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Abstract

We derive the limit shape of Young diagrams, associated with growing integer parti-

tions, with respect to multiplicative probability measures underpinned by the generating

functions of the form F(z) =
∏∞
ℓ=1F0(z

ℓ) (which entails equal weighting among possi-

ble parts ℓ ∈ N). Under mild technical assumptions on the function H0(u) = ln(F0(u)),
we show that the limit shape ω∗(x) exists and is given by the equation y = γ−1H0(e

−γx),
where γ2 =

∫ 1
0 u

−1H0(u) du. The wide class of partition measures covered by this result

includes (but is not limited to) representatives of the three meta-types of decomposable

combinatorial structures — assemblies, multisets and selections. Our method is based on

the usual randomization and conditioning; to this end, a suitable local limit theorem is

proved. The proofs are greatly facilitated by working with the cumulants of sums of the

part counts rather than with their moments.

Keywords: Integer partitions; Young diagrams; limit shape; local limit theorem; generat-

ing functions; cumulants
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1. Introduction

1.1. Integer partitions and the limit shape problem

An integer partition is a decomposition of a given natural number into an unordered sum of

integers; for example, 12 = 4 + 2 + 2 + 2 + 1 + 1. More formally, a collection of integers

λ = {λ1 ≥ λ2 ≥ · · · > 0, λi ∈ N} is a partition of n ∈ N if n = λ1 + λ2 + · · · , which is

sometimes written as λ ⊢ n. We denote by Λn the (finite) set of partitions λ ⊢ n ∈ N, and by

Λ := ∪nΛn the collection of all integer partitions. The terms λi ∈ λ are called parts of the

partition λ. The alternative notation λ = (1ν12ν2 . . . ) specifies the multiplicities (or counts) of

the parts involved, νℓ := #{λi ∈ λ : λi = ℓ} (ℓ ∈ N), with zero counts usually omitted from

the notation. (Here and below, #{·} denotes the number of elements in a set.) It is evident that

the part counts satisfy the condition
∑∞

ℓ=1 ℓνℓ = n for any partition λ = (1ν12ν2 . . . ) ∈ Λn .

A partition λ = (λ1, λ2, . . . ) is succinctly visualized by its Young diagram Υλ formed by

(left- and bottom-aligned) row blocks with λ1, λ2, . . . unit square cells (see Fig.1a). If λ ∈ Λn
(i.e., λ ⊢ n) then the area of the Young diagram Υλ equals n. The upper boundary of Υλ is a

piecewise-constant function Yλ : [0,∞) → Z+ := {0, 1, 2, . . . } given by (see Fig.1b)

Yλ(x) :=
∑

ℓ≥x
νℓ , λ = (1ν12ν2 . . . ) ∈ Λ. (1.1)

In particular, Yλ(0) =
∑

ℓ≥0νℓ = #{λi ∈ λ} is the total number of parts in partition λ ∈ Λ.

If the space Λn is endowed with a probability measure Pn (e.g., the uniform measure

whereby all λ ∈ Λn are equiprobable) then one can speak of random partitions λ ⊢ n. The

limit shape, with respect to a family of probability measures Pn on Λn as n → ∞, is under-

stood as (the graph of) a function y = ω∗(x) such that, for every δ > 0 and any ε > 0,

lim
n→∞

Pn
{
λ ∈ Λn : supx≥δ

∣∣Ỹ n
λ (x) − ω∗(x)

∣∣ > ε
}

= 0, (1.2)

where Ỹ n
λ (x) = A−1

n Yλ(xBn) for suitable scaling constantsAn, Bn. It is natural to require that

AnBn = n, which would render the area of the scaled Young diagram Υ̃n
λ to be normalized to

unity; the most frequent choice is specified as An = Bn =
√
n .
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Figure 1: The Young diagram Υλ (a) and the graph of its upper boundary Yλ(x) =
∑

ℓ≥xνℓ (b) for a

partition λ = (4, 2, 2, 2, 1, 1) ≡ (12 2341) ⊢ n = 12, with the part counts ν1 = 2, ν2 = 3 and ν4 = 1.

Of course, the limit shape and its very existence depend on the chosen family of probability

laws Pn on the partition spaces Λn (n ∈ N). With respect to the uniform (equiprobable)

distribution on Λn , the limit shape ω∗(x) exists under the scaling An = Bn =
√
n and is

determined by the equation (see Fig. 2a)

e−xπ/
√

6 + e−yπ/
√

6 = 1, x, y ≥ 0. (1.3)

The limit shape (1.3) was first identified by Temperley [23] in relation to the equilibrium

shape of a growing crystal, and derived more rigorously much later by Vershik (as noted in

[29, p. 30]) using some asymptotic estimates from Szalay and Turán [22]. The proof in its

modern form was outlined by Vershik in [26]; an alternative proof was given by Pittel [18].

Unlike [18] where only the uniform case was studied, Vershik’s method was used in [26] to

settle the limit shape problem for more general partition ensembles of the so-called multiplica-

tive type (see Section 1.2 below), including the uniform distribution on the subset Λ̌n ⊂ Λn of

strict partitions (i.e., with distinct parts, νℓ ≤ 1 for all ℓ ∈ N), whereby the limit shape, under

the same scaling, appears to be of the form (see Fig. 2b)

eyπ/
√

12 = 1 + e−xπ/
√

12, x, y ≥ 0. (1.4)

1.2. Multiplicative measures on partition spaces

For a general discussion and plentiful examples of multiplicative probability measures on par-

titions, the reader may consult the classic work by Vershik [26, 27] and more recent papers

by Erlihson and Granovsky [7], Su [21] and Yakubovich [32], with an abundance of further

references therein. In the monograph by Arratia, Barbour and Tavaré [1], such measures are

considered in the general context of decomposable combinatorial structures.

In short, multiplicative measures are underpinned by the generating functions of the form

F(z) =
∞∏

ℓ=1

Fℓ(zℓ) =
∞∏

ℓ=1

∞∑

k=0

c
(ℓ)
k z

kℓ, with c
(ℓ)
0 ≡ 1, c

(ℓ)
k ≥ 0 (k, ℓ ∈ N). (1.5)

3



e−xπ/
√

6 + e−yπ/
√

6 = 1 eyπ/
√

12 = 1 + e−xπ/
√

12

(a) (b)

x x

y y

Figure 2: The limit shape y = ω∗(x) for two classical ensembles of uniform (equiprobable) random

partitions: (a) unrestricted partitions (Λn); (b) partitions with distinct parts (Λ̌n). In both cases, the

normalization in (1.2) is specified by An = Bn =
√
n .

More precisely, the corresponding family of the measures Pn on the respective partition spaces

Λn (n ∈ N) is defined by setting

Pn(λ) := C
−1
n

∞∏

ℓ=1

c(ℓ)νℓ
, λ = (1ν12ν2 . . . ) ∈ Λn , (1.6)

where Cn is the suitable normalization constant. For example, the generating function Fℓ(u) ≡
(1 − u)−1 =

∑∞
k=0 u

k defines the uniform measure on each Λn , whereas the choice Fℓ(u) ≡
1 + u leads to the uniform measure on the space Λ̌n of strict partitions.

According to (1.6), each generating function Fℓ(·) assigns some weights, relative to the

uniform case with c
(ℓ)
k ≡ 1, to specific values of the part count νℓ = #{λi = ℓ} in a random

partition λ = (1ν12ν2 . . . ) ∈ Λ. Furthermore, possible variation of the functions Fℓ(·) across

ℓ ∈ N determines a certain weighting among different parts that may contribute to a partition.

Definition 1.1. If the functions Fℓ(·) do not depend on ℓ (hence, c
(ℓ)
k ≡ ck for all ℓ ∈ N) then

we say that the parts are equiweighted (which is alluded to in the title of the paper).

Remark 1.1. Note from the definition (1.6) that the marginal distribution of a random count

νℓ is ℓ-biased, being given by Pn{νℓ = k} = c
(ℓ)
k C

(ℓ)
n−kℓ/Cn (0 ≤ k ≤ n/ℓ), where C

(ℓ)
m :=∑

λ∈Λm

∏
j 6=ℓ c

(j)
νj (with the convention C

(ℓ)
0 := 1). Thus, the assumption that the parts are

equiweighted does not imply that their counts have the same distribution.

Building on Vershik’s pioneering ideas, the limit shape problem was advanced in various

directions (see [4, 7, 11, 12, 19, 21, 27, 30, 32] and further references therein). In a separate

but related development, Logan and Shepp [17] and Vershik and Kerov [28, 29] found the limit

shape for a different (non-multiplicative) ensemble of partitions endowed with the Plancherel

measure emerging in relation with representation theory of the symmetric group. A recent

review of both areas can be found in [21].
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Returning to the multiplicative class of probability measures on partitions, note that most

of the aforementioned papers on the limit shape problem have focused on the particular case

Fℓ(u) = (F0(u))
rℓ, ℓ ∈ N, (1.7)

for some classes of sequences rℓ > 0 (usually assumed to behave like rℓ ∼ const · ℓp−1 as

ℓ → ∞, with p > 0) but subject to a more limited choice of the basic generating function

F0(u), often borrowed from the standard equiprobable cases mentioned above (see, e.g., [26,

27, 7, 12, 21]).

A recent paper by Yakubovich [32] offers a more general treatment by considering a wider

class of functions F0(u); a typical condition imposed there (see, e.g., [32, Lemma 10]) is that

F0(u) be complex analytic in a disk centered at zero up to an isolated (real) singularity point

u1 ≥ 1, which must be a pole if u1 = 1. Some simple examples such as F0(u) = (1 − u)−r

with a real (non-integer) r > 0 do not formally conform to this requirement but none the

less have a limit shape (see [26], where the assumption that rℓ’s are integer is in fact not

essential in the light of the Meinardus theorem, see [12]). On the other hand, one can write

F0(u) = (f0(u))
r, where the function f0(u) = (1 − u)−1 has a required pole at u1 = 1 and

thus fits in the framework of [32].1 However, there are examples with a genuine non-pole

singularity of F0(u) which do possess a limit shape (see such examples in Section 6 below).

1.3. An outline of the main result

In the present paper, we confine ourselves to the class of multiplicative ensembles of partitions

with equiweighted parts (see Definition 1.1), specified by the simplest case Fℓ(u) ≡ F0(u) in

(1.5) (which also corresponds to setting rℓ ≡ 1 in the model (1.7)) but with a fairly general

variety of permissible generating functions F0(u). In particular, measures Pn covered by our

method include (but are not limited to) representatives of the three classical meta-types of

decomposable combinatorial structures — assemblies, multisets and selections (see [1, Ch. 2]

for a general background and also concrete examples in Section 6 below).

A loose formulation of our main result about the limit shape is as follows.

Theorem 1.1. Denote H0(u) := ln(F0(u)), γ :=
√∫ 1

0
u−1H0(u) du and

ω∗(x) := γ−1H0(e
−γx), x ≥ 0. (1.8)

Then, under mild technical conditions on the function H0(u), for every δ > 0 and any ε > 0

lim
n→∞

Pn
{
λ ∈ Λn : supx≥δ

∣∣Ỹ n
λ (x) − ω∗(x)

∣∣ > ε
}

= 0, (1.9)

where Ỹ n
λ (x) := n−1/2Yλ(xn

1/2).

Remark 1.2. The restriction x ≥ δ > 0 in (1.9) takes into account the possibility ω∗(0) = ∞
(cf. (1.3), (1.4)). If ω∗(0) <∞ then the supremum in (1.9) can be extended to all x ≥ 0.

1 This substitution replaces the normalization r1 = 1 adopted for convenience in [32, §1.1, p. 1254] by

r1 = r > 0, which is not essential for the validity of results in [32]. Incidentally, this remark shows that it is

more natural to impose conditions on the function H0(u) := ln(F0(u)) rather than on F0(u) itself.
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Like in [10, 26, 27, 7, 32], our proof employs the elegant probabilistic approach in the

theory of decomposable combinatorial structures based on randomization and conditioning,

first applied in the context of random partitions by Fristedt [10] (see the monograph [1] and

an earlier review [2] for a general discussion of the method and many examples). The idea

is to introduce a suitable measure Qz on the union space Λ = ∪nΛn (depending on an aux-

iliary “free” parameter z ∈ (0, 1)), such that a given measure Pn on Λn is recovered as the

conditional distribution Pn(·) = Qz(· |Λn).
The great advantage of the multiplicativity property (1.5) is thatQz can be constructed as a

product measure, resulting in mutually independent random counts νℓ . Clearly, such a device

calls for the asymptotics of the probability Qz(Λn), which should be obtained by proving a

suitable local limit theorem; the latter suggests that it is natural to calibrate the parameter z
from the asymptotic equationEz(Nλ) = n (1 + o(1)), whereEz is the expectation with respect

to the measure Qz and Nλ := λ1 + λ2 + · · · =
∑∞

ℓ=1 ℓνℓ (so that Λn = {λ ∈ Λ : Nλ = n}).

This is sufficient to ensure the (uniform) convergence of the expectation Ez
[
Ỹ n
λ (x)

]
to the

limit ω∗(x) specified in (1.8), together with the corresponding convergence of the random

paths Ỹ n
λ (·) in Qz-probability. However, in order to extend this to the original measure Pn

using the local limit theorem, our methods require an improved estimate of the approximation

errorEz(Nλ)−n to at leastO(n3/4). Let us also point out that the proofs are greatly facilitated

by working with the cumulants of sums of the part counts νℓ rather than with their moments.

Layout. The rest of the paper is organized as follows. In Section 2.1, we define the mul-

tiplicative families of measures Qz and Pn on the corresponding spaces of partitions with

equiweighted parts. Important cumulant expansions and certain technical conditions on the

generating function F0(u) are discussed in Section 2.3. In Section 3.1, a suitable value of the

parameter z ∈ (0, 1) is chosen (Theorem 3.1), which implies the convergence of “expected”

(scaled) Young diagrams to the limit curve y = ω∗(x) (Theorem 3.2). Refined first-order

moment asymptotics are obtained in Section 3.3 (Theorem 3.3), while higher-order cumulant

sums are analyzed in Section 4. The local limit theorem (Theorem 5.1) is established in Sec-

tion 5, which paves the way to the proof of the limit shape results in Section 5.4 with respect

to both Qz and Pn (Theorems 5.5 and 5.6, respectively). Finally, our results are illustrated by

a number of examples in Section 6.

Some notation. We denote Z+ := {k ∈ Z : k ≥ 0} and R+ := [0,∞). The real part

of s ∈ C is denoted ℜ(s). The notation xn ≍ yn signifies that 0 < lim infn→∞ xn/yn ≤
lim supn→∞ xn/yn < ∞, whereas xn ∼ yn is a shorthand for limn→∞ xn/yn = 1. The

standard symbols ⌊x⌋ := max{k ∈ Z : k ≤ x} and ⌈x⌉ := min{k ∈ Z : k ≥ x} denote,

respectively, the floor and ceiling integer parts of x ∈ R.

2. Generating functions and cumulants

2.1. Global measure Qz and conditional measure Pn

Let Φ := Z
N

+ be the space of functions ν : N → Z+ (i.e., sequences ν = {νℓ} with nonnegative

integer values), and consider the subspace Φ0 := {ν ∈ Φ : #(supp ν) < ∞} of functions

with finite support, where supp ν := {ℓ ∈ N : νℓ > 0}. The space Φ0 is in one-to-one

correspondence with the union set Λ =
⋃
n∈Z+

Λn under the identification of the values νℓ’s

6



(including zeroes) with the multiplicities of the virtual parts ℓ’s, respectively, leading to a

partition λ = (1ν12ν2 . . . ) of the integer Nλ =
∑∞

ℓ=1 ℓνℓ ∈ Z+ .

Let c0 = 1, c1, c2, . . . be a sequence of nonnegative numbers such that not all ck’s vanish

for k ≥ 1, and assume that the corresponding power series (generating function)

F0(u) :=
∞∑

k=0

cku
k, u ∈ C, (2.1)

is convergent for all |u| < 1. For every z ∈ (0, 1), let us define a probability measure Qz

on the space Φ = Z
N

+ as the distribution of a random sequence {νℓ, ℓ ∈ N} with mutually

independent values and marginal distributions

Qz{νℓ = k} =
ckz

kℓ

F0(zℓ)
, k ∈ Z+ . (2.2)

Lemma 2.1. For z ∈ (0, 1), the condition

F(z) :=
∞∏

ℓ=1

F0(z
ℓ) <∞ (2.3)

is necessary and sufficient in order that Qz(Φ0) = 1. Furthermore, if F0(u) is finite for all

u ∈ (0, 1) then the condition (2.3) is satisfied for all z ∈ (0, 1).

Proof. According to (2.2) we have Qz{νℓ > 0} = 1 − 1/F0(z
ℓ) (ℓ ∈ N). Hence, Borel–

Cantelli’s lemma (see, e.g., [8, Ch. VIII, §3]) implies that Qz{ν ∈ Φ0} = 1 if and only if∑∞
ℓ=1

(
1 − 1/F0(z

ℓ)
)
<∞. In turn, the latter bound is equivalent to (2.3).

To prove the second statement, observe using (2.1) that

ln(F(z)) =
∞∑

ℓ=1

ln(F0(z
ℓ)) ≤

∞∑

ℓ=1

(
F0(z

ℓ) − 1
)

=
∞∑

k=1

ck

∞∑

ℓ=1

zkℓ

=
∞∑

k=1

ckz
k

1 − zk
≤ 1

1 − z

∞∑

k=1

ckz
k ≤ F0(z)

1 − z
<∞,

which implies the condition (2.3).

Lemma 2.1 ensures that the random sequence {νℓ} defined above (see (2.2)) belongs to the

space Φ0 (Qz-a.s.)2 and therefore determines a finite (random) partition λ ∈ Λ. By the mutual

independence of the values νℓ , the corresponding Qz-probability is given by

Qz(λ) =
∞∏

ℓ=1

cνℓ
zℓνℓ

F0(zℓ)
=
c(λ)zNλ

F(z)
, λ = (1ν12ν2 . . . ) ∈ Λ, (2.4)

where Nλ =
∑∞

ℓ=1 ℓνℓ <∞ (Qz-a.s.) and (see (2.1))

c(λ) =
∞∏

ℓ=1

cνℓ
<∞, λ = (1ν12ν2 . . . ) ∈ Λ. (2.5)

2 The abbreviation “a.s.” stands for almost surely, that is, with probability 1.
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Remark 2.1. The infinite product (2.5) defining c(λ) contains only finitely many factors dif-

ferent from 1, because any ℓ /∈ supp ν renders νℓ = 0, so that cνℓ
= c0 = 1.

Remark 2.2. For the “empty” partition λ∅ ⊢ 0 formally associated with the configuration

ν ≡ 0, formula (2.4) yields Qz(λ∅) = 1/F(z) > 0. On the other hand, Qz(λ∅) < 1, since

F0(u) > F0(0) = 1 for u > 0 and hence, according to the definition (2.3), F(z) > 1.

On the subspace Λn ⊂ Λ, the measure Qz induces the conditional distribution

Pn(λ) := Qz(λ|Λn) =
Qz(λ)

Qz(Λn)
, λ ∈ Λn . (2.6)

The formula (2.6) is well defined as long asQz(Λn) > 0, that is, if there is at least one partition

λ ∈ Λn with c(λ) > 0 (see (2.4)). An obvious sufficient condition is as follows.

Lemma 2.2. Suppose that c1 > 0. Then Qz(Λn) > 0 for all n ∈ Z+ .

The following key fact is a direct consequence of the definition (2.4).

Lemma 2.3. The formula (2.6) for the measure Pn is reduced to the expression (cf. (1.6))

Pn(λ) =
c(λ)

Cn
(λ ∈ Λn), Cn =

∑

λ′∈Λn

c(λ′), (2.7)

where c(λ) is defined in (2.5). In particular, Pn does not depend on z .

Proof. If Λn ∋ λ ↔ ν ∈ Φ0 then Nλ = n and the formula (2.4) is reduced to Qz(λ) =
c(λ)zn/F(z). In turn, the ratio in (2.6) amounts to the expression in (2.7), which is z-free.

Specific examples of multiplicative measures Pn with equiweighted parts will be given

below in Section 6, together with the corresponding limit shapes determined by Theorem 1.1.

2.2. Expansion of the logarithm of the generating function F0(u)

Recalling the power series expansion (2.1) for F0(u), consider the corresponding expansion

of its logarithm,

H0(u) := ln(F0(u)) =
∞∑

k=1

aku
k, u ∈ C, (2.8)

assuming that the series (2.8) is (absolutely) convergent for all |u| < 1. Here ln(·) means the

principal branch of the logarithm specified by the value ln(F0(0)) = ln 1 = 0.

Remark 2.3. Substituting (2.1) into (2.8), it is evident that a1 = c1; more generally, if j∗ :=
min{j ≥ 1: aj 6= 0} and k∗ := min{k ≥ 1: ck > 0} then j∗ = k∗ and aj∗ = ck∗ > 0. In

particular, it follows that the first non-vanishing coefficient in the power series (2.8) is positive.

Differentiating (2.8), we get the standard formulas for the power sums

∞∑

k=1

kaku
k = uH ′

0(u), (2.9)

∞∑

k=1

k2aku
k = u

(
uH ′

0(u)
)′

= u2H ′′
0 (u) + uH ′

0(u), (2.10)
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with similar expressions available for the higher-order sums
∑∞

k=1 k
qaku

k (q ∈ N).

For s ∈ C such that σ := ℜ(s) > 0, consider the Dirichlet series

A(s) :=
∞∑

k=1

ak
ks
, A+(σ) :=

∞∑

k=1

|ak|
kσ

, (2.11)

where ak’s are the coefficients in the power series expansion of H0(u) (see (2.8)). Although

some of the coefficients ak may be negative, it turns out that the quantityA(1) =
∑∞

k=1 ak k
−1,

whenever it is finite, cannot vanish or take a negative value.

Lemma 2.4. If A+(1) <∞ then 0 < A(1) <∞ and the following equality holds,

A(1) =

∫ 1

0

u−1H0(u) du. (2.12)

In particular, the integral in (2.12) is convergent.

Proof. From the assumptions on the coefficients ck’s in the expansion (2.1), it is evident that

for all u ∈ (0, 1) we have F0(u) = 1 +
∑∞

k=1 cku
k > 1, and hence H0(u) = ln(F0(u)) > 0.

Furthermore, substituting the expansion (2.8) for H0(u) and integrating term by term (which

is permissible for power series inside the interval of convergence), we get for any s ∈ (0, 1)

∫ s

0

u−1H0(u) du =
∞∑

k=1

ak

∫ s

0

uk−1 du =
∞∑

k=1

aks
k

k
.

Passing here to the limit as s ↑ 1 and applying to the right-hand side Abel’s theorem on the

boundary value of a power series (see [24, §1.22, pp. 9–10]), we obtain the identity (2.12).

The quantity A(1) will play a major role in our argumentation; in particular, it is involved

in a suitable calibration of the “free” parameter z in the definition (2.2) of the measure Qz (see

Section 3.1 below).

2.3. Cumulants of the part counts

Let us now turn to the random variables νℓ (i.e., the counts of parts ℓ ∈ N in a partition λ ∈ Λ).

Under the probability measure Qz (see (2.2)), the characteristic function of νℓ is given by3

ϕνℓ
(t) := Ez(e

itνℓ) =
F0(z

ℓeit)

F0(zℓ)
, t ∈ R. (2.13)

Hence, the (principal branch of the) logarithm of ϕνℓ
(t) is expanded using (2.8) as

ln(ϕνℓ
(t)) = H0(z

ℓeit) −H0(z
ℓ) =

∞∑

k=1

ak (e
ikt − 1)zkℓ, t ∈ R. (2.14)

3 For notational simplicity, we suppress the dependence on z, which should cause no confusion.
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For q ∈ N, denote by mq[νℓ ] := Ez(ν
q
ℓ ) the moments of the random variable νℓ about zero,

and let κq[νℓ ] be the cumulants, or semi-invariants of νℓ (see, e.g., [15, §3.12, p. 69]), defined

by the following formal identity in indeterminant t,

lnEz(e
itνℓ) =

∞∑

q=1

(it)q

q!
κq[νℓ ]. (2.15)

From (2.15) it is easy to see (e.g., by taking the derivative at t = 0) that the expected value of

νℓ coincides with its first-order cumulant (see [15, §3.14, Eq. (3.37), p. 71]),

Ez(νℓ) = m1[νℓ ] = κ1[νℓ ]. (2.16)

Let us also point out the standard expressions for the first few central moments (including the

variance) through the cumulants (see [15, §3.14, Eq. (3.38), p. 72]),

Varz(νℓ) = Ez
[
(νℓ −m1[νℓ ])

2
]

= κ2[νℓ ], (2.17)

Ez
[
(νℓ −m1[νℓ ])

3
]

= κ3[νℓ ], (2.18)

Ez
[
(νℓ −m1[νℓ ])

4
]

= κ4[νℓ ] + 3(κ2[νℓ ])
2. (2.19)

Remark 2.4. The cumulants κq[X] of any random variable X are defined similarly to (2.15);

needless to say, the formulas analogous to (2.16) – (2.19) also hold true in the general case (as

long as the corresponding moments exist).

The next lemma will be instrumental in our analysis.

Lemma 2.5. The cumulants κq[νℓ ] are given by

κq[νℓ ] =
∞∑

k=1

kqakz
kℓ, q ∈ N. (2.20)

In particular,

m1[νℓ ] =
∞∑

k=1

kakz
kℓ. (2.21)

Proof. Taylor expanding the exponential function in (2.14), we get

ln(ϕνℓ
(t)) =

∞∑

k=1

akz
kℓ

∞∑

q=1

(ikt)q

q!
=

∞∑

q=1

(it)q

q!

∞∑

k=1

kqakz
kℓ, (2.22)

where the interchange of the order of summation in the double series (2.22) is justified by its

absolute convergence. Now, by a comparison of the expansion (2.22) with the identity (2.15),

the formulas (2.20) for the coefficients κq[νℓ ] readily follow.

By virtue of the expression (2.21) for the expected value of νℓ , it is easy to obtain a formula

for the expectation of Nλ =
∑∞

ℓ=1 ℓνℓ ,

Ez(Nλ) =
∞∑

ℓ=1

ℓm1[νℓ ] =
∞∑

ℓ=1

ℓ

∞∑

k=1

kakz
kℓ. (2.23)
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More generally, the expressions (2.20) for the cumulants κq[νℓ ] furnish a representation of the

cumulants of Nλ of any order; namely, using the rescaling relation κq[ℓνℓ ] = ℓqκq[νℓ ] (see

[15, §3.13, p. 70]) and the additivity property of the cumulants for independent summands

(see [15, §7.18, pp. 201–202]), we obtain

κq[Nλ] =
∞∑

ℓ=1

ℓqκq[νℓ ] =
∞∑

ℓ=1

ℓq
∞∑

k=1

kqakz
kℓ, q ∈ N. (2.24)

Similarly, recalling that the upper boundary Yλ(x) of the Young diagram Υλ is given by

the formula (1.1), we obtain for any x ≥ 0

κq[Yλ(x)] =
∑

ℓ≥x
κq[νℓ ] =

∑

ℓ≥x

∞∑

k=1

kqakz
kℓ, q ∈ N, (2.25)

and in particular (with q = 1)

Ez[Yλ(x)] =
∑

ℓ≥x
m1[νℓ ] =

∑

ℓ≥x

∞∑

k=1

kakz
kℓ. (2.26)

2.4. Estimates for power-exponential sums

In what follows, we frequently encounter power-exponential sums of the form

Sq(t) :=
∞∑

ℓ=1

ℓq−1e−tℓ, t > 0. (2.27)

Lemma 2.6. For q ∈ N, the function Sq(t) admits the representation

Sq(t) =

q∑

j=1

cj,q
e−tj

(1 − e−t)j
, t > 0, (2.28)

with some constants cj,q > 0 (j = 1, . . . , q); in particular, cq,q = (q − 1)! .

Proof. If q = 1 then the expression (2.27) is reduced to a geometric series

S1(t) =
∞∑

ℓ=1

e−tℓ =
e−t

1 − e−t
,

which is a particular case of (2.28) with c1,1 = 1. Assume now that (2.28) is valid for some

q ≥ 1. Then, differentiating the identities (2.27) and (2.28) with respect to t, we obtain

Sq+1(t) = −S ′
q(t) =

q∑

j=1

cj,q

(
j e−tj

(1 − e−t)j
+

j e−t(j+1)

(1 − e−t)j+1

)

=

q+1∑

j=1

cj,q+1
e−tj

(1 − e−t)j
,
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where we set

cj,q+1 :=





c1,q , j = 1,

jcj,q + (j − 1)cj−1,q , 2 ≤ j ≤ q,

q cq,q , j = q + 1.

In particular, cq+1,q+1 = q cq,q = q(q − 1)! = q!. Thus, the formula (2.28) holds for q + 1 and

hence, by induction, for all q ≥ 1.

Lemma 2.7. For any q > 0, there is a constant Cq > 0 such that

e−t

(1 − e−t)q
≤ Cq t

−q, t > 0. (2.29)

Proof. Set f(t) := tq e−t(1 − e−t)−q and note that

lim
t→0+

f(t) = 1, lim
t→+∞

f(t) = 0.

By continuity, the function f(t) is bounded on (0,∞), and the inequality (2.29) follows.

Lemma 2.8. (a) For any q ∈ N, there is a constant C̃q > 0 such that

Sq(t) ≤ C̃q t
−q, t > 0. (2.30)

(b) Moreover,

Sq(t) ∼
(q − 1)!

tq
, t→ 0+. (2.31)

Proof. (a) Observe, using Lemma 2.7, that for j = 1, . . . , q

e−tj

(1 − e−t)j
≤ e−t

(1 − e−t)q
≤ Cq t

−q, t > 0.

Substituting this inequality into (2.28) and recalling that the coefficients cj,q are positive, we

obtain the bound (2.30) with C̃q := Cq
∑q

j=1 cj,q > 0.

(b) For each term in the expansion (2.28) we have e−tj (1 − e−t)−j ∼ t−j as t → 0+.

Hence, the overall asymptotic behavior of Sq(t) is determined by the term with j = q and the

corresponding coefficient cq,q = (q−1)! (see Lemma 2.6), and the formula (2.31) follows.

3. Asymptotics of the expectation

3.1. Calibration of the parameter z

Our aim is to find a suitable parameter z = zn ∈ (0, 1) in the definition (2.4) of the probability

measure Qz, subject to the asymptotic condition

Ez(Nλ) ∼ n, n→ ∞, (3.1)

where Nλ =
∑∞

ℓ=1 ℓνℓ . To this end, let us seek z in the form

z = e−α, α = αn := γ n−1/2, (3.2)
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where the constant γ > 0 is to be fitted. Hence, the formula (2.23) takes the form

Ez(Nλ) =
∞∑

ℓ=1

ℓ
∞∑

k=1

kake
−kαℓ. (3.3)

Let us state our main result in this section.

Theorem 3.1. Suppose that A+(1) < ∞. Then, under the parameterization (3.2), the asymp-

totic condition (3.1) is satisfied with the choice

γ =
√
A(1) > 0. (3.4)

Proof. By Lemma 2.4, we know that A(1) > 0 and hence the inequality (3.4) holds true.

Let us now investigate the asymptotics of the expectation Ez(Nλ) under the parameteriza-

tion z = e−α with α→ 0+ (cf. (3.2)). Interchanging the order of summation in (3.3) and using

the notation (2.27), we obtain

Ez(Nλ) =
∞∑

k=1

kak

∞∑

ℓ=1

ℓe−kαℓ =
∞∑

k=1

kakS2(kα). (3.5)

According to Lemma 2.8(b) (with q = 2),4 for each k ∈ N we have S2(kα) ∼ (kα)−2 as

α → 0+. Moreover, by Lemma 2.8(a) the general summand in the series (3.5) is bounded,

uniformly in k, by O(α−2)|ak|k−1, which is a term of a convergent series since A+(1) < ∞
by the theorem’s hypothesis; in particular, this justifies the above interchange of the order of

summation. Hence, by Lebesgue’s dominated convergence theorem we obtain from (3.5)

lim
α→0+

α2Ez(Nλ) =
∞∑

k=1

kak lim
α→0+

α2S2(kα) =
∞∑

k=1

ak
k

= A(1). (3.6)

Thus, putting α = γ n−1/2 with γ =
√
A(1) (see (3.4)), the limit (3.6) is reduced to (3.1).

The expression (2.12) for A(1) directly in terms of the generating function H0(u) is some-

times useful (e.g., for computer calculations of the coefficient γ =
√
A(1) , see Example 6.6

in Section 6; cf. also the formulation of Theorem 1.1 in the Introduction).

Assumption 3.1. Throughout the rest of the paper, we assume that A+(1) <∞ and the param-

eter z is chosen according to the formulas (3.2) with γ > 0 defined by (3.4).

Remark 3.1. Under Assumption 3.1 the measure Qz becomes dependent on n, as well as the

Qz-probabilities and the corresponding expected values.

3.2. The “expected” limit shape

Theorem 3.2. For any δ > 0, we have uniformly in x ∈ [δ,∞)

Ez
[
Yλ(xn

1/2)
]

= n1/2ω∗(x) +O(1), n→ ∞, (3.7)

where the limit shape function ω∗(x) is defined in (1.8).

4 This can also be seen directly, without Lemma 2.8, from the explicit expression S2(t) = e−t(1 − e−t)−2.
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Proof. Setting ℓ∗ = ℓ∗n := ⌈xn1/2⌉, in view of (3.2) we have

0 ≤ αℓ∗− γx < α, n ∈ N, (3.8)

and hence, uniformly in x,

αℓ∗ → γx, n→ ∞. (3.9)

With this notation, from (2.26) we have for x > 0

γ n−1/2Ez
[
Yλ(xn

1/2)
]

= α

∞∑

ℓ=ℓ∗

∞∑

k=1

kake
−kαℓ = α

∞∑

ℓ=ℓ∗

g0(αℓ), (3.10)

where (see (2.9))

g0(t) :=
∞∑

k=1

kake
−kt = e−tH ′

0(e
−t), t > 0. (3.11)

Note that (cf. (2.10))

g ′0(t) = −
∞∑

k=1

k2ake
−kt = −

{
e−2tH ′′

0 (e−t) + e−tH ′
0(e

−t)
}
, t > 0. (3.12)

The right-hand side of (3.10) can be viewed as a Riemann integral sum for g0(t) (over

[γx,∞) with mesh size α → 0+), suggesting its convergence to the corresponding integral

as n → ∞. More precisely, noting that g0(t) is continuously differentiable on (0,∞) and

g0(∞) = 0, by Euler–Maclaurin’s summation formula (see, e.g., [5, §12.2]) we get

∞∑

ℓ=ℓ∗

g0(αℓ) =

∫ ∞

ℓ∗
g0(αt) dt+ 1

2
g0(αℓ

∗) + α

∫ ∞

ℓ∗
B1(t) g

′
0(αt) dt, (3.13)

where B1(t) := t − ⌊t⌋ − 1
2

(t ∈ R). Furthermore, observing that the term 1
2
g0(αℓ

∗) can be

included in the last integral yields a shorter form of (3.13),

∞∑

ℓ=ℓ∗

g0(αℓ) =

∫ ∞

ℓ∗
g0(αt) dt+ α

∫ ∞

ℓ∗
B̃1(t) g

′
0(αt) dt, (3.14)

with B̃1(t) := B1(t) − 1
2
≡ t− ⌊t⌋ − 1 (t ∈ R).

For the first integral in (3.14), on substituting (3.11) and using (3.9) we obtain

∫ ∞

ℓ∗
g0(αt) dt =

∫ ∞

ℓ∗
e−αtH ′

0(e
−αt) dt = α−1H0(e

−αℓ∗) ∼ α−1H0(e
−γx) (3.15)

uniformly in x ≥ δ, since by Lagrange’s mean value theorem, on account of (3.8) and (3.11),

|H0(e
−αℓ∗) −H0(e

−γx)| ≤ (αℓ∗− γx) max
t≥γδ

|g0(t)| = O(α).

Next, noting that supt∈R
|B̃1(t)| ≤ 1, recalling that αℓ∗ ≥ γx (see (3.8)) and substituting

(3.11), the last term in (3.14) is bounded in absolute value, again uniformly in x ≥ δ, by

α

∫ ∞

ℓ∗
|g ′0(αt)| dt ≤

∫ e−γδ

0

|uH ′′
0 (u) +H ′

0(u)| du = O(1), (3.16)
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where we used the expression (3.12) and the change of variables u = e−αt. Thus, substituting

the estimates (3.15), (3.16) into (3.14) and returning to (3.10), we obtain

lim
n→∞

n−1/2Ez
[
Yλ(xn

1/2)
]

= γ−1H0(e
−γx) ≡ ω∗(x),

where the convergence is uniform in x ≥ δ, as claimed.

Remark 3.2. As was mentioned in Remark 1.2, the asymptotic formula (3.7) may be extended,

with obvious adjustments of the proof, to the case x = 0 including the uniform convergence

in x ≥ 0 — provided that ω∗(0) < ∞ (more precisely, if the function H0(u) and its first two

derivatives are finite at u = 1).

3.3. Refined asymptotics of the expectation of Nλ

We need to sharpen the asymptotics Ez(Nλ)−n = o(n) provided by Theorem 3.1 (see (3.1)).

The aim of this section is to prove the following refinement.

Theorem 3.3. Under the condition A+(σ) <∞ with some σ ∈ (0, 1), we have

Ez(Nλ) − n = O
(
n(σ+1)/2

)
, n→ ∞.

3.3.1. Preliminaries. For the proof of Theorem 3.3, some preparations are required. Let ψ(x)
be a continuous function on R+ such that lim supx→∞ xβψ(x) < ∞ with some β > 1, which

ensures that ψ(x) is integrable on R+. It is easy to see that the series

Ψ(h) :=
∞∑

ℓ=1

ψ(ℓh), h > 0, (3.17)

is absolutely convergent, and moreover

Ψ(h) = O(1)
∞∑

ℓ=1

(ℓh)−β = O(h−β), h→ ∞. (3.18)

Let us also assume that

Ψ(h) = O(h−1), h→ 0+. (3.19)

Remark 3.3. Note that hΨ(h) = h
∑∞

ℓ=1 ψ(ℓh) is a Riemann integral sum for the function

ψ(x) over R+ with mesh size h, so typically (including a specific example emerging in the

proof of Theorem 3.3) it will converge, as h → 0+, to the (finite) integral
∫∞

0
ψ(x) dx,5 thus

automatically ensuring the bound (3.19). A sufficient condition for such a convergence, which

can be verified by using Euler–Maclaurin’s summation formula similar to (3.14), is that ψ(x)
be continuously differentiable and the derivative ψ′(x) absolutely integrable on R+ .

Let us now consider the Mellin transform of Ψ(h) (see, e.g., [31, Ch. VI, §9])

Ψ̂(s) :=

∫ ∞

0

hs−1Ψ(h) dh, 1 < ℜ(s) < β. (3.20)

5 Functions ψ(x) satisfying this property are called directly Riemann integrable (see [9, Ch. XI, §1, p. 362]).
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On substituting (3.17) into (3.20) we find

Ψ̂(s) =

∫ ∞

0

hs−1

∞∑

ℓ=1

ψ(ℓh) dh =
∞∑

ℓ=1

∫ ∞

0

hs−1ψ(ℓh) dh

=
∞∑

ℓ=1

ℓ−s
∫ ∞

0

xs−1ψ(x) dx = ζ(s)

∫ ∞

0

xs−1ψ(x) dx,

(3.21)

where ζ(s) =
∑∞

ℓ=1 ℓ
−s is the Riemann zeta function. The interchange of summation and

integration in this computation is justified by the absolute convergence of the integral on the

right-hand side of (3.21). By the well-known properties of ζ(s) (see, e.g., [25, §2.1, p. 13]),

from (3.18) and (3.20) it follows that the function Ψ̂(s) is meromorphic in the strip 0 <
ℜ(s) < β, with a single pole at s = 1. Set

∆ψ(h) := Ψ(h) − 1

h

∫ ∞

0

ψ(x) dx, h > 0. (3.22)

Then the Müntz lemma (see [25, §2.11, pp. 28–29]) gives

Ψ̂(s) =

∫ ∞

0

hs−1∆ψ(h) dh, 0 < ℜ(s) < 1,

and the inversion formula for the Mellin transform (see, e.g., [31, Ch. VI, §9, Theorem 9a, pp.

246–247]) implies

∆ψ(h) =
1

2π i

∫ c+i∞

c−i∞
h−s Ψ̂(s) ds, 0 < c < 1. (3.23)

3.3.2. Proof of Theorem 3.3. With the representation (3.23) at hand, set ψ(x) := xe−αx,

then the series (3.17) is explicitly given by

Ψ(h) = h

∞∑

ℓ=1

ℓe−αhℓ =
he−αh

(1 − e−αh)2
, h > 0. (3.24)

Clearly, ψ(x) = O(x−β) with any β > 0, and from (3.24) it is evident that Ψ(h) satisfies the

condition (3.18) (with α fixed). Furthermore, the formula (3.21) for Ψ̂(s) is specialized to

Ψ̂(s) = ζ(s)

∫ ∞

0

xs e−αx dx = α−s−1ζ(s)Γ(s+ 1), 1 < ℜ(s) <∞, (3.25)

where Γ(s) =
∫∞

0
xs−1e−x dx is the gamma function. Since Γ(s+1) is analytic for ℜ(s) > −1

(cf. [24, §4.41, p. 148]) and, as already mentioned, ζ(s) has a single (simple) pole at point

s = 1, it follows that the expression (3.25) is meromorphic in the half-plane ℜ(s) > −1, thus

providing an analytic continuation of the function Ψ̂(s) into the strip −1 < ℜ(s) < 1.

Combining (3.5) and (3.24) we get

Ez(Nλ) =
∞∑

k=1

akΨ(k). (3.26)
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On the other hand, according to the notation (2.11) and Assumption 3.1 we have the identity

∞∑

k=1

ak
kα2

=
nA(1)

γ2
≡ n. (3.27)

Consequently, subtracting (3.27) from (3.26) we obtain the representation

Ez(Nλ) − n =
∞∑

k=1

ak

(
Ψ(k) − 1

kα2

)
=

∞∑

k=1

ak∆ψ(k), (3.28)

recalling the notation (3.22) and observing that

∫ ∞

0

ψ(x) dx =

∫ ∞

0

xe−αx dx =
1

α2
.

Furthermore, using the representation (3.23) with c = σ ∈ (0, 1) (see the hypothesis of the

theorem) and substituting the expression (3.25), we can rewrite (3.28) in the form

Ez(Nλ) − n =
1

2π i

∞∑

k=1

ak

∫ σ+i∞

σ−i∞

ζ(s)Γ(s+ 1)

αs+1ks
ds

=
1

2π

∫ ∞

−∞

A(σ + it)ζ(σ + it)Γ(σ + 1 + it)

ασ+1+it
dt, (3.29)

using the change of variables s = σ+ it. To justify the interchange of summation and integra-

tion deployed in (3.29), note that

|A(σ + it)| ≤ A+(σ) <∞, |α−σ−1−it| ≤ α−σ−1 .

We can also use the following classical estimates as t→ ∞ (see [13, Theorem 1.9, p. 25] and

[24, §4.42, p. 151], respectively),

ζ(σ + it) = O
(
|t|(1−σ)/2 ln(|t| + 2)

)
, Γ(σ + 1 + it) = O

(
|t|σ+1/2 e−π|t|/2

)
.

Hence, the last integral in (3.29) is bounded, uniformly in n ∈ N, by

O(α−σ−1)

∫ ∞

−∞
|t|1+σ/2 e−π|t|/2 ln(|t| + 2)) dt = O(α−σ−1) <∞, (3.30)

which validates the formula (3.29).

Moreover, combining (3.29) and (3.30) we get, on account of (3.2),

Ez(Nλ) − n = O(α−σ−1) = O
(
n(σ+1)/2

)
, n→ ∞,

and the proof of Theorem 3.3 is complete.
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4. Asymptotic estimates for higher-order moments

4.1. The cumulants of Nλ

Substituting z = e−α (see (3.2)) into the formulas (2.24) for the cumulants of Nλ, we get

κq[Nλ] =
∞∑

ℓ=1

ℓq
∞∑

k=1

kqake
−kαℓ, q ∈ N. (4.1)

Recall that Assumption 3.1 is presumed to be satisfied throughout.

Theorem 4.1. For each q ∈ N,

κq[Nλ] ∼
q!

γq−1
n(q+1)/2, n→ ∞. (4.2)

In particular, the variance of Nλ satisfies

Varz(Nλ) ∼
2

γ
n3/2, n→ ∞. (4.3)

Proof. The proof follows the same lines as that of Theorem 3.1 (i.e., with q = 1). Namely,

again using Lemma 2.8 and Lebesgue’s dominated convergence theorem, from (4.1) we get

αq+1
κq[Nλ] =

∞∑

k=1

kqak
(
αq+1Sq+1(kα)

)
→ q!

∞∑

k=1

ak
k

= q!A(1) ≡ q! γ2. (4.4)

But αq+1 ∼ γq+1n−(q+1)/2 (see (3.2)), and the limit (4.4) is reduced to (4.2).

The second claim of the theorem (i.e., the asymptotic formula (4.3)) immediately follows

from (4.2) with q = 2 by noting that Varz(Nλ) = κ2[Nλ] (cf. (2.17)).

4.2. The cumulants of Yλ(x)

With the substitution z = e−α, the representations (2.25) are rewritten in the form

κq[Yλ(x)] =
∑

ℓ≥x

∞∑

k=1

kqak e−kαℓ, q ∈ N. (4.5)

Let us first consider the case q = 2, where κ2[Yλ(x)] = Varz[Yλ(x)] (see (2.17)).

Theorem 4.2. For every x > 0,

lim
n→∞

n−1/2 Varz
[
Yλ(xn

1/2)
]

= γ−1e−γxH ′
0(e

−γx), (4.6)

where the convergence is uniform in x ∈ [δ,∞) for any δ > 0.

Proof. With the help of the notation g0(t) defined in (3.11) (see also (3.12)), formula (4.5)

(with q = 2) takes the form

Varz
[
Yλ(xn

1/2)
]

=
∑

ℓ≥xn1/2

∞∑

k=1

k2ak e−kαℓ = −
∑

ℓ≥xn1/2

g ′0(αℓ). (4.7)
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Interpreting the right-hand side of (4.7) as a Riemann integral sum and arguing as in the proof

of Theorem 3.2, we deduce that the equation (4.7) converges, uniformly in x ≥ δ, to

lim
n→∞

n−1/2 Varz
[
Yλ(xn

1/2)
]

= −γ−1

∫ ∞

γx

g ′0(t) dt

= γ−1g0(γx) = γ−1e−γxH ′
0(e

−γx),

according to (3.11). Thus, the theorem is proved.

It is straightforward to adapt the proof of Theorem 4.2 to the case q ≥ 3, which only

requires a standard generalization of the differential formulas (2.9), (2.10) to higher orders.

This way, one can obtain the asymptotics of the form

lim
n→∞

n−1/2
κq

[
Yλ(xn

1/2)
]

= χγ(x), x > 0,

where the function χγ(x) is expressed in terms of the derivatives H
(j)
0 (e−γx) (j = 1, . . . , q).

For the purposes of the present paper (more precisely, for the proof of Lemma 4.4 below),

we only need an upper estimate as follows.

Lemma 4.3. For every q ∈ N and any δ > 0 we have, uniformly in x ∈ [δ,∞),

κq

[
Yλ(xn

1/2)
]

= O(n1/2), n→ ∞. (4.8)

In Section 5.4 we will require the asymptotics (in fact, an asymptotic bound) for the fourth

central moment of Yλ(xn
1/2), which is established next.

Lemma 4.4. Set Y 0
λ (t) := Yλ(t) − Ez[Yλ(t)]. Then for any δ > 0, uniformly in x ∈ [δ,∞),

lim
n→∞

n−1Ez
[(
Y 0
λ (xn1/2)

)4]
= 3

{
γ−1e−γxH ′

0(e
−γx)

}2
. (4.9)

Proof. Using the formula (2.19) (which is valid for any random variable) we have

Ez
[(
Y 0
λ (xn1/2)

)4]
= κ4

[
Yλ(xn

1/2)
]
+ 3

{
κ2

[
Yλ(xn

1/2)
]}2

= O(n1/2) + 3n
{
γ−1e−γxH ′

0(e
−γx)

}2
(1 + o(1)) , n→ ∞,

on account of the (uniform) estimates (4.6) and (4.8). Hence, the limit (4.9) follows.

Remark 4.1. Similarly to Remark 3.2, all the results above are valid also for x = 0 provided

that the function H0(u) and the corresponding derivatives are finite at u = 1.

4.3. The Lyapunov ratio

Let us introduce the Lyapunov ratio (of the third order)

Lz :=
1

σ3
z

∞∑

ℓ=1

ℓ3µ3[νℓ ], (4.10)

where we denote for short σz :=
√

Varz(Nλ) and

µ3[νℓ ] := Ez
[
|ν0
ℓ |3
]
, ν0

ℓ := νℓ −m1[νℓ ]

(i.e., µ3[νℓ ] is the third-order absolute central moment of νℓ). The next asymptotic estimate

will play an important role in the proof of the local limit theorem in Section 5.3 below.
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Lemma 4.5. Suppose that A+(1
2
) <∞. Then

Lz ≍ n−1/4, n→ ∞. (4.11)

Proof. In view of the definition (4.10) and the asymptotics σz ≍ n3/4 provided by Theorem 4.1

(see (4.3)), for the proof of (4.11) it suffices to show that

M3 :=
∞∑

ℓ=1

ℓ3µ3[νℓ ] ≍ n2, n→ ∞. (4.12)

Starting with a lower bound for M3, observe using the relation (2.18) that

µ3[νℓ ] ≥ m3[ν
0
ℓ ] = κ3[νℓ ]. (4.13)

Hence, on account of the formula (2.24) and Theorem 4.1 (with q = 3), from (4.12) we get

M3 ≥
∞∑

ℓ=1

ℓ3
κ3[νℓ ] = κ3[Nλ] ≍ n2, n→ ∞, (4.14)

which is in agreement with the claim (4.12).

To obtain a suitable upper bound on M3, note that for any u, v ≥ 0,

|u− v|3 = (u− v)2|u− v| ≤ (u− v)2(u+ v) = (u− v)3 + 2v(u− v)2. (4.15)

Setting u = νℓ , v = m1[νℓ ] in (4.15) and taking the expectation, we get the inequality

µ3[νℓ ] ≤ m3[ν
0
ℓ ] + 2m1[νℓ ] ·m2[ν

0
ℓ ] = κ3[νℓ ] + 2κ1[νℓ ] · κ2[νℓ ], (4.16)

according to the identities (2.16) – (2.18). Note that the term κ3[νℓ ] here is the same as in

(4.13), and so gives the contribution of the order of n2 into the corresponding upper bound for

M3, which is consistent with the lower bound (4.14).

The remaining product term on the right-hand side of (4.16), when elaborated using (2.20)

(with q = 1 and q = 2, respectively) and substituted into (4.12), yields

∞∑

ℓ=1

ℓ3κ1[νℓ ] κ2[νℓ ] =
∞∑

ℓ=1

ℓ3
∞∑

k=1

kake
−kαℓ

∞∑

m=1

m2ame−mαℓ

=
∑

k,m≥1

k |ak|m2|am|S4

(
(k +m)α

)

= O(α−4)
∑

k,m≥1

k |ak|m2|am|
(k +m)4

, (4.17)

according to Lemma 2.8. Observing that for k,m ≥ 1

(k +m)4 = (k +m)3/2(k +m)5/2 ≥ k3/2m5/2,

the right-hand side of (4.17) is further estimated by

O(α−4)
∞∑

k=1

|ak|
k1/2

∞∑

m=1

|am|
m1/2

= O(α−4)
(
A+(1

2
)
)2

= O(n2),

according to the lemma’s hypothesis and the asymptotics α ≍ n−1/2 (see (3.2)).

Thus, we have shown that M3 = O(n2), and together with the lower bound (4.14) this

completes the proof of (4.12).
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5. A local limit theorem and the limit shape

5.1. Statement of the local limit theorem

The role of a local limit theorem in our approach is to yield the asymptotics of the probability

Qz{Nλ = n} ≡ Qz(Λn) appearing in the representation of the measure Pn as a conditional

distribution, Pn(·) = Qz(· |Λn) = Qz(·)/Qz(Λn).
To prove such a theorem (see Theorem 5.1 below), we will require a technical condition

on the generating function F0(u) as follows.

Assumption 5.1. There exists a constant δ∗ > 0 such that for any θ ∈ (0, 1) the function

H0(u) = ln(F0(u)) (u ∈ C) satisfies the inequality

H0(θ) −ℜ(H0(θ eit)) ≥ δ∗ θ (1 − cos t), t ∈ R. (5.1)

Remark 5.1. In terms of the coefficients {ak} in the expansion (2.1), the left-hand side of (5.1)

is expressed as
∑∞

k=1akθ
k(1 − cos kt). Consequently, if a1 > 0 and ak ≥ 0 for all k ≥ 2 then

the inequality (5.1) is satisfied with δ∗ = a1 > 0.

As before, we denote µz = Ez(Nλ), σz =
√

Varz(Nλ). Consider the probability density

of a normal distribution N (µz, σ
2
z ) (i.e., with mean µz and variance σ2

z ),

fµz,σz(x) =
1√

2π σz
exp

{
−1

2
(x− µz)

2/σ2
z

}
, x ∈ R. (5.2)

Theorem 5.1. Let A+(1
2
) <∞ and Assumption 5.1 hold. Then, uniformly in m ∈ Z+ ,

Qz{Nλ = m} = fµz,σz(m) +O(n−1), n→ ∞. (5.3)

In fact we will only need a particular case with m = n.

Corollary 5.2. Under the conditions of Theorem 5.1,

Qz{Nλ = n} ≍ n−3/4, n→ ∞. (5.4)

With the asymptotic results of Sections 3.3 and 4.2 at hand, it is not difficult to deduce the

corollary from the theorem.

Proof of Corollary 5.2. By Theorem 3.3 with σ = 1
2

, we have µz = n + O(n3/4). Together

with Theorem 4.1 (see (4.3)) this implies that (n− µz)/σz = O(1). Hence,

fµz,σz(n) =
1√

2π σz
exp
{
−1

2
(n− µz)

2/σ2
z

}
≍ σ−1

z ∼ n−3/4, n→ ∞,

and (5.4) now readily follows from (5.3).
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5.2. Estimates of the characteristic functions

For the proof of Theorem 5.1, we need some technical preparations. Recall from Section

2.1 that the random variables {νℓ , ℓ ∈ N} are mutually independent under the measure Qz.

Hence, the characteristic function ϕNλ
(t) = Ez(e

itNλ) of the sum Nλ =
∑∞

ℓ=1 ℓνℓ is given by

ϕNλ
(t) =

∞∏

ℓ=1

ϕνℓ
(tℓ) =

∞∏

ℓ=1

F0(z
ℓeitℓ)

F0(zℓ)
, t ∈ R, (5.5)

where ϕνℓ
(·) is the characteristic function of νℓ (see (2.13)). The next lemma provides a useful

estimate for ϕNλ
(t) essentially proved in [3, Lemma 7.12].6 Recall that the Lyapunov ratio Lz

is defined in (4.10).

Lemma 5.3. For all t ∈ R such that |t| ≤ (Lzσz)
−1 we have

∣∣ϕNλ
(t) − exp

{
itµz − 1

2
t2σ2

z

}∣∣ ≤ 16|t|3Lzσ3
z exp

{
−1

6
t2σ2

z

}
.

Let us also prove the following global bound.

Lemma 5.4. Suppose that Assumption 5.1 is satisfied (with δ∗ > 0). Then

|ϕNλ
(t)| ≤ exp

{
−δ∗Jα(t)

}
, t ∈ R, (5.6)

where

Jα(t) :=
∞∑

ℓ=1

e−αℓ(1 − cos tℓ). (5.7)

Proof. From (5.5) it follows that

ln|ϕNλ
(t)| =

∞∑

ℓ=1

ln|ϕνℓ
(tℓ)|, t ∈ R. (5.8)

Furthermore, using (2.14) and Assumption 5.1 with θ = zℓ (see (5.1)), for each ℓ ∈ N we have

ln |ϕνℓ
(tℓ)| = ℜ

(
ln(ϕνℓ

(tℓ))
)

= ℜ(H0(z
ℓeitℓ)) −H0(z

ℓ)

≤ −δ∗zℓ(1 − cos tℓ), t ∈ R. (5.9)

Setting here z = e−α (see (3.2)) and returning from (5.9) to (5.8), we obtain the inequality

ln|ϕNλ
(t)| ≤ −δ∗Jα(t), which is equivalent to (5.6).

5.3. Proof of Theorem 5.1

By definition, the characteristic function ϕNλ
(t) = Ez

[
eitNλ

]
is given by

ϕNλ
(t) =

∞∑

m=0

Qz{Nλ = m} eitm, t ∈ R. (5.10)

6 A “two-dimensional” proof in [3, Lemma 7.12] can be easily adapted to the one-dimensional case.
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Hence, the coefficients of the Fourier series (5.10) are expressed as

Qz{Nλ = m} =
1

2π

∫

T

e−itmϕNλ
(t) dt, m ∈ Z+ , (5.11)

where T := [−π, π]. On the other hand, the characteristic function of the normal distribution

N (µz, σ
2
z ) (see (5.2)) is given by

∫ ∞

−∞
fµz,σz(x) eitx dx = eitµz−t2σ2

z /2, t ∈ R,

so by the inversion formula we have

fµz,σz(m) =
1

2π

∫ ∞

−∞
e−itm eitµz−t2σ2

z /2 dt, m ∈ Z+ . (5.12)

Denote Dz := {t ∈ R : |t| > (Lzσz)
−1}. By the asymptotic formula (4.3) and Lemma 4.5,

we have (Lzσz)
−1 ≍ n1/4n−3/4 = n−1/2 = o(1), which implies that Dc

z := R \Dz ⊂ T for all

n large enough. Furthermore, since α ≍ n−1/2 (see (3.2)), it follows that (Lzσz)
−1> ηα with

a suitable (small) constant η > 0, hence Dz ⊂ {t ∈ R : |t| > ηα}. Thus, subtracting (5.12)

from (5.11) we get, uniformly in m ∈ Z+ ,

∣∣Qz{Nλ = m} − fµz,σz(m)
∣∣ ≤ I1 + I2 + I3 , (5.13)

where

I1 :=
1

2π

∫

Dc
z

∣∣ϕNλ
(t) − eitµz−t2σ2

z /2
∣∣ dt, I2 :=

1

2π

∫

Dz

e−t
2σ2

z /2 dt, (5.14)

I3 :=
1

2π

∫

T∩Dz

|ϕNλ
(t)| dt. (5.15)

By Lemma 5.3 and on the substitution t = yσ−1
z , the integral I1 in (5.14) is estimated by

I1 = O(Lzσ
−1
z )

∫ ∞

0

y3 e−y
2/6 dy = O(n−1), (5.16)

according to the asymptotics of σz and Lz (see (4.3) and (4.11), respectively). Similarly, for

the integral I2 (see (5.14)) we obtain, again using (4.3) and (4.11),

I2 = O(σ−1
z )

∫ ∞

L−1
z

e−y
2/2 dy = O(Lzσ

−1
z )

∫ ∞

L−1
z

y e−y
2/2 dy

= O(n−1/2) e−L
−2
z /2 = O

(
n−1/2e−const

√
n
)

= o(n−1). (5.17)

Finally, let us turn to the integral I3 in (5.15). By Lemma 5.4 and a remark about the

domain Dz made before display (5.13), we have

I3 ≤
1

2π

∫

T∩Dz

e−δ∗Jα(t) dt ≤ 1

π

∫ π

ηα

e−δ∗Jα(t) dt. (5.18)
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Furthermore, evaluating the sum in (5.7) (where for convenience we include the vanishing

term with ℓ = 0) we obtain

Jα(t) =
∞∑

ℓ=0

e−αℓ
(
1 −ℜ(eitℓ)

)
=

1

1 − e−α
−ℜ

(
1

1 − e−α+it

)

≥ 1

1 − e−α
− 1

|1 − e−α+it| , (5.19)

because ℜ(s) ≤ |s| for any s ∈ C. Observe that for t ∈ [ηα, π]

|1 − e−α+it| ≥ |1 − e−α+iηα| ∼ α |1 + iη| = α
√

1 + η2 (α→ 0+).

Substituting this estimate into (5.19), we conclude that Jα(t) is asymptotically bounded below

by C(η)α−1 ≍ n1/2 (with C(η) = 1 − (1 + η2)−1/2 > 0), uniformly in t ∈ [ηα, π]. Thus, the

integral in (5.18) is bounded by O
(
e−const·√n) = o(n−1).

Hence, recalling also the estimates (5.16) and (5.17), we see that the right-hand side of

(5.13) admits an asymptotic bound O(n−1), which completes the proof of Theorem 5.1.

5.4. The limit shape results

Recall the definition ω∗(x) := γ−1H0(e
−γx) (see (1.8)), where H0(u) = ln(F0(u)) and γ =(∫ 1

0
u−1H0(u) du

)1/2
(see (3.4) and (2.12)).

Theorem 5.5. Under Assumption 3.1 we have, for every δ > 0 and any ε > 0,

lim
n→∞

Qz

{
λ ∈ Λ : supx≥δ |n−1/2Yλ(xn

1/2) − ω∗(x)| > ε
}

= 1.

Proof. By virtue of Theorem 3.2, letting Y 0
λ (t) := Yλ(t) − Ez[Yλ(t)] it suffices to check that

lim
n→∞

Qz

{
supx≥δ |Y 0

λ (xn1/2)| > εn1/2
}
→ 0. (5.20)

Put Zλ(t) := Yλ(t
−1) (t > 0). From the definition (1.1) of Yλ(·), for any 0 < s < t we have

Zλ(t) − Zλ(s) = Yλ(t
−1) − Yλ(s

−1) =
∑

t−1≤ℓ<s−1

νℓ ,

and it follows that the random process Zλ(t) (t > 0) has independent increments. Hence,

Z0
λ(t) := Zλ(t)−Ez[Zλ(t)] is a martingale with respect to the filtration Ft = σ{νℓ , ℓ ≥ t−1}.

From (1.1) it is also evident that Z0
λ(t) is càdlàg (i.e., its paths are everywhere right-continuous

and have left limits, cf. Fig.1a). Therefore, by the Doob–Kolmogorov submartingale inequal-

ity (see, e.g., [33, Theorem 6.14, p. 99] we obtain

Qz

{
supx≥δ |Y 0

λ (xn1/2)| > εn1/2
}
≡ Qz

{
supy≤δ−1 |Z0

λ(yn
−1/2)| > εn1/2

}

≤ supy≤δ−1 Varz
[
Zλ(yn

−1/2)
]

ε2n

≤ Varz
[
Zλ(δ

−1n−1/2)
]

ε2n

≡ Varz
[
Yλ(δn

1/2)
]

ε2n
= O(n−1/2), (5.21)

in view of Theorem 4.2. Thus, the claim (5.20) follows and the theorem is proved.
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We are finally ready to prove our main result about the limit shape under the measure Pn
(cf. Theorem 1.1 stated in the Introduction).

Theorem 5.6. Suppose that A+(1
2
) <∞ and that Assumption 5.1 is satisfied. Then, for every

δ > 0 and any ε > 0,

lim
n→∞

Pn
{
λ ∈ Λn : supx≥δ

∣∣n−1/2Yλ(xn
1/2) − ω∗(x)

∣∣ > ε
}

= 0.

Proof. Like in the proof of Theorem 5.5, the claim is reduced to the limit

lim
n→∞

Pn
{
supx≥δ |Y 0

λ (xn1/2)| > εn1/2
}

= 0, (5.22)

with Y 0
λ (t) = Yλ(t) − Ez[Yλ(t)]. Recalling the definition (2.6) of Pn(·), it is easy to see that

Pn
{
supx≥δ |Y 0

λ (xn1/2)| > εn1/2
}
≤ Qz

{
supx≥δ |Y 0

λ (xn1/2)| > εn1/2
}

Qz{Nλ = n} . (5.23)

Again using the time reversal t 7→ t−1 as in the proof of Theorem 5.5 and applying the Doob–

Kolmogorov submartingale inequality (now with the fourth moment), we obtain (cf. (5.21))

Qz

{
supx≥δ |Y 0

λ (xn1/2)| > εn1/2
}
≤ Ez

[(
Y 0
λ (δn1/2)

)4]

ε4n2
= O(n−1),

by Lemma 4.4. On the other hand, for the denominator in (5.23) we have Qz{Nλ = n} ≍
n−3/4 by Corollary 5.2. As a result, the right-hand side of (5.23) is dominated by O(n−1/4) =
o(1), and the limit (5.22) readily follows.

6. Examples

We now proceed to a few illustrative examples of multiplicative ensembles of random parti-

tions with equiweighted parts. As we will see, some of the examples entail simple representa-

tives of the three meta-classes of decomposable combinatorial structures known as assemblies,

multisets and selections (see [1, §2.2]). More specifically, Example 6.1 below belongs to the

class of weighted partitions, including the case of unrestricted partitions under the uniform

(equiprobable) distribution; Example 6.2 leads to (weighted) partitions with bounds on the

part counts, including uniformly distributed strict partitions (i.e., with distinct parts); Example

6.3 includes set partitions with labeled elements and ordered contents. Examples 6.4 and 6.5,

as well as Example 6.3, are instances of the so-called exponential structures (see, e.g., [20,

§5.5]). To the best of our knowledge, Example 6.6 appears to be new in the context of ran-

dom partitions; interestingly, it furnishes a branch point singularity of the generating function

F0(u) at u = 1 (see a discussion at the end of Section 1.2).

6.1. Assemblies, multisets and selections: a synopsis

A brief account below essentially follows the classic book [1] (see also the earlier paper [2]).

A decomposable combinatorial structure defined on n ∈ N elements is characterized by the

(non-ordered) collection of its components of sizes ℓ = 1, 2, . . . with the corresponding counts
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(multiplicities) ν1, ν2, . . . , so that
∑n

ℓ=1 ℓνℓ = n. Consequently, the counts {νℓ} determine a

partition λ = (1ν12ν2 . . . ) of the integer n. The specific composition of each component may

or may not be relevant, depending on whether the elements are distinguishable (“labeled”) or

not. Furthermore, suppose that components of the same size may vary by their type; more

specifically, given a sequence of natural numbers {mℓ}, suppose that a component of size

ℓ ∈ N may be colored in mℓ different colors, irrespectively of any other components.

Let Sn = {s} be the set of all admissible instances s of such a structure of size n ∈ Z+ ,

and denote their number by p(n) := #Sn (by convention, S0 = ∅ and p(0) := 1). Suppose

that the space Sn is endowed with a uniform probability measure, whereby all p(n) instances

s ∈ Sn are equally likely; in turn, this induces a certain probability distribution Pn on the

corresponding random counts (ν1, . . . , νn) and, consequently, on the partition space Λn .

This general scheme is exemplified by the three aforementioned meta-types of decom-

posable combinatorial structures. In brief, assemblies are formed of labeled exchangeable

elements, whereas in multisets the elements are unlabeled and therefore indistinguishable;

furthermore, selections are like multisets but with distinct components. In what follows, we

elaborate on that by giving formulas for the respective generating functions (which in all cases

enjoy a product decomposition of the form (2.1)), as well as for the corresponding joint distri-

butions of the random counts νℓ’s under the uniform parent measure on the space Sn (which

should be compared with the general multiplicative formula (1.6)).

6.1.1. Assemblies. This class is characterized by the formula [1, §2.2, p. 46] (cf. [20, §5.1])

F(z) :=
∞∑

n=0

p(n)zn

n!
= exp

( ∞∑

ℓ=1

mℓ z
ℓ

ℓ!

)
, (6.1)

which fits in the definition (2.1) of multiplicative measures with the constituent generating

functions Fℓ(z) := exp(mℓ z/ℓ!) and the corresponding power expansion coefficients

c
(ℓ)
k =

(mℓ

ℓ!

)k 1

k!
, k ∈ Z+ .

It is easy to show (see [1, Eq. (2.2), p. 46]) that the number of assemblies of size n which have

prescribed counts νℓ = kℓ, ℓ = 1, . . . , n (satisfying the condition
∑n

ℓ=1 ℓkℓ = n) is equal to

n!
n∏

ℓ=1

(mℓ

ℓ!

)kℓ 1

kℓ !
, (6.2)

and it follows that the joint distribution of νℓ’s in this model is given by [1, Eq. (2.6), p. 48]

Pn{νℓ = kℓ, ℓ = 1, . . . , n} =
n!

p(n)

n∏

ℓ=1

(mℓ

ℓ!

)kℓ 1

kℓ !
,

n∑

ℓ=1

ℓkℓ = n.

A simple subclass of assemblies is obtained by settingmℓ ≡ m ∈ N, which may be interpreted

as equiprobable colored set partitions with labeled elements {1, . . . , n}; the case m = 1 thus

corresponds to plain set partitions with uniform distribution.
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6.1.2. Multisets. This class is determined by the generating function [1, §2.2, p. 47]

F(z) :=
∞∑

n=0

p(n)zn =
∞∏

ℓ=1

(1 − zℓ)−mℓ ,

which satisfies the multiplicative definition (2.1) with

Fℓ(z) := (1 − z)−mℓ = exp

(
mℓ

∞∑

j=1

zj

j

)
, ℓ ∈ N,

and the corresponding coefficients

c
(ℓ)
k =

(
mℓ + k − 1

k

)
, k ∈ Z+ .

Here, the joint distribution of νℓ’s is given by (see [1, Eqs. (2.3), (2.9)])

Pn{νℓ = kℓ, ℓ = 1, . . . , n} =
1

p(n)

n∏

ℓ=1

(
mℓ + kℓ − 1

kℓ

)
,

n∑

ℓ=1

ℓkℓ = n.

The particular case mℓ ≡ m ∈ N corresponds to weighted integer partitions, which for m = 1
is reduced to the plain (unrestricted) partitions with uniform distribution on the space Λn .

6.1.3. Selections. This class is defined by the generating function [1, §2.2, p. 47]

F(z) :=
∞∑

n=0

p(n)zn =
∞∏

ℓ=1

(1 + zℓ)mℓ .

Hence, F(z) satisfies the definition (2.1) with

Fℓ(z) := (1 + z)mℓ = exp

(
mℓ

∞∑

j=1

(−z)j
j

)
, ℓ ∈ N,

and the coefficients

c
(ℓ)
k =

(
mℓ

k

)
, k = 0, 1, . . . ,mℓ .

The joint distribution of νℓ’s is given by (see [1, Eqs. (2.4), (2.12)])

Pn{νℓ = kℓ, ℓ = 1, . . . , n} =
1

p(n)

n∏

ℓ=1

(
mℓ

kℓ

)
,

n∑

ℓ=1

ℓkℓ = n.

The case mℓ ≡ m ∈ N entails integer partitions with part counts capped by m; for m = 1 this

is further reduced to strict partitions (i.e., with distinct parts) under the uniform distribution on

the corresponding space Λ̌n .
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6.2. The generating functions

In this section, we introduce six examples by specifying the generating function F0(u) =∑∞
k=0 cku

k and the corresponding function H0(u) = ln(F0(u)) =
∑∞

k=1 aku
k. Although the

associated multiplicative measuresQz and Pn are defined primarily in terms of the coefficients

{ck} (see (2.4) and (2.7), respectively), the explicit expressions for ck’s may be complicated,

so we will not always attempt to give such expressions.

For our purposes, it is more important to focus on the function H0(u) and its power expan-

sion coefficients {ak}, since these are the ingredients that determine the existence and exact

form of the limit shape ω∗(x) = γ−1H0(e
−γx) (see (1.8)), including the parameter γ (see (3.4)

and (2.12)). In particular, we have to check the basic condition A+(1) < ∞ (see Assump-

tion 3.1), as well as the refined condition A+(1
2
) < ∞ and Assumption 5.1, both needed for

the limit shape result under the measure Pn (see Theorem 5.6).

Example 6.1. For r ∈ (0,∞), ρ ∈ (0, 1], set

F0(u) := (1 − ρu)−r, |u| < ρ−1. (6.3)

By the binomial formula, the coefficients in the power series expansion (2.1) are given by

ck :=

(
r + k − 1

k

)
ρk =

r(r + 1) · · · (r + k − 1)

k!
ρk , k ∈ Z+ . (6.4)

In particular, c0 = 1 and, moreover, ck > 0 for all k ∈ N.

Remark 6.1. The parameter ρ < 1 introduces exponential weights of the part counts, which

discourages multiple occurrences of the same part as compared to the neutral case ρ = 1. The

parameter r also contributes to the weighting; e.g., if ρ = 1 then ck+1/ck > 1 whenever r > 1.

The combined effect of the parameters ρ < 1 and r > ρ−1 > 1 is more interesting: it is easy to

see that the maximum of the sequence ck is attained for (integer) k = k∗ near (rρ−1)/(1−ρ).
For ρ = 1 and r = m ∈ N, the formula (6.3) pinpoints a multiset structure (see Sec-

tion 6.1.2) arising via partitioning an integer n ∈ N into parts, each of which is then colored in

one of m different colors, irrespectively of its size. The simplest case ρ = 1, r = 1 thus cor-

responds to the classical ensemble of uniform integer partitions mentioned in the Introduction

(Sections 1.1, 1.2).

Note that formula (2.2) for the Qz-distribution of the part counts νℓ (ℓ ∈ N) specializes to

Qz{νℓ = k} =

(
r + k − 1

k

)
ρkzkℓ(1 − ρzℓ)r, k ∈ Z+ , (6.5)

which is a negative binomial distribution with parameters r and p = 1 − ρzℓ [8, Ch. VI, §8,

p. 165]. If r = 1 then F0(u) = (1 − ρu)−1, ck = ρk, and (6.5) is reduced to a geometric

distribution

Qz{νℓ = k} = ρkzkℓ(1 − ρzℓ), k ∈ Z+ .

In the latter case, from (1.6) we get

Pn(λ) = C
−1
n ρYλ(0), λ ∈ Λn , (6.6)

where Yλ(0) =
∑∞

ℓ=1 νℓ is the total number of parts in partition λ = (1ν12ν2 . . . ) (cf. (1.1)). If

also ρ = 1 then (6.6) is further reduced to the uniform distribution on Λn .
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Returning to the general case, from (6.3) we have

H0(u) = −r ln(1 − ρu) = r
∞∑

k=1

ρk

k
uk. (6.7)

Since the coefficients in the expansion (6.7) are positive, Assumption 5.1 is satisfied by Re-

mark 5.1; also, it readily follows that A+(σ) <∞ for any σ > 0 (and each ρ ∈ (0, 1]).

Example 6.2. For m ∈ N, ρ ∈ (0, 1], consider the generating function

F0(u) := (1 + ρu)m, u ∈ C, (6.8)

with the coefficients

ck =

(
m

k

)
ρk =

m(m− 1) · · · (m− k + 1)

k!
ρk, k = 0, 1, . . . ,m.

Consequently, formula (2.2) gives a binomial distribution

Qz{νℓ = k} =

(
m

k

)
ρkzkℓ

(1 + ρzℓ)m
, k = 0, 1, . . . ,m, (6.9)

with parameters m and p = ρzℓ(1 + ρzℓ)−1.

Setting ρ = 1 in (6.8) yields selections (see Section 6.1.3) corresponding to integer parti-

tions with multiplicities νℓ ≤ m (ℓ ∈ N); in particular, m = 1 corresponds to strict partitions

(see Sections 1.1, 1.2). More generally, for m = 1 and 0 < ρ ≤ 1, the measure Qz is

concentrated on the subspace Λ̌ ⊂ Λ with the distribution (6.9) reduced to

Qz{νℓ = k} =
ρkzkℓ

1 + ρzℓ
, k = 0, 1.

Accordingly, formula (1.6) specifies on Λ̌n the weighted distribution (cf. (6.6))

Pn(λ) = Č
−1
n ρYλ(0), λ ∈ Λ̌n ,

which is reduced to the uniform distribution if ρ = 1, as already mentioned.

In the general case, from (6.8) it follows

H0(u) = m ln(1 + ρu) = m
∞∑

k=1

(−1)k−1ρk

k
uk, (6.10)

and it is evident that A+(σ) < ∞ for each σ > 0 (and any ρ ∈ (0, 1]). Finally, let us verify

Assumption 5.1. Using (6.10) we obtain, for any θ ∈ (0, 1) and all t ∈ R,

H0(θ) −ℜ(H0(θ eit)) = m ln(1 + ρθ) −mℜ
(
ln(1 + ρθ eit)

)

= m ln(1 + ρθ) −m ln |1 + ρθ eit|

= −m
2

ln

(
1 + 2ρθ cos t+ ρ2θ2

(1 + ρθ)2

)

≥ −m
2

(
1 + 2ρθ cos t+ ρ2θ2

(1 + ρθ)2
− 1

)

=
mρθ (1 − cos t)

(1 + ρθ)2
≥ mρ

(1 + ρ)2
θ (1 − cos t).

Thus, the inequality (5.1) holds with δ∗ = mρ/(1 + ρ)2 > 0.
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Example 6.3. For b ∈ (0,∞), ρ ∈ [0, 1], consider the generating function

F0(u) := exp

(
bu

1 − ρu

)
, |u| < ρ−1. (6.11)

Noting that (1 − t)−1 =
∑∞

k=0 t
k (with t = ρs), it is evident that the coefficients ck’s in

the power series expansion of the function (6.11) are positive, with c0 = 1, c1 = b, c2 =
bρ + 1

2
b2, etc. More systematically, by Faà di Bruno’s formula generalizing the chain rule of

differentiation to higher derivatives (see [14, Ch. I, §12, p. 34]) we obtain

ck =
k∑

m=1

bmρk−m
∑

(j1,...,jk)∈Jm

1

j1! · · · jk!
, k ∈ N, (6.12)

where Jm is the set of all nonnegative integer k-tuples (j1, . . . , jk) such that j1 + · · ·+ jk = m
and j1 + 2j2 + · · · + kjk = k.

Remark 6.2. Note that the k-tuples (j1, . . . , jk) ∈ Jm are in one-to-one correspondence with

partitions of k involving precisely m different integers as parts, where each element jℓ has the

meaning of the multiplicity of part ℓ ∈ {1, . . . , k}.

Remark 6.3. For b = ρ = 1, the formula (6.12) is reduced, on account of Remark 6.2, to

ck =
k∑

m=1

∑

(j1,...,jk)∈Jm

1

j1! · · · jk!
=
∑

λ⊢k

1

ν1! · · · νk!
, λ = (1ν12ν2 . . . ) ∈ Λk.

From the formula (6.2) with mℓ = ℓ!, it follows that the quantity p(k) = k!ck equals the

number of partitions of the set {1, . . . , k} into components with ordered contents. Such a

structure may be visualized as a forest of linear rooted trees (i.e., a disjoint union of connected

directed acyclic graphs, where each vertex has at most two neighbors), with labeled vertices.

The observation made in Remark 6.3 can be explained without calculations using the gen-

eral theory of assemblies (see Section 6.1.1). Namely, the function (6.11) with b = ρ = 1 may

be represented in the exponential form (6.1) by setting mℓ := ℓ! (ℓ ∈ N),

F0(u) = exp

(
u

1 − u

)
= exp

( ∞∑

ℓ=1

uℓ

)
= exp

( ∞∑

ℓ=1

mℓ u
ℓ

ℓ!

)
. (6.13)

In the terminology of Section 6.1, that is to say that in the corresponding assembly each part of

size ℓ is colored in one of mℓ = ℓ! different colors, which is equivalent to ordering the content

of this part in one of ℓ! ways. Hence, on comparing the power series expansions (2.1) and (6.1)

for F0(u), we conclude that ck = p(k)/k!, where p(k) equals the total number of instances of

such an assembly of size n, in accord with Remark 6.3.

If ρ = 0 then the generating function (6.11) is reduced to F0(u) = ebu, with the expression

(6.12) simplified to ck = bk/k! (k ∈ Z+). Hence, according to (2.2) the counts νℓ in a random

partition λ = (1ν12ν2 . . . ) ∈ Λ have a Poisson distribution with parameter bzℓ,

Qz{νℓ = k} =
bkzkℓ

k!
e−bz

ℓ

, k ∈ Z+ ,
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which leads to the distribution on Λn of the form (see (1.6))

Pn(λ) = C
−1
n

∞∏

ℓ=1

bνℓ

νℓ!
, λ ∈ Λn .

The parameter b > 0 here determines an exponential weighting: having more parts of each

size is either encouraged or discouraged according as b > 1 or b < 1.

In the special case ρ = 0, b ∈ N, the multiplicative ensemble defined via the product

formula (1.5) admits a simple combinatorial interpretation. Indeed, similarly to (6.13) the

exponential identity (6.1) with mℓ := bℓ! (ℓ ∈ N) determines an assembly of size n ∈ N

obtained by partitioning the set {1, . . . , n} into non-empty blocks with ordered contents, each

block colored in one of b different colors irrespectively of its size.

Returning to the general formula (6.11), we get

H0(u) =
bu

1 − ρu
= b

∞∑

k=1

ρk−1uk, (6.14)

and hence Assumption 5.1 is automatic (see Remark 5.1); moreover, A+(σ) < ∞ for any

σ > 0, except for ρ = 1 whereby A+(σ) <∞ only with σ > 1.

Example 6.4. Extending Example 6.3 (for simplicity, with b = 1), let us set for r > 0, r 6= 1
and ρ ∈ (0, 1]

F0(u) := exp

(
u

(1 − ρu)r

)
, |u| < ρ−1. (6.15)

Taking the logarithm of (6.15) we get the power series expansion (cf. (6.3))

H0(u) =
u

(1 − ρu)r
=

∞∑

k=1

(
r + k − 2

k − 1

)
ρk−1uk, (6.16)

which has positive coefficients ak (cf. (6.4)). Hence, Assumption 5.1 is satisfied by virtue of

Remark 5.1. To check the condition A+(σ) <∞, observe using Stirling’s asymptotic formula

for the gamma function (see [5, §12.5, p. 130]) that

ak =

(
r + k − 2

k − 1

)
ρk−1 =

Γ(k + r − 1)

Γ(r)Γ(k)
ρk−1 ∼ kr−1

Γ(r)
ρk−1 (k → ∞),

hence A+(σ) <∞ for any σ > 0 if ρ < 1, whereas if ρ = 1 then A+(σ) <∞ only for σ > r.
On substituting (6.16) into Taylor’s expansion of the exponential function in (6.15), it

is evident that the corresponding coefficients ck in the power series (2.1) of F0(u) are also

positive, with c0 = c1 = 1, c2 = rρ + 1
2
, etc.; more generally, ck’s can be evaluated using Faà

di Bruno’s formula like in Example 6.3, but we omit the details.

However, the special case ρ = 1, r = m ∈ N may be given a combinatorial interpreta-

tion as follows. Substituting the expansion (6.16) into (6.15) and setting mℓ := ℓ!
(
m+ℓ−2
ℓ−1

)

for ℓ ∈ N (cf. (6.13)), the identity (6.1) applied to F0(u) yields that the coefficients ck in the

power series expansion of (6.15) are expressed as ck = p(k)/k!, where p(k) is the total num-

ber of instances of the corresponding assembly of size k. Construction of such an assembly

comprises three steps: (i) the set {1, . . . , k} is partitioned into non-empty blocks; (ii) a block
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with ℓ elements is represented as a linear rooted tree (see Remark 6.3) distinguished by ℓ! per-

mutations of its vertices; (iii) ℓ− 1 edges of such a tree are colored using m colors, subject to

the convention that if j-th color is used ij ≥ 0 times (with i1 + · · ·+ im = ℓ−1) then the color

schemes are distinguishable only if the corresponding m-tuples (i1, . . . , im) are not identical,

making the total number of such schemes equal to
(
m+ℓ−2
ℓ−1

)
(see [8, Ch. II, §5, p. 38]).

Example 6.5. Combining the exponential form of Example 6.4 with the generating function

from Example 6.2, for ρ ∈ [0, 1], m ∈ N consider

F0(u) := exp
(
u(1 + ρu)m−1

)
, u ∈ C. (6.17)

Since u 7→ u(1 + ρu)m−1 is a polynomial of degree m with positive coefficients, it follows

that the coefficients ck in the power series expansion of the function (6.17) are positive for all

k ∈ Z+ .

Remark 6.4. Caution is needed with a non-integer r > 1 replacing m ∈ N in (6.17): e.g., for

ρ = 1, r = 1.5 we obtain (with the help of MapleTM) c9 = −921479/92897280 < 0.

From (6.17) by the binomial formula we obtain

H0(u) = u(1 + ρu)m−1 =
m∑

k=1

(
m− 1

k − 1

)
ρk−1uk, (6.18)

so that the corresponding coefficients ak’s are positive for k = 1, . . . ,m and vanish for k ≥
m+ 1. Hence, Assumption 5.1 is satisfied and A+(σ) <∞ for any σ > 0.

In the special case ρ = 1, it is not hard to give a combinatorial interpretation of the co-

efficients ck by adapting considerations in Examples 6.3 and 6.4. Indeed, substituting the

expansion (6.18) back into (6.17) and defining mℓ := ℓ!
(
m−1
ℓ−1

)
for ℓ = 1, . . . ,m and mℓ ≡ 0

for ℓ ≥ m + 1, similarly as above we can use the exponential identity (6.1) to conclude that

ck = p(k)/k!, where p(k) is the total number of assemblies of size k constructed as follows:

(i) the set {1, . . . , k} is partitioned into blocks of size not bigger than m each; (ii) a block of

size ℓ is arranged as a rooted linear tree with labeled vertices (resulting in ℓ! possible permu-

tations); (iii) the total of m unlabeled tokens is allocated to ℓ consecutive vertices on such a

tree according to an integer ℓ-tuple (m1, . . . ,mℓ) subject to the conditions m1 + · · ·+mℓ = m
and mi ≥ 1 for all i = 1, . . . , ℓ (so that all m tokens are allocated and each vertex gets at least

one token); the total number of such (strict) allocations is known to be given by
(
m−1
ℓ−1

)
(see [8,

Ch. II, §5, p. 38]).

Example 6.6. For ρ ∈ (0, 1], r ∈ (0,∞), consider the generating function

F0(u) :=

(− ln(1 − ρu)

ρu

)r
≡ (f0(u))

r, |u| < ρ−1, (6.19)

where

f0(u) :=
− ln(1 − ρu)

ρu
= 1 +

∞∑

k=1

ρkuk

k + 1
. (6.20)

If r = m ∈ N then from (6.20) it is evident that the coefficients ck in the power series

expansion of F0(u) in (6.19) are positive for all k ∈ Z+ ; however, for non-integer r > 0
this is not so clear, since the binomial expansion of t 7→ (1 + t)r involves negative terms (cf.
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Remark 6.4). Yet, as a matter of fact, the positivity of ck’s holds for any real r > 0 — this will

be established in Corollary 6.2.

By a term-by-term comparison, it is also clear that, for any r > 0,

F0(u) =

(
1 +

∞∑

k=1

ρkuk

k + 1

)r
≤
(

1 +
∞∑

k=1

ρkuk

)r
= (1 − ρu)−r, 0 ≤ u < ρ−1, (6.21)

with the inequality being strict for u > 0. That is to say, the function F0(u) is bounded by

a multiset-type generating function (6.3) considered in Example 6.1. Moreover, for integer

r = m ∈ N, by expanding both parts in (6.21) it is evident that the coefficients ck in the power

series expansion of F0(u) are dominated by the coefficients of the multiset generating function

(1 − ρu)−m (cf. (6.4)),

ck <

(
m+ k − 1

k

)
ρk =

m(m+ 1) · · · (m+ k − 1)

k!
ρk, k ∈ N. (6.22)

Thus, the multiplicative ensemble determined by (6.19) may be viewed (at least for integer

r = m) as a discounted multiset ensemble, whereby larger values of each count νℓ = k are

progressively discouraged. Again, this statement turns out to be true for any real r > 0,

which will be explained below (see Corollary 6.2). On the other hand, a direct combinatorial

interpretation of the generating function (6.19) (say, in the spirit of the previous examples) is

not clear, even in the simplest case r = ρ = 1.

Let us now look at the function H0(u) = ln(F0(u)) (see (2.8)): according to (6.19),

H0(u) = r ln

(− ln(1 − ρu)

ρu

)
= r ln(f0(u)), |u| < ρ−1. (6.23)

The next proposition implies that A+(σ) < ∞ for any σ > 0 (including the case ρ = 1);

furthermore, since all ak > 0, by Remark 5.1 it follows that Assumption 5.1 is satisfied.

Proposition 6.1. The coefficients {ak} in the power series expansion (2.8) of the function

(6.23) satisfy the inequalities

rρk

k2(k + 1)
≤ ak ≤

rρk

k + 1
, k ∈ N. (6.24)

In particular, ak > 0 for all k ∈ N.

Proof. Differentiation of the identity r ln(f0(u)) =
∑∞

j=1 aju
j (see (6.23)) gives

rf ′
0(u) = f0(u)

∞∑

j=1

jaju
j−1. (6.25)

Differentiating (6.25) again k − 1 times (k ≥ 1), by the Leibniz rule we obtain

f
(k)
0 (0) =

1

r

k−1∑

i=0

(
k − 1

i

)
f

(k−1−i)
0 (0) (i+ 1)! ai+1, k ∈ N. (6.26)
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Noting from (6.20) that f
(j)
0 (0) = ρjj!/(j + 1) (j ∈ Z+) and using the shorthand notation

ãk := kakρ
−k/r (k ∈ N), the system of equations (6.26) is reduced to

k

k + 1
=

k−1∑

i=0

ãi+1

k − i
, k ∈ N, (6.27)

while the inequalities (6.24) are rewritten as

1

k(k + 1)
≤ ãk ≤

k

k + 1
, k ∈ N. (6.28)

Let us prove (6.28) by induction in k ∈ N. For k = 1, from (6.27) we find ã1 = 1
2

and the claim (6.28) is obviously satisfied. Suppose now that the inequalities (6.28) hold for

ã1, . . . , ãk−1 (k ≥ 2), which entails that ãi > 0 (i = 1, . . . , k − 1). Then the recursion (6.27)

(with k replaced by k − 1) implies

k

k + 1
=

k−2∑

i=0

ãi+1

k − i
+ ãk ≤

k−2∑

i=0

ãi+1

k − 1 − i
+ ãk =

k − 1

k
+ ãk,

and it follows that

ãk ≥
k

k + 1
− k − 1

k
=

1

k(k + 1)
,

which gives the lower bound in (6.28). On the other hand, again using that ã1, . . . , ãk−1 > 0,

from (6.27) we get

k

k + 1
= ãk +

k−2∑

i=0

ãi+1

k − i
≥ ãk,

which proves the upper bound in (6.28). Thus, the claim (6.28) is verified for the ãk, and

therefore it is valid with all k ∈ N.

Corollary 6.2. For any real r > 0, the coefficients ck in the power series expansion of the

generating function (6.19) satisfy the two-sided bounds (cf. (6.22))

0 < ck <

(
r + k − 1

k

)
ρk, k ∈ N. (6.29)

Proof. Using the expansion H0(u) =
∑∞

k=1aku
k we have

F0(u) = exp(H0(u)) = exp

( ∞∑

k=1

aku
k

)
= 1 +

∞∑

k=1

cku
k. (6.30)

By Proposition 6.1 all ak > 0, and since Taylor’s coefficients of the exponential function are

positive as well, it is evident from (6.30) that ck > 0 for all k ∈ N.

Furthermore, from the bounds (6.24) we get

0 < ak ≤
rρk

k + 1
<
rρk

k
, k ∈ N. (6.31)
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Considering the corresponding power series and their exponentials

exp

( ∞∑

k=1

aku
k

)
= exp

(
H0(u)

)
≡ F0(u)

and

exp

( ∞∑

k=1

rρk

k
uk

)
= exp

(
−r ln(1 − ρu)

)
= (1 − ρu)−r =: F̃(u),

it follows from the term-by-term subordination (6.31) that the coefficients in the respective

power series expansions F0(u) =
∑

k cku
k and F̃(u) =

∑
k c̃ku

k inherit the same (strict)

subordination, that is, ck < c̃k for all k ∈ N. It remains to notice that (cf. (6.3), (6.4))

c̃k =
(
r+k−1
k

)
ρk, which yields the upper bound in (6.29), as claimed.

For convenience, the results of Section 6.1.2 are summarized in Table 1.

Table 1: The generating functions in Examples 6.1–6.6 (0 < ρ ≤ 1, r > 0, m ∈ N, b > 0).

Third column shows the type of singularity of F0(u) (with ρ = 1, r = m ∈ N) at point u = 1.

No. F0(u) u = 1 H0(u) ak (k ∈ N) A+(σ) <∞

6.1 (1 − ρu)−r pole of
order m

−r ln(1 − ρu) rk−1ρk σ > 0

6.2 (1 + ρu)m regular
point

m ln(1 + ρu) (−1)k−1rk−1ρk σ > 0

6.3 exp

(
bu

1 − ρu

)
essential

singularity

bu

1 − ρu
bρk−1 σ > 0 (ρ < 1)

σ > 1 (ρ = 1)

6.4 exp

(
u

(1 − ρu)r

)
essential

singularity

u

(1 − ρu)r

„

r + k − 2
k − 1

«

ρk−1

∼ kr−1ρk−1/Γ(r)

σ > 0 (ρ < 1)

σ > r (ρ = 1)

6.5 exp
(
u(1 + ρu)m−1

) regular
point

u(1 + ρu)m−1

„

m− 1
k − 1

«

ρk−1

(k = 1, . . . ,m)
σ > 0

6.6

(− ln(1 − ρu)

ρu

)r
branch
point

r ln

(− ln(1 − ρu)

ρu

)
ak = O(k−1ρk) σ > 0

6.3. The limit shapes

In this section, for each of Examples 6.1–6.6 we evaluate the parameter γ =
√
A(1) (see (3.4))

using forA(1) either the definition (2.11) or the equivalent integral expression (2.12), and then

apply Theorems 5.5 and 5.6 to obtain the explicit limit shape ω∗(x) as identified by the general

formula (1.8). For the reader’s convenience, the limit shape function in Example 6.i is denoted

by ω∗
i (x) (i = 1, . . . , 6), and the results are summarized in Table 2.

Starting with Example 6.1, from (3.4) and (6.7) we have

γ2 = r

∞∑

k=1

ρk

k2
= r Li2(ρ), (6.32)
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Table 2: The limit shapes in Examples 6.1–6.6 (0 < ρ ≤ 1, r > 0, m ∈ N, b > 0).

No. H0(u) γ2 ω∗

i (x) Special case

6.1 −r ln(1 − ρu) r Li2(ρ) −r ln(1 − ρe−γx)

γ

r = ρ = 1:

γ = π/
√

6

6.2 m ln(1 + ρu) −mLi2(−ρ)
m ln(1 + ρe−γx)

γ

ρ = 1, m = 1:

γ = π/
√

12

6.3
bu

1 − ρu
−b ln(1 − ρ)

ρ

b e−γx

γ (1 − ρe−γx)

ρ→ 0+:

γ =
√
b

6.4
u

(1 − ρu)r

1 − (1 − ρ)1−r

ρ(1 − r)

e−γx

γ (1 − ρe−γx)r

ρ = 1, r < 1:

γ = 1/
√

1 − r

6.5 u(1 + ρu)m−1 (1 + ρ)m − 1

ρm

e−γx (1 + ρe−γx)m−1

γ

ρ = 1, m = 2:

γ =
√

3/2

6.6 r ln

(− ln(1 − ρu)

ρu

) ∫ 1

0
u−1H0(u) du

r

γ
ln

(− ln(1 − ρe−γx)

ρe−γx

)
r = ρ = 1:

γ
.
= 0.853636

where Li2(·) is the dilogarithm (see [16]). Hence, the limit shape is given by (see (1.8))

ω∗
1(x) = − r

γ
ln(1 − ρ e−γx) (6.33)

For r = ρ = 1, (6.32) gives γ2 = Li2(1) = π2/6 and from (6.33) we recover the classical

formula (1.3) for the limit shape of partitions under the uniform distribution on Λn .

Next, in Example 6.2 we have, according to (3.4) and (6.10),

γ2 = m

∞∑

k=1

(−1)k−1ρk

k2
= −mLi2(−ρ) ≡ m

(
Li2(ρ) − 1

2
Li2(ρ

2)
)
, (6.34)

and the limit shape (1.8) specializes to

ω∗
2(x) =

m

γ
ln(1 + ρ e−γx) (6.35)

If m = ρ = 1 then from (6.34) we find γ2 = 1
2
Li2(1) = π2/12 and the equation (6.35) is

reduced to the limit shape (1.4) of uniformly distributed strict partitions.

In Example 6.3, according to (3.4) and (6.14) we have for ρ ∈ (0, 1)

γ2 = b

∞∑

k=1

ρk−1

k
= − b

ρ
ln(1 − ρ) <∞, (6.36)

while if ρ = 0 then γ2 = b. Alternatively, we can obtain the same result as (6.36) by using the

integral formula (2.12) with the expression (6.14) for H0(u),

γ2 =

∫ 1

0

b

1 − ρu
du = − b

ρ
ln(1 − ρ). (6.37)
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In turn, equation (1.8) for the limit shape is reduced to

ω∗
3(x) =

be−γx

γ(1 − ρe−γx)

Likewise, in Example 6.4 we get, similarly to (6.37),

γ2 =

∫ 1

0

1

(1 − ρu)r
du =

1 − (1 − ρ)1−r

ρ(1 − r)
<∞, (6.38)

which holds for 0 < ρ < 1 (and any r 6= 1). In the special case ρ = 1 the computation in

(6.38) is modified as follows,

γ2 =

∫ 1

0

1

(1 − s)r
ds =

1

1 − r
<∞,

provided that r < 1. Next, substituting (6.16) into (1.8), we get the limit shape

ω∗
4(x) =

e−γx

γ (1 − ρe−γx)r

In Example 6.5 we have, according to (2.12) and (6.18),

γ2 =

∫ 1

0

(1 + ρu)m−1 du =
(1 + ρ)m − 1

ρm
,

and the limit shape (1.8) specializes to

ω∗
5(x) =

e−γx (1 + ρe−γx)m−1

γ

In particular, if ρ = 1, m = 2, then γ2 = 3
2
.

Finally, in Example 6.6 the parameter γ may only be computed numerically, to which end

it is more convenient to use the formula (2.12). The limit shape can then be plotted using the

explicit equation (1.8) with the function H0(e
−γx) evaluated from the formula (6.23),

ω∗
6(x) =

r

γ

{
γx− lnρ+ ln

(
− ln(1 − ρe−γx)

)}

For instance, taking r = 1, ρ = 0.5 we computed 7 γ
.
= 0.532202, with the corresponding limit

shape shown in Fig. 3a. For a comparison, we also plotted the limit shape with parameters

r = 1, ρ = 1, giving γ
.
= 0.853636 (see Fig. 3b).

Acknowledgments

This work was supported in part by a Leverhulme Research Fellowship. Partial support by

the Hausdorff Research Institute for Mathematics (Bonn) is also acknowledged. The author is

grateful to Boris Granovsky, Anatoly Vershik and Yuri Yakubovich for helpful discussions, and

to the anonymous referees for constructive comments that helped to improve the presentation.

7 Numerical computations and graphical outputs were obtained using MapleTM.

37



(a) (b)

x x

y y

Figure 3: The limit shape y = ω∗(x) in Example 6.6, with the functionH0(u) given by equation (6.23):

(a) r = 1, ρ = 0.5 (γ
.
= 0.532202); (b) r = ρ = 1 (γ

.
= 0.853636).
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