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Abstract

The paper is concerned with the limit shape (under some probability measure) of

convex polygonal lines with vertices on Z
2
+ , starting at the origin and with the right

endpoint n = (n1, n2) → ∞. In the case of the uniform measure, an explicit limit

shape γ∗ := {(x1, x2) ∈ R
2
+ :

√
1 − x1 +

√
x2 = 1} was found independently by Ver-

shik [A.M. Vershik, The limit shape of convex lattice polygons and related topics, Funct.

Anal. Appl. 28 (1994) 13–20], Bárány [I. Bárány, The limit shape of convex lattice poly-

gons, Discrete Comput. Geom. 13 (1995) 279–295], and Sinai [Ya.G. Sinaı̆, Probabilistic

approach to the analysis of statistics for convex polygonal lines, Funct. Anal. Appl. 28

(1994) 108–113]. Recently, Bogachev and Zarbaliev [L.V. Bogachev, S.M. Zarbaliev,

Universality of the limit shape of convex lattice polygonal lines, Ann. Probab. 39 (2011)

2271–2317] proved that the limit shape γ∗ is universal for a certain parametric family of

multiplicative probability measures generalizing the uniform distribution. In the present

work, the universality result is extended to a much wider class of multiplicative measures,

including (but not limited to) analogs of the three meta-types of decomposable combina-

torial structures — multisets, selections, and assemblies. This result is in sharp contrast

with the one-dimensional case where the limit shape of Young diagrams associated with

integer partitions heavily depends on the distributional type.
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1. Introduction

In this paper, a convex lattice polygonal line Γ is understood as a piecewise linear continuous

path on the plane starting at the origin 0 = (0, 0), with vertices on the two-dimensional integer

lattice Z
2 and such that the inclination of its consecutive edges is strictly increasing, staying

between 0 and π/2 (clearly, any such Γ lies within the first coordinate quadrant). Let Π be the

set of all convex lattice polygonal lines with finitely many edges, and denote by Πn ⊂ Π the

subset of polygonal lines Γ ∈ Π with the right endpoint ξΓ = (ξ1, ξ2) fixed at n = (n1, n2) ∈
Z

2
+ := {(k1, k2) ∈ Z

2 : kj ≥ 0}.

If each space Πn is endowed with a probability measure Pn, respectively (e.g., a uniform

measure making all Γ ∈ Πn equiprobable), then one can speak of random polygonal lines,

and it is of interest to study their asymptotic statistics as n → ∞ (say, assuming that n2/n1 →
c ∈ (0,∞)). In particular, the limit shape of random polygonal lines, whenever it exists, is

defined as a planar curve γ∗ such that, for any ε > 0,

lim
n→∞

Pn{Γ ∈ Πn : d(Γ̃n, γ
∗) ≤ ε} = 1, (1.1)

where Γ̃n := sn(Γ ), with a suitable scaling transform sn : R
2 → R

2, and d(·, ·) is some metric

on the path space, for instance induced by the Hausdorff distance between compact sets,

dH(A, B) := max
{

max
x∈A

min
y∈B

|x − y|, max
y∈B

min
x∈A

|x − y|
}

, (1.2)

where | · | is the Euclidean vector norm in R
2.

Remark 1.1. By definition, for a polygonal line Γ ∈ Πn the vector sum of its consecutive

edges equals n = (n1, n2); due to the convexity property, the order of parts in the sum is

determined uniquely. Hence, any such Γ represents a (two-dimensional) integer partition of

n ∈ Z
2
+ which is strict (i.e., without proportional parts; see [19, §3]). Let us remark that for

ordinary (one-dimensional) integer partitions the limit shape problem is set out differently, in

terms of the associated Young diagrams [20, 4, 22].

The limit shape and its very existence may depend on the family of probability laws Pn .

With respect to the uniform distribution on Πn , the problem was solved independently by

Vershik [19], Bárány [3] and Sinai [16], who showed that under the natural scaling

sn : (x1, x2) 7→ (n−1
1 x1, n

−1
2 x2), n = (n1, n2), n1, n2 > 0, (1.3)
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and with respect to the Hausdorff metric dH, the limit (1.1) holds with the limit shape γ∗ given

by a parabola arc √
1 − x1 +

√
x2 = 1, 0 ≤ x1, x2 ≤ 1. (1.4)

Recently, Bogachev and Zarbaliev [6, 7] considered the limit shape problem for a more

general class of “multiplicative” measures {Pn} of the form

Pn(Γ ) :=
b(Γ )

Bn

, Γ ∈ Πn, (1.5)

with

b(Γ ) :=
∏

ei∈Γ

bki
, Bn :=

∑

Γ∈Πn

b(Γ ), (1.6)

where the product is over all edges ei of Γ ∈ Πn, index ki equals the number of lattice

points on the edge ei except its left endpoint, and {bk} is a given nonnegative real sequence.

Specifically, it has been proved in [6, 7] that, under the scaling (1.3), the same limit shape (1.4)

is valid for a parametric class of measures Pn = P
(r)
n (0 < r < ∞) with the coefficients1

bk = b
(r)
k :=

(
r + k − 1

k

)
=

r(r + 1) · · · (r + k − 1)

k!
. (1.7)

This result has provided the first evidence in support of a conjecture on the limit shape

universality, put forward independently by Vershik [19, Remark 2, p. 20]2 and Prokhorov

[15]. The goal of the present paper is to show that the limit shape γ∗ given by (1.4) is universal

in a much wider class of probability measures of the multiplicative form (1.5), (1.6). For

instance, along with the uniform measure on Πn this class contains the uniform measure on

the subset Π̌n ⊂ Πn of polygonal lines that do not have any lattice points other than vertices.

More generally, measures covered by our method include (but are not limited to) analogs of the

three classical meta-types of decomposable combinatorial structures — multisets, selections,

and assemblies [1, 2] (see examples in Section 6 below).

Remark 1.2. It should be stressed that our universality result is in sharp contrast with the one-

dimensional case, where the limit shape of random Young diagrams heavily depends on the

distributional type [4, 10, 20, 22]. Thus, the limit shape of (strict) vector partitions is a rela-

tively “soft” property; such a distinction is essentially due to the different ways of geometriza-

tion used in the two models (i.e., convex polygonal lines vs. Young diagrams), resulting in

similar but not identical functionals responsible for the limit shape (cf. [4, Sec. 1.1]).

Let us state our result more precisely. Using the tangential parameterization of convex

paths introduced in [7, §A.1], consider the scaled polygonal line Γ̃n = sn(Γ ) (see (1.3)) and

let ξ̃n(t) denote the right endpoint of the part of Γ̃ with the tangent slope (where it exists)

not exceeding t ∈ [0,∞]. Similarly, the tangential parameterization of the parabola arc γ∗

(see (1.4)) is given by3

g∗(t) =

(
t2 + 2t

(1 + t)2
,

t2

(1 + t)2

)
, 0 ≤ t ≤ ∞, (1.8)

1 Note that for r = 1 the formula (1.7) gives bk ≡ 1, which implies that b(Γ ) = 1 for any Γ ∈ Πn and hence

the measure (1.5) is reduced to the uniform distribution on the space Πn.
2 Page reference is given to the English translation of [19].
3 It is easy to check that the coordinate functions (g∗

1
(t), g∗

2
(t)) in (1.8) satisfy the equation (1.4) (and therefore

parametrically define the curve γ∗) and, furthermore, g∗′
2

(t)/g∗′
1

(t) ≡ t, so that the parameter t has the meaning

of the tangent slope at the corresponding point on the curve, as required.

3



with g∗(∞) := limt→∞ g∗(t) = (1, 1). Then the tangential distance between Γ̃n and γ∗ is

defined as

dT (Γ̃n, γ
∗) := sup

0≤t≤∞
|ξ̃n(t) − g∗(t)|. (1.9)

It is known [7, §A.1] that the Hausdorff distance dH (see (1.2)) is dominated by the tangential

distance dT .

A loose formulation of our result about the universality of the limit shape is as follows.4

Theorem 1.1. Suppose that the family of measures Pn on the respective spaces Πn is de-

fined via the multiplicative formulas (1.5), (1.6) with the coefficients {bk} satisfying some

mild technical conditions expressed in terms of the power series expansion of the function

u 7→ ln
(∑∞

k=0 bku
k
)
. Then, under the scaling (1.3), for any ε > 0

lim
n→∞

Pn{Γ ∈ Πn : dT (Γ̃n, γ
∗) ≤ ε} = 1.

Remark 1.3. Universality of the limit shape γ∗ has its boundaries: as has been demonstrated by

Bogachev and Zarbaliev [5, 8], any C3-smooth, strictly convex curve γ starting at the origin

may serve as the limit shape with respect to a suitable family of multiplicative probability

measures Pn = P γ
n on Πn.

Following [6, 7] our proof employs an elegant probabilistic approach based on randomiza-

tion and conditioning (see [1, 2]) first used in the polygonal context by Sinai [16]. The idea is

to randomize the right endpoint ξΓ of the polygonal line Γ , originally fixed at n = (n1, n2), by

introducing a probability measure Qz on the space Π =
⋃

n Πn (conveniently depending on an

auxiliary “free” parameter z = (z1, z2), 0 < zj < 1), such that for each n ∈ Z
2
+ the measure

Pn on Πn is recovered as the conditional distribution Pn(·) = Qz(· |Πn). By virtue of the

multiplicativity of Pn (see (1.5), (1.6)), Qz may be constructed as a product measure, under

which the coefficients {ki} in (1.6) become independent (although not identically distributed)

random variables, so that ξΓ is represented as a sum of independent vectors. Thus the asymp-

totics of the probability Qz(Πn) = Qz{ξΓ = n}, needed in order to return from Qz to Pn, can

be obtained by proving the corresponding (two-dimensional) local limit theorem. Let us point

out that we find it more convenient to calibrate the parameter z from the asymptotic equation

Ez(ξΓ ) = n (1 + o(1)) as n → ∞, rather than from the exact relation Ez(ξΓ ) = n; however,

this necessitates obtaining a refined asymptotic bound on the error term Ez(ξΓ ) − n. Last but

not least, the main technical novelty that has allowed us to extend and enhance the argumen-

tation of [7] to a much more general setting considered here is that we work with cumulants

rather than moments (see Section 2.2), which proves extremely efficient throughout.

Layout. The rest of the paper is organized as follows. In Section 2, we define the families of

measures Qz and Pn. In Section 3, suitable values of the parameter z = (z1, z2) are chosen

(Theorem 3.2), which implies convergence of “expected” polygonal lines to the limit curve γ∗

(Theorems 3.3 and 3.4). Refined first-order moment asymptotics are obtained in Section 3.3

(Theorem 3.6), while higher-order moment sums are analyzed in Section 4. Most of Section 5

is devoted to the proof of the local limit theorem (Theorem 5.1). Finally, the limit shape

results, with respect to both Qz and Pn, are proved in Section 5.4 (Theorems 5.5 and 5.6).

4 For an exact statement and its proof, see Theorem 5.6 in Section 5.4 below.
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Some general notation. We denote Z+ := {k ∈ Z : k ≥ 0}, Z
2
+ := Z+× Z+ , and similarly

R+ := {x ∈ R : x ≥ 0}, R
2
+ := R+ × R+ . The notation #(·) stands for the number of

elements in a set. The symbol ⌊x⌋ := max{k ∈ Z : k ≤ x} denotes the (floor) integer part

of x ∈ R. The real part of a complex number s = σ + it ∈ C is denoted ℜ(s) = σ. For

a (row-)vector x = (x1, x2) ∈ R
2, its Euclidean norm is defined as |x| :=

√
x2

1 + x2
2 , and

〈x, y〉 := xy⊤ = x1y1 + x2y2 is the corresponding inner product of vectors x, y ∈ R
2, where

y⊤ =
(

y1

y2

)
is the transpose of y = (y1, y2). More generally, A⊤ = (aji) is the transpose of

matrix A = (aij). The matrix norm induced by the vector norm | · | is defined by ‖A‖ :=
sup|x|=1 |xA|. For x = (x1, x2) ∈ Z

2
+ and z = (z1, z2) ∈ R

2
+ with z1, z2 > 0, we use the

multi-index notation zx := zx1

1 zx2

2 . The gamma function is denoted Γ(s) =
∫∞

0
us−1 e−u du,

and ζ(s) =
∑∞

k=1 k−s is the Riemann zeta function.

Throughout the paper, the notation n → ∞ (with n = (n1, n2) ∈ Z
2
+) is understood

as n1, n2 → ∞ in such a way that the ratio n2/n1 stays bounded, that is, c∗ ≤ n2/n1 ≤
c∗ with some constants 0 < c∗ ≤ c∗ < ∞. The asymptotic relation xn ≍ yn between

real-valued sequences {xn} and {yn} (n ∈ Z
2
+) signifies that 0 < lim infn→∞ xn/yn ≤

lim supn→∞ xn/yn < ∞, whereas xn ∼ yn is a standard shorthand for limn→∞ xn/yn = 1.

Thus, the limit n → ∞ defined above can itself be characterized via the asymptotic condition

n1 ≍ n2; in particular, this implies that n1 ≍ |n|, n2 ≍ |n|, where |n| =
√

n2
1 + n2

2 → ∞.

2. Probability measures on spaces of convex polygonal lines

2.1. Global measure Qz and conditional measure Pn

2.1.1. Encoding of polygonal lines. Let X ⊂ Z
2
+ be the subset of integer vectors with co-

prime coordinates,

X := {x = (x1, x2) ∈ Z
2
+ : gcd(x1, x2) = 1}, (2.1)

where “gcd” stands for greatest common divisor. Note that the set Z
2
+ can be viewed as

an integer cone (i.e., with nonnegative integer multipliers) generated by X as a base; more

precisely, Z
2
+ is a disjoint union of the multiples of X ,

Z
2
+ =

∞⊔

k=0

kX . (2.2)

That is, for each nonzero y ∈ Z
2
+ there are unique x ∈ X and k ∈ N such that y = kx.

Let Φ := (Z+)X be the space of functions on X with nonnegative integer values, and

consider the subspace of functions with finite support, Φ0 := {ν ∈ Φ : #(supp ν) < ∞},

where supp ν := {x ∈ X : ν(x) > 0}. It is easy to see that the space Φ0 is in one-to-one

correspondence with the space Π =
⋃

n∈Z
2
+
Πn of all (finite) convex lattice polygonal lines.

Indeed, given a configuration ν = {ν(x)} ∈ Φ0, each x ∈ X specifies the direction of a

potential edge, only utilized if x ∈ supp ν, in which case the value ν(x) = k > 0 specifies

the scaling factor, altogether yielding a vector edge kx; finally, assembling (a finite set of) all

such edges into a polygonal line is uniquely determined by fixation of the starting point at the

origin and the convexity property. Conversely, via the same interpretation of vector edges it is

evident, in view of the decomposition (2.2), that any finite polygonal line Γ ∈ Π determines

uniquely a finitely supported configuration ν ∈ Φ0. Let us point out that the case ν(x) ≡ 0
corresponds to the “trivial” polygonal line Γ∅ with no edges (and with coinciding endpoints).
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Under the association Π ∋ Γ ↔ ν ∈ Φ0 described above, the vector

ξ ≡ ξΓ :=
∑

x∈X

xν(x) (2.3)

has the meaning of the right endpoint of the corresponding polygonal line Γ . In particular, the

space Πn (n ∈ Z
2
+) is identified as Πn = {Γ ∈ Π : ξΓ = n}.

2.1.2. Family of multiplicative measures Qz . Let b0, b1, b2, . . . be a sequence of nonnegative

numbers such that b0 > 0 (without loss of generality, we put b0 = 1) and not all bk vanish for

k ≥ 1, and assume that the corresponding (ordinary) generating function

β(u) := 1 +
∞∑

k=1

bku
k, u ∈ C, (2.4)

is finite for |u| < 1 (i.e., the radius of convergence of the power series (2.4) is not smaller

than 1). Let us now define a family of probability measures Qz on the space Φ = Z
X
+ , indexed

by the parameter z = (z1, z2) ∈ (0, 1) × (0, 1), as the distribution of a random field ν =
{ν(x)}x∈X with mutually independent values and marginal distributions

Qz{ν(x) = k} =
bkz

kx

β(zx)
, k = 0, 1, 2, . . . (x ∈ X ). (2.5)

Lemma 2.1. For each z ∈ (0, 1)2, the condition

β̃(z) :=
∏

x∈X

β(zx) < ∞ (2.6)

is necessary and sufficient in order that Qz(Φ0) = 1. Furthermore, if β(u) is finite for all

|u| < 1 then the condition (2.6) is satisfied.

Proof. According to (2.5), Qz{ν(x) > 0} = 1 − β(zx)−1 (x ∈ X ). Hence, Borel–Cantelli’s

lemma implies that Qz{ν ∈ Φ0} = 1 if and only if
∑

x∈X

(
1 − β(zx)−1

)
< ∞. In turn, the

latter inequality is equivalent to (2.6).

To prove the second statement, observe using (2.4) that

ln β̃(z) =
∑

x∈X

ln β(zx) ≤
∑

x∈X

(
β(zx) − 1

)
=

∞∑

k=1

bk

∑

x∈X

zkx. (2.7)

Furthermore, for any k ≥ 1

∑

x∈X

zkx ≤
∞∑

x1=1

zkx1

1 +
∞∑

x1=0

zkx1

1

∞∑

x2=1

zkx2

2

=
zk
1

1 − zk
1

+
zk
2

(1 − zk
1 )(1 − zk

2 )
≤ zk

1

1 − z1

+
zk
2

(1 − z1)(1 − z2)
.

Substituting this into (2.7) and recalling (2.4), we obtain

ln β̃(z) ≤ β(z1)

1 − z1

+
β(z2)

(1 − z1)(1 − z2)
< ∞,

which implies (2.6).
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Lemma 2.1 ensures that a sample configuration of the random field ν(·) belongs (Qz-

almost surely) to the space Φ0, and therefore determines a finite polygonal line Γ ∈ Π . By the

mutual independence of the random values ν(x) (x ∈ X ), the corresponding Qz-probability is

given by

Qz(Γ ) =
∏

x∈X

bν(x)z
xν(x)

β(zx)
=

b(Γ )z ξ

β̃(z)
, Γ ∈ Π, (2.8)

where ξ :=
∑

x∈X xν(x) (see the definition (2.3)) and

b(Γ ) :=
∏

x∈X

bν(x) < ∞, Γ ∈ Π. (2.9)

Remark 2.1. The infinite product in (2.9) contains only finitely many terms different from 1
(since bν(x) = b0 = 1 for x /∈ supp ν).

In particular, for the trivial polygonal line Γ∅ ↔ ν ≡ 0 (see Section 2.1.1) the formula

(2.8) yields

Qz(Γ∅) = β̃(z)−1 > 0.

On the other hand, we have Qz(Γ∅) < 1, since β(u) > β(0) = 1 for all u > 0 and hence,

according to the definition (2.6), β̃(z) > 1 for any z ∈ (0, 1)2.

2.1.3. Conditional measure Pn . On the subspace Πn ⊂ Π of polygonal lines with the right

endpoint fixed at n ∈ Z
2
+, the measure Qz (z ∈ (0, 1)2) induces the conditional distribution

Pn(Γ ) := Qz(Γ |Πn) =
Qz(Γ )

Qz(Πn)
, Γ ∈ Πn. (2.10)

The formula (2.10) is well defined as long as Qz(Πn) > 0, that is, there is at least one polyg-

onal line Γ ∈ Πn with b(Γ ) > 0 (see (2.8), (2.9)). A simple sufficient condition is as follows.

Lemma 2.2. Suppose that b1 > 0. Then Qz(Πn) > 0 for all n ∈ Z
2
+ such that n1, n2 > 0.

Proof. Observe that n = (n1, n2) ∈ Z
2
+ (with n1, n2 ≥ 1) can be represented as

(n1, n2) = (n1 − 1, 1) + (1, n2 − 1), (2.11)

where both points x(1) = (n1 − 1, 1) and x(2) = (1, n2 − 1) belong to the set X . Moreover,

x(1) 6= x(2) unless n1 = n2 = 2, in which case instead of (2.11) we can write (2, 2) = (1, 0) +
(1, 2), where again x(1) = (1, 0) ∈ X , x(2) = (1, 2) ∈ X . If Γ ∗ ∈ Πn is a polygonal line with

two edges determined by the values ν(x(1)) = 1, ν(x(2)) = 1 (and ν(x) = 0 otherwise), then,

according to the definition (2.8), Qz(Πn) ≥ Qz(Γ
∗) = b2

1z
nβ̃(z)−1 > 0.

The parameter z may be dropped in the notation (2.10) due to the following key fact.

Lemma 2.3. The measure Pn in (2.10) does not depend on z.

Proof. If Πn ∋ Γ ↔ νΓ ∈ Φ0 then ξΓ = n (see (2.3)) and the formula (2.8) is reduced to

Qz(Γ ) =
b(Γ )zn

β̃(z)
, Γ ∈ Πn.

Accordingly, using (2.10) we get the expression (cf. (1.5))

Pn(Γ ) =
b(Γ )∑

Γ ′∈Πn
b(Γ ′)

, Γ ∈ Πn, (2.12)

which is z-free.
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2.2. Generating functions and cumulants

2.2.1. Cumulant expansions. Recalling the expansion (2.4) for the generating function β(u)
(with β(0) = b0 = 1), consider the corresponding power series expansion of its logarithm,

ln β(u) =
∞∑

k=1

aku
k, u ∈ C, (2.13)

assuming that the series (2.13) is (absolutely) convergent for all |u| < 1. Here and below, ln s
with s ∈ C means the principal branch of the logarithm specified by the value ln 1 = 0.

Remark 2.2. On substituting the expansion (2.4) into (2.13), it is evident that a1 = b1; more

generally, if j∗ := min{j ≥ 1: aj 6= 0} and k∗ := min{k ≥ 1: bk > 0} then j∗ = k∗ and

aj∗ = bk∗ > 0.

Under the measure Qz defined in (2.5), the characteristic function ϕν(x)(t) := Ez(e
itν(x))

of the random variable ν(x) (x ∈ X ) is given by

ϕν(x)(t) =
β(zxeit)

β(zx)
, t ∈ R. (2.14)

[For notational simplicity, we suppress the dependence on z in the notation, which should

cause no confusion.] Hence, with the help of (2.13) the (principal branch of the) logarithm of

ϕν(x)(t) is expanded as

ln ϕν(x)(t) = ln β(zxeit) − ln β(zx) =
∞∑

k=1

ak(e
ikt − 1)zkx, t ∈ R. (2.15)

For a generic random variable X , let κq = κq[X] denote its cumulants of order q ∈ N (see

[14, §3.12, p. 69]), defined by the formal identity in indeterminant t

ln ϕ(t) =
∞∑

q=1

(it)q

q!
κq, (2.16)

where ϕ(t) = E(eitX) is the characteristic function of X . By differentiating (2.16) at t = 0, it

is easy to see (cf. [14, §3.14, Eq. (3.37), p. 71]) that

E(X) = κ1, Var(X) = κ2 . (2.17)

Let us also point out the standard expressions for the next few central moments of X through

the cumulants (see [14, §3.14, Eq. (3.38), p. 72]): if X0 := X − E(X) then

E(X3
0 ) = κ3,

E(X4
0 ) = κ4 + 3κ

2
2 ,

E(X5
0 ) = κ5 + 10κ3κ2,

E(X6
0 ) = κ6 + 15κ4κ2 + 10κ

2
3 + 15κ

3
2 .

(2.18)

Let us now turn to the cumulants κq[ν(x)] of the random variables ν(x) (under the proba-

bility distribution Qz). The following simple lemma will be instrumental in our analysis.
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Lemma 2.4. The cumulants of ν(x) (x ∈ X ) are given by

κq[ν(x)] =
∞∑

k=1

kqakzkx, q ∈ N. (2.19)

Proof. Taylor expanding the exponential function in (2.15), we get

ln ϕν(x)(t) =
∞∑

k=1

akz
kx

∞∑

q=1

(ikt)q

q!
=

∞∑

q=1

(it)q

q!

∞∑

k=1

kqakzkx, (2.20)

where the interchange of the order of summation in the double series (2.20) is justified by its

absolute convergence. Comparing the expansion (2.20) with the identity (2.16), we obtain the

formulas (2.19) for the coefficients κq[ν(x)].

Lemma 2.4 allows us to obtain series representations for the cumulants of the components

ξj =
∑

x∈X xj ν(x) of the random vector ξ = (ξ1, ξ2) (see (2.3)). Namely, using the rescaling

relation κq[cX] = cq
κq[X] (see [14, §3.13, p. 70]) and the additivity property of the cumulants

for independent summands (see [14, §7.18, pp. 201–202]), from (2.19) we get for q ∈ N

κq[ξj ] =
∑

x∈X

xq
j κq[ν(x)] =

∑

x∈X

xq
j

∞∑

k=1

kqakzkx (j = 1, 2). (2.21)

In particular, the expected value and the variance of ξj are given by (see (2.17))

Ez(ξj) =
∑

x∈X

xj

∞∑

k=1

kakzkx,

Varz(ξj) =
∑

x∈X

x2
j

∞∑

k=1

k2akzkx.

2.2.2. Dirichlet series associated with ln β(u). For s ∈ C such that ℜ(s) =: σ > 0, consider

the Dirichlet series

A(s) :=
∞∑

k=1

ak

ks
, A+(σ) :=

∞∑

k=1

|ak|
kσ

, (2.22)

where {ak} are the coefficients in the power series expansion of ln β(u) (see (2.13)).

Although some of the coefficients {ak} may be negative, it turns out that the quantity

A(2) =
∑∞

k=1 akk−2, whenever it is finite, cannot vanish or take a negative value.

Lemma 2.5. If A+(2) < ∞ then 0 < A(2) < ∞ and the following integral formula holds

A(2) =

∫ 1

0

u−1

(∫ u

0

v−1 ln β(v) dv

)
du. (2.23)

Proof. From (2.4) it is evident that ln β(u) > ln 1 = 0 for all u ∈ (0, 1), and it readily follows

that the double integral on right-hand side of (2.23) is positive (and possibly infinite). Further-

more, substituting the expansion (2.13) and integrating term by term (which is permissible for

9



power series inside the interval of convergence), we obtain for s ∈ (0, 1)

∫ s

0

u−1

(∫ u

0

v−1 ln β(v) dv

)
du =

∫ s

0

u−1

∞∑

k=1

ak

(∫ u

0

vk−1 dv

)
du

=
∞∑

k=1

ak

k

∫ s

0

uk−1 du =
∞∑

k=1

ak

k2
sk. (2.24)

Passing here to the limit as s ↑ 1 and applying to the right-hand side of (2.24) Abel’s theorem

on power series (see [17, §1.22, pp. 9–10]), we obtain the identity (2.23).

Remark 2.3. The condition A+(2) < ∞ and the quantity A(2) will play a major role in our

argumentation; in particular, A(2) is involved in a suitable calibration of the “free” parameter

z = (z1, z2) in the definition (2.5) of the measure Qz (see Section 3.1 below). However, some

results (such as Theorem 3.6, Lemma 4.7 and Theorem 5.1) will require a stronger condition

A+(1) < ∞. Our main result on the limit shape under the measure Pn (see Theorem 5.6) is

dependent on these statements, and therefore is stated and proved under the latter condition.

2.3. Auxiliary estimates for power-exponential sums

In what follows, we frequently encounter power-exponential sums of the form

Sq(t) :=
∞∑

k=1

kq−1e−tk, t > 0. (2.25)

For the first few integer values of q, explicit expressions of Sq(t) are easily available,

S1(t) =
e−t

1 − e−t
, S2(t) =

e−t

(1 − e−t)2
, S3(t) =

e−t (1 + e−t)

(1 − e−t)3
. (2.26)

The purpose of this subsection is to obtain estimates on Sq(t) with any integer q.

Lemma 2.6. For q ∈ N, the function Sq(t) admits the representation

Sq(t) =

q∑

j=1

cj,q
e−tj

(1 − e−t)j
, t > 0, (2.27)

with some constants cj,q > 0 (j = 1, . . . , q); in particular, c1,q = 1 and cq,q = (q − 1)! .

Proof. For q = 1, the expression for S1(t) from (2.26) is a particular case of (2.27) with

c1,1 = 1. Assume now that the expansion (2.27) is valid for some q ≥ 1 (including the

“boundary” values c1,q = 1, cq,q = (q − 1)!). Then, differentiating the identities (2.25) and

(2.27) with respect to t, we obtain

Sq+1(t) = − d

dt
Sq(t) =

q∑

j=1

cj,q

(
j e−tj

(1 − e−t)j
+

j e−t(j+1)

(1 − e−t)j+1

)

=

q+1∑

j=1

cj,q+1
e−tj

(1 − e−t)j
,
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where we set

cj,q+1 :=






c1,q , j = 1,

jcj,q + (j − 1)cj−1,q , 2 ≤ j ≤ q,

qcq,q , j = q + 1.

In particular, c1,q+1 = c1,q = 1 and cq+1,q+1 = qcq,q = q(q − 1)! = q!. Thus, the formula

(2.27) holds for q + 1 and hence, by induction, for all q ≥ 1.

Lemma 2.7. (a) For each q ∈ N, there exists an absolute constant c̄q > 0 such that

Sq(t) ≤
c̄q e−t

(1 − e−t)q
, t > 0. (2.28)

(b) Moreover,

Sq(t) ∼
(q − 1)!

tq
, t → 0. (2.29)

Proof. (a) Observe that for j = 1, . . . , q and all t > 0

e−tj

(1 − e−t)j
≤ e−t

(1 − e−t)q
.

Substituting these inequalities into (2.27) and recalling that all cj,q > 0, we obtain (2.28) with

c̄q :=
∑q

j=1 cj,q .

(b) For each term in the expansion (2.27) we have e−tj (1 − e−t)−j ∼ t−j as t → 0.

Hence, the overall asymptotic behavior of Sq(t) is determined by the term with j = q and the

corresponding coefficient cq,q = (q−1)! (see Lemma 2.6), and the formula (2.29) follows.

The next general lemma can be used to obtain a simplified polynomial estimate for the

right-hand side of the bound (2.28), which is sometimes convenient.

Lemma 2.8. For any q > 0 and θ > 0, there is a constant Cq(θ) > 0 such that

e−θt

(1 − e−t)q
≤ Cq(θ) t

−q, t > 0. (2.30)

Proof. Set f(t) := tq e−θt(1 − e−t)−q and note that

lim
t↓0

f(t) = 1, lim
t→+∞

f(t) = 0.

By continuity, the function f(t) is bounded on (0,∞), and the inequality (2.30) follows.

3. Asymptotics of the expectation

3.1. Calibration of the parameter z

Our aim in this section is to adjust the parameter z = (z1, z2), as a suitable function of n =
(n1, n2), in such a way that under the corresponding measure Qz the following asymptotic

conditions are satisfied,

lim
n→∞

n−1
1 Ez(ξ1) = lim

n→∞
n−1

2 Ez(ξ2) = 1, (3.1)
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where ξj =
∑

x∈X xj ν(x) (see (2.3)) and Ez denotes expectation with respect to Qz. Let us

use the ansatz

zj = e−αj , αj = δj n
−1/3
j (j = 1, 2), (3.2)

where the quantities δ1, δ2 > 0, possibly depending on n, are presumed to be bounded and

separated from zero (i.e., δ1, δ2 ≍ 1 as n → ∞). Hence, using the formula (2.21) with q = 1,

we get (in vector form)

Ez(ξ) =
∞∑

k=1

kak

∑

x∈X

xe−k〈α,x〉. (3.3)

3.1.1. Evaluating sums over X via the Möbius inversion formula. Recall that the Möbius

function µ : N → {−1, 0, 1} is defined as follows (see [11, §16.3, p. 304]): µ(1) := 1,

µ(m) := (−1)d if m is a product of d different prime numbers, and µ(m) := 0 otherwise;

in particular, |µ(m)| ≤ 1 for all m ∈ N.

To deal with sums over the set X (see (2.1)), the following lemma will be instrumental.

Lemma 3.1. Let f : R
2
+ → R+ be a function such that f(x)|x=(0,0) = 0 and for all h > 0

F (h) :=
∑

x∈Z
2
+

f(hx) < ∞. (3.4)

Moreover, assume that
∞∑

k=1

F (hk) < ∞, h > 0. (3.5)

Then the function

F ♯(h) :=
∑

x∈X

f(hx), h > 0, (3.6)

satisfies the identity

F ♯(h) =
∞∑

m=1

µ(m)F (mh), h > 0. (3.7)

Proof. Recalling the decomposition (2.2) and using that f(x) vanishes at the origin, observe

from (3.4) and (3.6) that

F (h) =
∞∑

m=1

F ♯(mh), h > 0. (3.8)

Then the identity (3.7) follows by the Möbius inversion formula (see [11, §16.5, Theorem 270,

p. 307]), provided that
∑

k,m F ♯(kmh) < ∞ (h > 0). Indeed, the latter condition is satisfied,

∞∑

k=1

∞∑

m=1

F ♯(kmh) =
∞∑

k=1

F (kh) < ∞,

according to (3.8) and the hypothesis (3.5). This completes the proof.

12



3.1.2. The basic parameterization.

Theorem 3.2. Suppose that A+(2) < ∞ (see (2.22)), and choose δ1, δ2 in (3.2) as follows

δ1 = κτ 1/3, δ2 = κτ−1/3, (3.9)

where

τ ≡ τn :=
n2

n1

, κ :=

(
A(2)

ζ(2)

)1/3

. (3.10)

Then the asymptotic conditions (3.1) are satisfied.

Remark 3.1. According to our convention about the limit n → ∞ (see the end of the Intro-

duction), we have τ ≍ 1. Observe also that (3.2), (3.9) and (3.10) imply the scaling relations

α2
1α2 n1 = α1α

2
2 n2 = κ3, α2 = α1/τ. (3.11)

Proof of Theorem 3.2. Let us prove (3.1) for ξ1 (the proof for ξ2 is similar). Setting

f(x) := x1e
−〈α,x〉 = x1e

−α1x1−α2x2 , x = (x1, x2) ∈ R
2
+ , (3.12)

and following the notation (3.6) of Lemma 3.1, a projection of the equation (3.3) onto the first

coordinate takes the form

Ez(ξ1) =
∞∑

k=1

kak

∑

x∈X

x1e
−〈α,kx〉 =

∞∑

k=1

ak

∑

x∈X

f(kx) =
∞∑

k=1

akF
♯(k). (3.13)

On the other hand, substituting (3.12) into (3.6) and using the expression (2.26) for Sq(·) with

q = 2, we obtain

F (h) = h
∞∑

x1=1

x1e
−hα1x1

∞∑

x2=0

e−hα2x2 =
he−hα1

(1 − e−hα1)2(1 − e−hα2)
. (3.14)

It is evident that F (h) satisfies the condition (3.5), hence by Lemma 3.1 the function F ♯(·) (see

(3.6)) can be expressed via the formula (3.7). Thus, substituting also (3.14), we can rewrite

(3.13) as

Ez(ξ1) =
∞∑

k=1

ak

∞∑

m=1

µ(m)F (km) =
∞∑

k,m=1

kakmµ(m)e−kmα1

(1 − e−kmα1)2(1 − e−kmα2)
. (3.15)

Now, using the representation (3.15) we can obtain the asymptotics of Ez(ξ1) as n → ∞.

Recall that α1 = α2τ (see (3.11)), where τ ≡ τn ≍ 1 (see (3.10) and Remark 3.1) and so

τ ≥ τ∗ for some τ∗ > 0 and all n large enough. Applying Lemma 2.8 twice (with q = 2,

θ = 1/2 and q = 1, θ = τ∗/2, respectively), we obtain, uniformly in k,m ≥ 1,

α2
1α2 e−kmα1

(1 − e−kmα1)2(1 − e−kmα2)
=

α2
1 e−kmα1/2

(1 − e−kmα1)2
· α2 e−kmα2 τ/2

1 − e−kmα2

≤ C2(1/2)

(km)2
· C1(τ∗/2)

km
=

O(1)

k3m3
, n → ∞. (3.16)
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Thus, remembering that |µ(m)| ≤ 1, the general summand in the double sum (3.15), multi-

plied by α2
1α2, is bounded by O(1)|ak|k−2m−2, which is a term of a convergent series due to

the assumption A+(2) < ∞. Hence, by Lebesgue’s dominated convergence theorem we get

lim
n→∞

α2
1α2Ez(ξ1) =

∞∑

k,m=1

kakmµ(m) lim
n→∞

α2
1α2 e−kmα1

(1 − e−kmα1)2(1 − e−kmα2)

=
∞∑

k=1

ak

k2

∞∑

m=1

µ(m)

m2
=

A(2)

ζ(2)
≡ κ3, (3.17)

according to the notation (3.10). Note that the identity

∞∑

m=1

µ(m)

ms
=

1

ζ(s)
, (3.18)

used in (3.17) for s = 2, readily follows by the Möbius inversion formula (3.7) with F ♯(h) =
h−s and F (h) =

∑∞
m=1(hm)−s = h−sζ(s) (cf. [11, §17.5, Theorem 287, p. 326]).

To complete the proof, it remains to notice that the limit (3.17) is equivalent to the first of

the asymptotic conditions (3.1) due to the scaling relation α2
1α2 = n−1

1 κ3 (see (3.11)).

Assumption 3.1. Throughout the rest of the paper, we assume that A+(2) < ∞ and the param-

eters z1, z2 are chosen according to the formulas (3.2), (3.9), (3.10). In particular, the measure

Qz becomes dependent on n = (n1, n2), as well as the corresponding expected values.

3.2. The “expected” limit shape

Given n = (n1, n2) ∈ Z
2
+ (n1, n2 > 0) and the ratio τ = n2/n1 (see (3.10)), for a polygonal

line Γ ∈ Π and t ∈ [0,∞] let us denote by Γ (t) ≡ Γ (t; τ) the piece of Γ where the slope

does not exceed tτ . In case all edges of Γ have the slope bigger than tτ , we set Γ (t) := Γ∅

(the trivial polygonal line, see Section 2.1.1).

Remark 3.2. The definition of Γ (t) implies that under the scaling sn (see (1.3)) the scaled

piece Γ̃n(t) := sn(Γ (t)) has the slope not bigger than t.

Consider the corresponding subset of X (see (2.1)),

X (t) ≡ X (t; τ) := {x = (x1, x2) ∈ X : x2/x1 ≤ tτ}, t ∈ [0,∞]. (3.19)

According to the association Π ∋ Γ ↔ ν ∈ Φ0 described in Section 2.1.1, for each t ∈ [0,∞]
the piece Γ (t) of Γ is determined by a truncated configuration {ν(x), x ∈ X (t)}, hence its

right endpoint ξ(t) = (ξ1(t), ξ2(t)) is given by

ξ(t) =
∑

x∈X (t)

xν(x), t ∈ [0,∞]. (3.20)

In particular, X (∞) = X , ξ(∞) = ξ (see (2.3)). Similarly to (3.3), we have

Ez[ξ(t)] =
∞∑

k=1

kak

∑

x∈X (t)

xe−k〈α,x〉, t ∈ [0,∞]. (3.21)

Recall that the vector-function g∗(t) = (g∗
1(t), g

∗
2(t)) is defined in (1.8).
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Theorem 3.3. Under Assumption 3.1, for each t ∈ [0,∞]

lim
n→∞

n−1
j Ez[ξj(t)] = g∗

j (t) (j = 1, 2). (3.22)

Proof. Let j = 1 (the case j = 2 is considered in a similar manner). Theorem 3.2 implies that

the claim (3.22) holds for t = ∞ (with ξ1(∞) = ξ1). Thus, noting from (1.8) that g∗
1(∞) = 1

and 1 − g∗
1(t) = (1 + t)−2, we can rewrite (3.22) (with j = 1) in the form

lim
n→∞

n−1
1 Ez[ξ1 − ξ1(t)] = (1 + t)−2. (3.23)

Now, like in the proof of Theorem 3.2 (cf. (3.3), (3.13) and (3.15)), from (3.21) we have

Ez[ξ1 − ξ1(t)] =
∞∑

k=1

kak

∑

x∈X\X (t)

x1e
−kα1x1 e−kα2x2

=
∞∑

k,m=1

kakmµ(m)
∞∑

x1=1

x1e
−kmα1x1

∞∑

x2=x̂2+1

e−kmα2x2

=
∞∑

k,m=1

kakmµ(m)

1 − e−kmα2

∞∑

x1=1

x1e
−km(α1x1+α2(x̂2+1)), (3.24)

where x̂2 = x̂2(t) := ⌊tτx1⌋, so that

0 < x̂2 + 1 − tτx1 ≤ 1. (3.25)

It is natural to expect that the internal sum in (3.24) may be well approximated by replacing

x̂2 + 1 with tτx1 and thus reducing it to S2(km(α1 + α2tτ)) (see the notation (2.25) with

q = 2). More precisely, recalling that α2 τ = α1 (see (3.11)), we obtain the representation

∞∑

x1=1

x1e
−km(α1x1+α2(x̂2+1)) = S2(kmα1(1 + t)) − Rn(t; km), (3.26)

with

Rn(t; km) :=
∞∑

x1=1

x1e
−kmα1x1(1+t)

(
1 − e−kmα2 (x̂2+1−tτx1)

)
. (3.27)

By the expression (2.26) for S2(·) we have

0 ≤ S2(kmα1(1 + t)) =
e−kmα1(1+t)

(1 − e−kmα1(1+t))2
≤ e−kmα1

(1 − e−kmα1)2
. (3.28)

On the other hand, applying the upper inequality (3.25) under the second exponent in (3.27)

and replacing 1 + t by 1 under the first exponent, we obtain the estimates

0 ≤ Rn(t; km) ≤ (1 − e−kmα2)
∞∑

x1=1

x1e
−kmα1x1

=
(1 − e−kmα2)e−kmα1

(1 − e−kmα1)2
(3.29)

≤ e−kmα1

(1 − e−kmα1)2
. (3.30)
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On substituting (3.26) back into (3.24), from the bounds (3.28) and (3.30) it is evident that

we can repeat the arguments used in the proof of Theorem 3.2 (see (3.16)) and thus pass to the

limit in (3.24) by Lebesgue’s dominated convergence theorem, giving

lim
n→∞

α2
1α2Ez[ξ1 − ξ1(t)] =

∞∑

k,m=1

kakmµ(m) lim
n→∞

α2
1α2

(
S2(kmα1(1 + t)) − Rn(t; km)

)

1 − e−kmα2
.

(3.31)

By virtue of the equality in (3.28) we easily find

lim
n→∞

α2
1α2 S2(kmα1(1 + t))

1 − e−kmα2
= lim

n→∞

α2
1α2 e−kmα1(1+t)

(1 − e−kmα2)(1 − e−kmα1(1+t))2
=

1

k3m3(1 + t)2
.

(3.32)

Furthermore, the estimate (3.29) implies

lim
n→∞

α2
1α2 Rn(t; km)

1 − e−kmα2
≤ lim

n→∞

α2
1α2 e−kmα1

(1 − e−kmα1)2
= 0. (3.33)

Hence, substituting (3.32) and (3.33) into (3.31), we obtain (cf. (3.17))

lim
n→∞

α2
1α2Ez[ξ1 − ξ1(t)] =

∞∑

k=1

ak

k2

∞∑

m=1

µ(m)

m2
(1 + t)−2 = κ3(1 + t)−2. (3.34)

Finally, recalling that α2
1α2 = n−1

1 κ3 (see (3.11)), the limit (3.34) is reduced to (3.23).

3.2.1. Enhancement: uniform convergence. There is a stronger version of Theorem 3.3.

Theorem 3.4. The convergence in (3.22) is uniform in t ∈ [0,∞], that is,

lim
n→∞

sup
0≤t≤∞

∣∣n−1
j Ez[ξj(t)] − g∗

j (t)
∣∣ = 0 (j = 1, 2).

We use the following simple criterion of uniform convergence proved in [7, Lemma 4.3].

Lemma 3.5. Let {fn(t)} be a sequence of nondecreasing functions on a finite interval [a, b],
such that, for each t ∈ [a, b], limn→∞ fn(t) = f(t), where f(t) is a continuous (nondecreas-

ing) function on [a, b]. Then the convergence fn(t) → f(t) as n → ∞ is uniform on [a, b].

Proof of Theorem 3.4. Suppose that j = 1 (the case j = 2 is handled similarly). Note that

for each n = (n1, n2) (with n1 > 0) the function

fn(t) := n−1
1 Ez[ξ1(t)] =

1

n1

∑

x∈X (t)

x1Ez[ν(x)], t ∈ [0,∞],

is nondecreasing in t, in view of the definition (3.19) of the sets X (t). Therefore, by Lemma

3.5 the convergence in (3.22) is uniform on any finite interval [0, t0].
For large t, by the triangle inequality we get

|n−1
1 Ez[ξ1(t)] − g∗

1(t)| ≤ |n−1
1 Ez(ξ1) − 1| + |g∗

1(t) − 1| + n−1
1 Ez[ξ1 − ξ1(t)] (3.35)
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(in the last term, ξ1 ≥ ξ1(t) for all t ≥ 0). We know that limn→∞ n−1
1 Ez(ξ1) = 1 by Theorem

3.3 and limt→∞ g∗
1(t) = 1 (see (1.8)); thus, in view of (3.35) it remains to show that for any

ε > 0 there is a t0 = t0(ε) such that, for all large enough n = (n1, n2) and all t ≥ t0,

n−1
1 Ez[ξ1 − ξ1(t)] ≤ ε. (3.36)

To this end, from the formulas (3.24) and (3.26) we have

0 ≤ Ez[ξ1 − ξ1(t)] ≤
∞∑

k,m=1

k|ak|m
1 − e−kmα2

(
S2(kmα1(1 + t)) + Rn(t; km)

)
. (3.37)

For the part of the sum (3.37) with S2(kmα1(1 + t)), on substituting the equality (3.28) and

adapting the estimate (3.16) derived in the proof of Theorem 3.2 we obtain for all k,m ≥ 1
and t > 0

α2
1α2S2(kmα1(1 + t))

1 − e−kmα2
=

α2
1α2 e−kmα1(1+t)

(1 − e−kmα2)(1 − e−kmα1(1+t))2
≤ C1(τ∗/2)C2(1/2)

(km)3(1 + t)2
.

Therefore, recalling that α2
1α2 = n−1

1 κ3 (see (3.11)) and using the condition A+(2) < ∞, we

have uniformly in t (and for all n)

1

n1

∞∑

k,m=1

k|ak|m
1 − e−kmα2

S2(kmα1(1 + t)) =
O(1)

(1 + t)2

∞∑

k,m=1

|ak|
k2m2

=
O(1)

(1 + t)2
≤ ε

2
, (3.38)

provided t is large enough.

On the other hand, by the dominated convergence argument (cf. (3.31)) and due to the

bound (3.29) leading to the limit (3.33), the contribution from Rn(t; km) to the sum (3.37) is

asymptotically negligible, uniformly in t, which implies that for all n large enough,

1

n1

∞∑

k,m=1

k|ak|m
1 − e−kmα2

Rn(t; km) ≤ ε

2
. (3.39)

Thus, substituting the estimates (3.38) and (3.39) into (3.37) yields (3.36) as desired, which

completes the proof of the theorem.

3.3. Refined asymptotics of the expectation

We need to sharpen the asymptotic estimate Ez(ξ) − n = o(|n|) provided by Theorem 3.2.

Theorem 3.6. Under the condition A+(1) < ∞, we have Ez(ξ) − n = O(|n|2/3) as n → ∞.

For the proof of Theorem 3.6, some preparations are required.

3.3.1. Integral approximation of sums. Let a function f : R
2
+ → R+ be continuous and inte-

grable on R
2
+ , together with its partial derivatives up to the second order. Set (cf. (3.6))

F (h) :=
∑

x∈Z
2
+

f(hx), h > 0. (3.40)

Adapting the well-known Euler–Maclaurin formula (see, e.g., [9, §12.2]) to the double sum-

mation in (3.40), one can verify (see more details in [7, §5.1]) that the above conditions on the
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function f(x) ensure the absolute convergence of the double series (3.40) for any h > 0 and,

moreover, F (h) has the following asymptotics at the origin,

lim
h↓0

h2F (h) =

∫

R
2
+

f(x) dx < ∞. (3.41)

In particular, (3.41) implies that

F (h) = O(h−2), h ↓ 0. (3.42)

Furthermore, assume that for some β > 2

F (h) = O(h−β), h → +∞, (3.43)

and consider the Mellin transform of F (h) (see, e.g., [21, Ch. VI, §9]),

F̂ (s) :=

∫ ∞

0

hs−1F (h) dh (s ∈ C). (3.44)

The estimates (3.42), (3.43) ensure that the function F̂ (s) is well defined (and analytic) if

2 < ℜ(s) < β. Moreover, F̂ (s) can be analytically continued into the strip 1 < ℜ(s) < 2.

More precisely, consider the function

∆f (h) := F (h) − h−2

∫

R
2
+

f(x) dx, h > 0, (3.45)

that is, the error in the approximation of the function F (h) by the corresponding integral

(cf. (3.41)). The following lemma was proved in [7, Lemma 5.2].

Lemma 3.7. Under the above conditions, the function F̂ (s) defined in (3.44) is meromorphic

in the strip 1 < ℜ(s) < β, with a single (simple) pole at s = 2. Moreover, F̂ (s) satisfies the

identity

F̂ (s) =

∫ ∞

0

hs−1∆f (h) dh, 1 < ℜ(s) < 2. (3.46)

Remark 3.3. The identity (3.46) is a two-dimensional analog of the Müntz formula for uni-

variate functions (see [18, §2.11, pp. 28–29]).

In turn, by the inversion formula for the Mellin transform (see [21, Theorem 9a, pp. 246–

247]), from (3.46) it follows that, for any c ∈ (1, 2),

∆f (h) =
1

2πi

∫ c+i∞

c−i∞

h−sF̂ (s) ds (3.47)

(see [7, Lemma 5.3] for more details).

3.3.2. Proof of Theorem 3.6. Our argumentation follows the same lines as in the proof of a

similar result in [7, §5.2] for the special case of the coefficients (1.7) (with ρ = 1), but adapted

to a more general context based on the cumulant expansions. To be specific, let us consider

the coordinate ξ1 of the random vector ξ = (ξ1, ξ2) (for ξ2 the proof is similar).
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Step 1. According to (3.15) we have

Ez(ξ1) =
∞∑

k,m=1

akµ(m)F (km), (3.48)

where F (h) is given by (3.14). Note that the corresponding function f(x) = x1e
−〈α,x〉

(see (3.12)) has the property

∫

R
2
+

f(x) dx =

∫ ∞

0

x1e
−α1x1 dx1

∫ ∞

0

e−α2x2 dx2 =
1

α2
1α2

. (3.49)

Moreover, by virtue of the relation α2
1α2 = κ3/n1 (see (3.11)) we have (cf. (3.17))

1

α2
1α2

∞∑

k,m=1

akµ(m)

k2m2
=

n1

κ3

∞∑

k=1

ak

k2

∞∑

m=1

µ(m)

m2
≡ n1. (3.50)

Thus, subtracting (3.50) from (3.48) and substituting (3.49) we obtain the representation

Ez(ξ1) − n1 =
∞∑

k,m=1

akµ(m)∆f (km), (3.51)

where ∆f (h) is defined in (3.45).

Step 2. Recalling the notation τ = n2/n1 and the relation α2 = α1/τ (see (3.10) and (3.11)),

the Mellin transform (3.44) of the function F (h) may be represented in the form

F̂ (s) = α−s−1
1 F̃ (s), (3.52)

where

F̃ (s) =

∫ ∞

0

yse−y

(1 − e−y)2 (1 − e−y/τ )
dy, ℜ(s) > 2. (3.53)

Clearly, the functions f(x), F (h) satisfy all the hypotheses of Section 3.3.1, including the

asymptotics (3.42) and (3.43), with any β > 2. Hence, by Lemma 3.7 the function F̂ (s) is

regular for 1 < ℜ(s) < 2, and the formula (3.47) together with (3.52) yields

∆f (h) =
1

2πi

∫ c+i∞

c−i∞

h−sα−s−1
1 F̃ (s) ds, 1 < c < 2. (3.54)

Thus, substituting the representation (3.54) (with h = km) into (3.51) we get

Ez(ξ1) − n1 =
1

2πi

∞∑

k,m=1

akµ(m)

∫ c+i∞

c−i∞

F̃ (s)

αs+1
1 (km)s

ds, 1 < c < 2. (3.55)

Step 3. Aiming to mollify the singularity of the integrand in (3.53) at zero, set

φ(y) :=
y e−y

(1 − e−y)2

(
1

1 − e−y/τ
− τ

y
− 1

2

)
, y > 0, (3.56)

19



and consider the regularized integral

I(s) :=

∫ ∞

0

ys−1φ(y) dy, (3.57)

so that (3.53) is rewritten in the form

F̃ (s) = I(s) + τ

∫ ∞

0

ys−1e−y

(1 − e−y)2
dy +

1

2

∫ ∞

0

yse−y

(1 − e−y)2
dy. (3.58)

The integrals in (3.58) are easily evaluated: if ℜ(s) > 2 then

∫ ∞

0

ys−1e−y

(1 − e−y)2
dy =

∫ ∞

0

ys−1

∞∑

k=1

k e−ky dy =
∞∑

k=1

k

∫ ∞

0

ys−1e−ky dy

=
∞∑

k=1

1

ks−1

∫ ∞

0

us−1 e−u du = ζ(s − 1)Γ(s), (3.59)

and likewise ∫ ∞

0

yse−y

(1 − e−y)2
dy = ζ(s)Γ(s + 1). (3.60)

Thus, substituting (3.59) and (3.60) into (3.58) we get

F̃ (s) = I(s) + τ ζ(s − 1)Γ(s) + 1
2
ζ(s)Γ(s + 1), ℜ(s) > 2. (3.61)

Step 4. The representation (3.61) renders an explicit analytic continuation of F̂ (s) into the

strip 0 < ℜ(s) < 2 (cf. Lemma 3.7). To show this, let us first investigate the integral (3.57).

Lemma 3.8. The function φ(y) defined in (3.56) has the following asymptotic expansions

φ(y) = 1
12

τ−1 + O(y2), y → 0, (3.62)

φ(y) = 1
2
y e−y (1 + o(1)), y → ∞, (3.63)

which can be formally differentiated to produce the corresponding expansions of φ′(y), φ′′(y).

Proof. By Taylor’s expansion it is easy to check that, as y → 0,

1

1 − e−y/τ
− τ

y
− 1

2
=

y

12τ

(
1 + O(y2)

)
,

y e−y

(1 − e−y)2
=

1

y

(
1 + O(y2)

)
,

and (3.62) follows on substituting this into (3.56). Since differentiation of Taylor expansions

is legitimate, from (3.62) we also get φ′(y) = O(y) and φ′′(y) = O(1), as y → 0.

The asymptotics (3.63) follow immediately from (3.56), and it is also straightforward to

see that the main asymptotic contribution to the derivatives of φ(y), as y → ∞, is furnished

by the term y e−y, so that φ′(y) ∼ 1
2
y e−y and φ′′(y) ∼ 1

2
y e−y as y → ∞.

In view of (3.62) and (3.63), the integral (3.57) is absolutely convergent if ℜ(s) > 0, and

therefore the function I(s) is regular in the corresponding half-plane.

Returning to the representation (3.61), note that the gamma function Γ(s) is analytic for

ℜ(s) > 0 (see, e.g., [17, §4.41, p. 148]), whereas the Riemann zeta function ζ(s) is meromor-

phic in the complex plane C with a single (simple) pole at point s = 1 (see, e.g., [17, §4.43,

p. 152]). Thus, the right-hand side of (3.61) is meromorphic in the half-plane ℜ(s) > 0, with

the simple poles at s = 1 and s = 2.
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Step 5. Setting s = σ+it, let us estimate the function F̃ (s) as t → ∞. First of all, integrating

by parts (twice) in (3.57) and using the asymptotic formulas (3.62), (3.63) for the function

φ(y) and its derivatives, we obtain

I(s) =
1

s(s + 1)

∫ ∞

0

ys+1φ′′(y) dy = O(t−2), t → ∞, (3.64)

uniformly in 0 < c1 ≤ σ ≤ c2 < ∞. The gamma function in such a strip satisfies the uniform

estimate (see [17, §4.42, p. 151])

Γ(s) = O
(
|t|σ−1/2 e−π|t|/2

)
, t → ∞. (3.65)

We also have the following uniform bounds on the growth of the Riemann zeta function as

t → ∞ (see [12], Theorem 1.9, p. 25),

ζ(s) =

{
O(ln |t|), 1 ≤ σ ≤ 2,

O
(
|t|(1−σ)/2 ln |t|

)
, 0 ≤ σ ≤ 1.

(3.66)

Therefore, substituting the estimates (3.64), (3.65) and (3.66) into (3.61) and comparing the

resulting contributions, it is easy to check that for 1 ≤ c ≤ 2, uniformly in n ∈ Z
2
+ ,

F̃ (c + it) = O(t−2), t → ∞. (3.67)

Step 6. Interchanging the order of summation and integration in (3.55) gives

Ez(ξ1) − n1 =
1

2πi

∫ c+i∞

c−i∞

F̃ (s)

αs+1
1

∞∑

k=1

ak

ks

∞∑

m=1

µ(m)

ms
ds

=
1

2πi

∫ c+i∞

c−i∞

F̃ (s)A(s)

αs+1
1 ζ(s)

ds, (3.68)

where we used the notation (2.22) and the formula (3.18). This computation is justified by

virtue of the absolute convergence, since for 1 < c < 2

∫ c+i∞

c−i∞

|F̃ (s)|
αc+1

1

∞∑

k=1

|ak|
kc

∞∑

m=1

1

mc
d|s| =

A+(c)ζ(c)

αc+1
1

∫ ∞

−∞

|F̃ (c + it)| dt < ∞, (3.69)

where A+(c) ≤ A+(1) < ∞ due to the hypothesis of Theorem 3.6, whereas the last integral

in (3.69) is finite thanks to the bound (3.67).

Thus, on substituting (3.61) into (3.68) we have

Ez(ξ1) − n1 =
1

2πi

∫ c+i∞

c−i∞

A(s)α−s−1
1 Ψ(s) ds (1 < c < 2), (3.70)

where

Ψ(s) :=
F̃ (s)

ζ(s)
=

I(s) + τ ζ(s − 1)Γ(s)

ζ(s)
+

1

2
Γ(s + 1). (3.71)
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Step 7. Since ζ(s) 6= 0 for ℜ(s) ≥ 1, the function Ψ(s) defined by the expression (3.71) is

analytic in the half-plane ℜ(s) > 1; moreover, it can be extended by continuity to the line

ℜ(s) = 1, where the singularity at s = 1 (due to the pole of ζ(s) in the denominator) can be

removed by setting Ψ(1) := lims→1 Ψ(s) = 1
2
Γ(2) = 1

2
.

Let us show that the integration contour ℜ(s) = c > 1 in (3.70) can be moved to ℜ(s) = 1.

By the Cauchy theorem, it suffices to check that

lim
T→±∞

∫ c+iT

1+iT

A(s)α−s−1
1 Ψ(s) ds = 0. (3.72)

To this end, note that for 1 ≤ σ ≤ c

|A(σ + iT )| ≤ A+(σ) ≤ A+(1) < ∞

(see (2.22)) and α−σ−1
1 ≤ α−c−1

1 (since α1 → 0, we may assume that α1 < 1). From (3.67) we

also have |F̃ (σ + iT )| = O(T−2) as T → ∞; furthermore, it is known (see [18, Eq. (3.11.8),

p. 60]) that ζ(σ + iT )−1 = O(ln |T |) as T → ∞, uniformly in σ ≥ 1. Hence, substituting

these estimates into (3.71) we obtain, uniformly in 1 ≤ σ ≤ c and n ∈ Z
2
+ ,

Ψ(σ + iT ) =
F̃ (σ + iT )

ζ(σ + iT )
= O

(
T−2 ln |T |

)
→ 0, T → ∞. (3.73)

As a result, the limit (3.72) follows. Thus, the representation (3.70) takes the form

Ez(ξ1) − n1 =
1

2πi

∫ 1+i∞

1−i∞

A(s)α−s−1
1 Ψ(s) ds. (3.74)

Step 8. Finally, the formula (3.74) yields the bound

|Ez(ξ1) − n1| =
A+(1)

2πα2
1

∫ ∞

−∞

|Ψ(1 + it)| dt = O(|n|2/3), (3.75)

since α1 ≍ |n|−1/3 according to (3.2) and the integral in (3.75) is finite thanks to the bound

(3.73). This completes the proof of Theorem 3.6.

4. Asymptotics of higher-order moments

Throughout this section, we again assume that A+(2) < ∞, except in Section 4.3 where a

stronger condition A+(1) is required.

4.1. The variance–covariance of ξ

Denote µz := Ez(ξ) and let Kz := Covz(ξ, ξ) = Ez(ξ − µz)
⊤(ξ − µz) be the covariance

matrix of the random vector ξ =
∑

x∈X xν(x). Recalling that the random variables ν(x)
are independent for different x ∈ X and using (2.19) with q = 2, the elements Kz(i, j) =
Covz(ξi, ξj) of the matrix Kz are given by

Kz(i, j) =
∑

x∈X

xixjVarz[ν(x)] =
∑

x∈X

xixj

∞∑

k=1

k2ak zkx, i, j ∈ {1, 2}. (4.1)
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4.1.1. Asymptotics of the covariance matrix.

Theorem 4.1. As n → ∞,

Kz(i, j) ∼ Bij (n1n2)
2/3, i, j ∈ {1, 2}, (4.2)

where the matrix B = (Bij) is given by

B = κ−1

(
2τ−1 1

1 2τ

)
. (4.3)

Proof. The calculations below follow the lines of the proof of Theorem 3.2, so we only sketch

the proof. Let us first consider the element Kz(1, 1). Substituting the parameterization z =
e−α (see (3.2)) into (4.1), we obtain (cf. (3.3))

Kz(1, 1) =
∑

x∈X

x2
1

∞∑

k=1

k2ak e−k〈α,x〉. (4.4)

Using the Möbius inversion formula (3.7), similarly to (3.15) the right-hand side of (4.4) can

be rewritten in the form

Kz(1, 1) =
∞∑

m=1

m2µ(m)
∞∑

k=1

k2ak

∑

x∈Z
2
+

x2
1e

−km〈α,x〉

=
∞∑

k,m=1

m2µ(m)k2ak

∞∑

x1=1

x2
1e

−kmα1x1

∞∑

x2=0

e−kmα2x2

=
∞∑

k,m=1

m2µ(m)k2ak
e−kmα1(1 + e−kmα1)

(1 − e−kmα1)3(1 − e−kmα2)
, (4.5)

where we used the expressions (2.26) for S1(·) and S3(·). Similarly to the estimate (3.16),

by virtue of (2.30) the general term in the sum (4.5) is bounded by O(α−3
1 α−1

2 )|ak|k−2m−2,

uniformly in k,m, and furthermore,

∞∑

k,m=1

|ak|
k2m2

= A+(2)ζ(2) < ∞.

Therefore, by the dominated convergence argument, from (4.5) we obtain, similarly to (3.16),

lim
n→∞

α3
1α2Kz(1, 1) = 2

∞∑

k=1

ak

k2

∞∑

m=1

µ(m)

m2
=

2A(2)

ζ(2)
= 2κ3. (4.6)

To reduce this limit to (4.2), observe using the scaling relations (3.11) that

α3
1α2 =

α1

α2

α2
1α

2
2 = τκ4(n1n2)

−2/3, (4.7)

and from (4.6) we get

lim
n→∞

(n1n2)
−2/3Kz(1, 1) = τ−1κ−4 lim

n→∞
α3

1α2Kz(1, 1) = 2τ−1κ−1 = B11, (4.8)
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as required (cf. (4.2), (4.3)).

The element Kz(2, 2) is analyzed in a similar fashion. Finally, for Kz(1, 2) we obtain,

similarly as in (4.5) and (4.6),

Kz(1, 2) =
∑

x∈X

x1x2

∞∑

k=1

k2ak e−k〈α,x〉

=
∞∑

k,m=1

k2ak m2µ(m)
∞∑

x1=1

x1e
−kmα1x1

∞∑

x2=1

x2 e−kmα2x2

=
∞∑

k,m=1

k2ak m2µ(m)
e−kmα1 e−kmα2

(1 − e−kmα1)2(1 − e−kmα2)2

∼ α−2
1 α−2

2

∞∑

k=1

ak

k2

∞∑

m=1

µ(m)

m2
= α−2

1 α−2
2 κ3 (n → ∞).

Hence, using the identity α2
1α

2
2 = κ4(n1n2)

−2/3 (cf. (4.7)), it follows as in (4.8) that

lim
n→∞

(n1n2)
−2/3Kz(1, 2) = κ−4 lim

n→∞
α2

1α
2
2Kz(1, 2) = κ−1 = B12,

according to the notation (4.3). Thus, the proof of the theorem is complete.

4.1.2. The norm of the covariance matrix. The next lemma is an immediate corollary of

Theorem 4.1.

Lemma 4.2. As n → ∞,

det Kz ∼ 3κ−2(n1n2)
4/3 ≍ |n|8/3. (4.9)

This result implies that the matrix Kz is non-degenerate, at least asymptotically as n → ∞.

In fact, from (4.1) it is easy to deduce (e.g., using the Cauchy–Schwarz inequality together with

the characterization of the equality case) that Kz is positive definite; in particular, det Kz > 0

and hence Kz is invertible. Let Vz := K
−1/2
z be the (unique) square root of the matrix K−1

z ,

that is, a symmetric, positive definite matrix such that V 2
z = K−1

z .

We need some general facts about the matrix norm ‖·‖, which we state as a lemma (see [7,

§7.2, p. 2301] for simple proofs and bibliographic comments).

Lemma 4.3. (a) If A is a real matrix then ‖A⊤A‖ = ‖A‖2.

(b) If A = (aij) is a real d × d matrix, then

1

d

d∑

i,j=1

a2
ij ≤ ‖A‖2 ≤

d∑

i,j=1

a2
ij .

(c) Let A be a real symmetric 2 × 2 matrix with det A 6= 0. Then

‖A−1‖ =
‖A‖

|det A| .

Let us now estimate the norm of the matrices Kz and Vz = K
−1/2
z .
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Lemma 4.4. As n → ∞, one has

‖Kz‖ ≍ |n|4/3, ‖Vz‖ ≍ |n|−2/3. (4.10)

Proof. Lemma 4.3(b) and Theorem 4.1 imply

‖Kz‖2 ≍
2∑

i,j=1

Kz(i, j)
2 ≍ (n1n2)

4/3 ≍ |n|8/3 (n → ∞),

which proves the first estimate in (4.10). Furthermore, using parts (a) and (c) of Lemma 4.3,

we have

‖Vz‖2 = ‖V 2
z ‖ = ‖K−1

z ‖ =
‖Kz‖
det Kz

≍ |n|4/3

|n|8/3
= |n|−4/3,

according to the known asymptotics of det Kz and ‖Kz‖ (see (4.9) and (4.10), respectively).

Hence, the second estimate in (4.10) follows, and the proof of the lemma is complete.

4.2. The cumulants of ξj

By the parameterization z = e−α (see (3.2)), the expansion (2.21) takes the form

κq[ξj] =
∑

x∈X

xq
j

∞∑

k=1

kqak e−k〈α,x〉, q ∈ N. (4.11)

Lemma 4.5. For each q ∈ N, as n → ∞,

κq[ξj] ∼
q! κ3

αq+1
1 α2

≍ |n|(q+2)/3, n → ∞. (4.12)

Proof. Let j = 1 (the case j = 2 is handled in a similar fashion). Using the Möbius inversion

formula (3.7), similarly to (3.15) the right-hand side of (4.11) (with j = 1) can be rewritten as

κq[ξ1] =
∞∑

k,m=1

kqak mqµ(m)
∑

x∈Z
2
+

xq
1e

−km〈α,x〉

=
∞∑

k,m=1

kqak mqµ(m)
∞∑

x1=1

xq
1e

−kmα1x1

∞∑

x2=0

e−kmα2x2

=
∞∑

k,m=1

kqak mqµ(m)Sq+1(kmα1)
1

1 − e−kmα2
, (4.13)

where we used the notation (2.25). Applying Lemma 2.7(a) and then the estimate (2.30)

(cf. (3.16)), we obtain

αq+1
1 α2 Sq+1(kmα1)

1 − e−kmα2
≤ αq+1

1 α2 c̄q+1 e−kmα1

(1 − e−kmα1)q+1(1 − e−kmα2)

≤ c̄q+1 Cq+1(1/2)C1(τ∗/2)

(km)q+2
.
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Consequently, the general summand in the double series (4.13) multiplied by αq+1
1 α2 is

bounded, uniformly in k, m ≥ 1, by O(1) |ak|k−2m−2, which is a term of a convergent series

owing to the condition A+(2) < ∞. Hence, applying Lebesgue’s dominated convergence

theorem and using Lemma 2.7(b), we obtain

lim
n→∞

αq+1
1 α2 κq[ξ1] = q!

∞∑

k,m=1

µ(m)ak

k2m2
= q!

A(2)

ζ(2)
= q! κ3 . (4.14)

Finally, according to (3.2) we have αq+1
1 α2 ≍ |n|−(q+2)/3, and hence (4.14) implies (4.12).

In Section 5.4 we will require an asymptotic bound for the sixth-order central moment of

ξj , which is established next.

Lemma 4.6. Set ξ0
j := ξj − Ez(ξj) (j = 1, 2). Then

Ez

[
(ξ0

j )
6
]
≍ |n|4, n → ∞. (4.15)

Proof. Using the expression of the sixth central moment via the cumulants (see (2.18) with

X = ξj and q = 6), we have

Ez

[
(ξ0

j )
6
]

= κ6[ξj ] + 15κ4[ξj ]κ2[ξj ] + 10(κ3[ξj ])
2 + 15(κ2[ξj ])

3. (4.16)

Applying Lemma 4.5 to the cumulants involved in (4.16), it is easy to check that the main

asymptotic term is given by (κ2[ξj ])
3 ≍ |n|4, which proves the relation (4.15).

4.3. The Lyapunov coefficient

Let us introduce the Lyapunov coefficient (of the third order)

Lz := ‖Vz‖3
∑

x∈X

|x|3µ3[ν(x)], (4.17)

where µ3[ν(x)] is the third-order absolute central moment of ν(x),

µ3[ν(x)] := Ez

[
|ν0(x)|3

]
, ν0(x) := ν(x) − Ez[ν(x)]. (4.18)

The next asymptotic estimate will play an important role in the proof of the local limit

theorem in Section 5.3 below.

Lemma 4.7. Suppose that A+(1) < ∞. Then

Lz ≍ |n|−1/3, n → ∞. (4.19)

Proof. In view of the definition (4.17) and the asymptotics ‖Vz‖ ≍ |n|−2/3 (see (4.10)), for

the proof of (4.19) it suffices to show that

M3 :=
∑

x∈X

|x|3µ3[ν(x)] ≍ |n|5/3, n → ∞. (4.20)

Starting with a lower bound for M3, observe using the relation (2.18) with q = 3 that

µ3[ν(x)] ≥ Ez[ν
0(x)3] = κ3[ν(x)]. (4.21)
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Hence, using the formula (2.21) and Lemma 4.5 (with q = 3), from (4.20) we get

M3 ≥
∑

x∈X

|x|3κ3[ν(x)] ≥
∑

x∈X

x3
1κ3[ν(x)] = κ3[ξ1] ≍ |n|5/3, n → ∞, (4.22)

which is in agreement with the claim (4.20).

Let us now obtain a suitable upper bound on M3. First, using the elementary inequality

|x|3 = (x2
1 + x2

2)
3/2 ≤

√
2 (x3

1 + x3
2)

(which follows from Hölder’s inequality for the function y = x3/2), we have

M3 ≤
√

2
∑

x∈X

(x3
1 + x3

2)µ3[ν(x)]. (4.23)

To estimate the moment µ3[ν(x)] (see (4.18)), observe that for any u, v ≥ 0

|u − v|3 = (u − v)2|u − v| ≤ (u − v)2(u + v) = (u − v)3 + 2v(u − v)2. (4.24)

Setting in (4.24) u = ν(x), v = Ez[ν(x)] and taking the expectation, we get the inequality

µ3[ν(x)] ≤ Ez[ν
0(x)3] + 2Ez[ν(x)] · Ez[ν

0(x)2]

= κ3[ν(x)] + 2κ1[ν(x)]κ2[ν(x)],

according to the identities (2.17), (2.18) applied to ν(x). Note that the term κ3[ν(x)] here is

the same as in (4.21), so upon the substitution into (4.23) it gives the contribution of the order

of |n|5/3 into the upper bound for M3.

Next, using the expansion (2.19) with q = 1 and q = 2, we obtain

∑

x∈X

x3
1 κ1[ν(x)]κ2[ν(x)] =

∑

x∈X

x3
1

∞∑

k=1

kak e−k〈α,x〉
∞∑

ℓ=1

ℓ2aℓ e−ℓ〈α,x〉

≤
∑

k,ℓ≥1

k|ak|ℓ2|aℓ|
∑

x∈Z
2
+

x3
1 e−(k+ℓ)〈α,x〉. (4.25)

Using the notation (2.25) and the bounds of Lemmas 2.7 and 2.8, the internal sum in (4.25)

can be estimated, uniformly in k, ℓ ≥ 1, as follows (cf. (3.16))

∑

x∈Z
2
+

x3
1 e−(k+ℓ)〈α,x〉 =

∞∑

x1=1

x3
1 e−(k+ℓ)α1x1

∞∑

x2=0

e−(k+ℓ)α2x2

= S4((k + ℓ)α1) ·
1

1 − e−(k+ℓ)α2

≤ c̄4 e−(k+ℓ)α1

(1 − e−(k+ℓ)α1)4 (1 − e−(k+ℓ)α2)

=
O(1)

(k + ℓ)5α4
1α2

=
O(|n|5/3)

(k + ℓ)5
, (4.26)

in view of the asymptotics α1 ≍ α2 ≍ |n|−1/3 (see (3.2)). The analogous sum with x3
2 in place

of x3
1 in (4.25) is estimated similarly, so combining (4.23) and (4.26) we get

M3 = O(|n|5/3)
∑

k,ℓ≥1

k|ak|ℓ2|aℓ|
(k + ℓ)5

. (4.27)
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Furthermore, by the elementary inequality

(k + ℓ)5 = (k + ℓ)2(k + ℓ)3 ≥ k2ℓ3

the (double) series on the right-hand side of (4.27) is bounded by

∑

k,ℓ≥1

k |ak| ℓ2|aℓ|
k2ℓ3

=
∞∑

k=1

|ak|
k

∞∑

ℓ=1

|aℓ|
ℓ

= A+(1)2 < ∞,

according to the lemma’s hypothesis. Thus, returning to (4.27) we see that M3 = O(|n|5/3),
and together with the lower bound (4.22) this completes the proof of (4.20).

5. A local limit theorem and the limit shape

5.1. Statement of the theorem

The role of the local limit theorem in our approach is to yield the asymptotics of the probability

Qz{ξ = n} ≡ Qz(Πn) appearing in the representation of the measure Pn as a conditional

distribution, Pn(·) = Qz(· |Πn) = Qz(·)/Qz(Πn) (see Section 2.1).

To prove such a theorem (see Theorem 5.1 below), we will require a technical condition

on the generating function β(u) as follows.

Assumption 5.1. There exists a constant δ∗ > 0 such that for any θ ∈ (0, 1) the function

u 7→ ln β(u) (u ∈ C) satisfies the inequality

ln β(θ) −ℜ(ln β(θ eit)) ≥ δ∗ θ (1 − cos t), t ∈ R. (5.1)

Remark 5.1. In terms of the coefficients {ak} in the power series expansion of the function

ln β(u) (see (2.13)), the left-hand side of (5.1) is expressed as
∑∞

k=1 akθk(1 − cos kt). Con-

sequently, if a1 > 0 and ak ≥ 0 for all k ≥ 2 then the inequality (5.1) is satisfied, with

δ∗ = a1 > 0.

As before, we denote µz = Ez(ξ), Kz = Covz(ξ, ξ), Vz = K
−1/2
z (see Section 4.1).

Consider the probability density function of a two-dimensional normal distribution N (µz, Kz)
(i.e., with mean µz and covariance matrix Kz), given by

fµz,Kz
(x) =

1

2π
√

det Kz

exp
(
−1

2
|(x − µz)Vz|2

)
, x ∈ R

2. (5.2)

Theorem 5.1. Assume that A+(1) < ∞ and suppose that Assumption 5.1 holds. Then, uni-

formly in x ∈ Z
2
+ ,

Qz{ξ = x} = fµz,Kz
(x) + O(|n|−5/3), n → ∞. (5.3)

Corollary 5.2. Under the conditions of Theorem 5.1

Qz{ξ = n} ≍ |n|−4/3, n → ∞. (5.4)

With the asymptotic results of Sections 3.3 and 4.1 at hand, it is not difficult to deduce the

corollary from the theorem.
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Proof of Corollary 5.2. According to Theorem 3.6, we have µz = n + O(|n|2/3). Together

with the asymptotics of ‖Vz‖ (see (4.10)) this implies

|(n − µz)Vz| ≤ |n − µz| · ‖Vz‖ = O(|n|2/3) · |n|−2/3 = O(1).

Hence, with the help of Lemma 4.2 we get

fµz,Kz
(n) =

1

2π
√

det Kz

e−|(n−µz)Vz |2/2 ≍ 1√
det Kz

≍ |n|−4/3,

and (5.4) now readily follows from (5.3).

5.2. Estimates of the characteristic functions

Before proving Theorem 5.1, we have to make some technical preparations. Recall from

Section 2.1 that, with respect to the measure Qz, the random variables {ν(x)}x∈X are in-

dependent and have the characteristic functions (2.14). Hence, the characteristic function

ϕξ(λ) := Ez(e
i〈λ, ξ〉) of the vector sum ξ =

∑
x∈X xν(x) is given by

ϕξ(λ) =
∏

x∈X

ϕν(x)(〈λ, x〉) =
∏

x∈X

β(zxei〈λ,x〉)

β(zx)
, λ ∈ R

2. (5.5)

The next lemma provides a useful estimate (proved in [7, Lemma 7.12]) for the character-

istic function ϕξ0(λ) = e−〈λ,µz〉ϕξ(λ) of the centered random vector ξ0 := ξ − µz . Recall that

the Lyapunov ratio Lz is defined in (4.17), and that Vz = K
−1/2
z (see Section 4.1).

Lemma 5.3. If y ∈ R
2 is such that |y| ≤ L−1

z then

∣∣ϕξ0(yVz) − e−|y|2/2
∣∣ ≤ 16Lz|y|3 e−|y|2/6.

Under Assumption 5.1, ϕξ(λ) admits a simple global bound (cf. [7, Lemma 7.13]).

Lemma 5.4. Suppose that Assumption 5.1 is satisfied (with δ∗ > 0). Then

|ϕξ(λ)| ≤ exp{−δ∗Jα(λ)}, λ ∈ R
2, (5.6)

where

Jα(λ) :=
∑

x∈X

e−〈α,x〉
(
1 − cos〈λ, x〉

)
, λ ∈ R

2. (5.7)

Proof. From (5.5) we have

|ϕξ(λ)| = exp

{
∑

x∈X

ln
∣∣ϕν(x)(〈λ, x〉)

∣∣
}

. (5.8)

Furthermore, using (2.15) and Assumption 5.1 (with θ = zx, see (5.1)), we have

ln|ϕν(x)(t)| = ℜ(ln ϕν(x)(t)) = ℜ(ln β(zxeit)) − ln β(zx)

≤ −δ∗z
x(1 − cos t), t ∈ R.

Utilizing this estimate under the sum in (5.8) (with t = 〈λ, x〉) and substituting zx = e−〈α,x〉

(see the notation (3.2)), we arrive at the inequality (5.6).
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5.3. Proof of Theorem 5.1

By definition, the characteristic function of the random vector ξ is given by the Fourier series

ϕξ(λ) =
∑

x∈Z
2
+

Qz{ξ = x} ei〈λ,m〉, λ ∈ R
2,

hence the Fourier coefficients are expressed as

Qz{ξ = x} =
1

4π2

∫

T 2

e−i〈λ,x〉ϕξ(λ) dλ, x ∈ Z
2
+ , (5.9)

where T 2 := {λ = (λ1, λ2) ∈ R
2 : |λ1| ≤ π, |λ2| ≤ π}. On the other hand, the characteristic

function corresponding to the normal probability density fµz,Kz
(·) (see (5.2)) is given by

ϕµz,Kz
(λ) = ei〈λ,µz〉−|λV −1

z |2/2, λ ∈ R
2,

so by the Fourier inversion formula

fµz,Kz
(x) =

1

4π2

∫

R2

e−i〈λ,x〉 ei〈λ,µz〉−|λV −1
z |2/2 dλ, x ∈ Z

2
+ . (5.10)

Denote Dz := {λ ∈ R
2 : |λV −1

z | > L−1
z }. If λ ∈ Dc

z := R
2 \ Dz then, on account of the

asymptotics of ‖Vz‖ and Lz (see (4.10) and (4.19), respectively), we get

|λ| = |λV −1
z Vz| ≤ |λV −1

z | · ‖Vz‖ ≤ L−1
z ‖Vz‖ = O(|n|−1/3) = o(1),

which implies that Dc
z ⊂ T 2 for all n = (n1, n2) large enough. Hence, subtracting (5.10) from

(5.9) it is easy to see that, uniformly in x ∈ Z
2
+ ,

∣∣Qz{ξ = x} − fµz,Kz
(x)
∣∣ ≤ I1 + I2 + I3 , (5.11)

where

I1 :=
1

4π2

∫

Dc
z

∣∣ϕξ(λ) − ei〈λ,µz〉−|λV −1
z |2/2

∣∣ dλ, (5.12)

I2 :=
1

4π2

∫

Dz

e−|λV −1
z |2/2 dλ, (5.13)

I3 :=
1

4π2

∫

T 2∩Dz

|ϕξ(λ)| dλ. (5.14)

By the substitution λ = yVz, the integral (5.12) is reduced to

I1 =
det Vz

4π2

∫

|y|≤L−1
z

∣∣ϕξ(yVz) − ei〈yVz,µz〉−|y|2/2
∣∣ dy

=
1

4π2
√

det Kz

∫

|y|≤L−1
z

∣∣ϕξ0(yVz) − e−|y|2/2
∣∣ dy

= O(|n|−4/3)Lz

∫

R2

|y|3 e−|y|2/6 dy = O(|n|−5/3), (5.15)
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on account of Lemmas 4.2, 4.7 and 5.3. Similarly, using the change of variables λ = yVz in

the integral (5.13) and passing to the polar coordinates, by Lemmas 4.2 and 4.7 we get

I2 =
det Vz

4π2

∫

|y|>L−1
z

e−|y|2/2 dy

=
det Vz

2π

∫ ∞

L−1
z

r e−r2/2 dr = O(|n|−4/3) e−L−2
z /2 = o(|n|−5/3). (5.16)

Finally, let us turn to the integral (5.14). Note that if λ ∈ Dz (i.e., |λV −1
z | > L−1

z ), then

|λ| > η |α| for a small enough constant η > 0, and hence max{|λ1|/α1, |λ2|/α2} > η; for

otherwise, from (3.2) and Lemmas 4.4 and 4.7 it would follow

1 < Lz|λV −1
z | ≤ Lzη |α| · ‖Kz‖1/2 = O(η) → 0 as η ↓ 0,

which is a contradiction. Thus, also using Lemma 5.4 to estimate the integrand in (5.14), we

get the bound

I3 ≤
1

4π2

2∑

j=1

∫

T 2

1{|λj |>ηαj}(λ) e−δ∗Jα(λ) dλ, (5.17)

where 1B(λ) is the indicator of a set B ⊂ R
2. To estimate the first integral in (5.17) (i.e., with

j = 1), let us keep in the summation (5.7) only the pairs of the form x = (x1, 1), x1 ∈ Z+ ,

giving a lower bound

Jα(λ) ≥
∞∑

x1=0

e−α1x1
(
1 −ℜ(ei(λ1x1+λ2))

)
=

1

1 − e−α1
−ℜ

(
eiλ2

1 − e−α1+iλ1

)

≥ 1

1 − e−α1
− 1

|1 − e−α1+iλ1| , (5.18)

because ℜ(s) ≤ |s| for any s ∈ C. Since ηα1 ≤ |λ1| ≤ π, we have

|1 − e−α1+iλ1| ≥ |1 − e−α1+iηα1 | ∼ α1

√
1 + η2 (α1 → 0).

Substituting this estimate into (5.18), we conclude that Jα(λ) is asymptotically bounded below

by C(η)α−1
1 ≍ |n|1/3 (with C(η) := 1 − (1 + η2)−1/2 > 0), uniformly in λ such that ηα1 ≤

|λ1| ≤ π. Thus, the first integral in (5.17) is bounded by

O(1) exp
(
−const · |n|1/3

)
= o(|n|−5/3).

The second integral in (5.17) (with j = 2) is estimated in a similar fashion by reducing the

summation in (5.7) to that over the pairs x = (1, x2) only.

As a result, we get that I3 = o(|n|−5/3). Substituting this estimate, together with (5.15)

and (5.16), into (5.11) we obtain (5.3), and the proof of Theorem 5.1 is complete.

5.4. Proof of the limit shape results

With all preparations at hand, we are finally in a position to prove the uniform convergence

of the scaled polygonal paths ξ̃n(·) := (n−1
1 ξ1(·), n−1

2 ξ2(·)) to the limit g∗(·) = (g∗
1(·), g∗

2(·))
in probability with respect to both measures Qz and Pn. Note that Theorems 5.5 and 5.6

below can be easily reformulated using the tangential distance dT (Γ̃n, γ
∗) defined in (1.9) (cf.

Theorem 1.1 which is stated in these terms).

Let us first establish the universality of the limit shape under the measure Qz.
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Theorem 5.5. Under Assumption 3.1, for each ε > 0 we have

lim
n→∞

Qz

{
sup

0≤t≤∞

∣∣n−1
j ξj(t) − g∗

j (t)
∣∣ ≤ ε

}
= 1 (j = 1, 2).

Proof. By Theorems 3.3 and 3.4, the expectation of the random process n−1
j ξj(t) uniformly

converges to g∗
j (t) as n → ∞. Therefore, we only need to check that, for each ε > 0,

lim
n→∞

Qz

{
sup

0≤t≤∞
n−1

j

∣∣ξj(t) − Ez[ξj(t)]
∣∣ > ε

}
= 0. (5.19)

Note that the random process ξ0
j (t) := ξj(t) − Ez[ξj(t)] has independent increments and

zero mean, hence it is a martingale with respect to the filtration Ft = σ{ν(x), x ∈ X (t)},

t ∈ [0,∞]. From the definition of ξj(t) (see (3.20)), it is also clear that ξ0
j (·) is càdlàg

(i.e., its paths are everywhere right-continuous and have left limits). Therefore, applying the

Doob–Kolmogorov submartingale inequality (see, e.g., [23, Theorem 6.14, p. 99]) and using

Theorem 4.1, we obtain

Qz

{
sup

0≤t≤∞
|ξ0

j (t)| > εnj

}
≤ Varz(ξj(∞))

ε2n2
j

≍ |n|−2/3 → 0, n → ∞.

Hence, the limit (5.19) follows.

Let us now prove our main result about the universality of the limit shape under the mea-

sure Pn (cf. Theorem 1.1).

Theorem 5.6. Let A+(1) < ∞ and Assumption 5.1 be satisfied. Then for any ε > 0

lim
n→∞

Pn

{
sup

0≤t≤∞

∣∣n−1
j ξj(t) − g∗

j (t)
∣∣ ≤ ε

}
= 1 (j = 1, 2).

Proof. Like in the proof of Theorem 5.5, the claim is reduced to the limit (cf. (5.19))

lim
n→∞

Pn

{
sup

0≤t≤∞
|ξ0

j (t)| > εnj

}
= 0, (5.20)

where ξ0
j (t) = ξj(t) − Ez[ξj(t)]. Using the definition (2.10) we easily get the bound

Pn

{
sup

0≤t≤∞
|ξ0

j (t)| > εnj

}
≤ Qz

{
sup0≤t≤∞ |ξ0

j (t)| > εnj

}

Qz{ξ = n} . (5.21)

Again applying the Doob–Kolmogorov submartingale inequality [23, Theorem 6.14, p. 99]

(but now with the sixth moment) and using Lemma 4.6, we obtain

Qz

{
sup

0≤t≤∞
|ξ0

j (t)| > εnj

}
≤ Ez

[
(ξ0

j )
6
]

ε6n6
j

≍ |n|−2. (5.22)

On the other hand, by Corollary 5.2

Qz{ξ = n} ≍ |n|−4/3. (5.23)

Combining (5.22) and (5.23), we conclude that the right-hand side of (5.21) is dominated by

a quantity of order of O(|n|−2/3) → 0, and so the limit in (5.20) follows.
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6. Examples

Let us now consider a few illustrative examples by specifying the generating function u 7→
β(u) =

∑∞
k=0 bku

k (see (2.4)). Although the associated multiplicative measures Qz and Pn are

defined primarily in terms of the coefficients {bk} (see (2.8) and (2.12), respectively), explicit

expressions for bk may be complicated, so we will not always attempt to give such expressions.

For our purposes, it is more important to focus on the function u 7→ ln β(u) and its power

expansion coefficients {ak}, since these are the ingredients that determine the convergence to

the limit shape (1.4). In particular, we will have to check the basic condition A+(2) < ∞
(see Assumption 3.1), as well as the refined condition A+(1) < ∞ and Assumption 5.1, both

needed for the limit shape result under the measure Pn (see Theorem 5.6).

Remark 6.1. It is worth pointing out that Examples 6.1, 6.2 and 6.3 have direct analogs in

the theory of decomposable combinatorial structures, corresponding to the well-known meta-

classes of multisets, selections, and assemblies, respectively (see [2] and [1, §2.2]). For further

details about this correspondence and, more generally, for an extensive discussion of the com-

binatorial interpretation of the generating functions described in Examples 6.1– 6.6 below, the

reader is referred to the recent paper [4, §§ 6.1, 6.2].

Example 6.1. For r ∈ (0,∞), ρ ∈ (0, 1], let Qz be a measure on the space Π determined by

the formula (2.5) with coefficients

bk =

(
r + k − 1

k

)
ρk, k ∈ Z+ .

A particular case with ρ = 1 was considered in [7] (cf. (1.7)). Note that b0 = 1, in accordance

with our convention in Section 2.1, and b1 = rρ. By the binomial expansion formula, the

generating function of the sequence (1.7) is given by

β(u) = (1 − ρu)−r, |u| < ρ−1, (6.1)

and formula (2.5) specializes to

Qz{ν(x) = k} =

(
r + k − 1

k

)
ρkzkx(1 − ρzx)r, k ∈ Z+ (x ∈ X ), (6.2)

which is a negative binomial distribution with parameters r and p = 1 − ρzx.

If r = 1 then bk = ρk, β(u) = (1 − ρu)−1 and, according to (6.2),

Qz{ν(x) = k} = ρkzkx(1 − ρzx), k ∈ Z+ (x ∈ X ).

In turn, from formulas (1.6) and (2.12) we get

Pn(Γ ) =
ρNΓ

∑
Γ ′∈Πn

ρNΓ ′

, Γ ∈ Πn, (6.3)

where NΓ :=
∑

x∈X ν(x) is the total number of integer points on Γ \ {0}. Furthermore, if

also ρ = 1 then (6.3) is reduced to the uniform distribution on Πn (see (2.12)),

Pn(Γ ) =
1

#(Πn)
, Γ ∈ Πn.

33



In the general case, using (6.1) we note that

ln β(u) = −r ln(1 − ρu) = r
∞∑

k=1

ρkuk

k
,

and so the coefficients {ak} in the expansion (2.13) are given by

ak =
rρk

k
> 0, k ∈ N (0 < ρ ≤ 1).

As pointed out in Remark 5.1, this implies that Assumption 5.1 is satisfied; also, it readily

follows that A+(σ) < ∞ for any σ > 0 (and each ρ ∈ (0, 1]).

Example 6.2. For m ∈ N, ρ ∈ (0, 1], consider the generating function

β(u) = (1 + ρu)m, |u| < ρ−1, (6.4)

with the coefficients in the expansion (2.4) given by

bk =

(
m

k

)
ρk =

m(m − 1) · · · (m − k + 1)

k!
ρk, k = 0, 1, . . . ,m.

In particular, b0 = 1, b1 = mρ. Accordingly, the formula (2.5) gives a binomial distribution

Qz{ν(x) = k} =

(
m

k

)
ρkzkx

(1 + ρzx)m
, k = 0, 1, . . . ,m (x ∈ X ), (6.5)

with parameters m and p = ρzx(1 + ρzx)−1.

In the special case m = 1, the measure Qz is concentrated on the subspace Π̌ of polygonal

lines with “simple” edges, that is, containing no lattice points between the adjacent vertices.

Here we have b0 = 1, b1 = ρ, and bk = 0 (k ≥ 2), so that (6.5) is reduced to

Qz{ν(x) = k} =
ρkzkx

1 + ρzx
, k = 0, 1 (x ∈ X ).

Accordingly, the formula (2.12) specifies on the corresponding subspace Π̌n the distribution

Pn(Γ ) =
ρNΓ

∑
Γ ′∈Π̌n

ρNΓ ′

, Γ ∈ Π̌n, (6.6)

where the number of integer points NΓ coincides here with the number of vertices on Γ \ {0}.

Furthermore, if also ρ = 1 then (6.6) is reduced to the uniform distribution on Π̌n,

Pn(Γ ) =
1

#(Π̌n)
, Γ ∈ Π̌n.

In the general case, from (6.4) we obtain

ln β(u) = m ln(1 + ρu) = m
∞∑

k=1

(−1)k−1ρk

k
uk, (6.7)
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hence the coefficients {ak} in the expansion (2.13) are given by

ak =
m(−1)k−1ρk

k
, k ∈ N (0 < ρ ≤ 1),

and in particular a1 = mρ > 0. Note that A+(σ) < ∞ for any σ > 0. Finally, let us check

that Assumption 5.1 holds. Using (6.7) we obtain, for any θ ∈ (0, 1) and all t ∈ R,

ln β(θ) −ℜ(ln β(θ eit)) = m ln(1 + ρθ) − mℜ
(
ln(1 + ρθ eit)

)

= m ln(1 + ρθ) − m ln |1 + ρθ eit|

= −m

2
ln

(
1 + 2ρθ cos t + ρ2θ2

(1 + ρθ)2

)

≥ −m

2

(
1 + 2ρθ cos t + ρ2θ2

(1 + ρθ)2
− 1

)

=
mρθ (1 − cos t)

(1 + ρθ)2
≥ mρ

(1 + ρ)2
θ (1 − cos t).

Thus, the inequality (5.1) holds with δ∗ = mρ/(1 + ρ)2 > 0.

Example 6.3. For b ∈ (0,∞), ρ ∈ [0, 1], consider the generating function

β(u) = exp

(
bu

1 − ρu

)
= exp

(
b

∞∑

k=1

ukρk−1

)
, |u| < ρ−1. (6.8)

Clearly, the corresponding coefficients bk in the expansion (2.4) are positive, with b0 = 1,

b1 = b, b2 = 1
2
b2 + bρ, etc. More systematically, one can use the well-known Faà di Bruno’s

formula (see, e.g., [13, Ch. I, §12, p. 34]) to obtain (for ρ > 0)

bk = ρk

k∑

m=1

(
b

ρ

)m ∑

(j1,...,jk)∈Jm

1

j1! · · · jk!
, k ∈ N, (6.9)

where Jm is the set of all nonnegative integer k-tuples (j1, . . . , jk) such that j1 + · · ·+ jk = m
and 1 · j1 + 2 · j2 + · · · + k · jk = k.

Taking the logarithm of (6.8), we see that the coefficients {ak} in (2.13) are given by

ak = bρk−1 > 0, k ∈ N (0 < ρ ≤ 1). (6.10)

Therefore, Assumption 5.1 is automatic (see Remark 5.1); moreover, A+(σ) < ∞ for any

σ > 0, except for the case ρ = 1 where A+(σ) < ∞ only for σ > 1.

In the special case ρ = 0, we have β(u) = ebu and the expression (6.9) is reduced to

bk = bk/k!, whereas (6.10) simplifies to a1 = b and ak = 0 for k ≥ 2. In this case, the random

variables ν(x) (x ∈ X ) have a Poisson distribution with parameter bzx,

Qz{ν(x) = k} =
bkzkx

k!
e−bzx

, k ∈ Z+ (x ∈ X ),

which leads, according to (2.12), to the following distribution on Πn

Pn(Γ ) =




∑

{k ′
x}∈Πn

∏

x∈X

bk ′
x

k ′
x!




−1

∏

x∈X

bkx

kx!
, Γ ↔ {kx} ∈ Πn.
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Example 6.4. Extending Example 6.3 (for simplicity, with b = 1), let us set for r > 0 and

ρ ∈ (0, 1]

β(u) := exp

(
u

(1 − ρu)r

)
, |u| < ρ−1. (6.11)

Taking the logarithm of (6.11) we get the power series expansion (cf. (6.1))

ln β(u) =
u

(1 − ρu)r
=

∞∑

k=1

(
r + k − 2

k − 1

)
ρk−1uk, (6.12)

which has positive coefficients ak (cf. (1.7)). Hence, Assumption 5.1 is satisfied by virtue of

Remark 5.1. To check the condition A+(σ) < ∞, observe using Stirling’s asymptotic formula

for the gamma function (see [9, §12.5, p. 130]) that

ak =

(
r + k − 2

k − 1

)
ρk−1 =

Γ(k + r − 1)

Γ(r)Γ(k)
ρk−1 ∼ kr−1

Γ(r)
ρk−1 (k → ∞),

hence A+(σ) < ∞ for any σ > 0 if ρ < 1, whereas if ρ = 1 then A+(σ) < ∞ only for σ > r.

On substituting (6.12) into Taylor’s expansion of the exponential function in (6.11), it is

evident that the corresponding coefficients bk in the power series expansion of β(u) are also

positive, with b0 = b1 = 1, b2 = rρ + 1
2
, etc.

Example 6.5. Combining the exponential form of Example 6.4 with the generating function

from Example 6.2, for ρ ∈ [0, 1], m ∈ N consider

β(u) := exp
{
u(1 + ρu)m−1

}
. (6.13)

Since u 7→ u(1 + ρu)m−1 is a polynomial of degree m with positive coefficients, it follows

that the coefficients {bk} in the power series expansion of the function (6.13) are positive for

all k ∈ Z+ .

From (6.13) by the binomial formula we obtain the expansion

ln β(u) = u(1 + ρu)m−1 =
m∑

k=1

(
m − 1

k − 1

)
ρk−1uk,

with the expansion coefficients ak > 0 for k = 1, . . . ,m and ak = 0 for k ≥ m + 1. Hence,

Assumption 5.1 is satisfied and A+(σ) < ∞ for any σ > 0.

Example 6.6. With r ∈ (0,∞), ρ ∈ (0, 1], consider the generating function

β(u) =

(− ln(1 − ρu)

ρu

)r

=

(
1 +

∞∑

k=1

ρkuk

k + 1

)r

=: β1(u)r. (6.14)

If r = m ∈ N then from (6.14) it is evident that the coefficients {bk} in the power series

expansion of β(u) are positive for all k ∈ Z+ ; however, for non-integer r > 0 this is not so

clear, since the binomial expansion of (1 + t)r involves negative terms. Yet the positivity of bk

for k ≥ 0 holds for any real r > 0, which will be established below.

Let us first analyze the coefficients {ak} in the power series expansion of ln β(u) =
r ln β1(u) (see (6.14)). Differentiation of the identity r ln β1(u) =

∑∞
k=1 aku

k gives

rβ′
1(u) = β1(u)

∞∑

k=1

kakuk−1. (6.15)
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Differentiating (6.15) again k − 1 times (k ≥ 1), by the Leibniz rule we obtain

β
(k)
1 (0) =

1

r

k−1∑

i=0

(
k − 1

i

)
β

(k−1−i)
1 (0) (i + 1)! ai+1, k ∈ N. (6.16)

But we know from (6.14) that β
(j)
1 (0) = ρjj!/(j + 1) (j ∈ Z+), and so the recurrence relation

(6.16) specializes (after some cancellations) to the equation

k

k + 1
=

1

r

k−1∑

i=0

ρ−i−1(i + 1)

k − i
ai+1. (6.17)

Furthermore, denoting for short ãj := r−1ρ−jjaj (j ∈ N) we can simplify (6.17) to

k

k + 1
=

k−1∑

i=0

ãi+1

k − i
. (6.18)

Setting here k = 1, 2, 3, . . . we find successively

ã1 = 1
2
, ã2 = 5

12
, ã3 = 3

8
, ã4 = 251

720
, . . .

More generally, let us prove that

1

k(k + 1)
≤ ãk ≤ k

k + 1
, k ∈ N. (6.19)

Since ã1 = 1
2
, the claim (6.19) is true for k = 1. Suppose now that the inequalities (6.19) hold

for ã1, . . . , ãk−1 (k ≥ 2), which entails that ã1, . . . , ãk−1 > 0. Observe that the recurrence

(6.18) (with k replaced by k − 1) implies

k

k + 1
=

k−2∑

i=0

ãi+1

k − i
+ ãk ≤

k−2∑

i=0

ãi+1

k − 1 − i
+ ãk =

k − 1

k
+ ãk,

and it follows that

ãk ≥ k

k + 1
− k − 1

k
=

1

k(k + 1)
. (6.20)

On the other hand, using that ã1, . . . , ãk−1 > 0, from (6.18) we also get

k

k + 1
= ãk +

k−2∑

i=0

ãi+1

k − i
≥ ãk. (6.21)

Thus, the inequalities (6.20) and (6.21) prove the claim (6.19) for the ãk, and by induction it

is valid for all k ∈ N.

For the original coefficients ak, the inequalities (6.19) are rewritten as

rρk

k2(k + 1)
≤ ak ≤ rρk

k + 1
, k ∈ N, (6.22)

and in particular ak > 0 for all k ∈ N, so that Assumption 5.1 is automatically satisfied due to

Remark 5.1. Furthermore, the inequalities (6.22) imply that A+(σ) < ∞ for any σ > 0.

Finally, we can resolve the question of why the formula (6.14) defines a generating func-

tion with nonnegative coefficients: since Taylor’s coefficients of the exponential function are

positive, it is evident from the relation β(u) = exp
{∑∞

k=1 akuk
}

that bk > 0 for all k ∈ Z+ .
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