

This is a repository copy of Analysis of dietary fibre of boiled and canned legumes commonly consumed in the United Kingdom.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/83197/

Version: Accepted Version

Article:

Orfila, C, Chu, J and Burley, V (2014) Analysis of dietary fibre of boiled and canned legumes commonly consumed in the United Kingdom. Journal of Food Composition and Analysis, 36 (1-2). 111 - 116 (6). ISSN 1096-0481

https://doi.org/10.1016/j.jfca.2014.06.010

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Analysis of dietary fibre of boiled and canned legumes commonly consumed in the United Kingdom Maryam A. Aldwairji^{a, b}, Jin Chu^a, Victoria J. Burley^b and Caroline Orfila^a* ^a Food Carbohydrates Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK ^b Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK * Corresponding author: Dr Caroline Orfila, Telephone: +44 (0) 113 343 2966, Fax: +44 (0) 113 34329, address: School of Food Science and Nutrition, Woodhouse Lane, University of Leeds, LS2 9JT, UK, email address: c.orfila@leeds.ac.uk

28 Abstract

The use of different analytical methods to measure the dietary fibre content of foods complicates the interpretation of epidemiological studies. The aim of this study was to determine the total (TDF) and insoluble (IDF) fibre content of 14 boiled and canned legumes commonly consumed in the UK using the Association of Official Analytical Chemists (AOAC) enzymatic gravimetric method. The fibre values obtained were compared to non-starch polysaccharide (NSP) values. The results showed that mean values for TDF (2.7 - 11.2 g/100g) were higher than NSP (2.6 - 6.7g/100g), with a mean NSP: TDF ratio of 1:1.43. TDF was correlated with NSP (r= 0.6; p= 0.02). Canning significantly reduced TDF and IDF by an average of 30% and 26% compared to boiling respectively. However, IDF represented at least 60% of the TDF in both boiled and canned samples. In conclusion, fibre values are affected by the processing and analytical method used. Keywords: Dietary Fibre; Insoluble Fibre; Legume;; AOAC method; Cooking Methods; Food Analysis; Food composition; Pulses; Non-Starch Polysaccharides; Canning

58 1. Introduction

Legumes are a rich source of dietary fibre as well as providing a good source of energy from starch and protein (Trinidad et al., 2010). The beneficial effects of legumes have been reported in the results of a pooled analysis which showed an improvement in fasting blood glucose concentration in both diabetic and non-diabetes subjects (Sievenpiper et al., 2009). The hypoglycaemic effects of legumes have been attributed to their high content of dietary fibre (Trinidad et al., 2010).

The health benefits of a diet rich in dietary fibre have been reported (Lunn and Buttriss, 2007). Prospective studies were inconclusive regarding the protective effect of high dietary fibre intake on the risk of type 2 diabetes mellitus (Hopping et al., 2010; Barclay et al., 2007).. Inconsistency in the results may be explained partly by differences in the analytical method used to estimate the dietary fibre intake and to errors arising from the dietary assessment tool that is commonly used in the prospective studies.

71 There are two analytical methods that are commonly used for dietary fibre analysis: the 72 enzymatic chemical method developed by Englyst (Englyst et al., 1982) and the enzymatic 73 gravimetric methods (985.29 and 991.43) (Lee et al., 1992) endorsed by the Association of Official 74 Analytical Chemists (AOAC). Both methods have been used to generate fibre data for food 75 composition tables (Food Standard Agency, 2002; -DeVries and Rader, 2005). The Englyst method 76 (Englyst et al., 1982) is based on the chemical analysis of alcohol-insoluble cell wall 77 polysaccharides remaining after the enzymatic degradation of starch. Some residual starch glucose 78 may also be included in the Englyst NSP values, and the acid hydrolysis step may result in the loss 79 of some acid-labile cell wall sugars (Wolters et al., 1992). Alternatively, the AOAC method is 80 based merely on the gravimetric measurement of the alcohol-insoluble solid residue remaining after 81 enzymatic degradation of starch and protein. The AOAC method does not only provide a measure 82 of plant cell wall polysaccharides, but also includes other indigestible substances such as digestion-83 resistant starch and protein, lignin and high molecular weight polyphenols (Englyst et al., 2007). 84 Neither method takes into account low molecular weight, ethanol-soluble indigestible 85 oligosaccharides such as the raffinose-like oligosaccharides. For practical reasons, both methods 86 use microbial enzymes for the degradation of starch, which may not give a true representation of 87 starch digestibility in vivo. Figure 1 shows the relationship between the main components of dietary 88 fibre that are measured by the Englyst and AOAC methods. Updated dietary fibre definitions 89 include components other than non-starch polysaccharides and therefore the AOAC analytical 90 methods may more closely estimate the dietary fibre content of foods and have been adopted in 91 many countries to provide fibre values for food composition tables and food labelling purposes

92 (DeVries and Rader, 2005). In the UK, the Englyst method has been used to determine non-starch 93 polysaccharides (NSP) for food composition tables and remained the recommended method for 94 nutrition and food labelling until 1999 (Food Standard Agency, 2002). After that, the Food Standard 95 Agency (FSA) accepted the role of resistant starch and lignin as being part of dietary fibre and 96 adopted the use of the AOAC method to generate fibre values for labelling purposes. The sixth 97 edition of McCance and Widdowson's The Composition of Foods (Food Standard Agency, 2002) 98 lists total dietary fibre (TDF) derived by AOAC values for 47 food items, including 27 values for 99 the cereal group, 13 for the milk group, 4 for meat group, 2 for the fish group and a single item from 100 vegetable dishes. There are no TDF values listed for any legume consumed in the UK. Most 101 epidemiological studies undertaken in the UK still use NSP values, and it is therefore difficult to 102 compare UK studies to those conducted in the rest of the world. In order to address this issue, a 103 mean ratio of TDF:NSP of 1:1.3 was generated for all food groups (Lunn and Buttriss, 2007). 104 However, the legumes were not highly represented in this ratio. A study by Reistad and Frolich 105 (1984) suggested a ratio between 1.1–1.4 for vegetables, but this study did not include legumes in 106 the analysis. A ratio that includes legumes may be useful to convert NSP to TDF values for 107 populations with high consumption of legumes, such as Asian ethnic minorities and vegetarians. 108 The aim of the current work was to determine TDF by the AOAC enzymatic gravimetric method for 109 selected legumes commonly consumed in the UK. The study aimed to investigate the effects of 110 common cooking methods (boiling and canning) on the TDF and IDF content of legumes. The 111 second aim was to establish a NSP:TDF ratio for the legume group which would be of interest to 112 nutritional epidemiologists.

113 2. Materials and methods

114 2.1. Materials

115 The tested samples were selected based on commonly consumed legume products listed in 116 the National Diet and Nutrition Survey (NDNS) (Henderson L 2002) and frequency data derived 117 from the UK Women Cohort Study (Cade et al., 2004). A descriptive analysis of a Food Frequency 118 Questionnaire (FFQ) was used as part of the UKWCS showed that 88% of women in the cohort 119 reported some legume consumption. The most frequently consumed pulses (at least once a week) 120 were green beans (62%), peas (60%), baked beans (39%), lentils (15%), and mung and red kidney 121 beans (12%), butter beans (9%) and chickpeas (8%). The women in the UKWCS reported eating 122 legumes both in the boiled and canned forms, and therefore raw samples were not analysed.

Fourteen pooled samples of legumes were derived from different brands purchased from UK supermarkets and retailers (appendix A & B). Composite samples were obtained according to the sampling protocol used in the UK food composition table (Food Standard Agency, 2002). Six types of legumes were included, namely yellow chickpeas (Cicer arietinum L), red kidney beans
(Phaseolus vulgaris), red lentils and green and brown lentil (Lens culinaris), butter beans
(Phaseolus lunatus L), green peas (Pisum sativum), and green beans (Phaseolus vulgaris), baked
bean in tomato sauce (haricot or navy beans; Phaseolus vulgaris) and mung beans (Vigna mungo).
All chemicals were of analytical grade and were purchased from Sigma-Aldrigh (Dorset, UK)
unless otherwise stated.

132 2.2. Sample preparation

Dried legumes were processed prior to analysis. Processing included soaking overnight in tap water (1:5 w/v) at room temperature, followed by draining and then cooking in tap water at boiling temperature according to the UK food composition description in McCance and *Widdowson's The Composition of Foods* (Food Standard Agency, 2002). When cooking instructions were not available in the aforementioned book, packet instructions were followed as per normal domestic practice. Then, samples were drained and homogenised prior to analysis. Canned samples were drained and homogenised prior to analysis.

140 2.3. TDF analysis by the AOAC method (991.43)

Food samples were analyzed for TDF and IDF following an AOAC (1995) official method (991.43) with two minor modifications that speeded up recovery of the fibre residue (centrifugation prior to filtration, and replacement of the sintered glass filter by three layers of Miracloth filter). A fibre assay kit (K-TDFR 03/2009) was used (Megazyme International, Bray, Ireland). TDF was determined in triplicate with a starting sample weight of 1.000±0.005 g.

146 The sample was suspended in MES/TRIS buffer, pH 8.2 at 24°C, 40 mL. Enzyme hydrolysis was 147 performed by incubating the sample in a water bath at $95^{\circ} - 100^{\circ}$ C with 150 IU of heat stable α amylase (E-BLAAM; 3,000 Ceralpha U/ml) with shaking for 35 minutes, followed by incubation at 148 149 60°C with 35 IU of protease (E-BSPRT; 50mg/ml) for 30 minutes with shaking, followed by pH 150 adjustment to 4.5 and incubation at 60°C with 640 IU amyloglucosidase (E-AMGDF; 3200 U/ml) 151 for 30 minutes in a shaking water bath for further starch and maltodextrin hydrolysis. After that, the 152 digested mixture was precipitated with four volumes of 95% ethanol that had been preheated to 153 60°C. The precipitated sample was centrifuged using a Beckman Coulter J2 Centrifuge using 250ml 154 Beckman tubes at 3840 g for 30 minutes at 20°C. This modification from the original protocol was 155 included to facilitate separation and reduce the filtration time. The supernatant was removed, and 156 the residue filtered through 3 layers of Miracloth (Calbiochem, La Jolla, California, USA). This 157 mode of filtration was found to ease the recovery of the fibre residue without compromising yields. 158 The residue was washed with ethanol, then acetone and dried in an oven at 103°C until constant weight was achieved. One residue was analyzed for nitrogen content by the Kjeldahl method
(Bradstreet, 1965). Nitrogen content was multiplied by a conversion factor of 6.25 to calculate
protein content. Another residue was used for ash analysis by combustion in a furnace at 550°C
until a constant weight was achieved. TDF values were recorded after subtracting protein and ash.

163 IDF from the same legume samples was also determined. Triplicate samples of boiled and canned 164 legumes were gelatinized and treated with enzymes as above. The IDF residue was filtered through 165 three layers of Miracloth and washed with 95% ethanol and acetone, dried and weighed. IDF value 166 was obtained after subtracting protein and ash from the weighed residue as described above. The 167 SDF content was determined by the difference between TDF and IDF values.

168

169 **3. Statistical analysis**

Statistical software (*Stata Statistical Software: Release 12.* College Station, TX: StataCorp LP) was
used to test the significance of results at 95% confidence. Student t-test and analysis of variance
(ANOVA) tests were performed as appropriate to analyse the effect of cooking method on fibre
values. Coefficient of variation was calculated for comparing the degree of variation from one batch
to another for the each legume type.

175

176 **4. Results**

177 4.1 TDF values for boiled and canned legumes

178 Fourteen legume samples (8 boiled, 6 canned) that are the most commonly consumed in the UK 179 were selected for TDF analysis. The results are presented in Table 1 as grams of TDF per 100 180 grams legume (wet weight as eaten). The boiled legumes showed a range of TDF values from 3.6% 181 in green beans to 11.2% in red kidney beans, with an overall mean TDF of 7.2%. The coefficient of 182 variation for the boiled legumes ranges from 2.09% to 6.40%. The canned legumes showed a range 183 of TDF values from 2.7% in canned green beans to 7.4% for canned chickpeas, with a mean TDF of 184 5.2g/100g. The coefficient of variation (CV) for canned legumes ranges between 1.37% to 5.73%. 185 A collaborative study (Kanaya et al., 2007) showed a CV% range between 0.89 – 6.26% for fibre 186 rich food from different food groups. This indicates that the repeatability of the TDF analysis in this 187 study was within the acceptable range. The TDF values for boiled legumes were on average 31% 188 higher than for the equivalent canned legume, and ANOVA analysis showed that boiled legume 189 values were significantly higher than canned legumes by 2.57g/100g (p<0.01). The greatest 190 difference was found in red kidney beans, with TDF values in canned samples (5.5 g/100 g) being 191 half of the boiled equivalent (11.2 g/100 g). The present findings seem to be consistent with other 192 research which found processing such as cooking and frying of chickpeas yielded varied amount of

dietary fibre (Perez-Hidalgo et al., 1997). This indicates a significant effect of cooking method onthe TDF content of the analysed legumes.

195 4.2. Insoluble and soluble dietary fibre content of boiled and canned legumes

The measured IDF and calculated SDF values for boiled and canned legumes are presented in Table
1. The results show that IDF values in boiled legumes ranged from 2.65% for green beans to 8.89%
for red kidney beans, and in canned legumes from 1.96% green beans to 6.42% for yellow
chickpeas.

The IDF represents at least 60% of TDF for all tested legumes with the remaining representing the SDF fraction. ANOVA was used to compare between IDF content in boiled versus canned legumes. The values were significantly higher in boiled legumes by 1.7g/100g compared to their canned equivalents (p= 0.02). Similar findings were observed in a previous study that found that IDF in boiled soaked beans was higher than in canned beans with a difference of 1g/100g (Kutos et al., 2003).

However, the proportion of IDF: SDF did not vary significantly with cooking method (p=0.3), indicating that both fractions (soluble and insoluble) decrease by the same proportion during canning and boiling. This is in contrast to a previous study that found changes in fibre fractions of green beans after cooking and autoclaving (Anderson and Clydesdale, 1980).

210 4.3. A comparison of TDF and NSP values

211 The results presented in Table 2 indicate that TDF values for all cooked legumes were found to be 212 on average 43.3% higher than published NSP (Food Standard Agency, 2002) values. TDF values 213 were 67.6% and 18.9% higher than NSP in boiled and canned legumes respectively. Only two 214 legume samples, boiled green beans and canned kidney beans, showed slightly lower TDF values 215 compared to NSP. Similar observations were found in some food items in the UK food composition 216 table (Food Standard Agency, 2002) where unexpectedly, 5 of out of 47 food items had slightly 217 lower TDF values compared with NSP values. A previous analysis of ten food groups showed that 218 TDF fibre was higher than NSP by 20% (green vegetables) to 77% (other vegetables) which 219 supports the current findings (Englyst H.N, 1996).

220 On average an NSP: TDF ratio of 1.43 was calculated for the cooked legume group (n=14). 221 For the whole group, the TDF content of legumes was significantly correlated with NSP (r= 0.6, 222 95% CI: 0.101 to 0.872; p= 0.02). The ratio for the boiled legumes (1:1.68) was higher than for the 223 canned legumes (1:1.19). This indicates that NSP: TDF ratio is dependent on the cooking method.

224 5. Discussion

225 The results presented in this paper show that the fibre content of legumes is affected by both 226 the processing method and the method of analysis. Legumes preserved by canning were found to 227 have significantly lower TDF values. Previous studies showed that boiling and microwaving did not 228 affect the NSP content of legumes (Reistad and Frolich, 1984), but boiling and autoclaving affected 229 TDF significantly (Li and Cardozo, 1993). This indicates that canning affects mostly non-cell wall 230 polysaccharides, most likely resistant starch. Enzyme-resistant starch is one of the components of 231 dietary fibre that is included in the TDF gravimetric measurement and to a lesser extent in Englyst's 232 chemical method. The physical and chemical properties of legume starch provide an explanation for 233 its poor digestibility in comparison with cereal starch and the high amount of resistant starch in 234 cooked legumes (Sandhu and Lim, 2008). Legume starch is relatively high in amylose (28-33%) 235 which requires higher temperatures and longer heating times to gelatinise and shows higher 236 propensity to retrogradation (Sandhu and Lim, 2008). It was suggested that there is a positive 237 correlation between amylose and resistant starch content (Sandhu and Lim, 2008). An in vitro study 238 showed that legume starch digestibility increased to 91% by heating at 121°C (Rehman and Shah, 239 2005), suggesting that heating to high temperatures (e.g. canning) increases the availability of 240 legume starch to amylase degradation, and therefore will reduce the amount of resistant starch 241 residual in the fibre fractions. Preliminary results suggest that starch is around 10 to 20% more 242 accessible to hydrolysis in canned butter beans and chickpeas compared to boiled samples (data not 243 shown).

It was demonstrated in a previous study that exposure to high temperatures led to a breakdown of pectic substances (Anderson and Clydesdale, 1980), which may partly explain the minor non-significant differences in NSP values between boiled and canned legumes.

247 On the other hand, canning did not significantly change the proportion of IDF to SDF 248 compared to boiled legumes. IDF was consistently around 60-80% of TDF values, suggesting that 249 canning affects both fibre subgroups. IDF is insoluble in buffer, and is thought to consist mainly of 250 cellulosic and hemicellulosic cell wall polysaccharides, lignin, resistant starch (Saura-Calixto et al., 251 2000). It is likely that canning affects resistant starch, making it available for amylase digestion. 252 Hemicellulosic polysaccharides may become soluble and recovered in the SDF fraction. Other 253 components of IDF are likely to be unaffected. Meanwhile, SDF which is soluble in buffer and 254 thought to consist mainly of pectic polysaccharides and soluble hemicelluloses. As mentioned 255 earlier, canning may lead to the breakdown or solubilisation of pectic polysaccharides (Kutos et al., 256 2003).

257 A ratio of 1:1.43 was obtained for the legume group, which is slightly higher than the 258 published ratio of 1:1.33 for ten major food groups (Lunn and Buttriss, 2007). This ratio could be 259 used to calculate TDF values from NSP values, providing an opportunity to estimate TDF intake 260 and use the values to compare cohort studies in populations with high legume consumption. 261 Moreover, the ratio for boiled legumes was dramatically higher than the ratio for canned legumes. 262 Therefore, caution must be taken when applying the ratio without knowledge of the types of legume 263 (boiled/canned) consumed. Characteristics of the studied population should be evaluated before 264 considering the NSP: TDF ratio. For example, boiled legume ratio may be more suitable for studies 265 which focus on minority ethnic group in UK, where boiled legumes are mostly consumed, 266 compared to the rest of the UK general population which is more likely to consume canned legumes 267 (Schneider, 2002). More research on the NSP: TDF ratio derived from a wide range of food items 268 needs to be undertaken to understand the association between TDF and NSP more clearly. 269 Furthermore, structural and functional characterisation of undigested TDF components is needed to 270 explain the physiological effects of legume fibre.

271 6. Conclusion

This is the first report of AOAC-fibre data for legumes commonly consumed in the UK. Fibrevalues are affected by the processing and analytical method used.

274 Acknowledgements

The authors would like to thank the principle investigators of the UK Women's Cohort Study who provided us with the UKWCS data. This work was funded by a PhD scholarship from the Ministry of Health, State of Kuwait to MA. Authors responsibilities were as follows; MA preformed laboratory analyses, analyzed the data; MA, CO and VB wrote the manuscript; CO and VB were project leaders. There are no conflicts of interest to report.

280

281 References

- Association of Official Analytical Chemists (AOAC) (1995). Official Method of Analysis, 16th ed.
 AOAC International, Arlington, VA.
- Anderson, N., Clydesdale, F. (1980). Effects of processing on the dietary fiber content of wheat
 bran, pureed green beans, and carrots, Journal of Food Science, 45, 1533-1537.
- 286 Bradstreet, R.B. (1965). The Kjeldahl method for organic nitrogen. Academic Press, London.

- Barclay, A. W., Flood, V. M., Rochtchina, E., Mitchell, P., Brand-Miller, J. C. (2007). Glycemic
 index, dietary fiber, and risk of type 2 diabetes in a cohort of older Australians. Diabetes Care,
 30, 2811-2813.
- British Nutrition Foundation (1990). Complex carbohydrates in foods: The report of the British
 Nutrition Foundation'sTask Force. UK: Chapman and Hall for British Nutrition Foundation.
- 292 Cade, J. E., Burley, V. J., Greenwood, D. C., U. K. Women's Cohort Study Steering Group. (2004).
- The UK Women's Cohort Study: comparison of vegetarians, fish-eaters and meat-eaters. PublicHealth Nutrition, 7, 871-878.
- 295 Corp-Stata (2010) Statitsitcal software:Release 11, 12 ed.: College Station, TX.
- DeVries, J. W., Rader, J. I. (2005). Historical perspective as a guide for identifying and developing
 applicable methods for dietary fiber. Journal of AOAC International, 88, 1349-1366.
- Englyst, H., Wiggins, H. S., Cummings, J.H. (1982). Determination of the Non-Starch
 Polysaccharides in plant foods by Gas-liquid-Chromotography of constituent sugars as alditol
 acetates. Analyst, 107, 307-318.
- Englyst, H. N., Quigley, M. E., Englyst, K. N., Bravo, L., Hudson, G. J. (1996). 'Dietary fibre'
 Measurement by the Englyst NSP procedure Measurement by the AOAC Prosky Procedure
 Explanation of the differences; Report of a Study Commissioned by the Ministry of Agriculture,
 FIsheries and Food. Journal of Association Public Analysts, 32, 1-38.
- Englyst, K. N., Liu S., Englyst, H. N. (2007). Nutritional characterization and measurement of
 dietary carbohydrates. European Journal of Clinical Nutrition, 61, S19-S39.
- Food Standard Agency (2002). *McCance and Widdowson's The Composition of Foods, Sixth*summary Edition: Cambridge: Royal society of Chemistry.
- Henderson, L. G. J., Swan, G. (2002). The National Diet and Nutrition Survey: adults aged 19 to
 64 years Volume 1: Types and quantities of foods consumed. London: TSO.
- Hopping, B. N., Etber, E., Grandinetti, A., Verheus, M., Kolonel, L. N., Maskarinec, G. (2010).
 Dietary Fiber, Magnesium, and Glycemic Load Alter Risk of Type 2 Diabetes in a Multiethnic
 Cohort in Hawaii. Journal of Nutrition, 140, 68-74.
- 314 Kanaya, K., Tada, S., Mori, B., Takahashi, R., Ikegami, S., Kurasawa, S.i., Okuzaki, M., Mori, Y.,
- 315 Innami, S., Negishi, Y. (2007). A Simplified Modification of the AOAC Official Method for
- 316 Determination of Total Dietary Fiber Using Newly Developed Enzymes: Preliminary
 317 Interlaboratory Study. Journal of AOAC International, 90, 225-237.
- 318 Kutos, T., Golob, T., Kac, M., Plestenjak, A. (2003). Dietary fibre content of dry and processed
- **319** beans. Food Chemistry, 80, 231-235.

- 320 Lee, S. C., Prosky L., Devries, J. W. (1992). Determination of total, soluble, and insoluble dietary
- 321 fiber in foods Enzymatic Gravimetric Method, MES-TRIS buffer Collaborative study.
 322 Journal of AOAC International, 75, 395-416.
- Li, B. W., Cardozo, M. S. (1993). Simplified enzymatic-gravimetric method for total dietary fiber in
 legumes compared with a modified AOAC method. Journal of Food Science, 58, 929-932.
- Lunn, J., & Buttriss, J.L. (2007) Carbohydrates and dietary fibre. Nutrition Bulletin, 32, 21-64.
- 326 Perez-Hidalgo, M.A., Guerra-Hernández, E., Garcı, amp, x, a-Villanova, B. (1997). Dietary Fiber in
- 327 Three Raw Legumes and Processing Effect on Chick Peas by an Enzymatic-Gravimetric328 Method. Journal of Food Composition and Analysis, 10, 66-72.
- Rehman, Z. U., Shah, W. H. (2005). Thermal heat processing effects on antinutrients, protein and
 starch digestibility of food legumes. Food Chemistry, 91, 327-331.
- Reistad, R., Frolich, W. (1984). Content and composition of dietary fiber in some fresh and cooked
 norwegian vegetables. Food Chemistry, 13, 209-224.
- 333 Sandhu, K. S., Lim, S-T. (2008). Digestibility of legume starches as influenced by their physical
 and structural properties. Carbohydrate Polymers, 71, 245-252.
- Saura-Calixto, F., Garcia-Alonso, A., Goni, I., Bravo, L. (2000). In vitro determination of the
 indigestible fraction in foods: An alternative to dietary fiber analysis. Journal of Agricultural
 and Food Chemistry, 48, 3342-3347.
- 338 Schneider, A. V. C. (2002). Overview of the market and consumption of pulses in Europe. British
 339 Journal of Nutrition, 88, S243-S250.
- Sievenpiper, J. L., Kendall, C. W. C., Esfahani, A., Wong, J. M. W., Carleton, A. J., Jiang, H. Y.,
 Bazinet, R. P., Vidgen, E., Jenkins, D. J. (2009). Effect of non-oil-seed pulses on glycaemic
 control: a systematic review and meta-analysis of randomised controlled experimental trials in
 people with and without diabetes. Diabetologia, 52, 1479-1495.
- Trinidad, T. P., Mallillin, A. C., Loyola, A. S., Sagum, R. S., Encabo, R. R. (2010). The potential
 health benefits of legumes as a good source of dietary fibre. British Journal of Nutrition, 103,
 569-574.
- Wolters, M. G. E., Verbeek, C., Vanwesterop, J. J. M., Hermus, R. J. J., Voragen, A. G. J. (1992).
 Comparison of different methods for determination of dietary fiber. Journal of AOAC
 International, 75, 626-634.
- 350
- 351
- 352
- 353
- 354

355 Figure Caption

Fig.1. Constituents of Total dietary fibre measured by the Association of Organic Analytical
Chemists (AOAC) method and non-starch polysaccharides (NSP) measured by Englyst method
(adapted from (British.Nutrition.Foundation, 1990).

Table 1. Mean and standard deviation (SD) of total dietary fibre (TDF), non-starch polysaccharides

365 (NSP), insoluble dietary fibre (IDF) and soluble dietary fibre (SDF) for cooked and canned legumes

(g/100g w/w) and their ratio. Values are the mean of triplicate analyses from pooled samples (n >3).

Legumes	TDF g/100g	NSP*	IDF g/100g	SDF g/100g	IDF%: SDF%	
		g/100				
		g				
Boiled legumes						
Red kidney beans	11.22(0.14)	6.70	8.89(0.67)	2.34(0.70)	79:21	
Butter beans	8.42(0.35)	5.20	6.96(0.48)	1.46(0.68)	83:17	
Yellow chickpeas	9.19(0.46)	4.30	5.45(0.55)	3.74(0.67)	59:41	
Green beans	3.66(0.05)	4.10	2.65(0.30)	1.00(0.31)	73:27	
Green peas	5.92(0.16)	5.10	4.57(0.51)	1.35(0.61)	77:23	
Red lentil	9.23(0.21)	1.90	8.17(0.03)	1.06(0.23)	89:11	
Green brown lentil	5.24(0.11)	3.80	4.88(0.26)	0.35(0.14)	93:7	
Mung beans	4.43(0.07)	3.00	3.64(0.57)	0.79(0.56)	82:18	
		Canned	l legumes			
Red kidney beans	5.49(0.44)	6.20	3.84(0.73)	1.65(0.36)	70:30	
Butter beans	4.48(0.14)	4.60	3.49(0.28)	0.98(0.14)	78:22	
Yellow chickpeas	7.41(0.34)	4.10	6.42(0.15)	0.99(0.23)	87:13	
Green beans	2.72(0.07)	2.60	1.96(0.36)	0.76(0.30)	72:28	
Green peas	5.19(0.13)	5.10	4.27(0.22)	0.92(0.27)	82:18	
Baked beans in tomato sauce	5.96(0.17)	3.70	3.34(0.60)	2.61(0.43)	56 : 44	
Mean for all legumes	6.33	4.31	4.9	1.43	77:23	

*NSP values are from McCance and Widdowson's The Composition of Foods (2002)(Food.Standard.Agency, 2002)

Table 2. Means of measured total dietary fibre (TDF) and non-starch polysaccharides (NSP) for

371 canned and cooked legumes (g/100g) and their ratio with a percentage of the mean difference.

Variables (mean g/100g)	Boiled legumes	Canned legumes	Average legumes
AOAC-fibre	7.14	5.21	6.18
NSP-fibre	4.26	4.38	4.32
Mean difference	2.88	0.83	1.86
AOAC:NSP ratio	1.68	1.19	1.43
% difference	67.6	18.9	43.3

Legumes name	N ^o	Brands	NSP* g/100g	Code*	
Dried legumes					
Yellow chickpeas	1	Sainsbury chickpeas dried			
	2	Tesco chickpeas dried	4.3	13-077	
	3	Waitrose chickpeas dried			
	4	Chanadal chickpeas dried			
Red kidney	1	Morrison's whole food red kidney beans			
beans	2	Great scot red kidney beans	6.7	13-110	
	3	Natco red kidney beans			
Mung beans	1	Moong whole heeva			
	2	Natco mung beans	3.0	13-097	
	3	Tesco mung beans			
Red lentil	1	East End red lentil			
	2	Indus red lentil	1.9	13-092	
	3	Tesco red lentil			
	4	Great Scot red lentil			
Butter beans	1	Whitworths butter beans			
	2	Whole food butter beans	5.2	13-071	
	3	Great Scot butter beans			
Green brown	1	East End Green lentil			
lentil	2	Brown lentil Heera	3.8	13-090	
	3	Waitrose green lentil			
Green peas frozen	1	Morrison green peas			
	2	Sainsbury's basic British garden peas			
	3	Bird's Eye field fresh garden peas	5.1	13-134	
	4	British garden peas by Sainsbury's			
	5	Cooperative farm British garden peas			
Green beans	1	Tesco sliced green beans	4.1	13-084	
frozen	2	Sainsbury's very fine whole green beans			
	3	ASDA sliced green beans			

375 Appendix A. List of dried legumes purchased from local supermarkets

376 * non-starch polysaccharides (NSP) from McCance and Widdowson's (FSA 2002)

Legumes name	N^{o}	Brands	NSP*g/100g	Code*
		Canned legumes		
Baked beans in tomato sauce	1	Sainsbury's baked beans	3.7	13-044
	2	Heinz baked beans		
	3	Tesco light baked beans		
	4	ASDA Baked Beans in tomato sauce		
	5	Organic baked beans		
Yellow	1	Sainsbury's chickpeas	4.1	13-078
	2	Tesco chickpeas		
chickpeas	3	Waitrose chickpeas		
	4	Morrison chickpeas		
	5	Morrison organic chickpeas		
Red kidney beans	1	Tesco red kidney beans	6.2	13-111
	2	Waitrose red kidney beans		
	3	Tesco whole food red kidney beans		
	4	Morrison red kidney beans		
	5	Sainsbury's red kidney beans		
	6	Organic Tesco red kidney beans		
	1	Morrison butter beans	4.6	13-72
Butter beans	2	Essential Waitrose butter beans		
	3	Sainsbury's butter beans		
Green peas	1	Sainsbury's green peas in water	5.1	13-135
	2	Co-operative green peas		
	3	ASDA green peas		
	4	Daucy garden peas		
	5	Morrison green peas		
	6	Tesco garden peas		
Green beans	1	Bandwelle green beans in water	2.6	13-85
	2	Sainsbury's whole French green beans		
	3	Morrison cut green beans		
	4	Morrison whole green beans		
	5	Tesco whole green beans		
	6	Batchelor's cut green beans		

379 Appendix B. List of canned legumes purchased from local supermarkets

* non-starch polysaccharides (NSP) from McCance and Widdowson's (FSA 2002)