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A fundamental component of an integrated quantum optical circuit is an on-chip beam-splitter

operating at the single-photon level. Here, we demonstrate the monolithic integration of an on-demand

quantum emitter in the form of a single self-assembled InGaAs quantum dot (QD) with a compact

(>10 lm), air clad, free standing directional coupler acting as a beam-splitter for anti-bunched light.

The device was tested by using single photons emitted by a QD embedded in one of the input arms

of the device. We verified the single-photon nature of the QD signal by performing Hanbury

Brown-Twiss measurements and demonstrated single-photon beam splitting by cross-correlating the

signal from the separate output ports of the directional coupler. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4883374]

The proposal of linear optics quantum computing

(LOQC) represents a significant step towards scalable optical

quantum information processing.1 Integrated optics offers a

route forward to achieving the high component density that

LOQC requires,2 while also improving the intrinsic stability

of the circuitry and giving a significant reduction in the

size and complexity of the experimental apparatus.3 III-V

semiconductor circuits offer additional benefits over other

technologies in this context by providing a platform for

incorporating on-demand quantum emitters such as self-

assembled quantum dots (QDs) within the circuit, and also

allowing for hybrid approaches beyond LOQC, for example,

by forming spin-photon networks.2,4,5

A fundamental component of an integrated quantum

optical circuit is an on-chip beam-splitter operating at the

single-photon level.1 In this Letter, we demonstrate the mon-

olithic integration of an on-demand quantum emitter in the

form of a single self-assembled InGaAs quantum dot with an

on-chip directional coupler acting as a beam-splitter for anti-

bunched light. We first discuss the design of the devices, and

then present results demonstrating their performance at the

single photon level.

The overall structure of the device is shown in Fig. 1(a).

Directional couplers were used as the beam-splitter on

account of their easy modeling, flexibility in the splitting ra-

tio, and low back-scattering losses.6 In addition, they do not

require tapering to interface them with waveguides or with

more complex structures such as nanobeam cavities7 or

waveguide based spin-photon interfaces,8 which allows for

low overall losses and relatively simple circuit designs.

The waveguide dimensions were chosen in order to

assure operation in TE polarization. Optical simulations of

the devices were performed using a commercial-grade eigen-

mode solver.

For weak coupling, the modes formed in the coupling

region can be approximated as symmetric and anti-symmetric

superpositions of individual waveguide eigenmodes com-

monly known as super-modes.9 Coupled mode theory can

then be used to obtain a simple analytical expression for the

power transfer between the waveguides.9,10

In the case of a directional coupler composed of two

identical waveguides, the interaction length needed for 50:50

power transfer is given by9–11

L50:50 ¼
k0

p�Dn
� sin�1

ffiffiffiffiffiffiffi
0:5
p� �

; (1)

where L50:50 is the interaction length at which 50% of the inci-

dent power is transmitted to the second waveguide, k0 is the

free space wavelength, and Dn is the effective index differ-

ence between the symmetric and anti-symmetric super-modes

and is calculated numerically using the eigenmode solver for

a range of parameters of interest. Calculated values for L50:50

are shown in Fig. 1(b). For a given waveguide separation and

waveguide width, L50:50 increases with decreasing wavelength

(due to better mode confinement), indicating weaker coupling

for shorter wavelengths. For waveguide separations smaller

than 100 nm, L50:50 is shorter than 10 lm. This allows for

devices of a very small footprint of order 10–20 lm, compara-

ble to recently demonstrated plasmonic circuits.12 Similar

footprint devices can also be realized in silicon-on-insulator

(SOI).13,14

The main added losses in directional couplers compared

to single waveguides of comparable length originate from

the bends6 together with spatial and phase mismatch between

the input waveguides and the coupling region.15

The strong mode confinement for high index contrast air

clad GaAs waveguides allows very sharp waveguide bends.

We find that the bending loss becomes negligible (<1%) for

bend radii of 2 lm or larger, a value which we use in the fab-

rication of our devices.

a)Author to whom correspondence should be addressed. Electronic mail:

n.prtljaga@sheffield.ac.uk
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An estimate of the mode-conversion loss between the

input waveguide and the coupling region can be obtained by

calculating the spatial profile mismatch and Fresnel reflec-

tions due to the difference in propagation constants.11 The

results of these calculations for a wide range of parameters

of interest are reported in Fig. 1(c). The maximum loss

reaches a value of a few percent only for a very small wave-

guide separation (�20 nm).

The samples were grown by molecular beam epitaxy

(MBE) on undoped GaAs (100) wafer, comprising a 140 nm

GaAs layer containing a layer of self-assembled InGaAs

QDs at its center, above a 1 lm thick sacrificial Al0:6Ga0:4As

layer on an undoped GaAs substrate. The devices were fabri-

cated by electron beam lithography, followed by an induc-

tively coupled plasma etch to define the pattern into the

GaAs membrane. The Al0:6Ga0:4As layer was removed by an

isotropic hydrofluoric acid etch to leave freestanding air-clad

GaAs waveguides. A scanning electron microscope (SEM)

image of the fabricated device is shown in Fig. 1(a).

Semicircular air/GaAs grating output couplers16 were added

to the end of the waveguides to scatter light out of the device

plane into the detection apparatus.

Optical measurements were performed at 4.2 K in a con-

focal microscope system with three independent optical paths

(one excitation and two collection paths). The photolumines-

cence (PL) was excited using an 850 nm continuous wave

(CW) laser focused to a spot of diameter of �1 lm. The PL

was collected from the output couplers and filtered independ-

ently in each collection path both spectrally and spatially.17

For detection, single-photon avalanche photodiodes (SPADs)

or a charge coupled device (CCD) camera was used.

The device was initially characterized using the QD en-

semble PL acting as an internal light source. The excitation

spot was positioned at the waveguide end close to the control

port (see Fig. 1(a)). Fig. 2(a) shows the PL map obtained

by raster scanning the collection spot for a device with

L¼ 7 lm. It is apparent that the light generated at the control

port is coupled to one arm of the directional coupler and then

equally divided between the output ports (Fig. 2(a)), demon-

strating 50:50 splitter operation for the ensemble PL.

The device was then tested at the single-photon level by

working with a spectrally isolated QD emitting at 927 nm on

the blue side of the QD distribution (Fig. 2(b)). The QD was

located near the control port, as indicated in Fig. 1(a).

Modifications to the local density of optical states (LDOS) in

the high index-contrast structure lead to efficient funneling of

QD photons into the waveguide. By performing 3D Finite-

difference time-domain (FDTD) simulations, the coupling ef-

ficiency of the QD emission to the waveguide propagating

mode was deduced. For a QD positioned at the exact centre of

the waveguide, a coupling efficiency of �95% is found. The

coupling efficiency remains higher than >80% even for sig-

nificant (up to 100 nm) QD displacement from the waveguide

centre. The remaining fraction is radiated perpendicular to the

waveguide direction (horizontally and vertically). Photons

that are coupled to the waveguide mode travel either forwards

or backwards with equal probabilities. Those travelling

towards the control port were used to monitor the single-

photon nature of the QD emission, while the others were used

to test the performance of the directional coupler.

The results in Fig. 2(a) show that the device acted as a

50:50 beam-splitter around the peak of the ensemble PL

FIG. 1. (a) SEM image of directional coupler. L is the interaction length between the waveguides. (b) Simulated logarithmic color map of 50:50 coupling

length (L50:50) as a function of wavelength and waveguide separation (waveguide width of 280 nm was used). Black line indicates waveguide separation of

100 nm. (c) Simulated logarithmic color map of optical loss induced by mismatch (spatial and phase) between the input waveguide and the coupling region of

the directional coupler. Optical loss is plotted as a function of wavelength and waveguide separation (waveguide width of 280 nm again used) and is normal-

ized with respect to the input power.

FIG. 2. (a) Ensemble PL map of investigated device. (b) Spectrum of the QD that was used to characterize the directional coupler at the single photon level.

Fit to the experimental data yields a spectrometer limited linewidth of 0.09 nm (�130 leV). Inset: Spectrum of ensemble PL as seen from control port for exci-

tation spot position which yields maximum intensity for QD line indicated by red rectangle. (c) PL map of the same device as in panel (a) obtained by spec-

trally filtering the collected light (0.17 nm spectral bandwidth) at the peak of QD emission indicated in panel (b) of this figure.
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(960 nm), but this did not hold for the wavelength of the

dot (927 nm) where the splitting ratio was close to 70:30

(Fig. 2(c)). Generally, the coupling between the waveguides

decreases for shorter wavelengths due to the better mode

confinement leading to longer L50:50 (see Fig. 1(b)). The fact

that we observe stronger coupling for shorter wavelengths

indicates that this particular device was operating beyond its

first 50:50 coupling point. In a Hanbury Brown-Twiss (HBT)

experiment, an unbalanced beam-splitter can always be con-

verted to a balanced one by introducing additional optical

loss to one of the optical paths before the detectors. This was

the strategy adopted here; the effect of imbalance manifests

itself only in a reduced number of coincidence counts.

The result of an HBT measurement performed directly on

the dot via photons emitted from the control port is shown in

Fig. 3(a). A fit to the normalized data without background

subtraction gives g(2)(0)¼ 0.23 6 0.02 (Fig. 3(a)). g(2)(0) does

not reach zero due to the background from the other QDs and

the limited timing resolution of our system (�520 ps). This

can be compared to the results in Fig. 3(b), which show

the cross-correlated QD signal from the output ports. In this

case, the directional coupler acts as the beam splitter of the

HBT experiment. A value of g(2)(0)¼ 0.31 6 0.03 is found,

again below 0.5, demonstrating on-chip HBT functionality

at the single-photon level. When corrected for the background

and temporal response of the system, a value of g(2)(0)

¼ 0.10 6 0.05 is found.

In conclusion, we have demonstrated the monolithic inte-

gration of an on-demand quantum emitter in the form of a sin-

gle self-assembled InGaAs quantum dot (QD) with an air

clad, free standing directional coupler. By careful optimiza-

tion of the air gap and the length of the coupling region, we

realized an on-chip 50:50 beam splitter. We tested the device

at the single photon level by using the anti-bunched light from

a single QD embedded in the waveguide and demonstrate

single-photon beam splitting by cross-correlating the QD sig-

nal from separate output ports. This work paves the way

towards demonstration of on-chip quantum optical circuits

with monolithically integrated on-demand quantum emitters.

The authors would like to thank I. J. Luxmoore for fruit-

ful discussion. This work was funded by EPSRC Grant No.

EP/J007544/1.
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FIG. 3. (a) Normalised auto-correlation function of QD signal (black line,

without background subtraction) taken from control port (inset). Dotted line

indicates 0.5 limit. Red line is the best fit to the experimental data yielding

g(2)(0)¼ 0.23 6 0.02. (b) Normalised cross-correlation function (black line,

without background subtraction) from two different output ports (inset).

Dotted line indicates 0.5 limit. Red line is the best fit to experimental data

yielding g(2)(0)¼ 0.31 6 0.03.
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