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Local and global models of physics and computation

Susan Stepney∗
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Classical computation is essentially local in time, yet some formulations of physics
are global in time. Here I examine these differences, and suggest that certain forms
of unconventional computation are needed to model physical processes and complex
systems. These include certain forms of analogue computing, massively parallel field
computing, and self-modifying computations.

Keywords: unconventional computation; Newtonian schema; principle of
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1. Introduction

Lloyd (2005) argues that the universe is a giant quantum computer, computing it-
self. He arrives at this conclusion by focussing on information processing by physical
reality. Wharton (2012) argues against this view. His argument takes a different
form, and is based on the way certain laws of quantum physics are formulated, and
the relationship of this formulation to computation.
Without addressing the argument of whether the universe is or is not a computer

(or whether that question even makes sense), here I use Wharton’s argument as
a starting point for examining certain aspects of various unconventional computa-
tional systems.
First, I provide the background of Wharton’s argument, as it relates to models of

computation, in §2. Then I discuss whether this computational conclusion is valid
in the case of conventional (§3) and unconventional (§4) computational models.
I then discuss the role of time in unconventional computations, in §5. Finally I
discuss the implications for computational systems in §6.

2. Wharton’s argument: Newtonian versus Lagrangian mechanics

Here I briefly summarise Wharton (2012)’s argument, focussing on the computa-
tional aspects. (The full argument is more to do with models and interpretations
of quantum mechanics.) The argument centres around the merits of Newtonian
versus Lagrangian mechanics as models of physics. Both these are formulations of
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Newton’s “System of the World” (Newton, 1728), of differential equation-based
laws of motion.

2.1 The differential formulation

The first of these formulations uses laws that “specify the rules for how the point
that describes the initial conditions in configuration space evolves in time” (Smolin,
2009). Wharton follows Smolin in calling this “the Newtonian schema”. This New-
tonian schema formulation1 commonly defines the time evolution of the system in
question in terms of one or more first order ordinary differential equations (ODEs).
This differential formulation is “local” in time, an “instantaneous” formulation:
given a state at a particular time t, the equations define the state at the next
infinitesimal instant t+ dt.
Given such a formulation, a natural way to calculate the system path is to follow

the time evolution directly: integrate the equations forward in time from the initial
conditions (such as the position and velocity at time t = 0), in order to determine
the final conditions (such as position and velocity as time t = T ). The previous
sentence is cast in mathematical terminology; it can equally well be cast in com-
putational terminology as: iteratively compute from the inputs, to determine the
outputs.

2.2 The integral formulation

Lagrangian mechanics is an alternative formulation. Its key property for Wharton’s
argument is its basis on constraints, specifically “the principle of least action”2,
rather than explicitly Newton’s laws of motion (which can be derived from the
principle). The action S of a system is the integral of the Lagrangian L over the path

the system takes over time: S =
∫ T
0 L dt. The action is defined for any potential

path. On the path the system actually takes, the action is stationary: δS = 0. This
integral formulation is “global” in time: it is a property of the entire path, relative
to nearby paths.
In this formulation, it is straightforward to put constraints on the system at

different times (for example, initial position at t = 0 and final position at t = T ),
and then determine the other parameters of the system (for example, initial velocity
at t = 0). Computationally, the inputs are the boundary conditions, which are not
necessarily initial conditions.
Given such a formulation there is no similar natural way to calculate the system

path. We need the entire path in order to calculate the action, and we need a set
of paths in order to find the one with minimum (or stationary) action.

2.3 Equivalent laws?

These local and global formulations are alternative ways of expressing the same
laws of motion. In principle, one formulation can be recast in terms of the other.
However, there is more to solving a set of equations than the equations themselves:

1Here I give only a thumbnail sketch of the approaches, extracting the essence that affects the compu-
tational argument. For a more rigorous discussion, see a good textbook on classical mechanics, such as
Goldstein (1980).
2More correctly, of stationary action.
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Figure 1. Conceptual view of Newtonian schema computation versus least action computation. (a) The
Newtonian schema formulation. The physical path (solid line) is determined by the initial conditions x0

and v0, and the equations of motion. It starts at the initial position x0, evolves over time, and ends at the
final position xT . The path can be computed (dashed arrows) by numerically integrating the ODE-style
equations of motion, iteratively progressing along the path to the calculated final position, xT . (b) The
least action formulation. The physical path (solid line) is determined by the boundary conditions x0 and
xT , and the principle of least action. The path can be computed by calculating various possible paths
(dot-dashed arrows), and iteratively minimising the action (represented by the solid curved arrow).

in each specific case we also require the specific boundary conditions. In the Newto-
nian schema, these are initial conditions. In the least action formulation, however,
these conditions can be imposed at different times, and the given initial condi-
tions, considered alone, may thereby under-constrain the problem, leaving them
insufficient for a Newtonian schema style solution.

2.4 Initial conditions may not be the appropriate formulation

Wharton’s argument is that much of the present day problems with quantum me-
chanics is that it is modelled in Newtonian schema terms, requiring a complete
knowledge of initial conditions, from which the final conditions are then deduced.
He claims that quantum systems are more naturally modelled in terms of the alter-
native constraint-formulation style, where the input knowledge of the system can
be spread across different times.

2.5 Computational formulation

The part of Wharton’s argument of interest in this paper is his identification of
computation with a Newtonian schema style of calculation: computation comprises
iterating a calculation from the initial state and inputs to the final state and out-
puts (figure 1a). This computational model struggles to simulate systems defined
in terms of the constraint of least action: multiple potential paths have to be cal-
culated, and the minimum action one sought (figure 1b).
Wharton then concludes that, since the (quantum) universe is at heart most

naturally described in a least action formulation, whereas computation is essentially
embedded in the Newtonian schema, that the universe is not a computer. The
universe does not determine its least action computationally. (He does not say how
it does determine it.)
If computation is essentially Newtonian, this is a more immediate issue than

philosophical arguments about whether or not the universe is not a computer.
There are many least action-like problems that we would like to be able to compute
efficiently. For example, consider the optical fourier transform (Goodman, 2005,
fig.5.7), where the light from an image placed in the focal plane of a convex lens
is passed through the lens, and the image’s fourier transform appears on a screen
placed in the other focal plane. While the fast fourier transform algorithm (Cooley
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& Tukey, 1965) calculates the discrete fourier transform of N points in time
O(N logN) operations, the optical fourier transform (apparently) calculates it in
time O(1).

2.6 Terminology

In the following discussion, I will for brevity use Newtonian and Lagrangian to
refer to physics and/or computation expressed in the local differential Newtonian
schema, and expressed in the global integral Lagrangian least action formulation,
respectively.

3. Is computation essentially Newtonian?

Here I discuss Wharton’s claim that computation is essentially Newtonian, and the
light that investigation of this claim can shed on conventional and unconventional
computation.

3.1 Imperative languages are Newtonian

The programming languages typically used for solving scientific problems are those
such as Fortran, C, C++, and Matlab. These belong to the class of imperative
languages, that are “based on commands that update variables held in storage”
(Watt, 2004, ch.11). A program defines a specific sequence of commands that
incrementally change this stored state from the initial state to the final state, and
“an imperative . . . program may be viewed abstractly as implementing a mapping
from inputs to outputs” (Watt, 2004, ch.15).
When solving a physical problem cast in the Newtonian schema formulation,

this sequence of commands and the associated state changes are direct analogues
of the progression of physical time and its associated physical state changes in
the problem (figure 1a). Watt (2004, ch.11) comments on the naturalness of this
paradigm:

Many programs are written to model real-world processes affecting real-world entities,
and a real-world entity often possesses a state that varies with time. So real-world
entities can be modeled naturally by variables, and real-world processes by commands
that inspect and update these variables.

Specifically, consider a set of equations of motion specified as first order differential
equations in normal form1 as

dxi

dt
= fi(x1, . . . , xn) (1)

where i = 1 . . . n, and with initial conditions given for the xi at time t = 0. We can
straightforwardly compute2 the values of the xi at time t = T in an imperative
language:

1Higher order differential equations can be expressed as first order equations by introducing more variables.
For example, F = ma = mẍ can be expressed in normal form with two equations: ẋ = v; v̇ = F/m.
2A robust numerical integration would use a more sophisticated numerical method than this. However,
this simplistic algorithm illustrates the basic underlying computational principle.
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t := 0
∆ := T ∗ 0.001
for each i, xi := xi(0)
while t < T do

for each i, xi := xi + fi(x1, . . . , xn) ∗∆
t := t+∆

end while

3.2 Logic languages are more Lagrangian than Newtonian

When computing the solution of a physical problem cast in the least action for-
mulation, however, there is a “disconnect between algorithmic time and actual
time” (Wharton, 2012), and a similar disconnect between program state iterating
through multiple potential physical paths, and the single actual physical state of
least action (figure 1b).
Not all programming languages are imperative, however. Another class is that of

logic languages, such as Prolog. Watt (2004, ch.15) describes the different flavour
of the logic paradigm:

A logic program . . . implements a relation. Since relations are more general than map-
pings, logic programming is potentially higher-level than imperative . . . programming.

In such a language, the program is a set of statements, and the result is the con-
sequence that can be inferred from the statements.
For example, we can define a set of rules such as1:

has legs(X, 8) : - spider(X).
has legs(X, 6) : - insect(X).
has legs(X, 4) : - mammal(X).
insect(archy).

From this, we can infer that has legs(archy, 6).
In order to define a least action-style calculation, we could include a rule like:

is least action(Path).

On the face of it then, logic programming languages would seem to be Lagrangian.
However, in conventional computation, that is not actually the case.

3.3 Denotational versus operational semantics

What I have been talking about so far is different high-level programming
paradigms: imperative versus logic languages.
Whatever paradigm is used, a program has a meaning, such as a mapping from

input to output, or a relation between sets of entities. That meaning can be defined
in higher- or lower-level ways. See, for example, (Schmidt, 1986, p.3), (Meyer, 1990,
ch.4).
The high level, mathematical meaning of the programs, is defined, for example,

in a denotational or axiomatic form. Denotational semantics can be used to define
the meaning of an imperative programming language as the mathematical function
that maps its input to its output. Axiomatic semantics can be used to define the

1A rule such as has legs(X, 8) : - spider(X) can be read as “X has 8 legs ifX is a spider”, and insect(archy)
can be read as “archy is an insect”.
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meaning of a logic programming language in terms of axioms and inference rules,
which are used to infer the meaning of a program text.
But when one comes to calculate an output from an input, or to infer the con-

sequences of the program statements, or in other words, to compute the meaning,
an operational semantics is needed. In this case the meaning of the language is
defined in terms of the actions of an (abstract) machine interpreting the language
statements: it defines an algorithm that computes the meaning. In other words,
“In an operational semantics we are concerned with how to execute programs and
not merely with what the results of the execution are.” (Nielson & Nielson, 1992,
ch.2)
Fisher and Henzinger (2007) describe the difference as:

A computational model is a formal model whose primary semantics is operational;
that is, the model prescribes a sequence of steps or instructions that can be executed
by an abstract machine, which can be implemented on a real computer. A mathemat-
ical model is a formal model whose primary semantics is denotational; that is, the
model describes by equations a relationship between quantities and how they change
over time. The equations do not determine an algorithm for solving them . . .

In conventional computation at least, operational semantics is “Newtonian”: it
defines the specific state changes in imperative languages, and it defines a specific
algorithm to perform inferencing in logic languages. For the least action compu-
tation, the algorithm to infer the path that satisfies is least action(Path) will be
something akin to “calculate the action of all possible Paths, and chose the one
with least action”.
Not all logic language programs execute this inefficiently! This is analogous to an

operational semantics for is sorted(List) being “calculate all possible permutations
of List, and choose the sorted one”. In the case of sorting, there are much more
efficient algorithms, which can be provided by the programmer or by a clever
optimising compiler. In the case of calculating the least action, there may not be
a much more efficient algorithm, however.
So we seem to be back to an underlying computation akin to figure 1b.

4. Can computation have a Lagrangian operational semantics?

4.1 The reason for Newtonian operational semantics

Wharton’s argument seems to boil down to: the operational semantics of any com-
puter is necessarily Newtonian. But just why is operational semantics Newtonian?
If (some) physics may be better formulated as Lagrangian, and given that the
execution of the computation occurs in a physical device, why could that execu-
tion not also be Lagrangian? Is the Newtonian schema a fundamental property of
computation per se, or only of our current implementations?
Standard processors are built to the so-called von Neumann architecture, with

its “fetch-execute-store” cycle and stored program paradigm. This architecture is
essentially iterative and state based, and so languages with imperative operational
semantics map naturally onto it.
The Turing model of computation as implemented by the von Neumann archi-

tecture is itself essentially algorithmic, since it was originally designed to formalise
the real world procedures followed by human “computers”: clerks carrying out
calculations (Copeland, 2008).
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4.2 Alternative operational semantics

The von Neumann architecture is not the only computational architecture, merely
the predominant one. Other unconventional computational architectures exist: for
example, neural networks, cellular automata (the other von Neumann architec-
ture!), microfluidic processors, reaction-diffusion chemical computing, optical com-
puting, quantum computing (with a range of associated architectures including the
circuit model, and measurement based systems), and more.
The question raised by Wharton’s argument is, can we have an (unconventional?)

operational constraint-based computational semantics? Can we make our compu-
tations more physics-like? Yes. We can take those very physical processes that
Wharton argues do not act computationally in the Newtonian schema sense, and
use them as unconventional computational devices, through analogue computing.
We simply need to find a physical process that is a suitable analogue of the com-
putation we wish to do, and that we can configure as (part of) a computational
device. To use a physical system as a computational device in this manner requires
that the underlying physical model is sufficiently well-characterised that we know
what computation it is performing (Horsman, Stepney, Wagner, & Kendon, 2014).

5. The role of time

5.1 Atemporal models

One question that arises from the Lagrangian formulation, with its constraints at
times other than the initial time (the “now”), is: how does light “know” which is
the shortest path that it should take? how does the system “know” to achieve the
boundary conditions at other times? how does it arrange itself to achieve stationary
action, a quantity that requires “knowledge” of future times?
To avoid the lingering teleological odour of such questions, some scientists have

suggested atemporal models of physics. From the atemporal space-time of Ein-
stein’s relativity, to more subtle arguments (Barbour, 1999), these resolve the
issue by removing time as a dynamic process from the picture.
Not all authors are in favour of eliminating time as something real. For example,

when Smolin (2009) talks of “the misapplication of the Newtonian schema to the
universe as a whole”, he does not mean that he is against applying it to parts of
the universe. Indeed, he lays out various principles for the reality of time, one of
which is:

Everything that is real in a moment is a process of change leading to the next or
future moments. . . . Things that persist must be thought of as processes leading to
newly changed processes. An atom in a moment is a process leading to a different or
a changed atom in the next moment.

In this view, time is real, and things really do progress through time.
If time is real, are we forced back to teleological-sounding explanations? One way

of examining how light travels along the shortest path is to think of it in terms
of waves, reinforcing and cancelling at different points in space. In this approach,
the physical system is not a single localised particle, but a spatially extended field.
Computation of its behaviour does not then need to follow only a single point
in space, but the behaviour of all of space. So maybe it is not the temporality
of classical computation that is the issue, but its spatial zero-dimensionality. All
classical computation is pushed through the single point that is the von Neumann
bottleneck.
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Generalisations of these kind of ideas, of thinking of fields rather than particles,
lead to such unconventional computational architectures as cellular automata, field
computing (MacLennan, 1999), and environment orientation (Hoverd & Stepney,
2009, 2011).

5.2 Energy minimisation

Another process we see in physical systems, akin to action minimisation, is (free)
energy minimisation. For example: a ball rolls downhill to find its lowest potential
energy; the protein folding problem can be cast as a free energy minimisation
problem (Anfinsen, 1973). Here, however, the minimisation is definitely a temporal
process: the system moves from a high energy to a lower energy state, “seeking”
the minimum energy state: the ball rolls downhill to its minimum potential energy
state, the protein folds from an unfolded form. Contrast this with the atemporal
view of the bent light crossing between two media: there was never some unbent
beam that over time bent itself to the correct angle, minimising its travel time.
There is no guarantee of success, either: the system may get caught in a local

minimum, where its (free) energy is merely stationary, not minimal. Adding a
thermal component may allow the system to “jiggle” out of a local minimum.
This is the basis of the simulated annealing algorithm (Kirkpatrick, Gelatt Jr., &
Vecchi, 1983), an optimisation algorithm that equates some cost function to be
minimised with a physical energy, and has an artificial temperature that slowly
cools, by analogy to the physical annealing process.
However, even when we formulate algorithms that can follow the temporal pro-

cess, such as the slow cooling in simulated annealing, or the gradual folding of a
protein, it still seems that we are having to do a lot of computational work for
our result, where the physics just “happens” without explicit computation. For
example, we have to explicitly calculate the energy analogues and their differences,
and the related Boltzmann probabilities. The “protein folding problem” is so called
because we cannot yet compute the relevant physical processes efficiently.
It appears that fields provide a more natural model of some of these processes,

such as the electric fields around amino acids in proteins. Alternatively, the Boltz-
mann distribution at the heart of simulated annealing arises in physical systems
as a statistical distribution of the energies a large number of particles. Physicists
use similar statistical notions, such as a density matrix approach, to connect the
deterministic macroscopic world of observation with the possibly non-deterministic
underlying physical system. In the case of both the field approach, and the statis-
tical distribution approach, it is the zero-dimensionality of classical computation
where the problem lies.

5.3 Complex Systems and Growth

Complex systems are fundamentally temporal. They can depend critically on their
detailed history (Bak & Paczuski, 1995), and are intrinsically irreversible. Be-
cause of this essential contingency, there may be no sensible formulation of their
dynamics in terms of boundary conditions at the “end point” of their evolution.
So computations that are temporal are a natural fit to these systems. But again,
since an essential quality of complex systems is that they contain a large number
of agents and processes leading to emergent properties (Anderson, 1972), the zero-
dimensionality of classical computation is a severe bottleneck to their computation.
One important sub-class of complex systems is one where the number of compo-
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nents changes and grows as the system develops, for example the continual novelty
expressed by open-ended evolution. Here the very dimensionality of the system
is changing, and mathematical models struggle to keep up with the dynamic in-
troduction of new dimensions, and novel kinds of dimensions, in the overall state
space (Stepney, 2012a, §4). The system’s growing, changing components do not
behave as a statistical ensemble. This time computation comes to our rescue (Step-
ney, 2012b). Coping with extra dimensions is straightforward: malloc(n) and new
Obj(p) allocate new memory, increasing the dimensionality of the computational
state space. Coping with novel kinds of dimensions, not anticipated at coding time,
requires self-modifying code (Stepney & Hoverd, 2011). This is yet another move
away from the underlying constraints of classical computation, with its careful
separation of code and data, to an unconventional formulation.

6. Conclusion

Wharton (2012) admonishes us:

Now there’s one last anthropocentric attitude that needs to go, the idea that the
computations we perform are the same computations performed by the universe . . .

I would suggest that there is another attitude that needs to go: that the only
computational model is the classical, imperative, “Newtonian” one. Instead, we can
look to the physical and biological worlds, see where they perform better, or just
differently, from classical computation, and use that as inspiration for developing
novel forms of unconventional computation.
Another anthropocentric attitude that needs to go is the idea that the computa-

tions our physical computers can perform are restricted to being the same as the
calculations we can perform with pen-and-paper.
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In G. Rozenberg, T. Bäck, & J. N. Kok (Eds.), Handbook of natural computing
(pp. 1979–2025). Springer.

Stepney, S. (2012b). Programming unconventional computers: Dynamics, devel-
opment, self-reference. Entropy , 14 , 1939–1952.

Stepney, S., & Hoverd, T. (2011). Reflecting on open-ended evolution. In ECAL
2011, Paris, France (pp. 781–788). MIT Press.

Watt, D. A. (2004). Programming language design concepts. Wiley.
Wharton, K. (2012). The universe is not a computer. arXiv:1211.7081v1.

10


