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Trees of definable sets over the p-adics

By Immanuel Halupczok at Miinster

Abstract. To a definable subset of Z) (or to a scheme of finite type over Z,) one
can associate a tree in a natural way. It is known that the corresponding Poincaré series
S N;Z* € Z[[Z]] is rational, where N, is the number of nodes of the tree at depth A. This
suggests that the trees themselves are far from arbitrary. We state a conjectural, purely
combinatorial description of the class of possible trees and provide some evidence for it.
We verify that any tree in our class indeed arises from a definable set, and we prove that
the tree of a definable set (or of a scheme) lies in our class in three special cases: under weak
smoothness assumptions, for definable subsets of Zj, and for one-dimensional sets.

1. Introduction and results

Suppose that X = Q' is a definable set in the language of fields. For 4 = 0, let X be
the image of X' N Z, under the projection Z, — (Z/ p*Z)". In [3], Denef proved that the
associated Poincaré series

Py(Z) .= gj() X, 2" e 7]|Z]]

is a rational function in Z. Now the disjoint union T(X) := J X carries a tree structure
. 220

defined by the projections (Z/p**17)" — (Z/p”*Z)", thus a natural question (which Loeser

posed to me) is: can the result of Denef be refined to a result about the structure of the

trees? In other words: does there exist a purely combinatorial description of the structure

of trees which can arise from definable sets, which implies the above rationality?

The goal of this article is to conjecturally give such a description and to provide some
evidence for it. More precisely, for any d € N we will recursively define a class of “trees of
level d”’, which should correspond to sets of dimension at most d. Our conjecture is then:

Conjecture 1.1. Suppose that X < @;} is a definable set. Then T(X) is a tree of level
dim X.

The author was supported by the Fondation Sciences mathématiques de Paris.
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Here, the dimension of a definable set X is the algebraic dimension of the Zariski
closure of X in the algebraic closure Q,; see [9].

The main difficulty of the conjecture is to show that the tree of a definable set has a
level at all. Indeed, then Lemma 4.8 implies that the level is the right one. More precisely,
we even get the following: if we define a tree to be of “‘strict level d” if it is of level d but not
of level d — 1, then T(X) is of strict level dim(X n Z)).

Whether the conjecture is interesting depends on how tight our definition of trees of
level d is. In fact, we will show that it is as tight as possible:

Theorem 1.2. For any tree F of strict level d without leaves, there exists a definable
set X < Z, (for n> 0) of dimension d such that T(X) = 7.

The tree T(X) of a set never has leaves, so we might as well forbid leaves in our
definition of trees of level d; however, for technical reasons it is better to allow them.

By Theorem 1.2, our definition of level d trees is clearly precise enough to imply
rationality of the Poincaré series. However, we will also give an easy direct proof in Pro-
position 5.2.

The main results of this article are proofs of the conjecture in several special cases.
Before stating these results, let us consider an algebraic variant of the trees. For any scheme
V" of finite type over Z,, we define a tree T(}') as follows: the set of nodes at depth 4 is
the image of the map V(Z,) — V(Z/p*Z), and the tree structure is given by the maps
V(Z/p*T'Z) — V(Z/p*Z). Using this, we can state an algebraic variant of the conjecture:

Conjecture 1.3.  Suppose that V' is a scheme of finite type over Z,. Then T(V') is a tree
of level dim V.

(Again, this implies a version with strict level, if one takes into account only the
dimension of V' “visible over Z,”.)

If V' is an affine embedded scheme (in A", say), then we have V(Q,) = Q,, and the
two definitions yield the same tree: (V) = T(¥(Q,)). Once the definition of a level d tree
is given, it will be easy to verify that if the conjecture holds for each set of a finite cover of
V, then it also holds for V itself (Proposition 4.6); thus Conjecture 1.1 implies Conjecture
1.3. Therefore in most of the article we will stick to the affine case and to the first definition
of trees.

From an algebraic point of view, it seems more natural to consider a tree T(V) whose
set of nodes at depth A is the whole set V' (Z/p*Z), and not only the image of V' (Z,). In-
deed, the Poincaré series

(1) S #V(2/p'2) - 2
A=0

is rational, too, and at the end of this article, we will describe a variant of the conjecture
which includes both kinds of trees (and much more). However, for now let us stick to the
trees T(V).
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We now present the cases in which we will prove the conjecture. The first one is not
very difficult to prove. Under rather weak smoothness assumptions, the tree of a scheme is
particularly simple.

Theorem 1.4.  Suppose that V' is a scheme of finite type over Z,, and suppose that for
every Z,-valued point x : spec Z,, — V', V' is smooth at x(n), where 1 is the generic point of
spec Z,. Then T(V') consists of a finite tree, with copies ofT(Z;l), d < dim V attached to its
leaves (d may depend on the leaf ). In particular, T(V) is a tree of level dim V.

More generally, if V' is a non-smooth scheme, then the tree still looks like T(Z;l ) close
to any smooth point. On the other hand, we will see on an example (Subsection 3.3) that
close to singular points, the trees do get complicated. (In fact trees of definable sets are not
essentially more complicated than trees of varieties.) Thus the information contained in a
tree of a scheme describes its singularities; this should be closely related to the structure of
arc spaces above singularities, as studied in [8].

The more interesting cases of the main conjecture which we will verify are the fol-
lowing.

Theorem 1.5. Conjecture 1.1 holds if X < @ﬁ.

Theorem 1.6. Conjecture 1.1 holds if dim X < 1.

The present proofs of these results crucially rely on the theorem of Puiseux, which is
valid only for curves. Thus to generalize them to higher dimension, one will need some new
ideas.

Let me mention one more reason for which the trees seem interesting to me. Suppose
X; and X, are two definable subsets of Z; which are closed in p-adic topology. Then
isometric bijections between X; and X, correspond exactly to isomorphisms of the corres-
ponding trees (see Lemma 3.1). Thus one can interpret trees as a step towards classification
of definable sets up to isometry. Indeed, if the main conjecture is true, then up to p-adic
closure any definable set is isometric to a set of the form constructed in the proof of Theo-
rem 1.2.

The remainder of this article is organized as follows.
In the next section, we fix our notation.

In Section 3, we compute the first trees: we prove Theorem 1.4 and we give an exam-
ple of a tree of a singular curve. To be able to do that, we first prove a key lemma (Corol-
lary 3.3) which relates the tree of a set to the trees of its fibers.

The trees of Section 3 give an idea of how level d trees should look like; in Section 4,
we will actually define them. We will give two versions of the definition: a restrictive one
and a more relaxed one; then we will show that both are equivalent. At the end of that
section, we will verify some first properties of level d trees.

In Section 5, we will prove statements about given trees of level d, namely Theorem
1.2 and the rationality of the Poincaré series of such a tree.
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Section 6 is devoted to the proof of the main conjecture for subsets of @If and for one-
dimensional sets. The section starts with a sketch of the principal ideas; then we introduce
the main tools we need, namely cell decomposition and a way to understand definable func-
tions on small balls. In Subsection 6.5, we prove a parametrized version of the conjecture
for subsets of Q,, and finally we finish the actual proofs.

To conclude, we will present some possible generalizations of the conjecture in

Section 7.
2. Notation

2.1. Notation concerning model theory and Q,. We fix a prime p once and for all
and work in Q,. We will use a two-sorted language, with one sort for Q, and one for the
valuation group I'. As usual, we take the ring language on Q,, the ordered group language
on I' and a valuation map v: Q, — I U {oo}. Note that I" and v are interpretable in the
pure field language (see e.g. [4], Lemma 2.1), so using the two-sorted language is not really
different from using the pure field language.

By “definable” we will always mean definable with parameters.

We will sometimes identify I" with Z. In particular, we will write 1 for the valuation
of p, and we will often use the cross section I' — @;, J— ph.

For X < @Z> we denote by X the closure of X in the p-adic topology.

For x = (x1,...,x,) €@, and A€ T, B(x,4) == x + p)"Z[’} denotes the ball around x
of “radius” 4. Moreover, v(x) := min{v(x;) |1 <i </} is the minimum of the valuations
of the coordinates. (In other words: v(x) = 1 < x € B(0, 4).) Note that for us a ball always
has the same radius in each coordinate.

The following non-standard notation will be very handy:

Definition 2.1. For 6 eT'yy and x,x’ € @;, we write x &5 x’ if x and x’ have the
same image under the canonical homomorphism Q; — Q,'/B(1,0). Equivalently,

xxsx e v(x—x') = o(x)+0.
Occasionally, we will work in the algebraic closure @p of Q,. Write Z,, for the valua-
tion ring and I' for the value group of @Q,. The definitions of v(x) and x ~;s x" also make

sense in this context. 1 € T will still denote the valuation of p.

Let e € N . The e-th power residue of x € Q, is the set {y¢- x|y € @, }. The follow-
ing statements are well known (and not difficult to prove):

Lemma 2.2. Suppose e € Nx.

1) If 6 = v(e) + 1, then the map z — z¢ induces a bijection 1 + p°Z, — 1+ po+vz .
P P



Halupczok, Trees of definable sets over the p-adics 161

(2) If x1,x2 € @; satisfy Xi Rope)+1 X2, then x1 and xy have the same e-th power
residue.

(3) There are only finitely many different e-th power residues.

2.2. Model theory of I'.  Let M be a subset of I'"". A function 7 : M — I is called
linear if there exist ay, ..., a,, b € Q such that /(ky, ... ,Kk,) = ajx; + - - - + apyi, + b for all
(r1,...,km) € M. A function M — I' U {0} is called linear if it is either a linear function
to I' or constant co. We will use the partial order on the functions M — I' U {c0} defined
by/ </ e f(k) </ (k) forallk e M.

It is well known that any subset M < I'"" which is definable in our two-sorted struc-
ture is already definable in (I",0,+, <). We will use the cell decomposition theorem for
that structure (see e.g. [1], Theorem 1) to get hold of definable subsets of I'"™. To avoid
the rather lengthy definition of cells, we only state an immediate consequence of the cell
decomposition theorem.

Lemma 2.3. (1) For any definable M = T'™ and any definable function / : M — T,
there exists a finite partition of M into definable subsets M' such that ( is linear on each
part M.

(2) Any definable subset N — T x T can be written as a Boolean combination of sets
of the following forms:

M xT for M <= IT'™ definable,
{(m, ) eT" xT|A=/()} for/:T"™ =T linear,
I'xZ2 for2el/pl,pel.

2.3. Trees and Swiss cheese. There are different ways to define trees. Let me fix the
variant I will use.

Definition 2.4. A tree 7 is a set (of nodes), together with a binary is-child-of rela-
tion, which satisfies the usual axioms. However, we do allow trees to be empty. Define the
root (if the tree is non-empty), the leaves and the depth depth(v) = depth(v) of a node
veJ asusual.

We say that (v,v’) is an edge of 7 if v’ is a child of v. A path (of length n) is a se-
quence vy, . . . , v, of nodes where (v;, v;;1) are edges.

The class of all trees will be denoted by {Trees}.

Define isomorphisms of trees as usual. The product 77 x 7, of two trees is defined
layerwise.

If 7 and .7’ are two non-empty trees and v is a node of .7, then we will sometimes
construct a new tree by attaching 7' to v. This means: take the disjoint union of the nodes
and then identify the root of .7’ with v.

We already gave a definition of the tree of a set in the introduction. Here is a slight
generalization.
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Definition 2.5.  Suppose X = Q, is a set and By = B(xo, 49) = Q,, is a ball. Then the
tree of X on By is

Tg,(X) := Ty 4 (X) :={B(x,1) = By | B(x,2) n X * 0},
with the tree structure induced by inclusion. Set T(X) := Tz (X).

Remark. Tg, (X) only depends on By n X. In particular, Tp (X) is empty if and
only if Byn X = 0.

Example. The tree T({Pt}) of a one-point set is just one infinite path. T(Z)) is the
infinite tree where each node has exactly p” children.

One technique to determine the tree T(X) of a definable set will be to cut out some
balls B; on which X is particularly complicated, compute the trees T, (X) separately, com-
pute the tree on the remainder, and then put everything together. We define notation suit-
able for this.

Definition 2.6. A slice of Swiss cheese (or a cheese, for short) is a set of the form
S = B\ U B;, where [ is a finite index set and B and B; are balls in Zl’f, satisfying B; < B
iel

and B; n B; = () for i  j. The set of balls B; (the “holes”) is part of the cheese datum.

Definition 2.7. Let S = By\ U B; = Z,) be a cheese and X' < Z,; a set. Then the tree
iel
Ts(X) of X on S is the subtree of Ty, (X) consisting of those nodes B which are not a
proper subset of any B;, i € 1.

We will only be interested in the tree Ts(X) when none of the intersections X N B;
is empty. In that case, the balls B; are nodes of Tg(X), and the total tree Tp,(X) can be
obtained from Tg(X') by attaching T (X) to the node B, for each i € I.

3. Computing the first trees

The definition of a tree of level d is rather involved, so let us start by computing a few
examples to motivate it. To this end, we first prove some basic lemmas on trees. In partic-
ular, we will check that in certain cases the tree of a set is determined (in an easy way) by
the trees of its fibers; this is a key reason for trees of definable sets not being too compli-
cated.

3.1. Lipschitz continuously varying fibers. Isomorphisms between the trees
T(X) — T(X') of two sets X, X' = Z} correspond to isometric bijections between the p-

adic closures X — X'. More precisely, the following lemma holds.

Lemma 3.1. Suppose that X, X' < @ﬁ are two arbitrary sets and B = B(xy, /),
B' = B(x},)) = Q, are two balls. Then a bijection ¢ : BN X — B' n X' satisfying

(2) v(p(x1) — ¢(x2)) =v(x) —x2) —A+ 2" forall x;,x,e BnX
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induces an isomorphism of trees
¢tree : TB(X) - TB’(X/)a

B(x, 1) — B(d(x),n— A+ 1),

where x € BN X and p = . On the other hand, any isomorphism ¢, : Tp(X) — Tp(X')
induces a bijection ¢ : BN X — B' 0 X' satisfying (2).

Proof.  (2) implies that ¢, is well-defined, and an inverse of ¢ induces an inverse of
duee- For the other direction, note that B X is in bijection to the set of infinite paths of

Tp(X) and define ¢(x) as the only element in the intersection () @y (B(x,1)). O
nza

A crucial point in the whole analysis of trees is the following observation: if
X c7,x 7, is a set whose vertical fiber X, does not vary too quickly with x, then the
tree T(X) is the same as if the fiber would not vary at all. A similar statement is true in
higher dimensions. We formulate this as a lemma.

Lemma 3.2. Let X < Z)' x Z, be any set and denote by X, :={y e Z,|(x,y) € X}
its fiber at x € Z)'. Suppose that for any x\,x, € Z,', any y € Z, and any A < v(x1 — x2), we
have Ty, ;(Xy,) = Ty 1(Xx,). Then T(X) = T(Z,') x T(Xy) for any x € Z,;'.

Remark. By rescaling, the lemma implies a similar statement for a subset X of any
ball B = Q" x Q).

Proof. For 1=0,let 4;:={0,1,...,p* —1}" < Z,' be a set of representatives of
the balls of radius A, and define the following ““approximations” to X:

= U B(a,7) x X,.

acA;

In particular X© = Z," x Xo. Without loss, we will prove T(X) = T(X )y, We will verify
that the tree of X*) coincides with the tree of X up to depth 1 and define isomorphisms
Y@ T(XW) S T(X D) which are the identity up to depth A. By puttmg these together,
we get an isomorphism T(X(®) = T(X) which is equal to Y -0 y9 on nodes of
depth less or equal to 4.

To check that T(X™) and T(X) coincide up to depth 4, we have to verify that
X% ~ (B x B') + 0 if and only if X n (B x B') #QforanyballeB’cZ[’,“xZ[’} of ra-
dius A. Fix a € 4; such that B = B(a, ). We have X n (B x B') = Bx (X, B’), so
“=""1is clear. For “<”, suppose (x,y) € X n (B x B’). By assumption there exists an iso-
morphism of trees Tp/(X,) — Tp/(X,), so non-emptiness of X, n B’ implies non-emptiness
of X,nB'.

We define y* : T(XW) — T(X (“+1)) to be the identity up to depth A, and it remains
to find an isomorphism T,z (X)) — T, (X*D) for each ball B x B’ 7y x 7)) of
radius A.
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Set {a} := BN A, and A:=Bn Aj;.1. Then we have
X# A (BxB)=Bx (X,nB)
and

XD A (BxB)= U B@i+1) x (Xan B).

acA

By assumption, for each @€ A we have an isomorphism ¢; : Tp/(Xa) — Tr(Xa).
Now suppose C x C' € T(X) is a node strictly below B x B’, and let @ € A be such that
C < B(a, /. +1). Then we define y (C x C’) := C x ¢,(C"). O

Combining this lemma with Lemma 3.1, we get:

Corollary 3.3.  Let X < Z' x Z, be any set and denote by X, :={y € Z,| (x,y) € X}
its fiber at x € Z". Suppose that for any xi,x, € Z!" there exists a bijective isometry
¢ : Xy, — Xy, which additionally satisfies v((b(y) — y) > v(xy — x1) for any y € Xy,. Then
T(X) =T(Z)) x T(Xx) for any x € Z))".

Proof. The condition v(¢(y) — y) = v(x, — x;) ensures that ¢ induces a bijection
B(y,2) N Xy, — B(y, ) 0 X, for any ye Z) and any 4 < v(x; — x;). Thus Lemma 3.1
yields T, ;(Xy,) = T, ;(X,,) and Lemma 3.2 applies. []

Remark. Again, a similar statement holds for a subset X of any ball B — @;” X @;.

If X satisfies the prerequisites of this corollary, we will say that the fiber X, varies
Lipschitz continuously with x.

Remark. An isometry y : Z,' x Z,; — Z' x Z, fixing the first m coordinates pre-
serves Lipschitz continuity of fibers.

3.2. Trees of smooth schemes. We will now prove Theorem 1.4 (except for the
“in particular” part), i.e. we will determine the tree of a scheme which is sufficiently smooth
in the sense of the theorem. Let us first check how to reduce the computation of trees of
general schemes of finite type to trees of affine schemes.

Lemma 3.4. Suppose V is a scheme of finite type and (V;);, is a covering of V. Then
for any child v of the root of T(V), there is an i € I and a child v' of the root of T(V;) such
that the subtree of T(V) starting at v and the subtree of T(V;) starting at v’ are isomorphic.

Proof.  Denote by s the special point of spec Z, and by # the generic one. For some
given A = 1, write o : spec F, — spec Z/p*Z and r : spec Z/p*Z — spec Z,, for the canonical
maps.

Suppose v e V(F,) is a child of the root of T(V). Choose i such that V; contains
the image of v. The preimage v’ of v under the map Vi(F,) — V(F,) is the child of the
root of T(V;) we are looking for; we have to verify that the whole tree below v already ap-
pears in T(V}).
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Suppose that w e V(Z/p*Z) is a node of T(V) below v, i.e. w o ¢ = v, and there exists
an x € V(Z,) such that w = x o z. It is clear that w has a preimage w’ € Vi(Z/p*Z). As V;
is open and contains x(s), it also contains x(y), so imx < V;. Thus x has a preimage
x"eVi(Zy),and w' =x"on. O

Proof of Theorem 1.4. Let V be a scheme as in the theorem. By Lemma 3.4, it
suffices to consider affine V; we fix an embedding V' — A" and determine the tree of
V(Q,) = Q.

Fix z € V(Q,) n Z,, and suppose that the dimension of V" at z is d. The first step of
the proof is to determine the tree on a small ball B := B(z, 1) around z. Write B as a prod-
uct By x By, with By Z[‘f and By < Z;"d, and denote the coordinates by Xi,..., Xy,
Yi,..., Y,_4. To simplify notation, suppose z = 0.

Let fi,..., faa € Z,[X1,...,Xq, Y1,..., Y,_4] be generators of the ideal of V" in the
local ring at 0; regularity of that ring implies that indeed n — d polynomials suffice.

: . : . (Ofi . :
Moreover, after possibly permuting coordinates, the matrix <% (0)) is invertible
J 1<i,j<n—d

over Q@,. GL,(Z,) acts on B by isometries, so by Lemma 3.1, applying such matrices
does not change the tree of V(Z,) on B. Thus by using the column transformations of the

o (0)=0fori<n—d, j=d.

Smith normal form, we may additionally suppose that 3y
J

Now we apply the implicit function theorem (see e.g. [7]). This yields a power series
a with coefficients in Q,, from the variables X; to the variables Y; such that for 1 >0, a
converges on By, and for (x,y) := (X1,...,X4, V1,..., Vu_a) € B, we have (x,y) € V(Q,)

if and only if y = a(x). As ;ﬁ (0) = 0, this power series has no linear term, so for / suffi-
J
ciently large and x, x’ € By, we get
(3) v(a(x) —a(x")) = v(x — x');

in particular, a(x) € By for x € By. Thus the fiber of V' (Q,) n B at x € By is exactly
{a(x)}, and by (3), it varies Lipschitz continuously with x; hence Corollary 3.3 yields
Ts(V(Q))) = T(ZY).

As V(Qp) N Z, is compact in p-adic topology, we can cover it by finitely many balls
B satisfying TB(V(@p)) >~ T(Z;" ) (possibly for different d, but all satisfying d < dim V;
and the maximum of all d is equal to dim V). Moreover, in Z!' any two balls are either dis-
joint or contained in one another, so we may suppose that these balls B are all disjoint.
Thus the total tree of V'(Q),) consists of a finite tree (the subtree of T(Z;) whose leaves
are exactly the balls used in the cover), with a copy of T(Z;f ) attached to each leaf. [

The “in particular” part of Theorem 1.4 will be a direct consequence of Lemma 4.4.

3.3. Example: the cusp curve. Up to now, we only saw very simple trees. As a more
complicated example, let us compute the tree of the cusp curve X = {(x, y) € Z}f |x3 =%}
when p =+ 2. This tree will already contain most of the aspects appearing in the general
definition of level d trees.
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We will need the following notation: let %/(x) be the tree which starts with a path of
length x and then has a bifurcation into two infinite paths; in other words, %) is the tree
of a two-point-set {xi, x,}, where v(x; — x3) = k.

From the previous subsection, it is clear that T(X) might be complicated only
close to (0,0); thus we will determine the tree on squares which do not contain (0,0)
and then put them together. The largest squares not containing (0,0) are of the form
B = B((xo, ¥0), K + 1) with x = v(xo, yo). Fix such xo, yo,

If v(xo) > v(yo), then v(x) > v(y) for any (x, y) € B. This implies x* + y%, so BN X
is empty. Thus in the following we suppose x = v(xg) < v()o).

Write B as a product By x By = B(xg,k + 1) x B(yo,x + 1), and let us analyse the
fiber of X at some x € By. It is Xy = {i\/}? } if this root exists and empty otherwise. By
Hensels Lemma, the root v/x3 = xy/x exists if and only if v(x) is even and the angular com-
ponent of x is a square in the residue field [,. Neither v(x) nor the angular component of x
depend on the specific choice of x € By, so either all X, are empty or all X, consist of two
roots (for By fixed).

If the roots don’t exist, then BN X is empty, so suppose now that they do exist.

. . [x
Consider two elements x;, x, € By. By applying Lemma 2.2 to —1, one checks that there
X2
is a suitable choice of roots |/x7, 1/x3 such that

) o(y/x] — /) 2 vl — ).

In particular, |/x;{ € By if and only if y/x3 € By. Moreover v(vVx? — (— VX3 )) does not
depend on x € BX, so we may apply Corollary 3.3 and get Tp(X) = T(Z ) x Tg, (Xy) for

3
any x € By. It remains to determine Tp, (X,). We have v(\/_3) = v(\/F - (—\/F)) =35
so we get: if x = 0, then there exist two balls By such that T, (X,) = T({Pt}), and all

. 1
other By n X, are empty; if ¥ > 0, then Ty 41 (Xy) = @(EK — 1), and all other By n X,
are empty.

Assembling our results, we get the total tree of X (see Figure 1): it consists of an infi-
nite path (the nodes B(0, k) for x = 0) with some side branch attached to it. The root has

Figure 1. The tree of the cusp curve X = {(x, y) € Z%|x* = »?}; thick lines mean “multiply by p”.
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p — 1 additional children, and each of these children is the root of a copy of T(Z,). (The
p—1
2
contributes two children.) Finally, for each x € 2I', x = 2, the node B(0,x) has

number p — 1 comes from the fact that [, contains squares and each such square

p_

1
additional children, each of which is the root of a copy of T(Z,) x % <§K - 1).

4. Trees of level d

4.1. Definition of trees of level d. We will now define, for any d € N, a tree datum of
level d and explain how to construct an actual tree out of it. Then we set:

Definition 4.1. A tree is of level d if it is isomorphic to a tree constructed out of a
tree datum of level d, as described below. A tree is of strict level d if it is of level d but
not of level d — 1.

A tree of level d will consist of a “skeleton” which has only finitely many bifurca-
tions, together with trees of level d — 1 attached to every node in some uniform way. For
this uniformity to make sense, we need a parametrized version of these notions. A parame-
trized tree is a map J : M — {Trees}, where M < I'"" is definable.

A tree datum of level 0 defined on M < I'"” consists of:
e a finite tree .% (possibly empty),

e for each edge ¢ = (7,0') of ¥ a linear function /; : M — T'sp U {00} (the “length
of ”); the value oo is only allowed if ¢’ is a leaf of ..

The nodes of & will be called joints; the edges will be called bones. A virtual joint is a leaf
following a bone of infinite length; the other joints are real joints.

Out of such a datum one constructs a tree .7 (k) (for k € M) as follows. Start with a
copy of ., but omitting the virtual joints, and denote the copy of the joint ¢ € ¥ by (k).
For each bone & = (9,7'), add Z;(x) — 1 nodes between #(x) and v'(x) if ¢’ is real (thus
creating a path of length /;(k) from #(x) to 9'(k)), and add an infinite path below o(x) if
v’ is virtual; denote the set of these new nodes by é(k).

The depth depth(v) of a joint is the function x — depth(3(k)) if ¢ is real and x — oo if
v is virtual.

Note that a given level 0 tree 7 : M — {Trees} can be described by a tree datum in
different ways. In particular, we may replace a bone of .7~ by several bones (of appropriate
lengths) with joints in between.

Before we describe level d + 1 trees, we need to describe how side branches of such
trees look like. A side branch datum of level d (defined on M) consists of:
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¢ a non-empty finite tree &,

e for each leaf w of #, a tree datum defining a level d tree 7,, : M — {Trees} such
that 7,,(x) is non-empty for all Kk € M.

The corresponding side branch (k)€ {Trees} (for xe M) consists of Z with
T(Z,) x 7, (k) attached to w for each leaf w of 7.

Now, a tree datum of level d + 1 (defined on M) is the following:
e an element p € 'y,

e a tree datum (&, (Z)) of level O (defined on M), such that for any bone e, the
length /;(x) mod p does not depend on «; denote by 7, the tree build out of (7, (%)),

e for each real joint ¥ of 7, a side branch datum of level d, defining a side branch
ABs : M — {Trees},

e for each bone ¢ = (9,7) of 7 and each congruence class E € I' /pI’, a side branch
datum of level d, defining a side branch %; = : Ns = — {Trees}, where

Nz = = {(x,1) € M x E|depth(d)(x) < 4 < depth(?’)(x)}.

(1

The tree .7 (k) is constructed as follows. Start with 7 (x), and to each node v € 7(k) at-
tach a side branch: if v = #(x) for some joint 7, then attach %;(k) to v. Otherwise v € é(k)
for some bone ¢, and depth(v) € Z for some = € I'/pI. Attach %; = (k, depth(v)) to v.

Ty will be called the skeleton of 7, and the joints and bones of J are the joints and
bones of 7. The trees of level d appearing in the side branch data will be called the side
trees of 7. (Note that it does not make sense to say that a side tree is a subtree: some side
trees are not even parametrized by the same set.)

An unparametrized tree of level d is a parametrized tree of level d defined on the one-
point set M = TI'°.

4.2. Piecewise level d trees. In the definition of the previous subsection, we tried to
be as restrictive as possible. We will now show how one can weaken the conditions on para-
metrized level d trees without changing the notion of unparametrized trees. While our first
definition is useful to deduce other statements about trees, the new definition will be more
convenient to show that a given tree is of level d.

Define a generalized level d tree in the same way as an ordinary one, with the follow-
ing modifications: given a bone € = (7, ?'), instead of cutting

(5) N; :={(k,A) e M x T |depth(d) (k) < 4 < depth(?)(x)}

into subsets according to A mod p, we allow N; to be cut into finitely many arbitrary defin-
able subsets N; and use a separate side branch datum S; ; for each such subset. Moreover,
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the condition on the length of the bones modulo p is removed, and the side trees of a gen-
eralized level d tree are also allowed to be generalized.

Lemma 4.2. Unparametrized generalized level d trees are the same as unparametrized
normal level d trees.

In the proof of this lemma, we will use trees 7 : M — {Trees} which are only piece-
wise of level d (normal or generalized): there exists a finite partition of M into definable
subsets M;, such that each restricted tree 7 [, is of level d (normal or generalized). As
“piecewise’’ only concerns parameters, Lemma 4.2 is a special case of the following lemma.

Lemma 4.3. Piecewise generalized level d trees are the same as piecewise normal level
d trees.

Proof of Lemma 4.3. We use induction over the level. For d = 0, the statement is
trivial.

Suppose now 7 is piecewise a generalized level d = 1 tree. We have to show that .7
is also piecewise a normal level d tree. It is clear that for generalized trees, it does not make
any difference whether we allow the side trees to be piecewise or not, so using the induction
hypothesis, we may suppose the side trees of .7 to be ungeneralized of level d — 1.

Now consider a bone ¢ of 7 and the corresponding decomposition of the set N; into
definable subsets N; (defined in (5) above). When working with ungeneralized trees, we are
a priori only allowed to decompose N; into sets of the form N; n (M x E) for 2e I'/pl.
But modifications of the tree also permit us to do some other cuts: as we are working with
piecewise trees, we may intersect N; with sets of the form M’ x T for M’ = M definable,
and moreover, we may cut the bone ¢ into several bones, thus intersecting N; with sets of
the form {(x, 1) | A = /(x)}. By Lemma 2.3 any definable subset of N; may be obtained in
this way, if arbitrary p are allowed.

It remains to deal with the requirement to have one single p for the whole tree, and
that the lengths of the bones have to be constant modulo p. But we may use the least com-
mon multiple of all p we need; moreover, we cut M into definable subsets according to the
congruence classes of the lengths of bones. []

In this subsection, we introduced a lot of different kinds of trees of level d. In the re-
mainder of the article, we will only use normal and generalized piecewise ones. Having
Lemma 4.3 in mind, generalized piecewise trees will be just called piecewise trees.

4.3. First properties of level d trees. To familiarize with level d trees, let us verify the
following simple lemmas.

Lemma 4.4. (1) An unparametrized level O tree consists of a finite tree with finitely
many infinite paths attached to it.

(2) Any (piecewise or not) level d tree is also a ( piecewise or not) level d + 1 tree.

(3) If 7 is alevel d tree, then T(Z,) x 7 is a level d + 1 tree. In particular, T(Z)) is a
level n tree.
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(4) Suppose that 71,7, : M — {Trees} are parametrized trees defined on the same
set, that 71 is of level d and that 7, is piecewise of level d. Suppose moreover that v is a
real joint of 71 and that 7,(k) * 0 for any k € M. Let 7 (k) be the tree one gets by attach-
ing 75(k) to 71(k) at v(k). Then T is piecewise of level d.

Proof. (1) Clear.

(2) By induction, it is enough to verify this for d = 0. A level 0 tree is a level 1 tree
with side branches consisting only of the root.

(3) Let the skeleton of T(Z,) x 7 consist only of the root, let the finite tree .7 in the
side branch at the root also consist only of the root, and attach T(Z,) x .7 to the only leaf
of 7.

(4) Clear (using generalized level d trees). [

Lemma 4.5. Let T be an unparametrized tree of level d and let v be any node of 7.
Then the subtree of T below v is of level d.

Proof. If v lies on the skeleton or on the finite tree at the beginning of a side branch,
then this is easy. If v lies in T(Z,) x 7'(4) for some side tree 7' and some 4 € I', then
F'(2) is of level d — 1 as an unparametrized tree. By induction, the subtree of .7 /(1) start-
ing at the image of v is of level d — 1, hence the subtree starting at v is of level d by Lemma

44(3). O

It is now easy to see that it suffices to understand trees of affine schemes to get trees of
arbitrary schemes.

Proposition 4.6. Let V' be an arbitrary scheme of finite type, and suppose that V has
an affine covering (V;);., such that each T(V;) is of level d. Then T(V') is of level d.

Proof.  Use Lemma 3.4, Lemma 4.5 (applied to the children of the roots of the trees
T(V;)) and Lemma 4.4 (4). [

The following lemma enables us to decompose the computation of a tree into sepa-
rate computations on a cheese and its holes.

Lemma 4.7. Suppose we have, for each k in some definable set M < T'", a set
Xy = Z, and a cheese Sy := Z,)\ iLEJI B, i, where the index set I does not depend on k. Suppose
moreover that the following holds:

(1) k — Ts (Xk) is of level d.

(2) Foreachiel, k— Tp,  (Xix) is piecewise of level d.

(3) For each i€ 1, there is a joint ¥; of k — Ts, (Xy) such that v;(k) = By ; for all
KeM.

Then the whole tree k — T(X,) is piecewise of level d.
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Proof. The third condition in particular implies X, N By ; & 0, so T(X,) consists
of Ts, (X,) with Tp,_,(X,) attached to it at the node B, ; for each i € I. Now use Lemma
44 4). O

We conclude this subsection by proving that if the tree of a set does have a level at all,
then this level is the right one.

Lemma 4.8.  Suppose that X < Z,, is definable and that T(X) is a tree of strict level d.
Then d = dim X.

Proof. 1In this proof, we use the convention dim@ = —1, and we define the empty
tree to be of strict level —1.

Define a p?-node of a tree to be a node such that this node as well as every node
below has at least p? children. The lemma follows from the following two claims (both
for d = 0):

(1) Suppose that 7 is a tree without leaves which has a level. Then 7 contains a
p¥-node if and only if 7 is of strict level at least d.

(2) Suppose that X is definable. Then T(X) contains a p“-node if and only if
dimX >d.

Both statements are easy for d = 0. For larger ¢, we proceed by induction.

(1) “=": Suppose 7 is of level d — 1 and contains a p?-node v. There are infinitely
many paths going from v to infinity, but the skeleton of .7 has only finitely many such
paths, so below v we can find a node v’ not lying on the skeleton. By going a bit further
down, we can suppose that v’ lies in a subtree Z, x 7', where 7' is of level d — 2. As v’
is again a p9-node, the corresponding node of 7 is a p?~!-node, contradicting induction.

(1) “<=”: A tree 7 of strict level d has a subtree T(Z,) x 7', where 7' is of strict
level d — 1 (otherwise 7 would be of level d — 1 itself). By induction, 7' contains a
p?~l-node, so T(Z,) x 7' contains a p9-node.

(2) “=": Suppose T(X) contains a p?-node v but dim X < d. Without loss, suppose
that X is Zariski closed (taking the Zariski closure can only enlarge the tree and does not
change the dimension of X). No infinite path below v can converge to a smooth point of X
by Theorem 1.4, so the tree below v is already contained in the tree T(Xy,) of the singular
locus of X. Xiine has lower dimension, so we get a contradiction by induction.

(2) “«<”: By [9], Corollary 3.1 (and the definition of dimension following it),
dim X = d implies that there exists a definable subset ¥ < X, an open subset U < @;J
and a bi-analytic map f : U — Y. Applying the Smith normal form to the Jacobian of f
yields matrices 4 € GL,(Z,) and B e GL4(Z,) such that the Jacobian of the composition
Ao foB:B Y (U)— A(Y) consists of a diagonal matrix G € GL4(Q,) with n — d addi-
tional rows of zeros below. Set f':= Ao foBG™':GB'(U) — A(Y). A and f’ are
isometries, so ¥ and GB~!(U) have isomorphic trees by Lemma 3.1. GB~!(U) is still a
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non-empty open subset of @If, so it contains a ball, and the corresponding node in
T(GB™(U)) is a p®-node. []

5. Results on trees of level d

5.1. Rationality of the Poincaré series. In the introduction we promised that level d
trees would have rational Poincaré series. Let us now make this precise and verify it.

Definition 5.1. Suppose 7 is a tree which has only finitely many nodes at each
depth. Then we define the Poincaré series of 7 as follows:

P7(Z):= Y #{ve 7 |depth(v) = 1} - Z* € Z[[Z]].
=0
Proposition 5.2. Let 7 be a level d tree. Then P7(Z) € Q(Z).

The main ingredient to the proof of this proposition is the following lemma:

Lemma 5.3.  Suppose M = I'" is a definable set contained in U Then the series

Z YIKI...YK”7GZ[[Y1,-.~7Yn1}]

m
(K1 ey om) EM

is rational in Y1,..., Y.
This is, for example, a simplified version of [2], Theorem 4.4.1.

Sketch of proof. Using cell decomposition in I and by further refining the cells,
one reduces the statement to sums of the form

Bi Ba(ic1) B (Kt yees K1)

Z e Z Yl/l (Kl) e Y}im(’{m)
K1=0 1,=0 Km=0
where the /; are linear and non-constant, the f5; are linear or oo, and f;(x1,...,x,—1) = 0 for
all appearing tuples (xi,...,x;—1). Now use inductively that geometric series are rational.

O

Proof of Proposition 5.2. We inductively prove the following parametrized version
of the proposition. Let M = I'Z be a definable set and let 7 : M — {Trees} be a parame-
trized level d tree. Then the series

(6) Pr(Z, Yy,...,Y,) = > Pq(K>(Z) . Yl’Cl e Yome Z2[|Z, Y1,..., Yl
(K1 ey o) EM
is rational in Z, Yi,..., Y,. Note that the condition M < I'J is satisfied for iterated side

trees of level d trees.

If we define a level —1 tree to be one consisting only of the root, then we may view a
level 0 tree as one having side branches of level —1 (and where additionally the finite trees
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Z at the beginning of the side branches consist only of the root). Adopting this point of
view, we start our induction at d = —1.

If d = —1, then P7,(Z) = 1 for all k € M, and Equation (6) is just Lemma 5.3.

If 7'(k) xT(Z,) x 7 (k), then Py(Z,Yi,...,Yn) =Psr(pZ,Y1,...,Y,). Using
this, rationality of level d trees implies rationality of level d side branches.

Now consider a level d + 1 tree 7 defined on M = I'”;'. We may treat each joint
and each bone separately. Moreover, on each bone we may treat the different congruence
classes modulo p separately. The total Poincaré series Ps(Z, Yi,..., Y,,_1) is then the sum
of all these parts.

Consider a bone é = (#,9’) and a congruence class Z € I'/pI’. Let # be the tree in

m parameters describing the side branches at nodes on e with depth in E. The con-
tribution of these side branches, including the corresponding nodes on e themselves, is
Py(Z, Y1,...,Ym1,2).

Finally consider a (real) joint ¢ with side branch 4. We define

M’ = {(x,depth(d)(k)) |k € M}
and apply the induction hypothesis to the “shifted” tree
B M' — {Trees}, (k,A)— B(k).

The contribution of ¢ and its side branch is Py/(Z, Y1,..., Y1, Z). O

5.2. Any level d tree appears. We now prove Theorem 1.2: any tree of strict level d
without leaves is isomorphic to the tree of a definable subset of Z; of dimension d. By
Lemma 4.8, it suffices to find any definable subset of Z;’ with the given tree; the dimension
will then automatically be the right one.

We introduce some additional notation only for this subsection. The coordinates

of any m-tuple a will be denoted by ai,...,a,. Moreover, for xe @1’,” we will set
v(x) := (v(x1),...,v(xn)) (in contrast to v(x) = min v(x;)).
1

The main ingredient to the proof is the following lemma.

Lemma 5.4. Suppose M < T'Z, is definable and ¢ : M — Uz is a linear function
satisfying ¢ (k) = r; for each i <m. Define X :={x € Z,'|v(x) € M}. Then there exists a
definable function u; : X — Z,, with the following properties:

(1) v(us(x)) = £ (v(x)) for any x € X, and

() v(u(x) —us(x')) = v(x — x') for any x,x" € X satisfying v(x) = v(x').
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: 1 .
Proof.  Write /(k) =: - <ﬁ + Za,vc,) witha; € Z, f e T, e € Noy. Set i := 1 4 2v(e).
i

For x e G := p' - B(1,u), write /x for the e-th root of x lying in pr-B(l, 1 —|—v(e))
(which exists by Lemma 2.2). Choose representatives r, € Z, of the sets Z,;/B(1, u). Using
these choices, we define u, as follows.

First suppose 1 < i <m and 0 < 4 < v(e), and consider the definable set

Xi={xeX|/(v(x)) =v(x;) + 1}

For x € X; ;, we define u/(x) := p’x;. This satisfies both required conditions, so we may
remove X; ; from X. We do this successively for all i < m and all 4 < v(e) and henceforth
suppose that

(7) /(v(x)) = v(x;) + v(e)

for x € X and all i.

m
For x € X, set n(x) := p# [] x". As ¢ is defined on v(x), we get
i=1

v(n(x)) =e-/(v(x)) eel,

2(x) € G, and we define u,/(x) := y @

so 7(x) lies in p' B(1, u)r, for some v. Thus p ;
vV v

It is clear from the definition that v(u/(x)) =/(v(x)). Now suppose we have
x,x' € X with v(x) = v(x’). As both u,(x) and u,(x’) lie in p/®™VB(1,1+ v(e)), we have
v(us(x) —us(x')) 2 £ (v(x)) + 1+ v(e); so the second condition is satisfied unless

(8) v(x—x") >/ (v(x)) + 1+ v(e).

Set 0 := v(x — x') —max{v(x;)|1 £i <m}. By (7) and (8), we have J > u and in
particular 0 > 0. By definition ¢ < v(x; — x!) — v(x;) for all i, so we have x; ~s x/, which

!
implies 7(x) ~s 7(x’). Asd > u, we have u/(x) = {’/@ and u,(x') = ¢ @ for the same
ry y
ry, so Lemma 2.2 yields u/(x) ~s_() us(x'); hence

v(us(x) —uy(x')) 2 v(us(x)) +6 —v(e) = v(x — x')
by (7). O

In the main proof, we will use the following ‘““Lipschitz union argument” several
times: we will have two (or more) sets X, X' = 7" x Z;]V with Lipschitz continuous fibers in
the first m variables and would like to infer that the union has Lipschitz continuous fibers,
too. This is possible if for any x;, x, € Z)', the corresponding isometries ¢ : Xy, — X, and
¢’ X — X, satisfy v(¢(y) — ¢'(y')) = v(y — ') for y € X,,, ¥’ € X,. In particular, this
is true if v(y — p’) does not depend at all on x € Z)', y € X, y' € X;.
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Proof of Theorem 1.2. k and u will denote elements of I'"". It will be useful to define
Ko == pty := 0. We will work inside Z"™ for some large N; (x,y) will be an element of
Z"N where x € Z™ and y € Z;V. Sometimes, we will also write y = (z, y), with z € Z,
and y e Z}],V_l. We will denote the fiber of a set X < Z]’,’”N atx € Z," by X,

Let us formulate a suitable parametrized version of the statement, which we will then
prove by induction over the level of the tree. We start with the following data: a definable
set M < T atree 7 : M — {Trees} of level d without leaves, and a tuple e I'”,;. We
suppose that forany k € M, we have k;_| + y;_; < r;forie{l,...,m} (i.e. M is contalned
in an “upper triangle”).

Using this, we define a set G = Z," as follows. For k € M, define the rectangle

Gy == p"“'B(l, 1) x -+ x p"B(1,u,,),

and set G := |J G,. It will also be useful to define A(k) := K, + u, for k € M (A(k) is the
keM

radius of p*"B(1,u,,)). Note that G, = {x € G|v(x) = k} and that G is definable (using
e.g. [4], Lemma 2.1).

The claim we will prove by induction is the following. For N sufficiently large, there
exists a definable set X = X (7, u) < Z;"*N such that the following holds:

e X< U (Gex p™z)).
KeM

® For any k € M and any x € Gy, T 4 (Xy) = 7 (k).
e For any k € M, the fiber X, varies Lipschitz continuously with x € G,.

If m = 0, then G = G, is the one-point set, where « is the empty tuple, A(x) = 0, and
the statement becomes T(X) =~ .7, which is our theorem.

Let oy, ...,0, be the joints of .7, including the virtual ones (i.e. the ones at depth
infinity). We will start by constructing definable functions fy,..., f, : G — Z]ﬂv which yield
the skeleton of 7 in the following sense. For k € M and x € G,, set

= {B(fi(x),4(r) +v) |0 £ i £ r,0 < v < depth(5;)(x),v < 50} = T (Z)).
There will be isomorphisms v, : 7 (k) — 7, sending (k) to B(f;(x), A(x) + depth(5;)(x)).

Let X’ be the union of the graphs of those functions f; which correspond to virtual
joints; the tree T ;) (X) is exactly the subtree of .7, consisting of the infinite paths. Later,
we will define a set X" which yields the side branches of 7 : X" will be a union

=U U X

keMveT (k)

such that for any x € Gy, the fiber Z := (X)”,), is contained in the corresponding node
B := (1) of Ty, its tree Tp(Z) is isomorphic to the side branch of 7 (k) at v, and the in-
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tersection of Tp(Z) and 7 consists only of B. We then set X := X’ U X". Thus Ty ;) (Xx)
will have a side branch at B € 7, which is isomorphic to the corresponding one of 7 (k),
and as 7 (k) has no leaves, Ty ;) (Xx) will contain the whole skeleton 7.

We will have to ensure that the fibers X, vary Lipschitz continuously with x € G,.
Our functions f; will satisfy

9) v(fi(xl) — f,-(xz)) = v(x; —x3) for x;,x; € Gy;

this implies Lipschitz continuity of the fibers of X’. We will also prove Lipschitz continuity
for each set X,!,. Then the Lipschitz union argument yields continuity for X.

Now let us construct the functions f;. To get the isomorphism 7 (k) =~ 7, it suffices
to have

(10) o(fi(x) = /(%)) = di (1) + A(x),

where d; ; : M — T is the “separating depth” of the joints 7; and v;: the depth of the deepest
common ancestor of both. Set fy(x) := 0 for all x € G. For j = 1, consider the maximum
dmax := max{d; ;|0 = i < j} under the partial order defined by pointwise comparison; note
that for j fixed, all d; ; are comparable. Choose any i < j with d; ; = dnax and define

(11) Sfi(x) = fi(x) + udi,i+i(x) -(0,...,0,1,0,...,0),
pos.TiJrl

where u;, 1, comes from Lemma 5.4. By definition of uy, ;, (11) implies (10) for those
specific i, j. For other pairs i < j, (10) follows by induction on j. Moreover, (9) follows
from the second property of the functions ug, ;.

It remains to define the sets X’ . We will show how to do this when v lies on a bone;
for joints, a simplified version of the same argument will do. So fix a bone é = (7;, ;) of 7
and a congruence class Z € I'/pI". Let N, := {x’ € E|depth(7;)(r) < k' < depth(7;)(x)} be
the set depths of the corresponding side branches of .7 (k), and set
N :={(k,x") |k e M,K" € Ny }.

We will construct a definable set

Y = U U Xrélu'
KeM veé(x) ’
depth(v) €2

For x € Gy, the fiber (X,”,), is supposed to be contained in

B =y, (v) = B(f;(x), A(x) + depth(v)).

By applying the isometry (x, y) — (x, y — f;(x)) (which neither harms the trees of fibers,
nor Lipschitz continuity), we may assume fj(x) = 0.
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Now notice that in (11), we did not use the first coordinate of Z% at all, hence
any child of B = p“"”depth(”)ZPN in 7, is contained in p*)+depth®)(p7 x Z[iv’l). We will
ensure that 7, and Tp((X,! ,)¢) only intersect in B by choosing

(12) (X2 )y © Ay v= p TR0 (14 p7,) x ZV7),

RY

Let % be the finite tree at the beginning of the side branch of J corresponding
to ¢, E, and for each leaf w of &#, let J,: N — {Trees} be the corresponding side
tree of level d — 1. Define a shifted set N := {(x AK) +«') | (,x') € N} and a shifted
tree 7, : N — {Trees} ,/H (r, A(k) + k") = Z,(r,x’). We apply the induction hypo-
thesis to .{n using 4, := depth(w) (we may suppose depth,(w) > 0); denote by
Xy =X (T, (4, tny1)) the resulting definable set.

Fix k e M and x € G,. For z e Q,, the fiber (Xu) (x,7) is non-empty if and only if
z e pHH B(1 . |) for some k' € N, and if this is the case then

TO,;L(K)+K/+/1m+1 ((Xw)(xﬁz)) = 'a/jv(’c) K/)-
Set

B = p"™ B((1,0,...,0),depth,(w)) = Z[])v;

then (X)), is contained in (J B, and Lipschitz continuity of fibers (X,),.
K' €Ny

yields Tg, ((Xy),) = T(Z,) x T, (k).

of (X,

7

Now choose an embedding of # into T(Z;v 1) and let B(p,,, depth(w)) be the image
of the leaf w. The map ¢, (x,z,p) := (x,z,p+z- p,,) is an isometry sending G, x B, to
G x p"*+'B((1, ,,),depth(w)). We claim that the set ¥ := |J ¢,,(X,,) is the one we are

w

looking for; more precisely, if K € M, v € é(k), k' := depth(v) € E, then we claim

X o= Uy (X0 0 (Ge x Bu)).-

Fix x € G and B := p’“"”"’ZN. (X,éfv)x is contained in the union of balls

B, := p"™™ B((1, y,,), depth(w)),

which in turn are contained in 4, ,, so (12) is satisfied.

The finite subtree of T(ZY) with leaves B, is isomorphic to %, and the tree of
(X)), on B, is isomorphic to T(Z,) x 7,,(k,x’), so the tree T((X,/,),) is the right
one. Finally, using Lipschitz continuity in x of the fibers of ¢,,(X,, N (Gx x By)) and the
Lipschitz union argument, we get Lipschitz continuity of the fibers of X ,é’ ,

6. The main proofs

In this section we will prove the main conjecture in the interesting cases. We start by
sketching the proofs; an overview over the remainder of the section will be given after that
sketch.
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6.1. Idea of proof. Suppose that X is a definable set of dimension d and that we
want to check that T(X) is a level d tree. By compactness (as in the case of smooth vari-
eties) it suffices to understand the tree on a neighborhood of each point of X. To under-
stand the tree near a given point—without loss 0—we proceed as in the example of the
cusp curve: we compute it on balls B which are close to 0 but which do not contain 0; the
largest such balls are of the form B = B(p*xo,x + 1) with v(xg) = 0. The total tree will be
of level d if the following two conditions hold:

(1) The tree on each ball B looks like the tree of a side branch: after cutting B into
finitely many smaller balls, it is of the form T(Z,) x 7, where  is of level d — 1.

(2) If we let x go to infinity (i.e. the ball B approaches 0), then the trees on B are
uniform in x (in the way required by the definition of level d trees).

Now suppose that X is one-dimensional. For simplicity, assume moreover X < @If. It
is known that such a set X is a subset of an algebraic set V. By applying the theorem of
Puiseux to V, close to (0,0) we can write X as union of branches, each of which is the
graph of series of the form f(x) = Y a;¢/x'. Taking the e-th root is of course not unique,

but as in the cusp example, on each ball B = B(p"(xo, ¥0),K + 1) we can choose roots in
such a way that we get a continuous function f. (In fact, here we might need to replace
K+ 1 by x+ u for some fixed ¢ > 1.) Now suppose that v(xp) =0, i.e. B does not lie
directly above or below (0,0). Then for large x, the graph of f will intersect B only if its
derivative at 0 has non-negative valuation. Using this, we get Lipschitz continuity of f:
v( f(x1)—f (xz)) = v(x] — x2). This will allow us to apply Corollary 3.3, which will finally
imply condition (1). If on the other hand v(xy) > 0, then v(y) = 0, and the same argument
applies with coordinates exchanged.

All this can be carried out uniformly in x, and we will get the uniformity required
in (2) by having a second look at the Puiseux series describing the branches. If " a;¢/x" is

1
the difference of two such series, then for x = v(x) > 0, the valuation of this difference is

1 . . . .
equal to v(a,) + - v(x), where g, is the first non-zero coefficient. This valuation corresponds
e

to the depth of a joint of the side tree; as required, it is linear in x.

To get a proof for two-dimensional definable subsets of @;, we use cell decomposi-
tion to understand X and then apply the Puiseux series arguments to the centers of cells
(which are curves). Lipschitz continuity of these centers yields Lipschitz continuity of the
whole fibers of the cells, so Corollary 3.3 implies that the tree on a ball B is of the form
T(Z,) x 7, where J is the tree of one fiber.

Of course the tree I of a fiber is of level 1 (as its dimension is at most 1), but we need
uniformity in x. To prove this, for each x we will choose one fiber X, in the corresponding
ball. The cell decomposition of X yields a cell decomposition of each X, which is “close to
uniform”; for example, for x > 0 a cell center will be close to p’*) - 4 for some fixed a € Q,
and some linear function /. This uniformity will allow us to deduce that the parametrized
tree x — T(X,) is of level 1.
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The remainder of this section is organized as follows. First, we recall cell decomposi-
tions; in the next two subsections, we introduce “garlands”, which are the right sets to work
on when one wants to carry out the above arguments concerning Puiseux series uniformly
in x. In Subsection 6.5, we introduce the close-to-uniform families of sets X, and prove that
they have uniform level 1 trees, and in the last two subsections, we carry out the remainder
of the above arguments.

6.2. Cell decomposition. The following is almost the usual definition of a cell de-
composition. The only difference is that we are a bit more restrictive on the conditions <
and =9 in a harmless way; this will save us a few clumsy case distinctions.

Definition 6.1. (1) The only cel/ in @[9 is the one-point set @[? itself.
A cell in Q) is a set of the form
C={(x,y)eDxQ,|a(x)<v(y—c(x)) =p(x)and 3z y — ¢(x) = rz°},

where D is a cell in @;"1, a,f: D —T u{owo} and ¢: D — Q, are definable functions,
re @;, e € Nxj, <0 is either < or no condition and = is either < or <. Moreover, we
suppose that the projection C — D is surjective and that if =5 is <, then f = co.

We call D the base, ¢ the center, o and 8 the lower and upper bound, e the exponent
and r the residue of C.

(2) A cell decomposition of Q) is a partition of Q) into finitely many disjoint cells. If
n > 0, then we additionally require that the set of bases of the cells is a cell decomposition
of @ .
P

By fixing a cell decomposition, we will mean that we also fix the data D,c,a,f,...
describing the cells.

The usual cell decomposition theorem is the following; see e.g. [9], Section 4.

Lemma 6.2. Let X c @[’,’ be a definable set. Then there exists a cell decomposition
of @, such that X is a union of cells.

The following easy fact about one-dimensional cells will be used quite often:
Lemma 6.3. There exists a function 0 : Nx| — I'sg such that the following holds:

(1) Let C < Q, be a cell with center ¢ and exponent e, and suppose x; € C and
x2 € Q,\C. Then v(x) — x2) < v(x; —¢) +d(e) forie{l,2}.

(2) Suppose that Cy and C, are two disjoint cells with centers ¢y and ¢, and common
exponent e, and suppose that x| € Cy and x; € Cy. Then v(x; — x3) < v(c; — ¢2) +d(e).

Proof.  Setd(e) := 2v(e) + 1. Then (1) follows from Lemma 2.2 (2).

For (2), use (1) and the disjointness of C; and C, to get (for i=1,2)
v(x1 — x2) < v(x] — ¢;) +d(e). Now apply the triangle inequality to ¢, x, 2. [
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6.3. Garlands and trees. Suppose that X < Z;’, Xp € ZI’], By = B(xy,4), and B < By
is a ball not containing x,. As described in Subsection 6.1, we will try to understand Tz(X)
uniformly when B approaches xj. To be able to speak about uniformity, we have to deter-
mine the trees on a whole “garland” of balls approaching x, at once. In this subsection,
we define these garlands and show that indeed knowing the trees on appropriate garlands
suffices to get back the whole tree of X (Lemma 6.6).

The reason to work on garlands and not on the whole of By is essentially that on a
garland, it makes sense to speak of one specific branch of the e-th root function, whereas on
the whole of By it does not. In the next subsection, we will use this to infer a nice descrip-
tion of definable functions on garlands close to xy.

Definition 6.4. Suppose we have x; € Z;> A€Tlsy, and p,pel'so. A garland G
corresponding to xg, 4, u, p is a set of the form

G=xo+ U p"B(xg,u)

K2
KeE

for some x¢ € Z,, satisfying v(xg) = 0 and some E € I'/pI". We will write
M(G) ={keZ|k =1}

for the set over which the union goes, and call the subsets G, := xo + p“B(xg, 1) for x € M
the components of G.

Remark. G, consists of exactly those x € G which satisfy v(x — xy) = x.
Remark. For fixed xo, 4, 1, p, garlands form a finite partition of B(xo, 1)\ {xo}.

We will not always specify xo, 4, u, p; sometimes we just write “garland for 4, u, p”,
“garland converging to x,”” or “‘garland on B(xy,4)”. Moreover, most of the time we will
not care for the precise values of 4, u, p; we will only require the garlands to be ““sufficiently
fine”, i.e. each garland is a subset of a garland for certain given Ay, 4, p,. This is equivalent
to A = Jo, u = 1y and p, | p. This is also what we will mean by “/, u, p sufficiently large™:
for p interpret “large” multiplicatively.

Definition 6.5. Let X be a subset of Z; and let G be a garland whose components
are Gy, for k € M := M(G). The tree of X on G is the parametrized tree

Te(X): M — {Trees}, x— Tg (X).

Lemma 6.6. Let X be a subset of Z,. Suppose that for each x € Z}, there are 4, y, p
such that for each garland G (corresponding to x, A, u, p), the parametrized tree Tg(X) is of
the form k — T(Z,) x T¢(k), where T is piecewise a parametrized tree of level d. Then
T(X) is a tree of level d + 1.

Proof. First, for each xe Zl’j\)? we enlarge the corresponding A such that
B(x,7) n X = 0. As in the proof of Theorem 1.4 (Subsection 3.2), using compacity of Z, it
suffices to prove that the tree on each ball B(x, 4) is of level d + 1; the whole tree will then
consist of a finite tree, with finitely many of the trees T, ;(X) attached to it.
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Now fix x € Z), and let 4, 4, p be as in the prerequisites (possibly with 4 enlarged);
we compute the tree T, (X). To simplify notation, suppose x =0. If 0¢ X, then
B(0,2) "X =0 and there is nothing to do, thus suppose now 0e X. This implies
B(0,x) € Ty ,(X) for all x = 4. We take this as skeleton for Ty ;(X), with a joint at
B(0, ) and then a single infinite bone. It remains to determine the side branches.

Consider a garland G for A, u, 1 (converging to 0). It is the union of finitely
many garlands G; for 4, u, p, and Tg(X)(x) = Tg,(X)(x) if ke M(G;). Recall that
Te,(X) () = T(Z,) x T¢,(x) and define T(k) := T, (k) if ke M(G;). We get that 7
is piecewise of level d and T (X)(x) = T(Z,) x T¢(x). In other words, we may w1thout
loss suppose p = 1.

For each garland G, we have a finite partition of {x € I'|x = A} such that ¢ is of
level d on each set of the partition. We choose a partition of {x € I'|x = 1} such that for
each part M, 7 is of level d on M for all garlands G. Now we claim that there is a single
side branch datum describing the side branch of Ty ,(X) leaving the skeleton at B(0, x) for
all ke M.

Let 7, be the subtree of Ty ,(X) consisting of those B = B(x,x +v) with 0 < v < p
and 0 ¢ B. Equivalently, 7, is the finite subtree of Ty (Z,) whose leaves are exactly the
components G, of those garlands G satisfying G, N X # (. For G fixed, this non-emptiness
does not depend on « (as long as x € M), so for two different x, k" € M, the map

{x|v(x) =Kk} — {x|v(x) =K'}, x> p" *x
induces (using Lemma 3.1) an isomorphism from Z, to %, sending G, to G,..

Now the side branch of T, (X) at B(0, k) consists of #,, with T¢, (X) attached to the
leaf G, € #, (for G, " X + 0). As Te (X) = T(Z,) x T(x) with T of level d, this proves
the claim. [

6.4. Definable functions on garlands. The main result of this subsection (Proposition
6.13) is that on sufficiently fine one-dimensional garlands, a definable function is given by a
branch of a Puiseux series. We start by giving a meaning to a specific branch of the e-th
root function.

Definition 6.7. Suppose G = Q,, is a garland for 0, 4, z, p, and suppose e € N>;. We
say that G is fine enough for e-th roots if u = 2v(e) + 1 and e|p. Suppose that this is the
case. Then a uniform choice of e-th roots on G is a choice of /x € Q, for each x € G such

/x

that for any x, x’ € G we have ~— e p' - (1 +pb(e)+lz ).

VX

If G is fine enough for e-th roots, then uniform choices of e-th roots on G exist. For
!/

any x € G choose any root y/x. Then for any x’ € G we have T e P (1 + p™9*17,) for
X

/

some v € ['; thus by Lemma 2.2 (1), x_ hasarootz e p”- (1 + p"©@+17,). Set v/x" := /x - z.
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By “choosing an e-th root on G, we will mean choosing +/x uniformly as described
above. When we ask a garland to be fine enough for e-th roots, we will often implicitly
choose such a root.

If G converges to xo + 0, by choosing an e-th root on G we mean choosing /X — X
for x € G in an analogous way.

These uniformly chosen roots are Lipschitz continuous in the following sense:

Lemma 6.8. Suppose e € N>y and G is a garland converging to 0 which is fine enough
for e-th roots. If x,x' € G satisfy X X ye) X' for some 6 = 1, then /x =5 /X', and more

generally /x' ~; Vx'' forany 1€ 7.
Proof.

X o0+U(X Ex (e
xz,;ﬂ,(e)x’(:);el+ps+()Zp:£el+pBZp

v

o/x\' N W]
:><\e/\/);>el+pbzp(:)\"flz(5\‘/;. O

Note that if x, x’ lie in the same component of G (and G is fine enough for e-th roots),
we may always apply the lemma with 0 = v(x — x’) — v(x) —v(e) = 1.

We will need the following two results relating garlands and definable sets.
Lemma 6.9. (1) Garlands are definable.

(2) If we chose an e-th root on a garland G < Z, and this root lies in Q,, then x — /x
is definable.

Note that whether /X lies in @, does not depend on the specific x € G.
Proof of Lemma 6.9. (1) Well known; see e.g. [4], Lemma 2.1, 3) and 4).

(2) We only need to specify in a definable way which of the roots we want to take.
If z¢ is the root of one element of G, then the other ones are exactly the ones lying in
zo - p' - B(1, p©*1). This is definable by the same argument as for (1). []

Lemma 6.10. Let X < Q) be definable and xy € Q,. Then there exist ., u, p such that
any corresponding garland converging to xg lies either completely inside or completely outside
of X.

Proof. 1t is enough to prove the statement when X is a cell. If xq is not equal to the
center of the cell, or if the cell has an upper bound f < oo, then a whole ball B(xy, 4) lies
either completely inside or completely outside of X. Otherwise choose A > o (the lower
bound) and use that the e-th power residue on sufficiently fine garlands is constant. []
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The two principal ingredients to our description of definable functions on sufficiently
fine garlands are a lemma of Scowcroft and van den Dries which will allow us to replace
definable functions by branches of algebraic sets, and the theorem of Puiseux which will
allow us to describe such branches in terms of branches of root functions.

Lemma 6.11 ([9], Lemma 1.2 and comment following its proof). For any definable
X < Q, and any definable function f : X — Q,, the graph of f is a subset of an algebraic
curve.

Lemma 6.12 (Theorem of Puiseux; see e.g. [6], II1.1.6). Let V(Q,) @3 be an
algebraic curve not containing {0} x Q,. Then there exists . €T, a finite index set N,
integers e, = 1 and coefficients a, ; € Q, for i € Z and v € N, such that the following holds:

(1) For eachve N, a,; =0 fori<«0, and the Laurent series

g(2) = a2’

ieZ
converges for any z € @; satisfying v(z®) = A.

(2) For any (x,y) € p*Z, x Q,, we have (x, y) € V(Q,) if and only if there exist a
ve N and a root {/x € Q, such that y = g,( {/X).

Now here is the main result of this subsection.

Proposition 6.13. Let D = Q,\{0} be definable and let f : D — Q, be a definable
function. Then there are e, 1, u, p such that D n B(0, 1) is a union of garlands corresponding
t0 0, A, u, p, and such that for each such garland G < D the following holds. G is fine enough
for e-th roots, and f can be written as a convergent Laurent series in /X, with coefficients
a; € Q:

fx) =3 ai\"/;ci

ieZ
forall x e G.

Note that the specific choice of an e-th root on G does not matter; to compensate for
a change of root, multiply each a; by an appropriate power of an e-th root of unity.

Proof. Choose 4, u, p large enough such that D n B(0, 4) is a union of correspond-
ing garlands converging to 0 (use Lemma 6.10). Let V' (Q,) @5 be the algebraic curve
containing the graph of /" according to Lemma 6.11, and apply Lemma 6.12 to V' (without
loss, V' does not contain {0} x Q,). Enlarge 4 such that the conclusion of Lemma 6.12
holds on B(0, 4). Then for any x € D n B(0, 4), there exists a ve N and an e,-th root of x
such that

f(x) =Y a,; vx'.

ieZ

This statement remains true if we replace all e, by their least common multiple and renum-
ber the coefficients a, ; accordingly.
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Now choose a primitive e-th root of unity {, enlarge x4 and p such that corresponding
garlands are fine enough for e-th roots, and choose an e-th root on each of them. Define the
set of formal Laurent series

~{ Sl v® eIl ven0 < e,
ieZ

and for G c Dand s € S, set Ag ; := {x € G| f(x) = s(x)}. The union of these sets is equal
to D n B(0,4). We claim that after enlarging A, we may suppose that the sets 4 are de-
finable and disjoint.

For s = Y. b;/x' €8, let s, := 3. b;/x' be the corresponding truncated series, where
i

i<i1
1 is large enough such that s # s’ implies s, = s for any s, s’ € S. Then for v(x) > 0, we have
v(s(x) — s2(x)) > v(sc(x) — 5.(x)) for any two different 5,5’ € S, so we get that x € Ag, if
and only if x € G and v(f(x) — s:(x)) > v(f(x) — s/(x)) for all s € S\{s}. This condition is
definable and implies disjointness.

So now we have a finite definable partition (A¢, ;) of D n B(0, 4). To finish the proof,
enlarge A, u, p again such that any of the finer garlands is completely contained in one of
the sets A¢ y; on each of those finer garlands we have f(x) = s(x) = > b/x. [

We will need an analogue of the previous proposition for definable functions going
to 'u {oo}; we get it as a corollary of the previous proposition, although the heavy ma-
chinery of Proposition 6.13 is not really necessary. (It could, for example, also be deduced
from [3], Corollary 6.5, together with our Lemma 6.10.)

Corollary 6.14. Let D c Q, be a definable set and o: D — ' U{0} a definable
Sfunction. Then there are A, u, p such that on each garland G = D corresponding to 0, A, u,
p, a(x) only depends on v(x), and the function M(G) — T U {0}, v(x) — a(x) is linear.

Proof.  Write o as vo f for some definable / : D — Q,. Apply Proposition 6.13 to
get f(x) = Za,\/)_c and let  be minimal such that a, & 0. If v(x) is sufficiently large,

then v(f (x)) = v(a,/x") = v(a,) + ev( x), so choose /4 accordingly. []
To conclude this subsection, we prove two general statements on Puiseux series which
we will need later.

Lemma 6.15. Suppose that G is a garland for 0, A, u, p which is fine enough for e-th
roots and that the Laurent series

f(x) =Y ay/x’

ieZ
(with coefficients a; € Q) converges on G.

(1) If f(x) € Q, for all x € G, then a;x/x € Q, for all xe G and all i € Z.

(2) If v(f(x)) Zv(x) for all x€ G, then there exists a ' = such that for all
x1,x2 € G with v(x1) = v(x2) 2 ', we have v(f(x2) — f(x1)) 2 v(x2 — x1).
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N
7
single x € G. Now suppose that : is minimal such that a,v/x' ¢ Q,. For ye @p, write
distg,(y) := sup{v(y —»')| y" € Q,} for the distance of y to Q,. As Q, is closed in @, in
the p-adic topology, we have distg, (a,/x") > 0.

a/x"
a,/x'
fixed dy e I' not depending on x e G. Thus, for x sufficiently close to zero, we get
v(aiy/x") > distg, (a,/x") for all i> 1 Together with Y a;y/x" € Q,, this contradicts

Zalﬁe@ i<i

ieZ

(2) Suppose that @, is the first non-zero coefficient of the series. The condition
v(f(x)) = v(x) (applied to sufficiently small x) implies that 1 > e, and if 1 =e, then
v(a,) 2 0.

Proof. (1) As € Q, for any x,x’ € G, it suffices to check the claim for one

As € Q, for any x,x" € G, we have distg, (a,v/x") = v(a,v/x") + dy for some

Now suppose xi, X, € G are given. The claim o(f(x2) — f(x1)) = v(x — x;) follows
if we can verify the inequality

(13) v(ar/x — aiy/xi') = v(a;) + v(/%" — Yx1) Z v(x — x1)
forall i = 1.

If i = e =1, then \/x_zl — \/x_ll = X1 — X2, so (13) follows from v(a;) = 0. Now sup-
pose i > e.

Set o := v(x2 — x1) — v(x1). By Lemma 6.8, we get ¢/x1' X, o(e) \/x_z So

o/~ ) 2 o) o= vle) = o) + o — ) — o) — ofe),

and it remains to verify v(a;) +év(x1) —v(x1) —v(e) = 0. This is true for v(x;) > 0, but we

need a bound which is independent of .

Choose any xg € G and set 4 := v(xp). Let iy € Z be such that v(a;,) + 1—0/10 is minimal
e

(a minimum exits by convergence of f(xp)). By supposing v(x;) = 49, we get

v(a;) +£v(x1) —v(x)) —v(e) = v(a;) + 2/10 + é (v(x1) = Zo) — v(x1) — v(e)

(U(Xl) — /10) —v(x1) —v(e)

Now everything is constant except for the last summand, so for v(x;) sufficiently large, this
is non-negative. [
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6.5. Parametrized subsets of Q,. For (one-dimensional) subsets of @Q,, the main
conjecture is not difficult to prove:

Lemma 6.16. If X is a definable subset of Q,, then T(X) is of level 1.

Proof. By Lemma 6.10, trees on sufficiently fine garlands close to any given point
are isomorphic either to x — @ or to x — T(Z,), so in any case they are of the form
K — T(Z,) x 7 (x) where 7 is of level 0. Thus Lemma 6.6 yields that the total tree T(X)
isof level 1. [

To prove the conjecture for definable subsets of @;, we will need a parametrized
version of this: if we have definable sets X, = Q, parametrized by x € I in a suitable “uni-
form” way, then we should get a parametrized level 1 tree. To state this, we need a notion
of “sufficient uniform maps” from I" to Q,,.

Definition 6.17. LetdeI'sg, M = I'yg and ¢, € Q, for x € M. We say that x — ¢, is
o-uniform, if x +— v(c,) is linear and if there exists an a € Z; such that ¢, x5 p”(""‘)a for all
KeM.

Now here 1s a uniform version of Lemma 6.16.

Proposition 6.18. Suppose that for each k in a subset M < I' ¢ we are given a defin-
able set X,. = Q, and that these sets are uniform in k in the following sense. Each X is the
union of finitely many disjoint cells C, ;, i € I of the form

Cri={xe Qo <iv(x —ci) Si By ; and 3z X — ¢ = 1iz°}.

We require that all exponents are equal and that none of the index set I, the exponent e, the
residues r; and conditions <1;, =; depend on k. Moreover set 6 := d(e) as in Lemma 6.3. We
require that for each i, j € I, the functions i — o, ; and i — P, ; are linear, and the functions
K = Cp,i and K v+ ¢ ; — ¢y ;j are o-uniform.

Under these conditions on X, the tree M — {Trees}, k — T(X,) is piecewise a para-
metrized level 1 tree.

Note that the requirement that the exponents of all cells are equal is not a real restric-
tion: anyway cell decompositions can be refined such that all exponents become equal.

Before we start with the proof, let us state a variant as a corollary.

Corollary 6.19. Suppose that M < I's¢ and X, (for k € M) are given as in Propo-
sition 6.18 and satisfy all the conditions required there with exception of the uniformity
condition on the cell centers c, ;. (We do however still require the uniformity of differences
Cr,i — Cx,j.) Suppose moreover that B, = B(b.,0,) are balls, where the function of radii
K +— 0y Is linear and such that for any i € I, the function k — ¢, ; — by is d-uniform (with 6
as in the proposition). Then the tree M — {Trees}, r — Tg (Xy) is piecewise a parametrized
level 1 tree.
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Proof of the corollary. Define ¥, (x) := p~7(x — br). Then Tg (X,) = T (¢ (Xx)),
so it suffices to verify uniformity of the sets i,.(X). Uniformity of the cell bounds and ¢-
uniformity of differences of centers carries over (by linearity of x — a,), and J-uniformity
of k — ¢, ; — by yields d-uniformity of x — (¢, ;). The exponent e and the conditions <;,
=g; do not change, so it remains to consider the residues ;. They are replaced by p~r;,
which does depend on x. However, as we only want to prove piecewise uniformity of the
resulting trees, we may partition M according to o, modulo e; on these parts, the e-th
power residue of p~%r; is constant, so we may replace p~%r; by one fixed value. [

Proof of Proposition 6.18. We may suppose that M is infinite; otherwise the state-
ment follows from Lemma 6.16.

We will prove the statement inductively, starting from the leaves. We will cut the tree
horizontally into slices. There will be some thin ones where “‘the things happen” and some
thick and simple parts in between where the skeleton of the tree will only consist of long
bones. Let us make this precise.

By “the involved linear functions” we mean the set of maps from M to I' U {0} con-
sisting of x> o j, K+ B, ;, 1€+ v(¢xi) and k — v(cx; — ¢x,j) for i, jel.

For two linear functions /1,7, : M — I' u {o0}, we write

H <t & lim 4H(k) — (k) = 0.
K—00
(If 4, and /, both are constant co, we set /] « />.) By treating finitely many elements of M
separately using Lemma 6.16, we may suppose that if /| and /, both are either involved or
constant 0, then

(14) L <ty = 0O(k)— (k) 2max{20,e+ 1} forallkxe M.

In particular, < defines a total order on the involved functions and the zero function, and
whether a cell center ¢, ; lies in Z, is independent of .

By partitioning M into finitely many definable sets and treating each one separately,
we may suppose that moreover for any i € I, whether or not C,; N Z, is empty is indepen-
dent of k. By removing cells not intersecting Z,, we may suppose C,; N Z, & ) for any i € I
and any k € M.

Our induction will run over the number of involved functions 7 satisfying / > 0.
Thus by induction hypothesis, we can apply Corollary 6.19 to (X,), and a family of
balls B, = B(b,,0,), provided there is at least one involved function /> 0 such that
{ — (kK — a,) $0.

We will now first treat the special case where every lower bound o, ; satisfies either
o = 0 or o, ; » 0, and every other involved function / satisfies / > 0. This corresponds
to the thick but simple slices in our tree. Afterwards we will reduce the general case to the
first one; this reduction corresponds to the thin but complicated slices.
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The thick and simple parts. Let /; be the minimal (with respect to <) involved func-
tion satisfying 7 > 0, and define 7 := /; — max{d, e}. By (14), we have /y(x) > 0 for all
KxeM.

We may suppose I + (. Choose an arbitrary iy € I and suppose without loss ¢, ;, = 0
for all k e M. Thus v(c, ;) = o(x) + 0 for all i € I. Moreover, as Cy.; N Z, is non-empty
and B, ; = /() + e, we get C;n B(0,4(x)) = 0; in particular B(0, 1) € T(X,) for all
A é f() (K)

Now suppose first that 4y < oo, and set B, := B(O,/o(zc)). The parametrized tree
Kk — Tp (X,) is of level 1 by induction hypothesis, as the involved function /; satisfies
/o> 0 and /5 — /) % 0. By Lemma 4.7, it is therefore enough to verify that the tree on
the cheese Sy := Z,\B, is of level 1 in such a way that x — B, is a joint. We choose
{B(0,4) |0 = 1 < ¢y(x)} as skeleton (with a single bone of length /;); it remains to analyse
the side branches.

If /y = o0, then we do not need the induction hypothesis; we simply define S, := Z,
and choose {B(0, 1) | 2 = 0} as skeleton for T (X)) (again with one single bone).

The tree Ts, (X,) does not change if we replace all centers of cells ¢, ; by 0: if /p = o0,
there is nothing to do; otherwise this follows from Lemma 6.3 (1), using that for x ¢ B, we
have v(x — ¢ ;) < 4o(x) = v(ce,i —0) — 0. So for x € S, \{0}, we get that x € X, if and only
if there is an i € I with «, ; < 0 such that x/r; is an e-th power. Thus for 1 < /y(x), the side
branch of T(X,) at B(0,1) only depends on 4 modulo e and not on x at all. Moreover,
each side branch consists of a finite tree with copies of T(Z,) attached to its leaves; hence
K — Tg, (X)) is indeed of level 1.

The thin and complicated slices (Reduction of the general case to the case where all
involved / satisfy / > 0, except for lower bounds o, ; which may also be o, ; <0). Let
us first have a look at cells whose centers c,; lie outside of Z,. If v(¢,;) < —0 and
CyinZ, 0, then Lemma 6.3 yields Z, = C,;, so this case is trivial. If =5 < v(c¢x;) <0,
then v(c,, ;) does not depend on x by (14), and J-uniformity of ¢, ; yields ¢, ; &5 a’ for some
a' € Q, not depending on x. Thus for any two different x, k' € M, we get v(c,; — ¢, ;) = 0.
Moreover, Cy; N Z, # § implies o, ; < v(cy;) = V(X — ¢x1) < B for all k and all x € Z,,.
This yields bijections

(15) meCK,i_)meCK',i) X X — Cx i+ Cyr i
for all x,x’ € M, which will be useful later.

Now let 4 be the maximum value of all constant involved functions. We will cut out
holes of radius 4 4 ¢ around the centers of some of the cells, apply the thick and simple case
to get the trees in these holes, compute the tree outside of the holes and then put everything
together. Define B, ; := B(c,,i, A+ ) for i € I. We do not want to cut out all B, ;, but only
those in which X is complicated: define J < I in such a way that j € J implies ¢, ; € Z, and
CejN B+ 0. Moreover, if there are several i for which the balls B, ; are equal, then put
only one representative into J.

Let us first analyse the relative position of a cell C; and a hole B, ; (ie I, je J). We
claim that either ¢, ; € By ; or C ;N B, ; = 0, and that this does not depend on «. Indeed,
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if v(cx,i — ¢« ;) » 0, then by (14) we have v(c.; — ¢, ;) = A+ 20 forallk € M, so ¢, ; € By ;.
If on the other hand v(c,,; — ¢x,;) # 0, then v(cy,; — ¢ ;) < A for all ke M, and Lemma
6.3 (1) implies that B, ; lies either completely inside or completely outside of C, ;. As
B, ;0 C,; % 0, the disjointness of C,; and Cy ; implies C.; " By ; = 0.

Now fix j € J. Computing the tree x — Tp_,(X,) in the hole B, ; can be done using
the corollary version of the thick-and-simple case, after removing all cells not intersecting
B, ;. Indeed, the required uniformity in x is clear, and the condition / > A 4 ¢ for involved
¢ (or o, ; < A+0 for lower bounds) follows from the fact that C, ;N B, ; + 0 implies
v(cx,i — ¢, j) > 0and ;> 0.

By Lemma 4.7 we are left to compute the tree on the cheese S, := Z,\ |J B, ;. We
jeJ

J
will first check that for each x separately, the tree Tg (X)) is of level 1 (with the nodes By ;
being joints), and then we will find isomorphisms Tg, (X)) = Ts (X,/) respecting the holes.
This implies that x — Tg_ (X,) is parametrized of level 1.

To prove that Tg, (X,) is of level 1, it is enough to show that any ball B — S, of radius
A+ 20 lies either completely inside or completely outside of X,. So suppose x € X, N Sy.
Then x € C; for some i€/, and our choice of holes ensures that v(x — ¢, ;) < A+.
Lemma 6.3 (1) implies that C, ; (and therefore X,) contains B(x, 4 + 20).

To get the isomorphisms Ts, (X,) — Ts, (X,) we first replace (for each x) X, by a set
Y, which has the same tree on S,, but which is simpler inside the holes. We ensure that
T(Y,) contains the nodes B, ;, j € J, so that T (Y,) = T(Y,). Then we will use Lemma
3.1 to construct an isomorphism T(Y,) — T(Y,) sending B, ; to B, ;; this yields the de-
sired isomorphism T, (X,) = Ts, (Yx) = T, (Yir) = Ts, (Xr).

Define Y, := (X 0 Sc) U{cy,j|jeJ}. It is clear that Ty, (X,) = Ts (Y,), and the
element ¢, ; ensures that B, ; is a node of T(Y,). It remains to define the bijective isometry
¢: Y, — Y, needed in Lemma 3.1. To this end, let us first adapt our cell decomposition to
the sets Y,.: define

DK,[ = K,i\ U BK,j‘
JjeJ

Thus X, NS =7, | Dy i. Our choice of J ensures that D, ; = C, ;\By; if ¢, ;€ Z,
iel

and D, ; = C,; otherwise, so D, ; is a cell again, and moreover x € Z, n D, ; implies

(X — i) < A+0.

Next, we claim that the map x — x — ¢, ; + ¢,,; induces a bijection from D, ;N Z,
to D inZ,. If ¢, ;¢ Z,, then this has already been verified in (15). Otherwise, it fol-
lows from the fact that the bounds of D, ; are either independent of x or less than 0.
Using this, we define the bijection ¢ : Yo — Yo by ¢(x) :=x — ¢+ cwiif xe D inZy,
iel and ¢(ce;) =ce,; if ieJ. It remains to verify that ¢ is isometric, i.e. that
v(x1 — x2) = v(¢(x1) — ¢(x2)) for any x;,x; € Y.

Suppose xi,x; € Y, are given. Let i e be such that x; € D,; or i eJ such that
X1 = ¢, ;. Choose j analogously for x,. Then
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P(x1) — p(x2) = X1 — Ci + i — X2+ Cj — Cr

=X] — X2 — (CK,i - CK,j) + (CK’J - CK’,j)a
so it is enough to show that
(16) v(x1 = x2) < v((€,i — rj) = (i — Cr )

We may suppose i+ j; otherwise, this is trivial. Now recall that ¢, ; — ¢, ; is
J-uniform in x and that v(c,; — ¢ ;) is involved. Suppose first that v(c,,; — ¢, ;) is con-
stant. Then we get c¢,; — ¢« j R Cir,i — Cr,j, SO the right-hand side of (16) is at least
v(ce,i — ¢ j) +0. If x; = ¢, ; and x, = ¢, ;, then this implies (16) trivially. If x; € D, ; and
X2 = ¢ j, then apply Lemma 6.3 (1). If x; € D,.; and x, € D, ;, then apply Lemma 6.3 (2).

If v(cx,i — ¢k j) is not constant, then by (14) both ¢,; — ¢, ; and ¢, ; — ¢, ; have
valuation at least A+ 2, so we have to check v(x; —x2) < A+ 20. If x| = ¢, ;, then this
follows from x; ¢ B, ;. If x| € Dy ;, then x| ¢ B ;, i.e. v(x] — ¢;) < A+, and the claim
follows from Lemma 6.3 (1). [

6.6. Proof for definable subsets of @If. We are now ready to prove that if X is a de-
finable subset of @3, then the tree of X is of level 2. Together with Lemma 4.8, this implies
Theorem 1.5.

Proof for subsets of @j. Suppose that X = @i is definable. Our goal is to prove that
T(X) is a tree of level 2. We use Lemma 6.6, i.e. it is enough to show that for any
(x0, y0) € Z; and for sufficiently large /4, u, p, the trees on the corresponding garlands
are piecewise of level 1. We suppose without loss (xg, vo) = (0,0).

For the remainder of the proof fix a garland G for (0,0), 4, u, p. At several places, we
will suppose 4, u, p to be sufficiently large; of course the meaning of ““sufficient” must not
depend on G (as augmenting u and p augments the number of garlands). Indeed, 7, u, p will
only depend on two cell decompositions of X: a normal one and one with coordinates
exchanged.

For ke M := M(G), let G, be the corresponding component of G. Recall that
G, = B(p"' (x6,Y6), K —1—,u) for some (xg,y¢) € Z[% with v(xg,y¢) = 0. We may suppose
v(xg) = 0; otherwise, exchange coordinates.

Denote by H the projection of G onto the first coordinate and by
H, = B(p*x¢,x + u) the projections of the components G,. As v(xg) =0, H is a garland
with components H,. Denote by B, = B(p*yg, k + u) the projection of G, onto the second
coordinate. For x € H, let X, := {y € Q,| (x, y) € X'} be the fiber of X at x.

Our goal is to compute T (X ). We will verify that Corollary 3.3 can be applied
to each set G. N X, yielding that T (X) is isomorphic to T(Z,) x Tp (X, ), where
X = p"xg € H.. We will moreover verify that Corollary 6.19 can be applied to the sets
X, and the balls B, (where x runs through M). This implies that the map x — Tp (X, )
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is piecewise a level 1 tree. Thus T¢(X) satisfies the prerequisites of Lemma 6.6, and we are
done.

Before we attack the prerequisites of the two corollaries, let us have a closer look at
the set X and fix some more notation. Choose a cell decomposition such that X is the union
of cells. We may suppose that the exponents of all cells are equal to one single ¢y € N. Fix
once and for all J := J(ep) as in Lemma 6.3. By Lemma 6.10, we may suppose that H is
contained in one single base cell Dy = Q,.

In the remainder of the proof, C will be a cell contained in X and having base Dy; we
will denote its bounds and center by «, f and ¢, respectively, and its fiber at x € H by C,.
For any x € H, these fibers C, form a cell decomposition of X,. Occasionally we will need a
second cell C’ (also contained in X and having base D), with bounds, center and fiber o/,
B, ¢" and C..

We use Proposition 6.13 and Corollary 6.14 to control «, f and c: for A, u, p suffi-
ciently large, the bounds «(x) and f(x) only depend on x = v(x), and this dependence is
linear. Moreover, we can choose an e-th root on H and write the center as a convergent
series

o(x) = 2 e/x,

ieZ

where ¢; = 0 for i « 0, and where ¢; may lie in @,,, but ¢;i/x' € Q,, for any x € H and any
i € Z by Lemma 6.15 (1). We may suppose that e does not depend on the cell C; otherwise,
take the least common multiple of all e. For the remainder of the proof, we keep an e-th
root on H fixed.

Let : be minimal such that ¢, &= 0 in the above series. By further enlarging A,
we may suppose c(x)=xsc¢/x for all xe H. The same argument also applies to

f(x) :=c¢(x) —'(x) and to f(x):= c(x) —%x: we may assume that for each of the
G

(finitely many) functions f mentioned here, there exist « € @, and 1€ Z such that
f(x) xsay/x' €, forall xe H.

We now verify the prerequisites of Corollary 6.19, i.e. we have to verify that the cell
decomposition C,, of X,,_ satisfies the uniformness properties in «. It is clear that only the
bounds and the centers depend on x, and we already ensured that the bounds are linear
in x. It remains to verify that the functions x — ¢(x,) — ¢/(x,) and x — ¢(x,) — p¥y¢ are
J-uniform.

Choose ae @, and 1€ Z such that c(x,) — ¢’ (xc) Xsay/Xx' = ay/pFxg' and fix
any xo € M. Then we can write any k € M as x = ky + ev for some ve . By unifor-
mity of the choice of roots on H, we have ay/p¥xg' = p"a/p™xg. As only v de-
pends on «, this yields J-uniformity of ¢(x,) — ¢’(x,). The same argument applies to

K G . i
C(xx) — DV = C(xx) — i—GxK R /X, .
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The last remaining task is the verification of the prerequisites of Corollary 3.3.
Fix x € M and suppose we are given xj,x,; € H,. We have to find a bijective isometry
¢ : Xy, 0 By — X, N By satisfying v(¢(y) — y) = v(x2 — x1). We will define ¢ on each
cell C,, separately. However, first we have to get rid of some cells: we claim that we can
suppose

(17) v(c(x)) = v(x)
forall xe H.

As ¢(x) ~5a/x' for some a € Q,, 1 € Z, we may enlarge A such that (17) either holds
for all x € H or for no x € H. Suppose that it does not hold. We prove that then C n G,
is either empty or equal to G, (i.e. either we may ignore C or T, (X) is trivial). We have
to check that for (xy, y1), (x2, ¥2) € Gk, y1 € Cy, if and only if y; € Cy,. The cell Cy, is just
a shift of C,, (the bounds o and f only depend on «), so in view of Lemma 6.3 (1) it is
enough to verify y; — c(x) &5 y2 — ¢(x2). But indeed, we have v(c(x1)) < x < v(y1), so
v(y1 —c(x1)) =v(c(x1)) < x, and the claim follows from v(y; — y2) 2 K+ (which is
true if we choose u = 9) and ¢(x1) ~s ay/X1' ~s a/X2' ~s ¢(x2) (which follows from Lemma
6.8 if we choose u = J + v(e)).

Now let us define ¢. For ye X,,, let C be the cell such that y e C,, and set
#(y) := y — c(x1) + ¢(x2). It is clear that this defines a bijection X, — X,, and it remains
to verify that ¢ is an isometry, restricts to a bijection X, N B, — X, N B, and satisfies

(18) v(g(y) = ») Z v(xa —x1).

Restricting to B, is in fact a special case of Equation (18), as B, is a ball of radius
K+ 1 < v(x2 — x1). By (17), we may apply Lemma 6.15 (2), which (after enlarging A) im-
plies (18) using ¢(y) — y = ¢(x2) — ¢(x1).

To check that ¢ is an isometry, suppose ye Cy, and y'e Cy . If C=C’, then
#(y") — ¢(y) = »' — y, so there is nothing to do. Otherwise we have

(d(y) = ¢(») = v(y' = '(x1) + ¢'(x2) = y + ¢(x1) — e(x2)),

so it is enough to check

(19) v(y" = y) <o((¢'(x1) = e(xr)) = ('(x2) = e(x2)))-

We have ¢/(x1) — c(x1) &say/x1' and ¢’(x2) — ¢(x2) &say/x,' for suitable ¢ and
1. Choosing u =0 + v(e) yields ¢/x1" &5 /X2, s0 ¢’(x1) — ¢(x1) &5 ¢’ (x2) — ¢(x2), ie. the
right-hand side of Equation (19) is at least v(c(x;) — ¢(x;)) +4. But y and y’ are con-
tained in two disjoint cells, so Lemma 6.3 (2) yields v(y’ — y) < v(c/(x1) — ¢(x1)) + 6.
This proves isometry and finishes the proof of the theorem. [

6.7. Proof for 1-dimensional definable sets. The proof of the conjecture for 1-
dimensional definable sets is in many aspects just a simplification of the proof for subsets
of @ﬁ, so we will be less detailed. A level 0 version of Proposition 6.18 will be build directly
into the proof.
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Proof of Theorem 1.6. If X = Q) is 0-dimensional, then it is finite, so it is clear that
T(X) is a tree of level 0. Now let X' = @, be 1-dimensional definable. We will prove that
T(X) is of level 1; strictness then follows from Lemma 4.8.

In this proof, we will view Q@ as Q, x @;’_1 and write elements as (x, y); all boldface
variables will be (n — 1)-tuples.

By Lemma 6.6, it is enough to show that for any (xo, yy) € Z, and for sufficiently
large 4, u, p, the trees on corresponding garlands are of the form T(Z,) x 77, where .7 is
of level 0. Without loss suppose (xo, y,) = 0. Again we fix a corresponding garland G with
components G, = B(p"* - (xg, yg),k + ﬂ) for some (xg, yg) € Z, with v(xg, yg) = 0. By
permuting coordinates, we may suppose v(xg) = 0.

We use the same notation as in the proof for subsets of Q%: H and H, are the projec-
tions of G and G, onto the first coordinate, B, = B(p"“yg,x + u) is the projection of G,
onto the remaining coordinates, and for x € H, X, :={y e @;‘1 | (x,y) € X} the fiber of
X at x. Again H is a garland with components H,.

We will again apply Corollary 3.3 to the sets G, n X to get
T (X) = T(Zy) x T (Xy,),

where x,. := p*xg. Moreover, we will show that x — Tp (X, ) is piecewise of level 0; then
the theorem follows.

Choose a cell decomposition of Q@ 1’,’ such that X is the union of cells, and suppose that
Cis a “relevant” cell, i.e. contained in X and intersecting G. Denote by Dy = Q,, the “final
base” of C, i.e. iterate taking the base n — 1 times. We may suppose H < Dy, so all relevant
cells have the same final base Dy, and moreover dim Dy = 1.

As C is 1-dimensional, it is the graph of a definable function ¢ : Dy — @1’}*1. In this
proof, by the “center” of C we shall mean this function ¢. By Proposition 6.13, we may
enlarge A, u, p, choose an e-th root on H and then write the center as

(20) e(x) = 3 v/

ieZ
K _ K yG _ yG
As v(x — p*xg) = k + u for x € H,, we have B, = B| p"x¢=—,k +u | =B x=—,k+u|,
XG XG
so ¢(x) € B, if and only if v(c(x) - xyG> = i + u. Using (20), this does not depend on x if
XG

x> 0, so after enlarging 4 and removing irrelevant cells, we have ¢(x) € B, for all x € H,
and all k e M.

Let ¢’ be the center of a second cell C’. By Corollary 6.14 we may suppose that
v(e(x) — ¢’(x)) only depends on x = v(x) and is linear in «. Let us call the induced func-
tions v(x) — v(e(x) — ¢/(x)) the “involved functions”.

To show that M — {Trees}, x — Tp (X, ) is piecewise of level 0, we partition M
into definable pieces M’ in such a way that for any two involved functions /1, /,, the truth
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values of /; = ¢/, are constant on each piece M'. The tree Tp (X, ) has one infinite path for
each center ¢(x,), and the depths of the bifurcations are given by v(¢(xg) — ¢’ (xG)) The
partition of M ensures that the overall structure of Tp_ (X}, ) is constant on each piece M’,
and linearity of the involved functions yields linearity of the lengths of the bones on each
piece.

It remains to verify the prerequisites of Corollary 3.3. For k € M and xi, x; € H,., we
use the bijection ¢ : Xy, N B, — X, N B, sending ¢(x;) to ¢(xz). This is an isometry as
x — v(e(x) — ¢/(x)) is constant on H,. To get v(e(x2) — ¢(x1)) = v(x, — x1) we apply
Lemma 6.15 (2) to each coordinate of ¢; the prerequisite v(¢(x)) = v(x) follows from
¢(x)eB.. [

7. Possible generalizations

7.1. Skeletal cell decompositions of trees. The main conjecture can be generalized
to a kind of cell decomposition of trees in the following sense. Consider T(Z[’}) as an imag-
inary sort of our language:

T(Z") = (28 < T) /(x,2) = (x', 7)
if v(x —x') = A

Then for any definable set X' = Z, T(X) is a definable subset of T(Z,). Suppose we have
an isomorphism between T(X') and a tree constructed out of a level d tree datum; I will call
this an iterated skeleton for T(X'). Now let us add more branches to this iterated skeleton in
such a way that afterwards each node has exactly p” children: enlarge the finite trees # at
the beginning of side branches, and add side branches to the iterated side trees which before
were of level 0. The result is an iterated skeleton of level n for T(Z,) which is, in a certain
sense, compatible to T(X). It seems plausible that such a compatible iterated skeleton of
T(Z,) should exist for arbitrary definable sets ¥ = T(Z,). Let me make this more precise.

Let D be a tree datum and let .7 be the tree constructed out of D. Suppose that Z is
the finite tree appearing in a side branch datum of D—either for side branches of .7 itself,
or for side branches of an (iterated) side tree. Suppose moreover that w is a node of #
Then we define the set C# ,, = 7 of “nodes coming from w”. We would like to say that
every node of 7 lies in exactly one set Cz ,,; to achieve this, we slightly modify some
definitions.

The only nodes of .7~ which are not part of any set C~ ,, are the ones on side trees of
level 0. (Nodes on skeletons of trees of higher level are roots of side branches.) Thus we
define a side branch of level —1 to be a finite tree & consisting only of a root, and we let
a tree of level 0 be one with side branches of level —1 (as in Subsection 5.1). Now some
nodes of 7 appear in two sets C ,,: if w is a leaf of # and # belongs to a side branch
of level = 0, then the corresponding nodes of 7 also appear as root of the first side branch
of the side tree attached to w; thus we forbid to take for w a leaf of % unless .# is a side
branch of level —1.

In this way, an iterated skeleton of a tree .7 yields a partition of its nodes; let us call
such a partition a skeletal cell decomposition of 7, and let us call the sets Cx ,, skeletal
cells. Now we can formulate a cell decomposition version of Conjecture 1.1:



Halupczok, Trees of definable sets over the p-adics 195

Conjecture 7.1.  Suppose Y < T(Z,) is definable. Then there exists a skeletal cell
decomposition ofT(ZI’,’) such that Y is a union of skeletal cells.

In the introduction, we mentioned a variant T(V’) of the tree of a variety ¥, where the
set of nodes at depth A consists of the whole set V(Z/p”Z). These trees are definable, so
they also fall in the scope of this version of the conjecture. Note that as for Conjecture
1.1, this directly implies rationality of the associated Poincaré series: the proof that trees
of level d have rational Poincaré series directly generalizes to unions of skeletal cells, if
one defines the Poincaré series of a subset Y = T(Z,) by

0 5
Py(Z2):=> #{ve Y\depthT(an)(v) =2} Z"
i=0

7.2. Trees over other Henselian fields. If K is any Henselian field, then one can
define the tree of a definable subset of K” in an analogue way as over Q, (though one needs
a generalized notion of tree if the valuation group is not discrete). One cannot expect to get
a nice statement on such trees if the model theory of K is not understood, but there are
several cases in which it is understood and where a variant of the main conjecture would
be interesting: algebraically closed valued fields and Henselian fields of characteristic
(0,0). Moreover, if the model theory is not understood, one may still hope for a conjecture
concerning trees of varieties.

The reason I think algebraically closed fields are interesting is that there, trees should
be simpler, and one might hope to first prove a version of the conjecture in this case,
before going back to non-algebraically closed fields. Indeed, over Q,, we had different
side branches depending on the depth modulo some p. The reason for this was that not all
roots exist, so this phenomenon should disappear over algebraically closed fields.

Concerning Henselian fields K of characteristic (0,0), a good version of the conjec-
ture there should imply a uniform version of the conjecture over Q, for almost all p, which
in turn should imply rationality of the Poincaré series “uniformly in p”’, probably in the
same sense as it has been proven in [5]. Let me make this precise, describing the hopes I
have in this case.

Over Q,, our trees were purely combinatorial; if the residue field is not finite, then
most nodes will just have infinitely many children, so there is not much combinatorial in-
formation left. Thus it will be necessary to add some additional structure to the trees; prob-
ably the set of children of a node (or the appropriate equivalent if the value group is not
discrete) should be a definable set over the residue field. A tree datum D in this setting
should contain formulas y(y) in the ring language, which describe the sets of children of
some nodes; for any valued field K, one then gets an actual tree 7 p x by interpreting the
formulas y(y) in the residue field of K.

Now suppose that for any Henselian field K of characteristic (0,0) and any formula
#(x) (with x in the valued field sort), we do not only have a tree datum D describing
T(¢(K)), but moreover we can say this in a first order way: there is a sentence iy which
holds in K and such that for any other valued field K', K’ £ implies that D describes
T(¢(K')). Then for any given formula ¢(x), by compactness there is a finite set & of tree
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data such that for any K Henselian of characteristic (0,0), there is a D € & describing
T(¢(K)). If we restrict ourselves to fields with value group (elementarily equivalent to) Z,
then by Ax-Kochen-Ersov D will only depend on the residue field. Thus we may unify all
D € 2 to one single tree datum D, which is valid for all K by incorporating the choice of D
into the formula describing the children of the root. By applying this to ultraproducts of the
fields Q,, we get that Dy also describes T(¢(@p)) for almost all p.
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