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Abstract

The use of composite adaptive laws for control of the affine class of nonlinear systems
having unknown dynamics is proposed. These dynamics are approximated by Gaussian
radial basis function neural networks whose parameters are updated by a composite law
that is driven by both tracking and estimation errors, combining techniques used in direct
and indirect adaptive control. This is motivated by the need to improve the speed of
convergence of the unknown parameters, hence resulting in a better system performance.
The inherent approximation error of the neural networks might lead to instability because
of parameter drift. This is compensated for by augmenting the control law with a low
gain sliding mode component and using deadzone adaptation for the indirect part of the
composite law, The stability of the system is analyzed and the effectiveness of the method
is demonstrated by simulation and comparison with a direct adaptive control scheme.




Composite Adaptive Control of Nonlinear Systems

1 INTRODUCTION

Neural networks have emerged as an important methodology for controlling nonlinear systems
whose dynamics are either unknown or not accurately known [1, 11, 13, 14, 18, 19, 21, 25,
29, 30, 35]. The networks used are the multilayer perceptron using sigmoidal units [4, 27, 28]
and the radial basis function network using Gaussian units [3, 24].

The presence of neural networks entails the use of a training mechanism by which the
network learns some unknown functional related to the system, thus enabling the generation
of appropriate control signals. Training involves the adjustment of the network parameters
according to some signals in the system, preferably in real-time. Conventional adaptive control
theory [2, 7, 8, 20] has provided a good framework based on the indirect or direct adaptive
control methodology that has led to development of on-line training methods when neural
networks are used for control. The indirect method [2] is based on system identification and
uses the difference between some system variable and an approximation to it generated from
an identification model. The difference, referred to as the estimation error, is used to vary
the parameters of the neural network. The network approximation is then used in the control
law on a certainty equivalence basis [8]. On the other hand, direct adaptive control [12]
relies on the use of some norm of the difference between the system controlled output and
the desired output, referred to as the tracking error, to adjust the parameters of the neural
network directly in such a way as to ensure stability or optimize some cost function. Hence,
direct adaptive schemes do not require an identification model.

As noted in [20] and [33] both the tracking and estimation errors contain relevant infor-
mation about the system. Hence, in adaptive control, it makes sense to combine the direct
and indirect approaches into one control law, resulting in composite adaptive control. This
approach has been investigated in [5] and [34] for adaptive control systems that are linearly
parameterized with unknown parameters and it has resulted in improved performance over
conventional direct adaptive control schemes.

In this paper we shall consider adaptive control of a particular class of nonlinear sys-
tems when their dynamics are unknown. Radial basis function neural networks shall be used
to learn the unknown system functions. Indirect adaptive control approaches for such sys-
tems result in network parameter adjustment rules that are closely related to neural network
identification techniques [16, 17], since parameter adaptation is driven by a prediction or an
estimation error. On the other hand, direct adaptive control methods for similar systems
(6, 10, 15, 25, 30, 35] have network parameter adjustment rules derived in a manner similar to
Lyapunov-based model reference adaptive control (MRAC), so as to ensure convergence of the
tracking error. This work shall extend the direct adaptive control law for these systems to a
composite law where both tracking and estimation errors shall be used for network parameter
adaptation, within the framework of Lyapunov stability. The method is based on the com-
posite adaptive schemes described in [34] for robot manipulators. However, while the latter
did not require the use of neural networks because the unknowns consisted of system param-
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eters, we shall consider a more general class of nonlinear systems that needs to be controlled
adaptively by neural networks because the functions representing the nonlinear dynamics are
unknown. This way we would be able to compare the performance of the system utilising a
composite law for neural network parameter adjustment with that resulting from the use of
a direct adaptive law.

2 STATEMENT OF THE PROBLEM

The objective is to design a controller that results in good tracking performance for the class
of nonlinear, single-input single-output plants that could be expressed in the affine form:

v (1) = f(x) + g(x)u(t) (1)

where x € R™ is the system state vector, u(t) is the system input, y(t) is the system output,
f(x) and g(x) are nonlinear functions of the system state (where g(x) # 0 Vx) and 7 is the
relative degree of the system [9],[31],[33].

The control task is for the output y(t) to track a desired output y4(¢) while the state x(t)
is to remain bounded. As shown in [9], [31], [32], the conditions for this to occur are:

e the zero dynamics of system (1) must be globally exponentially stable.

o the internal dynamics of system (1) must satisfy a Lipschitz condition in terms of the
system’s normal states.

e the desired output y4(¢) must satisfy the condition that yd,yfil), ‘v .,yc(;) are bounded,
()

where y;’ represents the ith derivative with respect to time of 3.

e the control law generating u(t) must ensure that the output and its (r — 1) derivatives
y,y1), ...,y are bounded and that y(t) asymptotically tracks ya(1).

Adaptive control shall be used because it is assumed that the nonlinear system functions
f(x), g(x) are unknown, and so neural networks are used to generate approximations f(x),
3(x) to be used in the control law u(t) = ﬂ;—((%ﬂﬂ + ugq(t), as in references [30], [35].
Adaptivity takes place through the process of on-line adjustment of the parameters of the
neural networks and it is this aspect that shall be covered in more detail in this paper, by
investigating the use of composite adaptive schemes.
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3 CONTROLLER DESIGN

3.1 The Neural Networks

Two Gaussian radial basis function neural networks [24] are used to approximate the nonlinear
functions f(x), g(x) within a compact set x, C R", where the state vector x(t) is known
to be contained. X, thus represents the network approximation region. The output of the
neural networks is given by

Fe,5) = K(x) 5T 4 (x) + fo(x)
3%, ¥rg) = K)WT B, () + go(x) @)

where Wy, W, are vectors containing the linear coefficients (parameters) of the neural network
and ®¢(x), ®,(x) are the Gaussian bhasis function vectors, whose ith element is given by,

e 112
By = exp{ Il ;ﬂf‘ll }
2ch
—llx — mg|?
B, = ex :
gi ehp{ 203

where my,, my, are the coordinates of the centre of the ith basis function and o , o2

variances for the networks approximating f(x) and g(x) respectively. f,(x), go(x) are known

. are the
prior estimates to f(x), g(x).

k(x) is included as in [30, 35] so that the contribution of the networks is limited only to
fo(x) and g,(x) when x is outside y, because the network is not able to approximate cor-
rectly outside the approximation region. Within x, a slightly smaller subset of the network
approximation region yn, £(x) = 1 so that the full network approximation is utilised. In the
boundary between x and y,, £(x) is reduced gradually so as to suppress the neural network
output smoothly in those areas that lie close to the boundary of the network approximation
region, thus avoiding sudden switching when x goes outside x,. Hence, x(x) is defined as
being equal toone if x € x;,0if x ¢ x, and 0 < k(x) < 1 otherwise.

The neural networks can never approximate the actual functions perfectly, so that there
will always be the presence of approximation errors. This introduces disturbances in the
system that could lead to parameter drift [20], [33]. However, Gaussian radial basis function
networks satisfy the Universal Approximation property [22, 26], stating that given any uniform
bounds €y, €; one could always find an optimal number of basis functions k*, variances and
optimal parameter vectors w}, wg such that Vx € x» the corresponding optimal network
approximation errors, denoted respectively by Ay := f*(x) — f(x) and A, := ¢*(x) — g(x),
satisfy:

[Agl = [f(x) = f(xX)] < 5
[Ag] lg™(x) — g(x)| < ¢

3
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where f*(x) = f(x,w}) and g*(x) = §(x, wy).

When x ¢ xn, the optimal approximation errors are given by Ay = (f,(x) — f(x)) and
A, = (go(x) — g(x)), assumed to be bounded by known bounds f, and g, respectively.

Hence one could say that Vx

1As] < k(x)es + (1 = K(x)) f,
1Ag| < K(x)eg + (1 - K(x))7, (3)

Knowledge of these bounds is crucial in overcoming the problem of parameter drift.

The basis functions shall be centred on points of a regular square sampling mesh inside
Xn, 50 that the mesh spacing, the variance of the basis functions and the network parameters
directly affect the optimal approximation accuracy of the neural networks inside y,. Reference
[30] provides methods for determining x,, the mesh spacing and the variance that will satisfy
any desired ¢y, ¢, assuming that bounds on the smoothness and the magnitude of the spectrum
of f(x), g(x) are known. Note however that the optimal network parameters w} and wy
are unknown, so that the actual parameter vectors wy¢, W, are adjusted recursively via the
adaptation laws, to ensure system stability and good tracking performance. In composite
adaptation, the adjustment of Wy, W, shall depend upon both the tracking error e = (y — yq)
and an estimation error, i.e. a measure that reflects the error between 7y and its estimate as
predicted by an identification model based on the neural networks.

Using equations (2) and the definitions of the optimal network approximation errors Ay
and A, we obtain that Vx:

f(x) = f(x) = k% T®; + Ag
§(x) - g(x) = rav'vg‘@g + A, (4)

where Wy = (W — w}) and W, = (W, — w}) represent the parameter errors.

3.2 The Control Law

The control law to be used is similar to that in references [6, 10], [35] namely

w(t) = war(t) + ug(t) (5)

where

o ug(t) = i%()fﬁ(ﬁ is inspired from feedback linearization control laws [9], [33], with
(r)

v(t) =y, ' — arel™1) — .. — aje representing an auxiliary input whose coeficients a;
are chosen such as to form a Hurwitz polynomial I'(s) = 5" 4+ a,s" "1 +...4 ; in terms
of the Laplace variable s.
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e ug(t) represents a sliding mode component introduced as in [30], [35] so as to ensure
global stability if and when the state moves outside x, and to ensure robustness to
parameter drift whilst x € x,..

Using control law (5) in system (1) and equations (4) we obtain:
e=T" kW] ®; — kW] D uy + gug + d(t)] (6)

where d(t) = —Aj — Aju,. Note that the non-zero network approximation errors Ay and A,
give rise to a disturbance term d(t) that affects the error dynamics represented by equation

(6)-

If the tracking error e(t) is filtered by a Hurwitz polynomial ¥(s) chosen such that
W(s)[~1(s) is a first order lag transfer function WI'~! = s+1_k¢ where kq > 0, then as in [30],
[35] the filtered tracking error e; = We defines a suitable sliding surface [37, 38], obtained

from equation (6) as

é1 = —kge1 — f{,ﬁ’?@f — ng‘i)g‘ttai + gug + d(i) (7)

3.3 Linear Parameterization

The indirect part of the composite adaptation law relies on the use of an estimation error
to drive the adaptation, obtained by using the neural network outputs in an identification
model. This way, the weights of the neural networks are adjusted using parameter estima-
tion techniques. Linear parameterization provides a general model for parameter estimation
methods [33], whereby one seeks a linear relation between the unknown network parameters
and some measureable signal. For this case, a linearly parameterized relation is developed as
follows:

From equations (1), (2) and (4)
" =w;Te - -Ap—A
Yyl =wi e+ fot (W TRy + go)u(t) — Ay — Agu(t)
This equation could be re-written in alinear form in terms of the parameter vectors wi and
w, excluding the purely derivative term y("), by filtering with a network of transfer function

A71(s), where A,(s) = a, + @18 + ...+ a,_15""! 4+ " is a Hurwitz and monic polynomial,
reflecting stable filtration. This filtration results in the following dynamics

STy _ Lo gou(®) A, Bgu _
U -4 *T At -
'I"-fr(x_)w} " fi’g‘(x)w;u
A, A,
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which can be re-written in linear form as

¥ =g ®
where
Y= y(f)-f -+ 2+

N

Defining ¢ as an approximation to the actual plant output y, obtained from considering
the neural network approximations in the model for the plant, one could say after comparison
with the dynamics of equation (1), that

7 = f(x) + g(x)u(t) (9)

Filtration of §(") by A71(s) results in a suitable identification model. In fact, after substitution
of equations (2) and filtering by A;!(s) we obtain:

Y =pTw (10)
where
- w o ~¢ 5T o o
w=| T V= g5 - f -5
Wg

Subtracting (8) from (10) results in the linear relation:
e=plw—dy; (11)

where € = (7 — y)i: constitutes the estimation error, w = w — w* is the error between the
o

actual and the optimal network parameters and dy = —%-f - %f:—‘ reflects the disturbance
due to the network inherent approximation errors, arising from the fact that the optimal
parameters w* do not ensure zero approximation errors. Note that ¢ is generated from
available signals #(") and y by stable filtration and without using differentiators, as depicted
in figure 1

3.4 The Adaptation Law

The composite adaptation law proposed has the form
w = P(t)(®e; — kepea) (12)

where

o ea = ¢ if |¢| > df and zero otherwise, represents a deadzone function on €(t).

6
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= UM graIors =

Figure 1: Generation of the estimation error.

d; represents a bound on dy such that |dg| < dj.

k. is a positive constant that determines the extent to which the indirect component
shall be used in the composite adaptation law. This is a design parameter.

P(t) is a positive definite, symmetric gain matrix that could, in general, be either
constant or time varying.

$ = [87(x) @7 (x)ua(t)]”.

Note the composite nature of adaptation law (12), being driven by signals derived from
both the tracking error e(?) and the estimation error ¢(t). Note also the use of deadzonme
adaptation as used in reference [23] for the estimation part of the adaptation law, included to
ensure boundedness of signals despite the presence of the disturbance dy(¢) in the estimation
error equation (11).

Furthermore it is assumed that for the §(x) network, a parameter resetting mechanism is
included so as to keep §(x) bounded below by g;(x), the latter being a known lower bound
on g(x) satisfying 0 < gi(x) < g,(x) Vx € x;;. Methods of implementing this can be found in
35], [36].

Figure 2 shows the complete representation of the system in block diagram form.

3.5 The Gain Update Law

If the gain matrix P(t) is maintained constant, say P(t) = P, then the indirect part of the
composite adaptation law would correspond to gradient descent estimation techniques [34].

On the other hand, one could opt for a time varying gain matrix which would result in
better parameter convergence in the absence of persistently exciting signals [2, 20]. Various

7
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IDENTIFICATION
MODEL

Figure 2: Composite adaptive control using neural networks.

parameter estimation techniques that involve time-varying gains have been developed [20, 33,
34]. We have utilised the standard least-squares algorithm, resulting in the following gain
update law:

P(t) = —kaPppTP (13)

where ka = k. if |¢] > d_f and zero otherwise, P(1,), the initial gain matrix, is symmetric and
positive-definite,

4 STABILITY ANALYSIS

Stability and boundedness of the system variables is obtained by using the Lyapunov function
candidate

V= %(ef + WP~ Y(t)w) (14)

Differentiating (14) with respect to time, substituting equation (7), using parameter update
law (12) and gain update law (13) together with the identity P! = —P PP~ results in

~ T T~

I/ = —kdef + el(gusz = d) = kepTﬁ'GA + .‘..‘»_\.--"Y-—-I%p—“"‘E (15)
Choosing the sliding mode component of the control law as
d(x) .
ug(t) = — sign(e 16
(1) (=) (e1) (16)

where d(x) is a known bound on the disturbance d(t) (i.e. |d(t)| < d(x)) ensures that the
term e;(gus + d) appearing in equation (15) is semi negative definite.

The gradient descent case involves that P(t) remains constant, i.e. P(t) = 0. This is
equivalent to letting ko = 0 in equation (13). Hence, the last term of equation (15) simply

vanishes. On the other hand, the term k.pTwepa is either equal to zero when le] < Ef or

8
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kepTw(pTw — ds) when |¢| > ds. Since ds represents a bound on dy, the latter term is
semi-positive definite [23], so that in general, —k.pTWwea < 0. Hence, V < —kge? < 0.

If a least squares algorithm via gain update law (13) is employed, then for [¢| < dy the
last two terms of equation (15) simply vanish, whilst for |¢| > d; equation (15) becomes

T
V_ = kdel + el(gusl p d) = ep W( df) (]7)

Since k.p w(P—-— ds) > 0 for |e| > dy, then choosmg 1y as shown before in equation (16)
ensures that Ve, 174 < kde 0.

Hence in both cases of gradient descent and least squares estimation, adaptation law (12)
and gain update law (13) ensure that V is semi negative definite, from which it follows
that e;(t) and w are bounded. Boundedness of w implies that w;,w, are bounded, keeping
f(x),§(x) bounded. Also e(t) and its (r — 1) derivatives are bounded since eq(t) is bounded
and ¥(s) is Hurwitz. Assuming that the desired output and its » derivatives are bounded,
then the latter implies that the output and its (r — 1) derivatives are bounded as well. Hence,
as shown in section 2, if we additionally assume the zero dynamics of the system to be globally
exponentially stable and the internal dynamics to satisfy the appropriate Lipschitz condition
in terms of the system normal states [9], then x(t) is bounded. Also, boundedness of (%),
y4(t) and their derivatives results in boundedness of v(?).

In addition, g(x) is bounded away from zero via parameter resetting so that u,; is bounded,
from which follows boundedness of d(t). These imply that uy(t) is bounded and so from
equation (7), é1(t) is bounded. Hence, €1(?) is not only bounded but also uniformly continuous.

Using the fact that V < —kge? and defining a function V4(t) = V(t) LAV (7) 4+ kae? dr, it
follows that V;(t) > 0 and Vl(t) = —kqe?, the latter implying that V; is semi negative definite
and uniformly continuous. Hence Barbalat’s Lemma [33] implies that Vi(t) — 0 as t — oo,
and so also e;(t). Since e(t) can be considered as a filtration of 1(t) via the stable and strictly
proper transfer function ¥~1(s), then the tracking error ¢(t) also converges asymptotically to
zero [34] as desired.

5 DETERMINATION OF THE DISTURBANCE BOUNDS

We shall now consider evaluation of the disturbance bounds d(x) and d(x), which are required
for use in the sliding mode component of the control law ugy(t) and the deadzone of the
adaptation law, respectively.

From equation (3) and the definition of d() it follows that Vx
|d(x)| < K(es + eglual) + (1 = K)(Fo + Folwar]) (18)

9
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Hence d(x) is given by the right hand side of (18). Note that this affects the gain of the sliding
mode component ;d;( , which is small whilst x € x;;, just enough to overcome the effect of
the disturbance d(t) on signal boundedness in the direct part of the control law. On the other
hand, the sliding gain increases appreciably as x ventures outside the network approximation
region xn, taking over control so as to pull x inside y, if and when the state goes outside the
network approximation region, as in references [30], [35].

From the definition of dy, it follows that
d(t_) - Agusl

() = T 2a (19)
From equation (3) and the definition of ug(t) it follows that
[Agual < SR(x)ep + (1= K(x))E (20)
so that
|d(1) = Agua] < |d| + |Aguq| <
T+ ) + (1= KGR =

d; thus represents a bound on the term (d(t) — Agug). But equation (19) shows that d;(t)
is a stable filtration of (d(t) — Ajuy) via A;?(s), and if A,(s) is chosen to have the form
Ao(s) = (s + A)" where A > 0, then as shown in [33], |d§f)| < 28A"d; for 0 < i < 7, so that

dy = 27"d, (21)

6 SIMULATION RESULTS

Two simulations were carried out to check the performance of the composite adaptive system.

6.1 Simulation 1

The first simulation was done on the nonlinear affine plant used in reference [36]:

T

Il

sin(z) + 0.5cos(3x) + u
¥ = @

where g(x) = 1 is assumed known and f(x) = sin(z) 4 0.5cos(3z) represents the unknown
dynamics.

The system is of order n = 1 and degree » = 1. Its internal dynamics satisfy the ap-
propriate Lipschitz conditions and the zero dynamics are globally exponentially stable. The

10
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desired output yg is a unity amplitude, 0.1 H z square wave filtered by 1/(s+1). The network
approximation region is chosen as x, = [-1.7,1.7] and x; = [-1.1,1.1]. It is assumed that
no prior estimate to f(x) is known so that f, = 0. As shown in [36], for this case, an optimal
network approximation error bound €5 = 0.02 is obtained with radial basis functions having
o = 0.06 and a mesh of spacing 0.05 inside x,. Assuming that it is known that f(z) is
bounded by 1.5, then since f, = 0 it follows that f, = 1.5. The choice of I'(s) = (s + 1)
results in v(t) = §(t) — (y — ya). Also, ¥(s) could be set to unity because this way ¥I'! is a
first order lag transfer function having kg = 1. The filter characteristic equation was chosen
as A, = (s +5), so that A = 5.

-
-

g g

() [

cEn 0 g‘ 0 o ‘[ ¥

k3 3

o kel

o : = 5 :
0 50 100 o 50 100
(a) secs (d) secs

4

g

o

g

h-l

c

©

Net approx. error

Tracking error
Net approx. error

—0.08 i L i

Figure 4: Simulation 1l:composite adaptation using least-squares
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Three trials were performed for comparison purposes. In the first two, the gain matrix
P, was kept constant and equal to the identity matrix. Initially k. was set to zero so as to
utilize only the direct component of the adaptation law and then k. was set to 10 so as to
utilize the combined adaptation law. The results of the direct adaptive controller are shown in
figures 3 a-c. Figure 3 a shows the first 100 seconds of simulation. The system is stable with
the tracking error asymptotically converging to zero. Figure 3 b shows the actual function
f(x) plotted together with the network approximation f(x) using the parameters obtained
after 100 seconds of adaptation. Note from figure 3 c that the network approximation error
(f(x) — f(x)) lies within the range +0.18 for the values of x inside ;. The results of the
composite adaptive controller are shown in figires 3 d-f. Note that the system is also stable,
with the tracking error converging to zero much faster than for the direct controller. In
fact, after 100 seconds, the composite law resulted in the error converging to within £0.0058
compared with £0.06 for the direct law . This improved transient performance is attributed
to the fact that the composite law provides a better approximation to the unknown functions
in a shorter time, because more information is used for parameter adjustment. In fact as can
be seen in figures 3 e and 3 f, the network approximation utilising the parameters obtained
after 100 seconds of composite adaptation is superior to the direct adaptive controller, the
approximation error being well within the range +0.08 for most values of x inside ;.

Finally a third trial was performed using a time-varying gain matrix P, corresponding to
least-squares estimation. The results are shown in figures 4 a, 4 b.Stability and asymptotic
convergence of the tracking error are clearly seen in figure 4 a. The error converges to within
+0.028 after 100 seconds, so that although the convergence rate is slower than for the gradient
descent case, it is better than for the direct adaptive law. The network approximation error
is of the same order as that for the gradient descent case as seen in figure 4 b.

6.2 Simulation?2

The second example is taken from [35]. The plant of this example is given by the dynamics:

i1 = F(x)+g(x)u

.’i?g = T1 — I3
y = &1
where
T
X = [.’1’21 12]

f(x) = cos(7(z] + 23)) exp(— (2} + 23))
g(x) = 2+ cos(Tzy1z3)

This system is of order n = 2 and has degree r = 1. Its internal dynamics satisfy the
appropriate Lipschitz conditions and the zero dynamics are globally exponentially stable.

12
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The desired output, g, is obtained by filtering a zero-average, 0.9 amplitude, 0.4 H z square
wave by a filter 1/(1+ 0.15)3, so that the derivative of the filter output is bounded. As shown
in [35], for the given plant and reference input, the desired state is bounded well within
the interval [—1, 1] x [-1, 1] (along z1, z2 respectively). To cater for the fact that during
the transient period the actual state may overshoot these bounds, the network approximation
region is taken to be larger, namely x» = [-1.5, 1.5] x [-1.5, 1.5]. This ensures that the state
is bounded within the approximation region, thus avoiding the use of crude, high-gain sliding
control. x, by definition, must bea subset of x,, so that it is set to x; = [—1, 1]x[-1, 1]. Itis
assumed that the known prior estimates to the functions being approximated are f, = 0, g, =
9 and as shown in [35], full network inherent ‘approximation error bounds €5 = ¢; = 0.005
would be obtained via basis functions having a standard deviation oy, o, of 0.03 located on
a mesh of spacing ¢ = 0.05 within x». Bounds fos G, ate set to 2 and gi(x) to 0.895. The
control law is given by v(t) = ¥4 — 5(y — y4) and e1(t) = €(). The gain matrix was chosen
as P, = 25I and maintained constant, corresponding to gradient descent estimation, and
A, = (S -+ 5).

Two simulations were performed: one with k. = 0, corresponding to direct adaptation,
and another with k, = 15, corresponding to composite adaptation. The results are shown
in figures 5 a and 5 b respectively. Once again, note that the system is stable and that
the tracking error converges asymptotically to zero. However the composite law gives better
performance than the direct law because the error converges much more rapidly. After 100
seconds, the tracking error for the composite law was well within £0.0035, a factor of four
better than that for the direct law.

1 T 1
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0,6 |osvevervivamsiiasi bainesisntiaesii 4 T 4
s 5
& : s :
E 04-... ................... - E ﬁ‘.. .......... ,.‘H,”,: ................... -
5 + x :
5 14
= =

0 50 100 0
(a) time (b) time

50 100

Figure 5: Results of simulation 2: (a) Direct adaptation (b) Composite adaptation
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7 CONCLUSIONS

A stable adaptive control scheme based on neural networks and using composite adaptation

laws has been presented for the affine class of nonlinear systems. Sliding control as in [30], [36]

and deadzone adaptation as in [23] were included to ensure global stability and robustness

to the presence of the disturbance term arising from the network approximation errors. Two

- approaches were considered for the estimation part of the control law: gradient descent and
o least-squares estimation. In all cases the system exhibited improved performance over the
direct adaptive controller, because the tracking error converges to zero much faster. The

5 network approximation to the unknown system dynamics was also faster and of a better
f quality.
‘H.
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