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The Effect of the Ratio of Solid to Liquid Conductivity on the Sidebranching

Characteristics of Dendrites within a Phase-field model of Solidification.

A. M. Mullis

Institute for Materials Research, University of Leeds, Leeds LS2 9JT, UK

ABSTRACT

We use a phase-field model of dendritic growth in a pure undercooled melt to examine

the effect of the ratio of the thermal conductivities in the solid and liquid states

( = s/l) on the side-branching characteristics of the dendrite. We find that high

conductivity in the solid favours extensive side-branching while low conductivity in the

solid appears to strongly suppress side branching. Over the range 0.5    2.0, which

is typical of most (metallic) systems which display dendritic growth the RMS distance

at which the mean amplitude of the side-branches becomes equal to the tip radius varies

from as little as 10 tip radii to in excess of 45 tip radii. This implies that there may be

significant morphological difference between dendrites grown in different materials.

The variation does not appear to follow exactly the analytical relationship predicted by

solvability theory.

PACS: 81.30.Fb, 64.70.Dv, 82.20.Wt

Keywords: rapid solidification, phase-field models
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1. Introduction

One of the most fundamental and all pervasive microstructures produced during the

solidification of metals is the dendrite. The dendrite is a prime example of a pattern

forming system where complex morphologies arise from initially homogeneous

conditions due to the highly non-linear response of the controlling system.

In recent years the theory of microscopic solvability [1, 2] has provided a plausible

explanation for many of the features of dendritic growth at both low and arbitrarily high

undercoolings including selection of the operating point of the needle crystal, R, the

shape of the tip region and the formation of the side-branch structures [3, 4, 5]. The

principal prediction of solvability theory is that the anisotropy of the capillary forces

break the Ivantsov [6] degeneracy found in isotropic models via the relationship
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where R is the radius of curvature at the tip, V is the growth velocity and do is the

thermal capillary length, defined by
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Here L is the latent heat per unit volume, c the specific heat per unit volume,  the

interfacial energy between the solid and liquid phases, Tm the melting temperature, d is

the strength of the capillary anisotropy and a is the thermal diffusivity. *
is the

anisotropy dependant eigenvalue for the problem, which for small Peclet numbers and



3

in the limit of vanishing anisotropy is found to vary as 7/4
d

* )(   , where the Peclet

number is defined as

a

VR
p

2
 (3)

and anisotropy has been introduced by letting

)cos1()( dooo  kddd  (4)

where  is the angle between the local outward pointing normal to the interface and the

principal growth direction and k is a mode number, which for growth in a cubic metal

will be 4.

Further progress has been made towards understanding dendritic growth, particularly

the time-dependant problem, by the advent of phase-field modeling [7, 8]. The basis of

the phase-field technique is the definition of a phase variable, (x,t), which is

continuous over the whole domain  occupied by the system, where the continuity of 

over  implies that the interface between the solid and liquid regions is diffuse. The

evolution of the phase variable, , is governed by a free energy functional which

ensures an increase in entropy with time.

Imaging of dendritic growth in transparent analogue casting systems, such as

succinonitrile [9] and xenon [10], show that close to the tip region the dendrite is free

from side-branching. Moving away from the tip small oscillations are initiated which

grow as they move down the dendrite trunk. Initially the spacing of these perturbations
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is uniform. However, as amplification of the initial perturbations proceeds the process

becomes competitive with faster growing side-arms becoming dominant, leading to a

less uniform spacing. Eventually coarsening becomes dominant, with side-arms of

higher curvature being preferentially re-melted [11, 12].

A number of measures have been proposed to quantify the side-branch morphology of

dendritic structures. The simplest, and often the only measure that can be applied to as-

solidified materials, is the secondary arm spacing, 2. However, when the growing

dendrite can be imaged in situ a far greater range of measures may be applied. The most

direct is sbz , which is the mean distance along the trunk (in units of R) at which the

amplitude of the side-branching becomes equal to R. Other measures which have been

used in the literature [10, 13] to characterise dendritic structures include the fractal

dimension, shape parameterization of the inner and outer side-branch envelopes,

projection area and contour length.

Probably the most carefully controlled study of dendritic growth to be undertaken is the

Isothermal Dendrite Growth Experiment [14] (IDGE), in which the onset of side-

branching, as measured by the distance to the first detectable side-branch, was

determined for high purity succinonitrile under microgravity conditions. This was

determined as being at (11.8  1.7)R. In a control experiment, which was identical

except that it was performed under terrestrial gravity, the same measurement yielded

(12.7  2.3)R. Bisang & Bilgram [10] have measured sbz for xenon dendrites under

terrestrial conditions, finding )35.17(sb z . This figure is somewhat higher than that

found during IDGE due to the different methodologies applied, the first detectable side-
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branch having an amplitude significantly less than 1R, so that the two data sets are

probably mutually consistent.

Models of side-branch development within the theory of microscopic solvability have

been put forward by Langer [3, 4] and by Brener & Tempkin [5]. These models

propose that side-branches grow due to the selective amplification of thermally induced

noise at the solid-liquid interface. For axi-symmetric dendrites Langer proposed that

side-branches would grow such that :
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where C is a constant of order unity and S is the strength of the thermal noise,
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and kB is the Boltzmann constant. For succinonitrile at low undercooling, Langer found

that 32 1010 C was required to reproduce the experimentally observed level of side-

branching.

However, due to their complexity, solvability models are often restricted to the

assumption of either symmetric or asymmetric conductivity, that is either s = l or
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s = 0, where s and l are the thermal conductivities of the solid and liquid phases

respectively. The effect of non-symmetric conductivities in microscopic solvability has

been investigated to first order by Barbieri & Langer [15] who find the

)1(*
1
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
 (8)

where  = s/l. Phase-field method have also recently been used to study the effect of

non-symmetric thermal conductivities on * [16]. This study found that although the

relationship of Barbieri & Langer was recovered in the limit of vanishing Peclet number

(p 0), significant departures would be encountered for finite p, particularly for the

case  < 1.

In this paper we use a phase-field model of dendritic growth in a pure undercooled melt

to probe the effect of the ratio  on side-branch formation.

Although s = l is a common assumption in the modelling of thermal dendritic growth,

reduced phonon scattering in the solid phase, relative to the liquid, means that in reality

s > l most metallic materials. However, quantifying the ratio s/l, even for pure

metals, is difficult due to the scarcity of thermal conductivity data for liquid metals. For

solid metals at high temperature the Wiedemann-Franz-Lorenz law,
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is generally a reasonable approximation for all metals, where e is the electrical

conductivity. A number of studies [17, 18] have shown that this relationship also

appears to hold for liquid metals, and consequently the ratio es/el may be used as a

guide to s/l. This ratio is typically around 1.5 for many metals although the variations

are quite large. Values as low as 1.05 have been reported for Fe [19, 20] while Cu, Ag

and Au all have values [21] close to 2. Mn is exceptional for a metal in that es/el =

0.6 [21]. Si and Ge show es/el << 1, although as this is due to the phase change from

a semi-conducting solid to a metallic liquid, electrical conductivity is probably not a

good guide to thermal conductivity in these cases. Although both Si and Ge show

faceted growth under conventional solidification conditions, Ge has been shown

[22, 23] to grow dendritically during rapid solidification due to kinetic roughening of

the solid-liquid interface [23]. On balance, we believe the range 0.5  s/l  2.0

probably cover most materials of interest.

2. Computational Method

The basis of the Wheeler model is a Landau-Ginzberg free energy functional

   


d)(),( 22

2
1 esF (10)

where s(e,) is an entropy density, e is the internal energy density and  is a constant.

Here,   1 in the liquid and 0 in the solid. Following Wheeler et al. [8] we define

reference length and time scales w and w
2
/D, and a dimensionless temperature u

(T = Tm + uT) giving the transport equation as
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where a is the thermal diffusivity of the material normalised to the value of that for the

pure liquid, namely

l

sl )1(

a
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al and as being the thermal diffusivities in the liquid and solid states respectively and 

is the dimensionless undercooling

L

Tc
 (13)

The second term on the left hand side of Equation (11) thus represents the latent heat

associated with the change of state.

The anisotropic phase equation is given by
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where the quantities in Equation (14) are given by Wheeler et al. [8] as
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w
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~ . (17)

Here  is a parameter defining the width of the diffuse interface and  is the kinetic

parameter.

The system of differential equations represented by Equations (11) and (14) is solved

using a standard finite difference scheme. The transport equation is solved using an

alternating direct implicit (ADI) scheme, which is unconditionally stable, irrespective of

the time step, t, employed. However, the phase field equation is highly non-linear, and

consequently there is no simple implicit scheme suitable for its solution. We have

therefore used an explicit numerical scheme to obtain the time-dependant solution to

Equation (14). This will be subject to a Courant type stability condition of the form :

m

x
t




2)(
 (18)

where  would take the value 4 for a linear equation. The nonlinear nature of Equation

(14) actually imposes a more restrictive condition on the time step and the optimum

value of  has been determined empirically.

It can be shown that [8, 24] in the asymptotic sharp interface limit, 0~  , the interface

temperature is given by
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is the dimensionless capillary length, nv is the dimensionless interface velocity along

the outward pointing normal and K is the interface curvature. By comparing Equation

(19) with the standard expression for the interface temperature, Ti, of a solid growing

into its parent liquid (see for instance Brener & Mel’nikov [25], Equ. 2.3) with

anisotropic attachment kinetics of strength k, it is clear that by introducing an

anisotropy in the interface width the Wheeler model includes both capillary and kinetic

anisotropy effects with a fixed ratio of capillary to kinetic anisotropy given by

d/k = (k
2
-1)/2 = 15/2 (for k = 4).

During the simulation the curvature, 1/R, of the dendrite tip is evaluated along the x-axis

(where the proscribed anisotropy ensures that the dendrite tip does grow along the x-

axis). Following Wheeler [8] this may be written as

x

yy

R 




1
(21)

The evolution of R is tracked to ensure that a steady state has been obtained for the grid

on which the problem is running and once this is the case, a representative value R for

the simulation is calculate by averaging over a minimum of 5000 time steps. Moreover,
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for each set of material parameters (, p) each simulation is run a minimum of 4 times

on successively finer grids to check that the numerical solutions are converging to give

steady values of V and R. Initial simulations are conducted on a relatively coarse grid in

which the grid spacing is set at approximately R/20, with each successive refinement of

the grid being by a factor of 2 .

Noise is introduced by modifying Equation (14) such that :









R
mm






 22

22

)1(16 (22)

where  is a sample from a Gaussian distribution of random numbers with zero mean

and unit variance, R is a constant determining the level of random noise and

22 )1(30  u (23)

is just the first term from the right hand side of Equation (14). The term 162(1-)2

ensures that the introduced noise is confined effectively to the solid-liquid interface

region. The value of the noise amplitude parameter, R, is set such that sbz takes values

close to those found experimentally in transparent analogue systems for the case s = l.

This procedure should thus allow a relatively reliable estimate of the relative variation

of sbz with .

3. Results & Discussion

We have used sbz as the prime measure of the extent of side-branching displayed by the

computed dendrite morphologies generated by our phase-field model. Consequently,
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the variation of sbz with  has been used to quantify the effect of  on the morphology

of the dendrites.

A typical dendrite geometry from our simulations is shown in Fig. 1, the material

parameters used have been adopted from [16]. The same parameters have been used in

all the simulations reported here except that s has been varied to obtain the required

value of  (at fixed l). This particular dendrite was grown at a Peclet number of

p = 0.1. Also shown are the measurements made to determine the amplitude of a given

side-branch. The amplitude, An, and lateral distance from the tip, Zn, of each of the n

visible side-branches is measured in units of R. With regard to the amplitude this is

measured with respect to both the leading and trailing interdendritic depression (A and

A on Fig. 1) and an average value, A is taken. sbz is determined by plotting A against

Z for all visible side-branches and determining the intercept of the best-fit line with

A = 1 (in units if R). However, during this calculation side-branches that have

undergone obvious remelting during competitive growth (e.g side-branch n = 7, in Fig.

1) are removed from the data set.

The effect of varying  on sbz has been studied over a wide range of growth velocities.

Three typical sets of simulation data, corresponding to Peclet numbers of 0.05, 0.1 and

0.15, are shown in Fig. 2. As there is gradual decrease in sbz (side branches move

closer to the tip) as the growth velocity increases, and in order to facilitate easy

comparison of the data sets, we have in each case normalised against the value of sbz at

 = 1, that is we have plotted )1(/)(  sbsbn zzz . This dependence of sbz on the
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growth velocity is both predicted theoretically by Equation (5) and has been observed

experimentally in a sequence of photographs of dendritic growth in succinonitrile by

Huang & Glicksman [26].

Two main features of the data are apparent from Fig. 2. Firstly, it is clear that  does

indeed have a significant effect on sbz . On increasing  from 1 to 2, nz drops initially

quite rapidly before apparently levelling off around a value of 0.5. Conversely, on

decreasing  from 1 to 0.5, sbz increases to  2, with no indication that the increase

would level off if  were decreased further. However, the effect of reducing  below

0.5 has not been investigated because, as mentioned above, there are very few systems

for which this combination of material parameters is likely to hold. Secondly, we notice

that there is a very close correspondence between the three data sets despite their very

different growth regimes. Indeed, to within the error associated with measuring nz

from contour maps of  = 0.5 it is consistent that the three data sets display the same

trend. Error bars have not been included on this figure as, with multiple data sets

having the same value of the ordinate, the figure becomes difficult to read.

The corresponding variation in *
as a function of  has been investigated in [16],

where it was found that although the variation was in the same sense as that predicted

by Barbieri & Langer [15] in the limit of vanishing kinetics, namely that *
varies as

2/(1+), the magnitude of the variation was significantly greater. As, according to Equ.

(5), there is a predicted variation of sbz with *
, namely sbz  (*

)
2
, the general form

of the variation reported in Fig. 2 might not appear unsurprising. However,
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quantitatively the variation seen in our data is not just a manifestation of the relationship

described by Barbieri & Langer. In particular two curves are also shown in Fig. 2. The

dashed line is the predicted variation of nz when the corresponding measured values of

*
(for p = 0.1) are substituted into Equ. (5). Clearly, the measured variation of nz with

 is much gentler than would be expected from Equ. (5). Infact, we find [Fig. 2, solid

line] that to a very good approximation nz varies as {2/(1+)}2 irrespective of p, even

though the 2/(1+) scaling only appears to hold for *
at very low p.

The physical processes giving rise to this result are far from clear and here we offer no

more than some preliminary speculation on the results. One of the primary differences

between the solvability and phase-field formulations of the dendritic growth problem is

that, on the whole, kinetic effects tend to be absent from solvability models, whereas the

inclusion of anisotropic kinetics are implicit within the phase-field formulation of the

problem. While solvability models have been formulated which contain kinetic effects

[25], this was not the case in the models of Langer and co-workers [3, 4, 15] used to

study the effects of  on * or to develop the theory of dendritic side-branching via the

amplification of thermal noise. Consequently, these models are only strictly valid in the

limit of vanishing Peclet number. It is, however, well established [25] that the kinetic

anisotropy plays a role in the selection of the operating point parameter, *. Indeed, it

has been shown that the kinetic anisotropy is sufficient for growth of dendrites, even in

the absence of a surface energy anisotropy. Moreover, if the directions of the kinetic

and surface energy anisotropies do not coincide it has been shown that as the

undercooling is increased the dendrite will switch directions from that favoured by the

surface energy anisotropy to that favoured by the kinetic anisotropy [27, 28, 29].
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The results of Mullis [16] show that the extent to which the variation of * with 

departs from the predictions of solvability theory increases rapidly with increasing

Peclet number. This would suggest that there is a strong kinetic effect present in the

selection of * at high p. Conversely, the results presented here indicate that sbz varies

as 1/(1+)2, which is as would be expected from solvability theory in the limit of

vanishing Peclet number, even though the simulations here were run at p = 0.1. This

would tend to suggest that, at least with respect to the variation of , kinetics play no

part in determining the extent of dendritic side-branching.
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Figures

Figure 1. Typical dendrite morphology as generated by our phase-field simulation, showing here

the first 8 detectable side-branches (n = 1-8). Also shown are the basic quantities used to determine

sbz . These are the side-branch amplitude, nA & nA (measured with respect to both the leading and

trailing interdendritic troughs) and the lateral distance from the tip, nZ . For illustration purpose

these are just indicated for n = 6, but would actually be measured for all visible side-branches.



18

Figure 2. The variation in )1(/)(   sbsbn zzz as a function of  as predicted by our phase-

field model for p = 0.05, 0.10 and 0.15. The data is shown normalised against )1( sbz in order

to facilitate easy comparison and show that the data follows a single trend with respect to variation

of . It is well documented (see text) that sbz decreases systematically (side-branches get closer to

the tip) with increasing growth velocity (Peclet) number. For our simulations )1( sbz varied

between 18.2 (p = 0.05) and 13.5 (p = 0.15). Also shown are calculated values of nz obtained by

substitution of the actual values of * as measured from the phase-field simulations into Equ. (5)

[dashed line] and the trend obtained if * were varying as 2/(1+) [solid line] as predicted by Ref.

[15].


