrast, in the stochastic process model constructed in this paper (which inherits some deterministic

process properties as well as some standard stochastic process characteristics), we allow some state

communication probabilities to actually reach zero, rather than just be very small. Thus the process is

no longer irreducible, and so the pseudo-basins separated by small communication probabilities which

can be seen in existing stochastic process models now separate into multiple, distinct basins of attraction.

Thus the long-run future of the stochastic process may be changed by a temporary intervention in a way

more analogous to deterministic process models, because separate basins of attraction may now exist. A

remark that should be made is that here and throughout this paper we are here discussing the theoretical,

infinite-time properties of these processes; as shown in the examples in Watling [1996], the theoretical

properties of existing, irreducible stochastic process models over extremely long but finite time-horizons

may typically exhibit ‘pseudo-stable’ behaviour, a behaviour that (over finite time) mimics multiple

basins of attraction; furthermore, this is particularly evident if, as is common, Monte Carlo simulation

is used to estimate the stochastic process model, whereby apparent multiple basins may exist. However,

the point about the new form of model present here is that even in theory, in infinite time, the stochastic

process model presented can give rise to actually distinct basins of attraction.

1.3 A Very Brief Summary of Previous Work

Many authors have considered deterministic process models for representing day-to-day dynamics in

a traffic assignment context. Perhaps somewhat confusingly for those unfamiliar with the field, these

deterministic process models are associated with two traditional forms of equilibria with which we are

familiar in transport, namely the Wardrop or Deterministic User Equilibrium (DUE) [Wardrop, 1952]
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and the Stochastic User Equilibrium (SUE) [Daganzo, 1983]. Smith [1984c], for example, considered

a deterministic process model and its relation to DUE, as did He et al. [2010] in their recent link-based

study of day-to-day assignment. Watling [1999] and Bie and Lo [2010] also considered deterministic

process models, but in their case in relation to SUE fixed points. There have been many other studies

of deterministic process, day-to-day models, the references to which may be found in these source

papers. The important taxonomy to bear in mind for the present paper is that while these papers may

be interested in either DUE or SUE, the type of process they adopt is fully determined (with probability

1) given the initial conditions, i.e. the process is deterministic, whatever name we might traditionally

associate with its endpoint (with SUE being the most obvious potential source of confusion here). A

fuller discussion of this point, with examples, is provided in Watling and Hazelton [2003]. It is also

noted in passing that some of these studies have interesting relationships with the problem of devising

iterative algorithms to calculate equilibrium points (as opposed to represent deterministic dynamics);

see, for example, the works of Smith [1984b,a].

The study of stochastic process models of day-to-day traffic assignment has attracted relatively little

attention, although a growing body of work exists in the literature, examples including those papers by

Cascetta [1989], Davis and Nihan [1993], Cantarella and Cascetta [1995], Watling [1996] and Hazelton

and Watling [2004]. The counterpart of a state of DUE/SUE that may be found in deterministic process

studies is now that of a stationary or equilibrium probability distribution of flow states. This does not

have a counterpart in traditional transport studies. The equilibrium probability distribution may vary

according to the behavioural and traffic assumptions assumed in the stochastic process, and so studying

the equilibrium distributions of stochastic process models generates a whole new range of predictive

models for us to use in transportation analysis.

1.4 Organization of the Paper

In section 2 we introduce a deterministic process model following Smith [1984c]. We apply this model

to a simple two route example in section 3. We analyse the day-to-day dynamics of the system and look

at equilibria. We generalize this model in section 4 by incorporating a random term into the dynamical

system, thus obtaining a stochastic process model, but one of a rather different form to those previously

proposed for studying transportation networks. By restricting the support of this random term we obtain

a system for which the long term dynamics (in terms of basins of attraction) can be regarded as a

‘softened’ version of those for the purely deterministic process model. In section 5 we examine an

alternative type of stochastic process model, based on the Markov process specifications proposed by

Cascetta [1989] and Cantarella and Cascetta [1995]. Again working with the simple two route example,

we show that the long term behaviour depends critically on whether or not the random variation in

(perceived) travel costs is bounded.

2 Deterministic Dynamics – One Possibility

To be specific here, we assume given a fixed demand model with one OD pair joined by several routes.

Let x(t) be the vector of route flows on day t. The components of x(t) always add to the fixed total

origin-destination (OD) flow, which we denote N .
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The initial deterministic day-to-day dynamical assumption in this paper is that

the flow vector tomorrow = flow vector today + d

or, more precisely:

x(t+ 1) = x(t) + d(x(t)) for t = 0, 1, 2, . . . . (1)

To obtain x(t+ 1) here we just need to know x(t) and d(x(t)).

2.1 A Possibility for d(x) with one OD pair

Let ∆rs have -1 in the rth place and +1 in the sth place. It is the swap vector from route r to route s.

For k > 0 small let

d(x) =
∑

r,s

k[cr(x)− cs(x)]+xr∆rs. (2)

Here, in (2), the cr is costs of traversing route r, and u+ = max(0, u). The d in this equation is the

assumption in Smith [1984c]. We assume here that the costs arising in equation (2) depend continuously

on only x.

It is clear that
∑

r xr stays constant. That is:

∑

r

xr(t+ 1) =
∑

r

xr(t) for all t = 0, 1, 2, 3, . . . .

So if the dynamical system (1) starts within the set {x :
∑

r xr = N} then it remains within that set.

Further, d is a continuous function of flows and costs and so, for any given continuous cost flow function

c = c(x), d becomes a continuous function of the current flow vector. It may then readily be shown

that, under natural conditions and provided k is sufficiently small,

x ≥ 0 ⇒ x+ d(x) ≥ 0

where the vector inequality should be interpreted componentwise.

The two previous paragraphs imply that if the assignment x is feasible then x + d(x) is also feasible.

Thus if we denote the set of feasible route-flows by F so that

F = {x :
∑

r

xr = N,x ≥ 0}

then for all t = 0, 1, 2, 3, . . .:

x(t) ∈ F ⇒ x(t+ 1) ∈ F.

Thus if x(0) ∈ F then x(t) ∈ F for all t > 0. In this paper we regard (2) as one possible reasonable

representation of day to day deterministic behaviour.

3 A Deterministic Process Day-to-Day Example

This simple example is based on a simple network considered by Daganzo [1983], Watling [1996],

Watling and Hazelton [2003] and Bie and Lo [2010]. The network has two routes as shown in figure 1.

4



Figure 1: A two route network.

Here we let x1 ≥ 0 be the number or flows of bus travellers; x2 ≥ 0 be the number or flow of car

travellers; and set the total travel demand to be x1 + x2 = N . Travel costs in this model are to be as

follows:

c1(x) =
8x2
N

while that for car travel is

c2(x) = 2 +
4x2
N

.

Thus the costs of bus and car journeys depend only on the volume of cars. We may make costs of bus

and car travel depend only on the volume of bus and car travel respectively by utilising the condition

that x1 + x2 = N . Doing this we obtain the separable cost functions

c1(x1) = 8−
8x1
N

and

c2(x2) = 2 +
4x2
N

.

Clearly

c2(x2)− c1(x1) = 2 +
4x2
N

(

8−
8x1
N

)

=
4x2
N

+
8x1
N

− 6

and so

c2(x2)− c1(x1) = 0 ⇔ x2 = x1 = N/2.

Thus following Wardrop [1952] we say that (N/2, N/2)T is an equilibrium: no traveller in this case has

a route with a cheaper cost and so there is an equilibrium.

Looking now at unsymmetrical traffic distributions,

c2(x2)− c1(x1) > 0 ⇔ x1 > N/2

c2(x2)− c1(x1) < 0 ⇔ x1 < N/2.

Following (2), we have ∆12 = (−1, 1)T and ∆21 = (1,−1)T so that for small k > 0,

d = k {[c1 − c2]+x1∆12 + [c2 − c1]+x2∆21} . (3)
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With this particular formula for d,

x1 = N/2 ⇒ c2 − c1 = 0 ⇒ d(x) = 0,

x1 > N/2 ⇒ c2 − c1 > 0 ⇒ d(x) = k(c2 − c1)x2∆21,

x1 < N/2 ⇒ c2 − c1 < 0 ⇒ d(x) = k(c1 − c2)x1∆12.

where we have suppressed the dependence of the costs c1 and c2 on the flows x1 and x2.

Thus there is more than just the symmetrical Wardrop equilibrium here. It is clear from the previous

paragraph that also

x1 = 0 ⇒ d(x) = 0

x2 = 0 ⇒ d(x) = 0.

It follows that there are three equilibria (where d = 0) and also that the directions of motion, d, at non-

equilibria are as shown in Figure 2 below. (As indicated above, for k small enough x+ d is feasible for

each feasible x.) An alternative representation of the dynamical properties of the system is displayed in

Figure 3

Figure 2: Deterministic dynamics following d(x) is indicated by the arrows for one value of N . Three

equilibria are shown as dots (solid for unstable; open for stable). The two solid dots form the only

irreducible stable or absorbing sets. All other states (or sets of states) are either transient non-equilibria

or unstable equilibria.

It should be noted that we may allow time t in the system (1) to be made continuous rather than discrete.

So we may also consider the continuous dynamical system

dx(t)

dt
= d(x(t)). (4)

In the figures below we may think in terms of either (1) or (4).
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Figure 3: Another representation of the deterministic dynamics in Figure 2. The horizontal arrows

correspond to the arrows in Figure 2. The dotted line is the graph of d (the first component of d) against

x1. The slope of d is always between -1 and +1 here.

4 A Possible Stochastic Process Version of This Day-to-Day Model

One simple way of transforming the above deterministic process model into a stochastic process one is

to add a stochastic component ε = (ε,−ε)T to (1). Then we obtain:

x(t+ 1) = x(t) + d(x(t)) + ε. (5)

Here we assume that each random component ε is uniformly distributed over [−m,m] for some m > 0.

We remark, as noted earlier, that this is a rather different way to introducing stochasticity into day-to-day

dynamics than has previously been considered in the transportation field.

Figure 4: Representation of stochastic/deterministic dynamics. The double-headed arrow marks a thick

set separating two basins of attraction. Points in the transient sets marked Tr can only exit one way. Ir

marks sets which are stable but no subset is stable. They are irreducible stable sets.

Figure 5: Stochastic/deterministic dynamics with edge modification. The edge modifications on ε are

specified diagrammatically here.

In the dynamical system (5) and in Figure 4 as drawn, if x1(t) is very close to N today then x1(t+1) =

x1(t) + d +m will exceed N . To avoid this d +m must be modified on the right and d −m must be

modified on the left of Figure 5 as shown. The heavier dotted lines in Figure 5 are at 45 degrees. These

two modifications ensure (for example) that, close to N , d+m cannot exceed N − x1(t). Hence

x1(t) ≤ N ⇒ x1(t+ 1) = x1(t) + d+m ≤ x1(t) +N − x1(t) = N.
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5 An alternative stochastic process specification: Markov Models with

Stochastic Costs

The Markov models of Cascetta [1989] and Cantarella and Cascetta [1995] provide an alternative

stochastic version of (1). Using a simple Markov model, each traveller on the system will indepen-

dently review their mode choice on each day based upon the costs experienced the day before. As

a result, xt+1
1

will follow a binomial Binom(N, qt+1) distribution where the probability of any given

individual choosing bus travel (i.e. selecting route 1 in our two route example) on day t+ 1 is given by

qt+1 = φ(ct2 − ct1) (6)

for some function φ(·). Note that we have employed superscript t (as opposed to t in brackets) to denote

time here (and henceforth in this section) to produce tidier notation.

The function φ may be defined implicitly if we focus on the distribution of perceived travel costs. Let

us denote by Ct
i the travel cost for route i on day t as perceived by a randomly selected traveller, and let

cti be the corresponding mean (or ‘measured’) cost. A common type of model is

Ct
i = ci(x

t) + εti

where εti is a random variable with zero mean, independent of εsj for all pairs (j, s) 6= (i, t). We assume

that the distribution of εti does not depend on ci. We then have

φ(ct2 − ct1) = P(Ct
1 − Ct

2 < 0).

It follows that qt+1 can take the values in the set {0, 1} if and only if the distribution of ε has finite

support.

In order to analyse such a process we require an analogous notion of steady-state equilibrium (and the

possible convergence to multiple such equilibria) to that we have adopted for deterministic systems in

sections 2.1 and 3; for a more in-depth discussion of these issues the reader is referred to Watling and

Cantarella [2012]. We note first that in the model we consider in the present section, we have made a

subtle change to focus on discrete, integer flow states (as generated by the Binomial transitions), and so

the only possible states that the process may occupy are for x1 in the set S = {0, 1, 2, ..., N}. Since the

process is 1-dependent (only depends on the previous day’s state), it follows that on any day we may

fully define the probabilities of the process occupying these different states by a vector of length N +1.

Let us consider any one such possible vector of probabilities, which we shall denote as p, which clearly

must have elements on [0,1] and which must sum to 1. Define E ⊆ S to be an ergodic subset of S if it

is a minimal subset (no proper subset of it exists with this property) such that there is zero probability of

the process leaving it once entered. Suppose now that we initialise the process within one such ergodic

subset, with initial state probability distribution p. Then if the process transforms (after one day) into

the same probability distribution p then we say that p is a stationary distribution over ergodic subset E.

Thus, our analogy with the study of multiple equilibria in the deterministic process world is an interest

in combinations of (p, E) that gives us multiple stationary distributions p over ergodic subsets of S; in

both cases/notions we can consider the potential for convergence of the process to these steady-states,

in the deterministic case to a single point and in the stochastic case to a vector of state probabilities. In

the deterministic limit, our transitions are single valued and map to a single state, and so this definition

also extends to the deterministic world, where our ergodic subsets are singletons, and stationarity maps
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to the deterministic notion of equilibrium. Thus, with our proposed model we will aim to bridge the

deterministic process and stochastic process worlds.

Now, the limiting dynamical properties of our stochastic model depend critically on whether qt+1 can

take the values zero or one. If qt+1 is restricted to the open interval (0, 1) then the overall process will

be ergodic (exactly one stationary distribution will exist), and will converge in law to a unique stationary

distribution. In that case every flow pattern will be visited infinitely often in the long run. If, on the other

hand, qt+1 can take the value 0 and/or 1, then the states may split into separate transient and persistent

classes, with states x1 = 0 and x1 = N possibly being absorbing. When the states do split in this way

there is no unique stationary distribution over the whole state space, while there may or may not be

multiple stationary distributions over ergodic subsets.

Consider our bus/car example with N = 10 travellers. We will look first at a truncated linear probability

model where

φ(ct2 − ct1) =







1 1

2
− β

4
(ct2 − ct1) > 1

0 1

2
− β

4
(ct2 − ct1) < 0

1

2
− β

4
(ct2 − ct1) otherwise.

in which β is a parameter controlling travellers’ sensitivity to cost differences. (The reason for the factor

of 4 in the denominator in the definition of φ is to make this parameter directly comparable with β in a

logit model that we shall examine shortly.) In this model the probability qt+1 will take values zero and

one respectively when ct2 − ct1 ≥ 2/β and ct2 − ct1 ≤ −2/β. If we use the cost functions given in the

introduction then these inequalities cannot hold if β < 1, and hence qt+1 can never take the value zero

or one. When β = 1 the inequalities hold only when xt1 = 0 (so that ct2 − ct1 = 2) and xt1 = N (so that

ct2 − ct1 = −2) respectively. For any β ≥ 1 the states x1 = 0 and x1 = N are absorbing and all other

states are transient.

In some senses the model for β ≥ 1 mirrors the deterministic process one, in that a unique fixed point

equilibrium will be attained in the log run. However, unlike the deterministic process case, we generally

cannot be sure which equilibrium state will eventuate if the result of an intervention is to move the

system to one of the transient states.

To illustrate this behaviour we compute (by Monte Carlo simulation) the probability pi(β) that, starting

from initial state x1 = i, the system reaches x1 = 10 (universal bus usage) before hitting x1 = 0.

For β ≥ 1 the system will remain at x1 = 10 thereafter, while for β < 1 the system will continue

to move around according to its stationary distribution in the long run. In Figure 6 we plot pi for

i ∈ {0, 1, . . . , 10} for β = 1/2, 1, 2 and 4. We superimpose the stationary distribution (when it exists)

on these plots, using thick vertical grey lines to indicate relative probabilities.

As one would expect, when travellers are insensitive to cost differences (β = 1/2) the stationary distri-

bution is concentrated around x1 = 5. Any attempt to force the system towards x1 = 10 by nudging x1
towards 7 or 8 is by no means certain of success. For large values of β, on the other hand, we can be

certain of converging to x1 = 10 by a sufficiently large nudge.

A more common probability model is the logit model (equivalent to assuming that the negative of the

random term, −ε, follows a Gumbel distribution centred on zero). In that case

φ(ct2 − ct1) =
1

1 + exp{β(ct
2
− ct

1
)}
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Figure 6: Plots of the probability of reaching universal bus usage before universal car usage for a

stochastic process day-to-day model with truncated linear probability function. Vertical grey lines rep-

resent relative probabilities from the stationary distribution for the system (where this exists).

where β is again a cost sensitivity parameter. The truncated linear model earlier can be consider an

approximation to the logit model as illustrated in Figure 7 (where the value of β is common in both

functional forms due to the scaling mentioned earlier).

We repeated the analysis of the probability of attaining universal bus usage prior to universal car usage.

The resulting plots (in corresponding format to Figure 6) are displayed in Figure 8. These results are

qualitatively similar to those for the truncated linear model, as one might expect given the similarity of

the underlying probability functions. However, the probabilities for reaching universal bus usage never

quite reach zero or one, so that in theory at least we can never be certain of achieving the desired goal

of universal bus usage.
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Figure 7: Graphical comparison of truncated linear and logit probability functions.

6 Discussion

Usually, for a given initial or start point, deterministic process, day to day route choice models generate

unique trajectories which are confined to that basin of attraction containing the start point. These models

are usually designed to converge under suitable conditions to a single (locally stable) equilibrium point

within that single basin. This may then be regarded as a point estimate or forecast of the likely long

run behaviour of the given network for the particular start point. However, different forecasts may arise

from different start points.

On the other hand, the stochastic process models previously proposed in the transportation literature

are usually specified so as to yield a single limiting probability distribution which is spread over the

whole state space, irrespective of the particular state chosen as a start point. For example, this is true

of Markov models with finite memory in which conditional choice probabilities are given by a logit-

based model. So stochastic process models yield a unique probability distribution describing the likely

long run behaviour of the given network, from which we can calculate unique summary measures for

prediction. Thus, with the stochastic process model our long-term predictions of the system will not
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Figure 8: Plots of the probability of reaching universal bus usage before universal car usage for a

stochastic day-to-day model with logit probability function. Vertical grey lines represent relative prob-

abilities from the stationary distribution for the system.

depend on the initial conditions, whereas the deterministic process model predicts multiple trajectories

depending on the initial conditions. This difference may have a profound effect on predictions of the

network response to an intervention. For instance, in the bus/car example above an attempt to nudge

the system towards universal bus usage (say by imposing a temporary charge or a temporary access

restriction) leading to a pattern where x1 = 8 (and then removing the charge or access restriction) will

lead to swift convergence to the desired state according to the deterministic process model. However

in the logit-based stochastic process model the mean first hitting time at x1 = 10 can be very large or

even infinite because there is a small (but non-zero) probability that the system will visit states close

to x1 = 0 and spend a long spell in the vicinity of that state. At the moment, we do not offer a

suggestion as to which of these approaches is more realistic, the point is that qualitatively different

system behaviour may occur in the model, and so for the benefit of model-users it seems important that

we better understand these differences.

It is therefore natural, we believe, to explore whether dynamical models exist which lie between these
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two extremes. In this paper we have been able to construct two such models. The first is obtained

by adding a not-too-large stochastic element to a deterministic process, day-to-day model. With this

model day to day trajectories become stochastic and forecasts become more blurred; different sample

paths or model trajectories, eventually entering different basins of attraction, may arise even from the

same start point. The second model starts with a standard stochastic process model and then restricts the

stochasticity. With this model, if certain states are reached then the process cannot then visit certain other

states; in the case here (where we have chosen the truncated linear rather than the logit for representing

the dependence of choice probabilities on predicted costs) the system is bound to remain in that state.

Generally, perhaps the long-run dynamical properties of the model types studied in this note can be

thought of as forming a continuum, with convergence to a specific fixed-point present in the determin-

istic model at one end, and the unique limiting stationary distribution spread over the whole state space

at the other end. The two intermediate stochastic models designed here lie somewhere in between, in

that they both possess two distinct basins of attraction (and so in this respect are ‘like’ a deterministic

model), but behaviour in the transient states before a basin of attraction is entered is a random process.

Furthermore, behaviour within a basin of attraction may be random too.

The long-term dynamics we have investigated in the present paper focuses on the ‘unforced’ response of

a dynamical system due to the initial condition. However, as we suggested in section 1.2, our reason for

understanding such dynamics may be a desire to control or influence the system trajectory in some way.

For example, given multiple future trajectories, then a planner may wish to do influence the dynamics

toward the most desirable trajectory based on some normative measure (sustainability, congestion, etc.).

In this case, the way of influencing the system may itself be dynamic (rather than a one-off policy mea-

sure), responding to the changing demands over time. Such a study could, for example, be a stochastic

process counterpart to the study of responsive signal-settings in a deterministic process environment as

reported in Cantarella, Velonà and Vitetta [2012].

Finally, the question of which of the approaches considered in the paper would better approximate

reality, we believe, depends on the problem context and objectives, the day-to-day dynamics adopted

and the associated adjustment parameters. This is an important future research direction, which may be

partially informed by the empirical analysis of actual observations.
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