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* Pennine Water Group, Department of Civil and Structural Engineering, University of Sheffield, 

Sheffield, S1 3JD, UK. 
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Abstract Combined sewer overflows (CSOs) represent a common feature in combined urban 

drainage systems and are used to discharge excess water to the environment during heavy storms. 

To better understand the performance of CSOs, the UK water industry has installed a large number 

of monitoring systems that provide data for these assets. This paper presents research into the 

prediction of the hydraulic performance of CSOs using Artificial Neural Networks (ANN) as an 

alternative to hydraulic models. Previous work has explored using an ANN model for the 

prediction of chamber depth using time series for depth and rain gauge data. Rainfall intensity data 

that can be provided by rainfall radar devices can be used to improve on this approach. Results are 

presented using real data from a CSO for a catchment in the North of England, UK. An ANN 

model trained with the pseudo-inverse rule was shown to be capable of providing prediction of 

CSO depth with less than 5% error for predictions more than one hour ahead for unseen data. Such 

predictive approaches are important to the future management of combined sewer systems.  

 

Keywords combined sewer overflows; artificial neural networks; cross correlation; rainfall 

radar; depth monitoring; prediction; catchment. 

INTRODUCTION 
Urban sewerage infrastructure represents highly complex distributed systems; understanding, 

managing and predicting the performance of these systems is extremely challenging despite 

being of paramount importance for society. Combined sewer overflow (CSO) structures are 

common assets within the UK’s combined urban drainage systems. Their main purpose is to 

protect downstream sewers and waste water treatment plants (WWTP) from hydraulic 

overloads and flooding during extreme rainfall events. Spills can have a significant impact on 

the quality of receiving waters and cause regulatory failures. Hence, managing CSO spill 

pollution has become a significant concern for water companies and the efficient management 

of CSO assets, with catchment wide integration, is likely to be a key enhancement to the 

operation of systems into the future. Improved spill prediction approaches would considerably 

enhance this process. 

Within the UK, hydraulic monitoring of sewer systems is generally limited to short term flow 

surveys of around 12 weeks duration. Here, rainfall data is measured by rain gauges for a 

number of rainfall events and measurements of the sewer flow depth and flow rate are used to 

calibrate sewer hydraulic models. Measurements in dry weather flow are also made. 

Decreasing communications costs are allowing longer term monitoring (described by 

Shepherd et al., 2010) with the possibility of more in depth analysis of large datasets and 

online data analysis systems. The application of rainfall radar data is one such area which has 

received attention in recent years and allows the fine grained detection of spatial and temporal 

rainfall patterns thus potentially improving hydraulic modelling capabilities. Currently, 85% 

of the UK has a resolution of 2km or better (Met Office, 2009) and most large urban 

catchments fall within this area. Radar data for the whole of the UK is processed by the Met 

Office in order to convert the reflectivity measurement into rainfall intensity and to correct 

potential errors such as attenuation by intervening rainfall and ground clutter. Rainfall radar 
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data is generally supplied at a time resolution of 5 minutes at near real time. Previous studies 

have suggested methodologies for the application of radar data to urban drainage systems 

(Einfalt et al., 2004) and investigated the use of rainfall radar data in sewer hydraulic models 

(Kramer et al., 2005). 

Schellart et al. (2012) showed that radar data provides useful measurements of rainfall which 

can be applied to sewer hydraulic models with similar confidence to rain gauge data. In their 

research, rainfall radar data at spatial resolutions of 1 km was obtained from the Met Office 

produced by a network of C-band radars which cover the UK. The work compared predicted 

flows from InfoWorks with both rainfall inputs from rain gauge and radar methods together 

with actual measured flow in the sewer. The analysis was carried out by using a verified 

InfoWorks CS sewer hydraulic model. Similar studies using hydraulic models have explored 

applying cluster analysis to investigate correlations between rainfall patterns and CSO 

behaviours (Yu et al., 2013). 

This paper presents an approach to using an Artificial Neural Network (ANN) for CSO 

performance prediction. Records of rainfall (rainfall radar) and the depth of flow in the CSO 

chamber are used as training data to establish the relationship between parameters. This 

relationship is used to predict chamber depth corresponding to subsequent verification rainfall 

data, without the use of a hydraulic model. Results are presented from field measurements 

recorded as part of a catchment case study and appropriate metrics employed to evaluate the 

technique. The methodology was shown to be successful and it is envisaged that a real-time 

version of the system could be specifically applicable to manage CSOs which are at a high 

risk of causing pollution and flooding failures. 

BACKGROUND 

Water utilities routinely gather large amounts of asset performance data. This provides 

abundant challenges and opportunities for the application of Machine Learning for 

monitoring, modelling and forecasting; examples include techniques for time series analysis 

of urban drainage data (Branisavljevic´ et al., 2010), using fuzzy logic for sewer pumping 

station control (Ostojin et al., 2011) and for monitoring industrial wastewater treatment using 

adaptive multivariable approaches based on self-organizing maps (Liukkonen et al., 2013). 

Recent work has explored utilising rainfall radar data, hydraulic models and machine learning 

approaches for predicting urban flooding in real-time (e.g. Duncan et al., 2013). 

Such strategies will provide the opportunity to improve the performance of existing systems, 

to reduce costs, meet consents and reduce flooding and pollution incidents. Data-driven 

modelling has the advantage of not requiring a detailed understanding of the physical, 

chemical and/or biological processes that affect a system before model inputs can be mapped 

to outputs. ANNs have become an increasingly popular data driven approach for water 

industry applications and are a modelling approach based on how biological neural systems 

are believed to work. Examples include for rainfall-runoff modelling (Solomatine et al., 2003) 

and river flow forecasting (Dawson et al., 1999). Evora and Coulibaly (2009) presented a 

review of recent advances in ANN modelling of remote sensing applications in hydrology. Li 

et al. (2010) reviewed the applicability of ANNs to urban hydraulics and hydrology whilst 

Kurth et al. (2008) demonstrated that a three hidden-layer Multilayer Perceptron (MLP) ANN 

trained with backpropagation was capable of learning the underlying relationship between 



local rainfall occurrence and CSO response. Similarly, Guo and Saul (2011) used an adaptive 

linear ANN (ADALINE) to model linearly the relationship between the CSO chamber 

hydraulic condition (water level) and rainfall (from an in catchment rain gauge). The ANN 

was used to predict, at times of dry weather and in response to rainfall, the hydraulic 

performance of a CSO in terms of flow depth. Using rainfall and depth as lagged inputs, the 

chamber water level for 3 time steps ahead (15 minutes) was successfully predicted for a 

number of assets.  

CASE STUDY 

Catchment and data sources 

Some UK water utility companies currently monitor many of their CSO assets with 

telemetered ultrasonic water level sensors. The data from one such CSO has been used in this 

study. Situated in the north of England, the CSO serves as the terminal flow control to a 

treatment works at the bottom of a steep combined urban drainage catchment. The catchment 

serves a population of ~11,000 people in several small towns spread over ~ 20km² of a 

substantively rural area. A schematic of the catchment is shown in Figure 1. The chamber, 

installed in around 2004, is a recent design of single high side weir (9m long, 2m wide with 

weir height 1m), incorporating rotary screens along the 5.5 m weir length. Flows from events 

with a return period greater the 5 years are designed to overtop the screens to preserve 

hydraulic capacity in the network. Time series water level data within the CSO was recorded 

using an ultrasonic depth monitor producing an instantaneous reading every 15 minutes, with 

the depth recorded as a percentage and a figure of 100% generally calibrated to spill level 

(analysis of the data suggests the spill level at this particular site is over 160% but this 

calibration discrepancy is unimportant to the key findings of this paper). Rainfall intensity 

data (mm/hr) from 20 (numbered) rainfall radar pixels (1 km
2
 resolution) which covered the 

sewered area, was collected continuously for a period of six months from 13/06/2012 to 

31/12/2012. The rainfall intensity data was supplied at a time resolution of 5 minutes, but was 

aggregated to 15 minutes to match the CSO level data. Figure 1 also shows the river / canal 

overlay (blue), urban blocks (grey) and tree areas (green).  

 

Figure 1: Case study CSO and rainfall radar grid square coverage 



Runoff from a storm over an urban catchment initially flows overland, before entering the 

sewer system to be carried downstream to the CSO. This runoff time and sewer flow time 

causes a time difference between recorded rainfall and the response at the CSO chamber, this 

may be exacerbated by the spatial and temporal distribution of the rainfall over the catchment, 

including speed and direction of travel. Note that there is a slope ratio of ~ 1 in 20 present. 

METHODS 

Data analysis and determination of input data 

Initial data analysis was conducted in order to determine appropriate inputs. Firstly, all data 

was assembled and pre-processed for any missing data points. The coefficient of correlation 

was then calculated between rainfall intensity (mm/h) from each of the 20 grid squares and 

the CSO depth. These positive values varied between 0.175 and 0.241 (mean 0.218) with the 

top 6 squares being 1, 2, 3, 5, 6 and 7. However, Pearson’s r does not provide any information 

concerning lagged versions of time series data. The underlying relationship between local 

rainfall and water level in a CSO chamber will occur with a certain lag time. When a rainfall 

event occurs in the contributing catchment, the CSO reacts with a rising water level in its 

chamber, whereas under normal conditions during dry weather the water level presents a 

relatively stable diurnal pattern.  

Cross-correlation is a measure of the similarity of two variables (signals) as a function of a 

time lag between them (Bracewell, 1965). It achieves this by aligning peaks (or troughs) 

across the two signals at different lags and hence can be used to determine the time delay 

between two signals. The cross correlation between the CSO depth and rainfall data (and the 

serial correlation to explore auto correlation for depth) were thus investigated, this method has 

previously been successfully used for similar studies (Fernando et al., 2006) in order to 

determine the size of the model input in order to capture the underlying process effectively. 

Equation 1 gives the cross correlation and equation 2 the serial correlation. 

( ) ( )tutyuy ∗−=⊗      (1) 

( ) ( )tytyyy ∗−=⊗      (2) 

where y is the depth, u the rainfall intensity, ∗ a convolution function and ( )ty  is the complex 

conjugate of ( )ty  

Twenty cross-correlations were applied to the datasets, using the XCORR function in 

MATLAB® R2012a (The MathWorks Inc., Massachusetts). The maximum of the cross-

correlation function indicates the point in time where the signals are best aligned. Figure 2 

shows a graph of the correlations for each rainfall radar cell for a range of time lags. The cross 

correlation maximum varied between 0.29 and 0.38 at either time lag -4 or -5 (corresponding 

to one hour to one hour and fifteen minutes). The larger maximum correlation squares were 1, 

3, 6 and 7. The longer time delay of -5 was observed in the far western grid squares (4, 5 and 

10). While a full hydraulic model for this catchment was not available, this figure is close to 

an estimate of the time of concentration. A greater geographic separation in rainfall radar 

squares would be expected to show a wider range of peak cross correlation values. 
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Figure 2: Cross correlations between depth (y) and rainfall intensity (u) 

For most radar squares a good choice for a temporal window with a high correlation would be 

a lag of between 2 and 12. For serial-correlation in depth on the other hand, the correlation 

values decrease gradually from unity, as would be expected, with increasing lag time.  

Model implementation 

One of the most straightforward ANN architectures is a single layer feed-forward network 

with single output. One such structure is the standard perceptron with weights, a bias and a 

summation function. A number of learning rules can be used to train this network. The Hebb 

rule is based on the correlations of each input with the output through every prototype. A 

generalisation of the Hebb rule is the pseudo-inverse rule defined by equation (3). 

+= bAw       (3) 

Where w is the weight matrix, b the output vector, and +A the Moore–Penrose pseudoinverse 

of the input vector (Penrose, 1955). A common use of the Moore–Penrose pseudoinverse is to 

compute a least square errors solution to a system of linear equations that lacks a unique 

solution. Consequently the matrix defined by (3) is the one which minimises the error 

bwA − on the output space.  

An alternative learning rule is the ADALINE rule, also referred to as the delta rule or 

Widrow-Hoff rule (Widrow, 1962) as defined in equation (4), with t time tη  the learning rate: 

( ) ( ) ( )( ) T
AAtwbw1w −+=+ ttt η     (4) 

The ADALINE rule produces its best solution on the convergent point, which is 
+= bAw (Mayoraz, 1990). Hence the pseudo inverse rule is utilised here for hydraulic 

performance prediction. Guo (2011) found that the relationship between CSO hydraulic 

condition (flow depth) and rainfall (from rain gauge data) was capable of being modelled in 

this way i.e. with a single layer ANN (no hidden layers). Hence a moving time-window 



approach can be implemented for the case study CSO whereby lagged time-series signals 

(rainfall intensity and depth) are provided in parallel over the time-window as inputs to the 

network. The model development and data pre-processing (such as normalisation) was carried 

out using MATLAB®. Several ANN models (ANN-N) were consequently developed for 

forecasting the current to p future value of the depth rate y(t) to y(t+p) thus consisting of n+m 

input nodes (n antecedent depth data y and m antecedent rainfall data u from grid square X). 

For example, ANN-1 used rainfall radar data from grid 6, with rainfall input to forecast y(t) 

being u(t), u(t-1), u(t-2), u(t-3), u(t-4), u(t-5), u(t-6), u(t-7), u(t-8), u(t-9), u(t-10) and depth 

input values y(t-1), y(t-2), y(t-3), y(t-4), y(t-5), y(t-6), y(t-7), y(t-8). Hence the rainfall 

intensity parameter u was always one data step ahead of the chamber water depth parameter y. 

RESULTS AND DISCUSSION 

Several ANN models, as described in the methodology, were constructed and the data for the case 

study catchment used to assess performance. Predictions for the chamber depth were attempted 

for p time steps ahead (15 minutes to 1 hour and 15 minutes).  A representative training set was 

constructed containing both dry and wet weather periods (approximately 50% of the overall 

period). This model was then applied to a subsequent test period. A number of rainfall radar 

pixels were used and three are included here. Training and test performance is given in Table 1. 

In this paper the Root Mean Squared Error (RMSE), as defined in equation (5), has primarily been 

used to evaluate the predictive accuracy of the model.  
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where n is the number of patterns in the validation set, m is the number of components in the 

output vector, o is the output of a single neuron j, t is the target for the single neuron j, and 

each input is denoted by vector i. A value was also calculated which scaled the error by the 

predicted water depth i.e. to give a percentage error per time step.  

Table 1. ANN models and metric results 

  Radar Architecture    Train 

RMSE 

 Train 

% 

 Test 

RMSE 

 Test 

% 

  

  Grid 

square 

u delay 

(m) 

y delay 

(n) 

p            

ANN-1 6 11 8 1   5.19  2.74  3.97  1.99   
ANN-2 6 8 6 1   5.20  2.73  3.97  1.98   
ANN-3 6 15 10 1   5.18  2.75  3.97  2.00   
ANN-4 6 11 8 2   7.91  4.66  4.54  2.72   
ANN-5 6 11 8 3   10.03  6.34  5.42  3.84   
ANN-6 6 11 8 4  11.97  8.22  6.11  3.97   
ANN-7 6 11 8 5  13.73  10.23  6.58  4.28   
ANN-8 5 11 8 1  5.23  2.74  3.94  1.97   
ANN-9 5 11 8 5  13.84  10.39  6.35  4.32   
ANN-10 18 11 8 1  5.37  2.68  3.98  2.27   
ANN-11 18 11 8 5  14.55  11.27  5.71  4.07   



It can be seen from Table 1 that the model prediction accuracy is reduced as the prediction 

range is increased. A range of input lags (identified by cross correlation) provide a good 

performance, and it is concluded that model accuracy is sufficient to provide a prediction of 

CSO depth with only 2% error on a one time step ahead prediction (15 minutes) for unseen 

data, and with less than 5% error in all models for predictions 5 time steps ahead (75 

minutes). An example of the application of the ANN-1 model, with a prediction of 

performance 15 minutes (one time step) into the future is shown in Figure 3. There is 

excellent agreement between the predicted and observed depth for unseen data. Figure 4 

shows the prediction for a period in which spilling occurred following rainfall. A one hour 

ahead (4 time steps) prediction is plotted in order to assess the potential effect of rainfall at 

the CSO (so the prediction has been shown four time steps advanced). It can be observed that 

for the periods of rainfall an increase in chamber depth is anticipated ahead of time, thus 

illustrating the potential of the model.  

 

Figure 3: Model prediction and measured flow depth. 
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Figure 4: Model prediction (one hour ahead) for selected period 

When considering Figure 4, it is also of interest to compare overflow volumes calculated from 

measured and simulated depths using the standard thin plate weir formula (based on a weir 

crest at 164%). For the totality of the test data (nearly three month’s data), the measured 

cumulative overflow volume was 3862m³. The predicted cumulative overflow volume was 

9288m³. Hence, there was a large over-prediction of overflow volume due to relatively small 

errors in the depth prediction. We can conclude the architecture is not optimised for this 

prediction, which was not the intention of the methodology. 

 

For reasons of brevity, full details of the model sensitivity tests, including derivation of 

training set length and other validation conducted are not presented but the interested reader is 

referred to Guo (2011). However, Table 2 provides some sensitivity tests conducted as 

regards the training and testing sets using different input data along with a range of error 

metrics. Note that m=11, n=8 and rainfall radar square is 6 (when rainfall u is incorporated as 

an input). We see that including the rainfall in the input (columns 1 to 3) versus the equivalent 

columns where depth only is used (indicated as y only) generally only improves prediction 

accuracy marginally for training data, and sometimes not at all for testing. However, only 

using rainfall data and no depth in the input (final column) results in very large errors and, in 

this case, actually higher error on the test set.   

Table 2. Sensitivity tests 

Type p=1, y and u p=4, y and u p=12, y and u p=1, y only p=4, y only p=12, y only p=1, u only 

 Train Test Train Test Train Test Train Test Train Test Train Test Train Test 

% error 2.7 2.0 8.2 4.0 21.4 7.8 2.9 1.7 10.9 3.6 23.5 7.9 58.8 75.8 

R² 0.987 0.993 0.929 0.985 0.781 0.968 0.984 0.993 0.907 0.990 0.763 0.973 0.223 -0.075 

MAE 1.53 1.48 4.80 3.40 10.5 6.12 1.44 1.39 5.20 2.59 10.96 5.52 30.80 40.15 

RMSE 5.19 3.97 11.97 6.11 21.03 8.8 5.64 4.14 13.72 5.03 21.85 8.04 39.60 50.92 

MASE 1.04 1.02 3.26 2.34 7.14 4.22 0.98 0.96 3.54 1.78 7.45 3.80 20.95 27.65 

Due to an artefact of the data set division the performance is actually better for the test set for 

the networks featured in Table 1 (and in most cases in Table 2) contrary to normal ANN 

applications. The training period covered mid-June to late September, while the test data 

period was for the months October to December. Evidently these two periods will possess 

quite different rainfall patterns. There was 6.4% more rainfall depth in the training data and it 

tended to be more intense. However, a more significant factor was that when the 

characteristics of the data sets were examined in detail, it was discovered the training set had a 

particular period with CSO depth values significantly above 170%, whereas there is a clear 

cut-off in values for the test data around 170%.  This appears to skew the results at the highest 

depths, which affects the training set with higher errors compared to the test set.  It is 

suspected that either the monitor or the CSO had a minor issue during this first 3 months i.e. 

during the training period. The training and test sets were switched around and, using the 

parameters of ANN-1, we get 1.9% error in training and 2.6% error in testing i.e. a more 

normal performance on test data. So the performance of the CSO during the first 3 months is 

less predictable with the architecture than in the later period. 

Clearly there are many potential applications for the model in respect of identifying 

unexpected performance or in a gradual change (e.g. silt build-up). Development of the model 



is on-going in order to provide this type of interpretation capability. In particular, online 

processing of data could allow the prediction of CSO performance failures (such as spill 

events) much earlier and potentially in real time. A full decision support system will also 

necessitate further classification of model outputs perhaps using fuzzy / Bayesian inference 

systems or a binomial event discriminator. While the work described has only used measured 

rainfall, there is the potential to use predicted rainfall (using nowcasting) as an input to the 

model. However, this type of forecasting would naturally lead to a greater degree of 

uncertainty and potentially larger errors. There is also significant potential for applying these 

techniques to other sewerage asset types such as Detention Tanks and Sewer Pumping 

Stations with a view to enabling wider network performance visibility.  

 

CONCLUSIONS  

Rainfall radar data offers a data solution for near real time operational strategies. This work 

has demonstrated the potential of a data driven approach in capturing the underlying 

relationship between contributing local rainfall (using radar data) and the water level within a 

CSO structure downstream. A case study example has shown how rainfall radar data 

correlates with certain time delays to CSO chamber depth. An ANN model trained with the 

pseudo-inverse rule was shown to be capable of providing prediction of CSO depth with less 

than 5% error for predictions 5 time steps ahead (75 minutes) for unseen data. This shows 

improvement on previous studies using tipping bucket rain gauge measurements. In theory, 

the longer the range of the rainfall prediction available, the further the water depth can be 

predicted into the future, however in practice rainfall prediction errors will limit the forecast 

time of the technique. This tool offers the potential benefit of early detection of unexpected 

performance behaviour and the identification of various failure modes in both dry and wet 

weather conditions thus enabling pollution incidents to be managed more proactively. The 

approach is a very useful alternative to developing a full physical based model of a catchment, 

removing manual modelling overheads and the data requirements of calibration.  
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