Gene Expression Profiling of Peripheral Tissues in Amyotrophic Lateral Sclerosis

by

Joanna J Bury, MSc

Academic Unit of Neurology Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield

Submitted for the degree of Doctor of Philosophy August 2015

ABSTRACT

Background: Amyotrophic Lateral Sclerosis, in which cortical and spinal MN's degenerate, is a late onset neurodegenerative condition that accounts for ~ 1 in 400 UK deaths, typically within 3-5 years from the initial manifestations of disease. It forms part of a broad spectrum of clinically, genetically as well as pathologically hetergeneous disorders that include behavioural variant frontotemporal lobar degeneration (bvFTLD). A large intronic hexanucleotide G_4C_2 repeat expansion of >30 copies was recently identified, in 2011, in the previously uncharacterised chromosome 9 open reading frame 72 (C90RF72) gene which is now thought to explain up to 43% of familial ALS (~20-30% of familial FTLD) and around 7% of sporadic cases. Rationale & **Hypothesis:** The principle aim of the PhD was to perform gene expression profiling of peripheral tissues in ALS. In the first instance whole blood was trialled. However, this proved unreliable, owing to the sheer abundance of erythrocyte derived alpha and beta haemoglobin transcripts that are contained within the sample and the variability in the efficiency of its removal using the Ambion[®] GLOBINClear[™] or NuGEN Ovation® WB reduction strategies. Instead disease related changes in transcription/ alternative splicing were detected in a large bank (n=820) of patient and control lymphoblastoid cell lines (LCL's) with the main purpose of: 1) elucidating further the mechanism(s) of neurotoxicity associated with the C90RF72 G_4C_2 repeat expansion and, 2) establishing within this specific genetic subtype, modifiers of a fast (<2yrs) versus slow (\geq 4yrs) disease progression in order to identify potential new areas of therapeutic research. **Methodology:** Biotinylated, sense-strand cDNA targets of ~40 -70nt were hybridized onto Human Exon 1.0ST GeneChip® Arrays. A GC-RMA normalisation procedure was carried out in Partek[®] Genomics Suite[™] and differentially expressed or alternatively spliced transcripts were detected at the 5% significance level (p<0.05) with a fold-change threshold of $\geq \pm 1.20$ applied. Findings: Overall a marginal increase in gene transcription was observed with respect to C90RF72 (59. 3%, n=650/1,096) and non*C90RF72*-related_SALS patients (63.9%, n=1,148/1,796) compared to neurologically healthy controls. DAVID enriched gene ontology terms included translation, which was specific to carriers of the G₄C₂ repeat, in addition to RNA processing, DNA metabolism, RNP complex biogenesis and the cell cycle which

reflect more common features of the broader ALS phenotype. A number of key validation targets, including several RNA binding partners of the G₄C₂ repeat (FUS, RPL 22, NUDT2, PURA, EIF4H and HNRNPA0/F) were subsequently confirmed in a qRT-PCR assay. Isoform A/B specific transcripts of the C90RF72 gene, itself, were found not to be differentially expressed across the LCL's in the ECACC discovery and replication cohorts. **Conclusions:** Whether pathogenicity of the G₄C₂ expanded allele arises as a consequence of haploinsufficiency or through an aberrant gain of function mechanism has yet to be determined; although emerging evidence favours a role of RNA toxicity. In light of this model, an up-regulation in the expression of *C90RF72* binding partners and other, RNA processing & splicing related transcripts fits with the hypothesis that the cells are attempting to compensate for the sequestration of these proteins into toxic RNA foci in the cytoplasm which leads to disruption of their normal physiological function. Small sample sizes meant limited conclusions could be drawn from the analysis of C90RF72 specific modifiers of survival in ALS. Clinical data points towards a possible effect of gender which is supported in the literature but other factors such as correlations with expansion length would need to be considered in conducting future work.

ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr Janine Kirby and Professor Dame Pamela Shaw for their continued support, guidance and encouragement throughout the PhD. I would like to thank Dr Paul Heath, Dr J Robin Highley, Dr Nadhim Bayatti and Dr Johnathon Cooper-Knock for all their advice and support. I would also like to thank Catherine Gelsthorpe and Matthew Wyles for their technical assistance in the laboratory and in particular I would also like to thank the many patient donors and their relatives/carers who generously agreed to participate in this study; without whom this work would not have been possible. I would also like to extend my thanks to the nursing staff that assisted in biosample collection, personal at the Health Protection Agency (HPA), European Collection of Cell Cultures (ECACC) for growing and maintaining the lymphoblastoid cell lines (LCL's) and the Motor Neurone Disease Association (MNDA) for providing the relevant clinical & genetic information. I would like to thank the Medical Research Council (MRC) for funding my PhD Studentship and EuroMOTOR [European Multidisciplinary ALS Network Identification to Cure Motor Neurone Degeneration, Work Package 6 (WP6) under the EU 7th Framework Health Co-operation Programme to "Discover New Causative & Disease-Modifying Pathways to Pave the Way for Novel Therapies"] for funding the lab work. Finally, I would like to thank my family, friends & colleagues who have supported me over the past five years.

TABLE OF CONTENTS

ABSTRACT ACKNOWLEDGEMENTS	II IV
TABLE OF CONTENTS	V
LIST OF FIGURES	XIII
LIST OF TABLES	XIX
LIST OF ABBREVIATIONS	XXIII
CHAPTER 1: INTRODUCTION	1
1.1 Motor Neurone Disease Spectrum	1
1.1.1 Background	1
1.1.2 Epidemiology	1
1.1.3 Diagnosis	2
1.1.4 Clinical Management	3
1.2 Amyotrophic Lateral Sclerosis	5
1.2.1 ALS	5
1.2.2 Other Rare Variants of MND	7
1.2.2.1 PBP	7
1.2.2.2 PLS	8
1.2.2.3 PMA	8
1.2.3 ALS Pathology	9
1.2.4 Mechanisms Underlying MN Degeneration in ALS	10
1.2.4.1 Oxidative Stress	10
1.2.4.2 Glutamate Excitotoxicity	11
1.2.4.3 Mitochondrial Dysfunction	12
1.2.4.4 Axonal Transport	12
1.2.4.5 Intracellular Protein Aggregation	13
1.2.4.6 The Role of Non-Cell Autonomous Glia and Inflammation	13
1.2.4.7 Autophagy	14
1.2.4.8 Apoptosis	14
1.2.4.9 RNA Processing	15
1.2.5 Genetic Factors	15
1.2.5.1 ALS Loci	17
1.2.5.1.1 <i>SOD1</i>	17
1.2.5.1.2 <i>ALSIN</i>	18
1.2.5.1.3 SETX	19
1.2.5.1.4 SPG11	20
1.2.5.1.5 VAPB	20
1.2.5.1.6 FIG4	21
1.2.5.1.7 <i>OPTN</i>	21

1.2.5.1.8	ERBB4	22
1.2.5.1.9	MATR3	23
1.2.5.1.10	Other Rare Genetic Cases of FALS	23
1.2.5.1.11	Genetic Susceptibility Factors and Other Rare Causes of SALS	24
1.2.5.2 ALS	-FTLD Loci	27
1.2.5.2.1	TARDBP	27
1.2.5.2.2	FUS	28
1.2.5.2.3	ANG	29
1.2.5.2.4	ATXN2	30
1.2.5.2.5	VCP	31
1.2.5.2.6	UBQLN2	32
1.2.5.2.7	SIGMAR1	32
1.2.5.2.8	CHMP2B	33
1.2.5.2.9	PFN1	34
1.2.5.2.10	HNRNPA1	35
1.2.5.3 FTL	D Loci	36
1.2.5.3.1	MAPT	36
1.2.5.3.2	PGRN	36
1.2.5.3.3	PSEN1	37
1.2.5.4 <i>C90</i>	RF72	38
1.3 Microarray	Based Gene Expression Profiling	39
1.3.1 Affymeti	rix® Platform	39
1.3.2 Limitation	ons of Using Human Post-Mortem Tissue	41
1.3.3 The Use	of Peripheral Tissues	42
1.4 GEP Studies	s in Neurodegenerative Disease	43
1.4.1 Example	es Using Peripheral Whole Venous Blood	43
1.4.1.1 ALS		43
1.4.1.2 Othe	er Neurodegenerative Disorders	45
1.4.1.2.1	Huntington's Disease	45
1.4.1.2.2	Parkinson's Disease	46
1.4.1.2.3	Alzheimer's Disease	48
1.4.1.2.4	Schizophrenia and Bipolar Disorder	49
1.4.2 Example	es Using Immortalised Lymphoblastoid Cell Lines	50
1.4.2.1 ALS		50
1.4.2.2 Oth	er Neurodegenerative Disorders	50
1.4.2.2.1	Schizophrenia	50
1.4.2.2.2	Bipolar Disorder	51
1.5 Summary o	f Project Aims and Objectives	52
CHAPTER 2: M	ATERIALS AND METHODS	54
2.1 Clinical Cha	racteristics	54
2.1.1 NuGEN	Ovation® Whole Blood Study	54

2.1.2 ECACC LCL Study	54
2.2 Materials	56
2.2.1 Biological Specimens	57
2.2.1.1 Peripheral Whole Blood	57
2.2.1.2 Lymphoblastoid Cell Pellets	57
2.2.2 Solutions, General Chemicals and Laboratory Consumables	57
2.2.3 Reagents and Kits	59
2.3 Methods	60
2.3.1 GEP from Peripheral Whole Blood	60
2.3.1.1 Tissue Collection and Storage	60
2.3.1.2 PAXgene [®] Extraction of Total RNA from Whole Blood	60
2.3.1.3 RNA Yield and Quality Assessment	61
2.3.1.4 cDNA Synthesis	61
2.3.1.4.1 cDNA Synthesis for qRT-PCR	61
2.3.1.4.2 cDNA Synthesis for Linear SPIA [™] Amplification	62
2.3.1.5 NuGEN Ovation [®] Whole Blood Solution	62
2.3.1.5.1 NuGEN Linear SPIA [™] Amplification	62
2.3.1.5.2 QIAGEN MinElute [®] Purification of NuGEN Amplified Material	63
2.3.1.5.3 Encore [™] Biotin-Labelling of Fragmented cDNA Targets	63
2.3.1.6 Quantitative Real-Time PCR	64
2.3.1.7 Agarose Gel Electrophoresis	66
2.3.1.8 Affymetrix [®] HG_U133 Plus 2.0 GeneChip [®] Arrays	66
2.3.1.8.1 HG_U133 Plus 2.0 GeneChip® Arrays	67
2.3.1.8.2 Hybridization	67
2.3.1.8.3 Washing, Staining and Scanning	68
2.3.1.9 Bioinformatics Analysis	69
2.3.1.9.1 Affymetrix [®] GeneChip [®] Operating Software	69
2.3.1.9.2 GeneSpring GX v11.5.1	69
2.3.1.9.3 Gene Ontology Enrichment Analysis	70
2.3.2 GEP from Lymphoblastoid Cell Lines	70
2.3.2.1 Tissue Collection and Storage	70
2.3.2.2 QIAGEN Extraction of Total RNA from Frozen LCL's	72
2.3.2.3 Affymetrix [®] WT Sense-Target Labelling Assay	73
2.3.2.3.1 Linear Amplification	73
2.3.2.3.2 Fragmentation	76
2.3.2.3.3 Labelling	77
2.3.2.3.4 Electrophoretic Mobility Gel-Shift Assay	77
2.3.2.4 Affymetrix [®] Human Exon 1.0ST Arrays	78
2.3.2.4.1 GeneChip [®] HuEx-1_0-st-v2	78
2.3.2.4.2 Hybridization	79
2.3.2.4.3 Washing, Staining and Scanning	80
2.3.2.5 Bioinformatics Analysis	81
2.3.2.5.1 Affymetrix [®] GeneChip [®] Operating Software	81

2.3.2.5.2 Partek [®] Genomics Suite TM	81
2.3.2.5.3 Qlucore Omics Explorer	82
2.3.2.5.4 Gene Ontology Enrichment Analysis	83
2.3.2.6 Quantitative Real-Time PCR	83
2.3.2.6.1 Primer Design	83
2.3.2.6.2 Primer Optimisation and Standard Curve Analysis	85
2.3.2.6.3 RNA Pooling	86
2.3.2.6.4 cDNA Synthesis	87
2.3.2.6.5 SYBR [®] Green Assays	88
2.3.2.6.6 PrimeTime [®] Mini qPCR Assays	88
CHAPTER 3: WHOLE BLOOD STUDY	93
3.1 Clinical Characteristics of the NuGEN Cohort	93
3.2 PAXgene [®] Blood RNA Extraction	93
3.3 Human Genome U133 Plus 2.0 GeneChip [®] Arrays	93
3.3.1 NuGEN Ovation [®] Whole Blood Solution	93
3.3.1.1 NuGEN Ovation [®] RNA Amplification System V2	95
3.3.1.2 NuGEN Encore [™] Biotin Module	97
3.3.2 Affymetrix [®] Expression Console TM QC Metrics	97
3.3.2.1 Eukaryotic Hybridization Controls	97
3.3.2.2 GeneChip [®] Normalisation	98
3.3.2.2.1 Noise (Raw Q)	98
3.3.2.2.2 Scaling Factor	99
3.3.2.3 RNA Quality	101
3.3.2.4 Overall Signal Quality	101
3.3.2.4.1 Average Background	101
3.3.2.4.2 Average Percentage Presence Calls	102
3.3.2.5 Relative Log Expression Signal	102
3.3.2.6 Pearson's Correlation Coefficient	103
3.4 Pre- and Post-SPIA [™] qRT-PCR Measurements	105
3.5 Peripheral Whole Blood Gene Expression Data	107
3.5.1 GeneSpring GX v11.5.1	107
3.5.1.1 Normalisation	107
3.5.1.2 Detection of Differentially Expressed Transcripts	109
3.5.1.2.1 JB NuGEN Ovation [®] Dataset	109
3.5.1.2.2 RR Ambion [®] GLOBINClear TM Dataset	109
3.5.1.2.3 JB NuGEN Ovation [®] and RR Ambion [®] GLOBINClear TM	109
Comparison	
3.5.1.3 Clustering Analysis	111
3.5.1.4 DAVID Functional Annotation Enrichment Analysis	117
3.5.1.4.1 JB NuGEN Ovation [®] Dataset	117
3.5.1.4.2 RR Ambion [®] GLOBINClear TM Dataset	118

3.5.1.4.3 JB NuGEN Ovation [®] and RR Ambion [®] GLOBINClear TM	118
3 5 1 5 KEGG Pathway Analysis	118
3.5.1.5.1 MAPK Signalling Cascade	119
3.5.1.5.2 Neurotrophin Signalling Cascade	122
3.6 DISCUSSION	124
CHAPTER 4: CHARACTERISATION OF LCL'S	134
4.1 ECACC EBV-Transformed B-Lymphocytes	134
4.1.1 ECACC Discovery Cohort	134
4.1.1.1 Clinical Characteristics	134
4.1.1.1.1 Control Cases	134
4.1.1.1.2 Familial Cases	135
4.1.1.1.3 Sporadic Cases	139
4.1.1.2 Therapeutics Used to Treat the Cohort	141
4.1.1.2.1 Familial Cases	141
4.1.1.2.2 Sporadic Cases	142
4.1.1.3 Genetic Status of the Cohort	142
4.1.1.3.1 Familial Cases	143
4.1.1.3.2 Sporadic Cases	143
4.1.2 ECACC Replication Cohort	144
4.1.2.1 Clinical Characteristics	144
4.1.2.1.1 Control Cases	144
4.1.2.1.2 Sporadic Cases	146
4.1.2.2 Therapeutics Used to Treat the Cohort	148
4.1.2.3 Genetic Status of the Cohort	148
4.2 QIAGEN Extraction of Total RNA	149
4.3 Human Exon 1.0ST GeneChip [®] Array Profiling	150
4.3.1 Affymetrix [®] WT Sense-Target Labelling Assay	150
4.3.1.1 Linearly Amplified Material	154
4.3.1.1.1 Anti-Sense cRNA	154
4.3.1.1.2 Single-Stranded cDNA	155
4.3.1.2 Fragmented ss-cDNA	155
4.3.1.3 Biotinylation of Sense-Strand Targets	157
4.3.2 Affymetrix [®] Expression Console [™] QC Metric	158
4.3.2.1 Eukaryotic Hybridization Controls	158
4.3.2.2 Overall Signal Quality	159
4.3.2.2.1 Average Background	159
4.3.2.2.2 Average Percentage Presence Calls	159
4.3.2.2.3 Area Under the Receiver Operating Characteristic Curve	161
4.3.2.3 Signal Comparability	161
4.3.2.3.1 All Probeset Mean Signal Intensities	161

4.3.2.3.3 Relative Log Expression Signal 163 4.3.2.4 Pearson's Correlation Coefficient 164 4.3.2.5 Affymetrix® Expression Console™ Summary 164 4.4 DISCUSSION 167 CHAPTER 5: C90RF72 GEP STUDY 5.1. C90RF72 and nonC90RF72-Related_SALS Cohort 5.1. C90RF72 and nonC90RF72-Related_SALS Cohort 5.1. CACC EBV-Transformed B-Lymphocytes 5.1.1.1 Control Cases 5.1.1.2 C90RF72+ Cases 5.1.1.2 C90RF72+ Relate_SALS Cases 5.1.1.2 Differential Gene Expression Console™ QC Metrics 5.1.1.3 C90RF72+ Cases 5.1.1.3 C90RF72+ Related_SALS Cases 5.1.1.3 C90RF72+ Related_SALS Cases 5.1.1.3 C90RF72+ Cases 5.1.1.3 C90RF72+ Related_SALS Cases 5.1.1.3 C90RF72+ Cases 5.1.2 MonC90RF72-Related_SALS Cases 5.1.2 MonC90RF72-Related_SALS Cases 5.1.1 Pifferential Gene Expression Analysis <td colspan<="" th=""><th>4.3.2.3.2 Signal Histogram</th><th>162</th></td>	<th>4.3.2.3.2 Signal Histogram</th> <th>162</th>	4.3.2.3.2 Signal Histogram	162
4.3.2.4 Pearson's Correlation Coefficient 164 4.3.2.5 Affymetrix® Expression Console™ Summary 164 4.4 DISCUSSION 167 CHAPTER 5: C90RF72 GEP STUDY 5.1 SIL1 CONF72 CEP STUDY 5.1 CONF72 CEP STUDY 5.1 5.1 SIL1 6 5.1 SIL1 CONC90RF72-Related_SALS Cases 5.1	4.3.2.3.3 Relative Log Expression Signal	163	
4.3.2.5 Affymetrix® Expression Console™ Summary 164 4.4 DISCUSSION 167 CHAPTER 5: C90RF72 GEP STUDY 5.1 5.1 C90RF72 and nonC90RF72-Related_SALS Cohort 5.1.1 5.1.1 ECACC EBV-Transformed B-Lymphocytes 5.1.1 5.1.1.1 Control Cases 5.1.1.1 Control Cases 5.1.1.1 Control Cases 5.1.1.2 5.1.1.1 Control Cases 5.1.1.2 5.1.1.2 C90RF72+ Cases 5.1.1.2 5.1.1.2 C90RF72+ Related_SALS Cases 5.1.1.3 C90RF72+ Related_SALS Cases 5.1.1.2 Differential Gene Expression Analysis 5.2.1.1 Partek® Genomics Suite™ 779 5.2.1.1 C90RF72+ Related_SALSvCtrl 8.2.1.1 C90RF72+ Related_SALSvCtrl 72	4.3.2.4 Pearson's Correlation Coefficient	164	
4.4 DISCUSSION167CHAPTER 5: C90RF72 GEP STUDY1725.1.1 ECACC EBV-Transformed B-Lymphocytes1725.1.1.1 Clinical Characteristics1725.1.1.1 Clinical Characteristics1725.1.1.1 Clinical Characteristics1725.1.1.1 Control Cases1725.1.1.1 Control Cases1725.1.1.1 Control Cases1735.1.1.2 C90RF72+ Relate_SALS Cases1765.1.1.2 MonC90RF72-Relate_SALS Cases1775.1.1.2 C90RF72+ Cases1785.1.1.3 ConC90RF72-Related_SALS Cases1785.1.1.3 C90RF72+ Cases1785.1.1.3 C90RF72+ Related_SALS Cases1785.1.1.3 C90RF72-Related_SALS Cases1785.1.1.3 C90RF72-Related_SALS Cases1795.2.1.1 Differential Gene Expression Console™ QC Metrics1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 C90RF72-VCtrl182Comparison5.2.1.2 DAVID Functional Enrichment Analysis5.2.1.3 C90RF72-VCtrl and NonC90RF72-Related_SALSvCtrl <td< td=""><td>4.3.2.5 Affymetrix[®] Expression ConsoleTM Summary</td><td>164</td></td<>	4.3.2.5 Affymetrix [®] Expression Console TM Summary	164	
CHAPTER 5: C90RF72 GEP STUDY1725.1 C90RF72 and nonC90RF72-Related_SALS Cohort1725.1.1 ECACC EBV-Transformed B-Lymphocytes1725.1.1.1 Clinical Characteristics1725.1.1.1 Clinical Characteristics1725.1.1.1 Control Cases1725.1.1.1 Control Cases1735.1.1.2 D00RF72+ Cases1765.1.1.2 Therapeutics Used to Treat the Cohort1775.1.1.2 D00RF72+ Cases1775.1.1.2 NonC90RF72-Relate_SALS Cases1785.1.1.3 Genetic Status of the Cohort1785.1.1.3 Genetic Status of the Cohort1785.1.1.3 C90RF72-Related_SALS Cases1785.1.1.3 C90RF72-Related_SALS Cases1785.1.1.3 L 00nC90RF72-Related_SALS Cases1795.2.1 Mignetrix® Expression Console™ QC Metrics1795.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1.2 NonC90RF72-Related_SALSvCtrl182Comparison1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2.1 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl1845.2.1.3 RNA Processing1895.2.1.3 RNA Processing1895.2.1.3 RNA Processing1975.2.1.4 Translation of the Spliceosome1975.2.1.4.1 Translation Initiation2085.2.1.4.2 Translation Initiation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome R	4.4 DISCUSSION	167	
CHAPTER 5: C90RF72 GEP STUDY1725.1 C90RF72 and nonC90RF72-Related_SALS Cohort1725.1.1 ECACC EBV-Transformed B-Lymphocytes1725.1.1.1 Clinical Characteristics1725.1.1.1 Control Cases1735.1.1.1 Control Cases1735.1.1.1 Control Cases1735.1.1.1 Control Cases1735.1.1.2 C90RF72+ Cases1765.1.1.2 Therapeutics Used to Treat the Cohort1775.1.1.2 Therapeutics Used to Treat the Cohort1785.1.1.3 Genetic Status of the Cohort1785.1.1.3 C90RF72+ Cases1785.1.1.3 C90RF72+ Cases1785.1.1.3 C90RF72+ Cases1785.1.2 Affymetrix® Expression Console™ QC Metrics1795.2.1 Aptrek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 C90RF72-Related_SALSVCtrl1825.2.1.1 C90RF72-Ctrl1825.2.1.2 NonC90RF72-Related_SALSVCtrl1825.2.1.1 C90RF72-VCtrl and NonC90RF72-Related_SALSvCtrl1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 ONC90RF72-Related_SALSvCtrl1845.2.1.2 SonC90RF72-Related_SALSvCtrl1845.2.1.3 RNA Processing1995.2.1.3 RNA Processing1995.2.1.4 Translation of RNA Transcription1895.2.1.3 RNP Biogenesis1955.2.1.3 RNP Biogenesis1955.2.1.4 Translation Initiation2025.2.1.4 Translation Initiation2085.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ri			
5.1 $C90RF72$ and non $C90RF72$ -Related_SALS Cohort1725.1.1ECACC EBV-Transformed B-Lymphocytes1725.1.1.1Clinical Characteristics1725.1.1.1Control Cases1735.1.1.1Control Cases1735.1.1.1Control Cases1765.1.1.2C90RF72+ Cases1775.1.1.2Therapeutics Used to Treat the Cohort1775.1.1.2C90RF72+ Cases1775.1.1.2C90RF72+ Cases1785.1.1.3Genetic Status of the Cohort1785.1.1.3C90RF72+ Cases1785.1.1.3C90RF72-Related_SALS Cases1785.1.1.3C90RF72+ Cases1785.1.2Androgore Array Profiling1795.2Human Exon 1.0ST GeneChip® Array Profiling1795.2.1.1Conprison Comprison1795.2.1.1C90RF72+Ctrl1825.2.1.1C90RF72+Ctrl and NonC90RF72-Related_SALSvCtrl1825.2.1.2Comparison1835.2.1.2C90RF72+Ctrl and NonC90RF72-Related_SALSvCtrl1845.2.1.2.1C90RF72+Ctrl and NonC90RF72-Related_SALSvCtrl1845.2.1.3Regulation of RNA Transcription1895.2.1.3Regulation of RNA Transcription1895.2.1.3Regulation of RNA Transcription1895.2.1.3SnRuP Biogenesis1975.2.1.4Translation2025.2.1.4Translation Initiation2025.2.1.4.4Translation Initiation208 <td>CHAPTER 5: C9ORF72 GEP STUDY</td> <td>172</td>	CHAPTER 5: C9ORF72 GEP STUDY	172	
5.1.1 ECACC EBV-Transformed B-Lymphocytes1725.1.1.1 Clinical Characteristics1725.1.1.1 Control Cases1725.1.1.1 Control Cases1735.1.1.2 C90RF72+ Cases1735.1.1.2 Therapeutics Used to Treat the Cohort1775.1.1.2 Therapeutics Used to Treat the Cohort1775.1.1.2 C90RF72+ Cases1775.1.1.2 C90RF72+ Cases1785.1.1.3 Genetic Status of the Cohort1785.1.1.3 C90RF72+ Cases1785.1.1.3 C90RF72+ Cases1785.1.1.3 C90RF72+ Cases1785.1.1.3 C90RF72+ Cases1785.1.1.3 C90RF72+ Cases1785.1.2 Affymetrix® Expression Console™ QC Metrics1795.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 C90RF72vCtrl1825.2.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 C90RF72vCtrl1845.2.1.2 C90RF72vCtrl1845.2.1.2 C90RF72vCtrl1845.2.1.3 C90RF72vCtrl1845.2.1.3 RNA Processing1895.2.1.3 RNA Processing1895.2.1.3 RNA Processing1895.2.1.3 RNA Processing1955.2.1.3 RNA Processing1955.2.1.3 RNA Piogenesis1955.2.1.4 Translation Initiation2025.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Inelongation2085	5.1 C90RF72 and nonC90RF72-Related_SALS Cohort	172	
5.1.1.1 Clinical Characteristics 172 5.1.1.1 Control Cases 172 5.1.1.1.2 C90RF72+ Cases 173 5.1.1.2 Therapeutics Used to Treat the Cohort 177 5.1.2.1 C90RF72+ Cases 177 5.1.3 Genetic Status of the Cohort 178 5.1.3.1 C90RF72+ Related_SALS Cases 178 5.1.1.3.1 C90RF72+Related_SALS Cases 178 5.1.2 Affymetrix® Expression Console TM QC Metrics 179 5.2.1 Differential Gene Expression Analysis 179 5.2.1.1 Partek® Genomics Suite TM 179 5.2.1.2 NonC90RF72-Related_SALSvCtrl 182 5.2.1.2 NonC90RF72-Related_SALSvCtrl 182 5.2.1.2 DAVID Functional Enrichment Analysis 183 5.2.1.2 Og0RF72vCtrl and NonC90RF72-Related_SALSvCtrl 184 5.2.1.2 Og0RF72vCtrl 184 5.2.1.3 RNA Processing 189 5.2.1.3 RNA Processing 189 5.2.1.3 RNA Processing 195 5.2.1.3 RNA Processing 199	5.1.1 ECACC EBV-Transformed B-Lymphocytes	172	
5.1.1.1.1 Control Cases 172 5.1.1.1.2 C90RF72+ Cases 173 5.1.1.1.3 NonC90RF72-Relate_SALS Cases 176 5.1.1.2 Therapeutics Used to Treat the Cohort 177 5.1.1.2 Therapeutics Used to Treat the Cohort 177 5.1.1.2 NonC90RF72+ Cases 177 5.1.1.2 NonC90RF72+Related_SALS Cases 178 5.1.1.3 Genetic Status of the Cohort 178 5.1.1.3 C90RF72+ Cases 179 5.1.1.3 L 900RF72+ Cases 179 5.2.1 Mignetrix® Expression Console TM QC Metrics 179 5.2.1 Differential Gene Expression Analysis 179 5.2.1.1 Partek® Genomics Suite TM 179 5.2.1.2 NonC90RF72-Related_SALSvCtrl 182 S.2.1.2 DAVID Functional Enrichment Analysis 183 5.2.1.2 DAVID Functional Enrichment Analysis 183 5.2.1.2 ONORF72vCtrl 184 5.2.1.2 ONORF72vCtrl 184 5.2.1.3 RNA Processing 189 5.2.1.3 Regulation of RNA Transcription <	5.1.1.1 Clinical Characteristics	172	
5.1.1.1.2 C90RF72+ Cases 173 5.1.1.1.3 NonC90RF72-Relate_SALS Cases 176 5.1.1.2 Therapeutics Used to Treat the Cohort 177 5.1.1.2.1 C90RF72+ Cases 177 5.1.1.2.2 NonC90RF72+Related_SALS Cases 178 5.1.1.3 Genetic Status of the Cohort 178 5.1.1.3 Genetic Status of the Cohort 178 5.1.1.3 C90RF72+ Cases 178 5.1.1.3 C90RF72+ Cases 178 5.1.1.3 C90RF72+ Cases 178 5.1.1.3 C90RF72+ Cases 178 5.1.2 Affymetrix® Expression Console TM QC Metrics 179 5.2 Human Exon 1.0ST GeneChip® Array Profiling 179 5.2.1.1 Partek® Genomics Suite TM 179 5.2.1.1 Partek® Genomics Suite TM 179 5.2.1.2 NonC90RF72-Related_SALSvCtrl 182 5.2.1.2 NonC90RF72-Related_SALSvCtrl 182 5.2.1.2 DAVID Functional Enrichment Analysis 183 5.2.1.2 DAVID Functional Enrichment Analysis 183 5.2.1.2 NonC90RF72-Related_SALSvCtrl 184 5.2.1.3 RNA Processing 189 5.2.1.3 RNA Processing 189 5.2.1.3 RNA Processing 189 5.2.1.3 Regulat	5.1.1.1.1 Control Cases	172	
5.1.1.1.3 NonC9ORF72-Relate_SALS Cases1765.1.1.2 Therapeutics Used to Treat the Cohort1775.1.1.2.1 C9ORF72+ Cases1775.1.1.3.2 NonC9ORF72-Related_SALS Cases1785.1.1.3.1 C9ORF72+ Cases1785.1.1.3.2 NonC9ORF72+Related_SALS Cases1785.1.1.3.2 NonC9ORF72+Related_SALS Cases1785.1.1.3.2 NonC9ORF72+Related_SALS Cases1795.2.1 Affymetrix® Expression Console™ QC Metrics1795.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1825.2.1.2 NonC9ORF72-Related_SALSvCtrl1825.2.1.2 NonC9ORF72-Related_SALSvCtrl1825.2.1.2 NonC9ORF72-Related_SALSvCtrl1825.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 NonC9ORF72-Related_SALSvCtrl1845.2.1.2 NonC9ORF72-Related_SALSvCtrl1845.2.1.2 NonC9ORF72-Related_SALSvCtrl1845.2.1.2 NonC9ORF72-Related_SALSvCtrl1845.2.1.2 NonC9ORF72-Related_SALSvCtrl1845.2.1.3 RNA Processing1895.2.1.3 RNA Processing1895.2.1.3.3 Regulation of RNA Transcription1895.2.1.4 Translation1995.2.1.4 Translation Initiation2025.2.1.4 Translation Initiation2085.2.1.4 Translation Fermination2085.2.1.4 Ribosome Recycling2095.2.1.4 Ribosome Recycling2095.2.1.4 Ribosome Recycling2095.2.1.4 Ribosome Recycling209 <t< td=""><td>5.1.1.1.2 <i>C90RF72+</i> Cases</td><td>173</td></t<>	5.1.1.1.2 <i>C90RF72+</i> Cases	173	
5.1.1.2 Therapeutics Used to Treat the Cohort1775.1.1.2.1 C90RF72+ Cases1775.1.1.2.2 NonC90RF72-Related_SALS Cases1785.1.1.3 Genetic Status of the Cohort1785.1.1.3 Genetic Status of the Cohort1785.1.1.3.1 C90RF72+ Cases1785.1.1.3.2 NonC90RF72-Related_SALS Cases1785.1.1.3.2 NonC90RF72-Related_SALS Cases1795.2.1 Affymetrix® Expression Console™ QC Metrics1795.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1825.2.1.1 C90RF72vCtrl1825.2.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 DAVID Functional Enrichment Analysis1845.2.1.2 OORPGR72vCtrl1845.2.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl1845.2.1.3 RNA Processing1895.2.1.3 RNA Processing1895.2.1.3 RNA Processing1975.2.1.4 Translation of RNA Transcription1895.2.1.4 Translation Initiation2025.2.1.4 Translation Initiation2025.2.1.4 Translation Initiation2085.2.1.4 Translation Termination2085.2.1.4 Ribosome Recycling2095.2.1.4 Ribosome Recycling209	5.1.1.1.3 NonC9ORF72-Relate_SALS Cases	176	
$5.1.12.1\ CORF72+$ Cases177 $5.1.1.2.2\ NonC90RF72-$ Related_SALS Cases178 $5.1.1.3\ Genetic Status of the Cohort1785.1.1.3.1\ C90RF72+ Cases1785.1.1.3.1\ C90RF72+ Cases1785.1.1.3.2\ NonC90RF72-Related_SALS Cases1785.1.2\ Affymetrix® Expression ConsoleTM QC Metrics1795.2.4\ Human Exon 1.0ST\ GeneChip® Array Profiling1795.2.1\ Differential\ Gene\ Expression\ Analysis1795.2.1.1\ Partek®\ Genomics\ Suite^{TM}1795.2.1.1\ C90RF72·VCtrl1825.2.1.1\ C90RF72·VCtrl1825.2.1.2\ NonC90RF72-Related_SALSvCtrl1825.2.1.2\ NonC90RF72-Related_SALSvCtrl1825.2.1.2\ DAVID\ Functional\ Enrichment\ Analysis1835.2.1.2\ C90RF72·VCtrl1845.2.1.2\ NonC90RF72-Related_SALSvCtrl1845.2.1.2\ NonC90RF72-Related_SALSvCtrl1845.2.1.2\ C90RF72·VCtrl1845.2.1.3\ C90RF72·VCtrl and NonC90RF72-Related_SALSvCtrl1845.2.1.3\ C90RF72·VCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3\ Regulation\ of\ RNA\ Transcription1895.2.1.4\ Translation\ fmather1995.2.1.4\ Translation\ Initiation2025.2.1.4\ Translation\ Termination\ 20820.1.4.4\ Ribosome\ Recycling\ 2095.2.1.4\ Ribosome\ Recycling\ 2092095.2.1.4\ Ribosome\ Recycling\ 2092095.2.1.4\ Ribosome\ Recycling\ 2092095.2.1.4\ Ribosome\ Recycling\ 2095.2.1$	5.1.1.2 Therapeutics Used to Treat the Cohort	177	
5.1.1.2.2 NonC90RF72-Related_SALS Cases1785.1.1.3 Genetic Status of the Cohort1785.1.1.3.1 C90RF72+ Cases1785.1.1.3.2 NonC90RF72-Related_SALS Cases1785.1.2 Affymetrix® Expression Console™ QC Metrics1795.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1825.2.1.1 C90RF72vCtrl1825.2.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2 NonC90RF72-Related_SALSvCtrl1845.2.1.3 RNA Processing1895.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.3 Regulation of the Spliceosome1975.2.1.4 Translation1995.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome Recycling2095.2.1.4.	5.1.1.2.1 <i>C90RF72+</i> Cases	177	
5.1.1.3 Genetic Status of the Cohort1785.1.1.3.1 C90RF72+ Cases1785.1.1.3.2 NonC90RF72-Related_SALS Cases1785.1.2 Affymetrix® Expression Console™ QC Metrics1795.2 Human Exon 1.0ST GeneChip® Array Profiling1795.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1825.2.1.1 C90RF72vCtrl1825.2.1.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2.1 C90RF72vCtrl1845.2.1.2.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl1845.2.1.3 RNA Processing1895.2.1.3 RNA Processing1975.2.1.3 RNA Processing1975.2.1.4 Translation of RNA Transcription1895.2.1.4 Translation Initiation2025.2.1.4 Translation Initiation2025.2.1.4.1 Translation Initiation2085.2.1.4.2 Translation Fermination2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome	5.1.1.2.2 NonC9ORF72-Related_SALS Cases	178	
5.1.1.3.1 C90RF72+ Cases1785.1.1.3.2 NonC90RF72-Related_SALS Cases1785.1.2 Affymetrix® Expression Console™ QC Metrics1795.2 Human Exon 1.0ST GeneChip® Array Profiling1795.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1825.2.1.1.2 NonC90RF72+Related_SALSvCtrl1825.2.1.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl182comparison1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2.1 C90RF72vCtrl1845.2.1.2.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2.3 C90RF72vCtrl1845.2.1.3 RNP FrozevCtrl1845.2.1.3 RNA Processing1895.2.1.3 RNA Processing1975.2.1.3 RNA Processing1975.2.1.4 Translation of RNA Transcription1995.2.1.4 Translation Initiation2025.2.1.4 Translation Initiation2025.2.1.4 Ribosome Recycling2095.2.1.4 Ribosome Recycling209	5.1.1.3 Genetic Status of the Cohort	178	
5.1.1.3.2 NonC90RF72-Related_SALS Cases1785.1.2 Affymetrix® Expression Console™ QC Metrics1795.2 Human Exon 1.0ST GeneChip® Array Profiling1795.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1825.2.1.1 C90RF72vCtrl1825.2.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2 DAVID Functional Enrichment Analysis1845.2.1.2 C90RF72vCtrl1845.2.1.2 NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1995.2.1.3 RNA Processing1895.2.1.3 RNA Processing1975.2.1.3 RNP Biogenesis1955.2.1.3 RNP Biogenesis1955.2.1.4 Translation of the Spliceosome1975.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4 Ribosome Recycling2095.2.1.4 Ribosome Recycling209	5.1.1.3.1 <i>C90RF72+</i> Cases	178	
5.1.2 Affymetrix® Expression Console™ QC Metrics1795.2 Human Exon 1.0ST GeneChip® Array Profiling1795.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 Partek® Genomics Suite™1825.2.1.1 C90RF72vCtrl1825.2.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl182Comparison1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2 ONC90RF72vCtrl1845.2.1.2 S C90RF72vCtrl1845.2.1.2 Comparison1845.2.1.2 S C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3 RNA Processing1895.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1975.2.1.4.1 Translation2025.2.1.4.2 Translation Initiation2025.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome Recycling209	5.1.1.3.2 NonC9ORF72-Related_SALS Cases	178	
 5.2 Human Exon 1.0ST GeneChip® Array Profiling 5.2.1 Differential Gene Expression Analysis 5.2.1 Differential Gene Expression Analysis 5.2.1.1 Partek® Genomics Suite™ 5.2.1.1 C90RF72vCtrl 5.2.1.1 C90RF72vCtrl 5.2.1.1 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl 5.2.1.1 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl 5.2.1.2 DAVID Functional Enrichment Analysis 5.2.1.2 NonC90RF72-Related_SALSvCtrl 5.2.1.2 NonC90RF72-Related_SALSvCtrl 5.2.1.2 NonC90RF72-Related_SALSvCtrl 5.2.1.2 NonC90RF72-Related_SALSvCtrl 6.2.1.2 NonC90RF72-Related_SALSvCtrl 7.2.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl 84 5.2.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl 89 5.2.1.3 RNA Processing 5.2.1.3 RNA Processing 5.2.1.3 Regulation of RNA Transcription 89 5.2.1.4 Translation of the Spliceosome 97 5.2.1.4 Translation Initiation 202 5.2.1.4 Translation Initiation 202 5.2.1.4 Translation Elongation 208 5.2.1.4 Ribosome Recycling 209 5.2.1.4 Ribosome Recycling 209 5.2.1.4 Ribosome Recycling 209 5.2.1.4 Ribosome Recycling 209 	5.1.2 Affymetrix [®] Expression Console [™] QC Metrics	179	
5.2.1 Differential Gene Expression Analysis1795.2.1.1 Partek® Genomics Suite™1795.2.1.1 C90RF72vCtrl1825.2.1.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl182Comparison1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2.1 C90RF72vCtrl1845.2.1.2.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2.3 C90RF72vCtrl1845.2.1.2.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.4 Translation of the Spliceosome1975.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome Recycling209	5.2 Human Exon 1.0ST GeneChip [®] Array Profiling	179	
5.2.1.1 Partek® Genomics Suite™1795.2.1.1.1 C90RF72vCtrl1825.2.1.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl182Comparison1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2.1 C90RF72vCtrl1845.2.1.2.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2.3 C90RF72vCtrl1845.2.1.3 RNA Processing1895.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.4 Translation of the Spliceosome1975.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Termination2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Owner Coming Fundament209	5.2.1 Differential Gene Expression Analysis	179	
5.2.1.1.1C90RF72vCtrl1825.2.1.1.2NonC90RF72-Related_SALSvCtrl1825.2.1.1.3C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl182ComparisonComparison1835.2.1.2DAVID Functional Enrichment Analysis1835.2.1.2.1C90RF72vCtrl1845.2.1.2.2NonC90RF72-Related_SALSvCtrl1845.2.1.2.3C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3RNA Processing1895.2.1.3.1Regulation of RNA Transcription1895.2.1.3.2SnRNP Biogenesis1955.2.1.3.3Regulation of the Spliceosome1975.2.1.4Translation1995.2.1.4.1Translation Flongation2085.2.1.4.2Translation Termination2085.2.1.4.4Ribosome Recycling2095.2.1.4.4Ribosome Recycling209	5.2.1.1 Partek [®] Genomics Suite [™]	179	
5.2.1.1.2 NonC90RF72-Related_SALSvCtrl1825.2.1.1.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl182Comparison1835.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2.1 C90RF72vCtrl1845.2.1.2.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.4 Translation of the Spliceosome1975.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Termination2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling209	5.2.1.1.1 <i>C90RF72</i> vCtrl	182	
5.2.1.1.3C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl182Comparison1835.2.1.2DAVID Functional Enrichment Analysis1835.2.1.2.1C90RF72vCtrl1845.2.1.2.2NonC90RF72-Related_SALSvCtrl1845.2.1.2.3C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3RNA Processing1895.2.1.3.1Regulation of RNA Transcription1895.2.1.3.2SnRNP Biogenesis1955.2.1.4Translation of the Spliceosome1975.2.1.4.1Translation Initiation2025.2.1.4.2Translation Termination2085.2.1.4.4Ribosome Recycling209	5.2.1.1.2 NonC9ORF72-Related_SALSvCtrl	182	
Comparison5.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2.1 C90RF72vCtrl1845.2.1.2.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.4 Translation of the Spliceosome1975.2.1.4 Translation Initiation2025.2.1.4.1 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5.4 Columption2095.2.1.4.4 Ribosome Recycling209	5.2.1.1.3 C9ORF72vCtrl and NonC9ORF72-Related_SALSvCtrl	182	
5.2.1.2 DAVID Functional Enrichment Analysis1835.2.1.2.1 C90RF72vCtrl1845.2.1.2.2 NonC90RF72-Related_SALSvCtrl1845.2.1.2.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.4 Translation of the Spliceosome1975.2.1.4 Translation Initiation2025.2.1.4.1 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.4.4 Ribosome Recycling209	Comparison		
5.2.1.2.1C90RF72vCtrl1845.2.1.2.2NonC90RF72-Related_SALSvCtrl1845.2.1.2.3C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186Comparison1895.2.1.3RNA Processing1895.2.1.3.1Regulation of RNA Transcription1895.2.1.3.2SnRNP Biogenesis1955.2.1.4Translation of the Spliceosome1975.2.1.4.1Translation Initiation2025.2.1.4.2Translation Elongation2085.2.1.4.3Translation Termination2085.2.1.4.4Ribosome Recycling2095.2.1.4.5Ownere Omize Emplorer209	5.2.1.2 DAVID Functional Enrichment Analysis	183	
5.2.1.2.2 NonC9ORF72-Related_SALSvCtrl1845.2.1.2.3 C9ORF72vCtrl and NonC9ORF72-Related_SALSvCtrl186Comparison1895.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.3.3 Regulation of the Spliceosome1975.2.1.4 Translation1995.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Olygong Omige Euploymer200	5.2.1.2.1 <i>C90RF72</i> vCtrl	184	
5.2.1.2.3 C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl186 Comparison5.2.1.3 RNA Processing1895.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.3.3 Regulation of the Spliceosome1975.2.1.4 Translation1995.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Obusere Omise Explorer200	5.2.1.2.2 NonC9ORF72-Related_SALSvCtrl	184	
Comparison5.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.3.3 Regulation of the Spliceosome1975.2.1.4 Translation1995.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Objects Omice Explorer200	5.2.1.2.3 C9ORF72vCtrl and NonC9ORF72-Related_SALSvCtrl	186	
5.2.1.3 RNA Processing1895.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.3.3 Regulation of the Spliceosome1975.2.1.4 Translation1995.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Objective Omice Explorer200	Comparison		
5.2.1.3.1 Regulation of RNA Transcription1895.2.1.3.2 SnRNP Biogenesis1955.2.1.3.3 Regulation of the Spliceosome1975.2.1.4 Translation1995.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Objective Omice Evaluation209	5.2.1.3 RNA Processing	189	
5.2.1.3.2 SnRNP Biogenesis1955.2.1.3.3 Regulation of the Spliceosome1975.2.1.4 Translation1995.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Obugere Omice Explorer200	5.2.1.3.1 Regulation of RNA Transcription	189	
5.2.1.3.3 Regulation of the Spliceosome1975.2.1.4 Translation1995.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Obusers Omics Explorer200	5.2.1.3.2 SnRNP Biogenesis	195	
5.2.1.4 Translation1995.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Obusers Omics Explorer200	5.2.1.3.3 Regulation of the Spliceosome	197	
5.2.1.4.1 Translation Initiation2025.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Objects Omics Explorer200	5.2.1.4 Translation	199	
5.2.1.4.2 Translation Elongation2085.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Objects Omics Explorer200	5.2.1.4.1 Translation Initiation	202	
5.2.1.4.3 Translation Termination2085.2.1.4.4 Ribosome Recycling2095.2.1.5 Objects Omics Explorer200	5.2.1.4.2 Translation Elongation	208	
5.2.1.4.4 Ribosome Recycling2095.2.1.5 Obugere Omics Explorer200	5.2.1.4.3 Translation Termination	208	
E 2.1.E. Olygono Omigg Explorer 200	5.2.1.4.4 Ribosome Recycling	209	
5.2.1.5 Quedie diffest Explorer 209	5.2.1.5 Qlucore Omics Explorer	209	

5.2.1.5.1 <i>C90RF72</i> vCtrl	210
5.2.1.5.2 Non <i>C9ORF72</i> -Related_SALSvCtrl	212
5.2.2 Alternative Splicing Analysis	216
5.2.3 <i>C90RF72</i>	220
5.2.4 qRT-PCR Validation of C9ORF72 RNA Binding Partners	226
5.3 DISCUSSION	231
5.3.1 Frequency of the G_4C_2 Repeat in a Large Caucasian Cohort	231
5.3.2 C9ORF72 and Mutations in Other ALS-FTLD Causative Genes	233
5.3.2.1 <i>C90RF72</i> and <i>OPTN</i>	234
5.3.2.2 C9ORF72 and TARDBP	236
5.3.3 Clinical Features Relating to the C90RF72 Phenotype	238
5.3.4 Microarray Profiles Associated with the G ₄ C ₂ Repeat	240
5.3.5 Reduced <i>C90RF72</i> Expression Confirmed in a Subset of LCL's	244
CHAPTER 6: C9ORF72 SURVIVAL STUDY	247
6.1 C9ORF72 Long versus Short Survival Cohort	247
6.1.1 ECACC EBV-Transformed B-Lymphocytes	247
6.1.1.1 Clinical Characteristics	247
6.1.1.1.1 Control Cases	247
6.1.1.1.2 C9ORF72+ Short Survival Cases	248
6.1.1.1.3 C9ORF72+ Long Survival Cases	251
6.1.1.2 Therapeutics Used to Treat the Cohort	253
6.1.1.2.1 C9ORF72+ Short Survival Cases	253
6.1.1.2.2 C9ORF72+ Long Survival Cases	253
6.1.1.3 Genetic Status of the Cohort	253
6.1.2 Affymetrix [®] Expression Console [™] QC Metrics	254
6.2 Human Exon 1.0ST GeneChip [®] Array Profiling	257
6.2.1 ALL Samples Combined	258
6.2.1.1 Clustering Analysis	258
6.2.1.2 DAVID Enrichment of Partek [®] Generated Gene Lists	261
6.2.1.2.1 C9ORF72+ LongvShort Survival	261
6.2.1.2.2 C9ORF72+ LongvCtrl and ShortvCtrl Survival	262
6.2.2 FEMALE Samples	264
6.2.2.1 Clustering Analysis	264
6.2.2.2 DAVID Enrichment of Partek [®] Generated Gene Lists	266
6.2.2.2.1 C9ORF72+ LongvShort Survival	266
6.2.2.2.2 C9ORF72+ LongvCtrl and ShortvCtrl Survival	267
6.2.3 MALE Samples	269
6.2.3.1 Clustering Analysis	269
6.2.3.2 DAVID Enrichment of Partek [®] Generated Gene Lists	269
6.2.3.2.1 <i>C90RF72+</i> LongvShort Survival	271
6.2.3.2.2 C9ORF72+ LongvCtrl and ShortvCtrl Survival	272

6.3 DISCUSSION	274
CHAPTER 7: CONCLUDING REMARKS	281
REFERENCES	287
APPENDIX A: WHOLE BLOOD STUDY	342
APPENDIX B: ECACC LCL STUDY	401

LIST OF FIGURES

CHAPTER 1: INTRODUCTION

Figure 1.1	El Escorial Rating Criteria (EEC) for the Diagnosis of MND	3
Figure 1.2	Schematic Overview of the Affymetrix® Oligonucleotide Microarray Platform for Global GEP of Peripheral Tissues in ALS	40
CHAPTER 2	2: MATERIALS AND METHODS	
Figure 2.1	ECACC LCL Breakdown of UK Biosample Collection Centres	55
Figure 2.2	Age Frequency Distribution of Patient and Control LCL's in the ECACC Microarray Study (n=820) [120-FALS, 500-SALS and 200-CTRL]	56
Figure 2.3	Flowchart Schematic of 3' IVT Expression Array Analysis Pipeline Established for Peripheral Whole Blood in ALS	71
Figure 2.4	Flowchart Schematic of the Human Exon 1.0ST GeneChip® Array Analysis Pipeline Established for Peripheral EBV-Transformed B- Lymphocytes (LCL's) in ALS	84
CHAPTER 3	3: WHOLE BLOOD STUDY	
Figure 3.1	Agilent 2100 Bioanalyzer Assessment of PAXgene® Blood RNA Integrity	94
Figure 3.2	Agilent 2100 Bioanalyzer Assessment of Purified SPIA [™] ss-cDNA Integrity	95
Figure 3.3	Agilent 2100 Bioanalyzer Assessment of Fragmented SPIA™ ss-cDNA Integrity	97
Figure 3.4	Eukaryotic Hybridization Controls for Samples in the NuGEN Ovation® Whole Blood Study	98
Figure 3.5	Noise (Raw Q) Calculation	99
Figure 3.6	Noise (Raw Q) Measurements for Samples in the NuGEN Ovation® Whole Blood Study	100

Figure 3.7 RNA Quality Control Check for Samples in the NuGEN Ovation[®] 102 Whole Blood Study

Figure 3.8	Average Percentage Presence Calls for Samples in the NuGEN Ovation® Whole Blood Study	103
Figure 3.9	Mean Absolute Relative Log Expression (RLE) Boxplots for Samples in the NuGEN Ovation® Whole Blood Study	104
Figure 3.10	Pearson's Product-Moment Correlation Coefficient (r) Calculation	104
Figure 3.11	Pearson's Correlation Coefficient (r) for Samples in the NuGEN Ovation® Whole Blood Study	105
Figure 3.12	Pre- and Post-SPIA [™] qRT-PCR Measurements of <i>HBA2</i> mRNA Transcript Levels Relative to <i>ACTB</i> Using the NuGEN Ovation [®] Whole Blood Solution	106
Figure 3.13	PLIER 16 Normalised Distribution of Relative Log2 Transformed Signal Intensity Values for Samples in the NuGEN Ovation [®] Whole Blood Study	108
Figure 3.14	Profile Plot of PLIER 16 Normalised Signal Intensity Values for Samples in the NuGEN Ovation® Whole Blood Study	109
Figure 3.15	Volcano Plots of the 706 and 4,520 Gene Lists Detected in GeneSpring GX v11.5.1 Between JB NuGEN Ovation [®] and RR GLOBINClear TM Datasets	110
Figure 3.16	GeneVenn of JB NuGEN Ovation [®] and RR GLOBINClear TM Datasets	111
Figure 3.17	Clustering Analysis of the JB NuGEN Ovation [®] Dataset Applying the 706 Gene List in GeneSpring GX v11.5.1 [unpaired student's t-test FDR p<0.05, FC \ge ±1.50]	115
Figure 3.18	Clustering Analysis of the RR GLOBINClear TM Dataset Applying the 4,520 Gene List in GeneSpring GX v11.5.1 [unpaired student's t-test FDR p<0.05, FC \ge ±1.50]	116
Figure 3.19	KEGG Pathway Schematic of Neurotrophin Signalling Cascade	123
Figure 3.20	MAS 5.0 Signal Intensities for HBA1/2 Transcripts and the Housekeeping Genes <i>ACTB, GAPDH</i> and <i>18SrRNA</i>	129

CHAPTER 4: CHARACTERISATION OF LCL'S

Figure 4.1	Age Frequency Distribution of Patient and Control LCL's in the	135
	ECACC Discovery Cohort (n=470)	

Figure 4.2	ALSFRS-R Frequency Distribution of FALS (n=120) Recruited to the ECACC Discovery Cohort	138
Figure 4.3	ALSFRS-R Frequency Distribution of SALS (n=250) Recruited to the ECACC Discovery Cohort	140
Figure 4.4	Age Frequency Distribution of Patient and Control LCL's in the ECACC Replication Cohort (n=350)	145
Figure 4.5	ALSFRS-R Frequency Distribution of SALS (n=250) Recruited to the ECACC Replication Cohort	147
Figure 4.6	ECACC RNA Extraction Boxplots Grouped by Sample Type	151
Figure 4.7	ECACC RNA Extraction Boxplots Grouped by QIAGEN RNeasy [®] Mini Kit	151
Figure 4.8	ECACC RNA Extraction Boxplots Grouped by Batch	152
Figure 4.9	Agilent 2100 Bioanalyzer Assessment of LCL RNA Integrity	153
Figure 4.10	Agilent 2100 Bioanalyser Assessment of DNase Treated Samples of Low Quality	153
Figure 4.11	ECACC as-cRNA Amplification Boxplot Grouped by Sample Type	155
Figure 4.12	ECACC ss-cDNA Amplification Boxplot Grouped by Sample Type	156
Figure 4.13	Agilent 2100 Bioanalyzer Size Distribution Analysis of Fragmented ss-cDNA Microarray Targets	156
Figure 4.14	Electrophoretic Mobility Shift Assay (EMSA)	157
Figure 4.15	Eukaryotic Hybridization Controls	158
Figure 4.16	Bacterial Spike in Controls	159
Figure 4.17	Mean Background Signal Intensities Across LCL Sample Types	160
Figure 4.18	Average Percentage Presence (%P) Calls Across LCL Sample Types	160
Figure 4.19	Mean Probeset Signal Intensities Across LCL Sample Type	162
Figure 4.20	Signal Histogram Plots	163
Figure 4.21	Mean Absolute RLE Boxplots	165
Figure 4.22	Pearson's Correlation Coefficient	166

CHAPTER 5: C9ORF72 GEP STUDY

Figure 5.1	Age Frequency Distribution of Patient and Control LCL's in the ECACC <i>C90RF72</i> and Non <i>C90RF72</i> -Related_SALS Study	173
Figure 5.2	Eukaryotic Hybridization Controls for LCL Samples in the ECACC <i>C90RF72</i> and Non <i>C90RF72</i> -Related_SALS Study	
Figure 5.3	Mean Absolute RLE Boxplots for LCL Samples in the ECACC <i>C90RF72</i> and Non <i>C90RF72</i> -Related_SALS Study	180
Figure 5.4	Expression Console [™] Summary of Quality Control (QC) Metrics Assessed for LCL Samples in the <i>C90RF72</i> and Non <i>C90RF72</i> - Related_SALS Study	
Figure 5.5	GeneVenn C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl [Partek [®] unadjusted p<0.05, FC $\ge \pm 1.20$]	183
Figure 5.6	DAVID Comparison GO Terms <i>C90RF72</i> vCtrl and Non <i>C90RF72</i> - Related_SALSvCtrl	188
Figure 5.7	SnRNP Biogenesis Schematic	190
Figure 5.8	GeneVenn of DAVID <i>C90RF72</i> vCtrl and Non <i>C90RF72</i> -Related _SALSvCtrl RNA Processing Related Genes	193
Figure 5.9	Regulation of RNA Transcription qRT-PCR Validation	194
Figure 5.10	SnRNP Biogenesis qRT-PCR Validation	198
Figure 5.11	DAVID 2D Heat-Map Visualisation of <i>C90RF72</i> vCtrl (n=56) RNA Processing Genes-to-Term Relationships	200
Figure 5.12	Regulation of the Spliceosome qRT-PCR Validation	201
Figure 5.13	Regulation of the Spliceosome qRT-PCR Validation II	202
Figure 5.14	Eukaryotic Translation Initiation, Elongation, Termination and Ribosome Recycling Schematic	205
Figure 5.15	Eukaryotic Translation qRT-PCR Validation	207
Figure 5.16	GeneVenn <i>C90RF72</i> vCtrl [ANOVA F-test p<0.05, FC $\ge \pm 1.20$; Partek [®] unadjusted p<0.05, FC $\ge \pm 1.20$]	211
Figure 5.17	C9ORF72vCtrl Clustering Analysis Applying the 1,173 List of Variables in Qlucore Omics Explorer [ANOVA F-test p<0.05, FC \ge ±1.20]	213

Figure 5.18	GeneVenn Non <i>C90RF72</i> -Related_SALSvCtrl [ANOVA F-test $p<0.05$, FC $\ge \pm 1.20$; Partek [®] unadjusted $p<0.05$, FC $\ge \pm 1.20$]	214
Figure 5.19	Non <i>C9ORF72</i> -Related_SALSvCtrl Clustering Analysis Applying the 1,960 List of Variables in Qlucore Omics Explorer [ANOVA F-test p<0.05, FC \ge ±1.20]	217
Figure 5.20	ALT-SPLICE GeneVenn <i>C90RF72</i> vCtrl and Non <i>C90RF72</i> -Related_ SALSvCtrl [Partek [®] unadjusted p-value (fold-change) ≥0.05 and p-value (alt. splicing) <0.05]	218
Figure 5.21	Graphical Representations of the <i>C90RF72</i> vCtrl Top 5 Most Significant Aberrant Splicing Events [Partek [®] unadjusted p-value (fold-change) ≥0.05 and p-value (alt. splicing) <0.05]	221
Figure 5.22	Schematic of C90RF72 Transcript Variants and Protein Isoforms	222
Figure 5.23	Exon Level GC-RMA Normalised Signal Intensities for the Differentially Spliced <i>C90RF72</i> Transcript Variants I/III (Isoform A) and II (Isoform B)	223
Figure 5.24	Reduced <i>C9ORF72</i> Transcript Variant I/III (Isoform A) Levels Detected by qRT-PCR in a Subpopulation of ECACC LCL's in the Discovery Cohort	224
Figure 5.25	qRT-PCR of Pooled RNA <i>C90RF72</i> Full Length Variants I/III (Isoform A) and Truncated Variant II (Isoform B) Specific Transcripts	225
Figure 5.26	PURA qRT-PCR Validation	229
Figure 5.27	Graphical Representations of <i>C90RF72</i> + GGGGCC ₍₅₎ RNA Binding Partners Top 5 Most Significant Aberrant Splicing Events [Partek [®] unadjusted p-value (fold-change) ≥0.05 and p-value (alt. splicing) <0.05]	232
Figure 5.28	Kaplan-Meier Survival Curve for LCL's in the ECACC <i>C9ORF72</i> (Red) and Non <i>C9ORF72</i> -Related_SALS (Blue) Study	240
CHAPTER 6	5: C9ORF72 SURVIVAL STUDY	
Figure 6.1	Age Frequency Distribution of Patient and Control LCL's in the C9ORF72+ Long (≥4yrs) versus Short (<2yrs) Survival Study	248
Figure 6.2	Eukaryotic Hybridization Controls for LCL Samples in the C9ORF72+ Long (≥4yrs) versus Short (<2yrs) Survival Study	255

Figure 6.3 Mean Absolute RLE Boxplots for LCL Samples in the *C90RF72+* 255 Long (≥4yrs) versus Short (<2yrs) Survival Study

Figure 6.4	Expression Console [™] Summary of the QC Metrics Assessed for LCL Samples in the <i>C90RF72+</i> Long (≥4yrs) versus Short (<2yrs) Survival Study	256
Figure 6.5	Qlucore Omics Explorer Clustering Analysis [ANOVA F-test $p<0.05$, FC $\ge \pm 1.20$] of ALL Samples Combined in the <i>C90RF72+</i> Long ($\ge 4yrs$) versus Short (<2yrs) Survival Study	259
Figure 6.6	Qlucore Omics Explorer Clustering Analysis [ANOVA F-test $p<0.01$, FC $\ge \pm 1.20$] of ALL Samples Combined in the <i>C90RF72+</i> Long ($\ge 4yrs$) versus Short (<2yrs) Survival Study	260
Figure 6.7	GeneVenn of ALL Samples Combined in the ECACC <i>C90RF72+</i> Long (≥4yrs) versus Short (<2yrs) Survival Study	262
Figure 6.8	Qlucore Omics Explorer Clustering Analysis [ANOVA F-test $p<0.05$, FC $\ge \pm 1.20$] of FEMALE ONLY Samples in the <i>C90RF72+</i> Long ($\ge 4yrs$) versus Short (<2yrs) Survival Study	265
Figure 6.9	GeneVenn of FEMALE ONLY Samples in the ECACC <i>C90RF72+</i> Long (≥4yrs) versus Short (<2yrs) Survival Study	267
Figure 6.10	Qlucore Omics Explorer Clustering Analysis [ANOVA F-test $p<0.05$, FC $\ge \pm 1.20$] of MALE ONLY Samples in the C9ORF72+Long ($\ge 4yrs$) versus Short (<2yrs) Survival Study	270
Figure 6.11	GeneVenn of MALE ONLY Samples in the ECACC <i>C9ORF72+</i> Long (≥4yrs) versus Short (<2yrs) Survival Study	272

LIST OF TABLES

CHAPTER 1: INTRODUCTION

Table 1.1	Summary of Genetic Loci and ALS Causative Genes in ALSoD (alsod.iop.kcl.ac.uk)	16
Table 1.2	Additional Genetic Loci Implicated in the Pathogenesis of FALS	24
Table 1.3	Genetic Susceptibility Loci Implicated in the Pathogenesis of SALS	26
Table 1.4	Advantages and Limitations Associated with the Use of Peripheral Tissues for GEP Analysis in ALS	42

CHAPTER 2: MATERIALS AND METHODS

Table 2.1	Clinical Characteristics of SALS Patient and Control Samples Recruited to the NuGEN Ovation® Whole Blood Study	54
Table 2.2	qRT-PCR Primers and Optimum Concentrations for Validation of the NuGEN Ovation® Whole Blood Study	65
Table 2.3	qRT-PCR Primer Optimization	86
Table 2.4	ECACC LCL Pooled RNA Samples for qRT-PCR Validation	87
Table 2.5	ECACC Eurofins MWG Operon qRT-PCR Primer Sequences and Optimum Concentrations	90
Table 2.6	ECACC PrimeTime [®] Mini qPCR Primer and Probe Sequences Lymphocytes (LCL's) in ALS	91

CHAPTER 3: WHOLE BLOOD STUDY

Table 3.1	PAXgene [®] Blood RNA Isolation Kit Extractions: An Assessment of	94
	Quality and Yield from Samples in the NuGEN Ovation [®] Whole	
	Blood Study	

- Table 3.2Purified SPIA™ ss-cDNA: An Assessment of Quality and Yield Pre-96(Left)/Post- (Right) Fragmentation & Labelling
- Table 3.3JB NuGEN Ovation® and RR GLOBINClearTM GeneSpring Common 114List (n=82) [unpaired student's t-test p<0.05, FC $\ge \pm 1.50$]
- Table 3.4JB NuGEN Ovation® DAVID Functional Annotation Clustering117Analysis

Table 3.5	RR GLOBINClear™ DAVID Functional Annotation Clustering Analysis	118
Table 3.6	JB NuGEN Ovation [®] KEGG Pathway Analysis	119
Table 3.7	RR Ambion [®] GLOBINClear TM KEGG Pathway Analysis	120
Table 3.8	Summary of JB NuGEN Ovation [®] and Ambion [®] GLOBINClear [™] QC Parameters	127

CHAPTER 4: CHARACTERISATION OF LCL'S

Table 4.1	Clinical Summary of Patient and Control LCL's in the ECACC Discovery (n=470) and Replication (n=350) Cohorts	136
Table 4.2	Summary of Genetic Variants Reported in the ECACC Discovery Cohort	144
Table 4.3	Summary of Genetic Variants Reported in the ECACC Replication Cohort	149
Table 4.4	ECACC LCL Batches	152
Table 4.5	QIAGEN RNeasy® Mini Kit Repeat RNA Extractions from Frozen LCL Pellets	154
Table 4.6	Summary of Control, FALS and SALS LCL Samples in the Final ECACC Microarray Cohort	166
Table 4.7	Affymetrix [®] Expression Console [™] Summary of Failed LCL Samples in the ECACC Discovery and Replication Cohorts	167
CHAPTER S	5: <i>C90RF72</i> GEP STUDY	
Table 5.1	Clinical Summary of Patient and Control LCL's in the ECACC <i>C90RF72</i> and Non <i>C90RF72</i> -Related_SALS Study	175
Table 5.2	Affymetrix [®] Expression Console [™] Summary of Failed LCL Samples in the <i>C90RF72</i> and Non <i>C90RF72</i> -Related_SALS Study	179
Table 5.3	DAVID Partek [®] C9ORF72vCtrl Functional Annotation Clustering Analysis	185
Table 5.4	DAVID Partek [®] Non <i>C9ORF72</i> -Related_SALSvCtrl Functional Annotation Clustering Analysis	187
Table 5.5	DAVID <i>C90RF72</i> vCtrl List of RNA Processing Related Genes (n=56) [Partek [®] unadjusted p<0.05, FC ≥ ±1.20]	192

- Table 5.6DAVID C90RF72vCtrl List of Translation Related Genes (n=41)204[Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$]
- Table 5.7DAVID Qlucore C90RF72vCtrl Functional Annotation Clustering212Analysis
- Table 5.8DAVID Qlucore NonC90RF72-Related_SALSvCtrl Functional215Annotation Clustering Analysis
- Table 5.9RNA Pull-Down List of MW Predicted GGGGCC(5) Binding Partners 228
(n=40/103) which are Differentially Expressed in C90RF72+
LCL's from the ECACC Microarray Study [Partek® unadjusted
 $p<0.05, FC \ge \pm 1.20$]
- Table 5.10 RNA Pull-Down List of MW Predicted GGGGCC₍₅₎ Binding Partners 230 (n=11/103) which are Aberrantly Spliced in the *C90RF72+* LCL's from the ECACC Microarray Study [Partek[®] unadjusted p-value (fold-change) ≥0.05 and p-value (alt. splicing) <0.05]
- Table 5.11Oligogenic Frequencies of the C9ORF72 G4C2 Repeat Expansion in 234ALS and FTLD

CHAPTER 6: C9ORF72 SURVIVAL STUDY

Table 6.1	Clinical Summary of Male and Female <i>C90RF72+</i> LCL's in the ECACC Long (≥4yrs) versus Short (<2yrs) Survival Study with Age and Gender Matched Controls	250
Table 6.2	Affymetrix [®] Expression Console [™] Summary of Failed LCL Samples in the <i>C9ORF72+</i> Long (≥4yrs) versus Short (<2yrs) Survival Study	254
Table 6.3	DAVID Enrichment of ALL Samples Combined in the ECACC C90RF72+ Long (≥4yrs) versus Short (<2yrs) Survival Study	261
Table 6.4	DAVID Enrichment of ALL Samples Combined C9-Long Specific Gene Lists	263
Table 6.5	DAVID Enrichment of ALL Samples Combined C9-Short Specific Gene Lists	264
Table 6.6	DAVID Enrichment of FEMALE ONLY Samples in the ECACC <i>C90RF72+</i> Long (≥4yrs) versus Short (<2yrs) Survival Study	266
Table 6.7	DAVID Enrichment of FEMALE ONLY C9-Long Specific Gene Lists	268
Table 6.8	DAVID Enrichment of MALE ONLY Samples in the ECACC <i>C9ORF72+</i> Long (≥4yrs) versus Short (<2yrs) Survival Study	271

- Table 6.9DAVID Enrichment of MALE ONLY C9-Long Specific Gene Lists273
- Table 6.10DAVID Enrichment of MALE ONLY C9-Short Specific Gene Lists274

LIST OF ABBREVIATIONS

Αβ	amyloid, beta
Ab	antibody
ABI	Applied Biosystems
ACD-B	acid citrate dextrose solution B
ACTB	actin, beta
AD	autosomal dominant
ADM	adrenomedullin
ADP	adenosine diphosphate
АНС	anterior horn cell
ALS	Amvotrophic Lateral Sclerosis
ALSoD	ALS Online Database
ALT-SPLICE	alternative splicing
ALZ	Alzheimer's disease
AMP	adenosine monophosphate
АМРА	alpha-Amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid
ANCOVA	analysis of covariance
ANOVA	analysis of variance
ANG	angiogenin
A0A2	ataxia oculomotor apravia type 2
AR	autosomal recessive
	alternative splicing
25	anticance
аз ЛТD	adenosine triphosphate
	adenosine triphosphate
ATTYN2	Atavin 2
	AldXIII 2
AUC	heatorial
	Dactel Idi
	Diffinigiani control Destan Dislaman and Company
DDNE	becton, Dickinson and Company
BUNF D-	Drain-derived neurotrophic factor
Be	Belfast
bgra	blackground
BLDCON	blood control
BLUPAI	Diood patient
BP	Birmingnam patient
BPD	bipolar disorder
Br	Bristol Frenchay Hospital
BSA	bovine serum albumin
bvFTLD	behavioural variant FTLD
C90RF72	chromosome 9 open reading frame 72
Ca	Cambridge
Ca ²⁺	calcium ions
cAMP	cyclic AMP
CBS	Corticobasal syndrome
cDNA	complementary DNA
CEL	cell intensity
CEU	Utah residents with ancestry from Northern and Western Europe
CHB	Han Chinese, Beijing
СНМР2В	chromatin modifying protein 2b
CI	confidence interval
CI	chloride
CLNS1A	chloride channel, nucleotide-sensitive, 1A
СМТ	Charcot Marie Tooth
CMT4J	Charcot Marie Tooth type 4J
CNS	central nervous system

CO ₂	carbon dioxide
cRNA	copy RNA
CSF	cerebrospinal fluid
CST	corticospinal tracts
Ct	cvcle threshold
1 Dreg	down-regulated
DAVID	Database for Annotation Visualisation and Integrated Discovery
dh	database
dd	dauble distilled
UU DE	differentially eveneesed
	density regulated protein
	dim shad sulfari da
DMSO	
DN	aystrophic neurite
DNA	deoxyribonucieic acid
DNase	deoxyribonuclease
DPR	dipeptide repeat
ds	double-stranded
DSB	double-strand break
Du	Durham
DUSP16	dual specific phosphatase 16
dUTP	deoxyuridine triphosphate
EAAT2	excitatory amino acid transporter 2
EASE	enrichment score
EBV	Epstein-Barr virus
ECACC	European Collection of Cell Cultures
EDTA	ethylenediaminetetraacetic acid
EEC	El Escorial Rating Criteria
eEF	eukarvotic translation elongation factor
EGFP	enhanced green fluorescence protein
eIF	eukarvotic translation initiation factor
EIF4H	eukaryotic translation initiation factor 4H
FL	emotional lability
FMG	electromyography
EMG	electronhoratic mobility shift assay
FR	andonlasmic reticulum
ER FRRA	V-Erh-B2 Avian Erythroblactic Leukemia Viral Oncogene Homolog A
ODE	oultaryotic translation release factor
ECT	eukaryout translation release lactor
ESI E.J.	expressed sequence tag
EUK	eukaryouc
EuroMOTOR	European multidisciplinary ALS network identification to cure motor neurone
	degeneration
F	temale
F	forward primer sequence
F-actin	filamentous actin
FA	flail arm
FALS	familial ALS
Fas	first apoptosis signal
FasL	Fas ligand
FBS	foetal bovine serum
FC	fold-change
FDR	false discovery rate
Fe ²⁺	iron ions
FIG4	FIG4 homolog, SAC1 lipid phosphatase domain containing (S. cerevisiae)
FISH	fluorescent in situ hybridization
FL	Flail Leg
FRS-R	Functional Rating Scale Revised
FS	fluidics station
FTLD	frontotemporal lobar degeneration
FTLD-U	FTLD with ubiquitin and TDP-43 positive inclusions
-	A FILLING CONTRACTOR

FUS	fused in sarcoma
G-actin	globular actin
GAPDH	glyceraldehyde 3-phosphate dehydrogenase
GCOS	GeneChip [®] Operating Software
GDP	guanosine diphosphate
GE	gene expression
GEF	guanosine exchange factor
GEMIN6	gem (nuclear organelle) associated protein 6
CED	gone expression profiling
	glutamata recentar 2
GIUKZ	
GmbH	Gesellschaft mit beschränkter Haftung
GO	gene ontology
GRB2	growth factor receptor-bound protein 2
GTF	general transcription factor
GTP	guanosine triphosphate
GTPase	guanosine triphosphatase
GWAS	genome-wide association study
H+	hvdrogen ions
H ₂	molecular hydrogen
	water
Н20	hydrogon porovido
	hydrogen peroxide
	nyuroxyi iree radical
HBA2	naemoglobin, alpha 2
HCI	hydrogen chloride
HD	Huntington disease
HG	human genome
hnRNP	heterogeneous RNP
HNRNPA0	heterogeneous nuclear ribonucleoprotein A0
HNRNPA1	heterogeneous nuclear ribonucleoprotein A1
HNRNPA2B1	heterogeneous nuclear ribonucleoprotein A2/B1
HNRNPF	heterogeneous nuclear ribonucleoprotein F
HNRNPH1	heterogeneous nuclear ribonucleoprotein H1 (H)
HNRNDH2	heterogeneous nuclear ribonucleoprotein H2 (H')
	Health Drataction Agangy
	health Protection Agency
HSP	nereditary spastic paraplegia
HTT	huntingtin
IAHSP	infantile-onset ascending HSP
IBM	inclusion body myopathy
IDT	Integrated DNA Technologies®
IgG	immunoglobulin G
iPSC	induced pluripotent stem cell
IVT	<i>in vitro</i> transcription
IR	Ioanna Bury
INK	c-lun N-terminal kinase
IDT	Iananasa Talwa
	Japanese, Tokyo
KAKS VECC	Iysyi-tRNA synthetase
KEGG	Kyoto Encyclopaedia of Genes and Genomes
LB	Lewy body
LC	London control
LCL	lymphoblastoid cell line
Li	Liverpool
LiC	lithium carbonate
LMN	lower motor neurone
lncRNA	long ncRNA
LNh	London National Hospital
LP	London national Hospital
I MK	Luhya Wahuya Kanya
	malo
1v1 N4 -	Indie Marchaster
ма	manchester

МАРК	mitogen-activated protein (MAP) kinase
MAPT	microtubule associated protein tau
MAS	Microarray Suite
MATR3	matrin 3
MEK	mitogen-activated ERK kinase
MES	2-(<i>N</i> -morpholino)ethanesulfonic acid
miRNA	microRNA
MM	microkki
MN	
MIN	motor neurone
MND	Motor Neurone Disease
MNDA	MND Association
MRI	magnetic resonance imaging
mRNA	messenger RNA
mRNP	messenger RNP
MS	Multiple Sclerosis
MSP	multisystem proteinopathy
mt	mutant
MW	Dr Matthew Walsh
MZ	monozygotic
Ν	number
n/a	not available
NADE	n75NTR associated cell death executor
NaH ₂ PO ₄	monosodium phosphate
Nall21 04	Newcastle
NCDI	National Contro for Piotochnology Information
	National Centre for Diotechnology Information
NGDP2	nuclear cap binning protein subunit 2, 20kDa
NCI	neuronal cytoplasmic inclusion
ncRNA	non-coding RNA
NF	nuclease free
NF-ĸB	nuclear factor kappa-light-chain-enhancer of activated B cells
NGF	nerve growth factor
NGS	next generation sequencing
NII	neuronal intranuclear inclusion
NIPPV	non-invasive positive pressure ventilation
NRG1	neuregulin-1
Nt	Nottingham
NTC	no template control
NTF	nuclear transcription factor
NTP	nucleotide triphosphate
NIIDT21	nudix (nucleoside dinhosphate linked moiety X)-type motif 21
02	molecular ovugen
02 0e ⁻	superovide anions
	ontinourin
OPIN	opulieurin
OR	
05	oxidative stress
Ox	Uxford
P	present calls
РВМС	peripheral blood mononuclear cell
PBP	Progressive Bulbar Palsy
PBS	phosphate buffered saline
PCA	principal component analysis
PCR	polymerase chain reaction
PD	Parkinson's disease
PDB	Paget's disease of bone
PEG	percutaneous endoscopic gastrostomy
PFN1	profilin 1
PGRN	progranulin
PHAX	phosphorylated adaptor for RNA export
P;	inorganic phosphate
- 1	Prooprate

PIC	pre-initiation complex
PIK3R2	PI3K (phosphoinositide 3 kinase) regulatory subunit 2, beta
PLIER	probe logarithmic intensity error
PLS	Primary Lateral Sclerosis
РМ	perfect match
РМА	Progressive Muscular Atrophy
PNFA	progressive non-fluent aphasia
Po	Poole General Hospital
POAG	nrimary open angle glaucoma
Pol II	RNA nolymerase II
POLR2C	nolymerase (RNA) II (DNA directed) polymentide G
rol(A)	polymeruse (Rivir) in (Divir directed) polypeptide d
	Polyauchylateu
Dr	Proston
ri pro mDNA	produced mDNA
	prieduisoi nikiva
PSEN	presentitin
PIPKL	protein tyrosine phosphatase, receptor type, C
PURA	purine-rich element binding protein A
Ру	Plymouth's Derriford Hospital
QL	quality control
qPCR	quantitative PCR
qRT-PCR	quantitative Real-Time PCR
#	rank
R′	reverse primer sequence
R ²	coefficient of correlation
RAN	repeat-associated non-ATG
RBM3	RNA binding motif (RNP1, RRM) protein 3
Rf	Royal Free Hospital
RIN	RNA integrity number
RLE	relative log expression
RMA	robust multi-array average
RNase	ribonuclease
RNA-seq	RNA sequencing
RNP	ribonucleoprotein
Ro	Royal London Hospital
ROC	receiver operating characteristic
ROS	reactive oxygen species
ROX	5(6)-Carboxy-X-Rhodamine
RPL22	ribosomal protein L22
RPMI	Roswell Park Memorial Institute
RR	Dr Rohini Raman
RRM	RNA recognition motif
rRNA	ribosomal RNA
RT	room temperature
SALS	sporadic ALS
SAM	significance analysis of microarrays
SAPE	Streptavidin Phycoerythrin
SC	Sheffield control
SC	spinal cord
SCA	spinocerebellar ataxia
SCHIZ	Schizophrenia
SD	semantic dementia
Se ²⁻	selenium ions
SEM	standard error of the mean
SETX	senataxin
SF	scaling factor
SFPQ	splicing factor proline/glutamine-rich
SFRS	splicing factor arginine/serine-rich

SG	stress granule
SGNP	SG and nucleolar protein
Sh	Southampton General Hospital
SIGMAR1	sigma non-opioid intracellular receptor 1
SMA	Spinal Muscular Atrophy
SMN	survival motor neurone
SNP	single nucleotide polymorphism
snRNA	small nuclear RNA
snRNP	small nuclear RNP
SNV	single nucleotide variation
SOD1	copper/zinc superoxide dismutase 1
SOS	son of sevenless
SP	Sheffield patient
SPG11	spatacsin
SPIA™	single primer isothermal amplification
SS	single-stranded
SS	sense strand
SSPE	saline-sodium phosphate EDTA
ST	sense target
STRAP	serine /threenine kinase recentor associated protein
TAF	TATA-hinding protein (TBP) associated factor
$T\Delta F12$	TAF13 RNA nolymerase II TRP-associated factor 18kDa
Taa	Thermus aquaticus
TAPDRD	transactive response (TAR) DNA hinding protein
	Tris Borato EDTA
	TAP DNA hinding protoin 42kDa
TDF-45 TE	TAK DIVA biliuling proteini 45KDa
	ITIS-EDIA
1 LS	translocated in liposarcoma
	melting temperature
Iris	tris(nydroxymetnyl)aminometnane
tRNA	transfer RNA
tRNA _i met	initiator methionine tRNA
ប _{reg}	up-regulated
UBQLN2	ubiquilin 2
UMN	upper motor neurone
UNC13A	Unc-13 homolog A
UNRIP	UNR-interacting protein
UPR	unfolded protein response
UPS	ubiquitin-proteasome system
UTP15	U3, small nucleolar ribonucleoprotein, homolog (<i>S. cerevisiae</i>)
UTR	untranslated region
VAPB	VAMP (vesicle associated membrane protein) associated protein B and C
VCP	valosin-containing protein
VCPDM	vocal cord and pharyngeal weakness with distal myopathy
VEGF	vascular endothelial growth factor
WES	Whole Exome Sequencing
wt	wild-type
WT	whole transcriptome
YRI	Yoruba Ibadan, Nigeria
ZCRB1	zinc finger CCHC-type and RNA binding motif 1

1.1 Motor Neurone Disease Spectrum

1.1.1 Background

Motor Neurone Disease (MND), originally coined by Brain in 1933, is a term used to encompass a broad clinical spectrum of rapidly progressive (Hardiman et al 2011) and invariably fatal (Dion et al 2009), late onset neurodegenerative disorders which include: Amyotrophic Lateral Sclerosis (ALS) (~60%) (Section 1.2.1); ALS with concomitant frontotemporal lobar degeneration (ALS+FTLD) (~5-10%) or Parkinson's disease (ALS+PD) (~5%) (Lomen-Hoerth et al 2003, Manno et al 2013); Progressive Bulbar Palsy (PBP) (~20%) (Section 1.2.2.1); Progressive Muscular Atrophy (PMA) (~10%) (Section 1.2.2.3) and Primary Lateral Sclerosis (PLS) (~2-5%) (Section 2.2. 2.2).

1.1.2 Epidemiology

MND has a prevalence of 3.4 or 5.2 (range 4-8) per 100,000 of the North American and European Caucasian populations, respectively (Traynor et al 1999). Incidence rates vary, but are reported to occur within the region of 0.6 (Sicily) (De Domenico et al 1988, Rosati et al 1977) and 2.4 (Finland) (Murros & Fogelholm 1983) with an average of 1 or 2 individuals per 100,000/year (Chio et al 2013a, Logroscino et al 2008, Werneck et al 2007). This confers a relative lifetime risk of ~1 in 400 by the age of 70 (Johnston et al 2006). In non-European countries the frequency has been estimated to be higher in the Chamorro tribe, of the Western Pacific island of Guam (22 per 100,000/year) (Plato et al 2002, Waring et al 2004), and in several regions of the Kii peninsula of the Japanese island, Honshu (9.5 per 100,000/year) (Kaji et al 2012, Okamoto et al 2009) where there have been reports of a ALS/Parkinsonism -dementia complex; but is, however, considerably lower across the Far East (1.3 per 100,000/year) (Kihira et al 2005, Yoshida et al 1998), Africa (0.9 per 100,000/year) (Marin et al 2012, Radhakrishnan et al 1986) and Asia (0.3 per 100,000/year) (Fong et al 1996). A slight trend towards a male preponderance is evident (Leblond et al 2014) with male to female (M:F) ratios ranging between 1.2 and 1.5:1 (Logroscino et al 2010, McCombe & Henderson 2010). Prognostic factors that have been found to correlate negatively with survival include poor nutritional status, signs of bulbar or respiratory muscle involvement, early age at symptom onset, a short diagnostic delay and evidence of cognitive dysfunction (Logroscino & Bennett 2014, Scotton et al 2012).

1.1.3 Diagnosis

A single definitive diagnostic test for MND does not currently exist (Hardiman et al 2011). Clinical evaluations, based upon a detailed history and physical examination of the patient, are supported by electrophysiological testing [e.g. electromyography (EMG) as well as sensory and motor nerve conduction velocities], neuropsychiatric evaluation, imaging [e.g. magnetic resonance imaging (MRI) of the brain and spinal cord (SC)], genetic consultation and neuropathological information (McDermott & Shaw 2008). Other laboratory investigations, such as muscle biopsy, cerebrospinal fluid (CSF) analysis, serum creatine kinase measurements, thyroid function tests, a full blood count, erythrocyte sedimentation rate and urine protein electrophoresis, may also aid in the exclusion of other neuromuscular disorders that can mimic MN degeneration (Hardiman et al 2011, Sathasivam 2010, Turner & Talbot 2013). The World Federation of Neurology introduced the El Escorial Rating Criteria (EEC) in 1994, later amended in 1998, to ensure standardization in the diagnosis of MND, for the purposes of clinical research (Figure 1.1) (Brooks 1994, Brooks et al 2000). According to this system, patients are assigned to one of four diagnostic categories, namely definite, probable, possible or suspected ALS, as determined by the various levels of certainty with which clinical and laboratory assessments are made. Signs of upper MN (UMN) dysfunction include increased muscle tone, hyperreflexia and spasticity, whereas lower MN (LMN) dysfunction is characterised by severe muscle wasting & weakness, as well as hyporeflexia, fasciculations and cramping (Kinsley & Siddique 2001). Often, however, the initial manifestations of the disease are mild and relatively non-descript (McDermott & Shaw 2008). Its insidious nature means that a period of observation, lasting 12 months or longer, may be required (Paganoni et al

Figure 1.1 El Escorial Rating Criteria (EEC) for the Diagnosis of MND

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, LMN - lower motor neurone, MND - Motor Neurone Disease and UMN - upper motor neurone.

2014) before a patient is referred to a specialist neurologist and a diagnosis of MND can be confirmed (Nzwalo et al 2014). Hence, an urgent need exists for the identification of specific biological markers or biomarkers that can facilitate an earlier diagnosis and more accurate monitoring of disease progression, as well as offering the potential to better predict individual responses to novel therapeutic agents and/or treatment strategies (Frank & Hargreaves 2003, Lehnert et al 2014, Mendez & Sattler 2014, Silani et al 2011, Su et al 2013).

1.1.4 Clinical Management

As yet there is no known cure for MND. Clinical management is based on guidelines which have been published by the American Academy of Neurology® (AAN) and the European Federation of Neurological Societies (EFNS). Over the years there have been more than thirty phase II and phase III clinical trials of promising therapeutic agents identified from various *in vitro* and *in vivo* studies, including lithium carbonate (LiCALS), brain derived neurotrophic factor (BDNF), Novartis (Ozanezumab), ONO-2506 (Arundic acid), minocycline and Copaxone® (glatiramer acetate) which relate to patient LCL samples in the National MNDA DNA Bank, held at the Health Protection Agency (Public Health England, UK), that were subsequently recruited into the ECACC discovery (Section 4.1.1) and replication (Section 4.1.2) cohorts [REVIEWED BRIEFLY IN APPENDIX TABLE B4]. Disappointingly, however, these have yielded li-

ttle success, with the glutamate antagonist, Riluzole (Bensimon et al 1994) remaining the only Food and Drug Administration (FDA) approved drug for the treatment of MND in the UK (Hardiman et al 2011). Individual responses vary with a modest increase in survival of ~2-3 months (Miller et al 2007, Riviere et al 1998) reported in some sufferers, but not others. Current efforts, therefore, are largely focused on symptom management and alleviating pain and discomfort in order to maintain as good a quality of life for as long as possible (McDermott & Shaw 2008).

The provision of palliative care is heavily reliant upon a multidisciplinary approach that requires a specialist neurologist and a team of trained nursing staff supported by additional healthcare professionals including a psychiatrist, genetic counsellor, nutritionist, pulmonologist, social worker and speech/occupational therapist (Bede et al 2011, Kinsley & Siddique 2001). Muscle relaxants such as benzodiazepine and baclofen may be administered to relieve spasticity and cramping (Ashworth et al 20 04). Oral secretions can be controlled with the use of a saline nebulizer in combination with a beta (β)-receptor antagonist (e.g. metoprolol/propranolol), tricyclic antidepressant compounds, mucolytic agents and mechanical suctioning devices (Andersen et al 2007, Miller et al 2009b). Complications associated with increased metabolic activities and difficulties in swallowing (dysphagia) (Miller et al 2009a) such as weight loss and malnutrition can be overcome by modifying the consistency of food and fluid intake initially, or in more advanced cases, through the insertion of a percutaneous endoscopic gastrostomy (PEG) feeding tube. If tolerated, non-invasive positive pressure ventilation (NIPPV) assistance is highly recommended for patients with a forced vital capacity (FVC) lung function test <50% (Miller et al 1999). It has proven a particularly beneficial intervention in instances where it is used for a minimum of five hours daily and can be implemented before the onset of severe bulbar dysfunction, with reports of median survival times being extended by approximately 7 months (Bourke et al 2006, Farrero et al 2005, Hannan et al 2014). Several studies have also evaluated the use of Vitamin C/E or multivitamin supplements, herbal preparations such as Gingko biloba and Ginseng, coenzyme Q10, antioxidant therapies and zinc but sample sizes have been small and the effects of these agents remain controversial (Cameron & Rosenfeld 2002, Galbussera et al 2006, Kaufmann et al 2009, Orrell et al 2007).

1.2 Amyotrophic Lateral Sclerosis

1.2.1 ALS

Amyotrophic meaning atrophy of the muscles and Lateral Sclerosis referring to the hardened tissues and scarring of the lateral spinal cord (ALS) was first reported by French physician and neurologist, Jean-Martin Charcot over a century ago (Charcot & Joffroy 1869) (Leblond et al 2014). It represents by far the most common form of MND accounting for up to two-thirds (~60%) of cases (Ekbom 1992, Gomes Mda & Engelhardt 2013, Kumar et al 2011). In America it is more commonly referred to as Lou Gehrig's disease in memory of the famous New York Yankees baseball player of the same name (Lewis & Gordon 2007), who died prematurely from the condition in 1941, aged just 37 years. ALS is characterised by the rapid degeneration and progressive loss of both UMN's, consisting of giant Betz, as well as, other large pyramidal cells of the primary motor cortex and LMN's which include the cranial motor nerve nuclei and anterior horn cells (AHC's) of the brainstem and SC (Hardiman et al 2011, McDermott & Shaw 2008) (Section 1.2.3). Denervation results in muscle weakness, atrophy and spasticity that leads to a failure in initiating and controlling voluntary movements (Gordon et al 2003, Kinsley & Siddique 2001, Sathasivam 2010). Onset usually occurs focally and is asymmetric (Korner et al 2011) with symptoms initially restricted to the upper or lower extremities (~66%) (limb or spinal onset), bulbar region (\sim 30%) or, more infrequently, the respiratory muscles, which account for \leq 5% of cases (Gautier et al 2010, Ravits et al 2007, Sekiguchi et al 2014). Contiguous advancement and eventual widespread paralysis culminates in respiratory failure, typically within 3-5yrs from the initial point of diagnosis (Cluskey & Ramsden 2001). Although some patients will progress more rapidly, dying inside a year, it is anticipated that only around one in twenty cases will survive beyond a decade (Gordon 20 11, McDermott & Shaw 2008, Preux et al 1996). Additionally, executive and memory deficits also afflict between 25 and 50% of cases (Goldstein & Abrahams 2013); with 10 to 20% of these meeting the diagnostic criteria for frontotemporal lobar degeneration (FTLD) (Barson et al 2000, Massman et al 1996, Phukan et al 2012, Ringholz et al 2005, Strong et al 2009) by the time they have reached their terminal stages of disease progression and vice versa, ~15% of FTLD patients (Burrell et al 2011, Lomen-Hoerth et al 2002, Strong et al 1999) have reportedly presented with some degree of motor dysfunction. After Alzheimer's disease (ALZ), FTLD is recognised as the second most frequent cause of presenile dementia, accounting for between five and fifteen percent of cases occurring in individuals before the age of 65 (Cooper-Knock et al 2014a). It is characterised by a progressive phenotype in which severe frontal and temporal lobe atrophy leads to alterations in personality and behaviour as well as impaired cognitive functioning and language difficulties (Neumann 2013, Riedl et al 2014). According to the Neary defined consensus criteria of 1998, three clinically distinct subtypes are thought to exist: a) behavioural variant FTLD (bvFTLD) most commonly associated with ALS; b) progressive non-fluent aphasia (PNFA) including word retrieval problems and loss of speech and c) semantic dementia (SD) producing deficits in word comprehension and memory (Mignarri et al 2014, Morimoto et al 2012). Evidence of a family history of MND or dementia is usually apparent in around 25 to 50% of cases, with mutations having been identified in the microtubule associated protein, tau (MAPT), progranulin (PGRN) and presenilin (PSEN) [Briefly reviewed in Section 1.2.5.3], in addition to a number of ALS causative genes, namely transactive response (TAR) DNA binding protein (TARDBP), fused in sarcoma (FUS), angiogenin (ANG), ataxin 2 (ATXN2), ubiquilin 2 (UBQLN2), profilin 1 (PFN1), sigma non-opioid intracellular receptor 1 (SIGMAR1), charged multivesicular body protein 2b (CHMP2B), valosin-containing protein (VCP), heterogeneous nuclear ribonucleoprotein A1 (*HNRNPA1*) (Section 1.2.5.1) (Ferrari et al 2012, Mackenzie et al 2014) and chromosome 9 open reading frame 72 (C90RF72) (Section 1.2.5.4) which is the focus of this project. A long established clinical, neuropathological and genetic overlap between ALS and bvFTLD is suggestive of these two heterogeneous disorders of the brain and central nervous system (CNS) lying on a continuum rather than forming distinct and entirely separate disease entities (Pliner et al 2014). In some instances, ~4% of ALS and around 20-30% of FTLD patients, Parkinsonian features may also be apparent including poor response to Levodopa (L-dopa), rigidity, bradykinesia without resting tremor and a vertical gaze palsy (Karageorgiou & Miller 2014, Park & Chung 2013, Seelaar et al 2008).

The rarer and more benign brachial amyotrophic diplegia variant or Flail Arm (FA) syndrome was originally described by Alfred Vulpian in 1886 and accounts for ~ 11

% of cases. It is a condition of predominant LMN dysfunction, characterised by proximal wasting and progressive weakness of the upper limbs. Traditionally, it is thought of as having a higher predisposition in men versus women, with a M:F ratio of 9:1 (Hu et al 1998). Age at symptom onset does not differ from that of "classical ALS" which has a peak in the mid-60's and 70's for sporadic (SALS) patients and a second in the early 40's or 50's for instances where there is known to be at least one other first or second degree relative who is affected (Calvo et al 2014b, Kinsley & Siddique 2001). One distinguishing feature, however, is disease duration with 52% exceeding 5 years survival and 17.4% extending beyond 10 years (Chio et al 2011a, Wijesekera et al 2009). Furthermore, FTLD which is typically diagnosed in 5 to 10% of "classical ALS" patients is found to be distinctly lacking in cases associated with the FA syndrome (\sim 1.4%) (Wolf et al 2014)

The rarer still pseudopolyneuritic variant or Flail Leg (FL) syndrome was first identified in 1918 by a student of Pierre Marie, namely Jean Patrikios (Patrikios 1918), and accounts for a further 6% of cases. It is a condition of predominant LMN dysfunction characterised, in the absence of overt pyramidal signs, by distal wasting and progressive weakness of the lower limbs, abnormal tendon reflexes and extensive demyelination of the corticospinal tracts (CST). The median age of symptom onset is reported to be 55 (range 31-79yrs) with roughly equal numbers of male and female patients affected. Disease progression is typically slower than that of "classical ALS" with a mean duration of 71 versus 36 months, respectively (Wijesekera et al 2009).

1.2.2 Other Rare Variants of MND

1.2.2.1 PBP

Progressive bulbar palsy (PBP) was originally described in 1860 by Guillaume Benjamin Amand Duchenne as labioglossopharyngeal paralysis (Broussolle et al 2012), which was later renamed by Wachsmuth in 1864. It is a condition of both UMN and LMN involvement that primarily affects the muscles controlling speech and swallowing (Hughes & Wiles 1998, Rocha et al 2005). Symptoms include weak palatal movement, an excessive/uncontrollable production of saliva, reduced gag reflexes, tongue fasciculations and emotional lability (EL), in addition to, dysarthria (speech impairment) and dysphagia (Cerero Lapiedra et al 2002, Talacko & Reade 1990). PBP has a higher prevalence in women than men (Kuhnlein et al 2008a, McDermott & Shaw 2008) and is associated with an especially poor prognosis in which the majority of patients will succumb to the onset of pulmonary pneumonia, 1-3yrs after the initial manifestations of disease. Although initially thought to be a distinct phenotypic entity, accounting for up to a fifth of MND cases, recent evidence has emerged to suggest that as many of 87% will progress to fulfil the diagnostic criteria of definite ALS (Figure 1.1) and in much of the current literature many of these cases have been reclassified accordingly as having bulbar-onset ALS (Karam et al 2010).

1.2.2.2 PLS

Primary Lateral Sclerosis (PLS) is a relatively rare, atypical form of MND which accounts for between 2 and 5% of cases (Kuipers-Upmeijer et al 2001, Le Forestier et al 2001, Pringle et al 1992, Singer et al 2005, Zhai et al 2003). It was initially described by Wilhelm Heinrich Erb in 1902 as a condition of pure UMN involvement that typically has a slower disease course of up to 17 years (Almeida et al 2013b, Hardiman et al 2011) and is almost exclusively idiopathic in nature (Tartaglia et al 2007). PLS presents clinically from CST degeneration, and in the absence of pronounced muscular atrophy, as a triad of hyperreflexia, mild to moderate lower limb weakness and spasticity with patients often reporting stiffness, clumsiness/reduced coordination and occasional bladder symptoms (Gordon et al 2006, Singer et al 2007).

1.2.2.3 PMA

Progressive Muscular Atrophy (PMA) was originally described in 1850 by François-Amilcar Aran as a condition of pure LMN involvement that accounts for around 10% of the total number of MND cases (Kim et al 2009, Riku et al 2014). It is virtually always sporadic, although a few incidences involving a prior family history have been recorded (Rowland 2010). Progressive degeneration of the AHC's within the brainstem and SC are known to bring about fasciculations that ultimately lead to severe muscle weakness and atrophy (Cervenakova et al 2000, Jansen et al 1986). In comparison to those diagnosed with "classical ALS", PMA patients exhibit a greater male
preponderance with a slightly older than anticipated age of symptom onset and a longer disease duration [median survival 48 versus 36 months (Tsuchiya et al 2004, Visser et al 2008)].

1.2.3 ALS Pathology

At autopsy, specimens derived from familial ALS (FALS) and SALS patients are largely indistinguishable. Both are characterised by: a) degeneration of the CST carrying axonal nerve fibres, which project from the primary motor cortex to the LMN's and extensive loss of LMN's within the brainstem and SC (Ghatak et al 1986, Hughes 19 82); b) degeneration and loss of UMN's including giant Betz and other, large pyramidal cells of the primary motor cortex (Hammer et al 1979, Maekawa et al 2004, Udaka et al 1986) and c) widespread reactive gliosis which is a more generic feature of CNS injury and inflammation (Ekblom et al 1994, Kawamata et al 1992, Murayama et al 1991, Schiffer et al 1996). Residual, atrophied MN's are classically hallmarked by the presence of ubiquitinated intracellular proteinaceous Lewy body (LB) (20-40 %) or skein-like inclusions (90%) that are immunoreactive for TDP-43 or FUS (Arai et al 2006, Deng et al 2010, Ling et al 2010, Neumann et al 2006). Additional crescent shaped inclusions (SCI's) (infrequent) may be seen in the upper cortical layers II to IV and dentate gyrus of MND patients with dementia (Al-Sarraj et al 2002). Moreover, there have also been reports of cystatin C containing Bunina bodies (70-80%) (Okamoto et al 1993, Sasaki & Maruyama 1994) and axonal spheroids (frequent) occurring in MN's of the SC (Corbo & Hays 1992, Millecamps et al 2006). Hyaline conglomerate inclusions (HCI's) that are composed of hyperphosphorylated accumulations of neurofilament subunits and peripherin are a much rarer occurrence and usually restricted to cases involving mutant SOD1 (mtSOD1) (Ince et al 1998, Leblond et al 2014, Munoz et al 1988, Sobue et al 1990).

In addition to the classic ubiquitinated, p62 and TDP-43 positive, neuronal and glial cytoplasmic inclusions described above in the motor cortex and AHC's of the brainstem and SC (Cooper-Knock et al 2015a), *C9ORF72+* ALS and ALS-FTLD related cases can also be characterised by the superimposition of extra-motor features which are observed in the hippocampus, frontal neocortex and cerebellum (Al-Sarraj et al 20 11, Cooper-Knock et al 2012b, Murray et al 2011, Stewart et al 2012). These include further ubiquitinated, p62 positive but TDP-43 negative, neuronal cytoplasmic (NCI) and intranuclear (NII) inclusion bodies which are immunoreactive for both sense as well as antisense dipeptide repeat proteins (DPR's) (poly-GA, GR and GP) produced from non-ATG mediated or RAN translation of the aberrantly expanded G_4C_2 repeat (Section 1.2.5.4) (Gendron et al 2013a, Mann et al 2013, Mori et al 2013c).

1.2.4 Mechanisms Underlying MN Degeneration in ALS

Most of our current understanding of the mechanisms which underlie MN degeneration in ALS has come from the study of transgenic SOD1^{G93A} mice (Ferraiuolo et al 2007) with particular emphasis on the importance of glutamate excitotoxicity (Section 1.2.4.2), mitochondrial dysfunction (Section 1.2.4.3) and oxidative stress (Section 1.2.4.1). Mutations, however, in the antioxidant gene copper/zinc superoxide dismutase 1 (SOD1) are responsible for only a minority, $(\sim 2\%)$ of the total number of ALS cases (Rosen et al 1993) (Section 1.2.5.1.1). With the emergence of many new genetic subtypes (Table 1.1), most notably C90RF72; accounting for up to 43% of F ALS and around 7% of SALS cases (Section 1.2.5.4) (Cooper-Knock et al 2012b), and the identification of TDP-43 as well as other mutated proteins as major constituents of NCI's (Section 1.2.3) (Neumann et al 2006) a complex interplay between multiple disease causative mechanisms is now thought to exist which supports diverse roles such as axonal transport defects (Section 1.2.4.4), intracellular protein aggregation (Section 1.2.4.5), non-cell autonomous glia and inflammation (Section 1.2.4.6), autophagy (Section 1.2.4.7), apoptosis (Section 1.2.4.8) and, perhaps most significantly RNA processing (Section 1. 2.4.9) (Ferraiuolo et al 2011).

1.2.4.1 Oxidative Stress

Oxidative stress (OS) is a phenomenon which arises as a consequence of a cytosolic imbalance between the production of reactive oxygen species (ROS), a consequence of aerobic respiration, and their subsequent neutralisation, degradation or removal, to affect the prevailing reducing environment inside the cell (Barber & Shaw 2010); together with the system's inability to overcome or repair ROS damage to structural constituents of lipids, proteins and nucleic acids. The leakage of electrons from the

mitochondrial respiratory electron transport chain, along with xanthine oxidase and cytochrome P450, contribute to incomplete oxidative phosphorylation of molecular oxygen (O_2). This leads to the generation of superoxide anions (O_2 ··) and hydrogen peroxide (H_2O_2) which are themselves relatively unstable and may undergo further downstream reactions to produce even more potent oxidizing species e.g. hydroxyl free radicals (\cdot HO) and peroxynitrite (ONOO-); molecules which subsequently cause protein carbonyls to form, nitrosylation of tyrosine residues, lipid peroxidation and oxidative damage to DNA and RNA (Turner et al 2013).

1.2.4.2 Glutamate Excitotoxicity

A state of excitotoxicity arises from an increased or prolonged stimulation of postsynaptic, sodium-dependent inotropic AMPA (alpha-Amino-3-hydroxyl-5-methyl-4 -isoxazolepropionic acid) or NMDA (N-methyl-D-aspartate) receptors by glutamate which triggers a large influx of calcium ions (Ca²⁺) (Corona et al 2007, Turner et al 2013). Elevated levels of this excitatory neurotransmitter compound are detectable in patient CSF which is found to correlate with disease severity (Spreux-Varoquaux et al 2002). The permeability of AMPA receptors is determined in a large part by the GluR2 (glutamate receptor 2) subunit which is relatively lowly expressed in MN's. This, in combination with the fact that these cells have a smaller calcium buffering capacity compared to other neuronal populations (e.g. oculomotor neurons which are generally spared in ALS), offers an insight as to the reasons why it is perhaps the MN's which are most susceptible to excitotoxic injury & death in neurodegeneration (Robberecht & Philips 2013). A substantial rise in intracellular Ca²⁺ concentrations results in the production of ROS from the mitochondrion that establishes a negative feedback loop involving impaired EAAT2 (glial excitatory amino acid transporter 2) function and reduced re-uptake of glutamate from the synaptic cleft (Grosskreutz et al 2010, Kong et al 2014). Significant decreases in the level of EAAT2 protein expression have been observed in around 80% of human autopsy derived brain and SC tissue (Rothstein et al 1995); whereas overexpressing endogenous forms in the transgenic SOD1^{G93A} mouse has been shown to delay the onset of motor deficits (Guo et al 2003). The minor allele of SNP rs12608932 (Table 1.3) (Section 1.2.5.1.11) in the unc-13 homolog A (UNC13A) gene (Diekstra et al 2012, van Es et al 2009c), an imp-

11

ortant regulator of synaptic glutamate release, is associated with an increased risk of developing ALS (OR 1.33, p<0.005) which correlates negatively with survival. Ultimately, activation of the calpain and/or cathepsin protease enzymes regulate the cleavage of apoptosis inducing factor (AIF) and its subsequent translocation into the nucleus where it elicits large scale DNA fragmentation and programmed cell death in a caspase independent manner (Cande et al 2002, Oh et al 2006, Shibata et al 2009).

1.2.4.3 Mitochondrial Dysfunction

Mitochondria are critical for the survival of eukaryotic cells, acting as a powerhouse which drives adenosine 5'-triphosphate (ATP) production. In addition to providing the cell with a source of energy, these organelles are also required for the regulation of apoptosis and calcium ion homeostasis (Kasahara & Scorrano 2014) (Section 1.2. 4.2). Morphological, ultra-structural and biochemical abnormalities have been observed in both FALS and SALS cases in the form of enlarged, vacuolated mitochondria with inner membrane defects and aberrantly arranged cristae (Hirano et al 1984). There is also evidence to suggest that transportation of mitochondria along microtubles in ALS may be impaired, which supports a "dying-back" axonopathy model of the disease (Shi et al 2010). Several mitochondrial modulators with neuroprotective properties in mammalian cell and animal systems are currently under investigation including the immunosuppressant cyclosporine (CsA) which prevents formation of the mitochondrial permeability transition pore complex (Karlsson et al 2004, Keep et al 2001) and the cholesterol-like compound, Olesoxime, that stabilizes the outermembrane, through its association with voltage-dependent anion-selective channel (VDAC) and benzodiazepine receptors (Bordet et al 2007, Martin 2010, Sunyach et al 2012).

1.2.4.4 Axonal Transport

MN's are reliant upon mechanisms of anterograde and retrograde axonal transport to maintain cellular homeostasis and for communication between the cell body and distant nerve terminals (Chevalier-Larsen & Holzbaur 2006). Genetic alterations in a number of cytoskeletal components, adaptor molecules and motor proteins have been associated with the disease including dynactin (*DCTN1*), neurofilament heavy chain (*NEFH*) (Section 1.2.5.1.10), profilin 1 (*PFN1*) (Section 1.2.5.2.9) and kinesinassociated protein 3 (*KIFAP3*) (Section 1.2.5.1.11). Reduced messenger RNA (mRNA) transcript levels pertaining to neurofilament light chain (*NEFL*), a causative gene of Charcot Marie Tooth (CMT) disease, have also been observed in the AHC's of SALS patients (Bergeron et al 1994). RNA processing proteins TDP-43 (Section 1.2.5.2.1) and FUS (Section 1.2.5.2.2) bind NFL (Lagier-Tourenne et al 2012, Polymenidou et al 2011, Strong et al 2007) to disrupt its normal physiological function by resulting in its aberrant sequestration into stress granules (SG's) (Volkening et al 2009).

1.2.4.5 Intracellular Protein Aggregation

A major pathological feature of ALS, as discussed previously in Section 1.2.3, is the presence of p62 positive, ubiquitinated intracellular proteinaceous inclusion bodies which accumulate in the cytoplasm of residual, atrophied MN's and glia of the CNS. Many have been shown to be immunoreactive for C90RF72, TDP-43, FUS or SOD1; among several other translated products of ALS causative genes, depending on the underlying genetic cause of the disease. For example, whilst *FUS* and *SOD1* mutation carriers contain aggregates of these proteins, they are found to be negative for TDP-43, unlike *TARDBP* and most other ALS cases. The precise manner in which protein aggregation contributes to MN degeneration is unclear with experimental evidence pointing towards both loss of function and gain of function mechanisms (Blokhuis et al 2013).

1.2.4.6 The Role of Non-Cell Autonomous Glia and Inflammation

Evidence which suggests that the astrocytes and microglia surrounding MN's in the CNS are determinants of disease onset and progression (Boillee et al 2006, Wang et al 2011, Wang et al 2009, Yamanaka et al 2008, Zhu et al 2014) implicates a role for non-cell autonomous neurodegeneration in the pathogenesis of ALS (Appel et al 20 11, Ilieva et al 2009). The increasing activation and proliferation of these cells produces a neuroinflammatory response (Glass et al 2010, McGeer & McGeer 2002, Philips & Robberecht 2011) with elevated levels of proinflammatory cytokines and ot-

her markers of inflammation including tumor necrosis factor alpha (TNFα) and Fas ligand (FasL); a potent inducer of apoptosis (Section 1.2.4.8) (Petri et al 2006, Kuhle et al 2009, Meissner et al 2010, Mitchell et al 2009, Sekizawa et al 1998). Treatment with anti-inflammatory compounds such as Celastrol, a triterpene which is extracted from the roots of the traditional Chinese herb, *Tripterygium wilfordii* (Thunder god vine), or Thalidomide and its derivative REVLIMID[®] (lenalidomide) have proved beneficial in prolonging the lifespan of ALS rodents with reports of a significant dose-dependent increase in survival, reduced weight loss, improved rota-rod performance, higher neuronal cell counts and a delay in the onset of symptoms (Kiaei et al 2005, Kiaei et al 2006, Neymotin et al 2009).

1.2.4.7 Autophagy

In ALS aggregates of misfolded mutant (mt) or wild-type (WT) proteins (Section 1.2. 4.5) accumulate in the cytosol which overwhelms the ubiquitin-proteasome system (UPS) and causes it to become impaired. The cells attempt to compensate, in order to maintain a homeostatic environment, by activating the autophagosome-lysosome clearance pathway (Li et al 2008b, Sasaki 2011). This along with several autophagy inducing compounds such as lithium, resveratrol and trehalose (Albani et al 2010, Fornai et al 2008, Gomes et al 2010) have proven beneficial in promoting survival of MN's and delaying disease progression in the SOD1^{G93A} mouse model (Ghavami et al 2014).

1.2.4.8 Apoptosis

Activation of cell surface death receptors (e.g. Fas) by extrinsic factors such as TNFα and TNF-related apoptosis-inducing ligand (TRAIL), or endoplasmic reticulum (ER) stress and mitochondrial release of cytochrome c caused by intrinsic factors such as DNA damage and OS triggers a cascade of caspase (**c**ysteine-**asp**artic **a**cid protea**se**) enzymes that initiate apoptosis or programmed cell death. Morphological features associated with this process include cell rounding, chromatin condensation, nuclear fragmentation, shrinking cell volume, cytoskeletal disassembly and blebbing of the plasma membrane prior to phagocytosis by macrophages, which have been seen in

ALS (Ghavami et al 2014).

1.2.4.9 RNA Processing

The identification of RNA binding proteins TDP-43 and FUS as constituents of NCI's in up to 90% of non-SOD1 linked FALS and SALS cases (Arai et al 2006, Neumann et al 2006) and the segregation of a number of pathological changes with the disease in these as well as other related genes (Table 1.1), including *C90RF72* (Section 1.2.5.4) is strong evidence in support of a role of RNA toxicity in causing MN's to degenerate in ALS (Baumer et al 2010, Polymenidou et al 2012).

1.2.5 Genetic Factors

MND and its clinical variants (Sections 1.1.1) represent a genetically heterogeneous group of neurological disorders with more than twenty different chromosomal loci (Table 1.1) having been identified through linkage analysis [ALS1-8, 10, 15, 17, 19 and ALS-FTLD1-2], candidate gene association (CGA) studies [ALS9], homozygosity mapping [ALS12 and 16], targeted sequencing [ALS11], repeat association studies [ALS13] and next generation sequencing (NGS) approaches including exome/whole genome analyses [ALS14, 18 and 20-21] (Goodall et al 2012, Renton et al 2014).

Between 5 and 10% of cases are reported to have a family history in which there is at least one other first or second degree relative who is known to be affected (Byrne et al 2011). Mutations in *SOD1* (Section 1.2.5.1.1), *TARDBP* (Section 1.2.5.2.1), *FUS* (Section 1.2.5.2.2) and *C9ORF72* (Section 1.2.5.4), among others listed in Table 1.1, are now thought to explain up to two-thirds of pedigrees (Ravits 2014, Renton et al 2014). The mode of transmission follows a Mendelian pattern of inheritance that is largely autosomal dominant (AD); although autosomal recessive (AR) and X-linked forms have been described. In the majority of instances disease onset is expected to occur during mid-late adulthood, however, juvenile onset (<25yrs) and young onset ALS (<45yrs) are also known to account for ~1 or 10% of cases, respectively (Calvo et al 2014b, Leblond et al 2014, Logroscino et al 2010).

In the following sections, ALS (Section 1.2.5.1), ALS-FTLD (Section 1.2.5.2 and 1.2.5.

Locus	Chr.	Gene	Function	Mode	Onset	Mutation	Diagnosis	Ref.(s)
ALS1	21q22.11	SOD1	oxidative stress	AD/AR	adult	SNV	ALS, PMA	(Rosen et al 1993)
ALS2	2q33.2	ALSIN	guanine nucleotide exchange factor	AR	juvenile	SNV	ALS, PLS, HSP	(Hand et al 2003)
ALS3	18q21	unknown	unknown	AD	adult	unknown	ALS	(Hand et al 2002)
ALS4	9q34.13	SETX	DNA/RNA helicase	AD	juvenile	SNV	ALS, AOA2	(Chen et al 2004)
ALS5	15q21.1	SPG11	transmembrane protein	AR	juvenile	SNV	ALS, HSP	(Daoud et al 2012b)
ALS6	16p11.2	FUS	pre-mRNA splicing and export	AD	adult	SNV	ALS, FTLD	(Chio et al 2009a)
ALS7	20p13	unknown	unknown	AD	adult	unknown	ALS	(Sapp et al 2003)
ALS8	20q13.33	VAPB	vesicular trafficking	AD	adult	SNV	ALS, SMA	(Nishimura et al 2004)
ALS9	14q11.1	ANG	blood vessel formation	AD	adult	SNV	ALS, FTLD, PD	(Greenway et al 2006)
ALS10	1p36.22	TARDBP	regulator of transcription/splicing	AD	adult	SNV	ALS, FTLD, PD	(Sreedharan et al 2008)
ALS11	6q21	FIG4	phosphoinositide phosphatase activity	AD	adult	SNV	ALS, PLS, CMT	(Chow et al 2009)
ALS12	10p13	OPTN	ocular tension, vesicular trafficking	AD/AR	adult	SNV	ALS, POAG	(Maruyama et al 2010)
ALS13	12q24.12	ATXN2	unknown	AD	adult	CAG repeat	ALS, FTLD, SCA2	(Elden et al 2010)
ALS14	9p13.3	VCP	ATP-binding, vesicle transport/fusion	AD	adult	SNV	IBMPFD/ALS, FTLD, CMT, HSP	(Johnson et al 2010)
ALS15	Xp11.2.1	UBQLN2	ubiquitination, protein degradation	X-linked	adult, juvenile	SNV	ALS-FTLD	(Deng et al 2011)
ALS16	9p13.3	SIGMAR1	endoplasmic reticulum chaperone	AR	juvenile	SNV	ALS-FTLD	(Luty et al 2010)
ALS17	3p12.1	CHMP2B	vesicular trafficking	AD	adult	SNV	ALS, PMA, FTLD	(Parkinson et al 2006)
ALS18	17p13.3	PFN1	cytoskeletal dynamics	AD	adult	SNV	ALS, FTLD	(Wu et al 2012a)
ALS19	2q33-q34	ERBB4	epidermal growth factor receptor	AD	adult	SNV	ALS	(Takahashi et al 2013)
ALS20	12q13.1	HNRNPA1	RNA metabolism	AD	adult	SNV	IBMPFD/ALS	(Kim et al 2013)
ALS21	5q31.2	MATR3	RNA metabolism	AD	adult	SNV	ALS, VCPDM	(Johnson et al 2014)
ALS-FTLD1	9q21-q22	unknown	unknown	AD	adult	SNV	ALS-FTLD	(Hosler et al 2000)
ALS-FTLD2	9p21.2	C90RF72	unknown	AD	adult	G_4C_2 repeat	ALS-FTLD	(DeJesus-Hernandez et al 2011, Renton et al 2011)

 Table 1.1 Summary of Genetic Loci and ALS Causative Genes in ALSoD (alsod.iop.kcl.ac.uk) [Adapted from Leblond et al (2014)].

.4) and FTLD (Section 1.2.5.3) loci are discussed with a focus on those genes which have been designated an ALS number according to information attained from ALSoD, the Amyotrophic Lateral Sclerosis Online Genetics Database that is freely available at alsod.iop.kcl.ac.uk (Abel et al 2013).

1.2.5.1 ALS Loci

1.2.5.1.1 SOD1

The free radical scavenging enzyme copper/zinc superoxide dismutase 1 (SOD1), situated at the chromosome 21q22.11 locus (Table 1.1), was discovered by Rosen et al (1993) more than twenty years ago as the first causative gene linked to the pathogenesis of AD and, across parts of Scandinavia, AR inherited forms of adultonset ALS (ALS1). Since then >170 missense mutations of variable penetrance have been identified, spanning the gene's five coding exons (Al-Chalabi et al 2012, Su et al 2014). These account for between 12 and 23% of FALS cases and a further 2 to 7% of SALS cases (Ajroud-Driss & Siddique 2014, Battistini et al 2005, Chio et al 2008, Gros-Louis et al 2006, Ling et al 2013, Shaw et al 1998). Almost half of all carriers will become symptomatic by the time they have reached their fifth decade with around 90% becoming symptomatic before the age of 70 (Siddique et al 1991). Patients present with predominantly lower limb weakness and in the absence of impaired executive functioning (Millecamps et al 2010, Turner et al 2005). Median survival mirrors that of "classical ALS" (Section 1.2.1) which ranges between 2 and 4 years from the initial manifestation of disease symptoms until the onset of respiratory failure; although considerable phenotypic variability has been observed with respect to SOD1-linked ALS (Renton et al 2014, Su et al 2014). For example a dominant p.A4V substitution that arose twice from a single common ancestor in Europe and North America, where it accounts for 50% of FALS cases, is associated with a particularly aggressive disease course of \sim 12 months (Cudkowicz et al 1997, Saeed et al 2009). Homozygous carriers of the p.D90A mutation, on the other hand, develop a much milder phenotype that is characterised by a long disease duration extending beyond 10 years (Al-Chalabi et al 1998, Andersen et al 1996). A distinct neuropathological profile apparent in FALS patients with a SOD1 mutation or the transgenic SOD1^{G93A} mouse model has been described (Bruijn et al 2004, Mackenzie

17

et al 2007, Pickles & Vande Velde 2012) which is found to be absent in the majority of SALS cases (Brotherton et al 2012, Kerman et al 2010, Liu et al 2009). Aggregates of mutant or misfolded WT protein are observed in the cytoplasm of residual MN's and glia of the brain and CNS (Banci et al 2008). These inclusions are found to be immunoreactive against antibodies for ubiquitin but stain negative for TDP-43 (Section 1.2.5.3.1) and FUS (Section 1.2.5.3.2) (Ling et al 2013).

SOD1 is a ubiquitously expressed metalloenzyme with antioxidant properties that normally functions to protect cells against elevated levels of ROS (Section 1.2.4.1). Specifically, it has been shown to act as a catalyst for the conversion of superoxide anions (O_2^{-}) into molecular oxygen (O_2) and hydrogen peroxide (H_2O_2) (Therrien & Parker 2014). A correlation between reduced enzyme activity and disease severity is not evident (Borchelt et al 1994, Saccon et al 2013) pointing towards a toxic gain of function mechanism in which pathogenicity arises from both cell autonomous as well as non-cell autonomous processes (Ajroud-Driss & Siddique 2014, Ling et al 2013).

1.2.5.1.2 ALSIN

Mutations (n=23) in the gene encoding alsin (*ALSIN*), situated at the chromosome 2q33.2 locus (Table 1.1), are the cause of a rare spectrum of AR inherited disorders including a juvenile onset form of ALS (ALS2) (Hadano et al 2001, Yang et al 2001), PLS with oculomotor signs (Section 1.2.2.2) (Pringle et al 1992) and infantile-onset ascending spastic paraplegia (IAHSP) (Eymard-Pierre et al 2002, Eymard-Pierre et al 2006, Gros-Louis et al 2003, Wakil et al 2014). The latter are both conditions of primary UMN involvement with IAHSP characterised by progressive degeneration of the corticospinal and corticobulbar (CBT) tracts that usually begins in the distal extremities of the lower limbs and slowly advances to affect the upper limbs and bulbar muscles (Devon et al 2003, Herzfeld et al 2009, Racis et al 2014, Sztriha et al 2008, Verschuuren-Bemelmans et al 2008). Alsin is a ubiquitously expressed protein of undetermined function. Its structure contains three putative guanosine exchange factor (GEF) motifs including: a) the N-terminal Ran GTPase (guanosine triphosphatase) regulator of chromatin condensation 1 (RCC1) domain; b) the Rho GTPase diffuse B cell lymphoma/Pleckstrin homology (Db1/PH) domain and c) the

C-terminal Rab5-GTPase vacuolar protein sorting 9 (VPS9) domain. There are also seven membrane occupation and recognition nexus (MORN) repeats which span a region between the Db1/PH and VPS9 domains that have since been recognised as key modulators of Rab5-GTPase activity (Chandran et al 2007, Hadano et al 2007, Wakil et al 2014). So far most of the pathological changes that have been identified to date result in a frameshift/nonsense mutation. The introduction of a premature stop codon promoting early termination of translation leads to the production of a truncated protein that is inherently unstable (Yamanaka et al 2003). Of interest is the observation that genetic abnormalities of both long (6.5kb) and short (2.6kb) form ALSIN mRNA transcripts are apparent in cases of ALS2 whereas those which only affect the long form tend to be associated with UMN variants PLS and ISHAP (Panzeri et al 2006, Yang et al 2001). Chandran et al (2007) have since proposed a neuroprotective role for the short form product in LMNs as a possible explanation for the clinical diversity observed in the presence of these mutations. Furthermore, Alsin deficient MN's are shown to have impaired AMPA receptor mediated trafficking which increases their susceptibility to glutamate excitotoxicity (Section 1.2.4.2) (Lai et al 2006). In addition, the WT protein has been found to interact with mtSOD1 to attenuate Nox2-dependent endosomal ROS damage (Section 1.2.5.1.1) (Kanekura et al 2004, Li et al 2011).

1.2.5.1.3 SETX

Senataxin (*SETX*), a DNA/RNA helicase situated at the chromosome 9q34.13 locus, (Table 1.1) is a rare cause of ataxia oculomotor apraxia type 2 (AOA2) (Asaka et al 2006, Duquette et al 2005, Moreira et al 2004) and an AD inherited juvenile onset form of ALS (ALS4) (Avemaria et al 2011, Chance et al 1998, Chen et al 2004, Zhao et al 2009). The latter is a condition which is characterised by a distal hereditary motor neuropathy (dHMN) with progressive weakness and severe muscle wasting of all four limbs, a prolonged survival and extensive pyramidal features (Rabin et al 1999). The precise function of senataxin is not known. However, its structure is predicted to contain a P-loop adenosine triphosphate and guanosine triphosphate (ATP-GTP) binding site which is highly conserved across yeast and mammalian systems and has been shown to play a critical role in nucleotide unwinding (Chen

et al 2004, Molnar et al 1997); a process that is required for gene transcription in addition to mechanisms of DNA replication, recombination & repair (Su et al 2014, Tanner & Linder 2001).

1.2.5.1.4 SPG11

Spatacsin (*SPG11*) which is situated at the chromosome 15q21.1 locus (Table 1.1) is the most common cause of hereditary spastic paraplegia (HSP) with occasional Parkinsonian features and pronounced thinning of the corpus callosum (Anheim et al 2009, Guidubaldi et al 2011, Liao et al 2008, Rajakulendran et al 2011, Stevanin et al 2008, Winner et al 2004, Zhao et al 2013). In recent years it has also been associated with a rare AR inherited juvenile onset form of ALS (ALS5) (Orlacchio et al 2010) characterised by a disease onset of less than 25yrs and a median survival spanning three and a half decades (Daoud et al 2012b). Clinical manifestations vary with the majority of patients experiencing distal muscle weakness, spasticity and atrophy accompanied by a bulbar phenotype, abnormal gait and signs of pyramidal involvement which occur in the absence of overt cognitive or sensory impairment (Su et al 2014). Truncating loss of function, nonsense or frameshift mutations have been identified as well as a small number of splice site alterations and insertions or deletions which promote early termination of translation through the introduction of a premature UAG/UAA/UGA stop codon (Iguchi et al 2013, Orlacchio et al 2010). Although spatacsin has not yet been fully characterised in the mammalian system, it is shown to be an essential requirement for neuromuscular junction connectivity and axonal outgrowth in the developing zebrafish (Martin et al 2012, Southgate et al 2010).

1.2.5.1.5 VAPB

Two single base substitutions in the VAMP (vesicle-associated membrane protein) associated protein B (*VAPB*) gene, situated at the chromosome 20q13.33 locus, have been associated with <1% of familial cases of AD inherited adult-onset ALS (ALS8) (Table 1.1) (Chen et al 2010, Millecamps et al 2010). Phenotypic heterogeneity has been observed, with a wide variety of clinical presentations ranging from cases with "classical ALS" and a faster than anticipated disease course to delayed onset forms

of PMA (Section 1.2.2.3) or ALS with essential tremor (Nishimura et al 2004). The mtVAPB protein sequesters its WT counterpart into ubiquitin, p62 and TDP-43 positive inclusion bodies within the cytoplasm of residual MNs and glia of the CNS (Teuling et al 2007). Aggregation in this manner has been shown to elicit the UPR which is expected to lead to an increase in vulnerability to ER stress (Gkogkas et al 2008, Ling et al 2013, Su et al 2014, Suzuki et al 2009). Another implication of a loss of function of WT VAPB is the disruption of ephrin (Eph) receptor mediated signalling via a reduction in ligand availability from the cleavage and secretion of VAPB amino-terminal domains that would ordinarily serve to protect the cells against glutamate excitotoxicity (Section 1.2.4.2) (Tsuda et al 2008).

1.2.5.1.6 FIG4

The *FIG4* gene encoding the phosphoinositide 5-phosphatase enzyme, situated at the chromosome 6q21 locus (Table 1.1), is reported to account for around 2% of AD inherited adult onset ALS (ALS11) and PLS (Section 1.2.2.2) cases in addition to having been identified as a cause of the AR inherited juvenile onset CMT4J (Charcot Marie Tooth type 4J); a severe and rapidly progressive sensory & motor peripheral neuropathy (Chow et al 2009, Chow et al 2007, Verdiani et al 2013). Its function is to regulate the cellular abundance of the signalling lipid phosphatidylinositol 3, 5-bisphosphate [PI(3,5)2] which has been implicated in aspects of autophagy as well as retrograde membrane transport through the *trans*-Golgi network (Ferguson et al 2010, Iguchi et al 2013, Rutherford et al 2006, Zhang et al 2007).

1.2.5.1.7 OPTN

The optineurin (*OPTN*) gene, situated at the chromosome 10p13 locus (Table 1.1), was originally identified as a major cause of primary open angle glaucoma (POAG) (Fuse et al 2004, Huang et al 2014, Rezaie et al 2002, Xiao et al 2009) and more recently Paget's disease of bone (PDB) (Albagha et al 2010, Chung et al 2010). In 2010, Maruyama and colleagues described a deleterious heterozygous c.1743A>G (p.E478G) missense substitution, c.1502C>T (p.Q398X) truncation and an exon five deletion in three Japanese consanguineous families which co-segregated with an AD/AR inherited form of adult-onset ALS (ALS12). Subsequent studies reported

21

mutations in *OPTN* to be a relatively rare occurrence in Caucasian populations of North European or Scandinavian descent (~0.2%) (Chio et al 2012b, Kenna et al 2013, Tumer et al 2012, van Blitterswijk et al 2012c, Weishaupt et al 2013). The gene itself encodes the ubiquitously expressed 67kDa cytosolic **opt**ic **neur**opathy **in**ducing protein that has been shown to play a key role in cellular morphogenesis, membrane trafficking and transcriptional activation in addition to vasoconstriction and host defence against viral pathogens (Kachaner et al 2012, Renton et al 2014). So far, two plausible mechanisms of action have been proposed in order to explain the neurotoxicity of mutant optineurin towards MN's in ALS: 1) Loss of function of the WT protein lifts inhibition of activation of the nuclear factor kappa-light-chainenhancer of activated B cells (NF- κ B) transcriptional regulator complex to induce mitochondrial apoptotic signalling cascades and programmed cell death or 2) Gain of function mediated by an impaired autophagosome system and the subsequent accumulation of toxic intracellular protein aggregates (Akizuki et al 2013, Korac et al 2013).

1.2.5.1.8 ERBB4

Recently, two single nucleotide variants (SNV's) of reduced penetrance in the v-erb -b2 avian erythroblastic leukemia viral oncogene homolog 4 (*ERBB4*) gene, situated at the chromosome 2q33-q34 locus (Table 1.1), have been identified through whole genome sequencing (WGS) and linkage analysis as a rare cause of AD inherited adult onset ALS (ALS19) in three pedigrees of Japanese or Canadian descent. Signs of UMN and LMN involvement (Section 1.1.3) were prominent in all affected family members with a distinct lack of overt cognitive dysfunction (Takahashi et al 2013). The disease course was relatively slow, with a median survival of greater than five years. The c.2780G>A (p.R927Q) alteration occurring within the protein's tyrosine kinase domain is associated with an older than anticipated age of symptom onset peaking in the mid-sixties or early seventies, whereas the less common c.3823C>T (p.R1275W) substitution at the highly conserved C-terminal region is associated with a younger onset ALS of around 45 years. ERBB4 is a member of the epidermal growth factor (EGF) receptor family and is one of four structurally related proteins which are modulated through autophosphorylation upon neuregulin-1 (NRG1) binding (Takahashi et al 2013). *ERBB4* knock-down in mice is demonstrated to be embryonically lethal (Gassmann et al 1995) and in the residual MN's of autopsy derived human post-mortem SC tissue depleted levels of the cysteine-rich domain (CRD) containing isoforms of NRG1 have been detected (Song et al 2012), further implicating the NRG1-ERBB signalling pathway as another plausible mechanism of pathogenicity in ALS (Takahashi et al 2013).

1.2.5.1.9 MATR3

NGS approaches have identified several missense substitutions (n=4) in the matrin 3 (*MATR3*) gene, situated at the chromosome 5q32.2 locus (Table 1.1), as a cause of AD inherited adult onset ALS (ALS21) (Johnson et al 2014, Millecamps et al 2014) or vocal cord and pharyngeal weakness with distal myopathy (VCPDM) (Muller et al 2014, Senderek et al 2009, Yamashita et al 2014) in four large, multigenerational pedigrees of North European descent. Sequencing data obtained from an additional 204 UK patients suggest that mutations occur at a frequency of 2.75% for FALS and <1% of SALS cases. Clinical manifestations include widespread UMN and LMN signs with evidence of a 'split-hand' pattern of weakness, brisk tendon reflexes, extensor plantar responses, increased jaw jerk with clonus, fasciculations, severe wasting of the tongue and respiratory dysfunction with normal cognition and a relatively slow disease course of up to 15 years. Neuropathological evaluations of human derived post-mortem SC tissue from patient carriers and non-carriers of a MATR3 mutation revealed universal matrin-3 proteinopathy in residual MN's with intense nuclear staining and occasional, more diffuse cytoplasmic staining (Johnson et al 2014). The gene encodes an RNA and DNA binding domain containing nuclear matrix protein of 125kDa that has been shown to interact with TDP-43 (Section 1.2.5.2.1) (Salton et al 2011). Its importance in the neurodegenerative disease process is not yet well understood, although it is known to function in aspects of RNA processing including the nuclear retention of hyper-edited RNA's and mRNA transport, DNA repair and gene silencing/chromatin remodelling (Hock et al 2007, Zhang & Carmichael 2001).

1.2.5.1.10 Other Rare Genetic Causes of FALS

Additional loci that have been implicated in the pathogenesis of AD inherited forms

of the disease, for which a designated ALS number has not yet been assigned in the ALSoD (alsod.iop.kcl.ac.uk) (Abel et al 2013) either due to lack of evidence regarding transmission (i.e. low penetrance) or its rarity, are summarised in Table 1.2.

Gene	Name	Locus	Reference
ARHGEF28	Rho guanine nucleotide exchange	5q13	(Droppelmann et al
	factor (GEF) 28		2013)
CHCHD10	coiled-coil-helix-coiled-coil-helix	22q11	(Bannwarth et al 2014)
	domain containing 10		
DAO	D-amino-acid oxidase	12q24	(Mitchell et al 2010)
DCTN1	dynactin 1	2p13	(Puls et al 2003)
EWSR1	Ewing's sarcoma breakpoint region	22q12.2	(Couthouis et al 2012)
	1		
HNRNPA2B1	heterogeneous nuclear	7p15	(Kim et al 2013)
	ribonucleoprotein A2/B1		
LMNB1	lamin B1	5q23	(Johnson et al 2014)
NEFH	neurofilament, heavy polypeptide	22q12-q13	(Figlewicz et al 1994)
PRPH	peripherin	12q12	(Gros-Louis et al 2004)
SPAST	spastin	2p24-p21	(Meyer et al 2005)
SQSTM1	sequestosome 1	5q35	(Rubino et al 2012)
TAF15	TAF15 RNA polymerase II, TATA box	17q11.1-q11.2	(Couthouis et al 2011)
	binding protein	_	

Table 1.2 Additional Genetic Loci Implicated in the Pathogenesis of FALS

1.2.5.1.11 Genetic Susceptibility Factors and Other Rare Causes of SALS

It has been documented that the majority of patients diagnosed with ALS, between 90 and 95%, will have developed an idiopathic form of the condition for which the cause(s) are still largely unknown (Byrne et al 2011). Estimates of heritability from studies conducted using twin data are predicted to lie between 0.38 and 0.78 (Al-Ch alabi et al 2010). A 17 and 9-fold increase, respectively in the relative lifetime risk of the siblings and progeny of sporadic index cases in a large Swedish population based study has also been reported (Fang et al 2009, Hanby et al 2011). This is indicative of SALS being multifactorial in origin with a combination of complex genetic effects and environmental risk factors such as heavy metal exposure (e.g. lead, manganese and mercury) (Wang et al 2014), cigarette smoking (Armon 2009), de Jong et al 20 12, Gallo et al 2009), lifetime physical activity (Huisman et al 2013) and traumatic head injury (Pupillo et al 2012, Schmidt et al 2010) contributing to its aetiology (Wingo et al 2011).

Both clinically and pathologically, SALS patients are virtually indistinguishable from their FALS counterparts suggesting that they share common mechanisms which underlie MN degeneration (Section 1.2.4) (Wijesekera & Leigh 2009). Indeed in a small proportion of cases, fewer than 10%, mutations have been identified within the coding regions of causal candidate genes of FALS including C9ORF72 (Section 1.2.5.4), SOD1 (Section 1.2.5.1.1), TARDBP (Section 1.2.5.2.1) and FUS (Section 1.2.5.2.2) (An dersen & Al-Chalabi 2011, Rademakers & van Blitterswijk 2013, van Blitterswijk et al 2012a). In most instances, however, the genetic component has yet to be determined. Genome-wide association studies (GWAS) appeared, at least initially, to have highlighted a number of promising susceptibility loci, including 9p21 (Section 1.2.5. 4) which led to the discovery of a large, intronic hexanucleotide repeat expansion in C90RF72 (Renton et al 2011, DeJesus-Hernandez et al 2011) that is now thought to account for up to 43% of FALS and \sim 7% of apparently SALS cases (Cooper-Knock et al 2012b). Disappointingly, however, many GWAS findings are associated with risk alleles that have small odds ratios (OR's) and have yet to be convincingly replicated (Chio et al 2009b, Cronin et al 2009, Daoud et al 2010, Fernandez-Santiago et al 20 11, Fogh et al 2011, Iida et al 2011, Kwee et al 2012, Nicholl et al 1999, Schymick et al 2007, van Es et al 2009b). In a recent report, published by Koppers et al (2013), sequencing of exons of potential candidate genes from several of these studies, including UNC13A and C90RF72 (Table 1.3), failed to establish a significant enrichment of coding variants in a large (n=2,122) SALS case-control population (Leblond et al 2014, Renton et al 2014) of Dutch descent. This provides evidence in support of the proposition of a rare variant hypothesis: Rather than the associated SNP or microsatellite marker representing a signpost that reflects the effects of a common proximal causal site it is now anticipated that there are multiple, rare and distant variants of substantially higher impact which are responsible for producing so called synthetic associations. In this scenario, a significant number of potential hits are expected to go undetected, not as a consequence of many individuals sharing identical weak effect variants, but because minority groups of SALS patients are likely to each harbour a different high impact variant (Dickson et al 2010, Robinson 2010).

The spontaneous occurrence of *de novo* mutations are also a possibility (Alexander et al 2002, Calvo et al 2014a, Chio et al 2011b, DeJesus-Hernandez et al 2010, Laffita-

Gene	Name	Locus	Reference
ALAD	aminolevulinate dehydratase	9q33.1	(Kamel et al 2003)
C90RF72	chromosome 9 open reading frame 72	9p21.2	(Ahmeti et al 2013; Laaksovirta et al
			2010; Le Ber et al 2009; Morita et al
			2006; Shatunov et al 2010)
CABIN1	calcineurin binding protein 1	22p11	(Deng et al 2013b)
CAMK1G	calcium/calmodulin-dependent protein kinase IG	1q32	(Deng et al 2013b)
CENPV	centromere protein V	17p11.2	(Ahmeti et al 2013)
CRYM	crystallin, mu	16p12	(Daoud et al 2011)
CYP2D6	cytochrome P450, family 2, subfamily D, polypeptide 6	22q13.1	(Siddons et al 1996)
DPP6	dipeptidyl-peptidase 6	7q36.2	(Cronin et al 2008; van Es et al 2008)
ELP3	elongator acetyltransferase complex subunit 3	8p21.1	(Simpson et al 2009)
FGGY	FGGY carbohydrate kinase domain containing	1p32	(Chio et al 2009b; van Es et al 2009b)
ITPR2	inositol 1,4,5-triphosphate receptor type 2	12p12.1-p11.23	(van Es et al 2007)
KIFAP3	kinesin-associated protein 3	1q24.2	(Landers et al 2009)
LIF	leukemia inhibitory factor	22q12.2	(Giess et al 2000; Meyer & Potter 1995)
LUM	lumican	12q21.3	(Daoud et al 2011)
OGG1	8-oxoguanine DNA glycosylase 1	3p26	(Coppede et al 2007)
PLCD1	phospholipase C, delta 1	3p22.2	(Staats et al 2013)
SUSD2	sushi domain containing 2	22p11	(Deng et al 2013b)
UNC13A	unc-13 homolog A (<i>C. elegans</i>)	19p13.12	(Ahmeti et al 2013; van Es et al 2009c)

 Table 1.3 Genetic Susceptibility Loci Implicated in the Pathogenesis of SALS

Mesa et al 2013, Zou et al 2013a). Whole exome sequencing of 47 SALS trio pedigrees [i.e. the proband and both unaffected parents] led to the identification of novel changes in *SS18L1* (alternatively named calcium-responsive transactivator (*CREST*)) (Chesi et al 2013); a subunit of the neuronal chromatin remodelling (nBAF) complex that has since been independently verified in a French cohort comprising a further 87 FALS patients (Teyssou et al 2014).

1.2.5.2 ALS-FTLD Loci

1.2.5.2.1 TARDBP

Transactive response (TAR) DNA binding protein 43kDa (TARDBP), situated at the chromosome 1p36.23 locus (Table 1.1), is a cause of AD inherited adult onset ALS (ALS10), bvFTLD and the combined ALS-FTLD syndrome (Borroni et al 2009, Chio et al 2010, Kabashi et al 2008, Kovacs et al 2009, Sreedharan et al 2008, Yokoseki et al 2008). More than 40 mutations primarily occurring in the C-terminus of the gene (Abel et al 2013, Renton et al 2014), a region considered important for normal protein-protein interactions and ribonucleoprotein (RNP) binding, are now thought to account for 4-5% of FALS cases with fewer than 2% of SALS and bvFTLD patients affected (Al-Chalabi et al 2012, Gitcho et al 2008, Lattante et al 2013, Van Deerlin et al 2008). A trend towards a "classical ALS" phenotype is observed with a slightly earlier than anticipated age of symptom onset, moderately prolonged survival and predominant upper limb involvement (Corcia et al 2012). Originally identified as a protein that bound the TAR element of human immunodeficiency virus (HIV), TDP-43 comprises nuclear export and import signals in addition to two RNA recognition motifs (RRMs) and a glycine rich, low sequence complexity PrLD (King et al 2012). Under normal physiological conditions it is ubiquitously expressed and is regarded to be essential for the regulation of gene transcription as well as multiple aspects of RNA metabolism including but not limited to microRNA (miRNA) biogenesis, stress granule (SG) formation, precursor messenger RNA (pre-mRNA) splicing, transport & stability, long non-coding RNA (lncRNA) processing and chromatin remodelling (Buratti & Baralle 2012, Lagier-Tourenne et al 2010, Polymenidou et al 2012). It is also known to bind a UG-rich sequence in intron 8 of the CFTR gene (cystic fibrosis

transmembrane conductance regulator) in order to promote pathological skipping of exon 9 in patients with cystic fibrosis (CF) (Buratti et al 2004, Buratti et al 2001, Lukavsky et al 2013). Moreover, it has also been demonstrated to act as a scaffold for nuclear bodies (NB's) through its interaction with the SMN protein (Wang et al 2002).

The pathogenicity of mtTDP-43 towards MN's in ALS is not fully understood and it remains uncertain as to whether toxicity arises from a loss of function mechanism, gain of function mechanism or indeed a combination of the two (Iguchi et al 2013, Ling et al 2013, Su et al 2014, Vanden Broeck et al 2014). At steady state, TDP-43 is concentrated in the nucleus where it carries out the majority of its activities (Ayala et al 2008, Winton et al 2008). Aberrant shuttling of TDP-43, however, results in its depletion from the nucleus and redistribution into the cytoplasm (Che et al 2011, Highley et al 2014, Polymenidou et al 2011, Tollervey et al 2011, Van Deerlin et al 2008). Within the cytoplasm, the mislocalised protein forms aggregates which are a major constituent of neuronal and glial inclusion bodies which are immunoreactive for ubiquitin and p62 but negative for α -synuclein and the microtubule associated protein, tau (Arai et al 2006, Neumann et al 2006). These are present in more than ninety percent of non-SOD1 linked FALS and SALS cases as well as a subset of FTLD patients (~50%) who may or may not carry a mutation in the *TARDBP* gene (Ling et al 2013, Mackenzie et al 2007, Renton et al 2014, Tan et al 2007).

1.2.5.2.2 FUS

Missense mutations (n=78) in the fused in sarcoma or translocated in liposarcoma (*FUS/TLS*) gene, situated at the chromosome 16p11.2 locus (Table 1.1), account for a further 4-5% of AD inherited adult onset ALS (ALS6) as well as rarer instances of the combined ALS-FTLD syndrome (<1%) (Abel et al 2013, Kwiatkowski et al 2009, Van Langenhove et al 2010, Vance et al 2009). Approximately equal proportions of male and female patients are affected (Kinsley & Siddique 2001). Penetrance of the disease varies widely between pedigrees with 50 to 70% of individuals developing symptoms by the time they have reached their fifth decade and more than ninety percent becoming symptomatic before the age of 71 (Blair et al 2010). Phenotypes associated with some of the most common pathological changes resemble those of

"classical ALS" (Section 1.2.1) that are characterised by predominant lower limb involvement, median onset of 45 years and an average disease duration of between 30 and 48 months (Groen et al 2010, Iguchi et al 2013, Millecamps et al 2010, Yan et al 2010). The gene encodes a ubiquitously expressed DNA/RNA binding protein that shares considerable structural and functional homology with TDP-43 (Renton et al 2014, Su et al 2014). It contains a nuclear export and import signal, RRMs, two arginine rich regions and a glycine rich, low complexity PrLD (King et al 2012) and is involved in many of the same activities which relate to genomic maintenance, SG formation and RNA metabolism/processing (Lagier-Tourenne et al 2010, Ling et al 2013). Both TDP-43 and FUS are found to associate with the survival motor neuron (SMN) complex that is important for the regulation of the spliceosome (Tsuiji et al 2013, Yamazaki et al 2012). Additionally, FUS has also been implicated in the DNA damage response & repair pathways (Wang et al 2013). The precise mechanism by which mutant forms of the protein exert their neurotoxicity towards MNs in ALS is not known. However, in a similar manner as was described previously for TDP-43 (Section 1.2.5.2.1), aberrant shuttling of mtFUS is expected to result in its depletion from the nucleus and the subsequent accumulation of misfolded aggregates within the cytoplasm which has led to both a loss of as well as gain of function mechanism having been proposed (Su et al 2014, Therrien & Parker 2014). It is of interest to note that mutation specific patterns of FUS pathology have been recorded which are found to correlate with disease severity. Round basophilic NCI's, for example, are associated with a rapidly progressive, young onset variant of ALS which begins in the late teens or early twenties (Baumer et al 2010) whereas tangle-like inclusions in residual MN's and glia of the CNS are a pathological feature of the more typical late onset ALS (Ling et al 2013, Mackenzie et al 2011).

1.2.5.2.3 ANG

Mutations of low penetrance in the gene encoding angiogenin (*ANG*), situated at the chromosome 14q11.2 locus, have been identified in rare instances of AD inherited adult onset ALS (ALS9) (Table 1.1), ALS-FTLD or PD of predominantly Scottish or Irish ancestry (Greenway et al 2006, Kirby et al 2013, Rayaprolu et al 2012, van Es et al 2009a, van Es et al 2011, Zou et al 2012). Patient carriers are characterised in

approximately two-thirds of cases by a predominantly bulbar phenotype with a rapid decline in respiratory function that requires mechanical ventilation support, usually within the first 12 months of the initial manifestation of disease (Section 1. 1.4) (Greenway et al 2006, Seilhean et al 2004). ANG is a secreted protein found in serum. It is a member of the pancreatic ribonuclease (RNase) A superfamily and is a potent inducer of neovascularisation which shares functional homology with the vascular endothelial growth factor (VEGF); a potential modifier of ALS progression (Lambrechts et al 2003, Seilhean et al 2009). Under hypoxic conditions, angiogenin binds actin at the outer surface of the endothelial cells where it is internalised and transported into the nucleus. Here it is responsible for stimulating stress induced ribosomal RNA (rRNA) transcription, a rate limiting step which has implications for ribosome biogenesis, protein maturation and ultimately cellular growth & survival (Greenway et al 2006, Yamasaki et al 2009). Treatment with exogenous ANG even after the initial onset of symptoms improved motor function in SOD1^{G93A} mice and increased life expectancy which has led to the postulation that the WT protein may play an important neuroprotective role within the mammalian system (Kieran et al 2008, Sebastia et al 2009).

1.2.5.2.4 ATXN2

Intermediate length polyglutamine (polyQ) tracts of 27 to 33 CAG repeats in exon 1 of Ataxin 2 (*ATXN2*), situated at the chromosome 12q24.12 locus (Table 1.1), have recently been confirmed in a minority of cases with a rare AD inherited adult onset form of ALS (ALS13) (~1%) and bvFTLD with non-fluent aphasia (<5%) (Elden et al 2010, Lee et al 2011, Ross et al 2011). Expansions of more than 34 CAG repeats have also been associated with PD (Section 1.2.1) and spinocerebellar ataxia type 2 (SCA2) (Gwinn-Hardy et al 2000, Imbert et al 1996, Nanetti et al 2009). Typically, patient carriers have a M:F ratio of 1.5:1 with signs of UMN and LMN dysfunction becoming apparent in the sixth or seventh decade and an average disease duration of approximately two to five years. Clinical manifestations include brisk deep tendon reflexes, pronounced fasciculations and weakness & spasticity of all four limbs (Van Langenhove et al 2012). Neuronal intranuclear inclusion bodies (NII's) positive for polyQ and p62 (sequestosome) are primarily concentrated within the pontine nuclei

with more widespread TDP-43 proteinopathy apparent in the neocortex and SC. It has been shown to act *in vitro* and *in vivo* in an RNA dependent manner in order to influence TDP-43 toxicity, although the exact mechanism by which *ATXN2* mutations cause MN degeneration in ALS is not fully understood (Baumer et al 2014, Elden et al 2010).

1.2.5.2.5 VCP

Valosin-containing protein (VCP), situated at the chromosome 9p13.3 locus (Table 1.1), is a rare genetic cause of AD inherited adult onset forms of HSP (de Bot et al 2012), CMT (Gonzalez et al 2014), ALS (ALS14) (~1-2%) (Abramzon et al 2012), ALS-FTLD and IBMPFD/ALS (Bersano et al 2009, Gidaro et al 2008, Haubenberger et al 2005, Watts et al 2004, Weihl et al 2009); a multisystem disorder of variable penetrance which is characterised by FTLD with inclusion body myopathy (IBM) and PDB. Clinical manifestations of IBM and PDB which include atrophic, angulated muscle fibres and rimmed vacuoles with unremarked inflammation and an elevated rate of osteoclastic bone resorption may be apparent at the age of 40 (Daroszewska & Ralston 2006, Spina et al 2013) with evidence of impaired executive functioning and behavioural abnormalities or UMN and LMN signs not normally evident until the fifth or sixth decade (Gonzalez-Perez et al 2012, Jacquin et al 2013). Ubiquitin immunoreactive, TDP-43 positive NII's and dystrophic neurites (DN's) with some VCP staining and occasional NCI's are a prominent feature upon neurohistochemical evaluation (Forman et al 2006, Guyant-Marechal et al 2006). The VCP protein is a molecular chaperone of the AAA superfamily [adenosine triphosphatase (ATPase) associated with diverse cellular activities] that has been implicated in a diverse array of cellular processes from transcriptional activation of the NF-KB signalling cascade to mechanisms of double-stranded DNA break (DSB) repair, membrane fusion and protein degradation (Ju et al 2009, Vandermoere et al 2006, Vij 2008, Wolf & Stolz 2012, Zhang et al 2000). An *in vitro* loss of function mutation affecting the cell division control (CDC48) domain of exon 5 in neuroblastoma SH-SY5Y cell lines resulted in mislocalization of TDP-43 to the cytosol, ER stress and impaired proteasome activity with a concomitant increase in the extent of caspase mediated apoptosis (Gitcho et al 2009).

1.2.5.2.6 UBQLN2

Mutations of the ubiquilin 2 (UBQLN2) gene, situated at the chromosome Xp11.2.1 locus (Table 1.1), are responsible for 2% of FALS and FTLD cases (Deng et al 2011, Gellera et al 2013, Synofzik et al 2012, Williams et al 2012) and a further 0.4% of SALS cases (Daoud et al 2012a). Originally found to co-segregate with the disease in a five generation kindred of 19 ALS (ALS15)/ALS-FTLD affected family members both adult and juvenile onset forms have now been reported. The genetic trait has a dominant mode of transmission that exhibits incomplete penetrance (Deng et al 2011). Clinical manifestations include symptoms of dysarthria and dysphagia with spastic paralysis of the limbs and diminished fine motor dexterity which may occur in the presence or absence of behavioural and executive function deficits that are associated with FTLD (Fahed et al 2014). Age at diagnosis ranges between 16 and 71 years with a mean of 33.9±14 or 47.3±11 years for male and female patients, respectively and average survival of approximately 3 to 4 years. At autopsy, brain atrophy, AHC loss, CST degeneration and astrogliosis of the SC are apparent (Deng et al 2011, Gellera et al 2013). Ubiquitinated, p62 positive skein-like or compact ubiquilin 2 immunoreactive inclusion bodies that co-localise with TDP-43 (Section 1.2.5.3.1), FUS (Section 1.2.5.3.2) or OPTN (Section 1.2.5.1.7) but not SOD1 (Section 1.2.5.1.1) or tau protein (Section 1.2.5.2.1) have been described (Fahed et al 2014, Nolle et al 2013, Williams et al 2012). Single base substitutions in the N-terminal proteasome binding domain (PBD) (Daoud et al 2012a) or the PXX tandem repeat of the collagen-like region that is important for protein-protein interactions (Deng et al 2011, Fahed et al 2014) impair the normal function of ubiquilin 2 which leads to disturbances in autophagy, the UPS (Zhang et al 2014) and ER-associated protein degradation (ERAD) pathway (Xia et al 2014).

1.2.5.2.7 SIGMAR1

The ER chaperone *SIGMAR1* (**sigma** non-opioid intracellular **r**eceptor **1**), situated at the chromosome 9p13.3 locus (Table 1.1), has been identified as a genetic cause of AD inherited ALS-FTLD and pure FTLD in three Caucasian pedigrees of Australian or Polish ancestry (Luty et al 2010). A nonpolymorphic c.672*51G>T substitution which affects the three prime (3') untranslated region (UTR) was shown to disrupt mRNA splicing and transcript stability. This led to an increase in expression and a higher abundance of the SIGMAR1 protein in human post-mortem brain tissue and patient derived lymphocytes. In vitro experimentation also found overexpression of *SIGMAR1* to result in an aberrant 2.30 or 5.20-fold induction, respectively, in the nuclear-cytoplasmic shuttling of TDP-43 (Section 1.2.5.3.1) and FUS (Section 1.2.5. 3.2) (Luty et al 2010). Soon thereafter, a deleterious c.304G>C (p.E102Q) missense mutation in an evolutionary conserved residue of the transmembrane domain that is important for ligand binding was also identified as a cause of a rare AR inherited form of juvenile onset ALS (ALS16) (Table 1.1). Symptoms of lower limb weakness and spasticity in the absence of bulbar or respiratory signs were accompanied by exaggerated tendon reflexes and a typically slower than anticipated disease course (Al-Saif et al 2011). TDP-43 and FUS immunoreactive inclusions were prominent in the pyramidal cells of the cerebral cortex and hippocampal neurones of the dentate gyrus (Luty et al 2010). SIGMAR1 is a ubiquitously expressed protein considered to have neuroprotective effects under normal physiological conditions (Hayashi & Su 2004, Katnik et al 2006). It is important for maintaining aspects of learning and memory as well as having been implicated in the unfolded protein response (UPR), lipid raft formation and neurite outgrowth (Al-Saif et al 2011, Hayashi & Su 2003). Specifically, it has been shown to play a critical role in Ca²⁺ homeostasis, autophagy and mitochondrial cytochrome c mediated programmed cell death in response to ER stress and glutamate excitotoxicity (Section 1.2.4.2) (Prause et al 2013, Vollrath et al 2014).

1.2.5.2.8 CHMP2B

Heterozygous missense substitutions identified in the charged multivesicular body protein 2b (*CHMP2B*) gene (n=6), situated at the chromosome 3p12.1 locus (Table 1.1), are a rare cause of AD inherited adult onset ALS (ALS17) and bvFTLD (<1%) which also account for ~10% of instances involving PMA (Section 1.2.2.3) (Cox et al 2010, Ghanim et al 2010, Isaacs et al 2011, Momeni et al 2006, Parkinson et al 2006, Skibinski et al 2005). Towards the motor end of the spectrum the disease is characterised by a predominantly LMN phenotype. Clinical manifestations typically include a flaccid, atrophic tongue with severe fasciculations, dysarthria & dysphagia,

dyspnoea (a shortness of breath), respiratory muscle weakness, bilateral wasting of the intrinsic hand muscles and an abnormal flexor plantar response with brisk deep tendon reflexes. Age and site of onset varies considerably and along with survival, which has a range spanning 15 months to 5½ years, appears to be mutation specific. Pathologically, *CHMP2B* cases are hallmarked by the presence of ubiquitinated p62 and TDP-43 immunoreactive inclusion bodies in surviving MN's of the cortex and ventral horn of the SC which stain negatively for the microtubule associated protein, tau and α -synuclein. There is also a lack of overt extramotor signs with substantial microglial activation occurring in subcortical regions (Cox et al 2010, Parkinson et al 2006).

The CHMP2B protein forms an essential component of the third endosomal sorting complex required for transport (ESCRT)-III; responsible for surrendering ubiquitin tagged cargo to multivesicular bodies (MVB's) which ultimately deliver them to the lysosomal machinery for degradation (Henne et al 2011, Skibinski et al 2005). An exon 6 mutation of the gene's acceptor splice site at the intron/exon boundary that produces a C-terminal truncated protein has been shown to disrupt this pathway (Han et al 2012, Urwin et al 2010, van der Zee et al 2008) leading to disturbances in intracellular Notch signalling and eye irregularities in the *Drosophila* invertebrate system (Cheruiyot et al 2014).

1.2.5.2.9 PFN1

Missense substitutions of incomplete penetrance (n=7) concentrated within or in close proximity to the actin binding domain of the profilin 1 (*PFN1*) gene, situated at the chromosome 17p13.2 locus (Table 1.1), are responsible for rare instances of AD inherited adult onset ALS (ALS18) (~1-2%) and bvFTLD (~0.5%) with a small number of SALS patients (~0.2%) also affected (Chen et al 2013, Ingre et al 2013, Tiloca et al 2013, van Blitterswijk et al 2013a, Wu et al 2012a, Yang et al 2013). In a meta-analysis of 5,118 cases and 13,089 neurologically healthy controls in the UK population an odds ratio (OR) of 2.44 (p<0.05) was produced for the dinucleotide variant c.350A>G (p.E117G) in exon 3 (Fratta et al 2014). The minor allele (T) of a synonymous c.334C>T (p.L112L) single nucleotide polymorphism (SNP) (rs13204) has also been reported to be a disease modifier of SALS in China with an OR of 0.73

(p<0.005) (Chen et al 2013). Phenotypic heterogeneity exists with bulbar or spinal onset occurring in the late twenties to early seventies and a median survival which spans a minimum of 36 months to almost three decades (Chen et al 2013, Ingre et al 2013, Wu et al 2012a). Upon neurohistochemical evaluation, TDP-43 pathology is observed with the presence of ubiquitinated, p62 positive inclusion bodies that are not immunoreactive for PFN1 (van Blitterswijk et al 2013a). Profilin 1 encodes a 140 amino acid peptide that is ubiquitously expressed and has been found to associate with SG's; cytoplasmic RNP granules composed of repressed translation complexes (Figley et al 2014). It is a major growth regulator that is required for the conversion of monomeric or globular (G)-actin into filamentous (F)-actin which is essential for actin polymerization (Mockrin & Korn 1980). In primary MN's which express mtPFN1, evidence of growth cone arrest and morphological deficits were apparent with a marked reduction in the ratio of (F) to (G)-actin (Wu et al 2012a). Homozygous knock-out (KO) mice were not viable, demonstrating embryonic lethality in an *in vivo* study conducted by Witke et al (2001) whilst heterozygous littermates exhibited a significantly shortened lifespan.

1.2.5.2.10 HNRNPA1

Exome sequencing and linkage analysis has recently highlighted the heterogeneous ribonucleoprotein A1 (*HNRNPA1*) gene, situated at the chromosome 12q13.1 locus (Table 1.1), as a rare cause of AD inherited adult onset ALS (ALS20) and IBMPFD/ ALS with FTLD (Section 1.2.5.2.5), otherwise known as multisystem proteinopathy (MSP), in a four generation kindred of American ancestry. Subsequent screening of a large FALS (n=212) and SALS (n=305) cohort identified two additional missense substitutions in the C-terminal, glycine-rich PrLD of isoform a and b at a frequency of 0.47 or 0.32%, respectively (Kim et al 2013). *HNRNPA1* encodes an RNA binding protein that has been found to interact with TDP-43 (Section 1.2.5.2.1) (Buratti et al 2005). It has the propensity to form spontaneously into self-seeding fibrils which is exacerbated by the presence of a disease causing mutation. In a *Drosophila* model that recapitulates many of the human pathological hallmarks of ALS-FTLD including TDP-43 proteinopathy defective isoforms of hnRNPA1 accelerated the accumulation of the protein into SG's and drove the formation of ubiquitinated, p62 and TDP-43

positive NCI's (King et al 2013).

1.2.5.3 FTLD Loci

1.2.5.3.1 MAPT

The microtubule associated protein tau (MAPT) gene, situated at the chromosome 17q21.32 locus, is associated with as many as 50% of familial FTLD cases (Hutton et al 1998, Onvike & Diehl-Schmid 2013, Rademakers et al 2004, Riedl et al 2014, Sieben et al 2012). Since its discovery almost two decades ago more than 40 genetic alterations/splicing defects and a further two extended haplotypes, namely H1 and H2 have been described (Park & Chung 2013). Patient carriers typically have a M:F ratio of 1.25:1 (n=8) with a median age at symptom onset of less than 50 years and an average disease duration of 9.40±5.0 years (Karageorgiou & Miller 2014, Le Ber 2013, Van Langenhove et al 2013). Symmetric frontal lobe atrophy, a characteristic feature upon neuroimaging of *MAPT* mutations in FLTD (Boeve & Hutton 2008), is linked to behavioural abnormalities, personality changes and dementia with rigid akinetic Parkinsonism & oculomotor dysfunction (Espay & Litvan 2011, Haugarvoll et al 2007, Park & Chung 2013, Slowinski et al 2007). At protein level, pathogenicity is conferred through a loss of function or haploinsufficiency mechanism whereby microtubule assembly and axonal transport is impaired, leading to an accumulation of hyperphosphorylated tau filaments which form aggregates within the cytoplasm of residual MNs and microglia of the CNS (Brandt et al 2005, Gasparini et al 2007, Goedert et al 2012, Iovino et al 2014, Robinson et al 2014).

1.2.5.3.2 PGRN

Mutations in the progranulin (*PGRN*) gene, situated at the chromosome 17q21.31 locus that is in close proximity to *MAPT* (Section 1.2.5.3.1) (Karageorgiou & Miller 2014), are thought to account for a further 5 to 25% of familial FTLD cases (Baker et al 2006, Pan & Chen 2013, Sieben et al 2012). So far at least sixty-seven different genetic alterations of pathological significance have been reported in the literature (Park & Chung 2013); giving rise to a heterogeneous clinical phenotype that varies greatly from bvFTLD or PNFA without apraxia of speech to semantic dementia and

36

corticobasal syndrome (CBS) (Beck et al 2008, Le Ber et al 2008, Puoti et al 2014, Snowden et al 2006). Patient carriers typically have a M:F ratio of 0.69:1 (n=27) with median age at symptom onset of 60 years and an average survival of 5.80±1.9 years (Van Langenhove et al 2013). Initial manifestations may include behavioural abnormalities & personality changes as well as rigid akinetic Parkinsonism and language impairment (Boeve & Hutton 2008, Haugarvoll et al 2007). Evidence of asymmetric frontal lobe atrophy which extends to the temporal/inferior parietal lobes is present upon MRI (Rohrer et al 2010, Whitwell et al 2009). Reactive gliosis and white matter disease pathology have also been found to be prominent features of PGRN mutations (Kelley et al 2009, McMillan et al 2014). Moreover, tau negative and TDP-43 positive ubiquitinated neuronal cytoplasmic inclusion bodies (NCI's) have been detected in the superficial layers of the cerebral neocortex as well as the hippocampal granule cells of the dentate gyrus (Josephs et al 2011, Mackenzie et al 2010, Riedl et al 2014, Robinson et al 2014). Null mutations are thought to confer pathogenicity through a loss of function mechanism although the precise function of this particular growth factor in neuronal differentiation and survival has yet to be fully elucidated (Puoti et al 2014, Riedl et al 2014).

1.2.5.3.3 PSEN1

A dominant negative heterozygous 3bp TCG insertion of an arginine residue at the position of the 352^{nd} codon (insR352) in exon 10 of the presenilin 1 (*PSEN1*) gene, situated at the chromosome 14q24.3 locus, has been reported in a single kindred in which there are at least three instances of dementia (Amtul et al 2002). Although not associated with altered CSF or plasma β -amyloid (A β) levels as seen in cases of ALZ, the mutation is thought to affect cleavage of amyloid precursor protein (APP) through its inhibition of gamma (γ)-secretase activity (Golde & Younkin 2001). The proband presented at 56 years of age with features of Parkinsonism, asymmetric paraparesis, forgetfulness, visual hallucinations, increased appetite (hyperphagia), personality and behavioural disturbances, delusions, hypersexuality, incontinence, cognitive decline and social disinhibition (Section 1.2.1) (Tang-Wai et al 2002). At autopsy cortical atrophy, thinning of the corpus callosum and enlarged lateral ventricles were apparent with marked striatal degeneration, neurophil vacuolation

37

and gliosis. The presence of ubiquitinated NCI's, NII's and DN's immunoreactive for TDP-43 which stained negative for FUS and the microtubule associated protein, tau were consistent with a diagnosis of FTLD-U (FTLD with ubiquitin and TDP-43 +ve inclusions). The pathogenicity of the insR352 mutation, however, was called into question upon discovery of an IVS1+1G>A substitution in exon 1 of the *PGRN* gene (Section 1.2.5.3.2) in the same pedigree which abolishes a 5' splice site upstream of the ATG start codon encoded by a methionine residue and blocks protein synthesis (Boeve et al 2006).

1.2.5.4 C9ORF72

A long established association between the 9p21.2 locus of the human genome and a risk for developing ALS, bvFTLD or the combined ALS-FTLD syndrome can now be explained, at least partially, by the discovery in October 2011 of a pathogenic noncoding hexanucleotide G₄C₂ repeat expansion that is situated in the first intron of exon 1a containing transcripts or proximal promoter region of exon 1b containing transcripts of the previously uncharacterised chromosome 9 open reading frame 72 (C90RF72) gene (DeJesus-Hernandez et al 2011, Renton et al 2011). Repeat-primed PCR and Southern blotting hybridization techniques have sort to size the expansion in post-mortem material isolated from human frontal cortex, cerebellum and brainstem in addition to patient derived skin fibroblasts, peripheral whole blood and EBVtransformed, immortalised B-lymphocytes (LCL's) (Beck et al 2013, Buchman et al 2013, Dols-Icardo et al 2014, Harms et al 2013, Hubers et al 2013, van Blitterswijk et al 2013c). Somatic instability of the expanded G₄C₂ sequence may explain a large degree of the variability which arises between affected members of the same family and across different tissue types with average repeat lengths ranging in size between a few hundred and several thousand copies. Uncertainty, however, remains as to the precise number of repeats that are required in order to exert neurotoxicity towards MN's in ALS. Although a threshold of more than 30 copies is widely accepted, some studies have suggested as few as 20 or 22 copies could be pathological (Byrne et al 2013, Gomez-Tortosa et al 2013).

The gene itself is comprised of 11 exons which span a 27.3Mb region of the short arm of chromosome 9p. Multiple alternatively spliced transcripts are described (n=

5) (ensembl.org) including three that are protein coding: two full length transcripts with alternated first exons [Variant I (NM_001256054) exons 1a, 2-11 and Variant III (NM_018325) exons 1b, 2-11] and a stable truncation [Variant II (NM_145005) exons 1a, 2-5]. Since the methionine residue encoding the translation initiation ATG start site is situated in exon 2, transcript variants I to III produce only two protein isoforms: isoform a of 481a.a (54.3kDa) and isoform b of 222a.a (24.8kDa) (Flicek et al 2014). *C90RF72* is predicted to be a putative member of the DENN superfamily of differentially expressed in normal and neoplastic domain containing proteins which are thought to function as GEF's for small Rab GTPases (Levine et al 2013, Zhang et al 2012); thus, implicating them in a possible role in membrane trafficking and the autophagosome-lysosome clearance pathway (Farg et al 2014).

By the autumn of 2013 several thousand incidences (n>3,300) (Woollacott & Mead 2014) of the *C9ORF72* G₄C₂ repeat expansion had been reported worldwide, making it the most common genetic cause of both conditions identified to date with as many as 43% of FALS (0.4-21% SALS) and approximately 25 to 30% of hereditary bvFTLD (2.0-23% sporadic bvFTLD) patients affected (Cooper-Knock et al 2012b, Cruts et al 2013, Devenney et al 2014, Gijselinck et al 2012, Majounie et al 2012, Smith et al 2013). It has yet to be determined, however, whether pathogenicity arises from a loss of function (haploinsufficiency) or gain of function mechanism mediated by repeat associated non-ATG (RAN) translation of DPR (dipeptide repeat) proteins (Gendron et al 2013b) or the formation of toxic RNA foci (Donnelly et al 2013).

1.3 Microarray Based Gene Expression Profiling

1.3.1 Affymetrix® Platform

The application of microarray based technology offers the end user a rapid, highthroughput approach to global gene expression profiling that is both reproducible and unbiased (Tang et al 2005). Since the advent of the Human Genome Project, launched almost twenty-five years ago (Watson 1990), it has become increasingly possible to simultaneously measure the activity of transcripts pertaining to many thousands of genes or EST's on a single GeneChip[®] or array (Sharp et al 2006b). Briefly, total RNA isolated from the cellular model or tissue of interest is reverse transcribed into complementary DNA (cDNA) that is subsequently transformed *in vitro* to yield copy RNA (cRNA) which is fluorescently labelled with an covalently attached biotin molecule. The "target" sample is then fragmented and hybridized to oligonucleotide probes that are synthesised directly onto the glass slide by means of combinatorial chemistry and photolithography. On traditional 3' IVT expression arrays each transcript is represented by 11 probe pairs. These comprise a probeset which contains equal numbers of perfect match (PM) and mismatch (MM), in order to control for hybridization specificity, 25-mer oligonucleotide sequences that are scattered at random across the chip (affymetrix.com). Signal intensity readouts from the GeneChip® scanner once the array has been washed, stained and processed can be considered proportional to the amount of cRNA for any given transcript which has bound to its complementary sequence(s) on the GeneChip® and, hence, provides an accurate, robust and quantifiable measure of gene expression (Figure 1.2).

Figure 1.2 Schematic Overview of the Affymetrix® Oligonucleotide Microarray Platform for Global GEP of Peripheral Tissues in ALS

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, cDNA - complementary DNA, cRNA - copy RNA and GEP - gene expression profiling.

The microarray platform introduced by Affymetrix[®] has quickly become one of the most extensively used systems for generating gene expression profiling (GEP) data

around the globe with a full range of different GeneChips[®] now supported including the Human Genome (HG) U133 Plus 2.0 GeneChip[®] [Chapter 3: 'Whole Blood Study'] and Human Exon 1.0ST GeneChip[®] [Chapter 5: '*C90RF72* GEP Study' and Chapter 6: '*C90RF72* Survival Study'] Arrays which are discussed in detail in Sections 2.3.1.8.1 and 2.3.2.4.1, respectively of Chapter 2: Materials and Methods (Auer et al 2009, Dal ma-Weiszhausz et al 2006, Okoniewski et al 2007).

1.3.2 Limitations of Using Human Post-Mortem Tissue

Whilst invaluable insights have been gained, specifically with regards to elucidating further the neuropathophysiological mechanisms which underlie MN degeneration in ALS and indeed other neurodegenerative, as well as neuropsychiatric conditions, there are several limitations associated with the use of human post-mortem derived tissue for generating GEP's (Altar et al 2009, Bowser et al 2006, Cooper-Knock et al 2012c, Heath et al 2013, Malaspina & de Belleroche 2004, Papapetropoulos et al 20 07, Tanaka et al 2006), and the subsequent identification of biologically meaningful markers of potential diagnostic and/or prognostic relevance that could in the future be applied in a clinical setting. Although representative of the most vulnerable neuronal cell populations, brain and spinal cord tissue can be difficult to obtain and is often in short supply; thus, restricting the sample sizes that can be used. This limits the statistical power of such studies which may ultimately compromise their reliability (Cooper-Knock et al 2012a). There have also been reports of significant levels of RNA degradation and protein modification that can occur ex vivo. Additional considerations include inter- and intra-individual variability, the extent of neuroinflammation at autopsy, PM delay and brain pH (Maes et al 2007). Decisions concerning whether to sample grey versus white matter, for example, or choosing to enrich for cortical MN's over AHC's will also have a profound impact. Moreover, transcriptional profiling of PM material inevitability reflects only the very terminal stages of disease progression (i.e. the point at which the majority of MN's will have degenerated and already been lost from the system) (Sharp et al 2006a). Hence, the difficulty in establishing whether the GE changes detected on the microarray have occurred in response to a pathogenic trigger, are a consequence of dying MN's initiating apoptosis (Section 1.2.4.8) or due to survival signals emanating from the remaining non-

41

neuronal cell populations. The latter may be particularly problematic when preparing whole tissue homogenates rather than deploying laser capture microdissection (LCM) techniques to isolate specific cell subtypes (Lederer et al 2007). In an attempt to overcome some of the aforementioned issues discussed above, a number of more readily accessible tissues have been investigated (Table 1.4); which include peripheral whole venous blood specimens and immortalised, EBV-transformed B-lympho cytes (LCL's) that are reviewed briefly in Sections 1.4.1 and 1.4.2, respectively.

Peripheral Tissue	Advantages	Limitations
Whole Blood	 readily accessible 	 no direct involvement in ALS
	 longitudinal collection 	 unrelated to MN's
	 large sample volumes 	 mixed cell population
	- good standardisation of technical	 high abundance of erythrocyte
	procedures	alpha/beta haemoglobin
PBMC	 readily accessible 	 no direct involvement in ALS
	 longitudinal collection 	 unrelated to MN's
	 homogeneous cell population 	- ex vivo handling
LCL's	 non-invasive collection 	 no direct involvement in ALS
	 good standardisation of technical 	 unrelated to MN's
	procedures	
	 almost limitless resource 	
	- large Biobank available	
	 homogeneous cell population 	
Muscle biopsy material	 direct involvement in ALS 	- accessibility
		- invasive collection
CSF	- obtained from CNS	- invasive collection
Skin fibroblasts	 readily accessible 	 no direct involvement in ALS
	 model system with the genetic 	
	background of the patient	
	 can be reprogrammed into MN- 	
	like cells	
	 source for generation of iPSC's 	

Table 1.4 Advantages and Limitations Associated with the Use of Peripheral Tissues for GEPAnalysis in ALS

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, CNS - central nervous system, CSF - cerebrospinal fluid, GEP - gene expression profiling, iPSC - induced pluripotent stem cell, LCL - lymphoblastoid cell line, MN - motor neuron and PBMC - peripheral blood mononuclear cell.

1.3.3 The Use of Peripheral Tissues

Since the MN's which degenerate in ALS cannot be harvested during life, there are great benefits to be had in sampling peripheral tissues that lend themselves to better standardization of technical procedures, are readily accessible and can be collected in large volumes without the need for re-sampling or longitudinally over the course of the disease duration e.g. whole blood (Borovecki et al 2005, Grunblatt et al 2010, Maes et al 2007, Runne et al 2007, Saris et al 2009, Scherzer et al 2007, Tsuang et al 2005) (Section 1.4.1) and, immortalised B-lymphocytes (Section 1.4.2) (Antonell et al 2010, Bittel et al 2007, Kakiuchi et al 2008, Nishimura et al 2007, Talebizadeh et al 2014). The advantages and limitations of each of these in addition to peripheral blood mononuclear cells (PBMC's) (Bayatti et al 2014), skin fibroblasts (Raman et al 2014), muscle biopsy material (Calvo et al 2012) and CSF (Jones 2011) are summarised in Table 1.4.

1.4 GEP Studies in Neurodegenerative Disease

1.4.1 Examples Using Peripheral Whole Venous Blood

1.4.1.1 ALS

Currently in the literature there has only been a single published report by Saris et al (2009) which documents the use of peripheral whole blood for the generation of ALS related transcriptomics data. In this study, 79 spinal onset and 44 bulbar onset cases of an idiopathic nature that met the EEC of either 'definite' or 'probable' ALS (Section 1.1.3) were recruited from The Netherlands along with 123 unrelated, age as well as gender matched, neurologically normal healthy control subjects. These were further subdivided into a discovery cohort which comprised 30 SALS patients and controls (Dataset 1) plus two additional replication cohorts including one that contained a further 30 SALS patients and controls (Dataset 2) and a third containing the remaining 63 SALS patients and controls (Dataset 3).

Application of the Illumina based microarray platform using Sentrix[®] HumanRef-8 Expression BeadChip Arrays which represent >22,000 RefSeq curated gene targets identified 2,300 probes (9.4%) as being differentially expressed (DE) between the SALS and control groupings in the discovery cohort (student's t-test p<0.05) (Saris et al 2009); although no validation by qRT-PCR (quantitative real-time polymerase chain reaction) was performed. Dysregulation of *CHMP2B* (Section 1.2.5.2.8) (.1.06 -fold, p<0.001) and *RAB5A* (.1.12-fold, p<0.001) were of particular interest given their prior association with the disease. RAB5A is a member of the Ras superfamily

of monomeric G-proteins that are responsible for regulating intracellular trafficking and endosome formation, transportation, membrane docking & fusion (Gohre et al 2012, Li et al 2013c, Lu et al 2014, Nayak et al 2013). They play a critical role in the autophagosome lysosome clearance pathway which is an important mechanism for cellular homeostasis and survival that has also been linked to the pathogenesis of ALS (Section 1.2.4.7) (Barmada et al 2014, Ferguson et al 2009, Hetz et al 2009, Li et al 2013b, Tarabal et al 2005). Moreover, the *RAB5A* guanine nucleotide exchange factor encoded by *ALSIN* (Section 1.2.5.1.2) is recognised as a causative gene of a rare AR inherited form of juvenile onset ALS (ALS2) (Table 1.1) (Yang et al 2001).

Saris et al (2009) proceeded in performing Weighted Gene Co-expression Network Analysis (WGCNA) on \sim 8,000 probes (36.4%) which had a statistically significant Benjamini-Hochberg false discovery rate (FDR) corrected mean detection signal of p<0.05. Hierarchical clustering produced five colour coded modules ranging in size between 199 and 842 genes which demonstrated an association with ALS disease status but were found not to correlate with specific clinical phenotypes such as age of onset, presentation or survival. Bonferroni multiple comparison tests identified Blue $[r_1=0.48(\hat{1}), p=3.60E-05]$ and Yellow $[r_1=0.61(], p=6.20E-09]$ modules which were highly preserved across all three datasets and comprised predominantly upregulated or down-regulated clusters, respectively. Ingenuity Pathway Analysis of each of the top 500 ranking gene lists highlighted transcripts that are involved in the post-transcriptional or post-translational modification of mRNA's and proteins as being significantly over-represented in the Blue module with neurodegeneration of the CNS, OS response (Section 1.2.4.1) & inflammation (Section 1.2.4.6) enriched in the Yellow module. Of particular interest is the dysregulation of *ATXN2* (Section 1.2.5.2.4) (11.10-fold, p<0.001) since polyQ expansions in this gene are associated with a rare AD inherited form of adult onset ALS (ALS13), bvFTLD with non-fluent aphasia, PD and SCA2 (Table 1.2) (Elden et al 2010, Imbert et al 1996). In a further analysis of the top 100 most highly interconnected hub genes, Saris et al (2009) also identified transcripts relating to cellular stress, apoptosis and the UPR which were shared in common between modules with those involved in vesicular trafficking or mitochondrial function found to be specific for either the Blue or Yellow modules, respectively. Similar findings to the latter have been recapitulated in the spinal cord, peripheral whole blood and muscle biopsy tissue of the transgenic SOD1^{G93A} mouse

44
model (Saris et al 2013).

Altered mRNA transcript levels of several genes (n=16) have also been reported in the motor and sensory cortices of five additional SALS patients (Wang et al 2006). These included ATP/GTP binding protein 1 (*AGTPBP1*) (\bigcirc 1.09-fold, p<0.01) which is thought to contribute to Purkinje cell degeneration and loss in hereditary forms of cerebellar ataxia (Fernandez-Gonzalez et al 2002, Lim et al 2006) and has since been validated in a third independent study comparing GEP's from 11 SALS patients and 9 neurologically healthy, control subjects (Lederer et al 2007). Other DE genes commonly dysregulated in peripheral whole blood and human post-mortem derived SC tissue include a number of those involved in DNA replication & repair as well as RNA processing, protein degradation, cellular response to stress, inflammation, Ca²⁺ homeostasis, cell cycle control, CNS vasculogenesis and glucose metabolism [*ABL1*, *CAMLG, CD74, CYBA, ENG, GYS1, POLD2, RELA, S100A9, SF1, SPN, SRPK1, TXN, UBL5, USP11* and *VIL2*] (Dangond et al 2004, Ishigaki et al 2002, Jiang et al 2005, Kudo et al 2010, Malaspina et al 2001, Offen et al 2009).

1.4.1.2 Other Neurodegenerative Disorders

1.4.1.2.1 Huntington's Disease

Huntington's disease (HD), which has a prevalence of 12.3 per 100,000 of the UK Caucasian population (Pringsheim et al 2012), is an adult onset movement disorder of monogenic inheritance that is caused by a polyQ expansion of 40 repeat lengths or greater in exon 1 of the *HTT* gene encoding the huntingtin protein (MacDonald et al 1993). The condition is characterised by the loss of gamma-Aminobutyric acid or GABAergic neurons and widespread reactive gliosis in the striatum and cerebral cortex (Runne et al 2007). Extrapyramidal signs include rigidity and bradykinesia, dystonia, reduced coordination, weight loss and chorea with cognitive decline and psychiatric disturbances (e.g. irritability, anxiety & depression) normally apparent before the onset of overt motor impairment (Ross & Tabrizi 2011).

Transcriptional profiling comparing pre-symptomatic (n=5) or symptomatic (n=12) HD patients to fourteen unrelated, age and gender matched, neurologically normal healthy control subjects identified 322 of \sim 11,000 probes (2.9%) common to both

Affymetrix Human Genome U133A GeneChip® Arrays and Amersham BioSciences CodeLink Uniset Human I and II bioarrays with an average expression ratio of >1.8 or <0.6 (student's t-test p<0.0005) for up and down-regulated changes, respectively. The majority of transcripts were increased in peripheral blood of patients relative to controls and reflected diverse biological processes including transcription/RNA processing, ubiquitin-mediated proteasomal degradation, vesicular trafficking and signal transduction. The top 30 highest ranking genes, as determined by probability value and fold-change, were assessed by qRT-PCR and a subset of 12 demonstrating the most significant DE selected to form a biomarker panel which could be applied, using principal component analysis (PCA) mapping software, to distinguish not only between HD and controls, but also between different stages of disease progression with pre-symptomatic patients clustering distinctly between individuals which are symptomatic and those that are neurologically healthy in two independent cohorts comprising a) 16 late pre-symptomatic, 14 symptomatic and 25 controls or b) nine early pre-symptomatic and a further nine controls. The panel also proved effective in a Phase I clinical trial in monitoring individual patient responses to the histone deacetylase (HDAC) inhibitor sodium phenylbutyrate (Borovecki et al 2005) which has been shown to exhibit neuroprotective properties in a transgenic mouse model of the disease (Gardian et al 2005). Moreover, an up-regulation in the expression of 7 of the 12 candidate genes (58.3%) was confirmed by qRT-PCR in human derived post-mortem tissue from the caudate nucleus of five additional HD brains and four controls (Borovecki et al 2005). In another study comparing HD (n=61), PD (n=20) and ischemic stroke (n=10) patients, the same approach was conducted by Lovrecic et al (2009) using a standard logistic regression based model which was successful in generating a positive predictive score of 78% with sensitivity 82% and specificity 53%. This finding, however, could not be replicated in lymphocytes suggesting that this particular panel of biomarkers may be specific to blood (Runne et al 2007).

1.4.1.2.2 Parkinson's Disease

PD affects approximately 1% of the population over the age of 65 (Wirdefeldt et al 2011) and is characterised as a slowly progressive neurodegenerative disorder that is characterised by a resting tremor, rigidity, gait abnormalities, asymmetric

bradykinesia and postural instability. Pathologically the condition is hallmarked by the presence of α -synuclein containing LB's as well as a substantial loss of dopaminergic neurons from within the substantia nigra pars compacta region of the brain (Ali & Morris 2014).

Transcriptional profiling of 50 early stage PD patients with a mean Hoehn and Yahr score of 2.3 (range 1-4) and 55 unrelated controls including 33 disease mimics [ALZ, progressive supranuclear palsy (PSP), CBS or multiple systems atrophy (MSA)] and 22 neurologically healthy control subjects which were age, gender and blood count matched identified 22 unique genes represented on the Affymetrix Human Genome U133A GeneChip® Arrays as being DE between PD patients and controls with SAM (significance analysis of microarrays) FDR p<0.03 and a fold-change (FC) threshold of ±1.25. Functional categories that were highlighted included the cell cycle, DNA/ RNA turnover, protein phosphorylation & transport, carbohydrate metabolism and apoptosis. Of particular interest is the down-regulation of the heat shock protein 70 (HSP70) co-chaperone suppression of tumorigenicity 13, *ST13* (\$1.63-fold, p<0.01) which has been implicated in the aberrant folding of α -synuclein and its subsequent toxicity towards dopaminergic neurones in PD (Flower et al 2005, Klucken et al 2004). This was later confirmed in two independent qRT-PCR assays using different housekeeping genes (Scherzer et al 2007). The authors also divided the cohort into a training set (62.9%) [31 PD, 18 mimics and 17 controls] and a test set (37.1%) [19 PD, 15 mimics and 5 controls] in order to determine an optimum biomarker panel of 8 candidate genes that correlated significantly with the risk of developing PD [OR of third tertile leave one out cross-validation 5.7 with 95% confidence interval (CI) between 1.6 and 21, p<0.01] (Scherzer et al 2007). In a re-analysis of the aforementioned dataset, Soreq et al (2008) were able to further improve the discriminative power of the study by deploying distribution plots and PCA mapping to allow for the effective removal of outliers that may have arisen from technical inconsistencies. In doing so they have highlighted previously unreported changes in the mRNA transcript levels of genes relating to neuro-immune signalling (Soreq et al 2008). It is also worth noting that an intron 8 SNP encoded within one of these markers, *VDR* (vitamin D receptor), is found to be disproportionately over-represen ted in Korean PD sufferers relative to the general population (Butler et al 2001, Kim

et al 2005, Li et al 2014).

In a more recently published report by Grunblatt et al (2010), 4 of 12 (33.3%) preselected candidates based upon prior GEP analyses of human post-mortem derived brain tissue [*ALDH1A1, HIST1H3, LAMB2* and *PSMA2*] (Grunblatt et al 2004, Hauser et al 2006, Lu et al 2005, Simunovic et al 2009, Zhang et al 2005) could successfully differentiate between sporadic PD cases [11 drug naïve and 116 mediated], disease mimics diagnosed with ALZ and neurologically healthy, elderly control subjects with a sensitivity and specificity of greater than 80% in qRT-PCR assays of RNA isolated from peripheral whole blood (Grunblatt et al 2010).

1.4.1.2.3 Alzheimer's Disease

ALZ represents the most common form of age-related dementia that afflicts between 3 and 7% of the global population older than 75 years (Abdulrahman & Jnr 2014, Takizawa et al 2014). Progressive memory loss and a decline in cognitive function is accompanied by reactive gliosis, atrophy of the basal forebrain and hippocampus, extracellular depositions of A β (senile plaques) and intracellular accumulations of hyperphosphorylated tau (neurofibrillary tangles) (Duyckaerts et al 2009, Sabuncu et al 2011).

Transcriptional profiling of peripheral blood mononuclear cells (PBMC's) from 14 mildly symptomatic sporadic ALZ patients [Mini Mental State Examination (MMSE) scores of 23.4±3 out of a possible 30] and an equal number of neurologically healthy age and education matched elderly control subjects using the National Institute on Aging (NIA) Human Mammalian Gene Collection (MGC) cDNA Arrays identified 942 of 6,424 probes as being DE including 849 (90.1%) down-regulated and 93 (9.9%) up-regulated transcripts with an average expression ratio of >1.2 or <0.9 and SAM 2-way analysis of variance (ANOVA) FDR threshold of p<0.05. Gene Set Enrichment Analysis (GSEA) using the online open source database that is freely available from the Gene Expression Omnibus (GEO) repository highlighted genes associated with apoptosis, protein translation & inflammation that were significantly increased and genes associated with cytoskeletal maintenance, cellular trafficking, mitochondrial function, lipid metabolism, redox homeostasis, neurotransmission, transcription &

DNA repair or cellular response to stress which were significantly decreased in the PBMC's of ALZ patients in relation to the controls (Maes et al 2007). Whilst a large proportion of these have been found to be gender specific, changes in 78% of those selected in males and 56% in females were confirmed in a qRT-PCR assay (albeit in the same cohort of samples used in the microarray experiments) and >160 probes exhibited similar expression changes in human derived post-mortem brain tissue (Blalock et al 2004, Colangelo et al 2002, Yao et al 2003) and/or transgenic animal models of the disease (Dickey et al 2003, Ho et al 2001, Reddy et al 2004).

1.4.1.2.4 Schizophrenia and Bipolar Disorder

Schizophrenia (SCHIZ) and Bipolar disorder (BPD) are severely debilitating chronic remitting and relapsing neuropsychiatric illnesses that each occur in approximately 1% of the population. The former is characterised by psychosis with symptoms of hallucinations & delusions, disorganised speech, catatonia and variable degrees of motor, cognitive and/or social dysfunction (Tandon et al 2013, Tandon et al 2009); whereas the latter, conversely, is a mood affective disorder that is characterised by episodes of mania and depression and is often associated with paranoia as well as sleep-wake disturbances (Fagiolini et al 2013, Oswald et al 2007).

Transcriptional profiling of individuals of Han Chinese descent including SCHIZ (n= 30) and BPD (n=16) patients diagnosed according to the IV criteria of the Diagnostic and Statistical Manual of Mental Disorders (DSM) and 28 unrelated, neurologically healthy control subjects identified 89 of 12,674 probes (~0.7%) on the Affymetrix U133A/plus2.0 GeneChip® Arrays as being DE between the two patient groupings and controls, applying a non-parametric ANOVA (Kruskal-Wallis) p<0.005 without performing a multiple comparisons correction. Two-dimensional (2D) hierarchical clustering using the Spearman's correlation statistic demonstrated three genetically defined subgroups on the HeatMap which corresponded to SCHIZ, BPD and control cases in the original microarray experiment. Logistic regression and ROC (Receiver Operating Characteristic) curve analysis from pair-wise comparisons of SCHIZvctrl, BPDvctrl and SCHIZvBPD determined linear and non-linear combinations of eight of the highest ranking genes, which were confirmed by qRT-PCR, to be successful in discriminating not only between a healthy versus disease status but also between SCHIZ and BPD with an overall efficiency of 95% (Tsuang et al 2005). Many of these putative markers were found to reside at chromosomal loci which have previously been linked to SCHIZ [1cen.q12 (*ADSS*), 1q21 (*S100A9*), 20q13 (*DATF1*) and 22q13 (*APOBEC3B*)], BPD [4p16 (*CTBP1*) and 4q21 (*CXCL1*)] or alternatively both of these neuropsychiatric conditions [11q22 (*ATM*) and 19q13 (*CLC*)] (Badner & Gershon 2002, Cassidy et al 2007, Cheng et al 2006, Francks et al 2010, Fullerton et al 2010, Lewis et al 2003). Furthermore, an increase in the expression levels of chemokine (C-X-C motif) ligand 1 melanoma growth stimulating activity, alpha (*CXCL1*) (\hat{v} 1.58 -fold, p<0.001) has been independently verified in a second qRT-PCR cohort which was comprised of an additional 30 SCHIZ patients and 26 unrelated, neurologically healthy control subjects (Yao et al 2008).

1.4.2 Examples Using Immortalised Lymphoblastoid Cell Lines

1.4.2.1 ALS

To date, no reports have been published on the use of peripheral EBV-transformed B-lymphocytes (LCL's) to measure gene expression in ALS.

1.4.2.2 Other Neurodegenerative Disorders

1.4.2.2.1 Schizophrenia

Transcriptional profiles of EBV-transformed B-lymphocytes from two pairs of MZ (monozygotic) twins that have a homogeneous background and are discordant for SCHIZ [(A) 54 year old males one of whom had diabetes mellitus with both positive and negative symptoms and (B) 24 year old females with one individual exhibiting purely negative symptoms and signs of auditory hallucinations] were generated on the Affymetrix® platform using Human Genome U133A Plus 2.0 GeneChip® Arrays containing >22,000 probes for the interrogation of upwards of 14,500 genes. From the analysis of five independent replicates, performed for each pair, several (n=5) transcripts were identified as being DE (p<0.05) between affected and unaffected twin members according to GeneSpring conducted parametric and non-parametric testing. These included adrenomedullin (*ADM*) and selenoprotein X1 (*SEPX1*) that

were significantly up-regulated and the B-lymphocyte and neuron specific CD200 antigen (*CD200*) which was significantly down-regulated (Kakiuchi et al 2008). The former two alterations have been verified in LCLs (Huang et al 2004) and plasma (Yilmaz et al 2007, Zoroglu et al 2002) or peripheral whole blood (Glatt et al 2005) in least one other independent SCHIZ cohort as reported elsewhere in the literature. *ADM* encodes a potent vasodilator peptide which is abundantly synthesised in the thalamus, hypothalamus and pituitary gland where it is responsible for controlling the body's neuroendocrine responses to stress (Taylor & Samson 2004). Although the precise molecular function of this member of the selenoprotein family has yet to be elucidated, Benton (2002) has suggested that in the presence of deficiency, preferential retention of selenium ions (Se²⁻) within the brain could be contributing to mood abnormalities. The remaining immunoglobulin related genes (n=2) were considered potential artefacts of the EBV transformation process and subsequently had been excluded from all further analysis (Kakiuchi et al 2008).

1.4.2.2.2 Bipolar Disorder

Transcriptome profiling of immortalised, EBV-transformed B-lymphocytes (LCL's) generated from two pairs of male MZ twins, aged 42 and 49 years, respectively that were discordant for BPD using Affymetrix Hu95A GeneChip® Arrays which contain probes for the interrogation of \sim 12,600 well characterised genes revealed overall down-regulation in the expression of 17 transcripts ($\sim 0.1\%$) ($\bigcirc 1.60$ -fold or greater, p<0.05) which are associated with the ER stress response pathway (Kakiuchi et al 2003). These included an ER chaperone, heat shock 70kDa protein 5 (HPSA5) which is known for its assistance in the refolding of aberrantly formed peptides (Ellgaard & Helenius 2003, Kleizen & Braakman 2004) as well as the HPSA5 regulator, X-box binding protein 1 (XBP1) (Dunys et al 2014, Zhang & Kaufman 2006). The former resides at the chromosome 22q12.3 locus which has previously been implicated in BPD (Marcheco-Teruel et al 2006, Mujaheed et al 2000, Potash et al 2008, Potash et al 2003). Moreover, a -116 C--->G polymorphism identified within the upstream promoter region of the *XBP1* gene, which disrupts its putative binding site by altering the consensus motif from an ACGT to AGGT, is reported to be a significant risk factor for BPD in a Japanese cohort comprising 140 bipolar I

and 57 bipolar II disorder cases and 451 unrelated neurologically healthy control subjects [OR 4.60 with 95% CI between 2.1 and 10.2] (Kakiuchi et al 2003). Upon induction of the ER stress response pathway by thapsigargin mediated Ca²⁺ ATPase inhibition the authors demonstrated substantially smaller elevations in the qRT-PCR mRNA levels of *XBP1* and *HPSA5A* transcripts in cultured LCL's from BPD patients versus controls in a direct comparison between the treated and untreated groups. Further *in vitro* experimentation introduced a 7 day pre-incubation period exposing the cells to therapeutic concentrations of the mood stabilizing compound, semisodium valproate, which led to enhanced activation of the transcription factor *ATF6* (activating transcription factor 6) and an amelioration of this potentially toxic outcome (Shen & Prywes 2005, Yoshida et al 2001).

The findings of Kakiuchi et al (2003), however, could not be replicated in a more recent case-control study of three additional pairs of Australian MZ twins including one male aged 23 years and two females aged 38 and 58 years, respectively which were profiled using the Affymetrix Human Genome U133 plus 2.0 GeneChip® Arrays (Section 1.3.2.2.2). In contrast, Matigian et al (2007) reported the DE of a number of transcripts involved in the WNT signalling cascade that influences cell migration & proliferation during embryonic development. It is also important for axon guidance in the CNS as well as being a key determinant of cell fate via its mediation of pro-apoptotic pathways.

1.5 Summary of Project Aims and Objectives

The principle aim of the PhD was to perform GEP of peripheral tissues in ALS. In the first instance whole blood was trialled since it lends itself to good standardisation of technical procedures, it is readily accessible and it can be collected in large volumes, longitudinally. However, in evaluating NuGEN Technologies Inc., UK patented linear single primer isothermal amplification (SPIATM) method this proved no more reliable than the previously unsuccessful Ambion[®] GLOBINClearTM protocol developed in house by Dr Rohini Raman (2011). Evidence is suggestive of the sheer abundance of erythrocyte derived alpha and beta haemoglobin transcripts (constituting up to 70% of the total RNA species isolated from peripheral whole blood) producing interfere-

nce on the microarray which could mask the detection of other, less abundant transcripts of equal biological importance that are also contained within the sample. For this reason, we proceeded instead to investigate the use of immortalised EBV-transformed B-lymphocytes or lymphoblastoid cell lines (LCL's) (representing a genetically homogenous cell population which can be cultured *in vitro* to support downstream functional assays) in order to address the following: 1) Upon discovery, in 2011, of a large, intronic hexanucleotide G_4C_2 repeat expansion (DeJesus-Hernandez et al; Renton et al) of >30 copies in the previously uncharacterised *C90RF72* gene, which is now recognised as the most frequent cause of ALS and bvFTLD, elucidate further the mechanism(s) of *C90RF72* neurotoxicity in ALS and 2) Within this specific genetic subtype, establish whether there are modifiers of survival [i.e. a fast (<2yrs) versus slow (≥4yrs) disease progression] that can led us to identify potential new areas of future therapeutic research.

2.1 Clinical Characteristics

2.1.1 NuGEN Ovation[®] Whole Blood Study

Participants recruited into the NuGEN Ovation[®] Whole Blood Study were Caucasian and of North European descent. These were comprised of six Riluzole treated SALS [3-M, 3-F] patients and an equal number of age, as well as gender, matched neurologically normal, healthy control [3-M, 3-F] subjects. Age at symptoms onset ranged between 38 and 71 years with a mean of 60.3±15yrs (Table 2.1). Survival from the time of diagnosis to the point at which the tissue samples were donated ranged from 12 months to a minimum of 6 years with average disease duration of approximately 3 years and 4 months.

Sample ID	Diagnosis	Gender	Age at Onset	Survival
BLDCON01	control	М	48	n/a
BLDCON02	control	F	47	n/a
BLDCON04	control	М	54	n/a
BLDCON07	control	F	56	n/a
BLDCON08	control	М	40	n/a
BLDCON10	control	F	43	n/a
BLDPAT21	SALS	М	66	1yr
BLDPAT23	SALS	F	70	2yrs
BLDPAT26	SALS	F	38	≥4yrs
BLDPAT27	SALS	М	71	≥5yrs
BLDPAT35	SALS	М	71	2yrs
BLDPAT38	SALS	F	46	≥6yrs

Table 2.1 Clinical Characteristics of SALS Patient and Control Samples Recruited to the NuGEN Ovation[®] Whole Blood Study Symptom onset could be defined as the age at which the patient first presented with significant weakness. Survival was approximated to the nearest year and in instances where an individual was still reported to be alive, a minimum disease duration was calculated using the time of diagnosis to the point at which the tissue samples were donated [indicated by the greater than or equal to (\geq) symbol].

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, BLDCON - blood control, BLD PAT - blood patient, F - female, M - male, n/a - not applicable and S - sporadic.

2.1.2 ECACC LCL Study

ECACC established lymphoblastoid cell lines (LCL's) (n=820) [120-FALS, 500-SALS

and 200-CTRL] were obtained from patients and their spouses or unrelated carers attending clinics in the Birmingham (28.8%), London (29.6%) or Sheffield (41.6%) districts between November 2003 and June 2011 (Figure 2.1). The Birmingham hub included satellite centres from Belfast City Hospital (BBe) (n=11/236), Oxford (BOx) (n=3/236), Bristol's Frenchay Hospital (BBr) (n=2/236) and Liverpool (BLi) (n=27/ 236); The London hub included satellite centres from Plymouth Derriford Hospital (LPy) (n=2/243), Cambridge (LCa) (n=6/243), Southampton General Hospital (LSh) (n=9/243), Poole General Hospital (LPo) (n=17/243), London Royal Free Hospital (LRf) (n=2/243), Royal London Hospital (LRo) (n=3/243) and the London National Hospital (LNh) (n=14/243); The Sheffield hub included satellite centres from Preston (SPr) (n=10/341), Manchester (SMa) (n=19/341), Newcastle (SNc) (n=48/341), Nottingham (SNt) (n=22/341) and Durham (SDu) (n=5/341) (Figure 2.1).

Figure 2.1 ECACC LCL Breakdown of UK Biosample Collection Centres Three National Research Hubs are represented in Orange [B] (Birmingham), Green [L] (London) and Red [S] (Sheffield) with the surrounding satellite centres encoded by the prefixes: Li - Liverpool, Be - Belfast City Hospital, Ox - Oxford, Br - Bristol Frenchay Hospital, Po - Poole General Hospital, LNh - London National Hospital, Sh - Southampton General Hospital, Ca - Cambridge, LRo - Royal London Hospital, LPy - Plymouth's Derriford Hospital, LRf - London Royal Free Hospital, Nc - Newcastle, Nt - Nottingham, Pr - Preston, Ma - Manchester and Du - Durham.

Abbreviations: BC - Birmingham control, BP - Birmingham patient, ECACC - European Collection of Cell Cultures, LC - London control, LCL - lymphoblastoid cell line, LP - London patient, SC - Sheffield control and SP - Sheffield patient.

All of the participants recruited to the study were Caucasian and of North European descent. Patients were diagnosed according to the World Federation of Neurology's amended EEC of 1998 (Section 1.1.3) (Figure 1.1) with either definite (n=248/620) or probable (n=345/620) ALS in 95.7% of cases, which included four incidences of concomitant FTLD (Section 1.2.1) and two incidences of concomitant PD (Section 1.2.1). In the remaining 4.3% of the cohort there were also several reported cases

of rare variants of MND including PBP (n=23/620) (Section 1.2.2.1), PLS (n=3/620) (Section 1.2.2.2) and PMA (n=1/620) (Section 1.2.2.3). Two hundred neurologically normal, healthy control subjects selected from the National MNDA (Motor Neurone Disease Association) DNA Bank were age and gender matched to the SALS (n=500) population with the average FALS patient developing symptoms approximately five years earlier. M:F ratios were comparable across SALS cases and controls but were found to be slightly lower in cases of FALS (n=120) (Figure 2.2).

Figure 2.2 Age Frequency Distribution of Patient and Control LCL's in the ECACC Microarray Study (n=820) [120-FALS, 500-SALS and 200-CTRL]

All of the FALS cases were assigned to the discovery cohort. Controls and SALS, on the other hand, were ranked, in ascending order according to age, and allocated the number one (discovery cohort) (Section 4.1.1) or two (replication cohort) (Section 4.1.2) alternately down the list. A further detailed analysis of the two cohorts can be found at the beginning of Chapter 4: 'Characterisation of LCL's'.

2.2 Materials

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, Ctrl - control, ECACC - European Collection of Cell Cultures, F - female, F - familial, LCL - lymphoblastoid cell line, M - male and S - sporadic.

This project was funded by EuroMOTOR (European Multidisciplinary ALS Network Identification to Cure Motor Neurone Degeneration) under the Seventh Framework Health Cooperation Programme (FP7/2007-2013) (euromotorproject.eu). The work was approved by the South Sheffield Research Ethics Committee [REC12/YH/0330; STH16573]. Prior to biosample collection informed written consent was obtained for all patient and control donors agreeing to participate in either of the two studies.

2.2.1 Biological Specimens

2.2.1.1 Peripheral Whole Blood

PAXgene[®] Blood RNA Collection Tubes (2.5mL) (PreAnalytiX, GmbH) and BD Vacutainer[®] Venous Collection Tubes (6.0mL) (BD Diagnostics) were purchased from BD Biosciences, UK.

2.2.1.2 Lymphoblastoid Cell Pellets

Frozen EBV-transformed, immortalised lymphoblastoid cell (LCL) pellets, preserved in RNA*later*[™] (Sigma-Aldrich[®], UK), were obtained from the National MNDA DNA Bank held at the Health Protection Agency's (HPA) European Collection of Cell Cultures (ECACC) (Public Health England, UK) (Section 2.3.2.1).

2.2.2 Solutions, General Chemicals and Laboratory Consumables

Nuclease free (NF) double-distilled water (ddH₂0) was purchased from QIAGEN Ltd., UK. TE buffer [10mM tris-(hydroxymethyl)-aminomethane hydrogen chloride (Tris-HCl) and 1mM ethylenediaminetetraacetic acid (EDTA), pH 7.5 at 25°C] was supplied by EPICENTRE® Biotechnologies (Illumina Inc., UK). TAE buffer [0.4mM Tris-acetate EDTA and 0.01mM Sodium EDTA, pH 8.2 at 25°C] was prepared using reagents supplied by Sigma-Aldrich®, UK. Molecular grade agarose was purchased from Bioline, UK. The intercalating nucleic acid stain, GelRed[™] was purchased from Biotium, UK. All other general chemicals were purchased from Thermo Fisher Scientific® Inc., UK including analytical grade isopropanol and absolute ethanol. Stratagene qPCR Human Reference Total RNA [1µg/µL in 0.1mM EDTA/RNase-free H₂0] was purchased from Agilent Technologies Ltd., UK. Actin, beta (*ACTB*) primers, designed by Dr Marta Milo (Department of Biomedical Science (BMS), University of Sheffield), were supplied by Invitrogen[™] (Life Technologies Ltd., UK). Haemoglobin alpha 2 (*HBA2*) primers, designed by Dr Paul Heath (SITraN), were purchased from Sigma-Aldrich[®], UK and optimised, previously by Dr Rohini Raman (Department of Neuroscience, University of Sheffield). 18S ribosomal RNA (*18SrRNA*) forward and reverse sequences were designed and optimised by Dr J Robin Highley (SITraN). All other standard qRT-PCR primers were synthesised and shipped from Eurofins MWG Operon, Germany. Stratagene Brilliant II and FastStart Universal SYBR[®] Green PCR Master Mixes were purchased from Agilent Technologies Ltd., UK and Roche Diagnostics (GmbH, Germany), respectively. The IDT PrimeTime[®] Mini qPCR Assays were supplied by Integrated DNA Technologies[®] Inc., USA. Brilliant III Ultra-Fast qRT-PCR Master Mix was purchased from Agilent Technologies Ltd., UK. Thin-walled 96-well plates and optical caps were manufactured by Geneflow Ltd., UK.

For performing gel shift assays precast 15-well (15µL) 4-20% polyacrylamide mini-PROTEAN® TBE[™] gels were purchased from Bio-Rad Laboratories Ltd., UK. Neutr Avidin[™] biotin-binding protein and a 1X phosphate buffered saline (PBS) solution, supplied at pH of 7.2±0.05 (Invitrogen Gibco[®]), were purchased from Thermo Fisher Scientific[®] Inc., UK. A 1X Tris Borate EDTA (TBE) buffer solution [89mM Tris-borate and 2M EDTA, pH 8.3±0.1 at 25^oC] was prepared using reagent supplied by Sigma-Aldrich[®], UK. Ethidium bromide was also purchased from Sigma-Aldrich[®], UK. DNA Loading Buffer Blue (5X) and the molecular weight markers HyperLadder[™] IV (100 -1000bp) and HyperLadder[™] V (25-500bp) were purchased from Bioline Reagents Ltd., UK.

Human Genome U133 (HG_U133) Plus 2.0 GeneChip® Arrays used in the analysis of Chapter 3: 'Whole Blood Study' and the Human Exon 1.0ST GeneChip® Arrays used in the analysis of Chapter 5: '*C90RF72* GEP Study' and Chapter 6: '*C90RF72* Survival Study', were purchased from Affymetrix® Ltd., UK. More traditional 3'IVT Expression Arrays were selected for the whole blood study to maintain consistency between the JB and RR (Raman 2011) generated datasets and in order to draw direct comparisons between the NuGEN Ovation® Whole Blood Solution (Section 3.5.1.2.1) and the

58

Ambion[®] GLOBINClear[™] (Section 3.5.1.2.2) protocols. For the subsequent profiling of EBV-transformed, immortalised B-lymphocytes (LCL's) (Section 2.1.2), for which a large bank of cases and controls was available, the more comprehensive Human Exon 1.0ST GeneChip[®] Arrays were chosen since they provide better coverage [>1. 4M probesets with sequences designed to span the entire length of the gene, rather than being targeted at the far 3' end of the transcript, which may be prone to small amounts of degradation during storage/handling (Section 2.3.2.4.1)] and in addition to differential expression, are also beneficial in detecting novel alternative splicing events.

2.2.3 Reagents and Kits

The PAXgene[®] Blood RNA Isolation Kits (PreAnalytiX, GmbH) and RNeasy[®] Mini Kits were purchased from QIAGEN Ltd., UK. DNase I (RNase-*free*[™]) (2,000 units/mL) and 10X deoxyribonuclease (DNase) reaction buffer [25mM MgCl₂ (magnesium chloride), 5mM CaCl₂ (calcium chloride) and 100mM Tris-HCl (Tris hydrochloride), pH 7.6 at 25^oC] were purchased from New England BioLabs[®] Ltd., UK. Eukaryotic Total RNA 6000 Nano LabChip[®] Kits were purchased from Agilent Technologies Ltd., UK. ABI High Capacity RNA to cDNA Synthesis Kits (Applied Biosystems[®]) were purchased from Life Technologies Ltd., UK.

The NuGEN Ovation[®] Amplification System V2, Whole Blood Solution and Encore[™] Biotin Module were purchased from NuGEN Technologies Inc., The Netherlands. The MinElute[®] Reaction Clean-Up Kits were purchased from QIAGEN Ltd., UK. The Ambion[®] TURBO DNA-*free*[™] DNase Treatment and Removal Kit (Applied Biosystems[®]) was purchased from Life Technologies Ltd., UK.

Ambion[®] Kits required for the Whole Transcriptome (WT) Expression Assay were purchased from Life Technologies Ltd., UK. The GeneChip[®] Eukaryotic Poly-A RNA Control, Fragmentation & Terminal Labelling Kits were purchased from Affymetrix[®] Ltd., UK. The SAPE (Streptavidin Phycoerythrin) staining solution, stringency wash buffers and hybridization reagents were also purchased from Affymetrix[®] Ltd., UK.

2.3 Methods

2.3.1 GEP from Peripheral Whole Blood

2.3.1.1 Tissue Collection and Storage

Patient donors and their spouses or unrelated carers were fasted overnight prior to phlebotomy which was performed between the hours of 8.00 and 11.00am. Whole venous blood was collected directly into sterile (2.5mL) evacuated PAXgene® Blood RNA Collection Tubes containing a proprietary reagent for the immediate stabilization of intracellular RNA. Blood specimens were transported at RT (room temperature) and stored at -20°C upon arrival, for no more than 3 years.

2.3.1.2 PAXgene® Extraction of Total RNA from Whole Blood

Blood specimens were defrosted overnight in the refrigerator, set at 4°C, and equilibrated to RT for a minimum of 2 hours, to ensure the complete lysis of blood cells, immediately prior to extraction using the PAXgene® Blood RNA Isolation Kit. Briefly, PAXgene® Blood RNA Collection Tubes (2.5mL) were centrifuged for 10 minutes at 5,000g, the supernatant was discarded and the pellet re-dissolved in RNase-free™ water. This step was repeated using 350µL re-suspension buffer and the samples incubated in a 55°C shaking water bath, set a 190rpm for 10 minutes, in the presence of 40µL proteinase K and 300µL binding buffer in order to bring about protein digestion. An additional centrifugation step through the PAXgene® shredder column was required for 3 minutes at 13,000g to homogenise the cell lysate and to remove any residual debris. The supernatant was then transferred into a fresh microcentrifuge tube and the binding conditions adjusted with absolute ethanol. After a brief 1 to 2 second centrifugation at 1,000g the lysate was pipetted directly onto the PAXgene® RNA spin column and centrifuged for a further minute at 13,000g, to permit selective binding of the RNA onto the silica membrane. The membrane was then treated for 15 minutes at RT with 10µL DNase I and 70µL DNA digestion buffer to eradicate unwanted traces of bound DNA. A series of subsequent wash steps were performed in pre-optimised buffers in order to remove any remaining contaminants. The liquid flow-through was discarded and the spin columns transferred to fresh microcentrifuge tubes. Two applications of elution buffer, each followed by a centrifugation step for 1 minute at 13,000g eluted the RNA. Samples (40μ L) were heat-denatured for 5 minutes at 65^{0} C and snap-cooled on ice.

2.3.1.3 RNA Yield and Quality Assessment

Nucleic acid concentrations were determined using the NanoDrop[™] 1000 Spectrophotometer (Thermo Fisher Scientific[®] Inc., UK). The ratio of sample absorbance (A) at 260/280 or 260/230nm wavelengths was used in order to measure the purity of the isolated material. RNA that is pure should have a value of approximately 2.0±0.2. Anything below 1.8 (A_{260/280}) is indicative of DNA/protein contamination or may be due to some residual carryover (A_{260/230}) of phenolic compounds and/or chaotropic salts from the extraction process. A small quantity of sample (1µL) was also removed to perform a Eukaryotic Total RNA 6000 Nano Assay on the Agilent 2100 Bioanalyzer (Agilent Technologies Ltd., UK). An algorithm applied by the software assesses the degree of separation between 18S and 28S ribosomal peaks on the electropherogram trace in order to compute an RNA integrity number (RIN) between 0 (undetectable, completely degraded) and 10 (high quality, intact RNA) (Schroeder et al 2006). In a study conducted by Copois et al (2007) the authors suggest that a threshold of 7.8 is sufficient for the generation of robust microarray gene expression data.

2.3.1.4 cDNA Synthesis

2.3.1.4.1 cDNA Synthesis for qRT-PCR

Total RNA isolated from peripheral whole blood was reverse transcribed into singlestranded complementary DNA (ss-cDNA). cDNA synthesis was performed using the ABI High Capacity RNA to cDNA Synthesis Kit in accordance with the manufacturers guidelines. To 1µg of starting material, a 1X enzyme and reverse transcriptase (RT) buffer mix was added and the total reaction volume (20μ L) made up in NF ddH₂0. A no-RT control to check for the presence of potentially contaminating genomic DNA was prepared as described without the addition of RNA-dependent DNA polymerase that is required for reverse transcription. Sample preparations were incubated in a G-storm GS2 Thermal Cycler (GRI Gene Technologies Ltd., UK) at 37°C for 1 hour and heat-denatured at 95°C for 5 minutes. In each reaction it is assumed that there is an approximate 1:1 conversion of RNA to cDNA. The cDNA products were diluted in NF ddH₂0 and stored at 4°C overnight or at -20°C prior to use in either traditional SYBR[®] Green qRT-PCR or IDT PrimeTime[®] Mini qPCR Assays at an optimised concentration of 12.5ng/µL.

2.3.1.4.2 cDNA Synthesis for Linear SPIATM Amplification

The Ovation[®] RNA Amplification System V2 was used in order to generate reverse transcribed cDNA for the NuGEN Technologies Inc. patented SPIA[™] method of single primer isothermal amplification. Approximately 50ng total RNA dissolved in NF dd H₂0 was combined with the first-strand primer mix and incubated in a pre-warmed MJ Research PTC-100[®] Peltier Thermal Cycler (Bio-Rad Laboratories Inc., UK) at an annealing temperature of 65^oC for 5 minutes. The tubes were snap-cooled on ice for a minimum of 2 minutes prior to the addition a first-strand buffer and enzyme master mix. Incubation occurred at 48^oC for 60 minutes and the samples heat-denatured at 70^oC for 15 minutes. Second-strand cDNA synthesis was performed at 37^oC for 30 minutes followed by an additional incubation step at 75^oC for 15 minutes. The tubes were cooled to 4^oC and placed on ice before proceeding immediately with the SPIATM amplification protocol outlined in Section 2.3.1.5.1.

2.3.1.5 NuGEN Ovation[®] Whole Blood Solution

2.3.1.5.1 NuGEN Linear SPIATM Amplification

Linear SPIATM amplification was performed using the NuGEN Ovation[®] Whole Blood Solution in conjunction with the NuGEN Ovation[®] RNA Amplification System V2. The procedure was carried out under sterilised conditions in the Clean View UV Cabinet (Cleaver Scientific Ltd., UK). Briefly, products of the cDNA synthesis reaction (Section 2.3.1.4.2) were combined with an SPIATM Master Mix containing a unique DNA/ RNA chimeric primer, DNA polymerase and RNase H. The reaction was incubated in a pre-warmed MJ Research PTC-100[®] Peltier Thermal Cycler for 1 hour at 37^oC. After the first 30 minutes the programme was paused to permit the separate addition of the Ovation[®] Whole Blood Reagent and, following a second 30 minute incubation the tubes were heat-denatured to 95°C, for 5 minutes and snap-cooled on ice for at least 2 minutes before being stored at -20°C, prior to purification (Section 2.3.1.5.2).

2.3.1.5.2 QIAGEN MinElute® Purification of NuGEN Amplified Material

Amplified SPIA[™] cDNA was purified using the QIAGEN MinElute[®] Reaction Clean-Up Kit, according to the recommendations of NuGEN Technologies Inc., UK. Briefly, the samples were combined with binding buffer ERC and passed through a QIAGEN Min-Elute[®] Spin Column at a centrifugation speed of 13,000g for 1 minute. Under a high chaotropic salt concentration the cDNA is adsorbed onto the silica membrane whilst unwanted traces of enzymes/detergents and unincorporated nucleotides are effectively removed from the system. The membrane is washed with buffer PE and 80% freshly prepared ethanol solution. Following each addition the columns were centrifuged at 13,000g, for 1 minute and the flow-through, containing contaminants was discarded. The purified products were eluted in 30µL NF ddH₂0 at RT and quantified using the NanoDrop[™] 1000 Spectrophotometer (Section 2.3.1.3), prior to being stored at -20[°]C.

In addition, pre-amplified material from BLDPAT23 was treated with the Ambion[®] TURBO DNA-*free*[™] DNase Treatment and Removal Kit. Briefly, 10µg of sample was combined with a 1X TURBO DNase buffer and 2 units of TURBO DNase enzyme in a 50µL reaction volume. Following 30 minutes incubation at 37°C, 0.1 volumes of resuspended DNase inactivation reagent was added and the sample maintained at RT for 5 minutes. A short centrifugation step was performed at 10,000g for 90 seconds and the supernatant containing purified cDNA carefully transferred to a fresh 0.5mL Eppendorf tube.

2.3.1.5.3 Encore[™] Biotin-Labelling of Fragmented cDNA Targets

The NuGEN Encore[™] Biotin Module was used to generate fragmented, biotinylated ss-cDNA targets suitable for hybridization onto Affymetrix[®] Human Genome U133 Plus 2.0 GeneChip[®] Arrays. A fragmentation buffer/enzyme master mix was applied to 4.4µg purified SPIA[™] cDNA dissolved in NF H₂0 to create a final reaction volume of 32µL. The samples were incubated in a pre-warmed MJ Research PTC-100[®] Peltier

Thermal Cycler at 37^oC for 30 minutes before reaching a denaturation temperature of 95^oC for 2 minutes and snap-cooled on ice. A second incubation in the presence of a proprietary labelling buffer, reagent and enzyme mater mix was then performed at 37^oC for 60 minutes, followed by 70^oC for 10 minutes. This resulted in attachment of a single biotin molecule to the 3-hydroxyl terminal nucleotide of each SPIATM cDNA fragment; with typical fragments ranging in length between 50 and 100bp. Products were analysed on the Agilent Bioanalyser (Section 2.3.1.3) and stored at -20^oC.

A detailed description of the Ambion[®] GLOBINClear[™] procedure, carried out by Dr Rohini Raman (Raman 2011), can be found on page 67 of her doctoral dissertation titled: "Gene Expression Profiling to Identify Biomarkers of Motor Neuron Disease".

2.3.1.6 Quantitative Real-Time PCR

Quantitative RT-PCR (qRT-PCR) was performed in duplicate 10µL reaction volumes (Table 2.2) containing 12.5ng of cDNA template, optimum concentrations of forward (F') and reverse (R') primer sequences, a 1X Stratagene Brilliant II SYBR® Green/2X FastStart Universal SYBR® Green PCR Master Mix and RNase-*free*TM water. Each run also included a negative no-RT and no template control (NTC). Haemoglobin, alpha 2 (*HBA2*) transcript levels were measured pre- and post-SPIATM amplification using the standard housekeeping gene actin, beta (*ACTB*) which served as a positive end-ogenous control. *ACTB* was selected over other commonly chosen normalisers, such as 18S ribosomal RNA (*18SrRNA*) and glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) since it was found to exhibit the most stable level of expression, across all of the samples in the experiment, using MAS 5.0 pivot data displayed by GeneChip® Operating Software (GCOS), Affymetrix® Ltd., UK.

A "Normal 2 Step" profile for qRT-PCR products of less than 150bp was set up with FAM as the reporter dye and ROX the internal reference control, using a Stratagene Mx3000PTM Real Time PCR Thermal Cycler from Agilent Technologies Ltd., UK. An initial temperature step at 95°C for 10 minutes was required in order to activate the SureStart *Taq* DNA polymerase. This was followed by 40 cycles of heat denaturation at 95°C for 30 seconds and primer annealing/extension at 60°C for 60 seconds. The programme ended with three final temperature steps; one at 95°C for 60 seconds, a

Gene	Transcript	Region	Primer Sequence (5'> 3')	Tm	GC%	Amplicon	Optimum conc.	
HBA2	ENST00000251595	Exon 1-2	F' GCCCTGGAGAGGATGTTCCT R' CGTGGCTCAGGTCGAAGTG	61.0 60.7	60.0 63.2	70bp	300/300nmol	
Housekeeping Gene								
ACTB	ENST00000331789	Exon 4	F' TCACCGAGCGCGGCT R' TAATGTCACGCACGATTTCCC	61.2 59.0	73.3 47.6	60bp	300/300nmol	

Table 2.2 qRT-PCR Primers and Optimum Concentrations for Validation of the NuGEN Ovation® Whole Blood Study

Abbreviations: 3' - three prime, 5' - five prime, *ACTB* - actin, beta, F' - forward primer sequence, *HBA2* - haemoglobin, alpha 2, qRT-PCR - quantitative real-time PCR, R' - reverse primer sequence and Tm - melting temperature.

second at 60°C for 30 seconds and a third at 95°C for 30 seconds.

This technology utilises fluorescence based detection chemistry, which enables the investigator to accurately detect and quantify the abundance of a particular nucleic acid transcript during each amplification cycle of the PCR reaction. It is reliant upon an intercalating dye, in this case SYBR® Green I, that binds indiscriminately and with high affinity to the minor groove of newly synthesised double-stranded DNA/cDNA. SYBR[®] Green I absorbs light at a maximum wavelength of 497nm and, in its excited state, it has an emission peak of around 520nm. During the exponential phase, the quantity of fluorescently labelled product accumulates, in a linear manner, as more and more amplicons are created. This leads to a quantifiable increase in the signal intensity readout; which is a measure directly relating to the length of the amplified target, as well as, the number of copies produced. Version 4.10, build 389 of Stratagene MxProTM QPCR Software (Agilent Technologies Ltd., UK) records the Ct or cycle threshold value which is defined as the minimum number of cycles required before the signal can be detected above background levels of the NTC. Relative mean concentrations were determined by calculating the differences in Ct values between the gene of interest and the endogenous housekeeping control.

2.3.1.7 Agarose Gel Electrophoresis

In order to ascertain whether pre- and post-SPIA[™] amplified PCR products were of an anticipated size for measurements of *ACTB* and *HBA2* transcript levels in peripheral whole blood three SALS patient and control samples were selected at random to perform agarose gel electrophoresis. PCR products (7µL) and a 25-500bp molecular weight marker (5µL) (HyperLadder[™] V) were run at 120V for approximately 30 to 40 minutes on a 3.0% agarose gel made up in a 1X TAE buffer solution [0.4Mm Trisacetate and 0.01mM Sodium EDTA, pH 8.2 at 25°C] and 3X concentration of the intercalating nucleic acid stain GelRed[™] (a non-toxic alternative to Ethidium Bromide) [APPENDIX FIGURE A3]. The bands which formed were visualised under a UV light source using the Syngene GENi Gel Documentation System.

2.3.1.8 Affymetrix[®] HG_U133 Plus 2.0 GeneChip[®] Arrays

2.3.1.8.1 HG_U133 Plus 2.0 GeneChip[®] Arrays

Affymetrix® HG_U133 Plus 2.0 GeneChip® Arrays are high-density oligonucleotide arrays with 1.3M distinct features, comprising ~54,000 probesets [11 pairs of PM and MM probes of 25-mer synthesised *in situ* directly onto the glass slide by photolithography. The latter deviates from its complementary target by a single base at the 13th position where an adenine (A) is substituted for thymine (T) and guanine (G) is substituted for cytosine (C), or vice versa] for the detection of >47,000 unique transcripts and variants including more than 38,500 well characterised genes which are represented in the National Centre for Biotechnology Information (NCBI) (ncbi.nlm .nih.gov) GenBank®, dbEST or RefSeq database (Benson et al 2014, Boguski et al 19 93, Pruitt et al 2014). Compared to previous generations, Plus 2.0 GeneChip® Arrays provide coverage of an additional 6,500 genes (Boguski & Schuler 1995, Schuler 19 97, Schuler et al 1996) with sequence clusters generated from the UniGene build 133 (April 2001) and 159 (January 2003) of the human genome.

2.3.1.8.2 Hybridization

SPIA[™] ss-cDNA targets, post-fragmentation and labelling, were hybridized onto the Affymetrix[®] HG_U133 Plus 2.0 GeneChip[®] Arrays following recommendations made by NuGEN Technologies Inc., UK and in accordance with the instructions contained in the GeneChip[®] Expression Analysis Technical Manual (Affymetrix[®] Ltd., UK) for use with the Affymetrix[®] GeneChip[®] 3' IVT Expression Kit.

GeneChips[®] were equilibrated to RT immediately prior to their use. Reagents were thawed on ice and the 20X Eukaryotic hybridization control stock heated to 65° C for 5 minutes or until the cRNA was completely re-suspended. A hybridization cocktail was prepared in 1.5mL Eppendorf tubes by combining 50µL of sample with the 20X Eukaryotic hybridization control stock (11µL) [bacterial genes *bioB, bioC* and *bioD* of the *E. coli* biotin synthesis pathway and the recombinase protein *cre* from the P1 bacteriophage at respective concentrations of 1.5 (represents the limit of detection), 5, 25 and 100pM (American Type Culture Collection)], 2X hybridization buffer (100 µL) [100mM 2-(*N*-morpholino)ethanesulfonic acid (MES), 0.01% Tween-20 (pH 6.6 at 25°C), 1M [Na⁺] and 20mM EDTA], 10% dimethyl sulfoxide (DMSO) (22µL), 2nM

concentrations of control oligonucleotide B2 (3.7 μ L) and sufficient amounts of RNa se-*free*TM water to bring the total reaction volume up to 220 μ L.

Control oligonucleotide B2 hybridizes to the checkerboard pattern in each corner of the array as well as predefined features along its outer edge. These distinct patterns are important in aiding Microarray Suite version 5.0 (MAS5.0) (Affymetrix[®] Ltd., UK) in correctly aligning each array to a grid during the initial stages of image handling. Signal intensities generated from the serial concentrations of *bioB*, *bioC*, *bioD* and *cre* are used to provide the software with additional information on the efficiency of the hybridization, washing and staining procedures.

After the preparation of the hybridization cocktail, the tubes were flicked to mix and their contents collected by centrifugation. The reaction mixture was heated to 99°C for 2 minutes, then cooled to 45°C for 5 minutes and centrifuged at maximum speed for 1 minute. The microarrays were primed with 200µL of pre-hybridization mix before being loaded into the GeneChip® Hybridization Oven 640 (Affymetrix® Ltd., UK) with rotation set at 60rpm. Following an incubation step at 45°C for 10 minutes, the pre-hybridization mix was discarded and replaced with an identical volume, 200µL of the hybridization cocktail before being returned to the oven for 18±2 hours overnight.

2.3.1.8.3 Washing, Staining and Scanning

Post-hybridization washing and staining was performed on the GeneChip® Fluidics Station 450 applying fluidics protocol FS450_0004 and the standard 49 format Euk-GEWS2v4_450 script, which are outlined in the GeneChip® Expression Wash, Stain and Scan User Manual for Cartridge Arrays (Affymetrix® Ltd., UK). Briefly, the hybridization cocktail was removed and stored at 4°C. Cartridges were loaded with 200 µL non-stringent Wash Buffer A [6X SSPE containing 0.02M EDTA, 3M NaCl (sodium chloride), 0.2M NaH₂PO₄ (monosodium phosphate) and 0.01% Tween-20] and equilibrated to RT. Fresh solutions of staining reagents were then prepared. The SAPE mix for the first and third stain contained 2X stain buffer (300µL) [100nM MES, 1M [Na⁺] and 0.05% Tween-20], 1mg/mL (6µL) SAPE, 50mg/mL (24µL) Bovine Serum Albumin (BSA) and 270µL molecular biology grade water for a final reaction volume of 600 μ L per sample. The antibody (Ab) mix for the second stain contained the same 2X stain buffer (300 μ L), 10mg/mL (6 μ L) Goat IgG (immunoglobulin G) stock, 0.5mg /mL (3.6 μ L) biotinylated Ab, 50mg/mL (24 μ L) BSA and 266.4 μ L molecular biology grade water, again to achieve a final volume of 600 μ L per sample.

Two post-hybridization washes, one with non-stringent Wash Buffer A at 25°C, for 10 cycles with 2 mixes per cycle and another, with stringent Wash Buffer B [100mM MES, 0.1M [Na⁺] and 0.01% Tween-20] at 50°C, for 4 cycles with 15 mixes per cycle was followed by the first stain in SAPE solution at 25°C for 10 minutes. A post-stain wash with non-stringent Wash Buffer A at 25°C for 10 cycles with 4 mixes per cycle is then followed by a second and third stain at 25°C for 10 minutes in the Ab solution and 10 minutes in the SAPE solution. A final wash step is then performed with non-stringent Wash Buffer A at 30°C for 15 cycles with 4 mixes per cycle. The cartridges are filled with 250µL of Array Holding Buffer prior to scanning.

2.3.1.9 Bioinformatics Analysis

2.3.1.9.1 Affymetrix[®] GeneChip[®] Operating Software

Images processed by the Affymetrix[®] GeneChip[®] Scanner 3000 were extracted using the GeneChip[®] Operating Software (GCOS) version 1.2 (Affymetrix[®] Ltd., UK).

2.3.1.9.2 GeneSpring GX v11.5.1

CEL files containing information regarding probeset signal intensities as well as the percentages of present (P) or absent (A) calls for patients and controls recruited to the NuGEN Ovation[®] Whole Blood Study were imported into GeneSpring GX software version 11.5.1 (Agilent Technologies Genomics Ltd., UK) (Chu et al 2001, Dresen et al 2003, Xu et al 2004). Raw expression values were log2 transformed and a PLIER (Probe Logarithmic Intensity Error) 16 normalisation procedure applied without the need for performing a baseline conversion to the median of all the samples (Gyorffy et al 2009). DE transcripts were detected at the 5% significance level by means of an unpaired student's t-test with an FDR corrected p<0.05 and FC threshold of greater than or equal to (\geq) to plus or minus (\pm) 1.50.

2.3.1.9.3 Gene Ontology Enrichment Analysis

Affymetrix® ID's were uploaded into the Database for Annotation, Visualisation and Integrated Discovery (DAVID) bioinformatics resource version 6.7 from the National Institute for Allergy and Infectious Diseases (NIAID) which is freely available online at david.abcc.ncifcrf.gov (Huang da et al 2009a, Huang da et al 2009b). Applying an *Homo sapiens* background, functional annotation clustering analysis was performed on GOTERM_BP_FAT and GOTERM_MF_FAT gene ontology (GO) terms with 'Medium' classification stringency [Kappa: similarity term overlap 3, similarity threshold 0.50; Classification: Initial group membership 3, final group membership 3 and multiple linkage threshold 0.50]. Those categories identified as being significantly enriched within the patient populations were defined as having a minimum EASE score above 1.30 and Benjamini-Hochberg FDR corrected p<0.05. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were also interrogated using a Fishers Exact t-test conducted at the 5% significance threshold.

An overview of the workflow and analysis pipeline for the 3' IVT Expression Arrays used in the assessment of the JB NuGEN Ovation[®] WB Solution versus RR Ambion[®] GLOBINClear[™] protocol, for performing GEP from peripheral whole blood in ALS, is provided in Figure 2.3. CEL files generated by Dr Rohini Raman (Raman 2011) were re-analysed in GeneSpring GX v11.5.1 using the same methods as described above in Section 2.3.1.8.2.

2.3.2 GEP from Lymphoblastoid Cell Lines

2.3.2.1 Tissue Collection and Storage

Peripheral whole blood (6.0mL) was collected directly into sterile BD Vacutainer[®] Venous Collection Tubes containing anticoagulants, in order to prevent clotting, and 1.0mL acid citrate dextrose solution B (ACD-B) [14.7g/L dextrose, 13.2g/L trisodium citrate and 4.8g/L citric acid]. The samples were transported at RT to the HPA ECACC where isolated peripheral blood lymphocytes were transformed *in vitro*, by Epstein-Barr viral (EBV) infection, into stabilised immortal polyclonal B-cell lines. Suspension cultures were grown for up to 8 weeks in T25 tissue culture flasks containing 30 to

Figure 2.3 Flowchart Schematic of 3' IVT Expression Array Analysis Pipeline Established for Peripheral Whole Blood in ALS.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, cRNA - copy RNA, DE - differential expression, GCOS - GeneChip[®] Operating Software, HG - Human Genome, IVT - *in vitro* transcription, KEGG - <u>K</u>yoto <u>E</u>ncyclopaedia of <u>G</u>enes and <u>G</u>enomes, mRNA - messenger RNA, PCA - principal component

analysis, SPIA[™] - single primer isothermal amplification and ss-cDNA - single-stranded complementary DNA.

40mL Roswell Park Memorial Institute (RPMI) 1640 medium [37°C incubator with 5% carbon dioxide (CO₂) levels]; supplemented with 20% Foetal Bovine Serum (FBS) and 2mM concentrations of the essential amino acid, glutamate. Frozen cell pellets (LCL's), containing approximately $2x10^7$ cells per sample, were preserved in 300μ L RNA*later*TM. These were shipped on dry ice and stored at -80°C upon arrival.

2.3.2.2 QIAGEN Extraction of Total RNA from Frozen LCL's

Frozen lymphoblastoid cell pellets, preserved in RNA*later*[™], were thawed on ice for a minimum of 1 hour prior to extraction using the RNeasy® Mini Kit. The tubes were flicked gently until the pellet was dislodged and vortexed at a low speed in order to re-suspend the cells. A 75µL suspension, containing approximately 5x10⁶ cells, was transferred to a sterile 1.5mL microcentrifuge tube. The samples were centrifuged at 13,000g for 1 minute and the supernatant containing the RNA*later*TM stabilization reagent discarded. Cell lysis was immediately brought about by the addition of 600µL buffer RLT. The denaturant within this buffer, guanidine thiocyanate, also functions to preserve RNA integrity through its inhibition of RNase activity. The samples were then vortexed at maximum speed for 1 minute to ensure complete homogenisation of the cell lysate. Appropriate binding conditions were achieved with the addition of 1 volume of freshly prepared 70% ethanol solution. The lysate was pipetted up and down three times to mix and 700µL transferred to an RNeasy[®] spin column, placed inside a 2mL collection tube, which was centrifuged at 10,000g for 15 seconds. The liquid flow-through was discarded and the procedure repeated with the remaining 500μ L of sample in order to permit selective binding of up to 100μ g total RNA, of > 200bp in length, to the silica membrane. A series of subsequent wash steps flushes the membrane of any remaining contaminants. Following each separate addition of 700µL buffer RW1 and 500µL buffer RPE the spin columns were centrifuged for 15 seconds at 10,000g and the liquid flow-through discarded. A second application of 500µL buffer RPE with a centrifugation step at 10,000g for 2 minutes removed any residual ethanol which would otherwise have had the potential to interfere with a

72

number of downstream reactions. A dry spin at 13,000g for 1 minute was performed using a fresh 2mL collection tube in order to reduce the carryover of buffer RPE. The spin columns were transferred to sterile 1.5mL microcentrifuge tubes and the total RNA eluted in 40µL RNase-*free*TM water, requiring a further centrifugation step at 13,000g for 1 minute. Nucleic acid concentrations could then be determined using the NanoDropTM 1000 Spectrophotometer. RNA products were subsequently stored at -80°C. The quality of the extracted material was later assessed on the Agilent 21 00 Bioanalyser (Section 2.3.1.3).

RNA products of particularly poor quality (RIN score below 5.0) underwent DNase treatment to purify the isolated material and to remove potentially contaminating genomic DNA. Briefly, 10µg total RNA was incubated in a pre-warmed MJ Research PTC-100® Peltier Thermal Cycler at 37°C for 10 minutes in the presence of 2 units of DNase I (1µL) and a 1X DNase reaction buffer [10mM Tris-HCl, 2.5mM MgCl₂ and 0.5mM CaCl₂, pH 7.6 at 25°C]. The program was paused and, following the separate addition of 5mM EDTA, the samples were heated to an inactivation temperature of 70°C for 10 minutes. Tubes were snap-cooled on ice for a minimum of 2 minutes and their contents collected by centrifugation. In instances where there was no visible improvement in the electropherogram trace of the Agilent 2100 Bioanalyser repeat RNA extractions were performed.

2.3.2.3 Affymetrix[®] WT Sense-Target Labelling Assay

2.3.2.3.1 Linear Amplification

Total RNA isolated from peripheral LCL's was prepared for exon level microarray analysis using the Ambion[®] Whole Transcriptome (WT) Expression Kit. The protocol utilises a proprietary reverse transcription priming method, designed to specifically prime non-ribosomal RNA including both polyadenylated and non-polyadenylated mRNA. Briefly, on Day 1, total RNA is reverse transcribed into cDNA, which is then converted into anti-sense copy RNA (as-cRNA) by *in vitro* transcription (IVT) using a T7 RNA polymerase. Purification of the amplified as-cRNA was carried out on Day 2, the product of which then became the template for the synthesis of ss-cDNA.

Day 1 On ice, an initial 3μ L reaction volume was prepared containing ~300ng total

RNA made up in NF ddH₂0. Serial dilutions of positive premixed exogenous controls for the *Bacillus subtilis* genes lys (1:100,000), phe (1:50,000), thr (1:25,000) and dap (1:6,667) was performed according to instructions contained within the Affymetrix GeneChip[®] Eukaryotic Pol-A RNA Control Kit. In the first dilution, 2 μ L Poly-A control stock is added to 38 μ L of the supplied dilution buffer (1:20). After thorough mixing and a short spin in the microcentrifuge, 2 μ L of the first dilution is added to a further 98 μ L of dilution buffer (1:50) to prepare the second dilution. The same volume of the second dilution (2 μ L) is again added to 98 μ L of dilution buffer (1:50) to prepare the third dilution. The fourth and final dilution was prepared by mixing 7 μ L of the third dilution with 21 μ L of dilution buffer (1:4).

Pre-prepared total RNA was then combined with 2µL of the fourth dilution of Pol-A spike in controls prior to the introduction of the first-strand cDNA buffer (4µL) and enzyme (1µL) master mix. Gentle vortexing and a brief 5 second centrifugation step ensured thorough mixing and that the contents of the reaction were collected at the bottom of the tube before proceeding immediately with a 2 hour incubation in a prewarmed MJ Research PTC-100[®] Peltier Thermal Cycler. The samples were heated to 25°C for 60 minutes, followed by 42°C for a further 60 minutes and then cooled to 4°C for a minimum of 2 minutes. The temperature of the lid was maintained at 50°C throughout the cycle. At the end of the programme the tubes were centrifuged for 5 seconds and placed on ice. A second-strand cDNA buffer $(12.5\mu L)$ and enzyme $(5\mu L)$ master mix was then added and the reaction volume made up to 60μ L with NF ddH₂0. The tubes were vortexed, spun-down in a microcentrifuge and incubated, this time with the heated lid disabled, at 16°C for 60 minutes followed by 65°C for 10 minutes and then 4°C for at least of 2 minutes. At the end of the programme the tubes were again centrifuged for 5 seconds and placed on ice. An IVT buffer (24µL) and enzyme (6µL) master mix was prepared at RT and 30µL transferred to each 60µL secondstrand cDNA sample. The tubes were vortexed, spun-down in a microcentrifuge and incubated at 40°C for 16 hours with the heat lid set at 50°C, and then maintained at 4⁰C overnight.

Day 2 Purification of the newly synthesised as-cRNA was reliant on a magnetic beadbased assay developed by Ambion[®] which removes unincorporated nucleotides and traces of unwanted salts, enzymes as well as inorganic phosphates. At RT the nucleic acid binding beads (10μ L) are combined with a concentrated buffer (50μ L) and 60μ L applied to the sample. After pipetting up and down three times to mix, the reaction was transferred to the well of a U-bottom plate, 60µL analytical grade isopropanol was added and the mixture pipetted up and down a further three times. The samples were gently shaken (setting G) on a Grant Bio PMS-1000 microplate shaker (Grant Instruments Ltd., UK) for 5 minutes in order to facilitate the binding of as-cRNA to the nucleic acid binding beads. The U-bottom plate was removed and placed on the Magnetic Stand-96 (Life Technologies Ltd., UK) for 10 minutes until the solution was completely transparent and the beads had formed a tight pellet against the magnets. The supernatant was then carefully aspirated and discarded ensuring not to disturb the pellet. Working quickly to prevent the beads from drying out, 100µL nucleic acid wash solution was added, the samples were shaken at a moderate speed (setting M) for 2¹/₂ minutes, the beads captured on the magnetic stand for 10 minutes and the supernatant discarded. This step was repeated and the samples shaken vigorously (setting V) for 1 minute to evaporate any residual ethanol. To each of the wells, 40µL of pre-heated (55°C) elution solution was applied and the magnetic beads pipetted up and down several times until fully dispersed. Following a 2 minute incubation at RT, the samples were shaken vigorously for 3 minutes, the beads then captured on the magnetic stand for 60 seconds and purified as-cRNA transferred to sterile 0.2mL Eppendorf tubes on ice. As-cRNA concentrations were measured on the NanoDrop™ 1000 Spectrophotometer as previously described (Section 2.3.1.3).

To perform the sense-strand cDNA synthesis, 2μ L of random primers were initially combined with 10μ g as-cRNA in a total reaction volume of 24μ L which is equivalent to an as-cRNA concentration of 455ng/ μ L made up in NF ddH₂0. The samples were incubated, with the heated lid set at 75°C, to a denaturation temperature of 70°C for 5 minutes, followed by 25°C for another 5 minutes and then cooled to 4°C for at least 2 minutes. At the end of the programme tubes were centrifuged for 5 seconds and placed on ice. A second cycle sense-strand cDNA synthesis buffer (8 μ L) and enzyme (8 μ L) master mix was prepared and 16 μ L transferred to the reaction mixture. The tubes were vortexed, spun-down in a microcentrifuge and incubated, with the heated lid set at 75°C, to an annealing temperature of 25°C for 10 minutes, then 42°C for 1 hour 30 minutes followed by a heat denaturation step at 70°C for 10 minutes before being cooled to 4^{0} C for a minimum of 2 minutes. At the end of the programme, the tubes were centrifuged for 5 seconds and placed on ice. The as-cRNA template was then degraded by the addition of 2µL RNase H. Pipetting up and down three times ensured the complete transfer of the enzyme from the pipette tip to the sample. The tubes were vortexed, spun-down in a microcentrifuge and incubated at 37°C for 45 minutes, with the heated lid set at 75°C, followed by 95°C for 5 minutes before being cooled to 4°C for at least 2 minutes. At the end of the programme, tubes containing the newly synthesised ss-cDNA were centrifuged for 5 seconds and placed on ice.

Purification of the ss-cDNA was achieved applying the same basic principles of the magnetic bead-based assay described above, with a few minor adjustments made to the protocol. Briefly, introducing 18µL of NF ddH₂0 water brought the final reaction volume up to 60µL. At RT nucleic acid binding beads (10µL) were combined with a concentrated buffer (50μ L) and 60μ L applied to the sample. After pipetting up and down 3 times to mix the reaction was transferred to the well of a U-bottom plate, 120µL of absolute ethanol added and the mixture pipetted up and down a further 3 times. Samples were gently shaken (setting G) for 5 minutes, the beads captured on a magnetic stand for 10 minutes and the supernatant discarded. Two applications of nucleic acid wash solution $(100\mu L)$ were each followed by a moderate shake (setting M) for 2½ minutes and a capture time of 10 minutes before carefully aspirating and discarding the supernatant. Residual ethanol was evaporated by vigorously shaking the plate (setting V) for 1 minute. Purified ss-cDNA was then eluted by adding 30µL elution solution preheated to 55°C and pipetting up and down until the beads were fully dispersed. Following a 2 minute incubation step at RT the samples were shaken vigorously for a further 3 minutes, the beads captured on the magnetic stand for 60 seconds and the ss-cDNA transferred on ice to sterile 0.2mL Eppendorf tubes. Again concentrations were measured using the NanoDrop[™] 1000 Spectrophotometer as previously described (Section 2.3.1.3). The products were stored at -20°C.

2.3.2.3.2 Fragmentation

The ss-cDNA targets were fragmented into lengths of approximately forty to seventy nucleotides (~40-70nt) applying the Affymetrix[®] GeneChip[®] WT Fragmentation and Terminal Labelling Kit. To 5.5µg of starting material, NF ddH₂0 water was added to

bring the total reaction volume up to 31.2µL. A fragmentation master mix containing a 10X cDNA fragmentation buffer, 1,000 units Apurinic/Apyrimidinic Endonuclease 1 (APE 1), 10 units Uracil-DNA Glycosylase (UDG) and RNase-*free*TM water (10µL) was prepared on ice and 16.8µL transferred to each cDNA sample. The tubes were flicked to mix and the contents collected by centrifugation immediately prior to an incubation step at 37°C for 60 minutes in a pre-warmed MJ Research PTC-100[®] Peltier Thermal Cycler with the heated lid set at 100°C. The enzymes were heated to an inactivation temperature of 95°C for 2 minutes and the tubes snap-cooled on ice. A 1µL aliquot was retained for size distribution analysis on the Agilent 2100 Bioanalyser (Section 2.3.1.3).

2.3.2.3.3 Labelling

To a 45μ L fragmentation reaction, 15μ L labelling master mix was applied containing terminal deoxynucleotidyl transferase (TdT) (2μ L), 5X TdT buffer (12μ L) and 5mM concentrations of DNA labelling reagent (1μ L). The tubes were flicked to mix and the samples centrifuged for 5 seconds immediately prior to an incubation step at 37° C for 60 minutes in a pre-warmed MJ Research PTC- 100° Peltier Thermal Cycler with the heated lid maintained at 100° C. At the end of the programme the samples were heated to a denaturation temperature of 70° C for 10 minutes, before being cooled to 4° C for a minimum of 2 minutes and placed on ice. The products were stored at - 20° C.

2.3.2.3.4 Electrophoretic Mobility Gel-Shift Assay

The biotinylation efficiency of a proportion of the samples selected at random from each fragmentation and labelling batch was assessed in an Electrophoretic Mobility Shift Assay (EMSA) using the NeutrAvidin[™] biotin-binding protein (Holden & Tacon 2011, Ludwig et al 1995) in accordance with the recommendations of Affymetrix[®] Ltd., UK. Precast 15-well (15µL) 4 to 20% polyacrylamide gels were loaded into the Mini-PROTEAN[®] Tetra Cell (Bio-Rad Laboratories Inc., UK) and the system filled with a 1X TBE buffer solution containing 89mM Tris-borate and 2mM EDTA, pH 8.3±0.1 at 25°C. Two 1µL aliquots for each sample were transferred to separate Eppendorf tubes and heated to 70°C for 2 minutes. A 2mg/mL concentration of NeutrAvidin[™] biotin-binding protein was prepared in a 1X PBS solution, pH 7.2±0.05 at 25°C and 5µL added to the first aliquot with the volume of the second aliquot being made up with PBS. The tubes were vortexed, spun-down in a microcentrifuge and incubated at RT for 5 minutes. Molecular weight markers HyperLadderTM IV (100-1000bp) and V (25-500bp) were loaded into the first and final lane of each gel. The samples were then combined with 5X DNA loading buffer (5µL), the mixture pipetted up and down 3 times to mix and 10µL loaded onto the gel which was run at 150 volts for 1 hour. After electrophoresis the gel was stained in a 0.001% ethidium bromide solution in 1X TBE buffer for 20 to 30 minutes and visualised under a UV light source using the Syngene GENi Gel Documentation System.

2.3.2.4 Affymetrix[®] Human Exon 1.0ST Arrays

2.3.2.4.1 GeneChip® HuEx-1_0-st-v2

The Affymetrix[®] high-density Human Exon 1.0ST GeneChip[®] Arrays (HuEx-1_0-st-v 2) contain more than 5.5M distinct features spotted directly onto a 5µm square glass slide by means of photolithography. In total there are in excess of 1.4M probesets [4 PM probes assigned to each individual exon] for the interrogation of upwards of one million exon clusters, within probe selection regions of empirically supported transcribed sequences, including putative full length mRNA transcripts: from the RefSeq (ncbi.nlm.nih.gov/refseq) (Pruitt et al 2014), GenBank[®] (ncbi.nlm.nih.gov/genbank) (Benson et al 2014) (n=289,961), Ensembl (ensembl.org) (n=306,583) (Fernandez-Suarez & Schuster 2010, Flicek et al 2014) or dbEST (ncbi.nlm.nih.gov/genbank/d best) (n=665,175) (Boguski et al 1993) databases; synteny mapped mouse/rat genomes (genome.ucsc.edu) (n=220,262) (Kuhn et al 2013), in addition to, those which have been predicted computationally in Ensembl, TWINSCAN (mblab.wustl.edu/ns can) (Brent 2008, Gross & Brent 2006), Exoniphy (cgwb.nci.nih.gov) (Blanchette et al 2004, Kent et al 2003), MITOMAP (mitomap.org) (Brandon et al 2005, Kogelnik et al 1996, Ruiz-Pesini et al 2007), VEGA (Vertebrate Genome Annotation) (sanger.ac. uk/resources/databases/vega) (Wilming et al 2008), GENSCAN (genes.mit.edu/gen scan) (Burge & Karlin 1997, Burge & Karlin 1998), or using structural RNA prediction software (genome.ucsc.edu) (Karolchik et al 2014), GeneID (genome.crg.es/soft ware.geneid) (Guigo 1998, Parra et al 2000) and the microRNA (miRNA) registry (s

78

anger.ac.uk/software/Rfam/mirna) (Griffith-Jones 2004) for the discovery of novel expression changes and/or alternative splicing events that have not previously been reported (n=883,105).

Each 25-mer oligonucleotide probe is designed to target the sense-strand of the July 2003 NCBI build 34 of the human genome. On average, a typical gene composed of 10 exons will be represented by approximately 30 to 40 probes distributed across the entire length of the protein coding transcript and not just the far 3' end which is associated with the more traditional IVT expression arrays. Another distinguishing feature of the Human Exon 1.0ST GeneChip® Arrays is the strategy that Affymetrix® has adopted for subtracting background noise. Rather than possessing a paired MM probe for each PM probe, they have utilised a surrogate approach that incorporates measurements of background signal intensities from a smaller number of around a thousand, pooled probes with identical GC contents; referred to as an 'antigenomic' background probeset.

2.3.2.4.2 Hybridization

Sense-strand cDNA targets, post-fragmentation and labelling, were hybridized onto Human Exon 1.0ST GeneChip[®] Arrays according to the manufacturer's instructions provided in the GeneChip® Hybridization, Wash and Stain Module (Affymetrix® Ltd., UK). GeneChips[®] were equilibrated to RT immediately prior to use. Reagents were thawed on ice and the 20X Eukaryotic hybridization control stock heated to 65°C for 5 minutes or until the cRNA had been completely re-suspended. The hybridization cocktail was prepared in 1.5mL Eppendorf tubes by combining the remainder of the sample [58 to 60µL depending on whether a 2µL aliquot had been removed in order to perform an EMSA (Section 2.3.2.3.4)] with 3nM control oligonucleotide B2 (3.7µL), 20X Eukaryotic hybridization controls (11µL) [bioB, bioC, bioD and cre at respective concentrations of 1.5 (represents the limit of detection), 5, 25 and 100pM (American Type Culture Collection)], 2X hybridization mix (110µL), 7% DMSO (15.4µL) and a sufficient quantity of RNase-*free*[™] water in order to bring the total reaction volume up to 220µL. The tubes were flicked to mix and their contents collected by centrifugation. The hybridization cocktail was heated to 99°C for 5 minutes, cooled to 45°C for 5 minutes and centrifuged at maximum speed for 1 minute. Arrays were loaded with 200µL of sample and incubated at 45°C in the GeneChip® Hybridization Oven 640 (Affymetrix® Ltd., UK) for 16±0.5 hours overnight with rotation set at 60rpm.

2.3.2.4.3 Washing, Staining and Scanning

Post-hybridization, washing and staining was performed on the GeneChip[®] Fluidics Station 450 (Affymetrix[®] Ltd., UK) according to instructions contained in the Whole Transcript Sense Target Labelling Assay Manual for fluidics protocol FS450_0001 that has been specifically developed for the Human Exon 1.0ST GeneChip[®] Arrays. Briefly, the hybridization cocktail was removed and stored at 4°C. Cartridges were loaded with 200µL non-stringent Wash Buffer A [6X SSPE (3M NaCl, 0.2M NaH₂PO₄, 0.02M EDTA) and 0.01% Tween-20] and equilibrated to RT. Fresh solutions of the staining reagents were prepared. SAPE mix for the first and third stain contained 2X stain buffer (300µL) [100mM MES, 1M [Na⁺] and 0.05% Tween-20], 50mg/mL BSA (24µL), 1mg/mL SAPE (6µL) and 270µL of molecular biology grade water for a final volume of 600µL per sample. The Ab mix for the second stain contained the same 2X stain buffer (300µL), 10mg/mL Goat IgG stock (6µL), 0.5mg/mL biotinylated Ab (3.6 µL), 50mg/mL BSA (24µL) and 266.4µL of molecular grade water, again to achieve a final volume of 600µL per sample.

Two post-hybridization washes, one with non-stringent Wash Buffer A at 30°C for 10 cycles with 2 mixes per cycle and another with stringent Wash Buffer B [100mM MES, 0.1M [Na⁺] and 0.01% Tween-20] at 50°C for 6 cycles with 15 mixes per cycle, was followed by the first stain in SAPE solution at 35°C for 5 minutes. A post-stain wash with non-stringent Wash Buffer A at 30°C for 10 cycles with 4 mixes per cycle was followed by a second and third stain at 35°C for 5 minutes in the Ab solution and 5 minutes in the SAPE solution. A final wash step was performed with non-stringent Wash Buffer A at 35°C for 15 cycles with 4 mixes per cycle and the cartridges filled with 800µL Array Holding Buffer prior to being scanned on the GeneChip® Scanner 3000 (Affymetrix® Ltd., UK).

It is important to note that in the design of this study several steps were taken so as to avoid any potential confounding effects of merging datasets from different batches of microarrays: 1) Kits and reagents were ordered in bulk from the same supplier so
consistent LOT numbers could be maintained; 2) The time that had elapsed between processing each of the batches was kept to a minimum; 3) The same stopping points, storage conditions & number of freeze thaw cycles were strictly adhered to for each run; 4) Groupings were assigned randomly and re-assigned at each level from RNA extractions right the way through to the point at which the cartridges were scanned and 5) Each of the groups contained roughly equal proportions of female and male samples with a mixture of controls, FALS and SALS cases of variable age, onset and disease duration.

2.3.2.5 Bioinformatics Analysis

2.3.2.5.1 Affymetrix[®] GeneChip[®] Operating Software

Images processed by the Affymetrix[®] GeneChip[®] Scanner 3000 were extracted using GCOS version 1.2 (Affymetrix[®] Ltd., UK). Reports were generated at gene (transcript clusters) and exon (probesets) level which plotted signal distributions and other QC metrics used to evaluate the efficiency of individual hybridizations.

2.3.2.5.2 Partek[®] Genomics SuiteTM

CEL files which had passed the QC metrics assessed by Expression Console[™] software version 1.3.0.187 (Affymetrix[®] Ltd., UK) (Section 2.3.2.5.2) were imported into Partek[®] Genomics Suite[™] software version 6.60 copyright © 2013 (Partek[®] Inc. St Louis, MO, USA) (Downey 2006, Fan et al 2011). Raw expression values were log2 transformed, a pre-background adjustment for GC content was applied and a quantile normalisation procedure performed using the Robust Multi-array Average (RMA) median polish probeset summarization algorithm (Irizarry et al 2003, Qu et al 2010) which excludes outlying values falling below 1 or greater than 3 standard deviations away from the mean (Wu et al 2004). Only core meta-probesets were considered (n =287,329). At transcript level these include ~22,000 unique clusters which relate to full-length protein coding mRNA sequences in the RefSeq and GenBank[®] databases. DE transcripts were determined at the 5% significance threshold (Partek[®] unadjusted p<0.05) by means of a 2-way ANalysis of COVAriance (ANCOVA) statistical test which controls for the effects of age and gender. Lists were subsequently filtered to remove unannotated transcripts (n=4,377/22,011) and a FC threshold of $\geq \pm 1.20$ applied.

Aberrant splicing events were predicted at the same level of statistical significance using the Partek[®] alternative splicing index (ALT-SPLICE ANOVA) in which exon to exon comparisons were drawn between disease and control groupings for each gene in relation to the transcript's overall DE [Partek[®] unadjusted p-value (fold-change) \geq 0.05 and p-value (alt. splicing) <0.05]. To reduce the probability of predicting false outcomes attributed to a type I error: a) Probesets with a maximum value for log2 transformed signal intensities below 3 across all the GeneChips[®] in the experiment were removed except for instances where a significant difference in the expression of a single exon exists between the two groupings; b) Exons residing in genes whose expression at the level of the whole transcript was found to be significantly altered were excluded and c) Filtered transcript clusters with no observable differences in the expression levels of individual exons [Partek[®] unadjusted p<0.05, FC $\ge \pm 1.20$] (Gillett et al 2009, Rabin et al 2010, Tian et al 2011). Additional transcripts (n=2,077 /17,273) with fewer than four or more than forty probesets were also removed since the presence of a such small/large number of markers makes it prohibitively more difficult to interpret the alternative splicing events predicted to occur within these genes (Whistler et al 2010). Graphical outputs were obtained using easyExon 1.0.4 Java-based platform copyright © 2008 which is freely available online at microarray. ym.edu.tw/easyExon (National Yang-Ming University, Taiwan) (Chang et al 2008).

2.3.2.5.3 Qlucore Omics Explorer

Partek[®] GC-RMA normalised pivot data could also be interpreted visually in Qlucore Omics Explorer software version 2.3 (Lund, Sweden). F-test statistical outputs for the ANOVA were filtered at the 5% significance level (p<0.05) in order to generate lists of variables or genes (transcripts) which are best able to separate patient and control groupings on a PCA plot or hierarchically clustered HeatMap. Any potentially confounding effects due to 'Age' (continuous) or 'Gender' (nominal) were eliminated as factors and the lists filtered to remove unannotated transcripts (n=3,356/22,011) using the NetAffxTM Analysis Centre, which is freely available online at affymetrix.co m/analysis/index/affx (Affymetrix[®] Ltd., UK) (Liu et al 2003), before applying a FC threshold of $\geq \pm 1.20$.

2.3.2.5.4 Gene Ontology Enrichment Analysis

Affymetrix[®] transcript cluster ID's (gene level) or probeset identification numbers (exon level) were uploaded into DAVID bioinformatics resource version 6.7 (Section 2.3.1.8.3). With a *Homo sapiens* background applied, function annotation clustering analysis was performed on GOTERM_BP_FAT and GOTERM_MF_FAT gene ontology (GO) terms using 'Medium' classification stringency [Kappa: similarity term overlap 3, similarity threshold 0.50; Classification: Initial group membership 3, final group membership 3 and multiple linkage threshold 0.50]. Those categories identified as being significantly enriched within the patient populations were defined as having a minimum EASE score above 1.30 and Benjamini-Hochberg FDR corrected p<0.05.

An overview of the workflow and analysis pipeline for the Human Exon 1.0ST Gene Chip® Arrays used for the transcriptional profiling of peripheral EBV-transformed B-lymphocytes (LCL's) in *C90RF72*-related ALS [Chapter 5: '*C90RF72* GEP Study' and Chapter 6: '*C90RF72* Survival Study'] is provided in Figure 2.4.

2.3.2.6 Quantitative Real-Time PCR

2.3.2.6.1 Primer Design

Gene level expression changes observed on the Human Exon 1.0ST GeneChip® Arrays were validated by qRT-PCR. Standard primers ordered from Eurofins MWG Operon, Germany were designed using the NCBI Primer-BLAST tool which is freely available online at ncbi.nlm.nih.gov/tools/primer-blast. The reference sequence (RefSeq) of the full protein-coding transcript was obtained in FASTA format from ensembl.org and primers were designed to the region exhibiting the largest and most significant FC between the patient and control groupings. This was determined by plotting the mean probeset signal intensities from Partek® GC-RMA normalised pivot data along the y-axis against the Affymetrix® probeset identification numbers along the x-axis using Microsoft Excel 2010 (Microsoft Corporation, UK). Standard error of the mean (SEM) was calculated by dividing the standard deviation (stdev) by the square root of n which represents the number of samples in each group. Oligonucleotide probes were mapped to the genome and their specificity for the gene of interest confirmed using the GATExplorer platform which is freely available online at bioinfow.dep.us

Figure 2.4 Flowchart Schematic of the Human Exon 1.0ST GeneChip® Array Analysis Pipeline Established for Peripheral EBV-Transformed B-Lymphocytes (LCL's) in ALS.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, C - cytosine, EBV - Epstein Barr virus, G - guanine, GCOS - GeneChip[®] Operating Software, GO - gene ontology, LCL - lymphoblastoid cell line, RMA - <u>R</u>obust <u>M</u>ulti-array <u>A</u>verage, ss-cDNA - single-stranded complementary DNA and ST - sense target. al.es/xgate/principal.php (Bioinformatics and Functional Genomics Research Group at the Salamanca Cancer Research Centre, Spain). Predicted dissociation curves for RT-PCR products could be visualised using uMELT[™] software version 2.0.2 which is freely available online at dna.utah.edu/umelt/um.php (Wittwer lab for DNA Analysis University of Utah, USA).

For optimal qRT-PCR efficiency, amplicon sizes were restricted to $\sim 100\pm 5$ bp. The oligonucleotides were around 15 to 25bp in length to ensure adequate specificity to their targeted sequence on the cDNA template but also that they remain sufficiently short to bind with ease under the appropriate annealing conditions. In order to limit the level of background genomic DNA amplification, primer pairs were designed to span an exon-exon junction wherever possible. GC content ranged between 35 and 60% with no more than three guanine (G) or cytosine (C) residues occurring within the last five at the 3' end of the sequence. This was important since the formation of a third hydrogen bond between these two residues means they have the propensity to bind to one another with a much higher affinity than the alternate pair of adenine (A) and thymine (T) residues. Although the presence of a small number of G's and C's at the 3' end can improve the degree of association between the primer and cDNA template, having more than three results in too strong an association which causes a rise in melting temperature (Tm) and prevents the GC clamp from denaturing at the correct temperature. Tm is defined as the temperature at which 50% of the DNA duplex will separate to become single-stranded molecules and is usually optimal in the region of 58 to 60° C.

2.3.2.6.2 Primer Optimisation and Standard Curve Analysis

Primer optimisation was performed in triplicate 10μ L reaction volumes using reverse transcribed Stratagene qPCR Human Reference Total RNA at an initial concentration of 12.5ng/µL. Oligonucleotide sequences were assayed at differing combinations of forward (F') and reverse (R') concentrations ranging between 150 and 600nmol. A NTC control was also included in each run [F' - 300nmol, R' - 300nmol] (Table 2.3). The standard deviation of the mean was calculated as a measure of the consistency between replicates of any given concentration and was used in order to determine the optimum combination of F' and R' primers for each gene which was selected as

			Reverse (R') primer								
		150nmol	300nmol	600nmol							
mer	150nmol	150/150	150/300	BLANK							
vard (F') priı	300nmol	300/150	300/300	300/600							
Forw	600nmol	BLANK	600/300	600/600							

Table 2.3 qRT-PCR Primer Optimization Oligonucleotides purchased from Eurofins MWG Operon, Germany were optimized for use in SYBR[®] Green qRT-PCR Assays using differing combinations of forward (F') and reverse (R') primer concentrations.

Abbreviations: qRT-PCR - quantitative real-time PCR.

a target for qRT-PCR validation. Specificity could be confirmed by the presence of a single peak on the dissociation melting curve.

A standard curve was also produced by performing a two-fold serial dilution of the starting material using NF ddH₂0. Cycle threshold (Ct) values (y-axis) were plotted against the log of each known concentration of universal cDNA (copy number) along the x-axis. Efficiency and the coefficient of correlation (R²) were computed from the gradient of the incline. For reactions that were 100% efficient (slope - 3.32, R² > 0.99) the amount of PCR product should be seen to double with every amplification cycle.

2.3.2.6.3 RNA Pooling

RNA was pooled from 75 *C90RF72* + cases (i.e. all 39 from the microarray experiment plus an additional 36 G₄C₂ repeat carriers from the ECACC discovery and replication cohorts combined) and 35 neurologically normal, healthy control subjects matched for age and gender to incorporate measurements from a greater number of samples in each run. This approach was used in order to maximise the statistical power of the qRT-PCR assay whilst avoiding potential complications associated with running the experiments on multiple 96-well plates at differing time points and with different

batches of reagents. Each pool combined 200ng of good quality RNA (RIN score \geq 7.0), from five randomly selected patient or control derived LCL samples to achieve a total input of 1µg of starting material per cDNA synthesis reaction (Table 2.4).

Controls							
r SNc0038	Μ	_۲ BC6295	F	r SNc0041	F	r LC0311	М
SC3489	F	SC3021	F	SC3406	М	BC6323	М
C1 - BBe0006	F	C2 - SMa0156	Μ	C3 - SC3278	F	C4 - BLi0083	F
LCa0076	Μ	BC6448	F	BC6507	М	BC6234	М
L SC3709	F	^L BLi0169	Μ	^L SC3150	Μ	L SC3282	F
r SMa0033	Μ	SDu0012 ر	F	۲ SNc0023	Μ		
BLi0245	Μ	LPo0027	Μ	LC0573	Μ		
C5 - LPo0033	Μ	C6 - SNc0096	F	C7 - BC6231	М		
LC0455	F	LCa0022	F	SC3052	Μ		
^L SNc0045	F	^L SNt0035	Μ	^L LC0194	Μ		
C90RF72+							
۲ LNh0101	Μ	r SPr0059	F	r LP0008	Μ	г SMa0006	М
BP6072	F	LP0657	М	BBr0015	F	LP0665	F
P1 - BLi0236	F	P2 - SNc0204	F	P3 - LP0305	Μ	P4 - BP6063	Μ
LP0125	Μ	LPy0018	F	BP6165	F	SP3534	F
^L SP3148	F	^L LP0440	F	^L LP0437	Μ	LP0480	М
r SP3127	F	_г SMa0166	М	r SP3469	М	r SP3183	М
LSh0038	Μ	SNc0189	Μ	SP3341	F	SP3222	F
P5 - BP6029	F	P6 - SP3057	Μ	P7 - SP3298	F	P8 - SP3058	М
SP3560	Μ	SP3122	Μ	SP3420	F	SP3431	F
L SP3118	F	^L SP3041	F	L SP3413	М	L SP3042	М
r LP0064	Μ	r SP3010	F	BP6391 ر	М	r BLi0254	М
SNc0059	F	BP6107	Μ	LP0475	Μ	BP6334	М
P9 - SP3433	Μ	P10 - LP0203	F	P11 BP6208	F	P12- BP6059	М
LP0207	F	LP0454	М	LP0497	М	SP3090	М
L SP3288	Μ	^L LP0359	Μ	L BP6098	Μ	LNh0040	М
_۲ BP6363	F	_۲ SP3462	F	_۲ LP0091	М		
BP6308	F	LP0717	Μ	SPr0026	F		
P13 - LSh0002	Μ	P14 - LPo0036	Μ	P15 - SP3006	Μ		
LPo0005	Μ	BLi0251	F	SP3471	Μ		
^L SP3087	Μ	^L LP0073	F	^L LP0248	F		

Table 2.4 ECACC LCL Pooled RNA Samples for qRT-PCR Validation RNA of good quality [RIN score \geq 7.0 on the Agilent 2100 Bioanalyser] was pooled from 75 *C90RF72+* cases and 35 neurologically normal, healthy control subjects which had been matched for age and gender. Patient (P) and control (C) groupings were assigned at random with each pool incorporating material from five samples (200ng total RNA per sample).

Abbreviations: (+) - positive, BC - Birmingham control, Be - Belfast City Hospital, BP - Birmingham patient, Br - Bristol Frenchay Hospital, *C9ORF72* - chromosome 9 open reading frame 72, Ca - Cambridge, Du - Durham, ECACC - European Collection of Cell Cultures, F - female, LC - London control, LCL - lymphoblastoid cell line, Li - Liverpool, LNh - London National Hospital, LP - London patient, M - male, Ma - Manchester, Nc - Newcastle, Nt - Nottingham, Pr - Preston, Po - Poole General Hospital, Py - Plymouth Derriford Hospital, qRT-PCR - quantitative real-time PCR, RIN - RNA integrity number, SC - Sheffield control, Sh - Southampton Hospital and SP - Sheffield patient.

Stratagene qPCR Human Reference Total RNA and pooled mRNA samples derived from patient or control LCL's were reverse transcribed into ss-cDNA using the ABI High Capacity RNA to cDNA Synthesis Kit as previously described in Section 2.3.1.4. 1. Products were diluted in NF ddH₂0 to a concentration of 12.5ng/µL and stored at -20^oC prior to use in either traditional SYBR[®] Green or IDT PrimeTime[®] Mini qPCR Assays.

2.3.2.6.5 SYBR® Green Assays

Traditional qRT-PCR was performed in duplicate 10µL reaction volumes containing 12.5ng of cDNA template, optimum concentrations of F' and R' primers (Table 2.5), a 1X Stratagene Brilliant II SYBR[®] Green PCR Master Mix and RNase-*free*TM water as previously described in Section 2.3.1.6. Negative no-RT and NTC's were included in each run. Relative concentrations were normalised against the housekeeping gene *18SrRNA* and visualised using GraphPad Prism[®] software version 5.04 copyright © 1992-2014 (GraphPad Software Inc., USA). Significance values were calculated in Microsoft Excel 2010 (Microsoft Corporation, UK) using a one-tailed student's t-test. Gene expression changes were confirmed if the direction of change was the same as the microarray with p<0.05.

2.3.2.6.6 PrimeTime® Mini qPCR Assays

PrimeTime[®] Mini qPCR Assays from Integrated DNA Technologies INC., USA were also performed in duplicate 10µL reaction volumes with a negative no-RT and NTC. Each well contained 12.5ng of cDNA template, 500nM F'/R' primer and 250nM probe re-suspended in TE buffer [10mM Tris-HCl and 1mM EDTA, pH 7.5 at 25°C], RNase-*free*TM water and 2X Brilliant III Ultra-Fast qPCR Master Mix (Table 2.6). The samples were run applying a "Normal 2 Step" profile on the Stratagene Mx3000PTM Real Time PCR Thermal Cycler as outlined previously in Section 2.3.1.6. Relative concentrations were normalised against the standard housekeeping gene *18SrRNA* and visualised in GraphPad Prism[®] software version 5.04 copyright © 1992-2014 (GraphPad[®] Software Inc., CA USA). Significance values were calculated using Microsoft Excel 2010 (Microsoft Corporation, UK) using a one-tailed student's t-test. Expression changes were confirmed if the direction of change was identical to the microarray with a p<

Gene	Transcript	Region	Primer Sequence (5'> 3')	Tm	GC%	Amplicon	Optimum conc.	Efficiency
C90RF72	ENST00000379997	3'UTR	F' GTATCAGAGGCATGAGTGTGTTT R' GATGTATGAAAGGCTGACACTGA	58.7 58.5	43.5 43.5	98bp	150/150nmol	99.8%
C90RF72	ENST0000038003	3'UTR	F' GGAAACGTTCCCCTGGATCAT R' CACCTGACATCCCCTCACAG	60.1 59.8	52.4 60.0	104bp	150/150nmol	101.1%
DENR	ENST00000280557	3'UTR	F' GTCCTTGGCATTTTCACTGTTC R' CAGTCTCCCGTTTATTTGACTTTG	58.4 58.3	45.5 41.7	74bp	150/300nmol	102.4%
FGFR1	ENST00000341462	Exon 11-13	F' AGTCGGACGCAACAGAGAAA R' TGGAGGCATACTCCACGATG	57.3 59.4	50.0 55.0	147bp	300/150nmol	115.3%
HNRNPA0	ENST00000314940	3'UTR	F' CCTGCTAGTTGCGTGTTGAATTA R' AGTACAAGAGATGGATGCACAGA	59.6 59.2	43.5 43.5	104bp	300/600nmol	96.0%
HNRNPF	ENST00000443950	Exon 3	F' CTCAGTGATGGCTACGGCTT R' CTCACTGTCGCCGTATCTGT	59.4 59.4	55.0 55.0	96bp	150/300nmol	102.3%
ITGAE	ENST00000263087	Exon 15-16	F' TGGGGGATCTCAGTCAGGATA R' CGTCCCAGTGTCCATTGTAGA	59.1 59.5	52.4 52.4	120bp	150/150nmol	110.8%
ITGAE	ENST00000263087	Exon 20	F' ATCTTCCAGCTGCCCTATGA R' GTGGTGGCCAACTGTAATTCTG	58.2 59.8	50.0 50.0	74bp	150/150nmol	111.8%
KARS	ENST00000319410	5'UTR	F' ACTGAGCAAGAAGTGGTGGTA R' ACCCCCTAACAAGCCTTACAG	59.0 59.4	47.6 52.4	83bp	150/150nmol	97.4%
MRPL41	ENST00000371443	Exon 2	F' CTGGAGGTTCGTGCAGATCA R' CTCACGTAGGGCTTGAGCTT	59.8 59.8	55.0 55.0	84bp	150/150nmol	107.5%
NUDT21	ENST00000300291	3'UTR	F' GATCCCTAAATTGCCACCTTTCT R' TGAGCAGAACCGAAAGTAAATAAAC	58.7 58.1	43.5 36.0	109bp	300/150nmol	95.3%
PHAX	ENST00000297541	Exon 2	F' TCGAGCTGTTGAAAGTGTGGA R' ACTGCTCTGGCCAAACTGAA	59.9 59.8	47.6 50.0	139bp	150/300nmol	103.0%

PRPF19	ENST00000227524	Exon 11	R' ATCATCGGAGGAGCTCAGGA	60.0 59.8	60.0 55.0	137bp	300/300nmol	99.4%
PURA	ENST00000331327	Exon 1	F' GGCGTGTTTATGCGAGTGAG R' CCGAGTACTTGCAGAAGGTGT	59.4 59.8	55.0 52.4	106bp	150/150nmol	108.7%
RBM3	ENST00000376759	Exon 2-3	F' ATCTCTGAGGTGGTCGTTGT R' GGTTGGTGAAGGTGATGAAAC	58.4 59.7	50.0 50.0	76bp	300/150nmol	100.4%
RPL22	ENST00000234875	3'UTR	F' ATAGCTGCCTCATGCCACTT R' TGGTAGCCCCTTTCAGTTGTC	59.5 59.9	50.0 52.4	90bp	600/300nmol	100.4%
TAF13	ENST00000338366	Exon 4	F' TGGAAGACAAGGTCGAGTACA R' AACCCTGGCAAACTTCCTTG	59.0 58.6	45.5 58.6	76bp	300/150nmol	98.3%
UTP15	ENST00000296792	Exon 2-4	F' AGACCCCTGTTCAGATTAAGGA R' TGAATTCTTGAGGAAGCTGTGAC	58.4 58.9	45.5 43.5	100bp	150/150nmol	102.9%
ZCRB1	ENST00000266529	3'UTR	F' GGCTTTATTCATGCCTGATTTGTTT R' TCGGTCTTCAGGAAGTTTGTTTT	59.1 58.7	36.0 39.1	75bp	300/150nmol	102.8%
Housekee	ping Gene							
18SrRNA	ENST0000606783	5' UTR	F' CTGCGGCTTAATTTGACTCAAC R' CAAATCGCTCCACCAACTAAGAA	58.5 59.3	45.5 43.5	131bp	300/600nmol	115.5%

< 0 0

< 0 0

Table 2.5 ECACC Eurofins MWG Operon qRT-PCR Primer Sequences and Optimum Concentrations

Abbreviations: bp - base pairs, *C9ORF72* - chromosome 9 open reading frame 72, *DENR* - density-regulated protein, F' - forward primer sequence, *FGFR1* - fibroblast growth factor receptor 1, *HNRNPA0* - heterogeneous nuclear ribonucleoprotein A0, *HNRNPF* - heterogeneous nuclear ribonucleoprotein F, *ITGAE* - integrin, alpha E, *KARS* - lysyl-tRNA synthetase, *MRPL41* - mitochondrial ribosomal protein L41, *NUDT21* - nudix (nucleoside diphosphate linked moiety X)-type motif 21, *PHAX* - phosphorylated adaptor for RNA export, *PRPF19* - PRP19/PS04 pre-mRNA processing factor 19 homolog (*S. cerevisiae*), *PURA* - purine-rich element binding protein A, R' - reverse primer sequence, *RBM3* - RNA binding motif (RNP1, RRM) protein 3, *RPL22* - ribosomal protein L22, *TAF13* - TAF13 RNA polymerase II, TATA box binding protein (TBP)- associated factor, 18kDa, Tm - melting temperature, *UTP15* - UTP15, U3 small nucleolar ribonucleoprotein, homolog (*S. cerevisiae*), UTR - untranslated region, *ZCRB1* - zinc finger CCHC-type and RNA binding motif 1 and *18SrRNA* - 18S ribosomal RNA.

Gene	PrimeTime®	RefSeq	Region	Primer Sequence (5'> 3')	Probe Sequence (5'> 3')	Amplicon
CLNS1A	Hs.PT.56a.24955799	NM_001293	Exon 1-2	F' CCAGTGAGAATCCTAATCCAGAG R' ACTGAGGCTGTGCTGAAC	56-FAM/TTACATCGC/ZEN/TGAGAGCCGCCTG/3IA BkFQ	103bp
EIF4H	Hs.PT.56a.24792841	NM_022170	Exon 4-6	F' AGTCATCCCTGAAGCCAGA R' AGGCAGAAAACAAGATAAAGGTG	56-FAM/CAGAAAAGG/ZEN/TGGACCAGATGACAGA GG/3IABkFQ	134bp
FUS	Hs.PT.58.40679981	NM_001170634	Exon 6-9	F' CCTTGCACAAAGATGGTGTTG R' GGCGGCAGAGGTGGCAT	56-FAM/AAATTTGGT/ZENGGCCCTCGGGAC/3IABk FQ	128bp
GEMIN6	Hs.PT.56a.22216821	NM_024775	Exon 1-2	F' CTGTCACTCGGACCTCTTTG R' TGAGTACCCAGAGTTGCGA	56-FAM/AAGGCCCCT/ZEN/TAGAATGGCAAGATTA CAT/3IABkFQ	123bp
HNRNPH2	Hs.PT.58.904078	NM_019597	Exon 1b-2	F' GTGGCAAGTTTGGCTCAATG R' TCGTCTACCGTCTCGCTAT	56-FAM/TGGTGTAGC/ZEN/TCTAACGATACCGGGT /3IABkFQ	99bp
KARS	Hs.PT.56a.39151267	NM_001130089	Exon 1-2	F' CCCTAACAAGCCTTACAGCA R' GGCCGAGGTGAAAGTGG	56-FAM/CGTCAACAT/ZEN/GGCAGAGCACCCT/3IA BkFQ	113bp
NCBP2	Hs.PT.56a.39258425	NM_007362	Exon 3-4	F' GCATCTGCGCGTGAGTA R' GAACTCTTCAGCAAAAGTGGTG	56-FAM/TGGGTCTGG/ZEN/ATAAAATGAAGAAAAC AGCATG/3IABkFQ	110bp
POLR2G	Hs.PT.56a.39433782	NM_002696	Exon 3-5	F' GTGGGTTGGAGTTAGGATCA R' GAGGTCGTGGATGCTGTT	56-FAM/AGGGATGGA/ZEN/ATGTCGAGAGATGAAG C/3IABkFQ	130bp
UNRIP	Hs.PT.56a.24263685	NM_007178	Exon 8-10	F' AGGAGCTGAAGGAAAGATGC R' GCCTTTGGAAATGTGTGCTTC	56-FAM/AGAAGATAG/ZEN/TGGTGAGCTGGCAAAG C/3IABkFQ	137bp
Housekee	ping Gene					
18SrRNA	Hs.PT.39a.22214856.g	NR_003286	Exon 1	F' GGACATCTAAGGGCATCACAG R' GAGACTCTGGCATGCTAACTAG	56-FAM/TGCTCAATC/ZEN/TCGGGTGGCTGAA/3IA BkFQ	n/a

Table 2.6 ECACC PrimeTime® Mini qPCR Primer and Probe Sequences

Abbreviations: bp - base pairs, *CLNS1A* - chloride channel, nucleotide-sensitive, 1A, *EIF4H* - eukaryotic translation initiation factor 4H, F' - forward primer sequence, *FUS* - fused in sarcoma, *GEMIN6* - gem (nuclear organelle) associated protein 6, *HNRNPH2* - heterogeneous nuclear ribonucleoprotein H2 (H'), *KARS* - lysyl-tRNA synthetase, *NCBP2* - nuclear cap binding protein subunit 2, 20kDa, *POLR2G* - polymerase (RNA) II (DNA directed) polypeptide G, R' - reverse primer sequence, *UNRIP* (*STRAP*) - UNR-interacting protein (serine/threonine kinase receptor associated protein) and *18SrRNA* - 18S ribosomal RNA.

0.05.

For improved specificity IDT utilises 5' nuclease chemistry in which a non-extendable DNA hydrolysis probe is fluorescently labelled with a reporter dye and either one or two quenchers. When the probe is intact, the two molecules are maintained in close proximity to one another allowing energy emitted by the reporter to be absorbed by quencher(s). During the extension phase of the amplification reaction the hydrolysis probe is cleaved by the 5' to 3' exonuclease activity of SureStart *Taq* DNA polymerase causing the two molecules to dissociate from the target. A consequence of the spatial separation of the reporter dye and quencher(s) is a sharp increase in fluorescence which is then detected and recorded by the instrument.

3.1 Clinical Characteristics of the NuGEN Cohort

An overview of the clinical characteristics of participants recruited into the NuGEN Ovation[®] Whole Blood Study is provided in Table 2.1 (Section 2.1.1). Briefly, these comprised 6 Riluzole treated SALS patients of North European, Caucasian descent and an equal number of neurologically normal, healthy control subjects that were as far as possible age and gender matched. Age at symptom onset ranged between 38 and 71 years with a mean of 60.3 ± 15 yrs and an average disease duration of ~3 years and 4 months.

3.2 PAXgene[®] Blood RNA Extraction

PAXgene[®] isolated material extracted from whole venous peripheral blood derived from each of the 12 individuals in the final NuGEN microarray cohort (Section 3.1) yielded between 2.82 and 9.32µg total RNA for downstream applications including linear SPIATM amplification (Section 3.3.1) and cDNA synthesis prior to performing qRT-PCR (Section 3.4). Measurements of concentration and purity (Section 2.3.1.3) obtained using the NanoDropTM 1000 Spectrophotometer were found to be reasonably consistent across patient and control groupings with respective means of 65.00 ± 25 ng/µL and 69.37 ± 28 ng/µL and A_{260/280} ratios close to 2.20. Distinct separation of the 18S and 28S ribosomal peaks could also be observed on the electropherogram traces displayed by the Agilent 2100 Bioanalyser with rRNA ratios of 1.70 \pm 0.2 and RNA integrity values of 7.5 or above (Table 3.1) [Mean RIN 8.1 \pm 0.5 for SALS patients and 8.2 \pm 0.5 for controls] (Figure 3.1).

3.3 Human Genome U133 Plus 2.0 GeneChip® Arrays

3.3.1 NuGEN Ovation[®] Whole Blood Solution

Control ID	RNA Concentration	RNA Yield	A _{260/280}	RIN
BLDCON01	48.66 ng/µL	3.89 µg	2.23	8.4
BLDCON02	77.91 ng/μL	6.23 μg	2.21	7.7
BLDCON04	35.29 ng/μL	2.82 μg	2.46	8.8
BLDCON07	46.36 ng/µL	3.71 μg	2.16	7.7
BLDCON08	101.26 ng/µL	8.10 µg	2.23	8.8
BLDCON10	80.53 ng/μL	6.44 μg	2.12	7.9
Mean Values	69.37 ng/μL	5.55 µg	2.24	8.2

Patient ID	RNA Concentration	RNA Yield	A _{260/280}	RIN
BLDPAT21	47.08 ng/μL	3.77 μg	2.28	8.4
BLDPAT23	116.48 ng/µL	9.32 μg	2.15	7.5
BLDPAT26	77.65 ng/μL	6.21 µg	2.12	8.0
BLDPAT27	80.54 ng/µL	6.44 μg	2.14	8.1
BLDPAT35	45.55 ng/μL	3.64 µg	2.25	8.8
BLDPAT38	48.91 ng/µL	3.91 µg	2.14	7.7
Mean Values	65.00 ng/μL	5.20 μg	2.18	8.1

Table 3.1 PAXgene[®] Blood RNA Isolation Kit Extractions: An Assessment of Quality and Yield from Samples in the NuGEN Ovation[®] Whole Blood Study Measurements of concentration (ng/µL) and purity (A_{260/280}), as determined by the ratio of absorbance (A) at 260/280nm, were assessed using NanoDropTM 1000 Spectrophotometer (Section 2.3. 1.3) (Thermo Fisher Scientific[®] Inc., UK). Total RNA yields were calculated in micrograms (µg) and RNA integrity numbers (RIN's) computed on a scale of zero (undetectable, completely degraded) to ten (high quality, intact RNA) using Agilent 2100 Bioanalyzer (Agilent Technologies Ltd, UK). Mean values recorded across the blood control (top) [BLDCON] or blood patient (bottom) [BLDPAT] groupings are represented in bold.

Figure 3.1 Agilent 2100 Bioanalyzer Assessment of PAXgene® Blood RNA Integrity Agilent RNA 6000 Nano Ladder with a 25 nucleotide [nt] molecular weight marker and peaks corresponding to the 18S and 28S ribosomal RNA's (rRNA's) have been labelled accordingly. Fragment lengths were plotted along the x-axis with RNA concentrations defined by arbitrary units of fluorescence [FU] plotted along the y-axis. In this example blood control [BLDCON] 01 was selected as a representative electropherogram trace for the purposes of illustration.

3.3.1.1 NuGEN Ovation[®] RNA Amplification System V2

Total RNA using a 50ng input of starting material was reverse transcribed into ss-c DNA following the NuGEN Technologies Inc., UK patented SPIATM method outlined in the previous Materials & Methods Chapter (Section 2.3.1.4.2 and 2.3.1.5.1). Yields of between 4.83 and 6.51µg were achieved, as determined by the NanoDropTM 1000 Spectrophotometer (Section 2.3.1.3). Mean concentrations were largely comparable across the blood patient [BLDPAT] (179.23±21ng/µL) and blood control [BLDCON] (199.39±10ng/µL) groupings with $A_{260/280}$ ratios consistently above the previously accepted threshold of 1.8. Pre-amplified material extracted from BLDPAT23, which produced the lowest RNA integrity value [RIN score 7.5 (Table 3.1)] also underwent DNase treatment (Section 2.3.1.5.2) in order to remove any potentially contaminating genomic DNA that may have been present in this sample. Nucleic acid products were purified using the QIAGEN MinElute[®] Reaction Clean-Up Kit before being run on the Agilent 2100 Bioanalyser (Section 2.3.1.3). An illustrated electropherogram trace (right) and corresponding gel image (left) typically generated by the instrument is depicted in Figure 3.2 (Table 3.2).

Figure 3.2 Agilent 2100 Bioanalyzer Assessment of Purified SPIA™ ss-cDNA Integrity Electropherogram trace (right) and corresponding gel image (left) for blood patient [BLDPAT] 21 and the external RNA 6000 Nano Ladder with a 25nt molecular weight marker and 0.2, 0.5, 1.0, 2.0, 4.0 and 6.0kb fragments which are loaded at a total concentration of 150ng/µL. Fragment lengths [nt] are indicated along the x-axis with RNA concentrations defined by arbitrary units of fluorescence [FU] along the y-axis.

Abbreviations: cDNA - complementary DNA, SPIATM - single primer isothermal amplification and ss - single-stranded.

		Purified SI	Biotin-Labelled ss-cDNA				
Control ID	DNase	Concentration	Yield	A _{260/280}	RIN	Concentration Yield RIN	
BLDCON01	Ν	205.10 ng/µL	6.15 µg	2.38	2.2	96.00 ng/μL 4.80 μg 2.6	
BLDCON02	Ν	206.25 ng/µL	6.19 µg	1.89	2.2	110.00 ng/μL 5.50 μg 2.6	
BLDCON04	Ν	193.35 ng/µL	5.80 µg	2.38	2.0	93.00 ng/μL 4.65 μg 2.5	
BLDCON07	Ν	205.17 ng/μL	6.16 µg	2.18	2.2	114.00 ng/μL 5.70 μg 2.5	
BLDCON08	Ν	182.32 ng/µL	5.47 µg	1.88	2.3	105.00 ng/μL 5.25 μg 2.5	
BLDCON10	Ν	204.16 ng/µL	6.12 μg	1.83	1.9	111.00 ng/μL 5.55 μg 2.5	
Mean Values		199.39 ng/µL	5.98 µg	2.09	2.1	104.83 ng/μL 5.24 μg 2.5	

		Purified SF		Biotin-Labelled ss-cDNA				
Patient ID	DNase	Concentration	Yield	A260/280	RIN	Concentration Yield RIN		
BLDPAT21	Ν	217.05 ng/µL	6.51 µg	1.86	2.4	96.00 ng/μL 4.80 μg 2.6		
BLDPAT23	Y	167.51 ng/µL	5.03 µg	1.92	2.0	92.00 ng/μL 4.60 μg 2.5		
BLDPAT26	Ν	191.50 ng/µL	5.75 µg	1.89	2.1	108.00 ng/μL 5.40 μg 2.5		
BLDPAT27	Ν	168.34 ng/µL	5.05 µg	1.87	2.0	110.00 ng/μL 5.50 μg 2.5		
BLDPAT35	Ν	170.16 ng/µL	5.11 µg	2.41	2.2	102.00 ng/μL 5.10 μg 2.5		
BLDPAT38	Ν	160.82 ng/µL	4.83 µg	2.40	2.0	96.00 ng/μL 4.80 μg 2.5		
Mean Values		179.23 ng/µL	5.38 µg	2.06	2.1	100.67 ng/µL 5.03 µg 2.5		

Table 3.2 Purified SPIA[™] ss-cDNA: An Assessment of Quality and Yield Pre- (Left)/Post- (Right) Fragmentation & Labelling Measurements of concentration (ng/µL) and purity (A_{260/280}), as determined by the ratio of absorbance (A) at 260/280nm wavelengths, assessed using the NanoDrop[™] 1000 Spectrophotometer (Thermo Fisher Scientific[®] Inc., UK) (Section 2.3.1.3). Yields were calculated in micrograms (µg) and RNA integrity numbers (RIN scores) computed on a scale of zero (undetectable, completely degraded) to ten (high quality, intact RNA) using the Agilent 2100 Bioanalyzer (Agilent Technologies Ltd., UK). Mean values recorded across the blood control [BLDCON] (top) or blood patient [BLDPAT] (bottom) groupings are represented in bold.

Abbreviations: cDNA - complementary DNA, DNase - deoxyribonuclease, N - untreated, ss - single-stranded, SPIA[™] - single primer isothermal amplification and Y - treated.

3.3.1.2 NuGEN Encore[™] Biotin Module

The NuGEN EncoreTM Biotin Module (Section 2.3.1.5.3) generated between 4.60 and 5.70µg biotinylated ss-cDNA fragments [Mean concentration of 100.67±7ng/µL for the SALS patients and 104.83±9ng/µL for the controls] of ~50 to 2,000 nucleotides in length (Table 3.2). These included >80% of targets with fewer than two hundred bases which were suitable for hybridization onto Affymetrix[®] Human Genome U133 Plus 2.0 GeneChip[®] Arrays (Section 2.3.1.7) (Figure 3.3).

Figure 3.3 Agilent 2100 Bioanalyzer Assessment of Fragmented SPIATM sscDNA Integrity Fragment lengths in nucleotides [nt] are indicated along the xaxis with RNA concentrations, defined by arbitrary units of fluorescence [FU], along the y-axis. In this instance the representative electropherogram trace was selected from blood control [BLDCON] 02.

Abbreviations: cDNA - complementary DNA, SPIA[™] - single primer isothermal amplification and ss - single-stranded.

3.3.2 Affymetrix[®] Expression Console[™] QC Metrics

3.3.2.1 Eukaryotic Hybridization Controls

Signals produced by the bacterial spike in controls BioB, BioC, BioD (three *E. coli* derived genes of the biotin synthesis pathway) and CreX (a recombinase gene from the P1 bacteriophage) (Section 2.3.1.7.2) were called absent for BLDCON02, 08 and 10 and BLDPAT21, 27 and 35. For this reason these 6 SALS cases and controls were not represented on the plots displayed in Figure 3.4. Given that all the samples had

been processed together and in the same batch, it can be speculated, therefore, that these failings have most likely arisen due to a technical error in which the hybridization controls were not spiked in at correct concentrations sufficient for detection on Affymetrix® Human Genome Plus 2.0 GeneChip® Arrays. Subsequent assessment of the remaining 6 SALS cases and controls identified BLDCON07, highlighted in red, as a potential outlier (Figure 3.4) which requires careful consideration before determining whether or not this sample should be included in any further downstream comparative analyses.

Figure 3.4 Eukaryotic Hybridization Controls for Samples in the NuGEN Ovation[®] Whole Blood Study Three bacterial derived genes of the *E. coli* biotin synthesis pathway [BioB, BioC and BioD] and the recombinase gene CreX from the P1 bacteriophage were spiked in at increasing concentrations (left-hand panel) [1.5pM (representing the limit of detection), 5pM, 25pM and 100pM, respectively] immediately prior to labelling, in order to monitor the efficiency of the hybridization reaction. In the right-hand panel mean signal intensities (y-axis) for probesets spotted onto the Affymetrix[®] Human Genome U133 Plus 2.0 GeneChip[®] Arrays, which correspond to each of the aforementioned genes (x-axis) are also provided. Assessment of Affymetrix[®] QC metrics was performed using the Expression Console[™] software version 1.3.0.187 (Affymetrix[®] Ltd., UK) (Section 2.3.1.7.2). Intensity plots were generated in Microsoft Excel 2010 (Microsoft Corporation UK). Potential outliers are highlighted in red.

Abbreviations: BLDCON - blood control, BLDPAT - blood patient and QC - quality control.

3.3.2.2 GeneChip® Normalisation

3.3.2.2.1 Noise (Raw Q)

Noise (Raw Q) measures the extent of pixel to pixel variation between the individual spots, otherwise referred to as 'features', on the Affymetrix[®] Human Genome U133

Plus 2.0 GeneChip[®] Arrays. Its value can be computed from data that is contained within the .DAT files, using the Microarray Suite 5.0 (MAS 5.0) statistical algorithm, applied in Expression Console[™] software version 1.3.0.187. Noise is calculated as a function of the amount of inherent electrical noise that is associated with the operation of each individual scanner as well as the quality of the samples being hybridized (Figure 3.5).

$$Raw \ Q = (1/N) * \left(\sum \frac{stdev_n}{\sqrt{pixel_n}} \right) * SF * NF$$

N = number of background features on the array stdev = standard deviation pixel = total number of pixels n = nth background feature SF = scaling factor NF = normalisation factor

Figure 3.5 Noise (Raw Q) Calculation Microarray Suite (MAS) 5.0 statistical algorithm for measuring the extent of pixel to pixel variation between individual spots or so called 'features' on the Affymetrix[®] Human Genome U133 Plus 2.0 GeneChip[®] Arrays in the NuGEN Ovation[®] Whole Blood Study. Noise (Raw Q) values computed in Expression Console[™] software version 1.3.0.187 (Affymetrix[®] Ltd., UK). Equation adapted from the Report File Glossary pdf available at Affymetrix.com.

Values for noise (Raw Q) were found to be consistent across multiple batches [Batch 1 run on the 14^{th} June 2011 0.657±0.02 and Batch 2 run on the 23^{rd} June 2011 0.623 ±0.03; two-tailed student's t-test not significant] with a slight difference having been observed between alternate sample types [Blood control (BLDCON) 0.620±0.02 and Blood patient (BLDPAT) 0.659±0.03; two-tailed student's t-test producing a p-value below the 5% significance threshold (p<0.05*)] (Figure 3.6).

3.3.2.2.2 Scaling Factor

One key assumption, fundamental to most normalisation procedures that have been described for high throughput arrays to date, including Affymetrix[®] Human Genome U133 Plus 2.0 GeneChip[®] Arrays is that the majority of transcripts should remain un-

Figure 3.6 Noise (Raw Q) Measurements for Samples in the NuGEN Ovation® Whole Blood Study A Microarray Suite (MAS) 5.0 statistical algorithm was applied in Expression Console[™] software version 1.3.0.187 (Affymetrix® Ltd., UK) in order to measure the extent of pixel to pixel variation between individual spots or so called 'features' on the Affymetrix® Human Genome U133 Plus 2.0 GeneChip® Arrays. GraphPad Prism® software version 5.04 © 1992-2014 (GraphPad Software Inc., CA USA) was used to plot the data and two-tailed student's t-tests performed to draw comparisons between the different experimental batches (left panel) [p-value was not significant] and sample types (right panel) [Average noise: 0.659 for SALS patients versus 0.620 in controls (p<0.05*)].

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, BLDCON - blood control, BLD PAT - blood patient and S - sporadic.

altered regardless of which experimental conditions are under manipulation; for example, healthy versus disease status in the NuGEN Ovation[®] Whole Blood Study. In other words, if this statement holds true then the proportion of transcripts that are classified as either up (1)- or down (1)-regulated, for a given threshold of statistical significance, should not influence the overall fluorescence intensity of each GeneChip[®] which should remain comparable across the study.

A MAS 5.0 statistical algorithm deployed by Expression Console[™] software version 1.3.0.187 is used to apply a scaling factor (SF) which standardises the mean probeset signal intensities, in order to control for brightness. In this scenario, a measurement close to 1.000 indicates that the average array intensity is approximately equal

to its target intensity. According to the manufacturer's website SF values are expected to vary considerably across species, and between different tissue/sample types, explaining why currently no set guidelines have been published. Nevertheless, Affy metrix. com does advocate that there should be no more than a 3-fold difference in the minimum and maximum SF values recorded for a particular experiment. Excluding BLDCON07 (19.673), this was found to be broadly the case for samples in the NuGEN Ovation[®] Whole Blood Study [Mean SF values: BLDCON's 4.581±2.7 versus BLDPAT's 2.725±2.9 and Batch 1 run on the 14th June 2011 1.662±0.6 versus Batch 2 run on the 23rd June 2011 5.158±3.1 with respective fold changes of 1.70 or 3.10].

3.3.2.3 RNA Quality

Affymetrix[®] have selected the standard housekeeping genes *ACTB* and *GAPDH* with which to assess the quality of input RNA; owing to their long transcript lengths and ubiquitous expression. The probesets for these genes are designed to span their five prime (5'), mid (M) and three prime (3') regions. Similar signal intensities across all three regions is indicative of the presence of good quality RNA that is intact and has been labelled reliably along the full length of its sequence. For samples in the NuGEN Ovation[®] Whole Blood Study, 3'/M ratios [*ACTB* 2.04±0.44-fold and *GAPDH* 1.80±0. 51-fold] were found to be reasonably consistent, with slightly higher and more variable changes recorded for the 3'/5' ratios [*ACTB* 5.68±1.6-fold and *GAPDH* 2.43±0. 71-fold]; suggesting that a small amount of RNA degradation may have occurred at the far 5' end of the transcript. However, given that these are 3' IVT expression arrays this is not expected to cause further downstream complications (Figure 3.7).

3.3.2.4 Overall Signal Quality

3.3.2.4.1 Average Background

The average background signal intensity values ranged from 25.575 (BLDCON07) to 27.534 (BLDPAT23) for the 12 SALS patient and control samples in the final NuGEN Ovation[®] Whole Blood Study. Consistency was observed between multiple batches [Batch 1 run on the 14th June 2011 27.100±0.75 versus Batch 2 run on the 23rd June 2011 26.602±0.62; two-tailed student's t-test not significant] as well as across alter-

Figure 3.7 RNA Quality Control Check for Samples in the NuGEN Ovation[®] Whole Blood Study Microarray Suite (MAS) 5.0 signal intensity ratios between 3' and 5' ends (■) or 3' end and M (middle region) (■) of the standard housekeeping genes beta, actin (*ACTB*) [left-hand panel] and glyceraldehyde-3-phos phate dehydrogenase (*GAPDH*) [right-hand panel] plotted along the y-axis. Box and whisker plots were generated, applying a Tukey multiple comparisons test, using GraphPad Prism[®] software version 5.04 © 1992-2014 (GraphPad Software, Inc. CA USA). Assessment of Affymetrix[®] QC metrics was performed using Expression ConsoleTM software version 1.3.0.187 (Affymetrix[®] Ltd., UK).

Abbreviations: 3' - three prime, 5' - five prime and QC - quality control.

nate sample types [BLDCON's 26.520±0.80 and BLDPAT's 27.182±0.44; two-tailed student's t-test not significant] (Table 3.8).

3.3.2.4.2 Average Percentage Presence Calls

In total, 54,675 probesets are represented on the Affymetrix[®] Human Genome U133 Plus 2.0 GeneChip[®] Arrays. Each one is comprised of 11 probe pairs which contain a mix of PM, as well as, MM 25-mer oligonucleotide sequences pertaining to a similar number of gene transcripts or EST's (Section 2.3.1.7.1). On average, 44.5% of genes were called as present (P) for controls (n=24,330), compared to 51.2% of genes for SALS patients (n=27,994) in the NuGEN Ovation[®] Whole Blood Study. A scatter dot plot displaying the mean and standard error of the mean (SEM) flagged BLDCON07, highlighted in red, as a potential outlier which had a significantly lower %P then the remainder of the cohort (p<0.01**) (Figure 3.8).

3.3.2.5 Relative Log Expression Signal

Figure 3.8 Average Percentage Presence Calls for Samples in the NuGEN Ovation[®] Whole Blood Study Scatter dot plot was generated using GraphPad Prism[®] software version 5.04 © 1992 to 2014 (Graph Pad Software, Inc. CA USA) displaying the mean and standard error of the mean (SEM) number of probesets as a percentage (%) of the 54,67 5 total which were called present (P) on Affymetrix[®] Human Genome U133 Plus 2.0 GeneChip[®] Arrays for SALS patient (■) and control (•) samples in the NuGEN Ovation[®] Whole Blood Study. The range of %P calls which was considered acceptable is represented by the YELLOW shaded region between the two dashed lines at the 40 and 60% threshold. Any potential outliers were highlighted in red. Assessment of QC metrics was performed using Expression ConsoleTM software version 1.3.0.187 (Affymetrix[®] Ltd., UK).

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, BLDCON - blood control, BLDPAT - blood patient, QC - quality control and S - sporadic.

The mean absolute relative log expression (RLE) can be used as a measure of how the signal intensities on each individual GeneChip® compare with those across the rest of the experiment. A cohort which exhibits relative homogeneity should have a score close to zero with a small spread of values around the mean. This was found to be largely the case for samples in the NuGEN Ovation® Whole Blood Study with the exception of BLDCON07 which is highlighted in red (Figure 3.9).

3.3.2.6 Pearson's Correlation Coefficient

For each pair of GeneChips[®] in a microarray experiment the Expression Console[™] software version 1.3.0.187 determines a Pearson's product-moment correlation coefficient (r), from the covariance divided by the product of the standard deviations. This is computed on a scale of -1 to 1 where zero equals no correlation (i.e. the data points are randomly distributed) and a value approaching plus (positive) or minus

Figure 3.9 Mean Absolute Relative Log Expression (RLE) Boxplots for Samples in the NuGEN Ovation® Whole Blood Study RLE means and standard deviations for blood patient [BLDPAT] and control [BLDCON] samples in the NuGEN Ovation® Whole Blood Study. Whiskers represent minimum (lower) and maximum (upper) average probeset signal intensity values for each Affymetrix® Human Genome U133 Plus 2.0 GeneChip® Array in the experiment. Assessment of QC metrics was performed using Expression Console[™] software version 1.3.0.187 (Affymetrix® Ltd., UK). Potential outliers are highlighted in red.

Abbreviations: QC - quality control.

(negative) one is indicative of their being a strong linear relationship between the X and Y variables (Figure 3.10). This data can be illustrated qualitatively on a coloured matrix as depicted in Figure 3.11. Of the samples in the NuGEN Ovation[®] Whole Blood Study BLDCON07, highlighted in red, produced by far the weakest correlation (r) with a score less than half the average of the remaining cohort.

$$r_{Pearsons} = \frac{\sum XY - \frac{\sum X \sum Y}{N}}{\sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{N}\right)\left(\sum Y^2 - \frac{(\sum Y)^2}{N}\right)}}$$

- X Signal intensity values (Sample X)
- Y Signal intensity values (Sample Y)
- N Number of samples or GeneChips® in the experiment

Figure 3.10 Pearson's Product-Moment Correlation Coefficient (r) Calculation Equation adapted from Hartman et al 2015, which is freely available online at gcat.davidson. edu/DGPB/clust/background (Davidson College, NC USA © 2015).

Figure 3.11 Pearson's Correlation Coefficient (r) for Samples in the NuGEN Ovation[®] Whole Blood Study For each pair-wise comparison in the coloured matrix a value for r is assigned on a scale of 0. 322 (Blue) to 1.000 (Red) where the higher the score is indicative of a stronger linear relationship between the X and Y variables. Potential outliers are highlighted in red. Assessment of the Affymetrix[®] QC metrics were performed in Expression Console[™] software version 1. 3.0.187 (Affymetrix[®] Ltd., UK).

Abbreviations: BLDCON - blood control, BLDPAT - blood patient and QC - quality control.

3.4 Pre- and Post-SPIA[™] qRT-PCR Measurements

In order to monitor the efficiency of the NuGEN Ovation[®] Whole Blood Solution (Section 2.3.1.4.2 and 2.3.1.5.1) a qRT-PCR experiment was performed using traditional SYBR[®] Green technology as outlined in Section 2.3.1.6. Relative Haemoglobin, alpha 2 (*HBA2*) mRNA transcript levels were measured against the standard housekeeping control, actin, beta (*ACTB*) (Figure 3.12) immediately prior to and following NuGEN Technologies Inc., UK patented SPIATM method of linear single primer isothermal amplification. *ACTB* was selected as the most suitable internal reference gene since it was found to have exhibited from MAS 5.0 pivot data (not shown) the most stable level of expression, of all the transcripts which are routinely assessed. Mean cycle threshold (Ct) values for post-SPIATM amplified material were significantly lowered for *ACTB* [pre-SPIATM 19.278 (n=12) and post-SPIATM measurements 10.801 (N=8); \$1.80-fold (p<0.001***)] but remained reasonable consistent for *HBA2* [pre-

		Ν	mean Ct	SEM	Ν	mean Ct	SEM	p-value
	BLDPAT'S	6	19.417	0.243	4	12.498	1.001	0.012
ACTB	BLDCON'S	6	19.138	0.150	4	9.105	0.357	2.56E-05
	ALL	12	19.278	0.142	8	10.801	0.808	2.23E-05
	BLDPAT'S	6	11.713	0.457	4	10.258	0.170	0.031
HBA2	BLDCON'S	6	11.955	4.881	3	8.870	1.610	0.147
	ALL	12	11.834	0.271	7	9.663	0.676	0.030

Figure 3.12 Pre- and Post-SPIA™ qRT-PCR Measurements of *HBA2* **mRNA Transcript Levels Relative to** *ACTB* **Using the NuGEN Ovation® Whole Blood Solution** Mean and SEM cycle threshold (Ct) values (y-axis) for haemoglobin, alpha 2 (*HBA2*) (■) and the internal reference control gene actin, beta (*ACTB*) (■) are provided for each treatment group (x-axis). The bar chart in the uppermost panel was created in GraphPad Prism® software version 5.04 © 1992-2014 (GraphPad Software, Inc. CA USA). Probability values were determined at the 5% significance threshold (p<0.05) with a paired student's t-test applied in Microsoft Excel 2010 (Microsoft Corporation UK).

Abbreviations: BLDCON - blood control, BLDPAT - blood patient, mRNA - messenger RNA, N - number, qRT-PCR - quantitative real-time polymerase chain reaction, SEM - standard error of the mean and SPIATM - single primer isothermal amplification

SPIATM 11.833 (n=12) and post-SPIATM measurements 9.663 (N=7); \bigcirc 1.20-fold (p< 0.05*)]; an observation that also held true when the different sample types were interpreted individually [Blood control (BLDCON): *ACTB* \bigcirc 2.10-fold (p<0.001***) and *HBA2* \bigcirc 1.40-fold (p-value not significant) and Blood patient (BLDPAT): *ACTB* \bigcirc 1.60-fold (p<0.05*) and *HBA2* \bigcirc 1.10-fold (p<0.05*) (Figure 3.12)]. These findings suggest

that the NuGEN Ovation[®] Whole Blood Solution, which utilises a unique DNA/RNA chimeric primer and proprietary whole blood reagent, has been successful in limiting the amplification of globin mRNA relative to other transcripts, in this case *ACTB*, that are also contained within the sample in order to reduce interference on the microarray (Wright et al 2008).

3.5 Peripheral Whole Blood Gene Expression Data

Direct comparisons were drawn between the JB NuGEN Ovation[®] and RR Ambion[®] GLOBINClear[™] (Raman 2011) strategies for performing GEP from peripheral whole blood using identical, age and as far as possible, gender matched patient (BLDPAT) and control (BLDCON) samples which were collected at the same time in PAXgene[®] Blood RNA Collection Tubes and stored at -20^oC for up to three years prior to being processed (Table 2.1) (Section 2.3.1.1).

3.5.1 GeneSpring GX v11.5.1

3.5.1.1 Normalisation

Affymetrix[®] CEL files with the exclusion of BLDCON07, which was reported to have failed a number of the QC parameters (Section 3.3.2.1 and 3.3.2.6) assessed by Expression Console[™] software version 1.3.0.187 (Affymetrix[®] Ltd, UK), were uploaded into GeneSpring GX v11.5.1 analysis suite (Agilent Technologies Genomics Ltd., UK). Raw expression values were log2 transformed and a PLIER16 estimation algorithm applied (Section 2.3.1.9.2) without the need for performing a baseline conversion to the median of all the samples (Figure 3.13). Normalised signal intensities (Figure 3. 14) were visualised on a profile plot in which each of the 54,675 probesets that are present on Human Genome U133 Plus 2.0 GeneChip[®] Arrays, is represented under different experimental conditions (i.e. healthy versus disease status) by a single coloured line where red, yellow and blue indicates whether the corresponding transcript has a high, intermediate or low abundance (Figure 3.14).

Figure 3.13 PLIER 16 Normalised Distribution of Relative Log2 Transformed Signal Intensity Values for Samples in the NuGEN Ovation® Whole Blood Study Box and Whisker plot generated using GeneSpring GX v11.5.1 (Agilent Technologies Genomics Ltd., UK). BLDCON07 was omitted on the basis that it had failed several of the QC parameters assessed in Expression Console[™] software version 1.3.0.187.

Abbreviations: BLDCON - blood control, BLDPAT - blood patient, PLIER - Probe Logarithmic Intensity Error and QC - quality control.

Figure 3.14 Profile Plot of PLIER 16 Normalised Signal Intensity Values for Samples in the NuGEN Ovation[®] Whole Blood Study Mean absolute expression values which are displayed along the y-axis are represented under different experimental conditions (x-axis) [i.e. healthy (left panel) versus disease (right panel) status] for each of the 54,675 probesets on the Affymetrix[®] Human Genome U133 Plus 2.0 GeneChip[®] Arrays. Red, yellow and blue lines signify high, intermediate and low expressing transcripts, respectively. The plot was generated using GeneSpring GX software version 11.5.1 (Agilent Technologies Genomics Ltd., UK) with BLDCON07 having already been excluded on the basis that it failed several QC parameters assessed by Expression Console[™] software version 1.3.0.187 (Affymetrix[®] Ltd., UK).

Abbreviations: BLDCON - blood control, BLDPAT - blood patient, PLIER - <u>P</u>robe <u>Logarithmic Intensity Er</u>ror and QC - quality control.

3.5.1.2 Detection of Differentially Expressed Transcripts

DE transcripts were detected at the 5% significance level in GeneSpring GX v11.5.1 using an unpaired student's t-test with an FDR corrected p<0.05 and FC threshold of $\geq \pm 1.50$ (Section 2.3.1.9.2).

3.5.1.2.1 JB NuGEN Ovation® Dataset

Analysis of the JB NuGEN Ovation[®] dataset identified 706 DE transcripts [unpaired student's t-test FDR p<0.05, FC $\geq \pm 1.50$]; considerably fewer than would ordinarily be expected by chance (n=2,733) (Figure 3.15). These included 239 genes (33.9%) that were significantly up-regulated (1) and a further 467 genes (66.1%) which were significantly down-regulated (1) [APPENDIX TABLE A1].

3.5.1.2.2 RR Ambion[®] GLOBINClear[™] Dataset

In contrast, analysis of the RR Ambion[®] GLOBINClearTM dataset (Dr Rohini Raman) identified a substantially greater proportion of transcripts (n=4,520) (Figure 3.15) as being DE [unpaired student's t-test FDR p<0.05, FC $\geq \pm 1.50$]. These included 3,4 40 genes (76.1%) that were significantly up-regulated ($\hat{1}$) and a further 1,080 genes which were significantly down-regulated ($\hat{1}$) [APPENDIX TABLE A2].

3.5.1.2.3 JB NuGEN Ovation[®] and RR Ambion[®] GLOBINClear[™] Comparison

	ALL	p<0.05	p<0.02	p<0.01	p<0.005	p<0.001
ALL	54,675	3,785	1,449	728	371	81
FC>1.1	22,242	3,426	1,325	685	351	78
FC>1.5	1,643	706	296	161	82	22
FC>2.0	74	50	27	16	11	5
FC>3.0	6	3	3	3	3	2
Expected by Chance		2,733	1,093	546	273	54

	ALL	p<0.05	p<0.02	p<0.01	p<0.005	p<0.001
ALL	54,675	11,103	7,064	4,983	3,473	1,389
FC>1.1	33,707	11,072	7,055	4,982	3,473	1,389
FC>1.5	5,560	4,520	3,611	2,869	2,246	1,074
FC>2.0	1,264	1,213	1,126	986	833	492
FC>3.0	198	192	180	176	172	132
Expected by Chance		2,733	1,093	546	273	54

Figure 3.15 Volcano Plots of the 706 and 4,520 Gene Lists Detected in GeneSpring GX v11.5.1 Between JB NuGEN Ovation[®] and RR GLOBINClear™ Datasets

Abbreviations: FC - fold change, JB - Joanna Bury generated CEL files and RR - Dr Rohini Raman generated CEL files.

A GeneVenn diagram depicted in Figure 3.16, of the formerly discussed JB NuGEN Ovation[®] and RR Ambion[®] GLOBINClear[™] (Section 3.5.1.2.1 and 3.5.1.2.2) datasets revealed substantial differences between the 706 and 4,520 lists. Only a handful of transcripts (n=82) (Table 3.3) representing just 11.6 or 1.8% of genes, respectively were shared in common with the majority of these disease related changes found to occur in opposing directions.

Figure 3.16 GeneVenn of JB NuGEN Ovation® and RR GLOBINClearTM **Datasets** DE transcripts were detected at the 5% significance level using an unpaired student's test (p<0.05) and applying a FC threshold of $\geq \pm 1.50$ in GeneSpring GX software version 11.5.1 (Agilent Technologies Genomics Ltd., UK). The Venn diagram was created using the GeneVenn application that is freely available online at genevenn.sourceforge.net (University of Southern Mississippi, USA) (Pirooznia et al 2007).

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, DE - differentially expressed, FC - fold-change, JB - Joanna Bury generated CEL files, RR - Dr Rohini Raman generated CEL files and S - sporadic.

3.5.1.3 Clustering Analysis

Clustering analysis conducted at the 5% significance threshold in GeneSpring GX v1 1.5.1 applying the 706 (Section 3.5.1.2.1) and 4,520 (Section 3.5.1.2.2) filtered gene lists [unpaired student's t-test FDR p<0.05, FC $\geq \pm 1.50$] demonstrated more distinct patient (BLDPAT) (blue) and control (BLDCON) (red) groupings on the PCA plot and hierarchically clustered HeatMap for the RR Ambion[®] GLOBINClearTM (Figure 3.17) dataset in comparison to the JB NuGEN Ovation[®] (Figure 3.18) dataset.

			JB NuGEN Ovation®		RR GLOBINClear [™]	
Transcript	Symbol	Gene Name	FC	p-value	FC	p-value
206697_s_at	HP	haptoglobin	î 2.40-fold	0.021	ใ 2.69-fold	2.48E-03
211781_x_at			ใ 2.34-fold	0.033	î 1.97-fold	0.020
219359_at	ATHL1	ATH1, acid trehalase-like 1 (yeast)	1 2.09-fold	4.06E-03	î 1.75-fold	0.021
208470_s_at	HP	haptoglobin	ใ 2.05-fold	0.031	î 1.98-fold	0.046
238591_at	HEXDC	hexosaminidase (glycosyl hydrolase family 20, catalytic domain) containing	ใ 1.83-fold	0.028	î 1.59-fold	0.030
1559128_at	HSDL2	hydroxysteroid dehydrogenase like 2	ใ 1.71-fold	9.18E-03	î 1.86-fold	8.87E-04
226322_at	TMTC1	transmembrane and tetratricopeptide repeat containing 1	ใ 1.69-fold	0.026	ใ 4.47-fold	4.55E-03
203326_x_at	COL5A1	collagen, type V, alpha 1	ใ 1.58-fold	0.014	î 1.97-fold	4.61E-04
221996_s_at	CLTB	clathrin, light chain (Lcb)	ใ 1.57-fold	8.79E-03	î 1.91-fold	5.91E-04
213457_at	MFHAS1	malignant fibrous histiocytoma amplified sequence 1	ใ 1.56-fold	8.95E-03	î 1.66-fold	0.048
229392_s_at	PIK3R2	phosphoinositide-3-kinase, regulatory subunit 2 (beta)	î 1.54-fold	6.70E-03	ใ 2.04-fold	8.85E-04
1558739_at	DUSP16	dual specificity phosphatase 16	ใ 1.53-fold	0.042	ใ 1.80-fold	3.07E-03
206237_s_at	NRG1	neuregulin 1	ใ 1.51-fold	0.041	î 1.59-fold	0.046
218978_s_at	SLC25A37	solute carrier family 25, member 37	ใ 1.51-fold	0.046	î 1.95-fold	0.047
205215_at	RNF2	ring finger protein 2	🖟 1.50-fold	0.027	î 1.93-fold	6.58E-03
206544_x_at	SMARCA2	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2	4 1.50-fold	0.025	4 3.06-fold	5.37E-04
241242_at	FAM120A	family with sequence similarity 120A	🖟 1.51-fold	3.96E-03	1 1.94-fold	5.62E-03
226109_at	C210RF91	chromosome 21 open reading frame 91	🖟 1.52-fold	0.048	1 1.52-fold	0.032
222313_at	CNOT2	CCR4-NOT transcription complex, subunit 2	🖟 1.52-fold	0.038	ใ 2.04-fold	0.014
1555199_at	GOSR1	golgi SNAP receptor complex member 1	🖟 1.53-fold	0.011	1 1.62-fold	1.72E-03
200806_s_at	HSPD1	heat shock 60kDa protein 1 (chaperonin)	🖟 1.53-fold	0.015	4 2.87-fold	5.53E-04
223254_s_at	G2E3	G2/M-phase specific E3 ubiquitin ligase	🖟 1.55-fold	0.026	î 1.89-fold	0.041
242760_x_at	PIGB	phosphatidylinositol glycan anchor biosynthesis, class B	🖟 1.55-fold	0.026	î 1.70-fold	0.018
1555977_at	LOC727918	hypothetical LOC727918	🖟 1.55-fold	0.043	î 2.00-fold	1.98E-03
216072_at			🖟 1.55-fold	0.039	î 1.56-fold	4.89E-04
240248_at	C100RF46	chromosome 10 open reading frame 46	🖟 1.57-fold	0.045	ใ 2.35-fold	0.036
201409_s_at	PPP1CB	protein phosphatase 1, catalytic subunit, beta isoform	🖟 1.57-fold	0.048	î 1.73-fold	0.027
229966_at	EWSR1	Ewing sarcoma breakpoint region 1	🖟 1.57-fold	0.048	ใ 2.13-fold	2.88E-03
202412_s_at	USP1	ubiquitin specific peptidase 1	🖟 1.57-fold	2.42E-03	ใ 2.50-fold	4.91E-03
217608_at	SFRS12IP1	SFRS12-interacting protein 1	4 1.58-fold	0.015	1.73-fold 1	0.018
200889_s_at	SSR1	signal sequence receptor, alpha	4 1.58-fold	5.27E-04	4 1.92-fold	2.71E-03
235009_at	BOD1L	biorientation of chromosomes in cell division 1-like	4 1.60-fold	0.014	î 2.41-fold	2.80E-03

1560017_at	ТМТСЗ	transmembrane and tetratricopeptide repeat containing 3	🖟 1.60-fold	0.049	1 1.58-fold	5.54E-04
1555439_at	GTF3C3	general transcription factor IIIC, polypeptide 3, 102kDa	🖟 1.61-fold	0.043	î 1.67-fold	5.84E-03
241294_at	AP1G1	adaptor-related protein complex 1, gamma 1 subunit	🖟 1.62-fold	0.023	î 1.78-fold	0.011
225980_at	C140RF43	chromosome 14 open reading frame 43	🖟 1.62-fold	0.027	🖟 1.72-fold	7.84E-03
202068_s_at	LDLR	low density lipoprotein receptor	🖟 1.63-fold	0.045	🖟 1.83-fold	5.36E-03
222850_s_at	DNAJB14	DnaJ (Hsp40) homolog, subfamily B, member 14	🖟 1.63-fold	0.047	ใ 2.84-fold	4.39E-03
241610_x_at	PACS1	phosphofurin acidic cluster sorting protein 1	🖟 1.64-fold	3.51E-03	ใ 4.94-fold	1.01E-04
1569302_at	KIAA1731	KIAA1731	🖟 1.64-fold	0.033	1 1.84-fold	0.017
229353_s_at	NUCKS1	nuclear casein kinase and cyclin-dependent kinase substrate 1	🖟 1.65-fold	0.027	ใ 3.10-fold	2.90E-03
236752_at	PKP4	plakophilin 4	🖟 1.66-fold	1.12E-03	î 1.97-fold	0.011
232311_at	B2M	Beta-2-microglobulin	🖟 1.67-fold	0.019	1 3.33-fold	3.07E-04
212479_s_at	RMND5A	required for meiotic nuclear division 5 homolog A (S. cerevisiae)	🖟 1.67-fold	0.023	1 1.87-fold	1.23E-03
213518_at	PRKCI	protein kinase C, iota	🖟 1.67-fold	0.047	î 2.36-fold	6.86E-04
1561015_at	KLF3	Kruppel-like factor 3 (basic)	🖟 1.68-fold	0.014	ใ 1.67-fold	0.011
235060_at	LOC100190986	hypothetical LOC100190986	🖟 1.68-fold	0.029	1 1.67-fold	0.016
202006_at	PTPN12	protein tyrosine phosphatase, non-receptor type 12	🖟 1.69-fold	0.020	🖟 1.77-fold	0.038
222111_at	FAM63B	family with sequence similarity 63, member B	🖟 1.71-fold	0.013	î 1.57-fold	0.016
243233_at	RNU6-1	RNA, U6 small nuclear 1	🖟 1.72-fold	0.021	ใ 2.41-fold	6.03E-03
1554241_at	СОСН	coagulation factor C homolog, cochlin (Limulus polyphemus)	🖟 1.72-fold	0.048	ใ 3.13-fold	4.26E-05
242576_x_at	N4BP2L2	NEDD4 binding protein 2-like 2	🖟 1.72-fold	5.97E-03	ใ 2.89-fold	2.11E-03
220369_at	SMEK1	SMEK homolog 1, suppressor of mek1 (Dictyostelium)	🖟 1.72-fold	0.024	î 1.75-fold	0.016
244679_at	STK38	serine/threonine kinase 38	🖟 1.72-fold	0.025	î 2.23-fold	0.017
211352_s_at	NCOA3	nuclear receptor coactivator 3	🖟 1.73-fold	0.032	1 1.80-fold	0.033
218294_s_at	NUP50	nucleoporin 50kDa	l.73-fold 1.73	0.016	ใ 2.10-fold	0.013
200751_s_at	HNRNPC	heterogeneous nuclear ribonucleoprotein C (C1/C2)	🖟 1.73-fold	5.38E-03	🖟 1.90-fold	1.32E-03
201299_s_at	MOBKL1B	MOB1, Mps One Binder kinase activator-like 1B (yeast)	🖟 1.75-fold	0.037	î 1.50-fold	0.016
238317_x_at	RBMS1	RNA binding motif, single stranded interacting protein 1	🖟 1.75-fold	0.027	ใ 2.62-fold	1.03E-03
227259_at	CD47	CD47 molecule	🖟 1.76-fold	6.15E-03	î 1.85-fold	7.84E-03
1563975_at	RNF130	ring finger protein 130	🖟 1.76-fold	5.12E-04	î 1.56-fold	0.016
242844_at	PGGT1B	protein geranylgeranyltransferase type I, beta subunit	🖟 1.77-fold	2.46E-03	î 1.82-fold	0.022
237461_at	NLRP7	NLR family, pyrin domain containing 7	🖟 1.85-fold	0.020	🖟 1.79-fold	0.019
214352_s_at	KRAS	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog	🖟 1.85-fold	8.23E-03	î 2.45-fold	2.60E-03
201407_s_at	PPP1CB	protein phosphatase 1, catalytic subunit, beta isoform	🖟 1.86-fold	0.044	ใ 2.01-fold	1.11E-03
227364_at	CAPZA1	capping protein (actin filament) muscle Z-line, alpha 1	👃 1.86-fold	0.039	î 2.16-fold	6.57E-03
1558747_at	SMCHD1	structural maintenance of chromosomes flexible hinge domain containing 1	J 1.88-fold	0.036	î 2.61-fold	3.44E-03

233898_s_at	FGFR10P2	FGFR1 oncogene partner 2	🖟 1.89-fold	0.036	1 1.79-fold	0.037
212418_at	ELF1	E74-like factor 1 (ets domain transcription factor)	🖟 1.94-fold	0.025	\rm 1.75-fold	5.43E-03
224778_s_at	TAOK1	TAO kinase 1	4 1.98-fold	0.041	ใ 2.01-fold	2.71E-03
222409_at	CORO1C	coronin, actin binding protein, 1C	🖟 1.98-fold	7.03E-03	1 1.94-fold	0.025
230180_at	DDX17	DEAD (Asp-Glu-Ala-Asp) box polypeptide 17	🖟 1.99-fold	0.017	î 1.71-fold	0.047
215635_at	PDE8A	phosphodiesterase 8A	🖟 1.99-fold	0.037	ใ 2.05-fold	0.021
228471_at	ANKRD44	ankyrin repeat domain 44	4 2.06-fold	0.033	ใ 3.12-fold	1.62E-05
239957_at	SETD5	SET domain containing 5	J 2.14-fold	0.026	ใ 2.03-fold	8.30E-03
1552480_s_at	PTPRC	protein tyrosine phosphatase, receptor type, C	🖟 2.19-fold	0.035	î 1.99-fold	0.026
219978_s_at	NUSAP1	nucleolar and spindle associated protein 1	4 2.23-fold	3.82E-03	ใ 2.01-fold	0.014
228222_at	PPP1CB	protein phosphatase 1, catalytic subunit, beta isoform	1 2.25-fold	0.030	î 3.34-fold	1.34E-03
1552552_s_at	CLEC4C	C-type lectin domain family 4, member C	🖟 2.28-fold	2.31E-03	👃 2.27-fold	0.018
201237_at	CAPZA2	capping protein (actin filament) muscle Z-line, alpha 2	J 2.36-fold	0.031	ใ 2.53-fold	0.019
1555687_a_at	CLEC4C	C-type lectin domain family 4, member C	🖟 2.73-fold	0.015	🞝 2.15-fold	0.018
231484_at	ATP8A1	ATPase, aminophospholipid transporter (APLT) class I, type 8A, member 1	J 2.84-fold	0.046	î 3.82-fold	0.028

Table 3.3 JB NuGEN Ovation[®] and RR GLOBINClearTM GeneSpring Common List (n=82) [unpaired student's t-test p<0.05, FC $\geq \pm 1.50$] Affymetrix[®] transcript IDs are ranked in order of fold-change (FC) for whole blood samples in the JB NuGEN Ovation[®] dataset and corresponding values for the same BLDCON and BLDPAT cases are provided in the adjacent columns for the RR GLOBINClearTM dataset. Unannotated transcripts as determined using the NetAffxTM Analysis Centre, which is freely available at affymetrix.com/analysis/index.affx (Affymetrix[®] Ltd, UK) (Liu et al 2003), were represented by three dashed lines under the 'Symbol' and 'Gene Name' headings. Arrows were used to indicate the direction of change [up-regulation (red) and down-regulation (green)]. Transcripts with the same direction of change for both datasets are highlighted in grey.

Abbreviations: ATH1 - acid trehalase 1, ATP - adenosine triphosphate, BLDCON - blood control, BLDPAT - blood patient, CCR4 - chemokine (C-C motif) receptor 4, FGFR - fibroblast growth factor receptor, JB - Joanna Bury generated CEL files, NEDD - neural precursor cell expressed, developmentally down-regulated, NLR - NOD-like receptor, RR - Dr Rohini Raman generated CEL files, SNAP - snRNA activating protein, snRNA - small nuclear RNA and TAO - Thousand and One Amino Acid Protein.

a) PCA plot

b) Hierarchically Clustered HeatMap

Figure 3.17 Clustering Analysis of the JB NuGEN Ovation[®] Dataset Applying the 706 Gene List in GeneSpring GX v11.5.1 [unpaired student's t-test FDR p<0.05, FC $\ge \pm 1.50$]

Abbreviations: BLDCON - blood control, BLDPAT - blood patient, FC - fold change, JB - Joanna Bury generated CEL files and PCA - principal components analysis.

Figure 3.18 Clustering Analysis of the RR GLOBINClear[™] Dataset Applying the 4,520 Gene List in GeneSpring GX v11.5.1 [unpaired student's t-test FDR p<0.05, FC ≥ ± 1.50]

Abbreviations: BLDCON - blood control, BLDPAT - blood patient, FC - fold change, PCA - principal components analysis and RR - Dr Rohini Raman generated CEL files.
3.5.1.4 DAVID Functional Annotation Enrichment Analysis

The GeneSpring GX v11.5.1 generated 706 and 4,520 gene lists [unpaired student's t-test FDR p<0.05, FC $\ge \pm 1.50$] pertaining to JB NuGEN Ovation[®] (Section 3.5.1.2.1) and RR Ambion[®] GLOBINClearTM (Section 3.5.1.2.2) datasets could also be imported into DAVID bioinformatics resource version 6.7 (Huang da et al 2009a, Huang et al 2009b). Functional annotation clustering analysis was subsequently performed on GOTERM_BP_FAT and GOTERM_MF_FAT gene ontology (GO) terms applying a *Homo sapiens* background and filtering using 'Medium' classification stringency (Section 2. 3.1.8.3). Note that for the analysis of the RR Ambion[®] GLOBINClearTM dataset the 4, 520 list was necessarily trimmed to include only the top ranking 3,000 probeset IDs as determined by probability value since this represents the upper limit which the software is capable of handling in each run. Categories with a minimum EASE score above 1.30 and Benjamini-Hochberg FDR corrected p<0.05 were considered statistically significant. In total, DAVID mapped 686 (97.2%) of 706 [230 genes $\hat{1}$ and 456 genes $\hat{1}$] and 2,692 (89.7%) of 3,000 (4,520) [2,130 genes $\hat{1}$ and 562 genes $\hat{1}$] Affymetrix[®] probeset IDs identified from each comparison.

3.5.1.4.1 JB NuGEN Ovation® Dataset

The 706 list of DE transcripts in GeneSpring GX v11.5.1 [unpaired student's t-test FDR p<0.05, FC $\geq \pm 1.50$] from the JB NuGEN Ovation[®] dataset was enriched for GO categories associated with protein serine/threonine kinase activity, enzyme binding, intracellular transport as well as the regulation of gene transcription from the RNA polymerase II promoter (Table 3.4).

#	GO term	Functional Category	EASE	Count	Benjamini
1	GO:0004674	protein serine/threonine kinase activity	4.40	39	8.30E-05
2	GO:0019899	enzyme binding	3.66	38	5.60E-03
3	GO:0046907	intracellular transport	2.48	44	0.030
4	GO:0006357	regulation of transcription from RNA	2.47	47	0.028
5	GO:0003702	polymerase II promoter RNA polymerase II transcription factor activity	1.33	21	0.019

Table 3.4 JB NuGEN Ovation® DAVID Functional Annotation Clustering Analysis

Abbreviations: # - rank, DAVID - <u>D</u>atabase of <u>A</u>nnotation, <u>V</u>isualisation and <u>I</u>ntegrated <u>D</u>iscovery, EASE - enrichment score, GO - gene ontology and JB - Joanna Bury generated CEL files.

3.5.1.4.2 RR Ambion[®] GLOBINClearTM Dataset

Conversely, the 3,000 highest ranking genes in the GeneSpring GX v11.5.1 4,520 list of DE transcripts from the RR Ambion[®] GLOBINClearTM dataset [unpaired student's t-test FDR p<0.05, FC \geq ±1.50] were found to be enriched for GO categories that are associated with chromosome organisation, nucleotide binding, mRNA metabolism, protein transport and negative regulation of gene transcription (Table 3.5).

#	GO term	Functional Category	EASE	Count	Benjamini
1	GO:0051276	chromosome organization	5.60	95	4.80E-04
2	GO:0016071	mRNA metabolic process	4.17	70	0.014
3	GO:0015031	protein transport	4.05	126	0.016
4	GO:0045892	negative regulation of transcription, DNA	3.22	80	0.029
		-templated			
5	GO:0000166	nucleotide binding	3.17	321	1.90E-03
6	GO:0009057	macromolecular catabolic process	2.80	121	0.049
7	GO:0051173	negative regulation of nitrogen	2.50	103	0.049
		compound metabolic process			
8	GO:0006351	transcription, DNA-templated	2.28	291	0.031
9	GO:0051169	nuclear transport	2.05	35	0.038

Table 3.5 RR GLOBINClear™ DAVD Functional Annotation Clustering Analysis

Abbreviations: # - rank, DAVID - <u>D</u>atabase for <u>A</u>nnotation, <u>V</u>isualisation and <u>I</u>ntegrated <u>D</u>iscovery, EASE - enrichment score, GO - gene ontology, mRNA - messenger RNA and RR - Dr Rohini Raman generated CEL files.

3.5.1.4.3 JB NuGEN Ovation[®] and RR Ambion[®] GLOBINClear[™] Comparison

The DAVID comparative analyses of functionally enriched GO categories which are summarised in Table 3.4 and 3.5 highlighted very few commonalities, with perhaps the exception of gene transcription, between the JB NuGEN Ovation[®] (Section 3.5.1. 4.1) and RR Ambion[®] GLOBINClear[™] (Section 3.5.1.4.2) datasets. EASE scores of 5. 6 or below coupled with relatively low gene counts suggest that both methodologies assessed here for GEP from peripheral whole blood in ALS are highly variable.

3.5.1.5 KEGG Pathway Analysis

KEGG pathway analysis also conducted in DAVID (Huang da et al 2009a, Huang et al 2009b) identified six shared pathways common to both the JB NuGEN Ovation[®] and RR Ambion[®] GLOBINClear[™] datasets including MAPK signalling (Section 3.5.1.5.1)

[Rank 1 (13), count 20 (46), 3.2% (2.0%) uncorrected p<0.001*** (Table 3.6 and 3. 7)], Non-small cell lung cancer, T cell receptor signalling, chronic myeloid leukemia and gonadotropin releasing hormone (GnRH) signalling. In the following two sections, JB NuGEN Ovation[®] related gene expression changes which are associated with the top two most significant KEGG pathways, namely the MAPK (Section 3.5.1.5.1) and neurotrophin (Section 3.5.1.5.2) signalling cascades, are discussed further.

#	KEGG Pathway	Count	%	p-value	Benjamini
1	MAPK signalling pathway	20	3.2	1.60E-03	0.210
2	Oocyte meiosis	11	1.8	4.00E-03	0.250
3	Long-term potentiation	8	1.3	7.90E-03	0.320
4	Neurotrophin signalling pathway	11	1.8	9.20E-03	0.280
5	Non-small cell lung cancer	7	1.1	9.50E-03	0.240
6	T cell receptor signalling pathway	10	1.6	0.011	0.230
7	RNA degradation	7	1.1	0.012	0.230
8	Chronic myeloid leukemia	8	1.3	0.013	0.210
9	NOD-like receptor signalling pathway	7	1.1	0.018	0.250
10	Endometrial cancer	6	1.0	0.031	0.360
11	GnRH signalling	8	1.3	0.048	0.480

Table 3.6 JB NuGEN Ovation® KEGG Pathway Analysis Highlighted in yellow JB NuGEN Ovation[®] and RR Ambion[®] GLOBINClear[™] common pathways.

Abbreviations: # - rank, GnRH - gonadotropin releasing hormone, JB - Joanna Bury generated CEL files, KEGG - Kyoto Encyclopaedia of Genes and Genomes, MAPK - mitogen activated protein kinase, NOD - nucleotide binding oligomerization domain and RR - Dr Rohini Raman generated CEL files.

3.5.1.5.1 MAPK Signalling Cascade

The mitogen-activated protein kinases (MAPK's) (otherwise known as extracellular signal-regulated kinases (ERK's)) are a family of serine/threonine/tyrosine specific kinases which are responsible for the phosphorylation of cytoplasmic components and nuclear transcription factors (NTF's) that regulate gene expression in response to a diverse array of extracellular stimuli including growth factors [classical MAPK cascade], pro-inflammatory cytokines, osmotic stress, heat shock and UV radiation [c-Jun N-terminal kinase (JNK)/p38 MAPK cascade] (Murai et al 2010, Strniskova et al 2002).

Upon ligand binding to the receptor tyrosine kinases of the classical MAPK cascade autophosphorylation is triggered in order to attract protein complexes containing SOS [*SOS2* (son of sevenless homolog 2 (*Drosophila*)) $\hat{1}$ 1.71-fold SALS, p<0.05] and

#	KEGG Pathway	Count	%	p-value	Benjamini
1	Fc gamma R-mediated phagocytosis	23	1.0	8.50E-04	0.140
2	Glioma	17	0.8	1.50E-03	0.130
3	Endocytosis	36	1.6	1.50E-03	0.090
4	Chronic myeloid leukemia	19	0.8	1.60E-03	0.071
5	B cell receptor signalling pathway	19	0.8	1.60E-03	0.071
6	Insulin signalling pathway	28	1.2	2.50E-03	0.087
7	Adipocytokine signalling pathway	17	0.8	3.00E-03	0.089
8	Ubiquitin mediated proteolysis	28	1.2	3.10E-03	0.078
9	Neurotrophin signalling pathway	26	1.2	3.10E-03	0.070
10	Phosphatidylinositol signalling system	18	0.8	3.50E-03	0.069
11	Spliceosome	26	1.2	3.90E-03	0.070
12	VEGF signalling pathway	18	0.8	4.00E-03	0.066
13	MAPK signalling pathway	46	2.0	4.40E-03	0.066
14	Renal cell carcinoma	17	0.8	4.80E-03	0.066
15	ErbB signalling pathway	19	0.8	8.60E-03	0.110
16	RNA degradation	14	0.6	0.011	0.120
17	Adherens junction	17	0.8	0.012	0.130
18	Pathways in cancer	52	2.3	0.013	0.130
19	GnRH signalling pathway	20	0.9	0.014	0.140
20	Pancreatic cancer	16	0.7	0.015	0.140
21	T cell receptor signalling pathway	21	0.9	0.020	0.170
22	Leukocyte transendothelial migration	22	1.0	0.026	0.200
23	Natural killer cell mediated cytotoxicity	24	1.1	0.028	0.210
24	Jak-STAT signalling pathway	27	1.2	0.028	0.210
25	Acute myeloid leukemia	13	0.6	0.029	0.200
26	Fc epsilon R1 signalling pathway	16	0.7	0.029	0.200
27	mTOR signalling pathway	12	0.5	0.031	0.200
28	Progesterone-mediated oocyte maturation	17	0.8	0.033	0.210
29	Inositol phosphate metabolism	12	0.5	0.040	0.230
30	Non-small cell lung cancer	12	0.5	0.040	0.230
31	Regulation of actin cytoskeleton	34	1.5	0.047	0.260

Table 3.7 RR Ambion[®] GLOBINClear[™] KEGG Pathway Analysis Highlighted in yellow JB NuGEN Ovation[®] and RR Ambion[®] GLOBINClear[™] common pathways.

Abbreviations: # - rank, ErbB - epidermal growth factor receptor, GnRH - gonadotropin releasing hormone, JAK - Janus kinase, JB - Joanna Bury generated CEL files, KEGG - Kyoto Encyclopaedia of Genes and Genomes, MAPK - mitogen activated protein kinase, mTOR - mammalian target of rapamycin, RR - Dr Rohini Raman generated CEL files, STAT - signal transducers and activators of transcription and VEGF - vascular endothelial growth factor.

the GRB2 [*GAPT* (growth factor receptor-bound protein 2 (GRB2) binding adaptor protein, transmembrane) 1.60-fold SALS, p<0.05] adaptor molecule to the plasma membrane which, in turn, leads to the activation of Ras [*KRAS* (Kirsten rat sarcoma viral oncogene homolog) 1.85-fold SALS, p<0.01 accompanied by the inhibitory regulator *RASA1* (RAS p21 protein activator GTPase activating protein 1) 1.51-fold SALS, p<0.05].

In the presence of the guanine nucleotide exchange factor, RasGRP [*RASGRP2* (Ras guanyl releasing protein 2 (calcium and DAG-related) 1.55-fold SALS, p<0.05] Ras

directly, or indirectly via protein kinase C, activates Raf1, B-Raf and the oncogene homolog Mos which leads to the sequential phosphorylation of MAP2K1 (\$1.56-fold SALS, p<0.05), MAPK1, RPS6K [*RPS6KA2/A5* (ribosomal protein S6 kinase, 90 kDa) 1.96-fold SALS, p<0.001 and ↓1.86-fold SALS, p<0.05 for the second and fifth polypeptide respectively] and cyclic adenosine monophosphate (cAMP) response element binding transcription factor CREB (Di Giacomo et al 2009, Lu et al 2010) in order to promote cell differentiation and survival (Figure 3.19). Furthermore, MAPK1 that is negatively regulated by DUSP16 [DUSP16 (dual specific phosphatase 16) 11. 53-fold SALS, p<0.05] is known to phosphorylate the calcium independent phospholipase PLA2G [*PLA2G4C* (phospholipase A2, group IVC (cytosolic, calcium-indepen dent) 11.81-fold SALS, p<0.01 and PLA2G6 (phospholipase A2, group VI (cytosolic, calcium-independent) 11.76-fold SALS, p<0.05]; a molecule considered essential for normal lipid metabolism (Murakami et al 2011) which may also play an important role in FasL mediated apoptosis (Figure 3.19) (Section 1.2.4.8) (Atsumi et al 1998). An overall down-regulation in Ras GTPase activity observed on the 3' IVT expression arrays in the peripheral whole blood of SALS patients recruited to the NuGEN Ovation® Whole Blood Study is expected to lead to a reduction in the levels of mitochondrial membrane associated B-cell CLL/lymphoma 2 protein (Bcl2) [BCLAF1 (BCL2associated transcription factor 1) \$1.77-fold SALS, p<0.01; BCL2L13 (BCL2-like 13) (apoptosis facilitator)) \$1.59-fold SALS, p<0.01], which under normal physiological conditions, is known to suppress cell death signals by binding to apoptotic peptidase activating factor 1 (APAF1) and blocking cytochrome c release (Brunet et al 2001, Hockenbery et al 1990, Liu et al 1996, Ruvolo et al 2001). A significant depletion in the abundance of Bcl2 lifts its inhibition of apoptosis-related cysteine peptidase activation [CASP5 (caspase 5) $\hat{1}2.03$ -fold SALS, p<0.05] thereby inducing programmed cell death (Kuranaga 2012, Momeni et al 2013).

Several components of the JNK/p38 MAPK cascades, responsible for mediating cell cycle arrest and inducing potent pro-apoptotic signals upon detecting DNA damage (Ghosh et al 2009, Kim et al 2011, Ryazantseva et al 2008, Tamagno et al 2003, Van Laethem et al 2006), were also found to be dysregulated in the peripheral whole venous blood of SALS patients compared to controls. These include protein LAK1 [*NLK* (nemo-like kinase) \$1.82-fold SALS, p<0.05], TAO1/2 [*TAOK1* (Thousand And One

121

amino acid protein kinase) 1.98-fold SALS, p<0.05], TGFR-2 [*TGFBR2* (transforming growth factor, beta receptor II (70/80kDa)) 1.82-fold SALS, p<0.05], p58 [*PAK2* p 21 protein Cdc42/Rac associated kinase 2) 1.60-fold SALS, p<0.05], MEKK1 [*MAP 3K1* 1.70-fold SALS, p<0.05], MEKK7 [*MAP3K7* 1.61-fold SALS, p<0.05] and MAP 3K7 interacting protein 1 (TAB1) [*MAP3K7IP1* (TGF-beta activated kinase 1) 1.59-fold SALS, p<0.05].

3.5.1.5.2 Neurotrophin Signalling Cascade

The neurotrophic factors NT-3 (neurotrophin-3), NT-4/5 (neurotrophin-4/5), NGF (nerve growth factor) and BDNF represent a family of small secreted proteins which are responsible for promoting cell survival and cell death signals in the developing sensory/MN's and microglial cells of the mammalian CNS (Ernsberger 2009). Their engagement of tropomyosin-related tyrosine kinase receptors, namely TrkA, TrkB and TrkC, induces receptor dimerization and autophosphorylation which attracts a whole plethora of signal transducing molecules to the plasma membrane (Chao et al 2006, Skaper 2008). Of particular relevance were the SHC (Src homology 2 domain, containing) and SH2-B (SH2 domain containing signalling mediator) adaptor proteins which are involved in the recruitment of GRB2 (\$1.60-fold SALS, p<0.05) and SOS2 ($\hat{1}1.71$ -fold SALS, p<0.05) complexes that leads to the activation of Ras ($\mathbb{Q}1.85$ -fold SALS, p<0.01); a small GTPase important for a diverse array of processes including cellular differentiation, retrograde axonal transport, neurite outgrowth and synaptic plasticity (Figure 3.19) (Bhattacharyya et al 1997, Feig 2011, Stornetta & Zhu 2011, Tartaglia & Gelb 2010). The Ras proteins K, N and H function as molecular switches which exert their effects via several intracellular signalling cascades including MAP K (Section 3.5.1.5.1) and the PI3K-AKT pathways [PIK3R2 (phosphoinositide-3-kinase (PI3K) regulatory subunit 2, beta) 11.54-fold SALS, p<0.01 which enhances AKT (alternative name protein kinase B (PKB)) inhibition of forkhead box O3a (FBXO3) I 1.54-fold, p<0.05 and glycogen synthase kinase 3, beta (*GSK3B*) proteins (Leger et al 2006)]. Increases in PI3K-mediated phosphorylation of the serine/threonine specific kinase, AKT (Brunet et al 1999), is expected to block the translocation of FOXO3a into the nucleus; thereby preventing the subsequent activation of FasL gene transcription to promote cell survival (Zheng et al 2002, Zheng & Quirion 2004).

Figure 3.19 KEGG Pathway Schematic of Neurotrophin Signalling Cascade

Abbreviations: +P - phosphorylation, (\hat{U}) - up-regulated, (\bar{U}) - down-regulated, AKT - v-akt murine thymoma viral oncogene homolog, ARMS - ankyrin repeat rich membrane spanning, ASK associated X protein, Bcl2 - B-cell CLL/lymphoma 2, BDNF - brain derived neurotrophic factor, B-Raf - v-raf murine sarcoma viral oncogene homolog B, C3G - guanine nucleotide releasing protein, Cdc42 - cell division control protein 42 homolog, CREB - cyclic adenosine monophosphate (cAMP) responsive element binding protein, Crk - v-crk avian sarcoma virus CT10 oncogene homolog, Fas first apoptosis signal, FasL - Fas ligand, FBXO3 - forkhead box O3, Gab - GRB2 associated binding protein, GRB2 - growth factor receptor bound protein 2, GSK3 β - glycogen synthase kinase 3, beta, JNK - c-Jun N-terminal kinase, KEGG - Kyoto Encyclopaedia of Genes and Genomes, MAPK - mitogen activated protein kinase, NADE - p75NTR associated cell death executor, NGF - nerve growth factor, NRAGE - neurotrophin receptor interacting melanoma antigen gene (MAGE) homolog, NTR neurotrophin receptor, PI3K - phosphoinositide 3 kinase, PTPN11 - tyrosine protein phosphatase non-receptor type 11, Rap1A - Ras related protein, RPS6K - ribosomal protein S6 kinase, SC1 -Schwann cell factor 1, SH2B - SH2 domain containing signalling mediator, Shc - Src homology 2 domain containing, SOS - son of sevenless, TRAF6 - TNF receptor associated factor 6, E3 ubiquitin protein ligase, TNF - tumour necrosis factor, Trk - tyrosine kinase receptor and YWHAH - tyrosine 3monooxygenase/tryptophan 5-monooxygenase activation protein, eta.

Additionally, Ras is also known to interact with the Raf family of serine/threonine specific kinases that are known to mediate MAP2K1 (1.56-fold SALS, p<0.05) and RPS6K activity (1.96-fold SALS, p<0.001 and 1.86-fold SALS, p<0.05 for the second and fifth polypeptides, respectively (Gysin et al 2011)). Rap1A, a member of the Ras oncogene family, and its binding partner RASSF5 [*RASSF5* (Ras association (Ral

GDS/AF-6) domain family member 5) 1.59-fold SALS, p<0.01] exert a similar function which is initiated by the establishment of long lived complexes several additional adaptor molecules including C3G (guanine nucleotide releasing protein), SHP-2 (protein tyrosine phosphatase, non-receptor type 11 (PTPN11)), GAP2 (glycosylation-associated protein 2) and the v-crk avian sarcoma virus CT10 oncogene homolog (Gotoh et al 1995) [*CRK* 1.59-fold SALS, p<0.05].

NGF bound to the type I transmembrane protein sortilin (*SORT1*) is also a common ligand of the p75 neurotrophin receptor (p75NTR); a member of the TNF-receptor superfamily which activates several intracellular signalling cascades including the MAP3K1/JNK/p53/Bax [*MAP3K1* (mitogen-activated protein kinase kinase kinase 1, E3 ubiquitin protein ligase) \$1.70-fold SALS, p<0.01 (Figure 3.19)], NADE/YWH AH [*YWHAH* (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta) \$1.69-fold SALS, p<0.001] and NRAGE [neurotrophin receptor-interacting MAGE (melanoma antigen gene) homolog] pathways that can induce cell cycle arrest and programmed cell death. An overall down-regulation in the expression of a number of these transcripts detected in the peripheral whole venous blood of SALS patients compared to controls would be expected to further promote signals which enhance cell survival (Arnett et al 2007, Chen et al 2008, Feng et al 2010, Fortress et al 2011, Nykjaer et al 2004, Teng et al 2005).

3.6 DISCUSSION

In ALS the tissue which is primarily affected remains inaccessible during life. There are also a number of limitations (Section 1.3.2) (Cooper-Knock et al 2012a, Sharp et al 2006a, Sutherland at al 2011) associated with the use of human post-mortem SC and brain specimens; not least of all that the GEP's generated from such material is only representative of the terminal stages of disease progression at which point the majority of vulnerable neuronal cell populations will have already been lost from the system. In more recent years a wide range of peripheral tissues (Section 1.3.1 and 1. 3.2) including whole venous blood [Chapter 3: 'Whole Blood Study'] and immortal-ised EBV-transformed B-lymphocytes (LCL's) [Chapter 5: '*C90RF72* GEP Study' and Chapter 6: '*C90RF72* Survival Study'] have been observed, by many, to recapitulate

the pathogenesis of a number of neurodegenerative and neuropsychiatric conditions including ALS (Saris et al 2009) (Section 1.4.1.1), SCHIZ and BPD (Tsuang et al 2005) (Section 1.4.1.2.4 and 1.4.2.2.1-2), ALZ (Maes et al 2007) (Section 1.4.1.2.3), HD (Borovecki et al 2005) (Section 1.4.1.2.1) and PD (Scherzer et al 2007) (Section 1.4.1.2. 2) that have been reviewed briefly in Chapter 1: 'Introduction' and elsewhere in the literature by Borovecki & Habek (2010), Cooper-Knock et al (2012c), Mohr & Liew (2007), Sharp et al (2006b) and Woelk et al (2011).

Blood offers a particularly attractive source of material for microarray applications owing to good standardization of technical procedures, non-invasive collection and longitudinal sampling in large volumes (Table 1.4) (Burczynski & Dorner 2006). At least 80% of the genes which are routinely expressed in the CNS are also detectable in the transcriptome profile of circulating blood (Liew et al 2006). Additionally, the majority of disease causative genes in ALS have been reported to be ubiquitously expressed (Cooper-Knock et al 2012c). Quantifiably changes in the mRNA levels of these transcripts in response to perturbations in the micro- or macroenvironment, therefore, is suggestive of blood constituting a rich biosensor pool which has the potential to act as a sentinel of the neurodegenerative disease process (Kennedy et al 2008, Pahl 2005, Staratschek-Jox et al 2009). It has become apparent, however, that the sheer abundance (Raghavachari et al 2009, Winn et al 2010) of erythrocyte derived alpha (α) and beta (β) haemoglobin transcripts, comprising up to 70% of total RNA species isolated from peripheral whole blood preparations, could be producing interference on the microarray that is masking the detection of other, less abundant transcripts of equal biological importance within the sample (Section 1.3.3) (Feezor et al 2004, Kam et al 2012, Wright et al 2008). In order to overcome this challenge, and to improve the overall reliability and sensitivity of such studies, several globin reduction strategies have been developed (Vartanian et al 2009) including Ambion® GLOBINClear[™] (Raman 2011) which utilises selective hybridization and a magnetic bead based separation method of depletion (Field et al 2007) and NuGEN Technologies Inc., UK patented SPIATM system that uses a proprietary reagent in the Ovation® Whole Blood Solution for generating ss-cDNA targets, from as little as 5ng starting material (Dafforn et al 2004); which have proven less prone to non-specific hybridizations owing to the higher fidelity of DNA-DNA as opposed to RNA-DNA (Barker et al 2005, Debey et al 2006, Eklund et al 2006, Parrish et al 2010, Tian et al 2009) interactions. Previously obtained results using the Ambion GLOBINClear[™] protocol in combination with the PAXgene[®] Blood RNA collection tubes (Dumeaux et al 2008, Li et al 2008a, Liu et al 2006) demonstrated high interindividual variability, low sample integrity and poor reproducibility (Raman 2011); with inconsistencies between microarray findings and subsequent qRT-PCR validation experiments.

The initial aim of the PhD was to evaluate the NuGEN Ovation® Whole Blood Solution as a suitable alternative for the generation of robust gene expression data from peripheral whole blood. For direct comparability, patient and control samples were recruited to the study from the Raman (2011) cohort with specimens collected at the same time in different PAXgene® Blood RNA Collection Tubes (Section 2.3.1.1) and stored at -20°C for a maximum of 3 years prior to being processed. Although storage times differed considerably between the RR Ambion[®] GLOBINClear[™] and the JB NuGEN Ovation® datasets, PreAnalytiX does advocate that intracellular RNA should remain stable for up to 8 years without a significant degree of degradation occurring ex vivo (preanalytix.com). The achievement of comparable RNA concentrations and yields that produced similar ratios of absorbencies at 260/280nm wavelengths and high RNA integrity values [RIN's 7.5 or above (Section 2.3.1.3)] on the Agilent 2100 Bioanalyzer is supportive of this statement. The electropherogram traces are illustrative of good quality, intact RNA having been extracted using the PAXgene® Blood RNA Isolation Kits (Section 2.3.1.2) (Figure 3.1) and post-hybridization QC measures assessed using Expression ConsoleTM software version 1.3.0.187 (Affymetrix[®] Ltd., UK) were also relatively consistent between the two (Table 3.8) with reduced noise (Raw Q), lower background (bgrd) signal intensities and higher %P calls associated with the JB NuGEN Ovation[®] dataset.

Circulating blood is classified as a fluid connective tissue that is in a permanent state of renewal and is known to play a pivotal role in physiological homeostasis, cellular immunity and inflammation. It is composed of a mixed cell population that contains plasma (55%), erythrocytes (43%), leukocytes (<1%) [neutrophils, lymphocytes (Tcells, B-cells and natural killer or NK cells), monocytes, basophils and eosinophils] and platelets (1.5%) which continuously permeates and interacts with every other tissue and organ of the mammalian body (Joehanes et al 2012, Mohr & Liew 2007).

	RNA Yield	A _{260/280}	RIN	Bgrd	Raw(Q)	SF	%P	GAPDH 3'-5' ratio
BLDCON01	3.89 µg	2.23	8.4	27.3	0.643	2.3	51	1.70
BLDCON02	6.23 μg	2.21	7.7	25.6	0.598	8.3	42	3.09
BLDCON04	2.82 μg	2.46	8.8	27.4	0.637	2.2	52	1.72
BLDCON07	3.71 μg	2.16	7.7	25.6	0.643	19.7	31	1.94
BLDCON08	8.10 μg	2.23	8.8	26.4	0.605	3.6	48	3.54
BLDCON10	6.44 μg	2.12	7.9	26.8	0.596	6.6	43	2.61
BLDPAT21	3.77 μg	2.28	8.4	26.6	0.613	8.6	40	3.27
BLDPAT23	9.32 μg	2.15	7.5	27.5	0.670	1.5	54	1.64
BLDPAT26	6.21 μg	2.12	8.0	27.5	0.654	1.3	53	1.97
BLDPAT27	6.44 μg	2.14	8.1	26.7	0.665	1.9	53	3.19
BLDPAT35	3.64 μg	2.25	8.8	27.5	0.660	2.1	51	1.82
BLDPAT38	3.91 µg	2.14	7.7	27.3	0.692	1.1	56	2.68
Mean	5.37 μg	2.21	8.2	26.9	0.640	3.6	49	2.43

a) JB NuGEN Ovation[®] dataset

b) RR Ambion GLOBINClear[™] dataset

	RNA Yield	A _{260/280}	RIN	Bgrd	Raw(Q)	SF	%P	GAPDH 3'-5' ratio
BLDCON01	1.44 μg	2.11	8.5	51.6	1.800	0.5	45	3.57
BLDCON02	1.91 μg	2.20	8.1	38.9	1.100	0.9	49	3.60
BLDCON04	1.47 μg	2.05	8.4	61.9	2.100	0.6	43	2.70
BLDCON07	2.10 μg	2.20	8.8	39.6	1.200	0.9	45	3.04
BLDCON08	4.18 μg	2.18	8.9	38.7	1.100	1.0	44	3.68
BLDCON10	1.89 μg	2.17	8.8	45.4	1.400	0.8	43	2.30
BLDPAT21	1.89 µg	2.09	8.4	65.3	2.200	0.6	44	2.30
BLDPAT23	4.35 μg	2.13	8.8	84.5	2.800	0.5	44	1.99
BLDPAT26	1.72 μg	2.13	8.9	74.5	2.400	0.4	46	2.02
BLDPAT27	1.70 μg	2.14	8.7	73.6	2.400	0.4	47	4.30
BLDPAT35	1.68 μg	2.08	8.8	55.8	1.800	0.6	47	3.09
BLDPAT38	1.90 μg	1.99	8.8	58.2	1.900	0.5	47	2.94
Mean	2.19 μg	2.12	8.7	57.3	1.850	0.6	42	2.96

Table 3.8 Summary of JB NuGEN Ovation[®] and RR Ambion[®] GLOBINClear[™] QC Parameters RNA purity, as determined by absorbance ratios at 260/280nm (A_{260/280}) wavelengths, and yield were measured using the NanoDrop[™] 1000 Spectrophotometer (Thermo Fisher Scientific[®] Inc., UK). RNA integrity numbers (RIN's) were computed on a scale of zero (undetectable, completely degraded) to ten (high quality, intact RNA) using the Agilent 2100 Bioanalyzer (Agilent Technologies Ltd., UK). Mean values recorded across the JB NuGEN Ovation[®] (top) or RR Ambion[®] GLOBIN Clear[™] (bottom) datasets are represented in bold. Affymetrix[®] QC parameters including noise (Raw Q), average background (bgrd) signal intensities, scaling factor (SF), percentage presence (%P) calls and *GAPDH* 3'-5' ratio were assessed in Expression Console[™] software version 1.3. 0.187 (Affymetrix[®] Ltd., UK). Significant outliers removed from subsequent downstream analyses are highlighted in red.

Abbreviations: 3' - three prime, 5' - five prime, BLDCON - blood control, BLDPAT - blood patient, *GAPDH* - glyceraldehyde 3-phosphate dehydrogenase, JB - Joanna Bury generated CEL files, QC - quality control and RR - Dr Rohini Raman generated CEL files.

Consequentially, a distinct possibility exists that there are a number of potentially confounding environmental covariates which may also influence the transcriptome profile of circulating blood (Dumeaux et al 2010, Leonardson et al 2010). To control for the variability introduced by such factors: a) Individuals were matched as far as possible for their age, gender and ethnicity; b) BLDPAT donors were all on a stable dose of Riluzole (50mg twice daily); c) BLDCON donors were recruited from patient partners or unrelated carers; d) Samples were collected by venepuncture between the hours of 8.00am and 11.00am and e) The subjects were fasted overnight prior to phlebotomy. One limitation of the study, however, still remained. Since a full blood count was not performed at the time the tissue was donated (Raman 2011) it is not possible to determine the extent to which differences in the relative abundance of different cell populations is having on the resultant GEP's (Bennett et al 2003, Jiang et al 2005, Whitney et al 2003).

The efficiency of the NuGEN Technologies Inc., UK patented linear SPIA[™] system in limiting the amount of amplified globin cDNA relative to other, less abundant transcripts also contained within the sample, which are of equal biological importance (in this case the standard housekeeping control, beta actin) was assessed in a qRT-PCR assay with the size of the amplified products having been confirmed by agarose gel electrophoresis (Section 3.4) [APPENDIX FIGURE A3]. Across the cohort mean cycle threshold (Ct) values were shown to be significantly lowered for *ACTB* [pre-SPIA[™] 19.278 (n=12) versus post-SPIA[™] 10.801 (n=8) measurements; ¹.80-fold (p<0.00 1***)] but had remained reasonably consistent for *HBA2* [pre-SPIATM 11.833 (n=12)] versus post-SPIATM 9.663 (n=7) measurements; $[1.20 - fold (p < 0.05^*) (Figure 3.12)];$ suggesting, initially, that the NuGEN Ovation® Whole Blood Solution had been succussful in reducing the levels of globin. However, despite multiple attempts Ct values could not be recorded for more than 40% of the post-SPIA[™] samples analysed, as demonstrated by a sizeable reduction in N (Figure 3.12). The reason for this is unclear, although it is plausible, given the uncharacteristic nature of the amplification plots which were generated using Stratagene Brilliant II [APPENDIX FIGURE A1] or Roche FastStart Universal [APPENDIX FIGURE A2] Master Mix, that NuGEN's proprietary reagent may not be compatible with the SYBR® Green fluorescence based detection method deployed in this study and alternatives, such as TaqMan probes, would need to be trialled. There is also evidence in the literature that ACTB may not be the most suitable candidate for use as an endogenous control when analysing whole blood and other genes, including peptidylpropyl isomerase B (PPIB), for example,

would also need to be considered alongside the more traditional choices (Pachot et al 2004). In Expression Console[™] software version 1.3.0.187 (Affymetrix[®] Ltd., UK) MAS 5.0 normalised pivot data for Affymetrix[®] Human Genome U133 Plus 2.0 Gene Chip[®] Arrays found mean probeset signal intensities for *HBA2* and *ACTB* to be comparable, but both were substantially higher than either *GAPDH* or *18SrRNA* (Figure 3.20).

Figure 3.20 MAS 5.0 Signal Intensities for HBA1/2 Transcripts and the Housekeeping Genes ACTB, GAPDH and 18SrRNA Mean probeset signal intensity values for the JB NuGEN Ovation[®] Human Genome U133 Plus 2.0 GeneChip[®] Arrays normalised in Expression Console[™] software version 1.3.0.187 (Affymetrix[®] Ltd., UK) using Microarray Suite 5.0 (MAS 5.0) and plotted in GraphPad Prism[®] software version 5.04 © 1992-2014 (GraphPad Software Inc., CA USA). Error bars represent SEM (standard error of the mean).

Abbreviations: *ACTB* - actin beta, *GAPDH* - glyceraldehyde 3-phosphate dehydrogenase, *HBA1/2* - haemoglobin alpha 1/2, JB - Joanna Bury generated CEL files and rRNA - ribosomal RNA.

An overall down-regulation in the level of gene transcription was apparent in the JB NuGEN Ovation[®] dataset (Figure 3.15) (Section 3.5.1.2.1) with 467 (66.1%) of the 706 DE transcripts in GeneSpring GX v11.5.1 [unpaired student's t-test FDR p<0.05, $FC \ge \pm 1.50$] exhibiting a significant decrease in expression in the peripheral whole venous blood of SALS patients (n=6) compared to equal numbers of neurologically normal, healthy control subjects. A similar trend has also been observed in cultured

skin fibroblasts derived from a second cohort of SALS patients and controls (n=12) in which a total of twenty-eight commonly dysregulated transcripts were identified including zinc finger DNA binding protein 652 (*ZNF652*) [JB NuGEN Ovation[®] J2.30 -fold SALS, p<0.01; RR Fibroblast J2.04, p<0.05] and protein tyrosine phosphatase, receptor type, C (*PTPRC*) [JB NuGEN Ovation[®] J2.20-fold, p<0.05; RR Fibroblast J 1.12-fold, p<0.05] (Raman et al 2014). ZNF652 interacts with the putative breast tumor suppressor core-binding factor runt domain alpha subunit 2; translocated to 3 (CBFA2T3) to inhibit transcription of the HeLa E-box binding protein (HEB) which has important implications for myogenesis and haematopoiesis (Kumar et al 2008). PTPRC may be associated with apoptosis (Yi et al 2011) and has been shown to play a pivotal role in maintaining intracellular Ca²⁺ homeostasis (Duplay et al 1996, Lane et al 1991, Qin & Chock 2002) which could link it to the induction of excitotoxicity; a major mechanism contributing to the degeneration and loss of MN's in ALS (Section 1.2.4.2) (Grosskreutz et al 2010). Aberrations in the PTPRC gene have also conferred increased susceptibility for developing certain autoimmune diseases including MS (Do et al 2006, Schwinzer et al 2003) and rheumatoid arthritis (Miterski et al 2004, Plant et al 2012). Moreover, loss of CD45 function in a mouse model of ALZ induces widespread microglial activation and the formation of A β plaques (Zhu et al 2011); a pathological hallmark of this disease (Section 1.4.1.2.3).

In contrast, an overall up-regulation in the level of gene transcription was apparent in the RR Ambion GLOBINClearTM dataset (Figure 3.15) with 3,440 (76.1%) of 4,520 DE transcripts in GeneSpring GX v11.5.1 [unpaired student's t-test FDR p<0.05, FC \ge ±1.50] exhibiting a significant increase in expression in the peripheral whole venous blood of SALS patients compared to controls (Section 3.5.1.2.2). This percentage was even higher (86.9%) in an analysis of the top 1,215 hits, ranked by probability value, with an FC \ge ±2.0. It is also of interest to note that despite the use of identical age, gender & ethnicity matched donor samples there was more than a 6-fold difference in the number of DE transcripts in GeneSpring GX v11.5.1 [unpaired student's t-test FDR p<0.05, FC \ge ±1.50] between the JB NuGEN Ovation® (n=706) and RR Ambion GLOBINClearTM (n=4,520) datasets with 2,733 expected to occur by chance (Figure 3.14). It can be speculated, therefore, that the latter may provide a more sensitive approach to GEP in blood. Alternatively, it could also signify a greater proportion of false positive outcomes which is supported by a lack of qRT-PCR validation of gene targets identified in the RR Ambion GLOBINClear[™] dataset (Raman 2011).

Very few of the aforementioned transcriptional changes detected in the peripheral blood of SALS patients compared to controls were shared in common between the JB NuGEN Ovation[®] and RR Ambion GLOBINClear[™] datasets (Figure 3.15) with only a third (34.2%) of these 82 transcripts (encoding 78 unique genes) reported to occur in the same direction of change (Table 3.3). These included: haptoglobin (HP), a risk factor for idiopathic PD (Alberio et al 2013, Costa-Mallen et al 2008) which confers protection against elevated levels of OS (Section 1.2.4.1) and has been shown to play an important role in iron (Fe²⁺) homeostasis (Arguelles et al 2010); the ER adaptor molecule transmembrane tetratricopeptide repeat containing 1 (TMTC1) (Sunryd et al 2014); neuregulin 1 (*NRG1*), a possible candidate gene of SCHIZ and BPD (Deng et al 2013a, Walker et al 2010) that promotes skeletal muscle fibre development and maintains synaptic plasticity in the hippocampus during learning and memory (Liu et al 2011, Mei & Xiong 2008, Neddens et al 2009) and DUSP16, a key regulator of T helper (Th) cell differentiation (Musikacharoen et al 2011) that has been shown to interact with the MAPK signalling cascade (Section 3.5.1.5.1) which were upregulated in addition to the type II transmembrane glycoprotein C-type lectin domain family, 4 member C (CLEC4C) implicated in the innate immune response and inflammation (Riboldi et al 2011); protein tyrosine phosphatase, non-receptor type 12 (*PTPN12*), a potent tumor suppressor critical for cell adhesion and migration (Luo et al 2014); signal sequence receptor, alpha (SSR1) responsible for protein translocation across the ER membrane (Mesbah et al 2006); molecular chaperone heat shock 60kDa protein 1 (*HSPD1*), a rare cause of hereditary spastic paraplegia (SPG13) (Hansen et al 2002, Hewamadduma et al 2008) which is essential for the correct folding and assembly of newly imported proteins into the mitochondria (Magnoni et al 2014) as well as the RNA processing gene heterogeneous nuclear ribonucleoprotein C (HNRNPC) (Romano & Buratti 2013) which were shown to be consistently down-regulated.

KEGG pathway analysis produced better enrichment using the DAVID bioinformatics resource version 6.7 than functional annotation clustering performed on GO terms (Section 3.5.1.4 and 3.5.1.5), although Benjamini-Hochberg FDR corrected p-values

did not reach the 5% significance threshold. Commonly dysregulated pathways (n= 7) included the MAPK (Section 3.5.1.5.1) [Rank #1 (13), count 20 (46), percentage 3.2 (2.0), p=1.60E-03 (4.40E-03)] and Neurotrophin (Section 3.5.1.5.2) [Rank #4 (9)] count 11 (26), percentage 1.8 (1.2), p=9.20E-03 (3.10E-03)] signalling cascades with oocyte meiosis, NOD-like receptor signalling, endometrial cancer and LTP (long term potentiation) specific to the JB NuGEN Ovation® dataset (Table 3.6) and endocytosis, ubiquitin-mediated proteolysis, phosphatidylinositol signalling, spliceosome, ErbB signalling, VEGF signalling and regulation of the actin cytoskeleton specific to the RR Ambion GLOBINClear[™] dataset (Table 3.7). *PIK3R2*, which is associated with four of these pathways, was identified as the only DE transcript [JB NuGEN Ovation® ① 1.54-fold, p<0.01; RR Ambion GLOBINClear[™] ¹2.04-fold, p<0.001] with a direction of change that correlated between the two methodologies (Table 3.3). This enzyme was found to be significantly up-regulated in the blood of SALS patients compared to controls and is considered to be important in regulating DNA replication and cell survival (Marques et al 2009). However, it remains unclear as to the reasons why so many other transcripts including *PTPRC* [JB NuGEN Ovation[®] J2.19-fold, p<0.05; RR Ambion GLOBINClear[™] û1.99-fold, p<0.05] and the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (*KRAS*) [JB NuGEN Ovation[®] [1.85-fold, p<0.05; RR Ambion] GLOBINClear[™] û2.45-fold, p<0.05] appear to exert apposing regulatory effects in blood specimens derived from identical patient and control samples. Dysregulation of the MAPK signalling cascade is, nevertheless, an interesting finding that warrants further investigation (Limviphuvadh et al 2007). Previously elevated levels of p38 MAPK have been observed in the ventral horn MN's and microglia of the SOD1^{G93A} transgenic mouse model of the disease which is linked to the induction of apoptosis (Veglianese et al 2006) and genes of the same pathway have also been shown to be significantly altered in ALS patients carrying a CHMP2B mutation (Section 1.2.5.2.8) (Cox et al 2010).

In conclusion, a lack of consistency between the JB NuGEN Ovation[®] and RR Ambion GLOBINClearTM datasets analysed in this chapter suggests that the abundance of α and β globin transcripts still remains a contentious issue which will require further clarification. Given the problems outlined above (i.e. blood is composed of a mixed cell population not directly affected by the neurodegenerative disease process and

is influenced by environmental covariates) there is good rationale in the alternative use of immortalised EBV-transformed B-lymphocytes (LCL's) (Section 1.3.2) which eliminate the need for re-sampling, are a genetically homogeneous cell population and can be cultured *in vitro* to support downstream functional assays (Gladkevich et al 2004, Hu et al 2011, Min et al 2010, Shtilbans et al 2011).

CHAPTER 4: CHARACTERISATION OF LCL'S

The focus of this methodological chapter was to characterise the large bank of LCL's in the ECACC discovery and replication cohorts, which were being screened as part of a wider project (N⁰ 259867) funded by EuroMOTOR (FP7/2007-2013), under the Seventh Framework Health Cooperation Programme. Due to time constraints, it was not possible to include all cases and controls in the scope of the PhD. Instead specific subsets of LCL's were selected, according to strict criteria (e.g. matched for age and gender), in order to perform the subsequent downstream comparative analyses outlined in 'Chapter 5: *C90RF72* GEP Study' and 'Chapter 6: *C90RF72* Survival Study'. A detailed summary of the clinical and genetic information of each cohort is provided (Section 4.1.1 and 4.1.2), along with measures of RNA yield (Section 4.2) and microarray QC parameters, as assessed by the Affymetrix[®] Expression ConsoleTM (Section 4.3).

4.1 ECACC EBV-Transformed B-Lymphocytes

4.1.1 ECACC Discovery Cohort

4.1.1.1 Clinical Characteristics

4.1.1.1.1 Control Cases

Neurologically normal, healthy control LCL's (n=100) [63-M, 37-F] were largely recruited to the ECACC discovery cohort (Section 2.1.2) from patient partners or their unrelated carers in the National MNDA DNA Bank. These were comprised of 27 Birmingham (27.0%) cases including one from Belfast City Hospital [C020-(BBe0006)], one from Oxford [C090-(BOx0073)] and eight from Liverpool [C02-(BLi0245), C039 -(BLi0169), C065-(BLi0123), C083-(BLi 0269), C086-(BLi0217), C093-(BLI0196), C 096-(BLi0029) and C097-(BLi0083)]; 26 London (26.0%) cases including two from Cambridge [C019-(LCa0022) and C021-(LCa0076)], three from Poole General Hospital [C05-(LP00033), C017-(LP00027) and C053-(LP00062)] and four from Southampton General Hospital [C012-(LSh0025), C015-(LSh0032), C038-(LSh0022) and C046-(LSh0023)] and 47 Sheffield (47.0%) cases including three from Nottingham [C048-(SNt0005), C052-(SNt0073) and C024-(SNt0035)], four from Manchester [C0 1-(SMa0033), C033-(SMa0183), C036-(SMa0156) and C077-(SMa0047)], one from Durham [C013-(SDu0012)], five from Preston [C08-(SPr0050), C010-(SPr0014), C0 22-(SPr0086), C072-(SPr0048) and C074-(SPr0068)] and eleven from Newcastle [C 04-(SNc0091), C07-(SNc0038), C09-(SNc0103), C011-(SNc0045), C019-(SNc0096), C025-(SNc0218), C029-(SNc0023), C044-(SNc0041), C047-(SNc0149), C076-(SNc0 106106) and C085-(SNc0035)]. Age at consultation ranged between 33 and 84 years with a mean of 63.2±11yrs. The M:F ratio was 1.70:1 (Figure 4.1) [APPENDIX TAB LE B1].

Figure 4.1 Age Frequency Distribution of Patient and Control LCL's in the ECACC Discovery Cohort (n=470)

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, Ctrl - control, ECACC - European Collection of Cell Cultures, F - familial, F - female, LCL - lympho-blastoid cell line, M - male and S - sporadic.

4.1.1.1.2 Familial Cases

FALS patient derived LCL's (n=120) [71-M, 49-F] recruited to the ECACC discovery cohort were comprised of 31 Birmingham (25.8%) cases including one from Oxford

	Replication	n Cohort		Discovery	Cohort	
	SALS	CTRL	SALS	FALS	ALL	CTRL
M:F	2.17:1	1.78:1	1.43:1	1.45:1	1.43:1	1.70:1
Age						
range	31-87yrs	35-83yrs	22-86yrs	23-82yrs	22-86yrs	33-84yrs
mean	60yrs	63yrs	61yrs	55yrs	59yrs	63yrs
Onset						
Limb	161 (64.4%)	n/a	146 (58.4%)	57 (47.5%)	203 (54.9%)	n/a
Bulbar	60 (24.0%)	n/a	76 (30.4%)	38 (31.7%)	114 (30.8%)	n/a
Mixed	20 (8.0%)	n/a	23 (9.2%)	17 (14.1%)	40 (10.8%)	n/a
Respiratory	4 (1.6%)	n/a	5 (2.0%)	2 (1.7%)	7 (1.9%)	n/a
unknown	5 (2.0%)	n/a	0 (0.0%)	6 (5.0%)	6 (1.6%)	n/a
Diagnosis						
ALS	242 (96.8%)	n/a	234 (93.6%)	111 (92.6%)	345 (93.2%)	n/a
ALS+FTLD	0 (0.0%)	n/a	3 (1.2%)	1 (0.8%)	4 (1.1%)	n/a
ALS+PD	1 (0.4%)	n/a	0 (0.0%)	1 (0.8%)	1 (0.3%)	n/a
PBP	5 (2.0%)	n/a	12 (4.8%)	6 (5.0%)	18 (4.8%)	n/a
PLS	2 (0.8%)	n/a	0 (0.0%)	1 (0.8%)	1 (0.3%)	n/a
РМА	0 (0.0%)	n/a	1 (0.4%)	0 (0.0%)	1 (0.3%)	n/a
ALSFRS-R						
range	0-48	n/a	0-48	0-48	0-48	n/a
mean	34	n/a	33	32	33	n/a
Survival						
range	0.4-10.3yrs	n/a	0.3-7.7yrs	0.5-18.7yrs	0.3-18.7yrs	n/a
mean	3.7yrs	n/a	2.8yrs	2.9yrs	2.8yrs	n/a
Total	250 <mark>(249)</mark>	100 (100)	250 <mark>(244)</mark>	120 <mark>(118)</mark>	370 <mark>(362)</mark>	100 (97)

Table 4.1 Clinical Summary of Patient and Control LCL's in the ECACC Discovery (n=470) and Replication (n=350) Cohort Highlighted in red are the final sample numbers obtained following assessment of QC metrics in Expression Console[™] software version 1.3.0.187 (Affymetrix[®] Ltd., UK).

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, CTRL - control, ECACC - European Collection of Cell Cultures, F - familial, F - female, FRS-R - Revised Functional Rating Scale, FTLD - frontotemporal lobar degeneration, LCL - lymphoblastoid cell line, M - male, n/a - not available, PBP - Progressive Bulbar Palsy, PD - Parkinson's disease, PLS - Primary Lateral Sclerosis, PMA - Progressive Muscular Atrophy, QC - quality control and S - sporadic.

[F078-(B0x0029)], one from Bristol Frenchay Hospital [F48-(BBr0015)] and seven from Liverpool [F020-(BLi0236), F038-(BLi0249), F045-(BLi0254), F072-(BLi025 1), F074-(BLi0272), F094-(BLi0246) and F103-(BLi0265)]; 48 London (40.0%) cases including one from Southampton General Hospital [F102-(LSh0038)], one from Plymouth Derriford Hospital [F029-(LPy0018)], one from Poole General Hospital [F 058-(LP0036)] and two from Cambridge [F014-(LCa0111) and F052-(LCa0026)] and 44 Sheffield (34.2%) cases including three from Preston [F010-(SPr0085), F025 -(SPr0059) and F101-(SPr0026)], five from Newcastle [F027-(SNc0204), F064-(SN c0063), F071-(SNc0031), F109-(SNc0202) and F118-(SNc0189)] and five from Manchester [F028-(SMa0020), F081-(SMa0006), F095-(SMa0008), F108-(SMa0078) and F117-(SMa0166)]. The M:F ratio was 1.45:1 (Figure 4.1) [APPENDIX TABLE B2].

The majority of FALS patients, 94.2% (n=113/120) were diagnosed according to the World Federation of Neurology's amended EEC of 1998 (Section 1.1.3) (Figure 1.1) with either definite (n=57/113) or probable ALS (n=56/113) (Table 4.1) including one incidence of concomitant FTLD [F115-(SP3118)] and another of concomitant PD [F114-(SP3560)] (Section 1.2.1). Of the remaining 5.8% (n=7/120) of patients, one was diagnosed with PLS [F087-(SP3216)] (Section 1.2.2.2) and six were diagnosed with PBP [F029-(LPy0018), F041-(LP0440), F052-(LCa0026), F058-(LP00036), F1 00-(SP3070) and F118-(SNc0189)] (Section 1.2.2.1). Age at symptom onset ranged between 23 and 82 years with a mean of 55.4±12yrs. Survival ranged from 6 months to 18 years and 8 months in 81.7% of cases (n=98/120) with a mean of 2.92 ± 2.3 yrs. For 14.2% of FALS (n=17/120) this information was not available and in the remaining 4.1% of cases (n=5/120) the individual was still reported to be alive as of June 2013 with a minimum disease duration of either 4 [F047-(BP6502)], 6 [F013-(BP6 494)], 9 [F054-(SP3048) and F119-(SP3218)] or 11 years [F015-(LP0460)], respectively. Limb or spinal onset at 47.5% (n=57/120) [56-FALS, 1-PLS (familial)] was more prominent than the onset of bulbar weakness 31.7% (n=38/120) [32-FALS and 6-PBP (familial)], a mixed presentation 14.2% (n= 17/120) [17-FALS] or the onset of respiratory muscle dysfunction 1.7% (n=2/120) [2-FALS]. Information regarding presentation was unavailable for the remaining 4. 9% (n=6/120) [6-FALS] of the cohort. Revised ALS Functional Rating Scale (ALSFRS-R) scores ranged between 0 (severe disability) and 48 (normal function) (Castrillo-Viguera et al 2010, Cedarb

aum et al 1999, Gordon & Cheung 2006, Kollewe et al 2008) with an average of 31. 8±13 for 99.0% of FALS (n=199/120) (Figure 4.2).

Figure 4.2 ALSFRS-R Frequency Distribution of FALS (n=120) Recruited to the ECACC Discovery Cohort. Revised ALS Functional Rating Scale scores on a scale of 0 to 48 where zero represents severe disability and a score of forty-eight signifies that normal function is preserved. Mean ALSFRS-R plotted along the x-axis is computed based on measurements that are incorporated from a series of twelve questions relating to the patient's ability to perform common daily tasks including but not limited to: speech, salivation, swallowing, dressing & hygiene, walking, climbing stairs, handwriting and shortness of breath (SOB) (Cedarbaum et al 1999). Relative counts or frequencies along the y-axis were calculated as a percentage of the total number of FALS (n=119/120) in the ECACC discovery cohort for which this information was available.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, ECACC - European Collection of Cell Cultures, F - familial and FRS-R - Functional Rating Scale Revised.

For the Sheffield cases some additional clinical information could be extracted from the local database. Of these, 7.3% (n=3/41) [2-FALS and 1-PLS (familial)] were prone to EL, a further 2.4% (n=1/41) [1-FALS] suffered from excessive salivation or hypersialorrhea and approximately a fifth (n=8/41) [8-FALS] reported dyspnoea with 37.5% of these latter cases requiring NIPPV support (n=3/8) [3-FALS] (Section 1.1. 4). Dysarthria and dysphagia was also apparent in 29.3% (n=12/41) [10-FALS, 1-F ALS+PD and 1-PBP (familial)] of the cohort with PEG feeding becoming a necessary intervention in four of these latter cases [3-FALS and 1-FALS+PD]. One in ten (n=4/41) [3-FALS and 1-FALS+PD] patients were non-ambulant and a further 17.1% (n= 7/41) [7-FALS] were unable to walk without assistance. Current smokers comprised 7.3% (n=3/41) [2-FALS and 1-PBP (familial) of the cohort, ex-smokers who had not

smoked a cigarette in the last 18 years 2.4% (n=1/41) [1-FALS] and non-smokers a further 46.3% (n=19/41) [18-FALS and 1-FALS+PD]. For the remaining 43.9% (n= 18/41) [13-FALS and 5-PBP (familial)] of cases this information was not disclosed.

A strong family history of dementia was associated with up to 4.9% of the Sheffield pedigrees (n=2/41) [F089-(SP3331) and F115-(SP3118)]. There were also reports of at least one other neurological condition occurring in a first degree relative of an additional 12.2% of kindreds (n=5/41). These included one incidence of ALZ [F089-(SP3331)] (Section 1.3.1.3.1) and another of hereditary PD (Section 1.2.1) [F114-(S P3560)].

4.1.1.1.3 Sporadic Cases

SALS patient derived LCL's (n=250) [147-M, 103-F] recruited to the ECACC discovery cohort were comprised of 40 Birmingham (16.0%) cases including three from Liverpool [S074-(BLi0048), S098-(BLi0037) and S181-(BLi0039)] and eight from Belfast City Hospital [S05-(BBe0007), S09-(BBe0018), S052-(BBe0016), S058-(BBe0001), S087-(BBe0009), S122-(BBe0014), S196-(BBe0013) and S248-(BBe0003)]; 45 London (18.0%) cases including one from Poole General Hospital [S035-(LPo0010)] and 165 Sheffield (66.0%) cases including twenty-one from Newcastle [S012-(SNc0022), S046-(SNc0001), S077-(SNc0042), S088-(SNc0086), S089-(SNc0053), S105-(SNc00 18), S106-(SNc0077), S130-(SNc0010), S134a-(SNc0016), S141-(SNc0071), S152-(SNc0090), S155-(SNc0055), S156-(SNc0029), S182-(SNc0008), S193-(SNc0024), S 203-(SNc0059), S209-(SNc0012), S212-(SNc0002), S223-(SNc0095), S225-(SNc009 2) andS232-(SNc0051) and twelve from Nottingham [S036-(SNt0031), S067-(SNt0 038), S075-(SNt0034), S096-(SNt0001), S115-(SNt0004), S129-(SNt0024), S138b-(SNt0017), S140-(SNt0020), S158-(SNt0006), S198-(SNt0016), S219-(SNt0036) and S240-(SNt0030)]. The M:F ratio was 1.43:1 (Figure 4.1) [APPENDIX TABLE B3].

The majority of SALS patients, 94.8% (n=237/250) were diagnosed with either definite (n=110/237) or probable ALS (n=127/237) (Section 1.1.3) (Figure 1.1) (Table 4.1) including three incidences of concomitant FTLD [S093-(SP3049), S178-(SP314 5) and S191-(SP3042)] (Section 1.2.1). Of the remaining 5.2% of the cohort (n=13 /250), one patient was diagnosed with PMA [S069-(SP3230)] (Section 1.2.2.3) and twelve were diagnosed with PBP [S040-(SP3271), S044-(SP3329), S045-(SP3289), S105-(SNc0018), S106-(SNc0077), S129-(SNt0024) and S232-(SNc0051)] (Section 1.2.2.1). Age at symptom onset ranged between 22 and 86 years with a mean of 60. 6 ± 12 yrs (Table 4.1). Survival ranged from 4 months to 7 years and 8 months with a mean of 2.75±1.3yrs. Limb onset 58.4% (n=146/250) [145-SALS, 1-PMA (sporadic)] was more prominent than the onset of bulbar weakness 30.4% (n=76/250) [64-SA LS and 12-PBP (sporadic)], a mixed presentation 9.2% (n=23/250) [23-SALS] or onset in the respiratory muscles 2.0% (n=5/250) [5-SALS] combined. ALSFRS-R scores ranged between 0 (severe disability) and 48 (normal function) (Figure 4.3) with an average of 33.1±10 for 84.0% of SALS (n=210/250).

Figure 4.3 ALSFRS-R Frequency Distribution of SALS (n=250) Recruited to the ECACC Discovery Cohort. Revised ALS Functional Rating Scale scores on a scale of 0 to 48 where zero represents severe disability and a score of forty-eight signifies that normal function is preserved. Mean ALSFRS-R plotted along the x-axis is computed based on measurements that are incorporated from a series of twelve questions relating to the patient's ability to perform common daily tasks including but not limited to: speech, salivation, swallowing, dressing & hygiene, walking, climbing stairs, handwriting and shortness of breath (SOB) (Cedarbaum et al 1999). Relative counts or frequencies along the y-axis were calculated as a percentage of the total number of SALS (n=210/250) in the ECACC discovery cohort for which this information was available.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, ECACC - European Collection of Cell Cultures, F - familial and FRS-R - Functional Rating Scale Revised.

For the Sheffield cases some additional clinical information could be extracted from the local database. Of these 12.7% (n=21/165) [19-SALS and 2-PBP (sporadic)] were prone to EL, a further 1.2% (n=2/165) [2-SALS] suffered from hypersialorrhea and

almost a quarter (n=39/165) [36-SALS and 3-PBP (sporadic)] displayed symptoms of dyspnoea, with 33.3% of these latter cases (n=13/39) [13-SALS] requiring NIPPV support (Section 1.1.4). Dysarthria and dysphagia was also apparent in 31.5% (n=5 2/165) [49-SALS an d3-PBP (sporadic)] of the cohort with PEG feeding becoming a necessary intervention in eighteen of these latter cases [17-SALS and 1-PBP (sporadic)]. Four individuals presented with the rare FA variant of the disease (Section 1. 1.5.1) [S015-(SP3299), S042-(SP3122), S060-(SP3338) and S223-(SNc0095)] and two additional cases presented with a clinical history of depression [S113-(SP3347) and S116-(SP3351)]. One in twenty-five patients were non-ambulant (n=7/165) [7-SALS] with a further 18.2% (n=30/165) unable to walk without assistance. Current smokers comprised 3.6% of the cohort (n=6/165) [6-SALS], ex-smokers who had not smoked a cigarette for a minimum of 12 months (mean 21.4±9yrs) (n=17/165) [16-SALS and 1-PMA (sporadic)] a further 10.3% and non-smokers 55.8% (n=92/16 5) [87-SALS and 5-PBP (sporadic)]. For the remaining 30.3% (n=50/165) [43-SALS and 7-PBP (sporadic)] of cases this information was not disclosed.

There were reports of at least one other neurological condition occurring in a first degree relative of 7.3% (n=12/165) of apparently sporadic, Sheffield ALS kindreds including ALZ (Section 1.3.1.3.1) [S010-(SP3275), S054-(SP3179), S060-(SP3338), S069-(SP3230), S112-(SP3363), S121-(SP3420), S162-(SP3326) and S247-(SP3353)], PD (Section 1.2.1) [S146-(SP3132), S148-(SP3368), S167-(SP3327) and S227-(SP3043)] and Multiple Sclerosis (MS) (Etemadifar et al 2012, Ismail et al 2013) [S 148-(SP3368), S153-(SP3423) and S236-(SP3286)]. A family history of dementia [S 08-(SP3111), S042-(SP3122), S078-(SP3140), S116-(SP3351), S172-(SP3067), S19 1-(SP3042) and S227-(SP3043)] was also associated with up to 4.2% (n=7/165) of cases. In addition, cancer affected a further 11.5% (n=19/165) [12-colon, 2-throat, 4-stomach and 1-other], cerebrovascular disease (CVA) 1.2% (n=2/165), inflammatory bowel disease (IBD) 0.6% (n=1/165) and depression/strokes 1.2% (n=2/165) of Sheffield pedigrees.

4.1.1.2 Therapeutics Used to Treat the Cohort

4.1.1.2.1 Familial Cases

Riluzole, administered at a dose of 50mg twice daily, was being used to treat 76.7% of FALS (n=92/120) [89-FALS, 1-FALS+PD and 2-PBP] with two additional patients waiting to commence treatment at the time of biosample collection. Vitamin C/E or multivitamin supplements were collectively being taken by 15.8% (n=19/120) [19-FALS] of the cohort. As well as the Riluzole therapy, several patients (n=3/120) [3-FALS] were also participants of the BDNF [F091-(SP3534)], minocycline [F073-(BP 6165)] or lithium carbonate (LiCALS) [F053-(SP3610)] drug trials [APPENDIX TAB LE B4]. In contrast, 14.2% (n=17/120) [14-FALS, 2-PBP (familial) and 1-PLS (familial)] chose not to receive any kind of disease modifying therapy and for the remaining 7.5% of FALS (n=9/120) [7-FALS and 2-PBP (familial)] this information was not available.

4.1.1.2.2 Sporadic Cases

Riluzole was also used to treat 88.0% of SALS patients (n=220/250) [205-SALS, 3-SALS+FTLD, 11-PBP and 1-PMA (sporadic)]. In a small number of cases, approximately 1.8% (n=4/220) [3-SALS and 1-PBP (sporadic)] the individual experience adverse side effects and the medication was withdrawn. Vitamin C/E and multivitamin supplements were collectively being taken by 40.8% (n=102/250) [93-SALS, 1-SAL S+FTLD, 6-PBP and 1-PMA (sporadic)] of the cohort. As well as the Riluzole therapy several patients (n=12/250) [12-SALS] were also participants of the glatiramer acetate (Copaxone®) [S176-(SP3385)], ONO-2506 (Arundic acid) [S118-(SP3030), S1 32-(SP3413), S149-(SP3391), S168-(LP0001), S203-(SNc0059) and S237-(BP6008)] or minocycline [S050-(SP3023), S121-(SP3420), S157-(LP0015), S164-(LP0053) and S212-(SNc0002)] drug trials [APPENDIX TABLE B4]. In contrast, 11.6% (n=29/250) [28-SALS and 1-PBP (sporadic)] chose not to receive any kind of disease modifying therapy and for the remaining 0.4% (n=1/250) [1-SALS] of SALS this information was not available.

4.1.1.3 Genetic Status of the Cohort

At the beginning of the project the genetic status of the majority of LCL's was unknown. However, upon the discovery, in October 2011, of a pathogenic non-coding G₄

C₂ hexanucleotide repeat expansion (Renton et al 2011, DeJesus-Hernandez et al 20 11) in intron 1 of the previously uncharacterised *C90RF72* gene (Section 1.2.5.4), a further 40.8% of FALS (n=49/120) [42-FALS, 1-FALS+PD and 6-PBP] and 10.0% of SALS (n=25/250) [24-SALS and 1-PBP (sporadic)] cases have now been genetically assigned.

4.1.1.3.1 Familial Cases

All familial index cases in the ECACC discovery cohort for which DNA was available in the local Sheffield or National MNDA DNA Bank were screened for genetic defects in SOD1, TARDBP and FUS prior to the commencement of this study. SOD1 mutations occurred at a frequency of 4.4% (n=5/115) (Section 1.2.5.1.1). These were primarily clustered in exon 4 and included the single base substitutions c.305A>G (p.D102G) [F120-(SP3218)], c.335G>A (p.C111Y) [F103-(BLi0265)] and c.341T>C (p.I114T) [F 031-(SP3526) and F053-(SP3610)]. For London individual [F068-(LP0075)] the amino acid change was not known. Rarer pathological changes were also described in exon 6 of TARDBP including c.1043G>T (p.G348V) [F092-(SP3154)] and c.1009A>G (p.M337V) [F015-(LP0460), F040-(SP3068) and F067-(SP3086)] and in exon 15 of FUS including c.1555C>G (p.Q519E) [F086-(LP0051)] and c.1562G>A (p.R521H) [F 036-(LP0193) and F03-(LP0048)]; accounting for ~3.8% (n=4/106) (Section 1.2.5. 2.1) or 2.9% (n=3/103) (Section 1.2.5.2.2) of FALS cases, respectively. In a more recent screening of the C9ORF72 gene (Cooper-Knock et al 2012b), repeat-primed PCR detected >30 copies of the G_4C_2 repeat in 48.4% (n=15/31) of Birmingham, 39.6% (19/48) of London and 36.6% (n=15/41) of Sheffield FALS cases. There was also one example of oligogenic inheritance: Patient sample [F056-(SP3462)], in addition to carrying the expansion in C9ORF72, was also known to harbour a heterozygous c. 964G>A (p.E322K) missense substitution in exon 10 of the OPTN gene (Section 5.3. 2.1) (Bury et al 2015) (Table 4.2).

4.1.1.3.2 Sporadic Cases

Of the sporadic cases, patient samples [S166-(SP3082) and S146-(SP3132)] carry a SNP in the first [c.85A>G (p.I29V)] or third [c.618A>C (p.Q206H)] exon of *CHMP2B*, respectively (Section 1.2.5.2.8) (Cox et al 2010). Another individual [S062-(SP3301)]

			Birmingham	London	Sheffield	ALL
Familial						
SOD1	exon 4	p.D102G	0	0	1	
		p.C111Y	1	0	0	
		p.I114T	0	0	2	
	not known	not known	0	1	0	4.4%
TARDBP	exon 6	p.G348V	0	1	1	
		p.M337V	0	0	2	1.2%
FUS	exon 15	p.Q519E	0	1	0	
		p.R521H	0	1	0	
		p.R522G	0	1	0	3.0%
C90RF72	non-coding	G ₄ C ₂ repeat	15	19	15	40.8%
C9ORF72+OPTN	exon 10	p.E322K	0	0	1	0.8%
Total			16	24	21	50.8%

Sporadic						
ANG	exon 2	p.K54E	0	0	1	0.4%
C90RF72	non-coding	G ₄ C ₂ repeat	2	2	21	10.0%
CHMP2B	exon 1	p.I29V-SNP	0	0	1	
	exon 3	p.Q206H-SNP	0	0	1	0.8%
Total			2	2	24	11.2%

Table 4.2 Summary of Genetic Variants Reported in the ECACC Discovery Cohort

Abbreviations: *ANG* - angiogenin, *C9ORF72* - chromosome 9 open reading frame 72, *CHMP2B* - charged multivesicular protein 2B, ECACC - European Collection of Cell Cultures, *FUS* - fused in sarcoma, *OPTN* - optineurin, SNP - single nucleotide polymorphism, *SOD1* - copper/zinc superoxide dismutase 1 and *TARDBP* - transactive response (TAR) DNA binding protein.

was heterozygous for a c.232A>G (p.K54E) missense substitution in exon 2 of *ANG* (Section 1.2.5.2.3) (Kirby et al 2013). An additional 5.0% (n=2/40) of Birmingham, 4.4% (n=2/45) of London and 12.7% (n=21/165) of Sheffield SALS cases were also known to harbour the G_4C_2 repeat expansion in *C90RF72* (Table 4.2).

4.1.2 ECACC Replication Cohort

4.1.2.1 Clinical Characteristics

4.1.2.1.1 Control Cases

Neurologically normal, healthy control LCL's (n=100) [64-M, 36-F] were largely recruited to the ECACC replication cohort from patient partners and their unrelated carers in the National MNDA DNA Bank (Section 2.1.2). These were comprised of 31 Birmingham (31.0%) cases including nine from Liverpool [C117-(BLi0224), C130-(BLi0105), C148-(BLi0259), C160-(BLi0032), C162-(BLi0198), C175-(BLi0021), C18 5-(BLi0240), C188-(BLi0074) and C195-(BLi0204)], one from Oxford [C110-(BOx0 008)], one from Belfast City Hospital [C153-(BBe0002)] and one from Bristol Frenchay Hospital [C150-(BBr0020)]; 28 London (28.0%) cases including two from Poole General Hospital [C119-(LPo0059) and C122-(LPo0087)], two from Cambridge [C189-(LCa0093) and C190-(LCa0134)] and one from Plymouth Derriford Hospital [C125-(LPy0011)] and 41 Sheffield (41.1%) cases including six from Newcastle [C1 02-(SNc0201), C109-(SNc0158), C135-(SNc0125), C144-(SNc0078), C146-(SNc016 7) and C157-(SNc0015)], ten from Manchester [C111-(SMa0096), C124-(SMa0227), C133-(SMa0009), C139-(SMa0188), C151-(SMa0050), C163-(SMa0054), C167-(SM a0203), C170-(SMa0232), C171-(SMa0133) and C194-(SMa0013)], one from Preston [C104-(SPr0016)], one from Nottingham [C177-(SNt0075)] and two from Durham [C197-(SDu0009) and C120-(SDu0007)]. Age at consultation ranged between 35 and 83 years with a mean of 63.4±10yrs. The M:F ratio was 1.78:1 (Figure 4.4) [APP ENDIX TABLE B5].

Figure 4.4 Age Frequency Distribution of Patient and Control LCL's in the ECACC Replication Cohort (n=350)

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, Ctrl - control, ECACC - European Collection of Cell Cultures, F - female, LCL - lymphoblastoid cell line, M - male and S - sporadic

4.1.2.1.2 Sporadic Cases

SALS patient derived LCL's (n=250) [171-M, 79-F] recruited to the ECACC replication cohort were comprised of 107 Birmingham (42.8%) cases including one from Belfast City Hospital [S432-(BBe0015)]; 96 London (38.4%) cases including four from Southampton General Hospital [S322-(LSh0002), S326-(LSh0016), S405-(LSh0028) and S473-(LSh0004)] and nine from Poole General Hospital [S289-(LPo0003), S29 8-(LPo0001), S349-(LPo0016), S362-(LPo0019), S383-(LPo0018), S394-(LPo0009), S429-(LPo0039), S485-(LPo0005) and S489-(LPo0017)] and 47 Sheffield (18.8%) cases including two from Preston [S446-(SPr0005) and S456-(SPr0001)], two from Durham [S327-(SDu0001) and S476-(SDu0005)], seven from Nottingham [S274-(S Nt0008), S359-(SNt0012), S407-(SNt0042), S427-(SNt0021), S463-(SNt0013), S46 4-(SNt0040) and S492-(SNt0019)] and five from Newcastle [S299-(SNc0028), S305 -(SNc0043), S380-(SNc0049), S420-(SNc0057) and S466-(SNc0020)]. The M:F ratio was 2.17:1 (Figure 4.4) [APPENDIX TABLE B6].

The majority of SALS patients, 97.2% (n=243/250) were diagnosed (Section 1.1.3) (Figure 1.1) with either definite (n=81/243) or probable ALS (n=162/243) including one incidence of concomitant PD (Section 1.2.1) [S455-(BP6152)] (Table 4.1). Of the remaining 2.8% (n=7/250) of the cohort, two patients were diagnosed with PLS (Section 1.2.2.2) [S301-(SP3402) and S497-(SP3234)] and five were diagnosed with PBP (Section 1.2.2.1) [S272-(SP3253, S299-(SNc0028), S308-(BP6328), S349-(BP6100) and S359-(SNt0012)]. Age at symptom onset ranged between 31 and 87 years with a mean of 59.7±11yrs. Survival ranged from 5 months to 10 years and 3 months in 80.0% (n=200/250) of cases with a mean of 3.72±2.0yrs. For 14.8% (n= 37/250) of SALS this information was not available and in the remaining 5.2% (n=1 3/250) of cases the individual was still reported to be alive as of June 2013 with minimum disease duration of either 7 [S281-(LP0482) and S304-(LP0400)], 8 [S298-(LPo0001), S326-(LSh0016), S351-(LP0451), S452-(LP0195), S453-(LP0380) and S454-(LP0364)], 9 [S311-(LP0086), S334-(LP0442) and S395-(LP0109)], 10 [S321 -(LP0003)] or 12 years [S300-(LNh0020)], respectively. Onset occurred focally in at least 90.0% (n=225/250) of cases. Of these, 71.5% (n=161/225) [150-SALS and 2-PLS (sporadic)] presented with asymmetric weakness in the upper and/or lower limbs, 26.7% (n=60/225) [55-SALS and 5-PBP (sporadic)] experienced bulbar symptoms and a further 1.8% (n=4/225) [4-SALS] had impaired respiratory function. The remaining 10.0% (n=25/250) of the cohort comprised 20 SALS cases of mixed presentation and five incidences where the site of onset was not known. ALSFRS-R scores ranged between 0 (severe disability) and 48 (normal function) with an average of 3 4.2 \pm 10 for 55.6% of SALS (n=139/250) (Figure 4.5).

Figure 4.5 ALSFRS-R Frequency Distribution of SALS (n=250) Recruited to the ECACC Replication Cohort Revised ALS Functional Rating Scale scores on a scale of 0 to 48 where zero represents severe disability and a score of forty-eight signifies that normal function is preserved. Mean ALSFRS-R plotted along the x-axis is computed based on measurements that are incorporated from a series of twelve questions relating to the patient's ability to perform common daily tasks including but not limited to: speech, salivation, swallowing, dressing and hygiene, walking, climbing stairs, handwriting and shortness of breath (SOB) (Cedarbaum et al 1999). Relative counts or frequencies along the y-axis were calculated as a percentage of the total number of SALS (n=139/250) in the ECACC replication cohort for which this information was available.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, ECACC - European Collection of Cell Cultures, FRS-R - Revised Functional Rating Scale and S - sporadic.

For the Sheffield cases some additional clinical information could be extracted from the local database. Of these 4.3% (n=2/47) [2-SALS] were prone to EL, 10.6% (n=5 /47) [5-SALS] suffered pronounced dyspnoea with a fifth in need of NIPPV support (Section 1.1.4) and one individual presented with the rarer FA variant (Section 1.1. 5.1) [S467-(SP3198)]. Dysarthria and dysphagia were also apparent in 23.4% (n=11 /47) [10-SALS and 1-PBP (sporadic)] of the cohort with PEG feeding becoming a necessary intervention in the case the PBP patient. Three individuals were non-ambulant with a further 12.8% (n=6/47) [6-SALS] unable to walk without assistance. Cu-

rrent smokers comprised 10.6% (n=5/47) [5-SALS] of the cohort, ex-smokers who had not smoked a cigarette in the last 8 years a further 4.3% (n=2/47) [2-SALS] and non-smokers 42.6% (n=20/47) [19-SALS and 1-PBP (sporadic)]. For the remaining 42.5% (n=20/47) [13-SALS, 1-SALS+PD, 4-PBP (sporadic) and 2-PLS (sporadic)] of cases this information was not disclosed.

There were reports of at least one other neurological condition occurring in a first degree relative of 8.5% (n=4/47) of Sheffield pedigrees which received a diagnosis of SALS in the ECACC replication cohort including PD (Section 1.2.1) [S306-(SP343 9) and S482-(SP3367)], HD (Section 1.4.1.2.1) [S284-(SP3069)], tremor [S461-(SP3 107)] and ALZ (Section 1.3.1.3.1) [S272-(SP3253)]. Incidences of cancer affecting 6 .4% (n=3/47) [1-bowel, 1-breast and 1-other], strokes 2.1% (n=1/47) or post-viral motor/immune disorder 2.1% (n=1/47) were also reported.

4.1.2.2 Therapeutics Used to Treat the Cohort

Riluzole, administered at a dose of 50mg twice daily, was being used to treat 88.4% of SALS cases (n=221/250) [213-SALS, 1-SALS+PD, 4-PBP and 2-PLS (sporadic)]. In a small number of instances, approximately 3.6% (n=8/221) [8-SALS] the individual experienced adverse side effects and the medication was withdrawn. Vitamin C/E or multivitamin supplements were collectively being taken by 26.4% (n=66/250) [63-SALS, 2-PBP and 1-PLS (sporadic)] of the cohort. As well as the Riluzole therapy, several patients (n=4/250) [4-SALS] were also participants of the Novartis [S450-(LP 0014)], ONO-2506 (Arundic acid) [S413-(LP0019)], minocycline [S253-(BP6180)] or glatiramer acetate (Copaxone®) [S333-(LP0432)] drug trials [APPENDIX TABLE B4]. In contrast, 14.0% (n=35/250) [34-SALS and 1-PBP (sporadic)] chose not to receive any kind of disease modifying therapy and for the remaining 0.8% (n=2/250) [2-SALS] of the cohort this information was not available.

4.1.2.3 Genetic Status of the Cohort

TARDBP mutations were reported in the ECACC replication cohort at a frequency of 1.2% (n=3/250). They included a c.269C>T (p.A90V) SNP in exon 3 [S412-(SP3147)] and two single base substitutions, namely c.859G>A (p.G287S) [S461-(SP3107)] and

c.962C>T (p.A321V) [S352-(SP3484)] in exon 6. In addition, 5.6% (n=6/107) of Birmingham, 9.4% (n=9/104) of London and 2.1% (n=1/48) of Sheffield SALS carried a minimum of thirty copies of the G_4C_2 repeat expansion in *C90RF72*. There was also one example of oligogenic inheritance (Section 5.3.2.2) involving patient sample [S3 52-(SP3484)] which was *C90RF72+* and also found to harbour a heterozygous missense c.962C>T (p.A321V) mutation in exon 6 of *TARDBP* (Kirby et al 2010) (Table 4.3).

			Birmingham	London	Sheffield	ALL
TARDBP	exon 3	p.A90V-SNP	0	0	1	
	exon 6	p.G287S	0	0	1	0.8%
C90RF72	non-coding	G ₄ C ₂ repeat	6	9	1	6.4%
C9ORF72+TARDBP	exon 6	p.A321V	0	0	1	0.4%
Total			6	9	3	7.2%

 Table 4.3 Summary of Genetic Variants Reported in the ECACC Replication Cohort

Abbreviations: *C90RF72* - chromosome 9 open reading frame 72, ECACC - European Collection of Cell Cultures, SNP - single nucleotide polymorphism and *TARDBP* - transactive response (TAR) DNA binding protein.

4.2 QIAGEN Extraction of Total RNA

Having assigned LCL samples from the National MNDA DNA Bank to each of the two cohorts described above in Section 4.1.1 and 4.1.2, aliquots of frozen stocks, preserved in RNA*later*[™], were requested from ECACC (Section 2.2.1.2). One Sheffield control [C200-(SC3479)] and three SALS patients including two from Birmingham [S49 8-(BP6326) and S499-(BP6272)] and one from Belfast City Hospital [S248-(BBe000 3)] were no longer available. These samples failed the EBV-transformation process and, following two unsuccessful attempts, were removed from our study design.

Using QIAGEN's RNeasy[®] Mini Kit (Section 2.3.2.2), total RNA was isolated from 469 (99.8%) of 470 LCL samples [120-FALS, 249-SALS and 100-CTRL] in the ECACC discovery cohort and 347 (99.1%) of 350 LCL samples [248-SALS and 99-CTRL] in the ECACC replication cohort. Collectively, 617 patients [120-FALS and 497-SALS] and 199 age and, as far as possible, gender matched neurologically normal, healthy control subjects yielded between 800ng and 20µg total RNA. Concentrations (Section 2.

3.1.3) on the NanoDrop[™] 1000 Spectrophotometer were reasonably consistent across cohorts, with respective means and standard deviations of 171.37±64.9ng/µL (Section 4.1.1) and 140.51±46.3ng/µL (Section 4.1.2). Consistency was also observed across the different sample types [Discovery: 145.84±48.2ng/µL CTRL, 172.67±64.4ng/µL FALS and 181.72±68.4ng/µL SALS versus Replication: 130.39±42.5ng/µL CTRL and 144.56±47.3ng/µL SALS (Figure 4.6)], extraction batches (Table 4.4 and Figure 4.8) and kits (Figure 4.7). Absorbance ratios at 260/280nm wavelengths ranged 1.8 and 2.2 in 99.3% (n=810/816) of cases [APPENDIX TABLE B7].

RNA integrity was assessed on the Agilent 2100 Bioanalyzer. Distinct separation of the 18S and 28S ribosomal peaks was observed on the electropherogram trace with rRNA ratios [28S/18S] of around 2.2 (Figure 4.9). Average RIN scores were 8.3 for samples in the ECACC discovery cohort and 7.4 for samples in the ECACC replication cohort (Figure 4.6). These remained reasonably consistent across the different sample types within each cohort [Discovery: 8.1 CTRL, 8.3 FALS and 8.3 SALS versus Replication: 7.0 CTRL and 7.6 SALS] but steadily declined over time when examined by extraction batch (Table 4.4 and Figure 4.8) or kit (Figure 4.7). Despite the reduction, mean values did not fall below the previously accepted threshold of 7.0 (Raman et al 2009, Strand et al 2007, Thompson et al 2007) that is considered to be of sufficient quality, in order to, reliably proceed with microarray profiling and downstream GE analyses.

Samples of poor quality (RIN scores below 5.0) were DNase treated to remove any potentially contaminating genomic DNA. This additional processing step had failed to improve the purity of the isolated material (Figure 4.10) and what's more, in the majority of instances, performing repeat extractions from frozen LCL pellets using a fresh QIAGEN RNeasy[®] Mini Kit also had little impact on the RNA quality and yield that was achieved (Table 4.5).

4.3 Human Exon 1.0ST GeneChip® Array Profiling

4.3.1 Affymetrix[®] WT Sense-Target Labelling Assay

Figure 4.6 ECACC RNA Extraction Boxplots Grouped by Sample Type Summary plots produced using GraphPad Prism[®] software version 5.04. Whiskers represent minimum and maximum RNA concentrations measured on the NanoDropTM 1000 Spectrophotometer (left panels) or RNA integrity values (RIN) as determined by the Agilent 2100 Bioanalyzer (right panels) that were achieved for control, familial ALS (FALS) and sporadic ALS (SALS) samples in the ECACC Discovery (a) or Replication (b) cohort.

Figure 4.7 ECACC RNA Extraction Boxplots Grouped by QIAGEN RNeasy® Mini Kit Summary plots produced using GraphPad Prism[®] software version 5.04. Whiskers represent minimum and maximum RNA concentrations measured on the NanoDrop[™] 1000 Spectrophotometer (left panel) or RNA integrity values (RIN's) as determined on a scale of 0 (undetectable, completely degraded) to 10 (high quality, intact RNA) by the Agilent 2100 Bioanalyser (right panel).

Figure 4.8 ECACC RNA Extraction Boxplots Grouped by Batch Summary plots produced using GraphPad Prism[®] software version 5.04. Whiskers represent minimum and maximum RNA concentrations measured on the NanoDropTM 1000 Spectrophotometer (upper) or RNA integrity values (RIN's) as determined by the Agilent 2100 Bioanalyzer (lower) which were achieved for each batch of lymphoblastoid cell lines in the ECACC Discovery (left) [I-V] and Replication (right) [VI-X] cohorts.

	ECACC Batch number (#)									
	Ι	II	III	IV	V					
FALS	F1-24	F25-48	F49-72	F73-96	F97-120					
SALS	S1-50	S51-100	S101-149	S150-199	S200-248					
Control	C1-20	C21-40	C41-60	C61-80	C81-100					
		ECACC Ba	atch number (#)							
	VI	VII	VIII	IX	Х					
SALS	S249-299	S300-349	S350-399	S400-449	S450-499					
Control	C101-120	C121-140	C141-160	C161-180	C181-200					

Table 4.4 ECACC LCL Batches Cell pellets were preserved in RNA*later*TM and shipped on dry ice. Dispatch dates and freezer code a) Discovery Cohort I 15/11/2011 [D-ORANGE], II 22/11/2011 [D-GREEN], III 29/11/2011 [D-BLUE], IV 6/12/2011 [D-YELLOW], V 13/12/2011 [D-PINK] and b) Replication Cohort VI 20/12/2011 [R-ORANGE], VII 11/01/2012 [R-GREEN], VIII 24/01/2012 [R-BLUE], IX 31/01/2012 [R-YELLOW], X 7/02/2012 [R-PINK]. For the purposes of this study each sample was assigned a unique reference number with the prefixes: C - control, F - familial patient or S - sporadic patient.

Figure 4.9 Agilent 2100 Bioanalyzer Assessment of LCL RNA Integrity External standard a) RNA 6000 Nano Ladder with a 25nt molecular weight marker and 0.2kb, 0.5kb, 1kb, 2kb, 4kb and 6kb fragments at a total concentration of $150 \text{ ng/}\mu\text{L}$. Representative electropherogram traces and corresponding electrophoresis gel images for b) control samples c) familial patient samples and d) sporadic patient samples in the ECACC Discovery and Replication cohort

Abbreviations: BC - Birmingham control, BP - Birmingham patient, [FU] - fluorescent units, [nt] - nucleotide, S - sedimentation coefficient and SP - Sheffield patient

Figure 4.10 Agilent 2100 Bioanalyzer Assessment of DNase Treated Samples of Low Quality Representative electropherogram traces and corresponding electrophoresis gel images for poor quality RNA isolated from pelleted lymphoblastoid cell lines derived from sporadic sample S227 (SP3043) in the ECACC Discovery cohort a) pre DNase treatment and b) post DNase treatment.

Abbreviations: [FU] - fluorescent units, [nt] - nucleotide, S - sedimentation coefficient and SP - Sheffield patient.

First Extraction				Second Extraction				
	260/280	260/230	RNA Yield	RIN	260/280 260/230 RNA Yield			RIN
C084	1.99	2.07	3.68	-	2.02	1.65	4.44	6.6
C087	2.02	1.23	4.31	2.6	2.05	2.23	4.86	2.5
C091	2.09	2.12	4.99	-	2.06	0.82	3.21	-
F094	2.06	1.50	8.57	5.2	2.07	2.09	7.33	3.3
F096	1.96	0.60	3.40	-	2.06	1.73	7.19	7.7
F100	2.04	2.25	12.52	2.9	2.06	1.23	9.25	4.8
S153	2.05	2.16	12.52	3.0	2.08	1.67	13.86	-
S154	2.06	2.13	13.36	2.8	2.09	2.24	7.52	-
S220	2.06	1.59	3.95	-	2.06	1.77	6.77	-
S227	2.09	2.02	8.77	-	2.09	2.19	12.09	2.4
S244	2.02	2.06	6.73	1.9	2.06	2.25	5.69	2.6

Table 4.5 QIAGEN RNeasy[®] Mini Kit Repeat RNA Extractions from Frozen LCL Pellets Concentrations and absorbance (A) ratios at 260/280nm and 260/230nm wavelengths were recorded on the NanoDropTM 1000 Spectrophotometer. Total yield was calculated in micrograms (μ g) and the RNA integrity number (RIN) computed on a scale of zero (undetectable, completely degraded) to ten (intact, high quality RNA) by the Agilent 2100 Bioanalyzer. Green shading indicates improved yield and/or quality of the isolated material when the extraction procedure was repeated. Conversely, red represents samples that produced equally poor or even lower quality RNA following the second extraction.

Abbreviations: C - control, F - familial, LCL - lymphoblastoid cell line, RIN - RNA integrity number and S - sporadic.

4.3.1 Affymetrix[®] WT Sense-Target Labelling Assay

4.3.1.1 Linearly Amplified Material

4.3.1.1.1 Anti-Sense cRNA

The isolated material was *in vitro* transcribed (Section 2.3.2.3.1), following the first step of linear amplification, into as-cRNA using the Ambion[®] Whole Transcriptome (WT) Expression Kit [APPENDIX TABLE B7]. Concentrations of between 395.64ng/ μ L and 3,498.70ng/ μ L were achieved from an input of 312.7±36.5ng total RNA with minimum and maximum yield of 16 μ g and 140 μ g, respectively. Samples comprised all of the LCL's that were received in the ECACC discovery cohort (n=469/470) [100 -CTRL, 120-FALS and 249-SALS], plus an additional seven *C90RF72+* SALS patients in the ECACC replication cohort which met the criteria for inclusion into the long (\geq 4yrs) versus short (<2yrs) survival study [S268-(BP6107), S319-(LP0203), S368-(L P0454), S373-(LP0359), S352-(SP3484), S440-(BP6297) and S438-(LP0411)]. Measurements on the NanoDropTM 1000 Spectrophotometer were found to be consistent across the different sample types with means and standard deviations of 1,883.

 40 ± 739.33 ng/µL, 1,832.27 ±674.18 ng/µL and 1,933.25 ±608.71 ng/µL for CTRL, FA LS and SALS, respectively. Absorbance ratios at 260/280 nm wavelengths ranged between 1.97 and 2.32 (Figure 4.11).

Figure 4.11 ECACC as-cRNA Amplification Boxplot Grouped by Sample Type Summary plots produced using GraphPad Prism[®] software version 5.04 copyright © 1992-2014 (GraphPad Prism[®] Inc., USA). Whiskers represent minimum and maximum anti-sense copy RNA (as-cRNA) concentrations achieved on the NanoDrop[™] 1000 Spectrophotometer for linearly amplified material derived from control (CTRL), familial ALS (FALS) and sporadic ALS (SALS) samples in the final ECACC LCL microarray cohort (n=476/470) [100-CTRL, 120-FALS and 256-SALS].

4.3.1.1.2 Single-Stranded cDNA

Following the second step of linear amplification using the Ambion[®] WT Expression Kit (Section 2.3.2.3.1) an input of 10µg purified as-cRNA yielded between 5.79µg and 12.98µg of newly synthesised ss-cDNA. Measurements on the NanoDrop[™] 1000 Spectrophotometer were consistent across the different sample types with means and standard deviations of 269.80±35.14ng/µL, 268.25±30.30ng/µL and 270.84±26.25 ng/µL for CTRL, FALS and SALS, respectively. Absorbance ratios at 260/280nm wavelengths ranged between 1.95 and 2.10 (Figure 4.12) [APPENDIX TABLE B7].

4.3.1.2 Fragmented ss-cDNA

Sense-strand cDNA targets were generated from 451 (94.8%) of 476 LCL samples [96-CTRL, 116-FALS and 239-SALS] comprising the final microarray cohort, with the remaining 25 (5.2%) samples [4-CTRL, 4-FALS and 17-SALS] failing to amplify. Ap-

Figure 4.12 ECACC ss-cDNA Amplification Boxplot Grouped by Sample Type Summary plots produced using GraphPad Prism[®] software version 5.04 copyright © 1992 to 2014 (GraphPad[®] Software Inc., CA USA). Whiskers represent the minimum and maximum single-stranded complementary DNA (ss-cDNA) concentrations on the NanoDropTM 1000 Spectrophotometer that were achieved for linearly amplified material derived from control (CTRL), familial ALS (FALS) or sporadic ALS (SALS) samples in the final ECACC LCL microarray cohort (n=476/470) [100-CTRL, 120-FALS and 256-SALS].

plication of the Affymetrix GeneChip[®] WT Fragmentation and Terminal Labelling Kit produced fragments of ~40 to 70nt in length. Size distribution analysis of a randomly selected subset of pre- and post-fragmented nucleic acid products was performed on the Agilent 2100 Bioanalyzer. Representative traces and their corresponding gel images are illustrated in Figure 4.13 (Section 2.3.1.3).

Figure 4.13 Agilent 2100 Bioanalyzer Size Distribution Analysis of Fragmented ss-cDNA Microarray Targets Representative electropherogram traces and corresponding gel images for a) prefragmented and b) post-fragmented single-stranded complementary DNA (ss-cDNA) amplified from sporadic sample [S440-(BP6297)] in the ECACC replication cohort using the Affymetrix GeneChip[®] Whole Transcriptome (WT) Fragmentation and Terminal Labelling Kit.

Abbreviations: BP - Birmingham patient, ECACC - European Collection of Cell Cultures, [FU] - fluorescent units, [nt] - nucleotides, [s] - seconds, S - sedimentation coefficient

4.3.1.3 Biotinylation of Sense-Strand Targets

The biotinylation efficiency (Section 2.3.2.3.4) of the labelling process was assessed on randomly selected ECACC control, FALS and SALS LCL samples from each of the amplification batches by performing an electrophoretic mobility shift assay (EMSA) as depicted in Figure 4.14. Fragmented sense-strand cDNA targets were incubated in the presence or absence of the biotin-binding protein, NeutrAvidinTM before being loaded onto 4 to 20% gradient polyacrylamide gels and electrophoresed at 150v for approximately 1 hour. Negative controls containing unbound biotin-tagged cDNA in lanes 3, 5, 7, 9 and 11 ran close to the dye front. In the NeutrAvidinTM positive samples in lanes 2, 4, 6, 8, 10 and 12 nucleic acid-protein complexes (~60kDa) formed of a substantially larger molecular weight which migrate through the non-denaturing gel matrix at a slower rate; resulting in the detection of a shifted band at around 300 to 400bp (red arrow). Staining with a 0.001% ethidium bromide solution for 30 to 40 minutes permits this change in banding pattern between NeutrAvidinTM positive (+) and NeutrAvidinTM negative (-) lanes (Figure 4.14) to be visualised under a UV light source using the Syngene GENi Gel Documentation System.

Figure 4.14 Electrophoretic Mobility Shift Assay (EMSA) Representative electrophoresis gel image assessing labelling efficiency of fragmented sense-strand cDNA targets generated from LCL's in the final microarray cohort (n=451/476) [96-CTRL, 116-FALS and 239-SALS]. Samples incubated in the presence (+) or absence (-) of biotin-binding protein NeutrAvidin[™] were run with DNA markers of 25bp molecular weight (HyperLadder[™] V) in lane 1 and 100bp (HyperLadder[™] IV) molecular weight in lane 13 on 4 to 20% gradient polyacrylamide gels at 150v for approximately 1 hour, stained in a 0.001% Ethidium Bromide solution for 20 to 30 minutes and visualised under a ultraviolet (UV) light source using the Syngene GENi Gel Documentation System.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, CTRL - control, bp - base pairs, cDNA - complementary DNA, EMSA - electrophoretic mobility shift assay, F - familial, LCL - lympho-blastoid cell line and S - sporadic.

4.3.2 Affymetrix[®] Expression Console[™] QC Metrics

4.3.2.1 Eukaryotic Hybridization Controls

Three genes of the *E. coli* biotin synthesis pathway (BioB, BioC and BioD) in addition to the recombinase gene from the P1 bacteriophage (CreX) (Section 2.3.2.4.2) were spiked in at increasing concentrations [1.5pM, 5pM, 25pM and 100pM, respectively] of the hybridization reaction. Since it is anticipated that these targets will not crosshybridize with samples of a non-bacterial or non-viral origin, the intensity pattern for these controls should be seen to mimic the increase in target concentration [i.e. BioB<BioC<BioD<CreX] described above. For the ECACC LCL's this proved to be the case in all but one instance (Figure 4.15) involving familial sample [F042-(SP3303)] which is represented by the red line in plot b) of Figure 4.16.

BioB, at a concentration of 1.5pM, represents the absolute limit of detection. In the Affymetrix[®] Expression Console[™] software version 1.3.0.187 at least one probeset pertaining to this endogenous control was flagged as present for each array which is a strong indicator of having achieved good overall sensitivity.

Figure 4.15 Eukaryotic Hybridization Controls Bacterial spike in controls [*E. coli* derived genes of the biotin synthesis pathway BioB (blue), BioC (red), BioD (pink) and the recombinase gene CreX (green) from the P1 bacteriophage] at staggered concentrations of 1.5pM (representing the limit of detection), 5pM, 25pM and 100pM, respectively. Assessment of Affymetrix[®] quality control metrics was performed using the Expression Console[™] software version 1.3.0.187.

Figure 4.16 Bacterial Spike in Controls Mean signal intensities of BioB, BioC, BioD and CreX probesets on the Affymetrix Human Exon 1.0ST GeneChip® Arrays for a) control (CTRL), b) familial (FAL S) and c) sporadic (SALS) samples in the final microarray cohort [95-CTRL (C73 failed to scan), 116-FALS and 239-SALS]. Each line represents a single array with outliers highlighted in red [F042-(SP 3303)]. Assessment of Affymetrix[®] QC metrics performed using the Expression Console[™] software version 1.3.0.187.

4.3.2.2 Overall Signal Quality

4.3.2.2.1 Average Background

Average background signal intensities ranged between 80.566 and 367.741 for the 450 GeneChips[®] [95-CTRL, 116-FALS and 239-SALS] in the final microarray cohort which excluded one Birmingham control [C073-(BC6091)] that failed to scan. Values were comparable across the different sample types with means and standard deviations of 191.448±45.92, 204.245±45.03 and 204.609±45.88 for controls, FALS and SALS, respectively (Figure 4.17).

Tukey defined outliers with significantly higher (n=5/450) [1-CTRL, 2-FALS and 2-SALS] or lower (n=3/450) [3-SALS] average background signal intensities included one female control [C031-(SC3709)], five FALS patients (3-M, 2-F) [F01-(LP0137), F08-(BP6074), F076-(SP3670), F079-(SP3508) and F099-(LP0073)] and two SALS patients (2-F) [S033-(SP3045) and S203-(SNc0059)].

4.3.2.2.2 Average Percentage Presence Calls

On average, 63.1% (n=181,305) of the 287,329 'core' metaprobesets annotated by RefSeq which are incorporated onto the Affymetrix[®] Human Exon 1.0ST GeneChip[®] Arrays were flagged as present (P) (Figure 4.18). This percentage proved reasonably consistent across the different sample types with means and standard deviations of

Figure 4.17 Mean Background Signal Intensities Across LCL Sample Types Summary box and whisker plots were generated in GraphPad[®] Prism software version 5.04 copyright © 1992-2014 (GraphPad[®] Software Inc., CA USA) applying a Tukey multiple comparison test. Samples of significantly higher or lower mean background (bgrd) signal intensities (outliers) were highlighted in red (n=8/450) [1-CTRL, 5-FALS and 2-SALS]. Assessment of Affymetrix[®] QC metrics performed using Expression Console[™] software version 1.3.0.187.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, CTRL - control, F - familial, LCL - lymphoblastoid cell line, QC - quality control and S - sporadic.

Figure 4.18 Average Percentage Presence (%P) Calls Across LCL Sample Types Summary box and whisker plots produced in GraphPad Prism[®] software version 5.04 copyright © 1992-2014 (GraphPad[®] Software Inc., CA USA) applying a Tukey multiple comparisons test. Outliers of insufficient quality with fewer than 143,665 'core' metaprobesets called as present (P) on Affymetrix[®] Human Exon 1.0ST GeneChip[®] Arrays are highlighted in red (n=9/450) [1-CTRL, 2-FALS and 6-SALS]. The green data points represent Tukey identified outliers that have a percentage presence call above the user defined threshold of 50.0%. Assessment of Affymetrix[®] QC metrics performed using Expression Console[™] software version 1.3.0.187.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, C - control, CTRL - control, F - familial, LCL - lymphoblastoid cell line, QC - quality control, S - sporadic and ST - sense target.

64.0±3.6% (n=183, 891±10,344), 62.9±4.7% (n=180,730±13,505) and 62.8±4.5% (n=180, 443±12,930) for controls, FALS and SALS, respectively.

Outliers were determined by performing a Tukey multiple comparisons test (Figure 4.18). Samples with %P calls below the applied threshold of 50.0% were considered to be of poorer quality. These included one female control [C076-(SNc0106)], two F ALS patients (1-M, 1-F) [F042-(SP3303) and F095-(SMa0008)] and 6 SALS patients (2-M, 4-F) [S044-(SP3329), S090-(SP3304), S112-(SP3363), S123-(BP6021), S130-(SNc0010) and S180-(BP6025)].

4.3.2.2.3 Area Under the Receiver Operating Characteristic Curve

The Receiver Operating Characteristic (ROC) curve plots the detection rate of true positive (+ve) controls, a measurement of sensitivity, against the false detection rate of negative (-ve) controls; which is a function of specificity. AUC values for the area under the curve lied between 0.8 and 0.9 for 432 (96.0%) of 450 GeneChips[®] in the final microarray cohort. Consistency was observed across sample types with means and standard deviations of 0.845±0.02, 0.849±0.02 and 0.854±0.03 for controls, FA LS and SALS, respectively. Samples falling outside this range included four controls (3-M, 1-F) [C038-(LSh0022), C076-(SNc0106), C087-(BC6166) and C091-(SC3741)], four FALS patients (2-M, 2-F) [F042-(SP3303), F080-(SP3508), F085-(LP0013) and F095-(SMa0008)] and ten SALS patients (6-M, 4-F) [S108-(SP3384), S119-(SP3073), S123-(BP6021), S130-(SNc0010), S145-(SP3065), S162-(SP3326), S215-(SP3187), S220-(SP3105), S244-(BP6052) and S352-(SP3484)].

4.3.2.3 Signal Comparability

4.3.2.3.1 All Probeset Mean Signal Intensities

Average signal intensities across all probesets included at the level of the transcript

(n=22,011) (Figure 4.19a) were found to be marginally lower than those observed at the level of the individual exon (n=287,329) (Figure 4.19b). Means and standard deviations were comparable between different sample types [GENE LEVEL 6.94±0. 12, 6.95±0.10 and 6.98±0.11 for controls, FALS and SALS versus EXON LEVEL 7.05±0.14, 7.06±0.13 and 7.09±0.15 for controls, FALS and SALS].

Figure 4.19 Mean Probeset Signal Intensities Across LCL Sample Types Summary box and whisker plots at a) whole transcript or b) individual exon level were produced using GraphPad Prism[®] software version 5.04 copyright © 1992 to 2014 (GraphPad[®] Software Inc., CA USA) with a Tukey multiple comparison test applied. Outliers are represented in red. Assessment of Affymetrix[®] QC metrics were performed in Expression Console[™] software version 1.3.0.187.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, CTRL - control, F - familial, LCL - lymphoblastoid cell lines, QC - quality control and S - sporadic.

Tukey defined outliers which were detected at both levels of analyses included four controls (2-M, 2-F) [C079-(SC3279), C087-(BC6166), C090-(BOx0073) and C091-(S C3741)], for FALS patients (2-M, 2-F) [F014-(LCa0111), F042-(SP3303), F085-(LP0 013) and F095-(SMa0008)] and six SALS patients (3-M, 3-F) [S06-(SP3062), S162-(SP3326), S186-(SP3090), S215-(SP3187), S220-(SP3105) and S352-(SP3484)].

4.3.2.3.2 Signal Histogram

Density histograms pertaining to log2 transformed average GC-RMA normalised signal intensity values were plotted at a) whole transcript and b) individual exon level in Expression Console[™] software version 1.3.0.187. In general distributions appear highly correlated across all 450 arrays (Figure 4.20) in the final ECACC LCL micro-

Figure 4.20 Signal Histogram Plots Each series of coloured bars represents the distribution of log2 transformed, average GC-RMA normalised signal intensity values for a single array at a) whole transcript and b) individual exon level. Assessment of QC metrics was performed in Expression ConsoleTM software version 1.3.0.187 (Affymetrix[®] Ltd., UK).

Abbreviations: QC - quality control and RMA - <u>R</u>obust <u>M</u>ulti-array <u>A</u>verage.

array cohort with a good degree of concordance between the two different levels of analyses.

4.3.2.3.3 Relative Log Expression Signal

Mean absolute relative log expression (RLE) is used as a measure of how the signal intensities on each individual chip compare with those across the rest of the experiment. A cohort which exhibits relative homogeneity should have scores close to zero with a small spread of values around the mean. Samples in the ECACC microarray study that deviated significantly from this scenario (Section 3.3.2.6), with means or standard deviations above the 0.500 threshold, included six controls (3-M, 3-F) [C0 38-(LSh0002), C076-(SNc0106), C079-(SC3279), C087-(BC6166), C090-(BOx0073) and C091-(SC3741)], three FALS (1-M, 2-F) [F042-(SP3303), F080-(SP3508) and F0 95-(SMa0008)] and eleven SALS (8-M, 3-F) [S108-(SP3384), S112-(SP3363), S119-(SP3073), S123-(BP6021), S130-(SNc0010), S145-(SP3065), S162-(SP3326), S189-(SP3090), S215-(SP3187), S220-(SP3105) and S352-(SP3484)] patients (Figure 4.2 1).

4.3.2.4 Pearson's Correlation Coefficient

For each pair of arrays, Expression Console[™] software version 1.3.0.187 determines the Pearson's product-moment correlation coefficient (r) (Section 3.3.2.6) from the covariance divided by the product of the standard deviations. This is computed on a scale of -1 to 1 where zero equals no correlation (i.e. the data points are randomly distributed) and a value to close to plus (positive) or minus (negative) one indicates that there is a strong linear relationship between the X and Y variables (Figure 3.10). The data can be illustrated qualitatively on a coloured matrix as depicted in Figure 4.22. In the ECACC microarray experiment r exceed 0.725 for all pair-wise comparisons made across the three sample types with those hybridizations producing the weakest relationships represented in blue (r<0.800) or white (0.800<r<0.850). These included one male control [C091-(SC3741)], two FALS patients (1-M, 1-F) [F04-2-(SP3303) and F095-(SMa0008)] and three SALS patients (2-M, 1-F) [S189-(SP30 90), S215-(SP3187) and S352-(SP3484)] (Figure 4.22).

4.3.2.5 Affymetrix[®] Expression Console[™] Summary

In total, 7.8% (n=35/450) LCL's in the final ECACC microarray cohort [7/95-CTRL, 10/116-FALS and 18/239-SALS (Table 4.6)] failed one or more post-hybridization QC parameters assessed in Expression ConsoleTM software version 1.3.0.187. Signal intensity files (CEL files) generated for three controls (2-M, 1-F) [C076-(SNc0106), C087-(BC6166) and C091-(SC3741)], two FALS patients (1-M, 1-F) [F042-(SP3303) and F095-(SMa000 8)] and seven SALS patients (4-M, 3-F) [S123-(BP6021), S130-(SNc0010), S162-(SP3326), S189-(SP3090), S215-(SP3187), S220-(SP3105) and S3

Figure 4.21 Mean Absolute RLE Boxplots Absolute Relative Log Expression (RLE) means and standard deviations for a) control (CTRL) samples, C1-100, b) familial (FALS) samples, F1-120, c) sporadic (SALS) samples, S1-132 and d) sporadic (SALS) samples, S133-440 in the ECACC microarray experiment. Whiskers represent minimum and maximum average probeset signal intensities at the level of the whole transcript. Assessment of Affymetrix® quality control (QC) metrics was performed using Expression ConsoleTM software version 1.3.0.187.

Abbreviations: C - control, F - familial and S - sporadic.

Figure 4.22 Pearson's Correlation Coefficient Each pair-wise comparison in the coloured matrix is assigned a value for r on a scale of 0.726 (blue) to 1.000 (red) where the higher the score is indicative of a stronger linear relationship between the X and Y variables. Assessment of Affymetrix[®] QC metrics performed in Expression Console[™] software version 1.3.0.187.

Abbreviations: C - control, F - familial, QC - quality control and S - sporadic.

	Control	FALS	SALS
National DNA Bank	100	120	257
ECACC	-0	-0	-1
RNA	-0	-0	-0
ss-cDNA	-4	-4	-17
Hybridization	-1	-0	-0
Final Total	95	116	239

Table 4.6 Summary of Control, FALS and SALS LCL Samples in Final ECACC Microarray Cohort The initial cohort was comprised of 100 controls, 120 FALS and 257 SALS to include all of the LCLs in the ECACC discovery cohort plus an additional seven *C90RF72+* cases from the ECACC replication cohort which met the criteria for the long (>4yrs) versus short (<2yrs) survival study. A breakdown of the number of samples passing each of the handling and processing steps is provided with the final totals highlighted in bold.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C90RF72* - chromosome 9 open reading frame 72, ECACC - European Collection of Cell Cultures, F - familial, LCL - lymphoblastoid cell lines and S - sporadic.

52-(SP3484)] were of particularly poor quality having failed three or more of the QC metrics summarised in Table 4.7.

Table 4.7 Affymetrix[®] Expression Console[™] Summary of Failed LCL Samples in the ECACC Discovery and Replication Cohorts

Key: Passed Failed

Abbreviations: AUC - area under receiver operating curve (ROC), bac-spike - bacterial spike in control, bgrd - background, C - control, F - familial, LCL - lymphoblastoid cell line, P - present calls, PPMCC - Pearson's product moment correlation coefficient, QC - quality control, RLE - relative log expression and S - sporadic.

4.4 DISCUSSION

Participants (n=820) [120-FALS, 500-SALS and 200-CTRL] attending clinics (Section 2.1.2) in the Birmingham, London or Sheffield districts (Figure 2.1) between November 2003 and June 2011, who were subsequently recruited to the ECACC microarray cohort, were Caucasian and of North European descent. Patient partners or their unrelated carers were selected as neurologically normal, healthy control subjects. These were matched for age and gender across the SALS group, with a slightly higher than previously reported M:F ratio of approximately 1.75:1. Typically, ratios range between 1.20 and 1.50:1 (Section 1.1.2); which is comparable to the FALS group at 1.45:1 (McCombe & Henderson 2010). All patients were diagnosed according to the World Federation of Neurology's amended EEC of 1998 (Figure 1.1) (Section 1.1.3) with the majority having either definite 39.4% (n=244/620) or probable ALS 55.3% (n=343/620). There were four incidences of ALS with concomitant FTLD (Section 1.

1.5.5) [1-FALS and 3-SALS] and two further incidences of ALS with concomitant PD (Section 1.2.1) [1-FALS and 1-SALS]. In the remaining 4.4% (n=27/620) of cases it is likely that a revision has been made to the original diagnosis of ALS after the samples were accepted into the National MNDA DNA Bank. These comprised several rarer variants of MND including: PBP (Section 1.2.2.1) (n=23/27) [6-FALS and 17-SA LS] in which the bulbar muscles are primarily affected (Gregoriou et al 1969, Karam et al 2010, Talacko & Reade 1990); PLS (Section 1.2.2.2) (n=3/27) [1-FALS and 2-SA LS] of pure UMN involvement (Gotkine & Argov 2007, Praline et al 2010, Pringle et al 1992, Tartaglia et al 2007) and PMA (Section 1.2.2.3) (n=1/27) [1-SALS] of pure LMN involvement (de Carvalho et al 2007, Visser et al 2008, Visser et al 2007).

FALS cases exhibited a moderately younger mean age of symptom onset (defined as the point at which the patient first presented with significant weakness) than SALS cases that peaked in the mid-fifties compared to early sixties [FALS 55±11.9 (range 23-82) years and SALS 60±11.4 (range 22-87) years (student's t-test p<0.001***)]. This was consistent with the reports of Calvo et al (2014b) and Kinsley & Siddique (2001). The proportion of patients with limb onset (50%), bulbar onset ($\sim 30\%$), a mixed presentation (10-15%) or onset in the respiratory muscles (\sim 2%) were also comparable to the figures published in the literature (Gautier et al 2010, Korner et al 2011, Ravits et al 2007, Sekiguchi et al 2014). In addition, survival was observed to be similar between FALS and SALS groups [FALS 2.9±2.28 (range 0.5-18.7) years and SALS 3.2±1.74 (range 0.39-10.3) years]; although differences were reported to occur between SALS of the ECACC discovery (Section 4.1.1) and replication (Section 4.1.2) cohorts with respective means and standard deviations of 2.8±1.34 years or 4.0±2.30 years and a student's t-test derived probability value of 7.26E-12 (Cluskey & Ramsden 2001, McDermott & Shaw 2007). One possible explanation for this skew in survival data stems from the fact that samples with complete clinical information immediately available to hand were prioritised to the discovery cohort at the start of the project, to prevent delays in commencing the study. Another unintentional consequence of how the LCL's were consigned to a cohort (ranking of SALS and controls in ascending order of age and arbitrarily assigning them number one or two alternately down the list) was the considerably higher M:F ratio for SALS in the replication (2.17:1) (Section 4.1.2) versus discovery cohorts (1.43:1) (Section 4.1.1) (Table 4.1).

This can be rectified, however, using the Partek[®] Genomics Suite[™] analysis pipeline outlined in Section 2.3.2.5.2 which includes age and gender as covariates (Figure 2. 4) in order to control for any potential bias that may be introduced by such factors.

Mutations were detected in the FALS patients at a frequency of 40.8% for C9ORF72 (n=49/120) (Section 1.2.5.4), 4.4% for SOD1 (n=5/115) (Section 1.2.5.1.1), 3.8% for FUS (n=4/106) (Section 1.2.5.2.2) and 2.9% for TARDBP (n=3/103) (Section 1.2.5.2. 1) (Table 4.2) and in the SALS patients at a frequency of 8.0% for C90RF72 (n=40/ 500), 0.6% for *TARDBP* (n=3/500), 0.4% for *CHMP2B* (n=2/500) (Section 1.2.5.2.8) and 0.2% for *ANG* (n=1/500) (Section 1.2.5. 2.3) (Table 4.3). With the exception of familial SOD1 (Rosen et al 1993) and TARDBP (Sreedharan et al 2008), which were recorded at a lower than anticipated frequency, the majority were found to be consistent with the previously published reports of Cooper-Knock et al (2012b), DeJesus-Hernandez et al (2011), Greenway et al (2006), Kwiatkowski et al (2009), Parkinson et al (2006), Renton et al (2011) and Vance et al (2009). Among the C9ORF72 cases were two examples of oligogenic inheritance, including one FALS patient [F05] 6-(SP3462)] with an OPTN mutation (Bury et al 2015) (Section 5.3.2.1) and a second SALS patients [S352-(SP3484)] with a TARDBP mutation (Kirby et al 2010) (Section 5.3.2.2). In this latter instance, although the patient was entered into the database as a sporadic case, it is likely, especially in light of the above, that the individual does in fact represent a familial case which has arisen as a consequence of incomplete penetrance or may have been misclassified due to a lack of information regarding family history. Since ALS is typically an adult onset disorder of relatively short life expectancy there is a chance that affected relatives of some seemingly SALS cases have died (Al-Chalabi & Lewis 2011, Conforti et al 2011) either before clinical manifestations of disease or prior to a formal diagnosis of MND having been made.

Across the ECACC discovery (Section 4.1.1) and replication (Section 4.1.2) cohorts four LCL samples [3-SALS and 1-CTRL] failed the EBV-transformation process and, following two unsuccessful attempts, were rejected from the final study design. On the NanoDropTM 1000 Spectrophotometer (Section 2.3.1.3) high yields [APPENDIX TABLE B7] and purity ($A_{260/280}$ 2.0±0.2, 99.3%) was achieved for the remaining 816 [120-FALS, 497-SALS and 199-CTRL] samples with little or no evidence of protein/ DNA contamination following QIAGEN extraction of total RNA (Section 2.3.2.2) from

169

the frozen cell pellets (Figure 4.6-8). The quality of the isolated material, as assessed using the Agilent 2100 Bioanalyzer, was found to be consistent across different sample types, within in each of the cohorts [Mean RIN: discovery cohort 8.3 versus replication cohort 7.4 (student's t-test p<0.001***)], but had steadily declined over time. All of the QIAGEN RNeasy[®] Mini Kits were purchased in a single batch and lot # at the beginning of the project. To test whether the storage of the kits was having an impact, some repeat extractions (Table 4.5) were performed using a new kit and freshly prepared 70% ethanol solution. This, however, proved ineffective and in some instances the RNA quality and yield had actually deteriorated rather than showing an improvement; suggesting freeze thawing of the LCL's may have caused some degradation to occur ex vivo (Caliskan et al 2014). Also, in simply taking a fixed volume of the suspension, different densities of cells could have been present in each round of the extractions. Another factor worth considering is the quality of the original sample used for EBV-transformation, since the extractions were performed in the order in which they were received from ECACC and it is a likely proposition that the LCL's proving most difficult to process would have been dispatched in the later batches.

For the ECACC microarray study in the subsequent two results chapters (Chapter 5: '*C90RF72* GEP Study' and Chapter 6: '*C90RF72* Survival Study') the Ambion® Whole Transcriptome (WT) Expression Kit was used to generate linearly amplified material for all samples received in the discovery cohort (Section 4.1.1), plus an additional seven *C90RF72+* cases in the replication cohort (Section 4.1.2) [120-FALS, 256-S ALS and 100-CTRL] which met the criteria for inclusion into the analysis of Long (\geq 4yrs) versus Short (<2yrs) survival. Sufficient quantities of ss-cDNA were achieved in 94.7% of cases (n=451/476) [116-FALS, 239-SALS and 96-CTRL] [APPENDIX TA BLE B7]. Post-fragmentation and labelling, targets of ~40-70nt were hybridized on to Affymetrix® Human Exon 1.0ST GeneChip® Arrays. For one control, namely [C07 3-(BC6091)], the GeneChip® failed to scan and a signal intensity or (CEL) file could not be created. The remaining samples were processed using Expression ConsoleTM software version 1.3.0.187 (Section 2.3.2.5.1) [116-FALS, 239-SALS and 95-CTRL]. Following assessment of a series of quality control (QC) parameters summarized in Table 4.7, 2.7% (n=12/450) [2-FALS, 7-SALS and 3-CTRL] were identified as having failed at least three of these measures and were removed from any subsequent downstream comparative analyses. Later it was established that 10 of the 12 LCL's (8 3.3%) had a RIN score of below 5.0 which suggests that the original samples were of poor quality. Therefore, given the size of the cohort, it did not warrant the expense of repeating these individual amplifications.

CHAPTER 5: C9ORF72 GEP STUDY

The discovery by Renton et al and DeJesus-Hernandez et al, in 2011, of a pathogenic G_4C_2 repeat expansion in the previously uncharacterised *C90RF72* gene represented a unique opportunity in which to study a specific genetic subtype that accounts for a greater proportion of cases than *SOD1* (Section 1.2.5.1.1), *TARDBP* (Section 1.2.5.2. 1) or *FUS* (Section 1.2.5.2.2) mutations combined. In this chapter global GEP's from patient derived, EBV-transformed B-lymphocytes carrying the *C90RF72* expansion, were compared on Affymetrix® Human Exon 1.0ST GeneChip® Arrays to a subset of ECACC SALS patients and controls. Subsequent, downstream functional annotation clustering analysis conducted in DAVID bioinformatics resource version 6.7 enabled us to elucidate further the mechanisms of C90RF72 toxicity. In addition, it was also anticipated that this approach would aid in distinguishing between the mechanisms linked, specifically, to C90RF72-related disease from those which contribute to MN degeneration more widely in ALS.

5.1 C9ORF72 and nonC9ORF72-Related_SALS Cohort

5.1.1 ECACC EBV-Transformed B-Lymphocytes

5.1.1.1 Clinical Characteristics

5.1.1.1.1 Control Cases

Neurologically normal, healthy control LCL's (n=27/100) [15-M, 12-F] selected from the ECACC discovery cohort were largely recruited from patient partners or their unrelated carers (Section 4.1.1). These were comprised of 8 Birmingham (29.6%) cases including two from Liverpool [C039-(BLi0169) and C097-(BLi0083)] and one from Belfast City Hospital [C020-(BBe0006)]; 4 London (14.8%) cases including one from Cambridge [C021-LCa0076)] and one from Poole General Hospital [C05-(LP00033)] and 15 Sheffield (55.6%) cases including three from Newcastle [C04-(SNc0091), C07 -(SNc0038) and C044-(SNc0041)], one from Preston [C08-(SPr0050)] and one from Manchester [C036-(SMa0156)]. Age at consultation ranged between 36 and 84 years with a mean of 60.7±13yrs. The M:F ratio was 1.25:1 (Figure 5.1).

Figure 5.1 Age Frequency Distribution of Patient and Control LCL's in the ECACC *C90RF72* and Non*C90RF72*-Related_SALS Study

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C9ORF72* - chromosome 9 open reading frame 72, Ctrl - control, ECACC - European Collection of Cell Cultures, F - female, LCL - lymphoblastoid cell lines, M - male and S - sporadic.

5.1.1.1.2 C90RF72+ Cases

Patient derived LCL's carrying the G_4C_2 repeat expansion in *C90RF72* (n=40/620) [19-M, 21-F] consisted of 18 FALS and 22 SALS selected from the ECACC discovery (Section 4.1.1) and replication (Section 4.1.2) cohorts. These were comprised of 7 Birmingham (17.5%) cases including one from Oxford [F078-(B0x0029)]; 9 London (22.5%) cases and 24 Sheffield (60.0%) cases including one from Newcastle [S203-(SNc0059)] and two from Manchester [F081-(SMa0006) and F117-(SMa0166)]. The combined M:F ratio was 0.91:1. However, differences were observed between the two sample types [*C90RF72+* FALS 0.80:1 and *C90RF72+* SALS 1.00:1] (Figure 5.1).

The majority of *C90RF72* + cases, 95.0% (n=38/40) were diagnosed according to the World Federation of Neurology's amended EEC of 1998 (Figure 1.1) (Section 1.1.3) with either definite (n=22/38) [9-familial, 13-sporadic] or probable (n=16/38) [8-

familial, 8-sporadic] ALS including one incidence of concomitant FTLD [F115-(SP31 18)] and another of concomitant PD (Section 1.2.1) [F114-(SP3560)]. The remaining 5.0% (n=2/40) of the cohort were diagnosed with PBP (Section 1.2.2.1) [F100-(SP3) 070) and S165-(SP3222)]. Age at symptom onset (i.e. when the patient first experienced significant weakness) ranged between 28 and 70 years with a mean of 55.7± 11yrs for C9ORF72+ FALS or 36 and 71 years with a mean of 55.6±11yrs for C9ORF 72+ SALS. Disease duration ranged from 7 to 107 months or 11 to 73 months with a mean of 2.93±2.3yrs for C90RF72+ FALS and 2.54±1.4yrs for C90RF72+ SALS, respectively (Table 5.1). Limb onset accounted for 50.0% of cases (n=20/40) [6-FALS, 1-FASL+PD and 13-SALS], bulbar onset and a further 32.5% (n=13/40) [6-FALS, 1-FA LS+FTLD, 6-SALS and 1-PBP (sporadic)] and a mixed presentation 15.0% (n=6/40) [3-FALS, 2-SALS and 1-PBP (sporadic)]. Information regarding site of onset was not available for the remaining 2.5% of the cohort (n=1/40) [1-FALS]. ALSFRS-R scores ranged between 0 (severe disability) and 46 (near normal function) with an average of 30.1±12 for 100% of C9ORF72+ FALS and 30.2±14 for 86.4% of C9ORF72+ SALS (n=19/22).

For the Sheffield cases some additional clinical information could be extracted from the local database. Approximately a fifth, 20.8% (n=5/24) [1-FALS and 4-SALS] were prone to EL, another 20.8% (n=5/24) [1-FALS, 1-FALS+FTLD and 3-SALS] displayed symptoms of dyspnoea and 8.3% (n=2/24) [1-FALS and 1-SALS] had suffered from hypersialorrhea. Dysarthria and dysphagia were apparent in 45.8% (n=11/24) [2-FALS, 1-FALS+PD, 1-FALS+FTLD, 5-SALS and 2-PBP (1-familial, 1-sporadic)] of the cohort with PEG feeding (Section 1.1.4) becoming a necessary intervention in 36.4% (n=4/11) [1-FALS, 1-FALS+PD and 2-SALS] of these latter cases. There was also one sporadic individual who presented with the rare and more benign FA variant of the disease [S042-(SP3122)] (Section 1.2.1). Three patients, 12.5% [1-FALS, 1-FALS+PD and 1-SALS] were non-ambulant with a further 8.3% (n=2/24) [1-FALS and 1-SALS] unable to walk without needing assistance. Current smokers comprised 4.2% of the cohort (n=1/24) [1-PBP (familial)], ex-smokers a further 8.3% (n=2/24) [2-SALS] and non-smokers 66.7% (n=16/24) [5-FALS, 1-FALS+PD, 9-SALS and 1-PBP (sporadic)]. For the remaining 20.8% of the cohort (n=5/24) [2-FALS and 3-SALS] this information was not disclosed.

	C9ORF72 _{neg}		C90RF72 _{pos}		Control
	SALS	SALS	FALS	ALL	CTRL
M:F	1.42:1	1.00:1	0.80:1	0.91:1	1.25:1
Age					
range	22-82yrs	36-71yrs	28-70yrs	28-71yrs	36-84yrs
mean	61yrs	56yrs	56yrs	56yrs	61yrs
Onset					
Limb	28 (48.2%)	13 (59.1%)	7 (38.9%)	20 (50.0%)	n/a
Bulbar	24 (41.4%)	7 (31.8%)	6 (33.3%)	13 (32.5%)	n/a
Mixed	4 (6.9%)	2 (9.1%)	4 (22.2%)	6 (15.0%)	n/a
Respiratory	2 (3.5%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a
unknown	0 (0.0%)	0 (0.0%)	1 (5.6%)	1 (2.5%)	n/a
Diagnosis					
ALS	51 (87.9%)	21 (95.5%)	15 (83.3%)	36 (90.0%)	n/a
ALS+FTLD	2 (3.5%)	0 (0.0%)	1 (5.6%)	1 (2.5%)	n/a
ALS+PD	0 (0.0%)	0 (0.0%)	1 (5.6%)	1 (2.5%)	n/a
PBP	5 (8.6%)	1 (4.5%)	1 (5.6%)	2 (5.0%)	n/a
PLS	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a
PMA	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a
ALSFRS-R					
range	0-46	0-45	0-46	0-46	n/a
mean	31	30	30	30	n/a
Survival					
range	0.4-7.7yrs	0.9-6.1yrs	0.5-9.0yrs	0.5-9.0yrs	n/a
mean	2.8yrs	2.5yrs	2.9yrs	2.7yrs	n/a
Total	58 <mark>(56)</mark>	22 <mark>(20)</mark>	18 <mark>(18)</mark>	40 <mark>(38)</mark>	27 <mark>(26)</mark>

Table 5.1 Clinical Summary of Patient and Control LCL's in the ECACC *C90RF72* **and Non***C90RF72***-Related_SALS Study** Highlighted in red are the final sample numbers obtained following assessment of QC metrics using Expression Console[™] software version 1.3.0.187 (Affymetrix[®] Ltd., UK).

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C90RF72* - chromosome 9 open reading frame 72, CTRL - control, ECACC - European Collection of Cell Cultures, F - familial, F - female, FRS-R - Functional Rating Scale Revised, FTLD - frontotemporal lobar degeneration, LCL - lymphoblastoid cell lines, M - male, PD - Parkinson's disease, PBP - Progressive Bulbar Palsy, PLS - Primary Lateral Sclerosis, PMA - Progressive Muscular Atrophy, QC - quality control and S - sporadic.

A strong family history of ALZ [F089-(SP3331) and S121-(SP3420)], PD [F144-(SP 3560)] or dementia [F115-(SP3118) and S042-(SP3122)] was associated with up to 16.7% of *C90RF72+* FALS (n=3/18) and 9.1% of *C90RF72+* SALS (n=2/22). In the case of sporadic sample [S186-(SP3431)] at least one incidence of colon cancer in a first degree relative had also been reported.

5.1.1.1.3 NonC9ORF72-Related_SALS Cases

The non-expansion carrying LCL's consisted of 58 SALS [34-M, 24-F] selected from the ECACC discovery cohort (Section 4.1.1). These were comprised of 7 Birmingham (12.1%) cases including two from Belfast City Hospital [S05-(BBe0007) and S052-(BBe0016)]; 7 London (12.1%) cases including one from Poole General Hospital [S0 35-(LP00010)] and 44 Sheffield (75.8%) cases including two from Newcastle [S012-(SNc0022) and S089-(SNc0053)] and four from Nottingham [S036-(SNt0031), S129 -(SNt0024), S198-(SNt0016) and S219-(SNt0036)]. The M:F ratio was 1.42:1 (Figure 5.1).

The majority of non*C9ORF72*-related_SALS cases, 91.4% (n=53/58) were diagnosed with either definite (n=34/53) or probable (n=19/53) ALS including two incidences of concomitant FTLD [S093-(SP3049) and S178-(SP3145)]. The remaining 8.6% of the cohort (n=5/58) were diagnosed with PBP [S040-(SP3271), S044-(SP3329), S1 29-(SNt0024), S198-(SNt 0016) and S230-(SP3159)]. Age at symptom onset ranged between 22 and 82 years with a mean of 61.3 ± 12 yrs. Disease duration ranged from 4½ to 92 months with a mean of 2.76 ± 1.5 (Table 5.1). Limb onset accounted for 48.3% of cases (n=28/58) [28-SALS], bulbar onset a further 41.4% (n=24/58) [17-SALS, 2-SALS+FTLD and 5-PBP (sporadic)], mixed presentation 6.9% (n=4/58) [4-SALS] and onset in the respiratory muscles the remaining 3.4% (n=2/58) [2-SALS]. ALSFRS-R scores ranged between 0 (severe disability) and 46 (near normal function) with an average of 30.8 ± 10 for 87.9% of non*C90RF72*-related_SALS (n=51/58) [44-SALS, 2-SALS+FTLD and 5-PBP (sporadic)].

For the Sheffield cases some additional clinical information could be extracted from the local database. Of these, 20.5% (n=9/44) [7-SALS and 2-PBP (sporadic)] were prone to EL, a further 2.3% (n=1/44) [1-SALS] presented with a clinical history of

depression and approximately one third, 34.1% (n=15/44) [12-SALS, 1-SALS+FTLD and 2-PBP (sporadic)] displayed symptoms of dyspnoea with six patients [6-SALS] requiring NIPPV support (Section 1.1.4). Dysarthria and dysphagia were apparent in 50.0% of the cohort (n=22/44) [18-SALS, 2-SALS+FTLD and 2-PBP (sporadic)] with PEG feeding becoming a necessary intervention in seven of these latter cases [6-SALS and 1-PBP (sporadic)]. Two patients, 4.6% [2-SALS] were non-ambulant with 22.7% (n=10/44) [10-SALS] unable to walk without needing assistance. Current smokers comprised 2.3% of the cohort (n=1/44) [1-SALS], ex-smokers who had not smoked a cigarette for a minimum of 20 years (mean 21.7±2.9yrs) a further 6.8% (n=3/44) [2-SALS and 1-SALS+FTLD] and non-smokers 63.6% (n=28/44) [24-SALS, 1-SALS+ FTLD and 3-PBP (sporadic)]. For the remaining 27.3% of the cohort (n=12/44) [10-SALS and 2-PBP (sporadic)] this information was not disclosed.

A strong family history of dementia was associated with up to 6.9% of non*C90RF72*related_SALS (n=4/58) [S08-(SP3111), S078-(SP3140), S116-(SP3351) and S172-SP 3067)]. An additional sporadic individual [S236-(SP3286)] was also known to have a maternal cousin who was diagnosed with MS and in a further 8.6% of cases (n=5/ 58) at least one incidence of colon [S044-(SP3329)], bowel/stomach [S032-(SP339 7), S062-(SP3301) and S078-(SP3140)] or throat [S076-(SP3396)] cancer had been reported in a first degree relative.

5.1.1.2 Therapeutics Used to Treat the Cohort

5.1.1.2.1 C90RF72+ Cases

Riluzole, administered at a dose of 50mg twice daily, was being used to treat 77.8% of *C90RF72+* FALS (n=14/18) [13-FALS, 1-FALS+FTLD and 1-FALS+PD] and 95.5% of *C90RF72+* SALS (n=21/22) [20-SALS and 1-PBP (sporadic)]. One Sheffield patient, sporadic case [S440-(BP6297)], experienced adverse side effects and the medication was withdrawn. Vitamin C and/or E (n=12/40) [3-FALS and 9-SALS] or multivitamin supplements (n=3/40) [1-FALS and 2-SALS] were collectively being taken by 37.5% (n=15/40) of the cohort (Section 1.1.4). In addition to Riluzole, several individuals were also participants of the BDNF [F091-(SP3534)], minocycline [F073-(BP6165) and S121-(SP3420)] or ONO-2506 (Arundic acid) [S132-(SP3413) and S203-(SNc00)

59)] drug trials [APPENDIX TABLE B4]. Conversely, 16.7% of *C90RF72+* FALS (n=3 /18) [2-FALS and 1-PBP (familial)] and 4.5% of *C90RF72+* SALS (n=1/22) [1-SALS] chose not to receive any disease modifying therapy and for the remaining 2.5% of the cohort (n= 1/40) [1-FALS] this information was not available.

5.1.1.2.2 NonC9ORF72-Related_SALS Cases

Riluzole was also being used to treat 96.6% of the non*C9ORF72*-related_SALS cases (n=56/58) [49-SALS, 2-SALS+FTLD and 5-PBP (sporadic)]. One Birmingham patient, sporadic case [S210-(BP6041)], experienced adverse side effects and the medication was withdrawn. Vitamin C and/or E (n=28/58) [23-SALS, 1-SALS+FTLD and 4-PBP (sporadic)] or multivitamin supplements (n=1/58) [1-SALS] were collectively being taken by 51.8% (n=29/58) of the cohort. In addition to Riluzole, several individuals were also participants of the Copaxone[®] (glatiramer acetate) [S176-(SP3385)], ONO-2506 (Arundic acid) [S149-(SP3391)] or minocycline [S050-(SP3023) and S157-(LP 0015)] drug trials. Conversely, the remaining 3.4% of the cohort (n=2/58) [2-SALS] chose not receive any kind of disease modifying therapy.

5.1.1.3 Genetic Status of the Cohort

5.1.1.3.1 C90RF72+ Cases

All *C90RF72+* FALS (n=18) [8-M, 10-F] and SALS (n=22) [11-M, 11-F] patients carry more than 30 copies of the non-coding G_4C_2 hexanucleotide repeat expansion that has recently been identified in intron 1 of the previously uncharacterised *C90RF72* gene (Cooper-Knock et al 2012b) (Section 1.2.5.4). There was also one example of oligogenic inheritance involving an apparently sporadic Sheffield sample [S352-(SP 3484)] with a deleterious heterozygous c.962C>T (p.A321V) missense mutation in exon 6 of the *TARDBP* gene (Section 4.1.2.3) (Kirby et al 2010).

5.1.1.3.2 NonC9ORF72-Related_SALS Cases

One non*C9ORF72*-related_SALS patient was reported to carry a non-synonymous c.323A>G (p.K54E) missense substitution [S062-(SP3301)] in exon 2 of the *ANG*

gene (Kirby et al 2013) (Section 4.1.1.2.2). Besides the aforementioned change no further mutations which affect this cohort have been described.

5.1.2 Affymetrix[®] Expression Console[™] QC Metrics

In vitro transcribed biotinylated ss-cDNA targets of ~40-70nt were hybridized onto Human Exon 1.0ST GeneChip® Arrays (Section 2.3.2.3 and 2.3.2.4). Affymetrix® QC metrics were assessed in Expression ConsoleTM software version 1.3.0.187 (Section 4.3.2). One male control (n=1/27) [C08-(SPr0050)] and a further four SALS patients including two female cases from the *C90RF72+* group (n=2/40) [S123-(BP6021) and S352-(SP3484)] and one male [S044-(SP3329)] and a third female [S114-(SP3356)] from the non*C90RF72*-related_SALS group (n=2/58) scored poorly against three or more of the parameters summarised in Table 5.2. These samples were removed from the final ECACC LCL microarray cohort and were consequently not included in any of the subsequent downstream comparative analyses (Figure 5.2, 5.3 and 5.4).

Table 5.2 Affymetrix[®] Expression Console[™] Summary of Failed LCL Samples in the *C90RF72* and Non*C90RF72*-Related_SALS Study

Key: Passed Failed

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, AUC - area under receiver operating curve (ROC), bac-spike - bacterial spike in control, bgrd - background, C - control, *C90RF72* - chromosome 9 open reading frame 72, LCL - lymphoblastoid cell line, PPMCC - Pearson's product moment correlation coefficient, P - present calls, RLE - relative log expression, QC - quality control and S - sporadic.

5.2 Human Exon 1.0ST GeneChip® Array Profiling

5.2.1 Differential Gene Expression Analysis

5.2.1.1 Partek[®] Genomics SuiteTM

Figure 5.2 Eukaryotic Hybridization Controls for LCL Samples in the ECACC *C9ORF72* and Non *C9ORF72*-Related_SALS Study Bacterial derived genes of the *E. coli* biotin synthesis pathway [BioB (blue), BioC (red) and BioD (pink)] and the recombinase gene CreX (green) from the P1 bacteriophage were spiked in at increasing concentrations (top panel) [1.5pM (limit of detection), 5pM, 25pM and 100pM respectively] immediately prior to labelling to monitor the efficiency of the hybridization reaction. In the bottom panel mean signal intensities for each of the probesets spotted onto the Affymetrix[®] Human Exon 1.0ST GeneChip[®] Arrays are provided for a) controls (n=27), b) *C9ORF72*+ FA -LS and SALS (n=40) and c) non*C9ORF72*-related_SALS (n=58) patients. Assessment of Affymetrix[®] QC metrics was performed using Expression Console[™] software version 1.3.0.187.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C90RF72* - chromosome 9 open reading frame 72, ECACC - European Collection of Cell Cultures, F - familial, LCL - lymphoblastoid cell lines, QC - quality control and S - sporadic.

Figure 5.3 Mean Absolute RLE Boxplots for LCL Samples in the ECACC *C90RF72* **and Non***C90RF* **72-Related_SALS Study** Relative log expression (RLE) means and standard deviations for a) control (n=27), b) *C90RF72+* FALS (n=18) and c) expansion/non-expansion carrying SALS (n=80). Whiskers represent minimum and maximum average probeset signal intensities for each array at the level of the whole transcript. Asterisks (red) highlight significant outliers. Assessment of the Affymetrix[®] QC metrics was performed using Expression Console[™] software version 1.3.0.187.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C9ORF72* - chromosome 9 open reading frame 72, C - control, ECACC - European Collection of Cell Cultures, F - familial, LCL - lymphoblastoid cell lines, QC - quality control and S - sporadic.

Figure 5.4 Expression Console[™] Summary of Quality Control (QC) Metrics Assessed for LCL Samples in the C90RF72 and NonC90RF72-Related_SALS Study. In the top four panels box and whisker plots were generated for the controls (checkerboard), C90RF72+ (unfilled) or nonC90RF72related_SALS (filled) using GraphPad Prism[®] software version 5.04 and applying a Tukey multiple comparison test: a) average background (bgrd) signal, b) percentage presence (%P) calls, c) mean probeset signal intensities at transcript level and d) mean probeset signal intensities at individual exon level. Samples flagged as outliers are highlighted in red. Note that for %P statistically outlying cases with at least fifty percent of probesets called as present were still included in the downstream comparative analyses; these are represented in green. The coloured matrix in the bottom left hand panel e) represents the Pearson's product moment correlation coefficient (r) in which each pair-wise comparison is assigned a value on a scale of 0.820 (blue) to 1.000 (red) with a high score indicative of a strong linear relationship between the X and Y variables. Signal histogram plots are provided at f) transcript and g) individual exon level in the bottom right hand panel. Each series of coloured bars represents the distribution of log2 transformed, average GC-RMA normalised signal intensities for a single array in the experiment. Assessment of Affymetrix® QC metrics was performed in Expression Console[™] software version 1.3.0.187.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C90RF72* - chromosome 9 open reading frame 72, C - control, F - familial, LCL - lymphoblastoid cell line, RMA - <u>R</u>obust <u>M</u>ulti-array <u>A</u>verage and S - sporadic.

Affymetrix[®] CEL files (n=120/125) [*C90RF72+* (n=38), SALS (n=56) and Ctrl (n=26)] were imported into Partek[®] Genomics SuiteTM software version 6.6. Raw expression values were log2 transformed and a GC-RMA background normalisation procedure applied using core metaprobesets (n=287,329) (Section 2.3.2.5.2) that relate to over twenty-two thousand unique clusters pertaining to full length protein coding mRNA sequences in the RefSeq or GenBank[®] database. DE transcripts identified between ECACC *C90RF72+* or non*C90RF72-*related_SALS LCL cases and neurologically normal healthy controls were detected at the 5% significance level (unadjusted p<0.05) by performing a 2-way ANCOVA statistical test controlling for the effects of gender and age. Lists were filtered to remove unannotated transcripts (n=4,377/22,011) and a FC threshold of $\geq \pm 1.20$ applied. In instances where there were multiple Affymetrix[®] transcript cluster ID's for a single gene the identification number producing the most significant outcome with the greatest level of coverage (i.e. highest number of probesets and/or exon clusters) was retained (Section 2.3.2.5.2). However, if the direction of change was opposing then both transcripts were removed.

5.2.1.1.1 C90RF72vCtrl

An analysis of *C90RF72+* FALS and SALS (n=40) patients in comparison to controls (n=26) identified 1,096 DE transcripts [Partek[®] unadjusted p<0.05, FC $\ge \pm 1.20$] that included 650 genes (59.3%) which were significantly up-regulated ($\hat{1}$) and a further 446 genes (40.7%) which were significantly down-regulated ($\hat{1}$).

5.2.1.1.2 NonC9ORF72-Related_SALSvCtrl

A similar analysis of non-expansion carrying SALS (n=56) patients in comparison to identical controls identified 1,796 DE transcripts [Partek[®] unadjusted p<0.05, FC \geq ±1.20] that included 1,148 genes (63.9%) which were significantly up-regulated (1) and a further 648 genes (36.1%) which were significantly down-regulated (1).

5.2.1.1.3 C9ORF72vCtrl and NonC9ORF72-Related_SALSvCtrl Comparison

A GeneVenn diagram of the two analyses described above in Sections 5.2.1.1.1 and 5. 2.1.1.2 highlighted 501 (45.7%) of 1,096 DE transcripts (Yellow) [294 genes û and

207 genes \mathbb{Q}] as being specifically dysregulated in *C9ORF72* + FALS and SALS patients (i.e. absent from non*C9ORF72*-related_SALS patients and controls) and an additional 1,201 (66.9%) of 1,796 DE transcripts (Green) [792 genes \mathbb{Q} and 409 genes \mathbb{Q}] which were specifically dysregulated in non*C9ORF72*-related_SALS patients. The remaining 54.3% (n=595/1,096) or 33.1% (n=595/1,796) of DE transcripts [356 genes \mathbb{Q} and 239 genes \mathbb{Q}] represented by the intersection of the GeneVenn diagram depicted in Figure 5.5 [Partek[®] unadjusted p<0.05, FC $\ge \pm 1.20$] are shared in common between the *C9ORF72* vctrl and non*C9ORF72*-related_SALSvctrl analyses. It is likely, therefore that these reflect disease relevant changes associated with the broader ALS phenotype rather than being specific to individual genetic subtypes [APPENDIX TABLE B8, B9 and B10].

Figure 5.5 GeneVenn *C90RF72v***Ctrl and Non***C90RF72***-Related_SALSvctrl** [**Partek® unadjusted p<0.05, FC≥ ±1.20**] Lists of DE transcripts generated in Partek® Genomics Suite[™] software version 6.6 copyright © 2013 (Partek[®] Inc., St Louis, MO, USA). The GeneVenn application was freely available online at genevenn.sourceforge.net (Pirooznia et al 2007) (University of Southern Mississippi, USA).

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C9ORF72* - chromosome 9 open reading frame 72, ctrl - control, DE - differentially expressed, FC - fold-change and S - sporadic.

5.2.1.2 DAVID Functional Enrichment Analysis

Partek® generated lists of Affymetrix® transcript cluster ID's [Partek® unadjusted

p<0.05, FC ≥ ±1.20] were imported into DAVID bioinformatics resource version 6.7. Functional annotation clustering analysis was performed on GOTERM_BP_FAT and GOTERM_MF_FAT gene ontology (GO) terms applying a *Homo sapiens* background and filtering using 'Medium' classification stringency (Section 2.3.2.5.4). Categories with an EASE score above 1.30 and Benjamini-Hochberg FDR corrected p<0.05 were considered as statistically significant. Transcripts identified as being significantly up (\hat{U}) or down (\hat{J})-regulated under different experimental conditions were analysed independently. The software mapped 1,088 (99.3%) of 1,096 [644 genes \hat{U} and 444 genes \hat{J}] and 1,778 (99.0%) of 1,796 [1,137 genes \hat{U} and 641 genes \hat{J}] DE transcripts identified in the analysis of *C90RF72* vctrl (Section 5.2.1.1.1) or non*C90RF72*-related _SALSvctrl (Section 5.2.1.1.2), respectively. DAVID ID's could not be returned for the remaining 26 transcript clusters which were subsequently removed.

5.2.1.2.1 C90RF72vCtrl

In *C90RF72* + patient derived LCL's the single most significant biologically enriched GO term associated with the G_4C_2 hexanucleotide repeat expansion from the Partek[®] generated list of up-regulated gene expression changes (n=644/650) was related to RNA processing [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$]. RNP complex biogenesis and endoribonuclease activity, producing 5'-phosphomonoesters were also ranked highly. Other categories included translation and translation factor activity, nucleic acid binding, in addition to, several processes involved in DNA metabolism, the cell cycle and respiratory electron transport chain (Table 5.3a). From the list of down-regulated gene expression changes (n=444/446) ion binding and transport were among those most significantly featured along with cell adhesion, lipid biosynthesis and sterol metabolism [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$]. Other categories included the regulation of cell migration, glycoprotein binding & metabolism as well as ATPase activity, coupled to the transmembrane movement of substances (Table 5.3b).

5.2.1.2.2 NonC9ORF72-Related_SALSvCtrl

Conversely, some of the most significant biologically enriched GO terms associated with non-expansion carrying SALS derived LCL's from the Partek[®] generated list of

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0006396	RNA processing	8.62	55	1.30E-08
2	GO:0006412	translation	7.52	41	9.30E-09
3	GO:0006259	DNA metabolic process	5.45	43	6.20E-05
4	GO:0022613	ribonucleoprotein complex biogenesis	3.92	23	8.90E-05
5	GO:0016891	endoribonuclease activity, producing 5'- phosphomonoesters	3.24	8	5.40E-03
6	GO:0007049	cell cycle	3.18	61	2.60E-06
7	GO:0044265	cellular macromolecule catabolism	3.10	50	1.50E-03
8	GO:0043933	macromolecular complex organisation	2.74	50	1.00E-03
9	GO:0022904	respiratory electron transport chain	2.72	11	6.40E-03
10	GO:0008135	translation factor activity, nucleic acid binding	2.61	13	0.020
11	GO:0051340	regulation of ligase activity	2.61	13	3.10E-03
12	GO:0051656	establishment of organelle localisation	2.19	10	0.034
13	GO:0000166	nucleotide binding	1.46	105	0.036

b) *C90RF72*vctrl \mathbb{Q}_{reg} [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$]

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0006811	ion transport	5.83	48	6.60E-06
2	GO:0007155	cell adhesion	4.56	39	8.20E-04
3	GO:0016125	sterol metabolic process	3.89	14	3.40E-04
4	GO:0043167	ion binding	3.68	137	5.40E-04
5	GO:0008610	lipid biosynthetic process	3.29	33	3.90E-08
6	GO:0031418	L-ascorbic acid binding	3.11	7	5.30E-04
7	GO:0030334	regulation of cell migration	3.10	14	0.028
8	GO:0042626	ATPase activity, coupled to transmembrane movement of substances	3.05	14	5.20E-04
9	GO:0016717	oxidoreductase activity, acting on paired donors, with oxidation of a pair of donors	2.86	5	4.70E-04
		resulting in the reduction of molecular oxygen to two molecules of water			
10	GO:0009100	glycoprotein metabolic process	2.70	19	6.00E-04
11	GO:0015295	solute:hydrogen symporter activity	2.48	6	9.60E-03
12	GO:0001666	response to hypoxia	2.42	12	0.039
13	GO:0015294	solute:cation symporter activity	2.30	12	8.10E-04
14	GO:0000041	transition metal ion transport	2.24	10	6.80E-03
15	GO:0001948	glycoprotein binding	1.94	6	0.043
16	GO:0030246	carbohydrate binding	1.41	20	0.023

Table 5.3 DAVID Partek[®] C90RF72vCtrl Functional Annotation Clustering Analysis

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \hat{U}_{reg} - down-regulated, *C9ORF72* - chromosome 9 open reading frame 72, ctrl - control, EASE - enrichment score, FC - fold-change, DAVID - <u>D</u>atabase for <u>Annotation, V</u>isualisation and <u>Integrated D</u>iscovery and GO - gene ontology.

up-regulated gene expression changes (n=1,137/1,148) were relating to aspects of the cell cycle including cell cycle checkpoint control, chromosome localisation, DNA packaging, spindle organisation, regulation of the cell cycle, mitotic sister chromatid segregation and interphase of the mitotic cell cycle [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$]. Those involved in DNA replication/recombination or damage response &

repair pathways also featured prominently. Other categories included several which are important for RNA processing and RNP biogenesis as well as DNA metabolism & protein degradation (Table 5.4a). From the list of down-regulated gene expression changes (n=641/648) ion transport & homeostasis [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$] were among those most significantly enriched along with regulation of cell migration, carbohydrate binding, phospholipid biosynthesis and signal transduction (Table 5.4b). Other categories included solute: hydrogen symporter activity, positive regulation of transferase activity and response to wounding.

5.2.1.2.3 C9ORF72vctrl and NonC9ORF72-Related_SALSvctrl Comparison

The results of a direct comparison between DAVID C90RF72vctrl (Section 5.2.1.2.1) and nonC90RF72-related_SALSvctrl (Section 5.2.1.2.2) analyses could be displayed in the form of a stacked column graph that is represented in Figure 5.6. Biologically significant GO terms which were found to be specific to the C9ORF72+ FALS and SALS patient derived LCL's were highlighted in yellow. In descending order of enrichment these included: translation as well as translation factor activity, nucleic acid binding relating to protein synthesis; endoribonuclease activity, producing 5'-phosphomono -esters and the respiratory electron transport chain (Figure 5.6a) from the list of upregulated gene expression changes, in addition to, cell adhesion, sterol metabolism, ion binding, lipid biosynthesis and ATPase activity, coupled to the transmembrane movement of substances (Figure 5.6b) [Partek[®] unadjusted p<0.05, FC \ge ±1.20] from the list of down-regulated gene expression changes. In contrast, GO terms specific to non-expansion carrying SALS patient derived LCL's were highlighted in green. These included multiple categories involved in regulating the cell cycle, as well as, protein degradation, DNA replication/recombination and mechanisms relating to the DNA damage response & repair pathways (Figure 5.6a) from the list of up-regulated gene expression changes, in addition to, signal transduction, phospholipid metabolism and homeostasis (Figure 5.6b) [Partek[®] unadjusted p<0.05, FC $\ge \pm 1.20$] from the list of down-regulated gene expression changes. Shared categories (ALS common) which were significantly up-regulated included RNP complex biogenesis, RNA processing and DNA metabolism (Figure 5.6a) whereas those reported to be significantly downregulated included regulation of cell migration and ion transport (Figure 5.6b).

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0007049	cell cycle	34.27	169	2.10E-44
2	GO:0006259	DNA metabolic process	23.00	110	5.00E-28
3	GO:0022613	ribonucleoprotein complex biogenesis	7.98	42	1.10E-10
4	GO:0051276	chromosome organisation	7.81	89	3.30E-17
5	GO:000070	mitotic sister chromatid segregation	7.68	18	1.80E-09
6	GO:0051329	interphase of mitotic cell cycle	7.33	27	1.10E-07
7	GO:0051726	regulation of cell cycle	7.21	57	2.70E-09
8	GO:0006323	DNA packaging	7.09	32	9.90E-10
9	GO:0000166	nucleotide binding	6.82	200	3.00E-06
10	GO:0043933	macromolecular complex organisation	6.53	91	3.30E-08
11	GO:0006310	DNA recombination	6.52	25	3.10E-06
12	GO:0006302	double-strand break repair	6.25	22	1.30E-08
13	GO:0006396	RNA processing	6.23	77	1.30E-08
14	GO:0007051	spindle organisation	5.50	17	7.20E-07
15	GO:000072	cell cycle checkpoint	4.49	27	6.50E-09
16	GO:0031396	regulation of protein ubiquitination	4.31	23	2.00E-05
17	GO:0009314	response to radiation	3.47	31	5.10E-04
18	GO:0006297	nucleotide-excision repair, DNA gap filling	3.37	9	2.00E-04
19	GO:0050000	chromosome localization	2.85	7	6.40E-03
20	GO:0051186	cofactor metabolic process	2.82	29	1.90E-03
21	GO:0044265	cellular macromolecular catabolism	2.53	71	0.012
22	GO:0051052	regulation of DNA metabolic process	2.43	19	0.010
23	GO:0009451	RNA modification	2.37	11	0.020
24	GO:0010605	negative regulation of macromolecule	2.25	80	1.90E-04
		metabolic process			
25	GO:0003677	DNA binding	2.16	200	3.10E-05
26	GO:0051259	protein oligomerization	2.07	23	0.042
27	GO:0032259	methylation	1.61	15	9.10E-03
28	GO:0006282	regulation of DNA repair	1.31	7	0.047

a) nonC90RF72-related_SALSvctrl \hat{U}_{reg} [Partek[®] unadjusted p<0.05, FC ±1.20]

b) non*C90RF72*-related_SALSvctrl \mathbb{Q}_{reg} [Partek[®] unadjusted p<0.05, FC ±1.20]

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0006811	ion transport	4.73	52	3.80E-03
2	GO:0015295	solute:hydrogen symporter activity	3.75	10	2.70E-05
3	GO:0042592	homeostatic process	3.57	51	1.50E-03
4	GO:0030334	regulation of cell migration	3.33	18	4.90E-03
5	GO:0009967	positive regulation of signal transduction	2.66	28	2.20E-03
6	GO:0008654	phospholipid biosynthetic process	2.51	15	1.60E-03
7	GO:0000041	transition metal ion transport	2.46	13	1.10E-03
8	GO:0006826	iron ion transport	2.45	8	4.00E-03
9	GO:0006643	membrane lipid metabolic process	2.32	12	6.00E-03
10	GO:0009611	response to wounding	2.25	33	0.043
11	GO:0051347	positive regulation of transferase activity	1.99	22	5.10E-03
12	GO:0030246	carbohydrate binding	1.99	27	0.010
13	GO:0031418	L-ascorbic acid binding	1.68	6	0.042
14	GO:0050850	positive regulation of calcium-mediated	1.52	6	0.013
		signalling			

Table 5.4 DAVID Partek[®] Non*C90RF72*-Related_SALSvCtrl Functional Annotation Clustering Analysis

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \hat{U}_{reg} - down-regulated, *C9ORF72* - chromosome 9 open reading frame 72, ctrl - control, ALS - Amyotrophic Lateral Sclerosis, EASE - enrichment score, GO - gene ontology, DAVID - <u>D</u>atabase for <u>Annotation, <u>V</u>isualisation and <u>Integrated D</u>iscovery, FC - fold-change and S - sporadic.</u>

Figure 5.6 DAVID Comparison GO Terms C90RF72vCtrl and NonC90RF72-Related_SALSvCtrl

Abbreviations: \hat{u}_{reg} - up-regulated, \bar{u}_{reg} - down-regulated, ALS - Amyotrophic Lateral Sclerosis, ctrl - control, *C90RF72* - chromosome 9 open reading frame 72, GO - gene ontology, DAVID - <u>D</u>atabase for <u>A</u>nnotation, <u>V</u>isualisation and <u>Integrated D</u>iscovery, EASE - enrichment score and S - sporadic.
In order to elucidate further the molecular signatures underpinning mechanisms of neurotoxicity associated with the hexanucleotide G_4C_2 repeat expansion in *C90RF72* the top two most highly enriched GO terms [GO: 0006396 RNA processing (Section 5.2.1.3) and GO: 0006412 translation (Section 5.2.1.4) (Table 5.3)] were selected for a more in depth comparative analysis and the subsequent identification of potential candidate genes that could be taken forward for qRT-PCR validation.

5.2.1.3 RNA Processing

Over the past few years aberrant RNA metabolism has emerged as one of the major players in the pathogenesis of a number of neurodegenerative diseases that include ALS and FTLD (Section 1.2.4.9) (Baumer et al 2010, Droppelmann et al 2014, Lee et al 2013b, Ling et al 2013, Polymenidou et al 2012, van Blitterswijk & Landers 2010). It encompasses a diverse array of biological processes, from the regulation of RNA transcription (Section 5.2.1.3.1) and small nuclear RNP (snRNP) biogenesis (Figure 5.7) (Section 5.2.1.3.2) to pre-mRNA splicing & editing (Section 5.2.1.3.3) in addition to stabilization, transportation and post-translational degradation of mature mRNA species (Al-Chalabi et al 2013). Table 5.5 lists the DAVID output of RNA processing related genes identified in the *C90RF72*vctrl analysis [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$]. DE transcripts specific to the G₄C₂ repeat expansion are denoted by the three asterisks inserted immediately after the gene symbol in the first column. Key validation targets selected for qRT-PCR are shaded in grey.

5.2.1.3.1 Regulation of RNA Transcription

A GeneVenn diagram comparing DAVID outputs of RNA processing related genes for the Partek[®] generated lists of up-regulated gene expression changes in the analysis of *C90RF72*vctrl (n=56/644) (Section 5.2.1.2.1) and non*C90RF72*-related_SALSvctrl (n=77/1,137) (Section 5.2.1.2.2) identified DNA-directed RNA polymerase activity as a GO term which was specific to LCL cases carrying the G₄C₂ repeat (Figure 5.8). The category contained three transcripts encoding the 4th, 6th and 7th subunit of the large 550kDa complex that constitutes RNA polymerase II (Pol II). Collectively, they comprise components of the Rpb4/7 sub-complex; a heterodimeric association of

Figure 5.7 SnRNP Biogenesis Schematic DE transcripts [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$] identified on the Affymetrix[®] Human Exon 1.0ST GeneChip[®] Arrays as being specifically dysregulated in relation to *C90RF72* (*) or shared in common between *C90RF72* and non*C90RF72*-related_SALS (*) (i.e. changes that are associated with a broader ALS phenotype) are denoted by different coloured stars.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C9ORF72* - chromosome 9 open reading frame 72, CBC/(CBP) - nuclear cap binding complex/protein, CB cajal bodies, DE - differentially expressed, GDP/(GTP) - guanosine diphosphate/ triphosphate, FC - fold-change, m7G - seven methyl guanosine, mRNA - messenger RNA, IGC - interchromatin granule cluster, NPC - nuclear pore complex, Oct-1 - Octamer binding protein 1, p20/80 - CBP20/80 subunit, PF - perichromatin fibril, PHAX - phosphorylated adaptor for RNA export, plCLn - chloride channel nucleotide-sensitive 1A, Pol II - RNA polymerase II, PRMT5 - protein arginine methyltransferase, PSE - proximal sequence element, RAN - RAN, member RAS oncogene family, SMN - survival motor neurone, SNAPc - snRNA activating complex, snRNP - small nuclear ribonucleoprotein, S - sporadic, TAF - TATA-binding protein (TBP) associated factor, TF - transcription initiation factor, TGS1 - trimethylguanosine synthase 1, unrip - Unr-interacting protein, YY1 - Yin Yang-1 and Xpo1 - exportin 1.

Symbol	RefSeq	Transcript	Gene		Fold	p-value
ARFGAP3***	NM_014570	3962587	ADP-ribosylation factor GTPase activating protein 3	Û	1.24	1.28E-03
ARL6IP4***	NM_001002252	3435681	ADP-ribosylation-like factor 6 interacting protein 4	Û	1.26	8.01E-05
CD2BP2	NM_006110	3687698	CD2 (cytoplasmic tail) binding protein 2	Û	1.21	0.015
CDKN2A	NM_001195132	3201437	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	Û	1.24	5.29E-03
CLNS1A***	NM_001293	3382948	chloride channel, nucleotide-sensitive, 1°	Û	1.20	7.29E-03
ELAC1***	NM_018696	3788270	elaC homolog 1 (E. coli)	Û	1.24	1.30E-03
EXOSC4***	NM_019037	3120008	exosome component 4	Û	1.27	2.04E-04
FTSJ2	NM_013393	3035682	FtsJ homolog 2 (E. coli)	Û	1.30	1.86E-04
FUS	NM_004960	3656904	fused in sarcoma	Û	1.23	7.50E-04
GAR1***	NM_018983	2739242	GAR1 ribonucleoprotein homolog (yeast)	Û	1.31	6.95E-05
GEMIN6***	NM_024775	2477980	gem (nuclear organelle) associated protein 6	Û	1.29	1.16E-04
GEMIN8P4***	NR_002830	2422227	gem (nuclear organelle) associated protein 8 pseudogene 4	Û	1.25	0.014
HNRNPA0	NM_006805	2877141	heterogeneous nuclear ribonucleoprotein A0	Û	1.23	2.35E-07
HNRNPF***	NM_004966	3286286	heterogeneous nuclear ribonucleoprotein F	Û	1.22	6.15E-04
HNRNPH2	NM_019597	3984779	heterogeneous nuclear ribonucleoprotein H2 (H')	Û	1.28	0.024
HNRNPM	NM_005968	3819543	heterogeneous nuclear ribonucleoprotein M	Û	1.21	8.06E-03
LAP7***	NM_016648	2740005	La ribonucleoprotein domain family, member 7	Û	1.20	0.022
LSM4	NM_012321	3854892	LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae)	Û	1.24	7.86E-03
NCBP2***	NM_007362	2713074	nuclear cap binding protein subunit 2, 20kDa	Û	1.20	0.010
NOP10	NM_018648	3617403	NOP10 ribonucleoprotein homolog (yeast)	Û	1.32	0.013
NUDT21***	NM_007006	3692895	nudix (nucleoside diphosphate linked moiety X)-type motif 21	Û	1.20	6.68E-05
PHAX	NM_032177	2827156	phosphorylated adaptor for RNA export	Û	1.27	1.79E-04
PHF5A***	NM_0327528	3961955	PHD finger protein 5A	Û	1.21	0.020
POLR2D***	NM_004805	2575134	polymerase (RNA) II (DNA directed) polypeptide D	Û	1.22	0.010
POLR2F***	NM_021974	3945133	polymerase (RNA) II (DNA directed) polypeptide F	Û	1.22	0.020
POLR2G***	NM_002696	3333622	polymerase (RNA) II (DNA directed) polypeptide G	Û	1.24	3.80E-04
POP4***	NM_006627	3828032	processing of precursor 4, ribonuclease P/MRP subunit (S. cerevisiae)	Û	1.20	0.022
POP7	NM_005837	3015769	processing of precursor 7, ribonuclease P/MRP subunit (S. cerevisiae)	Û	1.23	9.28E-03
PPIL1***	NM_016059	2952065	peptidylprolyl isomerase (cyclophilin)-like 1	Û	1.22	0.017
PRPF19***	NM_014502	3375049	PRP19/PSO4 pre-mRNA processing factor 19 homolog (S. cerevisiae)	Û	1.21	2.24E-04
PRPF4	NM_004697	3185558	PRP4 pre-mRNA processing factor 4 homolog (yeast)	Û	1.24	7.62E-05
RBM3***	NM_017495	3976519	RNA binding motif (RNP1, RRM) protein 3	Û	1.22	9.22E-05
RPL11***	NM_170739	2325192	ribosomal protein L11	Û	1.25	0.035
<i>RPP14***</i>	NM_001098783	2626141	ribonuclease P/MRP 14kDa subunit	Û	1.37	1.18E-03

<i>RPP21***</i>	NM_024839	2901552	ribonuclease P/MRP 21kDa subunit	Û	1.23	5.12E-03
RPP38***	NM_183005	3236538	ribonuclease P/MRP 38kDa subunit	仓	1.34	0.011
RRAGC***	NM_022157	2407729	Ras-related GTP binding C	仓	1.25	6.98E-04
SF3B14***	NM_016047	2544179	splicing factor 3B, 14kDa subunit	Û	1.21	1.84E-03
SF3B4***	NM_005850	2434159	splicing factor 3B, subunit 4, 49kDa	仓	1.20	0.019
SNRNP40	NM_004814	2404377	small nuclear ribonucleoprotein 40kDa (U5)	仓	1.30	0.027
SNRPB2	NM_003092	3877776	small nuclear ribonucleoprotein polypeptide B	兌	1.24	0.040
SNRPD2***	NM_177542	3865568	small nuclear ribonucleoprotein D2 polypeptide 16.5kDa	仓	1.23	0.012
SNRPF	NM_003095	3427014	small nuclear ribonucleoprotein polypeptide F	仓	1.27	7.15E-03
SRSF3	NR_036610	2905118	serine/arginine-rich splicing factor 3	兌	1.20	0.015
SSU72***	NM_014188	2391647	SSU72 RNA polymerase II CTD phosphatase homolog (S. cerevisiae)	仓	1.25	0.034
STRAP***	NM_007178	3406421	serine/threonine kinase receptor associated protein	兌	1.20	1.27E-03
TAF13***	NM_005645	4054117	TAF13 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 18kDa	兌	1.37	3.39E-04
TRMT6	NM_015939	3896524	tRNA methyltransferase 6 homolog (S. cerevisiae)	얍	1.27	1.11E-05
TRUB2	NM_015679	3226493	TruB pseudouridine (psi) synthase homolog 2 (E. coli)	兌	1.21	2.04E-03
TSEN15	NR_023349	2371474	tRNA splicing endonuclease 15 homolog (S. cerevisiae)	兌	1.28	6.40E-03
<i>TYW3***</i>	NR_027962	2342391	tRNA-yW synthesizing protein 3 homolog (S. cerevisiae)	兌	1.24	9.91E-03
UTP15	NM_032175	2815455	UTP15, U3 small nucleolar ribonucleoprotein, homolog (S. cerevisiae)	Û	1.28	5.25E-04
UTP23	NM_032334	3112543	UTP23, small subunit (SSU) processome component, homolog (yeast)	兌	1.25	1.38E-03
WBP4***	NM_007187	3486807	WW domain binding protein 4 (formin binding protein 21)	兌	1.20	2.28E-03
ZCRB1***	NM_033114	3451318	zinc finger CCHC-type and RNA binding motif 1	仓	1.26	7.15E-05
ZMAT5***	NM_019103	3956984	zinc finger, matrin-type 5	仓	1.26	2.98E-04

Table 5.5 DAVID *C90RF72*vCtrl List of RNA Processing Related Genes (n=56) [Partek[®] unadjusted p<0.05, FC ≥ ±1.20]

Abbreviations: C90RF72 - chromosome 9 open reading frame 72, ctrl - control, DAVID - Database for Annotation, Visualisation and Integrated Discovery and FC - fold-change.

a) C9ORF72+ specific

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0008380	RNA splicing	15.42	21	5.40E-24
2	GO:0034470	ncRNA processing	6.24	10	1.10E-08
3	GO:0022613	ribonucleoprotein complex biogenesis	4.34	10	9.00E-09
4	GO:0003899	DNA-directed RNA polymerase activity	1.32	3	0.022

b) ALS common

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0006397	mRNA processing	11.65	13	2.70E-13
2	GO:0034470	ncRNA processing	6.74	9	4.10E-09

c) nonC9ORF72-related_SALS specific

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0022613	ribonucleoprotein complex biogenesis	27.44	29	1.40E-36
2	GO:0006397	mRNA processing	16.44	27	2.30E-26
3	GO:0008033	tRNA processing	5.57	8	4.00E-07
4	GO:0009451	RNA modification	4.00	7	6.40E-07
5	GO:0010608	posttranscriptional regulation of gene	2.53	8	2.90E-04
		expression			
6	GO:0004540	ribonuclease activity	2.49	4	0.033

Figure 5.8 GeneVenn of DAVID *C90RF72***vCtrl and Non***C90RF72***-Related_SALSvCtrl RNA Processing Related Genes** Lists of DE transcripts generated using Partek® Genomics Suite[™] software version 6.6 copyright © 2013 (Partek® Inc., St Louis, MO, USA). GeneVenn application freely available online at genevenn.sourceforge.net (University of Southern Mississippi, USA) (Pirooznia et al 2007). Functional annotation clustering analysis of up (î)/down (I) regulated Affymetrix® transcript cluster ID's was performed independently using DAVID bioinformatics resource version 6.7 (david.abccc.ncifcrf.gov) (Huang da et al 2009a, Huang da et al 2009b).

Abbreviations: # - rank, ALS - Amyotrophic Lateral Sclerosis, *C9ORF72* - chromosome 9 open reading frame 72, ctrl - control, DAVID - Database for Annotation, Visualisation and Integrated Discovery, DE - differentially expressed, EASE - enrichment score, GO - gene ontology, mRNA - messenger RNA, ncRNA - non-coding RNA, S - sporadic and tRNA - transfer RNA.

POLR2D (subunit 4) [*POLR2D* (polymerase (RNA) II (DNA directed) polypeptide D) 122-fold, p=0.01], with POLR2G (subunit 7) [*POLR2G* (polymerase (RNA) II (DNA directed) polypeptide G) 124-fold, p<0.001] and POLR2F (subunit 6) (Figure 5.8) [*POLR2F* (polymerase (RNA) II (DNA directed) polypeptide F 122-fold, p<0.05]. An IDT PrimeTime® Mini qPCR assay, conducted using a larger validation cohort of pooled RNA samples from the microarray plus additional *C90RF72+* case (n=75) and control (n=35) LCL's from the ECACC discovery and replication cohorts (Section 2.3. 2.6.3), confirmed a disease related increase in the expression of *POLR2G* (subunit 7) (p<0.05*) (Figure 5.9).

Figure 5.9 Regulation of RNA Transcription qRT-PCR Validation Relative concentrations measured against the standard housekeeping gene *18SrRNA*. Means and SEM were plotted in GraphPad[®] Prism software version 5.04. Probability values calculated in Microsoft Excel 2010 (Microsoft Corporation UK) using a one tailed student's t-test. Gene expression changes were confirmed if the direction of change (arrow) was the same as the microarray with p<0.05*

RNA polymerase II is found in all eukaryotic cells. It functions as an enzyme which is essential for the synthesis of mRNA precursors during transcription and to a lesser extent the synthesis of spliceosomal small nuclear RNA's (snRNA's) (Egloff & Murphy 2008) including: U1, U2, U4 (U4atac) and U5 [*SNRNP40* (small nuclear ribonucleoprotein, 40kDa (U5)) $\hat{1}$ 1.30-fold, p<0.05 *C90RF72* vctrl and $\hat{1}$ 1.50-fold, p<0.001 non-*C90RF72*-related_SALSvctrl], which are all components of the major spliceosome, in addition to, the U7 and U11/12 [*SNRNP25* (small nuclear ribonucleoprotein, 25kDa (U11/12)) $\hat{1}$ 1.32-fold, p<0.0001 non*C90RF72*-related_SALSvctrl] components of the

minor spliceosome. SnRNA's produce transcripts which are intronless and typically shorter (~150nt), than those derived from protein-coding mRNA's, and rather than being under the direction of a poly(A) signal their 3'-end formation is controlled by a unique *cis*-acting 3' box element (Cuello et al 1999, Zaborowska et al 2012).

The five subunit snRNA activating complex (SNAPc) [SNAPC5 (small nuclear RNA activating complex, polypeptide 5, 19kDa) 127-fold, p<0.05 C90RF72vctrl; 1.44fold, p<0.0001 non*C90RF72*-related_SALSvctrl] is triggered by the Yin Yang-1 (YY1) transcription factor and Octamer-binding protein 1 (Oct-1) in order to initiate Pol II mediated transcription (Emran et al 2006). SNAPc recognises the proximal sequence element (PSE) contained within the upstream promoter region which promotes the subsequent assembly of the pre-initiation complex (PIC) at this site (Figure 5.8). The PIC comprises Pol II and a set of general transcription factors (GTF's) (Hanzlowsky et al 2006, Kim et al 2010) which include TFIIA/B (GTF2A1-2/B), TFIID (GTF2D), TFIIEαβ (GTF2E1-2) [*GTF2E2* (general transcription factor IIE, polypeptide 2, beta 34kDa) $\hat{1}$ 1.23-fold, p<0.01 *C90RF72*vctrl], TFIIF $\alpha\beta$ (GTF2F1-2) and TFIIH (GTF2H3) [GTF2H3 (general transcription factor IIH, polypeptide 3, 34kDa) 1.20-fold, p<0.01 C90RF72vctrl]. TFIID (GTF2D) is itself a multiprotein complex containing the TATAbinding protein (TBP) and various TBP associated factors (TAF's), including TAF9B (TFIID subunit 9-like) [TAF9B (TAF9B RNA polymerase II, TBP associated factor, 31 kDa) 1.34-fold, p<0.05 C90RF72vctrl and 1.42-fold, p<0.01 nonC90RF72-related_ SALSvctrl (Zaborowska et al 2012)], TAF12 (TFIID subunit 12) [TAF12 (TAF12 RNA polymerase II, TBP associated factor, 20kDa) 1.30-fold, p<0.001 C90RF72vctrl and 1.27-fold, p<0.001 non*C90RF72*-related_SALSvctrl] and TAF13 (TFIID subunit 13) [*TAF13* (TAF13 RNA polymerase II, TBP associated factor, 18kDa) û1.38-fold, p<0.01 *C90RF72*vctrl and û1.27-fold, p<0.01 non*C90RF72*-related_SALSvctrl]. The increase in TAF13 expression in C9ORF72+ cases compared to controls was later confirmed in a SYBR[®] Green qRT-PCR Assay (p<0.05*) (Figure 5.9).

5.2.1.3.2 SnRNP Biogenesis

Precursor snRNA's are bound by the nuclear cap binding (CBC)-complex composed of CBP20/80 subunits [*NCBP2* (nuclear cap binding protein subunit 2, 2kDa) 1.20-fold, p=0.01 *C90RF72*vctrl] and, in association with PHAX, [*PHAX* (phosphorylated

adaptor for RNA export) 1.27-fold, p<0.001 *C90RF72*vctrl and 1.22-fold, p<0.001 non*C90RF72*-related_SALSvctrl] transported into the cytoplasm under the direction of exportin 1 (Xpo1) and Ran-GTPase (RAN) (Massenet et al 2002, Pabis et al 2013) (Figure 5.7).

Within the cytoplasm, snRNP's are assembled by the survival motor neurone (SMN) complex comprising SMN protein (Battle et al 2006); reduced levels of which are a cause of AR inherited juvenile-onset Spinal Muscular Atrophy (SMA) (Lefebvre et al 1995, Rodrigues et al 1995), gemins 2 through to 8 (Carissimi et al 2006a, Carissimi et al 2006b) [GEMIN6 (gem (nuclear organelle) associated protein 6) 129-fold, p< 0.001 C90RF72vctrl; GEMIN8 (gem (nuclear organelle) associated protein 8) 125fold, p<0.05 *C90RF72*vctrl] and the Unr interacting protein, unrip (alternative name STRAP) (Carissimi et al 2005) [STRAP (serine/threonine kinase receptor associated protein) û1.20-fold, p<0.01 *C90RF72*vctrl]. The SMN complex associates with seven members of the Sm protein family that include B/B" (snRNP-B/B") [SNRPB2 (small nuclear ribonucleoprotein polypeptide B) $\hat{1}$.24-fold, p<0.05 *C90RF72*vctrl and $\hat{1}$. 38-fold, p<0.01 nonC9ORF72-related_SALSvctrl], D1, D2 (snRNP-D2) [SNRPD2 (small nuclear ribonucleoprotein polypeptide D2) ¹23-fold, p<0.05 C90RF72vctrl], D3, E, F (snRNP-F) [SNRPF (small nuclear ribonucleoprotein polypeptide F) 127-fold, p <0.01 C90RF72vctrl and 11.27-fold, p<0.01 nonC90RF72-related_SALSvctrl] and G. The affinity for SMN binding is further regulated in a subset of these, namely snRNP -B/B", D1 and D3, by plCLn [CLNS1A (chloride channel, nucleotide-sensitive, 1a) 11. 20-fold, p<0.01 C90RF72vctrl] (Figure 5.7) and PRMT5 (protein methyltransferase 5), which serves as a catalyst for the symmetrical dimethylation of specific arginine residues. The subsequent interaction between the SMN complex, bound Sm proteins and precursor snRNA's (Matera et al 2007, Meister et al 2001, Pesiridis et al 2009) drives the ATP-dependent formation of an evolutionarily conserved heptameric ring structure that constitutes the Sm core of the mature snRNP. Following hypermethylation, by TGS1 (trimethylguanosine synthase 1), of the 5' cap, and truncation of the 3' end, snRNP specific nuclear import receptor, Snurportin 1, binds and the importin sub-complex, containing alpha and beta subunits (alternative name karyopherins) [KPNA4 (karyopherin alpha 4 (importin alpha 3)) 1.27-fold, p<0.001 C90RF72vctrl and 1.20-fold, p<0.001 nonC9ORF72-related_SALSvctrl], is recruited to the nuclear

localisation signal (NLS) (Massenet et al 2002), which facilitates snRNP import into the nucleus. Transportation occurs through nuclear pore complexes (NPC's) [*NUP43* (nucleoporin 43kDa) $\hat{1}$ 1.21-fold, p<0.0001 *C90RF72*vctrl] which are embedded in the nuclear envelope (Figure 5.7).

The SMN complex may also function in ribosome biogenesis and multiple aspects of pre-ribosomal RNA (pre-rRNA) processing through its association with Cajal bodies (CB's) and small nucleolar RNP's (snoRNP's) including FBL (fibrillarin), GAR1 [*GAR1* (GAR1 ribonucleoprotein homolog (yeast)) 1.31-fold, p<0.0001 *C90RF72* vctrl] and UTP15 [*UTP15* (U3 small nucleolar ribonucleoprotein homolog (*S. cerevisiae*)) 1.28-fold, p<0.001 *C90RF72* vctrl and 1.20-fold, p<0.01 non*C90RF72*-related_SALSvctrl] (Pellizzoni et al 2001, Sato et al 2013, Whitehead et al 2002).

From the snRNP biogenesis pathway six genes were selected as candidates for qRT-PCR. Of the six, only two (33.3%) validated: *CLNS1A* which was confirmed in an IDT PrimeTime[®] Mini qPCR Assay (p<0.05*) and *UTP15* which was confirmed using the traditional SYBR[®] Green technology (p<0.001***) (Figure 5.10). *GEMIN6*, *NCBP2* and *PHAX* were not significant and for *STRAP* (unrip) a small trend ($\hat{1}$ 1.14-fold, p=0.068) in the same direction as the microarray was observed (Table 5.5).

5.2.1.3.3 Regulation of the Spliceosome

With an enrichment score of 15.42 (count 21, 61.8%) RNA splicing was identified as the highest ranking RNA processing related GO term in DAVID (Figure 5.8) which is specific to the *C90RF72* expansion. Transcripts of interest included: those encoding nudix (nucleoside diphosphate linked moiety X)-type motif 21 (NUDT21) [*NUDT21* 1.20-fold, p<0.0001 *C90RF72* vctrl], a component of the cleavage factor Im (CFIm)complex that is strongly associated with nuclear paraspeckles and has been shown to be responsible for regulating alternative polyadenylation as well as 3' end poly(A) site cleavage of nascent lncRNA's (Naganuma et al 2012); serine/arginine-rich (SR) splicing factor 3 (SRp20) [*SRSF3* 1.20-fold, p<0.05 *C90RF72* vctrl and 1.33-fold, p< 0.0001 non*C90RF72*-related_SALSvctrl]; pre-mRNA processing factors 4 (hRprp4p) [*PRPF4* 1.24-fold, p<0.0001 *C90RF72* vctrl and 1.24-fold, p<0.0001 non*C90RF72*related_SALSvctrl] and 19 (hPrp19) [*PRPF19* 1.21-fold, p<0.001 *C90RF72* vctrl]; a

Figure 5.10 SnRNP Biogenesis qRT-PCR Validation Relative concentrations measured against the standard housekeeping gene *18SrRNA*. Means and SEM were plotted using GraphPad[®] Prism software version 5.04. Probability values calculated in Microsoft Excel 2010 (Microsoft Corporation UK) using a one tailed student's t-test. Gene expression changes were confirmed if the direction of change was the same as the microarray with $p<0.05^*$ (arrow).

Abbreviations: *18SrRNA* - 18S ribosomal RNA, *C9ORF72* - chromosome 9 open reading frame 72, *CLNS1A* - chloride channel, nucleotide-sensitive, 1A, *GEMIN6* - gem (nuclear organelle) associated protein 6, NS - not significant, *NCBP2* - nuclear cap binding protein subunit 2, 20kDa, *PHAX* - phosphorylated adaptor for RNA export, qRT-PCR - quantitative real-time PCR, RNP - ribonucleoprotein, SEM - standard error of the mean, snRNP - small nuclear RNP, *STRAP* - serine/threonine kinase receptor associated protein and *UTP15* - U3 small nucleolar ribonucleoprotein, homolog (*S. cerevisiae*).

developmentally controlled, cold inducible apoptotic regulator; RNA binding motif (RNP1, RRM) protein 3 (RBM3) [RBM3 1 1.22-fold, p<0.0001 C90RF72vctrl] that is of fundamental importance in miRNA biogenesis and has been shown, under both normal physiological conditions, as well as, mild hypoxia to be capable of enhancing the basal rate of protein synthesis, particularly in the dendritic branches of cortical and hippocampal MN's (Dresios et al 2005, Pilotte et al 2011, Smart et al 2007) and the minor U11/12 spliceosomal component, zinc finger CCHC-type and RNA binding motif 1 (ZCRB1) [ZCRB1 126-fold, p<0.0001 C90RF72vctrl] (Figure 5.11). Several members of the ubiquitously expressed heterogeneous nuclear RNP (hnRNP) class of RNA binding proteins that regulate aspects of the spliceosomal machinery, essential for pre-mRNA splicing & editing [HNRNPA0 11.23-fold, p<0.0001 C90RF72vctrl and û1.23-fold, p<0.0001 non*C90RF72*-related_SALSvctrl; *HNRNPH2* û1.28-fold, p<0.05 and 1.32-fold, p<0.01 nonC9ORF72-related_SALSvctrl and HNRNPF 1.22-fold, p< 0.001 *C90RF72*vctrl] and their associated partners including the ALS causative gene *FUS* [*FUS* û1.23-fold, p<0.001 *C90RF72*vctrl and û1.33-fold, p<0.0001 non*C90RF72*related_SALSvctrl (Section 1.2.5.2.2)] had also exhibited altered levels of expression between hexanucleotide G₄C₂ repeat, expansion carrying and control LCL's (Baralle et al 2013, Baumer et al 2010, Bekenstein & Soreq 2013, Romano & Buratti 2013).

Eight of the aforementioned genes were taken forward as candidates for qRT-PCR including five (62.5%) which validated: *HNRNPA0* (p<0.01**), *HNRNPF* (p<0.01**), *NUDT21* (p<0.01**) and *ZCRB1* (p<0.05*) were confirmed using traditional SYBR[®] Green technology whilst *FUS* (p<0.01**) was confirmed in an IDT PrimeTime[®] Mini qPCR Assay. *HNRNPH2* was not significant (Figure 5.13) and for *PRPF19* ($\hat{1}$ 1.14-fold, p=0.071) and *RBM3* ($\hat{1}$ 1.14-fold, p=0.069) a small trend in the same direction as the microarray was observed (Figure 5.12).

5.2.1.4 Translation

Translation and translation factor activity, nucleic acid binding with EASE scores of 7.52 or 2.61, respectively (Table 5.3a) were ranked as the 2^{nd} (count 41, 6.4%) and 10^{th} (count 13, 2.0%) most highly enriched GO terms (Section 5.2.1.2.1) in a DAVID functional annotation clustering analysis of *C90RF72*vctrl (n=644/1,088) [Partek[®]]

Figure 5.12 Regulation of the Spliceosome qRT-PCR Validation I Relative concentrations measured against the standard housekeeping gene *18SrRNA*. Means and SEM were plotted in GraphPad[®] Prism software version 5.04. Probability values calculated in Microsoft Excel 2010 (Microsoft Corporation UK) using a one tailed student's t-test. Gene expression changes were confirmed if the direction of change (arrow) was the same as the microarray with p<0.05* (p<0.01**).

Abbreviations: *18SrRNA* - 18S ribosomal RNA, *C9ORF72* - chromosome 9 open reading frame 72, *FUS* - fused in sarcoma, *HNRNPA0* - heterogeneous nuclear ribonucleoprotein A0, *NUDT21* - nudix (nucleoside diphosphate linked moiety X)-type motif 21, pre-mRNA - precursor mRNA, *PRPF19* - PRP19/PSO4 pre-mRNA processing factor 19 homolog (*S. cerevisiae*), qRT-PCR - quantitative real-time PCR, *RBM3* - RNA binding motif (RNP1, RRM) protein 3, SEM - standard error of the mean and *ZCRB1* - zinc finger CCHC-type and RNA binding motif 1.

Figure 5.13 Regulation of the Spliceosome qRT-PCR Validation II Relative concentrations measured against the standard housekeeping gene *18SrRNA*. Means and SEM were plotted in GraphPad[®] Prism software version 5.04. Probability values calculated in Microsoft Excel 2010 (Microsoft Corporation UK) using a one tailed student's t-test. Gene expression changes were confirmed if the direction of change (arrow) was the same as the microarray with p<0.01**

unadjusted p<0.05, FC $\ge \pm 1.20$] up-regulated gene expression changes. A list of the DAVID output of genes relating to translation is provided in Table 5.6. DE transcripts specific to the G₄C₂ repeat are denoted by three asterisks inserted immediately after the gene symbol in the first column. Key validation targets which were selected for qRT-PCR are shaded in grey.

Translation describes the processes by which mRNA targets that are transcribed in the nucleus are decoded by the ribosomal machinery in the cytoplasm. In eukaryotes protein synthesis is an ongoing, cyclical event that is defined by an initiation phase (Section 5.2.1.4.1) followed by an elongation (Section 5.2.1.4.2), termination (Section 5.2.1.4.3) and ribosome recycling step (Section 5.2.1.4.4).

5.2.1.4.1 Translation Initiation

Translation initiation begins with the assembly of the 43S PIC (Figure 5.14) (Jackson et al 2010, Mayer et al 2001, RajBhandary 1994) comprising components of the 40S ribosomal subunit [*RPS15A* (ribosomal protein S15a) $\hat{1}$ 1.27-fold, p<0.05 *C90RF72*v ctrl; *RPS2* (ribosomal protein S2) $\hat{1}$ 1.49-fold, p<0.01 *C90RF72*vctrl], a ternary subcomplex of the initiator methionine transfer RNA (tRNA_i^{met}) [*TRMT6* (tRNA methyl

Abbreviations: *18SrRNA* - 18S ribosomal RNA, *C9ORF72* - chromosome 9 open reading frame 72, *HNRNPF* - heterogeneous nuclear ribonucleoprotein F, *HNRNPH2* - heterogeneous nuclear ribonucleo protein H2, NS - not significant, qRT-PCR - quantitative real-time PCR and SEM - standard error of the mean.

Symbol	RefSeq	Transcript	Gene		Fold	p-value
DENR	NM_003677	3435490	density-regulated protein	Û	1.30	1.64E-03
EIF3J	NM_003758	3591963	eukaryotic translation initiation factor 3, subunit J	얍	1.23	0.012
EIF3K***	NM_013234	3832616	eukaryotic translation initiation factor 3, subunit K	Û	1.33	1.68E-04
EIF4B***	NM_001417	3455946	eukaryotic translation initiation factor 4B	얍	1.45	0.011
<i>EIF4E2***</i>	NM_004846	2532422	eukaryotic translation initiation factor 4E, family member 2	Û	1.23	0.011
EIF4H	NM_022170	3008144	eukaryotic translation initiation factor 4H	Û	1.31	5.01E-03
<i>EIF5***</i>	NM_183004	3553607	eukaryotic translation initiation factor 5	얍	1.20	1.12E-03
ETF1	NM_004730	2877465	eukaryotic translation termination factor 1	얍	1.27	6.75E-05
GARS***	NM_002047	2995420	glycyl-tRNA synthetase	얍	1.24	3.85E-03
HARS	NM_002109	2878474	histidyl-tRNA synthetase	얍	1.20	4.98E-03
ICT	NM_001545	3734575	immature colon carcinoma transcript 1	Û	1.22	4.71E-03
KARS	NM_001130089	3699757	lysyl-tRNA synthetase	Û	1.20	2.32E-04
MRPL10***	NM_145255	3760945	mitochondrial ribosomal protein L10	얍	1.21	0.037
MRPL15***	NM_014175	3098454	mitochondrial ribosomal protein L15	Û	1.27	1.83E-04
MRPL16***	NM_017840	3374856	mitochondrial ribosomal protein L16	Û	1.21	0.022
MRPL18	NM_014161	2934167	mitochondrial ribosomal protein L18	Û	1.22	5.06E-03
MRPL19***	NM_014763	2489806	mitochondrial ribosomal protein L19	얍	1.22	0.012
MRPL21***	NM_181515	3379708	mitochondrial ribosomal protein L21	Û	1.32	3.21E-03
MRPL22	NM_014180	2836886	mitochondrial ribosomal protein L22	Û	1.22	0.014
MRPL30***	NM_145212	2495806	mitochondrial ribosomal protein L30	얍	1.20	0.014
MRPL34***	NM_023937	3824197	mitochondrial ribosomal protein L34	얍	1.33	6.39E-05
MRPL4***	NM_146388	3820414	mitochondrial ribosomal protein L4	Û	1.21	1.82E-03
MRPL41	NM_032477	3195344	mitochondrial ribosomal protein L41	Û	1.43	5.85E-04
MRPL47	NM_020409	2706985	mitochondrial ribosomal protein L47	Û	1.34	2.52E-03
MRPL51	NM_016497	3441955	mitochondrial ribosomal protein L51	얍	1.22	1.80E-05
MRPL9***	NM_031420	2435195	mitochondrial ribosomal protein L9	Û	1.21	6.78E-03
MRPS11***	NM_022839	3607183	mitochondrial ribosomal protein S11	Û	1.33	1.60E-05
MRPS12***	NM_021107	3832777	mitochondrial ribosomal protein S12	얍	1.29	1.89E-05
MRPS16***	NM_016065	3294348	mitochondrial ribosomal protein S16	얍	1.21	1.83E-04
MRPS2***	NM_016034	3193900	mitochondrial ribosomal protein S2	Û	1.26	1.35E-03
MTFMT***	NM_139242	3629378	mitochondrial methionyl-tRNA formyltransferase	Û	1.24	7.48E-03
RBM3***	NM_017495	3976519	RNA binding motif (RNP1, RRM) protein 3	Û	1.22	9.22E-05

RPL11***	NM_170739	2325192	ribosomal protein L11	仓	1.25	0.035
RPL22***	NM_000983	2394558	ribosomal protein L22	Û	1.40	1.06E-04
RPL36A	NM_019597	3984779	ribosomal protein L36a	兌	1.28	0.024
RPL39L***	NM_052969	2709606	ribosomal protein L39L	仓	1.35	7.08E-03
RPL5***	NM_014570	3962587	ribosomal protein L5	仓	1.24	1.28E-03
RPL9***	NM_001024921	2766419	ribosomal protein L9	兌	1.24	0.014
<i>RPS15A***</i>	NM_001019	3683018	ribosomal protein S15a	兌	1.27	0.039
<i>RPS2***</i>	NM_002952	3676300	ribosomal protein S2	仓	1.49	2.73E-03
TRMT6***	NM_015939	3896524	tRNA methyltransferase 6 homolog (<i>S. cerevisiae</i>)	仓	1.27	1.11E-05

Table 5.6 DAVID *C90RF72*vCtrl List of Translation Related Genes (n=41) [Partek[®] unadjusted p<0.05, FC ≥ ±1.20]

Abbreviations: *C90RF72* - chromosome 9 open reading frame 72, ctrl - control, DAVID - <u>D</u>atabase of <u>A</u>nnotation, <u>V</u>isualisation and <u>Integrated D</u>iscovery, FC - fold-change, RNP - ribonucleoprotein processing, RRM - RNA recognition motif and tRNA - transfer RNA.

Figure 5.14 Eukaryotic Translation Initiation, Elongation, Termination and Ribosome Recycling Schematic

Abbreviations: *DHX29* - DExH box protein DEAH (Asp-Glu-Ala-His) box polypeptide 29, eEF - eukaryotic translation elongation factor, eIF - eukaryotic translation initiation factor, eRF - eukaryotic translation release factor, fMet - *N*-formylmethionine, GTP - guanosine triphosphate, m⁷G - methylguanosine cap structure, mRNA - messenger RNA and tRNA - transfer RNA.

transferase 6 homolog (S. cerevisiae)) encoding the substrate binding motif, TRM6 ① 1.27-fold, p<0.0001 C90RF72vctrl and 11.26-fold, p<0.0001 nonC90RF72-related_ SALSvctrl] in association with guanosine triphosphate (GTP) bound eIF2 (eukaryotic translation initiation factor 2) and eukaryotic translation initiation factors eIF1/1A and eIF3 (Figure 5.14) [EIF3] (eukaryotic translation initiation factor 3, subunit J) 1 1.23-fold, p<0.05 C90RF72vctrl and 11.24-fold, p<0.05 nonC90RF72-related SALSv ctrl; *EIF3K* (eukaryotic translation initiation factor 3, subunit K) 1.33-fold, p<0.001 C90RF72vctrl]. Attachment of the 43S PIC to the seven methylguanosine (m⁷G) cap structure at the 5' end of the mRNA target is mediated by eIF4B [EIF4B (eukaryotic translation initiation factor 4B) 11.44-fold, p<0.05 C90RF72vctrl] and 4F; the latter of which is itself composed of three subunits containing a scaffolding protein eIF4G, an ATP-dependent RNA helicase eIF4A, that is under the direction of eIF4H [EIF4H (eukaryotic translation initiation factor 4H) 1.31-fold, p<0.01 C90RF72vctrl and 1 1.38-fold, p<0.001 nonC90RF72-related_SALSvctrl], and cap binding complex eIF4E [*EIF4E2* (eukaryotic translation initiation factor 4E, family member 2) 1.23-fold, p< 0.05 C9ORF72vctrl]. Scanning is then prompted by the DExH-box protein DEAH (Asp -Glu-Ala-His) box polypeptide 29 (DHX29) (Hashem et al 2013) (Figure 5.14). The increase in *EIF4H* expression in *C90RF72*+ cases compared to controls (p<0.001***) (Figure 5.15) was later confirmed in an IDT PrimeTime[®] Mini qPCR Assay.

Upon recognition of the translation initiation start codon, hydrolysis of bound GTP into guanosine diphosphate (GDP) and, release of inorganic phosphate (P_i), triggers eIF2 dissociation from the ternary sub-complex. Established base pairing between the tRNA_i^{met} and the AUG trinucleotide sequence now located within the P site of the ribosomal 40S subunit results in the formation of the 48S initiation complex (Figure 5.14). The recruitment of eIF5 [*EIF5* (eukaryotic translation initiation factor 5) $\hat{1}1.20$ -fold, p<0.01 *C90RF72*vctrl] and 5B are required for docking of the large ribosomal 60S subunit [*RPL5* (ribosomal protein L5) $\hat{1}1.24$ -fold, p<0.01 *C90RF72*vctrl; *RPL9* (ribosomal protein L9) $\hat{1}1.24$ -fold, p<0.05 *C90RF72*vctrl; *RPL11* (ribosomal protein L11) $\hat{1}1.25$ -fold, p<0.05 *C90RF72*vctrl; *RPL22* (ribosomal protein L22) $\hat{1}1.40$ -fold, p<0.01 *C90RF72*vctrl; *RPL36A* (ribosomal protein L36a) $\hat{1}1.28$ -fold p<0.05 *C90RF72* vctrl and $\hat{1}1.32$ -fold, p<0.01 non*C90RF72*-related_SALSvctrl and *RPL39L* (ribosomal protein L39-like) $\hat{1}1.35$ -fold, p<0.01 *C90RF72*vctrl (Ben-Shem et al 2011, Klinge et

Figure 5.15 Eukaryotic Translation qRT-PCR Validation Relative concentrations were measured against the standard housekeeping gene *18SrRNA*. Means and SEM plotted in GraphPad[®] Prism software version 5.04. Probability values calculated in Microsoft Excel 2010 (Microsoft Corporation UK) with a one tailed student's t-test applied. Gene expression changes were confirmed if the direction of change (arrow) was the same as the microarray with $p<0.05^*$ ($p<0.01^{**}$, $p<0.001^{***}$).

Abbreviations: *C9ORF72* - chromosome 9 open reading frame 72, *DENR* - density-regulated protein, *EIF4H* - eukaryotic translation initiation factor 4H, *KARS* - lysyl-tRNA synthase, qRT-PCR - quantitative real-time PCR, *18SrRNA* - 18S ribosomal RNA, *RPL22* - ribosomal protein L22, SEM - standard error of the mean and tRNA - transfer RNA.

al 2011)] in order to establish an 80S ribosome that is primed for elongation (Figure 5.14) (Lomakin & Steitz 2013). An increase in *RPL22* expression in *C90RF72+* cases compared to controls (p<0.01**) (Figure 5.15) was later confirmed in a traditional SYBR® Green qRT-PCR Assay.

It is interesting to note that whilst an overall up-regulation in the gene expression of transcripts associated with protein synthesis was observed in *C90RF72*vctrl (Table 5.3a) [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$] the abundance of mRNA encoding the translational repressor 4E-BP2 [*EIF4EBP2* (eukaryotic translation initiation factor 4E

binding protein 2) 1.32-fold, p<0.0001 non*C9ORF72*-related_SALSvctrl (Ayuso et al 2013, Banko et al 2005, Paku et al 2012)] was found to be significantly elevated in the SALS patient derived LCL's which do not carry the G₄C₂ repeat. In these cases there was also a concomitant decrease in the expression of eEF1a1 [*EEF1A1* (eukaryotic translation elongation factor 1, alpha 1) 1.29-fold, p<0.0001 non*C9ORF72*-related _SALSvctrl] in addition to a marked reduction in the levels of multiple components of the 60S ribosomal subunit [*RPL5* 1.28-fold, p<0.0001; *RPL10* (ribosomal subunit L10) 1.37-fold, p<0.001; *RPL13* (ribosomal subunit L13) 1.29-fold, p<0.05; *RPL17* (ribosomal subunit L17) 1.28-fold, p<0.01 non*C9ORF72*-related_SALSvctrl].

5.2.1.4.2 Translation Elongation

Elongation of the nascent polypeptide chain is driven by the eukaryotic translation elongation factor 1 (eEF-1) complex composed of five subunits that include: eEF1A-1 (alpha 1), eEF1A-2 (alpha 2), eEF1B-2 (beta 2), eEF1D (delta) and eEF1E (epsilon) responsible for delivering amino-acetylated tRNA molecules to the ribosomal A site which normally occurs at a rate of approximately two amino acids per second. EEF-2 (eukaryotic translation elongation factor 2) is then required, following sequential formation of each peptide bond (Figure 5.14), in order to shift the mRNA template along one codon at a time in relation to the positioning of the 80S ribosome (Skabkin et al 2013).

The charging of the tRNA molecules with their cognate amino acids is performed by the class I and class II aminoacyl-tRNA synthetase enzymes; several of which were found to be DE in expansion carrying LCL's (Guo et al 2010, Hausmann & Ibba 2008, Ibba & Soll 2000) [*GARS* (glycyl-tRNA synthetase) $\hat{1}1.24$ -fold, p<0.01 *C90RF72*vctrl; *HARS* (histidyl-tRNA synthetase) $\hat{1}1.20$ -fold, p<0.01 *C90RF72*vctrl and *KARS* (lysyl-tRNA synthetase) $\hat{1}1.20$ -fold, p<0.01 *C90RF72*vctrl and $\hat{1}1.23$ -fold, p<0.0001 non *C90RF72*-related_SALSvctrl (Table 5.6)]. An increase in *KARS* expression (p<0.01**) (Figure 5.15) was later confirmed in a traditional SYBR® Green qRT-PCR Assay.

5.2.1.4.3 Translation Termination

Assembly of the eukaryotic translation pre-termination (pre-TC) complex is initiated

by occupation of the ribosomal A site by one of three stop codons, namely UAG, UAA or UGA which are decoded by the eukaryotic release factor eRF1 [*ETF1* (eukaryotic translation termination factor 1) $\hat{1}1.27$ -fold, p<0.0001 *C90RF72*vctrl and $\hat{1}1.21$ -fold, p<0.001 non*C90RF72*-related_SALSvctrl (Alkalaeva et al 2006)]. Recognition of any one of these specific trinucleotide sequences at this site triggers GTPase mediated inactivation of a second eukaryotic release factor (eRF3a/b) (Beznoskova et al 2013). The subsequent dissociation of GDP-bound eRF3a/b liberates eRF1 and facilitates its mobilisation of the ribosomal peptidyl transferase centre responsible for the hydrolytic breakdown of the covalently linked amide bond between the P-site deacylated tRNA and the carboxyl-terminus of the newly synthesised protein; thus, releasing it from the translational machinery (Figure 5.14) (Dever & Green 2012).

5.2.1.4.4 Ribosome Recycling

The dissolution of the eukaryotic translation post-termination (post-TC) complex is understood to be under the control of the ABCE1 protein (alternative name RNase L (2', 5'-oligoisodenylate synthetase dependent inhibitor (Rli1)) [ABCE1 (ATP-binding cassette, sub-family E (OABP), member 1) 11.29-fold, p<0.01 C90RF72vctrl (Pisarev et al 2010, Shoemaker & Green 2011) (Figure 5.14)]. A molecular switch that results in the hydrolysis of bound ATP into adenosine diphosphate (ADP) and the release of P_i produces a conformational change which leads to the dissociation of the ribosomal 60S subunit (Barthelme et al 2011, Becker et al 2012, Dever & Green 2012). EIF1/1A and eIF3J complete the cycle; either acting alone or in concert with the solute carrier family 16 (monocarboxylate transporter), member 1 (MCT-1) and density regulated protein (DRP1) complex [DENR 11.30-fold, p<0.01 C90RF72vctrl and 11.31-fold, p< 0.001 nonC9ORF72-related_SALSvctrl] to release the mRNA template and deacylated tRNA from the 40S ribosomal subunit (Figure 5.14) (Dever & Green 2012, Dmitriev et al 2010, Pisarev et al 2007, Skabkin et al 2010). An increase in DENR expression was later confirmed in a traditional SYBR® Green qRT-PCR Assay (p<0.05*) (Figure 5.15).

5.2.1.5 Qlucore Omics Explorer

The Partek[®] generated GC-RMA normalised pivot tables of log2 transformed signal intensities relating to Affymetrix[®] core meta-probesets (n=287,329) on the Human Exon 1.0ST GeneChip[®] Arrays for samples in the final ECACC microarray experiment (n=120/125) [C90RF72+ (n=38), SALS (n=56) and Ctrl (n=26) (Section 5.2.1.1)] were also interrogated visually using Qlucore Omics Explorer software version 2.3. F-test statistical outputs for the ANOVA were applied at the 5% significance level (p<0.05) in order to generate lists of variables or genes (transcripts) (Section 2.3.2.5.3) which are best able to separate patient and control groupings [i.e. C90RF72vctrl (Section 5.2.1.5.1) and nonC9ORF72-related_SALSvctrl (Section 5.2.1.5.2)] on the PCA plot or hierarchically clustered HeatMap. Any potentially confounding effects due to age or gender were eliminated and the lists filtered to removed unannotated clusters using the NetAffx[™] Analysis Centre (n=3,356/22,011) which is freely available online at affymetrix.com/analysis/index.affx (Affymetrix[®] Ltd, UK) (Liu et al 2003). Finally, a FC threshold of $\ge \pm 1.20$ was applied and functional annotation clustering analysis performed using DAVID bioinformatics resource version 6.7 (Section 2.3.2.5.4). GO categories with an EASE score above 1.30 and Benjamini-Hochberg FDR corrected p<0.05 were considered statistically significant. Transcripts identified as being up (1)/down(1)-regulated under different experimental conditions were analysed independently.

5.2.1.5.1 C90RF72vCtrl

Qlucore Omics Explorer identified 1,173 of 18,655 variables or genes (transcripts) as being differentially regulated between LCL's carrying the G₄C₂ repeat expansion in *C90RF72* and neurologically normal, healthy controls. These included 755 (64.4%) variables that were significantly up-regulated ($\hat{1}$) and a further 418 (35.6%) variables which were significantly down-regulated ($\hat{1}$). Overall there was a good degree of concordance between the Qlucore (n=1,173/18,655) [ANOVA F-test p<0.05, FC ≥ ± 1.20] and Partek[®] (n=1,097/17,635) [Partek[®] unadjusted p<0.05, FC ≥ ±1.20 (Section 5.2.1.1.1)] generated lists with a respective 84.5% (n=991/1,173) or 90.3% (n= 991/17,635) [597 genes $\hat{1}$ and 394 genes $\hat{1}$] of DE transcripts (Figure 5.16) shared in common between to two analyses platforms.

In the functional annotation clustering analysis 1,074 DAVID ID's were returned for

Figure 5.16 GeneVenn *C90RF72*vctrl [ANOVA F-test p<0.05, FC $\geq \pm 1.20$; Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$] Lists of DE variables/genes were generated using Qlucore Omics Explorer software version 2.3 (Lund, Sweden) or Partek[®] Genomics SuiteTM software version 6.6 copyright © 2013 (Partek[®] Inc., St Louis, MO, USA). The GeneVenn application was freely available online from genevenn.sourceforge.net (Pirooznia et al 2007) (University of Southern Mississippi, USA).

Abbreviations: ANOVA - analysis of variance, *C9ORF72* - chromosome 9 open reading frame 72, ctrl - control, DE - differentially expressed and FC - fold-change.

91.6% of the 1,173 DE variables [644 genes $\hat{1}$ and 410 genes \mathbb{J}]. GO terms highlighted in Table 5.7 were almost identical (Yellow) to those identified in the original Partek® *C90RF72*vctrl analysis (Table 5.3). Once again RNA processing (Section 5.2.1.3) and translation (Section 5.2.1.4) featured prominently and were, by far, the most highly enriched categories, with respective EASE scores of 8.56 (count 57, FDR p<0.0001) and 13.10 (count 56, FDR p<0.0001) (Table 5.7).

The same list of 1,173 DE variables [ANOVA F-test p<0.05, FC $\geq \pm 1.20$] could also be applied in Qlucore Omics Explorer in order to determine whether, following a PCA, clearly defined genetic sub-groups were evident within the *C90RF72+* LCL samples. This, however, proved not to be the case when comparing the software generated PCA plot [*C90RF72+* (Yellow) and Ctrl (Blue)] and hierarchically clustered HeatMap [Up ($\hat{1}$)-regulated (Red) and down ($\hat{4}$)-regulated (Green)]. Although the separation was not entirely distinct, yellow spheres representing the G₄C₂ repeat carriers were predominantly concentrated within the upper (Figure 5.17a) or right (Figure 5.17b)

a) C90RF72vctrl \hat{U}_{reg} [ANOVA F-test p<0.05, FC $\geq \pm 1.20$]

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0006412	translation	13.10	56	1.80E-18
2	GO:0006396	RNA processing	8.56	57	1.80E-09
3	GO:0006974	response to DNA damage stimulus	5.08	35	1.10E-04
4	GO:0007049	cell cycle	4.14	65	3.50E-07
5	GO:0022613	ribonucleoprotein complex biogenesis	3.96	26	2.70E-06
6	GO:0051340	regulation of ligase activity	3.93	16	3.10E-05
7	GO:0044265	cellular macromolecule catabolic process	3.75	53	2.30E-04
8	GO:0043933	macromolecular complex subunit	3.50	52	2.50E-04
		organisation			
9	GO:0008135	translation factor activity, nucleic acid	3.44	17	6.10E-05
		binding			
10	GO:0006368	RNA elongation from RNA polymerase II	2.88	10	2.70E-03
		promoter			
11	GO:0034622	cellular macromolecular complex assembly	2.43	27	5.20E-03
12	GO:0006297	nucleotide-excision repair, DNA gap filling	2.15	6	0.012
13	GO:0022904	respiratory electron transport chain	2.04	10	0.020
14	GO:0000166	nucleotide binding	1.53	109	0.029

b) C90RF72vctrl \mathbb{Q}_{reg} [ANOVA F-test p<0.05, FC $\geq \pm 1.20$]

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0007155	cell adhesion	5.06	39	2.60E-04
2	GO:0016125	sterol metabolic process	4.59	14	2.50E-04
3	GO:0006811	ion transport	4.47	43	8.20E-05
4	GO:0008610	lipid biosynthetic process	3.32	31	1.30E-07
5	GO:0005506	iron ion binding	3.12	20	4.50E-03
6	GO:0015294	solute:cation symporter activity	3.11	11	3.80E-03
7	GO:0051270	regulation of cellular component movement	2.78	14	0.050
8	GO:0009100	glycoprotein metabolic process	2.56	17	2.80E-03
9	GO:0043167	ion binding	2.33	117	0.017
10	GO:0042626	ATPase activity, coupled to transmembrane movement of substances	2.29	12	0.011
11	GO:0016717	oxidoreductase activity, acting on paired donors, with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water	1.97	4	0.010
12	GO:0030246	carbohydrate binding	1.67	20	9.60E-03
13	GO:0030169	low-density lipoprotein binding	1.51	5	0.030

Table 5.7 DAVID Qlucore C90RF72vCtrl Functional Annotation Clustering Analysis

Abbreviations: # - rank, \hat{u}_{reg} - up-regulated, ϑ_{reg} - down-regulated, ANOVA - analysis of variance, *C90RF72* - chromosome 9 open reading frame 72, ctrl - control, EASE - enrichment score, FC - fold-change and GO - gene ontology.

segment whilst blue spheres which represent the control cases were predominantly concentrated within the lower (Figure 5.17a) or left (Figure 5.17b) segment of each graph, respectively.

5.2.1.5.2 NonC9ORF72-Related_SALSvCtrl

b)

a)

Figure 5.17 *C90RF72*vctrl Clustering Analysis Applying the 1,173 List of Variables in Qlucore Omics Explorer [ANOVA F-test p<0.05, FC $\geq \pm 1.20$]

Abbreviations: ANOVA - analysis of variance, *C9ORF72* - chromosome 9 open reading frame 72, ctrl - control and FC - fold change.

Qlucore Omics Explorer also identified 1,960 of 18,655 variables or genes as being differentially regulated between non-expansion carrying SALS patient and control LCL's including 1,299 (66.3%) variables which were significantly up-regulated ($\hat{1}$) and a further 661 (33.7%) variables that were significantly down-regulated ($\hat{1}$). As seen before (Section 5.2.1.5.1), there was a good degree of concordance between the Qlucore (n=1,960/18,655) [ANOVA F-test p<0.05, FC ≥ ±1.20] and Partek[®] (n=1,802/17,635) [Partek[®] unadjusted p<0.05, FC ≥ ±1.20 (Section 5.2.1.1.2)] generated lists with a respective 83.3% (n=1,730/1,173) or 96.0% (n=1,730/17,635) [1,113 genes $\hat{1}$ and 617 genes $\hat{1}$] of DE transcripts shared in common between the two analyses platforms (Figure 5.18).

Figure 5.18 GeneVenn Non*C9ORF72*-Related_SALSvCtrl [ANOVA F-test p< 0.05, FC ≥ ±1.20; Partek[®] unadjusted p<0.05, FC ≥ ±1.20] Lists of DE genes /variables generated using Qlucore Omics Explorer software version 2.3 (Lund, Sweden) or Partek[®] Genomics Suite[™] software version 6.6 copyright © 2013 (Partek[®] Inc., St Louis, MO, USA). The GeneVenn application is freely available online at genevenn.sourceforge.net (University of Southern Mississippi, USA) (Pirooznia et al 2007).

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, ANOVA - analysis of variance, *C90RF72* - chromosome 9 open reading frame 72, ctrl - control, DE - differentially expressed, FC - fold-change and S - sporadic.

In the functional annotation clustering analysis 1,768 DAVID ID's were returned for 90.2% of the 1,960 DE variables [1,299 genes $\hat{1}$ and 661 genes \mathbb{J}]. The GO categories highlighted in Table 5.8 were almost identical (yellow) to those identified from the original Partek[®] non*C90RF72*-related_SALSvctrl analysis (Table 5.4) and once again

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0007049	cell cycle	36.02	174	2.00E-46
2	GO:0006259	DNA metabolic process	21.34	109	1.30E-26
3	GO:0007059	chromosome segregation	9.00	33	2.30E-15
4	GO:0006396	RNA processing	8.99	86	8.90E-12
5	GO:0051276	chromosome organisation	8.35	90	4.20E-17
6	GO:0022613	ribonucleoprotein complex biogenesis	8.10	43	4.70E-11
7	GO:0051329	interphase of mitotic cell cycle	7.64	28	3.40E-08
8	GO:0006323	DNA packaging	7.06	32	1.60E-09
9	GO:0043933	macromolecular complex subunit	6.66	93	2.10E-08
		organisation			
10	GO:0006310	DNA recombination	6.36	25	4.20E-06
11	GO:0000166	nucleotide binding	6.31	204	1.10E-06
12	GO:0006302	double-strand break repair	6.14	22	2.00E-08
13	GO:0007051	spindle organisation	5.33	17	9.60E-07
14	GO:0031396	regulation of protein ubiquitination	4.71	24	6.30E-06
15	GO:0000072	cell cycle checkpoint	3.48	27	1.10E-08
16	GO:0009314	response to radiation	3.34	31	6.60E-04
17	GO:0006297	nucleotide-excision repair, DNA gap filling	3.32	9	2.00E-04
18	GO:0006511	ubiquitin-dependent protein catabolism	2.81	33	3.80E-03
19	GO:0051186	cofactor metabolic process	2.72	29	2.50E-03
20	GO:0010605	regulation of macromolecule metabolism	2.50	84	3.70E-05
21	GO:0003677	DNA binding	2.47	202	4.20E-05
22	GO:0008134	transcription factor binding	2.46	52	0.028
23	GO:0051052	regulation of DNA metabolic process	2.37	19	0.012
24	GO:0009451	RNA modification	2.32	11	0.023
25	GO:0051259	protein oligomerization	2.17	24	0.025
26	GO:0016579	protein deubiquitination	2.04	8	0.026
27	GO:0050000	chromosome localisation	2.03	6	0.045
28	GO:0032259	methylation	1.57	15	0.011

a) non*C90RF72*-related_SALSvctrl \hat{U}_{reg} [ANOVA F-test p<0.05, FC \geq ±1.20]

b) non*C90RF72*-related_SALSvctrl ^ℚ_{reg} [ANOVA F-test p<0.05, FC ≥ ±1.20]

#	GO term	Functional category	EASE	Count	Benjamini
1	GO:0006811	ion transport	4.00	49	4.50E-03
2	GO:0030334	regulation of cell migration	3.83	18	5.80E-03
3	GO:0015295	solute:hydrogen symporter activity	3.80	10	2.20E-05
4	GO:0042592	homeostatic process	3.36	50	4.30E-03
5	GO:0008219	cell death	2.83	42	0.019
6	GO:0010647	positive regulation of cell communication	2.81	29	3.30E-03
7	GO:0008654	phospholipid biosynthetic process	2.44	14	6.00E-03
8	GO:000041	transition metal ion transport	2.44	12	5.90E-03
9	GO:0006643	membrane lipid metabolic process	2.42	11	0.020
10	GO:0006826	iron ion transport	2.26	7	0.018
11	GO:0010038	response to metal ion	2.18	14	0.019
12	GO:0051347	positive regulation of transferase activity	1.95	22	5.50E-03
13	GO:0051249	regulation of lymphocyte activation	1.91	15	0.020
14	GO:0031418	L-ascorbic acid binding	1.67	6	0.037
15	GO:0050850	regulation of calcium-mediated signalling	1.49	6	0.013
16	GO:0006826	iron ion transport	1.34	7	0.018

Table 5.8 DAVID Qlucore Non*C90RF72*-Related_SALSvCtrl Functional Annotation Clustering Analysis

Abbreviations: # - rank, \hat{u}_{reg} - up-regulated, \bar{u}_{reg} - down-regulated, ALS - Amyotrophic Lateral Sclerosis, ANOVA - analysis of variance, *C90RF72* - chromosome 9 open reading frame 72, ctrl - control, EASE - enrichment score, FC - fold-change, GO - gene ontology and S - sporadic.

cell cycle and DNA metabolism featured prominently with respective EASE scores of 36.02 (count 174, FDR p<0.0001) and 21.34 (count 109, FDR p<0.0001).

Applying the same list of 1,960 DE variables [ANOVA F-test p<0.05, FC $\geq \pm 1.20$] in Qlucore Omics Explorer was unsuccessful in producing distinct clusters on the PCA plot [SALS (Pink) and Ctrl (Blue)] or hierarchically clustered HeatMap (Figure 5.19); thus, highlighting the heterogeneity that is present within the ECACC non*C90RF72*-related_SALS patient and control LCL populations.

5.2.2 Alternative Splicing Analysis

Alternatively spliced transcripts (Section 2.3.2.5.2) were predicted at the level of the whole gene by performing an ALT-SPLICE ANOVA using Partek[®] Genomics SuiteTM software version 6.6. In order to reduce the probability of predicting a false positive outcome, attributable to a type I error: a) probesets with a maximum value for log2 transformed signal intensities below three across all of the GeneChips[®] in the ECACC *C90RF72*vctrl and non*C90RF72*-related_SALSvctrl experiment were removed except for instances where there was a significant difference in the expression of a single exon between two groups; b) exons residing in genes whose expression at the whole transcript level was found to be significantly altered [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$] were excluded and c) transcript clusters were filtered which had no observable difference in the expression of individual exons (Gillett et al 2009, Rabin et al 2010, Tian et al 2011). In addition, transcripts with fewer than four or greater than forty probesets were removed (n=2,077/17,273) since the presence of such a small or large number of markers makes it prohibitively more difficult to interpret the alternative splicing events occurring within these genes (Whistler et al 2010).

At the 5% significance threshold [Partek[®] unadjusted p-value (fold-change) ≥ 0.05 and p-value (alt. splicing) <0.05] this approach identified 2,511 (14.5%) of 17,273 transcripts predicted to be alternatively spliced in the analysis of *C90RF72*vctrl and a further 3,163 (18.3%) of 17,273 transcripts predicted to be alternatively spliced in the analysis of non*C90RF72*-related_SALSvctrl. These included: a) 1,765 (70.3%) of 2,511 transcripts that were specifically altered in relation to the G₄C₂ repeat; b) 746 (29.7%) of 2,511 (*C90RF72*vctrl) or 3,163 (23.6%) (non*C90RF72*-related_SALSvctrl)

216

a)

Figure 5.19 NonC90RF72-Related_SALSvCtrl Clustering Analysis Applying the 1,960 List of Variables in Qlucore Omics Explorer [ANOVA F-test p < 0.05, FC $\ge \pm 1.20$]

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, ANOVA - analysis of variance, C90RF72 chromosome 9 open reading frame 72, ctrl - control, FC - fold-change and S - sporadic.

transcripts, respectively which are commonly shared and more broadly reflect those changes associated with the wider ALS disease process and c) 2,417 (76.4%) of 3,1 63 transcripts that are specifically altered in relation to the non-expansion carrying SALS patient derived LCL's (Figure 5.20) [APPENDIX TABLE B11 and B12].

a) C9ORF72+ specific

#	GO term	Functional category	EASE	Count	p-value
1	GO:0030528	transcription regulator activity	2.98	190	1.30E-05
2	GO:0006357	regulation of transcription from RNA	2.94	99	3.40E-04
		polymerase II promoter			
3	GO:0001882	nucleoside binding	2.35	187	1.30E-03
4	GO:0043167	ion binding	2.21	450	7.40E-04
5	GO:0005524	ATP binding	1.90	168	5.10E-03
6	GO:0016570	histone modification	1.81	22	6.10E-03
7	GO:0000278	mitotic cell cycle	1.66	52	5.60E-03
8	GO:0010629	negative regulation of gene expression	1.47	68	4.00E-03

b) ALS common

#	GO term	Functional category	EASE	Count	p-value
1	GO:0006915	apoptosis	2.95	49	7.70E-06
2	GO:0048871	multicellular organismal homeostasis	2.31	12	6.80E-04
3	GO:0019941	modification-dependent protein	1.74	37	7.50E-03
		catabolic process			
4	GO:0000166	nucleotide binding	1.72	118	3.40E-03
5	GO:0030695	GTPase regulator activity	1.68	31	1.40E-03
6	GO:0008134	transcription factor binding	1.60	34	7.80E-03
7	GO:0043167	ion binding	1.40	200	0.014
8	GO:0048870	cell motility	1.40	21	0.028

c) nonC9ORF72-related_SALS specific

#	GO term	Functional category	EASE	Count	p-value
1	GO:0016310	phosphorylation	3.04	137	8.70E-05

2	GO:0030182	neuron differentiation	2.17	81	2.70E-04
3	GO:0043169	cation binding	1.86	579	3.70E-03
4	GO:0010828	positive regulation of glucose transport	1.57	8	0.015
5	GO:0043010	camera-type eye development	1.48	24	6.10E-03
6	GO:0009991	response to extracellular stimulus	1.46	41	9.20E-03
7	GO:0035295	tube development	1.46	41	9.20E-03
8	GO:0032559	adenyl ribonucleotide binding	1.46	221	8.20E-03

Figure 5.20 ALT-SPLICE GeneVenn *C90RF72*vCtrl and Non*C90RF72*-Related_SALSvCtrl [Partek® unadjusted p-value (fold-change) ≥ 0.05 and p-value (alt. splicing) < 0.05] The Affymetrix® transcript cluster ID's predicted to be alternatively spliced between disease and control LCL's in the ECACC microarray cohort were detected using Partek® Genomics SuiteTM software version 6.6 copyright © 2013 (Partek® Inc., St Louis, MO, USA). GeneVenn application freely available online at genevenn.sourceforge.net (University of Southern Mississippi, USA) (Pirooznia et al 2007). Functional Annotation Clustering performed in DAVID bioinformatics resource version 6.7 (david.abccc.ncifcrf.gov) (Huang da et al 2009a, Huang da et al 2009b).

Abbreviations: # - rank, ALS - Amyotrophic Lateral Sclerosis, *C9ORF72* - chromosome 9 open reading frame 72, ctrl - control, DAVID - Database for Annotation, Visualisation and Integrated Discovery, EASE - enrichment score, ECACC - European Collection of Cell Cultures, GO - gene ontology, LCL - lymphoblastoid cell line and S - sporadic.

In DAVID a fixed upper limit of 3,000 represents the maximum number of transcript cluster ID's that the software is capable of handling in each run. In view of this, it was not possible, therefore, to conduct down-stream comparative analyses in exactly the same manner as described previously for Partek[®] generated gene level expression data (Section 5.2.1.2). Since the nonC90RF72-related_SALSvctrl alt. splicing list (n= 3,163) could not be interrogated in its entirety, functional annotation clustering was performed instead by exploring the C90RF72+ (99.4% of 1,765 ID's mapped), ALS common (99.7% of 746 ID's mapped) or SALS specific (99.0% of 2,417 ID's mapped) lists independently (Figure 5.20). Initially, applying a *Homo sapiens* background and filtering on GOTERM_BP_FAT and GOTERM_MF_FAT gene ontology (GO) terms using 'Medium' classification stringency (Section 2.3.2.5.4), very few biologically enriched categories were returned; only two in fact across all three comparisons (highlighted in red). When the stringency was lowered to remove the Benjamini-Hochberg FDR correction, but maintaining a 5% significance threshold (p < 0.05) (EASE score ≥ 1.30), this number was markedly increased (Figure 5.20). Upon re-analysis of the gene lists GO terms associated with the regulation of transcription, ATP binding and histone modification were identified in relation to the G₄C₂ repeat carrying LCL's in contrast to phosphorylation, neuron differentiation/tube development and glucose transport which were described in relation to non-expansion carrying SALS cases. Universally enriched categories included transcription factor binding and regulation of GTPase

activity, in addition to protein degradation in the form of proteolysis and apoptosis (programmed cell death) (Figure 5.20).

Graphical outputs from the easyExon 1.0.4 Java-based platform copyright © 2006 to 2014 (National Yang-Ming University, Taiwan) (Chang et al 2008) for the top 5 most highly ranked *C90RF72*vctrl aberrant splicing events are represented in Figure 5.21. These include transcripts which encode: a) tight junction protein 2 (*TJP2*) [AS-ANO VA p=4.08E-18]; b) peptidylprolyl isomerase F (*PPIF*) [AS-ANOVA p=3.77E-16]; c) nuclear factor of activated T-cells 5 (*NFAT5*) [AS-ANOVA p=1.58E-15]; d) epidermal growth factor receptor (*EGFR*) [AS-ANOVA p=1.67E-14] and e) RNA binding motif protein 5 (*RBM5*) [AS-ANOVA p=4.76E-14] (Figure 5.21). Despite probability values exceeding orders of magnitude below 10⁻¹⁴, bars representing SEM were substantial. Moreover, changes in mean probeset signal intensities associated with the different sample types [*C90RF72+* (Red) versus Ctrl (Blue)] appeared modest. Consequently, it was decided not to pursue selected targets for qRT-PCR validation.

5.2.3 *C90RF72*

Following publication of *C90RF72* haploinsufficiency (Section 1.2.5.4) as a potential mechanism of action in ALS (DeJesus-Hernandez et al 2011) an initial subset of the LCL's (n=14) [*C90RF72+* (n=7) and Ctrl (n=7)] were assayed against the endogenous standard actin, beta (*ACTB*) in a traditional SYBR® Green based qRT-PCR (Section 2.3. 2.6.5) that used isoform A specific primers [Variant I (NM_001256054) and Variant II (NM_145005) (Figure 5.22)] designed to target the 3'UTR (Figure 5.23a) of the full length protein coding mRNA. A subsequent 1.64-fold reduction in the abundance of isoform A was confirmed in carriers of the G₄C₂ repeat relative to controls (p<0.05*) (Figure 5.24) (Cooper-Knock et al 2013b).

A similar strategy was extended to include both isoform A (full length) and isoform B (truncated) [Variant III (NM_018325) (Figure 5.22)] specific transcripts with 18S ribosomal RNA (*18SrRNA*) now selected as the new internal reference control gene (Figure 5.23b). The size of the validation cohort was also increased to accommodate all *C90RF72+* FALS and apparently SALS cases in the ECACC discovery (Section 4.1.1) and replication (Section 4.1.2) cohorts combined (n=75) [RIN score of 7.0 or above]

Figure 5.21 Graphical Representations of the *C90RF72v*Ctrl Top 5 Most Significant Aberrant Splicing Events [Partek[®] unadjusted p-value (fold-change) \geq 0.05 and p-value (alt. splicing) <0.05] Lists of AS transcripts predicted in Partek[®] Genomics SuiteTM software version 6.6 copyright © 2013 (Partek[®] Inc., St Louis, MO, USA). Mean probeset signal intensities and SEM plotted using the easyExon 1.0.4 Java-based platform copyright © 2006 to 2014 (microarray.ym.edu.tw/easyExon) (National Yang-Ming University, Taiwan) (Chang et al 2008).

Key: C9ORF72+ ■ and Ctrl ■

Figure 5.22 Schematic of *C90RF72* **Transcript Variants and Protein Isoforms** The *C90RF72* gene consists of 11 exons which span a 27.3Mb region of the human 9p21.2 locus. There are multiple alt. spliced transcripts in the Ensembl database (ensembl.org) (Flicek et al 2014); three of which were protein coding. These include two full length variants with alternate first exons [Variant I (NM_0012 56054) exon 1a, 2-11 and Variant III (NM_018325) exon 1b, 2-11] in addition to a stable truncation [Variant II (NM_145005) exon 1a, 2-5]. The translational start site (ATG/methionine codon) resides in exon 2. As a consequence only two protein isoforms are produced from the three different mRNA sequences [Isoform A (54.3kDa) 481a.a. and Isoform B (24.8kDa) 222a.a]. The hexanucleotide G_4C_2 repeat expansion identified in ALS and FTLD patients (DeJesus-Hernandez et al 2011, Renton et al 2011) is located between exons 1a and 1b in the first intronic region and is situated upstream of the translational start site (illustrated by the red lightning bolt). Pathogenicity is thought to arise when the expanded allele contains 30 or more copies of the 6bp repeat (Cooper-Knock et al 2012b). Figure adapted from Donnelly et al (2013) and Fernandes et al (2013).

Key: Grey – non-coding exons [5' UTR upstream of ATG start codon and 3' UTR downstream of TAA stop codon] and White – coding exons.

Abbreviations: 3' - three prime, 5' - five prime, ALS - Amyotrophic Lateral Sclerosis, alt. - alternative, *C90RF72* - chromosome 9 open reading frame 72, FTLD - frontotemporal lobar degeneration, mRNA - messenger RNA, pre-mRNA - precursor mRNA and UTR - untranslated region.

Figure 5.23 Exon Level GC-RMA Normalised Signal Intensities for the Differentially Spliced *C90RF72* Transcript Variants I/III (Isoform A) and II (Isoform B) Affymetrix[®] Human Exon 1.0ST GeneChip[®] Array probeset ID's for a) *C90RF72* full length transcript variant I (NM_001256 054) and III (NM_018325) and b) *C90RF72* truncated transcript variant II (NM_145005) plotted (x-axis) against GC-RMA normalised signal intensities (y-axis) for control (n=26) [checkerboard pattern] and *C90RF72+* (n=38) [white] LCL's in the final ECACC microarray cohort (Table 5.1). Box and Whisker plots generated using GraphPad Prism[®] software version 5.04 copyright © 1992 to 2014 (GraphPad[®] Software Inc., CA, USA). Whiskers represent the minimum and maximum raw expression values. Significance was determined in Partek[®] Genomics Suite[™] software version 6.6 © copyright 2013 (Partek[®] Inc., St Louis, MO, USA) [p<0.05* and p<0.001***]. Fold-changes (FC) and probability (p)-values provided in panels c) full length isoform A and d) truncated isoform B. Primer sequences for qRT-PCR and their binding sites on the cDNA template are represented in Green.

Abbreviations: 3' - three prime, 5' - five prime, *C90RF72* - chromosome 9 open reading frame 72, cDNA - complementary DNA, ECACC - European Collection of Cell Cultures, F' - forward primer sequence, LCL - lymphoblastoid cell line, qRT-PCR - quantitative real-time PCR, R' - reverse primer sequence, RMA - <u>Robust Multi-array Average</u>, ST - sense target and UTR - untranslated region.

Figure 5.24 Reduced *C9ORF72* **Transcript Variant I/III (Isoform A) Levels Detected by qRT-PCR in a Subpopulation of ECACC LCL's in the Discovery Cohort** Relative concentrations were measured against the standard housekeeping gene *ACTB*. Means and SEM plotted using GraphPad® Prism software version 5.04 copyright © 1992 to 2014 (GraphPad Software Inc., USA). Probability values calculated in Microsoft Excel 2010 (Microsoft Corporation, UK) with a one tailed student's t-test applied. Gene expression changes were confirmed if the direction of change was the same as the microarray with p<0.05*.

Abbreviations: *ACTB* - actin, beta, BC - Birmingham control, BP - Birmingham patient, Ca - Cambridge, C - control, *C9ORF72* - chromosome 9 open reading frame 72, cT - cycle threshold, Δ - delta, ECACC -European Collection of Cell Cultures, F - familial, LC - London control, LCL - lymphoblastoid cell line, LP - London patient, Ma - Manchester, qRT-PCR - quantitative real-time PCR, SC - Sheffield control, S - sporadic, SD - standard deviation, SEM - standard error of the mean and SP - Sheffield patient.

and an additional 28 controls (total n=35). In order to achieve maximum statistical power cDNA synthesis reactions were performed on pooled RNA samples with 5X 200ng starting material in each pool to efficiently run as many samples as possible
on a single 96-well plate (Section 2.3.2.6.3).

Contrary to those previously discussed, these latest findings suggest overall there is no discernable difference in the abundance of isoform A or B (Figure 5.25) specific transcripts between LCL's carrying the G_4C_2 repeat and controls. It was of interest to note, however, the presence of two distinct groupings on the qRT-PCR scatter plot for isoform A (Figure 5.25a) with the first cluster, highlighted in yellow, appearing to have a significantly higher level of expression than controls [$\hat{U}1.20$ -fold, (p<0.01 **) (–)] and a second cluster, highlighted in green, appearing to have a significantly lower level of expression than the controls [$\hat{U}1.23$ -fold, (p<0.01**) (–)]. Further qRT -PCR analyses on a small number of individually selected targets was performed in order to ascertain whether or not the differences observed in *C90RF72* expression could be correlated with a fast (survival <2yrs) versus slow (survival ≥4yrs) disease progression. However, no evidence in support of this hypothesis was obtained.

Figure 5.25 qRT-PCR of Pooled RNA *C90RF72* **Full Length Variants I/III (Isoform A) and Truncated Variant II (Isoform B) Specific Transcripts** Relative concentrations measured against the standard housekeeping gene *18SrRNA*. The box (left) and scatter plots (right) were generated using GraphPad® Prism software version 5.04 copyright © 1992-2014 (GraphPad Software Inc., USA). The probability values were calculated in Microsoft Excel 2010 (Microsoft Corporation, UK) applying a one tailed student's t-test.

Abbreviations: *18SrRNA* - 18S ribosomal RNA, *C9ORF72* - chromosome 9 open reading frame 72 and qRT-PCR - quantitative real-time PCR.

5.2.4 qRT-PCR Validation of C9ORF72 RNA Binding Partners

An RNA pull-down assay was developed in house by Dr Matthew Walsh (SITraN) and colleagues from the Department of Molecular Biology & Biotechnology and Chemical Engineering at the Life Science Interface (ChELSI) institute, University of Sheffield as a detection method for the identification of key candidate binding partners (Cooper-Knock et al 2014b) of the hexanucleotide expansion recently discovered in C9ORF72 (DeJesus-Hernandez et al 2011, Renton et al 2011) (Section 1.2.5.4). Briefly, in vitro transcribed 3' biotinylated molecules of RNA containing 5X repeats of the GGGGCC sequence (AAAAUU for the control experiments) were pre-incubated with protein extracts derived from post-mortem cerebellar granule neurones or human neuronal SH-SY5Y cell lines (Cooper-Knock et al 2014b); including, both cellular lysates, and nuclear separated fractions prior to irradiation with UV light. The RNA-protein complexes which form are captured with streptavidin Sepharose[®] and eluted by RNase digestion. Peptide products are then analysed using mass spectrometry. Across the three different extracts (i.e. total, nuclear and cerebellum), this approach identified 103 unique protein species including forty which are encoded by genes found to be dysregulated in the ECACC C9ORF72vctrl analysis of the LCL's [Partek® unadjusted p<0.05, FC $\geq \pm 1.20$] (Table 5.9). Nine candidates (*EIF4H, PURA, HNRNPA0, HNRNPF*, HNRNPH2, NUDT21, FUS, RBM3 and RPL22) were selected for qRT-PCR using either traditional SYBR[®] Green technology (Section 2.3.1.6) or IDT PrimeTime[®] Mini qPCR Assays (Section 2.3.2.6.6). Of these nine, 77.8% (n=7/9) validated including purinerich element binding protein A (*PURA*) (p<0.01**) (Figure 5.26), *HNRNPA0* (p<0.01 **), FUS (p<0.01**), NUDT21 (p<0.01**) (Figure 5.12), HNRNPF (p<0.01**) (Figure 5.13) (Section 5.2.1.3.3), EIF4H (p<0.001***) and RPL22 (p<0.01**) (Section 5.2.1.4. 1) (Figure 5.15). *HNRNPH2* was not significant (Section 5.2.1.3.3) (Figure 5.13) and for RBM3 a small trend in the same direction as the microarray was observed (Figure 5.12) (Section 5.2.1.3.3).

Additional transcripts encoding a further eleven of Dr Matthew Walsh's GGGGCC₍₅₎

Symbol	Gene Name	Direction	Fold	p-value	Nuclear	Cerebellum	Total	Reference
ATP5B***	ATP synthase, H ⁺ transporting, mitochondrial F1 complex, beta polypeptide	Û	1.11	0.013			Х	
CALM1	calmodulin 1 (phosphorylase kinase, delta)	Û	1.24	3.01E-03		Х		
<i>CPSF6***</i>	cleavage and polyadenylation specific factor 6, 68kDa	Û	1.12	8.08E-04			Х	
DNAJC9	DnaJ (Hsp40) homolog, subfamily C, member 9	Û	1.22	0.012			Х	
EIF4H	eukaryotic translation initiation factor 4H	Û	1.31	5.01E-03			Х	
FUS	fused in sarcoma	Û	1.23	7.50E-04	Х	Х	Х	(Mori et al 2013b)
HDGFRP3	hepatoma-derived growth factor, related protein 3	Û	1.49	1.56E-03		Х		
HNRNPA0	heterogeneous nuclear ribonucleoprotein A0	Û	1.23	2.35E-07	Х			
HNRNPA2B1	heterogeneous nuclear ribonucleoprotein A2/B1	Û	1.09	0.038	Х		Х	(Mori et al 2013b)
HNRNPAB	heterogeneous nuclear ribonucleoprotein A/B	Û	1.26	6.49E-05	Х			
HNRNPD	heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa)	仓	1.19	2.65E-04	Х			
HNRNPF	heterogeneous nuclear ribonucleoprotein F	Û	1.22	6.15E-04	Х		Х	
HNRNPH2	heterogeneous nuclear ribonucleoprotein H2 (H')	Û	1.28	0.024	Х		Х	(Lee et al 2013b)
HNRNPR	heterogeneous nuclear ribonucleoprotein R	Û	1.19	7.78E-04	Х	Х		(Mori et al 2013b)
HNRNPUL1	heterogeneous nuclear ribonucleoprotein U-like 1	Û	1.12	3.20E-03			Х	
HMGA1***	high mobility group AT-hook 1	Û	1.16	0.011	Х			
ILF2	interleukin enhancer binding factor 2, 45kDa	Û	1.19	1.52E-03	Х	Х		(Mori et al 2013b)
MYH9***	myosin, heavy chain 9, non-muscle	Û	1.08	0.040			Х	
MYL6***	myosin, light chain 6, alkali, smooth muscle and non- muscle	仓	1.19	0.041			Х	
NACA***	nascent polypeptide-associated complex alpha subunit	仓	1.18	0.017			Х	
NCL	nucleolin	仓	1.13	0.015	Х	Х	Х	
NPM1***	nucleophosmin (nucleolar phosphoprotein B23, numatrin)	仓	1.06	0.034			Х	
NUDT21	nudix (nucleoside diphosphate linked moiety X)-type motif 21	Û	1.20	6.68E-05			Х	
PA2G4	proliferation-associated 2G4, 38kDa	Û	1.13	0.012			X	

Total					15	12	27	
YWHAH	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, eta polypeptide	Û	1.27	1.70E-03		Х		
YWHAG	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide	Û	1.19	9.41E-04		Х		
XRCC6	X-ray repair complementing defective repair in Chinese hamster cells 6	Û	1.16	0.011	Х		Х	
U2AF2	U2 small nuclear RNA auxiliary factor 2	Û	1.19	1.76E-03	Х		Х	
TRMT112***	tRNA methyltransferase 11-2 homolog (S. cerevisiae)	Û	1.14	0.017			Х	
THOC4	THO complex 4	仓	1.17	0.027			Х	
TAF15	TAF RNA polymerase II, TATA box binding protein (TBP)- associated factor, 60kDa	仓	1.18	4.39E-04			Х	
SRP14***	signal recognition particle 14kDa (homologous Alu RNA binding protein)	Û	1.34	1.75E-03		Х	Х	
SFRS3	serine/arginine-rich splicing factor 3	Û	1.20	0.015		Х		
SFPQ	splicing factor proline/glutamine-rich	Û	1.14	0.028	Х			(Mori et al 2013b)
SERBP1	SERPINE1 mRNA binding protein 1	Û	1.11	0.027			Х	
SEPT2	septin 2	仓	1.10	7.82E-03			Х	
<i>RPL22***</i>	ribosomal protein L22	Û	1.40	1.06E-04			Х	
RBM3	RNA binding protein motif (RNP1, RRM) protein 3	Û	1.22	9.22E-05	Х		Х	
PURB***	purine-rich element binding protein B	Û	1.14	0.020		Х	Х	
PURA***	purine-rich element binding protein A û 1.20 1.39E-05					Х		(Sareen et al 2013, Xu et al 2013)

Table 5.9 RNA Pull-Down List of MW Predicted GGGGCC₍₅₎ Binding Partners (n=40/103) which are Differentially Expressed in *C90RF72* + LCL's from the ECACC Microarray Study [Partek[®] unadjusted p<0.05, FC $\geq \pm 1.20$] *C90RF72* specific gene expression changes not detectable in non*C90RF72*-related_SALS cases or neurologically normal, healthy control subjects are denoted by three asterisks inserted immediately after the gene symbol in column 1. Candidates taken forward for qRT-PCR validation are shaded in grey.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C9ORF72* - chromosome 9 open reading frame 72, ECACC - European Collection of Cell Cultures, FC - fold-change, LCL - lymphoblastoid cell line, MW - Dr Mathew Walsh, qRT-PCR - quantitative real-time PCR and S - sporadic.

Figure 5.26 *PURA* **qRT-PCR Validation** Relative concentrations were measured against the standard housekeeping gene *18SrRNA*. Means and SEM plotted in GraphPad[®] Prism software version 5.04 copyright © 1992-2014 (GraphPad Software Inc., USA). Probability values were calculated in Microsoft Excel 2010 (Microsoft Corporation, UK) with a one tailed student's t-test applied. Gene expression changes confirmed if the direction of change (arrow) was the same as the microarray with $p<0.05^*$ ($p<0.01^{**}$).

Abbreviations: *18SrRNA* - 18S ribosomal RNA, *C9ORF72* - chromosome 9 open reading frame 72, *PURA* - purine-rich element binding protein A, qRT-PCR - quantitative real-time PCR and SEM - standard error of the mean.

RNA binding partners were also predicted to be aberrantly spliced in the ECACC LCL analysis of C90RF72vctrl (Table 5.10) [Partek[®] unadjusted p-value (fold-change) \geq 0.05 and p-value (alt. splicing) <0.05]. These were comprised of: calmodulin 1 (CAL M1), a murine biomarker of ALS in the SOD1^{G93A} transgenic animal model (Calvo et al 2012) [AS-ANOVA p<0.0001]; heterogeneous nuclear ribonucleoprotein H1 (HNRNP H1) [AS-ANOVA p<0.01] and H3 (2H9) (HNRNPH3) [AS-ANOVA p<0.05]; chromatin architectural factor high mobility group AT-hook 1 (HMGA1) (Malini et al 2011, Sgarra et al 2010) [AS-ANOVA p<0.05]; cell-cycle regulated SFRS protein kinase 2 (SRP *K2*) [AS-ANOVA p<0.05]; splicing factors, arginine/serine-rich 1 (SF2) (*SFRS1*) [AS-ANOVA p<0.01], 2 (SC35) (SFRS2) [AS-ANOVA p<0.0001], 5 (Srp40) (SFRS5) [AS-AN OVA p<0.0001] and 7, 35kDa (9G8) (SFRS7) [AS-ANOVA p<0.0001]; actin filament binding protein tropomyosin 2, beta (TPM2) [AS-ANOVA p<0.001] and transcriptional co-activator PC4 and SFRS1 interacting protein 1 (*PSIP1*) [AS-ANOVA p<0.0001], that stimulates homologous recombination, as well as mechanisms of DSB repair, to inhibit the induction of apoptosis in response to environmental stress (Daugaard et al 2012).

Symbol	Gene	p-value (alt.splicing)	Nuclear	Cerebellum	Total	Reference
CALM1***	calmodulin 1 (phosphorylase kinase, delta)	9.71E-09		Х		
HMGA1***	high mobility group AT-hook 1	0.049	Х			
HNRNPH1	heterogeneous nuclear ribonucleoprotein H1 (H)	4.18E-03	Х	Х	Х	
HNRNPH3	heterogeneous nuclear ribonucleoprotein H3 (2H9)	1.56E-03	Х		Х	
PSIP1	PC4 and SFRS1 interacting protein 1	2.04E-07		Х		
SFRS1	splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate splicing factor)	9.94E-03	Х	Х	Х	(Reddy et al 2013)
SFRS2	splicing factor, arginine/serine-rich 2	6.22E-05	Х	Х	Х	(Lee et al 2013b)
SFRS5***	splicing factor, arginine/serine-rich 5	8.59E-14			Х	
SFRS7	splicing factor, arginine/serine-rich 7, 35kDa	6.17E-06		Х		
SRPK2	SFRS protein kinase 2	0.047		Х		
TPM2	tropomyosin 2 (beta)	1.97E-04			Х	
Total			5	7	6	

Table 5.10 RNA Pull-Down List of MW Predicted GGGGCC₍₅₎ Binding Partners (n=11/103) which are Aberrantly Spliced in the *C90RF72*+ LCL's from the ECACC Microarray Study [Partek[®] unadjusted p-value (fold-change) \geq 0.05 and p-value (alt. splicing) < 0.05] *C90RF72* specific alternative splicing events not detectable in non*C90RF72*-related_SALS cases or neurologically normal, healthy control subjects are denoted by three asterisks inserted immediately after the gene symbol in column 1.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C90RF72* - chromosome 9 open reading frame 72, ECACC - European Collection of Cell Cultures, LCL - lymphoblastoid cell line, MW - Dr Mathew Walsh, S - sporadic and SFRS - splicing factor, arginine/serine-rich. Graphical representations from the easyExon 1.0.4 Java-based platform copyright © 2006 to 2014 (National Yang-Ming University, Taiwan) (Chang et al 2008) of *CALM1*, *SRPK2*, *SFRS5*, *SFRS7* and *HNRNPH1* are illustrated in Figure 5.27. Again, changes in mean probeset signal intensities between different sample types [*C90RF72+* (Red) and Ctrl (Blue)] appeared modest and with large values for the SEM, it was decided not to pursue selected targets for qRT-PCR validation (Section 5.2.2).

5.3 DISCUSSION

5.3.1 Frequency of the G₄C₂ Repeat in a Large Caucasian Cohort

Patient derived LCL's [120-FALS and 500-SALS] selected from the National MNDA DNA Bank, which were later recruited to the ECACC discovery (n=370) (Section 4. 1.1) and replication (n=250) (Section 4.1.2) cohorts were screened for the C9ORF72 expansion, using the repeat-primed PCR method described by Renton et al (2011); with a minor adjustment made to the ratio of forward, reverse and anchor primers (Cooper-Knock et al 2012b). G₄C₂ repeat lengths of more than 30 copies were detected at an overall frequency of 14.4% (n=89/620), incorporating 40.8% of FALS (n=49/120) [42-FALS, 1-FALS+PD and 6-PBP (familial)] and a further 8.2% of SALS (n=41/500) [40-SALS and 1-PBP (sporadic)]. These figures were consistent with a number of previously published statistics for other Caucasian populations from the Northern States of America and Canada (DeJesus-Hernandez et al 2011) or Western Europe including: Italy (Xi et al 2012); Belgium (Debray et al 2013, Gijselinck et al 2012, Renton et al 2011, van Rheenen et al 2012); Germany (Majounie et al 2012); Spain (Garcia-Redondo et al 2013) and the UK (Beck et al 2013, Cooper-Knock et al 2012b). Global incidence rates vary but have generally been considered to be highest in Scandinavia [Finland 46.4% of FALS (n=52/112) and 21.1% of SALS (n=61/ 289); Sweden 57.1% of FALS (n=8/14) and 12.2% of SALS (n=9/74) (Majounie et al 2012, van der Zee et al 2013)] and lowest across Asia and the Far East [China 6.7% of FALS (n=1/15) and 0.9% of SALS (n=1/113); Japan 3.4% of FALS (n=2/58) and 0.4% of SALS (n=2/552) and Taiwan 18.2% of FALS (n=4/22) and 2.0% of SALS (n =2/102) (Jiao et al 2014, Konno et al 2013, Liu et al 2013a, Ogaki et al 2012, Tsai et

Figure 5.27 Graphical Representations of *C90RF72+* GGGGCC₍₅₎ RNA Binding Partners Top 5 Most Significant Aberrant Splicing Events [Partek[®] unadjusted p-value (fold-change) \geq 0.05 and p-value (alt. splicing) <0.05] Lists of AS transcripts predicted in Partek[®] Genomics SuiteTM software version 6.6 copyright © 2013 (Partek[®] Inc., St Louis, MO, USA). The mean probeset signal intensities and SEM were plotted using the easyExon 1.0.4 Java-based platform copyright © 2006 to 2014 (microarray.ym.edu.tw/easyExon) (National Yang-Ming University, Taiwan) (Chang et al 2008).

Key: C9ORF72+ 📕 and Ctrl 📘

al 2012, Zou et al 2013b)].

The minor allele (A) of surrogate marker rs3849942 and a 42- or 82-SNP haplotype commonly shared by G_4C_2 repeat carriers of all ethnicities has led to the hypothesis that the expansion has descended from a single common ancestor originating from Finland around 500 A.D. (i.e. ~100 to 250 generations ago which roughly coincides with the fall of the Roman empire and the start of the Viking's invasion of Europe), rather than recurrent *de novo* mutations having occurred throughout history (Mok et al 2012, Pliner et al 2014, Smith et al 2013).

5.3.2 C9ORF72 and Mutations in Other ALS-FTLD Causative Genes

The frequent observation of incomplete penetrance in ALS-FTLD pedigrees with an apparent AD mode of transmission provides evidence which supports an oligogenic model of the disease (van Blitterswijk et al 2012a). There have been several reports in the literature of patients carrying more than one mutation in multiple ALS-FTLD causative genes. *C90RF72* for example has been found in combination with *TARDBP* in <2.0% of cases (Chio et al 2012c), *FUS* or *SOD1* in <0.9% of cases (van Blitterswijk et al 2012a) and *OPTN* in ~0.4% of cases (Cooper-Knock et al 2012b, Millecamps et al 2012); among others listed in Table 5.11, relating to ALS, and in combination with *TARDBP* in 1.3% of cases (Kaivorinne et al 2014), *PSEN2* in 1.9% of cases (Ferrari et al 2012), *PGRN* in 1.4% of cases (Lashley et al 2014, Mignarri et al 2014) and *MAPT* in 0.5% of cases (King et al 2013, van Blitterswijk et al 2013b) relating to FTLD.

Across the ECACC discovery (Section 4.1.1) and replication (Section 4.1.2) cohorts of LCL's there were two examples of oligogenic inheritance including: One involving a single *C90RF72+* FALS patient with an *OPTN* mutation which occurs at a higher than previously reported frequency of 0.8% (Section 5.3.2.1) (Cooper-Knock et al 2012b) and a second involving an *C90RF72+* SALS patient with an *TARDBP* mutation which occurs at a lower than previously reported frequency of 0.2% (Section 5.3.2.2) (Chio et al 2012c). Concurrence of the G_4C_2 repeat with a second genetic variant of pathological significance in ALS and/or FTLD is predicted to have arisen at a much greater incidence than what would ordinarily be expected by chance (p=1.6x10⁻⁷) (van Blitterswijk et al 2012a). It is also likely that this is a fairly conservative estimate since

233

	Frequency	Reference(s)	Comments
ALS Loci			
Common Co-	occurrences		
TARDBP	~1.5-1.8%	(Chio et al 2012c)	(Section 1.2.5.2.1)
VAPB	0.9%	(van Blitterswijk et al 2012b)	(Section 1.2.5.1.5)
FUS	<0.9%	(van Blitterswijk et al 2012a)	(Section 1.2.5.2.2)
SOD1	<0.9%	(van Blitterswijk et al 2012a)	(Section 1.2.5.1.1)
Rarer Co-occ	urrences		
ANG	~0.2-1.1%	(Williams et al 2013)	(Section 1.2.5.2.3)
OPTN	0.4%	(Cooper-Knock et al 2012b,	(Section 1.2.5.1.7)
		Millecamps et al 2012)	
UBQLN2	0.4%	(Kenna et al 2013)	(Section 1.2.5.2.6)
CHMP2B	0.2%	(Kenna et al 2013)	(Section 1.2.5.2.8)
FTLD Loci			
PSEN2	1.9%	(Ferrari et al 2012)	(Section 1.2.5.3.3)
PGRN	1.4%	(Lashley et al 2014, Mignarri	(Section 1.2.5.3.2)
		et al 2014)	
TARDBP	1.3%	(Kaivorinne et al 2014)	(Section 1.2.5.2.1)
MAPT	0.5%	(King et al 2013, van	(Section 1.2.5.3.1)
		Blitterswijk et al 2013b)	

Table 5.11 Oligogenic Frequencies of the C90RF72 G_4C_2 Repeat Expansion in ALS and FTLD

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *ANG* - angiogenin, *C9ORF72* - chromosome 9 open reading frame 72, *CHMP2B* - charged multivesicular protein 2B, FTLD - frontotemporal lobar degeneration, *FUS* - fused in sarcoma, *MAPT* - microtubule associated protein tau, *OPTN* - optineurin, *PGRN2* - progranulin 2, *PSEN2* - presenilin 2, *SOD1* - copper/zinc superoxide dismutase 1, *TARDBP* - transactive response (TAR) DNA binding protein, *UBQLN2* - ubiquilin 2 and *VAPB* - vesicle associated membrane protein (VAMP) associated protein B.

many previously published studies (Blasco et al 2013, Hewitt et al 2010, Kuhnlein et al 2008b) have routinely excluded cases where there is a known mutational change from any further genetic screening (Sreedharan et al 2008).

5.3.2.1 *C90RF72* and *OPTN*

Sheffield patient [F056-(SP3462)] is one of the familial ALS cases known to carry the expansion in *C90RF72* which was also identified as having a heterozygous c.964G>A (p.E322K) missense mutation in exon 10 of the *OPTN* gene. The single base substitution is localised to a highly conserved coiled-coil region of the mature peptide sequence (Bury et al 2015). *In silico* analysis predicts that a switch at the position of the 322nd amino acid from the small, acidic residue glutamate to the substantially larger

and basic residue, lysine would serve to decrease overall stability and is likely to be pathogenic. Although initially reported as a non-synonymous SNP, the minor allele (A) of rs523747 (Sugihara et al 2011) has only been found very infrequently across Sub-Saharan Africa: 0.028 Yoruba in Ibadan, Nigeria (YRI) (n=5/176); 0.062 Luhya in Webuye, Kenya (LWK) (n=12/194). The change could not be detected in 375 age and gender matched neurologically normal, healthy control subjects screened from the North of England (Bury et al 2015) or 180 (Utah) residents (CEU reference population) with ancestry from Northern and Western Europe. It was also absent from Han Chinese, Beijing (CHB) and Japanese, Tokyo (JPT) populations attained as part of the International HapMap or 1000Genomes Project.

The female index case had a strong family history of MND and dementia. Her father, aged 74yrs, and a male paternal cousin aged 34yrs, were both known to be affected. The proband [F056-(SP3462)] was a non-smoker. She presented at fifty with a predominantly bulbar phenotype and symptoms of EL. Signs of dysarthria & dysphagia also developed, 6 months prior to the individual having received a formal diagnosis of ALS (Section 1.1.3). Despite treatment with Riluzole, contiguous advancement led to severe muscle wasting and paralysis which eventually culminated in respiratory failure and death approximately 2½ years after the initial onset of disease.

The neuropathology of this case closely resembled that of "classical ALS" (Section 1. 1.5.1) with the presence of ubiquitinated, p62 and TDP-43 positive inclusion bodies within residual MN's of the primary motor cortex, brainstem and AH of the SC (Bury et al 2015). In less abundance, there were also a number of OPTN immunoreactive, p62 positive, but TDP-43 negative skein-like or compact inclusions, described elsewhere by Maruyama et al (2010) and Hortobagyi et al (2011); concentrated within the frontal neocortex, hippocampus and cerebellum. These were found to colocalise with approximately 5% of aggregated poly-GA DPR proteins, produced by the RAN mediated translation of sense and antisense *C90RF72* transcripts (Bury et al 2015) (Ash et al 2013, Mackenzie et al 2014, Mori et al 2013c, Proudfoot et al 2014). OPTN labelling was also apparent in 10 of 12 G_4C_2 repeat carriers without a mutation and in two FALS cases including: One individual with a heterozygous c.338T>C (p.I133T) missense substitution in exon 4 of *SOD1* (Ince et al 1996) (Section 1.2.5.1.1) and a second with a heterozygous c.1570A>T (p.R524W) missense substitution in exon 15

235

of *FUS* (Hewitt et al 2010) (Section 1.2.5.2.2). Therefore, OPTN immunostaining is not necessarily specific for *OPTN* mutation carriers.

The c.964G>A (p.E322K) mutation has also been identified in two Caucasian siblings from a German ALS and glaucoma pedigree who were reported to carry, on the same allele, a second non-synonymous variant in OPTN [rs11258194 c.293T>A (p.M98K) found at a frequency of 6.7% (n=6/90) in the North of England; situated in the Rab8 binding site of the coiled coil I domain (Bury et al 2015)], in addition to, a previously established heterozygous c.1055A>G (p.N352S) missense substitution in exon 5 of TARDBP (Weishaupt et al 2013) (Section 1.2.5.2.1). The female index case initially presented with elevated intraocular pressure (IOP); though this later turned out to be normal. At the age of 39 she developed progressive descending tetraparesis that began in the right upper limb with symptoms of mild bulbar involvement, abnormal deep tendon reflexes, fasciculations and severe muscular atrophy, in the absence of overt cognitive impairment. Respiratory function deficits were also prominent with NIPPV support (Section 1.1.4) being required for a minimum of 18 hours daily after the first 7 years. The patient and her brother, who so far has remained healthy, are still reported to be alive at the age of 52 and 57yrs, respectively. Consequently, there was no autopsy material available for conducting neuropathological investigations (Weishaupt et al 2013).

5.3.2.2 C9ORF72 and TARDBP

A second Sheffield patient [S352-(SP3484)] with an apparently sporadic form of the disease was also known to carry the *C90RF72* expansion (Section 4.1.2.3) in addition to a novel heterozygous c.962C>T (p.A321V) missense substitution in exon 6 of the *TARDBP* gene (Kirby et al 2010). The alanine to valine change at the position of the 321st amino acid was predicted to be pathological from *in silico* analysis and is also known to occur within a highly conserved C-terminal glycine rich domain that binds several of the hnRNP proteins, namely A0 (1.23-fold, p<0.001), A2B1 (1.09-fold, p<0.05) and R (1.19-fold, p<0.001) (Table 5.10); reported to be up-regulated in the microarray (Section 5.2.4) and qRT-PCR (Figure 5.12) analyses of *C90RF72*-related gene expression changes observed in the ECACC LCL's (Buratti et al 2005, Romano

et al 2014, He et al 2014, Yu et al 2012). Functional studies were conducted *in vitro* using p.G287S, A321V and M337V affected patient (n=3) and control (n=6) derived fibroblast cell cultures to measure the abundance of *CDK6* (cyclin-dependent kinase 6) specific mRNA transcripts in response to WT or mtTDP-43 protein. A significant increase in the level of CDK6 (p<0.05) was observed in patient fibroblasts compared to controls suggesting normal repression of *CDK6* transcription had been impaired (Kirby et al 2010).

The female index case reported no prior family history of MND or dementia. Both of her parents died of malignancy and her two remaining siblings, aged 37 and 41yrs, respectively were healthy at the time of the initial study; although the youngest has since received a diagnosis of ALS. The proband [S352-(SP3484)] was a non-smoker. She presented at thirty-seven with progressive weakness and loss of dexterity in the left-hand. EMG recordings established more widespread denervation consistent with a diagnosis of MND. Towards the advanced stages of the disease the individual also developed signs of dyspnoea. Riluzole was being administered, in combination with Vitamin E supplements, for 4 years 9 months before the onset of respiratory failure which culminated in her death at the age of forty-two. Clinically overt symptoms of cognitive or behavioural dysfunction were distinctly lacking in this case which is uncommon in instances involving a hexanucleotide G₄C₂ repeat expansion in *C90RF72*. Since the individual in question was screened from cases in the local Sheffield Blood Bank it meant post-mortem material was unavailable for neuropathological investigation (Kirby et al 2010).

One interesting remark that was also observed by Chio et al (2012c) is with respect to an emerging theme in which individuals who have acquired an oligogenic form of inheritance are more likely to become symptomatic at an earlier age. In the ECACC LCL's, patient carriers of two or more mutations in ALS-FTLD causative genes were on average 17½ years younger [43½ versus 61yrs (two-tailed student's t-test p=0. 041)] than the mean of the non*C90RF72*-related_SALS cases and ~12½ years younger than the mean of the *C90RF72* FALS and SALS cases combined. Although [F056-(SP3462)] and [S352-(SP3484)] represent only a small sample size of (n=2) it does, nevertheless, raise an important question as regards to whether an individual's genetic burden can act as a modifier of disease severity/progression (Chio et al 2012c, van Blitterswijk et al 2013b).

5.3.3 Clinical Features Relating to the C9ORF72 Phenotype

Expression Console[™] assessment of post-hybridization QC parameters (Table 5.2) (Section 5.1.2) of *C9ORF72+* LCL's recruited to the ECACC discovery cohort, as well as, selected samples from the ECACC replication cohort [i.e. meeting the criteria for inclusion into Chapter 6: '*C9ORF72* Survival Study'] resulted in 38 individuals being included in the final microarray analysis, along with an additional 56 non*C9ORF72*-related_SALS cases and 26 neurologically normal, age and gender matched, healthy controls (Table 5.1). A discussion of technical tissues relating to the storage, handling and processing of peripheral EBV-transformed B-lymphocytes (LCL's) for GEP is provided at the end of Chapter 4 (Section 4.4).

Core presentations associated with the expansion, generally speaking, mimic those of "classical ALS" (Cooper-Knock et al 2012b, Gijselinck et al 2012, Murray et al 201 1), bvFTLD or the combined ALS-FTLD syndrome (Section 1.2.1) (Cooper-Knock et al 2014a). Instances involving PLS (~0.5%) (Section 1.2.2.2) and PMA (<2%) (Section 1.2.2.3) have been reported elsewhere in the literature but are exceedingly rare and were absent from the ECACC LCL's (van Rheenen et al 2012). Approximately 50. 0% of patient carriers are diagnosed with spinal onset ALS which is comparable to the proportion of sporadic cases and consistent with our findings (Table 5.1) (Woo llacott & Mead 2014). Several groups have observed a greater than expected incidence of bulbar predominant involvement (Chio et al 2012a, Cooper-Knock et al 2014a, Debray et al 2013, Ratti et al 2012, Snowden et al 2013, Stewart et al 2012). However, this has not always been the case and could not be replicated in the ECACC LCL's (Table 5.1) (Byrne et al 2012). A high prevalence of cognitive and behavioural impairment, with or without a family history of dementia, is anticipated in C90RF72-relat ed versus nonC9ORF72-related ALS (Boeve et al 2012, Byrne et al 2012, Cooper-Kno ck et al 2012b, Garcia-Redondo et al 2013, Gijselinck et al 2012, Millecamps et al 20 12, Sabatelli et al 2012). Although this was not necessarily true of the LCL's our conclusions were limited by the lack of available information for the Birmingham and London cases (Section 5.1.1.1); which collectively comprised one third of the cohort. There are also reports of a higher than expected chance of other motor and extramotor phenotypes associating the with the *C90RF72* expanded repeat including ALZ (<1%) (Section 1.4.1.2.3) (Kohli et al 2013) and PD (~4%) (Section 1.2.1) (Cooper-Knock et al 2013a). Normally a slight male preponderance is apparent is cases involving "classical ALS" with M:F ratios ranging between 1.2 and 1.5:1 (Section 1.1.2) (Leblond et al 2014). Conversely, in *C90RF72+* familial and apparently sporadic ALS patients this has been shown to be closer to 1.00:1 (Woollacott & Mead 2014) with marginally more females than males having been identified in the familial LCL's of the ECACC microarray cohort (Table 5.1).

In comparison to non*C90RF72*-related_SALS, LCL carriers of >30 copies of the G₄C₂ repeat were symptomatic at an earlier age [Average 56±10.9yrs versus 61±11.9yrs (student's t-test p<0.05*)] which supports the previously published findings of Byrne et al (2012), Cooper-Knock et al (2012b), Garcia-Redondo et al (2013) and Xi et al (2012). In the ECACC microarray cohort the largest effect size was observed for the female patients [Average 52±12.1yrs versus 64±12.3yrs (student's t-test p<0.01 **)] with no significant difference reported for the male patients [Average 60±7.7yrs versus 59±11.3yrs (student's t-test p>0.05)]. A gender bias has also been described in a study conducted by Williams et al (2013); albeit in the reverse direction with an earlier age at symptom onset recorded for male C90RF72-related versus nonC90RF 72-related ALS cases. In addition there have been several reports in the literature of the G₄C₂ repeat being associated with a shorter survival (Byrne et al 2012, Cooper-Knock et al 2012b, Debray et al 2013, Garcia-Redondo et al 2013, Irwin et al 2013, Millecamps et al 2012, Ratti et al 2012, Stewart et al 2012). In the ECACC LCL's, this was the case across all of the C9ORF72+ (n=89) and nonC9ORF72-related_SALS (n= 531) patients in the discovery and replication cohorts combined [Hazard ratio 0.85 (95% CI 0.68-1.08) with Median survival of 29 months for C9ORF72+ FALS and SALS and 34 months for nonC9ORF72-related_SALS (Wilcoxon t-test p=0.009)] [APPEND IX FIGURE B1] but was not the case for selected samples in the C90RF72 (n=38) and nonC9ORF72-related_SALS (n=56) study [Hazard ratio 0.89 (95% CI 0.59-1.33) with Median survival of 24 months for C9ORF72+ FALS and SALS and 27 months for non *C90RF72*-related_SALS (Wilcoxon t-test p=0.264)] (Figure 5.28).

Figure 5.28 Kaplan-Meier Survival Curve for LCL's in the ECACC C90RF72 (Red) and NonC90RF72-Related_SALS (Blue) Study

5.3.4 Microarray Profiles Associated with the G₄C₂ Repeat

On the Affymetrix Human Exon 1.0ST GeneChip® Arrays an overall up-regulation in the level of gene transcription was apparent with 650 (59.3%) of 1,096 [unadjusted p<0.05, $FC \ge \pm 1.20$] or 755 (64.4%) of 1,173 [ANOVA F-test p<0.05, $FC \ge \pm 1.20$] DE transcripts detected using Partek® Genomics SuiteTM (Section 5.2.1.1.1) and Qlucore Omics Explorer (Section 5.2.1.5.1) exhibiting an significant increase in expression in the immortalised EBV-transformed B-lymphocytes (LCL's) of *C9ORF72+* FALS (n=18) and SALS (n=20) patients compared to a subset of 26, age as well as gender, matched neurologically normal, healthy control subjects selected from the ECACC discovery cohort. These gene lists were almost identical with a 90% overlap portrayed by the GeneVenn diagram depicted in Figure 5.16 (Section 5.2.1.5.1). Such a high degree of concordance increases our confidence that the algorithms deployed by each of these computational analyses programs produces consistent and reliable readouts which reflect biologically meaningful alterations in gene expression and not just artifactual findings associated with the different sample types. In DAVID, functional annotation clustering consistently ranked RNA processing (GO: 0006396) (Section 5.2.1.3) and

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C90RF72* - chromosome 9 open reading frame 72, ECACC - European Collection of Cell Cultures, LCL - lymphoblastoid cell line and S - sporadic.

Translation (GO: 006412) (Section 5.2.1.4) as the top two most highly enriched gene ontology categories with EASE scores of 7.5 or above and FDR corrected probability values below 10^{-08} [Partek[®] Genomics SuiteTM (Table 5.3); Qlucore Omics Explorer (Table 5.7)].

Among the transcripts highlighted were a significant proportion of those encoding RRM containing proteins predicted to bind the G_4C_2 repeat [n=40/103 identified in an RNA pull-down assay performed by Dr Matthew Walsh and colleagues from the University of Sheffield (Table 5.10) (Section 5.2.4)]. These comprised several of the hnRNP proteins (n=8/40) [HNRNPA0 (\hat{U}_{reg}) (p<0.01**) and HNRNPF (\hat{U}_{reg}) (p<0.01 **) confirmed in the ECACC LCL's by gRT-PCR between pooled C90RF72+ cases and control samples (Figure 5.12)] in addition to the ALS causative gene FUS (Section 1. 1.8.2.2) (\hat{u}_{reg}) which was also confirmed in the ECACC LCL's by qRT-PCR (p<0.01**) and further validated by western blot analysis in a similar assay conducted by Mori et al (2013b) using nuclear extracts derived from human embryonic kidney (HEK-293) cell lines. The authors also corroborated four more candidate binding partners of *C90RF72* including: *HNRNPA2B1* ($\hat{1}$ 1.09-fold, p<0.05) and *R* ($\hat{1}$ 1.19-fold, p<0.001) with genetic alterations in the former, PrLD, having recently been implicated in the pathogenesis of ALS and MSP (Table 1.2) (Section 1.2.5.2.10); interleukin enhancer binding factor 2, 45kDa (ILF-2) [ILF2 11.19-fold (p<0.01) C90RF72vctrl; 11.13-fold (p<0.01) non*C90RF72*-related_SALSvctrl] which forms the minor constituent of the nuclear factor of activated T-cells (NFAT) complex (Karmakar et al 2010, Kiesler et al 2010) [a heterodimeric association between the ILF-2 (NF45) and ILF-3 (NF90) transcription factors found, through its association with the DNA-dependent protein kinase (DNA-PK), to be important in modulating non-homologous end joining (NHE]) during the repair of DSB (Shamanna et al 2011)] and a second DNA damage response protein, polypyrimidine tract binding (PTB)-associated splicing factor (PSF) [SFPQ (splicing factor proline/glutamine rich) 11.14-fold (p<0.05) C90RF72vctrl; 1.24fold (p<0.001) nonC9ORF72-related_SALS vctrl] (Ha et al 2011, Krietsch et al 2012, Rajesh et al 2011, Salton et al 2010) which has been demonstrated in vivo using the zebrafish ortholog (whitesnake) (Lowery et al 2007) to be essential for cell survival and brain organogenesis throughout normal embryonic development.

Pre-mRNA processing factors hnRNPH1/2 [HNRNPH2 11.28-fold (p<0.05) C9ORF72

vctrl; not significant in a PrimeTime Mini qPCR Assay (Figure 5.12)] and F [*HNRNPF* 1.22-fold (p<0.001) *C90RF72*vctrl; up-regulation confirmed in a traditional SYBR Green qRT-PCR Assay (Figure 5.12)] were demonstrated by RNA fluorescence *in situ* hybridization (FISH) and immunohistochemistry (IHC) to co-localise with up to 30% (Cooper-Knock et al 2014b) or 70% (Lee et al 2013b), respectively of the G₄C₂ repeat containing intranuclear RNA foci detected in human post-mortem cerebellum tissue derived from a minimum of three *C90RF72+* ALS and/or FTLD patients in each study. In the former instance, Cooper-Knock et al (2014b) also showed co-localisation of hn RNPH1/F with ~20% of G₄C₂ repeat containing RNA foci identified in the residual MN's of the ventral horn of the SC [i.e. the most vulnerable neuronal cell population susceptible to degeneration in ALS (Morrison et al 1996)].

Lee et al (2013b) proceeded to transfect neuroblastoma SH-SY5Y cell lines with enhanced green fluorescent protein (EGFP) tagged expression vectors containing either 8X (control), 38X or 72X constructs of the C9ORF72 intronic G₄C₂ repeat in which a positive correlation was observed between the size of the expansion and the amount of RNA foci that had formed. RNase/DNase treatment proved ineffective in ablating these toxic accumulations; consistent with an earlier finding that the hexanucleotide repeat can form stable stem-loop structures in the DNA sequence which are capable of generating uni- or multi-molecular RNA G-quadruplexes in vitro (Fratta et al 2012, Reddy et al 2013). In a time course experiment the authors witnessed a substantial reduction in the number of neuronal SH-SY5Y cells that contained RNA foci over a 24 and 72hr period. Of the remaining cells which still expressed EGFP, analysis conducted using fluorescence-activated cell sorting (FACS), highlighted a three- (38X) and five- (72X) fold increase in the abundance of the apoptotic marker (annexin V) compared to the 8X control lines. Moreover, immunocytochemistry (ICC) also found activation of caspase 3 (CASP3) to be significantly enhanced in the presence of RNA foci induced by the expansion in neuronal SH-SY5Y cell lines. Accordingly, evidence of PARP cleavage was detected in cells transfected with the 38X or 72X constructs but not the 8X control lines. Interestingly, in the LCL's both CASP3 [CASP3 (caspase-3, apoptosis-related cysteine peptidase) 1.42-fold (p<0.0001) C90RF72vctrl and 1 1.30-fold (p<0.001) nonC9ORF72-related_SALSvctrl] and PARP9 [PARP9 (poly(ADP -ribose) polymerase family, member 9) 1.32-fold (p<0.01) C90RF72vctrl and 1.24

-fold (p<0.05) non*C9ORF72*-related_SALSvctrl] were increased more in the *C9ORF72* -related cases than the non*C9ORF72*-related_SALS cases, compared to controls. The findings of Lee et al (2013b) were further substantiated *in vivo* when the same EGFP tagged expression vectors were introduced into the zebrafish. Embryos injected with the 38X or 72X constructs were found to contain a considerably greater proportion of apoptotic cells than controls that were CASP3 active and which stained positively for the universal marker of DNA fragmentation, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling).

Another binding partner identified by Dr Mathew Walsh, PURA [11.20-fold, (p<0.01)] *C90RF72*vctrl; up-regulation confirmed in a traditional SYBR Green gRT-PCR Assay (Figure 5.26)] has also been recapitulated by Xu et al (2013), using in vitro and in vi*vo* model systems, to interact with the G₄C₂ repeat in a manner that is both dose-de pendent and sequence specific. In this study the authors transfected 3X (control) or 30X (disease) constructs and EGFP-alone tagged expression vectors into the common fruit fly (Drosophila melanogaster) and mouse neuroblastoma (Neuro-2a) cell line. Thirty copies of the aberrantly expanded sequence in C9ORF72 proved sufficient to cause neurotoxicity and death, which is conserved between mammals and invertebrates. Targeting 30X constructs to the retina in *Drosophila* severely affected eye morphology and locomotor activity, with ommatidia irregularities and loss of pigmentation. In addition, ubiquitinated p62 and TDP-43 positive inclusions immunoreactive for PURA were also shown to be present, as seen in human post-mortem derived cerebellum tissue from patient carriers expressing the C90RF72 expansion with FTLD-U pathology. Furthermore, overexpression of PURA in the fruit fly and Neuro-2a model mitigated neurodegeneration associated with the G₄C₂ repeat and rescued cell viability. PURA is a transcriptional activator that is highly abundant in the brain and is known to play a prominent role in regulating the cell cycle and differentiation (White et al 2009). Recently, WES has revealed *de novo* mutations in *PURA* to be a genetic cause of neurodevelopmental delay and learning disabilities in children (n= 4/1,133) screened as part of the Deciphering Developmental Disorders (DDD) UK study group (Hunt et al 2014), with other complications including: neonatal hypotonia; seizures/seizure-like movements and difficulties in feeding.

Using a slightly different approach, Donnelly et al (2013) identified the CNS-enrich

ed RNA editing regulator, adenosine deaminase, RNA-specific, B2 (ADARB2) [*ADAR B2* \oplus 1.36-fold, (p<0.05) *C9ORF72*vctrl; \oplus 1.34-fold, (p<0.05) non*C9ORF72*-related_S ALSvctrl] as one of 19 ORF's on a custom proteome array, which exhibited a consistly high affinity for the G₄C₂ expanded repeat (6.5X) in *C9ORF72+* ALS patient derived skin fibroblast induced pluripotent stem cell (iPSC) differentiated MN's in comparison to GC scrambled control lines. Sequestration of ADARB2 into toxic intranuclear RNA foci formed by the G₄C₂ repeat is expected to lead to a reduction in the rate of GluR2 AMPA receptor adenosine (A) to inosine (I) editing of the glutamine/arginine (Q/R) site (Donnelly et al 2013); thereby conferring an increased susceptibility to excitotoxic stress (Hideyama et al 2012) (Section 1.2.4.2).

5.3.5 Reduced C9ORF72 Expression Confirmed in a Subset of LCL's

A significant reduction in the abundance of isoform a (full length) [Variant I (NM_00 1256054) and III (NM_018325) (Figure 5.22)] specific mRNA transcripts pertaining to the *C90RF72* gene was confirmed [\downarrow 1.62-fold, (p<0.01) *C90RF72* vctrl (Figure 5. 24)] in a traditional SYBR® Green qRT-PCR Assay using an initial subset of the LCL's (n=14) selected from the ECACC discovery cohort (Section 5.2.3) (Cooper-Knock et al 2013b). Other groups have also reported similar findings in human post-mortem derived frontal cortex and cerebellum tissue (Belzil et al 2013, Ciura et al 2013, DeJ-esus-Hernandez et al 2010, Donnelly et al 2013, Gijselinck et al 2012, Waite et al 20 14); which is supportive of a loss of function/haploinsufficiency mechanism of neurotoxicity.

In zebrafish and *C. elegans* models, antisense oligonucleotide mediated knockdown of the *C9ORF72* ortholog *in vivo* has been shown to cause axonal degeneration of the MN's leading to age-dependent motility deficits & hypersensitivity to environmental stress (Ciura et al 2013, Therrien et al 2013). Overexpression of human WT protein in the zebrafish was subsequently found to have ameliorated these effects (Ciura et al 2013). Several epigenetic events involving the trimethylation of specific lysine residues in histone molecules H3 and H4 for example (Belzil et al 2013) or the hypermethylation of a cysteine-phosphate-guanine (CpG) island (Xi et al 2014, Xi et al 20 13) in close proximity to the expansion are also expected to play a key role in controlling the negative regulation of *C90RF72* gene expression (Belzil et al 2014).

Contrary to these findings, however, no observable difference in the overall levels of isoform a (full length) or isoform b (truncated) [Variant II (NM_145005) (Figure 5. 22)] specific transcripts was apparent in an extended qRT-PCR assay using pooled RNA samples from the entire population of C9ORF72+ LCL's with a RIN score of 7.5 or above in the combined ECACC discovery and replication cohorts (n=75) (Figure 5.25). Another study conducted by Sareen et al (2013) using C9ORF72+ ALS and ALS -FTLD patient and control (n=4) derived skin biopsy material to generate fibroblast cell lines and MN cultures differentiated from iPSC's also failed to detect a significant change in the overall abundance of C90RF72 mRNA transcripts (RNA-seq and qR T-PCR) [qRT-PCR primers designed in exon 2 to target all three transcript variants] or protein expression (western blot analysis). The use of an informative SNP, which was found to occur naturally within the population at a frequency of 17% (rs10757 668), enabled the authors to distinguish between those sequences originating from the WT allele and those emanating from the expansion carrying allele in two of their C90RF72 cases (Sareen et al 2013). Five prime rapid amplification of cDNA ends (5'-RACE) identified predominantly exon 1b containing transcripts [Variant III (NM_01 8325) (Figure 5.22)] in WT and control, versus, increased transcriptional start site variability and a greater proportion of exon 1a containing transcripts [Variant I (NM _001256054) and II (NM_145005) (Figure 5.22)] in the mutants. This paradoxical shift towards the transcription of variants containing the six base pair repeat is supportive of the notion that C9ORF72 mediated neurodegeneration may also arise through a toxic gain of function as well as a loss of function mechanism. RNA FISH detected aberrantly formed aggregates of >30 copies of the expanded G_4C_2 sequence in discrete & punctate nuclear RNA foci in approximately a fifth of C9ORF72+ ALS and and ALS+FTLD iPSC differentiated MN cultures which exhibited co-localisation with two previously discussed proteins of interest: Namely, hnRNPA1 a well-established binding partner of TDP-43 (Buratti et al 2005) that has recently been identified through exome sequencing and linkage analysis (Kim et al 2013) to be a rare cause of AD inherited adult-onset ALS (ALS20) (Table 1.2) and MSP (Section 1.2.5.2.10) and PURA (Table 5.10) [11.20-fold, (p<0.001) C90RF72vctrl] which was confirmed by q RT-PCR in the ECACC LCL's (Figure 5.26) (Sareen et al 2013).

Others have subsequently recognised RAN translation as an unconventional mode of protein synthesis that generates aggregate prone poly-GA (glycine-alanine), poly-GP (glycine-proline) or poly-GR (glycine-arginine) peptides which have been shown to colocalise with p62 positive, TDP-43 negative NCI's in human post-mortem CNS tissue; a characteristic molecular hallmark of *C90RF72* pathology (Section 1.2.5.4) (Almeida et al 2013a, Ash et al 2013, Gendron et al 2013b). Furthermore, emerging evidence suggests that bidirectional transcription of the six base pair repeat occurs which would be responsible for producing bosh sense as well as antisense transcripts and DPR's (Gendron et al 2013a, Mori et al 2013a, Zu et al 2013).

RNA foci and RAN translated products have also been linked to the pathogenesis of several other neurodegenerative conditions that are associated with a microsatellite repeat expansion including: Myotonic dystrophy type 1 (DM1) (Jiang et al 2004, Zu et al 2011); fragile X tremor/ataxia syndrome (FXTAS) (Tassone et al 2004, Todd et al 2013); Huntinton-disease like 2 (HDL2) (Rudnicki et al 2007) and spinocerebell-ar ataxia type 8 (SCA8) (Chen et al 2009, Daughters et al 2009, Moseley et al 2006) (Wojciechowska & Kryzosiak 2011). In DM1 patients, for example, nuclear RNA foci containing CTG expanded dystrophia myotonica-protein kinase (*DMPK*) sequester a number of RNA binding proteins, including muscleblind-like regulator 1 (*MBNL1*) in order to disrupt their normal physiological function (Childs-Disney et al 2013, Mykowska et al 2011, Osborne et al 2009); leading to alterations in gene expression and a dysregulation of splicing.

In summary, RNA processing appears to be a major pathway that has been shown to be disrupted in relation to the newly discovered intronic hexanucleotide G₄C₂ repeat expansion identified in *C90RF72*. Transcriptional profiling of the ECACC LCL's using Human Exon 1.0ST GeneChip® Arrays highlighted a significant increase in the overall expression of many of these genes in comparison to non*C90RF72*-related_SALS cases and controls. The up-regulation observed on the microarray could possibly reflect a compensatory mechanism in which the cells are trying to overcome sequestration of the C90RF72 protein and RNA binding partners in toxic RNA foci that are known to accumulate inside the cell.

CHAPTER 6: C9ORF72 SURVIVAL STUDY

The principal aim of this chapter was to identify genetic factors which are associated with a fast (<2yrs survival) versus slow (≥4yrs survival) disease progression in the peripheral LCL's of patients carrying a large, pathogenic hexanucleotide G_4C_2 repeat expansion in the newly identified *C90RF72* gene. As more microarrays were being run and as further clinical information from the MNDA became available throughout the course of the project additional cases from the ECACC discovery and replication cohorts, meeting the selection criteria outlined above, were included. Given recently emerging evidence from the SOD1^{G93A} mouse (Alves et al 2011, Cervetto et al 2013, Gunther et al 2014, Heiman-Patterson et al 2005, Naumenko et al 2011) it was also of interest to determine whether there were any gender specific effects of survival on the global GEP's of patients carrying the *C90RF72* expansion.

6.1 C9ORF72 Long versus Short Survival Cohort

6.1.1 ECACC EBV-Transformed B-Lymphocytes

6.1.1.1 Clinical Characteristics

6.1.1.1.1 Control Cases

Neurologically normal, age and gender matched, healthy control LCL's (n=33/100) [19-M, 14-F] selected from the ECACC discovery cohort were largely recruited from patient partners or their unrelated carers (Section 4.1.1). These were comprised of 10 Birmingham (30.3%) cases including one from Liverpool [C02-(BLi0245)], one from Oxford [C090-(BOx0073)] and one from Belfast City Hospital [C020-(BBe000 6)]; 8 London (24.2%) cases including two from Cambridge [C019-(LCa0022) and C021-(LCa0076)], one from Poole General Hospital [C017-(LP00027)] and one from Southampton General Hospital [C015-(LSh0032)] and 15 Sheffield (45.5%) cases including one from Manchester [C01-(SMa0033)], two from Preston [C010-(SPr00 14) and C022-(SPr0086)] and five from Newcastle [C04-(SNc0091), C011-(SNc00

45), C029-(SNc0023), C076-(SNc0106) and C085-(SNc0035)]. Age at consultation ranged between 36 and 71 years with a mean of 58.1±10yrs. The M:F ratio was 1.36: 1 (Figure 6.1).

Figure 6.1 Age Frequency Distribution of Patient and Control LCL's in the *C90RF72* Long (≥4yrs) versus Short (<2yrs) Survival Study

Abbreviations: *C90RF72* (C9) - chromosome 9 open reading frame 72, Ctrl - control, F - female, LCL - lymphoblastoid cell line and M - male.

6.1.1.1.2 C9ORF72+ Short Survival Cases

Patient derived, expansion carrying LCL's (n=27/88) [18-M, 9-F] with a survival of less than two years (i.e. defined as having a fast disease progression) comprised 16 FALS and 11 SALS selected from the ECACC discovery (Section 4.1.1) and replication (Section 4.1.2) cohorts. These consisted of 6 Birmingham (22.2%) cases including one from Liverpool [F072-(BLi0251)], one from Oxford [F078-(BOx0029)] and one from Bristol Frenchay Hospital [F048-(BBr0015)]; 10 London (37.0%) cases and 11 Sheffield (40.8%) cases including one from Preston [F025-(SPr0059)]. The M:F ratio was 2.00:1 (Figure 6.1).

MALES The majority of male *C90RF72+* short (<2yrs) survival cases, 94.4% (n=17/ 18) were diagnosed according to the World Federation of Neurology's amended EEC

of 1998 with either definite (n=8/17) [3-familial, 5-sporadic] or probable (n=9/17) [5-familial, 4-sporadic] ALS (Figure 1.1) including one incidence of concomitant PD [F114-(SP3560)] (Section 1.2.1). The remaining 5.6% (n=1/18) of the cohort were diagnosed with PBP [F100-(SP3070)] (Section 1.2.2.1). Age at symptom onset ranged between 45 and 71 years with a mean of 58.4 ± 11 yrs. Disease duration ranged from $6\frac{1}{2}$ to 22 months with a mean of 1.35 ± 0.3 yrs (Table 6.1). Limb onset accounted for 61.1% of cases (n=11/18) [2-FALS, 1-FALS+PD and 8-SALS], bulbar onset a further 22.2% (n=4/18) [3-FALS and 1-SALS] and a mixed presentation 11.1% (n=2/18) [1-FALS and 1-PBP (familial)]. Information regarding site of onset was not available for the remaining 5.6% of the cohort (n=1/18) [1-FALS]. The ALSFRS-R scores ranged between 0 (severe disability) and 46 (near normal function) with an average of 27.6 ±15 for 88.9% of male *C90RF72+* short (<2yrs) survival cases (n=16/18) [7-FALS, 1-FALS+PD, 7-SALS and 1-PBP (familial)].

For the Sheffield cases some additional clinical information could be extracted from the local database. Of these, 14.3% (n=1/7) [1-SALS] were prone to EL and a further 14.3% (n=1/7) [1-SALS] displayed symptoms of dyspnoea without requiring NIPPV support. One individual presenting with a family history of dementia was diagnosed with the rare FA variant of the disease [S042-(SP3122)] (Section 1.2.1). Dysarthria and dysphagia were also apparent in 42.9% of the cohort (n=3/7) [1-FALS, 1-FALS +PD and 1-SALS] with PEG feeding becoming a necessary intervention in 33.3% of these latter cases (n=1/3) [1-FALS+PD] (Section 1.1.4). Two patients (28.6%) were non-ambulant with a further 14.3% unable to walk without assistance (n=1/7) [1-SALS]. Current smokers comprised 14.3% of the cohort (n=1/7) [1-PBP (familial)], non-smokers 57.1% (n=4/7) [1-FALS+PD and 3-SALS] and for the remaining 28.6% (n=2/7) [2-SALS] this information was not disclosed.

FEMALES Similarly, the majority of female *C9ORF72+* short (<2yrs) survival cases, 88.9% (n=8/9) were also diagnosed (Section 1.1.3) (Figure 1.1) with either definite (n=4/8) [4-familial] or probable (n=4/8) [2-familial, 2-sporadic] ALS including one incidence of concomitant FTLD [F115-(SP3118)]. The remaining 11.1% (n=1/9) of the cohort was diagnosed with PBP [F041-(LP0440)]. Age at symptom onset ranged between 28 and 71 years with a mean of 55.1±15yrs. Disease duration ranged from 14 to 23 months with a mean of 1.65±0.3yrs (Table 6.1). Limb onset accounted for

249

	Survival (<2yrs)				Survival (≥4yrs)				
	MALE	FEMALE	ALL	CONTROL	MALE	FEMALE	ALL	CONTROL	
M:F	n/a	n/a	2.00:1	2.25:1	n/a	n/a	0.67:1	0.67:1	
Age									
range	45-71yrs	28-71yrs	28-71yrs	36-71yrs	43-65yrs	35-71yrs	35-71yrs	36-71yrs	
mean	58yrs	55yrs	58yrs	59yrs	57yrs	52yrs	54yrs	54yrs	
Onset									
Limb	11 (61.1%)	1 (11.1%)	12 (44.5%)	n/a	6 (100.0%)	7 (77.8%)	13 (86.6%)	n/a	
Bulbar	4 (22.2%)	5 (55.6%)	9 (33.3%)	n/a	0 (0.0%)	2 (22.2%)	2 (13.4%)	n/a	
Mixed	2 (11.1%)	3 (33.3%)	5 (18.5%)	n/a	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a	
Respiratory	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a	
unknown	1 (5.6%)	0 (0.0%)	1 (3.7%)	n/a	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a	
Diagnosis									
ALS	16 (88.8%)	7 (77.8%)	23 (85.2%)	n/a	5 (83.3%)	8 (88.9%)	13 (86.6%)	n/a	
ALS+FTLD	0 (0.0%)	1 (11.1%)	1 (3.7%)	n/a	1 (16.7%)	0 (0.0%)	1 (6.7%)	n/a	
ALS+PD	1 (5.6%)	0 (0.0%)	1 (3.7%)	n/a	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a	
PBP	1 (5.6%)	1 (11.1%)	2 (7.4%)	n/a	0 (0.0%)	1 (11.1%)	1 (6.7%)	n/a	
PLS	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a	
РМА	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a	0 (0.0%)	0 (0.0%)	0 (0.0%)	n/a	
ALSFRS-R									
range	0-46	18-38	0-46	n/a	33-45	30-45	30-45	n/a	
mean	28	27	27	n/a	40	38	39	n/a	
Survival									
range	0.5-1.8yrs	1.2-1.9yrs	0.5-1.7yrs	n/a	4.1-8.9yrs	4.1-6.9yrs	4.1-8.9yrs	n/a	
mean	1.4yrs	1.6yrs	1.5yrs	n/a	6.2yrs	5.1yrs	5.4yrs	n/a	
Total	18 (18)	9 (8)	27 (26)	26 (24)	6 (6)	9 <mark>(8)</mark>	15 (14)	15 (15)	

Table 6.1 Clinical Summary of Male and Female *C90RF72+* LCL's in the ECACC Long (≥4yrs) versus Short (<2yrs) Survival Study with Age and Gender Matched Controls The National MNDA DNA Bank didn't have a suitable match for familial sample F24 (SP3148) of 28yrs explaining the small discrepancy in age range and M:F ratio between patients and controls of the short survivors group. In total 33 individuals were selected as neurologically normal, healthy controls with a different subset of this pool used for each of the downstream comparative analyses. Affymetrix[®] post-QC numbers are provided in brackets and highlighted in red.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C90RF72* - chromosome 9 open reading frame 72, ECACC - European Collection of Cell Cultures, F - familial, F - female, FRS-R - Revised Functional Rating Scale, FTLD - frontotemporal lobar degeneration, LCL - lymphoblastoid cell line, M - male, MNDA - Motor Neurone Disease Association, n/a - not applicable, PD - Parkinson's disease, PBP - Progressive Bulbar Palsy, PLS - Primary Lateral Sclerosis, PMA - Progressive Muscular Atrophy, QC - quality control, S - sporadic and SP - Sheffield patient.

11.1% (n=1/9) [1-SALS], bulbar onset a further 55.6% (n=5/9) [1-FALS+FTLD, 3-FALS and 1-PBP (familial)] and a mixed presentation the remaining 33.3% of cases (n=3/9) [2-FALS and 1-SALS]. The ALSFRS-R scores ranged between 18 (moderate disability) and 38 (mild disability) with an average of 27.0±7 for 77.8% of female *C90RF72+* short (<2yrs) survival cases (n=7/9) [4-FALS, 1-FALS+FTLD, 1-SALS and 1-PBP (familial)].

For the Sheffield cases some additional clinical information could be extracted from the local database. Of these, 50.0% (n=2/4) [1-FALS and 1-SALS] were prone to EL, with one familial patient also suffering from hypersialorrhea and a further 50.0% (n=2/4) [1-FALS and 1-FALS+FTLD] displaying symptoms of dyspnoea that did not require NIPPV support. Dysarthria and dysphagia were apparent in 75.0% (n=3/4) [1-FALS, 1-FALS+FTLD and 1-SALS] of the cohort without PEG feeding becoming a necessary intervention. All patients were ambulant with the majority, 75.0% able to walk unaided and only one sporadic individual requiring assistance. Current or exsmokers were absent in this instance with non-smokers comprising three-quarters (n=3/4) [1-FALS, 1-FALS+FTLD and 1-SALS] of cases and for the remaining 25.0% (n=1/4) [1-FALS] this information was not disclosed.

6.1.1.1.3 C9ORF72+ Long Survival Cases

Patient derived, expansion carrying LCL's (n=15/88) [6-M, 9-F] with a survival of at least four years following the initial onset of symptoms (i.e. defined as having a slow disease progression) were comprised of 9 FALS and 6 SALS selected from the ECACC discovery (Section 4.1.1) and replication (Section 4.1.2) cohorts. These consisted of 4 Birmingham (26.7%) cases; 4 London (26.7%) including one from Southampton General Hospital [F102-(LSh0038)] and one from Plymouth Derriford Hospital [F0 29-(LPy0018)] and 7 Sheffield (46.6%) cases including one from Newcastle [S203-(SNc0059)] and one from Manchester [F081-(SMa0006)]. The M:F ratio was 0.67:1 (Figure 6.1).

MALES All of the male *C90RF72*+ long (≥4yrs) survival cases (n=6/6) [4-familial, 2-sporadic] were diagnosed with probable ALS including one incidence of concomitant FTLD [S191-(SP3042)] (Section 1.2.1). Age at symptom onset ranged between 43

and 65 years with a mean of 56.7±8yrs (Table 6.1). Disease duration ranged from 49 to 107 months with a mean of 6.18±2.3yrs for 66.7% of the cohort (n=4/6) [2-FALS, 1-SALS and 1-SALS+FTLD]. For the remaining 33.3% of cases (n=2/6) [2-FALS] the individuals were still reported to be alive as of June 2013 with a minimum disease duration of 4 [F047-(BP6502)] or 6 [F013-(BP6494)] years, respectively. All of the patients presented focally with asymmetric upper and/or lower limb weakness. The ALSFRS-R scores ranged between 33 (mild disability) and 45 (near normal function) with an average of 39.8±5 for 100.0% of male *C90RF72+* long (≥4yrs) survival cases (n=6/6) [4-FALS, 1-SALS and 1-SALS+FTLD].

For the three Sheffield cases some additional clinical information regarding smoking status could be extracted from the local database. Two thirds of patients (n=2/3) [1-SALS and 1-SALS+FTLD] were non-smokers and for the remaining 33.3% of cases (n=1/3) [1-FALS] this information was not disclosed.

FEMALES The vast majority of female *C90RF72+* long (\geq 4yrs) survival cases, 88.9% (n=8/9) were also diagnosed with either definite (n=4/8) [2-familial, 2-sporadic] or probable (n=4/8) [2-familial, 2-sporadic] ALS. One additional familial patient [F029-(LPy0018)] comprising the remaining 11.1% of the cohort was diagnosed with PBP. Age at symptom onset ranged between 35 and 71 years with a mean of 51.7±14yrs. Disease duration ranged from 49 to 83 months with a mean of 5.09±0.9yrs (Table 6. 1). Limb onset accounted for 77.8% (n=7/9) [4-FALS and 3-SALS] and bulbar onset the remaining 22.2% of cases (n=2/9) [1-SALS and 1-PBP (familial)]. The ALSFRS-R scores ranged between 30 (mild disability) and 45 (near normal function) with an average of 38.1±6 for 100.0% of female *C90RF72+* long (\geq 4yrs) survival cases (n=9/9) [4-FALS, 4-SALS and 1-PBP (familial)].

For the Sheffield cases some additional clinical information could be extracted from the local database. Of these, 25.0% (n=1/4) [1-SALS] suffered from dyspnoea that did not require NIPPV support. Dysarthria and dysphagia was also apparent in a further 25.0% (n=1/4) [1-SALS] of the cohort with PEG feeding (Section 1.1.4) becoming a necessary intervention in this latter instance. The majority of patients, 75.0% were ambulant with only one familial case unable to walk without assistance. Current or ex-smokers were absent, with three quarters having never smoked (n=3/4) [1-FALS

and 2-SALS] and for the remainder of the cohort (n=1/4) [1-SALS] this information was not disclosed.

6.1.1.2 Therapeutics Used to Treat the Cohort

6.1.1.2.1 C90RF72+ Short Survival Cases

Riluzole, administered at a dose of 50mg twice daily, was being used to treat 83.3% of male (n=15/18) [5-FALS, 1-FALS+PD and 10-SALS] and 66.7% of female (n=6/9) [3-FALS, 1-FALS+FTLD and 2-SALS] *C90RF72+* short (<2yrs) survival cases. A small proportion of individuals, 4.8% (n=1/21) [1-SALS] experienced adverse side effects and the medication was withdrawn. Vitamin C and/or E (n=5/27) [1-FALS and 4-SALS] or multivitamin supplements (n=1/27) [1-SALS] were collectively being taken by 22.2% (n=6/27) of the cohort. Conversely, 14.8% of patients (n=2/27) [3-FALS and 1-PBP (familial)] chose not to receive any kind of disease modifying therapy and for the remaining 7.4% (n=2/27) [1-FALS and 1-PBP (familial)] this information was not available.

6.1.1.2.2 C90RF72+ Long Survival Cases

The glutamate antagonist, Riluzole was also being used to treat 83.3% of male (n=5/ 6) [3-FALS, 1-SALS and 1-SALS+FTLD] and 88.9% of female (n=8/9) [4-FALS, 1-PBP (familial) and 3-SALS] *C9ORF72+* long (\geq 4yrs) survival cases. Vitamin C and/or E (n= 5/15) [4-SALS and 1-SALS+FTLD] or multivitamin supplements (n=2/15) [2-FALS] were collectively being taken by 46.7% (n=7/15) of the cohort. As well as Riluzole, several patients were also participants of the minocycline [F073-(BP6165)], BDNF [F091-(SP3534)] or ONO-2506 (Arundic acid) [S203-(SNc0059)] drug trials [APP-ENDIX TABLE B4]. Conversely, the remaining 13.3% (n=2/15) [1-FALS and 1-SALS] of the cohort chose not to receive any kind of disease modifying therapy.

6.1.1.3 Genetic Status of the Cohort

All of the FALS and SALS patients (n=42/88) [24-M, 18-F] in the ECACC microarray cohort that met the criteria for inclusion into the *C90RF72+* long (\geq 4yrs) (Section 6.

1.1.1.3) versus short (<2yrs) (Section 6.1.1.1.2) survival study were identified from a repeat-primed PCR screen as carriers of more than 30 copies of the expanded G_4C_2 sequence in intron 1 of the *C90RF72* gene (Cooper-Knock et al 2012b) (Section 1.1. 8.4). Additionally, in the slow progressing female cases there was also one example of oligogenic inheritance involving an apparently sporadic Sheffield sample [S352-(SP3484)] with a deleterious c.962C>T (p.A321V) missense mutation in exon 6 of the *TARDBP* gene (Kirby et al 2010) (Section 5.3.2.2).

6.1.2 Affymetrix[®] Expression Console[™] QC Metrics

In vitro transcribed biotinylated ss-cDNA targets of ~40-70nt were hybridised onto Human Exon 1.0ST GeneChip[®] Arrays (Section 2.3.2.3 and 2.3.2.4). Affymetrix[®] QC metrics were assessed in Expression Console[™] software version 1.3.0.187 (Section 4.3.2). Two female controls (n=2/33) [C076-(SNc0106) and C079-(SC3279)] and a further two SALS patients, including one from the *C90RF72+* short (<2yrs) survival group (n=1/27) [S123-(BP6021)] and a second (n=1/15) [S352-(SP3484)] from the *C90RF72+* long (≥4yrs) survival group, scored poorly against three or more of the parameters summarised in Table 6.2 (Figure 6.2, 6.3 and 6.4). The aforementioned cases (n=4/75), therefore, which represent 5.3% of the initial cohort, were removed from any subsequent downstream comparative analyses (Table 6.1). This generated a final cohort comprised of 40 FALS and SALS patients with a fast (n=26) [18-M, 8-F] versus slow (n=14) [6-M, 8-F] disease progression and 31, age and gender matched, neurologically healthy control subjects.

Table 6.2 Affymetrix[®] Expression Console[™] Summary of Failed LCL Samples in the *C90RF72+* Long (≥4yrs) versus Short (<2yrs) Survival Study

Key: Passed Failed

Abbreviations: AUC - area under the receiver operating curve (ROC), bac_spike - bacterial spike in controls, bgrd - background, *C90RF72* - chromosome 9 open reading frame 72, C - control, LCL - lymphoblastoid cell line, PPMCC - Pearson's product moment correlation

coefficient, P - present calls, QC - quality control, RLE - relative log expression and S - sporadic.

Figure 6.2 Eukaryotic Hybridization Controls for LCL Samples in the *C90RF72+* **Long** (\geq 4yrs) **versus Short** (<2yrs) **Survival Study** Bacterial derived genes of the *E. coli* biotin synthesis pathway [BioB (blue), BioC (red) and BioD (pink)] and the recombinase gene CreX (green) from the P1 bacteriophage were spiked in at increasing concentrations (top panel) [1.5pM (limit of detection), 5pM, 25pM and 100pM] immediately prior to labelling to monitor the efficiency of the hybridization reaction. In the bottom panel mean signal intensities for each of the probesets spotted onto the Affymetrix[®] Human Exon 1.0ST GeneChip[®] Arrays are provided for a) controls (n=33), b) *C90RF72+* long (\geq 4yrs) survival cases (n=27) and c) *C90RF72+* short (<2yrs) survival cases (n=15). Assessment of Affymetrix[®] QC metrics was performed using Expression ConsoleTM software version 1.3.0.187.

Figure 6.3 Mean Absolute RLE Boxplots for LCL Samples in the *C90RF72+* Long (\geq 4yrs) versus Short (<2yrs) Survival Study Relative log expression means and standard deviations for age and gender matched M (male) and F (female) control subjects (blue) and *C90RF72+* FALS and SALS patients with either a fast (<2yrs) (pink) or slow (\geq 4yrs) (yellow) disease progression. Whiskers represent the minimum and maximum average probeset signal intensities for each array at the level of the whole transcript. Asterisks (red) highlight significant outliers. Assessment of Affymetrix[®] QC metrics was performed using Expression ConsoleTM software version 1.3.0.187.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C90RF72* - chromosome 9 open reading frame 72, C - control, F - familial, LCL - lymphoblastoid cell line, QC - quality control, RLE - relative log expression, S - sporadic and ST - sense-target.

Figure 6.4 Expression Console™ Summary of the QC Metrics Assessed for LCL Samples in the C90RF72+ Long (≥4yrs) versus Short (<2yrs) Survival Study In the top four panels box and whisker plots were generated for male (M) [I] and female (F) [I] control cases (checkerboard) or C90RF72+ FALS and SALS with a long (L) (≥4yrs) (unfilled) versus short (S) (<2yrs) (diagonally stripped) survival using GraphPad Prism® software version 5.04 and applying a Tukey multiple comparison test: a) average background (bgrd) signal, b) %P calls, c) mean probeset signal intensities at transcript level and d) mean probeset signal intensities at individual exon level. Samples flagged as outliers are highlighted in red. Note that for %P calls statistically outlying cases with at least fifty percent of probesets called as present were still included in downstream comparative analyses; these are represented in green. The coloured matrix in e) represents Pearson's product Moment correlation coefficient (r) in which each pair-wise comparison is assigned a value on a scale of 0.8333 (blue) to 1.000 (red) with a high score indicative of a strong linear relationship between the X and Y variables. Signal histogram plots are provided at f) transcript and g) individual exon level in the bottom right-hand panels. Each series of coloured bars represents the distribution of log2 transformed, average GC-RMA normalised signal intensities for a single array in the experiment. Assessment of Affymetrix[®] QC metrics was performed using Expression Console[™] software version 1.3.0.187.

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C9ORF72* - chromosome 9 open reading frame 72, C - control, F - familial, LCL - lymphoblastoid cell line, P - present calls, QC - quality control, RMA - <u>R</u>obust <u>M</u>ulti-array <u>A</u>verage and S - sporadic.

6.2 Human Exon 1.0ST GeneChip® Array Profiling

Affymetrix[®] CEL files, 94.7% (n=71/75) [C9-Long (n=14), C9-Short (n=26) and Ctrl (n=31)] were imported into Partek[®] Genomics Suite[™] software version 6.6 (Section 2.3.2.5.2). Raw expression values were log2 transformed and a GC-RMA background normalisation procedure applied using core metaprobesets (n=287,329). At whole transcript level these relate to over twenty-two thousand unique clusters pertaining to full length protein coding mRNA sequences in the RefSeq or GenBank[®] database. Post-normalised pivot tables were exported as text files which were reconfigured in Microsoft[®] Excel 2010 and the data visualised using Qlucore Omics Explorer software version 2.3. ANOVA F-tests were filtered on 'Sample Type' [Multi-group comparisons between C9-Long v C9-Short v Ctrl and Two-group comparisons between C9-Long v C4P-Short v Ctrl and C9-Long v C9-Short] in order to generate lists of variables or gene transcripts that best separate the groupings on a PCA plot or hierarchically clustered HeatMap. Bias attributed to the effects of any potential confounders such as 'Age' (continuous) and 'Gender' (nominal) were removed by eliminating these as factors.

DE transcripts identified between the ECACC *C9ORF72+* LCL cases with a fast versus slow disease progression and a subset of neurologically healthy controls, that were matched for age and gender, were detected at the 5% significance level (unadjusted p<0.05) by performing a 2-way ANCOVA statistical test in Partek[®] Genomics SuiteTM software version 6.6. Lists were filtered to remove unannotated transcripts (n=4,3 77/22,011) and a FC threshold $\geq \pm 1.20$ applied (Section 2.3.2.5.2). Where multiple Affymetrix[®] transcript cluster ID's were present for a single gene the identification number producing the most significant outcome with the greatest level of coverage (i.e. highest number of probesets and/or exon clusters) was retained. However, if the direction of change was opposing then both transcripts were removed.

Once generated, the lists of DE transcripts [Partek[®] unadjusted p<0.05, FC \ge ± 1.20]

could also be imported into DAVID bioinformatics resource version 6.7. Functional annotation clustering analysis was performed on GOTERM_BP_FAT and GOTERM_MF_FAT gene ontology (GO) terms applying a *Homo sapiens* background and filtering using 'Medium' classification stringency (Section 2.3.2.5.4). Categories with an EASE score above 1.30 and Benjamini-Hochberg FDR uncorrected p<0.05 were considered statistically significant. Transcripts identified as being significantly up (\hat{T})/down (\mathbb{Q}) regulated under different experimental conditions were analysed independently.

6.2.1 ALL Samples Combined

6.2.1.1 Clustering Analysis

A multi-group comparative analysis conducted at the 5% significance level [ANOVA F-test p<0.05, FC $\ge \pm 1.20$] using Qlucore Omics Explorer software version 2.3 of all LCL cases (n=40) and controls (n=31) (Blue) in the ECACC *C9ORF72+* long (\ge 4yrs) (Yellow) versus short (<2yrs) (Pink) survival study (Figure 6.5a) identified 2,792 of 22,011 variables that explain up to 21% of the variance in GEP's generated between patient and control samples along the y-axis of the first principal component (PC1) and 12% (PC2) or 8% (PC3), respectively of the variance between a fast versus slow disease progression which is represented by the x and z-axes of the second and third principal components.

Two-group comparative analyses performed at the same 5% significance threshold [ANOVA F-test p<0.05, FC $\ge \pm 1.20$] identified corresponding lists of 1,162 (C9-Long v C9-Short), 2,805 (C9-Long v Ctrl) or 2,374 (C9-Short v Ctrl) variables, respectively which may explain up to 27% of the variance in GEP's generated between *C90RF72+* LCL's with a long (\ge 4yrs) (Yellow) versus short (<2yrs) (Pink) survival (Figure 6.5b) or controls (Blue) (Figure 6.5c) and a further 23% of the variance that is generated between *C90RF72+* short (<2yrs) survival cases and controls (Figure 6.5d).

Clustering analysis was also conducted in Qlucore Omics Explorer software version 2.3 at a higher stringency of applying a 1% significance threshold [ANOVA F-test p< 0.01, FC $\geq \pm 1.20$] (Figure 6.6a-d). However, given that the lists of variables which are generated were markedly reduced in number and since the sample groupings on the

#	ANOVA	Comparison	Eliminated Factors	p-value	Fold	Variables
a)	Multi-Group		'Age' and 'Gender'	< 0.05	±1.20	2,792/22,011
b)	Two-Group		'Age' and 'Gender'	< 0.05	±1.20	1,162/22,011
c)	Two-Group		'Age' and 'Gender'	< 0.05	±1.20	2,805/22,011
d)	Two-Group		'Age' and 'Gender'	< 0.05	±1.20	2,374/22,011

Figure 6.5 Qlucore Omics Explorer Clustering Analysis [ANOVA F-test p<0.05, FC $\ge \pm 1.20$] of ALL Samples Combined in the C90RF72+ Long (≥ 4 yrs) versus Short (<2yrs) Survival Study

Abbreviations: ANOVA - analysis of variance, *C90RF72* - chromosome 9 open reading frame 72 and FC - fold-change.

#	ANOVA	Comparison	Eliminated Factors	p-value	Fold	Variables
a)	Multi-Group		'Age' and 'Gender'	< 0.01	±1.20	968/22,011
b)	Two-Group		'Age' and 'Gender'	< 0.01	±1.20	227/22,011
c)	Two-Group		'Age' and 'Gender'	< 0.01	±1.20	1,069/22,011
d)	Two-Group		'Age' and 'Gender'	< 0.01	±1.20	812/22,011

Figure 6.6 Qlucore Omics Explorer Clustering Analysis [ANOVA F-test p<0.01, FC $\ge \pm 1.20$] of ALL Samples Combined in the *C90RF72+* Long ($\ge 4yrs$) versus Short (<2yrs) Survival Study

Abbreviations: ANOVA - analysis of variance, *C90RF72* - chromosome 9 open reading frame 72 and FC - fold-change.
PCA plots proved no more distinct than those which have already been discussed, a decision was made to adhere to the original 5% threshold used also in Chapter 5 for the analysis of the *C90RF72* and non*C90RF72*-related_SALS study (Section 5.2.1.5).

6.2.1.2 DAVID Enrichment of Partek® Generated Gene Lists

6.2.1.2.1 C9ORF72+ LongvShort Survival

A direct comparison between *C9ORF72+* long (\geq 4yrs) versus short (<2yrs) survival of all samples combined at the 5% significance level [Partek® unadjusted p<0.05, FC $\geq \pm 1.20$] identified 628 DE transcripts in Partek® Genomics SuiteTM software version 6.6. These included 301 genes (47.9%) that were significantly up-regulated (\oplus) and a further 327 genes (52.1%) which were significantly down-regulated (\oplus). In DAVID these corresponded to 624 mapped ID's [299 genes \oplus and 325 genes \oplus] which were found to be enriched for GO categories that are associated with gene transcription, negative regulation of apoptosis and vesicle-mediated transport (Table 6.3a) as well as the cell cycle, DNA damage response mechanisms and Golgi-mediated trafficking (Table 6.3b) [APPENDIX TABLE B13].

a) ALL Samples C9-Long v C9-Short \hat{U}_{reg} [Partek® unadjusted p<0.05, FC≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0006355	regulation of transcription, DNA-templated	2.32	50	2.50E-05
2	GO:0045892	negative regulation of transcription, DNA-	2.22	18	7.40E-04
		templated			
3	GO:0043066	negative regulation of apoptotic process	2.00	14	3.30E-03
4	GO:0016192	vesicle-mediated transport	1.71	20	1.40E-03

b) ALL Samples C9-Long v C9-Short Ureg [Partek[®] unadjusted p<0.05, FC≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0007067	mitotic nuclear division	2.84	14	2.40E-04
2	GO:0045841	negative regulation of mitotic metaphase/	1.70	4	9.30E-04
		anaphase transition			
3	GO:0006974	cellular response to DNA damage stimulus	1.51	15	9.90E-03
4	GO:0048193	Golgi vesicle transport	1.30	8	0.011

Table 6.3 DAVID Enrichment of ALL Samples Combined in the ECACC *C90RF72+* Long (≥4yrs) versus Short (<2yrs) Survival Study

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \bar{U}_{reg} - down-regulated, *C9ORF72* - chromosome 9 open reading frame 72, DAVID - <u>D</u>atabase for <u>Annotation, V</u>isualisation and <u>Integrated D</u>iscovery, EASE - enrichment score, ECACC - European Collection of Cell Cultures, FC - fold-change and GO - gene ontology.

6.2.1.2.2 C90RF72+ LongvCtrl and ShortvCtrl Survival

The GeneVenn diagram which is depicted in Figure 6.7 [Partek® unadjusted p<0.05, FC $\geq \pm 1.20$] highlights 1,218 DE transcripts between *C90RF72+* long (\geq 4yrs) survival cases and controls including 742 genes (60.9%) that were significantly up-regulated and 476 genes (39.1%) which were significantly down-regulated. Additionally, 751 DE transcripts were highlighted between the *C90RF72+* short (<2yrs) survival cases and controls including 436 genes (58.1%) that were significantly up-regulated and 315 genes (41.9%) which were significantly down-regulated. Among the transcripts highlighted were 1,007 genes found to be specifically dysregulated in the *C90RF72+* long (\geq 4yrs) survival cases [604 genes $\hat{1}$ and 403 genes $\hat{1}$] and a further 540 genes which were found to be specifically dysregulated in *C90RF72+* short (<2yrs) survival cases [297 genes $\hat{1}$ and 243 genes $\hat{1}$]. Of the 211 commonly shared transcripts that represent 17.3% or 28.1% of the aforementioned gene lists, respectively (Figure 6.7) only one, heat shock 70kDa protein 1A (*HSPA1A*) [C9-Longvctrl $\hat{1}$ 1.44-fold, p<0.05; C9-Shortvctrl $\hat{1}$ 1.33-fold, p<0.05], exhibited opposing directions of change.

Figure 6.7 GeneVenn of ALL Samples Combined in the ECACC C9ORF72+ Long (≥4yrs) versus Short (<2yrs) Survival Study Lists of DE transcripts generated using Partek[®] Genomics Suite[™] software version 6.6 copyright © 2013 (Partek[®] Inc., St Louis, MO, USA). GeneVenn application freely available online at genevenn.sourceforge.net (University of Southern Mississippi, USA) (Pirooznia et al 2007).

Abbreviations: *C9ORF72* (C9) - chromosome 9 open reading frame 72, DE - differentially expressed and ECACC - European Collection of Cell Cultures.

Importation of the *C90RF72+* long (\geq 4yrs) specific gene list (n=1,007) into DAVID returned 998 mapped ID's [598 genes $\hat{1}$ and 400 genes $\hat{1}$] which were found to be enriched for GO categories associated with translation & ribosome biogenesis, gene transcription, RNA processing, response to ROS and regulation of apoptosis (Table 6.4a) in addition to metabolism, solute: cation symporter activity and organisation of the lysosome (Table 6.4b) [APPENDIX TABLE B14].

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0006412	translation	5.52	38	4.30E-11
2	GO:0003743	translation initiation factor activity	4.74	12	3.90E-06
3	GO:0034062	RNA polymerase activity	2.28	7	2.60E-03
4	GO:0044265	cellular macromolecule catabolic process	2.07	39	2.40E-03
5	GO:0004721	phosphoprotein phosphatase activity	2.01	15	1.10E-03
6	GO:0006351	transcription	1.92	103	1.00E-05
7	GO:0043933	macromolecular complex subunit organisation	1.88	40	8.60E-04
8	GO:0006396	RNA processing	1.79	38	1.90E-05
9	GO:0000302	response to reactive oxygen species	1.76	9	2.90E-03
10	GO:0006351	transcription, DNA-dependent	1.75	20	3.10E-03
11	GO:0006119	oxidative phosphorylation	1.62	11	1.30E-03
12	GO:0042254	ribosome biogenesis	1.61	13	5.90E-04
13	GO:0042981	regulation of apoptotic process	1.53	42	2.60E-03
14	GO:0051262	protein tetramerisation	1.38	7	1.50E-03

a) ALL Samples C9-Long Specific û_{reg} [Partek[®] unadjusted p<0.05, FC≥ ±1.20]

b) ALL Samples C9-Long Specific \square_{reg} [Partek[®] unadjusted p<0.05, FC ≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0015923	mannosidase activity	4.30	6	8.80E-06
2	GO:0009311	oligosaccharide metabolic process	3.19	8	3.30E-06
3	GO:0016125	sterol metabolic process	2.87	11	6.00E-05
4	GO:0015293	symporter activity	2.26	10	2.00E-03
5	GO:0009100	glycoprotein metabolic process	2.09	15	1.20E-04
6	GO:0046942	carboxylic acid transport	1.89	10	4.40E-03
7	GO:0006643	membrane lipid metabolic process	1.84	8	1.70E-03
8	GO:0015294	solute:cation symporter activity	1.53	8	3.30E-03
9	GO:0009267	cellular response to starvation	1.42	5	4.60E-03
10	GO:0007040	lysosome organisation	1.32	5	1.80E-03
11	GO:0016052	carbohydrate catabolic process	1.31	7	0.032

Table 6.4 DAVID Enrichment of ALL Samples Combined C9-Long Specific Gene Lists

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \hat{U}_{reg} - down-regulated, C9 - chromosome 9 open reading frame 72, DAVID - <u>D</u>atabase for the <u>A</u>nnotation, <u>V</u>isualisation and <u>I</u>ntegrated <u>D</u>iscovery, EASE - enrichment score, FC - fold-change and GO - gene ontology.

Conversely, importation of the *C90RF72+* short (<2yrs) specific gene list (n=540) returned 535 mapped ID's [294 genes $\hat{1}$ and 241 genes $\hat{1}$] enriched for GO categories associated with DNA metabolism, DNA replication and the cell cycle and regulation

of cellular response to stress (Table 6.5a) as well as cell motility, modulation of the immune response, protein kinase activity, nucleotide binding and organisation of the cytoskeleton (Table 6.5b) [APPENDIX TABLE B15].

a) ALL Samples C9-Short Specific \hat{U}_{reg} [Partek[®] unadjusted p<0.05, FC≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0006259	DNA metabolic process	3.24	22	3.80E-05
2	GO:0006261	DNA-dependent DNA replication	1.65	6	2.00E-03
3	GO:00fv07049	cell cycle	1.53	23	4.30E-03
4	GO:0080135	regulation of cellular response to stress	1.41	7	5.20E-03

b) ALL Samples C9-Short Specific \mathbb{Q}_{reg} [Partek® unadjusted p<0.05, FC≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0051270	regulation of cell motion	2.66	12	2.70E-05
2	GO:0051249	regulation of lymphocyte activation	2.00	9	5.00E-04
3	GO:0002706	regulation of lymphocyte mediated immunity	1.96	5	4.40E-03
4	GO:0031589	cell-substrate adhesion	1.82	7	1.30E-03
5	GO:0032147	activation of protein kinase activity	1.71	8	5.20E-04
6	GO:0030247	polysaccharide binding	1.38	7	0.013
7	GO:0001883	purine nucleoside binding	1.36	30	0.028
8	GO:0007010	cytoskeleton organisation	1.34	12	0.019
9	GO:0002683	negative regulation of immune system process	1.31	7	5.60E-04

Table 6.5 DAVID Enrichment of ALL Samples Combined C9-Short Specific Gene Lists

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \mathbb{Q}_{reg} - down-regulated, C9 - chromosome 9 open reading frame 72, DAVID - <u>D</u>atabase for the <u>A</u>nnotation, <u>V</u>isualisation and <u>I</u>ntegrated <u>D</u>iscovery, EASE - enrichment score, FC - fold-change and GO - gene ontology.

6.2.2 FEMALE Samples

6.2.2.1 Clustering Analysis

A Qlucore Omics Explorer multi-group comparative analysis [ANOVA F-test p<0.05, $FC \ge \pm 1.20$] of female only LCL cases (n=16) and controls (n=12) (Blue) in the ECACC *C90RF72+* long (≥4yrs) (Yellow) versus short (<2yrs) (Pink) survival study (Figure 6.8a) identified 1,216 of 22,011 variables that explain up to 34% of the variance in GEP's generated between patient and control samples along the y-axis of PC1 and 9% or 8%, respectively, of the variance between a fast versus slow disease progression along the x and z-axes of PC2 and PC3.

Two-group comparative analyses, which were also conducted at the 5% significance threshold [ANOVA F-test p<0.05, FC $\geq \pm 1.20$], identified clearly defined genetic sub-

#	ANOVA	Comparison	Eliminated Factor	p-value	Fold	Variables
a)	Multi-Group		'Age'	< 0.05	±1.20	1,216/22,011
b)	Two-Group		'Age'	< 0.05	±1.20	1,038/22,011
c)	Two-Group		'Age'	< 0.05	±1.20	2,028/22,011
d)	Two-Group		'Age'	< 0.05	±1.20	402/22,011

Figure 6.8 Qlucore Omics Explorer Clustering Analysis [ANOVA F-test p<0.05, FC $\geq \pm 1.20$] of FEMALE ONLY Samples in the *C90RF72+* Long ($\geq 4yrs$) versus Short (< 2yrs) Survival Study

Abbreviations: ANOVA - analysis of variance, *C90RF72* - chromosome 9 open reading frame 72 and FC - fold-change.

groups that form distinct clusters on the PCA plots depicted in Figure 6.8b-d. These generated corresponding lists of 1,038 (C9-Long v C9-Short), 2,028 (C9-Long v Ctrl) and 402 (C9-Short v Ctrl) variables, respectively which may explain up to 43% of the variance in GEP's generated between *C90RF72+* LCL's with a long (\geq 4yrs) (Yellow) versus short (<2yrs) (Pink) survival (Figure 6.8b) in addition to 41% of the variance between *C90RF72+* long (\geq 4yrs) survival cases versus controls (Blue) (Figure 6.8c) and a further 34% of the variance between *C90RF72+* short (<2yrs) survival cases versus controls (Figure 6.8d).

6.2.2.2 DAVID Enrichment of Partek® Generated Gene Lists

6.2.2.2.1 C9ORF72+ LongvShort Survival

A Partek[®] Genomics SuiteTM analysis [unadjusted p<0.05, FC $\ge \pm 1.20$] of female only samples conducted at the 5% significance threshold identified 550 DE transcripts in a direct comparison between *C90RF72*+ LCL cases with a long (≥ 4 yrs) versus short (<2yrs) survival including 292 genes (53.1%) which were significantly up-regulated (\hat{u}) and a further 258 genes (46.9%) that were significantly down-regulated (\hat{u}). In DAVID these corresponded to 548 mapped ID's [291 genes \hat{u} and 257 genes \hat{u}] which were found to be enriched for GO categories associated with gene transcription and the induction of apoptosis (Table 6.6a) as well as regulation of the cell cycle, phospholipid biosynthesis and protein N-linked glycosylation (Table 6.6b) [APPENDIX TABLE B16].

a) FEMALE Samples C9-Long v C9-Short ①_{reg} [Partek[®] unadjusted p<0.05, FC≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0006355	regulation of transcription, DNA-templated	2.22	62	5.30E-04
2	GO:0006915	induction of apoptosis	2.21	15	5.50E-04

b)	FEMALE Samp	les C9-Long v	' C9-Short ↓ _{reg}	[Partek [®] unac	djusted p<0	$.05, FC \ge \pm 1.20$
	1	0		L	, ,	/

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0022402	cell cycle process	2.08	18	2.00E-03
2	GO:0008654	phospholipid biosynthesis process	1.75	7	2.80E-03
3	GO:0006487	protein N-linked glycosylation	1.65	5	3.10E-03
4	GO:0010564	regulation of cell cycle process	1.48	7	4.90E-03

Table 6.6 DAVID Enrichment of FEMALE ONLY Samples in the ECACC *C90RF72+* Long (≥4yrs) versus Short (<2yrs) Survival Study

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \bar{U}_{reg} - down-regulated, *C90RF72* - chromosome 9 open reading frame 72, DAVID - <u>D</u>atabase for <u>A</u>nnotation, <u>V</u>isualisation and <u>I</u>ntegrated <u>D</u>iscovery, EASE -

enrichment score, ECACC - European Collection of Cell Cultures, FC - fold-change and GO - gene ontology.

6.2.2.2.2 C90RF72+ LongvCtrl and ShortvCtrl Survival

The GeneVenn diagram which is depicted in Figure 6.9 [Partek[®] unadjusted p<0.05, $FC \ge \pm 1.20$] highlights 1,325 DE transcripts between C9ORF72+ long ($\ge 4yrs$) survival cases and controls including 849 genes (64.1%) that were significantly up-regulated and 476 genes (35.9%) which were significantly down-regulated. Additionally, 212 DE transcripts were highlighted between the C90RF72+ short (<2yrs) survival cases and controls including 151 genes (71.2%) that were significantly up-regulated and 61 genes (28.8%) which were significantly down-regulated. Among the transcripts highlighted were 1,250 genes found to be specifically dysregulated in the C9ORF72+ long (\geq 4yrs) survival cases [787 genes $\hat{1}$ and 463 genes $\bar{1}$] and a further 137 genes which were found to be specifically dysregulated in C9ORF72+ short (<2yrs) survival cases [90 genes $\hat{1}$ and 47 genes \mathbb{Q}]. Commonly shared transcripts (n=75) represent 5.7% or 35.4% of the aforementioned gene lists, respectively and included the stress granule and nucleolar protein, SGNP (alternative name DNAPTP6) [DNAPTP6 (DNA polymerase-transactivated protein 6) C9-Longvctrl 11.45-fold, p<0.05; C9-Shortvctrl [1.62-fold, p<0.01] which was the only transcript to exhibit opposing directions of change on the microarray.

Figure 6.9 GeneVenn of FEMALE ONLY Samples in the ECACC *C90RF72+***Long (≥4yrs) versus Short (<2yrs) Survival Study** Lists of DE transcripts generated using Partek[®] Genomics Suite[™] software version 6.6 copyright © 2013 (Partek[®] Inc., St Louis, MO, USA). GeneVenn application freely available online at genevenn.sourceforge.net (University of Southern Mississippi, USA) (Pirooznia et al 2007).

Abbreviations: *C9ORF72* (C9) - chromosome 9 open reading frame 72, DE - differentially expressed and ECACC - European Collection of Cell Cultures.

Importation of the female *C90RF72+* long (\geq 4yrs) specific gene list (n=1,250) into DAVID returned 1,242 mapped ID's [784 genes Ω and 458 genes J] that were found to be enriched for GO categories associated with the initiation of translation, protein transport/degradation, energy metabolism, ribonucleoprotein complex biogenesis, regulation of the cell cycle, gene transcription and induction of apoptosis (Table 6. 7a) as well as transmembrane transporter activity, protein N-linked glycosylation and homeostasis (Table 6.7b) [APPENDIX TABLE B17].

	-			-	
#	GO term	Functional Category	EASE	Count	p-value
1	GO:0044265	cellular macromolecule catabolic process	4.31	60	3.10E-06
2	GO:0003743	translation initiation factor activity	3.59	13	9.40E-06
3	GO:0019001	guanyl nucleotide binding	3.09	32	5.70E-04
4	GO:0015031	protein transport	2.45	60	1.40E-05
5	GO:0006511	ubiquitin-dependent protein catabolic process	2.14	26	6.40E-05
6	GO:0022613	ribonucleoprotein complex biogenesis	2.09	18	2.40E-03
7	GO:0006351	transcription, DNA-templated	2.06	123	5.20E-04
8	GO:0032268	regulation of cellular protein metabolic process	1.83	34	6.10E-03
9	GO:0006091	generation of precursor metabolites and energy	1.81	28	6.50E-04
10	GO:0019787	small conjugating protein ligase activity	1.77	16	5.50E-03
11	GO:0000278	mitotic cell cycle	1.70	35	3.90E-05
12	GO:0006915	induction of apoptosis	1.57	27	1.90E-03
13	GO:0065003	macromolecular complex assembly	1.40	43	0.011
14	GO:0003899	DNA-directed RNA polymerase activity	1.30	6	0.037

a) FEMALE Samples C9-Long Specific \hat{U}_{reg} [Partek[®] unadjusted p<0.05, FC≥ ±1.20]

b) FEMALE Samples C9-Long Specific \mathbb{Q}_{reg} [Partek[®] unadjusted p<0.05, FC ≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0006487	protein N-linked glycosylation	3.33	9	1.10E-05
2	GO:0015175	neutral amino acid transmembrane transporter	2.85	6	9.90E-05
		activity			
3	GO:0008610	lipid biosynthetic process	2.64	25	2.00E-06
4	GO:0008203	cholesterol metabolic process	1.79	10	4.80E-04
5	GO:0015297	antiporter activity	1.74	7	4.90E-03
6	GO:0009267	cellular response to starvation	1.50	5	7.90E-03
7	GO:0019842	vitamin binding	1.46	11	9.10E-04
8	GO:0042592	homeostatic process	1.44	32	4.10E-03
9	GO:0022890	inorganic cation transmembrane transporter	1.40	5	0.012

Table 6.7 DAVID Enrichment of FEMALE ONLY C9-Long Specific Gene Lists

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \bar{V}_{reg} - down-regulated, C9 - chromosome 9 open reading frame 72, DAVID - <u>D</u>atabase for the <u>A</u>nnotation, <u>V</u>isualisation and <u>I</u>ntegrated <u>D</u>iscovery, EASE - enrichment score, FC - fold-change and GO - gene ontology.

Conversely, importation of the female *C90RF72+* short (<2yrs) specific gene list (n= 137) returned 136 mapped ID's [89 genes \hat{v} and 47 genes \mathbb{J}] which were found not to contain any GO categories that could be considered statistically significant [EASE score \geq 1.30, Benjamini-Hochberg FDR uncorrected p<0.05 (Section 2.3.2.5.4)] with 'Medium' classification stringency defined in the DAVID online functional annotation enrichment analysis described in Section 6.2 [APPENDIX TABLE B18].

6.2.3 MALE Samples

6.2.3.1 Clustering Analysis

A Qlucore Omics Explorer multi-group comparative analysis [ANOVA F-test p<0.05, $FC \ge \pm 1.20$] of male only LCL cases (n=24) and controls (n=21) (Blue) in the ECACC *C90RF72+* long (≥4yrs) (Yellow) versus short (<2yrs) (Pink) survival study (Figure 6.10a) identified 2,410 of 22,011 variables that explain up to 19% of the variance in GEP's generated between patient and control samples along the y-axis of PC1 and a further 17% or 8%, respectively of the variance between a fast versus slow disease progression along the x and z-axes of PC2 and PC3.

Two-group comparative analyses, which were also conducted at the 5% significance threshold [ANOVA F-test p<0.05, FC $\ge \pm 1.20$], identified corresponding lists of 1,376 (C9-Long v C9-Short), 2,131 (C9-Long v Ctrl) and 2,470 (C9-Short v Ctrl) variables, respectively that explain up to 35% of the variance in GEP's generated between the *C90RF72+* LCL's with a long (\ge 4yrs) (Yellow) versus short (<2yrs) (Pink) survival (Figure 6.10b) in addition to 38% of the variance between *C90RF72+* long (\ge 4yrs) survival cases versus control (Blue) (Figure 6.10c) and a further 26% of the variance between *C90RF72+* short (<2yrs) survival cases versus controls (Figure 6.10d).

6.2.3.2 DAVID Enrichment of Partek® Generated Gene Lists

#	ANOVA	Comparison	Eliminated Factor	p-value	Fold	Variables
a)	Multi-Group		'Age'	< 0.05	±1.20	2,410/22,011
b)	Two-Group		'Age'	< 0.05	±1.20	1,376/22,011
c)	Two-Group		'Age'	< 0.05	±1.20	2,131/22,011
d)	Two-Group		'Age'	< 0.05	±1.20	2,470/22,011

Figure 6.10 Qlucore Omics Explorer Clustering Analysis [ANOVA F-test p<0.05, FC $\ge \pm 1.20$] of MALE ONLY Samples in the C90RF72+ Long ($\ge 4yrs$) versus Short (<2yrs) Survival Study

Abbreviations: ANOVA - analysis of variance, *C9ORF72* - chromosome 9 open reading frame 72 and FC - fold-change.

6.2.3.2.1 C9ORF72+ LongvShort Survival

A Partek[®] Genomics SuiteTM analysis conducted at the 5% significance threshold of male only samples identified 1,024 DE transcripts [unadjusted p<0.05, FC $\ge \pm 1.20$] in a direct comparison between the *C90RF72+* LCL cases with a long ($\ge 4yrs$) versus short (<2yrs) survival. These included 551 genes (53.8%) which were significantly up-regulated ($\hat{1}$) and 473 genes (46.2%) that were significantly down-regulated ($\hat{1}$). In DAVID, 1,015 mapped ID's [546 genes $\hat{1}$ and 469 genes $\hat{1}$] were returned which were found to be enriched for GO categories associated with DNA helicase activity, negative regulation of gene transcription, hormone receptor binding and ubiquitinmediated proteolysis (Table 6.8a) as well as aspects of RNA processing/metabolism, Golgi vesicle transport, initiation of translation, response to cellular stress and the modulation of immunity (Table 6.8b) [APPENDIX TABLE B19].

a) MALE Samples C9-Long v C9-Short û_{reg} [Partek[®] unadjusted p<0.05, FC≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0006355	regulation of transcription, DNA-templated	4.27	122	3.30E-09
2	GO:0010629	negative regulation of gene expression	2.47	29	5.30E-04
3	GO:0019941	modification-dependent protein catabolic	2.01	29	3.70E-03
		process			
4	GO:0008026	ATP-dependent helicase activity	1.91	10	2.50E-03
5	GO:0051427	hormone receptor binding	1.50	8	0.016
6	GO:0043933	macromolecular complex subunit organisation	1.49	22	1.30E-03

b) MALE Samples C9-Long v C9-Short \mathbb{Q}_{reg} [Partek[®] unadjusted p<0.05, FC≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0043933	macromolecular complex subunit organisation	2.60	35	4.90E-04
2	GO:0006396	RNA processing	2.39	33	1.80E-05
3	GO:0034660	ncRNA metabolic process	2.20	17	3.70E-04
4	GO:0048193	Golgi vesicle transport	2.01	11	2.30E-03
5	GO:0017076	purine nucleotide binding	1.94	71	9.10E-04
6	GO:0008104	protein localisation	1.68	44	5.70E-05
7	GO:0015780	nucleotide-sugar transport	1.38	3	9.60E-03
8	GO:0050662	coenzyme binding	1.37	11	0.017
9	GO:0016876	ligase activity, forming aminoacyl-tRNA and	1.36	5	0.031
		related compounds			
10	GO:0051028	mRNA transport	1.36	7	0.026
11	GO:033554	cellular response to stress	1.35	25	0.014
12	GO:006446	regulation of translation initiation	1.33	5	0.022
13	GO:0032395	MHC class II receptor activity	1.32	4	0.012

Table 6.8 DAVID Enrichment of MALE ONLY Samples in the ECACC *C90RF72+* Long (≥4yrs) versus Short (<2yrs) Survival Study

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \bar{U}_{reg} - down-regulated, ATP - adenosine triphosphate, *C90RF72* - chromosome 9 open reading frame 72, DAVID - <u>D</u>atabase for <u>Annotation, <u>V</u>isualisation and <u>Integrated D</u>iscovery, EASE - enrichment score, ECACC - European Collection of Cell Cultures,</u>

FC - fold-change, GO - gene ontology, MHC - major histocompatibility complex, mRNA - messenger RNA, ncRNA - non-coding RNA and tRNA - transfer RNA.

6.2.3.2.2 C90RF72+ LongvCtrl and ShortvCtrl Survival

The GeneVenn diagram which is depicted in Figure 6.11 [Partek[®] unadjusted p<0.05, $FC \ge \pm 1.20$] highlights 1,045 DE transcripts between *C90RF72+* long (≥4yrs) survival cases and controls including 705 genes (78.9%) that were significantly up-regulated and 340 genes (21.1%) which were significantly down-regulated. Additionally, 1,067 DE transcripts were highlighted between the *C90RF72+* short (<2yrs) survival cases and controls including 639 genes (59.9%) that were significantly up-regulated and 428 genes (40.1%) which were significantly down-regulated. Among the transcripts highlighted were 894 genes found to be specifically dysregulated in the *C90RF72+* long (≥4yrs) survival cases [609 genes $\hat{1}$ and 285 genes $\hat{1}$] and a further 916 genes that were found to be specifically dysregulated in *C90RF72+* short (<2yrs) survival cases [544 genes $\hat{1}$ and 372 genes $\hat{1}$]. Commonly shared transcripts (n=151), which represent 14.5% or 14.2% of the aforementioned gene lists, respectively included calcium binding protein 1 (*CABP1*) [C9-Longvctrl $\hat{1}$ 1.36-fold, p<0.05; C9-Shortvctrl $\hat{1}$ 1.34-fold, p<0.01] which was the only transcript to exhibit opposing directions of change on the microarray.

Figure 6.11 GeneVenn of MALE ONLY Samples in the ECACC C90RF72+

Long (≥4yrs) versus Short (<2yrs) Survival Study Lists of DE transcripts were generated using Partek[®] Genomics SuiteTM software version 6.6 copyright © 2013 (Partek[®] Inc., St Louis, MO, USA). GeneVenn application freely available online at genevenn.sourceforge.net (University of Southern Mississippi, USA) (Pirooznia et al 2007).

Abbreviations: *C90RF72* (C9) - chromosome 9 open reading frame 72, DE - differentially expressed and ECACC - European Collection of Cell Cultures.

Importation of the male *C90RF72+* long (\geq 4yrs) specific gene list (n=894) into DAVID returned 879 mapped ID's [598 genes Ω and 281 genes J] which were found to be enriched for GO categories associated with structural constituents of the ribosome, GTPase activity, ubiquitin-mediated proteolysis, gene transcription, DNA helicase activity and ncRNA processing (Table 6.9a) as well as Golgi vesicle transport and the modulation of immunity (Table 6.9b) [APPENDIX TABLE B20].

a) MALE Samples C9-Long Specific û_{reg} [Partek[®] unadjusted p<0.05, FC≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0003735	structural constituent of ribosome	4.26	19	3.70E-06
2	GO:0003924	GTPase activity	2.68	19	8.20E-05
3	GO:0030163	protein catabolic process	2.46	35	8.30E-04
4	GO:0003714	transcription corepressor activity	2.41	15	1.40E-04
5	GO:0070035	purine NTP-dependent helicase activity	1.71	9	0.010
6	GO:0034470	ncRNA processing	1.57	13	0.013
7	GO:0034622	cellular macromolecular complex assembly	1.40	20	4.50E-03

b) MALE Samples C9-Long Specific \mathbb{Q}_{reg} [Partek[®] unadjusted p<0.05, FC ≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0048193	Golgi vesicle transport	1.42	7	0.017
2	GO:0032395	MHC class II receptor activity	1.31	3	0.032

Table 6.9 DAVID Enrichment of MALE ONLY C9-Long Specific Gene Lists

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \bar{U}_{reg} - down-regulated, C9 - chromosome 9 open reading frame 72, DAVID - <u>D</u>atabase for the <u>A</u>nnotation, <u>V</u>isualisation and <u>I</u>ntegrated <u>D</u>iscovery, EASE - enrichment score, FC - fold-change, GTPase - guanosine triphosphatase, ncRNA - non-coding RNA and NTP - nucleotide triphosphate.

Conversely, importation of the male *C90RF72+* short (<2yrs) specific gene list (n=9 16) returned 906 mapped ID's [536 genes \hat{v} and 370 genes \mathbb{J}] which were enriched for GO categories associated with ncRNA metabolism, structural constituents of the ribosome, DNA damage response, cellular respiration, unfolded protein binding and mitochondrial release of cytochrome c (Table 6.10a), in addition to, organisation of

the cytoskeleton, cell adhesion, cell junction assembly, GTPase mediated signalling, regulation of cellular component movement and skeletal system development (Table 6.10b) [APPENDIX TABLE B21].

a) MALE Samples C9-Short Specific \hat{T}_{reg} [Partek[®] unadjusted p<0.05, FC≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	G0:0034660	ncRNA metabolic process	4.31	21	6.60E-06
2	GO:0003735	structural constituent of ribosome	3.14	17	1.10E-05
3	GO:0006974	cellular response to DNA damage stimulus	3.12	24	3.10E-04
4	GO:0045333	cellular respiration	1.99	10	1.50E-03
5	GO:0004526	ribonuclease P activity	1.94	4	2.00E-03
6	GO:0051289	protein homotetramerization	1.67	5	5.40E-03
7	GO:0016879	ligase activity, forming carbon-nitrogen bonds	1.53	15	3.80E-03
8	GO:0001836	release of cytochrome c from mitochondria	1.46	4	0.020
9	GO:0010212	response to ionizing radiation	1.38	7	6.30E-03
10	GO:0006396	RNA processing	1.37	34	2.40E-05
11	GO:0007264	small GTPase mediated signal transduction	1.36	16	0.024
12	GO:0051082	unfolded protein binding	1.30	8	0.035

b) MALE Samples C9-Short Specific \mathbb{Q}_{reg} [Partek[®] unadjusted p<0.05, FC ≥ ±1.20]

#	GO term	Functional Category	EASE	Count	p-value
1	GO:0007010	cytoskeleton organisation	5.27	27	5.60E-07
2	GO:0007155	cell adhesion	3.77	32	2.30E-05
3	GO:0051270	regulation of cellular component movement	3.69	17	1.50E-06
4	GO:0031267	small GTPase binding	2.43	9	9.00E-04
5	GO:0030695	GTPase regulator activity	2.17	23	1.90E-05
6	GO:0032147	activation of protein kinase activity	2.05	12	1.60E-05
7	GO:0046983	protein dimerization activity	1.92	21	5.80E-03
8	GO:0031418	L-ascorbic acid binding	1.84	4	7.90E-03
9	GO:0019838	growth factor binding	1.82	9	1.20E-03
10	GO:0009101	glycoprotein biosynthetic process	1.73	10	4.20E-03
11	GO:0016702	oxidoreductase activity, acting on single donors	1.59	6	9.90E-03
		with incorporation of molecular oxygen,			
		incorporation of two atoms of oxygen			
12	GO:0009611	response to wounding	1.56	20	9.20E-03
13	GO:0034329	cell junction assembly	1.55	5	8.60E-03
14	GO:0048567	ectodermal digestive tract morphogenesis	1.47	3	0.016
15	GO:0001883	purine nucleoside binding	1.42	47	6.10E-03
16	GO:0001501	skeletal system development	1.40	15	4.60E-03
17	GO:0031349	positive regulation of defence response	1.36	6	0.015

Table 6.10 DAVID Enrichment of MALE ONLY C9-Short Specific Gene Lists

Abbreviations: # - rank, \hat{U}_{reg} - up-regulated, \bar{U}_{reg} - down-regulated, C9 - chromosome 9 open reading frame 72, DAVID - <u>D</u>atabase for the <u>A</u>nnotation, <u>V</u>isualisation and <u>I</u>ntegrated <u>D</u>iscovery, EASE - enrichment score, FC - fold-change, GTPase - guanosine triphosphatase and ncRNA - non-coding RNA.

6.3 DISCUSSION

In the C90RF72+ long (\geq 4yrs) versus short (<2yrs) survival study there was a slight trend towards a younger age of symptom onset predicting a slower disease course (Table 6.1) [*C90RF72*+ long (≥4yrs) 53.7±12yrs (n=14) and *C90RF72*+ short (<2yrs) 58.4±11yrs (n=26) for all samples combined; unpaired student's t-test p>0.05 (not significant)] which supports the previously published findings of Lee et al (2013a), Magnus et al (2002), Mandrioli et al (2006), Williams et al (2013) and Yoshida et al (1986). A significantly higher percentage of spinal onset cases were apparent in the *C90RF72* + long (\geq 4yrs) survival cohort; consistent with the reports of Louwerse et al (1997), Pupillo et al (2014), Tysnes et al (1994) and Zoccolella et al (2008). Across the C9ORF72+ short (<2yrs) survival cohort males had a similar proportion of spinal (55.6%) and bulbar (22.2%) onset cases in comparison to the wider ALS population (Korner et al 2011) (Section 1.2.1). In contrast, female patients had a considerably greater incidence of bulbar (44.4%) or mixed (33.3%) presentation, which has also been observed elsewhere in the literature (Beghi et al 2007, Chancellor et al 1993, del Aguila et al 2003, Kristensen & Melgaard 1977, Salemi et al 1989, Scotton et al 2012). Other prognostic factors that correlate negatively with survival include EEC (i.e. definite versus probable/suspected ALS), low ALSFRS-R scores [C90RF72+ long (≥4yrs) 38.5±5 (n=14) and *C90RF72+* short (<2yrs) 27.4±13 (n=26) for all samples combined; unpaired student's t-test (p<0.01**)] and a short diagnostic delay (Table 6.1) (Hardiman et al 2011, Kaufmann et al 2005, Lo Coco et al 2007, Louwerse et al 1997, Pupillo et al 2014, Zoccolella et al 2008).

Another interesting observation is that more patients in the *C90RF72+* long (\geq 4yrs) survival cohort had received Riluzole therapy (86.7%) and were taking Vitamin C/E or multivitamin supplements (46.7%) at the time of biosample collection compared to patients in the *C90RF72+* short (<2yrs) survival cohort which had percentages of 77.8% and 22.2%, respectively (Section 1.1.4).

Initially, in an analysis of all samples combined [Partek[®] unadjusted p<0.05, FC $\geq \pm$ 1.20], a direct comparison was drawn between ECACC LCL's carrying the *C90RF72* expanded allele which have a fast (Section 6.1.1.1.2) versus slow (Section 6.1.1.1.3) disease progression, to identify genetic modifiers of survival that may or may not be influenced by the underlying pathogenesis of ALS (Section 6.2.1.2.1) (de Magalhaes et al 2009, Fraser et al 2005, Glass et al 2013, Kwon et al 2010). These included DE

transcripts which were found to be enriched for DAVID returned GO categories that are associated with gene transcription, negative regulation of apoptosis and vesiclemediated transport from the list of up-regulated changes (Table 6.3a) as well as the cell cycle, DNA damage response pathways and Golgi-mediated transport from the list of down-regulated changes (Table 6.3b). Dysregulation of vesicular trafficking in relation to the *C90RF72+* long (\geq 4yrs) survival cases has also been observed in postmortem brain tissue from 30 participants recruited to a human ageing study (Lu et al 2004). A diminished response to DNA damage and the possibility of cell cycle arrest are also interesting findings, especially given prior links between genomic instability and cellular senescence in premature ageing disorders such as Werner's syndrome and Hutchinson-Gilford progeria syndrome (Kudlow et al 2007, Lei et al 2012, Scaffidi et al 2005, Serio 2011).

In a subsequent analysis of C9ORF72+ long (\geq 4yrs) and short (<2yrs) survival cases versus neurologically normal, age and gender matched, healthy controls (n=31) a GeneVenn diagram depicted in Figure 6.7 highlighted many more genetic modifiers of a fast or slow disease progression which were specific to ALS (Section 6.2.1.2.2). These included DE transcripts enriched for GO categories that are associated with RNA processing (Section 5.2.1.3) (also seen to have increased with age in skin cells derived from a large number of female MZ and dizygotic (DZ) twins (n=856) (Glass et al 2013)) and translation or ribosome biogenesis identified previously from the analysis of Chapter 5 (Section 5.2.1.4) in addition to RNA polymerase activity, gene transcription, oxidative phosphorylation, response to ROS (Section 1.2.4.1) and the regulation of apoptosis from the list of up-regulated changes and cellular response to starvation, solute: cation symporter activity, carboxylic acid transport, multiple metabolic pathways as well as organisation of the lysosome from the list of downregulated changes (Table 6.4). Evidence of an elevated response to ROS specifically occurring in relation to the C90RF72+ long (\geq 4yrs) survival cases was a significant finding given the importance of oxidative stress in the neurodegenerative disease process; particularly in instances of SOD1-linked ALS (Section 1.2.5.1.1) (Barber et al 2006, Cluskey & Ramsden 2001) and in view of the well-established free radical theory of ageing (Beckman & Ames 1998, Harman 1956, Hekimi & Guarente 2003, Hughes & Reynolds 2005). Contrastingly, for the C90RF72+ short (<2yrs) survival cases DAVID returned GO categories which were associated with DNA metabolism,

cellular response to stress and the cell cycle from the list of up-regulated changes (Table 6.5a) as well as cell-substrate adhesion, cell motion, protein kinase activity, polysaccharide binding, regulation of the immune response [a noteworthy feature given the potential role for non-cell autonomous mediated toxicity in ALS (Section 1.2.4.6) (Appel et al 2011, Ilieva et al 2009)] and cytoskeletal organisation from the list of down-regulated changes (Table 6.5b). The fact that *C90RF72+* short (<2yrs) survival cases appear to be going into the cell cycle is interesting since it is also a phenomenon that has been discussed in transcriptional profiling of MN's, a disease relevant tissue, isolated from the transgenic SOD1^{G93A} mouse model (Ferraiuolo et al 2007).

In the literature a number of key genetic determinants of survival in ALS have been recorded including vascular endothelial growth factor A (*VEGFA*) (Anand et al 2012, Gupta et al 2011, Vijayalakshmi et al 2014, Wang et al 2007), unc-13 homolog A (*C. elegans*) (*UNC13A*) (Section 1.2.5.1.11) (Chio et al 2013b), zinc finger protein 512B (*ZNF512B*) (Tetsuka et al 2013), activating transcription factor 3 (*ATF3*) (Seijffers et al 2014), kinesin-associated protein 3 (*KIFAP3*) (Landers et al 2009), EPH receptor A4 (*EPHA4*) (Van Hoecke et al 2012) and glutamate receptor, metabotropic 1 (*GRM1*) (Milanese et al 2014). With the exception of *VEGFA* [\$1.28-fold, p<0.05 C9-LongvCtrl and \$1.27-fold, p<0.05 C9-LongvShort], a potent angiogenic factor which has been demonstrated through its activation of the anti-apoptotic PI3K-Akt pathway to delay disease onset and to slow down the rate of progression in the transgenic SOD1^{G93A} mouse, none of the other genes mentioned above were found to be dysregulated in the ECACC LCL's possibly owing, at least in part, to the fact that some or all of these genes may not be expressed in B-lymphocytes (Azzouz et al 2004, Storkebaum et al 2005).

A notable gender imbalance between the *C9ORF72+* long (\geq 4yrs) and short (<2yrs) [M:F ratio 0.67:1 and 2.00:1, respectively (Figure 6.1)] survival cases prompted an independent analysis [Partek[®] unadjusted p<0.05, FC \geq ±1.20] of male (Section 6.2. 3) and female (Section 6.2.2) only samples. In a former, direct comparison between male G₄C₂ repeat carriers which have a fast versus slow disease progression DAVID identified GO categories associated with gene transcription (common to all samples combined), ATP helicase activity and ubiquitin-mediated proteolysis from the list of

277

up-regulated changes (Table 6.8a) in addition to RNA processing, a major pathway implicated in the pathogenesis of a number of neurodegenerative diseases (Section 1.2.4.9) (Anthony & Gallo 2010), ncRNA metabolism, Golgi vesicle transport, mRNA transport/translation, protein localisation and cellular response to stress from the list of down-regulated changes (Table 6.8b). In an identical analysis of female G₄C₂ repeat carriers, DAVID identified GO categories associated with gene transcription and the induction of apoptosis from the list of up-regulated changes (Table 6.6a) as well as the cell cycle (common to all samples combined), phospholipid biosynthesis and protein N-linked glycosylation from the list of down-regulated changes (Table 6.6b). Dysregulation of the cell cycle has also been seen in a meta-analysis of more than 20 ageing studies combining datasets from humans and animal (mouse and rat) models (de Magalhaes et al 2009).

Of the C9ORF72+ long (≥4yrs) specific categories ribosome biogenesis (common to all samples combined), GTPase activity and ncRNA metabolism (opposing direction to above C9-LongvShort analysis) were found to be significantly up-regulated (Table 6.9a) whereas Golgi vesicle transport and major histocompatibility complex (MHC) class II receptor activity were significantly down-regulated in male cases relative to controls (Table 6.9b). In contrast, female C90RF72+ long (\geq 4yrs) specific categories included gene transcription/translation (common to all samples combined), protein transport, ubiquitin-mediated proteolysis, RNP complex biogenesis, the regulation of apoptosis, energy metabolism and the cell cycle (opposing direction to above C9-LongvShort analysis) which were significantly up-regulated (Table 6.7a) as well as cholesterol metabolism, protein N-linked glycosylation, vitamin binding and cellular response to starvation (common to all samples combined) (Table 6.7b) which were significantly down-regulated in relation to controls. Perturbations in the latter were interesting findings in respect to the fact that a higher proportion of C9ORF72+ long $(\geq 4yrs)$ survival cases were taking vitamin C/E or multivitamin supplements (Section 6.1.1.2) and given the connection between poor nutritional status and shortened life expectancy in those patients who develop more severe symptoms of dysarthria and dysphagia during the clinical course of the disease (Scotton et al 2012).

Of the *C9ORF72+* short (<2yrs) specific categories none were found to be enriched for the analysis of the female only samples (Section 6.2.2.2.2). In male cases relative

to controls, DE transcripts associated with ncRNA metabolism, structural constituent of the ribosome and small GTPase mediated signal transduction (i.e. similar to those in the *C90RF72+* long (\geq 4yrs) specific list) along with cellular respiration, response to DNA damage stimulus, RNA processing and mitochondrial release of cytochrome c (Section 1.2.4.8) were identified as being significantly up-regulated (Table 6.10a) whereas the organisation of the cytoskeleton, cell adhesion and activation of protein kinase activity (similar to all samples combined) were found to be significantly down -regulated (Table 6.10b).

The C90RF72+ ALS common lists, represented by the intersection of the GeneVenn diagram depicted in Figures 6.7, 6.9 and 6.11, were also interrogated to determine whether any transcripts of interest occur in opposing directions of change between cases with a fast versus slow disease progression. These included: chaperonin, heat shock 70kDa protein 1A (HSPA1A) [1.44-fold, p<0.05 C9-LongvCtrl and 1.33-fold, p<0.05 C9-ShortvCtrl] from an analysis of all samples combined which is interesting given a potential therapeutic role for Arimoclomol in an ongoing phase II clinical trial (Kalmar et al 2014); neuron specific calcium binding protein 1 (CABP1) [1.36-fold, p<0.05 C9-LongvCtrl and \$1.34-fold, p<0.01 C9-ShortvCtrl] in the male only group, which modulates the activity of inositol 1,4,5-triphosphate receptors (Li et al 2009, Li et al 2013a) and has been shown to be highly expressed in human brain tissue and the retina (Wingard et al 2005) as well as stress granule and nucleolar protein, SGNP [DNAPTP6 (DNA polymerase transactivated protein 6) 11.45-fold, p<0.05 C9-Long vCtrl and \$1.62-fold, p<0.01 C9-ShortvCtrl] from the female only group which is considered important for the regulation of ribosomal biogenesis and translational control in response to OS (Section 1.2.4.1) (Zhu et al 2008).

Overall, similar proportions of up and down-regulated genes (Partek®) [unadjusted p<0.05, FC $\geq \pm 1.20$] or variables (Qlucore) [ANOVA F-test p<0.05, FC $\geq \pm 1.20$] were identified in all three comparisons with the molecular signatures from GEP analyses most likely reflecting a combination of the underlying neurodegenerative processes and transcriptional changes that occur in response to ageing. These may be difficult to dissect apart fully especially since ALS is a late onset disorder in which patients do not typically manifest symptoms of the disease before their sixth or seventh decade (Calvo et al 2014b, Kinsley & Siddique 2001).

Despite the female only samples demonstrating a clearer degree of separation on the PCA plot (Figure 6.8 in comparison to Figures 6.5, 6.6 and 6.10) (i.e. fewer variables having a larger effect size and explaining more of the variance in GEP's along the yaxis of the first principal component) lists of Partek® generated DE transcripts were notably smaller and underpowered to detect biologically enriched GO categories in the DAVID functional annotation clustering analysis tool (lower EASE scores, poor gene counts and weaker p-values with the exception of the *C90RF72+* short (<2yrs) specific changes which failed to return a significant result altogether); possibly due to the limited sample numbers in this group. Not only that, in some instances it has also been difficult to obtain accurate survival data with the dates of onset provided in the local or national databases normally accurate to within 3 to 6 months which partially stems from the insidious nature of the disease (Nzwalo et al 2014, Paganoni et al 2014). In future studies these issues could be addressed by recruiting a larger patient cohort and widening the gap between the thresholds for defining a fast (<12 months) versus slow (>5yrs) progression which was not possible in the scope of this project.

CHAPTER 7: CONCLUDING REMARKS

Since the advent of the Human Genome Project (Watson 1990), launched almost 25 years ago, microarray analysis has become an invaluable tool (Bombard et al 2014, Lohmann et al 2013, Moroi & Heckenlively 2008, Waldman & Terzic 2008) which is paving the way towards a more personalised health care system in the UK and elsewhere. Its technology offers the end user a rapid, high-throughput approach to global GEP (Agostini et al 2012, Wu et al 2012b) that is accurate, reproducible and unbiased. Using a single GeneChip® or array, it has become possible to take a snap shot of the level of gene expression pertaining to a vast number of mRNA targets and/or splice variants within a particular tissue or cell of interest at any given point in time (Sharp et al 2006b). Though the generation of patient specific molecular profiles or gene signatures it is anticipated that clinicians will soon be able to sub-classify complex aetiologies into genetically defined sub-groups which correlate with certain aspects of the phenotypic information available to them; thus providing more informative ways of stratifying diverse patient populations. This aims to improve diagnostic and prognostic decision making, as well as, being able to more reliably predict an individual's response to novel therapeutic or treatment strategies as already demonstrated in respect to paediatric septic shock (Wong et al 2010, Wong et al 2014), I BD (van Lierop et al 2013) and Acute Myeloid Leukemia (Haferlach et al 2010, Tsutsumi et al 2004); a heterogeneous disorder of neoplasms which has led to the invention of the world's first diagnostic DNA chip, the AML-profiler[™] (Skyline Diagnostics, The Netherlands).

The MN's which degenerate in ALS remain inaccessible during life. There are also a number of limitations associated with the use of post-mortem material; not least of all that the GEP's generated will inevitability only reflect the very terminal stages of disease progression (i.e. the point at which the majority of vulnerable neuronal cell populations will have already been lost from the system which makes it difficult to establish cause or effect) (Cooper-Knock et al 2012a, Sharp et al 2006a, Sutherland et al 2011). Therefore, great benefits are to be had in sampling surrogate peripheral tissues that lend themselves to better standardisation of technical procedures. Whole blood, for example, represents a particularly attractive source of RNA, owing to the

longitudinal sampling method it supports and the overall ease with which it can be collected (Burczynski & Dorner 2006). The fact that it interacts with and permeates every other tissue & organ of the mammalian body is suggestive of circulating blood constituting a rich biosensor pool which has the potential to act as a sentinel of the neurodegenerative disease process (Kennedy et al 2008, Pahl 2005). It has become apparent, however, that the sheer abundance of erythrocyte derived alpha and beta haemoglobin transcripts (~70% total RNA) (Winn et al 2010) produces interference on the microarray which masks the detection of other, less abundant transcripts of equal biological importance within the sample (Feezor et al 2004, Wright et al 2008). The initial aim of this project in evaluating, following PAXgene® RNA extraction, the use of two globin reduction strategies, concluded that the Ambion[®] GLOBINClear[™] protocol (Dr Rohini Raman) and NuGEN Ovation® Whole Blood Solution were both highly variable and inefficient, with inconsistent findings reported across identical SALS patient and control samples collected at the same time in separate PAXgene® Blood RNA Collection Tubes. Given these challenges it was hypothesised, therefore, that immortalised EBV-transformed B-lymphocytes (LCL's) which represent a more homogeneous cell population would be advantageous in the detection of robust GE changes that can reliably aid in the sub-classification of disease using a large bank of frozen LCL pellets obtained from the ECACC held at the HPA (Public Health England, UK). In light of a pathogenic non-coding G_4C_2 hexanucleotide repeat expansion, of > 30 copies, having recently been identified in C90RF72 (Renton et al 2011, DeJesus-Hernandez et al 2011), which is now thought to account for up to 43% of FALS and around 7% of SALS cases (Cooper-Knock et al 2012b) (Section 1.2.5.4), it was also of interest to: 1) elucidate further mechanism(s) of neurotoxicity associated with the expansion and 2) determine genetic modifiers of a fast (<2yrs survival) versus slow $(\geq 4yrs survival)$ disease progression in *C90RF72*-related cases of ALS.

Due to time constraints, and various delays in obtaining samples from the National MNDA DNA Bank, along with the relevant and most up-to-date clinical information (e.g. gender, age and site of onset, EEC, ALSFRS-R, Riluzole status and time to death) and mutational screening data, particularly of the *C90RF72* gene, it meant not all of the LCL samples recruited to the original ECACC discovery (Section 4.1.1) and replication (Section 4.1.2) cohorts (n=820) [120-FALS, 500-SALS and 200-CTRL] could

282

be analysed in the scope of this study. Across the LCL's that were processed and had subsequently passed the Affymetrix[®] QC metrics assessed in Expression Console[™] software version 1.3.0.187, there was an overall increase in the level of gene transcription which was observed in respect to C90RF72 (59.3%, n=650/1,096) and non*C90RF72*-related_SALS (63.9%, n=1,148/1,796) [Partek[®] unadjusted p<0.05, FC ≥ ± 1.20] cases compared to a subset of neurologically healthy, age and gender matched, controls. In DAVID, functionally enriched gene ontology (GO) categories included translation which was specific to the C9ORF72 expansion, as well as RNA processing, DNA metabolism, RNP complex biogenesis and regulation of the cell cycle that were found to be a more common feature of the broader ALS phenotype. The differential expression of a number of key validation targets including several C90RF72 binding partners (NUDT21, RPL22, EIF4H, PURA, HNRNPA0/F and FUS) (Section 5.2.4) of the G₄C₂ repeat were subsequently confirmed by qRT-PCR (traditional SYBR[®] Green or IDT Prime Time[®] Mini qPCR Assays) using pooled RNA samples with a RIN score of 7.5 or above, from the microarray plus additional C90RF72+ cases (n=75) and controls (n=35) from the ECACC discovery and replication cohorts.

The C90RF72 gene itself was down-regulated in a subset of the LCL's (Section 5.2.3) (Cooper-Knock et al 2013b); however this could not be replicated across the rest of the cohort. This could, at least partially, be due to the presence of alternative splice variants encoding different protein isoforms (a/b) which exert contradictory effects depending upon the location of the expanded G₄C₂ repeat sequence with respect to exons 1a [Variant I (NM_001256054) full length 481a.a. and Variant II (NM_145005) truncated 222a.a.] and 1b [Variant III (NM_018325) full length 481a.a. (Figure 5.22)]. From the literature it can be speculated that in exon 1b containing transcripts the expansion is situated within the core promotor region which is expected to lead to a significant reduction in its expression whereas, in exon 1a containing transcripts the expansion is known to reside in intron 1 which results in aberrant transcription of the hexanucleotide G₄C₂ repeat (Renton et al 2011, DeJesus-Hernandez et al 2011). On the Human Exon 1.0ST GeneChip® Arrays and by qRT-PCR it was not possible to distinguish between full length transcript Variants I and III (isoform a); thus providing some explanation as to why no overall effect was observed in the LCL's or iPSC derived MN cultures in a subsequent study conducted by Sareen et al (2013).

Whether pathogenicity of the expansion arises from a loss of function (haploinsufficiency) or gain of function mechanism mediated by the formation of toxic RNA foci (Donnelly et al 2013) or RAN translated DPR proteins (Gendron et al 2013b) is not fully understood. However, an up-regulation in the expression of *C90RF72* binding partners of the G_4C_2 repeat and other RNA processing related genes supports a role for RNA toxicity whereby the cells are attempting to compensate for the sequestration of these proteins by aberrantly formed foci in the cytoplasm (Cooper-Knock et al 2014b).

One limitation of the PhD was the technology and software constraints in analysing alternative splicing events that are estimated to affect more than 90% of the human genome (Pan et al 2008, Wang et al 2008). On Human Exon 1.0ST GeneChip® Arrays probeset (exon level) signal intensities are normalised to the mean intensity value for the gene as a whole rather than the overall mRNA levels for all the transcripts on the microarray which is used as an index of the extent to which a particular exon is included or excluded in relation to the global expression of the relevant gene that it represents a constituent part of. This means whilst detailed information regarding the total number of splice variants and the proportion of these variants that contain each of the individual exons is available, the precise manner in which the inclusion or exclusion of one probeset relates to another is lacking (Highley et al 2014). The recent launch of the Transcriptome Analysis Console 2.0 software (Affymetrix® Ltd., UK) is expected to simplify the interpretation of future experiments, along with the release of the Human Transcriptome GeneChip® Array 2.0 which will provide even greater coverage with over six million probes [~150 probes/gene, 10 probes/exon and 4 probes/exon-exon splice junction].

In the ECACC analysis of a fast (<2yrs survival) versus slow (\geq 4yrs survival) disease progression sample sizes were too small to be able to draw meaningful conclusions. Clinical data pointed towards a possible effect of gender which is supported in the literature from manipulation of the murine SOD1^{G93A} mouse model (Alves et al 2011, Cervetto et al 2013, Gunther et al 2014, Heiman-Patterson et al 2005, Naumenko et al 2011, Pan et al 2012); although other factors, such as correlations with expansion length, will need to be considered in conducting future work.

FUTURE WORK

- Due to time constraints it was not feasible to wait for all of the arrays in the ECACC discovery and replication cohorts to be processed before commencing the downstream comparative analyses described in Chapter 5: 'C90RF72 GEP Study' and Chapter 6: 'C90RF72 Long (≥4yrs) versus Short (<2yrs) Survival Study'. However, now that more CEL files have become available it would be of interest to re-run the bioinformatics pipelines using an independent validation cohort in order to confirm the reproducibility of our findings. Further corroboration of the microarray data could come from western blotting, to verify protein level changes, and functional *in vitro* studies using live LCL cultures; although the later would require additional ethical approval to be put in place. Checking to see whether DE or alternatively spliced transcripts detected in the ECACC EBV-transformed B-lymphocytes correlate with those identified from laser capture micro-dissected MN's (i.e. representing the most vulnerable cell population affected by the neurodegenerative disease process) would be an important next step in confirming the utility of peripheral tissues in performing GEP in ALS.
- Re-analyse the exon level data using the Transcriptome Analysis Console (TAC), recently launched by Affymetrix[®] Ltd., UK which aims to simplify the analysis of functional gene networks/pathways and alternative splicing events. Packages are now also available within R [e.g. work carried out by Cooper-Knock et al (2015b) using FIRMA ('finding isoforms using robust multichip analysis') concluded that there was no significant difference in the overall number of alternative splicing events pertaining to the same bank of ECACC LCL's between *C90RF72* and non*C90RF72*-related ALS, however, splicing associated with the G₄C₂ hexanucleotide repeat was found to be less consistent and more prone to errors which correlated with disease severity].
- Where possible, obtain more accurate survival data for the *C90RF72*+ LCL's in the ECACC discovery and replication cohorts. It may be the case that some

285

patients who were still reported to be alive in June 2013 have now passed the threshold for inclusion into the *C9ORF72+* Long (\geq 4yrs) versus Short (<2yrs) Survival Study. Also investigate whether any additional cell lines, which met the necessary selection criteria, have been recruited to the National MNDA DNA Bank since commencing the PhD. If the cohort used in the analysis of Chapter 6 could be expanded in some way then the statistical power of the study could be greatly improved. Numbers depending, we could also consider widening the thresholds to examine, for example, cases with less than twelve months survival versus those with greater than five years survival. Failing that, an alternative approach may be to compare GEP's generated from biosamples collected at the point of symptom onset to those taken later on in the disease course (e.g. after 0-3, 3-6, 6-9, 9-12 and >12 months progression).

REFERENCES

Abdulrahman, G.O., Jnr. 2014. Alzheimer's Disease: Current Trends in Wales. Oman Med J 29: 280-4

Abel, O., et al. 2013. Development of a Smartphone App for a Genetics Website: The Amyotrophic Lateral Sclerosis Online Genetics Database (ALSoD). *JMIR Mhealth Uhealth* 1: e18

Abramzon, Y., et al. 2012. Valosin-Containing Protein (VCP) Mutations in Sporadic Amyotrophic Lateral Sclerosis. *Neurobiol Aging* 33: 2231 e1-31 e6

Agostini, C., et al. 2002. Gene Expression Profile Analysis by DNA Microarrays: A New Approach to Assess Functional Genomics in Diseases. *Sarcoidosis Vasc Diffuse Lung Dis* 19: 5-9

Ahmeti, K.B., et al. 2013. Age of Onset of Amyotrophic Lateral Sclerosis is Modulated by a Locus on 1p34.1. *Neurobiol Aging* 34: 357 e7-19

Ajroud-Driss, S., Siddique, T. 2014. Sporadic and Hereditary Amyotrophic Lateral Sclerosis (ALS). *Biochim Biophys Acta* Advance Online Publication doi:10.1016/j.bbadis.2014.08.010

Akizuki, M., et al. 2013. Optineurin Suppression Causes Neuronal Cell Death via NF-κB Pathway. *J Neurochem* 126: 699-704

Albagha, O.M., et al. 2010. Genome-Wide Association Study Identifies Variants at CSF1, OPTN and TNFRSF11A as Genetic Risk Factors for Paget's Disease of Bone. *Nat Genet* 42: 520-4

Alberio, T., et al. 2013. Parkinson's Disease Plasma Biomarkers: An Automated Literature Analysis

Al-Chalabi, A., et al. 2013. Genetic and Epigenetic Studies of Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler Frontotemporal Degener* 14 Suppl 1: 44-52

Al-Chalabi, A., et al. 2012. The Genetics and Neuropathology of Amyotrophic Lateral Sclerosis. *Acta Neuropathol* 124: 339-52

Al-Chalabi, A., et al. 2010. An Estimate of Amyotrophic Lateral Sclerosis Heritability Using Twin Data. *J Neurol Neurosurg Psychiatry* 81: 1324-6

Al-Chalabi, A., et al. 1998. Recessive Amyotrophic Lateral Sclerosis Families with the D90A SOD1 Mutation Share a Common Founder: Evidence for a Linked Protective Factor. *Hum Mol Genet* 7: 2045-50

Al-Chalabi, A., Lewis, C.M. 2011. Modelling the Effects of Penetrance and Family Size on Rates of Sporadic and Familial Disease. *Hum Hered* 71: 281-8

Alexander, M.D., et al. 2002. "True" Sporadic ALS Associated with a Novel SOD-1 Mutation. *Ann Neurol* 52: 680-3

Ali, K., Morris, H.R. 2014. Parkinson's Disease: Chameleons and Mimics. *Pract Neurol* Advance Online Publication doi:10.1136/practneurol-2014-000849

Alkalaeva, E.Z., et al. 2006. In Vitro Reconstitution of Eukaryotic Translation Reveals Cooperativity between Release Factors eRF1 and eRF3. *Cell* 125: 1125-36

Almeida, S., et al. 2013a. Modeling Key Pathological Features of Frontotemporal Dementia with C9ORF72 Repeat Expansion in iPSC-derived Human Neurons. *Acta Neuropathol* 126: 385-99

Almeida, V., et al. 2013b. Primary Lateral Sclerosis: Predicting Functional Outcome. *Amyotroph Lateral Scler Frontotemporal Degener* 14: 141-5

Al-Saif, A., et al. 2011. A Mutation in Sigma-1 Receptor Causes Juvenile Amyotrophic Lateral Sclerosis. *Ann Neurol* 70: 913-9

Al-Sarraj, S., et al. 2011. p62 Positive, TDP-43 Negative, Neuronal Cytoplasmic and Intranuclear Inclusions in the Cerebellum and Hippocampus Define the Pathology of C90RF72-Linked FTLD and MND/ALS. *Acta Neuropathol* 122: 691-702

Al-Sarraj, S., et al. 2002. Ubiquitin-Only Intraneuronal Inclusion in the Substantia Nigra is a Characteristic Feature of Motor Neurone Disease with Dementia. *Neuropathol Appl Neurobiol* 28: 120-8

Altar, C.A., et al. 2009. Target Identification for CNS Diseases by Transcriptional Profiling. *Neuropsychopharmacology* 34: 18-54

Alves, C.J., et al. 2011. Early Motor and Electrophysiological Changes in Transgenic Mouse Model of Amyotrophic Lateral Sclerosis and Gender Differences on Clinical Outcome. *Brain Res* 1394: 90-104

Amtul, Z., et al. 2002. A Presenilin 1 Mutation Associated with Familial Frontotemporal Dementia Inhibits Gamma-Secretase Cleavage of App and Notch. *Neurobiol Dis* 9: 269-73

Anand, A., et al. 2012. Soluble VEGFR1 (sVEGFR1) as a Novel Marker of Amyotrophic Lateral Sclerosis (ALS) in the North Indian ALS Patients. *Eur J Neurol* 19: 788-92

Andersen, P.M., Al-Chalabi, A. 2011. Clinical Genetics of Amyotrophic Lateral Sclerosis: What Do We Really Know? *Nat Rev Neurol* 7: 603-15

Andersen, P.M., et al. 2007. Good Practice in the Management of Amyotrophic Lateral Sclerosis: Clinical Guidelines. An Evidence-Based Review with Good Practice Points. EALSC Working Group. *Amyotroph Lateral Scler* 8: 195-213

Andersen, P.M., et al. 1996. Autosomal Recessive Adult-Onset Amyotrophic Lateral Sclerosis Associated with Homozygosity for Asp90Ala CuZn-Superoxide Dismutase Mutation. A Clinical and Genealogical Study of 36 Patients. *Brain* 119 (Pt 4): 1153-72

Anheim, M., et al. 2009. SPG11 Spastic Paraplegia. A New Cause of Juvenile Parkinsonism. *J Neurol* 256: 104-8

Antonell, A., et al. 2010. Transcriptome Profile in Williams-Beuren Syndrome Lymphoblast Cells Reveals Gene Pathways Implicated in Glucose Intolerance and Visuospatial Construction Deficits. *Hum Genet* 128: 27-37

Anthony, K., Gallo, J.M. 2010. Aberrant RNA Processing Events in Neurological Disorders. *Brain Res* 1338: 67-77

Appel, S.H., et al. 2011. The Microglial-Motoneuron Dialogue in ALS. Acta Myol 30: 4-8

Arai, T., et al. 2006. TDP-43 is a Component of Ubiquitin-Positive Tau-Negative Inclusions in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. *Biochem Biophys Res Commun* 351: 602-11

Arguelles, S., et al. 2010. Use of Haptoglobin and Transthyretin as Potential Biomarkers for the Preclinical Diagnosis of Parkinson's Disease. *Neurochem Int* 57: 227-34

Armon, C., 2009. Smoking May be Considered an Established Risk Factor for Sporadic ALS. *Neurology* 73: 1693-8

Arnett, M.G., et al. 2007. Pro-NGF, Sortilin, and p75NTR: Potential Mediators of Injury-Induced Apoptosis in the Mouse Dorsal Root Ganglion. *Brain Res* 1183: 32-42

Asaka, T., et al. 2006. Autosomal Recessive Ataxia with Peripheral Neuropathy and Elevated AFP: Novel Mutations in SETX. *Neurology* 66: 1580-1

Ash, P.E., et al. 2013. Unconventional Translation of C90RF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to C9FTD/ALS. *Neuron* 77:639-46

Ashworth, N.L., et al. 2004. Treatment for Spasticity in Amyotrophic Lateral Sclerosis/Motor Neuron Disease. *Cochrane Database Syst Rev* 2: CD004156

Atsumi, G., et al. 1998. Fas-Induced Arachidonic Acid Release is mediated by Ca2+-Independent Phospholipase A2 but not Cytosolic Phospholipase A2, which Undergoes Proteolytic Inactivation. *J Biol Chem* 273: 13870-7

Auer, H., et al. 2009. Expression Profiling Using Affymetrix GeneChip Microarrays. *Methods Mol Biol* 509: 35-46

Avemaria, F., et al. 2011. Mutation in the Senataxin Gene Found in a Patient Affected by Familial ALS with Juvenile Onset and Slow Progression. *Amyotroph Lateral Scler* 12: 228-30

Ayala, Y.M., et al. 2008. Structural Determinants of the Cellular Localization and Shuttling of TDP-43. *J Cell Sci* 121: 3778-85

Ayuso, M.I., et al. 2013. The Translational Repressor eIF4E-Binding Protein 2 (4E-BP2) Correlates with Selective Delayed Neuronal Death After Ischemia. *J Cereb Blood Flow Metab* 33: 1173-81

Azzouz, M., et al. 2004. VEGF Delivery with Retrogradely Transported Lentivector Prolongs Survival in a Mouse ALS Model. *Nature* 429: 413-7

Badner, J.A., Gershon, E.S. 2002. Meta-Analysis of Whole-Genome Linkage Scans of Bipolar Disorder and Schizophrenia. *Mol Psychiatry* 7: 405-11

Baker, M., et al. 2006. Mutations in Progranulin Cause Tau-Negative Frontotemporal Dementia Linked to Chromosome 17. *Nature* 442: 916-9

Banci, L., et al. 2008. SOD1 and Amyotrophic Lateral Sclerosis: Mutations and Oligomerization. *PLoS One 3*: e1677

Banko, J.L., et al. 2005. The Translational Repressor 4E-BP2 is Critical for eIF4F Complex Formation, Synaptic Plasticity, and Memory in the Hippocampus. *J Neurosci* 25: 9581-90

Bannwarth, S., et al. 2014. A Mitochondrial Origin for Frontotemporal Dementia and Amyotrophic Lateral Sclerosis through CHCHD10 Involvement *Brain* 137: 2329-45

Baralle, M., et al. 2013. The Role of TDP-43 in the Pathogenesis of ALS and FTLD. *Biochem Soc Trans* 41: 1536-40

Barber, S.C., et al. 2006. Oxidative Stress in ALS: A Mechanism of Neurodegeneration and a Therapeutic Target. *Biochim Biophys Acta* 1762: 1051-67

Barber, S.C., Shaw, P.J. 2010. Oxidative Stress in ALS: Key Role in Motor Neuron Injury and Therapeutic Target. *Free Radic Biol Med* 48: 629-41

Barker, C.S., et al. 2005. Increased DNA Microarray Hybridization Specificity Using sscDNA Targets. *BMC Genomics* 6: 57

Barmada, S.J., et al. 2014. Autophagy Induction Enhances TDP43 Turnover and Survival in Neuronal ALS Models. *Nat Chem Biol* 10: 677-85

Barson, F.P., et al. 2000. A Neuropsychological Investigation of Dementia in Motor Neurone Disease (MND). *J Neurol Sci* 180: 107-13

Barthelme, D., et al. 2011. Ribosome Recycling Depends on a Mechanistic Link between the FeS Cluster Domain and a Conformational Switch of the Twin-ATPase ABCE1. *Proc Natl Acad Sci U.S.A.* 108: 3228-33

Battistini, S., et al. 2005. SOD1 Mutations in Amyotrophic Lateral Sclerosis. Results from a Multicenter Italian Study. *J Neurol* 252: 782-8

Battle, D.J., et al. 2006. The SMN Complex: An Assembly Machine for RNP's. *Cold Spring Harb Symp Quant Biol* 71: 313-20

Baumer, D., et al. 2014. FTLD-ALS of TDP-43 type and SCA2 in a Family with a Full Ataxin-2 Polyglutamine Expansion. *Acta Neuropathol* 128: 597-604

Baumer, D., et al. 2010. The Role of RNA Processing in the Pathogenesis of Motor Neuron Degeneration. *Expert Rev Mol Med* 12: e21

Bayatti, N., et al. 2014. Comparison of Blood RNA Extraction Methods Used for Gene Expression Profiling in Amyotrophic Lateral Sclerosis. *PLoS One* 9: e87508

BDNF. 1999. A Controlled Trial of Recombinant Methionyl Human BDNF in ALS: The BDNF Study Group (Phase III). *Neurol* 52: 1427-33

Beck, J., et al. 2013. Large C9ORF72 Hexanucleotide Repeat Expansions are seen in Multiple Neurodegenerative Syndromes and are More Frequent than Expected in the UK Population. *Am J Hum Genet* 92: 345-53

Beck, J., et al. 2008. A Distinct Clinical, Neuropsychological and Radiological Phenotype is Associated with Progranulin Gene Mutations in a Large UK Series. *Brain* 131: 706-20

Becker, T., et al. 2012. Structural Basis of Highly Conserved Ribosome Recycling in Eukaryotes and Archaea. *Nature* 482: 501-6

Beckman, K.B., Ames, B.N. 1998. The Free Radical Theory of Aging Matures. Physiol Rev 78: 547-81

Bede, P., et al. 2011. Palliative Care in Amyotrophic Lateral Sclerosis: A Review of Current International Guidelines and Initiatives. *BMJ Support Palliat Care* 1: 343-8

Beghi, E., et al. 2007. Incidence of ALS in Lombardy, Italy. Neurology 68: 141-5

Bekenstein, U., Soreq, H. 2013. Heterogeneous Nuclear Ribonucleoprotein A1 in Health and Neurodegenerative Disease: From Structural Insights to Post-Transcriptional Regulatory Roles. *Mol Cell Neurosci* 56: 436-46

Belzil, V.V., et al. 2014. Characterization of DNA Hypermethylation in the Cerebellum of C9FTD/ALS Patients. *Brain Res* Advance Online Publication doi:10.1016/j.brainres.2014.02.015

Belzil, V.V., et al. 2013. Reduced C90RF72 Gene Expression in C9FTD/ALS is caused by Histone Trimethylation, an Epigenetic Event Detectable in Blood. *Acta Neuropathol* 126: 895-905

Bennett, L., et al. 2003. Interferon and Granulopoiesis Signatures in Systemic Lupus Erythematosus Blood. *J Exp Med* 197: 711-23

Ben-Shem, A., et al. 2011. The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution. *Science* 334: 1524-9

Bensimon, G., et al. 1994. A Controlled Trial of Riluzole in Amyotrophic Lateral Sclerosis: ALS/Riluzole Study Group. *N Engl J Med* 330: 585-91

Benson, D.A., et al. 2014. GenBank. Nucleic Acids Res 42: D32-7

Benton, D. 2002. Selenium Intake, Mood and Other Aspects of Psychological Functioning. *Nutr Neurosci* 5: 363-74

Bergeron, C., et al. 1994. Neurofilament Light and Polyadenylated mRNA Levels are Decreased in Amyotrophic Lateral Sclerosis Motor Neurons. *J Neuropathol Exp Neurol* 53: 221-30

Bersano, A., et al. 2009. Inclusion Body Myopathy and Frontotemporal Dementia Caused by a Novel VCP Mutation. *Neurobiol Aging* 30: 752-8

Beznoskova, P., et al. 2013. Translation Initiation Factors eIF3 and HCR1 Control Translation Termination and Stop Codon Read-Through in Yeast Cells. *PLoS Genet* 9: e1003962

Bhattacharyya, A., et al. 1997. Trk Receptors Function as Rapid Retrograde Signal Carriers in the Adult Nervous System. *J Neurosci* 17: 7007-16

Bittel, D.C., et al. 2007. Whole Genome Microarray Analysis of Gene Expression in Subjects with Fragile X Syndrome. *Genet Med* 9: 464-72

Blair, I.P., et al. 2010. FUS Mutations in Amyotrophic Lateral Sclerosis: Clinical, Pathological, Neurophysiological and Genetic Analysis. *J Neurol Neurosurg Psychiatry* 81: 639-45

Blalock, E.M., et al. 2004. Incipient Alzheimer's Disease: Microarray Correlation Analyses Reveal Major Transcriptional and Tumor Suppressor Responses. *Proc Natl Acad Sci USA* 101: 2173-8

Blanchette, M., et al. 2004. Aligning Multiple Genomic Sequences with the Threaded Blockset Aligner. *Genome Res* 14: 708-15

Blasco, H., et al. 2013. A Rare Motor Neuron Deleterious Missense Mutation in the DPYSL3 (CRMP4) Gene is Associated with ALS. *Hum Mutat* 34: 953-60

Blokhuis, A.M., et al. 2013. Protein Aggregation in Amyotrophic Lateral Sclerosis. *Acta Neuropathol* 125: 777-94

Boeve, B.F., et al. 2012. Characterization of Frontotemporal Dementia and/or Amyotrophic Lateral Sclerosis Associated with the GGGGCC Repeat Expansion in C90RF72. *Brain* 135: 765-83

Boeve, B.F., Hutton, M. 2008. Refining Frontotemporal Dementia with Parkinsonism Linked to Chromosome 17: Introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). *Arch Neurol* 65: 460-4

Boeve, B.F., et al. 2006. Frontotemporal Dementia and Parkinsonism Associated with the IVS1+1G->A Mutation in Progranulin: A Clinicopathologic Study. *Brain* 129: 3103-14

Boguski, M.S., et al. 1993. dbEST--Database for "Expressed Sequence Tags". Nat Genet 4: 332-3

Boguski, M.S., Schuler, G.D. 1995. Establishing a Human Transcript Map. Nat Genet 10: 369-71

Boillee, S., et al. 2006. Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia. *Science* 312: 1389-92

Bombard, Y., et al. 2014. Access to Personalised Medicine: Factors Influencing the Use and Value of Gene Expression Profiling in Breast Cancer Treatment. *Curr Oncol* 21: e426-33

Borchelt, D.R., et al. 1994. Superoxide Dismutase 1 with Mutations Linked to Familial Amyotrophic Lateral Sclerosis Possesses Significant Activity. *Proc Natl Acad Sci USA* 91: 8292-6

Bordet, T., et al. 2007. Identification and Characterization of Cholest-4-En-3-One, Oxime (TRO19622), a Novel Drug Candidate for Amyotrophic Lateral Sclerosis. *J Pharmacol Exp Ther* 322: 709-20

Borovecki, F., et al. 2005. Genome-Wide Expression Profiling of Human Blood Reveals Biomarkers for Huntington's Disease. *Proc Natl Acad Sci USA* 102: 11023-8

Borovecki, F., Habek, M. 2010. Development of Novel Genomic Blood Biomarkers for Neurodegenerative Diseases. *CNS Neurol Disord Drug Targets* 9: 669-78

Borroni, B., et al. 2009. Mutation within TARDBP Leads to Frontotemporal Dementia without Motor Neuron Disease. *Hum Mutat* 30: E974-83

Bourke, S.C., et al. 2006. Effects of Non-Invasive Ventilation on Survival and Quality of Life in Patients with Amyotrophic Lateral Sclerosis: A Randomised Controlled Trial. *Lancet Neurol* 5: 140-7

Bowser, R., et al. 2006. Biomarkers for Amyotrophic Lateral Sclerosis. *Expert Rev Mol Diagn* 6: 387-98

Brain, W.R. 1933. Brain's Diseases of the Nervous System. Oxford: Oxford University Press

Brandon, M.C., et al. 2005. MITOMAP: A Human Mitochondrial Genome Database--2004 Update. *Nucleic Acids Res* 33: D611-3

Brandt, R., et al. 2005. Tau Alteration and Neuronal Degeneration in Tauopathies: Mechanisms and Models. *Biochim Biophys Acta* 1739: 331-54

Brent, M.R. 2008. Steady Progress and Recent Breakthroughs in the Accuracy of Automated Genome Annotation. *Nat Rev Genet* 9: 62-73

Brooks, B.R. 1994. El Escorial World Federation of Neurology Criteria for the Diagnosis of Amyotrophic Lateral Sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical Limits of Amyotrophic Lateral Sclerosis" Workshop Contributors. *J Neurol Sci* 124 Suppl: 96-107

Brooks, B.R., et al. 2000. El Escorial Revisited: Revised Criteria for the Diagnosis of Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler Other Motor Neuron Disord* 1: 293-9

Brotherton, T.E., et al. 2012. Localization of a Toxic Form of Superoxide Dismutase 1 Protein to Pathologically Affected Tissues in Familial ALS. *Proc Natl Acad Sci USA* 109: 5505-10

Broussolle, E., et al. 2012. Figures and Institutions of the Neurological Sciences in Paris from 1800 to 1950. Part III: Neurology. *Rev Neurol (Paris)* 168: 301-20

Bruijn, L.I., et al. 2004. Unraveling the Mechanisms Involved in Motor Neuron Degeneration in ALS. *Annu Rev Neurosci* 27: 723-49

Brunet, A., et al. 1999. Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. *Cell* 96: 857-68

Byrne, S., et al. 2013. Intermediate Repeat Expansion Length in C9ORF72 May be Pathological in Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler Frontotemporal Degener*. Advance Online Publication doi: 10.3109/21678421.2013.838586

Byrne, S., et al. 2011. Rate of Familial Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. *J Neurol Neurosurg Psychiatry* 82: 623-7

Buchman, V.L., et al. 2013. Simultaneous and Independent Detection of C9ORF72 Alleles with Low and High Number of GGGGCC Repeats Using an Optimised Protocol of Southern Blot Hybridization. *Mol Neurodegener* 8: 12

Buratti, E., Baralle, F.E. 2012. TDP-43: Gumming up Neurons through Protein-Protein and Protein-RNA Interactions. *Trends Biochem Sci* 37: 237-47

Buratti, E., et al. 2005. TDP-43 Binds Heterogeneous Nuclear Ribonucleoprotein A/B through its C-Terminal Tail: An Important Region for the Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator Exon 9 Splicing. *J Biol Chem* 280: 37572-84

Buratti, E., et al. 2004. Nuclear Factor TDP-43 Binds to the Polymorphic TG Repeats in CFTR Intron 8 and Causes Skipping of Exon 9: A Functional Link with Disease Penetrance. *Am J Hum Genet* 74: 1322-5

Buratti, E., et al. 2001. Nuclear Factor TDP-43 and SR Proteins Promote In Vitro and In Vivo CFTR Exon 9 Skipping. *EMBO J* 20: 1774-84

Burczynski, M.E., Dorner, A.J. 2006. Transcriptional Profiling of Peripheral Blood Cells in Clinical Pharmacogenomic Studies. *Pharmacogenomics* 7: 187-202

Burrell, J.R., et al. 2011. Motor Neuron Dysfunction in Frontotemporal Dementia. *Brain* 134: 2582-94

Burge, C.B., Karlin, S. 1998. Finding the Genes in Genomic DNA. Curr Opin Struct Biol 8: 346-54

Burge, C.B., Karlin, S. 1997. Prediction of Complete Gene Structures in Human Genomic DNA. *J Mol Biol* 268: 78-94

Bury, J.J., et al. 2015. Optineurin and C9ORF72 Mutations Can Co-Occur in ALS and Optineurin Protein is Present in the TDP-43 Negative Inclusions of C9ORF72-ALS. *Neuropathology*. In Press.

Butler, M.W., et al. 2011. Vitamin D Receptor Gene as a Candidate Gene for Parkinson Disease. *Ann Hum Genet* 75: 201-10

Byrne, S., et al. 2012. Cognitive and Clinical Characteristics of Patients with Amyotrophic Lateral Sclerosis Carrying a C90RF72 Repeat Expansion: A Population-Based Cohort Study. *Lancet Neurol* 11: 232-40

Byrne, S., et al. 2011. Rate of Familial Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. *J Neurol Neurosurg Psychiatry* 82: 623-7

Caliskan, M., et al. 2014. The Effect of Freeze-thaw Cycles on Gene Expression Levels in Lymphoblastoid Cell Lines. *PLoS One* 9: e107166

Calvo, A., et al. 2014a. A De Novo Nonsense Mutation of the FUS Gene in an Apparently Familial Amyotrophic Lateral Sclerosis Case. *Neurobiol Aging* 35: 1513 e7-11

Calvo, A.C., et al. 2014b. Amyotrophic Lateral Sclerosis: A Focus on Disease Progression. *Biomed Res Int* 2014: 925101

Calvo, A.C., et al. 2012. Genetic Biomarkers for ALS Disease in Transgenic SOD1(G93A) Mice. *PLoS One* 7: e32632

Cameron, A., Rosenfeld, J. 2002. Nutritional Issues and Supplements in Amyotrophic Lateral Sclerosis and Other Neurodegenerative Disorders. *Curr Opin Clin Nutr Metab Care* 5: 631-43

Cande, C., et al. 2002. Apoptosis-Inducing Factor (AIF): A Novel Caspase-Independent Death Effector Released from Mitochondria. *Biochimie* 84: 215-22

Carissimi, C., et al. 2006a. Gemin8 is a Novel Component of the Survival Motor Neuron Complex and Functions in Small Nuclear Ribonucleoprotein Assembly. *J Biol Chem* 281: 8126-34

Carissimi, C., et al. 2006b. Gemin8 is Required for the Architecture and Function of the Survival Motor Neuron Complex. *J Biol Chem* 281: 3709-16

Carissimi, C., et al. 2005. Unrip Is a Component of SMN Complexes Active in snRNP Assembly. *FEBS Lett* 579: 2348-54

Cassidy, F., et al. 2007. Genome-Wide Scan of Bipolar Disorder and Investigation of Population Stratification Effects on Linkage: Support for Susceptibility Loci at 4q21, 7q36, 9p21, 12q24, 14q24, and 16p13. *Am J Med Genet B Neuropsychiatr Genet* 144B: 791-801

Castrillo-Viguera, C., et al. 2010. Clinical Significance in the Change of Decline in ALSFRS-R. *Amyotroph Lateral Scler* 11: 178-80

Cedarbaum, J.M., et al. 1999. The ALSFRS-R: A Revised ALS Functional Rating Scale That Incorporates Assessments of Respiratory Function. BDNF ALS Study Group (Phase III). *J Neurol Sci* 169: 13-21

Cerero Lapiedra, R., et al. 2002. Progressive Bulbar Palsy: A Case Report Diagnosed by Lingual Symptoms. *J Oral Pathol Med* 31: 277-9

Cervenakova, L., et al. 2000. Progressive Muscular Atrophy Variant of Familial Amyotrophic Lateral Sclerosis (PMA/ALS). *J Neurol Sci* 177: 124-30

Cervetto, C., et al. 2013. Motor Neuron Dysfunction in a Mouse Model of ALS: Gender-Dependent Effect of P2x7 Antagonism. *Toxicology* 311: 69-77

Chance, P.F., et al. 1998. Linkage of the Gene for an Autosomal Dominant Form of Juvenile Amyotrophic Lateral Sclerosis to Chromosome 9q34. *Am J Hum Genet* 62: 633-40

Chancellor, A.M., et al. 1993. Motor Neuron Disease: A Disease of Old Age. Scott Med J 38: 178-82

Chandran, J., et al. 2007. Alsin and the Molecular Pathways of Amyotrophic Lateral Sclerosis. *Mol Neurobiol* 36: 224-31

Chang, T.Y., et al. 2008. EasyExon--a Java-Based GUI Tool for Processing and Visualization of Affymetrix Exon Array Data. *BMC Bioinformatics* 9: 432

Chao, M.V., et al. 2006. Neurotrophin Signalling in Health and Disease. Clin Sci (Lond) 110: 167-73

Charcot, J.M., Joffroy, A., et al. 1869. Deux cas d'atrophie musculaire progressive. *Arch Physiol Norm Pathol* 2: 744-60

Che, M.X., et al. 2011. Aggregation of the 35-kDa Fragment of TDP-43 Causes Formation of Cytoplasmic Inclusions and Alteration of RNA Processing. *FASEB J* 25: 2344-53

Chen, H.J., et al. 2010. Characterization of the Properties of a Novel Mutation in VAPB in Familial Amyotrophic Lateral Sclerosis. *J Biol Chem* 285: 40266-81

Chen, I.C., et al. 2009. Spinocerebellar Ataxia Type 8 Larger Triplet Expansion Alters Histone Modification and Induces RNA Foci. *BMC Mol Biol* 10: 9

Chen, L.W., et al. 2008. The proNGF-p75NTR-Sortilin Signalling Complex as New Target for the Therapeutic Treatment of Parkinson's Disease. *CNS Neurol Disord Drug Targets* 7: 512-23

Chen, Y., et al. 2013. PFN1 Mutations Are Rare in Han Chinese Populations with Amyotrophic Lateral Sclerosis. *Neurobiol Aging* 34: 1922 e1-5

Chen, Y.Z., et al. 2004. DNA/RNA Helicase Gene Mutations in a Form of Juvenile Amyotrophic Lateral Sclerosis (ALS4). *Am J Hum Genet* 74: 1128-35

Cheng, R., et al. 2006. Genome-Wide Linkage Scan in a Large Bipolar Disorder Sample from the National Institute of Mental Health Genetics Initiative Suggests Putative Loci for Bipolar Disorder, Psychosis, Suicide, and Panic Disorder. *Mol Psychiatry* 11: 252-60

Cheruiyot, A., et al. 2014. Expression of Mutant CHMP2B, an ESCRT-III Component Involved in Frontotemporal Dementia, Causes Eye Deformities Due to Notch Misregulation in Drosophila. *FASEB J* 28: 667-75

Chesi, A., et al. 2013. Exome Sequencing to Identify De Novo Mutations in Sporadic ALS Trios. *Nat Neurosci* 16: 851-5

Chevalier-Larsen, E., Holzbaur, E.L. 2006. Axonal Transport and Neurodegenerative Disease. *Biochim Biophys Acta* 1762: 1094-108

Childs-Disney, J.L., et al. 2013. Induction and Reversal of Myotonic Dystrophy Type 1 Pre-mRNA Splicing Defects by Small Molecules. *Nat Commun* 4: 2044

Chio, A., et al. 2013a. Global Epidemiology of Amyotrophic Lateral Sclerosis: A Systematic Review of the Published Literature. *Neuroepidemiology* 41: 118-30

Chio, A., et al. 2013b. UNC13A Influences Survival in Italian Amyotrophic Lateral Sclerosis Patients: A Population-Based Study. *Neurobiol Aging* 34: 357 e1-5

Chio, A., et al. 2012a. Clinical Characteristics of Patients with Familial Amyotrophic Lateral Sclerosis Carrying the Pathogenic GGGGCC Hexanucleotide Repeat Expansion of C90RF72. *Brain* 135: 784-93

Chio, A., et al. 2012b. Extensive Genetics of ALS: A Population-Based Study in Italy. *Neurology* 79: 1983-9

Chio, A., et al. 2012c. ALS/FTD Phenotype in Two Sardinian Families Carrying Both C90RF72 and TARDBP Mutations. *J Neurol Neurosurg Psychiatry* 83: 730-3

Chio, A., et al. 2011a. Phenotypic Heterogeneity of Amyotrophic Lateral Sclerosis: A Population Based Study. *J Neurol Neurosurg Psychiatry* 82: 740-6

Chio, A., et al. 2011b. A De Novo Missense Mutation of the FUS Gene in a "True" Sporadic ALS Case. *Neurobiol Aging* 32: 553 e23-6

Chio, A., et al. 2010. Amyotrophic Lateral Sclerosis-Frontotemporal Lobar Dementia in 3 Families with p.Ala382Thr TARDBP Mutations. *Arch Neurol* 67: 1002-9

Chio, A., et al. 2009a. Two Italian Kindreds with Familial Amyotrophic Lateral Sclerosis Due to FUS Mutation. *Neurobiol Aging* 30: 1272-5

Chio, A., et al. 2009b. A Two-Stage Genome-Wide Association Study of Sporadic Amyotrophic Lateral Sclerosis. *Hum Mol Genet* 18: 1524-32

Chio, A., et al. 2008. Prevalence of SOD1 Mutations in the Italian ALS Population. *Neurology* 70: 533-7

Chow, C.Y., et al. 2009. Deleterious Variants of FIG4, a Phosphoinositide Phosphatase, in Patients with ALS. *Am J Hum Genet* 84: 85-8

Chow, C.Y., et al. 2007. Mutation of FIG4 Causes Neurodegeneration in the Pale Tremor Mouse and Patients with CMT4J. *Nature* 448: 68-72

Chu, L., et al. 2001. GeneSpring[™]: Tools for Analyzing Microarray Expression Data. *Genome Inform* 12: 227-29

Chung, P.Y., et al. 2010. The Majority of the Genetic Risk for Paget's Disease of Bone Is Explained by Genetic Variants Close to the CSF1, OPTN, TM7SF4 and TNFRSF11A Genes. *Hum Genet* 128: 615-26

Ciura, S., et al. 2013. Loss of Function of C90RF72 Causes Motor Deficits in a Zebrafish Model of Amyotrophic Lateral Sclerosis. *Ann Neurol* 74: 180-7

Cluskey, S., Ramsden, D.B. 2001. Mechanisms of Neurodegeneration in Amyotrophic Lateral Sclerosis. *Mol Pathol* 54: 386-92

Colangelo, V., et al. 2002. Gene Expression Profiling of 12633 Genes in Alzheimer Hippocampal CA1: Transcription and Neurotrophic Factor Down-Regulation and up-Regulation of Apoptotic and Pro-Inflammatory Signaling. *J Neurosci Res* 70: 462-73

Conforti, F.L., et al. 2011. Sporadic Motor Neuron Disease in a Familial Novel SOD1 Mutation: Incomplete Penetrance or Chance Association? *Amyotroph Lateral Scler* 12: 220-2

Cooper-Knock, J., et al. 2015a. The Spectrum of C90RF72-Mediated Neurodegeneration and Amyotrophic Lateral Sclerosis. *Neurotherapeutics* 12: 326-39

Cooper-Knock, J., et al. 2015b. C90RF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis. *PLoS One* 10: e0127376

Cooper-Knock, J., et al. 2014a. The Widening Spectrum of C9ORF72-Related Disease; Genotype/Phenotype Correlations and Potential Modifiers of Clinical Phenotype. *Acta Neuropathol* 127: 333-45

Cooper-Knock, J., et al. 2014b. Sequestration of Multiple RNA Recognition Motif-Containing Proteins by C90RF72 Repeat Expansions. *Brain* 137: 2040-51

Cooper-Knock, J., et al. 2013a. C90RF72 Expansions, Parkinsonism and Parkinson Disease: A Clinicopathologic Study. *Neurology* 81: 808-11

Cooper-Knock, J., et al. 2013b. C90RF72 Transcription in a Frontotemporal Dementia Case with Two Expanded Alleles. *Neurology* 81: 1719-21

Cooper-Knock, J., et al. 2012a. Insights Arising from Gene Expression Profiling in Amyotrophic Lateral Sclerosis. In Amyotrophic Lateral Sclerosis, ed. Maurer, M.H., pp. 41-58. Croatia InTech

Cooper-Knock, J., et al. 2012b. Clinico-Pathological Features in Amyotrophic Lateral Sclerosis with Expansions in C90RF72. *Brain* 135: 751-64

Cooper-Knock, J., et al. 2012c. Gene Expression Profiling in Human Neurodegenerative Disease. *Nat Rev Neurol* 8: 518-30

Copois, V., et al. 2007. Impact of RNA Degradation on Gene Expression Profiles: Assessment of Different Methods to Reliably Determine RNA Quality. *J Biotechnol* 127: 549-59
Coppede, F., et al. 2007. Association of the hOGG1 Ser326Cys Polymorphism with Sporadic Amyotrophic Lateral Sclerosis. *Neurosci Lett* 420: 163-8

Costa-Mallen, P., et al. 2008. The Functional Polymorphism of the Hemoglobin-Binding Protein Haptoglobin Influences Susceptibility to Idiopathic Parkinson's Disease. *Am J Med Genet B Neuropsychiatr Genet* 147B: 216-22

Corbo, M., Hays, A.P. 1992. Peripherin and Neurofilament Protein Coexist in Spinal Spheroids of Motor Neuron Disease. *J Neuropathol Exp Neurol* 51: 531-7

Corcia, P., et al. 2012. Phenotype and Genotype Analysis in Amyotrophic Lateral Sclerosis with TARDBP Gene Mutations. *Neurology* 78: 1519-26

Corona, J.C., et al. 2007. Glutamate Excitotoxicity and Therapeutic Targets for Amyotrophic Lateral Sclerosis. *Expert Opin Ther Targets* 11: 1415-28

Couthouis, J., et al. 2012. Evaluating the Role of the FUS/TLS-Related Gene EWSR1 in Amyotrophic Lateral Sclerosis. *Hum Mol Genet* 21: 2899-911

Couthouis, J., et al. 2011. A Yeast Functional Screen Predicts New Candidate ALS Disease Genes. *Proc Natl Acad Sci USA* 108: 20881-90

Cox, L.E., et al. 2010. Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS). *PLoS One* 5: e9872

Cronin, S., et al. 2009. Screening for Replication of Genome-Wide SNP Associations in Sporadic ALS. *Eur J Hum Genet* 17: 213-8

Cronin, S., et al. 2008. A Genome-Wide Associated Study of Sporadic ALS in a Homogenous Irish Population. *Hum Mol Genet* 17: 768-74

Cruts, M., et al. 2013. Current Insights into the *C90RF72* Repeat Expansion Disease of the FTLD/ALS Spectrum. *Trends Neurosci* 36: 450-9

Cudkowicz, M.E., et al. 1997. Epidemiology of Mutations in Superoxide Dismutase in Amyotrophic Lateral Sclerosis. *Ann Neurol* 41: 210-21

Cuello, P., et al. 1999. Transcription of the Human U2 snRNA Genes Continues Beyond the 3' Box In Vivo. *EMBO J* 18: 2867-77

Dafforn, A., et al. 2004. Linear mRNA Amplification from as Little as 5ng Total RNA for Global Gene Expression Analysis. *Biotechniques* 37: 854-7

Dalma-Weiszhausz, D.D., et al. 2006. The Affymetrix Genechip Platform: An Overview. *Methods Enzymol* 410: 3-28

Dangond, F., et al. 2004. Molecular Signature of Late-Stage Human ALS Revealed by Expression Profiling of Postmortem Spinal Cord Gray Matter. *Physiol Genomics* 16: 229-39

Daoud, H., et al. 2012a. UBQLN2 Mutations Are Rare in French and French-Canadian Amyotrophic Lateral Sclerosis. *Neurobiol Aging* 33: 2230 e1-30 e5

Daoud, H., et al. 2012b. Exome Sequencing Reveals SPG11 Mutations Causing Juvenile ALS. *Neurobiol Aging* 33: 839 e5-9

Daoud, H., et al. 2011. Resequencing of 29 Candidate Genes in Patients with Familial and Sporadic Amyotrophic Lateral Sclerosis. *Arch Neurol* 68: 587-93

Daoud, H., et al. 2010. Analysis of DPP6 and FGGY as Candidate Genes for Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler* 11: 389-91

Daroszewska, A., Ralston, S.H. 2006. Mechanisms of Disease: Genetics of Paget's Disease of Bone and Related Disorders. *Nat Clin Pract Rheumatol* 2: 270-7

Daugaard, M., et al. 2012. LEDGF (p75) Promotes DNA-End Resection and Homologous Recombination. *Nat Struct Mol Biol* 19: 803-10

Daughters, R.S., et al. 2009. RNA Gain-of-Function in Spinocerebellar Ataxia Type 8. *PLoS Genet* 5: e1000600

Debey, S., et al. 2006. A Highly Standardized, Robust, and Cost-Effective Method for Genome-Wide Transcriptome Analysis of Peripheral Blood Applicable to Large-Scale Clinical Trials. *Genomics* 87: 653-64

de Bot, S.T., et al. 2012. Hereditary Spastic Paraplegia Caused by a Mutation in the VCP Gene. *Brain* 135: e223

Debray, S., et al. 2013. Frequency of C90RF72 Repeat Expansions in Amyotrophic Lateral Sclerosis: A Belgian Cohort Study. *Neurobiol Aging* 34: 2890 e7-90 e12

de Carvalho, M., et al. 2007. Clinical Patterns in Progressive Muscular Atrophy (PMA): A Prospective Study. *Amyotroph Lateral Scler* 8: 296-9

De Domenico, P., et al. 1988. Amyotrophic Lateral Sclerosis: An Epidemiological Study in the Province of Messina, Italy, 1976-1985. *Neuroepidemiology* 7: 152-8

DeJesus-Hernandez, M., et al. 2011. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. *Neuron* 72: 245-56

DeJesus-Hernandez, M., et al. 2010. De Novo Truncating FUS Gene Mutation as a Cause of Sporadic Amyotrophic Lateral Sclerosis. *Hum Mutat* 31: E1377-89

de Jong, S.W., et al. 2012. Smoking, Alcohol Consumption, and the Risk of Amyotrophic Lateral Sclerosis: A Population-Based Study. *Am J Epidemiol* 176: 233-9

del Aguila, M.A., et al. 2003. Prognosis in Amyotrophic Lateral Sclerosis: A Population-Based Study. *Neurology* 60: 813-9

de Magalhaes, J.P., et al. 2009. Meta-Analysis of Age-Related Gene Expression Profiles Identifies Common Signatures of Aging. *Bioinformatics* 25: 875-817

Deng, C., et al. 2013a. Neuregulin-1 Signalling and Antipsychotic Treatment: Potential Therapeutic Targets in a Schizophrenia Candidate Signalling Pathway. *Psychopharmacology (Berl)* 226: 201-15

Deng, H.X., et al. 2011. Mutations in UBQLN2 Cause Dominant X-Linked Juvenile and Adult-Onset ALS and ALS/Dementia. *Nature* 477: 211-5

Deng, H.X., et al. 2010. FUS-Immunoreactive Inclusions Are a Common Feature in Sporadic and Non-SOD1 Familial Amyotrophic Lateral Sclerosis. *Ann Neurol* 67: 739-48

Deng, M., et al. 2013b. Genome-Wide Association Analyses in Han Chinese Identify Two New Susceptibility Loci for Amyotrophic Lateral Sclerosis. *Nat Genet* 45: 697-700

Devenney, E. 2014. Frontotemporal Dementia Associated with the *C90RF72* Mutation: A Unique Clinical Profile. *JAMA Neurol* 71: 331-9

Dever, T.E., Green, R. 2012. The Elongation, Termination, and Recycling Phases of Translation in Eukaryotes. *Cold Spring Harb Perspect Biol* 4: a013706

Devon, R.S., et al. 2003. The First Nonsense Mutation in Alsin Results in a Homogeneous Phenotype of Infantile-Onset Ascending Spastic Paralysis with Bulbar Involvement in Two Siblings. *Clin Genet* 64: 210-5

Dickey, C.A., et al. 2003. Selectively Reduced Expression of Synaptic Plasticity-Related Genes in Amyloid Precursor Protein + Presenilin-1 Transgenic Mice. *J Neurosci* 23: 5219-26

Dickson, S.P., et al. 2010. Rare Variants Create Synthetic Genome-Wide Associations. *PLoS Biol* 8: e1000294

Diekstra, F.P., et al. 2012. UNC13A is a Modifier of Survival in Amyotrophic Lateral Sclerosis. *Neurobiol Aging* 33: 630 e3-8

Di Giacomo, V., et al. 2009. Regulation of CREB Activation by p38 Mitogen Activated Protein Kinase During Human Primary Erythroblast Differentiation. *Int J Immunopathol Pharmacol* 22: 679-88

Dion, P.A., et al. 2009. Genetics of Motor Neuron Disorders: New Insights into Pathogenic Mechanisms. *Nat Rev Genet* 10: 769-82

Dmitriev, S.E., et al. 2010. GTP-Independent tRNA Delivery to the Ribosomal P-Site by a Novel Eukaryotic Translation Factor. *J Biol Chem* 285: 26779-87

Dols-Icardo, O., et al. 2014. Characterisation of the Repeat Expansion Size in C90RF72 in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. *Hum Mol Genet* 23: 749-54

Donnelly, C.J., et al. 2013. RNA Toxicity from the ALS/FTD C90RF72 Expansion is Mitigated by Antisense Intervention. *Neuron* 80: 415-28

Downey, T. 2006. Analysis of a Multifactor Microarray Study Using Partek[®] Genomics Solution. *Methods Enzymol* 411: 256-70

Dresen, I.M., et al. 2003. Software Packages for Quantitative Microarray-Based Gene Expression Analysis. *Curr Pharm Biotechnol* 4: 417-37

Dresios, J., et al. 2005. Cold Stress-Induced Protein RBM3 Binds 60S Ribosomal Subunits, Alters MicroRNA Levels, and Enhances Global Protein Synthesis. *Proc Natl Acad Sci USA* 102: 1865-70

Droppelmann, C.A., et al. 2014. RNA Metabolism in ALS: When Normal Processes Become Pathological. *Amyotroph Lateral Scler Frontotemporal Degener* 15: 321-36

Droppelmann, C.A., et al. 2013. Detection of a Novel Frameshift Mutation and Regions with Homozygosis within ARHGEF28 Gene in Familial Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler Frontotemporal Degener* 14: 444-51

Dumeaux, V., et al. 2010. Deciphering Normal Blood Gene Expression Variation--the NOWAC Postgenome Study. *PLoS Genet* 6: e1000873

Dumeaux, V., et al. 2008. Comparison of Globin RNA Processing Methods for Genome-Wide Transcriptome Analysis from Whole Blood. *Biomark Med* 2: 11-21

Dunys, J., et al. 2014. The Transcription Factor X-Box Binding Protein-1 in Neurodegenerative Diseases. *Mol Neurodegener* 9: 35

Duplay, P., et al. 1996. An Activated Epidermal Growth Factor Receptor/Lck Chimera Restores Early T Cell Receptor-Mediated Calcium Response in a CD45-Deficient T Cell Line. *J Biol Chem* 271: 17896-902 Duquette, A., et al. 2005. Mutations in Senataxin Responsible for Quebec Cluster of Ataxia with Neuropathy. *Ann Neurol* 57: 408-14

Duyckaerts, C., et al. 2009. Classification and Basic Pathology of Alzheimer Disease. *Acta Neuropathol* 118: 5-36

Egloff, S., Murphy, S. 2008. Role of the C-Terminal Domain of RNA Polymerase II in Expression of Small Nuclear RNA Genes. *Biochem Soc Trans* 36: 537-9

Ekblom, J., et al. 1994. Reactive Gliosis and Monoamine Oxidase B. J Neural Transm Suppl 41: 253-8

Ekbom, K. 1992. The Man Behind the Syndrome: Jean-Martin Charcot. J Hist Neurosci 1: 39-45

Eklund, A.C., et al. 2006. Replacing cRNA Targets with cDNA Reduces Microarray Cross-Hybridization. *Nat Biotechnol* 24: 1071-3

Elden, A.C., et al. 2010. Ataxin-2 Intermediate-Length Polyglutamine Expansions Are Associated with Increased Risk for ALS. *Nature* 466: 1069-75

Ellgaard, L., Helenius, A. 2003. Quality Control in the Endoplasmic Reticulum. *Nat Rev Mol Cell Biol* 4: 181-91

Emran, F., et al. 2006. A Role for Yin Yang-1 (YY1) in the Assembly of snRNA Transcription Complexes. *Gene* 377: 96-108

Ernsberger, U. 2009. Role of Neurotrophin Signalling in the Differentiation of Neurons from Dorsal Root Ganglia and Sympathetic Ganglia. *Cell Tissue Res* 336: 349-84

Espay, A.J., Litvan, I. 2011. Parkinsonism and Frontotemporal Dementia: The Clinical Overlap. *J Mol Neurosci* 45: 343-9

Etemadifar, M., et al. 2012. Multiple Sclerosis and Amyotrophic Lateral Sclerosis: Is There a Link? *Mult Scler* 18: 902-4

Eymard-Pierre, E., et al. 2006. Novel Missense Mutation in ALS2 Gene Results in Infantile Ascending Hereditary Spastic Paralysis. *Ann Neurol* 59: 976-80

Eymard-Pierre, E., et al. 2002. Infantile-Onset Ascending Hereditary Spastic Paralysis is Associated with Mutations in the Alsin Gene. *Am J Hum Genet* 71: 518-27

Fagiolini, A., et al. 2013. Prevalence, Chronicity, Burden and Borders of Bipolar Disorder. *J Affect Disord* 148: 161-9

Fahed, A.C., et al. 2014. UBQLN2 Mutation Causing Heterogeneous X-Linked Dominant Neurodegeneration. *Ann Neurol* 75: 793-8

Fan, W., et al. 2011. Comparison of Two Methods for Detecting Alternative Splice Variants Using GeneChip® Exon Arrays. *Int J Biomed Sci* 7: 172-80

Fang, F., et al. 2009. Familial Aggregation of Amyotrophic Lateral Sclerosis. Ann Neurol 66: 94-9

Farg, M.A., et al. 2014. *C90RF72*, Implicated in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia, Regulates Endosomal Trafficking. *Hum Mol Genet* 23: 3579-95

Farrero, E., et al. 2005. Survival in Amyotrophic Lateral Sclerosis with Home Mechanical Ventilation: The Impact of Systematic Respiratory Assessment and Bulbar Involvement. *Chest* 127: 2132-8 Feezor, R.J., et al. 2004. Whole Blood and Leukocyte RNA Isolation for Gene Expression Analyses. *Physiol Genomics* 19: 247-54

Feig, L.A. 2011. Regulation of Neuronal Function by Ras-GRF Exchange Factors. *Genes Cancer* 2: 306-19

Feng, D., et al. 2010. Molecular and Structural Insight into proNGF Engagement of p75NTR and Sortilin. *J Mol Biol* 396: 967-84

Ferguson, C.J., et al. 2010. Ptdins(3,5)P2 and Autophagy in Mouse Models of Neurodegeneration. *Autophagy* 6: 170-1

Ferguson, C.J., et al. 2009. Defective Autophagy in Neurons and Astrocytes from Mice Deficient in PI(3,5)P2. *Hum Mol Genet* 18: 4868-78

Fernandez-Gonzalez, A., et al. 2002. Purkinje Cell Degeneration (PCD) Phenotypes Caused by Mutations in the Axotomy-Induced Gene, NNA1. *Science* 295: 1904-6

Fernandez-Santiago, R., et al. 2011. No Evidence of Association of FLJ10986 and ITPR2 with ALS in a Large German Cohort. *Neurobiol Aging* 32: 551 e1-4

Fernandez-Suarez, X.M., Schuster, M.K. 2010. Using the Ensembl Genome Server to Browse Genomic Sequence Data. *Curr Protoc Bioinformatics* Chapter 1: Unit1. 15

Fernandes, S.A., et al. 2013. Oligonucleotide-Based Therapy for FTD/ALS Caused by the Repeat Expansion: A Perspective. *J Nucleic Acids* 2013: 208245

Ferraiuolo, L., et al. 2011. Molecular Pathways of Motor Neuron Injury in Amyotrophic Lateral Sclerosis. *Nat Rev Neurol* 7: 616-30

Ferraiuolo, L., et al. 2007. Microarray Analysis of the Cellular Pathways Involved in the Adaptation to and Progression of Motor Neuron Injury in the SOD1 G93A Mouse Model of Familial ALS. *J Neurosci* 27: 9201-19

Ferrari, R., et al. 2012. Screening for C90RF72 Repeat Expansion in FTLD. *Neurobiol Aging* 33: 1850 e1-11

Field, L.A., et al. 2007. Functional Identity of Genes Detectable in Expression Profiling Assays Following Globin mRNA Reduction of Peripheral Blood Samples. *Clin Biochem* 40: 499-502

Figlewicz, D.A., et al. 1994. Variants of the Heavy Neurofilament Subunit are Associated with the Development of Amyotrophic Lateral Sclerosis. *Hum Mol Genet* 3: 1757-61

Figley, M.D., et al. 2014. Profilin 1 Associates with Stress Granules and ALS-Linked Mutations Alter Stress Granule Dynamics. *J Neurosci* 34: 8083-97

Flicek, P., et al. 2014. Ensembl 2014. Nucleic Acids Res 42: D749-55

Flower, T.R., et al. 2005. Heat Shock Prevents Alpha-Synuclein-Induced Apoptosis in a Yeast Model of Parkinson's Disease. *J Mol Biol* 351: 1081-100

Fogh, I., et al. 2011. No Association of DPP6 with Amyotrophic Lateral Sclerosis in an Italian Population. *Neurobiol Aging* 32: 966-7

Fong, K.Y., et al. 1996. Motor Neuron Disease in Hong Kong Chinese: Epidemiology and Clinical Picture. *Neuroepidemiology* 15: 239-45

Forman, M.S., et al. 2006. Novel Ubiquitin Neuropathology in Frontotemporal Dementia with Valosin-Containing Protein Gene Mutations. *J Neuropathol Exp Neurol* 65: 571-81

Fornai, F., et al. 2008. Autophagy and Amyotrophic Lateral Sclerosis: The Multiple Roles of Lithium. *Autophagy* 4: 527-30

Fortress, A.M., et al. 2011. Cholinergic Degeneration and Alterations in the TrkA and p75NTR Balance as a Result of Pro-NGF Injection into Aged Rats. *J Aging Res* 2011: 460543

Francks, C., et al. 2010. Population-Based Linkage Analysis of Schizophrenia and Bipolar Case-Control Cohorts Identifies a Potential Susceptibility Locus on 19q13. *Mol Psychiatry* 15: 319-25

Frank, R., Hargreaves, R. 2003. Clinical Biomarkers in Drug Discovery and Development. *Nat Rev Drug Discov* 2: 566-80

Fraser, H.B., et al. 2005. Aging and Gene Expression in the Primate Brain. PLoS Biol 3: e274

Fratta, P., et al. 2014. Profilin1 E117G is a Moderate Risk Factor for Amyotrophic Lateral Sclerosis. *J Neurol Neurosurg Psychiatry* 85: 506-8

Fratta, P., et al. 2012. C90RF72 Hexanucleotide Repeat Associated with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Forms RNA G-Quadruplexes. *Sci Rep* 2: 1016

Fullerton, J.M., et al. 2010. Two-Dimensional Genome Scan Identifies Multiple Genetic Interactions in Bipolar Affective Disorder. *Biol Psychiatry* 67: 478-86

Fuse, N., et al. 2004. Molecular Genetic Analysis of Optineurin Gene for Primary Open-Angle and Normal Tension Glaucoma in the Japanese Population. *J Glaucoma* 13: 299-303

Galbussera, A., et al. 2006. Vitamin E Intake and Quality of Life in Amyotrophic Lateral Sclerosis Patients: A Follow-up Case Series Study. *Neurol Sci* 27: 190-3

Gallo, V., et al. 2009. Smoking and Risk for Amyotrophic Lateral Sclerosis: Analysis of the EPIC Cohort. *Ann Neurol.* 65: 378-85

Garcia-Redondo, A., et al. 2013. Analysis of the C9ORF72 Gene in Patients with Amyotrophic Lateral Sclerosis in Spain and Different Populations Worldwide. *Hum Mutat* 34: 79-82

Gardian, G., et al. 2005. Neuroprotective Effects of Phenylbutyrate in the N171-82Q Transgenic Mouse Model of Huntington's Disease. *J Biol Chem* 280: 556-63

Gasparini, L., et al. 2007. Frontotemporal Dementia with Tau Pathology. Neurodegener Dis 4: 236-53

Gassmann, M., et al. 1995. Aberrant Neural and Cardiac Development in Mice Lacking the ErbB4 Neuregulin Receptor. *Nature* 378: 390-4

Gautier, G., et al. 2010. ALS with Respiratory Onset: Clinical Features and Effects of Non-Invasive Ventilation on the Prognosis. *Amyotroph Lateral Scler* 11: 379-82

Gellera, C., et al. 2013. Ubiquilin 2 Mutations in Italian Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. *J Neurol Neurosurg Psychiatry* 84: 183-7

Gendron, T.F., et al. 2013a. Antisense Transcripts of the Expanded C9ORF72 Hexanucleotide Repeat Form Nuclear RNA Foci and Undergo Repeat-Associated Non-ATG Translation in C9FTD/ALS. *Acta Neuropathol* 126: 829-44

Gendron, T.F., et al. 2013b. C9RAN Translation: A Potential Therapeutic Target for the Treatment of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. *Expert Opin Ther Targets* 17: 991-5

Ghanim, M., et al. 2010. CHMP2B Mutations Are Rare in French Families with Frontotemporal Lobar Degeneration. *J Neurol* 257: 2032-6

Ghatak, N.R., et al. 1986. Anterior Horn Changes of Motor Neuron Disease Associated with Demyelinating Radiculopathy. *J Neuropathol Exp Neurol* 45: 385-95

Ghavami, S., et al. 2014. Autophagy and Apoptosis Dysfunction in Neurodegenerative Disorders. *Prog Neurobiol* 112: 24-49

Ghosh, J., et al. 2009. Taurine Prevents Arsenic-Induced Cardiac Oxidative Stress and Apoptotic Damage: Role of NF-kappa B, p38 and JNK MAPK Pathway. *Toxicol Appl Pharmacol* 240: 73-87

Gidaro, T., et al. 2008. An Italian Family with Inclusion-Body Myopathy and Frontotemporal Dementia Due to Mutation in the VCP Gene. *Muscle Nerve* 37: 111-4

Giess, R., et al. 2000. Potential Role of LIF as a Modifier Gene in the Pathogenesis of Amyotrophic Lateral Sclerosis. *Neurology* 54: 1003-5

Gijselinck, I., et al. 2012. A C90RF72 Promoter Repeat Expansion in a Flanders-Belgian Cohort with Disorders of the Frontotemporal Lobar Degeneration-Amyotrophic Lateral Sclerosis Spectrum: A Gene Identification Study. *Lancet Neurol* 11: 54-65

Gillett, A., et al. 2009. Alternative Splicing and Transcriptome Profiling of Experimental Autoimmune Encephalomyelitis Using Genome-Wide Exon Arrays. *PLoS One* 4: e7773

Gitcho, M.A., et al. 2009. VCP Mutations Causing Frontotemporal Lobar Degeneration Disrupt Localization of TDP-43 and Induce Cell Death. *J Biol Chem* 284: 12384-98

Gitcho, M.A., et al. 2008. TDP-43 A315T Mutation in Familial Motor Neuron Disease. *Ann Neurol* 63: 535-8

Gkogkas, C., et al. 2008. VAPB Interacts with and Modulates the Activity of ATF6. *Hum Mol Genet* 17: 1517-26

Gladkevich, A., et al. 2004. Lymphocytes as a Neural Probe: Potential for Studying Psychiatric Disorders. *Prog Neuropsychopharmacol Biol Psychiatry* 28: 559-76

Glatt, S.J., et al. 2005. Comparative Gene Expression Analysis of Blood and Brain Provides Concurrent Validation of SELENBP1 Up-Regulation in Schizophrenia. *Proc Natl Acad Sci USA* 102: 15533-8

Glass, C.K., et al. 2010. Mechanisms Underlying Inflammation in Neurodegeneration. *Cell* 140: 918-34

Glass, D., et al. 2013. Gene Expression Changes with Age in Skin, Adipose Tissue, Blood and Brain. *Genome Biol* 14: R75

Goedert, M., et al. 2012. Frontotemporal Dementia: Implications for Understanding Alzheimer Disease. *Cold Spring Harb Perspect Med* 2: a006254

Gohre, V., et al. 2012. Microtubule-Dependent Membrane Dynamics in Ustilago Maydis: Trafficking and Function of Rab5a-Positive Endosomes. *Commun Integr Biol* 5: 485-90

Golde, T.E., Younkin, S.G. 2001. Presenilins as Therapeutic Targets for the Treatment of Alzheimer's Disease. *Trends Mol Med* 7: 264-9

Goldstein, L.H., Abrahams, S. 2013. Changes in Cognition and Behaviour in Amyotrophic Lateral Sclerosis: Nature of Impairment and Implications for Assessment. *Lancet Neurol* 12: 368-80

Gomes, C., et al. 2010. Mutant Superoxide Dismutase 1 Overexpression in NSC-34 Cells: Effect of Trehalose on Aggregation, TDP-43 Localization and Levels of Co-Expressed Glycoproteins. *Neurosci Lett* 475: 145-9

Gomes Mda, M., Engelhardt, E. 2013. Jean-Martin Charcot, Father of Modern Neurology: An Homage 120 Years after His Death. *Arq Neuropsiquiatr* 71: 815-7

Gomez-Tortosa, E., et al. 2013. C9ORF72 Hexanucleotide Expansions of 20-22 Repeats are Associated with Frontotemporal Deterioration. *Neurology* 80: 366-70

Gonzalez, M.A., et al. 2014. A Novel Mutation in VCP Causes Charcot-Marie-Tooth Type 2 Disease. *Brain* 137: 2897-902

Gonzalez-Perez, P., et al. 2012. Novel Mutation in VCP Gene Causes Atypical Amyotrophic Lateral Sclerosis. *Neurology* 79: 2201-8

Goodall, E.F., et al. 2012. Genetics of Familial Amyotrophic Lateral Sclerosis in Amyotrophic Lateral Sclerosis. In Amyotrophic Lateral Sclerosis, ed. Maurer, M.H., pp. 517-36. Croatia: InTech

Gordon, P.H. 2011. Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis and Management. *CNS Drugs* 25: 1-15

Gordon, P.H., Cheung, Y.K. 2006. Progression Rate of ALSFRS-R at Time of Diagnosis Predicts Survival Time in ALS. *Neurology* 67: 1314-5

Gordon, P.H., et al. 2007. Efficacy of Minocycline in Patients with Amyotrophic Lateral Sclerosis: A Phase III Randomised Trial. *Lancet Neurol* 6: 1045-53

Gordon, P.H., et al. 2006. The Natural History of Primary Lateral Sclerosis. Neurology 66: 647-53

Gordon, P.H., et al. 2003. Amyotrophic Lateral Sclerosis. Sci Aging Knowledge Environ 2003: dn2

Gotkine, M., Argov, Z. 2007. Clinical Differentiation between Primary Lateral Sclerosis and Upper Motor Neuron Predominant Amyotrophic Lateral Sclerosis. *Arch Neurol* 64: 1545

Gotoh, T., et al. 1995. Identification of Rap1 as a Target for the Crk SH3 Domain-Binding Guanine Nucleotide-Releasing Factor C3G. *Mol Cell Biol* 15: 6746-53

Greenway, M.J., et al. 2006. ANG Mutations Segregate with Familial and 'Sporadic' Amyotrophic Lateral Sclerosis. *Nat Genet* 38: 411-3

Gregoriou, M., et al. 1969. Progressive Bulbar Palsy. Dev Med Child Neurol 11: 630-2

Griffiths-Jones, S. 2004. The MicroRNA Registry. *Nucleic Acids Res* 32: D109-11

Groen, E.J., et al. 2010. FUS Mutations in Familial Amyotrophic Lateral Sclerosis in the Netherlands. *Arch Neurol* 67: 224-30

Gros-Louis, F., et al. 2006. Genetics of Familial and Sporadic Amyotrophic Lateral Sclerosis. *Biochim Biophys Acta* 1762: 956-72

Gros-Louis, F., et al. 2004. A Frameshift Deletion in Peripherin Gene Associated with Amyotrophic Lateral Sclerosis. *J Biol Chem* 279: 1757-61

Gros-Louis, F., et al. 2003. An ALS2 Gene Mutation Causes Hereditary Spastic Paraplegia in a Pakistani Kindred. *Ann Neurol* 53: 144-5

Gross, S.S., Brent, M.R. 2006. Using Multiple Alignments to Improve Gene Prediction. *J Comput Biol* 13: 379-93

Grosskreutz, J., et al. 2010. Calcium Dysregulation in Amyotrophic Lateral Sclerosis. *Cell Calcium* 47: 165-74

Grunblatt, E., et al. 2010. Pilot Study: Peripheral Biomarkers for Diagnosing Sporadic Parkinson's Disease. *J Neural Transm* 117: 1387-93

Grunblatt, E., et al. 2004. Gene Expression Profiling of Parkinsonian Substantia Nigra Pars Compacta; Alterations in Ubiquitin-Proteasome, Heat Shock Protein, Iron and Oxidative Stress Regulated Proteins, Cell Adhesion/Cellular Matrix and Vesicle Trafficking Genes. *J Neural Transm* 111: 1543-73

Guidubaldi, A., et al. 2011. Novel Mutations in SPG11 Cause Hereditary Spastic Paraplegia Associated with Early-Onset Levodopa-Responsive Parkinsonism. *Mov Disord* 26: 553-6

Guigo, R. 1998. Assembling Genes from Predicted Exons in Linear Time with Dynamic Programming. *J Comput Biol* 5: 681-702

Gunther, R., et al. 2014. The Rho Kinase Inhibitor Y-27632 Improved Motor Performance in Male SOD1(G93A) Mice. *Front Neurosci* 8: 304

Guo, H., et al. 2003. Increased Expression of the Glial Glutamate Transporter EAAT2 Modulates Excitotoxicity and Delays the Onset but Not the Outcome of ALS in Mice. *Hum Mol Genet* 12: 2519-32

Guo, M., et al. 2010. Functional Expansion of Human tRNA Synthetases Achieved by Structural Inventions. *FEBS Lett* 584: 434-42

Gupta, P.K., et al. 2011. Vascular Endothelial Growth Factor-A (VEGF-A) and Chemokine Ligand-2 (CCL2) in Amyotrophic Lateral Sclerosis (ALS) Patients. *J Neuroinflammation* 8: 47

Guyant-Marechal, L., et al. 2006. Valosin-Containing Protein Gene Mutations: Clinical and Neuropathologic Features. *Neurology* 67: 644-51

Gwinn-Hardy, K., et al. 2000. Spinocerebellar Ataxia Type 2 with Parkinsonism in Ethnic Chinese. *Neurology* 55: 800-5

Gyorffy, B., et al. 2009. Evaluation of Microarray Pre-Processing Algorithms Based on Concordance with RT-PCR in Clinical Samples. *PLoS One* 4: e5645

Gysin, S., et al. 2011. Therapeutic Strategies for Targeting Ras Proteins. Genes Cancer 2: 359-72

Ha, K., et al. 2011. Sequences in PSF/SFPQ Mediate Radioresistance and Recruitment of PSF/SFPQ-Containing Complexes to DNA Damage Sites in Human Cells. *DNA Repair (Amst)* 10: 252-9

Hadano, S., et al. 2007. Molecular and Cellular Function of ALS2/Alsin: Implication of Membrane Dynamics in Neuronal Development and Degeneration. *Neurochem Int* 51: 74-84

Hadano, S., et al. 2001. A Gene Encoding a Putative GTPase Regulator is Mutated in Familial Amyotrophic Lateral Sclerosis 2. *Nat Genet* 29: 166-73

Haferlach, T., et al. 2010. Clinical Utility of Microarray-Based Gene Expression Profiling in the Diagnosis and Subclassification of Leukemia: Report from the International Microarray Innovations in Leukemia Study Group. *J Clin Oncol* 28: 2529-37

Hammer, R.P., Jr., et al. 1979. Degeneration of the Human Betz Cell Due to Amyotrophic Lateral Sclerosis. *Exp Neurol* 63: 336-46

Han, J.H., et al. 2012. The Functional Analysis of the CHMP2B Missense Mutation Associated with Neurodegenerative Diseases in the Endo-Lysosomal Pathway. *Biochem Biophys Res Commun* 421: 544-9

Hanby, M.F., et al. 2011. The Risk to Relatives of Patients with Sporadic Amyotrophic Lateral Sclerosis. *Brain* 134 Pt 12: 3454-7

Hand, C.K., et al. 2003. Mutation Screening of the ALS2 Gene in Sporadic and Familial Amyotrophic Lateral Sclerosis. *Arch Neurol* 60: 1768-71

Hand, C.K., et al. 2002. A Novel Locus for Familial Amyotrophic Lateral Sclerosis, On Chromosome 18q. *Am J Hum Genet* 70: 251-6

Hannan, L.M., et al. 2014. Systematic Review of Non-Invasive Positive Pressure Ventilation for Chronic Respiratory Failure. *Respir Med* 108: 229-43

Hansen, J.J., et al. 2002. Hereditary Spastic Paraplegia SPG13 Is Associated with a Mutation in the Gene Encoding the Mitochondrial Chaperonin Hsp60. *Am J Hum Genet* 70: 1328-32

Hanzlowsky, A., et al. 2006. Co-Expression of Multiple Subunits Enables Recombinant SNAPC Assembly and Function for Transcription by Human RNA Polymerases II and III. *Protein Expr Purif* 48: 215-23

Hardiman, O., et al. 2011. Clinical Diagnosis and Management of Amyotrophic Lateral Sclerosis. *Nat Rev Neurol* 7: 639-49

Harman, D. 1956. Aging: A Theory Based on Free Radical and Radiation Chemistry. *J Gerontol* 11: 298-300

Harms, M.B., et al. 2013. Lack of C90RF72 Coding Mutations Supports a Gain of Function for Repeat Expansions in Amyotrophic Lateral Sclerosis. *Neurbiol Aging* 34: 2234 e13-9

Hartman, A.M., et al. 2015. Background: Microarrays, Expression and Hierarchical Clustering. Available at http://gcat.davidson.edu/DGPB/clust/background (Accessed 14th July 2015)

Hashem, Y., et al. 2013. Structure of the Mammalian Ribosomal 43S Preinitiation Complex Bound to the Scanning Factor DHX29. *Cell* 153: 1108-19

Haubenberger, D., et al. 2005. Inclusion Body Myopathy and Paget Disease is Linked to a Novel Mutation in the VCP Gene. *Neurology* 65: 1304-5

Haugarvoll, K., et al. 2007. The Genetics of Frontotemporal Dementia. Neurol Clin 25: 697-715

Hauser, F., et al. 2006. Design and Validation of a Partial-Genome Microarray for Transcriptional Profiling of the Bradyrhizobium Japonicum Symbiotic Gene Region. *Mol Genet Genomics* 275: 55-67

Hausmann, C.D., Ibba, M. 2008. Aminoacyl-tRNA Synthetase Complexes: Molecular Multitasking Revealed. *FEMS Microbiol Rev* 32: 705-21

Hayashi, T., Su, T.P. 2004. Sigma-1 Receptor Ligands: Potential in the Treatment of Neuropsychiatric Disorders. *CNS Drugs* 18: 269-84

Hayashi, T., Su, T.P. 2003. Sigma-1 Receptors (Sigma(1) Binding Sites) Form Raft-Like Microdomains and Target Lipid Droplets on the Endoplasmic Reticulum: Roles in Endoplasmic Reticulum Lipid Compartmentalization and Export. *J Pharmacol Exp Ther* 306: 718-25

He, F., et al. 2014. TDP-43 Suppresses CGG Repeat-Induced Neurotoxicity through Interactions with HNRNP A2/B1. *Hum Mol Genet* 23: 5036-51

Heath, P.R., et al. 2013. Investigating Cell Death Mechanisms in Amyotrophic Lateral Sclerosis Using Transcriptomics. *Front Cell Neurosci* 7: 259

Heiman-Patterson, T.D., et al. 2005. Background and Gender Effects on Survival in the TgN(SOD1-G93A)1Gur Mouse Model of ALS. *J Neurol Sci* 236: 1-7

Hekimi, S., Guarente, L. 2003. Genetics and the Specificity of the Aging Process. Science 299: 1351-4

Henne, W.M., et al. 2011. The ESCRT Pathway. Dev Cell 21: 77-91

Herzfeld, T., et al. 2009. Maternal Uniparental Heterodisomy with Partial Isodisomy of a Chromosome 2 Carrying a Splice Acceptor Site Mutation (IVS9-2A>T) in ALS2 Causes Infantile-Onset Ascending Spastic Paralysis (IAHSP). *Neurogenetics* 10: 59-64

Hetz, C., et al. 2009. XBP-1 Deficiency in the Nervous System Protects against Amyotrophic Lateral Sclerosis by Increasing Autophagy. *Genes Dev* 23: 2294-306

Hewamadduma, C.A., et al. 2008. Hsp60 is a Rare Cause of Hereditary Spastic Paraparesis, but May Act as a Genetic Modifier. *Neurology* 70: 1717-8

Hewitt, C., et al. 2010. Novel FUS/TLS Mutations and Pathology in Familial and Sporadic Amyotrophic Lateral Sclerosis. *Arch Neurol* 67: 455-61

Hideyama, T., et al. 2012. Profound Downregulation of the RNA Editing Enzyme ADAR2 in ALS Spinal Motor Neurons. *Neurobiol Dis* 45: 1121-8

Highley, J.R., et al. 2014. Loss of Nuclear TDP-43 in ALS Causes Altered Expression of Splicing Machinery and Widespread Dysregulation of RNA Splicing in Motor Neurons. *Neuropathol Appl Neurobiol* 40: 670-85

Hirano, A., et al. 1984. Fine Structural Observations of Neurofilamentous Changes in Amyotrophic Lateral Sclerosis. *J Neuropathol Exp Neurol* 43: 461-70

Ho, L., et al. 2001. Gene Expression Profiling of the Tau Mutant (P301L) Transgenic Mouse Brain. *Neurosci Lett* 310: 1-4

Hockenbery, D., et al. 1990. Bcl-2 is an Inner Mitochondrial Membrane Protein That Blocks Programmed Cell Death. *Nature* 348: 334-6

Holden, N.S., Tacon, C.E. 2011. Principles and Problems of the Electrophoretic Mobility Shift Assay. *J Pharmacol Toxicol Methods* 63: 7-14

Hortobagyi, T., et al. 2011. Optineurin Inclusions Occur in a Minority of TDP-43 Positive ALS and FTLD-TDP Cases and Are Rarely Observed in Other Neurodegenerative Disorders. *Acta Neuropathol* 121: 519-27

Hosler, B.A., et al. 2000. Linkage of Familial Amyotrophic Lateral Sclerosis with Frontotemporal Dementia to Chromosome 9q21-q22

Hu, M.T., et al. 1998. Flail Arm Syndrome: A Distinctive Variant of Amyotrophic Lateral Sclerosis. *J Neurol Neurosurg Psychiatry* 65: 950-1

Hu, W.T., et al. 2011. Biomarkers in Frontotemporal Lobar Degenerations--Progress and Challenges. *Prog Neurobiol* 95: 636-48

Huang, C.H., et al. 2004. Elevated Adrenomedullin mRNA in Lymphoblastoid Cells from Schizophrenic Patients. *Neuroreport* 15: 1443-6

Huang da, W., et al. 2009a. Bioinformatics Enrichment Tools: Paths Towards the Comprehensive Functional Analysis of Large Gene Lists. *Nucleic Acids Res* 37: 1-13

Huang da, W., et al. 2009b. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. *Nat Protoc* 4: 44-57

Huang, X., et al. 2014. Mutation Analysis of Seven Known Glaucoma-Associated Genes in Chinese Patients with Glaucoma. *Invest Ophthalmol Vis Sci* 55: 3594-602

Hubers, A., et al. 2013. Polymerase Chain Reaction and Southern Blot-Based Analysis of the C9ORF72 Hexanucleotide Repeat in Different Motor Neuron Diseases. *Neurobiol Aging.* Advance Online Publication doi: 10.1016/j.neurobiolagin.2013.11.034

Hughes, J.T. 1982. Pathology of Amyotrophic Lateral Sclerosis. Adv Neurol 36: 61-74

Hughes, K.A., Reynolds, R.M. 2005. Evolutionary and Mechanistic Theories of Aging. *Annu Rev Entomol* 50: 421-45

Hughes, T.A., Wiles, C.M. 1998. Neurogenic Dysphagia: The Role of the Neurologist. *J Neurol Neurosurg Psychiatry* 64: 569-72

Huisman, M.H., et al. 2013. Lifetime Physical Activity and the Risk of Amyotrophic Lateral Sclerosis. *J Neurosurg Psychiatry* 84: 976-81

Hunt, D., et al. 2014. Whole Exome Sequencing in Family Trios Reveals De Novo Mutations in PURA as a Cause of Severe Neurodevelopmental Delay and Learning Disability. *J Med Genet* 51: 806-13

Hutton, M., et al. 1998. Association of Missense and 5'-Splice-Site Mutations in Tau with the Inherited Dementia FTDP-17. *Nature* 393: 702-5

Ibba, M., Soll, D. 2000. Aminoacyl-tRNA Synthesis. Annu Rev Biochem 69: 617-50

Iguchi, Y., et al. 2013. Amyotrophic Lateral Sclerosis: An Update on Recent Genetic Insights. *J Neurol* 260: 2917-27

Iida, A., et al. 2011. Replication Analysis of SNPs on 9p21.2 and 19p13.3 with Amyotrophic Lateral Sclerosis in East Asians. *Neurobiol Aging* 32: 757 e13-4

Ilieva, H., et al. 2009. Non-Cell Autonomous Toxicity in Neurodegenerative Disorders: ALS and Beyond. *J Cell Biol* 187: 761-72

Imbert, G., et al. 1996. Cloning of the Gene for Spinocerebellar Ataxia 2 Reveals a Locus with High Sensitivity to Expanded CAG/Glutamine Repeats. *Nat Genet* 14: 285-91

Ince, P.G., et al. 1998. Amyotrophic Lateral Sclerosis Associated with Genetic Abnormalities in the Gene Encoding Cu/Zn Superoxide Dismutase: Molecular Pathology of Five New Cases, and Comparison with Previous Reports and 73 Sporadic Cases of ALS. *J Neuropathol Exp Neurol* 57: 895-904

Ince, P.G., et al. 1996. Familial Amyotrophic Lateral Sclerosis with a Mutation in Exon 4 of the Cu/Zn Superoxide Dismutase Gene: Pathological and Immunocytochemical Changes. *Acta Neuropathol* 92: 395-403

Ingre, C., et al. 2013. A Novel Phosphorylation Site Mutation in Profilin 1 Revealed in a Large Screen of US, Nordic, and German Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Cohorts. *Neurobiol Aging* 34: 1708 e1-6

Iovino, M., et al. 2014. The Novel Mapt Mutation K298E: Mechanisms of Mutant Tau Toxicity, Brain Pathology and Tau Expression in Induced Fibroblast-Derived Neurons. *Acta Neuropathol* 127: 283-95

Irizarry, R.A., et al. 2003. Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. *Biostatistics* 4: 249-64

Irwin, D.J., et al. 2013. Cognitive Decline and Reduced Survival in C9ORF72 Expansion Frontotemporal Degeneration and Amyotrophic Lateral Sclerosis. *J Neurol Neurosurg Psychiatry* 84: 163-9

Ishigaki, S., et al. 2002. Differentially Expressed Genes in Sporadic Amyotrophic Lateral Sclerosis Spinal Cords--Screening by Molecular Indexing and Subsequent cDNA Microarray Analysis. *FEBS Lett* 531: 354-8

Ismail, A., et al. 2013. Concurrence of Multiple Sclerosis and Amyotrophic Lateral Sclerosis in Patients with Hexanucleotide Repeat Expansions of C90RF72. *J Neurol Neurosurg Psychiatry* 84: 79-87

Isaacs, A.M., et al. 2011. Frontotemporal Dementia Caused by CHMP2B Mutations. *Curr Alzheimer Res* 8: 246-51

Jackson, R.J., et al. 2010. The Mechanism of Eukaryotic Translation Initiation and Principles of Its Regulation. *Nat Rev Mol Cell Biol* 1: 113-27

Jacquin, A., et al. 2013. Psychiatric Presentation of Frontotemporal Dementia Associated with Inclusion Body Myopathy Due to the VCP Mutation (R155H) in a French Family. *Case Rep Neurol* 5: 187-94

Jansen, P.H., et al. 1986. A Rapidly Progressive Autosomal Dominant Scapulohumeral Form of Spinal Muscular Atrophy. *Ann Neurol* 20: 538-40

Jiang, H., et al. 2004. Myotonic Dystrophy Type 1 is Associated with Nuclear Foci of Mutant RNA, Sequestration of Muscleblind Proteins and Deregulated Alternative Splicing in Neurons. *Hum Mol Genet* 13: 3079-88

Jiang, Y.M., et al. 2005. Gene Expression Profile of Spinal Motor Neurons in Sporadic Amyotrophic Lateral Sclerosis. *Ann Neurol* 57: 236-51

Jiao, B., et al. 2014. Identification of C9ORF72 Repeat Expansions in Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia in Mainland China. *Neurobiol Aging* 35: 936 e19-22

Joehanes, R., et al. 2012. Gene Expression Analysis of Whole Blood, Peripheral Blood Mononuclear Cells, and Lymphoblastoid Cell Lines from the Framingham Heart Study. *Physiol Genomics* 44: 59-75

Johnson, J.O., et al. 2014. Mutations in the Matrin 3 Gene Cause Familial Amyotrophic Lateral Sclerosis. *Nat Neurosci* 17: 664-6

Johnson, J.O., et al. 2010. Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS. *Neuron* 68: 857-64

Johnston, C.A., et al. 2006. Amyotrophic Lateral Sclerosis in an Urban Setting: A Population Based Study of Inner City London. *J Neurol* 253: 1642-3

Jones, N. 2011. Neurodegenerative Disease. CSF Biomarkers Differentiate between Two Forms of Frontotemporal Lobar Degeneration. *Nat Rev Neurol* 7: 4

Josephs, K.A., et al. 2011. Neuropathological Background of Phenotypical Variability in Frontotemporal Dementia. *Acta Neuropathol* 122: 137-53

Ju, J.S., et al. 2009. Valosin-Containing Protein (VCP) is Required for Autophagy and is Disrupted in VCP Disease. *J Cell Biol* 187: 875-88

Kabashi, E., et al. 2008. TARDBP Mutations in Individuals with Sporadic and Familial Amyotrophic Lateral Sclerosis. *Nat Genet* 40: 572-4

Kachaner, D., et al. 2012. Toward an Integrative View of Optineurin Functions. *Cell Cycle* 11: 2808-18

Kaivorinne, A.L., et al. 2014. Novel TARDBP Sequence Variant and C90RF72 Repeat Expansion in a Family with Frontotemporal Dementia. *Alzheimer Dis Assoc Disord* 28: 190-3

Kaji, R., et al. 2012. ALS-Parkinsonism-Dementia Complex of Kii and Other Related Diseases in Japan. *Parkinsonism Relat Disord* 18 Suppl 1: S190-1

Kakiuchi, C., et al. 2008. Up-Regulation of ADM and SEPX1 in the Lymphoblastoid Cells of Patients in Monozygotic Twins Discordant for Schizophrenia. *Am J Med Genet B Neuropsychiatr Genet* 147B: 557-64

Kakiuchi, C., et al. 2003. Impaired Feedback Regulation of XBP1 as a Genetic Risk Factor for Bipolar Disorder. *Nat Genet* 35: 171-5

Kalmar, B., et al. 2014. The Role of Heat Shock Proteins in Amyotrophic Lateral Sclerosis: The Therapeutic Potential of Arimoclomol. *Pharmacol Ther* 141: 40-54

Kam, S.H., et al. 2012. Peripheral Blood Gene Expression Changes During Allergen Inhalation Challenge in Atopic Asthmatic Individuals. *J Asthma* 49: 219-26

Kamel, F., et al. 2003. Amyotrophic Lateral Sclerosis, Lead, and Genetic Susceptibility: Polymorphisms in the Delta-Aminolevulinic Acid Dehydratase and Vitamin D Receptor Genes. *Environ Health Perspect* 111: 1335-9

Kanekura, K., et al. 2004. Alsin, the Product of ALS2 Gene, Suppresses SOD1 Mutant Neurotoxicity through RhoGEF Domain by Interacting with SOD1 Mutants. *J Biol Chem* 279: 19247-56

Karageorgiou, E., Miller, B.L. 2014. Frontotemporal Lobar Degeneration: A Clinical Approach. *Semin Neurol* 34: 189-201

Karam, C., et al. 2010. The Clinical Course of Progressive Bulbar Palsy. *Amyotroph Lateral Scler* 11: 364-8

Karlsson, J., et al. 2004. Life Span Extension and Reduced Neuronal Death after Weekly Intraventricular Cyclosporin Injections in the G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. *J Neurosurg* 101: 128-37

Karmakar, S., et al. 2010. A Multiprotein Complex Necessary for Both Transcription and DNA Replication at the Beta-Globin Locus. *EMBO J* 29: 3260-71

Karolchik, D., et al. 2014. The UCSC Genome Browser Database: 2014 Update. *Nucleic Acids Res* 42: D764-70

Kasahara, A., Scorrano, L. 2014. Mitochondria: From Cell Death Executioners to Regulators of Cell Differentiation. *Trends Cell Biol* 24: 761-70

Katnik, C., et al. 2006. Sigma-1 Receptor Activation Prevents Intracellular Calcium Dysregulation in Cortical Neurons During in Vitro Ischemia. *J Pharmacol Exp Ther* 319: 1355-65

Kaufmann, P., et al. 2009. Phase II Trial of CoQ10 for ALS Finds Insufficient Evidence to Justify Phase III. *Ann Neurol* 66: 235-44

Kaufmann, P., et al. 2005. The ALSFRSR Predicts Survival Time in an ALS Clinic Population. *Neurology* 64: 38-43

Kawamata, T., et al. 1992. Immunologic Reactions in Amyotrophic Lateral Sclerosis Brain and Spinal Cord Tissue. *Am J Pathol* 140: 691-707

Keep, M., et al. 2001. Intrathecal Cyclosporin Prolongs Survival of Late-Stage ALS Mice. *Brain Res* 894: 327-31

Kelley, B.J., et al. 2009. Prominent Phenotypic Variability Associated with Mutations in Progranulin. *Neurobiol Aging* 30: 739-51

Kenna, K.P., et al. 2013. Delineating the Genetic Heterogeneity of ALS Using Targeted High-Throughput Sequencing. *J Med Genet* 50: 776-83

Kennedy, L., et al. 2008. Hematopoietic Lineage Transcriptome Stability and Representation in Paxgene Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray. *Biomark Insights* 3: 403-17

Kent, W.J., et al. 2003. Evolution's Cauldron: Duplication, Deletion, and Rearrangement in the Mouse and Human Genomes. *Proc Natl Acad Sci USA* 100: 11484-9

Kerman, A., et al. 2010. Amyotrophic Lateral Sclerosis is a Non-Amyloid Disease in Which Extensive Misfolding of SOD1 is Unique to the Familial Form. *Acta Neuropathol* 119: 335-44

Kiaei, M., et al. 2005. Celastrol Blocks Neuronal Cell Death and Extends Life in Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. *Neurodegener Dis* 2: 246-54

Kiaei, M., et al. 2006. Thalidomide and Lenalidomide Extend Survival in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. *J Neurosci* 26: 2467-73

Kieran, D., et al. 2008. Control of Motoneuron Survival by Angiogenin. J Neurosci 28: 14056-61

Kiesler, P., et al. 2010. NF45 and NF90 Regulate HS4-Dependent Interleukin-13 Transcription in T Cells. *J Biol Chem* 285: 8256-67

Kihira, T., et al. 2005. Changes in the Incidence of Amyotrophic Lateral Sclerosis in Wakayama, Japan. *Amyotroph Lateral Scler Other Motor Neuron Disord* 6: 155-63

Kim, H.J., et al. 2013. Mutations in Prion-Like Domains in HNRNPA2B1 and HNRNPA1 Cause Multisystem Proteinopathy and ALS. *Nature* 495: 467-73

Kim, J.S., et al. 2005. Association of Vitamin D Receptor Gene Polymorphism and Parkinson's Disease in Koreans. *J Korean Med Sci* 20: 495-8

Kim, J.Y., et al. 2011. Panaxydol Induces Apoptosis through an Increased Intracellular Calcium Level, Activation of JNK and P38 MAPK and NADPH Oxidase-Dependent Generation of Reactive Oxygen Species. *Apoptosis* 16: 347-58

Kim, M.K., et al. 2010. Identification of SNAPc Subunit Domains that Interact with Specific Nucleotide Positions in the U1 and U6 Gene Promoter. *Mol Cell Biol* 30: 2411-23

Kim, W.K., et al. 2009. Study of 962 Patients Indicates Progressive Muscular Atrophy is a Form of ALS. *Neurology* 73: 1686-92

King, A., et al. 2013. Mixed Tau, TDP-43 and P62 Pathology in FTLD Associated with a C90RF72 Repeat Expansion and p.Ala239Thr MAPT (Tau) Variant. *Acta Neuropathol* 125: 303-10

King, O.D., et al. 2012. The Tip of the Iceberg: RNA-Binding Proteins with Prion-Like Domains in Neurodegenerative Disease. *Brain Res* 1462: 61-80

Kinsley, L., Siddique, T. 2001. Amyotrophic Lateral Sclerosis Overview. In GeneReviews[®], ed. Pagon, R.A., Adam, M.P., Ardinger, H.H., Bird, T.D., Dolan, C.R., Fong, C.T., Smith, R.J.H., Stephens, K. University of Washington, Seattle

Kirby, J., et al. 2013. Lack of Unique Neuropathology in Amyotrophic Lateral Sclerosis Associated with p.K54E Angiogenin (ANG) Mutation. *Neuropathol Appl Neurobiol* 39: 562-71

Kirby, J., et al. 2010. Broad Clinical Phenotypes Associated with TAR-DNA Binding Protein (TARDBP) Mutations in Amyotrophic Lateral Sclerosis. *Neurogenetics* 11: 217-25

Kleizen, B., Braakman, I. 2004. Protein Folding and Quality Control in the Endoplasmic Reticulum. *Curr Opin Cell Biol* 16: 343-9

Klinge, S., et al. 2011. Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6. *Science* 334: 941-8

Klucken, J., et al. 2004. Hsp70 Reduces Alpha-Synuclein Aggregation and Toxicity. *J Biol Chem* 279: 25497-502

Kogelnik, A.M., et al. 1996. MITOMAP: A Human Mitochondrial Genome Database. *Nucleic Acids Res* 24: 177-9

Kohli, M.A., et al. 2013. Repeat Expansions in the C9ORF72 Gene Contribute to Alzheimer's Disease in Caucasians. *Neurobiol Aging* 34: 1519 e5-12

Kollewe, K., et al. 2008. ALSFRS-R Score and Its Ratio: A Useful Predictor for ALS-Progression. J Neurol Sci 275: 69-73

Kong, Q., et al. 2014. Small-Molecule Activator of Glutamate Transporter EAAT2 Translation Provides Neuroprotection. *J Clin Invest* 124: 1255-67

Konno, T., et al. 2013. Japanese Amyotrophic Lateral Sclerosis Patients with GGGGCC Hexanucleotide Repeat Expansion in C9ORF72. *J Neurol Neurosurg Psychiatry* 84: 398-401

Koppers, M., et al. 2013. Screening for Rare Variants in the Coding Region of ALS-Associated Genes at 9p21.2 and 19p13.3. *Neurobiol Aging* 34: 1518 e5-7

Korac, J., et al. 2013. Ubiquitin-Independent Function of Optineurin in Autophagic Clearance of Protein Aggregates. *J Cell Sci* 126: 580-92

Korner, S., et al. 2011. Onset and Spreading Patterns of Upper and Lower Motor Neuron Symptoms in Amyotrophic Lateral Sclerosis. *Muscle Nerve* 43: 636-42

Kovacs, G.G., et al. 2009. TARDBP Variation Associated with Frontotemporal Dementia, Supranuclear Gaze Palsy, and Chorea. *Mov Disord* 24: 1843-7

Krietsch, J., et al. 2012. PARP Activation Regulates the RNA-Binding Protein NONO in the DNA Damage Response to DNA Double-Strand Breaks. *Nucleic Acids Res* 40: 10287-301

Kristensen, O., Melgaard, B. 1977. Motor Neuron Disease. Prognosis and Epidemiology. *Acta Neurol Scand* 56: 299-308

Kudlow, B.A., et al. 2007. Werner and Hutchinson-Gilford Progeria Syndromes: Mechanistic Basis of Human Progeroid Disease. *Nat Rev Mol Cell Biol* 8: 394-404

Kudo, L.C., et al. 2010. Integrative Gene-Tissue Microarray-Based Approach for Identification of Human Disease Biomarkers: Application to Amyotrophic Lateral Sclerosis. *Hum Mol Genet* 19: 3233-53

Kuhle, J., et al. 2009. Increased Levels of Inflammatory Chemokines in Amyotrophic Lateral Sclerosis. *Eur J Neurol* 16: 771-4

Kuhn, R.M., et al. 2013. The UCSC Genome Browser and Associated Tools. *Brief Bioinform* 14: 144-61

Kuhnlein, P., et al. 2008a. Diagnosis and Treatment of Bulbar Symptoms in Amyotrophic Lateral Sclerosis. *Nat Clin Pract Neurol* 4: 366-74

Kuhnlein, P., et al. 2008b. Two German Kindreds with Familial Amyotrophic Lateral Sclerosis Due to TARDBP Mutations. *Arch Neurol* 65: 1185-9

Kuipers-Upmeijer, J., et al. 2001. Primary Lateral Sclerosis: Clinical, Neurophysiological, and Magnetic Resonance Findings. *J Neurol Neurosurg Psychiatry* 71: 615-20

Kumar, D.R., et al. 2011. Jean-Martin Charcot: The Father of Neurology. Clin Med Res 9: 46-9

Kumar, R., et al. 2008. CBFA2T3-ZNF652 Corepressor Complex Regulates Transcription of the E-Box Gene HEB. *J Biol Chem* 283: 19026-38

Kuranaga, E. 2012. Beyond Apoptosis: Caspase Regulatory Mechanisms and Functions in Vivo. *Genes Cells* 17: 83-97

Kwiatkowski, T.J., Jr., et al. 2009. Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis. *Science* 323: 1205-8

Kwee, L.C., et al. 2012. A High-Density Genome-Wide Association Screen of Sporadic ALS in US Veterans. *PLoS One* 7: e32768

Kwon, J., et al. 2010. Gerontome: A Web-Based Database Server for Aging-Related Genes and Analysis Pipelines. *BMC Genomics* 11 Suppl 4: S20

Laaksovirta, H., et al. 2010. Chromosome 9p21 in Amyotrophic Lateral Sclerosis in Finland: A Genome-Wide Association Study. *Lancet Neurol* 9: 978-85

Laffita-Mesa, J.M., et al. 2013. De Novo Mutations in Ataxin-2 Gene and ALS Risk. *PLoS One* 8: e70560

Lagier-Tourenne, C., et al. 2012. Divergent Roles of ALS-Linked Proteins FUS/TLS and TDP-43 Intersect in Processing Long Pre-mRNAs. *Nat Neurosci* 15: 1488-97

Lagier-Tourenne, C., et al. 2010. TDP-43 and FUS/TLS: Emerging Roles in RNA Processing and Neurodegeneration. *Hum Mol Genet* 19: R46-64

Lai, C., et al. 2006. Amyotrophic Lateral Sclerosis 2-Deficiency Leads to Neuronal Degeneration in Amyotrophic Lateral Sclerosis through Altered AMPA Receptor Trafficking. *J Neurosci* 26: 11798-806

Lambrechts, D., et al. 2003. VEGF is a Modifier of Amyotrophic Lateral Sclerosis in Mice and Humans and Protects Motoneurons against Ischemic Death. *Nat Genet* 34: 383-94

Landers, J.E., et al. 2009. Reduced Expression of the Kinesin-Associated Protein 3 (KIFAP3) Gene Increases Survival in Sporadic Amyotrophic Lateral Sclerosis. *Proc Natl Acad Sci USA* 106: 9004-9

Lane, P.J., et al. 1991. The Role of Tyrosine Phosphorylation in Signal Transduction through Surface Ig in Human B Cells. Inhibition of Tyrosine Phosphorylation Prevents Intracellular Calcium Release. *J Immunol* 146: 715-22

Lashley, T., et al. 2014. A Pathogenic Progranulin Mutation and C90RF72 Repeat Expansion in a Family with Frontotemporal Dementia. *Neuropathol Appl Neurobiol* 40: 502-13

Lattante, S., et al. 2013. TARDBP and FUS Mutations Associated with Amyotrophic Lateral Sclerosis: Summary and Update. *Hum Mutat* 34: 812-26

Le Ber, I. 2013. Genetics of Frontotemporal Lobar Degeneration: An Up-Date and Diagnosis Algorithm. *Rev Neurol (Paris)* 169: 811-9

Le Ber, I., et al. 2009. Chromosome 9p-Linked Families with Frontotemporal Dementia Associated with Motor Neuron Disease. *Neurology* 72: 1669-76

Le Ber, I., et al. 2008. Phenotype Variability in Progranulin Mutation Carriers: A Clinical, Neuropsychological, Imaging and Genetic Study. *Brain* 131: 732-46

Leblond, C.S., et al. 2014. Dissection of Genetic Factors Associated with Amyotrophic Lateral Sclerosis. *Exp Neurol* 262 Pt B: 91-101

Lederer, C.W., et al. 2007. Pathways and Genes Differentially Expressed in the Motor Cortex of Patients with Sporadic Amyotrophic Lateral Sclerosis. *BMC Genomics* 8: 26

Lee, C.T., et al. 2013a. Riluzole and Prognostic Factors in Amyotrophic Lateral Sclerosis Long-Term and Short-Term Survival: A Population-Based Study of 1,149 Cases in Taiwan. *J Epidemiol* 23: 35-40

Lee, Y.B., et al. 2013b. Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic. *Cell Rep* 5: 1178-86

Lee, T., et al. 2011. Ataxin-2 Intermediate-Length Polyglutamine Expansions in European ALS Patients. *Hum Mol Genet* 20: 1697-700

Lefebvre, S., et al. 1995. Identification and Characterisation of a Spinal Muscular Atrophy-Determining Gene. *Cell* 80: 155-65

Le Forestier, N., et al. 2001. Does Primary Lateral Sclerosis Exist? A Study of 20 Patients and a Review of the Literature. *Brain* 124: 1989-99

Leger, B., et al. 2006. Akt Signalling through GSK-3beta, mTOR and Foxo1 is Involved in Human Skeletal Muscle Hypertrophy and Atrophy. *J Physiol* 576: 923-33

Lehnert, S., et al. 2014. Multicentre Quality Control Evaluation of Different Biomarker Candidates for Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler Frontotemporal Degener* 15: 344-50

Lei, K., et al. 2012. Inner Nuclear Envelope Proteins SUN1 and SUN2 Play a Prominent Role in the DNA Damage Response. *Curr Biol* 22: 1609-15

Leonardson, A.S., et al. 2010. The Effect of Food Intake on Gene Expression in Human Peripheral Blood. *Hum Mol Genet* 19: 159-69

Levine, T.P., et al. 2013. The Product of *C90RF72*, a Gene Strongly Implicated in Neurodegeneration, is Structurally Related to DENN Rab-GEFs. *Bioinformatics* 29: 499-503

Lewis, C.M., et al. 2003. Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia. *Am J Hum Genet* 73: 34-48

Lewis, M., Gordon, P.H. 2007. Lou Gehrig, Rawhide, and 1938. Neurology 68: 615-8

Li, C., et al. 2014. Vitamin D Receptor Gene Polymorphisms and the Risk of Parkinson's Disease. *Neurol Sci* Advance Online Publication doi:10.1007/s10072-014-1928-9

Li, C., et al. 2013a. CaBP1, A Neuronal Ca2+ Sensor Protein, Inhibits Inositol Trisphosphate Receptors by Clamping Intersubunit Interactions. *Proc Natl Acad Sci USA* 110: 8507-12

Li, C., et al. 2009. Structural Insights into Ca2+-Dependent Regulation of Inositol 1,4,5-Trisphosphate Receptors by CaBP1. *J Biol Chem* 284: 2472-81

Li, J., et al. 2013b. Establishing a Novel C. elegans Model to Investigate the Role of Autophagy in Amyotrophic Lateral Sclerosis. *Acta Pharmacol Sin* 34: 644-50

Li, L., et al. 2008a. Interference of Globin Genes with Biomarker Discovery for Allograft Rejection in Peripheral Blood Samples. *Physiol Genomics* 32: 190-7

Li, L., et al. 2008b. Altered Macroautophagy in the Spinal Cord of SOD1 Mutant Mice. *Autophagy* 4: 290-3

Li, Q., et al. 2011. Alsin and SOD1(G93A) Proteins Regulate Endosomal Reactive Oxygen Species Production by Glial Cells and Proinflammatory Pathways Responsible for Neurotoxicity. *J Biol Chem* 286: 40151-62

Li, Y., et al. 2013c. A Novel ER-Localized Transmembrane Protein, EMC6, Interacts with RAB5A and Regulates Cell Autophagy. *Autophagy* 9: 150-63

Liao, S.S., et al. 2008. Novel Mutations of the SPG11 Gene in Hereditary Spastic Paraplegia with Thin Corpus Callosum. *J Neurol Sci* 275: 92-9

Liew, C.C., et al. 2006. The Peripheral Blood Transcriptome Dynamically Reflects System Wide Biology: A Potential Diagnostic Tool. *J Lab Clin Med* 147: 126-32

Lim, J., et al. 2006. A Protein-Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration. *Cell* 125: 801-14

Limviphuvadh, V., et al. 2007. The Commonality of Protein Interaction Networks Determined in Neurodegenerative Disorders (NDDS). *Bioinformatics* 23: 2129-38

Ling, S.C., et al. 2013. Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis. *Neuron* 79: 416-38

Ling, S.C., et al. 2010. ALS-Associated Mutations in TDP-43 Increase its Stability and Promote TDP-43 Complexes with FUS/TLS. *Proc Natl Acad Sci USA* 107: 13318-23

Liu, G., et al. 2003. NetAffx: Affymetrix Probesets and Annotations. Nucleic Acids Res 31: 82-6

Liu, H.N., et al. 2009. Lack of Evidence of Monomer/Misfolded Superoxide Dismutase-1 in Sporadic Amyotrophic Lateral Sclerosis. *Ann Neurol* 66: 75-80

Liu, J., et al. 2006. Effects of Globin mRNA Reduction Methods on Gene Expression Profiles from Whole Blood. *J Mol Diagn* 8: 551-8

Liu, R., et al. 2013a. C9ORF72 Repeat Expansions Are Not Detected in Chinese Patients with Familial ALS. *Amyotroph Lateral Scler Frontotemporal Degener* 14: 630-1

Liu, X., et al. 2011. Specific Regulation of NRG1 Isoform Expression by Neuronal Activity. *J Neurosci* 31: 8491-501

Liu, X., et al. 1996. Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome C. *Cell* 86: 147-57

Lo Coco, D., et al. 2007. The Amyotrophic Lateral Sclerosis Functional Rating Scale Predicts Survival Time in Amyotrophic Lateral Sclerosis Patients on Invasive Mechanical Ventilation. *Chest* 132: 64-9

Logroscino, G., Bennett, D.A. 2014. Systematic Reviews and Meta-Analyses in Neuroepidemiological Research: Applications and Issues. *Neuroepidemiology* 42: 5-6

Logroscino, G., et al. 2010. Incidence of Amyotrophic Lateral Sclerosis in Europe. *J Neurol Neurosurg Psychiatry* 81: 385-90

Logroscino, G., et al. 2008. Descriptive Epidemiology of Amyotrophic Lateral Sclerosis: New Evidence and Unsolved Issues. *J Neurol Neurosurg Psychiatry* 79: 6-11

Lohmann, S., et al. 2013. Gene Expression Analysis in Biomarker Research and Early Drug Development Using Function Tested Reverse Transcription Quantitative Real-Time PCR Assays. *Methods* 59: 10-9

Lomakin, I.B., Steitz, T.A. 2013. The Initiation of Mammalian Protein Synthesis and mRNA Scanning Mechanism. *Nature* 500: 307-11

Lomen-Hoerth, C., et al. 2003. Are Amyotrophic Lateral Sclerosis Patients Cognitively Normal? *Neurology* 60: 1094-7

Lomen-Hoerth, C., et al. 2002. The Overlap of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. *Neurology* 59: 1077-9

Louwerse, E.S., et al. 1997. Amyotrophic Lateral Sclerosis: Mortality Risk During the Course of the Disease and Prognostic Factors. The Netherlands ALS Consortium. *J Neurol Sci* 152 Suppl 1: S10-7

Lowery, L.A., et al. 2007. Whitesnake/SFPQ Is Required for Cell Survival and Neuronal Development in the Zebrafish. *Dev Dyn* 236: 1347-57

Lu, J., et al. 2010. MAPK/ERK1/2 Signalling Mediates Endothelial-Like Differentiation of Immature DCs in the Microenvironment of Esophageal Squamous Cell Carcinoma. *Cell Mol Life Sci* 67: 2091-106

Lu, L., et al. 2005. Gene Expression Profiling of Lewy Body-Bearing Neurons in Parkinson's Disease. *Exp Neurol* 195: 27-39

Lu, T., et al. 2004. Gene Regulation and DNA Damage in the Ageing Human Brain. *Nature* 429: 883-91

Lu, Y., et al. 2014. Vacuolin-1 Potently and Reversibly Inhibits Autophagosome-Lysosome Fusion by Activating RAB5A. *Autophagy* 10: 1895-905

Ludwig, L.B., et al. 1995. Biotinylated Probes in the Electrophoretic Mobility Shift Assay to Examine Specific dsDNA, ssDNA or RNA-Protein Interactions. *Nucleic Acids Res* 23: 3792-3

Lukavsky, P.J., et al. 2013. Molecular Basis of UG-Rich RNA Recognition by the Human Splicing Factor TDP-43. *Nat Struct Mol Biol* 20: 1443-9

Luo, R.Z., et al. 2014. Decreased Expression of PTPN12 Correlates with Tumor Recurrence and Poor Survival of Patients with Hepatocellular Carcinoma. *PLoS One* 9: e85592

Luty, A.A., et al. 2010. Sigma Nonopioid Intracellular Receptor 1 Mutations Cause Frontotemporal Lobar Degeneration-Motor Neuron Disease. *Ann Neurol* 68: 639-49

MacDonald, M.E., et al. 1993. A Novel Gene Containing a Trinucleotide Repeat That Is Expanded and Unstable on Huntington's Disease Chromosomes. The Huntington's Disease Collaborative Research Group. *Cell* 72: 971-83

Mackenzie, I.R., et al. 2014. The Neuropathology Associated with Repeat Expansions in the C9ORF72 Gene. *Acta Neuropathol* 127: 347-57

Mackenzie, I.R., et al. 2011. Pathological Heterogeneity in Amyotrophic Lateral Sclerosis with FUS Mutations: Two Distinct Patterns Correlating with Disease Severity and Mutation. *Acta Neuropathol* 122: 87-98

Mackenzie, I.R., et al. 2010. Nomenclature and Nosology for Neuropathologic Subtypes of Frontotemporal Lobar Degeneration: An Update. *Acta Neuropathol* 119: 1-4

Mackenzie, I.R., et al. 2007. Pathological TDP-43 Distinguishes Sporadic Amyotrophic Lateral Sclerosis from Amyotrophic Lateral Sclerosis with SOD1 Mutations. *Ann Neurol* 61: 427-34

Maekawa, S., et al. 2004. Cortical Selective Vulnerability in Motor Neuron Disease: A Morphometric Study. *Brain* 127: 1237-51

Maes, O.C., et al. 2007. Transcriptional Profiling of Alzheimer Blood Mononuclear Cells by Microarray. *Neurobiol Aging* 28: 1795-809

Magnus, T., et al. 2002. Disease Progression in Amyotrophic Lateral Sclerosis: Predictors of Survival. *Muscle Nerve* 25: 709-14

Majounie, E., et al. 2012. Frequency of the C9ORF72 Hexanucleotide Repeat Expansion in Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: A Cross-Sectional Study. *Lancet Neurol* 11: 323-30

Mackenzie, I.R., et al. 2007. Pathological TDP-43 Distinguishes Sporadic Amyotrophic Lateral Sclerosis from Amyotrophic Lateral Sclerosis with SOD1 Mutations. *Ann Neurol* 61: 427-34

Magnoni, R., et al. 2014. The Hsp60 Folding Machinery Is Crucial for Manganese Superoxide Dismutase Folding and Function. *Free Radic Res* 48: 168-79

Malaspina, A., de Belleroche, J. 2004. Spinal Cord Molecular Profiling Provides a Better Understanding of Amyotrophic Lateral Sclerosis Pathogenesis. *Brain Res Brain Res Rev* 45: 213-29

Malaspina, A., et al. 2001. Differential Expression of 14 Genes in Amyotrophic Lateral Sclerosis Spinal Cord Detected Using Gridded cDNA Arrays. *J Neurochem* 77: 132-45

Malini, E., et al. 2011. HMGA Interactome: New Insights from Phage Display Technology. *Biochemistry* 50: 3462-8

Mandrioli, J., et al. 2006. Amyotrophic Lateral Sclerosis: Prognostic Indicators of Survival. *Amyotroph Lateral Scler* 7: 211-20

Mann, D.M., et al. 2013. Dipeptide Repeat Proteins are Present in the p62 Positive Inclusions in Patients with Frontotemporal Lobar Degeneration and Motor Neurone Disease Associated with Expansions in C90RF72. *Acta Neuropathol Commun* doi: 10.1186/2051-5960-1-68

Manno, C., et al. 2013. Sporadic Parkinson Disease and Amyotrophic Lateral Sclerosis Complex (Brait-Fahn-Schwartz Disease). *J Neurol Sci* 326: 104-6

Marcheco-Teruel, B., et al. 2006. A Genome-Wide Linkage Search for Bipolar Disorder Susceptibility Loci in a Large and Complex Pedigree from the Eastern Part of Cuba. *Am J Med Genet B Neuropsychiatr Genet* 141B: 833-43

Marin, B., et al. 2012. Juvenile and Adult-Onset ALS/MND among Africans: Incidence, Phenotype, Survival: A Review. *Amyotroph Lateral Scler* 13: 276-83

Marques, M., et al. 2009. Specific Function of Phosphoinositide 3-Kinase Beta in the Control of DNA Replication. *Proc Natl Acad Sci USA* 106: 7525-30

Martin, E., et al. 2012. Spatacsin and Spastizin Act in the Same Pathway Required for Proper Spinal Motor Neuron Axon Outgrowth in Zebrafish. *Neurobiol Dis* 48: 299-308

Martin, L.J. 2010. Olesoxime, a Cholesterol-Like Neuroprotectant for the Potential Treatment of Amyotrophic Lateral Sclerosis. *IDrugs* 13: 568-80

Maruyama, H., et al. 2010. Mutations of Optineurin in Amyotrophic Lateral Sclerosis. *Nature* 465: 223-6

Massenet, S., et al. 2002. The SMN Complex Is Associated with snRNP's Throughout Their Cytoplasmic Assembly Pathway. *Mol Cell Biol* 22: 6533-41

Massman, P.J., et al. 1996. Prevalence and Correlates of Neuropsychological Deficits in Amyotrophic Lateral Sclerosis. *J Neurol Neurosurg Psychiatry* 61: 450-5

Matera, A.G., et al. 2007. Non-Coding RNAs: Lessons from the Small Nuclear and Small Nucleolar RNAs. *Nat Rev Mol Cell Biol* 8: 209-20

Matigian, N., et al. 2007. Expression Profiling in Monozygotic Twins Discordant for Bipolar Disorder Reveals Dysregulation of the WNT Signalling Pathway. *Mol Psychiatry* 12: 815-25

Mayer, C., et al. 2001. Initiator tRNA and Its Role in Initiation of Protein Synthesis. *Cold Spring Harb Symp Quant Biol* 66: 195-206

McCombe, P.A., Henderson, R.D. 2010. Effects of Gender in Amyotrophic Lateral Sclerosis. *Gend Med* 7: 557-70

McCray, A.T., Ide, N.C. 2000. Design and Implementation of a National Clinical Trials Registry. *J Am Med Inform Assoc* 7: 313-23

McDermott, C.J., Shaw, P.J. 2008. Diagnosis and Management of Motor Neurone Disease. *BMJ* 336: 658-62

McGeer, P.L., McGeer, E.G. 2002. Inflammatory Processes in Amyotrophic Lateral Sclerosis. *Muscle Nerve* 26: 459-70

McMillan, C.T., et al. 2014. Genetic and Neuroanatomic Associations in Sporadic Frontotemporal Lobar Degeneration. *Neurobiol Aging* 35: 1473-82

Mei, L., Xiong, W.C. 2008. Neuregulin 1 in Neural Development, Synaptic Plasticity and Schizophrenia. *Nat Rev Neurosci* 9: 437-52

Meininger, V., et al. 2009. Glatiramer Acetate Has No Impact on Disease Progression in ALS at 40mg/Day: A Double-Blind, Randomised, Multicentre, Placebo-Controlled Trial. *Amyotroph Lateral Scler* 10: 378-83

Meissner, F., et al. 2010. Mutant Superoxide Dismutase 1-Induced Il-1beta Accelerates ALS Pathogenesis. *Proc Natl Acad Sci USA* 107: 13046-50

Meister, G., et al. 2001. Methylation of Sm Proteins by a Complex Containing PRMT5 and the Putative U snRNP Assembly Factor plCLn. *Curr Biol* 11: 1990-4

Mendez, E.F., Sattler, R. 2014. Biomarker Development for C90RF72 Repeat Expansion in ALS. *Brain Res* Advance Online Publication doi:10.1016/j.brainres.2014.09.041

Mesbah, K., et al. 2006. Mutation in the Trapalpha/Ssr1 Gene, Encoding Translocon-Associated Protein Alpha, Results in Outflow Tract Morphogenetic Defects. *Mol Cell Biol* 26: 7760-71

Meyer, M.A., Potter, N.T., et al. 1995. Sporadic ALS and Chromosome 22: Evidence for a Possible Neurofilament Gene Defect. *Muscle Nerve* 18: 536-9

Meyer, T., et al. 2005. Early-Onset ALS with Long-Term Survival Associated with Spastin Gene Mutation. *Neurology* 65: 141-3

Mignarri, A., et al. 2014. Double Trouble? Progranulin Mutation and C9ORF72 Repeat Expansion in a Case of Primary Non-Fluent Aphasia. *J Neurol Sci* 341: 176-8

Milanese, M., et al. 2014. Knocking Down Metabotropic Glutamate Receptor 1 Improves Survival and Disease Progression in the SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. *Neurobiol Dis* 64: 48-59

Millecamps, S., et al. 2014. Genetic Analysis of Matrin 3 Gene in French Amyotrophic Lateral Sclerosis Patients and Frontotemporal Lobar Degeneration with Amyotrophic Lateral Sclerosis Patients. *Neurobiol Aging* 35: 2882 e13-5

Millecamps, S., et al. 2012. Phenotype Difference between ALS Patients with Expanded Repeats in C9ORF72 and Patients with Mutations in Other ALS-Related Genes. *J Med Genet* 49: 258-63

Millecamps, S., et al. 2010. SOD1, ANG, VAPB, TARDBP, and FUS Mutations in Familial Amyotrophic Lateral Sclerosis: Genotype-Phenotype Correlations. *J Med Genet* 47: 554-60

Millecamps, S., et al. 2006. Defective Axonal Transport of Neurofilament Proteins in Neurons Overexpressing Peripherin. *J Neurochem* 98: 926-38

Miller, R.G., et al. 2009a. Practice Parameter Update: The Care of the Patient with Amyotrophic Lateral Sclerosis: Drug, Nutritional, and Respiratory Therapies (an Evidence-Based Review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. *Neurology* 73: 1218-26

Miller, R.G., et al. 2009b. Practice Parameter Update: The Care of the Patient with Amyotrophic Lateral Sclerosis: Multidisciplinary Care, Symptom Management, and Cognitive/Behavioral Impairment (an Evidence-Based Review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. *Neurology* 73: 1227-33

Miller, R.G., et al. 2007. Riluzole for Amyotrophic Lateral Sclerosis (ALS)/Motor Neuron Disease (MND). *Cochrane Database Syst Rev* 24: CD001447

Miller, R.G., et al. 1999. Practice Parameter: The Care of the Patient with Amyotrophic Lateral Sclerosis (an Evidence-Based Review): Report of the Quality Standards Subcommittee of the American Academy of Neurology: ALS Practice Parameters Task Force. *Neurology* 52: 1311-23

Min, J.L., et al. 2010. Variability of Gene Expression Profiles in Human Blood and Lymphoblastoid Cell Lines. *BMC Genomics* 11: 96

Mitchell, J., et al. 2010. Familial Amyotrophic Lateral Sclerosis is Associated with a Mutation in D-Amino-Acid Oxidase. *Proc Natl Acad Sci USA* 107:7556-61

Mitchell, R.M., et al. 2009. A CSF Biomarker Panel for Identification of Patients with Amyotrophic Lateral Sclerosis. *Neurology* 72: 14-9

Miterski, B., et al. 2004. Complex Genetic Predisposition in Adult and Juvenile Rheumatoid Arthritis. *BMC Genet* 5: 2

Mohr, S., Liew, C.C. 2007. The Peripheral-Blood Transcriptome: New Insights into Disease and Risk Assessment. *Trends Mol Med* 13: 422-32

Mok, K., et al. 2012. Chromosome 9 ALS and FTD Locus Is Probably Derived from a Single Founder. *Neurobiol Aging* 33: 209 e3-8

Mockrin, S.C., Korn, E.D. 1980. Acanthamoeba Profilin Interacts with G-actin to Increase the Rate of Exchange of Actin-bound Adenosine 5'-triphosphate. *Biochem* 19: 5359-62

Molnar, G.M., et al. 1997. Association of the Mammalian Helicase MAH with the Pre-mRNA Splicing Complex. *Proc Natl Acad Sci USA* 94: 7831-6

Momeni, H.R., et al. 2013. Caspase-Mediated Apoptosis in Sensory Neurons of Cultured Dorsal Root Ganglia in Adult Mouse. *Cell J* 15: 212-7

Momeni, P., et al. 2006. Genetic Variability in CHMP2B and Frontotemporal Dementia. *Neurodegener Dis* 3: 129-33

Moreira, M.C., et al. 2004. Senataxin, the Ortholog of a Yeast RNA Helicase, Is Mutant in Ataxia-Ocular Apraxia 2. *Nat Genet* 36: 225-7

Mori, K., et al. 2013a. Bidirectional Transcripts of the Expanded C90RF72 Hexanucleotide Repeat Are Translated into Aggregating Dipeptide Repeat Proteins. *Acta Neuropathol* 126: 881-93

Mori, K., et al. 2013b. HNRNP A3 Binds to GGGGCC Repeats and Is a Constituent of P62-Positive/TDP43-Negative Inclusions in the Hippocampus of Patients with C90RF72 Mutations. *Acta Neuropathol* 125: 413-23

Mori, K., et al. 2013c. The C9ORF72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS. *Science* 339: 1335-8

Morimoto, N., et al. 2012. Frontal Dysfunctions of ALS-PBP Patients in Relation to Their Bulbar Symptoms and rCBF Decline. *J Neurol Sci* 319: 96-101

Morita, M., et al. 2006. A Locus on Chromosome 9p Confers Susceptibility to ALS and Frontotemporal Dementia. *Neurology* 66: 839-44

Moroi, S.E., Heckenlively, J.R. 2008. Progress Toward Personalised Medicine for Age-Related Macular Degeneration. *Ophthalmol* 115: 925-6

Morrison, B.M., et al. 1996. Quantitative Immunocytochemical Analysis of the Spinal Cord in G86R Superoxide Dismutase Transgenic Mice: Neurochemical Correlates of Selective Vulnerability. *J Comp Neurol* 4: 619-31

Morrison, K.E., et al. 2013. Lithium in Patients with Amyotrophic Lateral Sclerosis (LiCALS): A Phase 3 Multicentre, Randomised, Double-Blind, Placebo-Controlled Trial. *Lancet Neurol* 12: 339-45

Moseley, M.L., et al. 2006. Bidirectional Expression of CUG and CAG Expansion Transcripts and Intranuclear Polyglutamine Inclusions in Spinocerebellar Ataxia Type 8. *Nat Genet* 38: 758-69

Mujaheed, M., et al. 2000. Evidence for Linkage by Transmission Disequilibrium Test Analysis of a Chromosome 22 Microsatellite Marker D22S278 and Bipolar Disorder in a Palestinian Arab Population. *Am J Med Genet* 96: 836-8

Muller, T.J., et al. 2014. Phenotype of Matrin-3-Related Distal Myopathy in 16 German Patients. *Ann Neurol* 76: 669-80

Munoz, D.G., et al. 1988. Accumulation of Phosphorylated Neurofilaments in Anterior Horn Motoneurons of Amyotrophic Lateral Sclerosis Patients. *J Neuropathol Exp Neurol* 47: 9-18

Murai, H., et al. 2010. Differential Response of Heat-Shock-Induced P38 MAPK and JNK Activity in PC12 Mutant and PC12 Parental Cells for Differentiation and Apoptosis. *Acta Med Okayama* 64: 55-62

Murakami, M., et al. 2011. Secreted Phospholipase A2 Revisited. J Biochem 150: 233-55

Murayama, S., et al. 1991. A Unique Pattern of Astrocytosis in the Primary Motor Area in Amyotrophic Lateral Sclerosis. *Acta Neuropathol* 82: 456-61

Murray, M.E., et al. 2011. Clinical and Neuropathologic Heterogeneity of C9FTD/ALS Associated with a Hexanucleotide Repeat Expansion in C9ORF72. *Acta Neuropathol* 122: 673-90

Murros, K., Fogelholm, R. 1983. Amyotrophic Lateral Sclerosis in Middle-Finland: An Epidemiological Study. *Acta Neurol Scand* 67: 41-7

Musikacharoen, T., et al. 2011. Functional Involvement of Dual Specificity Phosphatase 16 (DUSP16), a C-Jun N-Terminal Kinase-Specific Phosphatase, in the Regulation of T Helper Cell Differentiation. *J Biol Chem* 286: 24896-905

Mykowska, A., et al. 2011. CAG Repeats Mimic CUG Repeats in the Misregulation of Alternative Splicing. *Nucleic Acids Res* 39: 8938-51

Naganuma, T., et al. 2012. Alternative 3'-End Processing of Long Noncoding RNA Initiates Construction of Nuclear Paraspeckles. *EMBO J* 31: 4020-34

Nanetti, L., et al. 2009. Rare Association of Motor Neuron Disease and Spinocerebellar Ataxia Type 2 (SCA2): A New Case and Review of the Literature. *J Neurol* 256: 1926-8

Naumenko, N., et al. 2011. Gender-Specific Mechanism of Synaptic Impairment and its Prevention by GCSF in a Mouse Model of ALS. *Front Cell Neurosci* 5: 26

Nayak, R.C., et al. 2013. Rab GTPases Regulate Endothelial Cell Protein C Receptor-Mediated Endocytosis and Trafficking of Factor Viia. *PLoS One* 8: e59304

Neddens, J., et al. 2009. Neuregulin Links Dopaminergic and Glutamatergic Neurotransmission to Control Hippocampal Synaptic Plasticity. *Commun Integr Biol* 2: 261-4

Neumann, M. 2013. Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis: Molecular Similarities and Differences. *Rev Neurol (Paris)* 169: 793-8

Neumann, M., et al. 2006. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. *Science* 314: 130-3

Neymotin, A., et al. 2009. Lenalidomide (Revlimid) Administration at Symptom Onset Is Neuroprotective in a Mouse Model of Amyotrophic Lateral Sclerosis. *Exp Neurol* 220: 191-7

Nicholl, D.J., et al. 1999. A Study of Five Candidate Genes in Parkinson's Disease and Related Neurodegenerative Disorders. European Study Group on Atypical Parkinsonism. *Neurology* 53: 1415-21

Nishimura, A.L., et al. 2004. A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis. *Am J Hum Genet* 75: 822-31

Nishimura, Y., et al. 2007. Genome-Wide Expression Profiling of Lymphoblastoid Cell Lines Distinguishes Different Forms of Autism and Reveals Shared Pathways. *Hum Mol Genet* 16: 1682-98

Nolle, A., et al. 2013. Ubiquilin 2 Is Not Associated with Tau Pathology. PLoS One 8: e76598

Nykjaer, A., et al. 2004. Sortilin Is Essential for ProNGF-Induced Neuronal Cell Death. *Nature* 427: 843-8

Nzwalo, H., et al. 2014. Delayed Diagnosis in ALS: The Problem Continues. J Neurol Sci 343: 173-5

Offen, D., et al. 2009. Spinal Cord mRNA Profile in Patients with ALS: Comparison with Transgenic Mice Expressing the Human SOD-1 Mutant. *J Mol Neurosci* 38: 85-93

Ogaki, K., et al. 2012. Analysis of C9ORF72 Repeat Expansion in 563 Japanese Patients with Amyotrophic Lateral Sclerosis. *Neurobiol Aging* 33: 2527 e11-6

Oh, Y.K., et al. 2006. AIF Translocates to the Nucleus in the Spinal Motor Neurons in a Mouse Model of ALS. *Neurosci Lett* 406: 205-10

Okamoto, K., et al. 2009. Lifestyle Factors and Risk of Amyotrophic Lateral Sclerosis: A Case-Control Study in Japan. *Ann Epidemiol* 19: 359-64

Okamoto, K., et al. 1993. Bunina Bodies in Amyotrophic Lateral Sclerosis Immunostained with Rabbit Anti-Cystatin C Serum. *Neurosci Lett* 162: 125-8

Okoniewski, M.J., et al. 2007. High Correspondence between Affymetrix Exon and Standard Expression Arrays. *Biotechniques* 42: 181-5

Onyike, C.U., Diehl-Schmid, J. 2013. The Epidemiology of Frontotemporal Dementia. *Int Rev Psychiatry* 25: 130-7

Orlacchio, A., et al. 2010. Spatacsin Mutations Cause Autosomal Recessive Juvenile Amyotrophic Lateral Sclerosis. *Brain* 133: 591-8

Orrell, R.W., et al. 2007. Antioxidant Treatment for Amyotrophic Lateral Sclerosis/Motor Neuron Disease. *Cochrane Database Syst Rev* 9: 195-211

Osborne, R.J., et al. 2009. Transcriptional and Post-Transcriptional Impact of Toxic RNA in Myotonic Dystrophy. *Hum Mol Genet* 18: 1471-81

Oswald, P., et al. 2007. Current Issues in Bipolar Disorder: A Critical Review. *Eur Neuropsychopharmacol* 17: 687-95

Pabis, M., et al. 2013. The Nuclear Cap-Binding Complex Interacts with the U4/U6.U5 Tri-SnRNP and Promotes Spliceosome Assembly in Mammalian Cells. *RNA* 19: 1054-63

Pachot, A., et al. 2004. Peptidylpropyl Isomerase B (PPIB): A Suitable Reference Gene for mRNA Quantification in Peripheral Whole Blood. *J Biotechnol* 114: 121-124

Paganoni, S., et al. 2014. Diagnostic Timelines and Delays in Diagnosing Amyotrophic Lateral Sclerosis (ALS). *Amyotroph Lateral Scler Frontotemporal Degener* 15: 453-6

Pahl, A. 2005. Gene Expression Profiling Using RNA Extracted from Whole Blood: Technologies and Clinical Applications. *Expert Rev Mol Diagn* 5: 43-52

Paku, K.S., et al. 2012. A Conversed Motif within the Flexible C-Terminus of the Translational Regulator 4E-BP Is Required for Tight Binding to the mRNA Cap-Binding Protein eIF4E. *Biochem J* 441: 237-45

Pan, L., et al. 2012. Different Human Copper-Zinc Superoxide Dismutase Mutants, SOD1G93A and SOD1H46R, Exert Distinct Harmful Effects on Gross Phenotype in Mice. *PLoS One* 7: e33409

Pan, X.D., Chen, X.C. 2013. Clinic, Neuropathology and Molecular Genetics of Frontotemporal Dementia: A Mini-Review. *Transl Neurodegener* 2: 8

Panzeri, C., et al. 2006. The First ALS2 Missense Mutation Associated with JPLS Reveals New Aspects of Alsin Biological Function. *Brain* 129: 1710-9

Papapetropoulos, S., et al. 2007. Optimizing Human Post-Mortem Brain Tissue Gene Expression Profiling in Parkinson's Disease and Other Neurodegenerative Disorders: From Target "Fishing" to Translational Breakthroughs. *J Neurosci Res* 85: 3013-24

Park, H.K., Chung, S.J. 2013. New Perspective on Parkinsonism in Frontotemporal Lobar Degeneration. *J Mov Disord* 6: 1-8

Parkinson, N., et al. 2006. ALS Phenotypes with Mutations in CHMP2B (Charged Multivesicular Body Protein 2b). *Neurology* 67: 1074-7

Parra, G., et al. 2000. GeneID in Drosophila. Genome Res 10: 511-5

Parrish, M.L., et al. 2010. cDNA Targets Improve Whole Blood Gene Expression Profiling and Enhance Detection of Pharmocodynamic Biomarkers: A Quantitative Platform Analysis. *J Transl Med* 8: 87

Patrikios, J.S. 1918. Contribution À L'étude Des Formes Cliniques Et De L'anatomie Pathologique De La Sclérose Latérale Amyotrophique. Paris University

Pellizzoni, L., et al. 2001. The Survival of Motor Neurons (SMN) Protein Interacts with the SnoRNP Proteins Fibrillarin and GAR1. *Curr Biol* 11: 1079-88

Pesiridis, G.S., et al. 2009. Role of plCLn in Methylation of Sm Proteins by PRMT5. *J Biol Chem* 284: 21347-59

Petri, S., et al. 2006. Loss of Fas Ligand-Function Improves Survival in G93A-Transgenic ALS Mice. *J Neurol Sci* 251: 44-9

Philips, T., Robberecht, W. 2011. Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Glial Activation in Motor Neuron Disease. *Lancet Neurol* 10: 253-63

Phukan, J., et al. 2012. The Syndrome of Cognitive Impairment in Amyotrophic Lateral Sclerosis: A Population-Based Study. *J Neurol Neurosurg Psychiatry* 83: 102-8

Pickles, S., Vande Velde, C. 2012. Misfolded SOD1 and ALS: Zeroing in on Mitochondria. *Amyotroph Lateral Scler* 13: 333-40

Pilotte, J., et al. 2011. Widespread Regulation of MicroRNA Biogenesis at the Dicer Step by the Cold-Inducible RNA-Binding Protein, RBM3. *PLoS One.* 6: e28446

Pirooznia, M., et al. 2007. GeneVenn - A Web Application for Comparing Gene Lists Using Venn Diagrams. *Bioinformation* 1: 420-2

Pisarev, A.V., et al. 2010. The Role of ABCE1 in Eukaryotic Posttermination Ribosomal Recycling. *Mol Cell* 37: 196-210

Pisarev, A.V., et al. 2007. Recycling of Eukaryotic Posttermination Ribosomal Complexes. *Cell* 131: 286-99

Plant, D., et al. 2012. Replication of Association of the PTPRC Gene with Response to Anti-Tumor Necrosis Factor Therapy in a Large UK Cohort. *Arthritis Rheum* 64: 665-70

Plato, C.C., et al. 2002. ALS and PDC of Guam: Forty-Year Follow-Up. Neurology 58: 765-73

Pliner, H.A., et al. 2014. Searching for Grendel: Origin and Global Spread of the C9ORF72 Repeat Expansion. *Acta Neuropathol* 127: 391-6

Polymenidou, M., et al. 2012. Misregulated RNA Processing in Amyotrophic Lateral Sclerosis. *Brain Res* 1462: 3-15

Polymenidou, M., et al. 2011. Long Pre-mRNA Depletion and RNA Missplicing Contribute to Neuronal Vulnerability from Loss of TDP-43. *Nat Neurosci* 14: 459-68

Potash, J.B., et al. 2008. Gene-Based SNP Mapping of a Psychotic Bipolar Affective Disorder Linkage Region on 22q12.3: Association with HMG2L1 and TOM1. *Am J Med Genet B Neuropsychiatr Genet* 147B: 59-67

Potash, J.B., et al. 2003. Suggestive Linkage to Chromosomal Regions 13q31 and 22q12 in Families with Psychotic Bipolar Disorder. *Am J Psychiatry* 160: 680-6

Praline, J., et al. 2010. Primary Lateral Sclerosis May Occur within Familial Amyotrophic Lateral Sclerosis Pedigrees. *Amyotroph Lateral Scler* 11: 154-6

Prause, J., et al. 2013. Altered Localization, Abnormal Modification and Loss of Function of Sigma Receptor-1 in Amyotrophic Lateral Sclerosis. *Hum Mol Genet* 22: 1581-600

Preux, P.M., et al. 1996. Survival Prediction in Sporadic Amyotrophic Lateral Sclerosis. Age and Clinical Form at Onset Are Independent Risk Factors. *Neuroepidemiology* 15: 153-60

Pringle, C.E., et al. 1992. Primary Lateral Sclerosis. Clinical Features, Neuropathology and Diagnostic Criteria. *Brain* 115 (Pt 2): 495-520

Pringsheim, T., et al. 2012. The Incidence and Prevalence of Huntington's Disease: A Systematic Review and Meta-Analysis. *Mov Disord* 27: 1083-91

Proudfoot, M., et al. 2014. Early Dipeptide Repeat Pathology in a Frontotemporal Dementia Kindred with C90RF72 Mutation and Intellectual Disability. *Acta Neuropathol* 127: 451-8

Pruitt, K.D., et al. 2014. RefSeq: An Update on Mammalian Reference Sequences. *Nucleic Acids Res* 42: D756-63

Puls, I., et al. 2003. Mutant Dynactin in Motor Neuron Disease. Nature 33: 455-6

Puoti, G., et al. 2014. A Mutation in the 5'-UTR of GRN Gene Associated with Frontotemporal Lobar Degeneration: Phenotypic Variability and Possible Pathogenetic Mechanisms. *J Alzheimers Dis* 42: 939-47

Pupillo, E., et al. 2014. Long-Term Survival in Amyotrophic Lateral Sclerosis: A Population-Based Study. *Ann Neurol* 75: 287-97

Pupillo, E., et al. 2012. Trauma and Amyotrophic Lateral Sclerosis: A Case-Control Study from a Population-Based Registry. *Eur J Neurol* 19: 1509-17

Qin, S., Chock, P.B. 2002. Tyrosine Phosphatase CD45 Regulates Hydrogen Peroxide-Induced Calcium Mobilization in B Cells. *Antioxid Redox Signal* 4: 481-90

Qu, Y., et al. 2010. Different Effects of the Probe Summarization Algorithms Plier and RMA on High-Level Analysis of Affymetrix Exon Arrays. *BMC Bioinformatics* 11: 211

Rabin, B.A., et al. 1999. Autosomal Dominant Juvenile Amyotrophic Lateral Sclerosis. *Brain* 122 (Pt 8): 1539-50

Rabin, S.J., et al. 2010. Sporadic ALS Has Compartment-Specific Aberrant Exon Splicing and Altered Cell-Matrix Adhesion Biology. *Hum Mol Genet* 19: 313-28

Racis, L., et al. 2014. Infantile-Onset Ascending Hereditary Spastic Paralysis: A Case Report and Brief Literature Review. *Eur J Paediatr Neurol* 18: 235-9

Rademakers, R., et al. 2004. The Role of Tau (MAPT) in Frontotemporal Dementia and Related Tauopathies. *Hum Mutat* 24: 277-95

Rademakers, R., van Blitterswijk, M. 2013. Motor Neuron Disease in 2012: Novel Causal Genes and Disease Modifiers. *Nat Rev Neurol* 9: 63-4

Radhakrishnan, K., et al. 1986. Descriptive Epidemiology of Motor Neurone Disease in Benghazi, Libya. *Neuroepidemiology* 5: 47-54

Raghavachari, N., et al. 2009. Characterization of Whole Blood Gene Expression Profiles as a Sequel to Globin mRNA Reduction in Patients with Sickle Cell Disease. *PLoS One* 4: e6484

Rajakulendran, S., et al. 2011. Thinning of the Corpus Callosum and Cerebellar Atrophy Is Correlated with Phenotypic Severity in a Family with Spastic Paraplegia Type 11. *J Clin Neurol* 7: 102-4

RajBhandary, U.L. 1994. Initiator Transfer RNAs. J Bacteriol 176: 547-52

Rajesh, C., et al. 2011. The Splicing-Factor Related Protein SFPQ/PSF Interacts with RAD51D and Is Necessary for Homology-Directed Repair and Sister Chromatid Cohesion. *Nucleic Acids Res* 39: 132-322

Raman, R., et al. 2014. Gene Expression Signatures in Motor Neuron Disease Fibroblasts Reveal Dysregulation of Metabolism, Hypoxia-Response and RNA Processing Functions. *Neuropathol Appl Neurobiol* Advance Online Publication doi:10.1111/nan.12147

Raman, R. 2011. Gene Expression Profiling to Identify Biomarkers of Motor Neurone Disease. University of Sheffield. 241 pp.

Raman, T., et al. 2009. Quality Control in Microarray Assessment of Gene Expression in Human Airway Epithelium. *BMC Genomics* 10: 493

Ratti, A., et al. 2012. C90RF72 Repeat Expansion in a Large Italian ALS Cohort: Evidence of a Founder Effect. *Neurobiol Aging* 33: 2528 e7-14

Ravits, J. 2014. Focality, Stochasticity and Neuroanatomic Propagation in ALS Pathogenesis. *Exp Neurol* 262 Pt B: 121-6

Ravits, J., et al. 2007. Focality of Upper and Lower Motor Neuron Degeneration at the Clinical Onset of ALS. *Neurology* 68: 1571-5

Rayaprolu, S., et al. 2012. Angiogenin Variation and Parkinson Disease. Ann Neurol 71: 725-7

Reddy, K., et al. 2013. The Disease-Associated r(GGGGCC)n Repeat from the C9ORF72 Gene Forms Tract Length-Dependent Uni- and Multimolecular RNA G-Quadruplex Structures. *J Biol Chem* 288: 9860-6 Reddy, P.H., et al. 2004. Gene Expression Profiles of Transcripts in Amyloid Precursor Protein Transgenic Mice: Up-Regulation of Mitochondrial Metabolism and Apoptotic Genes Is an Early Cellular Change in Alzheimer's Disease. *Hum Mol Genet* 13: 1225-40

Renton, A.E., et al. 2014. State of Play in Amyotrophic Lateral Sclerosis Genetics. *Nat Neurosci* 17: 17-23

Renton, A.E., et al. 2011. A Hexanucleotide Repeat Expansion in C90RF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. *Neuron* 72: 257-68

Rezaie, T., et al. 2002. Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in Optineurin. *Science* 295: 1077-9

Riboldi, E., et al. 2011. Human C-Type Lectin Domain Family 4, Member C (CLEC4C/BDCA-2/CD303) Is a Receptor for Asialo-Galactosyl-Oligosaccharides. *J Biol Chem* 286: 35329-33

Riedl, L., et al. 2014. Frontotemporal Lobar Degeneration: Current Perspectives. *Neuropsychiatr Dis Treat* 10: 297-310

Riku, Y., et al. 2014. Differential Motor Neuron Involvement in Progressive Muscular Atrophy: A Comparative Study with Amyotrophic Lateral Sclerosis. *BMJ Open* 4: e005213

Ringholz, G.M., et al. 2005. Prevalence and Patterns of Cognitive Impairment in Sporadic ALS. *Neurology* 65: 586-90

Riviere, M., et al. 1998. An Analysis of Extended Survival in Patients with Amyotrophic Lateral Sclerosis Treated with Riluzole. *Arch Neurol* 55: 526-8

Robberecht, W., Philips, T. 2013. The Changing Scene of Amyotrophic Lateral Sclerosis. *Nat Rev Neurosci* 14: 248-64

Robinson, A.C., et al. 2014. No Interaction between Tau and TDP-43 Pathologies in Either Frontotemporal Lobar Degeneration or Motor Neurone Disease. *Neuropathol Appl Neurobiol* 40: 844-54

Robinson, R. 2010. Common Disease, Multiple Rare (and Distant) Variants. PLoS Biol 8: e1000293

Rocha, J.A., et al. 2005. Diagnostic Investigation and Multidisciplinary Management in Motor Neuron Disease. *J Neurol* 252: 1435-47

Rodrigues, N.R., et al. 1995. Deletions in the Survival Motor Neuron Gene on 5q13 in Autosomal Recessive Spinal Muscular Atrophy. *Hum Mol Genet* 4: 631-4

Rohrer, J.D., et al. 2010. Distinct Profiles of Brain Atrophy in Frontotemporal Lobar Degeneration Caused by Progranulin and Tau Mutations. *Neuroimage* 53: 1070-6

Romano, M., Buratti, E. 2013. Targeting RNA Binding Proteins Involved in Neurodegeneration. *J Biomol Screen* 18: 967-83

Romano, M., et al. 2014. Evolutionarily Conserved Heterogeneous Nuclear Ribonucleoprotein (HNRNP) A/B Proteins Functionally Interact with Human and Drosophila TAR DNA-Binding Protein 43 (TDP-43). *J Biol Chem* 289: 7121-30

Rosati, G., et al. 1977. Studies on Epidemiological, Clinical and Etiological Aspects of ALS Disease in Sardinia, Southern Italy. *Acta Neurol Scand* 55: 231-44

Rosen, D.R., et al. 1993. Mutations in Cu/Zn Superoxide Dismutase Gene Are Associated with Familial Amyotrophic Lateral Sclerosis. *Nature* 362: 59-62

Ross, C.A., Tabrizi, S.J. 2011. Huntington's Disease: From Molecular Pathogenesis to Clinical Treatment. *Lancet Neurol* 10: 83-98

Ross, O.A., et al. 2011. Ataxin-2 Repeat-Length Variation and Neurodegeneration. *Hum Mol Genet* 20: 3207-12

Rothstein, J.D., et al. 1995. Selective Loss of Glial Glutamate Transporter GLT-1 in Amyotrophic Lateral Sclerosis. *Ann Neurol* 38: 73-84

Rowland, L.P. 2010. Progressive Muscular Atrophy and Other Lower Motor Neuron Syndromes of Adults. *Muscle Nerve* 41: 161-5

Rubino, E., et al. 2012. SQSTM1 Mutations in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. *Neurology* 79: 1556-62

Rudnicki, D.D., et al. 2007. Huntington's Disease--Like 2 Is Associated with CUG Repeat-Containing RNA Foci. *Ann Neurol* 61: 272-82

Ruiz-Pesini, E., et al. 2007. An Enhanced MITOMAP with a Global mtDNA Mutational Phylogeny. *Nucleic Acids Res* 35: D823-8

Runne, H., et al. 2007. Analysis of Potential Transcriptomic Biomarkers for Huntington's Disease in Peripheral Blood. *Proc Natl Acad Sci USA* 104: 14424-9

Rutherford, A.C., et al. 2006. The Mammalian Phosphatidylinositol 3-Phosphate 5-Kinase (PIKfyve) Regulates Endosome-to-TGN Retrograde Transport. *J Cell Sci* 119: 3944-57

Ruvolo, P.P., et al. 2001. Phosphorylation of Bcl2 and Regulation of Apoptosis. Leukemia 15: 515-22

Ryazantseva, N.V., et al. 2008. Role of Recombinant Mitogen-Activated Protein Kinases JNK and P38 in the Regulation of Apoptosis in Blood Mononuclear Cells under Conditions of Oxidative Stress in Vitro. *Bull Exp Biol Med* 145: 569-72

Sabatelli, M., et al. 2012. C9ORF72 Hexanucleotide Repeat Expansions in the Italian Sporadic ALS Population. *Neurobiol Aging* 33: 1848 e15-20

Sabuncu, M.R., et al. 2011. The Dynamics of Cortical and Hippocampal Atrophy in Alzheimer Disease. *Arch Neurol* 68: 1040-8

Saccon, R.A., et al. 2013. Is SOD1 Loss of Function Involved in Amyotrophic Lateral Sclerosis? *Brain* 136: 2342-58

Saeed, M., et al. 2009. Age and Founder Effect of SOD1 A4V Mutation Causing ALS. *Neurology* 72: 1634-9

Salemi, G., et al. 1989. Amyotrophic Lateral Sclerosis in Palermo, Italy: An Epidemiological Study. *Ital J Neurol Sci* 10: 505-9

Salton, M., et al. 2011. Matrin 3 Binds and Stabilizes mRNA. PLoS One 6: e23882

Salton, M., et al. 2010. Involvement of Matrin 3 and SFPQ/NONO in the DNA Damage Response. *Cell Cycle* 9: 1568-76

Sapp, P.C., et al. 2003. Identification of Two Novel Loci for Dominantly Inherited Familial Amyotrophic Lateral Sclerosis. *Am J Hum Genet* 73: 397-403

Sareen, D., et al. 2013. Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion. *Sci Transl Med* 5: 208ra149

Saris, C.G., et al. 2013. Gene Expression Profile of SOD1-G93A Mouse Spinal Cord, Blood and Muscle. *Amyotroph Lateral Scler Frontotemporal Degener* 14: 190-8

Saris, C.G., et al. 2009. Weighted Gene Co-Expression Network Analysis of the Peripheral Blood from Amyotrophic Lateral Sclerosis Patients. *BMC Genomics* 10: 405

Sasaki, S. 2011. Autophagy in Spinal Cord Motor Neurons in Sporadic Amyotrophic Lateral Sclerosis. *J Neuropathol Exp Neurol* 70: 349-59

Sasaki, S., Maruyama, S. 1994. Immunocytochemical and Ultrastructural Studies of the Motor Cortex in Amyotrophic Lateral Sclerosis. *Acta Neuropathol* 87: 578-85

Sathasivam, S. 2010. Motor Neurone Disease: Clinical Features, Diagnosis, Diagnostic Pitfalls and Prognostic Markers. *Singapore Med J* 51: 367-72

Sato, M., et al. 2013. Interaction, Mobility, and Phosphorylation of Human Orthologues of WD Repeat-Containing Components of the Yeast SSU Processome t-UTP Sub-Complex. *Biochem Cell Biol* 91: 466-75

Scaffidi, P., et al. 2005. The Cell Nucleus and Aging: Tantalizing Clues and Hopeful Promises. *PLoS Biol* 3: e395

Scherzer, C.R., et al. 2007. Molecular Markers of Early Parkinson's Disease Based on Gene Expression in Blood. *Proc Natl Acad Sci USA* 104: 955-60

Schiffer, D., et al. 1996. Reactive Astrogliosis of the Spinal Cord in Amyotrophic Lateral Sclerosis. *J Neurol Sci* 139 Suppl: 27-33

Schmidt, S., et al. 2010. Association of ALS with Head Injury, Cigarette Smoking and APOE Genotypes. *J Neurol Sci* 291: 22-9

Schroeder, A., et al. 2006. The RIN: An RNA Integrity Number for Assigning Integrity Values to RNA Measurements. *BMC Mol Biol* 7: 3

Schuler, G.D. 1997. Pieces of the Puzzle: Expressed Sequence Tags and the Catalog of Human Genes. *J Mol Med (Berl)* 75: 694-8

Schuler, G.D., et al. 1996. A Gene Map of the Human Genome. Science 274: 540-6

Schwinzer, R., et al. 2003. Enhanced Frequency of a PTPRC (CD45) Exon a Mutation (77C-->G) in Systemic Sclerosis. *Genes Immun* 4: 168-9

Schymick, J.C., et al. 2007. Genome-Wide Genotyping in Amyotrophic Lateral Sclerosis and Neurologically Normal Controls: First Stage Analysis and Public Release of Data. *Lancet Neurol* 6: 322-8

Scotton, W.J., et al. 2012. Prognostic Categories for Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler* 13: 502-8

Sebastia, J., et al. 2009. Angiogenin Protects Motoneurons against Hypoxic Injury. *Cell Death Differ* 16: 1238-47

Seelaar, H., et al. 2008. Distinct Genetic Forms of Frontotemporal Dementia. Neurology 71: 1220-6

Seilhean, D., et al. 2009. Accumulation of TDP-43 and Alpha-Actin in an Amyotrophic Lateral Sclerosis Patient with the K17I ANG Mutation. *Acta Neuropathol* 118: 561-73

Seilhean, D., et al. 2004. Amyotrophic Lateral Sclerosis with Neuronal Intranuclear Protein Inclusions. *Acta Neuropathol* 108: 81-7

Seijffers, R., et al. 2014. ATF3 Expression Improves Motor Function in the ALS Mouse Model by Promoting Motor Neuron Survival and Retaining Muscle Innervation. *Proc Natl Acad Sci USA* 111: 1622-7

Sekiguchi, T., et al. 2014. Spreading of Amyotrophic Lateral Sclerosis Lesions--Multifocal Hits and Local Propagation? *J Neurol Neurosurg Psychiatry* 85: 85-91

Sekizawa, T., et al. 1998. Cerebrospinal Fluid Interleukin 6 in Amyotrophic Lateral Sclerosis: Immunological Parameter and Comparison with Inflammatory and Non-Inflammatory Central Nervous System Diseases. *J Neurol Sci* 154: 194-9

Senderek, J., et al. 2009. Autosomal-Dominant Distal Myopathy Associated with a Recurrent Missense Mutation in the Gene Encoding the Nuclear Matrix Protein, Matrin 3. *Am J Hum Genet* 84: 511-8

Serio, R.N. 2011. Unraveling the Mysteries of Aging through a Hutchinson-Gilford Progeria Syndrome Model. *Rejuvenation Res* 14: 133-41

Sgarra, R., et al. 2010. HMGA Molecular Network: From Transcriptional Regulation to Chromatin Remodeling. *Biochim Biophys Acta* 1799: 37-47

Shamanna, R.A., et al. 2011. The NF90/NF45 Complex Participates in DNA Break Repair via Nonhomologous End Joining. *Mol Cell Biol* 31: 4832-43

Sharp, F.R., et al. 2006a. Genomics of Brain and Blood: Progress and Pitfalls. Epilepsia 47: 1603-7

Sharp, F.R., et al. 2006b. The Future of Genomic Profiling of Neurological Diseases Using Blood. *Arch Neurol* 63: 1529-36

Shatunov, A., et al. 2010. Chromosome 9p21 in Sporadic Amyotrophic Lateral Sclerosis in the UK and Seven Other Countries: A Genome-Wide Association Study. *Lancet Neurol* 9: 986-94

Shaw, C.E., et al. 1998. Mutations in All Five Exons of SOD-1 May Cause ALS. Ann Neurol 43: 390-4

Shen, J., Prywes, R. 2005. ER Stress Signaling by Regulated Proteolysis of ATF6. Methods 35: 382-9

Shibata, N., et al. 2009. Persistent Cleavage and Nuclear Translocation of Apoptosis-Inducing Factor in Motor Neurons in the Spinal Cord of Sporadic Amyotrophic Lateral Sclerosis Patients. *Acta Neuropathol* 118: 755-62

Shoemaker, C.J., Green, R. 2011. Kinetic Analysis Reveals the Ordered Coupling of Translation Termination and Ribosome Recycling in Yeast. *Proc Natl Acad Sci USA* 108: E1392-8

Shtilbans, A., et al. 2011. Differential Gene Expression in Patients with Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler* 12: 250-6

Siddique, T., et al. 1991. Linkage of a Gene Causing Familial Amyotrophic Lateral Sclerosis to Chromosome 21 and Evidence of Genetic-Locus Heterogeneity. *N Engl J Med* 324: 1381-4

Siddons, M.A., et al. 1996. Debrisoquine Hydroxylase Gene Polymorphism Frequencies in Patients with Amyotrophic Lateral Sclerosis *Neurosci Lett* 208: 65-8

Sieben, A., et al. 2012. The Genetics and Neuropathology of Frontotemporal Lobar Degeneration. *Acta Neuropathol* 124: 353-72

Silani, V., et al. 2011. The Diagnosis of Amyotrophic Lateral Sclerosis in 2010. *Arch Ital Biol* 149: 5-27

Simpson, C.L., et al. 2009. Variants of the Elongator Protein 3 (ELP3) Gene Are Associated with Motor Neuron Degeneration. *Hum Mol Genet* 18: 472-81

Simunovic, F., et al. 2009. Gene Expression Profiling of Substantia Nigra Dopamine Neurons: Further Insights into Parkinson's Disease Pathology. *Brain* 132: 1795-809

Singer, M.A., et al. 2007. Primary Lateral Sclerosis. Muscle Nerve 35: 291-302

Singer, M.A., et al. 2005. Primary Lateral Sclerosis: Clinical and Laboratory Features in 25 Patients. *J Clin Neuromuscul Dis* 7: 1-9

Skabkin, M.A., et al. 2013. Reinitiation and Other Unconventional Posttermination Events During Eukaryotic Translation. *Mol Cell* 51: 249-64

Skabkin, M.A., et al. 2010. Activities of Ligatin and MCT-1/DENR in Eukaryotic Translation Initiation and Ribosomal Recycling. *Genes Dev* 24: 1787-801

Skaper, S.D. 2008. The Biology of Neurotrophins, Signalling Pathways, and Functional Peptide Mimetics of Neurotrophins and Their Receptors. *CNS Neurol Disord Drug Targets* 7: 46-62

Skibinski, G., et al. 2005. Mutations in the Endosomal ESCRTIII-Complex Subunit CHMP2B in Frontotemporal Dementia. *Nat Genet* 37: 806-8

Slowinski, J., et al. 2007. Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17 with the N279K Tau Mutation. *Neuropathology* 27: 73-80

Smart, F., et al. 2007. Two Isoforms of the Cold-Inducible mRNA-Binding Protein RBM3 Localises to Dendrites and Promote Translation. *J Neurochem* 101: 1367-79

Smith, B.N., et al. 2013. The C9ORF72 Expansion Mutation Is a Common Cause of ALS+/-FTD in Europe and Has a Single Founder. *Eur J Hum Genet* 21: 102-8

Snowden, J.S., et al. 2013. Frontotemporal Dementia with Amyotrophic Lateral Sclerosis: A Clinical Comparison of Patients with and without Repeat Expansions in C9ORF72. *Amyotroph Lateral Scler Frontotemporal Degener* 14: 172-6

Snowden, J.S., et al. 2006. Progranulin Gene Mutations Associated with Frontotemporal Dementia and Progressive Non-Fluent Aphasia. *Brain* 129: 3091-102

Sobue, G., et al. 1990. Phosphorylated High Molecular Weight Neurofilament Protein in Lower Motor Neurons in Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases Involving Ventral Horn Cells. *Acta Neuropathol* 79: 402-8

Song, F., et al. 2012. Aberrant Neuregulin 1 Signaling in Amyotrophic Lateral Sclerosis. *J Neuropathol Exp Neurol* 71: 104-15

Soreq, L., et al. 2008. Advanced Microarray Analysis Highlights Modified Neuro-Immune Signaling in Nucleated Blood Cells from Parkinson's Disease Patients. J Neuroimmunol 201-202: 227-36

Southgate, L., et al. 2010. Novel SPG11 Mutations in Asian Kindreds and Disruption of Spatacsin Function in the Zebrafish. *Neurogenetics* 11: 379-89

Spina, S., et al. 2013. Phenotypic Variability in Three Families with Valosin-Containing Protein Mutation. *Eur J Neurol* 20: 251-8

Spreux-Varoquaux, O., et al. 2002. Glutamate Levels in Cerebrospinal Fluid in Amyotrophic Lateral Sclerosis: A Reappraisal Using a New HPLC Method with Coulometric Detection in a Large Cohort of Patients. *J Neurol Sci* 193: 73-8

Sreedharan, J., et al. 2008. TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. *Science* 319: 1668-72

Staats, K.A., et al. 2013. Genetic Ablation of Phospholipase C Delta 1 Increases Survival in SOD1(G93A) Mice. *Neurobiol Dis* 60: 11-7

Staratschek-Jox, A., et al. 2009. Blood-Based Transcriptomics: Leukemias and Beyond. *Expert Rev Mol Diagn* 9: 271-80

Stevanin, G., et al. 2008. Mutations in SPG11 Are Frequent in Autosomal Recessive Spastic Paraplegia with Thin Corpus Callosum, Cognitive Decline and Lower Motor Neuron Degeneration. *Brain* 131: 772-84

Stewart, H., et al. 2012. Clinical and Pathological Features of Amyotrophic Lateral Sclerosis Caused by Mutation in the C90RF72 Gene on Chromosome 9p. *Acta Neuropathol* 123: 409-17

Storkebaum, E., et al. 2005. Treatment of Motoneuron Degeneration by Intracerebroventricular Delivery of VEGF in a Rat Model of ALS. *Nat Neurosci* 8: 85-92

Stornetta, R.L., Zhu, J.J. 2011. Ras and Rap Signalling in Synaptic Plasticity and Mental Disorders. *Neuroscientist* 17: 54-78

Strand, C., et al. 2009. RNA Quality in Frozen Breast Cancer Samples and the Influence on Gene Expression Analysis -- A Comparison of Three Evaluation Methods Using Microcapillary Electrophoresis Traces. *BMC Mol Biol* 8: 38

Strniskova, M., et al. 2002. Mitogen-Activated Protein Kinases and Their Role in Regulation of Cellular Processes. *Gen Physiol Biophys* 21: 231-55

Strong, M.J., et al. 2009. Consensus Criteria for the Diagnosis of Frontotemporal Cognitive and Behavioural Syndromes in Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler* 10: 131-46

Strong, M.J., et al. 2007. TDP43 Is a Human Low Molecular Weight Neurofilament (HNFL) mRNA-Binding Protein. *Mol Cell Neurosci* 35: 320-7

Strong, M.J., et al. 1999. A Prospective Study of Cognitive Impairment in ALS. *Neurology* 53: 1665-70

Su, X.W., et al. 2014. Genetic Heterogeneity of Amyotrophic Lateral Sclerosis: Implications for Clinical Practice and Research. *Muscle Nerve* 49: 786-803

Su, X.W., et al. 2013. Biomarker-Based Predictive Models for Prognosis in Amyotrophic Lateral Sclerosis. *JAMA Neurol* 70: 1505-11

Sugihara, K., et al. 2011. Screening for OPTN Mutations in Amyotrophic Lateral Sclerosis in a Mainly Caucasian Population. *Neurobiol Aging* 32: 1923 e9-10

Sunryd, J.C., et al. 2014. TMTC1 and TMTC2 Are Novel Endoplasmic Reticulum Tetratricopeptide Repeat-Containing Adapter Proteins Involved in Calcium Homeostasis. *J Biol Chem* 289: 16085-99

Sunyach, C., et al. 2012. Olesoxime Delays Muscle Denervation, Astrogliosis, Microglial Activation and Motoneuron Death in an ALS Mouse Model. *Neuropharmacology* 62: 2346-52

Sutherland, G.T., et al. 2011. Understanding the Pathogenesis of Alzheimer's Disease: Will RNA-Seq Realize the Promise of Transcriptomics? *J Neurochem* 116: 937-46

Suzuki, H., et al. 2009. ALS-Linked P56S-VAPB, an Aggregated Loss-of-Function Mutant of VAPB, Predisposes Motor Neurons to ER Stress-Related Death by Inducing Aggregation of Co-Expressed Wild-Type VAPB. *J Neurochem* 108: 973-85

Synofzik, M., et al. 2012. Screening in ALS and FTD Patients Reveals 3 Novel UBQLN2 Mutations Outside the Pxx Domain and a Pure FTD Phenotype. *Neurobiol Aging* 33: 2949 e13-7

Sztriha, L., et al. 2008. First Case of Compound Heterozygosity in ALS2 Gene in Infantile-Onset Ascending Spastic Paralysis with Bulbar Involvement. *Clin Genet* 73: 591-3

Takahashi, Y., et al. 2013. ERBB4 Mutations That Disrupt the Neuregulin-ErbB4 Pathway Cause Amyotrophic Lateral Sclerosis Type 19. *Am J Hum Genet* 93: 900-5

Takizawa, C., et al. 2014. Epidemiological and Economic Burden of Alzheimer's Disease: A Systematic Literature Review of Data across Europe and the United States of America. *J Alzheimers Dis* 43: 1271-84

Talacko, A.A., Reade, P.C. 1990. Progressive Bulbar Palsy: A Case Report of a Type of Motor Neuron Disease Presenting with Oral Symptoms. *Oral Surg Oral Med Oral Pathol* 69: 182-4

Talebizadeh, Z., et al. 2014. A Proof-of-Concept Study: Exon-Level Expression Profiling and Alternative Splicing in Autism Using Lymphoblastoid Cell Lines. *Psychiatr Genet* 24: 1-9

Tamagno, E., et al. 2003. H2O2 and 4-Hydroxynonenal Mediate Amyloid Beta-Induced Neuronal Apoptosis by Activating JNKs and p38MAPK. *Exp Neurol* 180: 144-55

Tan, C.F., et al. 2007. TDP-43 Immunoreactivity in Neuronal Inclusions in Familial Amyotrophic Lateral Sclerosis with or without SOD1 Gene Mutation. *Acta Neuropathol* 113: 535-42

Tanaka, F., et al. 2006. Gene Expression Profiling toward Understanding of ALS Pathogenesis. *Ann N Y Acad Sci* 1086: 1-10

Tandon, R., et al. 2013. Definition and Description of Schizophrenia in the DSM-5. *Schizophr Res* 150: 3-10

Tandon, R., et al. 2009. Schizophrenia, "Just the Facts" 4. Clinical Features and Conceptualization. *Schizophr Res* 110: 1-23

Tang-Wai, D., et al. 2002. Familial Frontotemporal Dementia Associated with a Novel Presenilin-1 Mutation. *Dement Geriatr Cogn Disord* 14: 13-21

Tang, Y., et al. 2005. Blood Gene Expression Profiling of Neurologic Diseases: A Pilot Microarray Study. *Arch Neurol* 62: 210-5

Tanner, N.K., Linder, P. 2001. DExD/H Box RNA Helicases: From Generic Motors to Specific Dissociation Functions. *Mol Cell* 8: 251-62

Tarabal, O., et al. 2005. Protein Retention in the Endoplasmic Reticulum, Blockade of Programmed Cell Death and Autophagy Selectively Occur in Spinal Cord Motoneurons after Glutamate Receptor-Mediated Injury. *Mol Cell Neurosci* 29: 283-98

Tartaglia, M., Gelb, B.D. 2010. Disorders of Dysregulated Signal Traffic through the RAS-MAPK Pathway: Phenotypic Spectrum and Molecular Mechanisms. *Ann N Y Acad Sci* 1214: 99-121

Tartaglia, M.C., et al. 2007. Differentiation between Primary Lateral Sclerosis and Amyotrophic Lateral Sclerosis: Examination of Symptoms and Signs at Disease Onset and During Follow-Up. *Arch Neurol* 64: 232-6
Tassone, F., et al. 2004. FMR1 RNA within the Intranuclear Inclusions of Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). *RNA Biol* 1: 103-5

Taylor, M.M., Samson, W.K. 2004. A Possible Mechanism for the Action of Adrenomedullin in Brain to Stimulate Stress Hormone Secretion. *Endocrinology* 145: 4890-6

Teng, H.K., et al. 2005. ProBDNF Induces Neuronal Apoptosis Via Activation of a Receptor Complex of P75NTR and Sortilin. *J Neurosci* 25: 5455-63

Tetsuka, S., et al. 2013. ZNF512B Gene Is a Prognostic Factor in Patients with Amyotrophic Lateral Sclerosis. *J Neurol Sci* 324: 163-6

Teuling, E., et al. 2007. Motor Neuron Disease-Associated Mutant Vesicle-Associated Membrane Protein-Associated Protein (VAP) B Recruits Wild-Type Vaps into Endoplasmic Reticulum-Derived Tubular Aggregates. *J Neurosci* 27: 9801-15

Teyssou, E., et al. 2014. Genetic Analysis of SS18L1 in French Amyotrophic Lateral Sclerosis. *Neurobiol Aging* 35: 1213 e9-13 e12

Therrien, M., et al. 2013. Deletion of C9ORF72 Results in Motor Neuron Degeneration and Stress Sensitivity in C. Elegans. *PLoS One* 8: e83450

Therrien, M., Parker, J.A. 2014. Worming Forward: Amyotrophic Lateral Sclerosis Toxicity Mechanisms and Genetic Interactions in Caenorhabditis Elegans. *Front Genet* 5: 85

Thompson, K.L., et al. 2007. Characterisation of the Effect of Sample Quality on High Density Oligonucleotide Microarray Data Using Progressively Degraded Rat Liver RNA. *BMC Biotechnol* 7: 57

Tian, Y., et al. 2011. Exon Expression and Alternatively Spliced Genes in Tourette Syndrome. *Am J Med Genet B Neuropsychiatr Genet* 156B: 72-8

Tian, Z., et al. 2009. A Practical Platform for Blood Biomarker Study by Using Global Gene Expression Profiling of Peripheral Whole Blood. *PLoS One* 4: e5157

Tiloca, C., et al. 2013. Screening of the PFN1 Gene in Sporadic Amyotrophic Lateral Sclerosis and in Frontotemporal Dementia. *Neurobiol Aging* 34: 1517 e9-10

Todd, P.K., et al. 2013. CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome. *Neuron* 78: 440-55

Tollervey, J.R., et al. 2011. Characterizing the RNA Targets and Position-Dependent Splicing Regulation by TDP-43. *Nat Neurosci* 14: 452-8

Traynor, B.J., et al. 1999. Incidence and Prevalence of ALS in Ireland, 1995-1997: A Population-Based Study. *Neurology* 52: 504-9

Tsai, C.P., et al. 2012. A Hexanucleotide Repeat Expansion in C90RF72 Causes Familial and Sporadic ALS in Taiwan. *Neurobiol Aging* 33: 2232 e11-32 e18

Tsuang, M.T., et al. 2005. Assessing the Validity of Blood-Based Gene Expression Profiles for the Classification of Schizophrenia and Bipolar Disorder: A Preliminary Report. *Am J Med Genet B Neuropsychiatr Genet* 133B: 1-5

Tsuchiya, K., et al. 2004. Sporadic Amyotrophic Lateral Sclerosis of Long Duration Mimicking Spinal Progressive Muscular Atrophy Exists: Additional Autopsy Case with a Clinical Course of 19 Years. *Neuropathology* 24: 228-35

Tsuda, H., et al. 2008. The Amyotrophic Lateral Sclerosis 8 Protein VAPB Is Cleaved, Secreted, and Acts as a Ligand for Eph Receptors. *Cell* 133: 963-77

Tsuiji, H., et al. 2013. Spliceosome Integrity Is Defective in the Motor Neuron Diseases ALS and SMA. *EMBO Mol Med* 5: 221-34

Tsutsumi, C., et al. 2004. DNA Microarray Analysis of Dysplastic Morphology Associated with Acute Myeloid Leukemia. *Exp. Hematol* 32: 828-35

Tumer, Z., et al. 2012. Novel Heterozygous Nonsense Mutation of the OPTN Gene Segregating in a Danish Family with ALS. *Neurobiol Aging* 33: 208 e1-5

Turner, M.R., et al. 2005. Distinct Cerebral Lesions in Sporadic and 'D90A' SOD1 ALS: Studies with [11C]Flumazenil PET. *Brain* 128: 1323-9

Turner, M.R., Talbot, K. 2013. Mimics and Chameleons in Motor Neurone Disease. *Pract Neurol* 13: 153-64

Tysnes, O.B., et al. 1994. Prognostic Factors and Survival in Amyotrophic Lateral Sclerosis. *Neuroepidemiology* 13: 226-35

Udaka, F., et al. 1986. Degeneration of Betz Cells in Motor Neuron Disease. A Golgi Study. *Acta Neuropathol* 70: 289-95

Urwin, H., et al. 2010. Disruption of Endocytic Trafficking in Frontotemporal Dementia with CHMP2B Mutations. *Hum Mol Genet* 19: 2228-38

van Blitterswijk, M., et al. 2013a. Profilin-1 Mutations Are Rare in Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. *Amyotroph Lateral Scler Frontotemporal Degener* 14: 463-9

van Blitterswijk, M., et al. 2013b. C9ORF72 Repeat Expansions in Cases with Previously Identified Pathogenic Mutations. *Neurology* 81: 1332-41

van Blitterswijk, M., et al. 2013c. Association Between Repeat Sizes and Clinical and Pathological Characteristics in Carriers of C90RF72 Repeat Expansions (Xpansize-72): A Cross-Sectional Cohort Study. *Lancet Neurol* 12: 978-88

van Blitterswijk, M., et al. 2012a. Evidence for an Oligogenic Basis of Amyotrophic Lateral Sclerosis. *Hum Mol Genet* 21: 3776-84

van Blitterswijk, M., et al. 2012b. VAPB and C90RF72 Mutations in 1 Familial Amyotrophic Lateral Sclerosis Patient. *Neurobiol Aging* 33: 2950 e1-4

van Blitterswijk, M., et al. 2012c. Novel Optineurin Mutations in Sporadic Amyotrophic Lateral Sclerosis Patients. *Neurobiol Aging* 33: 1016 e1-7

van Blitterswijk, M., Landers, J.E. 2010. RNA Processing Pathways in Amyotrophic Lateral Sclerosis. *Neurogenetics* 11: 275-90

Vance, C., et al. 2009. Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6. *Science* 323: 1208-11

Van Deerlin, V.M., et al. 2008. TARDBP Mutations in Amyotrophic Lateral Sclerosis with TDP-43 Neuropathology: A Genetic and Histopathological Analysis. *Lancet Neurol* 7: 409-16

Vanden Broeck, L., et al. 2014. TDP-43-Mediated Neurodegeneration: Towards a Loss-of-Function Hypothesis? *Trends Mol Med* 20: 66-71

Vandermoere, F., et al. 2006. The Valosin-Containing Protein (VCP) Is a Target of Akt Signaling Required for Cell Survival. *J Biol Chem* 281: 14307-13

van der Zee, J., et al. 2013. A Pan-European Study of the C9ORF72 Repeat Associated with FTLD: Geographic Prevalence, Genomic Instability, and Intermediate Repeats. *Hum Mutat* 34: 363-73

van der Zee, J., et al. 2008. CHMP2B C-Truncating Mutations in Frontotemporal Lobar Degeneration Are Associated with an Aberrant Endosomal Phenotype in Vitro. *Hum Mol Genet* 17: 313-22

van Es, M.A., et al. 2011. Angiogenin Variants in Parkinson Disease and Amyotrophic Lateral Sclerosis. *Ann Neurol* 70: 964-73

van Es, M.A., et al. 2009a. A Case of ALS-FTD in a Large FALS Pedigree with a K17I ANG Mutation. *Neurology* 72: 287-8

van Es, M.A., et al. 2009b. Analysis of FGGY as a Risk Factor for Sporadic Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler* 10: 441-7

van Es, M.A., et al. 2009c. Genome-Wide Association Study Identifies 19p13.3 (UNC13A) and 9p21.2 as Susceptibility Loci for Sporadic Amyotrophic Lateral Sclerosis. *Nat Genet* 41: 1083-7

van Es, M.A., et al. 2008. Genetic Variation in DPP6 is Associated with Susceptibility to Amyotrophic Lateral Sclerosis. *Nat Genet* 40: 29-31

van Es, M.A., et al. 2007. ITPR2 as a Susceptibility Gene in Sporadic Amyotrophic Lateral Sclerosis: A Genome-Wide Association Study. *Lancet Neurol* 6: 869-77

van Hoecke, A., et al. 2012. EPHA4 Is a Disease Modifier of Amyotrophic Lateral Sclerosis in Animal Models and in Humans. *Nat Med* 18: 1418-22

Van Laethem, A., et al. 2006. Apoptosis Signal Regulating Kinase-1 Connects Reactive Oxygen Species to P38 MAPK-Induced Mitochondrial Apoptosis in UVB-Irradiated Human Keratinocytes. *Free Radic Biol Med* 41: 1361-71

Van Langenhove, T., et al. 2013. Distinct Clinical Characteristics of C9ORF72 Expansion Carriers Compared with GRN, MAPT, and Nonmutation Carriers in a Flanders-Belgian FTLD Cohort. *JAMA Neurol* 70: 365-73

Van Langenhove, T., et al. 2012. Ataxin-2 PolyQ Expansions in FTLD-ALS Spectrum Disorders in Flanders-Belgian Cohorts. *Neurobiol Aging* 33: 1004 e17-20

Van Langenhove, T., et al. 2010. Genetic Contribution of FUS to Frontotemporal Lobar Degeneration. *Neurology* 74: 366-71

Van Lierop, P.P., et al. 2013. Gene Expression Analysis of Peripheral Cells for Subclassification of Pediatric Inflammatory Bowel Disease in Remission. *PLoS One* 8: e79549

van Rheenen, W., et al. 2012. Hexanucleotide Repeat Expansions in C90RF72 in the Spectrum of Motor Neuron Diseases. *Neurology* 79: 878-82

Veglianese, P., et al. 2006. Activation of the p38MAPK Cascade Is Associated with Upregulation of TNF Alpha Receptors in the Spinal Motor Neurons of Mouse Models of Familial ALS. *Mol Cell Neurosci* 31: 218-31

Vartanian, K., et al. 2009. Gene Expression Profiling of Whole Blood: Comparison of Target Preparation Methods for Accurate and Reproducible Microarray Analysis. *BMC Genomics* 10: 2

Verdiani, S., et al. 2013. The FIG4 Gene Does Not Play a Major Role in Causing ALS in Italian Patients. *Amyotroph Lateral Scler Frontotemporal Degener* 14: 228-9

Verschuuren-Bemelmans, C.C., et al. 2008. Novel Homozygous ALS2 Nonsense Mutation (p.Gln715X) in Sibs with Infantile-Onset Ascending Spastic Paralysis: The First Cases from Northwestern Europe. *Eur J Hum Genet* 16: 1407-11

Vij, N. 2008. AAA ATPase p97/VCP: Cellular Functions, Disease and Therapeutic Potential. *J Cell Mol Med* 12: 2511-8

Vijayalakshmi, K., et al. 2014. Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line. *Mol Neurobiol* Advance Online Publication doi:10.1007/s12035-014-8757-y

Visser, J., et al. 2007. Disease Course and Prognostic Factors of Progressive Muscular Atrophy. *Arch Neurol* 64: 522-8

Visser, J., et al. 2008. The History of Progressive Muscular Atrophy: Syndrome or Disease? *Neurology* 70: 723-7

Volkening, K., et al. 2009. Tar DNA Binding Protein of 43 kDa (TDP-43), 14-3-3 Proteins and Copper/Zinc Superoxide Dismutase (SOD1) Interact to Modulate NFL mRNA Stability. Implications for Altered RNA Processing in Amyotrophic Lateral Sclerosis (ALS). *Brain Res* 1305: 168-82

Vollrath, J.T., et al. 2014. Loss of Function of the ALS Protein SigR1 Leads to ER Pathology Associated with Defective Autophagy and Lipid Raft Disturbances. *Cell Death Dis* 5: e1290

Vulpian, A. 1886. Maladies Du Système Nerveux (Moelle Épinière), pp. p436. Paris: Octave Doin

Waite, A.J., et al. 2014. Reduced C9ORF72 Protein Levels in Frontal Cortex of Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration Brain with the C9ORF72 Hexanucleotide Repeat Expansion. *Neurobiol Aging* 35: 1779 e5-1779 e13

Wakil, S.M., et al. 2014. Infantile-Onset Ascending Hereditary Spastic Paraplegia with Bulbar Involvement Due to the Novel ALS2 Mutation c.2761C>T. *Gene* 536: 217-20

Waldman, S.A., Terzic, A., et al. 2008. The Roadmap to Personalised Medicine Clin Transl Sci 1:93

Walker, R.M., et al. 2010. Association Analysis of Neuregulin 1 Candidate Regions in Schizophrenia and Bipolar Disorder. *Neurosci Lett* 478: 9-13

Wang, E.T., et al. 2008. Alternative Isoform Regulation in Human Tissue Transcriptomes. *Nature* 456: 470-6

Wang, I.F., et al. 2002. Higher Order Arrangement of the Eukaryotic Nuclear Bodies. *Proc Natl Acad Sci USA* 99: 13583-8

Wang, L., et al. 2011. Astrocyte Loss of Mutant SOD1 Delays ALS Disease Onset and Progression in G85R Transgenic Mice. *Hum Mol Genet* 20: 286-93

Wang, L., et al. 2009. The Effect of Mutant SOD1 Dismutase Activity on Non-Cell Autonomous Degeneration in Familial Amyotrophic Lateral Sclerosis. *Neurobiol Dis* 35: 234-40

Wang, M.D., et al. 2014. A Meta-Analysis of Observational Studies of the Association between Chronic Occupational Exposure to Lead and Amyotrophic Lateral Sclerosis. *J Occup Environ Med* 56: 1235-42

Wang, W.Y., et al. 2013. Interaction of FUS and HDAC1 Regulates DNA Damage Response and Repair in Neurons. *Nat Neurosci* 16: 1383-91

Wang, X.S., et al. 2006. Differential Expression of Genes in Amyotrophic Lateral Sclerosis Revealed by Profiling the Post Mortem Cortex. *Amyotroph Lateral Scler* 7: 201-10

Wang, Y., et al. 2007. Vascular Endothelial Growth Factor Overexpression Delays Neurodegeneration and Prolongs Survival in Amyotrophic Lateral Sclerosis Mice. *J Neurosci* 27: 304-7

Waring, S.C., et al. 2004. Incidence of Amyotrophic Lateral Sclerosis and of the Parkinsonism-Dementia Complex of Guam, 1950-1989. *Neuroepidemiology* 23: 192-200

Watson, J.D. 1990. The Human Genome Project: Past, Present, and Future. Science 248: 44-9

Watts, G.D., et al. 2004. Inclusion Body Myopathy Associated with Paget Disease of Bone and Frontotemporal Dementia Is Caused by Mutant Valosin-Containing Protein. *Nat Genet* 36: 377-81

Weihl, C.C., et al. 2009. Valosin-Containing Protein Disease: Inclusion Body Myopathy with Paget's Disease of the Bone and Fronto-Temporal Dementia. *Neuromuscul Disord* 19: 308-15

Weishaupt, J.H., et al. 2013. A Novel Optineurin Truncating Mutation and Three Glaucoma-Associated Missense Variants in Patients with Familial Amyotrophic Lateral Sclerosis in Germany. *Neurobiol Aging* 34: 1516 e9-15

Werneck, L.C., et al. 2007. A Clinical Epidemiological Study of 251 Cases of Amyotrophic Lateral Sclerosis in the South of Brazil. *Arq Neuropsiquiatr* 65: 189-95

Whistler, T., et al. 2010. Implementation of Exon Arrays: Alternative Splicing During T-Cell Proliferation as Determined by Whole Genome Analysis. *BMC Genomics* 11: 496

White, M.K., et al. 2009. Multiple Roles for Puralpha in Cellular and Viral Regulation. Cell Cycle 8: 1-7

Whitehead, S.E., et al. 2002. Determinants of the Interaction of the Spinal Muscular Atrophy Disease Protein SMN with the Dimethylarginine-Modified Box H/ACA Small Nucleolar Ribonucleoprotein GAR1. J Biol Chem 277: 48087-93

Whitney, A.R., et al. 2003. Individuality and Variation in Gene Expression Patterns in Human Blood. *Proc Natl Acad Sci USA* 100: 1896-901

Whitwell, J.L., et al. 2009. Voxel-Based Morphometry Patterns of Atrophy in FTLD with Mutations in MAPT or PGRN. *Neurology* 72: 813-20

Wijesekera, L.C., et al. 2009. Natural History and Clinical Features of the Flail Arm and Flail Leg ALS Variants. *Neurology* 72: 1087-94

Wijesekera, L.C., Leigh, P.N. 2009. Amyotrophic Lateral Sclerosis. Orphanet J Rare Dis 4: 3

Williams, K.L., et al. 2013. Pathophysiological Insights into ALS with C9ORF72 Expansions. *J Neurol Neurosurg Psychiatry* 84: 931-5

Williams, K.L., et al. 2012. UBQLN2/Ubiquilin 2 Mutation and Pathology in Familial Amyotrophic Lateral Sclerosis. *Neurobiol Aging* 33: 2527 e3-10

Wilming, L.G., et al. 2008. The Vertebrate Genome Annotation (VEGA) Database. *Nucleic Acids Res* 36: D753-60

Wingard, J.N., et al. 2005. Structural Analysis of Mg2+ and Ca2+ Binding to CaBP1, A Neuron-Specific Regulator of Calcium Channels. *J Biol Chem* 280: 37461-70

Wingo, T.S., et al. 2011. The Heritability of Amyotrophic Lateral Sclerosis in a Clinically Ascertained United States Research Registry. *PLoS One* 6: e27985

Winn, M.E., et al. 2010. The Effects of Globin on Microarray-Based Gene Expression Analysis of Mouse Blood. *Mamm Genome* 21: 268-75

Winner, B., et al. 2004. Clinical Progression and Genetic Analysis in Hereditary Spastic Paraplegia with Thin Corpus Callosum in Spastic Gait Gene 11 (SPG11). *Arch Neurol* 61: 117-21

Winton, M.J., et al. 2008. Disturbance of Nuclear and Cytoplasmic Tar DNA-Binding Protein (TDP-43) Induces Disease-Like Redistribution, Sequestration, and Aggregate Formation. *J Biol Chem* 283: 13302-9

Wirdefeldt, K., et al. 2011. Epidemiology and Etiology of Parkinson's Disease: A Review of the Evidence. *Eur J Epidemiol* 26 Suppl 1: S1-58

Witke, W., et al. 2001. Profilin I Is Essential for Cell Survival and Cell Division in Early Mouse Development. *Proc Natl Acad Sci USA* 98: 3832-6

Woelk, C.H., et al. 2011. The Utility of Gene Expression in Blood Cells for Diagnosing Neuropsychiatric Disorders. *Int Rev Neurobiol* 101: 41-63

Wojciechowska, M., Krzyzosiak, W.J. 2011. Cellular Toxicity of Expanded RNA Repeats: Focus on RNA Foci. *Hum Mol Genet* 20: 3811-21

Wolf, D.H., Stolz, A. 2012. The CDC48 Machine in Endoplasmic Reticulum Associated Protein Degradation. *Biochim Biophys Acta* 1823: 117-24

Wolf, J., et al. 2014. Variability and Prognostic Relevance of Different Phenotypes in Amyotrophic Lateral Sclerosis - Data from a Population-Based Registry. *J Neurol Sci* 345: 164-7

Wong, H.R., et al. 2010. Toward a Clinically Feasible Gene Expression-Based Subclassification Strategy for Septic Shock: Proof of Concept. *Crit Care Med* 38: 1955-61

Wong, H.R., et al. 2014. Developing a Clinically Feasible Personalised Medicine Approach to Pediatric Septic Shock. *Am J Respir Crit Care Med* Advance Online Publication

Woollacott, I.O., Mead, S. 2014. The C9ORF72 Expansion Mutation: Gene Structure, Phenotypic and Diagnostic Issues. *Acta Neuropathol* 127: 319-32

Wright, C., et al. 2008. Characterization of Globin RNA Interference in Gene Expression Profiling of Whole-Blood Samples. *Clin Chem* 54: 396-405

Wu, Z., et al. 2004. A Model Based Background Adjustment for Oligonucleotide Expression Arrays. J Am Stat Assoc 99: 909-17

Wu, C.H., et al. 2012a. Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis. *Nature* 488: 499-503

Wu, J., et al. 2012b. Latest Notable Achievements in Genomics. Sci China Life Sci 55: 645-8

Xi, Z., et al. 2014. Hypermethylation of the CPG-Island Near the C90RF72 G4C2-Repeat Expansion in FTLD Patients. *Hum Mol Genet* 23: 5630-7

Xi, Z., et al. 2013. Hypermethylation of the CPG Island near the G4C2 Repeat in ALSs with a C9ORF72 Expansion. *Am J Hum Genet* 92: 981-9

Xi, Z., et al. 2012. Investigation of C90RF72 in 4 Neurodegenerative Disorders. *Arch Neurol* 69: 1583-90

Xia, Y., et al. 2014. Pathogenic Mutation of UBQLN2 Impairs Its Interaction with UBXD8 and Disrupts Endoplasmic Reticulum-Associated Protein Degradation. J Neurochem 129: 99-106

Xiao, Z., et al. 2009. A Novel Optineurin Genetic Mutation Associated with Open-Angle Glaucoma in a Chinese Family. *Mol Vis* 15: 1649-54

Xu, L., et al. 2004. Comparison of Different Microarray Data Analysis Programs and Description of a Database for Microarray Data Management. *DNA Cell Biol* 23: 643-51

Xu, Z., et al. 2013. Expanded GGGGCC Repeat RNA Associated with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Causes Neurodegeneration. *Proc Natl Acad Sci USA* 110: 7778-83

Yamanaka, K., et al. 2008. Astrocytes as Determinants of Disease Progression in Inherited Amyotrophic Lateral Sclerosis. *Nat Neurosci* 11: 251-3

Yamanaka, K., et al. 2003. Unstable Mutants in the Peripheral Endosomal Membrane Component ALS2 Cause Early-Onset Motor Neuron Disease. *Proc Natl Acad Sci USA* 100: 16041-6

Yamasaki, S., et al. 2009. Angiogenin Cleaves tRNA and Promotes Stress-Induced Translational Repression. *J Cell Biol* 185: 35-42

Yamashita, S., et al. 2014. Clinicopathological Features of the First Asian Family Having Vocal Cord and Pharyngeal Weakness with Distal Myopathy Due to a MATR3 Mutation. *Neuropathol Appl Neurobiol* Advance Online Publication doi:10.1111/nan.12179

Yamazaki, T., et al. 2012. FUS-SMN Protein Interactions Link the Motor Neuron Diseases ALS and SMA. *Cell Rep* 2: 799-806

Yan, J., et al. 2010. Frameshift and Novel Mutations in FUS in Familial Amyotrophic Lateral Sclerosis and ALS/Dementia. *Neurology* 75: 807-14

Yang, S., et al. 2013. Mutation Analysis and Immunopathological Studies of PFN1 in Familial and Sporadic Amyotrophic Lateral Sclerosis. *Neurobiol Aging* 34: 2235 e7-10

Yang, Y., et al. 2001. The Gene Encoding Alsin, a Protein with Three Guanine-Nucleotide Exchange Factor Domains, Is Mutated in a Form of Recessive Amyotrophic Lateral Sclerosis. *Nat Genet* 29: 160-5

Yao, P.J., et al. 2003. Defects in Expression of Genes Related to Synaptic Vesicle Trafficking in Frontal Cortex of Alzheimer's Disease. *Neurobiol Dis* 12: 97-109

Yao, Y., et al. 2008. Verification of Proposed Peripheral Biomarkers in Mononuclear Cells of Individuals with Schizophrenia. *J Psychiatr Res* 42: 639-43

Yi, B., et al. 2011. Mechanisms of the Apoptosis Induced by CD176 Antibody in Human Leukemic Cells. *Int J Oncol* 38: 1565-73

Yilmaz, N., et al. 2007. Increased Levels of Nitric Oxide, Cortisol and Adrenomedullin in Patients with Chronic Schizophrenia. *Med Princ Pract* 16: 137-41

Yokoseki, A., et al. 2008. TDP-43 Mutation in Familial Amyotrophic Lateral Sclerosis. *Ann Neurol* 63: 538-42

Yoshida, H., et al. 2001. XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription Factor. *Cell* 107: 881-91

Yoshida, S., et al. 1998. Epidemiology of Motor Neuron Disease in the Kii Peninsula of Japan, 1989-1993: Active or Disappearing Focus? *J Neurol Sci* 155: 146-55 Yoshida, S., et al. 1986. Follow-Up Study on Amyotrophic Lateral Sclerosis in Rochester, Minn., 1925 through 1984. *Neuroepidemiology* 5: 61-70

Yu, Z., et al. 2012. Neurodegeneration-Associated TDP-43 Interacts with Fragile X Mental Retardation Protein (FMRP)/Staufen (STAU1) and Regulates SIRT1 Expression in Neuronal Cells. *J Biol Chem* 287: 22560-72

Zaborowska, J., et al. 2012. A Novel TBP-TAF Complex on RNA Polymerase II-Transcribed snRNA Genes. *Transcription* 3: 92-104

Zhai, P., et al. 2003. Primary Lateral Sclerosis: A Heterogeneous Disorder Composed of Different Subtypes? *Neurology* 60: 1258-65

Zhang, D., et al. 2012. Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structurtes and Human Disease. *Front Genet* 3: 283

Zhang, H., et al. 2000. VCP, a Weak ATPase Involved in Multiple Cellular Events, Interacts Physically with BRCA1 in the Nucleus of Living Cells. *DNA Cell Biol* 19: 253-63

Zhang, K., Kaufman, R.J. 2006. The Unfolded Protein Response: A Stress Signaling Pathway Critical for Health and Disease. *Neurology* 66: S102-9

Zhang, K.Y., et al. 2014. Ubiquilin 2: A Component of the Ubiquitin-Proteasome System with an Emerging Role in Neurodegeneration. *Int J Biochem Cell Biol* 50: 123-6

Zhang, Y., et al. 2007. Loss of Vac14, a Regulator of the Signaling Lipid Phosphatidylinositol 3,5-Bisphosphate, Results in Neurodegeneration in Mice. *Proc Natl Acad Sci USA* 104: 17518-23

Zhang, Y., et al. 2005. Transcriptional Analysis of Multiple Brain Regions in Parkinson's Disease
Supports the Involvement of Specific Protein Processing, Energy Metabolism, and Signaling
Pathways, and Suggests Novel Disease Mechanisms. *Am J Med Genet B Neuropsychiatr Genet* 137B:
5-16

Zhang, Z., Carmichael, G.G. 2001. The Fate of dsRNA in the Nucleus: A p54(Nrb)-Containing Complex Mediates the Nuclear Retention of Promiscuously A-to-I Edited RNAs. *Cell* 106: 465-75

Zhao, W., et al. 2013. Exome Sequencing Identifies Novel Compound Heterozygous Mutations in SPG11 That Cause Autosomal Recessive Hereditary Spastic Paraplegia. *J Neurol Sci* 335: 112-7

Zhao, Z.H., et al. 2009. A Novel Mutation in the Senataxin Gene Identified in a Chinese Patient with Sporadic Amyotrophic Lateral Sclerosis. *Amyotroph Lateral Scler* 10: 118-22

Zheng, W.H., et al. 2002. Insulin-Like Growth Factor-1-Induced Phosphorylation of Transcription Factor FKHRL1 Is Mediated by Phosphatidylinositol 3-Kinase/Akt Kinase and Role of This Pathway in Insulin-Like Growth Factor-1-Induced Survival of Cultured Hippocampal Neurons. *Mol Pharmacol* 62: 225-33

Zheng, W.H., Quirion, R. 2004. Comparative Signaling Pathways of Insulin-Like Growth Factor-1 and Brain-Derived Neurotrophic Factor in Hippocampal Neurons and the Role of the Pi3 Kinase Pathway in Cell Survival. *J Neurochem* 89: 844-52

Zhu, C.H., et al. 2008. SGNP: An Essential Stress Granule/Nucleolar Protein Potentially Involved in 5.8s rRNA Processing/Transport. *PLoS One* 3: e3716

Zhu, Y., et al. 2014. Neuroprotective Agents Target Molecular Mechanisms of Disease in ALS. *Drug Discov Today* Advance Online Publication doi:10.1016/j.drudis.2014.08.016

Zhu, Y., et al. 2011. CD45 Deficiency Drives Amyloid-Beta Peptide Oligomers and Neuronal Loss in Alzheimer's Disease Mice. *J Neurosci* 31: 1355-65

Zoccolella, S., et al. 2008. Predictors of Long Survival in Amyotrophic Lateral Sclerosis: A Population-Based Study. *J Neurol Sci* 268: 28-32

Zoroglu, S.S., et al. 2002. The Possible Pathophysiological Role of Plasma Nitric Oxide and Adrenomedullin in Schizophrenia. *J Psychiatr Res* 36: 309-15

Zou, Z.Y., et al. 2013a. De Novo FUS Gene Mutations Are Associated with Juvenile-Onset Sporadic Amyotrophic Lateral Sclerosis in China. *Neurobiol Aging* 34: 1312 e1-8

Zou, Z.Y., et al. 2013b. Screening for C90RF72 Repeat Expansions in Chinese Amyotrophic Lateral Sclerosis Patients. *Neurobiol Aging* 34: 1710 e5-6

Zou, Z.Y., et al. 2012. Identification of a Novel Missense Mutation in Angiogenin in a Chinese Amyotrophic Lateral Sclerosis Cohort. *Amyotroph Lateral Scler* 13: 270-5

Zu, T., et al. 2013. RAN Proteins and RNA Foci from Antisense Transcripts in C90RF72 ALS and Frontotemporal Dementia. *Proc Natl Acad Sci USA* 110: E4968-77

Zu, T., et al. 2011. Non-ATG-Initiated Translation Directed by Microsatellite Expansions. *Proc Natl Acad Sci USA* 108: 260-5

List of Figures

Figure A1	Representative Pre- and Post-SPIA [™] qRT-PCR Profile Plots for <i>HBA2</i> and <i>ACTB</i> Measurements Using the Stratagene Brilliant II SYBR [®] Green Master Mix	343
Figure A2	Representative Post-SPIA TM qRT-PCR Profile Plots for <i>HBA2</i> and <i>ACTB</i> Measurements Using the Roche FastStart Universal SYBR®	344

Figure A3 Agarose Gel Image of *HBA2* and *ACTB* qRT-PCR Products 344

List of Tables

Green Master Mix

Table A1	JB NuGEN Ovation [®] Gene List (n=706) [GeneSpring unpaired	345
	student's t-test p<0.05, FC \ge ±1.50]	

Table A2RR Ambion® GLOBINClear™ Gene List (n=4,520) [GeneSpring353unpaired student's t-test p<0.05, FC ≥ ±1.50]</td>

Figure A1: Representative Pre- and Post-SPIA[™] qRT-PCR Profile Plots for *HBA2* and *ACTB* Measurements Using the Stratagene Brilliant II SYBR[®] Green Master Mix

Abbreviations: *ACTB* - actin, beta, *HBA2* - haemoglobin alpha 2, qRT-PCR - quantitative real-time polymerase chain reaction and SPIATM - single primer isothermal amplification

Figure A2: Representative Post-SPIA[™] qRT-PCR Profile Plots for *HBA2* and *ACTB* Measurements Using the Roche FastStart Universal SYBR[®] Green Master Mix

Abbreviations: *ACTB* - actin, beta, *HBA2* - haemoglobin alpha 2, qRT-PCR - quantitative real-time polymerase chain reaction and SPIA[™] - single primer isothermal amplification

Abbreviations: *ACTB* - actin, beta, BLDCON - blood control, BLDPAT - blood patient, *HBA2* - haemoglobin alpha 2 and qRT-PCR - quantitative real-time polymerase chain reaction.

Probeset ID	Symbol		Fold	p-value	Probeset ID	Symbol		Fold	p-value	Probeset ID	Symbol		Fold	p-value
1556970_at		Û	5.97	2.96E-06	209081_s_at	COL18A1	仓	2.14	7.70E-03	223763_at	DTNBP1	Û	1.95	1.07E-03
1570357_at	STX8	Û	3.26	5.54E-05	222399_s_at	TM9SF3	Û	2.13	0.012	212418_at	ELF1	Û	1.94	0.025
201151_s_at	MBNL1	Û	3.16	3.68E-03	229067_at	ODF3B	仓	2.12	0.036	238706_at	PAPD4	Û	1.93	0.042
231484_at		Û	2.84	0.046	238327_at	SRGAP2P1	Û	2.12	1.84E-03	222467_s_at	IRF7	仓	1.93	0.039
216951_at	FCGR1A	Û	2.74	0.040	219845_at	BARX1	仓	2.12	1.79E-04	208436_s_at	SAPS3	Û	1.93	0.025
212671_s_at	HLA-DQA1/2	Û	2.74	0.017	219359_at	ATHL1	仓	2.09	4.06E-03	218040_at		Û	1.92	0.043
1555687_a_at	CLEC4C	Û	2.73	0.015	210371_s_at	RBBP4	Û	2.08	0.043	227428_at	TAZ	仓	1.92	0.028
202118_s_at	CPNE3	Û	2.54	0.040	220000_at	SIGLEC5	仓	2.07	0.040	1560047_s_at	GABPA	Û	1.92	0.022
231982_at	LOC284422	Û	2.53	0.030	228471_at		Û	2.06	0.033	203977_at	PRPF38B	Û	1.92	0.018
206196_s_at	RUNDC3A	Û	2.47	0.035	226792_s_at	HP	仓	2.05	0.031	220404_at		仓	1.91	0.037
206697_s_at	HP	Û	2.40	0.021	208470_s_at	KIFC2	仓	2.05	0.016	213439_x_at	RUNDC3A	仓	1.91	0.029
224797_at	ARRDC3	Û	2.37	9.47E-03	207117_at	AASDHPPT	Û	2.04	0.014	211065_x_at	GPR97	Û	1.91	0.027
210756_s_at	NOTCH2	Û	2.37	2.94E-03	222633_at	ZNF117	Û	2.04	0.010	1565777_at	PFKL	①	1.91	7.95E-03
201237_at	CAPZA2	Û	2.36	0.031	202169_s_at	TBL1XR1	Û	2.04	1.22E-04	204285_s_at	FOXH1	仓	1.90	0.019
200605_s_at	PRKAR1A	Û	2.34	0.043	207500_at	CASP5	仓	2.03	0.021	200785_s_at	LRP1	Û	1.90	8.08E-03
211781_x_at		Û	2.34	0.033	239012_at	RNF144B	Û	2.02	0.046	231407_s_at	PMAIP1	Û	1.90	8.20E-04
231828_at	LOC253039	Û	2.34	0.017	229198_at	METRNL	仓	2.02	0.030	212530_at		Û	1.89	0.044
243495_s_at		Û	2.31	6.01E-03	225955_at	USP35	仓	2.02	3.62E-04	213805_at	FGFR10P2	Û	1.89	0.036
212720_at	PAPOLA	Û	2.29	0.019	32502_at	GDPD5	仓	2.01	0.045	233898_s_at	CUL4A	Û	1.89	0.027
1552552_s_at	CLEC4C	Û	2.28	2.31E-03	222839_s_at	PAPOLG	Û	2.00	9.16E-03	225290_at	ETNK1	Û	1.89	0.020
223578_x_at	MALAT1	Û	2.26	0.012	215635_at		Û	1.99	0.037	244889_at	NEK7	Û	1.89	0.016
228222_at		Û	2.25	0.030	230180_at	FCHO2	Û	1.99	0.019	229373_at	ABHD5	Û	1.89	0.013
212368_at	C16orf7	Û	2.23	0.038	202859_x_at		Û	1.99	0.017	227757_at	LOC388210	Û	1.89	9.07E-03
219978_s_at	ZNF292	Û	2.23	0.015	228220_at	IL8	Û	1.99	5.14E-03	1558747_at		Û	1.88	0.038
205781_at	NUSAP1	Û	2.23	3.82E-03	222409_at		Û	1.98	0.041	207172_s_at	SMCHD1	Û	1.88	0.036
222562_s_at	TNKS2	Û	2.22	0.024	224778_s_at	DNPEP	仓	1.98	9.65E-03	212943_at	MYO1G	Û	1.88	0.016
235645_at	PTPRC	Û	2.19	0.035	241403_at	CORO1C	Û	1.98	7.03E-03	227953_at	CDH11	Û	1.88	7.89E-03
1552480_s_at	ESCO1	Û	2.19	9.17E-03	215135_at	CLK4	Û	1.98	4.19E-03	227799_at	KIAA0528	Û	1.88	7.55E-03
229327_s_at		Û	2.16	0.017	242312_x_at		Û	1.97	0.043	225178_at	DAPK1	Û	1.87	0.033
207605_x_at	ZNF117	Û	2.16	9.16E-03	223940_x_at	MALAT1	Û	1.96	0.022	210116_at	PREPL	Û	1.87	0.030
239957_at		Û	2.14	0.026	1557970_s_at	RPS6KA2	仓	1.96	2.69E-04	203139_at	SH2D1A	Û	1.87	0.028

212215_at	PHF10	Û	1.87	0.026	208944_at		Û	1.82	0.026	216555_at	STAT6	仓	1.77	0.050
225048_at	TTC14	Û	1.87	0.011	202478_at	TGFBR2	Û	1.82	9.24E-03	201408_at	PPP1CB	Û	1.77	0.021
212887_at	PPP1CB	Û	1.86	0.044	223964_x_at	RGS18	Û	1.81	0.045	214499_s_at	C22orf30	Û	1.77	0.017
218733_at		Û	1.86	0.039	213875_x_at		Û	1.81	0.031	242844_at	MTG1	兌	1.77	0.016
210057_at	ANO9	仓	1.86	0.036	223809_at	CDV3	Û	1.81	0.026	204088_at	P2RX4	仓	1.77	0.011
227364_at	RPS6KA5	Û	1.86	0.032	228746_s_at	SFRS4	Û	1.81	0.021	201332_s_at	BCLAF1	Û	1.77	8.57E-03
201407_s_at	SEC23A	Û	1.86	0.022	239512_at	C6orf62	Û	1.81	0.020	238333_s_at	PGGT1B	Û	1.77	2.46E-03
204633_s_at	MSL2	Û	1.86	0.015	218738_s_at	RNF138	Û	1.81	0.018	220832_at	SFRS12	Û	1.76	0.037
227393_at	REC8	仓	1.86	8.29E-03	209785_s_at	ESPN	仓	1.81	0.016	1563975_at	NSUN5C	仓	1.76	0.034
218599_at	SMG1	Û	1.86	4.96E-03	223549_s_at	PLA2G4C	仓	1.81	9.30E-03	227259_at	NUDT14	仓	1.76	0.029
226010_at	SLC25A23	仓	1.86	8.19E-05	211575_s_at		仓	1.80	0.042	212721_at	TLR8	Û	1.76	0.018
219132_at	LAG3	仓	1.85	0.040	239339_at	C4orf48	仓	1.80	0.028	228631_s_at	PLA2G6	仓	1.76	0.017
214352_s_at	NSUN5C	仓	1.85	0.031	238506_at	UBE3A	Û	1.80	5.44E-03	213460_x_at	ZNF688	仓	1.76	9.61E-03
212515_s_at	NFIX	仓	1.85	0.025	229607_at	LRRC58	Û	1.80	5.36E-03	204691_x_at	CD47	Û	1.76	6.15E-03
237461_at	DDX3X	Û	1.85	0.022	229860_x_at		Û	1.80	1.32E-03	231914_at	RNF130	Û	1.76	5.12E-04
243435_at	NLRP7	Û	1.85	0.020	222453_at	RAB14	Û	1.79	0.041	225362_at	NUPL1	Û	1.75	0.045
227400_at	KRAS	Û	1.85	8.23E-03	223263_s_at	DOM3Z	仓	1.79	0.026	238317_x_at	MOBKL1B	Û	1.75	0.037
213842_x_at	PELI2	Û	1.85	6.58E-03	210281_s_at	SIRT1	Û	1.79	0.011	201299_s_at		Û	1.75	0.027
206486_at	KCNQ10T1	Û	1.85	5.93E-04	218878_s_at	FGFR10P2	Û	1.79	8.69E-03	223984_s_at	TRIOBP	Û	1.75	0.012
222040_at	CENPT	仓	1.84	0.038	200927_s_at	CYBRD1	Û	1.79	6.05E-03	1552334_at	FLYWCH1	兌	1.75	8.50E-03
216241_s_at	TCEA1	Û	1.84	0.029	204522_at	ZMYM2	Û	1.79	3.41E-03	223950_s_at	FAM122B	Û	1.75	1.99E-03
206543_at	HNRNPA1	Û	1.84	9.92E-03	225243_s_at	SLC11A1	仓	1.78	0.045	226251_at	ASXL2	Û	1.74	0.045
235461_at	SMARCA2	Û	1.84	8.12E-03	226464_at	GLCCI1	Û	1.78	0.037	229951_x_at		Û	1.74	7.81E-03
218148_at	TET2	Û	1.84	4.83E-03	227525_at	ZNF518A	Û	1.78	0.034	216899_s_at	AGPAT3	仓	1.74	1.98E-03
218528_s_at	RNF38	Û	1.83	0.044	216511_s_at	TCF7L2	Û	1.78	0.031	223182_s_at	SKAP2	Û	1.74	1.02E-03
223138_s_at	MVP	仓	1.83	0.038	204291_at	TAZ	仓	1.78	0.028	200751_s_at	HNRNPA1	Û	1.73	0.044
210313_at	LILRA4	Û	1.83	0.032	212408_at	C3orf58	Û	1.78	0.023	218294_s_at	HMGB1	Û	1.73	0.043
200728_at		仓	1.83	0.028	235721_at	GSTT1	仓	1.78	0.019	200731_s_at	CARD8	Û	1.73	0.043
228730_s_at	DHX36	Û	1.83	0.026	210423_s_at	SLMAP	Û	1.78	0.013	230775_s_at	SLC30A7	Û	1.73	0.039
238591_at	SCRN2	①	1.83	0.010	37278_at	DTX3	仓	1.78	8.17E-03	221919_at	LRRC1	Û	1.73	0.037
202180_s_at	ACTR2	Û	1.83	5.50E-03	236430_at	TOR1AIP1	Û	1.78	5.70E-03	201493_s_at	NCOA3	Û	1.73	0.032
229413_s_at	TRIB2	Û	1.82	0.045	203815_at	TMED6	仓	1.78	3.13E-05	218319_at	PUM2	Û	1.73	0.031

201133_s_at	BCL6	兌	1.73	0.028	223047_at	ZNF24	Û	1.70	0.046	212140_at	LRCH4	Û	1.68	0.022
211352_s_at	PJA2	Û	1.73	0.025	214786_at		Û	1.70	0.043	209586_s_at	PDS5A	Û	1.68	0.019
224734_at	DOM3Z	Û	1.73	0.024	221760_at	LOC650392	Û	1.70	0.029	229350_x_at	C6orf62	Û	1.68	0.018
218816_at	PTP4A1	Û	1.73	0.023	226441_at	CNOT8	Û	1.70	0.026	37796_at	PRUNE	Û	1.68	0.015
226601_at	NUP50	Û	1.73	0.016	241245_at	MAP3K2	Û	1.70	0.021	1555874_x_at	PPP2R5E	Û	1.68	0.014
1554479_a_at		Û	1.73	0.015	202164_s_at	SFRS4	Û	1.70	0.020	237340_at		Û	1.68	0.014
222235_s_at	RP11	Û	1.73	0.014	203247_s_at	PCMTD1	Û	1.70	0.018	204954_s_at	DNAJC10	Û	1.68	9.18E-03
228758_at	PELI1	Û	1.73	0.013	206875_s_at	HEXDC	Û	1.70	9.56E-03	203240_at	DYRK1B	Û	1.68	9.10E-03
38157_at	CSGALNACT2	Û	1.73	6.88E-03	235385_at	SLK	Û	1.70	8.45E-03	226201_at	MGC21881	Û	1.68	5.37E-03
238717_at	HNRNPC	Û	1.73	5.38E-03	1569872_a_at	MAP3K1	Û	1.70	3.03E-03	213518_at	PRKCI	Û	1.67	0.047
244679_at	СОСН	Û	1.72	0.048	1555866_a_at	SNX30	Û	1.70	2.79E-03	202890_at	GP1BB/SEPT5	Û	1.67	0.047
220369_at	KLHL15	Û	1.72	0.038	203397_s_at		Û	1.69	0.048	221918_at	SMAD4	Û	1.67	0.045
242576_x_at		Û	1.72	0.025	216037_x_at	C11orf58	Û	1.69	0.040	216035_x_at	HMGCR	Û	1.67	0.045
244103_at	SMEK1	Û	1.72	0.024	201020_at	GALNT3	Û	1.69	0.029	202527_s_at	PCTK2	Û	1.67	0.044
1554241_at		Û	1.72	0.021	213494_s_at	DENND1C	Û	1.69	0.028	233329_s_at	BMP2K	Û	1.67	0.038
226370_at	C1orf55	Û	1.72	0.017	200084_at	TMTC1	얍	1.69	0.026	238619_at		Û	1.67	0.038
243233_at	LOC692247	Û	1.72	9.80E-03	202006_at	TMEM41B	Û	1.69	0.025	202540_s_at	MAP7	Û	1.67	0.034
224041_at	N4BP2L2	Û	1.72	5.97E-03	212623_at	LOC440731	Û	1.69	0.025	226853_at		Û	1.67	0.030
1569453_a_at	TTTY6	Û	1.72	2.07E-03	212306_at	CLASP2	Û	1.69	0.021	212479_s_at	TCF7L2	Û	1.67	0.028
222111_at	VARS2	仓	1.71	0.050	221080_s_at	PTPN12	Û	1.69	0.020	219303_at	KRCC1	Û	1.67	0.028
225997_at	GPAA1	仓	1.71	0.049	226322_at	YY1	Û	1.69	0.019	232311_at	RASA4/4B	Û	1.67	0.024
201901_s_at		Û	1.71	0.034	202452_at	TCF7L2	Û	1.69	0.014	231647_s_at	RMND5A	Û	1.67	0.023
220515_at	YY1	Û	1.71	0.033	238973_s_at	ZER1	Û	1.69	0.013	212707_s_at	RNF219	Û	1.67	0.021
203253_s_at	C8orf73	Û	1.71	0.032	201770_at	SNRPA	Û	1.69	4.43E-03	239944_at	B2M	Û	1.67	0.019
1559957_a_at	HISPPD1	Û	1.71	0.019	238376_at	YWHAH	Û	1.69	8.71E-04	206655_s_at	FCRL5	Û	1.67	3.10E-03
226200_at	DUSP21	Û	1.71	0.016	203338_at	WDR43	Û	1.68	0.042	201599_at	RSBN1	Û	1.66	0.050
201618_x_at		Û	1.71	0.013	213872_at	SLC26A8	Û	1.68	0.040	224046_s_at	NSUN5	Û	1.66	0.050
227672_at	HSDL2	仓	1.71	9.18E-03	235060_at	PARP10	Û	1.68	0.037	225565_at	C16orf35	Û	1.66	0.048
1559128_at	MOBKL1A	Û	1.71	3.77E-03	1561015_at	RBM25	Û	1.68	0.034	208783_s_at	MED28	Û	1.66	0.037
233369_at	LOC642852	Û	1.71	1.54E-03	225174_at	LOC100190986	Û	1.68	0.029	220038_at	OAT	Û	1.66	0.034
226249_at	CMTM6	Û	1.70	0.046	214662_at	DOT1L	Û	1.68	0.029	223336_s_at	FUK	Û	1.66	0.029
232382_s_at	MAN1A1	Û	1.70	0.046	212030_at	FCGBP	Û	1.68	0.024	225845_at	ZBTB44	Û	1.66	0.027

240592_at	LCORL	Û	1.66	0.024	211671_s_at	SLC38A2	Û	1.64	0.045	208810_at	SAMD9	Û	1.63	0.031
222789_at	CPSF3L	仓	1.66	0.021	223925_s_at	RBM7	Û	1.64	0.045	225032_at	CEP170	Û	1.63	0.027
217544_at	SGK3	Û	1.66	0.019	225133_at	BACH1	Û	1.64	0.045	204057_at	FBXL4	Û	1.63	0.025
206015_s_at	CD46	Û	1.66	0.018	1555948_s_at	STK16	Û	1.64	0.045	213090_s_at	LMF1	兌	1.63	0.025
209170_s_at	RAB18	Û	1.66	0.017	202694_at	KDM4C	Û	1.64	0.042	221423_s_at	YIPF5	Û	1.63	0.017
236752_at	GPM6B	Û	1.66	0.015	202228_s_at	LOC100130332	Û	1.64	0.040	232225_at	FNDC3B	Û	1.63	0.012
224416_s_at	LOC729806	Û	1.66	0.012	241610_x_at	CHKB/CPT1B	Û	1.64	0.038	46142_at	SMARCA5	Û	1.63	0.011
226072_at	FOXJ3	Û	1.66	6.73E-03	227368_at	KIAA1731	Û	1.64	0.033	1553993_s_at		仓	1.63	0.011
217994_x_at	CREB1	Û	1.66	3.45E-03	220924_s_at	STK17A	Û	1.64	0.032	33736_at	MIER1	Û	1.63	8.33E-03
205614_x_at	MST1	①	1.66	2.49E-03	218379_at	FAM120A	Û	1.64	0.030	225980_at	LEMD3	Û	1.62	0.050
203802_x_at	PDE7A	Û	1.66	1.82E-03	210233_at		Û	1.64	0.028	204742_s_at	PRKD3	Û	1.62	0.050
210672_s_at		Û	1.66	1.12E-03	208859_s_at	KLF3	Û	1.64	0.019	218604_at	TMEM63C	仓	1.62	0.050
213016_at	SPAG9	Û	1.65	0.043	209984_at	ZMIZ2	Û	1.64	0.017	218191_s_at	PKN2	Û	1.62	0.041
1555762_s_at	PUM1	Û	1.65	0.043	218318_s_at	NLK	Û	1.64	0.016	241294_at	SBNO2	仓	1.62	0.040
224866_at	DGKZ	①	1.65	0.042	204194_at	IL1RAP	Û	1.64	0.015	222656_at	MED21	Û	1.62	0.039
217843_s_at	BBX	Û	1.65	0.041	210070_s_at	NPTN	Û	1.64	0.013	225697_at	TRPT1	仓	1.62	0.039
212468_at	FAR1	Û	1.65	0.038	221924_at	ATRX	Û	1.64	0.011	209362_at	EML3	仓	1.62	0.036
229322_at	PPP2R5E	Û	1.65	0.037	238572_at		Û	1.64	3.51E-03	1562836_at	CPSF3L	仓	1.62	0.029
203491_s_at	USP15	Û	1.65	0.035	214532_x_at	POU5F1B	Û	1.64	3.28E-03	218236_s_at		仓	1.62	0.028
223888_s_at		Û	1.65	0.035	240666_at		Û	1.64	1.82E-03	225904_at	C14orf43	Û	1.62	0.027
222473_s_at	IQGAP2	Û	1.65	0.029	1558720_at	STOML1	Û	1.63	0.050	212628_at	GPN2	仓	1.62	0.026
209475_at	PNN	Û	1.65	0.029	201152_s_at	MBNL1	Û	1.63	0.049	218552_at		Û	1.62	0.023
203011_at	NUCKS1	Û	1.65	0.027	202769_at	DNAJB14	Û	1.63	0.047	204166_at	ZNF444	仓	1.62	0.022
201165_s_at	PLA2G6	①	1.65	0.025	235450_at	MED25	Û	1.63	0.047	218799_at		Û	1.62	0.021
238100_at	RBM15	Û	1.65	0.020	222850_s_at	LDLR	Û	1.63	0.045	227733_at	UBE2W	Û	1.62	0.019
203474_at	IMPA1	Û	1.65	0.017	202303_x_at	IRF8	Û	1.63	0.043	229066_at	C1orf96	Û	1.62	0.017
229353_s_at	LARS	Û	1.65	0.012	219691_at		Û	1.63	0.041	50376_at	PDS5B	Û	1.62	0.012
231035_s_at	MED4	Û	1.65	0.012	202068_s_at	DNAJB6	Û	1.63	0.040	223436_s_at	CRKRS	Û	1.62	0.010
212037_at	ERBB2IP	Û	1.65	8.84E-03	225475_at		Û	1.63	0.039	224312_x_at	ECHDC2	仓	1.62	9.48E-03
210647_x_at	AAK1	Û	1.65	7.54E-03	212746_s_at	RP6	Û	1.63	0.038	212969_x_at	LOC338799	兌	1.62	2.48E-03
207556_s_at	CEP57	Û	1.65	6.12E-03	229212_at	TAF4	Û	1.63	0.036	226369_at	LMBRD1	Û	1.62	1.06E-03
1569302_at	NR3C1	Û	1.64	0.049	218499_at	CCNG2	Û	1.63	0.035	202514_at	DLG1	Û	1.61	0.049

242628_at	UNKL	Û	1.61	0.047	1552386_at	SPTBN5	仓	1.60	0.020	211174_s_at	RASSF5	Û	1.59	2.57E-03
209034_at	GTF3C3	Û	1.61	0.043	202014_at	ACAP3	仓	1.60	0.019	220178_at	ZC3H15	Û	1.59	2.30E-03
221064_s_at	MAP3K7	Û	1.61	0.042	37462_i_at	PIAS1	Û	1.60	0.017	203901_at	CCKAR	仓	1.59	1.76E-03
201951_at	PLCD1	Û	1.61	0.042	226470_at	BOD1L	Û	1.60	0.014	221049_s_at	C19orf28	仓	1.59	2.22E-04
237001_at	ARHGAP4	Û	1.61	0.033	1556839_s_at		Û	1.60	0.013	206989_s_at	LNX1	Û	1.58	0.048
236368_at	RFNG	Û	1.61	0.033	206402_s_at	GAPT	Û	1.60	0.012	225885_at	AP1G2	仓	1.58	0.048
206853_s_at		Û	1.61	0.032	204375_at	HBP1	Û	1.60	0.011	223611_s_at	ERAP2	Û	1.58	0.046
1555439_at	ALCAM	Û	1.61	0.030	236541_at	TMEM167B	Û	1.60	6.99E-03	200889_s_at	MED24	仓	1.58	0.046
205819_at	WDTC1	仓	1.61	0.027	233625_x_at	ZEB1	Û	1.60	6.88E-03	227462_at	IREB2	Û	1.58	0.045
216036_x_at		Û	1.61	0.025	235383_at	PAK2	Û	1.60	6.43E-03	225892_at	HEMK1	仓	1.58	0.042
204425_at	KIAA0368	Û	1.61	0.021	228198_s_at	ACTR2	Û	1.60	2.68E-03	203689_s_at	CR1	Û	1.58	0.041
205125_at	MARCO	Û	1.61	0.015	225529_at	G2E3	Û	1.60	1.07E-03	206244_at	POLRMT	仓	1.58	0.039
212968_at	PNRC1	Û	1.61	4.23E-03	208276_at	IGFBP3	Û	1.59	0.049	204286_s_at	SMOX	仓	1.58	0.035
210966_x_at	LARP1	Û	1.61	8.77E-05	243280_at	SPOPL	Û	1.59	0.046	217608_at	EEA1	Û	1.58	0.027
218196_at	TMTC3	Û	1.60	0.049	201593_s_at	CXXC1	Û	1.59	0.044	235216_at	PMAIP1	Û	1.58	0.027
236645_at	PPP1CC	Û	1.60	0.047	225658_at	MAP3K7IP1	仓	1.59	0.037	218128_at	TMEM63A	仓	1.58	0.024
217862_at	SOAT1	Û	1.60	0.046	223650_s_at	RAB21	Û	1.59	0.034	210357_s_at	GPR162	仓	1.58	0.023
208876_s_at		Û	1.60	0.040	228153_at	SF3A2	仓	1.59	0.031	203782_s_at	FMR1	Û	1.58	0.019
222495_at	MY07B	Û	1.60	0.038	209701_at	CRK	Û	1.59	0.030	213043_s_at	ESC01	Û	1.58	0.017
1560017_at	SF3A2	Û	1.60	0.034	202226_s_at	RRAGD	Û	1.59	0.029	218620_s_at	SFRS12IP1	Û	1.58	0.015
222980_at	CPSF3L	Û	1.60	0.030	203885_at	CACNB3	Û	1.59	0.027	203326_x_at		仓	1.58	0.014
200726_at	NPFF	Û	1.60	0.029	1558093_s_at	POLL	仓	1.59	0.023	201613_s_at	SCYE1	仓	1.58	0.012
225039_at		Û	1.60	0.028	1554834_a_at	ERAP1	Û	1.59	0.022	235594_at	SFRS2IP	Û	1.58	8.48E-03
227293_at	ARSA	Û	1.60	0.027	217955_at	OGFOD2	Û	1.59	0.022	229559_at	FLJ40125	Û	1.58	7.76E-03
223255_at	TMEM33	Û	1.60	0.024	221523_s_at		Û	1.59	0.019	224821_at	ABHD14B	Û	1.58	5.11E-03
242388_x_at	GGT7	Û	1.60	0.024	209344_at	RNF144B	Û	1.59	0.019	205056_s_at	NFYB	Û	1.58	8.36E-04
212758_s_at	RPE	Û	1.60	0.023	48580_at	MATR3	Û	1.59	0.017	202700_s_at	SSR1	Û	1.58	5.27E-04
235009_at	RAB10	Û	1.60	0.022	210095_s_at	GPSN2	Û	1.59	0.015	241866_at	HDAC2	Û	1.57	0.049
238831_at	PPP1R15A	Û	1.60	0.022	34726_at		Û	1.59	0.014	202539_s_at	EWSR1	Û	1.57	0.048
212867_at	LOC729234	①	1.60	0.022	208336_s_at	TPM4	Û	1.59	0.013	212461_at	PPP1CB	Û	1.57	0.048
1558015_s_at	OSTM1	Û	1.60	0.021	209381_x_at	BCL2L13	Û	1.59	6.95E-03	201833_at	ZAP70	仓	1.57	0.047
221561_at	CLSTN3	①	1.60	0.021	219246_s_at	NRBF2	Û	1.59	2.84E-03	202412_s_at		Û	1.57	0.045

200641_s_at	LRCH4	Û	1.57	0.044	244177_at	SGK1	Û	1.56	0.034	205227_at	CCNG2	Û	1.55	0.036
217845_x_at	RNF207	Û	1.57	0.041	212709_at	LPGAT1	Û	1.56	0.033	225509_at	SMAD5	Û	1.55	0.035
204156_at	FBXL3	Û	1.57	0.030	214753_at	IFRD1	Û	1.56	0.032	202304_at	MDM4	Û	1.55	0.033
223943_s_at	ZNF862	Û	1.57	0.030	202832_at	MGC42157	Û	1.56	0.030	209525_at	MBD3	Û	1.55	0.032
218313_s_at	LOC731424	仓	1.57	0.028	226505_x_at	GCC2	Û	1.56	0.028	224863_at	ARSD	仓	1.55	0.031
225132_at	DNHD1	Û	1.57	0.027	231090_s_at	C16orf58	仓	1.56	0.028	238490_at	ADD3	Û	1.55	0.029
229966_at	HIGD1A	Û	1.57	0.025	202670_at	HMGN4	Û	1.56	0.027	216072_at	STRN3	Û	1.55	0.028
236207_at	FBXL18	Û	1.57	0.024	202651_at	ARID2	Û	1.56	0.027	216915_s_at	SAP30L	Û	1.55	0.028
240099_at	FHIT	Û	1.57	0.024	235072_s_at	SNRPD1	Û	1.56	0.021	1555977_at	PIGB	Û	1.55	0.026
240789_at	GALNT7	Û	1.57	0.022	201739_at		Û	1.56	0.020	212441_at	G2E3	Û	1.55	0.026
201409_s_at	HMGCR	Û	1.57	0.018	202147_s_at		Û	1.56	0.018	218929_at	RASGRP2	仓	1.55	0.022
240248_at		Û	1.57	0.018	204872_at	LMF1	仓	1.56	0.018	201916_s_at	BZW1	Û	1.55	0.021
230500_at	GMCL1	Û	1.57	0.018	203552_at		Û	1.56	0.017	202770_s_at	KPNA4	Û	1.55	0.021
218458_at	KIAA0999	Û	1.57	0.015	225716_at	CLCN7	仓	1.56	0.014	242760_x_at	FNDC3A	Û	1.55	0.020
37586_at	YWHAZ	Û	1.57	0.012	205905_s_at	N4BP2L2	Û	1.56	0.013	214578_s_at	WDR74	仓	1.55	0.020
244759_x_at	ZNF142	Û	1.57	0.010	38069_at	PPP3CA	Û	1.56	9.88E-03	225267_at	PPP4R2	Û	1.55	0.019
213444_at	CLTB	Û	1.57	8.79E-03	219135_s_at	MFHAS1	仓	1.56	8.95E-03	235765_at	GNAQ	Û	1.55	0.019
229631_at	PDE7A	Û	1.57	7.60E-03	213457_at	LOC285147	Û	1.56	8.78E-03	226683_at	CENPB	仓	1.55	0.018
205104_at	SNPH	仓	1.57	7.14E-03	222190_s_at	TLE4	Û	1.56	8.68E-03	223254_s_at		Û	1.55	0.016
1569095_at	SSFA2	Û	1.57	3.59E-03	205655_at	RFFL	Û	1.55	0.049	226558_at	SNX18	Û	1.55	0.016
1556645_s_at		仓	1.57	3.28E-03	225219_at	LOC389834	Û	1.55	0.048	202463_s_at	HDGFRP3	Û	1.55	0.014
221996_s_at	USP1	Û	1.57	2.42E-03	237919_at	C1orf103	Û	1.55	0.047	212390_at	TMC4	仓	1.55	0.014
204692_at		Û	1.57	2.28E-03	235493_at	IL1RAP	Û	1.55	0.047	214368_at	MST1	兌	1.55	0.013
227500_at	GNG2	Û	1.57	2.10E-03	201753_s_at	PDE4DIP	仓	1.55	0.047	212437_at	SEC63	Û	1.55	8.71E-03
206492_at	SLC16A7	Û	1.57	1.50E-03	205842_s_at	SH3GLB1	Û	1.55	0.043	226403_at	KIAA0232	Û	1.55	7.96E-03
214032_at	AZIN1	Û	1.57	1.19E-03	200777_s_at		Û	1.55	0.043	216320_x_at	PHF3	Û	1.55	5.98E-03
202691_at	MAP4K5	Û	1.56	0.046	225519_at	TLE4	Û	1.55	0.042	218301_at	PTPN12	Û	1.55	3.29E-03
236166_at	CASP8AP2	Û	1.56	0.045	1565544_at	RNPEPL1	仓	1.55	0.042	220616_at	KIAA2026	Û	1.55	1.51E-03
222201_s_at	USP32	Û	1.56	0.043	220235_s_at		Û	1.55	0.039	225280_x_at	ZNF384	兌	1.55	5.36E-04
202579_x_at	NUP160	Û	1.56	0.039	204496_at	CDKN2AIP	Û	1.55	0.039	221712_s_at	RNF141	Û	1.55	2.69E-05
202457_s_at	MICA/B	仓	1.56	0.035	217951_s_at	ROCK1	Û	1.55	0.039	219289_at	FBXO3	Û	1.54	0.045
239104_at	MAP2K1	Û	1.56	0.034	209090_s_at	JAK2	Û	1.55	0.037	209595_at	COPB1	Û	1.54	0.042

227013_at	ZAP70	Û	1.54	0.038	1555199_at	API5	Û	1.53	0.034	201775_s_at	ARPC5	Û	1.52	0.033
222145_at	AP3D1	仓	1.54	0.037	214959_s_at	FMR1	Û	1.53	0.031	226109_at	MED20	Û	1.52	0.033
212686_at	CPSF3L	仓	1.54	0.037	215245_x_at	MMP24	兌	1.53	0.028	218559_s_at		Û	1.52	0.032
218637_at	TIGIT	仓	1.54	0.037	236723_at	HHEX	Û	1.53	0.026	200679_x_at	CCDC137	Û	1.52	0.032
208737_at		Û	1.54	0.034	220789_s_at	LOC728903	仓	1.53	0.024	217970_s_at	RAP2C	Û	1.52	0.030
239923_at	HEATR3	Û	1.54	0.033	211323_s_at	TBRG4	仓	1.53	0.023	217776_at	CLTB	Û	1.52	0.029
233308_at	IMPACT	Û	1.54	0.024	203233_at		Û	1.53	0.021	218669_at	ZNF107	Û	1.52	0.028
218432_at		Û	1.54	0.022	208534_s_at	IL4R	仓	1.53	0.021	211749_s_at		Û	1.52	0.022
218614_at	MAF1	Û	1.54	0.021	1560957_at	DPM1	Û	1.53	0.017	218127_at	HIP1R	Û	1.52	0.021
229392_s_at	MBD3	Û	1.54	0.020	1555872_a_at	HSPD1	Û	1.53	0.015	47069_at	FREM3	Û	1.52	0.018
222998_at	C7orf38	仓	1.54	0.016	213171_s_at		Û	1.53	0.012	238893_at	ST3GAL6	Û	1.52	0.015
238965_at	LATS2	Û	1.54	0.013	1558836_at	UHRF1BP1L	Û	1.53	0.011	203839_s_at	MPI	Û	1.52	0.014
210974_s_at	PABPC1L	Û	1.54	0.013	211849_s_at	GOSR1	Û	1.53	0.011	227464_at	CCPG1	Û	1.52	0.012
1555613_a_at	C12orf35	Û	1.54	7.71E-03	1558739_at	RNGTT	仓	1.53	0.011	243337_at	HMGB1	Û	1.52	0.010
233563_s_at	C21orf2	仓	1.54	7.13E-03	1554085_at	RASA4	仓	1.53	1.11E-03	210106_at		Û	1.52	9.63E-03
41160_at	PIK3R2	Û	1.54	6.70E-03	213549_at		Û	1.52	0.049	1556308_at	ANKRD12	Û	1.52	9.16E-03
240070_at	ATP6V1G1	Û	1.54	5.46E-03	211963_s_at	NFYB	Û	1.52	0.049	209558_s_at	ITPA	Û	1.52	9.12E-03
229762_at	SBF1	仓	1.54	3.93E-03	225222_at	SLC2A9	仓	1.52	0.049	240223_at	KIAA0494	Û	1.52	9.03E-03
226670_s_at	PPM1H	Û	1.54	3.82E-03	224823_at	C21orf91	Û	1.52	0.048	202472_at	LOC338758	Û	1.52	6.34E-03
212393_at	GTF2F2	Û	1.54	2.21E-03	202777_at	MAFB	Û	1.52	0.045	225933_at	VAMP3	Û	1.52	5.53E-03
200806_s_at	CHMP2B	Û	1.53	0.046	1560854_s_at	ARSD	仓	1.52	0.044	218985_at	RDH5	Û	1.52	3.84E-03
202536_at	RBM15	Û	1.53	0.045	212099_at	MYLK	Û	1.52	0.044	244429_at	CA5BP	Û	1.52	2.05E-03
219286_s_at	COPS8	Û	1.53	0.043	222313_at	PRR5	兌	1.52	0.044	223695_s_at	PRRT3	Û	1.52	1.32E-03
244662_at	ERAP2	Û	1.53	0.042	242471_at	ACSF3	兌	1.52	0.043	230026_at	HIAT1	Û	1.52	1.14E-03
1554915_a_at		仓	1.53	0.042	242273_at	RHOB	Û	1.52	0.040	209171_at		Û	1.52	5.99E-04
202142_at	PDE12	Û	1.53	0.041	213355_at	CNOT6	Û	1.52	0.040	205172_x_at	SLC2A8	Û	1.52	3.50E-04
235104_at	KIAA0240	Û	1.53	0.041	223079_s_at	SHOC2	Û	1.52	0.039	208883_at	PTPN23	Û	1.51	0.048
213118_at	ITPR1	仓	1.53	0.040	212872_s_at	MRPL43	兌	1.52	0.039	238687_x_at	FAM20B	Û	1.51	0.047
213208_at		仓	1.53	0.039	212289_at		Û	1.52	0.038	241242_at	SLC25A37	Û	1.51	0.046
226543_at		Û	1.53	0.038	238435_at	TNK2	仓	1.52	0.036	231747_at	NRG1	Û	1.51	0.041
204689_at	DDX51	Û	1.53	0.036	222156_x_at	RDH11	Û	1.52	0.035	225350_s_at	MSRB3	Û	1.51	0.040
202673_at	MUTED	Û	1.53	0.034	209535_s_at	GLS	Û	1.52	0.034	225782_at	LOC100129006	Û	1.51	0.040

225693_s_at	CCHCR1	Û	1.51	0.040	238568_s_at	MARK4	仓	1.51	5.65E-03	205215_at	SMARCA2	Û	1.50	0.042
202915_s_at	UBTD2	Û	1.51	0.039	206237_s_at	LIMS1	Û	1.51	5.48E-03	1559369_at	CES2	仓	1.50	0.042
210621_s_at	TM2D1	Û	1.51	0.035	243757_at		仓	1.51	4.49E-03	200767_s_at	FAM159A	仓	1.50	0.040
232964_at	KCTD9	Û	1.51	0.035	218978_s_at		Û	1.51	3.96E-03	225976_at	FCHO2	Û	1.50	0.032
224827_at	ZNF770	Û	1.51	0.032	212193_s_at	SPDYE1	Û	1.51	1.77E-03	206542_s_at	FAM120A	Û	1.50	0.030
221579_s_at	ZYG11B	Û	1.51	0.027	223150_s_at	UBR5	Û	1.51	1.72E-03	222688_at	TRADD	仓	1.50	0.029
213882_at	RASA1	Û	1.51	0.025	230095_at	HMGXB4	仓	1.51	4.65E-04	1555153_s_at	RNF2	Û	1.50	0.027
207198_s_at	CAMTA1	Û	1.51	0.021	209698_at	LARP1	仓	1.51	1.52E-05	231927_at	ATF6	Û	1.50	0.027
226810_at	OGFRL1	Û	1.51	0.017	241642_x_at	C5orf44	Û	1.50	0.048	222206_s_at	NCLN	仓	1.50	0.026
218823_s_at	COASY	Û	1.51	0.017	226128_at	TLK1	Û	1.50	0.043	1729_at	SMARCA2	Û	1.50	0.025
55065_at	CYSLTR1	Û	1.51	0.016	202056_at	ACER3	Û	1.50	0.043	209667_at		Û	1.50	0.013
201913_s_at	NUDT3	Û	1.51	0.013	206544_x_at	BTF3L4	Û	1.50	0.042	237033_at	KPNA1	Û	1.50	5.32E-03
212596_s_at		仓	1.51	0.012										

Probeset ID	Symbol		Fold	p-value	Probeset ID	Symbol		Fold	p-value	Probeset ID	Symbol		Fold	p-value
224559_at	MALAT1	Û	13.2	8.30E-07	215599_at	LOC653188	Û	4.25	4.90E-04	242431_at		Û	3.86	3.20E-06
228582_x_at	MALAT1	Û	12.2	4.60E-05	239014_at	CCAR1	Û	4.24	2.10E-04	230206_at	DOCK5	Û	3.85	1.60E-05
217414_x_at	HBA1/2	Û	9.12	0.030	213757_at		Û	4.23	2.40E-03	1555745_a_at	LYZ	Û	3.84	0.020
221491_x_at	HLA-DRB1/3-5	Û	9.11	0.025	228251_at	LOC100130930	Û	4.21	4.50E-04	1559142_at	MYST3	Û	3.83	1.40E-05
228697_at	HINT3	Û	8.34	1.80E-05	222179_at	CDC5L	Û	4.19	2.20E-04	231484_at		Û	3.82	0.028
1559500_at	VPS8	Û	7.45	1.40E-04	1569706_at	MYSM1	Û	4.17	4.40E-05	226762_at	PURB	Û	3.81	6.50E-04
241879_at	LPP	Û	7.17	2.20E-06	1565743_at		Û	4.16	1.70E-05	235999_at		Û	3.81	2.10E-04
232535_at		Û	6.68	9.60E-07	232958_at		Û	4.14	1.10E-03	241702_at		Û	3.79	8.10E-04
211699_x_at	HBA1/2	Û	6.46	0.046	233706_at		Û	4.12	2.10E-04	237590_at		Û	3.79	4.30E-05
235008_at		Û	6.17	5.50E-06	1560662_s_at	WHAMML1/2	Û	4.11	7.10E-05	1562467_at		Û	3.75	4.70E-05
204270_at	SKI	Û	5.95	7.10E-05	243559_at		Û	4.10	1.80E-03	239453_at		Û	3.75	1.50E-05
213998_s_at	DDX17	Û	5.93	8.10E-05	208442_s_at	ATM	Û	4.10	4.20E-04	242975_s_at		Û	3.71	9.90E-05
236201_at		Û	5.83	6.20E-03	238185_at		Û	4.08	9.90E-06	228248_at	RICTOR	Û	3.69	8.50E-05
1570361_a_at		Û	5.75	6.00E-05	222787_s_at	TMEM106B	Û	4.07	1.30E-04	239393_at		Û	3.66	2.90E-05
229982_at	QSER1	Û	5.32	1.20E-04	243089_at		Û	4.04	4.00E-04	218400_at	OAS3	Û	3.65	0.016
215175_at	PCNX	Û	5.26	2.40E-03	1556277_a_at	PAPD4	Û	4.02	1.90E-04	236930_at	NUMB	Û	3.64	2.50E-04
204018_x_at	HBA1/2	Û	5.23	0.045	236808_at	FGFR10P2	Û	3.99	7.20E-04	235613_at		Û	3.62	7.10E-04
226931_at	TMTC1	Û	5.15	3.60E-04	241041_at		Û	3.99	4.40E-04	236000_s_at		Û	3.61	1.10E-03
241610_x_at		Û	4.94	1.00E-04	240652_at		Û	3.97	1.60E-04	211310_at	EZH1	Û	3.61	1.00E-04
207604_s_at	SLC4A7	Û	4.88	1.20E-06	1567045_at		Û	3.97	2.70E-05	221745_at	WDR68	Û	3.60	2.00E-04
242974_at	CD47	Û	4.78	3.50E-06	1562283_at		Û	3.96	1.10E-03	1565788_at		Û	3.60	1.30E-04
205654_at	C4BPA	Û	4.75	0.029	224829_at	CPEB4	Û	3.96	2.20E-04	208523_x_at	HIST1H2BI	Û	3.60	4.30E-06
239751_at	LOC100506860	Û	4.74	4.60E-06	208930_s_at	ILF3	Û	3.94	2.30E-04	201340_s_at	ENC1	Û	3.58	5.20E-06
242029_at	FNDC3B	Û	4.67	5.10E-05	208268_at	ADAM28	Û	3.90	2.40E-03	234044_at		Û	3.57	2.30E-03
220900_at		Û	4.48	7.50E-06	235643_at	SAMD9L	Û	3.89	1.60E-03	214690_at	TAF1B	Û	3.57	2.00E-04
226322_at	TMTC1	Û	4.47	4.50E-03	242903_at	IFNGR1	Û	3.89	8.00E-05	231173_at	PYROXD1	Û	3.56	2.80E-03
232365_at	SIAH1	Û	4.40	4.60E-04	1560776_at		Û	3.89	3.70E-05	241860_at		Û	3.55	1.90E-03
212182_at	NUDT4	Û	4.39	5.60E-05	233724_at	ARNT	Û	3.89	5.10E-07	1557244_a_at		Û	3.55	1.60E-04
242659_at		Û	4.36	3.40E-06	232386_at	VPS13C	Û	3.88	3.30E-05	1566002_at		Û	3.55	1.50E-04
1565868_at	CD44	Û	4.30	3.40E-05	231097_at		Û	3.87	4.20E-04	208579_x_at	H2BFS	Û	3.54	6.80E-05
236439_at		Û	4.25	5.90E-04	236293_at	RHOH	Û	3.86	1.30E-04	210858_x_at	ATM	Û	3.54	7.00E-06

211734_s_at	FCER1A	Û	3.53	0.020	238787_at	DENND1B	仓	3.34	5.00E-03	241843_at	SNORA28	仓	3.16	1.20E-03
234210_x_at	ACTR2	Û	3.52	4.50E-04	228222_at	PPP1CB	仓	3.34	1.30E-03	238761_at	ELK4	仓	3.16	2.50E-04
226999_at	RNPC3	Û	3.52	2.30E-05	242693_at		仓	3.34	7.90E-04	234059_at		仓	3.16	4.60E-06
1569408_at	EIF2C4	Û	3.51	2.60E-04	203496_s_at	MED1	仓	3.34	1.10E-04	243458_at		仓	3.15	1.50E-03
217160_at	TSPY1	Û	3.51	1.40E-04	239167_at		仓	3.34	8.10E-05	237963_x_at		仓	3.15	5.10E-04
236435_at		Û	3.49	7.10E-04	203290_at	HLA-DQA1	Û	3.33	0.023	222319_at		仓	3.15	1.90E-04
212172_at	AK2	Û	3.49	1.10E-04	232311_at	B2M	仓	3.33	3.10E-04	1557811_a_at		仓	3.14	3.10E-04
1560926_at		Û	3.48	6.30E-04	211745_x_at	HBA1/2	Û	3.31	0.027	1555194_at		仓	3.14	1.50E-04
225720_at	SYNPO2	Û	3.47	6.50E-03	228498_at	B4GALT1	仓	3.30	2.00E-03	209398_at	HIST1H1C	Û	3.13	3.50E-03
215483_at	АКАР9	Û	3.47	1.90E-03	1559201_a_at	OSTF1	仓	3.30	6.10E-04	243876_at		仓	3.13	6.90E-05
210867_at	CNOT4	Û	3.47	2.70E-04	240103_at		仓	3.30	4.90E-04	236794_at		仓	3.13	5.10E-05
1557036_at	ZBTB1	Û	3.46	5.40E-03	242622_x_at	PTEN	仓	3.29	2.00E-03	1554241_at	СОСН	仓	3.13	4.30E-05
1556462_a_at		Û	3.46	5.30E-04	1558080_s_at	DNAJC3	仓	3.29	1.60E-03	228471_at	ANKRD44	仓	3.12	1.60E-05
1556158_at	FAM154B	Û	3.45	0.012	241824_at		仓	3.28	9.80E-04	222728_s_at	TAF1D	仓	3.11	4.00E-04
233964_at		Û	3.45	2.00E-04	224230_at	IL1F8	仓	3.28	1.20E-05	229353_s_at	NUCKS1	仓	3.10	2.90E-03
206088_at	LRRC37A2/3	Û	3.44	1.30E-03	240593_x_at		仓	3.27	3.20E-04	236354_at		仓	3.09	1.20E-03
236043_at	LOC100130175	Û	3.43	7.40E-05	203749_s_at	RARA	仓	3.26	3.50E-03	228638_at	FAM76A	仓	3.09	3.50E-04
209458_x_at	HBA1/2	Û	3.42	0.024	1554676_at	SRGN	仓	3.26	2.80E-03	230270_at	PRPF38B	仓	3.09	2.50E-04
238611_at		Û	3.42	3.80E-05	214405_at		仓	3.26	1.70E-03	222826_at	PLDN	仓	3.09	4.30E-05
1565620_at	AGAP4	Û	3.41	7.30E-04	1557707_at		仓	3.26	8.20E-04	1558315_s_at	HOOK3	仓	3.09	2.00E-05
243490_at		Û	3.40	1.00E-03	235879_at	MBNL1	仓	3.26	9.70E-05	215659_at	GSDMB	仓	3.07	2.70E-04
236432_at		Û	3.38	4.20E-03	1558710_at		仓	3.26	6.10E-06	1555423_at	SSH2	仓	3.06	7.20E-04
242467_at		Û	3.38	4.80E-05	1565915_at		仓	3.26	1.20E-06	206544_x_at	SMARCA2	Û	3.06	5.40E-04
205118_at	FPR1	Û	3.37	2.50E-03	222341_x_at		仓	3.23	0.019	212081_x_at	BAT2	仓	3.05	0.018
234326_at		Û	3.36	2.90E-03	1554306_at	ITPKB	仓	3.23	1.90E-04	242859_at		仓	3.05	9.30E-04
1556461_at		Û	3.36	7.70E-04	216300_x_at	RARA	仓	3.21	2.60E-03	242299_at		仓	3.05	5.00E-04
1564164_at	DENND1B	Û	3.36	1.10E-04	231829_at	MAVS	仓	3.19	7.30E-04	239861_at		仓	3.04	6.30E-04
240544_at		Û	3.36	1.30E-06	1570021_at		仓	3.19	3.20E-04	219186_at	ZBTB7A	仓	3.04	1.00E-04
220338_at	RALGPS2	Û	3.35	2.40E-03	243496_at	RAB18	仓	3.19	3.20E-04	1555167_s_at	NAMPT	Û	3.03	0.037
215986_at		Û	3.35	1.70E-04	1558842_at		仓	3.18	3.00E-03	1565811_at		Û	3.03	3.30E-03
216765_at	MAP2K5	Û	3.35	9.60E-05	238931_at	METT10D	仓	3.18	6.70E-04	220494_s_at		Û	3.03	7.40E-04
215043_s_at	SMA4/5	Û	3.34	5.20E-03	1552787_at	HELB	仓	3.17	1.20E-03	231999_at	ANKRD11	仓	3.02	1.40E-03

238769_at		Û	3.01	3.90E-03	232179_at	LOC158863	仓	2.93	4.10E-04	242261_at	IREB2	Û	2.84	1.10E-03
234112_at		Û	3.01	2.10E-03	229422_at	NRD1	仓	2.92	2.40E-04	233314_at	PTEN	Û	2.84	6.70E-04
237067_at		Û	3.00	2.10E-03	238193_at		仓	2.92	7.70E-05	1568866_at		Û	2.84	5.90E-04
1555920_at	CBX3	Û	3.00	9.30E-04	1558802_at		仓	2.91	9.30E-04	243964_at		Û	2.84	3.30E-04
236254_at	VPS13B	Û	3.00	5.30E-04	1561340_at		仓	2.91	5.40E-06	217534_at	FAM49B	仓	2.84	5.80E-05
1565913_at		Û	3.00	1.80E-04	226736_at	CHURC1	仓	2.90	0.035	230621_at	IAH1	仓	2.83	3.80E-05
236237_at		Û	2.99	7.20E-03	236975_at		仓	2.90	0.018	235172_at		Û	2.82	5.60E-03
243134_at		Û	2.99	4.60E-04	236659_x_at		仓	2.90	1.80E-03	211644_x_at	IGK	Û	2.82	3.30E-04
208629_s_at	HADHA	Û	2.99	4.10E-04	224563_at	WASF2	Û	2.89	6.00E-03	231252_at	C2orf67	仓	2.82	2.00E-04
1561654_at		Û	2.99	7.50E-05	1569262_x_at	UBE2CBP	仓	2.89	5.10E-03	220655_at	TNIP3	Û	2.82	2.50E-05
1560058_at	LOC399900	Û	2.98	6.90E-03	237322_at	MIAT	仓	2.89	2.90E-03	204192_at	CD37	Û	2.81	0.018
208764_s_at	ATP5G2	Û	2.98	3.50E-04	242576_x_at	N4BP2L2	仓	2.89	2.10E-03	235851_s_at	GNAS	Û	2.81	6.10E-03
237387_at		Û	2.98	6.20E-05	232418_at	LZTFL1	仓	2.89	9.40E-04	243182_at		仓	2.81	5.80E-03
204863_s_at	IL6ST	Û	2.97	9.50E-03	238902_at	PCMTD1	仓	2.89	8.70E-04	236533_at	ASAP1	仓	2.81	1.90E-04
223487_x_at	GNB4	Û	2.97	3.10E-03	1559039_at	DHX36	仓	2.89	1.60E-05	1560048_at		仓	2.81	1.30E-04
212417_at	SCAMP1	Û	2.97	1.10E-03	217811_at	SELT	Û	2.88	9.30E-03	227897_at		仓	2.81	1.90E-05
237197_at		Û	2.97	9.30E-04	1567044_s_at		仓	2.88	2.40E-03	222067_x_at	HIST1H2BD	Û	2.81	1.50E-05
243149_at		Û	2.97	7.00E-04	222929_at	FAM160B2	仓	2.88	5.70E-05	1563226_at	SLC38A10	仓	2.80	6.60E-03
1555392_at	LOC100128868	Û	2.97	6.20E-04	233995_at		仓	2.87	4.20E-03	1554084_a_at	NOL9	仓	2.80	3.00E-04
219980_at	C4orf29	Û	2.97	1.70E-04	200806_s_at	HSPD1	Û	2.87	5.50E-04	243454_at		仓	2.80	8.30E-05
1564767_at		Û	2.97	4.10E-05	206454_s_at	RHO	Û	2.86	0.014	208546_x_at	HIST1H2BH	Û	2.80	2.40E-05
230392_at		Û	2.96	4.00E-03	226663_at	ANKRD10	仓	2.86	1.60E-03	1562255_at	SYTL3	仓	2.79	0.011
217363_x_at		Û	2.96	2.40E-03	205310_at	FBXO46	仓	2.86	2.70E-04	1555116_s_at	SLC11A1	仓	2.79	1.70E-03
1565810_at		Û	2.96	1.40E-03	238672_at		仓	2.86	7.70E-05	215874_at		仓	2.79	1.10E-03
203533_s_at	CUL5	Û	2.96	3.50E-04	210666_at	IDS	仓	2.86	5.70E-05	1552302_at	TMEM106A	仓	2.79	4.40E-05
238363_at		Û	2.95	8.30E-05	207631_at	NBR2	仓	2.86	3.70E-05	241497_at		仓	2.78	0.013
1556323_at	CUGBP2	Û	2.94	5.40E-04	244508_at	SEPT7	仓	2.85	8.10E-03	1566608_at		仓	2.78	2.00E-03
238610_s_at		Û	2.94	2.70E-05	1560349_at		仓	2.85	2.80E-04	235220_at	YIPF4	仓	2.78	1.30E-03
213954_at	FAM169A	Û	2.93	7.80E-03	1559347_at		仓	2.85	1.50E-04	233872_x_at	ARHGAP5	仓	2.78	9.90E-04
244473_at		Û	2.93	7.20E-03	1564776_at		仓	2.84	5.40E-03	233239_at		仓	2.78	2.20E-04
221688_s_at	IMP3	Û	2.93	4.00E-03		DNAJB14	仓	2.84	4.40E-03			Û	2.78	9.40E-05
244773_at		Û	2.93	1.40E-03	234621_at		Û	2.84	2.70E-03	244165_at	C10orf18	仓	2.77	3.80E-03

215392_at		仓	2.77	1.50E-03	231507_at		仓	2.70	2.80E-03	206965_at	KLF12	仓	2.66	3.10E-03
233400_at		Û	2.77	1.50E-03	238013_at	PLEKHA2	Û	2.70	1.40E-03	240105_at		Û	2.66	2.70E-03
232392_at	SFRS3	Û	2.76	2.10E-03	224697_at	WDR22	Û	2.70	6.00E-04	227062_at	NCRNA00084	Û	2.65	9.60E-03
233204_at	LOC728153	仓	2.76	9.30E-04	230407_at	SBN01	仓	2.70	4.40E-04	1559747_at	SPG11	兌	2.65	1.40E-03
232412_at	FBXL20	仓	2.76	7.00E-04	236985_at		Û	2.70	3.90E-04	230128_at	IGL	仓	2.65	0.017
209060_x_at	NCOA3	仓	2.76	4.40E-04	244539_at		仓	2.70	2.80E-04	203415_at	PDCD6	Û	2.65	0.017
243031_at		仓	2.75	8.30E-03	221829_s_at	TNP01	仓	2.70	3.20E-05	242712_x_at	RGPD1-8	兌	2.64	1.60E-03
215434_x_at	NBPF1/10	仓	2.75	7.30E-03	216735_x_at		Û	2.70	8.90E-06	AFFX-r2-Bs-		Û	2.63	0.022
										lys-5_at				
232622_at		仓	2.75	1.20E-03	1557543_at		仓	2.69	2.60E-03	1558569_at	UNQ6228	仓	2.63	0.017
235926_at	ANAPC5	仓	2.75	8.00E-04	206697_s_at	HP	仓	2.69	2.50E-03	219158_s_at	NARG1	仓	2.63	4.80E-03
239405_at		Û	2.75	6.10E-04	208490_x_at	HIST1H2BF	Û	2.69	1.60E-03	1558922_at		Û	2.63	3.00E-03
1566003_x_at		仓	2.75	4.00E-04	228545_at	ZNF148	仓	2.69	1.20E-03	238271_x_at		兌	2.63	7.10E-04
1558515_at	FTX	仓	2.75	2.60E-04	243178_at		仓	2.69	5.30E-04	1559391_s_at		兌	2.63	5.90E-04
216198_at	ATF7IP	仓	2.75	1.50E-04	227145_at	LOXL4	仓	2.69	2.20E-04	203482_at	FAM178A	兌	2.63	5.60E-04
231005_at		仓	2.75	1.10E-04	214777_at	IGKV4-1	Û	2.68	3.80E-03	230543_at		仓	2.63	2.60E-04
232637_at	SEPT2	仓	2.75	6.80E-06	228834_at	TOB1	仓	2.68	2.60E-03	216767_at		兌	2.63	9.10E-05
243469_at		仓	2.74	2.20E-03	201868_s_at	TBL1X	仓	2.68	1.80E-03	241259_at	GAB3	兌	2.63	2.30E-05
1557797_a_at		仓	2.74	9.90E-04	233009_at		仓	2.68	1.60E-03	211424_x_at	METTL7A	仓	2.63	2.30E-05
234009_at		仓	2.74	7.90E-04	235957_at	GRIP1	仓	2.68	8.80E-04	207067_s_at	HDC	Û	2.62	0.031
242117_at		仓	2.74	5.50E-04	1566426_at		仓	2.68	8.10E-04	209750_at	NR1D2	兌	2.62	0.011
214693_x_at	NBPF10	仓	2.73	4.30E-03	230629_s_at	EP400	仓	2.68	4.90E-04	238851_at	ANKRD13A	兌	2.62	2.20E-03
238982_at	DENR	Û	2.73	3.30E-03	240482_at		Û	2.68	9.90E-07	239661_at		仓	2.62	1.40E-03
233824_at		仓	2.73	1.20E-03	1555091_at	PPM1F	仓	2.67	4.80E-03	238317_x_at		兌	2.62	1.00E-03
207492_at	NGLY1	仓	2.72	5.40E-04	1557305_at	TACC1	仓	2.67	8.30E-04	239364_at		兌	2.62	3.30E-04
203007_x_at	LYPLA1	Û	2.72	1.70E-04	238430_x_at	SLFN5	Û	2.67	4.10E-04	231281_at		Û	2.62	2.80E-05
220572_at		仓	2.72	1.20E-04	208527_x_at	HIST1H2BE	Û	2.67	1.10E-04	AFFX-LysX-		Û	2.62	0.013
										5_at				
215524_x_at	TRAC	Û	2.72	1.00E-05	230461_s_at		仓	2.67	6.50E-05	1566113_at		兌	2.61	4.40E-03
217753_s_at	RPS26	Û	2.71	4.30E-03	230466_s_at	RASSF3	Û	2.67	5.40E-05	1558747_at	SMCHD1	仓	2.61	3.40E-03
238563_at		仓	2.71	5.80E-04	1558698_at	ZNF264	仓	2.66	0.019	236907_at		仓	2.61	2.10E-03
239533_at	GPR155	Û	2.71	1.30E-04	1566485_at		仓	2.66	3.10E-03	232440_at	ZDHHC13	Û	2.61	7.80E-04

205594_at	ZNF652	仓	2.61	1.50E-04	219125_s_at	RAG1AP1	仓	2.56	2.90E-06	224346_at		Û	2.51	2.20E-04
241692_at		仓	2.61	3.00E-05	234288_at		仓	2.55	0.027	241050_at		Û	2.50	0.020
232537_x_at	MARK3	仓	2.60	8.00E-03	209127_s_at	SART3	仓	2.55	0.010	202412_s_at	USP1	Û	2.50	4.90E-03
210384_at	PRMT2	仓	2.60	5.10E-03	242384_at		仓	2.55	7.90E-03	208151_x_at	DDX17	Û	2.50	4.00E-03
220710_at	C15orf28	仓	2.60	1.20E-03	215464_s_at	TAX1BP3	Û	2.55	4.10E-03	231848_x_at	ZNF207	Û	2.50	3.90E-03
243667_at		仓	2.60	7.50E-04	1565566_a_at		仓	2.55	1.30E-03	211395_x_at	FCGR2C	Û	2.50	2.10E-03
1555945_s_at	FAM120A	仓	2.60	3.30E-04	236841_at		仓	2.55	6.50E-04	1556318_s_at	CAND1	Û	2.50	7.90E-04
236327_at		仓	2.60	2.60E-04	210484_s_at	TNFRSF10C	Û	2.55	4.70E-04	214257_s_at		Û	2.50	5.40E-04
240036_at	SEC14L1	Û	2.59	9.20E-03	215385_at		仓	2.55	2.90E-04	230494_at	SLC20A1	Û	2.50	4.90E-04
235567_at	RORA	Û	2.59	6.80E-03	217368_at	ATP5G2	Û	2.55	4.60E-05	214768_x_at	FAM20B	Û	2.50	2.90E-04
234474_x_at	IL6ST	仓	2.59	6.60E-03	216373_at	TAPT1	仓	2.55	1.50E-05	211411_at		仓	2.50	3.70E-05
208200_at	IL1A	仓	2.59	1.40E-03	201237_at	CAPZA2	仓	2.53	0.019	1564794_at		仓	2.50	3.30E-05
239629_at	CFLAR	仓	2.59	6.10E-04	236223_s_at	RIT1	仓	2.53	4.80E-03	229606_at		仓	2.50	1.70E-05
229398_at	RAB18	仓	2.59	5.00E-04	216401_x_at	LOC652493	Û	2.53	3.90E-03	242280_x_at	CPEB4	仓	2.49	0.024
1564021_at		仓	2.59	3.80E-04	229858_at		仓	2.53	3.70E-03	213328_at	NEK1	仓	2.49	0.019
225304_s_at	NDUFA11	Û	2.59	1.70E-04	1555814_a_at	RHOA	Û	2.53	3.30E-03	212027_at	RBM25	仓	2.49	0.016
224726_at	MIB1	仓	2.59	1.10E-04	205727_at	TEP1	仓	2.53	2.70E-03	201670_s_at	MARCKS	仓	2.49	0.011
210517_s_at	AKAP12	Û	2.58	0.041	1560486_at	STXBP3	仓	2.53	4.40E-04	1558732_at	MAP4K4	仓	2.49	5.20E-03
229187_at	LOC283788	仓	2.58	5.70E-03	236356_at	NDUFS1	Û	2.53	3.40E-04	239778_x_at		Û	2.49	3.20E-03
232978_at		仓	2.58	3.90E-03	243498_at		仓	2.53	3.10E-04	230375_at	SFRS18	仓	2.49	2.80E-03
1558028_x_at	LOC647979	仓	2.58	2.90E-03	214815_at	TRIM33	仓	2.52	0.021	237216_at		仓	2.49	1.70E-03
242343_x_at		仓	2.58	1.90E-03	235811_at		仓	2.52	0.015	213517_at	PCBP2	仓	2.49	1.50E-03
227851_s_at		仓	2.58	1.10E-04	211459_at		仓	2.52	5.10E-03	219382_at	SERTAD3	仓	2.49	3.90E-04
229010_at	CBL	仓	2.57	0.019	215029_at		仓	2.52	5.00E-03	63825_at	ABHD2	仓	2.48	0.024
201369_s_at	ZFP36L2	仓	2.57	0.012	224766_at	RPL37	仓	2.52	2.20E-03	233261_at	EBF1	仓	2.48	0.013
1557238_s_at		仓	2.57	3.70E-03	239605_x_at		仓	2.52	1.50E-03	236429_at	ZNF83	仓	2.48	5.40E-03
239978_at		仓	2.57	1.20E-03	243910_x_at	CAND1	仓	2.52	1.60E-04	1564378_a_at		仓	2.48	2.30E-03
242480_at		仓	2.57	9.30E-04	1558699_a_at	HERPUD2	仓	2.52	8.20E-05	211941_s_at	PEBP1	Û	2.48	2.20E-03
235660_at		仓	2.57	4.50E-05	226548_at	SBK1	仓	2.51	4.90E-03	1557810_at		仓	2.48	1.80E-03
235271_s_at	ZNF397	仓	2.57	4.30E-05	229193_at	LUC7L3	仓	2.51	4.80E-03	1552664_at	FLCN	Û	2.48	1.30E-03
206408_at	LRRTM2	仓	2.57	1.20E-05	240498_at		仓	2.51	1.70E-03	239392_s_at	POGK	Û	2.48	8.40E-04
202379_s_at	NKTR	仓	2.56	1.60E-03	1556849_at		仓	2.51	4.10E-04	243046_at		仓	2.48	6.40E-04

240706_at		兌	2.48	3.80E-05	210992_x_at	FCGR2C	Û	2.44	3.90E-03	235009_at	BOD1L	Û	2.41	2.80E-03
216252_x_at	FAS	Û	2.47	0.025	1555425_x_at	SSH2	仓	2.44	1.30E-03	1553727_at	B4GALNT3	仓	2.41	2.20E-03
222330_at		仓	2.47	4.00E-03	1555303_at		仓	2.44	1.00E-03	217378_x_at		Û	2.41	1.90E-03
242646_at		兌	2.47	3.60E-03	1557737_s_at	NKTR	仓	2.44	9.20E-04	1558173_a_at	LUZP1	仓	2.41	1.80E-03
216380_x_at	RPS28P6	Û	2.47	3.60E-03	1556060_a_at	ZNF451	仓	2.44	8.70E-04	1556007_s_at	CSNK1A1	仓	2.41	1.10E-03
215176_x_at		Û	2.47	2.90E-03	1563473_at		仓	2.44	6.30E-04	1554178_a_at	FAM126B	仓	2.40	0.012
212384_at	BAT1	仓	2.47	2.50E-03	232312_at	SAPS3	仓	2.44	1.30E-04	213742_at	SFRS11	仓	2.40	1.70E-03
216813_at		兌	2.47	1.40E-03	209225_x_at	TNPO1	仓	2.44	3.50E-05	232775_at		仓	2.40	9.50E-05
215252_at		仓	2.47	1.00E-03	218866_s_at	POLR3K	Û	2.44	3.10E-06	234149_at		仓	2.40	4.10E-06
205462_s_at	HPCAL1	Û	2.47	7.10E-04	221205_at		仓	2.43	7.90E-03	221563_at	DUSP10	仓	2.40	2.40E-06
230000_at	RNF213	仓	2.47	4.80E-04	240478_at		仓	2.43	1.30E-03	206371_at	FOLR3	Û	2.39	0.027
234488_s_at	GMCL1	仓	2.47	4.60E-04	223380_s_at	LATS2	仓	2.43	1.30E-03	230014_at		仓	2.39	0.015
232188_at	AKAP13	仓	2.46	5.10E-03	211643_x_at	IGK	Û	2.43	9.90E-04	239274_at		仓	2.39	9.60E-03
233819_s_at	RNF160	仓	2.46	5.10E-03	214305_s_at	SF3B1	仓	2.43	7.30E-04	243789_at		仓	2.39	7.00E-03
242024_at		仓	2.46	3.10E-03	242248_at	РНКВ	仓	2.43	4.70E-04	233309_at		仓	2.39	3.40E-03
236224_at	RIT1	兌	2.46	1.90E-03	1562611_at		仓	2.43	4.10E-04	236266_at	RORA	仓	2.39	1.10E-03
237588_at		仓	2.46	7.20E-04	230892_at		仓	2.43	2.60E-04	241413_at		仓	2.39	9.60E-04
208819_at	RAB8A	仓	2.46	3.70E-04	217591_at	SKIL	仓	2.43	1.80E-04	222529_at	SLC25A37	仓	2.39	9.60E-04
1566848_x_at		仓	2.46	3.40E-04	208132_x_at	BAT2	仓	2.42	0.029	243981_at	STK4	仓	2.39	7.20E-04
233816_at		仓	2.46	2.90E-04	204174_at	ALOX5AP	Û	2.42	0.025	243908_at		仓	2.39	4.60E-04
215719_x_at	FAS	Û	2.45	0.033	234000_s_at	PTPLAD1	仓	2.42	9.20E-03	227039_at	AKAP13	仓	2.39	3.80E-04
236862_at	GOPC	仓	2.45	8.70E-03	1559479_at	PI4K2B	仓	2.42	4.70E-03	229257_at	TNRC18	仓	2.39	1.20E-04
214352_s_at	KRAS	仓	2.45	2.60E-03	227931_at	INO80D	仓	2.42	1.30E-03	240044_x_at	TNRC6B	仓	2.39	1.50E-05
230970_at		仓	2.45	2.00E-03	1555339_at	RAP1A	Û	2.42	1.10E-03	240772_at		仓	2.38	0.011
229293_at		仓	2.45	5.60E-04	208627_s_at	YBX1	Û	2.42	3.50E-04	239742_at	TULP4	仓	2.38	3.70E-03
232885_at		仓	2.45	1.60E-04	205221_at	HGD	Û	2.42	3.30E-04	242498_x_at		仓	2.38	3.40E-03
215956_at		仓	2.45	1.40E-04	1558830_at		仓	2.42	1.70E-04	230833_at	ACRBP	Û	2.38	2.90E-03
227697_at	SOCS3	仓	2.45	1.10E-04	240080_at		仓	2.42	1.70E-04	1556821_x_at	DLEU2	仓	2.38	2.20E-03
227419_x_at	PLAC9	仓	2.45	9.20E-06	221483_s_at	ARPP19	仓	2.42	1.60E-06	215398_at		仓	2.38	2.10E-03
239486_at		仓	2.44	0.017	240016_at		仓	2.41	0.012	235526_at	SOX6	Û	2.38	1.30E-03
239487_at	FAM98A	仓	2.44	0.013	234151_at		仓	2.41	9.40E-03	212641_at	HIVEP2	Û	2.38	9.60E-04
1562677_at	HMMR	仓	2.44	0.011	243233_at		仓	2.41	6.00E-03	213229_at	DICER1	仓	2.38	5.90E-04

215620_at	RREB1	仓	2.38	4.10E-04	239948_at	NUP153	仓	2.35	1.70E-03	204180_s_at	ZBTB43	Û	2.31	1.90E-03
1562849_at		仓	2.38	1.80E-04	217653_x_at		仓	2.35	6.20E-04	242144_at		仓	2.31	1.80E-03
227639_at	PIGK	仓	2.38	4.50E-05	217445_s_at	GART	仓	2.35	3.00E-04	1561963_at	MIR4296	仓	2.31	1.70E-03
215894_at	PTGDR	仓	2.37	0.026	1553047_at	PIP4K2B	仓	2.35	1.80E-04	244753_at		仓	2.31	1.10E-03
1563621_at		仓	2.37	0.024	214246_x_at	MINK1	仓	2.35	6.70E-05	207038_at	SLC16A6	仓	2.31	1.10E-03
1569142_at	TRIM13	仓	2.37	0.016	1568867_x_at		Û	2.34	1.50E-03	238536_at		仓	2.31	7.20E-04
243561_at		仓	2.37	5.30E-03	235668_at	PRDM1	Û	2.34	6.30E-04	233099_at		仓	2.31	4.10E-04
1559044_at	EXOSC1	仓	2.37	3.20E-03	216844_at	ZC3H7B	仓	2.34	4.20E-05	206681_x_at	GP2	仓	2.31	3.00E-04
240254_at		仓	2.37	2.70E-03	221211_s_at	C21orf7	Û	2.33	0.021	243997_x_at		仓	2.30	0.011
240146_at		仓	2.37	1.80E-03	201294_s_at	WSB1	仓	2.33	0.011	1555058_a_at	LPGAT1	仓	2.30	0.010
239545_at		仓	2.37	1.80E-03	1558924_s_at	CLIP1	Û	2.33	9.60E-03	243005_at		仓	2.30	9.90E-03
222582_at	PRKAG2	仓	2.37	1.60E-03	238303_at	STT3B	Û	2.33	6.10E-03	237018_at		仓	2.30	7.70E-03
216983_s_at	ZNF224	仓	2.37	6.70E-04	1559895_x_at		仓	2.33	4.50E-03	242558_at		仓	2.30	6.60E-03
224974_at	SUDS3	仓	2.37	5.70E-04	1570248_at		仓	2.33	3.10E-03	242877_at		仓	2.30	6.20E-03
230779_at	TNRC6B	仓	2.37	5.40E-04	241631_at		仓	2.33	3.00E-03	233007_at		仓	2.30	5.90E-03
240554_at	AKAP8L	仓	2.37	4.20E-04	238722_x_at	NAPEPLD	仓	2.33	2.90E-03	1556820_a_at	DLEU2	仓	2.30	3.40E-03
244818_at	LOC390933	仓	2.37	2.10E-04	237586_at		仓	2.33	2.30E-04	241508_at		仓	2.30	2.20E-03
236419_at		仓	2.36	0.037	240691_at		仓	2.33	6.10E-05	1569368_at	LOC283693	Û	2.30	1.90E-03
236495_at		仓	2.36	0.011	213120_at	UHRF1BP1L	Û	2.33	1.40E-05	242755_at		仓	2.30	1.70E-03
1559331_x_at		仓	2.36	6.10E-03	206565_x_at	SMA4	仓	2.32	0.012	241501_at		仓	2.30	1.60E-03
238040_at		仓	2.36	6.00E-03	204713_s_at	F5	仓	2.32	0.011	232931_at	SNRNP200	仓	2.30	1.30E-03
216947_at	DES	Û	2.36	3.40E-03	231793_s_at	CAMK2D	Û	2.32	5.20E-03	232858_at		仓	2.30	8.70E-04
241838_at		仓	2.36	2.90E-03	201918_at	SLC25A36	仓	2.32	4.90E-03	238534_at	LRRFIP1	仓	2.30	8.70E-04
235469_at	FAM133B	仓	2.36	1.40E-03	228030_at		仓	2.32	4.70E-03	226085_at	CBX5	仓	2.30	6.80E-04
231878_at	C16orf53	仓	2.36	7.80E-04	221905_at	CYLD	Û	2.32	2.70E-03	240210_at	ATAD3C	仓	2.30	3.50E-04
213518_at	PRKCI	仓	2.36	6.90E-04	225265_at	RBMS1	Û	2.32	1.00E-03	214488_at	RAP2B	仓	2.30	3.40E-04
223217_s_at	NFKBIZ	仓	2.36	2.60E-04	214871_x_at		Û	2.32	7.10E-04	215070_x_at	RABGAP1	仓	2.30	2.90E-04
242146_at	SNRPA1	仓	2.36	9.70E-05	221540_x_at	GTF2H2B-D	Û	2.32	2.40E-04	242691_at		仓	2.30	2.70E-04
240248_at		仓	2.35	0.036	204119_s_at	ADK	Û	2.32	1.50E-04	1553625_at	FAM98B	仓	2.30	1.20E-04
214918_at	HNRNPM	仓	2.35	0.025	243512_x_at		仓	2.31	0.012	1559964_at	FLJ38717	仓	2.29	0.033
238970_at		仓	2.35	0.019	216022_at		仓	2.31	4.70E-03	203939_at	NT5E	Û	2.29	0.019
230702_at	C8orf16	仓	2.35	0.013	208960_s_at	KLF6	Û	2.31	3.40E-03	222679_s_at	DCUN1D1	仓	2.29	0.012

225414_at	RNF149	仓	2.29	8.40E-03	218008_at	C7orf42	仓	2.27	6.40E-04	228496_s_at	CRIM1	仓	2.25	1.50E-03
236941_at	C22orf30	仓	2.29	6.80E-03	211902_x_at	TRA	Û	2.27	6.00E-04	1552536_at	VTI1A	Û	2.25	8.30E-04
230703_at		兌	2.29	5.70E-03	234395_at		Û	2.27	5.10E-05	205069_s_at	ARHGAP26	仓	2.25	7.60E-04
242110_at		兌	2.29	5.40E-03	222196_at	LOC286434	Û	2.26	0.048	232216_at	YME1L1	仓	2.25	7.40E-04
235409_at	MGA	仓	2.29	3.60E-03	241620_at	SMCHD1	Û	2.26	0.040	215587_x_at		Û	2.25	1.80E-04
223934_at	SP140L	仓	2.29	3.40E-03	211430_s_at	IGH	Û	2.26	0.037	231235_at	NKTR	Û	2.24	0.036
207470_at		兌	2.29	1.70E-03	242163_at	THRAP3	Û	2.26	0.019	215314_at		仓	2.24	0.017
215058_at	DENND5B	兌	2.29	7.00E-04	1566809_a_at		Û	2.26	0.018	1569512_at		仓	2.24	0.017
216112_at		兌	2.29	2.20E-04	231495_at		Û	2.26	8.70E-03	207057_at	SLC16A7	仓	2.24	0.017
1562071_at		仓	2.29	1.30E-04	228603_at	ACTR3	仓	2.26	5.60E-03	232584_at		仓	2.24	0.014
213553_x_at	APOC1	얍	2.29	4.70E-05	1552486_s_at	LACTB	Û	2.26	4.60E-03	211645_x_at		Û	2.24	7.50E-03
206354_at	SLCO1B3	Û	2.28	0.033	1559949_at		仓	2.26	4.40E-03	215996_at		仓	2.24	7.20E-03
1559496_at	PPA2	仓	2.28	0.013	213650_at	GOLGA8A/B	仓	2.26	3.80E-03	241940_at		仓	2.24	6.40E-03
211192_s_at	CD84	Û	2.28	0.012	217610_at	SPDYE2	仓	2.26	3.40E-03	1553973_a_at	SPINK6	Û	2.24	3.90E-03
216147_at		얍	2.28	8.40E-04	201883_s_at	B4GALT1	Û	2.26	2.60E-03	238595_at		仓	2.24	2.90E-03
1569380_a_at	HERPUD1	仓	2.28	7.80E-04	200914_x_at	KTN1	仓	2.26	2.10E-03	242279_at		仓	2.24	2.50E-03
200796_s_at	MCL1	Û	2.28	3.70E-04	235028_at		仓	2.26	2.00E-03	1570571_at	CCDC91	仓	2.24	2.30E-03
209024_s_at	SYNCRIP	얍	2.27	0.035	239905_at	YTHDC1	仓	2.26	1.80E-03	1553515_at	MYEOV2	Û	2.24	5.50E-04
1558154_at		얍	2.27	0.020	1559600_at		仓	2.26	1.60E-03	204318_s_at	GTSE1	仓	2.24	1.50E-04
1552552_s_at	CLEC4C	Û	2.27	0.018	214522_x_at	HIST1H3D	Û	2.26	1.40E-03	241346_at	ARHGAP30	仓	2.23	0.018
233302_at		얍	2.27	0.014	226533_at	HINT3	仓	2.26	9.50E-04	244679_at		仓	2.23	0.017
241837_at		얍	2.27	0.013	230179_at	LOC285812	仓	2.26	5.40E-04	202323_s_at	ACBD3	仓	2.23	0.014
1561276_at	DOCK5	仓	2.27	0.013	244614_at	TFG	仓	2.26	4.20E-04	237456_at		仓	2.23	0.013
1562307_at		얍	2.27	0.012	1566043_at		仓	2.26	1.20E-04	243263_at	C17orf55	仓	2.23	9.00E-03
226880_at	NUCKS1	얍	2.27	0.012	235713_at	ALKBH8	仓	2.26	1.10E-06	221496_s_at	TOB2	仓	2.23	6.40E-03
236552_at		얍	2.27	0.011	236140_at	GCLM	仓	2.25	6.40E-03	216351_x_at	DAZ1-4	仓	2.23	2.90E-03
236966_at	ARMC8	仓	2.27	6.20E-03	1562443_at	RLBP1L2	Û	2.25	6.10E-03	229091_s_at	CCNJ	仓	2.23	2.10E-03
236484_at		仓	2.27	4.90E-03	231152_at	INO80D	仓	2.25	5.60E-03	205127_at	PTGS1	Û	2.23	1.10E-03
1559612_at		仓	2.27	3.20E-03	228147_at	SEPT7P2	仓	2.25	4.90E-03	232951_at		仓	2.23	8.70E-04
230808_at	FNTA	Û	2.27	3.00E-03	244447_at		仓	2.25	3.70E-03	1569004_at		①	2.23	7.70E-04
224275_at	GPR98	Û	2.27	1.60E-03	232441_at	KRR1	仓	2.25	2.70E-03	239296_at		①	2.23	5.90E-04
215859_at	NCLN	仓	2.27	1.20E-03	236139_at		仓	2.25	1.90E-03	233716_at		仓	2.23	5.80E-04

200892_s_at	TRA2B	Û	2.23	5.70E-04	236310_at	ZNF37BP	仓	2.21	1.00E-05	242983_at		Û	2.18	2.20E-03
235380_at		仓	2.23	4.00E-04	1566040_at		仓	2.20	0.031	205209_at	ACVR1B	①	2.18	4.70E-04
243013_at		仓	2.23	3.10E-04	212634_at	KIAA0776	仓	2.20	0.022	237878_at		仓	2.18	4.60E-04
207238_s_at	PTPRC	Û	2.22	0.044	228907_at		仓	2.20	0.011	1566598_at		Û	2.18	1.80E-04
223134_at	BBX	仓	2.22	0.010	232094_at	C15orf29	仓	2.20	8.50E-03	244187_at		Û	2.18	7.20E-05
238159_at		Ŷ	2.22	7.90E-03	215567_at	FCF1	仓	2.20	5.10E-03	200947_s_at	GLUD1	Û	2.18	9.60E-06
1566191_at	SUZ12	Û	2.22	7.70E-03	210792_x_at	SIVA1	Û	2.20	5.10E-03	244349_at		Û	2.17	0.048
224185_at	WRAP53	仓	2.22	6.40E-03	243229_at		仓	2.20	4.60E-03	222895_s_at	BCL11B	Û	2.17	0.012
234148_at		Û	2.22	3.90E-03	216576_x_at	IGKC	Û	2.20	4.40E-03	232521_at	PCSK7	Û	2.17	0.010
244270_at		Û	2.22	2.10E-03	238530_at	NNT	仓	2.20	2.10E-03	205798_at	IL7R	Û	2.17	8.30E-03
225191_at	CIRBP	Ŷ	2.22	2.00E-03	233915_at	C5orf36	仓	2.20	5.20E-04	232356_at		Û	2.17	5.50E-03
220477_s_at	C20orf30	Û	2.22	3.50E-04	209947_at	UBAP2L	仓	2.20	2.60E-05	217602_at	PPIA	Û	2.17	4.80E-03
229355_at	UBE2D3	仓	2.22	8.40E-05	201120_s_at	PGRMC1	Û	2.19	0.039	1555759_a_at	CCL5	Û	2.17	4.20E-03
1558882_at	LOC401233	仓	2.21	0.047	1569346_a_at		仓	2.19	0.024	207130_at	ZMYND8	Û	2.17	3.00E-03
244035_at		Û	2.21	0.038	241913_at		仓	2.19	0.020	207445_s_at	CCR9	Û	2.17	2.40E-03
236558_at		仓	2.21	0.017	213281_at	JUN	仓	2.19	0.018	241203_at		Û	2.17	2.00E-03
224943_at	BTBD7	仓	2.21	0.014	1565627_a_at		仓	2.19	0.015	241717_at	LOC285281	Û	2.17	1.60E-03
222266_at	C19orf2	Û	2.21	0.014	215338_s_at	NKTR	仓	2.19	0.011	213015_at	BBX	Û	2.17	9.30E-04
1562317_at	FAM186A	Û	2.21	0.013	220072_at	CSPP1	仓	2.19	8.00E-03	232629_at	PROK2	Û	2.17	6.70E-04
212890_at	SLC38A10	Û	2.21	6.70E-03	213922_at	TTBK2	仓	2.19	2.60E-03	1559355_at	NXPH2	Û	2.17	1.60E-04
244105_at	WHAMML1	仓	2.21	5.80E-03	1566607_at		仓	2.19	1.80E-04	212926_at	SMC5	Û	2.17	1.70E-05
226167_at	SYT7	Ŷ	2.21	5.30E-03	224535_s_at	MRP63	Û	2.19	1.30E-04	202971_s_at	DYRK2	Û	2.16	0.023
239601_at		Û	2.21	3.70E-03	216166_at		仓	2.19	6.50E-05	209911_x_at	HIST1H2BD	Û	2.16	0.012
239421_at	FLJ35776	Ŷ	2.21	3.30E-03	203094_at	MAD2L1BP	Û	2.19	2.70E-05	202166_s_at	PPP1R2	Û	2.16	0.012
217565_at	GRIA3	Ŷ	2.21	2.20E-03	1555780_a_at	RHEB	Û	2.18	0.041	238146_at		Û	2.16	8.40E-03
1566209_at		Û	2.21	1.70E-03	240971_x_at		仓	2.18	0.012	226404_at	RBM39	仓	2.16	7.90E-03
1558831_x_at		Û	2.21	6.10E-04	243395_at		仓	2.18	0.012	227364_at		Û	2.16	6.60E-03
229733_s_at		Ŷ	2.21	5.30E-04	243739_at		仓	2.18	0.011	240238_at		Û	2.16	3.60E-03
213026_at	ATG12	Ŷ	2.21	5.10E-04	202124_s_at	TRAK2	仓	2.18	8.60E-03	232952_at		Û	2.16	2.50E-03
217649_at	ZFAND5	仓	2.21	4.60E-04	230580_at		仓	2.18	7.40E-03	237333_at	RBBP4	Û	2.16	2.20E-03
210972_x_at	TRAC	Û	2.21	3.00E-04	216207_x_at	IGKC	Û	2.18	3.90E-03	1559038_at	SEPT2	Û	2.16	1.60E-03
230946_at	FMN2	仓	2.21	1.70E-04	242239_at		仓	2.18	3.60E-03	213850_s_at	SFRS2IP	Û	2.16	9.20E-04

225647_s_at	CTSC	Û	2.16	1.70E-04	1570249_x_at		Û	2.14	2.50E-04	233599_at	hCG_2003663	Û	2.12	8.30E-05
1565862_a_at		Û	2.15	0.026	224651_at	CCNY	얍	2.14	1.70E-04	1554281_at		Û	2.11	0.036
1555687_a_at	CLEC4C	Û	2.15	0.018	242617_at	TMED8	얍	2.14	4.80E-05	221830_at	RAP2A	Û	2.11	0.030
224480_s_at	AGPAT9	仓	2.15	0.012	204774_at	EVI2A	얍	2.13	0.047	240265_at	TRAF3IP3	Û	2.11	0.025
1557895_at	FLJ35934	仓	2.15	0.011	244267_at	SATB1	얍	2.13	0.039	220674_at	CD22	Û	2.11	0.019
222024_s_at	AKAP13	仓	2.15	8.60E-03	230324_at		얍	2.13	0.018	233700_at		Û	2.11	0.017
214678_x_at	ZFX	仓	2.15	7.40E-03	240601_at		얍	2.13	0.015	241627_x_at	FLJ10357	Û	2.11	0.012
218859_s_at	ESF1	仓	2.15	7.10E-03	1552622_s_at	POLR2J2/4	얍	2.13	7.40E-03	218280_x_at	HIST2H2AA3	Û	2.11	0.012
227741_at	PTPLB	仓	2.15	6.60E-03	235429_at	EIF3E	얍	2.13	5.80E-03	242260_at	MATR3	Û	2.11	9.40E-03
228315_at	ZMAT3	仓	2.15	6.50E-03	229905_at	RAP1GDS1	얍	2.13	5.60E-03	224140_at	NPCDR1	Û	2.11	7.90E-03
232410_at		仓	2.15	5.60E-03	218050_at	UFM1	얍	2.13	5.40E-03	242347_at		Û	2.11	7.30E-03
203934_at	KDR	仓	2.15	5.30E-03	225294_s_at	TRAPPC1	Û	2.13	5.20E-03	1557360_at	LRPPRC	Û	2.11	7.10E-03
243341_at		仓	2.15	1.90E-03	216984_x_at	IGLV2-11	Û	2.13	5.10E-03	232890_at		Û	2.11	6.00E-03
209671_x_at	TRAC	Û	2.15	1.00E-03	243660_at	CHD9	얍	2.13	4.80E-03	226267_at	JDP2	Û	2.11	3.50E-03
242672_at		仓	2.15	9.80E-04	229966_at	EWSR1	仓	2.13	2.90E-03	221222_s_at	C1orf56	Û	2.11	2.90E-03
1559249_at	ATXN1	仓	2.15	6.20E-04	243868_at	RFX3	仓	2.13	1.40E-03	241904_at		Û	2.11	2.00E-03
218848_at	THOC6	仓	2.15	3.70E-04	240813_at		仓	2.13	1.10E-03	217157_x_at	IGK	Û	2.11	1.90E-03
223432_at	OSBP2	仓	2.14	0.032	1560445_x_at	ARHGEF1	仓	2.13	8.20E-04	232724_at	MS4A6A	Û	2.11	1.80E-03
225954_s_at	MIDN	仓	2.14	0.020	234890_at	LOC100288175	얍	2.13	7.50E-05	239021_at	TLR6	Û	2.11	8.60E-04
233248_at		仓	2.14	0.013	204506_at	PPP3R1	Û	2.13	2.80E-05	217643_x_at		Û	2.11	8.40E-04
243748_at		仓	2.14	7.30E-03	229943_at	TRIM13	仓	2.12	0.031	1560827_at		Û	2.11	6.00E-04
232338_at		仓	2.14	5.30E-03	222731_at	ZDHHC2	仓	2.12	0.018	214656_x_at	MY01C	Û	2.11	3.20E-04
230999_at	FLJ39051	仓	2.14	4.60E-03	243807_at	NCOA7	仓	2.12	7.20E-03	238277_at		Û	2.11	3.00E-04
1563130_a_at		仓	2.14	3.80E-03	240282_at	WDR1	얍	2.12	6.00E-03	233014_at		Û	2.11	2.20E-04
225507_at	SFRS18	仓	2.14	2.70E-03	229694_at	BRWD2	얍	2.12	2.30E-03	225210_s_at	FAM103A1	Û	2.11	1.80E-04
207643_s_at	TNFRSF1A	仓	2.14	2.70E-03	210693_at	SPPL2B	얍	2.12	1.30E-03	235540_at	GNRH1	Û	2.11	1.60E-04
1560741_at	SNRPN	仓	2.14	2.60E-03	219617_at	C2orf34	仓	2.12	6.40E-04	237152_at	hCG_17324	Û	2.11	1.60E-04
213812_s_at	CAMKK2	仓	2.14	2.10E-03	216274_s_at	SEC11A	Û	2.12	3.70E-04	1561855_x_at		Û	2.11	6.20E-05
219606_at	PHF20L1	仓	2.14	1.10E-03	210334_x_at	BIRC5	얍	2.12	2.70E-04	1566966_at		Û	2.11	4.10E-05
210501_x_at	EIF3K	Û	2.14	1.00E-03	216769_x_at		Û	2.12	1.50E-04	205234_at	SLC16A4	Û	2.11	2.40E-05
1560119_at	LOC389634	仓	2.14	7.10E-04	241688_at		얍	2.12	8.80E-05	222154_s_at	LOC26010	Û	2.10	0.046
216174_at	HCRP1	仓	2.14	5.30E-04	207548_at	GRM7	Û	2.12	8.40E-05	222366_at		Û	2.10	0.017

Table A2: RR Ambion [®] GLOBINClear [™]	Gene List (n=4,520) [GeneSpring unpaired	l student's t-test p<0.05, FC ≥ ±1.50]
---	--	--

218294_s_at	NUP50	Û	2.10	0.013	235374_at	MDH1	Û	2.09	5.10E-03	228726_at	SERPINB1	Û	2.08	6.70E-06
234430_at	ANTXR1	Û	2.10	0.012	232556_at		Û	2.09	4.60E-03	206176_at	BMP6	Û	2.07	0.025
1557953_at	ZKSCAN1	Û	2.10	0.012	224851_at	CDK6	Û	2.09	4.50E-03	235376_at		Û	2.07	0.020
236524_at		Û	2.10	0.011	203028_s_at	CYBA	Û	2.09	4.00E-03	236088_at	NTNG1	Û	2.07	0.018
241619_at	CALM1	Û	2.10	6.10E-03	243904_at	STXBP5	Û	2.09	3.40E-03	54970_at	ZMIZ2	Û	2.07	0.016
1552621_at	POLR2J2	Û	2.10	5.30E-03	234594_at	C14orf85	Û	2.09	2.90E-03	216585_at		Û	2.07	0.013
225046_at	LOC100132181	Û	2.10	4.50E-03	233061_at	FITM2	Û	2.09	2.70E-03	204982_at	GIT2	Û	2.07	9.00E-03
208662_s_at	TTC3	Û	2.10	3.80E-03	1569841_x_at		Û	2.09	1.60E-03	219024_at	PLEKHA1	Û	2.07	8.80E-03
215429_s_at	ZNF428	Û	2.10	2.50E-03	214843_s_at	USP33	Û	2.09	4.60E-04	1562338_at	MARCH1	Û	2.07	8.70E-03
1557100_s_at	HECTD1	Û	2.10	1.90E-03	242430_at	CCDC69	Û	2.09	3.20E-04	225034_at	ST3GAL1	Û	2.07	8.10E-03
200745_s_at	GNB1	Û	2.10	1.50E-03	237267_at	LOC100506675	Û	2.09	1.50E-04	220943_s_at	C2orf56	Û	2.07	4.80E-03
212220_at	PSME4	Û	2.10	9.20E-04	231453_at	LOC284067	Û	2.09	8.10E-05	242403_at		Û	2.07	4.40E-03
1568858_at		Û	2.10	5.30E-04	204331_s_at	MRPS12	Û	2.09	2.50E-05	219831_at	CDKL3	Û	2.07	4.10E-03
1564242_at		Û	2.10	5.10E-04	216580_at	RPL7	Û	2.08	0.037	227480_at	SUSD2	Û	2.07	2.40E-03
207185_at	SLC10A1	Û	2.10	3.70E-04	1557252_at		Û	2.08	0.032	236107_at	UBE2Z	Û	2.07	1.60E-03
226052_at	BRD4	Û	2.10	4.60E-05	214850_at	LOC100170939	Û	2.08	0.031	243895_x_at		Û	2.07	1.30E-03
215652_at	SDHD	Û	2.09	0.045	240307_at		Û	2.08	0.025	229704_at	PDS5B	Û	2.07	9.90E-04
217022_s_at	IGH	Û	2.09	0.042	207674_at	FCAR	Û	2.08	0.018	229334_at	RUFY3	Û	2.07	6.90E-04
236610_at		Û	2.09	0.025	230980_x_at		Û	2.08	0.016	1553265_at	SLC23A3	Û	2.07	1.60E-04
208694_at	PRKDC	Û	2.09	0.024	239557_at		Û	2.08	0.013	216216_at	SLIT3	Û	2.07	1.40E-04
203387_s_at	TBC1D4	Û	2.09	0.014	232030_at	KIAA1632	Û	2.08	0.012	237650_at		Û	2.07	8.70E-05
233867_at		Û	2.09	0.013	222620_s_at	DNAJC1	Û	2.08	8.00E-03	233622_x_at		Û	2.07	4.20E-05
243646_at		Û	2.09	0.011	217671_at	DSERG1	Û	2.08	7.80E-03	203756_at	ARHGEF17	Û	2.07	9.90E-06
232879_at	CRTC3	Û	2.09	0.010	221761_at	ADSS	Û	2.08	6.50E-03	214128_at	DAGLA	Û	2.07	8.80E-06
243356_at	FAM7A3	Û	2.09	0.010	1565821_at		Û	2.08	4.30E-03	211000_s_at	IL6ST	Û	2.06	0.028
203628_at	IGF1R	Û	2.09	9.60E-03	219622_at	RAB20	Û	2.08	2.70E-03	237009_at		Û	2.06	0.022
1557581_x_at		Û	2.09	7.80E-03	241520_x_at		Û	2.08	8.80E-04	240339_at		Û	2.06	0.014
202905_x_at	NBN	Û	2.09	7.40E-03	243578_at		Û	2.08	6.10E-04	229765_at	ZNF207	Û	2.06	0.014
1569601_at		Û	2.09	6.80E-03	237104_at		Û	2.08	3.10E-04	200612_s_at	AP2B1	Û	2.06	0.012
244226_s_at		Û	2.09	5.70E-03	238395_at		Û	2.08	1.60E-04	200951_s_at	CCND2	Û	2.06	0.011
239464_at		Û	2.09	5.60E-03	214798_at	ATP2C2	Û	2.08	1.20E-04	1558766_at		Û	2.06	7.90E-03
242287_at	CLIP1	Û	2.09	5.30E-03	220084_at	C14orf105	Û	2.08	2.50E-05	209059_s_at	EDF1	Û	2.06	7.60E-03

242572_at		Û	2.06	6.40E-03	1562454_at		Û	2.05	1.60E-03	208077_at	C9orf38	Û	2.04	1.60E-04
209579_s_at	MBD4	Û	2.06	4.60E-03	1557169_x_at	HCG11	仓	2.05	8.90E-04	239115_at		仓	2.04	2.40E-05
222320_at		Û	2.06	4.10E-03	229593_at	H2AFY	仓	2.05	4.70E-04	209703_x_at	METTL7A	仓	2.04	1.10E-05
216922_x_at	DAZ1-4	Û	2.06	2.70E-03	204094_s_at	TSC22D2	仓	2.05	3.90E-04	1566541_at		仓	2.04	2.90E-06
207735_at	RNF125	Û	2.06	2.20E-03	242780_at	VAPA	仓	2.05	3.20E-04	1566446_at		Û	2.03	0.030
240737_at		Û	2.06	2.00E-03		HERPUD2	仓	2.05	1.40E-04	224531_at	GPR61	Û	2.03	0.027
244607_at		仓	2.06	1.80E-03	220252_x_at	CXorf21	仓	2.05	6.60E-05	208661_s_at	TTC3	仓	2.03	0.025
204000_at	GNB5	Û	2.06	1.80E-03	AFFX-HUMRGE		Û	2.04	0.012	227222 -+	DDM20	^	2.02	0.000
_					/M10098_5_at					227223_at	RBM39	U	2.03	0.022
243587_x_at		Û	2.06	1.20E-03	243528_at		仓	2.04	0.025	214911_s_at	BRD2	仓	2.03	0.020
243870_at		Û	2.06	7.80E-04	243109_at	MCTP2	仓	2.04	0.024	227962_at	ACOX1	Û	2.03	0.012
241722_x_at		Û	2.06	7.50E-04	231866_at	LNPEP	仓	2.04	0.019	243683_at	MORF4L2	Û	2.03	0.011
241716_at	HSPD1	Û	2.06	7.10E-04	242068_at		仓	2.04	0.015	1552867_at		仓	2.03	0.010
222443_s_at	RBM8A	Û	2.06	1.40E-04	222313_at		仓	2.04	0.014	239957_at		仓	2.03	8.30E-03
243771_at		Û	2.06	9.20E-06	1557145_at	STK38	Û	2.04	0.014	220216_at	C8orf44	仓	2.03	7.60E-03
1554690_a_at	TACC1	Û	2.05	0.032	203299_s_at	AP1S2	仓	2.04	0.013	238651_at		Û	2.03	6.40E-03
237113_at		Û	2.05	0.025	222404_x_at	PTPLAD1	仓	2.04	0.010	240141_at		仓	2.03	6.30E-03
215635_at		Û	2.05	0.021	228594_at	C5orf33	仓	2.04	8.60E-03	211048_s_at	PDIA4	仓	2.03	6.10E-03
228483_s_at	TAF9B	Û	2.05	0.020	215474_at		仓	2.04	6.90E-03	214291_at	RPL17	Û	2.03	4.80E-03
227747_at	MPZL3	Û	2.05	0.018	242803_at		仓	2.04	6.70E-03	222667_s_at	ASH1L	Û	2.03	4.20E-03
1557580_at		Û	2.05	0.016	238660_at	WDFY3	仓	2.04	6.60E-03	237798_at		仓	2.03	3.60E-03
214469_at	HIST1H2AE	Û	2.05	0.015	217087_at	C1orf68	仓	2.04	4.60E-03	208987_s_at	KDM2A	仓	2.03	3.50E-03
237803_x_at		Û	2.05	0.012	222027_at	NUCKS1	仓	2.04	3.90E-03	226266_at	PGS1	仓	2.03	3.50E-03
236346_at		Û	2.05	0.012	233815_at	NAALAD2	仓	2.04	1.80E-03	243381_at		Û	2.03	2.60E-03
229897_at	ZNF641	Û	2.05	0.012	1556209_at	CLEC2B	Û	2.04	1.50E-03	212917_x_at	RECQL	仓	2.03	2.10E-03
208601_s_at	TUBB1	Û	2.05	0.011	213574_s_at		Û	2.04	1.10E-03	240957_at		仓	2.03	1.80E-03
238869_at		Û	2.05	7.10E-03	229392_s_at	PIK3R2	Û	2.04	8.80E-04	216645_at		仓	2.03	1.50E-03
217304_at	SHMT1	Û	2.05	6.90E-03	237954_x_at		Û	2.04	6.80E-04	222395_s_at	UBE2Z	仓	2.03	1.40E-03
220845_at	ACOXL	Û	2.05	5.20E-03	1563482_at		Û	2.04	5.50E-04	1557589_a_at		仓	2.03	9.60E-04
242040_at	GCNT7	Û	2.05	5.10E-03	233693_at	C1orf201	Û	2.04	3.20E-04	230027_s_at	MRPL43	Û	2.03	7.90E-04
243037_at		Û	2.05	3.60E-03	233109_at	COL12A1	仓	2.04	2.70E-04	1568801_at	C15orf44	兌	2.03	3.30E-04
1553703_at	ZNF791	Û	2.05	2.00E-03	1561718_at		ſ	2.04	1.80E-04	214650_x_at	MOG	仓	2.03	3.30E-04

213818_x_at	TMEM223	仓	2.03	2.80E-04	239504_at		仓	2.01	0.018	226035_at	USP31	仓	2.01	1.40E-04
215656_at	LMAN2	Û	2.03	1.50E-04	229272_at	FNBP4	仓	2.01	0.017	214802_at	EXOC7	仓	2.00	0.024
201296_s_at	WSB1	仓	2.03	5.90E-05	238949_at	RNF145	Û	2.01	0.015	1569159_at	LZTS1	Û	2.00	0.023
AFFX-M27830		Û	2.03	0.013	219978_s_at	NUSAP1	仓	2.01	0.014	242916_at	CEP110	仓	2.00	0.019
_5_at										_				
204750_s_at	DSC2	仓	2.02	0.045	244341_at		仓	2.01	0.011	209138_x_at	IGL	Û	2.00	0.019
205961_s_at	PSIP1	Û	2.02	0.021	222357_at	ZBTB20	仓	2.01	9.70E-03	201996_s_at	SPEN	仓	2.00	0.018
211467_s_at	NFIB	Û	2.02	0.019	1557236_at	APOL6	Û	2.01	9.50E-03	239171_at		仓	2.00	0.013
1560443_at		仓	2.02	8.00E-03	235970_at	LCORL	Û	2.01	8.90E-03	230733_at		仓	2.00	0.013
241930_x_at	LOC442113	仓	2.02	6.30E-03	1555273_at	GALNTL6	仓	2.01	8.50E-03	1554638_at	ZFYVE16	仓	2.00	0.013
230379_x_at	C2orf56	仓	2.02	5.20E-03	204643_s_at	ENOX2	Û	2.01	8.20E-03	1556493_a_at	KDM4C	仓	2.00	0.011
242728_at		仓	2.02	5.10E-03	213803_at		Û	2.01	7.70E-03	1570200_at	HELB	仓	2.00	8.60E-03
207474_at	SNRK	仓	2.02	4.00E-03	1559663_at		仓	2.01	7.20E-03	239724_at		仓	2.00	6.60E-03
216783_at		仓	2.02	3.90E-03	235954_at		仓	2.01	7.00E-03	208549_x_at	PTMAP7	仓	2.00	6.40E-03
236149_at		仓	2.02	3.10E-03	236613_at	RBM25	Û	2.01	6.10E-03	215231_at	PRKAG2	①	2.00	6.20E-03
207648_at	DRP2	仓	2.02	3.10E-03	243514_at		仓	2.01	4.80E-03	237943_at		仓	2.00	5.70E-03
228088_at	SESTD1	仓	2.02	2.50E-03	240221_at	CSNK1A1	仓	2.01	2.90E-03	233274_at		仓	2.00	5.00E-03
215648_at		仓	2.02	1.90E-03	224778_s_at	TAOK1	仓	2.01	2.70E-03	236953_s_at	NHLRC3	仓	2.00	5.00E-03
1569450_at	CAPZA2	仓	2.02	1.90E-03	201070_x_at	SF3B1	仓	2.01	2.60E-03	1565762_at		仓	2.00	4.70E-03
237062_at		仓	2.02	1.70E-03	227396_at	PTPRJ	仓	2.01	2.40E-03	222023_at	AKAP13	仓	2.00	4.20E-03
215468_at	LOC647070	仓	2.02	1.70E-03	243509_at		仓	2.01	2.30E-03	237118_at		仓	2.00	3.90E-03
209499_x_at	TNFSF13	Û	2.02	1.20E-03	232141_at	U2AF1	Û	2.01	2.20E-03	208180_s_at	HIST1H4B	Û	2.00	3.40E-03
243992_at		仓	2.02	1.00E-03	216621_at		仓	2.01	2.10E-03	234737_at	NT5DC3	仓	2.00	3.20E-03
217704_x_at	SUZ12P	仓	2.02	7.20E-04	239937_at	ZNF207	仓	2.01	1.90E-03	200622_x_at	CALM3	Û	2.00	3.10E-03
236715_x_at	UACA	仓	2.02	5.20E-04	243724_at		仓	2.01	1.40E-03	237555_at	CARS2	仓	2.00	3.10E-03
220374_at	KLHL28	仓	2.02	1.80E-04	1556655_s_at		Û	2.01	1.30E-03	220612_at		仓	2.00	2.70E-03
237232_at		仓	2.02	1.60E-04	243709_at	SLC38A9	仓	2.01	1.20E-03	1555977_at	MYL12A	仓	2.00	2.00E-03
AFFX-r2-Bs-		仓	2.02	0.032	218314_s_at	C11orf57	仓	2.01	1.10E-03	226874_at	KLHL8	仓	2.00	1.90E-03
dap-5_at														
209583_s_at	CD200	Û	2.01	0.031	201407_s_at	PPP1CB	仓	2.01	1.10E-03	226400_at	CDC42	仓	2.00	1.60E-03
204908_s_at	BCL3	仓	2.01	0.024	230868_at		仓	2.01	7.70E-04	230123_at	NECAP2	仓	2.00	1.60E-03
215121_x_at	IGL	Û	2.01	0.023	232294_at	LOC219347	仓	2.01	6.30E-04	225628_s_at	MLLT6	仓	2.00	1.40E-03

NT5DC4 2.00 1.20E-03 224438_at ① 1.99 236752_at 1.97 1560204_at Û ---4.70E-04 ---Û 0.011 230681_at TBRG1 î 2.00 4.50E-04 220113 x at POLR1B î 1.99 4.30E-04 208811 s at DNAJB6 Û 1.97 0.011 220864_s_at NDUFA13 Û 2.00 3.80E-04 214594 x at ATP8B1 1.99 4.10E-04 209686 at S100B Û 1.97 0.011 Û 220791_x_at î 3.70E-04 208470_s_at 1.98 223193_x_at 1.97 9.90E-03 SCN11A 2.00 HP Û 0.046 FAM162A Û 2.00 2.40E-04 219529 at 1.98 239571 at Û 9.30E-03 234479_at PCDHB18 î CLIC3 Û 0.031 ---1.97 2.40E-04 ---9.30E-03 218000 s at PHLDA1 Û 2.00 202131 s at RIOK3 Û 1.98 0.029 233105 at Û 1.97 215604_x_at 2.20E-04 227668_at 1.98 229713_at 7.40E-03 Û 2.00 C17orf56 Û 0.028 PIP4K2A Û 1.97 ---5.20E-05 1.98 242819 at 7.10E-03 239967_at --î 2.00 223802_s_at RBBP6 Û 0.025 --î 1.97 235894_at 1.98 220942 x at Û 6.90E-03 ---Û 2.00 3.70E-05 243450 at ---Û 0.020 FAM162A 1.97 215548_s_at SCFD1 Û 1.99 0.037 201666_at TIMP1 Û 1.98 0.018 215946_x_at IGLL3 Û 1.97 6.60E-03 231370 at Û 1.99 0.028 1561644 x at Û 1.98 5.00E-03 244801 at PSMB7 Û 1.97 5.40E-03 ------1552480_s_at PTPRC î 1.99 0.026 217966_s_at 1.98 2.70E-03 238449_at LOC595101 1.97 4.70E-03 FAM129A î Û 209796_s_at 202955_s_at ARFGEF1 Û 1.99 0.020 CNPY2 Û 1.98 2.60E-03 225640_at LOC401504 Û 1.97 3.90E-03 239651_at 203392 s at 2.40E-03 220901 at **GPR157** ANAPC5 î 1.99 0.015 CTBP1 Û 1.98 Û 1.97 3.60E-03 CCDC47 Û 1.99 9.00E-03 243296_at NAMPT 2.40E-03 220342_x_at EDEM3 Û 3.40E-03 217814_at Û 1.98 1.97 223080_at î 8.30E-03 36711 at MAFF 2.30E-03 221939 at YIPF2 3.30E-03 GLS 1.99 î 1.98 î 1.97 2.30E-03 242121 at 1.97 1554543 at SPAG9 Û 1.99 7.50E-03 215012 at **ZNF451** Û 1.98 ---Û 2.40E-03 1.80E-03 238295_at C17orf42 Û 1.99 6.20E-03 226080_at SSH2 1.98 2.10E-03 233585_at SDK2 Û 1.97 Û 243072 at Û 1.99 5.70E-03 1567251 at **OR10A3** 1.40E-03 239614 x at Û 1.50E-03 ---Û 1.98 ---1.97 1.30E-03 224345 x at FAM162A Û 1.99 5.50E-03 1570134 at 1.98 208900 s at TOP1 Û 1.97 1.50E-03 ---Û 1559060_a_at î 5.50E-03 1559597_at 6.30E-04 229467_at 1.40E-03 FNIP1 1.99 Û 1.98 PCBP2 Û 1.97 ---5.50E-03 227948 at 5.60E-04 218924 s at CTBS 1.30E-03 213718_at RBM4 Û 1.99 FGD4 1.98 Û 1.97 Û 1.20E-03 Û 5.40E-03 1566778 at 5.10E-04 201726 at 237310 at 1.99 Û 1.98 ELAVL1 Û 1.97 ------223209_s_at Û 1.99 4.80E-03 217481_x_at 3.00E-04 1563488_at TMEM132B 9.20E-04 SELS ---Û 1.98 Û 1.97 1560540_x_at 1559616 x at 5.30E-04 1557270 at ---Û 1.99 3.70E-03 **ZNF626** Û 1.98 2.50E-04 ---Û 1.97 225551_at C1orf71 Û 1.99 3.50E-03 1558740_s_at Û 1.98 2.10E-04 203326_x_at ---Û 1.97 4.60E-04 --î 1.99 2.90E-03 1562645_at 1.97 221176_x_at 1.97 2.80E-04 232363_at L0C401176 Û 0.047 WBSCR23 Û ---1.99 1.90E-03 238863 x at 1.97 2.20E-04 242423 x at Û 236934 at Û 1.97 0.046 COG8 Û ------1.30E-03 209287_s_at 1.97 239029_at LOC100129701 1.97 7.10E-05 215908_at --î 1.99 CDC42EP3 Û 0.032 Û 1.30E-03 226686 at CISD2 1.97 215086 at IBTK 1.80E-05 243852_at î 1.99 î 0.026 î 1.97 LUC7L2 1.20E-03 1.97 1553020 at Û 1.99 242214 at RPS27A 0.023 219533 at CDKN1C 1.97 1.60E-05 SMCR5 Û Û Ί 8.40E-04 1.97 1568764_x_at 1.96 224602_at C4orf3 1.99 211781_x_at --î 0.020 PDCD6 î 0.046

238150_at		Û	1.96	0.044	216679_at	TIGD1L	Û	1.96	1.20E-04	214805_at	EIF4A1	仓	1.95	1.20E-03
243350_at		Û	1.96	0.031	239335_at	ZNF710	仓	1.96	1.10E-04	223519_at	ZAK	仓	1.95	1.20E-03
242695_at		Û	1.96	0.031	1559821_at		仓	1.96	9.80E-05	205642_at	CEP110	Û	1.95	1.00E-03
1558011_at		Û	1.96	0.024	209463_s_at	TAF12	Û	1.96	7.80E-05	222439_s_at	THRAP3	仓	1.95	4.30E-04
232980_at	LMBRD1	Û	1.96	0.024	1558890_at		Û	1.96	3.60E-06	1564148_at		仓	1.95	3.20E-04
226184_at	FMNL2	Û	1.96	0.018	218978_s_at	SLC25A37	仓	1.95	0.047	1559530_at		仓	1.95	2.10E-04
242482_at	PRKAR1A	Û	1.96	0.017	209581_at	PLA2G16	Û	1.95	0.038	203210_s_at	RFC5	Û	1.95	1.70E-04
228195_at	C2orf88	Û	1.96	0.013	244659_at	LOC100131015	Û	1.95	0.030	1556831_at	DYNC1H1	仓	1.95	1.50E-04
215206_at		Û	1.96	0.011	240326_at		仓	1.95	0.024	1559971_at	BSDC1	仓	1.95	1.40E-04
235956_at	KIAA1377	仓	1.96	0.011	223955_at	EFCAB4B	Û	1.95	0.015	233075_at	HERC2P7	Û	1.95	1.30E-04
239954_at	ZNF160	仓	1.96	0.011	237239_at		얍	1.95	0.014	228068_at	GOLGA7B	仓	1.95	4.90E-05
213879_at		仓	1.96	8.70E-03	240271_at		얍	1.95	0.014	243827_at		仓	1.94	0.046
210802_s_at	DIMT1L	Û	1.96	7.90E-03	212386_at	TCF4	仓	1.95	0.014	237452_at		仓	1.94	0.045
1569041_at		仓	1.96	7.10E-03	230425_at	EPHB1	Û	1.95	0.011	233869_x_at		仓	1.94	0.042
210285_x_at	WTAP	Û	1.96	6.30E-03	241106_at		얍	1.95	8.50E-03	223952_x_at	DHRS9	Û	1.94	0.042
202065_s_at	PPFIA1	仓	1.96	5.00E-03	244023_at	SYK	얍	1.95	7.00E-03	218521_s_at	UBE2W	仓	1.94	0.040
221986_s_at	KLHL24	仓	1.96	4.30E-03	240148_at	MSH6	얍	1.95	6.70E-03	240442_at		仓	1.94	0.035
219675_s_at	UXS1	Û	1.96	3.50E-03	215457_at		얍	1.95	6.20E-03	215379_x_at	IGL	Û	1.94	0.027
243201_at	HNRNPH2	仓	1.96	3.20E-03	231042_s_at		Û	1.95	5.80E-03	222409_at	CORO1C	Û	1.94	0.025
222286_at	SNAPC3	仓	1.96	3.20E-03	232575_at	PCA3	얍	1.95	4.50E-03	215342_s_at	RABGAP1L	仓	1.94	0.024
225814_at	XRN1	仓	1.96	3.00E-03	212040_at	TGOLN2	Û	1.95	4.30E-03	243768_at		Û	1.94	0.023
219031_s_at	NIP7	Û	1.96	2.60E-03	236666_s_at	LOC390205	仓	1.95	3.50E-03	208496_x_at	HIST1H3G	Û	1.94	0.020
222387_s_at	VPS35	仓	1.96	2.50E-03	1558418_at		얍	1.95	3.40E-03	207507_s_at	ATP5G3	Û	1.94	0.018
236235_at	ITCH	仓	1.96	2.40E-03	1553704_x_at	ZNF791	Û	1.95	2.80E-03	231316_at		Û	1.94	0.013
226667_x_at	EPN1	Û	1.96	1.90E-03	215375_x_at	LRRFIP1	仓	1.95	2.70E-03	212451_at	SECISBP2L	Û	1.94	0.013
237825_x_at		Û	1.96	1.70E-03	1559270_at	ZFHX4	Û	1.95	2.40E-03	241036_at		Û	1.94	0.012
1557302_at	ZNF585B	Û	1.96	1.20E-03	214754_at	TET3	Û	1.95	2.20E-03	1560474_at		Û	1.94	0.011
205683_x_at	TPSAB1	Û	1.96	7.40E-04	222214_at		仓	1.95	2.00E-03	222507_s_at	TMEM9B	Û	1.94	7.30E-03
222033_s_at	FLT1	Û	1.96	2.90E-04	203590_at	DYNC1LI2	仓	1.95	1.70E-03	1558678_s_at	MALAT1	Û	1.94	6.80E-03
1570020_at	AACSL	仓	1.96	1.90E-04	1563321_s_at	MLLT10	얍	1.95	1.70E-03	241242_at		仓	1.94	5.60E-03
1566597_at		仓	1.96	1.70E-04	219267_at	GLTP	얍	1.95	1.30E-03	243630_at	NDUFB1	仓	1.94	5.30E-03
220483_s_at	RNF19A	仓	1.96	1.70E-04	206169_x_at	ZC3H7B	얍	1.95	1.30E-03	225937_at	CUX1	仓	1.94	4.40E-03

Table A2: RR Ambion® GLOBINClearTM Gene List (n=4,520) [GeneSpring unpaired student's t-test p<0.05, FC $\geq \pm 1.50$]212852 s at TROVE2 \hat{T} 194 410E-03205215 at RNE2 \hat{T} 193 660E-03242167 at ---- \hat{T} 192 0.018

212852_s_at	TROVE2	Û	1.94	4.10E-03	205215_at	RNF2	Û	1.93	6.60E-03	242167_at		Û	1.92	0.018
201212_at	LGMN	Û	1.94	3.90E-03	212536_at	ATP11B	仓	1.93	6.40E-03	207322_at	ITSN1	Û	1.92	0.016
1565604_at	PWP2	Û	1.94	2.80E-03	244010_at		仓	1.93	4.80E-03	236944_at		Û	1.92	0.013
207728_at	ATF7IP	Û	1.94	2.40E-03	1563502_at	ZDHHC2	仓	1.93	4.50E-03	244412_at		Û	1.92	9.80E-03
1554641_a_at	TET3	Û	1.94	1.70E-03	204616_at	UCHL3	Û	1.93	3.70E-03	200952_s_at	CCND2	Û	1.92	9.70E-03
234084_x_at		Û	1.94	1.60E-03	235551_at	WDR4	仓	1.93	3.50E-03	234459_at	PPHLN1	Û	1.92	9.60E-03
241882_at	CAMTA1	Û	1.94	1.50E-03	240521_at		仓	1.93	3.10E-03	212420_at	ELF1	Û	1.92	8.60E-03
1556894_at	NT5DC2	Û	1.94	1.50E-03	216290_x_at		仓	1.93	2.90E-03	206756_at	CHST7	Û	1.92	8.40E-03
1560209_at		Û	1.94	1.40E-03	203489_at	SIVA1	Û	1.93	2.50E-03	231366_at	FDPSL2A	Û	1.92	8.40E-03
233263_at		Û	1.94	1.20E-03	235240_at	ATXN3	仓	1.93	2.10E-03	242958_x_at		Û	1.92	6.90E-03
207133_x_at	ALPK1	Û	1.94	8.30E-04	232096_x_at	FOXP1-IT1	仓	1.93	2.10E-03	218775_s_at	WWC2	Û	1.92	6.60E-03
217793_at	RAB11B	Û	1.94	6.10E-04	1553252_a_at	BRWD3	仓	1.93	1.90E-03	1559979_at	SYF2	Û	1.92	6.10E-03
232636_at	SLITRK4	Û	1.94	4.80E-04	1560422_at		仓	1.93	1.30E-03	236251_at		Û	1.92	5.10E-03
231597_x_at		Û	1.94	4.60E-04	208759_at	NCSTN	仓	1.93	7.70E-04	204786_s_at	IFNAR2	Û	1.92	3.40E-03
220352_x_at	FLJ42627	Û	1.94	2.50E-04	241223_x_at		仓	1.93	6.70E-04	224074_at	VSX1	Û	1.92	2.80E-03
225668_at	FAM173B	Û	1.94	2.40E-04	234656_x_at		仓	1.93	5.60E-04	226975_at	RNPC3	Û	1.92	2.70E-03
232894_at		Û	1.94	2.10E-04	1558142_at	TNRC6B	仓	1.93	5.50E-04	200889_s_at	SSR1	Û	1.92	2.70E-03
216151_at		Û	1.94	2.00E-04	242578_x_at	SLC22A3	仓	1.93	4.20E-04	214130_s_at	PDE4DIP	Û	1.92	2.40E-03
214308_s_at	HGD	Û	1.94	1.50E-04	242182_x_at		仓	1.93	4.10E-04	221276_s_at	SYNC	Û	1.92	2.00E-03
242277_at		Û	1.94	2.10E-05	233321_x_at	LOC90834	仓	1.93	3.90E-04	239692_at		Û	1.92	1.60E-03
1564236_at		Û	1.93	0.039	218525_s_at	HIF1AN	仓	1.93	2.20E-04	1565603_at	PWP2	Û	1.92	1.40E-03
223210_at	CHURC1	Û	1.93	0.039	1561471_at	LOC441009	仓	1.93	2.00E-04	238083_at	PARP10	Û	1.92	1.30E-03
1560259_at		Û	1.93	0.038	233757_x_at		仓	1.93	1.70E-04	225234_at	CBL	Û	1.92	1.20E-03
226189_at	ITGB8	Û	1.93	0.031	209619_at	CD74	Û	1.92	0.047	1552274_at	РХК	Û	1.92	1.00E-03
242911_at	MED13L	Û	1.93	0.029	244026_at		仓	1.92	0.045	220875_at		Û	1.92	6.50E-04
212249_at	PIK3R1	Û	1.93	0.027	207291_at	PRRG4	仓	1.92	0.035	222363_at		Û	1.92	4.40E-04
1569647_at	LOC643623	Û	1.93	0.023	239833_at		仓	1.92	0.022	225197_at	LOC100505487	Û	1.92	3.80E-04
1570566_at		Û	1.93	0.019	238468_at	TNRC6B	仓	1.92	0.022	1553531_at	PCSK6	Û	1.92	3.60E-04
243316_x_at	VPS26A	Û	1.93	0.012	222875_at	DHX33	仓	1.92	0.021	218155_x_at	TSR1	Û	1.92	1.70E-04
243640_x_at		Û	1.93	0.011	205767_at	EREG	仓	1.92	0.021	204373_s_at	CEP350	Û	1.92	1.50E-04
1567997_x_at		Û	1.93	9.20E-03	232627_at	HGS	仓	1.92	0.020	235709_at	GAS2L3	Û	1.92	1.30E-04
201730_s_at	TPR	Û	1.93	7.80E-03	232595_at		仓	1.92	0.019	212096_s_at	MTUS1	Û	1.91	0.046
215555_at		Û	1.91	0.043	217385_at		仓	1.91	1.30E-03	230058_at	SDCCAG3	Û	1.90	8.40E-03
--------------	-----------	---	------	----------	--------------	----------	---	------	----------	--------------	---------	---	------	----------
227958_s_at	GSN	Û	1.91	0.043	1555317_at	POLK	仓	1.91	1.30E-03	235698_at	ZFP90	仓	1.90	7.10E-03
214814_at	YTHDC1	Û	1.91	0.041	215439_x_at		仓	1.91	1.10E-03	203189_s_at	NDUFS8	Û	1.90	6.80E-03
1555730_a_at	CFL1	Û	1.91	0.037	1553600_at	TMIE	仓	1.91	1.10E-03	209187_at	DR1	仓	1.90	5.60E-03
209255_at	KLHDC10	Û	1.91	0.036	203090_at	SDF2	Û	1.91	7.80E-04	209321_s_at	ADCY3	Û	1.90	4.80E-03
239023_at		兌	1.91	0.024	221996_s_at	CLTB	Û	1.91	5.90E-04	1566111_at	PIEZO1	Û	1.90	4.30E-03
241776_at		Û	1.91	0.023	233090_at		仓	1.91	4.90E-04	233216_at	ZDHHC21	仓	1.90	4.10E-03
218026_at	CCDC56	Û	1.91	0.022	210417_s_at	PI4KB	Û	1.91	4.50E-04	210240_s_at	CDKN2D	Û	1.90	3.20E-03
217148_x_at	IGL	Û	1.91	0.020	216229_x_at	HCG2P7	仓	1.91	4.40E-04	208514_at	KCNE1	Û	1.90	2.90E-03
237383_at		Û	1.91	0.015	217554_at		仓	1.91	4.30E-04	203542_s_at	KLF9	仓	1.90	2.80E-03
232912_at	GPR180	Û	1.91	0.015	232644_x_at	OCIAD1	仓	1.91	2.60E-04	232929_at		仓	1.90	2.20E-03
240948_at		Û	1.91	0.014	1569417_at		仓	1.91	1.80E-04	239251_at		仓	1.90	2.10E-03
236685_at		Û	1.91	0.010	233495_at	EXOSC3	仓	1.91	1.80E-04	1559725_at		仓	1.90	1.90E-03
240383_at	UBE2D3	Û	1.91	0.010	234724_x_at	PCDHB18	仓	1.91	1.10E-04	203398_s_at	GALNT3	仓	1.90	1.90E-03
228337_at	PWWP2A	Û	1.91	9.70E-03	1563012_x_at		仓	1.91	1.00E-04	244716_x_at	TMIGD2	仓	1.90	1.70E-03
236846_at	LOC284757	兌	1.91	9.50E-03	202464_s_at	PFKFB3	Û	1.91	9.30E-05	242438_at	ASXL1	Û	1.90	1.60E-03
232145_at	C2orf68	Û	1.91	7.60E-03	1552975_x_at		仓	1.91	6.00E-05	234346_x_at		仓	1.90	1.30E-03
210943_s_at	LYST	Û	1.91	7.40E-03	242740_at		仓	1.91	2.70E-05	200751_s_at	HNRNPC	Û	1.90	1.30E-03
200081_s_at	RPS6	Û	1.91	7.10E-03	1559025_at	SEPT9	仓	1.90	0.044	232915_at	DDX49	仓	1.90	1.10E-03
234949_at	LOC283788	Û	1.91	6.50E-03	218136_s_at	SLC25A37	Û	1.90	0.023	235654_at	TMEM218	仓	1.90	1.10E-03
236590_at		Û	1.91	6.20E-03	240866_at		仓	1.90	0.022	232169_x_at	NDUFS8	仓	1.90	1.00E-03
202697_at	NUDT21	Û	1.91	6.10E-03	231578_at	GBP1	仓	1.90	0.021	203276_at	LMNB1	仓	1.90	9.00E-04
210895_s_at	CD86	Û	1.91	5.90E-03	242563_at		Û	1.90	0.018	239830_at		Û	1.90	8.60E-04
202233_s_at	UQCRH	Û	1.91	5.50E-03	227529_s_at	AKAP12	Û	1.90	0.017	210368_at	PCDHGA8	仓	1.90	6.70E-04
233730_at	FAM135A	Û	1.91	3.00E-03	209421_at	MSH2	Û	1.90	0.016	232266_x_at	CDC2L5	仓	1.90	5.50E-04
215863_at	TFR2	兌	1.91	2.90E-03	215069_at	NMT2	Û	1.90	0.014	241617_x_at		Û	1.90	3.80E-04
233473_x_at		兌	1.91	2.10E-03	225156_at	ELOF1	Û	1.90	0.012	242171_at		Û	1.90	2.60E-04
214103_s_at	RAP2A	兌	1.91	2.00E-03	208615_s_at	PTP4A2	Û	1.90	0.012	203735_x_at	PPFIBP1	Û	1.90	2.40E-04
1558652_at	KIAA1310	兌	1.91	1.90E-03	212007_at	UBXN4	Û	1.90	0.012	241743_at		Û	1.90	1.90E-04
233056_x_at	DLGAP4	Û	1.91	1.80E-03	215440_s_at	BEX4	Û	1.90	0.011	224548_at	HES7	Û	1.90	1.40E-04
1556359_at	C6orf89	Û	1.91	1.70E-03	1555086_at	STAT5B	仓	1.90	0.011	1556003_a_at		Û	1.90	1.10E-04
237868_x_at		仓	1.91	1.30E-03	244433_at		仓	1.90	9.90E-03	210916_s_at	CD44	Û	1.90	3.90E-05

		_												
220068_at	VPREB3	Û	1.89	0.048	bioB-3_at					241594_at	LOC643449	Û	1.88	2.40E-04
231038_s_at		仓	1.89	0.044	224009_x_at	DHRS9	Û	1.88	0.046	207657_x_at	TNP01	Û	1.88	2.40E-04
223254_s_at	G2E3	仓	1.89	0.041	1558220_at	MUC20	Û	1.88	0.037	233605_x_at	HNRNPM	Û	1.88	1.80E-04
235049_at	ADCY1	仓	1.89	0.032	1560271_at		Û	1.88	0.036	207756_at		Û	1.88	1.70E-04
237181_at		仓	1.89	0.029	214677_x_at	IGL	Û	1.88	0.036	232719_at	BRUNOL4	Û	1.88	3.30E-05
205861_at	SPIB	Û	1.89	0.023	232796_at		仓	1.88	0.033	229841_at		얍	1.87	0.050
213361_at	TDRD7	Û	1.89	0.022	1569180_at		仓	1.88	0.026	235369_at	C14orf28	얍	1.87	0.048
39313_at	WNK1	仓	1.89	0.021	1562280_at		仓	1.88	0.021	202708_s_at	HIST2H2BE	Û	1.87	0.047
235222_x_at	XIAP	仓	1.89	0.018	230698_at	CALN1	仓	1.88	0.018	232614_at		얍	1.87	0.046
215221_at		仓	1.89	0.016	226386_at	C7orf30	Û	1.88	0.017	214201_x_at	BAT2	얍	1.87	0.044
240673_at		仓	1.89	0.014	211868_x_at	IGH	Û	1.88	0.016	243473_at		얍	1.87	0.028
238199_x_at	LOC440552	仓	1.89	0.012	242853_at		仓	1.88	0.015	213741_s_at	KPNA1	얍	1.87	0.025
232315_at	LOC400713	Û	1.89	7.90E-03	219293_s_at	OLA1	Û	1.88	0.012	222600_s_at	UBA6	仓	1.87	0.022
1569080_at	RNF165	仓	1.89	7.50E-03	240723_at		Û	1.88	9.00E-03	210100_s_at	ABCA2	Û	1.87	0.020
1569331_at		仓	1.89	7.20E-03	242878_at		仓	1.88	8.90E-03	239474_at		얍	1.87	0.019
220586_at	CHD9	仓	1.89	7.10E-03	222906_at	FLVCR1	Û	1.88	7.70E-03	230341_x_at	ADAMTS10	Û	1.87	0.019
212517_at	ATRN	Û	1.89	6.30E-03	232264_at		Û	1.88	7.60E-03	1558877_at		Û	1.87	0.018
211930_at	HNRNPA3	仓	1.89	5.90E-03	215224_at	SNORA21	Û	1.88	6.70E-03	219279_at	DOCK10	Û	1.87	0.018
208872_s_at	REEP5	Û	1.89	5.80E-03	242609_x_at		Û	1.88	5.90E-03	239237_at	LOC100506776	Û	1.87	0.015
215866_at		仓	1.89	4.90E-03	242946_at	CD53	Û	1.88	5.80E-03	231886_at		Û	1.87	0.011
204347_at	AK3L1	仓	1.89	4.20E-03	224281_s_at	NGRN	Û	1.88	5.80E-03	1559232_a_at		Û	1.87	0.011
1557131_at	LOC254100	仓	1.89	3.80E-03	224853_at	SLAIN2	Û	1.88	5.40E-03	224241_s_at	LOC100132388	Û	1.87	0.011
1560042_at	FAM82A1	仓	1.89	3.10E-03	200983_x_at	CD59	Û	1.88	2.90E-03	1560112_at	WDFY2	Û	1.87	0.011
222796_at	PTCD1	仓	1.89	2.40E-03	241616_at		Û	1.88	2.60E-03	235061_at	PPM1K	Û	1.87	0.010
1559119_at		仓	1.89	2.00E-03	201106_at	GPX4	Û	1.88	1.70E-03	215036_at	IGLC1	Û	1.87	8.20E-03
204618_s_at	GABPB1	仓	1.89	1.70E-03	238279_x_at		Û	1.88	1.60E-03	220010_at	KCNE1L	Û	1.87	7.80E-03
242531_at	RRAGC	仓	1.89	5.70E-04	1562352_at		仓	1.88	8.00E-04	218609_s_at	NUDT2	Û	1.87	7.70E-03
238050_at	ANTXR2	仓	1.89	4.80E-04	1558826_at	ZNF831	Û	1.88	6.50E-04	213168_at	SP3	얍	1.87	6.10E-03
1570198_x_at		仓	1.89	3.10E-04	215846_at		Û	1.88	6.40E-04	214807_at		Û	1.87	5.70E-03
1565769_at		仓	1.89	2.20E-04	222649_at	XPO4	仓	1.88	5.30E-04	233653_at		얍	1.87	4.60E-03
205153_s_at	CD40	Û	1.89	1.90E-04	238980_x_at	C17orf56	仓	1.88	5.00E-04	1558816_at	ZNF664	얍	1.87	3.70E-03
AFFX-r2-Ec-		Û	1.88	2.54E-05	233046_at		Û	1.88	2.60E-04	1565852_at		Û	1.87	3.20E-03

212525_s_at	H2AFX	仓	1.87	3.10E-03	219874_at	SLC12A8	Û	1.86	0.011	205442_at	MFAP3L	Û	1.85	0.021
1552788_a_at	HELB	仓	1.87	2.50E-03	242714_at		Û	1.86	9.40E-03	220467_at		Û	1.85	0.015
203954_x_at	CLDN3	仓	1.87	2.00E-03	1567458_s_at	RAC1	仓	1.86	9.10E-03	221531_at	WDR61	Û	1.85	0.014
211605_s_at	RARA	仓	1.87	2.00E-03	1570108_at		仓	1.86	8.80E-03	222378_at		Û	1.85	0.012
1559882_at	SAMHD1	仓	1.87	1.50E-03	242661_x_at	ALS2CR12	Û	1.86	7.90E-03	1570259_at	LIMS1	Û	1.85	0.012
242126_at		仓	1.87	1.30E-03	228106_at	C4orf30	仓	1.86	7.20E-03	233228_at		Û	1.85	0.011
239188_at	PPP2R3C	仓	1.87	1.20E-03	221449_s_at	ITFG1	Û	1.86	6.80E-03	1556432_at		Û	1.85	0.011
212479_s_at	RMND5A	仓	1.87	1.20E-03	1555832_s_at	KLF6	Û	1.86	4.80E-03	232896_at	ERBB2IP	Û	1.85	0.010
220510_at	RHBG	仓	1.87	1.10E-03	212208_at	MED13L	仓	1.86	4.40E-03	217973_at	DCXR	Û	1.85	8.90E-03
200973_s_at	TSPAN3	Û	1.87	8.10E-04	235940_at	C9orf64	仓	1.86	3.60E-03	1563453_at		Û	1.85	8.50E-03
1570205_at		얍	1.87	6.30E-04	243993_at		仓	1.86	2.80E-03	227259_at	CD47	Û	1.85	7.80E-03
224105_x_at		얍	1.87	4.80E-04	216933_x_at	APC	仓	1.86	2.80E-03	215018_at	KIAA1731	Û	1.85	7.70E-03
241163_at		仓	1.87	3.40E-04	232445_at	SYT9	仓	1.86	1.70E-03	230064_at		Û	1.85	7.20E-03
208224_at	HOXB1	仓	1.87	2.50E-04	237026_at		仓	1.86	1.30E-03	208614_s_at	FLNB	Û	1.85	6.70E-03
1566152_a_at	CLP1	얍	1.87	1.20E-04	211798_x_at	IGLJ3	Û	1.86	1.30E-03	203321_s_at	ADNP2	Û	1.85	6.30E-03
201028_s_at	CD99	Û	1.87	9.50E-05	242633_x_at		仓	1.86	1.20E-03	228284_at	TLE1	Û	1.85	4.70E-03
244869_at		仓	1.86	0.041	243067_at		仓	1.86	1.10E-03	236809_at		Û	1.85	4.60E-03
227817_at	PRKCB	얍	1.86	0.038	1559128_at	HSDL2	仓	1.86	8.90E-04	1561451_a_at	ADAM29	Û	1.85	4.30E-03
211794_at	FYB	얍	1.86	0.037	232516_x_at	DAP3	仓	1.86	7.00E-04	202113_s_at	SNX2	Û	1.85	4.20E-03
205849_s_at	UQCRB	Û	1.86	0.037	226062_x_at	FAM63A	仓	1.86	6.50E-04	203798_s_at	VSNL1	Û	1.85	3.70E-03
208685_x_at	BRD2	얍	1.86	0.032	222925_at	DCDC2	Û	1.86	6.30E-04	221269_s_at	SH3BGRL3	Û	1.85	3.60E-03
237377_at		얍	1.86	0.028	210760_x_at	TRIP11	仓	1.86	5.40E-04	209865_at	SLC35A3	Û	1.85	3.10E-03
208910_s_at	C1QBP	Û	1.86	0.027	1552752_a_at	CADM2	仓	1.86	3.30E-04	241798_at		Û	1.85	3.00E-03
210948_s_at	LEF1	얍	1.86	0.024	207436_x_at	KIAA0894	仓	1.86	2.30E-04	215213_at	NUP54	Û	1.85	2.50E-03
1557632_at	IKZF1	얍	1.86	0.023	220796_x_at	SLC35E1	仓	1.86	2.30E-04	201225_s_at	SRRM1	Û	1.85	2.50E-03
240397_x_at		얍	1.86	0.021	1555048_a_at	C21orf29	仓	1.86	9.60E-06	1562031_at	JAK2	Û	1.85	1.90E-03
240139_at		仓	1.86	0.019	220940_at	ANKRD36B	仓	1.85	0.047	1568618_a_at	GALNT1	Û	1.85	1.70E-03
201757_at	RPL10	Û	1.86	0.018	239755_at		仓	1.85	0.043	208823_s_at	PCTK1	Û	1.85	1.20E-03
239131_at		仓	1.86	0.017	231577_s_at	GBP1	仓	1.85	0.039	220448_at	KCNK12	Û	1.85	9.00E-04
214058_at	MYCL1	Û	1.86	0.017	201360_at	CST3	Û	1.85	0.036	237230_at	GPHA2	Û	1.85	6.10E-04
1562442_a_at	SSBP1	仓	1.86	0.016	200007_at	SRP14	Û	1.85	0.033	209696_at	FBP1	Û	1.85	3.90E-04
238555_at	MRPS31	仓	1.86	0.013	236490_at	NEDD4L	Û	1.85	0.024	1553315_at	SLFNL1	Û	1.85	3.90E-04

STX16 ① 1.85 3.10E-04 203114_at SSSCA1 201490_s_at PPIF 221499_s_at ↓ 1.84 3.40E-03 Û 1.83 0.020 200046_at DAD1 Û 1.85 2.60E-04 239268 at NDUFS1 î 1.84 3.20E-03 238723 at ATXN3 Û 1.83 0.018 202493 x at CSH1 Û 1.85 2.30E-04 1560026 at 1.84 2.90E-03 222316 at Û 1.83 0.017 ---Û ---1.20E-04 207037_at **TNFRSF11A** 1.84 2.90E-03 234255_at ---1.83 233783_at --î 1.85 Û Û 0.016 1.00E-04 2.70E-03 243127_x_at 38892_at **KIAA0240** î 1.85 223350 x at LIN7C î 1.84 DNASE1 î 1.83 0.013 2.50E-03 1561918 at Û 1.85 3.50E-05 232342 at MTMR14 1.84 215513 at HYMAI Û 1.83 0.012 ---Û 1.50E-05 215893_x_at 2.20E-03 215287_at 0.010 221844_x_at SPCS3 Û 1.85 1.84 STRN Û 1.83 ---Û 236122_at 1.84 2.00E-03 209281 s at ATP2B1 1.83 9.50E-03 228304_at RBM43 î 1.84 0.044 --î î 239893_at 1.70E-03 9.20E-03 ---Û 1.84 0.041 218119 at TIMM23 Û 1.84 201606 s at PWP1 Û 1.83 243751_at CHD2 Û 1.84 0.041 240791_at î 1.84 1.30E-03 212501_at CEBPB Û 1.83 7.50E-03 ---241885 at Û 1.84 0.037 226377 at 1.84 1.30E-03 1564438 at Û 1.83 7.40E-03 ---NFIC Û ---201794_s_at SMG7 î 1.84 232957_x_at 1.84 1.20E-03 202874_s_at ATP6V1C1 1.83 7.10E-03 0.036 --î Û UBE2H Û 241799_x_at 1.84 1.10E-03 1557562_at **GRIPAP1** Û 1.83 6.70E-03 222420_s_at 1.84 0.035 --î 233510_s_at PARVG Û 1.84 0.030 234098 at SOBP î 1.84 1.10E-03 240205 x at Û 1.83 5.90E-03 ---227232_at Û 1554899_s_at 8.20E-04 228067_at C2orf55 Û 5.60E-03 1.84 0.029 FCER1G Û 1.84 1.83 EVL î 233939_at REX01 8.00E-04 202068 s at Û 5.40E-03 1569181_x_at ---1.84 0.026 î 1.84 LDLR 1.83 1.84 217253 at 1565703 at SMAD4 Û 0.021 SH3BP2 Û 1.84 5.10E-04 1566507 a at FBX09 Û 1.83 5.30E-03 239655_at î 1.84 0.019 231781_s_at LRRC2 î 1.84 3.00E-04 244220_at Û 1.83 3.70E-03 ------222544 s at WHSC1L1 Û 1.84 0.019 238102 s at 1.20E-04 232767 at CADM1 Û 1.83 3.60E-03 LOC149478 Û 1.84 207089 at 1.84 AFFX-DapX-Û 1.84 0.027 207352 s at GABRB2 Û 1.83 3.00E-03 NRAP 0.018 ---Ί 5_at 1.84 1.83 231902 at **ZNF827** 2.70E-03 1569302 at **KIAA1731** Û 0.017 1566854_at Û Û 1.83 0.041 ---Û Û 219417 s at C17orf59 1.84 0.016 213642 at Û 1.83 0.039 1556778 at 1.83 2.10E-03 ------Û 226283_at 1.83 212487_at **GPATCH8** 2.10E-03 208054_at HERC4 1.84 0.016 WDR51B Û 0.036 Û 1.83 1.83 1553271 at DIP2B Û 1.84 0.014 222306 at ---Û 0.033 243860 at ---Û 1.83 2.00E-03 237753_at IL21R Û 1.84 0.011 206765_at KCNJ2 Û 1.83 0.032 1558792_x_at AP2A1 Û 1.83 2.00E-03 1570587_at Û 9.70E-03 213939_s_at RUFY3 1.83 238713_at 1.50E-03 ---1.84 Û 0.032 ---Û 1.83 8.70E-03 203191 at 9.50E-04 243664 at TXNL1 Û 1.84 224605 at C4orf3 Û 1.83 0.027 ABCB6 Û 1.83 8.60E-03 209241_x_at 1.83 244024_at 1.83 9.10E-04 235761_at î 1.84 MINK1 î 0.027 **ZNF182** Û ---6.30E-03 ZCCHC11 1.83 236395 at 8.60E-04 220221_at VPS13D î 1.84 217594 at î 0.026 î 1.83 ---214509 at Û 1.84 4.40E-03 204513 s at ELM01 1.83 0.021 1557409 at ---1.83 8.30E-04 HIST1H3I Û Û 1.83 1555514_a_at PIAS2 î 1.84 4.30E-03 1557065_at YLPM1 î 0.021 244699_at AHI1 î 1.83 6.40E-04

211775_x_at	MGC13053	Û	1.83	6.40E-04	200039_s_at	PSMB2	Û	1.82	1.40E-03	242645_at		Û	1.81	0.010
215532_x_at	ZNF492	兌	1.83	5.40E-04	234020_x_at		Û	1.82	1.30E-03	203408_s_at	SATB1	Û	1.81	9.30E-03
222356_at		兌	1.83	2.60E-04	230685_at	FLJ33630	Û	1.82	1.10E-03	237208_at	WDR61	Û	1.81	9.30E-03
244135_at		兌	1.83	2.10E-04	200824_at	GSTP1	Û	1.82	1.10E-03	223181_at	C18orf55	Û	1.81	9.20E-03
202190_at	CSTF1	Û	1.83	2.00E-04	1566150_at	CALML4	Û	1.82	9.40E-04	240659_x_at		Û	1.81	8.70E-03
218381_s_at	U2AF2	兌	1.83	9.90E-05	232064_at	FER	Û	1.82	9.10E-04	230669_at	RASA2	Û	1.81	8.70E-03
237072_at		兌	1.83	1.50E-05	1552870_s_at	C1orf125	Û	1.82	9.00E-04	207431_s_at	DEGS1	Û	1.81	7.60E-03
AFFX-BioB-		Û	1.82	2.59E-04	202057_at	KPNA1	Û	1.82	8.70E-04	204048_s_at	PHACTR2	얍	1.81	7.30E-03
3_at														
242879_x_at	AKT3	仓	1.82	0.035	215909_x_at	MINK1	Û	1.82	8.50E-04	239331_at		Û	1.81	5.60E-03
240513_at	EIF3M	仓	1.82	0.025	210679_x_at		Û	1.82	6.40E-04	242190_at	SDAD1	Û	1.81	5.10E-03
227819_at	LGR6	仓	1.82	0.025	208137_x_at	ZNF611	Û	1.82	6.30E-04	1558783_at		Û	1.81	5.00E-03
242844_at	PGGT1B	Û	1.82	0.022	1560543_at	GRK4	Û	1.82	6.10E-04	221286_s_at	MGC29506	Û	1.81	4.40E-03
233593_at		兌	1.82	0.019	236181_at	LOC100132181	Û	1.82	5.90E-04	221568_s_at	LIN7C	Û	1.81	4.10E-03
215630_at		Û	1.82	0.018	215588_x_at	RIOK3	Û	1.82	4.90E-04	209254_at	KLHDC10	Û	1.81	3.70E-03
225850_at	SFT2D1	Û	1.82	8.80E-03	222223_s_at	IL1F5	Û	1.82	3.20E-04	202475_at	TMEM147	Û	1.81	2.80E-03
238064_at		兌	1.82	8.20E-03	232455_x_at	LOC340085	Û	1.82	1.70E-04	212361_s_at	ATP2A2	Û	1.81	2.50E-03
1563460_at		Û	1.82	7.50E-03	208817_at	СОМТ	Û	1.82	9.20E-05	224806_at	TRIM25	Û	1.81	2.20E-03
1561545_at	EPN2-AS1	仓	1.82	5.60E-03	243878_at		Û	1.81	0.045	215445_x_at		Û	1.81	1.80E-03
219625_s_at	COL4A3BP	兌	1.82	5.50E-03	206311_s_at	PLA2G1B	Û	1.81	0.037	243221_at	FAM20A	Û	1.81	1.80E-03
222888_at	CCNJ	兌	1.82	4.70E-03	232426_at	SV2B	Û	1.81	0.037	215359_x_at	ZNF44	Û	1.81	1.70E-03
1563166_at		Û	1.82	4.00E-03	204369_at	PIK3CA	Û	1.81	0.036	222104_x_at	GTF2H3	Û	1.81	1.50E-03
202298_at	NDUFA1	Û	1.82	3.90E-03	239227_at		Û	1.81	0.033	229749_at	ANO4	Û	1.81	1.20E-03
220659_s_at	C7orf43	兌	1.82	3.80E-03	236621_at	RPS27	Û	1.81	0.027	220720_x_at	FAM128B	얍	1.81	1.20E-03
213158_at		仓	1.82	3.60E-03	1555913_at	GON4L	Û	1.81	0.025	234224_at		Û	1.81	8.70E-04
235730_at		仓	1.82	3.30E-03	204069_at	MEIS1	Û	1.81	0.020	214715_x_at	ZNF160	Û	1.81	7.70E-04
233017_x_at		兌	1.82	2.70E-03	225451_at	GRIPAP1	Û	1.81	0.018	1557197_a_at	LGALS3	얍	1.81	6.40E-04
234820_at	MAS1L	Û	1.82	2.50E-03	239049_at		Û	1.81	0.016	238366_at	C1orf228	Û	1.81	6.30E-04
215639_at	SH2D3C	仓	1.82	2.40E-03	228853_at	STYX	Û	1.81	0.015	232814_x_at	KLC1	Û	1.81	5.20E-04
203433_at	MTHFS	Û	1.82	1.70E-03	222809_x_at	CCDC85C	Û	1.81	0.014	233381_at	RUFY1	Û	1.81	4.70E-04
234245_at		Û	1.82	1.40E-03	209023_s_at	STAG2	Û	1.81	0.012	207730_x_at		Û	1.81	4.00E-04
237889_s_at	LOC553137	Û	1.82	1.40E-03	229514_at	C14orf118	Û	1.81	0.011	239378_at	PITRM1	Û	1.81	2.30E-04

208547_at	HIST1H2BB	Û	1.81	9.40E-05	212814_at	AHCYL2	얍	1.80	6.00E-03	210869_s_at	MCAM	仓	1.80	1.20E-04
243655_x_at		仓	1.81	7.30E-05	217603_at	ATP6V0A2	仓	1.80	6.00E-03	208967_s_at	AK2	Û	1.80	1.80E-06
210637_at	TACR1	仓	1.81	6.60E-05	1553747_at	MGC16025	仓	1.80	5.90E-03	201998_at	ST6GAL1	Û	1.79	0.045
AFFX-r2-Ec-		Û	1.80	1.08E-05		CBS	仓	1.80	5.60E-03	1565638_at		Û	1.79	0.042
bioC-5_at										_				
206267_s_at	MATK	仓	1.80	0.041	240839_at		仓	1.80	5.20E-03	1565889_at		Û	1.79	0.037
223243_s_at	EDEM3	仓	1.80	0.039	1570441_at	NAPB	仓	1.80	5.10E-03	233898_s_at	FGFR10P2	Û	1.79	0.037
212509_s_at	MXRA7	仓	1.80	0.038	1557521_a_at		仓	1.80	4.10E-03	1556914_at		Û	1.79	0.032
211352_s_at	NCOA3	仓	1.80	0.033	240510_at	NBN	仓	1.80	3.90E-03	232486_at	LRFN1	Û	1.79	0.030
234196_at		仓	1.80	0.027	205169_at	RBBP5	仓	1.80	3.90E-03	236839_at		Û	1.79	0.028
213789_at		仓	1.80	0.026	1558739_at		仓	1.80	3.10E-03	232020_at	SMURF2	Û	1.79	0.026
214388_at		仓	1.80	0.024	237725_x_at	SMC5	仓	1.80	2.90E-03	225957_at	C5orf41	Û	1.79	0.024
209259_s_at	SMC3	Û	1.80	0.023	222708_s_at	STX17	仓	1.80	2.70E-03	208768_x_at	RPL22	Û	1.79	0.024
226159_at	C5orf51	仓	1.80	0.022	202662_s_at	ITPR2	Û	1.80	2.20E-03	243916_x_at	UBLCP1	Û	1.79	0.023
221775_x_at	RPL22	Û	1.80	0.022	243934_at	ODF3B	仓	1.80	2.20E-03	212779_at	KIAA1109	Û	1.79	0.019
207700_s_at	NCOA3	仓	1.80	0.019	213350_at	RPS11	仓	1.80	1.80E-03	237461_at	NLRP7	Û	1.79	0.019
242233_at		仓	1.80	0.018	216612_x_at		仓	1.80	1.60E-03	213593_s_at	TRA2A	Û	1.79	0.019
224637_at	LOC100128731	Û	1.80	0.016	205469_s_at	IRF5	Û	1.80	1.10E-03	243846_x_at		Û	1.79	0.018
1564029_at	USP49	仓	1.80	0.016	241046_at	LOC100505903	仓	1.80	1.00E-03	218495_at	UXT	Û	1.79	0.017
206295_at	IL18	仓	1.80	0.014	225712_at	GEMIN5	Û	1.80	8.90E-04	204861_s_at	NAIP	Û	1.79	0.015
203166_at	CFDP1	Û	1.80	0.013	1557512_at		仓	1.80	7.60E-04	1569201_a_at		Û	1.79	0.014
212000_at	SFRS14	仓	1.80	0.013	240046_at		仓	1.80	6.60E-04	221494_x_at	EIF3K	Û	1.79	0.012
242970_at	DIP2B	仓	1.80	0.012	224134_at	MGC10814	仓	1.80	6.60E-04	242059_at		Û	1.79	0.011
234164_at		仓	1.80	0.011	241303_x_at		仓	1.80	5.70E-04	1557564_at		Û	1.79	0.010
209408_at	KIF2C	Û	1.80	0.011	231856_at	KIAA1244	仓	1.80	5.60E-04	228019_s_at	MRPS18C	Û	1.79	0.010
202784_s_at	NNT	Û	1.80	0.010	1554476_x_at	ZNF808	仓	1.80	5.30E-04	1556339_a_at		Û	1.79	7.30E-03
208301_at		仓	1.80	8.20E-03	213936_x_at	SFTPB	仓	1.80	5.10E-04	237178_at		Û	1.79	5.30E-03
1561036_at		Û	1.80	8.10E-03	241928_at		仓	1.80	4.50E-04	1553726_s_at	C6orf170	Û	1.79	4.90E-03
224970_at	NFIA	仓	1.80	7.10E-03	205988_at	CD84	仓	1.80	3.70E-04	210470_x_at	NONO	Û	1.79	4.30E-03
235780_at	PRKACB	仓	1.80	6.60E-03	218291_at	ROBLD3	Û	1.80	3.70E-04	220855_at	CLTC-IT1	Û	1.79	3.70E-03
36004_at	IKBKG	Û	1.80	6.20E-03	1556352_at		仓	1.80	1.60E-04	230659_at		Û	1.79	2.90E-03
204292_x_at	STK11	仓	1.80	6.20E-03	1560101_at	SYDE2	Û	1.80	1.50E-04	244132_x_at	ZNF518A	Û	1.79	2.90E-03

222668_at KCTD15 2.70E-03 239166_at TIGD1L ① 1.79 ---① 1.78 0.015 216459_x_at Û 1.78 1.20E-03 231818 x at î 1.79 2.50E-03 211921 x at PTMA î 1.78 0.015 1560031 at FRMD4A î 1.78 1.10E-03 ---243866_x_at Û 1.79 2.40E-03 237336 at ADD2 Û 1.78 207109 at POU2F3 Û 1.78 1.00E-03 0.014 ---1.79 2.20E-03 230630_at 5.90E-04 243482_at Û 33148_at ZFR Û 1.78 0.014 AK3L1 Û 1.78 ---1.90E-03 1557117 at Û 3.00E-04 239333_x_at î 1.79 1564640 at MGA î 1.78 0.013 ---1.78 ---1.70E-03 1565754 x at FGD2 Û 1.79 202996 at POLD4 Û 1.78 0.012 212236 x at KRT17 Û 1.78 8.20E-05 1.40E-03 1.78 208003_s_at NFAT5 201577_at NME1 Û 1.79 241294_at ---Û 0.011 Û 1.77 0.049 1.30E-03 235308 at 1.78 219521 at B3GAT1 1.77 233273_at --î 1.79 ZBTB20 î 0.010 î 0.046 1.30E-03 SLM02 9.80E-03 236027 at 1569128 at C3orf38 Û 1.79 229835 s at Û 1.78 C10orf78 Û 1.77 0.045 240906_at î 1.79 1.20E-03 232688_at BMP2K 1.78 8.70E-03 235456_at ---Û 1.77 0.044 ---Û 211006 s at KCNB1 Û 1.79 1.20E-03 1560500 at ---1.78 8.60E-03 207286 at **CEP135** Û 1.77 0.041 Û î 1.79 9.00E-04 242562_at 1.78 7.70E-03 202006_at PTPN12 1.77 0.038 211374_x_at DNAJC24 î Û --î 1.79 8.30E-04 242197_x_at 1.78 7.50E-03 1564154_at ---Û 1.77 0.037 216135_at IQCK CD36 Û 7.20E-04 6.50E-03 206773 at LY6H Û 1.79 217446 x at Û 1.78 213069 at HEG1 Û 1.77 0.036 ---6.90E-04 233431_x_at 6.10E-03 230987_at Û 244426_at --î 1.79 --î 1.78 1.77 0.034 ---5.00E-04 5.60E-03 237438 at ---216051 x at PRINS î 1.79 238741 at FAM83A Û 1.78 î 1.77 0.033 4.50E-03 241099 at ---Û 1.79 3.70E-04 242383 at ---Û 1.78 224227 s at BDP1 Û 1.77 0.028 233796_at Û 1.79 3.00E-04 232570_s_at ADAM33 Û 1.78 3.70E-03 206204_at GRB14 Û 1.77 0.027 ---223928 s at Û 1.79 1.30E-04 32099 at 3.50E-03 234576 at ANPEP Û 1.77 0.025 GUCA1C SAFB2 Û 1.78 230340_s_at WASL Û 1.79 5.60E-05 244021 at 3.20E-03 202125 s at Û 1.77 0.024 ---Û 1.78 TRAK2 Û 3.10E-03 1.77 244164_at 1.78 0.041 218084_x_at FXYD5 1.78 91816_f_at MEX3D Û 0.022 ---Û 3.00E-03 239788 at 1559413_at TCP11L2 Û 1.78 0.038 1564004 at 1.78 Û 1.77 0.019 ---Û ---Û 3.00E-03 243236 at 1.78 0.027 203665 at HMOX1 1.78 1558111 at MBNL1 Û 1.77 0.019 ---Û Û 1.78 227991_x_at 2.90E-03 240758_at 1.77 239056_at SEC22C 0.025 ZBTB43 Û 1.78 ---Û 0.017 242616 at ---Û 1.78 0.023 223018 at NOB1 Û 1.78 2.80E-03 210092 at MAGOH Û 1.77 0.015 205516_x_at CIZ1 Û 1.78 0.021 232303_at **ZNF608** Û 1.78 2.60E-03 1559154_at Û 1.77 0.014 ---Û 1.78 221195_at 2.50E-03 211764_s_at 1.77 232581_x_at HIVEP3 0.021 RNFT1 Û 1.78 UBE2D1 Û 0.014 211612_s_at 2.20E-03 237448 at IL13RA1 Û 1.78 0.021 234650 at Û 1.77 0.013 ---Û 1.78 ---205063_at 2.00E-03 244546_at CYCS 1.77 239757_at ZFAND6 î 1.78 0.020 SIP1 1.78 Û 0.012 î 1.30E-03 221928 at ACACB 204302_s_at **KIAA0427** î 1.78 0.017 221367_at MOS 1.78 î 1.77 0.011 Û 1569311 at LOC554203 Û 1.78 231775 at **TNFRSF10A** 1.30E-03 235542 at TET3 Û 1.77 0.017 Û 1.78 0.011 WSB1 205037_at RABL4 Ί 1.78 0.017 235650_at FLJ23834 î 1.78 1.20E-03 210561_s_at Û 1.77 0.011

212058_at 9.60E-03 217656_at LTV1 SR140 ↓ 1.77 ---① 1.76 0.048 225748_at ↓ 1.76 8.00E-03 217618_x_at HUS1 î 1.77 9.30E-03 243423 at TNIP1 î 1.76 0.047 213649 at SFRS7 î 1.76 7.90E-03 200978 at MDH1 1.77 8.60E-03 222833 at LPCAT2 Û 1.76 1558504 at Û 7.30E-03 Û 0.041 ---1.76 8.50E-03 236955_at 1.76 1553920_at 6.60E-03 228173_at GNAS Û 1.77 --î 0.031 C9orf84 Û 1.76 230426_at 7.80E-03 1566609 at Û 6.40E-03 DLD î 1.77 226347 at FUT11 î 1.76 0.030 1.76 ---6.80E-03 224254 x at Û 242549 at PRKD3 1.76 0.030 225684 at FAM33A Û 1.76 6.10E-03 ---1.77 Û 201140_s_at 6.70E-03 232333_at 1.76 224847_at 5.90E-03 RAB5C Û 1.77 0.027 CDK6 Û 1.76 --î 219775_s_at 6.00E-03 229115_at 1.76 233709 at 4.20E-03 CPLX3 î 1.77 DYNC1H1 î 0.025 --î 1.76 1569551 at 5.70E-03 1.76 224322 at 4.00E-03 ---Û 1.77 1557527 at ---Û 0.024 ARID4B Û 1.76 1569538_at î 1.77 5.10E-03 244145_at --î 1.76 0.023 235729_at **ZNF514** Û 1.76 3.70E-03 ---1557522 x at Û 1.77 4.70E-03 218920 at FLI10404 1.76 0.023 209376 x at SFRS2IP Û 1.76 3.20E-03 --î 216197_at î 1.77 3.00E-03 214101_s_at 1.76 234822_at Û 2.40E-03 ATF7IP --î 0.021 ---1.76 DAB2 î 2.90E-03 227369_at SERBP1 1.76 1559011_at Û 2.30E-03 201280_s_at 1.77 î 0.021 FLJ13773 1.76 239627_at 2.50E-03 2.20E-03 TMED9 î 1.77 1565895 at î 1.76 0.018 241086 at Û 1.76 ------SNX25 2.00E-03 1564568_at 221120_at Û 2.10E-03 227311_at Û 1.77 CRLF1 î 1.76 0.017 ---1.76 1.90E-03 202499 s at 1.80E-03 1553686_at C18orf25 Û 1.77 208581 x at MT1X Û 1.76 0.017 SLC2A3 î 1.76 208803 s at SRP72 Û 1.77 1.50E-03 1562945 at ---Û 1.76 0.016 241065 x at CMAS Û 1.76 1.20E-03 215582_x_at MCM3AP Û 1.77 1.40E-03 1554177_a_at ATP5S î 1.76 0.016 1552745_at SLC06A1 Û 1.76 1.10E-03 216466 at Û 1.40E-03 208206 s at 1.76 203898 at CRCP Û 1.76 9.40E-04 NAV3 1.77 RASGRP2 Û 0.016 233840_at Û 1.77 1.20E-03 212794 s at 1.76 207732 s at Û 1.76 6.90E-04 ---**KIAA1033** Û 0.014 DLG3 Û 7.30E-04 223190_s_at 1562905_at 208247_at C3orf51 1.77 MLL5 î 1.76 0.014 ---Û 1.76 6.40E-04 209807_s_at NFIX Û 1.77 6.60E-04 209074 s at **FAM107A** 1.76 240616 at LOC100131110 Û 1.76 5.70E-04 Û 0.013 219757 s at 236812 at STMN4 Û 1.77 5.10E-04 C14orf101 Û 1.76 227514 at ITPRIPL2 Û 1.76 5.00E-04 0.012 1.77 4.60E-04 242837_at 1.76 212466_at 4.60E-04 208286_x_at POU5F1 Û SFRS4 Û 0.012 SPRED2 Û 1.76 207536 s at 242537 at 222337 at ---Û 1.77 4.20E-04 **TNFRSF9** Û 1.76 0.012 ---Û 1.76 2.20E-04 219975_x_at OLAH Û 1.77 3.20E-04 217701_x_at î 1.76 0.011 225700_at GLCCI1 Û 1.76 2.20E-04 ---2.80E-04 238170_at 1.76 2.20E-04 217396_at î 1.77 ---Û 0.010 204468_s_at TIE1 Û 1.76 ---1555014_x_at 1.30E-04 Û 2.50E-04 213002 at MARCKS 1.76 0.010 1553575 at ND6 Û 1.76 1.77 Û ---1568915_at 2.30E-04 9.90E-03 1.76 1.10E-04 î 1.77 1556434_at ---1.76 204666_s_at RP5-1000E10.4 î --î 1.90E-04 223178_s_at 9.90E-03 220696 at 4.50E-05 212258_s_at SMARCA2 î 1.77 NT5DC1 1.76 --î 1.76 î 1.70E-04 1559820 at Û 1.77 212965 at 8.70E-03 237748 at SCGBL Û 1.76 2.50E-05 ---HIC2 î 1.76 3.40E-05 1.75 225122_at RNF31 介 1.77 242265_at BRD8 î 1.76 8.30E-03 226715_at FOXK1 î 0.050

229168_at	COL23A1	Û	1.75	0.046	215490_at	C1orf69	Û	1.75	8.30E-03	209443_at	SERPINA5	仓	1.75	4.20E-04
201904_s_at	CTDSPL	Û	1.75	0.046	227546_x_at	AURKAIP1	仓	1.75	8.10E-03	241680_at		Û	1.75	3.10E-04
235757_at		Û	1.75	0.045	1560558_at	C9orf80	Û	1.75	7.90E-03	1569100_a_at		仓	1.75	3.00E-04
229497_at	ANKDD1A	Û	1.75	0.042	224939_at	NUFIP2	Û	1.75	7.90E-03	219113_x_at	HSD17B14	仓	1.75	2.90E-04
217802_s_at	NUCKS1	仓	1.75	0.042	226024_at	COMMD1	Û	1.75	6.70E-03	228511_s_at	ZNF219	Û	1.75	1.90E-04
238890_at	PSMG1	仓	1.75	0.040	212418_at	ELF1	Û	1.75	5.40E-03	242991_at	TJP2	Û	1.75	1.10E-04
232204_at	EBF1	Û	1.75	0.039	223882_at	FAM172A	Û	1.75	5.20E-03	233038_at		仓	1.75	1.00E-04
243648_at		仓	1.75	0.037	242175_at		仓	1.75	4.90E-03	218438_s_at	MED28	Û	1.74	0.049
240358_at		仓	1.75	0.036	242560_at	FANCD2	仓	1.75	4.30E-03	210807_s_at	SLC16A7	Û	1.74	0.039
241779_at	MTX3	仓	1.75	0.032	227703_s_at	SYTL4	Û	1.75	4.20E-03	228558_at	C14orf80	Û	1.74	0.038
239709_at		Û	1.75	0.031	206247_at	MICB	Û	1.75	3.50E-03	238513_at	PRRG4	仓	1.74	0.038
241769_at		Û	1.75	0.029	240160_x_at		Û	1.75	3.30E-03	223270_at	CTDSPL2	仓	1.74	0.034
1561763_at		仓	1.75	0.028	211864_s_at	MYOF	Û	1.75	3.00E-03	203259_s_at	HDDC2	Û	1.74	0.033
238558_at		仓	1.75	0.025	242357_x_at		仓	1.75	2.90E-03	220370_s_at	USP36	Û	1.74	0.033
227082_at		Û	1.75	0.024	215250_at	TMEM111	Û	1.75	2.80E-03	235071_at	WDR92	仓	1.74	0.033
206116_s_at	TPM1	Û	1.75	0.024	200655_s_at	CALM1	仓	1.75	2.60E-03	229987_at		Û	1.74	0.032
214502_at	HIST1H2BJ	Û	1.75	0.023	210873_x_at	APOBEC3A	仓	1.75	2.50E-03	218360_at	RAB22A	Û	1.74	0.031
236386_at	SUZ12P	Û	1.75	0.022	217016_x_at	FLJ23172	Û	1.75	2.30E-03	211922_s_at	CAT	Û	1.74	0.029
219359_at	ATHL1	Û	1.75	0.021	215853_at		Û	1.75	2.00E-03	232055_at	SFXN1	仓	1.74	0.029
240594_at		仓	1.75	0.020	1552961_at		仓	1.75	1.90E-03	214182_at	LOC100132430	Û	1.74	0.024
222035_s_at	PAPOLA	Û	1.75	0.018	242256_x_at		仓	1.75	1.90E-03	1557452_at		Û	1.74	0.021
220369_at	SMEK1	仓	1.75	0.016	1559731_x_at	MACROD1	仓	1.75	1.90E-03	1556931_at		Û	1.74	0.021
202436_s_at	CYP1B1	仓	1.75	0.015	233074_at		Û	1.75	1.80E-03	1554089_s_at	SBDS	Û	1.74	0.021
64371_at	SFRS14	Û	1.75	0.015	1570054_at		Û	1.75	1.70E-03	236554_x_at	TMC8	仓	1.74	0.019
239597_at		仓	1.75	0.014	237133_at		仓	1.75	1.60E-03	1560456_at	LSDP5	Û	1.74	0.018
237618_at		Û	1.75	0.014	216499_at		Û	1.75	1.20E-03	236696_at	SR140	仓	1.74	0.018
213109_at	TNIK	仓	1.75	0.013	204238_s_at	C6orf108	Û	1.75	1.20E-03	229262_at	LRRC68	Û	1.74	0.017
220823_at		仓	1.75	0.012	215978_x_at	LOC152719	仓	1.75	1.20E-03	204064_at	THOC1	Û	1.74	0.016
241786_at		仓	1.75	0.010	209193_at	PIM1	仓	1.75	1.10E-03	233658_at		Û	1.74	0.015
1561181_at		仓	1.75	0.010	243793_at	AHDC1	仓	1.75	8.40E-04	233152_x_at		仓	1.74	0.014
233271_at		仓	1.75	0.010	211387_x_at	RNGTT	仓	1.75	4.80E-04	1557167_at	HCG11	仓	1.74	0.014
1556658_a_at		仓	1.75	9.30E-03	205193_at	MAFF	仓	1.75	4.50E-04	205296_at	RBL1	얍	1.74	0.014

1562364_at	GVINP1	仓	1.74	0.013	221387_at	NPFFR1	仓	1.74	7.50E-04	223010_s_at	OCIAD1	Û	1.73	0.015
223462_at	TMEM175	仓	1.74	0.013	1554697_at	ADAMTS9	仓	1.74	7.10E-04	225739_at	RAB11FIP4	Û	1.73	0.014
240128_at		仓	1.74	0.011	210213_s_at	EIF6	Û	1.74	5.20E-04	217832_at	SYNCRIP	Û	1.73	0.014
219802_at	PYROXD1	仓	1.74	0.011	216460_at	FLJ00049	Û	1.74	5.00E-04	202191_s_at	GAS7	①	1.73	0.012
215824_at	NUDT7	仓	1.74	9.00E-03	215674_at	KIAA1659	仓	1.74	3.70E-04	203778_at	MANBA	Û	1.73	0.011
227278_at	TAF13	仓	1.74	8.30E-03	218634_at	PHLDA3	Û	1.74	3.70E-04	1558445_at		①	1.73	0.010
242109_at	SYTL3	仓	1.74	7.80E-03	233902_at	GUCA1C	Û	1.74	3.20E-04	228916_at	CWF19L2	Û	1.73	9.90E-03
1554251_at	HP1BP3	仓	1.74	7.20E-03	242687_at	FAM160A1	Û	1.74	2.10E-04	1559420_x_at	CACNB2	①	1.73	9.60E-03
234235_at		企	1.74	7.10E-03	209650_s_at	TBC1D22A	Û	1.74	1.30E-04	231863_at	ING3	仓	1.73	9.60E-03
241062_at		企	1.74	6.30E-03	1566670_at	PDXK	Û	1.74	7.50E-05	56919_at	WDR48	仓	1.73	8.60E-03
239060_at		仓	1.74	6.00E-03	223774_at	SNHG12	Û	1.74	3.50E-05	231242_at	BHLHE41	①	1.73	5.70E-03
1558075_at	LOC339047	仓	1.74	5.40E-03	223463_at	RAB23	Û	1.73	0.045	218906_x_at	KLC2	①	1.73	5.70E-03
1552303_a_at	TMEM106A	企	1.74	5.40E-03	217100_s_at	UBXN7	Û	1.73	0.045	229735_s_at	NIPAL3	仓	1.73	5.30E-03
244279_at	SOBP	企	1.74	5.30E-03	212492_s_at	KDM4B	Û	1.73	0.043	242912_at	P704P	仓	1.73	5.30E-03
208624_s_at	EIF4G1	仓	1.74	5.00E-03	232371_at	MARCH7	Û	1.73	0.039	1559771_at		①	1.73	5.00E-03
201011_at	RPN1	企	1.74	4.50E-03	209389_x_at	DBI	Û	1.73	0.038	243103_at		仓	1.73	4.90E-03
233645_s_at	C1RL	仓	1.74	4.20E-03	1570135_at	ZNF230	仓	1.73	0.037	237316_at	ANKDD1A	①	1.73	4.80E-03
1553365_at	DEPDC4	仓	1.74	3.90E-03	1561092_at		Û	1.73	0.035	215763_at		①	1.73	4.60E-03
1555843_at	HNRNPM	Û	1.74	3.60E-03	240743_at		Û	1.73	0.030	1564204_at	FAM91A2	①	1.73	4.50E-03
244872_at	RBBP4	仓	1.74	3.10E-03	201409_s_at	PPP1CB	Û	1.73	0.027	212862_at	CDS2	①	1.73	4.30E-03
228254_at	STAM2	仓	1.74	3.00E-03	209691_s_at	DOK4	Û	1.73	0.024	217679_x_at		①	1.73	4.20E-03
219470_x_at	CCNJ	仓	1.74	2.90E-03	1560145_at	MKLN1	Û	1.73	0.022	200761_s_at	ARL6IP5	仓	1.73	3.60E-03
1562428_at	LOC654780	仓	1.74	2.60E-03	228412_at	LOC643072	Û	1.73	0.021	241993_x_at		①	1.73	3.50E-03
232107_at		仓	1.74	2.30E-03	227472_at	DDA1	Û	1.73	0.019	218113_at	TMEM2	①	1.73	3.50E-03
208195_at	TTN	Û	1.74	2.20E-03	227934_at	KPNA5	Û	1.73	0.019	1568986_x_at	PIGT	仓	1.73	3.30E-03
1553037_a_at	SYN2	仓	1.74	2.10E-03	216748_at	PYHIN1	Û	1.73	0.019	211919_s_at	CXCR4	Û	1.73	3.10E-03
203816_at	DGUOK	Û	1.74	2.00E-03	1554565_x_at	UNQ1887	Û	1.73	0.019	1557224_at		①	1.73	2.60E-03
241757_x_at	DYNC2LI1	仓	1.74	2.00E-03	217608_at	SFRS12IP1	Û	1.73	0.018	37170_at	BMP2K	①	1.73	2.60E-03
227507_at	ZNF592	仓	1.74	1.90E-03	218923_at	CTBS	Û	1.73	0.017	227860_at	CPXM1	仓	1.73	2.30E-03
210389_x_at	TUBD1	仓	1.74	1.70E-03	1564155_x_at		仓	1.73	0.016	214085_x_at	GLIPR1	①	1.73	1.80E-03
200908_s_at	RPLP2	Û	1.74	1.60E-03	237492_at		仓	1.73	0.015	240867_at		①	1.73	1.70E-03
1555978_s_at	MYL12A	仓	1.74	1.50E-03	1557736_at	NKTR	仓	1.73	0.015	1561346_at		仓	1.73	1.50E-03

226888_at	CSNK1G1	Û	1.73	1.20E-03	238041_at	TCF12	Û	1.72	0.018	206556_at	CLUL1	仓	1.72	3.60E-04
204175_at	ZNF593	Û	1.73	1.20E-03	226018_at	C7orf41	仓	1.72	0.016	1561614_at	SLC8A1	仓	1.72	3.30E-04
237123_x_at	KLHL9	仓	1.73	1.00E-03	224400_s_at	CHST9	Û	1.72	0.016	208598_s_at	HUWE1	Û	1.72	2.70E-04
1557501_a_at		仓	1.73	9.20E-04	1556416_s_at		仓	1.72	0.015	200881_s_at	DNAJA1	Û	1.72	2.50E-04
222329_x_at		Û	1.73	9.00E-04	218043_s_at	AZI2	仓	1.72	0.014	1562669_at		仓	1.72	1.50E-04
235797_x_at	HMCN2	Û	1.73	7.90E-04	243826_at		仓	1.72	0.013	239980_at	C22orf28	仓	1.72	1.30E-04
206056_x_at	SPN	仓	1.73	7.10E-04	216323_x_at	TUBA3D	Û	1.72	0.013	1556383_at		Û	1.72	1.20E-04
214902_x_at		仓	1.73	5.70E-04	226965_at	FAM116A	仓	1.72	0.012	242520_s_at	C1orf228	Û	1.72	5.30E-05
1557068_at	KRT37	仓	1.73	5.00E-04	208583_x_at	HIST1H2AJ	Û	1.72	0.011	1562036_at		Û	1.72	6.40E-06
205998_x_at	CYP3A4	仓	1.73	4.20E-04	212651_at	RHOBTB1	Û	1.72	0.011	AFFX-BioB-		Û	1.72	2.97E-04
										M_at				
216343_at	PCDHGA3	仓	1.73	3.20E-04	206293_at	SULT2A1	仓	1.72	0.011	203828_s_at	IL32	Û	1.71	0.048
233399_x_at	ZNF252	仓	1.73	2.70E-04	225980_at	C14orf43	Û	1.72	7.80E-03	230180_at	DDX17	仓	1.71	0.047
214294_at	KIAA0485	仓	1.73	2.60E-04	223309_x_at	PNPLA8	仓	1.72	7.40E-03	1557300_s_at		仓	1.71	0.044
203171_s_at	RRP8	Û	1.73	1.60E-04	217052_x_at		仓	1.72	4.90E-03	239175_at		仓	1.71	0.039
1562142_at	SKIV2L2	兌	1.73	1.20E-04	223012_at	UBXN6	仓	1.72	4.60E-03	238892_at		Û	1.71	0.039
211881_x_at	IGLJ3	Û	1.73	8.80E-05	216442_x_at	FN1	Û	1.72	4.00E-03	202335_s_at	UBE2B	仓	1.71	0.035
200599_s_at	HSP90B1	Û	1.72	0.046	1557842_at		仓	1.72	3.00E-03	240314_at		仓	1.71	0.031
207310_s_at	NOS1	Û	1.72	0.045	212119_at	RHOQ	仓	1.72	2.60E-03	226587_at	SNRPN	仓	1.71	0.030
211358_s_at	CIZ1	Û	1.72	0.043	216310_at	TAOK1	仓	1.72	2.30E-03	244826_at		Û	1.71	0.024
243552_at	MBTD1	仓	1.72	0.043	1558560_s_at	BLZF1	仓	1.72	1.80E-03	241849_at		仓	1.71	0.024
41657_at	STK11	仓	1.72	0.042	214951_at	SLC26A10	仓	1.72	1.80E-03	1561829_at		仓	1.71	0.023
1561973_at	SMARCC2	兌	1.72	0.038	223718_at	ACRBP	Û	1.72	1.60E-03	233078_at	API5	Û	1.71	0.023
233114_at		仓	1.72	0.032	240251_at	IFT80	仓	1.72	1.60E-03	234260_at		仓	1.71	0.021
1565598_at		仓	1.72	0.031	235907_at	TMEM33	仓	1.72	1.50E-03	225797_at	MRPL54	Û	1.71	0.019
214544_s_at	SNAP23	Û	1.72	0.031	214707_x_at	ALMS1	仓	1.72	1.20E-03	238070_at	CHD1L	仓	1.71	0.017
215284_at		兌	1.72	0.024	207339_s_at	LTB	Û	1.72	9.00E-04	218708_at	NXT1	Û	1.71	0.017
216682_s_at	FAM48A	兌	1.72	0.023	201871_s_at	UBXN1	Û	1.72	8.70E-04	206995_x_at	SCARF1	仓	1.71	0.017
233229_at	SCFD1	兌	1.72	0.023	210169_at	SEC14L5	Û	1.72	7.20E-04	235760_at	NSD1	仓	1.71	0.014
242274_x_at	SLC25A42	仓	1.72	0.021	236060_at		仓	1.72	5.30E-04	244061_at		仓	1.71	0.013
203252_at	CDK2AP2	Û	1.72	0.018	1565269_s_at	ATF1	Û	1.72	4.40E-04	215913_s_at	GULP1	仓	1.71	0.012
203181_x_at	SRPK2	仓	1.72	0.018	232703_at	GLUD1P7	仓	1.72	4.00E-04	212593_s_at	PDCD4	仓	1.71	0.012

METTL14 ① 1.71 0.011 234120_at 227847_at EPM2AIP1 227601_at ---① 1.71 9.80E-04 Û 1.71 1.70E-03 217550_at ATF6 î 1.71 8.40E-03 242896 at C2orf21 î 1.71 5.90E-04 201532 at PSMA3 Û 1.70 0.023 214295 at **KIAA0485** Û 1.71 7.80E-03 216187 x at 4.80E-04 240515 at Û 1.70 0.018 ---Û 1.71 ---ANP32E 7.50E-03 242025_at 1.71 2.90E-04 208310_s_at C7orf28A/B 1.70 229128_s_at î 1.71 --î Û 0.018 7.50E-03 207804 s at 2.70E-04 242760 x at 1.70 216491_x_at IGHM Û 1.71 FCN2 Û 1.71 PIGB î 0.018 2.20E-04 7.40E-03 1570194 x at 207126 x at UGT1A1 Û 1.71 235792 x at PIK3C2A Û 1.70 0.017 Û 1.71 ---235601_at 7.20E-03 1.90E-04 239187_at C4orf30 Û 1.70 ---Û 1.71 203079_s_at CUL2 0.017 Û 1.71 Û 6.60E-03 240568_at 1.71 1.40E-04 1.70 203893_at TAF9 1.71 --î 1555653 at HNRNPA3 î 0.017 6.50E-03 1.20E-04 208057 s at 208866 at CSNK1A1 Û 1.71 219965 s at MAGIX Û 1.71 GLI2 Û 1.70 0.016 232350_x_at **GPR161** î 1.71 6.20E-03 229277_at ADRB1 î 1.71 1.10E-04 221085_at TNFSF15 Û 1.70 0.015 1554196 at IZUM01 Û 1.71 6.00E-03 AFFX-r2-Ec----1.71 2.34E-04 244651 at Û 1.70 0.013 Û --bioB-5_at 222368_at 1.71 5.50E-03 241938_at Û 1.70 0.045 213462_at NPAS2 Û 0.013 Û QKI 1.70 ---232156 at 242254 at 243471 at Û 1.71 5.50E-03 MUDENG Û 1.70 0.044 Û 1.70 0.012 ------5.50E-03 1.70 242797_x_at Û 230966_at Û 1.71 201164_s_at PUM1 Û 0.041 ---1.70 0.012 IL4I1 5.30E-03 215579 at 1.70 225204_at PPTC7 î 1.71 236974 at --î 1.70 0.039 APOBEC3G î 0.012 240870 at ---Û 1.71 5.10E-03 202555 s at MYLK Û 1.70 0.037 1554316 at PGLS Û 1.70 0.012 222481_at FXC1 Û 1.71 4.90E-03 224820_at FAM36A î 1.70 0.036 1557571_at VPS13D Û 1.70 0.012 205219 s at GALK2 Û 1.71 4.90E-03 238446 at 1.70 0.036 230795 at Û 1.70 SMA4 Û ---0.011 236130 at SNORA37 Û 1.71 3.90E-03 232174 at 1.70 0.035 203643 at ERF Û 1.70 0.011 ---Û Û 3.80E-03 237218_at 239213_at SERPINB1 1.70 225444_at UBN2 1.71 Û 1.70 0.034 Û 0.011 ---233359 at 1.70 244077 at 0.010 202736 s at LSM4 Û 1.71 3.60E-03 Û 0.033 C10orf113 Û 1.70 ---3.30E-03 1565873 at 214669 x at IGKC Û 1.71 241434 at Û 1.70 0.033 Û 1.70 8.80E-03 ------1.71 3.10E-03 216384_x_at LOC643287 1.70 215208_x_at RPL35A Û 8.80E-03 203100_s_at CDYL Û Û 0.032 1.70 214042_s_at 1.70 210829 s at 209055 s at CDC5L Û 1.71 3.00E-03 RPL22 Û 0.030 SSBP2 Û 1.70 7.20E-03 1553909_x_at FAM178A Û 1.71 3.00E-03 201281_at ADRM1 Û 1.70 0.029 234596_at ---Û 1.70 6.50E-03 1562353_x_at î 2.80E-03 217677_at 1.70 201478_s_at DKC1 Û 6.20E-03 1.71 PLEKHA2 Û 0.028 1.70 ---1.70 5.70E-03 232002 at Û 1.71 2.40E-03 201921 at GNG10 Û 0.026 234306 s at SLAMF7 Û 1.70 ---2.30E-03 206098_at ZBTB6 1.70 Û 1.70 5.20E-03 240800_x_at î 1.71 Û 0.025 211997_x_at H3F3B ---2.30E-03 208808_s_at HMGB2 1.70 4.40E-03 226716_at î 1.71 î 0.024 1556951 at î 1.70 PRR12 ---2.20E-03 4.40E-03 217625 x at Û 1.71 237077 at 1.70 0.023 219929 s at ZFYVE21 Û 1.70 LOC100506190 ---Û ↓ 1.71 2.00E-03 ₽ 1.70 1.70 203219_s_at APRT 225160_x_at MDM2 0.023 227068_at PGK1 î 3.40E-03

241777_x_at		仓	1.70	2.80E-03	233415_at		仓	1.69	0.035	216040_x_at		仓	1.69	6.30E-03
241637_at		仓	1.70	2.60E-03	243282_at	CCDC93	仓	1.69	0.032	1554608_at	TGOLN2	Û	1.69	6.00E-03
224597_at	LOC647979	仓	1.70	2.50E-03	201534_s_at	UBL3	仓	1.69	0.032	1565162_s_at	MGST1	Û	1.69	5.40E-03
1569129_s_at	C3orf38	仓	1.70	2.30E-03	201326_at	CCT6A	Û	1.69	0.031	235058_at		Û	1.69	5.00E-03
1560779_a_at	ZNF568	兌	1.70	1.80E-03	226217_at	SLC30A7	仓	1.69	0.031	229265_at	SKI	Û	1.69	4.80E-03
243442_x_at		兌	1.70	1.60E-03	236472_at		仓	1.69	0.028	232962_x_at		Û	1.69	4.30E-03
238489_at	PRKAA2	仓	1.70	1.30E-03	222887_s_at	TMEM127	Û	1.69	0.028	1558672_at		Û	1.69	4.30E-03
201510_at	ELF3	兌	1.70	1.20E-03	207460_at	GZMM	仓	1.69	0.024	204181_s_at	ZBTB43	Û	1.69	3.70E-03
1564444_at	LOC100130264	仓	1.70	1.20E-03	1560156_at		仓	1.69	0.020	1565752_at	FGD2	Û	1.69	3.40E-03
244489_at		仓	1.70	1.00E-03	239549_at		仓	1.69	0.017	1570329_at		Û	1.69	3.30E-03
222364_at	SLC44A1	仓	1.70	9.60E-04	220694_at	DDEF1IT1	Û	1.69	0.015	223043_at	TMEM85	Û	1.69	3.30E-03
231695_at		仓	1.70	9.50E-04	214153_at	ELOVL5	Û	1.69	0.015	202156_s_at	CUGBP2	Û	1.69	3.10E-03
232215_x_at	PRR11	仓	1.70	9.50E-04	243985_at	GTF2A2	Û	1.69	0.015	230490_x_at	RSU1	Û	1.69	2.90E-03
217348_x_at	ARHGEF15	仓	1.70	9.20E-04	1568857_a_at	NBR1	Û	1.69	0.015	1564317_at		Û	1.69	2.80E-03
236880_at	RAD52	仓	1.70	9.10E-04	205946_at	VIPR2	Û	1.69	0.015	1569999_at		Û	1.69	2.80E-03
238474_at	NUP43	兌	1.70	8.50E-04	1557504_at		仓	1.69	0.014	1556336_at	RBMX	Û	1.69	2.10E-03
1554039_at	C14orf159	仓	1.70	7.00E-04	214808_at		Û	1.69	0.013	204768_s_at	FEN1	Û	1.69	2.00E-03
1556072_at	C22orf37	仓	1.70	6.60E-04	201846_s_at	RYBP	Û	1.69	0.013	1566887_x_at		Û	1.69	1.90E-03
211625_s_at	DRD3	仓	1.70	3.00E-04	239212_at	LTV1	仓	1.69	0.012	233428_at		Û	1.69	1.50E-03
239934_x_at		仓	1.70	2.40E-04	206674_at	FLT3	Û	1.69	0.011	230784_at	PRAC	Û	1.69	1.50E-03
1553282_at	C21orf128	Û	1.70	2.10E-04	224252_s_at	FXYD5	Û	1.69	0.011	232685_at		Û	1.69	1.30E-03
213624_at	SMPDL3A	仓	1.70	7.50E-05	234884_x_at	IGL	Û	1.69	0.011	215179_x_at	PGF	Û	1.69	1.20E-03
212051_at	WIPF2	Û	1.70	7.30E-05	209244_s_at	KIF1C	Û	1.69	0.011	231212_x_at		Û	1.69	9.70E-04
201616_s_at	CALD1	仓	1.70	6.90E-05	236470_at		Û	1.69	0.010	216811_at		Û	1.69	8.00E-04
240621_at		仓	1.70	3.10E-05	218061_at	MEA1	Û	1.69	0.010	215850_s_at	NDUFA5	Û	1.69	6.70E-04
1561101_at	LOC153469	Û	1.70	2.60E-05	201844_s_at	RYBP	仓	1.69	0.010	236519_at	C9orf135	Û	1.69	6.60E-04
240155_x_at	ZNF273	仓	1.69	0.048	237414_at	F7	Û	1.69	9.90E-03	222015_at	CSNK1E	Û	1.69	5.50E-04
243546_at		仓	1.69	0.047	1555088_x_at	STAT5B	Û	1.69	9.20E-03	230125_at	GUSB	Û	1.69	4.30E-04
219364_at	DHX58	Û	1.69	0.045	242554_at	TPCN2	仓	1.69	8.50E-03	243120_at		Û	1.69	2.70E-04
239432_at	FLJ31306	仓	1.69	0.045	224580_at	SLC38A1	仓	1.69	7.30E-03	1570229_at		Û	1.69	2.60E-04
215992_s_at	RAPGEF2	仓	1.69	0.043	235626_at	CAMK1D	仓	1.69	6.90E-03	203630_s_at	COG5	Û	1.69	2.50E-04
209917_s_at	TP53TG1	Û	1.69	0.038	221530_s_at	BHLHE41	Û	1.69	6.50E-03	1561140_at		Û	1.69	2.30E-04

240909_at		仓	1.69	1.70E-04	212667_at	SPARC	Û	1.68	0.015	1563310_a_at		仓	1.68	9.30E-04
231965_at	FAM113A	仓	1.69	4.60E-05	1557341_x_at		仓	1.68	0.013	1554657_a_at	C20orf26	仓	1.68	7.20E-04
209689_at	CCDC93	Û	1.68	0.046	1562300_at		仓	1.68	0.013	1568813_at	LOC100506392	仓	1.68	6.70E-04
224412_s_at	TRPM6	Û	1.68	0.044	239070_at		仓	1.68	0.013	244714_at		仓	1.68	5.00E-04
232582_at		仓	1.68	0.043	233904_at		仓	1.68	0.013	241066_at	ZNF449	仓	1.68	3.30E-04
1570038_at	ZNF595	Û	1.68	0.043	1555241_at	C8orf59	仓	1.68	0.013	244533_at	PTPN14	仓	1.68	1.90E-04
209177_at	NDUFAF3	Û	1.68	0.040	206398_s_at	CD19	Û	1.68	0.012	1560033_at	MCCC2	仓	1.68	7.30E-05
240829_at		仓	1.68	0.034	201694_s_at	EGR1	Û	1.68	0.010	208115_x_at	C10orf137	Û	1.68	4.50E-05
217185_s_at	ZNF259	Û	1.68	0.034	217620_s_at	PIK3CB	仓	1.68	0.010	241905_at	PIK3C2A	仓	1.67	0.048
213528_at	C1orf156	Û	1.68	0.029	1556817_a_at		Û	1.68	7.20E-03	1566166_at		仓	1.67	0.046
202112_at	VWF	Û	1.68	0.029	203582_s_at	RAB4A	Û	1.68	7.00E-03	227854_at		仓	1.67	0.044
223717_s_at	ACRBP	Û	1.68	0.028	218618_s_at	FNDC3B	Û	1.68	6.20E-03	1558586_at	ZNF33B	兌	1.67	0.044
225961_at	KLHDC5	Û	1.68	0.026	201627_s_at	INSIG1	Û	1.68	6.10E-03	208782_at	FSTL1	Û	1.67	0.043
209207_s_at	SEC22B	仓	1.68	0.025	217480_x_at		Û	1.68	5.70E-03	1552318_at	GIMAP1	仓	1.67	0.042
211992_at	WNK1	仓	1.68	0.025	243379_at		仓	1.68	5.10E-03	203168_at	ATF6B	얍	1.67	0.041
224102_at	P2RY12	Û	1.68	0.023	1563643_at		兌	1.68	4.10E-03	205921_s_at	SLC6A6	兌	1.67	0.037
230958_s_at		Û	1.68	0.022	1562579_at		兌	1.68	4.00E-03	204028_s_at	RABGAP1	仓	1.67	0.035
1570111_at	C14orf48	Û	1.68	0.022	210601_at	CDH6	兌	1.68	3.50E-03	232705_at	LRRFIP2	兌	1.67	0.034
230689_at		仓	1.68	0.021	232498_at	HEATR7A	仓	1.68	3.00E-03	233866_at	KLHL5	얍	1.67	0.033
232500_at	C20orf74	仓	1.68	0.021	1566207_at	TCEA1	얍	1.68	2.60E-03	207794_at	CCR2	Û	1.67	0.032
215109_at	RC3H1	仓	1.68	0.020	237561_x_at		仓	1.68	2.30E-03	231920_s_at	CSNK1G1	얍	1.67	0.032
223173_at	SPNS1	仓	1.68	0.020	214395_x_at	EEF1D	Û	1.68	2.30E-03	220960_x_at	RPL22	Û	1.67	0.030
206661_at	DBF4B	仓	1.68	0.019	227130_s_at	TLE1	Û	1.68	2.20E-03	230337_at	SOS1	얍	1.67	0.030
206416_at	ZNF205	仓	1.68	0.019	224029_x_at	SCN11A	仓	1.68	2.10E-03	223490_s_at	EXOSC3	Û	1.67	0.028
201163_s_at	IGFBP7	仓	1.68	0.018	201278_at	DAB2	Û	1.68	2.00E-03	1553906_s_at	FGD2	Û	1.67	0.028
212044_s_at	RPL27A	仓	1.68	0.018	234565_x_at		仓	1.68	1.80E-03	244047_at		Û	1.67	0.026
238356_at	DOCK11	仓	1.68	0.017	244822_at	GART	仓	1.68	1.70E-03	236505_at	NUP62	얍	1.67	0.022
212843_at	NCAM1	仓	1.68	0.016	217434_at	MC2R	仓	1.68	1.70E-03	232344_at		얍	1.67	0.021
236557_at	ZBTB38	仓	1.68	0.016	241695_s_at		仓	1.68	1.50E-03	216657_at	ATXN3	얍	1.67	0.021
241697_at		Û	1.68	0.015	204403_x_at	FAM115A	仓	1.68	1.30E-03	210222_s_at	RTN1	Û	1.67	0.021
212107_s_at	DHX9	仓	1.68	0.015	1553472_at	FLJ32955	Û	1.68	1.10E-03	239723_at		얍	1.67	0.020
221651_x_at	IGK	Û	1.68	0.015	220368_s_at	SMEK1	兌	1.68	9.40E-04	229312_s_at	GKAP1	兌	1.67	0.018

205628_at	PRIM2	Û	1.67	0.018	243153_at	CDK5RAP2	仓	1.67	3.70E-03	215650_at		Û	1.66	2.10E-03
209484_s_at	NSL1	Û	1.67	0.017	240168_at	XPO7	仓	1.67	3.60E-03	213457_at	MFHAS1	仓	1.66	0.048
204929_s_at	VAMP5	Û	1.67	0.017	233128_at		仓	1.67	3.50E-03	228655_at		仓	1.66	0.046
235060_at	LOC100190986	Û	1.67	0.016	210663_s_at	KYNU	Û	1.67	3.30E-03	238462_at	UBASH3B	Û	1.66	0.040
224919_at	MRPS6	Û	1.67	0.016	206355_at	GNAL	仓	1.67	3.00E-03	202947_s_at	GYPC	仓	1.66	0.039
231357_at	CLEC12B	Û	1.67	0.015	243760_at	LOC650794	仓	1.67	2.90E-03	1555363_s_at	LOC284440	仓	1.66	0.039
226122_at	PLEKHG1	Û	1.67	0.015	206330_s_at	SHC3	Û	1.67	2.80E-03	241489_at		仓	1.66	0.038
218354_at	TRAPPC2L	Û	1.67	0.015	228443_s_at	SETD8	仓	1.67	2.70E-03	203280_at	SAFB2	仓	1.66	0.038
240302_at		Û	1.67	0.014	242889_x_at	LOC645431	仓	1.67	2.60E-03	242140_at	ERVK3-1	仓	1.66	0.036
1564165_at	PRKRIP1	Û	1.67	0.013	222195_s_at	C9orf156	Û	1.67	2.40E-03	234764_x_at	IGL	Û	1.66	0.036
1554539_a_at	RHOF	Û	1.67	0.013	227398_s_at	MIDN	Û	1.67	2.40E-03	201416_at	SOX4	Û	1.66	0.033
213956_at	CEP350	Û	1.67	0.012	1566278_at		仓	1.67	2.10E-03	242216_at		仓	1.66	0.032
1563471_at	KIAA1632	Û	1.67	0.012	205971_s_at	CTRB1/B2	Û	1.67	2.10E-03	57739_at	DND1	仓	1.66	0.031
1561015_at		Û	1.67	0.011	204232_at	FCER1G	Û	1.67	1.80E-03	244031_at		仓	1.66	0.029
1555460_a_at	SLC39A6	Û	1.67	0.011	225940_at	EIF4E3	仓	1.67	1.70E-03	203401_at	PRPS2	仓	1.66	0.027
226934_at	CPSF6	Û	1.67	0.010	208548_at	IFNA6	Û	1.67	1.70E-03	230292_at		仓	1.66	0.026
212188_at	KCTD12	Û	1.67	9.80E-03	215968_at		Û	1.67	1.60E-03	201211_s_at	DDX3X	Û	1.66	0.025
210553_x_at	PCSK6	Û	1.67	9.60E-03	210618_at	RAP1GAP	仓	1.67	1.30E-03	234789_at		仓	1.66	0.022
212880_at	WDR7	Û	1.67	9.60E-03	224321_at	TMEFF2	Û	1.67	1.30E-03	239780_at		仓	1.66	0.022
214633_at	SOX3	Û	1.67	9.10E-03	242949_x_at	CCDC157	Û	1.67	1.10E-03	201353_s_at	BAZ2A	仓	1.66	0.022
237999_at		Û	1.67	8.60E-03	215063_x_at	LRRC40	仓	1.67	8.30E-04	225526_at	MKLN1	Û	1.66	0.021
215162_at	GARNL1	Û	1.67	7.80E-03	238690_at		Û	1.67	7.20E-04	202753_at	PSMD6	Û	1.66	0.021
202050_s_at	ZMYM4	Û	1.67	7.60E-03	224137_at	CACNG7	仓	1.67	6.80E-04	221671_x_at	IGK	Û	1.66	0.018
224582_s_at	NUCKS1	Û	1.67	7.40E-03	219206_x_at	TMBIM4	仓	1.67	6.00E-04	201986_at	MED13	仓	1.66	0.018
244154_at	DDHD1	Û	1.67	6.90E-03	207419_s_at	RAC2	Û	1.67	5.40E-04	1557759_at	ATP5SL	仓	1.66	0.017
1563263_at	PLCG2	Û	1.67	6.20E-03	231162_at	CLDND2	仓	1.67	3.40E-04	213897_s_at	MRPL23	Û	1.66	0.017
1555439_at	GTF3C3	Û	1.67	5.80E-03	1569409_x_at		Û	1.67	2.50E-04	224760_at	SP1	仓	1.66	0.017
216751_at		Û	1.67	5.00E-03	233515_at		仓	1.67	2.40E-04	1554670_at	GGA1	仓	1.66	0.014
228225_at	PXMP3	Û	1.67	4.60E-03	230216_at	C12orf51	仓	1.67	5.00E-05	227025_at	PPHLN1	仓	1.66	0.013
204817_at	ESPL1	兌	1.67	4.30E-03	231349_at	GPR150	Û	1.66	0.011	204240_s_at	SMC2	Û	1.66	0.013
1570032_at	AP3B2	Û	1.67	4.00E-03	203380_x_at	SFRS5	Û	1.66	5.51E-04	221166_at	FGF23	Û	1.66	0.012
233775_x_at	LOC100289333	Û	1.67	4.00E-03	210120_s_at	RANBP3	Û	1.66	0.012	232112_at	RALGPS2	Û	1.66	0.012

212762_s_at	TCF7L2	Û	1.66	0.012	219341_at	CLN8	仓	1.66	2.80E-03	208962_s_at	FADS1	Û	1.65	0.045
208899_x_at	ATP6V1D	Û	1.66	0.011	215609_at		仓	1.66	2.60E-03	208949_s_at	LGALS3	企	1.65	0.043
205322_s_at	MTF1	仓	1.66	0.011	216463_at		仓	1.66	2.60E-03	242521_at	LOC100505812	兌	1.65	0.042
240347_at		仓	1.66	0.010	234283_at	C22orf28	仓	1.66	2.30E-03	225644_at	CCDC117	企	1.65	0.041
1557621_at	КСР	Û	1.66	9.70E-03	233182_x_at	ATXN3	Û	1.66	1.90E-03	218402_s_at	HPS4	Û	1.65	0.034
221553_at	MAGT1	Û	1.66	9.70E-03	231992_x_at	LOC493754	Û	1.66	1.70E-03	224332_s_at	MRPL43	Û	1.65	0.034
240875_at	C17orf68	Û	1.66	9.60E-03	206048_at	OVOL2	仓	1.66	1.50E-03	1558105_a_at	SLC9A7	Û	1.65	0.033
1560199_x_at	LOC728153	Û	1.66	9.60E-03	214605_x_at	GPR1	仓	1.66	1.30E-03	242080_at		仓	1.65	0.032
1557905_s_at	CD44	Û	1.66	8.30E-03	232942_at	PYROXD2	Û	1.66	1.30E-03	209006_s_at	C1orf63	仓	1.65	0.032
209329_x_at	HIGD2A	Û	1.66	7.80E-03	208246_x_at		Û	1.66	1.20E-03	210527_x_at	TUBA3C	Û	1.65	0.032
1555994_at	DIAPH3-AS1	Û	1.66	7.60E-03	240548_at		仓	1.66	1.10E-03	239804_at		仓	1.65	0.031
225331_at	CCDC50	Û	1.66	7.10E-03	232420_x_at	LOC286260	仓	1.66	1.00E-03	243431_at		企	1.65	0.031
220905_at		Û	1.66	6.70E-03	204590_x_at	VPS33A	Û	1.66	9.10E-04	1560303_at	FKBP4	Û	1.65	0.030
227921_at		Û	1.66	6.60E-03	1552432_at	MFSD6L	Û	1.66	8.50E-04	235093_at	PEX13	仓	1.65	0.030
206429_at	F2RL1	Û	1.66	6.30E-03	1564635_a_at	FHAD1	Û	1.66	8.10E-04	208074_s_at	AP2S1	Û	1.65	0.029
1566646_at	LOC149086	Û	1.66	6.20E-03	1559807_at		仓	1.66	7.80E-04	201444_s_at	ATP6AP2	Û	1.65	0.027
202105_at	IGBP1	Û	1.66	5.90E-03	232921_at	KIAA1549	Û	1.66	6.30E-04	215013_s_at	USP34	仓	1.65	0.027
1564424_at		Û	1.66	5.80E-03	220838_at	EXD3	Û	1.66	6.00E-04	1557339_at		仓	1.65	0.022
208278_s_at		Û	1.66	5.60E-03	215404_x_at	FGFR1	仓	1.66	4.50E-04	223466_x_at	COL4A3BP	仓	1.65	0.021
218336_at	PFDN2	Û	1.66	4.80E-03	206334_at	LIPF	Û	1.66	4.40E-04	244144_at	SYNE1	仓	1.65	0.021
213794_s_at	NGDN	Û	1.66	4.70E-03	217120_s_at	MED14	仓	1.66	4.10E-04	216614_at		仓	1.65	0.020
209645_s_at	ALDH1B1	Û	1.66	4.50E-03	220955_x_at	RAB23	仓	1.66	3.20E-04	238700_at	PIAS2	企	1.65	0.020
231884_at	CNTROB	Û	1.66	4.50E-03	1555717_at		Û	1.66	2.50E-04	203760_s_at	SLA	仓	1.65	0.020
224606_at	KLF6	仓	1.66	4.00E-03	233013_x_at	LOC220906	仓	1.66	2.50E-04	203745_at	HCCS	企	1.65	0.019
208793_x_at	SMARCA4	Û	1.66	4.00E-03	221250_s_at	MXD3	仓	1.66	1.50E-04	1553123_at	WDR62	企	1.65	0.019
201688_s_at	TPD52	Û	1.66	3.70E-03	232083_at	KIF16B	仓	1.66	1.40E-04	234723_x_at		企	1.65	0.018
211962_s_at	ZFP36L1	仓	1.66	3.70E-03	236410_x_at		仓	1.66	1.30E-04	236367_at	SMG7	企	1.65	0.017
211318_s_at	RAE1	Û	1.66	3.60E-03	1569983_at		仓	1.66	1.10E-04	1560334_at	MEGF11	仓	1.65	0.016
214535_s_at	ADAMTS2	仓	1.66	3.50E-03	204977_at	DDX10	Û	1.66	1.10E-04	216278_at		企	1.65	0.015
238884_at		Û	1.66	3.30E-03	215072_x_at	C10orf137	Û	1.66	5.70E-05	205690_s_at	BUD31	Û	1.65	0.015
216509_x_at	MLLT10	仓	1.66	3.10E-03	223189_x_at	MLL5	仓	1.65	0.048	227678_at	XRCC6BP1	Û	1.65	0.015
1554583_a_at	C12orf72	仓	1.66	2.80E-03	234649_at		仓	1.65	0.046	206976_s_at	HSPH1	Û	1.65	0.012

NONO	Û	1.65	0.012	227651_at	NACC1	仓	1.65	1.00E-03	224707_at	C5orf32	仓	1.64	0.029
NT5C2	Û	1.65	0.012	208082_x_at	MKRN1	仓	1.65	9.00E-04	243918_at		Û	1.64	0.028
RASSF4	Û	1.65	0.012	229988_at		仓	1.65	8.70E-04	216890_at		Û	1.64	0.026
ZAK	Û	1.65	0.011	1570632_at		仓	1.65	8.00E-04	200757_s_at	CALU	仓	1.64	0.025
	Û	1.65	9.20E-03	208476_s_at	FRMD4A	仓	1.65	7.90E-04	1556553_at		仓	1.64	0.024
UBE2B	Û	1.65	8.80E-03	216875_x_at	HAB1	仓	1.65	6.00E-04	205789_at	CD1D	Û	1.64	0.023
	Û	1.65	8.30E-03	243474_at		仓	1.65	5.90E-04	208909_at	UQCRFS1	Û	1.64	0.022
CXorf52	Û	1.65	6.30E-03	207822_at	FGFR1	仓	1.65	5.50E-04	239151_at		仓	1.64	0.021
NKAP	Û	1.65	5.90E-03	211703_s_at	TM2D1	Û	1.65	5.50E-04	223739_at	PADI1	Û	1.64	0.021
MED13	Û	1.65	4.80E-03	236850_at	CAPRIN1	仓	1.65	3.70E-04	232284_at	PSMD6	仓	1.64	0.020
LOC284454	Û	1.65	4.40E-03	215048_at	ZNF280B	Û	1.65	3.70E-04	224365_s_at	TIGD7	Û	1.64	0.020
C15orf27	Û	1.65	4.30E-03	236772_s_at		仓	1.65	3.50E-04	1569500_at		仓	1.64	0.019
	Û	1.65	4.20E-03	1566882_at		仓	1.65	2.30E-04	204050_s_at	CLTA	Û	1.64	0.019
	Û	1.65	4.10E-03	227095_at	LEPROT	仓	1.65	2.30E-04	227992_s_at	NCRNA00085	仓	1.64	0.019
PCMT1	Û	1.65	3.80E-03	209927_s_at	C1orf77	Û	1.65	2.20E-04	223743_s_at	MRPL4	Û	1.64	0.017
	Û	1.65	3.50E-03	1553887_at	FLJ40235	仓	1.65	2.00E-04	223638_at	NBPF3	Û	1.64	0.015
GLIPR1	Û	1.65	3.10E-03	211600_at	PTPRO	仓	1.65	1.50E-04	209328_x_at	HIGD2A	Û	1.64	0.014
ADAM33	Û	1.65	3.00E-03	212106_at	FAF2	仓	1.65	1.10E-04	232150_at		仓	1.64	0.013
LCOR	Û	1.65	3.00E-03	210667_s_at	C21orf33	Û	1.65	1.80E-05	242490_at	LOC100653004	仓	1.64	0.013
PON2	Û	1.65	3.00E-03	216814_at		Û	1.65	8.80E-06	200750_s_at	RAN	Û	1.64	0.013
	Û	1.65	2.80E-03	AFFX-r2-Ec-		Û	1.64	1.59E-04	1564729_at		仓	1.64	0.012
				bioC-3_at									
	Û	1.65	2.40E-03	213154_s_at	BICD2	Û	1.64	0.048	238130_at	NFATC2IP	仓	1.64	0.011
GATM	Û	1.65	2.40E-03	240939_x_at		仓	1.64	0.045	243909_x_at	GUSBL2	Û	1.64	0.010
C14orf64	Û	1.65	2.30E-03	244443_at	CHD2	仓	1.64	0.042	234140_s_at	STIM2	Û	1.64	0.010
SETD2	Û	1.65	2.20E-03	223705_s_at	GPBP1	Û	1.64	0.039	204203_at	CEBPG	Û	1.64	9.90E-03
SFRS5	Û	1.65	1.90E-03	236908_at		仓	1.64	0.035	215529_x_at	DIP2A	仓	1.64	9.60E-03
PRDX2	仓	1.65	1.70E-03	239035_at	MTHFR	仓	1.64	0.035	224495_at	TMEM107	仓	1.64	7.20E-03
INPP5B	Û	1.65	1.60E-03	227208_at	CCDC84	仓	1.64	0.033	238943_at	FIBCD1	仓	1.64	7.00E-03
CCNT1	仓	1.65	1.50E-03	201055_s_at	HNRNPA0	仓	1.64	0.033	221547_at	PRPF18	Û	1.64	6.90E-03
FBXL17	仓	1.65	1.10E-03	223565_at	MGC29506	Û	1.64	0.032	243170_at		仓	1.64	6.30E-03
	Û	1.65	1.00E-03	230395_at		仓	1.64	0.031	233487_s_at	LRRC8A	仓	1.64	6.10E-03
	NONO NT5C2 RASSF4 ZAK UBE2B CXorf52 NKAP MED13 LOC284454 C15orf27 PCMT1 GLIPR1 ADAM33 LCOR PON2 GATM C14orf64 SETD2 SFRS5 PRDX2 INPP5B CCNT1 FBXL17 	NONO Û NT5C2 Û RASSF4 Û ZAK Û Û UBE2B Û Û CXorf52 Û NKAP Ø MED13 Û LOC284454 Û C15orf27 Ø Û PCMT1 Ø Û GLIPR1 Û ADAM33 Û LCOR Û PON2 Ø Û GATM Ø SFRS5 Û PRDX2 Û INPP5B Û CCNT1 Û FBXL17 Û	NONO Ŷ 1.65 NT5C2 Ŷ 1.65 RASSF4 Ŷ 1.65 ZAK Ŷ 1.65 ZAK Ŷ 1.65 UBE2B Ŷ 1.65 UBE2B Ŷ 1.65 CXorf52 Ŷ 1.65 NKAP \$ 1.65 LOC284454 Ŷ 1.65 C15orf27 \$ 1.65 C15orf27 \$ 1.65 C15orf27 \$ 1.65 C15orf27 \$ 1.65 C0284454 Ŷ 1.65 C15orf27 \$ 1.65 PCMT1 \$ 1.65 GLIPR1 \$ 1.65 PON2 \$ 1.65 PON2 \$ 1.65 PON2 \$ 1.65 C14orf64 \$ 1.65 SFRS5 \$ 1.65 PRDX2 \$ 1.65 INPP5B \$ 1.65 FBXL17 \$ 1.65	NONO Ŷ 1.65 0.012 NT5C2 Ŷ 1.65 0.012 RASSF4 Ŷ 1.65 0.012 ZAK Ŷ 1.65 0.011 Ŷ 1.65 9.20E-03 UBE2B Ŷ 1.65 8.80E-03 Ŷ 1.65 8.30E-03 CXorf52 Ŷ 1.65 6.30E-03 NKAP ↓ 1.65 4.80E-03 LOC284454 Ŷ 1.65 4.40E-03 C15orf27 ↓ 1.65 4.20E-03 Ŷ 1.65 3.80E-03 Ŷ 1.65 3.00E-03 C15orf27 ↓ 1.65 3.00E-03 Ŷ 1.65 3.00E-03 PCMT1 ↓ 1.65 3.00E-03 Ŷ 1.65 3.00E-03 GLIPR1 Ŷ 1.65 3.00E-03 PON2 ↓ 1.65 2.40E-03 Ŷ 1.65 2.40E-03 GATM	NONO Ŷ 1.65 0.012 227651_at NT5C2 Ŷ 1.65 0.012 208082_x_at RASSF4 Ŷ 1.65 0.012 229988_at ZAK Ŷ 1.65 0.011 1570632_at Ŷ 1.65 9.20E-03 208476_s_at UBE2B Ŷ 1.65 8.30E-03 216875_x_at Ŷ 1.65 6.30E-03 207822_at NKAP Ø 1.65 5.90E-03 211703_s_at MED13 Ŷ 1.65 4.80E-03 236850_at LOC284454 Ŷ 1.65 4.30E-03 236772_s_at Ŷ 1.65 4.30E-03 236772_s_at Ŷ 1.65 4.30E-03 236772_s_at Ŷ 1.65 4.30E-03 209927_s_at Ŷ 1.65 3.00E-03 21206_at LCOR Ŷ 1.65 3.00E-03 21667_s_at PON2 Ø 1.65 3.00E-03 21667_s_at	NONO $\hat{1}$ 1.65 0.012 227651_at NACC1 NT5C2 $\hat{1}$ 1.65 0.012 208082_x_at MKRN1 RASSF4 $\hat{1}$ 1.65 0.011 1570632_at ZAK $\hat{1}$ 1.65 9.20E-03 208476_s_at FRMD4A UBE2B $\hat{1}$ 1.65 8.30E-03 216875_x_at HAB1 $\hat{1}$ 1.65 8.30E-03 207822_at FGR1 NKAP $\hat{1}$ 1.65 5.90E-03 21703_s_at TM2D1 MED13 $\hat{1}$ 1.65 4.80E-03 236850_at CAPRIN1 LOC284454 $\hat{1}$ 1.65 4.20E-03 1566882_at $\hat{1}$ 1.65 3.00E-03 20927_s_at Clorf77 $\hat{1}$ 1.65 3.00E-03 215048_at $\hat{1}$ 1.65 3.00E-03 210667_s_at C1orf77 $\hat{1}$ 3.00E-03	NONO Ŷ 1.65 0.012 227651_at NACC1 Ŷ NT5C2 Ŷ 1.65 0.012 208082_x_at MKRN1 Ŷ RASSF4 Ŷ 1.65 0.011 1570632_at Ŷ ZAK Ŷ 1.65 9.20E-03 208476_s_at FRMD4A Ŷ Ŷ 1.65 8.80E-03 216875_x_at HAB1 Ŷ Ŷ 1.65 8.30E-03 243474_at Ŷ CXorf52 Ŷ 1.65 6.30E-03 207822_at FGFR1 Ŷ NKAP Ŷ 1.65 4.90E-03 215048_at ZNF280B ₽ C150rf27 Ŷ 1.65 4.40E-03 215048_at ZNF280B ₽ C150rf27 Ŷ 1.65 4.20E-03 1566882_at Ŷ Ŷ 1.65 3.00E-03 20795_at LEPROT Ŷ Ŷ 1.65 3.00E-03 211600_at PTPRO Ŷ GLIPR1 Ŷ 1.65	NONO \uparrow 1.65 0.012 227651_at NACC1 \uparrow 1.65 NTSC2 \uparrow 1.65 0.012 2209082_xat MKRN1 \uparrow 1.65 RASSF4 \uparrow 1.65 0.011 1570632_at \uparrow 1.65 ZAK \uparrow 1.65 9.20E-03 208476_s_at FRMD4A \uparrow 1.65 \uparrow 1.65 8.30E-03 216875_xat FAMD4A \uparrow 1.65 UBE2B \uparrow 1.65 8.30E-03 207822_at FGFR1 \uparrow 1.65 NKAP \downarrow 1.65 4.80E-03 216875_xat CAPRIN1 \uparrow 1.65 NKAP \downarrow 1.65 4.80E-03 216860_at CAPRIN1 \uparrow 1.65 LOC284454 \uparrow 1.65 4.40E-03 215048_at ZNF280B \downarrow 1.65 C15orf27 \downarrow 1.65 4.20E-03 1566882_at \uparrow 1.65 C \uparrow 1.65 3.00E-03 21604_sat FAF2	NONO ① 1.65 0.012 227651_at NACC1 ① 1.65 1.00E-03 NT5C2 ① 1.65 0.012 208082_x.at MKRN1 ① 1.65 9.00E-04 RASSF4 ① 1.65 0.011 1570632_at ① 1.65 8.00E-04 CAK ① 1.65 9.20E-03 208476_s_at FRMD4A ① 1.65 8.00E-04 ① 1.65 8.30E-03 216875_x.at HAB1 ① 1.65 5.90E-04 CXorf52 ① 1.65 5.90E-03 211703_s_at TM2D1 0 1.65 5.50E-04 NKAP ① 1.65 4.90E-03 236972_s_at TM2D1 0 1.65 3.70E-04 L0C284454 ① 1.65 4.30E-03 226772_s_at ① 1.65 3.20E-04 C15orf27 ① 1.65 4.30E-03 227095_at EPROT ① 1.65 2.30E-04	NONO ① 1.65 0.012 227651_at NACC1 ① 1.65 1.00E-03 224707_at NT5C2 ① 1.65 0.012 208082_x_at MKRN1 ① 1.65 9.00E-04 243918_at RASSF4 ① 1.65 0.011 1570632_at ① 1.65 8.00E-04 216890_at ZAK ① 1.65 0.011 1570632_at ① 1.65 8.00E-04 200757_s_at ① 1.65 8.00E-03 216875_x_at FRMD4A ① 1.65 6.00E-04 205789_at ① 1.65 6.30E-03 207822_at FGFR1 ① 1.65 5.50E-04 232151_at NKAP ③ 1.65 4.00E-03 236850_at CAPRIN1 1.65 3.70E-04 223284_at L0C284454 ① 1.65 4.00E-03 236772_s1at CAPRIN1 1.65 3.20E-04 204050_s,at ① 1.65 4.20E-03 156682_at ① 1.65 3.20E-04	NONO f) 1.65 0.012 227651_at NACC1 f) 1.65 1.00E-03 224707_at C5orf32 NT5C2 f) 1.65 0.012 2298082_x.at MKRN1 f) 1.65 9.00E-04 243918_at RASSF4 f) 1.65 0.011 1570632_at f) 1.65 8.00E-04 20757_s.at CALU 0 1.65 9.00E-04 20578_9.at CD1D 0 1.65 8.00E-03 216875_x.at HAB1 f) 1.65 5.00E-04 205789_at CD1D UBE2B f) 1.65 5.00E-03 21703_s.at TMZD1 f) 1.65 5.00E-04 23739_at PAD11 MED13 f) 1.65 4.00E-03 236850_at CAPRIN1 f) 1.65 3.00E-04 23248_at PSMD6 LOC284454 f) 1.65 4.00E-03 236872_s.at f) 1.65	NONO ft 1.65 0.012 227651_at NACC1 ft 1.65 1.00E-03 224707_at C5orf32 ft NT5C2 ft 1.65 0.012 229808_at 1 1.65 9.00E-04 243918_at J ZAK ft 1.65 0.011 1570632_at ft 1.65 8.00E-04 200757_s_at CALU ft ft 1.65 9.02E-03 208476_s_at FRMD4A ft 1.65 5.00E-04 205789_at CDLD J ft 1.65 8.00E-03 216875_x_at HAB1 ft 1.65 5.00E-04 20990_at UQCRFS1 J ft 1.65 5.00E-03 21703_s_at TMZD1 ft 1.65 5.00E-04 23239151_at ft NKAP ft 1.65 4.00E-03 236850_at CAPRIN1 ft 1.65 3.70E-04 23246_at PSMD6 ft C15orf32 ft 1.65 4.00E-03 236772_s_at	NONO ↑ 1.65 0.012 227651_at NACC1 ↑ 1.65 1.00E-03 224707_at C5orf32 ↑ 1.64 NT5C2 ↑ 1.65 0.012 220988_at ↑ 1.65 8.00E-04 21690_at ↑ 1.65 8.00E-04 21690_at ↑ 1.64 ASKF4 ↑ 1.65 0.011 1570632_at ↑ 1.65 8.00E-04 216553_at ↑ 1.65 WEEZB ↑ 1.65 8.30E-03 216875_x,at HAB1 ↑ 1.65 5.90E-04 215553_at ↑ 1.64 CXorf52 ↑ 1.65 6.30E-03 21703_s,at TM2D1 ↓ 1.65 5.50E-04 223151_at ↑ 1.64 NKAP ↓ 1.65 4.30E-03 215048_at CAPRIN1 ↑ 1.65 3.70E-04 223284_at PSMD6 ↑ 1.64 LOC284454

221434_s_at	C14orf156	Û	1.64	6.00E-03	205832_at	CPA4	仓	1.64	5.40E-05	218081_at	C20orf27	Û	1.63	0.018
212533_at	WEE1	仓	1.64	6.00E-03	1565558_at		Û	1.64	4.80E-05	242369_x_at		仓	1.63	0.017
206500_s_at	C14orf106	Û	1.64	5.90E-03	1554960_at	C1orf110	兌	1.64	2.30E-05	1562497_at		兌	1.63	0.017
234938_at	BACH1	仓	1.64	5.30E-03	1566606_a_at	TEX9	Û	1.64	2.10E-05	231727_s_at	MIF4GD	Û	1.63	0.017
209105_at	NCOA1	Û	1.64	4.70E-03	212141_at	MCM4	Û	1.64	1.80E-05	237264_at		仓	1.63	0.016
1554441_a_at	WAPAL	Û	1.64	4.40E-03	224297_s_at	SPTBN4	仓	1.64	4.40E-07	1569540_at		仓	1.63	0.014
244837_at		仓	1.64	4.20E-03	203594_at	RTCD1	Û	1.63	0.046	1553843_at	C10orf67	仓	1.63	0.014
234408_at	IL17F	Û	1.64	4.00E-03	241755_at	UQCRC2	Û	1.63	0.046	214965_at	SPATA2L	仓	1.63	0.014
1555157_at		Û	1.64	3.30E-03	222326_at		兌	1.63	0.044	212302_at	RTF1	兌	1.63	0.013
205829_at	HSD17B1	仓	1.64	3.30E-03	1566342_at	SOD2	Û	1.63	0.043	223461_at	TBC1D7	Û	1.63	0.013
224494_x_at	HSD17B14	仓	1.64	3.30E-03	242202_at		仓	1.63	0.041	1570192_at		얍	1.63	0.012
210253_at	HTATIP2	仓	1.64	2.60E-03	1556035_s_at	ZNF207	仓	1.63	0.041	1563513_at	SYTL4	企	1.63	0.012
202417_at	KEAP1	仓	1.64	2.40E-03	1556338_at		仓	1.63	0.040	244835_at	C16orf52	얍	1.63	0.010
231945_at	FILIP1	仓	1.64	2.30E-03	216557_x_at	IGH	Û	1.63	0.039	240363_at	ANK1	얍	1.63	9.90E-03
241301_at		仓	1.64	1.80E-03	230751_at	WNT4	Û	1.63	0.037	209153_s_at	TCF3	企	1.63	9.30E-03
236707_at	DAPP1	仓	1.64	1.80E-03	200638_s_at	YWHAZ	仓	1.63	0.037	206181_at	SLAMF1	Û	1.63	8.60E-03
1569668_at		仓	1.64	1.70E-03	219474_at	C3orf52	仓	1.63	0.035	200862_at	DHCR24	Û	1.63	8.40E-03
202613_at	CTPS	Û	1.64	1.40E-03	220529_at	FLJ11710	仓	1.63	0.033	232754_at		企	1.63	7.20E-03
233958_at		Û	1.64	1.30E-03	232963_at		仓	1.63	0.032	242355_at	CRAMP1L	企	1.63	6.90E-03
243180_at		仓	1.64	1.20E-03	1557910_at	HSP90AB1	Û	1.63	0.032	244814_at	UGGT1	Û	1.63	6.80E-03
224177_s_at	CXorf26	Û	1.64	1.10E-03	208887_at	EIF3G	Û	1.63	0.031	201728_s_at	KIAA0100	Û	1.63	5.40E-03
243525_at		仓	1.64	9.40E-04	229119_s_at	ZSWIM7	Û	1.63	0.031	242377_x_at	THUMPD3	企	1.63	4.90E-03
243801_x_at	MRPL30	仓	1.64	7.00E-04	244599_at		仓	1.63	0.030	1566480_x_at	FLJ35848	企	1.63	4.00E-03
217713_x_at		Û	1.64	6.90E-04	208670_s_at	EID1	仓	1.63	0.030	238502_at		企	1.63	3.90E-03
242311_x_at		仓	1.64	6.70E-04	223737_x_at	CHST9	Û	1.63	0.027	241851_x_at	LOC100130429	Û	1.63	3.80E-03
1569921_at		Û	1.64	5.20E-04	216068_at		Û	1.63	0.025	239815_at		Û	1.63	3.70E-03
209639_s_at	RGS12	仓	1.64	4.20E-04	1554816_at	ASTN2	Û	1.63	0.025	244722_at		Û	1.63	3.70E-03
241302_at		Û	1.64	3.50E-04	239876_at		仓	1.63	0.023	212863_x_at	CTBP1	企	1.63	3.70E-03
1556345_s_at		仓	1.64	3.20E-04	223175_s_at	FEM1A	Û	1.63	0.022	216768_x_at	TTC38	Û	1.63	3.30E-03
1562415_a_at	SPOCD1	仓	1.64	3.20E-04	225177_at	RAB11FIP1	Û	1.63	0.021	243147_x_at		企	1.63	3.10E-03
228541_x_at		仓	1.64	1.90E-04	231017_at	STK11	仓	1.63	0.020	216883_x_at	PDE6D	Û	1.63	2.90E-03
1564391_at		Û	1.64	6.80E-05	1557486_at		仓	1.63	0.018	214816_x_at	C19orf40	企	1.63	2.70E-03

237960_at		Û	1.63	2.50E-03	222113_s_at	EPS15L1	Û	1.62	0.041	210565_at	GCGR	Û	1.62	9.00E-03
226027_at	C9orf119	Û	1.63	2.30E-03	219049_at	CSGALNACT1	Û	1.62	0.040	216527_at		얍	1.62	8.90E-03
217957_at	C16orf80	Û	1.63	1.90E-03	218566_s_at	CHORDC1	Û	1.62	0.037	217179_x_at		Û	1.62	8.60E-03
223104_at	JAGN1	Û	1.63	1.60E-03	222061_at	CD58	Û	1.62	0.035	244326_at		Û	1.62	8.10E-03
1553755_at	NXNL1	Û	1.63	1.60E-03	236301_at	IKZF3	Û	1.62	0.035	205272_s_at	PRH1/2	仓	1.62	7.40E-03
1563120_at	LOC100129029	兌	1.63	1.50E-03	238888_at		Û	1.62	0.030	1561966_at		仓	1.62	7.00E-03
213329_at	SRGAP2	Û	1.63	1.50E-03	211086_x_at	NEK1	Û	1.62	0.030	1557553_at	PPP1R12B	얍	1.62	6.70E-03
228551_at	DENND5B	Û	1.63	1.40E-03	203844_at	VHL	Û	1.62	0.030	234886_at	TRBV24-1	Û	1.62	6.40E-03
211776_s_at	EPB41L3	Û	1.63	1.00E-03	204097_s_at	RBMX2	Û	1.62	0.029	230528_s_at	MGC2752	仓	1.62	6.10E-03
242398_x_at		兌	1.63	9.90E-04	203403_s_at	RNF6	Û	1.62	0.029	224467_s_at	PDCD2L	Û	1.62	6.00E-03
241137_at	DPCR1	얍	1.63	8.70E-04	236921_at		Û	1.62	0.028	209182_s_at	C10orf10	얍	1.62	5.50E-03
207953_at	RP5-886K2.1	얍	1.63	8.10E-04	219236_at	PAQR6	Û	1.62	0.028	228055_at	NAPSB	Û	1.62	5.30E-03
226823_at	PHACTR4	Û	1.63	5.20E-04	201810_s_at	SH3BP5	Û	1.62	0.028	1559780_at		仓	1.62	4.00E-03
201564_s_at	FSCN1	兌	1.63	4.50E-04	1560426_at	C12orf55	Û	1.62	0.025	1561653_at		仓	1.62	3.60E-03
244626_at		兌	1.63	3.30E-04	1570339_x_at		Û	1.62	0.022	237475_x_at	CCDC152	仓	1.62	3.50E-03
215383_x_at	SPG21	얍	1.63	3.30E-04	242876_at	АКТЗ	Û	1.62	0.021	214200_s_at	COL6A1	仓	1.62	3.50E-03
220411_x_at	PODNL1	兌	1.63	2.70E-04	213920_at	CUX2	Û	1.62	0.021	233004_x_at		仓	1.62	3.30E-03
228375_at	IGSF11	Û	1.63	1.80E-04	1560358_at	PHKA2	Û	1.62	0.021	1553551_s_at	ND2	仓	1.62	3.00E-03
233148_at	PODN	Û	1.63	1.40E-04	200749_at	RAN	Û	1.62	0.021	229680_at	CCDC44	얍	1.62	2.80E-03
220089_at	L2HGDH	兌	1.63	1.20E-04	205427_at	ZNF354A	Û	1.62	0.020	242229_at	NAPEPLD	仓	1.62	2.70E-03
242730_at	MYRIP	얍	1.63	1.20E-04	203747_at	AQP3	Û	1.62	0.018	220539_at	C10orf92	Û	1.62	2.60E-03
205010_at	GNL3L	얍	1.63	9.10E-05	220925_at	MAK10	Û	1.62	0.016	231770_x_at	C2orf86	얍	1.62	2.60E-03
222087_at	PVT1	兌	1.63	7.50E-05	221212_x_at	PBRM1	Û	1.62	0.016	213899_at	METAP2	仓	1.62	2.60E-03
212711_at	CAMSAP1	Û	1.63	1.30E-05	222816_s_at	ZCCHC2	Û	1.62	0.016	215861_at		얍	1.62	2.30E-03
217210_at		Û	1.63	6.90E-06	227154_at	IGSF21	Û	1.62	0.015	232665_x_at		얍	1.62	2.30E-03
222934_s_at	CLEC4E	Û	1.62	0.049	1558527_at		Û	1.62	0.014	220797_at	METT10D	Û	1.62	2.30E-03
200067_x_at	SNX3	兌	1.62	0.049	207914_x_at	EVX1	Û	1.62	0.014	1553927_at	C7orf33	Û	1.62	2.20E-03
202760_s_at		兌	1.62	0.048	1569857_s_at	TPP2	Û	1.62	0.013	215864_at		仓	1.62	2.10E-03
231735_s_at	MALAT1	兌	1.62	0.048	1566897_at		Û	1.62	0.012	1562947_x_at		仓	1.62	2.10E-03
202941_at	NDUFV2	Û	1.62	0.046	231111_at		Û	1.62	0.012	216136_at		仓	1.62	2.10E-03
237875_at		얍	1.62	0.043	200087_s_at	TMED2	仓	1.62	0.011	201551_s_at	LAMP1	Û	1.62	1.90E-03
221498_at	SNX27	Û	1.62	0.043	237582_at		Û	1.62	9.40E-03	233702_x_at		仓	1.62	1.70E-03

1555199_at	GOSR1	仓	1.62	1.70E-03	228818_at		仓	1.61	0.032	235152_at		仓	1.61	0.014
228576_s_at	MXRA8	仓	1.62	1.60E-03	1562511_at	LYST	仓	1.61	0.031	217655_at		仓	1.61	0.014
219105_x_at	ORC6L	仓	1.62	1.60E-03	1553768_a_at	DCBLD1	仓	1.61	0.029	1561086_at		Û	1.61	0.013
1557342_a_at	LOC400931	仓	1.62	1.40E-03	225579_at	PQLC3	Û	1.61	0.029	237502_at	CRLS1	仓	1.61	0.013
1568847_at		仓	1.62	1.10E-03	211637_x_at	IGH	Û	1.61	0.028	220575_at	FAM106A	仓	1.61	0.012
1555811_at	ARHGDIB	Û	1.62	1.10E-03	210958_s_at	MAST4	Û	1.61	0.028	243677_at	GORASP1	Û	1.61	0.012
211277_x_at	APP	Û	1.62	1.00E-03	218526_s_at	RANGRF	Û	1.61	0.027	220140_s_at	SNX11	Û	1.61	0.012
201119_s_at	COX8A	Û	1.62	8.80E-04	222790_s_at	RSBN1	仓	1.61	0.027	212312_at	BCL2L1	仓	1.61	0.011
201199_s_at	PSMD1	Û	1.62	7.50E-04	214806_at	BICD1	仓	1.61	0.025	235623_at	ELP2	仓	1.61	0.011
1564970_at	SETDB2	仓	1.62	7.10E-04	202487_s_at	H2AFV	Û	1.61	0.025	214836_x_at	IGKC	Û	1.61	0.011
206466_at	ACSBG1	仓	1.62	6.30E-04	1564897_at	TNR	仓	1.61	0.025	239640_at	LOC401320	仓	1.61	0.011
222012_at	C19orf72	Û	1.62	6.00E-04	239577_at		Û	1.61	0.024	232097_at	TOX4	仓	1.61	0.011
203091_at	FUBP1	仓	1.62	5.60E-04	221071_at		仓	1.61	0.024	207134_x_at	TPSB2	仓	1.61	0.011
226053_at	MAP2K7	仓	1.62	1.90E-04	228993_s_at	NCRNA00081	Û	1.61	0.023	234849_at	TRA	Û	1.61	0.011
215455_at	TIMELESS	仓	1.62	1.70E-04	232180_at	UGP2	Û	1.61	0.023	230599_at		仓	1.61	0.010
212924_s_at	LSM4	仓	1.62	1.50E-04	219062_s_at	ZCCHC2	Û	1.61	0.023	233615_at	CGA	仓	1.61	0.010
234050_at	TAGAP	仓	1.62	8.40E-05	216096_s_at	NRXN1	仓	1.61	0.022	217868_s_at	METTL9	仓	1.61	0.010
233226_at	PTPN9	仓	1.62	3.60E-05	201108_s_at	THBS1	Û	1.61	0.022	211367_s_at	CASP1	Û	1.61	9.00E-03
AFFX-r2-Ec-		Û	1.61	7.88E-04	234627_at	FLJ21408	Û	1.61	0.020	1552291_at	PIGX	仓	1.61	8.50E-03
bioB-M_at														
243054_at		仓	1.61	0.048	201748_s_at	SAFB	Û	1.61	0.020	217586_x_at		仓	1.61	7.60E-03
213688_at	CALM1	仓	1.61	0.047	244834_at	C1orf134	Û	1.61	0.019	238826_x_at		仓	1.61	7.50E-03
208979_at	NCOA6	Û	1.61	0.047	201252_at	PSMC4	Û	1.61	0.019	208404_x_at	KCNJ5	仓	1.61	6.70E-03
205560_at	PCSK5	Û	1.61	0.047	205835_s_at	YTHDC2	Û	1.61	0.019	236248_x_at	TADA2B	仓	1.61	6.30E-03
209959_at	NR4A3	仓	1.61	0.046	213813_x_at		Û	1.61	0.018	234765_at		仓	1.61	5.90E-03
214794_at	PA2G4	Û	1.61	0.043	234442_at		Û	1.61	0.017	216101_at		仓	1.61	4.90E-03
239695_at	JAK1	仓	1.61	0.041	239991_at		Û	1.61	0.016	208576_s_at	HIST1H3B	Û	1.61	4.30E-03
233284_at		仓	1.61	0.036	207820_at	ADH1A	Û	1.61	0.016	215810_x_at	DST	仓	1.61	4.20E-03
204490_s_at	CD44	Û	1.61	0.036	212786_at	CLEC16A	Û	1.61	0.016	206551_x_at	KLHL24	仓	1.61	3.90E-03
243249_at		仓	1.61	0.035	208281_x_at	DAZ1-4	仓	1.61	0.016	237246_at		仓	1.61	3.60E-03
212582_at	OSBPL8	仓	1.61	0.035	242829_x_at	FBXL3	仓	1.61	0.016	209226_s_at	TNPO1	仓	1.61	3.60E-03
1553185_at	RASEF	仓	1.61	0.035	221692_s_at	MRPL34	Û	1.61	0.015	234089_at		仓	1.61	3.30E-03

1554950_at	ACAN	Û	1.61	3.30E-03	231116_at		仓	1.60	0.033	226293_at	MED19	Û	1.60	6.40E-03
207365_x_at	USP34	仓	1.61	3.20E-03	236895_at		仓	1.60	0.033	241947_at	LOC100233209	Û	1.60	6.10E-03
237865_x_at		仓	1.61	3.10E-03	209524_at	HDGFRP3	仓	1.60	0.033	211495_x_at	TNFSF13	Û	1.60	6.10E-03
217579_x_at		仓	1.61	2.90E-03		TRBV7-8	Û	1.60	0.031	215191_at		仓	1.60	4.90E-03
215200_x_at		仓	1.61	2.80E-03	1569345_at		仓	1.60	0.029	227087_at	INPP4A	仓	1.60	4.20E-03
208066_s_at	GTF2B	Û	1.61	2.80E-03	200723_s_at	CAPRIN1	Û	1.60	0.029	201545_s_at	PABPN1	Û	1.60	3.90E-03
223281_s_at	COX15	Û	1.61	2.50E-03	222734_at	WARS2	Û	1.60	0.029	232065_x_at	CENPL	Û	1.60	3.80E-03
1552782_at	SLC44A5	Û	1.61	2.40E-03	237800_at		仓	1.60	0.021	210495_x_at	FN1	Û	1.60	3.80E-03
234613_at		Û	1.61	1.80E-03	1554388_at	VPS29	仓	1.60	0.021	216064_s_at	AGA	Û	1.60	3.70E-03
205820_s_at	APOC3	Û	1.61	1.70E-03	215882_at	CEP152	Û	1.60	0.018	209136_s_at	USP10	Û	1.60	3.70E-03
234773_x_at		Û	1.61	1.50E-03	209883_at	GLT25D2	仓	1.60	0.017	223871_x_at	ING5	Û	1.60	3.30E-03
207965_at	NEUROG3	Û	1.61	1.50E-03	200734_s_at	ARF3	仓	1.60	0.015	229038_at	CWF19L1	Û	1.60	3.00E-03
1566096_x_at		仓	1.61	1.30E-03	238809_at	C5orf51	Û	1.60	0.015	202738_s_at	РНКВ	Û	1.60	3.00E-03
211672_s_at	ARPC4	Û	1.61	8.10E-04	203076_s_at	SMAD2	Û	1.60	0.015	215373_x_at		Û	1.60	2.90E-03
229701_at	DNAJC9	仓	1.61	7.90E-04	239341_at		Û	1.60	0.014	234788_x_at		Û	1.60	2.80E-03
214399_s_at	KRT4	兌	1.61	7.90E-04	241790_at		仓	1.60	0.014	216786_at	LOC159110	Û	1.60	2.50E-03
243069_at		兌	1.61	7.50E-04	208529_at	BTF3L1	Û	1.60	0.014	1570210_x_at	SAPS2	Û	1.60	2.50E-03
241857_at		仓	1.61	7.50E-04	216705_s_at	ADA	Û	1.60	0.013	237959_at		Û	1.60	2.40E-03
220593_s_at	CCDC40	仓	1.61	5.60E-04	224447_s_at	C17orf37	Û	1.60	0.013	222824_at	NUDT5	Û	1.60	2.40E-03
221678_at	ABHD6	Û	1.61	3.20E-04	228625_at	CITED4	Û	1.60	0.013	217810_x_at	LARS	Û	1.60	2.30E-03
215403_at		兌	1.61	1.90E-04	212647_at	RRAS	Û	1.60	0.012	223912_s_at	CLN8	Û	1.60	1.80E-03
1561512_at		仓	1.61	6.80E-05	207917_at		仓	1.60	0.011	221470_s_at	IL1F7	Û	1.60	1.80E-03
1552311_a_at	RAX2	兌	1.61	1.50E-05	203720_s_at	ERCC1	Û	1.60	0.011	229650_s_at	C19orf42	Û	1.60	1.70E-03
201546_at	TRIP12	Û	1.60	0.048	214995_s_at	APOBEC3F/G	Û	1.60	0.010	244541_x_at		Û	1.60	1.60E-03
202308_at	SREBF1	Û	1.60	0.047	243662_at		兌	1.60	8.60E-03	208453_s_at	XPNPEP1	Û	1.60	1.50E-03
1560013_at	PDXDC1	仓	1.60	0.044	232163_at	WDR19	兌	1.60	8.50E-03	1561905_at		Û	1.60	1.40E-03
202929_s_at	DDT	Û	1.60	0.043	1560104_at		仓	1.60	8.40E-03	236903_at		Û	1.60	1.30E-03
227606_s_at	STAMBPL1	Û	1.60	0.043	232323_s_at	TTC17	仓	1.60	8.20E-03	211827_s_at	KCND3	Û	1.60	1.30E-03
1555659_a_at	TREML1	Û	1.60	0.043	238738_at	PSMD7	仓	1.60	8.00E-03	231625_at	SLC22A9	Û	1.60	6.70E-04
209921_at	SLC7A11	Û	1.60	0.042	219180_s_at	PEX26	仓	1.60	7.30E-03	228038_at	SOX2	Û	1.60	6.00E-04
218912_at	GCC1	Û	1.60	0.040	225634_at	ZC3HAV1	Û	1.60	6.70E-03	206420_at	IGSF6	얍	1.60	5.50E-04
208854_s_at	STK24	Û	1.60	0.035	225666_at	TMTC4	Û	1.60	6.50E-03	235327_x_at	UBXN2A	얍	1.60	5.50E-04

234201_x_at		Û	1.60	4.90E-04	209461_x_at	WDR18	Û	1.59	0.021	1560457_x_at	LSDP5	仓	1.59	6.00E-03
219393_s_at	AKT3	仓	1.60	4.30E-04	218011_at	UBL5	Û	1.59	0.020	225083_at	GTF3C6	仓	1.59	5.80E-03
241064_at	hCG_1776047	仓	1.60	4.20E-04	241351_at		仓	1.59	0.019	234266_at		仓	1.59	5.70E-03
231659_at	ST3GAL3	Û	1.60	3.40E-04	219366_at	AVEN	Û	1.59	0.019	219512_at	DSN1	Û	1.59	5.30E-03
238017_at	SDR16C5	Û	1.60	3.20E-04	239851_at		Û	1.59	0.016	207476_at	LOC100507630	仓	1.59	5.30E-03
207515_s_at	POLR1C	Û	1.60	1.70E-04	225269_s_at	RBMS1	Û	1.59	0.016	1553224_at	LUZP1	仓	1.59	5.20E-03
1558832_at	FLJ32224	Û	1.60	1.50E-04	1555883_s_at	SPIN3	Û	1.59	0.016	231736_x_at	MGST1	Û	1.59	5.20E-03
1555278_a_at	CKAP5	Û	1.60	4.30E-05	232731_x_at	LOC100190938	Û	1.59	0.015	1556327_a_at		仓	1.59	5.10E-03
AFFX-BioC-		Û	1.59	5.46E-05	227574_at	OBSL1	Û	1.59	0.015	204380_s_at	FGFR3	仓	1.59	5.00E-03
5_at														
1568815_a_at	DDX50	仓	1.59	0.050	234731_at		Û	1.59	0.014	206529_x_at	SLC26A4	仓	1.59	4.50E-03
206237_s_at	NRG1	仓	1.59	0.046	200074_s_at	RPL14	Û	1.59	0.014	1554798_at	SNED1	Û	1.59	4.50E-03
201896_s_at	PSRC1	Û	1.59	0.045	218851_s_at	WDR33	Û	1.59	0.014	1558561_at	HM13	企	1.59	4.10E-03
202483_s_at	RANBP1	Û	1.59	0.045	201307_at	SEPT11	Û	1.59	0.013	1564679_at	ASB15	얍	1.59	4.00E-03
242433_at	ZBTB11	Û	1.59	0.045	1560491_at		Û	1.59	0.012	217394_at		Û	1.59	3.70E-03
242836_at		仓	1.59	0.042	227435_at	KIAA2018	Û	1.59	0.011	233024_at		企	1.59	3.70E-03
224790_at	ASAP1	Û	1.59	0.042	206238_s_at	YAF2	Û	1.59	0.011	225756_at	CSNK1E	企	1.59	3.50E-03
218439_s_at	COMMD10	Û	1.59	0.042	223137_at	ZDHHC4	Û	1.59	0.010	211008_s_at	UBE2I	얍	1.59	3.50E-03
216427_at		Û	1.59	0.036	210988_s_at	PRUNE	Û	1.59	9.50E-03	243545_at		얍	1.59	3.40E-03
243256_at	MKNK1	仓	1.59	0.035	204387_x_at	MRP63	Û	1.59	9.20E-03	214074_s_at	CTTN	Û	1.59	3.30E-03
212587_s_at	PTPRC	Û	1.59	0.035	200848_at	AHCYL1	Û	1.59	8.60E-03	207263_x_at	VEZT	얍	1.59	3.20E-03
1560116_a_at	NEDD1	Û	1.59	0.034	233290_at		Û	1.59	8.30E-03	222252_x_at	UBQLN4	얍	1.59	3.10E-03
234131_at		Û	1.59	0.031	240529_at		Û	1.59	8.10E-03	229542_at	C20orf85	Û	1.59	2.90E-03
238591_at	HEXDC	Û	1.59	0.030	202059_s_at	KPNA1	Û	1.59	7.70E-03	242675_x_at		얍	1.59	2.80E-03
212770_at	TLE3	Û	1.59	0.030	221596_s_at	C7orf64	Û	1.59	7.20E-03	1557403_s_at		仓	1.59	2.60E-03
242512_at	MYO9A	Û	1.59	0.027	1556346_at	COTL1	Û	1.59	6.90E-03	213767_at	KSR1	Û	1.59	2.60E-03
208680_at	PRDX1	Û	1.59	0.027	1569940_at	SLC6A16	Û	1.59	6.90E-03	202288_at	FRAP1	Û	1.59	2.30E-03
1557520_a_at		Û	1.59	0.026	203694_s_at	DHX16	Û	1.59	6.60E-03	231459_at		얍	1.59	2.20E-03
49878_at	PEX16	Û	1.59	0.025	219959_at	MOCOS	Û	1.59	6.50E-03	229442_at	C18orf54	仓	1.59	2.20E-03
231255_at	MPRIP	Û	1.59	0.023	244780_at	SGPP2	Û	1.59	6.50E-03	236109_at	RPUSD4	企	1.59	2.00E-03
210876_at	ANXA2P1	Û	1.59	0.022	223060_at	C14orf119	Û	1.59	6.10E-03	224620_at	MAPK1	얍	1.59	1.60E-03
229065_at	SLC35F3	Û	1.59	0.021	233553_at		Û	1.59	6.00E-03	234762_x_at	NLN	企	1.59	1.10E-03

201716_at	SNX1	Û	1.59	1.10E-03	1552662_a_at	PCDHGB7	Û	1.58	0.032	243295_at	RBM27	仓	1.58	0.012
207743_at		Û	1.59	1.00E-03	234072_at	SEMA4A	仓	1.58	0.030	1569503_at	HEATR5B	Û	1.58	0.011
213238_at	ATP10D	Û	1.59	1.00E-03	208816_x_at	ANXA2P2	Û	1.58	0.029	209080_x_at	GLRX3	Û	1.58	0.010
240049_at		Û	1.59	8.20E-04	240024_at	SEC14L2	Û	1.58	0.028	201031_s_at	HNRNPH1	仓	1.58	0.010
219392_x_at	PRR11	Û	1.59	8.00E-04	206386_at	SERPINA7	仓	1.58	0.027	213199_at	C2CD3	Û	1.58	9.90E-03
208157_at	SIM2	Û	1.59	7.80E-04	1565886_at		仓	1.58	0.026	222373_at		Û	1.58	9.80E-03
222907_x_at	TMEM50B	Û	1.59	7.50E-04	224151_s_at	AK3	仓	1.58	0.026	223287_s_at	FOXP1	仓	1.58	9.60E-03
211127_x_at	EDA	Û	1.59	6.20E-04	205504_at	BTK	Û	1.58	0.026	1566178_x_at		Û	1.58	9.50E-03
214189_s_at	GGA2	Û	1.59	6.10E-04	239768_x_at	GPATCH2	仓	1.58	0.026	225772_s_at	C12orf62	Û	1.58	9.40E-03
216778_s_at	CYLC1	Û	1.59	6.00E-04	238899_at		Û	1.58	0.025	235984_at		Û	1.58	9.30E-03
218112_at	MRPS34	Û	1.59	5.20E-04	200956_s_at	SSRP1	Û	1.58	0.025	217672_x_at	EIF1	仓	1.58	8.70E-03
206978_at	CCR2	Û	1.59	4.20E-04	211948_x_at	BAT2D1	Û	1.58	0.024	236737_at	C17orf56	仓	1.58	8.60E-03
1562764_at	LOC100507351	Û	1.59	4.10E-04	211752_s_at	NDUFS7	Û	1.58	0.024	221315_s_at	FGF22	Û	1.58	8.30E-03
220311_at	N6AMT1	Û	1.59	1.40E-04	1562161_at		仓	1.58	0.022	219163_at	ZNF562	Û	1.58	8.10E-03
1563043_at	LOC285375	Û	1.59	9.90E-05	1563076_x_at		仓	1.58	0.022	1569091_at		Û	1.58	7.90E-03
231328_s_at	RASGRP4	Û	1.59	9.60E-05	223318_s_at	ALKBH7	Û	1.58	0.022	1553567_s_at		仓	1.58	7.00E-03
1554466_a_at	C16orf13	Û	1.59	3.50E-05	230296_at	C16orf52	仓	1.58	0.022	210355_at	PTHLH	仓	1.58	7.00E-03
1563075_s_at		Û	1.58	0.049	238353_at	RASL11A	仓	1.58	0.022	233509_at	HERC4	Û	1.58	6.80E-03
239931_at		Û	1.58	0.048	240527_at		仓	1.58	0.021	1554329_x_at	STXBP4	Û	1.58	6.60E-03
210350_x_at	ING1	Û	1.58	0.047	232409_x_at	FBXL16	Û	1.58	0.019	211647_x_at	IGHA1	Û	1.58	6.30E-03
1554492_at	THADA	Û	1.58	0.047	1558557_at	C16orf62	仓	1.58	0.018	219397_at	COQ10B	Û	1.58	4.70E-03
224963_at	SLC26A2	Û	1.58	0.045	223059_s_at	FAM107B	仓	1.58	0.018	207972_at	GLRA1	Û	1.58	4.00E-03
209164_s_at	CYB561	Û	1.58	0.043	204621_s_at	NR4A2	仓	1.58	0.018	215615_x_at		Û	1.58	3.30E-03
1555334_s_at	SLC30A5	Û	1.58	0.043	215387_x_at		仓	1.58	0.017	1564552_at		Û	1.58	2.70E-03
238875_at		Û	1.58	0.042	204868_at	ICT1	Û	1.58	0.016	236169_at		Û	1.58	2.40E-03
218029_at	FAM65A	Û	1.58	0.040	212616_at	CHD9	仓	1.58	0.014	230619_at	ARNT	Û	1.58	2.40E-03
235381_at	RSF1	Û	1.58	0.039	213492_at	COL2A1	仓	1.58	0.013	1556651_at		Û	1.58	1.90E-03
223273_at	C14orf142	Û	1.58	0.038	200043_at	ERH	仓	1.58	0.013	239025_at		Û	1.58	1.60E-03
211047_x_at	AP2S1	Û	1.58	0.033	215749_s_at	GORASP1	Û	1.58	0.013	243673_at		Û	1.58	1.50E-03
58994_at	CC2D1A	Û	1.58	0.033	225452_at	MED1	仓	1.58	0.013	206718_at	LMO1	仓	1.58	1.40E-03
227809_at	ZC3H6	Û	1.58	0.033	202616_s_at	MECP2	仓	1.58	0.012	1556484_at	LRRC52	仓	1.58	1.40E-03
232021_at	GLT8D3	Û	1.58	0.032	1562321_at	PDK4	仓	1.58	0.012	237972_at		Û	1.58	1.10E-03

217136_at	PPIAL4A	Û	1.58	9.90E-04	217356_s_at	PGK1	Û	1.57	0.035	229436_x_at	BRCC3	Û	1.57	0.011
207613_s_at	CAMK2A	Û	1.58	9.30E-04	202316_x_at	UBE4B	Û	1.57	0.034	212181_s_at	NUDT4	Û	1.57	0.011
242309_at		仓	1.58	9.00E-04	226562_at	ZSCAN29	Û	1.57	0.033	214813_at	ZNF75D	Û	1.57	0.010
216966_at	ITGA2B	Û	1.58	8.90E-04	225016_at	APCDD1	Û	1.57	0.032	1554480_a_at	ARMC10	Û	1.57	9.90E-03
214667_s_at	TP53I11	Û	1.58	7.70E-04	223525_at	DLL4	Û	1.57	0.032	230147_at	F2RL2	Û	1.57	9.80E-03
233221_at	DEFB118	仓	1.58	6.80E-04	235520_at	ZNF280C	Û	1.57	0.032	1560176_s_at	PPP4R1L	Û	1.57	9.20E-03
1560017_at	TMTC3	仓	1.58	5.50E-04	1561139_at		Û	1.57	0.029	219226_at	CRKRS	Û	1.57	9.10E-03
1560181_at	LOC100288122	Û	1.58	4.70E-04	225878_at	KIF1B	仓	1.57	0.029	1569277_at	ZNF91	Û	1.57	8.10E-03
221354_s_at	MCHR1	Û	1.58	4.10E-04	241425_at	NUPL1	仓	1.57	0.029	1559936_at		Û	1.57	7.80E-03
1556929_at	PAPOLG	仓	1.58	3.90E-04	225095_at	SPTLC2	Û	1.57	0.029	221368_at	NEU2	Û	1.57	7.70E-03
230054_at	LOC100130536	仓	1.58	2.50E-04	206555_s_at	THUMPD1	Û	1.57	0.028	235759_at		Û	1.57	7.60E-03
235952_at		仓	1.58	2.30E-04	225737_s_at	FBX022	Û	1.57	0.027	1563208_s_at	C3orf65	Û	1.57	7.60E-03
241749_at	MURC	Û	1.58	2.20E-04	205867_at	PTPN11	仓	1.57	0.027	229961_x_at	YJEFN3	Û	1.57	6.70E-03
243065_at		仓	1.58	2.00E-04	204675_at	SRD5A1	Û	1.57	0.027	230862_at		Û	1.57	6.10E-03
208846_s_at	VDAC3	Û	1.58	1.60E-04	226318_at	TBRG1	Û	1.57	0.027	201104_x_at	NBPF10	Û	1.57	6.00E-03
211130_x_at	EDA	Û	1.58	1.10E-04	234041_at		仓	1.57	0.026	222713_s_at	FANCF	Û	1.57	5.80E-03
1561612_at		仓	1.58	8.00E-05	212269_s_at	МСМЗАР	Û	1.57	0.025	227090_at	PHF21A	Û	1.57	5.40E-03
207488_at		仓	1.58	4.70E-05	202396_at	TCERG1	Û	1.57	0.022	220253_s_at	LRP12	Û	1.57	5.30E-03
217458_at		仓	1.58	6.70E-06	207958_at	UGT2A1/2	Û	1.57	0.020	214031_s_at	KRT7	Û	1.57	4.90E-03
AFFX-BioB-		Û	1.58	6.65E-04	219081_at	ANKHD1	Û	1.57	0.019	234133_s_at	LOC728543	Û	1.57	4.70E-03
5_at														
214188_at		仓	1.57	0.048	212983_at	HRAS	Û	1.57	0.018	1565888_at		Û	1.57	4.20E-03
212073_at	CSNK2A1	Û	1.57	0.048	239585_at	KAT2B	仓	1.57	0.018	223619_x_at	PECR	Û	1.57	4.10E-03
1568713_a_at	TBC1D1	Û	1.57	0.047	243745_at		Û	1.57	0.016	234013_at	TRD	Û	1.57	4.10E-03
215212_at		Û	1.57	0.046	222111_at	FAM63B	仓	1.57	0.016	233769_at		Û	1.57	4.00E-03
233931_at		仓	1.57	0.045	45749_at	FAM65A	Û	1.57	0.016	243531_at	ORAOV1	Û	1.57	4.00E-03
1560609_at	CRYZL1	兌	1.57	0.045	223538_at	SERF1A	仓	1.57	0.016	213219_at	ADCY2	Û	1.57	3.80E-03
215669_at	HLA-DRB4	兌	1.57	0.041	207490_at	TUBA4B	Û	1.57	0.014	1566098_at		Û	1.57	3.70E-03
205133_s_at	HSPE1	Û	1.57	0.041	1563303_at		仓	1.57	0.012	33778_at	TBC1D22A	Û	1.57	3.40E-03
232262_at	PIGL	仓	1.57	0.041	220690_s_at	DHRS7B	Û	1.57	0.012	204209_at	PCYT1A	Û	1.57	2.90E-03
231718_at	SLU7	仓	1.57	0.040	241923_x_at	NANS	仓	1.57	0.012	223647_x_at	HSCB	Û	1.57	2.80E-03
213048_s_at		Û	1.57	0.037	228628_at	SRGAP2P1	仓	1.57	0.012	233374_at		仓	1.57	2.70E-03

1570411_at		仓	1.57	2.70E-03	244168_s_at	ULK4	Û	1.56	0.045	1558076_at	ANKRD32	Û	1.56	0.015
207645_s_at	CHD1L	仓	1.57	2.40E-03	238822_at		Û	1.56	0.044	1562650_at	FRYL	仓	1.56	0.015
232768_at	CCNB2	仓	1.57	2.20E-03	1555243_x_at	C8orf59	仓	1.56	0.043	213197_at	ASTN1	仓	1.56	0.014
231557_at		Û	1.57	2.00E-03	218930_s_at	TMEM106B	仓	1.56	0.043	218443_s_at	DAZAP1	仓	1.56	0.014
1563315_s_at	ERICH1	Û	1.57	2.00E-03	242051_at		Û	1.56	0.040	226320_at	THOC4	仓	1.56	0.014
201216_at	ERP29	Û	1.57	2.00E-03	207223_s_at	ROD1	Û	1.56	0.040	233270_x_at		仓	1.56	0.013
233041_x_at		仓	1.57	1.90E-03	200832_s_at	SCD	Û	1.56	0.038	212243_at	GCOM1	仓	1.56	0.013
241724_x_at		仓	1.57	1.80E-03	201922_at	TINP1	Û	1.56	0.038	205498_at	GHR	Û	1.56	0.013
221552_at	ABHD6	Û	1.57	1.80E-03	208891_at	DUSP6	Û	1.56	0.037	216755_at	OSBPL10	兌	1.56	0.013
1555944_at	FAM120A	仓	1.57	1.70E-03	235440_at	SPTY2D1	Û	1.56	0.037	1562295_at	LOC730057	仓	1.56	0.012
1553243_at	ITIH5	仓	1.57	1.70E-03	202155_s_at	NUP214	Û	1.56	0.034	226816_s_at	KIAA1143	仓	1.56	0.011
234382_x_at		仓	1.57	1.50E-03	217235_x_at	IGL	Û	1.56	0.031	222169_x_at	SH2D3A	仓	1.56	0.011
241596_at	NUDT10	仓	1.57	1.30E-03	236375_at		Û	1.56	0.030	215193_x_at	HLA-DRB1/3/4	Û	1.56	0.010
1564658_at	C7orf52	仓	1.57	1.00E-03	212798_s_at	ANKMY2	Û	1.56	0.027	231601_at	LOC100507224	兌	1.56	0.010
232190_x_at	LOC115110	仓	1.57	1.00E-03	202093_s_at	PAF1	Û	1.56	0.027	206340_at	NR1H4	Û	1.56	0.010
213604_at	TCEB3	Û	1.57	1.00E-03	1558742_at		仓	1.56	0.026	200053_at	SPAG7	Û	1.56	0.010
216184_s_at	RIMS1	仓	1.57	9.00E-04	201506_at	TGFBI	Û	1.56	0.026	216057_at	RAB3GAP2	兌	1.56	8.40E-03
224712_x_at	C19orf42	仓	1.57	8.60E-04	230998_at		Û	1.56	0.025	203829_at	ELP4	Û	1.56	8.30E-03
222187_x_at	G3BP1	仓	1.57	7.80E-04	1566991_at	ARID1B	Û	1.56	0.023	222339_x_at		仓	1.56	8.10E-03
233456_at		Û	1.57	6.90E-04	242293_at	ING3	仓	1.56	0.023	205547_s_at	TAGLN	兌	1.56	7.80E-03
1563841_at		仓	1.57	5.90E-04	240733_at		仓	1.56	0.020	202706_s_at	UMPS	Û	1.56	7.20E-03
207986_x_at	CYB561	仓	1.57	2.60E-04	221290_s_at	MUM1	Û	1.56	0.020	204573_at	CROT	仓	1.56	7.10E-03
231413_at		仓	1.57	2.40E-04	202205_at	VASP	仓	1.56	0.019	1555575_a_at	KDELR1	兌	1.56	6.80E-03
237813_at	PCBP2	仓	1.57	1.90E-04	213889_at	PIGL	Û	1.56	0.018	1560424_at		兌	1.56	6.40E-03
1567286_at	OR5L2	Û	1.57	9.20E-05	232140_at		Û	1.56	0.017	210878_s_at	KDM3B	兌	1.56	6.00E-03
1554396_at	UEVLD	Û	1.57	3.60E-05	225941_at	EIF4E3	Û	1.56	0.017	214801_at	TOR1AIP2	仓	1.56	6.00E-03
214233_at	GGA2	Û	1.57	3.40E-05	239062_at	LOC100131096	Û	1.56	0.017	240777_at	SYNE2	兌	1.56	5.00E-03
215626_at		仓	1.56	0.049	234166_at	UBE3A	Û	1.56	0.017	217005_at	LDLR	仓	1.56	4.90E-03
230213_at	C19orf43	仓	1.56	0.048	240154_at		仓	1.56	0.016	225152_at	ZNF622	Û	1.56	4.80E-03
238431_at		仓	1.56	0.047	211779_x_at	AP2A2	Û	1.56	0.016	1569916_at		仓	1.56	4.70E-03
210685_s_at	UBE4B	Û	1.56	0.047	238804_at	LOC100131701	Û	1.56	0.016	223697_x_at	C9orf64	仓	1.56	4.70E-03
224635_s_at	BIRC6	仓	1.56	0.045	1563975_at	RNF130	Û	1.56	0.016	1554564_a_at	UNQ1887	Û	1.56	4.70E-03

234897_s_at	LY6G6F	Û	1.56	4.60E-03	221681_s_at	DSPP	仓	1.56	4.80E-04	236259_at	STK4	仓	1.55	0.012
1562063_x_at	NBPF1	Û	1.56	4.60E-03	1552609_s_at	IL28A/B	仓	1.56	3.30E-04	1558120_at	DDX3X	Û	1.55	0.012
1564049_at	LOC339593	Û	1.56	4.50E-03	233016_at		仓	1.56	2.70E-04	212204_at	TMEM87A	Û	1.55	0.032
212247_at	NUP205	Û	1.56	4.00E-03	237606_at	CD53	Û	1.56	2.60E-04	239377_at	EIF1AD	仓	1.55	0.010
1558714_at		Û	1.56	3.70E-03	217919_s_at	MRPL42	Û	1.56	2.40E-04	1560340_s_at	RP9P	Û	1.55	0.013
217374_x_at	TARP	Û	1.56	3.40E-03	215553_x_at		仓	1.56	2.30E-04	1564227_at		Û	1.55	0.011
1555078_at	ZNF843	Û	1.56	3.30E-03	1564446_at	LOC284930	仓	1.56	2.30E-04	1558784_at		仓	1.55	0.013
1561205_at		Û	1.56	3.10E-03	208871_at	ATN1	仓	1.56	2.10E-04	205917_at	ZNF264	Û	1.55	5.23E-03
215533_s_at	UBE4B	Û	1.56	3.00E-03	230456_at		仓	1.56	1.80E-04	205895_s_at	NOLC1	Û	1.55	9.13E-04
212920_at	REST	Û	1.56	2.70E-03	226519_s_at	AGXT2L2	仓	1.56	1.50E-04	1569078_at	RNF213	仓	1.55	0.024
207598_x_at	XRCC2	Û	1.56	2.70E-03	1554985_at	ZNF396	仓	1.56	9.60E-05	230579_at	LOC728705	仓	1.55	0.010
230641_at	LOC100505938	Û	1.56	2.60E-03	238517_at	KLF7	仓	1.56	3.40E-05	214606_at	TSPAN2	仓	1.55	0.024
222913_at	KLF3	Û	1.56	2.50E-03	202115_s_at	NOC2L	仓	1.55	1.31E-03	210838_s_at	ACVRL1	Û	1.55	3.31E-03
1563472_at		Û	1.56	2.30E-03	201756_at	RPA2	Û	1.55	0.024	210251_s_at	RUFY3	仓	1.55	0.042
208252_s_at	CHST3	Û	1.56	2.30E-03	227292_at	C11orf84	仓	1.55	0.035	243643_x_at	SLC30A6	仓	1.55	0.022
1561300_at		Û	1.56	2.20E-03	202783_at	NNT	Û	1.55	0.016	241686_x_at		Û	1.55	7.84E-04
217042_at	RDH11	Û	1.56	2.00E-03	212069_s_at	BAT2L	Û	1.55	0.042	229060_at	YPEL2	仓	1.55	2.46E-03
209449_at	LSM2	Û	1.56	1.80E-03	223200_s_at	LSG1	仓	1.55	0.012	203729_at	EMP3	Û	1.55	0.048
1553761_at	C22orf30	Û	1.56	1.60E-03	238036_at	SHE	仓	1.55	4.57E-03	240047_at		仓	1.55	0.016
216204_at	COMT	Û	1.56	1.60E-03	209939_x_at	CFLAR	仓	1.55	0.042	203142_s_at	AP3B1	Û	1.55	1.04E-03
229839_at	SCARA5	Û	1.56	1.50E-03	1563241_at		仓	1.55	4.51E-03	230018_at	DPP9	仓	1.55	0.011
207300_s_at	F7	Û	1.56	1.30E-03	232612_s_at	ATG16L1	仓	1.55	2.58E-03	1570366_x_at	ZNF709	仓	1.55	1.55E-04
234293_x_at		Û	1.56	1.20E-03	216745_x_at		仓	1.55	3.21E-03	202569_s_at	MARK3	仓	1.55	8.77E-04
243712_at	XIST	Û	1.56	1.10E-03	228087_at	CCDC126	仓	1.55	0.024	1569527_at		仓	1.55	0.020
214516_at	HIST1H4B	Û	1.56	1.00E-03	218021_at	DHRS4	Û	1.55	1.03E-03	236594_at	LLGL1	仓	1.55	0.010
239748_x_at	OCIAD1	Û	1.56	9.70E-04	61297_at	CASKIN2	Û	1.55	2.51E-03	242968_at		仓	1.55	0.027
214943_s_at	RBM34	Û	1.56	8.80E-04	224073_at	FLJ20464	Û	1.55	9.85E-03	204698_at	ISG20	Û	1.55	0.022
216123_x_at		Û	1.56	7.00E-04	207520_at	TROVE2	仓	1.55	0.039	1559987_at		仓	1.55	0.010
1563571_at	LOC285463	Û	1.56	6.90E-04	243216_x_at		仓	1.55	8.38E-03	234628_at		仓	1.55	9.90E-03
225616_at	SPRYD4	Û	1.56	6.90E-04	1561578_s_at	MCART6	仓	1.55	0.041	221625_at		仓	1.55	2.50E-03
215595_x_at		Û	1.56	6.20E-04	211609_x_at	PSMD4	Û	1.55	1.18E-03	231801_at	NFATC2	仓	1.55	1.60E-04
216072_at		Û	1.56	4.90E-04	219051_x_at	METRN	Û	1.55	4.54E-03	242778_at	LPXN	Û	1.55	1.30E-03

219717_at	C4orf30	Û	1.55	0.015	243792_x_at	PTPN13	Û	1.55	4.94E-03	211166_at	FAM153A	仓	1.54	4.73E-04
1569202_x_at		Û	1.55	0.033	218242_s_at	SUV420H1	仓	1.55	0.029	224639_at	UNQ1887	仓	1.54	8.65E-03
242131_at	LOC440552	Û	1.55	0.038	201167_x_at	ARHGDIA	Û	1.55	3.92E-03	221620_s_at	APOO	Û	1.54	0.044
236494_x_at		Û	1.55	0.011	212544_at	ZNHIT3	Û	1.55	0.018	1561073_at		Û	1.54	5.81E-04
213394_at	MAPKBP1	仓	1.55	0.011	214322_at	CAMK2G	Û	1.55	0.027	222914_s_at	TMEM121	Û	1.54	2.12E-03
242456_at	MRE11A	仓	1.55	0.034	1565823_at		仓	1.55	6.67E-03	232376_at	PCCA	Û	1.54	0.044
243971_x_at	LOC731789	仓	1.55	2.57E-03	210161_at		仓	1.55	3.57E-04	214531_s_at	SNX1	Û	1.54	3.06E-03
236599_at		仓	1.55	6.51E-03	222272_x_at	SCIN	仓	1.55	0.016	236971_at		Û	1.54	9.27E-03
220636_at	DNAI2	Û	1.55	5.39E-03	226598_s_at	GTPBP5	仓	1.55	0.048	211639_x_at	IGHA1-2	Û	1.54	0.047
1568821_at	TTC23	얍	1.55	1.58E-05	227658_s_at	PLEKHA3	仓	1.55	0.048	227513_s_at	LRRFIP1	仓	1.54	4.65E-03
222547_at	MAP4K4	Û	1.55	3.27E-03	1564121_at		仓	1.55	7.18E-03	225674_at	BCAP29	仓	1.54	0.019
1557025_a_at		兌	1.55	0.039	208739_x_at	SUM02	Û	1.55	6.15E-03	216161_at	SBN01	仓	1.54	6.00E-03
202296_s_at	RER1	Û	1.55	0.034	1554576_a_at	ETV4	仓	1.55	6.85E-04	231567_s_at	CCDC62	仓	1.54	1.90E-03
244454_at		仓	1.55	0.045	1555595_at	SCRN3	仓	1.55	3.82E-04	238840_at	LRRFIP1	仓	1.54	0.036
219924_s_at	ZMYM6	Û	1.55	4.36E-04	218156_s_at	TSR1	Û	1.54	3.18E-03	1562468_at		仓	1.54	0.040
219275_at	PDCD5	Û	1.55	0.024	228515_at	LOC90784	Û	1.54	0.022	228544_s_at	CSRP2BP	Û	1.54	0.027
91826_at	EPS8L1	Û	1.55	1.12E-03	209620_s_at	ABCB7	Û	1.54	5.76E-03	1553386_at	MFSD2	Û	1.54	0.017
227825_at	NAIF1	Û	1.55	8.45E-03	243242_at		仓	1.54	0.024	234096_at		仓	1.54	6.21E-03
204558_at	RAD54L	얍	1.55	3.28E-04	1566798_at	SLC35E1	仓	1.54	1.90E-03	1569573_at		仓	1.54	3.01E-03
232569_at		Û	1.55	0.014	1558385_at		仓	1.54	0.013	227120_at	FOXP4	Û	1.54	4.34E-03
229434_at		Û	1.55	0.028	1553036_at	GPR111	仓	1.54	8.35E-03	244048_x_at		Û	1.54	5.50E-03
244464_at		얍	1.55	4.48E-03	223218_s_at	NFKBIZ	仓	1.54	0.023	215636_at	UBR4	仓	1.54	8.37E-03
219013_at	GALNT11	Û	1.55	0.031	1555259_at	ZAK	仓	1.54	8.00E-04	220071_x_at	HAUS2	Û	1.54	4.56E-03
237410_x_at		Û	1.55	0.014	206262_at	ADH1C	Û	1.54	1.39E-03	1566673_at		Û	1.54	0.012
242875_at		仓	1.55	0.014	233900_at		仓	1.54	2.92E-05	40016_g_at	MAST4	Û	1.54	0.015
228151_at		仓	1.55	7.41E-03	1560137_at		仓	1.54	4.41E-03	216524_x_at		仓	1.54	1.58E-03
209625_at	PIGH	Û	1.55	0.048	208907_s_at	MRPS18B	Û	1.54	3.27E-03	1559668_s_at		Û	1.54	5.58E-03
208728_s_at	CDC42	Û	1.55	0.013	212559_at	PRKAR1B	Û	1.54	0.011	1562970_at		Û	1.54	1.36E-03
214957_at	ACTL8	Û	1.55	4.80E-03	202120_x_at	AP2S1	Û	1.54	0.032	226926_at	DMKN	Û	1.54	9.53E-04
214773_x_at	TIPRL	Û	1.55	0.036	1565874_at		Û	1.54	1.51E-04	1559490_at	LRCH3	仓	1.54	1.90E-03
200909_s_at	RPLP2	Û	1.55	0.045	1565692_at		Û	1.54	3.83E-03	203199_s_at	MTRR	Û	1.54	0.011
1553217_s_at	ZNF41	Û	1.55	5.83E-03	203033_x_at	FH	Û	1.54	5.52E-03	209004_s_at	FBXL5	Û	1.54	0.011

239981_x_at	LOC728902	仓	1.54	1.87E-03	233642_s_at	HEATR5B	Û	1.54	0.032	231715_s_at	PYCR2	Û	1.54	4.16E-03
243943_x_at	C6orf52	仓	1.54	0.027	219846_at	GON4L	仓	1.54	7.18E-03	200772_x_at	PTMA	Û	1.53	0.034
205770_at	GSR	Û	1.54	0.012	210149_s_at	ATP5H	Û	1.54	0.027	244813_at		Û	1.53	0.023
224918_x_at	MGST1	Û	1.54	0.017	226023_at	MAP2K7	仓	1.54	5.84E-03	241376_at	LOC100130097	Û	1.53	4.04E-03
241770_x_at		仓	1.54	7.65E-03	230628_at	EP400	仓	1.54	1.04E-03	200665_s_at	SPARC	Û	1.53	0.043
215494_at		Û	1.54	0.027	233163_at	LOC731157	Û	1.54	8.84E-03	216771_at		Û	1.53	0.016
1555718_x_at		Û	1.54	1.28E-04	222763_s_at	WDR33	Û	1.54	2.38E-03	222098_s_at		Û	1.53	5.56E-03
AFFX-BioC-		Û	1.54	2.97E-04	201417_at	SOX4	Û	1.54	8.97E-03	235021_at	KIAA2026	Û	1.53	0.022
3_at														
237560_at	MRPS5	Û	1.54	0.041	214617_at	PRF1	仓	1.54	0.049	210577_at	CASR	Û	1.53	4.41E-03
243641_at		Û	1.54	0.020	242474_s_at	VMA21	仓	1.54	3.16E-03	216045_at	CCDC144A	Û	1.53	0.029
231972_at		Û	1.54	0.033	226758_at	LUC7L2	Û	1.54	0.017	222299_x_at		Û	1.53	3.16E-04
1563529_at	HYDIN2	Û	1.54	0.016	1560762_at	LOC285972	Û	1.54	0.031	1570022_at		Û	1.53	0.029
230309_at		Û	1.54	4.12E-03	217376_at		仓	1.54	5.17E-03	225623_at	KIAA1737	Û	1.53	0.041
244787_at		Û	1.54	0.030	203945_at	ARG2	Û	1.54	0.035	222593_s_at	SPATS2	Û	1.53	0.033
237225_at		Û	1.54	0.033	223369_at	METTL11A	Û	1.54	5.73E-04	242711_x_at	FANCM	兌	1.53	0.034
1556682_s_at		Û	1.54	0.024	228277_at	FBXL19	仓	1.54	2.80E-03	217188_s_at	C14orf1	Û	1.53	2.30E-03
218323_at	RHOT1	Û	1.54	0.022	222280_at		仓	1.54	6.35E-03	227687_at	HYLS1	Û	1.53	0.012
213175_s_at	SNRPB	Û	1.54	0.041	AFFX-BioDn-		Û	1.54	7.42E-03	1570272_at		Û	1.53	1.50E-04
					5_at									
243414_at	PPIL2	Û	1.54	0.034	206680_at	CD5L	Û	1.54	2.17E-03	1563679_at	LOC150577	Û	1.53	5.91E-03
207925_at	CST5	Û	1.54	0.017	221040_at	CAPN10	Û	1.54	5.98E-03	224904_at	PDPR	Û	1.53	0.026
213121_at	SNRNP70	Û	1.54	1.21E-05	205981_s_at	ING2	Û	1.54	0.014	209518_at	SMARCD1	Û	1.53	7.99E-04
227670_at	ZNF75A	Û	1.54	0.045	1556543_at		兌	1.54	0.034	229420_at		Û	1.53	4.76E-03
217894_at	KCTD3	Û	1.54	0.048	232168_x_at	MACF1	兌	1.54	7.82E-03	209638_x_at	RGS12	仓	1.53	5.46E-04
222843_at	FIGNL1	Û	1.54	0.041	218459_at	TOR3A	Û	1.54	0.033	213684_s_at	PDLIM5	仓	1.53	0.035
215597_x_at		Û	1.54	0.015	226368_at	CHST11	仓	1.54	0.025	241018_at	TMEM59	Û	1.53	0.045
221997_s_at	MRPL52	Û	1.54	6.76E-04	232804_at		兌	1.54	0.015	205496_at	KIAA0408	仓	1.53	1.36E-04
1561305_at		Û	1.54	0.011	219670_at	BEND5	Û	1.54	0.030	224316_at	LOC100131728	仓	1.53	0.016
218942_at	PIP4K2C	Û	1.54	2.76E-03	238149_at	ZNF818P	Û	1.54	7.37E-03	206127_at	ELK3	Û	1.53	9.18E-04
201576_s_at	GLB1	Û	1.54	2.51E-03	217281_x_at	IGHA1-2	Û	1.54	4.50E-03	216957_at	USP22	仓	1.53	0.013
230401_at		Û	1.54	2.10E-03	233485_at		Û	1.54	5.51E-03	231496_at	FCAMR	Û	1.53	0.046

① 1.53 3.43E-03 234981_x_at CMBL ① 1.53 3.71E-04 CD48 1.53 233427_x_at ---237759_at Û 0.016 230316_at SEC14L2 Û 1.53 0.040 217548 at LOC100129502 î 1.53 2.97E-03 1569353 at CP110 Û 1.53 0.012 212159_x_at AP2A2 Û 1.53 0.015 226713 at CCDC50 Û 1.53 4.46E-03 201583 s at SEC23B Û 1.53 6.29E-03 234294_x_at 3.16E-03 1569772_x_at 1.53 0.030 208322_s_at 1.53 GATAD2A Û 1.53 Û ST3GAL1 Û 0.021 ---1.53 2.63E-03 0.015 243378 at 233457_at î 223064 at **RNF181** Û 1.53 --î 1.53 0.022 ---3.32E-03 203258 at DRAP1 Û 1.53 0.019 217772 s at MTCH2 1.53 217165 x at MT1F Û 1.53 0.015 Û 7.80E-03 1554171_at 0.041 205451_at 1557172_x_at NEK8 Û 1.53 ZMYM3 1.53 FOX04 Û 1.53 0.014 Û 4.89E-03 208238_x_at 5.22E-03 238382 x at 1.53 0.038 244452_at C2orf30 î 1.53 --î 1.53 --î 243594_x_at 1.85E-03 0.036 242995 at SPIRE2 Û 1.53 228568 at GCOM1 Û 1.53 ---Û 1.53 5.92E-03 204526_s_at TBC1D8 Û 1.53 9.76E-04 215840_at DNAH2 î 1.53 0.047 212109_at HN1L Û 1.53 6.28E-03 1553227_s_at BRWD1 Û 1.53 0.026 215852 x at C20orf117 1.53 7.20E-04 209271 at BPTF Û 1.53 9.35E-03 Û 238778_at MPP7 î 1.53 0.046 209233_at EMG1 1.53 0.032 1562010_x_at Û 1.53 1.88E-03 Û ---218700_s_at RAB7L1 î 0.021 1570414_x_at FLJ13197 1.53 3.08E-03 227186_s_at MRPL41 Û 1.53 8.85E-03 1.53 Û 206877 at EPRS 1566535 at î 1.53 0.014 MXD1 Û 1.53 0.031 200841 s at Û 1.53 0.029 ---211354_s_at Û 3.80E-03 201386_s_at DHX15 1.53 0.043 200853_at H2AFZ Û 0.014 LEPR 1.53 Û 1.53 224002_s_at î 8.24E-04 241329_s_at 2.21E-03 1555467 a at CUGBP1 1.53 FKBP7 1.53 --î 1.53 Û 0.042 242036 x at 0.017 ATP2B3 Û 1.53 2.27E-03 218835 at SFTPA2/B Û 1.53 214403 x at SPDEF Û 1.53 9.76E-04 213040_s_at NPTXR Û 1.53 0.034 225317_at ACBD6 Û 1.53 1.95E-03 213768_s_at ASCL1 Û 1.53 2.44E-04 233976 at Û 1.53 0.035 214538 x at RGS6 1.53 0.021 221578 at RASSF4 Û 1.23E-03 ---Û 1.53 ASCC1 IGLV3-19 1.53 1.03E-03 207499 x at 1.53 4.76E-03 1554627 a at Û 1.53 2.02E-04 216853 x at Û UNC45A Û 221861_at Û 5.00E-03 207343_at 5.06E-03 Û 0.011 1.53 LYZL6 Û 1.53 228420_at PDCD2 1.53 ---7.59E-04 242936 at 239536 at 214385_s_at MUC5AC Û 1.53 Û 1.53 0.012 Û 1.53 0.014 ------1.53 Û 0.029 242235 x at 230212 at LOC729345 1556672 a at RBM6 Û 1.53 4.24E-03 Û 1.53 7.46E-03 ---LOC728411 236387_at LOC100129961 Û 1.53 1.70E-03 1554867_a_at 1.53 0.011 1556742_at Û 1.53 5.93E-04 PRR16 Û 230790 x at 1.52 3.64E-03 234531 at ---Û 1.53 7.62E-04 ---Û 1.53 8.89E-03 244093 at ---Û 204683_at ICAM2 Û 1.53 0.033 240123_at Û 1.53 0.012 229609_at LOC728190 Û 1.52 0.010 ---1554339_a_at Û 0.031 207740_s_at 1.53 6.51E-03 235248_at BTBD9 1.52 1.67E-03 COG3 1.53 NUP62 Û Û 5.93E-03 241531 at 236702 at C20orf43 Û 1.53 0.036 233330 s at 1.53 Û 1.52 2.07E-03 ---Û --î 1.53 208572_at 1.53 2.79E-03 1.52 1.00E-04 204638_at ACP5 0.037 HIST3H3 208096_s_at COL21A1 Û î 2.43E-04 239807_at 7.25E-03 228623 at 210032_s_at SPAG6 Û 1.53 LOC728842 1.53 î 1.52 0.026 î ---241286_at 7.02E-03 1.52 Û 1.53 224121 x at PLEKHB2 1.53 240232 at ---0.039 ---0.037 Û Û 1.53 215006_at --î 0.039 244788_at --î 1.53 0.016 215600_x_at FBXW12 î 1.52 5.75E-03

225040	000004	~	1 50		226072		^	1 50	0.010	224270	CADCO	~	1 50	0.017
225849_s_at	SFT2D1	ប	1.52	5.20E-03	236072_at		ប	1.52	0.013	224370_s_at	CAPSZ	ប	1.52	0.017
210801_at	DIMT1L	Û	1.52	3.53E-03	236571_at		Û	1.52	3.20E-03	229165_at	MRPL12	Û	1.52	0.047
225783_at	UBE2F	Û	1.52	0.019	221503_s_at	KPNA3	Û	1.52	4.86E-03	202246_s_at	CDK4	Û	1.52	5.66E-03
218678_at	NES	Û	1.52	0.011	1561919_at		Û	1.52	2.07E-05	230742_at	RBM6	Û	1.52	0.043
215246_at	LARP7	Û	1.52	2.72E-03	1557203_at	PABPC1L2B	Û	1.52	0.021	235958_at	PLA2G4F	Û	1.52	5.65E-03
1566787_at		Û	1.52	5.00E-03	227384_s_at	LOC727820	仓	1.52	0.047	238486_at	FRS2	Û	1.52	5.38E-05
214651_s_at	HOXA9	Û	1.52	0.019	238119_at		仓	1.52	0.022	1553901_x_at	ZNF486	兌	1.52	5.69E-04
244875_at	NCRNA00105	Û	1.52	7.61E-03	201734_at	CLCN3	Û	1.52	0.035	1568619_s_at	ITPRIPL2	兌	1.52	4.79E-03
1562981_at	HBB	仓	1.52	5.91E-04	1554494_at	MTHFSD	Û	1.52	0.040	223513_at	CENPJ	Û	1.52	0.017
211960_s_at	RAB7A	Û	1.52	3.69E-03	235810_at	ZNF182	仓	1.52	0.032	31861_at	IGHMBP2	Û	1.52	7.76E-04
1559434_at		仓	1.52	8.11E-04	229078_s_at	KIAA1704	兌	1.52	0.028	234330_at		仓	1.52	7.79E-03
1554154_at	GDAP2	仓	1.52	0.024	236961_at		兌	1.52	5.45E-03	1561019_at		仓	1.52	2.46E-05
207194_s_at	ICAM4	Û	1.52	0.038	206316_s_at	KNTC1	Û	1.52	0.012	220753_s_at	CRYL1	Û	1.52	0.027
215507_x_at		Û	1.52	2.95E-03	221781_s_at	DNAJC10	Û	1.52	0.010	214962_s_at	NUP160	Û	1.52	2.29E-03
212471_at	AVL9	Û	1.52	0.031	236797_at		仓	1.52	3.88E-06	231129_at	LOC728012	Û	1.52	1.07E-03
228108_at		Û	1.52	0.029	224413_s_at	TM2D2	Û	1.52	1.85E-03	215052_at	FRMPD4	兌	1.52	7.37E-04
1562281_at		Û	1.52	6.66E-04	1554668_a_at	FAM151A	Û	1.52	3.62E-04	237112_at		兌	1.52	0.049
242371_x_at		Û	1.52	9.94E-03	209358_at	TAF11	仓	1.52	0.044	1566208_at	TCEA1	Û	1.52	0.010
216206_x_at	MAP2K7	Û	1.52	0.021	208644_at	PARP1	Û	1.52	7.97E-03	242194_at	CUL4A	仓	1.52	0.010
201643_x_at	KDM3B	Û	1.52	6.12E-03	224533_s_at	C6orf142	Û	1.52	3.01E-03	240350_at		兌	1.52	7.69E-04
1561389_at		Û	1.52	0.032	216231_s_at	B2M	Û	1.52	0.019	231009_at	PLA2G12B	Û	1.52	0.029
240606_at		Û	1.52	1.75E-03	242472_x_at	FNBP4	仓	1.52	0.020	222070_at	DND1	兌	1.52	0.034
216115_at	NF1	仓	1.52	2.31E-03	231734_at	RBP2	Û	1.52	0.018	1558124_at	NUDCD2	仓	1.52	0.024
221192_x_at	MFSD11	仓	1.52	4.33E-03	209174_s_at	QRICH1	仓	1.52	0.022	223057_s_at	XPO5	Û	1.52	2.93E-04
203883_s_at	RAB11FIP2	仓	1.52	0.032	232716_at		仓	1.52	0.016	213747_at	LOC100134128	仓	1.52	0.018
243125_x_at		仓	1.52	5.13E-03	1563026_at		仓	1.52	0.018	201774_s_at	NCAPD2	Û	1.52	0.016
206106_at	MAPK12	Û	1.52	4.19E-04	202486_at	AFG3L2	Û	1.52	5.70E-03	226109_at	C21orf91	Û	1.52	0.032
216709_at		Û	1.52	0.016	219290_x_at	DAPP1	仓	1.52	3.55E-03	221903_s_at	CYLD	Û	1.52	7.58E-03
210934_at	BLK	Û	1.52	3.30E-03	1563426_a_at	LOC644613	仓	1.52	4.60E-03	203789_s_at	SEMA3C	Û	1.52	0.050
1556595 at		Û	1.52	0.034	1565602 at		兌	1.52	0.015	232615 at		兌	1.52	0.039
	FGD4	Û	1.52	0.047	211371_at	MAP2K5	Û	1.52	4.88E-04	239076_at	SEPT13	仓	1.52	9.74E-03
211267_at	HESX1	仓	1.52	0.016	210717_at		Û	1.52	0.032		LOC338579	Û	1.52	8.50E-03

210134_x_at	SHOX2	Û	1.52	9.50E-03	228377_at	KLHL14	Û	1.51	0.035	212815_at	ASCC3	Û	1.51	0.014
229700_at	ZNF738	仓	1.52	0.020	226986_at	WIPI2	仓	1.51	0.018	216503_s_at	MLLT10	Û	1.51	0.028
201589_at	SMC1A	Û	1.52	0.017	205692_s_at	CD38	Û	1.51	1.88E-03	217750_s_at	UBE2Z	仓	1.51	7.57E-04
1557588_at	LOC100128946	兌	1.52	2.76E-03	210933_s_at	FSCN1	仓	1.51	0.034	203304_at	BAMBI	Û	1.51	5.63E-03
218695_at	EXOSC4	Û	1.52	2.14E-03	1562608_at		仓	1.51	8.06E-03	1562946_at		仓	1.51	0.011
1569905_at	HSD11B1L	仓	1.52	5.91E-04	1564067_x_at	TMEM151B	仓	1.51	0.039	204804_at	TRIM21	Û	1.51	0.023
228902_at	NUP214	Û	1.52	8.65E-04	221385_s_at	FFAR3	Û	1.51	8.09E-04	220367_s_at	SAP130	Û	1.51	2.32E-04
244522_at	SYVN1	兌	1.51	0.011	202928_s_at	PHF1	Û	1.51	0.013	238158_at	MEIG1	Û	1.51	0.021
226914_at	ARPC5L	兌	1.51	0.048	1562273_at	CNGA4	仓	1.51	1.37E-03	1553099_at	TIGD1	Û	1.51	6.65E-03
225367_at	PGM2	仓	1.51	0.020	231961_at	RBPMS	仓	1.51	0.037	242641_at		Ŷ	1.51	9.19E-03
236291_at	RDH5	仓	1.51	6.49E-03	1562270_at	ARHGEF7	仓	1.51	0.021	207819_s_at	ABCB4	Û	1.51	0.028
1553218_a_at	ZNF512	Û	1.51	3.38E-03	1553349_at	ARID2	仓	1.51	0.046	229881_at	KLF12	仓	1.51	0.028
227939_s_at	TRA2A	仓	1.51	0.019	214542_x_at	HIST1H2AI	Û	1.51	0.023	1561419_at		Ŷ	1.51	5.98E-03
223294_at	CXorf26	Û	1.51	0.021	215607_x_at		仓	1.51	0.031	214719_at	SLC46A3	Ŷ	1.51	0.038
239885_at		仓	1.51	1.54E-03	207190_at	ZZEF1	Û	1.51	0.011	1565829_at	KIAA1731	Ŷ	1.51	1.20E-04
220152_at	C10orf95	兌	1.51	0.040	237236_x_at	LOC731789	仓	1.51	1.84E-04	238058_at	LOC150381	Û	1.51	0.041
231809_x_at	PDCD7	仓	1.51	0.040	59999_at	HIF1AN	仓	1.51	9.40E-04	232250_at	KIAA1257	Ŷ	1.51	0.010
202053_s_at	ALDH3A2	Û	1.51	8.95E-03	207232_s_at	DZIP3	Û	1.51	4.67E-05	207433_at	IL10	仓	1.51	1.18E-03
211713_x_at	KIAA0101	얍	1.51	9.13E-03	229370_at		Û	1.51	5.10E-03	231552_at		仓	1.51	0.034
238684_at		仓	1.51	0.011	1554020_at	BICD1	Û	1.51	0.016	1570393_at	EML5	Ŷ	1.51	4.70E-03
212655_at	ZCCHC14	Û	1.51	0.023	228457_at		Û	1.51	2.12E-03	218583_s_at	DCUN1D1	Ŷ	1.51	0.047
230203_at	FLJ46875	仓	1.51	2.81E-03	209902_at	ATR	Û	1.51	0.036	211649_x_at	IGHA1-2	Û	1.51	4.60E-03
239252_at		兌	1.51	5.98E-03	241195_at		仓	1.51	5.33E-04	216924_s_at	DRD2	Û	1.51	2.00E-04
228009_x_at	ZNRD1	Û	1.51	0.044	236935_at		仓	1.51	0.022	216002_at		Ŷ	1.51	0.043
218264_at	BCCIP	Û	1.51	0.015	1562034_at	NCRNA00163	Û	1.51	8.39E-03	206770_s_at	SLC35A3	Ŷ	1.51	0.048
240887_at		仓	1.51	9.77E-03	227046_at	SLC39A11	Û	1.51	1.15E-03	223674_s_at	CDC42SE1	Û	1.51	0.010
216640_s_at	PDIA6	Û	1.51	0.011	47083_at	C7orf26	Û	1.51	0.040	210460_s_at	PSMD4	Û	1.51	6.45E-03
1554176_a_at	C3orf33	仓	1.51	0.020	1569577_x_at		仓	1.51	0.041	1561942_x_at		仓	1.51	0.034
219575_s_at	COG8	Û	1.51	7.61E-03	242342_at		Û	1.51	1.23E-03	1565861_at		仓	1.51	1.05E-03
206528_at	TRPC6	仓	1.51	1.69E-04	240240_at		仓	1.51	0.048	239959_x_at		Û	1.51	2.98E-03
213124_at	ZNF473	Û	1.51	0.011	225149_at	PCID2	Û	1.51	7.64E-03	1560745_at		Û	1.51	4.24E-03
235433_at	APOOL	Û	1.51	3.51E-03	229656_s_at	EML6	Û	1.51	0.014	244423_at		仓	1.50	0.031

201969_at	NASP	Û	1.50	2.35E-03	238257_at	MLLT10	Û	1.50	0.033	210433_at	POFUT1	Û	1.50	0.023
211190_x_at	CD84	Û	1.50	9.25E-03	219038_at	MORC4	Û	1.50	0.049	203426_s_at	IGFBP5	Û	1.50	0.032
239324_at		Û	1.50	0.037	228662_at	SOCS7	Û	1.50	0.034	1552927_at	MAP3K7IP3	兌	1.50	0.041
1555189_a_at	TAT	仓	1.50	3.33E-03	212079_s_at	MLL	Û	1.50	0.035	228536_at	LOC90826	Û	1.50	0.012
227177_at	CORO2A	Û	1.50	7.54E-03	242555_at	C16orf87	Û	1.50	0.028	203447_at	PSMD5	仓	1.50	0.014
1566716_at		仓	1.50	0.019	243675_at		Û	1.50	0.032	224667_x_at	C10orf104	兌	1.50	3.64E-03
223781_x_at	ADH4	Û	1.50	8.92E-03	207966_s_at	GLG1	Û	1.50	0.048	223643_at	CRYGS	얍	1.50	0.011
1565628_at		Û	1.50	0.014	226993_at		Û	1.50	0.034	201299_s_at	MOBKL1B	兌	1.50	0.016
210185_at	CACNB1	Û	1.50	4.90E-03	209448_at	HTATIP2	Û	1.50	0.027	220242_x_at	ZNF701	얍	1.50	3.63E-03
234135_x_at		Û	1.50	7.60E-04	217703_x_at		Û	1.50	1.27E-03	200878_at	EPAS1	Û	1.50	0.029
209646_x_at	ALDH1B1	Û	1.50	0.017	230090_at	GDNF	Û	1.50	1.98E-03	208346_at	PPBPL2	Û	1.50	0.024
1564972_x_at	SETDB2	Û	1.50	1.58E-03	233873_x_at	MTPAP	Û	1.50	2.52E-03	212192_at	KCTD12	Û	1.50	0.026
204214_s_at	RAB32	Û	1.50	0.015	239992_at		Û	1.50	0.028	219217_at	NARS2	Û	1.50	4.25E-03
228652_at	ZNF776	仓	1.50	0.018	1558444_at		Û	1.50	0.013	217492_s_at	PTEN	Û	1.50	0.047
208216_at	DLX4	Û	1.50	6.36E-03	210521_s_at	FETUB	Û	1.50	0.048	224989_at		얍	1.50	0.031
220778_x_at	SEMA6B	仓	1.50	0.013	210193_at	MOBP	Û	1.50	2.68E-04	204413_at	TRAF2	Û	1.50	6.21E-03
234562_x_at	LOC728678	仓	1.50	0.021	233930_at	DMRT3	Û	1.50	0.022	1564773_x_at		兌	1.50	0.024
227175_at	LOC100131311	Û	1.50	0.043	216170_at		Û	1.50	0.038	244011_at	PPM1K	얍	1.50	0.021
241085_at		Û	1.50	0.018	224795_x_at	IGKC	Û	1.50	0.035	243746_at	IGHMBP2	Û	1.50	0.037
209123_at	QDPR	Û	1.50	8.95E-03	214637_at	OSM	Û	1.50	3.05E-03	234088_at		Û	1.50	0.046

APPENDIX B: ECACC LCL STUDY

List of Figures

Figure B1	Kaplan-Meier Survival Curve for LCL's in the ECACC Discovery	403
	and Replication Cohort	

List of Tables

Table B1	Clinical Information Relating to Control LCL's in the ECACC Discovery Cohort	404
Table B2	Clinical Information Relating to Familial LCL's in the ECACC Discovery Cohort	405
Table B3	Clinical Information Relating to Sporadic LCL's in the ECACC Replication Cohort	409
Table B4	Review of ALS Phase II/III Clinical Drug Trials (ClinicalTrials.gov) (U.S. National Library of Medicine, Bethesda)	417
Table B5	Clinical Information Relating to Control LCL's in the ECACC Replication Cohort	419
Table B6	Clinical Information Relating to Sporadic LCL's in the ECACC Replication Cohort	420
Table B7	ECACC LCL QIAGEN Extraction and Ambion® RNA Amplification Data for Exon 1.0ST Expression Arrays	428
Table B8	C90RF72 Specific Gene List (n=501) [Partek [®] unadjusted p<0.05, FC $\ge \pm 1.20$]	443
Table B9	C9ORF72 and NonC9ORF72-Related_SALS Common Gene List (n=595) [Partek [®] unadjusted p<0.05, FC $\ge \pm 1.20$]	460
Table B10	Non <i>C90RF72</i> -Related_SALS Specific Gene List (n=1,201) [Partek [®] unadjusted p<0.05, FC ≥ ±1.20]	481
Table B11	<i>C90RF72</i> vCtrl Alternatively Spliced List (n=2,511) [Partek [®] p-value (alt. splicing) <0.05]	519
Table B12	Non <i>C90RF72</i> -Related_SALSvCtrl Alternatively Spliced List (n=3,163) [Partek [®] p-value (alt. splicing) <0.05]	541
Table B13	C9-LongvShort Gene List (n=628) ALL SAMPLES COMBINED [Partek [®] unadjusted p<0.05, FC $\ge \pm 1.20$]	568
Table B14	C9-Long Specific Gene List (n=1,007) ALL SAMPLES COMBINED [Partek [®] unadjusted p<0.05, FC $\ge \pm 1.20$]	575

Table B15	C9-Short Specific Gene List (n=540) ALL SAMPLES COMBINED [Partek [®] unadjusted p<0.05, FC $\geq \pm 1.20$]	586
Table B16	C9-LongvShort Gene List (n=550) FEMALE ONLY SAMPLES [Partek [®] unadjusted p<0.05, FC $\geq \pm 1.20$]	592
Table B17	C9-Long Specific Gene List (n=1,250) FEMALE ONLY SAMPLES [Partek [®] unadjusted p<0.05, FC $\ge \pm 1.20$]	598
Table B18	C9-Short Specific Gene List (n=137) FEMALE ONLY SAMPLES [Partek [®] unadjusted p<0.05, FC $\geq \pm 1.20$]	612
Table B19	C9-LongvShort Gene List (n=1,024) MALE ONLY SAMPLES [Partek® unadjusted p<0.05, FC ≥ ±1.20]	614
Table B20	C9-Long Specific Gene List (n=894) MALE ONLY SAMPLES [Partek® unadjusted p<0.05, FC ≥ ±1.20]	625
Table B21	C9-Short Specific Gene List (n=916) MALE ONLY SAMPLES [Partek® unadjusted p<0.05, FC ≥ ±1.20]	635

Figure B1: Kaplan-Meier Survival Curve for LCL's in the ECACC Discovery and Replication Cohort

Key ■ *C90RF72+* ■ non*C90RF72*-related_SALS

Abbreviations: ALS - Amyotrophic Lateral Sclerosis, *C9ORF72* - chromosome 9 open reading frame 72, ECACC - European Collection of Cell Cultures, LCL - lymphoblastoid cell line and S - sporadic.

ID	ECACC	Sex	Age																
C001	SMa0033	Μ	65	C021	LCa0076	Μ	69	C041	BC6397	Μ	52	C061	SC3150	Μ	36	C081	SC3738	Μ	49
C002	BLi0245	Μ	61	C022	SPr0086	F	69	C042	SC3247	F	56	C062	LC0101	Μ	75	C082	BC6477	F	52
C003	BC6548	Μ	69	C023	SC3672	Μ	71	C043	BC6231	Μ	62	C063	SC3293	F	76	C083	BLi0269	Μ	65
C004	SNc0091	Μ	43	C024	SNt0035	Μ	51	C044	SNc0041	F	67	C064	SC3692	Μ	78	C084	LC0669	F	66
C005	LPo0033	Μ	50	C025	SNc0218	Μ	61	C045	SC3406	Μ	47	C065	BLi0123	Μ	57	C085	SNc0035	Μ	68
C006	LC0455	F	52	C026	BC6295	F	65	C046	LSh0023	Μ	70	C066	LC0262	Μ	48	C086	BLi0217	F	69
C007	SNc0038	Μ	72	C027	LC0216	Μ	64	C047	SNc0149	Μ	73	C067	SC3504	F	48	C087	BC6166	Μ	39
C008	SPr0050	М	75	C028	SC3452	F	39	C048	SNt0005	F	74	C068	LRo0007	Μ	67	C088	BC6323	Μ	61
C009	SNc0103	F	79	C029	SNc0023	Μ	59	C049	SC3052	Μ	64	C069	BC6253	F	68	C089	SC3594	Μ	72
C010	SPr0014	М	58	C030	LC0675	Μ	77	C050	LC0194	Μ	33	C070	SC3312	Μ	69	C090	BOx0073	F	57
C011	SNc0045	F	63	C031	SC3709	F	84	C051	BC6300	Μ	57	C071	LC0583	Μ	72	C091	SC3741	Μ	57
C012	LSh0025	Μ	55	C032	LC0573	Μ	46	C052	SNt0073	F	59	C072	SPr0048	Μ	52	C092	SC3690	Μ	75
C013	SDu0012	F	66	C033	SMa0183	F	53	C053	LPo0062	Μ	69	C073	BC6091	F	63	C093	BLi0196	F	77
C014	LC0433	М	70	C034	SC3151	Μ	66	C054	LNh0075	F	70	C074	SPr0068	Μ	64	C094	SC3699	Μ	78
C015	LSh0032	М	63	C035	SC3021	F	67	C055	LC0367	Μ	72	C075	LC0311	Μ	71	C095	BLi0029	Μ	70
C016	SC3489	F	69	C036	SMa0156	Μ	56	C056	LC0249	Μ	60	C076	SNc0106	F	71	C096	LC0692	Μ	71
C017	LPo0027	Μ	71	C037	BC6448	F	59	C057	BC6335	F	65	C077	SMa0047	Μ	60	C097	BLi0083	F	72
C018	SNc0096	F	73	C038	LSh0022	Μ	70	C058	SC3278	F	41	C078	BC6374	Μ	63	C098	BC6234	Μ	54
C019	LCa0022	F	58	C039	BLi0169	Μ	73	C059	SC3246	Μ	78	C079	SC3279	F	56	C099	SC3282	F	63
C020	BBe0006	F	36	C040	LRf0014	F	74	C060	BC6507	М	67	C080	BC6317	F	66	C100	BC6376	М	63

 Table B1: Clinical Information Relating to Control LCL's in the ECACC Discovery Cohort
ID	ECACC	Sex	Age	EEC	Diagnosis	Genotype	Survival	Presentation	ALSFRS-R	Riluzole	Meds Other	Supplements	Smoking
F001	LP0137	М	61	Definite	ALS	Unknown	32	Limb	34	Y	None	None	?
F002	LNh0101	М	67	Probable	ALS	C90RF72	16	Bulbar	19	Y	None	None	?
F003	LP0048	М	27	Definite	ALS	FUS	13	Mixed	0	Y	None	None	?
F004	LP0614	М	38	Probable	ALS	Unknown	20	Mixed	42	Ν	None	None	?
F005	LP0225	F	40	Probable	ALS	Unknown	19	Limb	46	Ν	None	Vitamin E	?
F006	BP6206	Μ	45	Probable	ALS	Unknown	10	Bulbar	15	Y	None	None	?
F007	LP0388	F	48	Definite	ALS	Unknown	17	Bulbar	45	Ν	None	None	?
F008	BP6074	Μ	46	Definite	ALS	Unknown	33	Bulbar	31	Y	None	None	?
F009	BP6061	F	50	Probable	ALS	Unknown	38	Unknown	34	Unknown	None	None	?
F010	SPr0085	М	70	Probable	ALS	Unknown	Unknown	Mixed	24	Y	None	None	?
F011	LP0637	F	68	Probable	ALS	C90RF72	63	Limb	41	Y	None	None	?
F012	SP3474	F	74	Probable	ALS	Unknown	Unknown	Limb	40	Y	None	None	Ν
F013	BP6494	Μ	58	Probable	ALS	C90RF72	Alive	Limb	33	Ν	None	None	?
F014	LCa0111	F	63	Definite	ALS	Unknown	35	Bulbar	0	Y	None	None	?
F015	LP0460	Μ	46	Definite	ALS	TARDBP	Alive	Unknown	33	Unknown	None	None	?
F016	LP0328	Μ	53	Definite	ALS	Unknown	20	Bulbar	45	Y	None	None	?
F017	BP6072	F	56	Probable	ALS	C90RF72	33	Bulbar	30	Y	None	None	?
F018	LP0631	Μ	63	Probable	ALS	Unknown	30	Limb	40	Y	None	None	?
F019	BP6391	Μ	60	Probable	ALS	C90RF72	28	Limb	41	Y	None	None	?
F020	BLi0236	F	71	Probable	ALS	C90RF72	33	Mixed	35	Ν	None	None	?
F021	LP0125	Μ	57	Probable	ALS	C90RF72	25	Limb	0	Y	None	None	?
F022	LP0294	М	56	Probable	ALS	Unknown	75	Limb	47	Y	None	None	?
F023	BP6054	F	61	Definite	ALS	Unknown	35	Limb	31	Y	None	None	?
F024	SP3148	F	28	Definite	ALS+EL	C90RF72	14	Bulbar	18	Y	None	Vitamin C/E	Ν
F025	SPr0059	F	69	Probable	ALS	C90RF72	18	Bulbar	24	Y	None	None	?
F026	LP0657	Μ	70	Definite	ALS	C90RF72	18	Mixed	45	Ν	None	None	?
F027	SNc0204	F	48	Definite	ALS	C90RF72	41	Unknown	40	Unknown	None	None	?
F028	SMa0020	Μ	49	Definite	ALS	Unknown	29	Mixed	39	Y	None	None	?
F029	LPy0018	F	52	PBP	PBP	C90RF72	58	Bulbar	45	Y	None	None	?
F030	LP0475	М	59	Probable	ALS	C90RF72	30	Limb	42	Y	None	None	?
F031	SP3526	М	60	Definite	ALS+EL	SOD1	24	Respiratory	36	Ν	None	None	Ν
F032	BP6550	F	61	Definite	ALS	Unknown	39	Bulbar	29	Y	None	None	?

 Table B2: Clinical Information Relating to Familial LCL's in the ECACC Discovery Cohort

F033	SP3006	Μ	62	Definite	ALS	C90RF72	32	Limb	32	Y	None	Vitamin C/E	Ν
F034	BP6508	F	64	Probable	ALS	Unknown	49	Limb	40	Y	None	Vitamin C	?
F035	SP3590	М	63	Definite	ALS	Unknown	39	Limb	37	Y	None	None	?
F036	LP0193	F	31	Probable	ALS	FUS	Unknown	Limb	43	Unknown	None	None	?
F037	LP0529	М	33	Definite	ALS	Unknown	22	Limb	45	Y	None	Vitamin C/E	?
F038	BLi0249	М	40	Definite	ALS	Unknown	10	Mixed	40	Y	None	None	?
F039	BP6447	М	56	Probable	ALS	Unknown	26	Bulbar	41	Y	None	Multivitamin	?
F040	SP3068	М	57	Probable	ALS	TARDBP	Unknown	Bulbar	46	Y	None	None	Ν
F041	LP0440	F	58	PBP	PBP	C90RF72	22	Bulbar	38	Unknown	None	None	?
F042	SP3303	F	78	Definite	ALS	Unknown	11	Bulbar	36	Y	None	None	Ν
F043	LNh0046	М	43	Definite	ALS	Unknown	32	Respiratory	29	Y	None	None	?
F044	LP0456	F	45	Definite	ALS	Unknown	18	Bulbar	27	Y	None	None	?
F045	BLi0254	М	49	Definite	ALS	C90RF72	Unknown	Limb	41	Y	None	None	?
F046	LP0008	М	69	Definite	ALS	C90RF72	19	Limb	29	Y	None	None	?
F047	BP6502	М	53	Probable	ALS	C90RF72	Alive	Limb	44	Y	None	Multivitamin	?
F048	BBr0015	F	71	Definite	ALS	C90RF72	19	Mixed	Unknown	Ν	None	None	?
F049	LP0497	М	53	Probable	ALS	C90RF72	13	Bulbar	43	Y	None	None	?
F050	BP6308	F	55	Definite	ALS	C90RF72	47	Limb	29	Y	None	None	?
F051	LP0305	М	57	Probable	ALS	C90RF72	21	Limb	27	Y	None	None	?
F052	LCa0026	F	65	PBP	PBP	C90RF72	Unknown	Bulbar	35	Ν	None	None	?
F053	SP3610	М	59	Probable	ALS	SOD1	24	Limb	26	Y	Lithium	None	?
F054	SP3048	М	47	Definite	ALS	Unknown	Alive	Mixed	48	Y	None	None	N
F055	LP0682	М	49	Probable	ALS	Unknown	Unknown	Bulbar	41	Y	None	None	?
F056	SP3462	F	50	Probable	ALS	C9ORF72-OPTN	28	Bulbar	31	Y	None	None	N
F057	LP0717	М	71	Definite	ALS	C90RF72	32	Limb	36	Ν	None	None	?
F058	LPo0036	М	62	PBP	PBP	C90RF72	27	Bulbar	38	Y	None	None	?
F059	BP6124	F	32	Definite	ALS	Unknown	Unknown	Limb	29	Y	None	None	?
F060	SP3528	М	33	Probable	ALS	Unknown	16	Limb	35	Y	None	None	N
F061	LP0296	М	57	Probable	ALS	Unknown	33	Limb	36	Y	None	None	?
F062	LP0148	М	67	Definite	ALS	Unknown	17	Bulbar	0	Ν	None	None	?
F063	LP0405	F	72	Probable	ALS	Unknown	21	Mixed	34	Y	None	None	?
F064	SNc0063	М	56	Definite	ALS	Unknown	69	Mixed	24	Y	None	Vitamin C/E	?
F065	LP0033	F	61	Probable	ALS	Unknown	14	Limb	14	Y	None	None	?

F066	SP3659	М	39	Definite	ALS	Unknown	44	Limb	44	Y	None	None	?
F067	SP3086	F	40	Definite	ALS	TARDBP	224	Limb	15	Ν	None	None	Y
F068	LP0075	М	44	Definite	ALS	SOD1	33	Mixed	0	Y	None	None	?
F069	LP0157	F	44	Probable	ALS	Unknown	78	Unknown	43	Unknown	None	None	?
F070	BP6531	F	78	Probable	ALS	Unknown	33	Limb	28	Y	None	None	?
F071	SNc0031	М	63	Definite	ALS	Unknown	67	Limb	39	Y	None	Vitamin C/E	?
F072	BLi0251	F	70	Definite	ALS	C90RF72	23	Bulbar	20	Y	None	None	?
F073	BP6165	F	35	Definite	ALS	C90RF72	53	Limb	31	Y	Minocycline	Vitamin E	?
F074	BLi0272	М	36	Definite	ALS	Unknown	Unknown	Limb	46	Y	None	None	?
F075	BP6551	М	41	Probable	ALS	Unknown	Unknown	Limb	45	Y	None	Vitamin C/E	?
F076	SP3670	F	82	Probable	ALS	Unknown	35	Limb	38	Y	None	None	?
F077	LP0437	М	54	Definite	ALS	C90RF72	6	Bulbar	26	Y	None	None	?
F078	BOx0029	F	57	Probable	ALS	C90RF72	20	Mixed	29	Ν	None	None	?
F079	LNh0050	М	43	Probable	ALS	Unknown	19	Limb	42	Y	None	None	?
F080	SP3508	F	47	Probable	ALS	Unknown	40	Limb	40	Y	None	None	Ν
F081	SMa0006	М	62	Probable	ALS	C90RF72	107	Limb	45	Y	None	None	?
F082	LP0584	F	70	Definite	ALS	Unknown	Unknown	Bulbar	28	Y	None	None	?
F083	LP0665	F	69	Definite	ALS	C90RF72	28	Mixed	34	Ν	None	None	?
F084	BP6063	М	71	Definite	ALS	C90RF72	23	Bulbar	0	Y	None	None	?
F085	LP0013	М	48	Definite	ALS	Unknown	35	Limb	41	Y	None	None	?
F086	LP0051	М	49	Probable	ALS	FUS	79	Limb	48	Y	None	None	?
F087	SP3216	F	50	PLS	PLS+EL	Unknown	48	Limb	0	Ν	None	None	Ν
F088	LP0091	М	62	Definite	ALS	C90RF72	25	Bulbar	21	Ν	None	None	?
F089	SP3331	F	61	Definite	ALS	C90RF72	24	Bulbar	14	Y	None	Vitamin C/E	Ν
F090	SP3063	М	61	Probable	ALS	Unknown	6	Limb	0	Y	None	Vitamin C/E	Ν
F091	SP3534	F	63	Probable	ALS	C90RF72	83	Limb	35	Y	BDNF-trial	None	Ν
F092	SP3154	М	57	Probable	ALS	TARDBP	36	Limb	40	Y	None	Vitamin C/E	Ex-smoker
F093	SP3033	М	59	Definite	ALS	Unknown	23	Bulbar	34	Y	None	None	?
F094	BLi0246	F	60	Probable	ALS	C90RF72	Unknown	Limb	28	Y	None	None	?
F095	SMa0008	М	62	Probable	ALS	Unknown	78	Mixed	10	Y	None	None	?
F096	LP0480	М	59	Probable	ALS	C90RF72	16	Unknown	46	Unknown	None	None	?
F097	SP3277	М	43	Probable	ALS	Unknown	21	Limb	23	Y	None	None	Y
F098	SP3127	F	45	Probable	ALS	C90RF72	35	Bulbar	22	Y	None	None	Ν

F099	LP0073	F	61	Definite	ALS	C90RF72	45	Mixed	35	Y	None	None	?
F100	SP3070	М	63	PBP	PBP	C90RF72	19	Bulbar	36	Ν	None	None	Y
F101	SPr0026	F	64	Definite	ALS	C90RF72	32	Bulbar	12	Y	None	None	?
F102	LSh0038	М	65	Probable	ALS	C90RF72	87	Limb	38	Y	None	None	?
F103	BLi0265	М	23	Definite	ALS	SOD1	Unknown	Limb	46	Y	None	None	?
F104	BP6535	М	37	Probable	ALS	Unknown	Unknown	Limb	47	Y	None	None	?
F105	BP6504	F	39	Definite	ALS	Unknown	35	Limb	39	Y	None	Vitamin C	?
F106	BP6029	F	55	Definite	ALS	C90RF72	53	Limb	42	Y	None	None	?
F107	BP6334	М	56	Probable	ALS	C90RF72	31	Limb	36	Y	None	Vitamin C/E	?
F108	SMa0078	М	59	Definite	ALS	Unknown	22	Limb	36	Y	None	None	?
F109	SNc0202	М	71	Definite	ALS	Unknown	Unknown	Unknown	40	Unknown	None	None	?
F110	LP0088	М	55	Probable	ALS	Unknown	58	Limb	45	Y	None	None	?
F111	LP0582	F	73	Definite	ALS	Unknown	Unknown	Bulbar	20	Y	None	None	?
F112	LP0198	М	67	Probable	ALS	Unknown	9	Bulbar	0	Ν	None	None	?
F113	LP0393	F	69	Definite	ALS	Unknown	32	Bulbar	38	Y	None	None	?
F114	SP3560	М	47	Probable	ALS+PD	C90RF72	17	Limb	0	Y	None	None	Ν
F115	SP3118	F	50	Definite	ALS+FTD	C90RF72	16	Bulbar	28	Y	None	None	Ν
F116	BP6077	М	51	Probable	ALS	Unknown	Unknown	Limb	44	Ν	None	None	?
F117	SMa0166	М	60	Definite	ALS	C90RF72	31	Mixed	24	Y	None	Multivitamin	?
F118	SNc0189	М	59	PBP	PBP	C90RF72	33	Bulbar	12	Unknown	None	None	?
F119	SP3089	F	60	Definite	ALS	Unknown	Alive	Bulbar	43	Y	None	Vitamin C/E	Ν
F120	SP3218	М	49	Probable	ALS	SOD1	21	Limb	44	Y	None	Vitamin C/E	Ν

ID	ECACC	Sex	Age	EEC	Diagnosis	Genotype	Survival	Presentation	ALSFRS-R	Riluzole	Meds Other	Supplements	Smoking
S001	LP0061	F	22	Probable	ALS	Unknown	35	Limb	34	Y	None	Vitamin E	?
S002	SP3003	F	82	Definite	ALS	Unknown	16	Mixed	22	Y	None	None	?
S003	LP0021	F	64	Probable	ALS	Unknown	33	Bulbar	43	Y	None	Multivitamin	?
S004	SP3486	Μ	62	Probable	ALS	Unknown	35	Limb	30	Y	None	Vitamin C/E	Ν
S005	BBe0007	Μ	30	Probable	ALS	Unknown	46	Limb	Unknown	Y	None	Vitamin E	?
S006	SP3062	F	38	Definite	ALS+EL	Unknown	58	Bulbar	42	Y	None	None	Y
S007	SP3185	М	44	Probable	ALS	Unknown	11	Mixed	41	Y	None	Vitamin C/E	Ν
S008	SP3111	F	50	Definite	ALS	Unknown	27	Limb	26	Y	None	None	Ν
S009	BBe0018	М	47	Probable	ALS	Unknown	18	Limb	Unknown	Y	None	None	?
S010	SP3275	М	48	Probable	ALS	Unknown	21	Limb	25	Y	None	None	Ν
S011	BP6059	Μ	50	Probable	ALS	C90RF72	36	Limb	Unknown	Y	None	None	?
S012	SNc0022	F	54	Definite	ALS	Unknown	27	Mixed	14	Y	None	Vitamin C/E	?
S013	LP0129	F	53	Probable	ALS	Unknown	21	Bulbar	40	Y	None	None	?
S014	SP3064	Μ	53	Probable	ALS	Unknown	49	Limb	33	Y	None	None	Ν
S015	SP3299	Μ	54	Probable	ALS-FA	Unknown	70	Limb	32	Y	None	None	Ex-Smoker
S016	SP3162	Μ	71	Probable	ALS	Unknown	19	Limb	34	Y	None	Vitamin E	Ν
S017	LP0201	Μ	72	Probable	ALS	Unknown	71	Limb	43	Y	None	None	?
S018	SP3197	F	75	Probable	ALS	Unknown	25	Limb	0	Y	None	Vitamin C/E	Ν
S019	SP3172	Μ	72	Definite	ALS+EL	Unknown	24	Respiratory	33	Y	None	Vitamin C/E	Ν
S020	SP3059	Μ	76	Definite	ALS	Unknown	10	Limb	19	Y	None	None	?
S021	SP3249	F	76	Probable	ALS	Unknown	13	Bulbar	27	Y	None	None	Ν
S022	BP6013	Μ	83	Probable	ALS	Unknown	17	Limb	Unknown	Y	None	None	?
S023	SP3057	Μ	59	Definite	ALS	C90RF72	17	Bulbar	0	Y	None	None	?
S024	LP0080	Μ	61	Probable	ALS	Unknown	30	Limb	43	Y	None	None	?
S025	BP6066	F	63	Probable	ALS	Unknown	51	Limb	Unknown	Ν	None	None	?
S026	SP3022	F	65	Definite	ALS	Unknown	13	Limb	0	Y	None	None	?
S027	LP0172	Μ	54	Definite	ALS	Unknown	19	Mixed	45	Ν	None	None	?
S028	SP3036	Μ	54	Definite	ALS	Unknown	21	Limb	20	Y	None	None	?
S029	BP6037	F	57	Probable	ALS	Unknown	26	Limb	Unknown	Y	None	None	?
S030	SP3050	F	59	Probable	ALS	Unknown	34	Limb	34	Y	None	Vitamin C/E	?
S031	SP3106	М	66	Probable	ALS	Unknown	29	Bulbar	28	Y	None	None	?
S032	SP3397	Μ	64	Definite	ALS	Unknown	25	Bulbar	26	Y	None	Vitamin E	Y

Table B3: Clinical Information Relating to Sporadic LCL's in the ECACC Discovery Cohort

S033	SP3045	F	70	Probable	ALS	Unknown	25	Limb	39	Y	None	None	Ν
S034	SP3378	F	70	Definite	ALS	Unknown	42	Limb	29	Ν	None	None	Ν
S035	LPo0010	Μ	62	Probable	ALS	Unknown	26	Limb	29	Y	None	None	?
S036	SNt0031	М	61	Definite	ALS	Unknown	13	Limb	39	Y	None	None	?
S037	BP6012	Μ	61	Definite	ALS	Unknown	24	Limb	Unknown	Y	None	None	?
S038	BP6044	F	66	Probable	ALS	Unknown	48	Bulbar	Unknown	Y	None	None	?
S039	SP3001	F	68	Definite	ALS	Unknown	37	Bulbar	26	Y	None	Vitamin C/E	Ν
S040	SP3271	М	70	PBP	PBP	Unknown	26	Bulbar	43	Y	None	Vitamin C/E	Ν
S041	LP0094	Μ	67	Definite	ALS	Unknown	44	Bulbar	23	Y	None	None	?
S042	SP3122	М	68	Probable	ALS-FA	C90RF72	16	Limb	38	Y	None	None	Ν
S043	SP3181	F	71	Probable	ALS	Unknown	19	Limb	25	Y	None	None	Ν
S044	SP3329	F	73	PBP	PBP+EL	Unknown	16	Bulbar	31	Y	None	None	Ν
S045	SP3289	М	56	PBP	PBP	Unknown	35	Bulbar	39	Y	None	Vitamin C/E	Ν
S046	SNc0001	Μ	57	Definite	ALS	Unknown	22	Limb	37	Y	None	Vitamin C/E	?
S047	SP3269	F	61	Probable	ALS+EL	Unknown	44	Bulbar	38	Y	None	None	Ν
S048	SP3066	F	62	Definite	ALS	Unknown	44	Limb	35	Ν	None	Vitamin C	?
S049	LP0163	Μ	38	Definite	ALS	Unknown	50	Limb	27	Y	None	None	?
S050	SP3023	М	45	Probable	ALS	Unknown	39	Limb	35	Ν	Minocycline	Vitamin C/E	?
S051	SP3437	М	65	Probable	ALS	Unknown	35	Limb	42	Y	None	Vitamin E	Ν
S052	BBe0016	Μ	65	Probable	ALS	Unknown	92	Limb	Unknown	Y	None	None	?
S053	SP3371	Μ	66	Probable	ALS	Unknown	28	Limb	28	Y	None	Vitamin C/E	Ν
S054	SP3179	F	67	Probable	ALS	Unknown	29	Limb	42	Y	None	Vitamin C/E	Ν
S055	SP3300	F	68	Probable	ALS	Unknown	47	Bulbar	32	Y	None	None	Ν
S056	LP0085	F	70	Probable	ALS	Unknown	23	Mixed	40	Y	None	None	?
S057	SP3361	Μ	70	Probable	ALS	Unknown	27	Bulbar	34	Y	None	None	Ex-Smoker
S058	BBe0001	Μ	71	Probable	ALS	Unknown	42	Limb	Unknown	Ν	None	None	?
S059	SP3041	F	71	Definite	ALS	C90RF72	57	Limb	32	Y	None	Vitamin C/E	Ν
S060	SP3338	Μ	71	Probable	ALS-FA	Unknown	53	Limb	40	Y	None	Vitamin C/E	Ν
S061	LP0052	М	50	Probable	ALS	Unknown	27	Limb	36	Y	None	None	?
S062	SP3301	Μ	49	Probable	ALS	ANG	4	Limb	36	Y	None	Vitamin C/E	Ν
S063	LP0161	F	53	Probable	ALS	Unknown	35	Limb	42	Ν	None	None	?
S064	LP0317	М	51	Probable	ALS	Unknown	15	Bulbar	12	Y	None	None	?
S065	SP3400	Μ	57	Definite	ALS+EL	Unknown	21	Bulbar	21	Y	None	None	Ν

S066	LP0234	Μ	59	Definite	ALS	Unknown	41	Limb	41	Y	None	Multivitamin	?
S067	SNt0038	F	63	Probable	ALS	Unknown	27	Limb	40	Y	None	None	?
S068	SP3032	Μ	60	Definite	ALS	Unknown	38	Limb	34	Y	None	None	?
S069	SP3230	М	60	PMA	PMA	Unknown	53	Limb	41	Y	None	Vitamin C/E	Ex-Smoker
S070	SP3239	F	62	Probable	ALS	Unknown	28	Limb	39	Y	None	None	Ν
S071	LP0039	F	65	Definite	ALS	Unknown	35	Bulbar	46	Y	None	None	?
S072	BP6058	М	32	Definite	ALS	Unknown	72	Limb	Unknown	Y	None	Vitamin E	?
S073	BP6051	F	35	Definite	ALS	Unknown	23	Limb	Unknown	Y	None	Vitamin C	?
S074	BLi0048	Μ	35	Probable	ALS	Unknown	82	Limb	Unknown	Unknown	None	None	?
S075	SNt0034	F	42	Probable	ALS	Unknown	42	Limb	45	Y	None	None	?
S076	SP3396	Μ	55	Definite	ALS+EL	Unknown	38	Bulbar	25	Y	None	None	Ex-Smoker
S077	SNc0042	М	57	Definite	ALS	Unknown	36	Mixed	40	Y	None	Vitamin C/E	?
S078	SP3140	F	59	Probable	ALS+EL	Unknown	18	Limb	28	Y	None	Vitamin C/E	Ν
S079	LP0155	F	62	Definite	ALS	Unknown	8	Bulbar	36	Ν	None	None	?
S080	SP3292	М	75	Probable	ALS	Unknown	55	Limb	30	Ν	None	None	Ν
S081	SP3355	F	77	Definite	ALS+EL	Unknown	25	Bulbar	11	Y	None	Vitamin C/E	Ν
S082	SP3346	F	84	Definite	ALS+EL	Unknown	36	Bulbar	31	Ν	None	None	Ν
S083	SP3357	М	85	Definite	ALS	Unknown	15	Bulbar	28	Y	None	Vitamin C/E	Ν
S084	SP3469	М	43	Probable	ALS	C90RF72	52	Limb	42	Y	None	Vitamin C/E	Ν
S085	BP6032	Μ	44	Probable	ALS	Unknown	25	Limb	Unknown	Y	None	None	?
S086	BP6017	F	51	Definite	ALS	Unknown	32	Limb	Unknown	Y	None	None	?
S087	BBe0009	Μ	60	Definite	ALS	Unknown	41	Mixed	Unknown	discontd	None	None	?
S088	SNc0086	М	61	Definite	ALS	C90RF72	29	Limb	40	Y	None	Vitamin C/E	?
S089	SNc0053	М	62	Definite	ALS	Unknown	39	Respiratory	21	Y	None	Vitamin C/E	?
S090	SP3304	F	65	Probable	ALS	Unknown	23	Limb	31	Y	None	None	Ν
S091	SP3143	F	67	Probable	ALS+EL	Unknown	23	Bulbar	31	Y	None	Vitamin C/E	Ν
S092	SP3310	Μ	52	Probable	ALS	Unknown	63	Limb	37	Y	None	None	Ν
S093	SP3049	Μ	53	Definite	ALS+FTD	Unknown	37	Bulbar	31	Y	None	None	Ν
S094	BP6038	F	55	Definite	ALS	Unknown	17	Bulbar	Unknown	Y	None	None	?
S095	SP3095	Μ	55	Definite	ALS	Unknown	26	Limb	27	Y	None	Vitamin C/E	?
S096	SNt0001	F	58	Definite	ALS	Unknown	72	Limb	45	Y	None	None	?
S097	SP3306	М	67	Probable	ALS	Unknown	21	Limb	39	Y	None	Vitamin C/E	Ν
S098	BLi0037	F	71	Probable	ALS	Unknown	66	Bulbar	Unknown	Y	None	None	?

S099	BP6034	Μ	71	Definite	ALS	Unknown	29	Limb	Unknown	Y	None	Vitamin C/E	?
S100	LP0097	F	71	Definite	ALS	Unknown	49	Mixed	20	Y	None	None	?
S101	SP3046	Μ	50	Definite	ALS	Unknown	32	Limb	13	Y	None	None	?
S102	SP3266	Μ	52	Definite	ALS+EL	Unknown	37	Limb	44	Y	None	Vitamin C/E	Ν
S103	SP3156	F	57	Probable	ALS	Unknown	38	Limb	39	Y	None	Vitamin C/E	Ex-Smoker
S104	SP3101	F	57	Probable	ALS	Unknown	34	Bulbar	30	Y	None	Vitamin E	Ν
S105	SNc0018	М	59	PBP	PBP	Unknown	42	Bulbar	40	Y	None	Vitamin C/E	?
S106	SNc0077	Μ	59	PBP	PBP	Unknown	24	Bulbar	46	Y	None	Vitamin C/E	?
S107	SP3341	F	63	Probable	ALS+EL	C90RF72	28	Bulbar	37	Y	None	None	Ν
S108	SP3384	Μ	46	Definite	ALS	Unknown	22	Mixed	40	Y	None	Vitamin E	Ν
S109	SP3414	М	48	Probable	ALS	Unknown	39	Limb	39	Y	None	Vitamin C/E	Ν
S110	SP3298	F	52	Definite	ALS	C90RF72	24	Limb	33	Y	None	None	Ν
S111	BP6001	F	52	Definite	ALS	Unknown	40	Limb	Unknown	Y	None	None	?
S112	SP3363	Μ	70	Definite	ALS	Unknown	13	Respiratory	25	Y	None	Vitamin C/E	Ex-Smoker
S113	SP3347	F	71	Probable	ALS+D	Unknown	49	Limb	42	Y	None	Vitamin C	Ν
S114	SP3356	М	72	Definite	ALS	Unknown	31	Limb	37	Y	None	Vitamin C/E	Ex-Smoker
S115	SNt0004	Μ	73	Probable	ALS	Unknown	32	Limb	37	Y	None	None	?
S116	SP3351	Μ	59	Definite	ALS+D	Unknown	19	Bulbar	33	Y	None	Vitamin C/E	Ν
S117	SP3087	М	60	Probable	ALS	C90RF72	31	Limb	45	Y	None	Vitamin C/E	Ν
S118	SP3030	Μ	62	Probable	ALS	Unknown	64	Limb	38	Y	ONO-trial	Vitamin C/E	Ν
S119	SP3073	М	63	Definite	ALS+EL	Unknown	29	Limb	43	Y	None	Vitamin C/E	Ν
S120	SP3409	F	66	Probable	ALS	Unknown	32	Limb	39	Y	None	Vitamin C/E	Ν
S121	SP3420	F	66	Definite	ALS+EL	C90RF72	32	Bulbar	39	Y	Minocycline	None	Ex-Smoker
S122	BBe0014	Μ	36	Probable	ALS	Unknown	32	Bulbar	Unknown	Y	None	None	?
S123	BP6021	F	36	Definite	ALS	C90RF72	23	Limb	Unknown	Y	None	Vitamin C/E	?
S124	LP0030	М	53	Definite	ALS	Unknown	24	Limb	45	Y	None	Vitamin C/E	?
S125	SP3335	Μ	53	Probable	ALS	Unknown	52	Limb	34	Y	None	Vitamin C/E	Ν
S126	SP3079	М	54	Probable	ALS	Unknown	27	Limb	31	Y	None	Vitamin C/E	Y
S127	LP0215	F	61	Definite	ALS	Unknown	23	Bulbar	25	Y	None	None	?
S128	LP0222	F	58	Probable	ALS	Unknown	37	Bulbar	45	Y	None	None	?
S129	SNt0024	М	68	PBP	PBP	Unknown	38	Bulbar	43	Y	None	Vitamin C/E	?
S130	SNc0010	Μ	69	Definite	ALS	Unknown	36	Limb	33	Y	None	Vitamin C/E	?
S131	LP0271	F	71	Probable	ALS	Unknown	14	Mixed	34	Ν	None	None	?

S132	SP3413	М	56	Definite	ALS	C90RF72	24	Limb	32	Y	ONO-trial	Vitamin C/E	Ex-Smoker
S133	SP3465	М	58	Definite	ALS	Unknown	24	Limb	46	Y	None	Vitamin C/E	Ν
S134	LP0316	F	62	Definite	ALS	Unknown	44	Bulbar	23	Y	None	None	?
S135	SP3219	F	63	Probable	ALS	Unknown	19	Limb	0	Ν	None	None	Ν
S136	SP3417	Μ	39	Probable	ALS	Unknown	23	Limb	46	Y	None	None	Y
S137	LP0223	Μ	44	Definite	ALS	Unknown	25	Limb	30	Y	None	None	?
S138a	SNc0016	F	45	Definite	ALS	Unknown	41	Limb	36	Ν	None	None	?
S138b	SNt0017	Μ	74	Probable	ALS	Unknown	27	Bulbar	36	Y	None	None	?
S139	SP3098	F	74	Probable	ALS	Unknown	28	Limb	33	Y	None	Vitamin C/E	Ν
S140	SNt0020	F	75	Definite	ALS	Unknown	18	Limb	45	Y	None	None	?
S141	SNc0071	F	77	Definite	ALS	Unknown	29	Limb	22	Y	None	Vitamin C/E	?
S142	SP3016	Μ	79	Probable	ALS	Unknown	15	Limb	37	Y	None	None	?
S143	LP0265	Μ	83	Probable	ALS	Unknown	34	Limb	25	Ν	None	None	?
S144	LP0286	F	83	Definite	ALS	Unknown	25	Bulbar	41	Y	None	None	?
S145	SP3065	Μ	65	Probable	ALS	Unknown	13	Limb	40	Ν	None	None	?
S146	SP3132	Μ	66	Probable	ALS	Unknown	10	Limb	36	Y	None	None	Ν
S147	SP3447	Μ	65	Probable	ALS	Unknown	43	Bulbar	37	Y	None	Vitamin E	Ν
S148	SP3368	F	67	Probable	ALS	Unknown	36	Limb	39	Y	None	Vitamin C/E	Ν
S149	SP3391	F	69	Definite	ALS	Unknown	29	Limb	36	Y	ONO-trial	None	Ν
S150	SP3237	Μ	24	Definite	ALS	Unknown	45	Limb	18	Y	None	None	Ν
S151	SP3475	М	38	Definite	ALS	Unknown	32	Mixed	31	Y	None	None	Ν
S152	SNc0090	F	39	Definite	ALS	Unknown	25	Limb	40	Y	None	Vitamin C/E	?
S153	SP3423	F	75	Probable	ALS+EL	Unknown	20	Bulbar	46	Y	None	None	Ex-Smoker
S154	SP3370	F	81	Probable	ALS	Unknown	25	Bulbar	44	Y	None	None	Ν
S155	SNc0055	Μ	82	Definite	ALS	Unknown	80	Limb	36	Ν	None	Vitamin C	?
S156	SNc0029	М	75	Definite	ALS	Unknown	44	Limb	28	Ν	None	None	?
S157	LP0015	Μ	53	Definite	ALS	Unknown	26	Limb	18	Y	Minocycline	None	?
S158	SNt0006	М	52	Definite	ALS	Unknown	47	Bulbar	42	Y	None	None	?
S159	BP6042	Μ	54	Definite	ALS	Unknown	20	Bulbar	Unknown	Y	None	None	?
S160	BP6039	Μ	55	Probable	ALS	Unknown	26	Limb	Unknown	Y	None	None	?
S161	SP3174	F	57	Probable	ALS	Unknown	36	Limb	44	Y	None	None	Ex-Smoker
S162	SP3326	М	40	Probable	ALS	Unknown	51	Limb	45	Y	None	None	Ν
S163	SP3183	М	45	Probable	ALS	C90RF72	14	Limb	36	Y	None	Vitamin C/E	Ν

S164	LP0053	М	47	Definite	ALS	Unknown	20	Mixed	41	Y	Minocycline	None	?
S165	SP3222	F	48	PBP	PBP	C90RF72	45	Bulbar	0	Y	None	None	Ν
S166	SP3082	М	64	Probable	ALS	Unknown	26	Limb	27	Ŷ	None	Vitamin E	N
S167	SP3327	F	64	Probable	ALS	Unknown	31	Limb	40	Ν	None	Vitamin C/E	Ν
S168	LP0001	М	66	Probable	ALS	Unknown	37	Limb	30	Y	ONO-trial	, Vitamin É	?
S169	BP6006	F	66	Definite	ALS	Unknown	12	Limb	Unknown	Y	None	Vitamin C	?
S170	SP3039	F	71	Definite	ALS	Unknown	26	Bulbar	27	Y	None	Vitamin C/E	Ν
S171	SP3058	М	71	Definite	ALS	C90RF72	12	Limb	0	Y	None	Vitamin C/E	?
S172	SP3067	М	72	Definite	ALS	Unknown	57	Bulbar	44	Y	None	None	Ν
S173	SP3103	F	75	Definite	ALS	Unknown	10	Limb	14	Y	None	None	Ν
S174	LP0005	М	49	Probable	ALS	Unknown	8	Limb	0	Ν	None	None	?
S175	SP3309	Μ	49	Probable	ALS	Unknown	68	Limb	43	Y	None	Vitamin C/E	Ν
S176	SP3385	F	52	Definite	ALS	Unknown	23	Limb	22	Y	Copaxone	Vitamin C/E	Ν
S177	BP6045	F	54	Definite	ALS	Unknown	23	Bulbar	Unknown	Y	None	Vitamin C/E	?
S178	SP3145	М	62	Definite	ALS+FTD	Unknown	16	Bulbar	36	Y	None	Vitamin C/E	Ex-Smoker
S179	SP3376	Μ	62	Probable	ALS	Unknown	43	Limb	21	Y	None	None	Y
S180	BP6025	F	64	PBP	PBP	Unknown	39	Bulbar	Unknown	Y	None	None	?
S181	BLi0039	Μ	67	Definite	ALS	Unknown	61	Mixed	Unknown	Y	None	None	?
S182	SNc0008	М	66	Definite	ALS	Unknown	19	Mixed	38	Ν	None	None	?
S183	LP0069	F	67	Definite	ALS	Unknown	37	Respiratory	39	Y	None	None	?
S184	LP0307	F	67	Probable	ALS	Unknown	49	Mixed	31	Ν	None	None	?
S185	SP3383	F	69	Definite	ALS+EL	Unknown	17	Mixed	34	Y	None	Vitamin C/E	Ν
S186	SP3431	F	57	Definite	ALS+EL	C90RF72	20	Mixed	32	Y	None	Vitamin C/E	Ν
S187	LP0104	Μ	55	Probable	ALS	Unknown	55	Limb	41	Y	None	None	?
S188	LP0055	М	56	Definite	ALS	Unknown	49	Mixed	31	Y	None	None	?
S189	SP3090	Μ	60	Probable	ALS	C90RF72	27	Bulbar	39	Y	None	None	Ν
S190	SP3232	F	59	Probable	ALS	Unknown	47	Limb	37	Y	None	Vitamin C/E	Ex-Smoker
S191	SP3042	М	59	Probable	ALS+FTD	C90RF72	49	Limb	37	Y	None	Vitamin C/E	Ν
S192	SP3478	Μ	59	Probable	ALS	Unknown	14	Limb	19	Y	None	None	Ν
S193	SNc0024	F	62	Definite	ALS	Unknown	29	Mixed	22	Y	None	Vitamin C/E	?
S194	SP3281	М	61	Probable	ALS	Unknown	35	Limb	43	Ν	None	None	Ν
S195	LP0396	F	63	Probable	ALS	Unknown	16	Bulbar	41	Ν	None	None	?
S196	BBe0013	F	68	Probable	ALS	Unknown	74	Limb	Unknown	Y	None	None	?

S197	LP0232	М	69	Probable	ALS	Unknown	23	Limb	45	Y	None	Vitamin E	?
S198	SNt0016	Μ	72	PBP	PBP	Unknown	82	Bulbar	40	Y	None	None	?
S199	LP0176	Μ	79	Probable	ALS	Unknown	39	Bulbar	32	Y	None	None	?
S200	LP0300	М	40	Probable	ALS	Unknown	37	Limb	30	Y	None	None	?
S201	SP3453	М	44	Probable	ALS	Unknown	32	Limb	38	Y	None	None	Ν
S202	LP0064	М	46	Definite	ALS	C90RF72	21	Limb	34	Y	None	None	?
S203	SNc0059	F	47	Definite	ALS	C90RF72	73	Limb	30	Y	ONO-trial	Vitamin C/E	?
S204	LP0037	Μ	62	Definite	ALS	Unknown	23	Limb	42	Y	None	None	?
S205	SP3433	М	63	Definite	ALS+EL	C90RF72	11	Limb	29	Y	None	None	Ν
S206	SP3471	М	64	Probable	ALS	C90RF72	27	Mixed	41	Y	None	None	Ex-Smoker
S207	SP3018	F	65	Probable	ALS	Unknown	33	Bulbar	44	Y	None	Vitamin C/E	Ν
S208	SP3078	F	66	Probable	ALS	Unknown	37	Limb	41	Ν	None	None	Ex-Smoker
S209	SNc0012	М	65	Definite	ALS	Unknown	37	Limb	33	Y	None	Vitamin C/E	?
S210	BP6041	М	66	Definite	ALS	Unknown	32	Bulbar	Unknown	discontd	None	None	?
S211	BP6056	F	69	Probable	ALS	Unknown	18	Bulbar	Unknown	Y	None	None	?
S212	SNc0002	Μ	27	Definite	ALS	Unknown	43	Mixed	23	Y	Minocycline	Vitamin C/E	?
S213	LP0207	F	37	Probable	ALS	C90RF72	49	Bulbar	45	Ν	None	None	?
S214	SP3037	М	37	Definite	ALS	Unknown	36	Bulbar	31	Y	None	Vitamin C/E	?
S215	SP3187	Μ	56	Probable	ALS	Unknown	63	Limb	38	Y	None	Vitamin C/E	Ex-Smoker
S216	SP3288	М	57	Probable	ALS	C90RF72	32	Bulbar	35	Y	None	Vitamin C/E	Ν
S217	BP6027	Μ	59	Definite	ALS	Unknown	25	Limb	Unknown	Y	None	None	?
S218	SP3379	F	62	Probable	ALS	Unknown	80	Limb	39	Y	None	None	Ν
S219	SNt0036	Μ	71	Probable	ALS	Unknown	85	Limb	38	Y	None	None	?
S220	SP3105	F	70	Probable	ALS+EL	Unknown	48	Limb	34	Y	None	None	Ν
S221	BP6047	F	71	Definite	ALS	Unknown	32	Bulbar	Unknown	Y	None	Vitamin C/E	?
S222	SP3464	Μ	72	Probable	ALS	Unknown	37	Mixed	40	Y	None	None	Ν
S223	SNc0095	Μ	73	Probable	ALS-FA	Unknown	54	Limb	40	Y	None	Vitamin C/E	?
S224	BP6010	F	74	Definite	ALS	Unknown	22	Bulbar	Unknown	Y	None	None	?
S225	SNc0092	F	53	PBP	PBP	Unknown	21	Bulbar	24	discontd	None	None	?
S226	LP0127	М	54	Probable	ALS	Unknown	43	Limb	45	Y	None	None	?
S227	SP3043	Μ	54	Definite	ALS	Unknown	21	Bulbar	41	Ν	None	Vitamin C/E	Ν
S228	BP6030	М	57	Definite	ALS	Unknown	29	Limb	Unknown	Y	None	None	?
S229	SP3296	F	56	Probable	ALS	Unknown	24	Limb	40	Y	None	Vitamin C/E	Ν

S230	SP3159	F	75	PBP	PBP+EL	Unknown	27	Bulbar	44	Y	None	Vitamin C/E	Ν
S231	LP0397	Μ	81	Probable	ALS	Unknown	19	Bulbar	39	Ν	None	None	?
S232	SNc0051	F	81	PBP	PBP	Unknown	47	Bulbar	19	Ν	None	None	?
S233	LP0139	Μ	86	Definite	ALS	Unknown	12	Limb	0	Ν	None	None	?
S234	SP3060	Μ	70	Definite	ALS	Unknown	15	Limb	19	Y	None	Vitamin E	Ν
S235	SP3243	Μ	69	Probable	ALS	Unknown	18	Respiratory	31	Y	None	None	Ex-Smoker
S236	SP3286	F	70	Definite	ALS+EL	Unknown	35	Limb	36	Y	None	Vitamin C/E	Ν
S237	BP6008	М	47	Definite	ALS	Unknown	31	Bulbar	Unknown	Y	ONO-trial	Vitamin E	?
S238	LP0238	Μ	49	Probable	ALS	Unknown	30	Bulbar	41	Y	None	None	?
S239	BP6049	F	54	Probable	ALS	Unknown	38	Mixed	Unknown	Y	None	Multivitamin	?
S240	SNt0030	М	52	Probable	ALS	Unknown	55	Limb	38	discontd	None	None	?
S241	BP6015	Μ	59	Definite	ALS	Unknown	27	Limb	Unknown	Y	None	None	?
S242	SP3428	Μ	61	Definite	ALS	Unknown	27	Bulbar	30	Y	None	Vitamin C/E	Ν
S243	SP3010	F	61	Definite	ALS	C90RF72	43	Bulbar	8	Y	None	None	?
S244	BP6052	F	63	Probable	ALS	Unknown	25	Bulbar	Unknown	Y	None	None	?
S245	LP0116	F	67	Probable	ALS	Unknown	13	Limb	35	Y	None	None	?
S246	SP3393	Μ	65	Probable	ALS	Unknown	18	Limb	41	Y	None	None	Ν
S247	SP3353	F	58	Probable	ALS	Unknown	47	Limb	33	Y	None	Vitamin C/E	Y
S248	BBe0003	F	60	Definite	ALS	Unknown	47	Bulbar	Unknown	Y	None	None	?
S249	SP3056	М	72	Probable	ALS	Unknown	15	Bulbar	33	Y	None	None	Ν

Drug Compound	Study Design	Study Period	Patient Criteria for Inclusion	Dosage	Primary Measure	Secondary Measures	Drug Safety & Efficacy	Mechanism(s) of Action	Phase of Trial (ref)
Ozanezumab Novartis Pharmaceutical Ltd. NCT01753076	Multicentre, double-blinded, placebo controlled, randomised parallel-group study	DEC 2012 - ? (n=294) 37 centres in 11 countries	- ALS familial/sporadic - onset ≤30mnths - stable dose Riluzole - SVC ≥65% - 18-80yrs	Subcutaneous injection 15mg/kg every 2wks for a period of 48wks	Time to death and ALSFRS-R	Muscle strength, respiratory function, safety, PK and quality of life	Trial ongoing expected to be completed MAY 2015	Monoclonal Ab against neurite outgrowth inhibitor Nogo-A	Phase II (McCray & Ide 2000)
LiCALS UK-MND Study Group	Multicentre, double-blinded, placebo controlled, randomised parallel-group study	MAY-NOV 2009-2011 (n=214) 10 centres across the UK	 ALS definite/probable or possible onset ≤36mnths stable dose Riluzole >18yrs 	Administered orally 295mg three times daily for a period of 18mnths	Time to death	ALSFRS-R, mental health state and quality of life	Safe and well tolerated but no significant improvement in survival or ALSFRS-R	Neuroprotective properties	Phase III (Morrison et al 2013)
ONO-2506 Pharmaceutical Co. Ltd. NCT00403104	Multicentre, double-blinded, placebo controlled, randomised parallel-group study	NOV-DEC 2006-2008 (n=420) 26 centres in 8 countries	 ALS definite/probable or possible onset ≤14mnths stable dose Riluzole 18-74yrs 	Administered orally 1,200mg daily for a period of 18mnths	Rate of decline SVC	Time to death, ALS FRS-R, muscle strength and quality of life	DATA NOT PUBLISHED	Modulatory compound of astrocytic function	Phase II (McCray & Ide 2000)
Copaxone® TEVA Pharmaceutical Industries Ltd. NCT0326625	Multicentre, double-blinded, placebo controlled, randomised parallel-	JUL-DEC 2006 (n=366) 13 centres in 6 countries	- ALS definite/probable - onset <3yrs - stable dose Riluzole - SVC ≥70% - 18-70yrs - ALSFRS-R of 10 points or	Subcutaneous injection 40mg daily for a period of 52wks	ALSFRS-R	Time to death or permanent assisted ventilation	Safe and well tolerated but no significant improvement in survival or ALSFRS-R	Neuroprotective and immune- modulatory compound used to treat relapsing and remitting MS	Phase II (Meininger et al 2009)

Table B4: Review of ALS Phase II/III Clinical Drug Trials (ClinicalTrials.gov) (U.S. National Library of Medicine, Bethesda)

	group study		more for measures of respiratory function						
Minocycline NINDS NCT00047723	Multicentre, double-blinded, placebo controlled, randomised parallel-group study	NOV-DEC 2003-2005 (n=412) 30 centres in 22 American states	 ALS definite/probable onset <3yrs stable dose Riluzole FVC ≥75% 21-85yrs 	Administered orally in escalating doses of up to 400mg daily for a period of 9mnths	ALSFRS-R	Muscle strength, respiratory function, quality of life and time to death	Minocycline worsened the clinical course of ALS with some neurological & GI related adverse events recorded	Anti-apoptotic and anti-inflammatory compound used in the treatment of bacterial infections. Inhibits iNOS and caspase activation.	Phase III (Gordon et al 2007)
BDNF Study Group	Multicentre, double-blinded, placebo controlled, randomised parallel-group study	Pre-1999 (n=1,135)	- N/A	Subcutaneous injection 25 or 100mg /kg daily for a period of 9mnths	Time to death and rate of decline FVC	ALSFRS-R, syllable repetition and walking speed over 15ft	Safe and well tolerated but no significant improvement in survival or ALSFRS-R	Potent survival factor for MN's	Phase III (BDNF 1999)

Table B4: Review of ALS Phase II/III Clinical Drug Trials (ClinicalTrials.gov) (U.S. National Library of Medicine, Bethesda)

Abbreviations: Ab - antibody, ALS - Amyotrophic Lateral Sclerosis, BDNF - brain derived neurotrophic factor, FRS-R - Functional Rating Scale Revised, FVC - forced vital capacity, GI - gastrointestinal, iNOS - inducible nitric oxide synthase, LiC - lithium carbonate, MN - motor neuron, MND - Motor Neurone Disease, MS - Multiple Sclerosis, N/A - not available, NINDS - National Institute of Neurological Disorders and Stroke, PK - pharmacokinetics and SVC - slow vital capacity.

ID	ECACC	Sex	Age																
C101	LNh0053	Μ	51	C121	SC3734	F	40	C141	LC0414	Μ	35	C161	BC6084	F	57	C181	BC6162	F	77
C102	SNc0201	F	52	C122	LPo0087	Μ	47	C142	LRo0025	Μ	38	C162	BLi0198	Μ	61	C182	SC3754	Μ	44
C103	LC0162	Μ	59	C123	LRo0009	F	48	C143	SC3117	Μ	54	C163	SMa0054	F	48	C183	BC6416	Μ	51
C104	SPr0016	Μ	73	C124	SMa0227	Μ	52	C144	SNc0078	F	56	C164	SC3571	Μ	50	C184	LC0290	Μ	56
C105	LC0538	F	74	C125	LPy0011	F	55	C145	SC3425	Μ	57	C165	LC0095	F	71	C185	BLi0240	Μ	58
C106	BC6048	Μ	77	C126	SC3386	Μ	57	C146	SNc0167	Μ	60	C166	SC3142	Μ	72	C186	LC0220	F	58
C107	BC6434	F	80	C127	BM6403	F	59	C147	BC6043	F	61	C167	SMa0203	Μ	75	C187	SC3175	Μ	61
C108	BC6428	Μ	62	C128	LC0441	Μ	60	C148	BLi0259	М	63	C168	BC6426	Μ	80	C188	BLi0074	Μ	64
C109	SNc0158	F	63	C129	LC0521	Μ	62	C149	LC0045	Μ	65	C169	BC6274	F	63	C189	LCa0093	F	66
C110	B0x0008	Μ	64	C130	BLi0105	F	65	C150	BBr0020	F	66	C170	SMa0232	Μ	63	C190	LCa0134	Μ	66
C111	SMa0096	Μ	56	C131	SC3097	Μ	64	C151	SMa0050	F	67	C171	SMa0133	Μ	65	C191	LC0241	Μ	69
C112	SC3170	F	58	C132	SC3141	Μ	67	C152	SC3533	Μ	69	C172	BC6511	F	66	C192	LC0394	Μ	70
C113	LC0370	Μ	69	C133	SMa0009	F	67	C153	BBe0002	F	71	C173	LRf0012	Μ	68	C193	SC3178	Μ	71
C114	SC3403	F	69	C134	LNh0073	Μ	69	C154	BC6067	М	71	C174	BC6525	Μ	70	C194	SMa0013	Μ	73
C115	LC0459	Μ	70	C135	SNc0125	F	69	C155	LC0478	Μ	72	C175	BLi0021	Μ	71	C195	BLi0204	F	73
C116	SC3305	Μ	71	C136	SC3780	Μ	70	C156	SC3248	Μ	75	C176	LC0329	F	52	C196	BC6196	Μ	76
C117	BLi0224	F	36	C137	BC6238	Μ	72	C157	SNc0015	F	75	C177	SNt0075	Μ	57	C197	SDu0009	F	79
C118	LC0466	Μ	46	C138	BC6170	Μ	74	C158	SC3040	Μ	78	C178	SC3283	Μ	41	C198	BC6200	F	69
C119	LPo0059	Μ	66	C139	SMa0188	F	74	C159	LC0457	Μ	49	C179	LC0514	Μ	55	C199	SC3343	Μ	83
C120	SDu0007	F	66	C140	BC6156	М	78	C160	BLi0032	М	68	C180	BC6145	F	69	C200	SC3479	F	63

 Table B5: Clinical Information Relating to Control LCL's in the ECACC Replication Cohort

ID	ECACC	Sex	Age	EEC	Diagnosis	Genotype	Survival	Presentation	ALSFRS-R	Riluzole	Meds Other	Supplements	Smoking
S250	SP3375	Μ	46	Probable	ALS	Unknown	Unknown	Limb	46	Y	None	Vitamin C/E	Ν
S251	LP0077	Μ	47	Probable	ALS	Unknown	28	Limb	46	Ν	None	None	?
S252	BP6185	Μ	49	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	Multivitamin	?
S253	BP6180	F	50	Probable	ALS	Unknown	24	Limb	Unknown	Y	Minocycline	Vitamin E	?
S254	LP0036	Μ	51	Definite	ALS	Unknown	32	Bulbar	38	Y	None	None	?
S255	SP3388	F	51	Probable	ALS	Unknown	Unknown	Limb	34	Y	None	None	Ν
S256	LP0244	Μ	56	Definite	ALS	Unknown	34	Limb	42	Y	None	None	?
S257	SP3394	Μ	56	Probable	ALS	Unknown	45	Mixed	32	Y	None	Vitamin C/E	Y
S258	BP6230	F	58	Definite	ALS	Unknown	21	Limb	Unknown	Y	None	Vitamin E	?
S259	LNh0062	Μ	59	Probable	ALS	Unknown	Unknown	Bulbar	45	Y	None	None	?
S260	SP3161	Μ	58	Probable	ALS	Unknown	32	Bulbar	27	discontd	None	Vitamin C/E	?
S261	BP6163	F	60	Probable	ALS	Unknown	109	Limb	Unknown	Y	None	None	?
S262	BP6273	Μ	61	Probable	ALS	Unknown	66	Limb	Unknown	Y	None	None	?
S263	LP0407	F	73	Probable	ALS	Unknown	58	Limb	42	Y	None	None	?
S264	LNh0049	Μ	75	Definite	ALS	Unknown	45	Limb	40	Y	None	None	?
S265	BP6226	Μ	77	Definite	ALS	Unknown	74	Limb	Unknown	Y	None	None	?
S266	BP6155	F	78	Probable	ALS	Unknown	40	Bulbar	Unknown	Ν	None	Vitamin C	?
S267	SP3100	F	61	Probable	ALS	Unknown	Unknown	Limb	46	Y	None	None	?
S268	BP6107	Μ	62	Probable	ALS	C90RF72	21	Limb	Unknown	Y	None	Multivitamin	?
S269	BP6262	Μ	61	Probable	ALS	Unknown	42	Limb	Unknown	Y	None	Vitamin E	?
S270	SP3350	Μ	61	Probable	ALS	Unknown	95	Limb	32	Ν	None	None	Ν
S271	BP6345	F	64	Probable	ALS	Unknown	34	Bulbar	Unknown	Y	None	None	?
S272	SP3253	Μ	52	PBP	PBP	Unknown	Unknown	Bulbar	37	Y	None	None	Ν
S273	LP0401	Μ	53	Probable	ALS	Unknown	66	Limb	0	Y	None	None	?
S274	SNt0008	Μ	52	Definite	ALS	Unknown	Unknown	Limb	45	Y	None	None	?
S275	LP0067	F	55	Definite	ALS	Unknown	24	Limb	43	Y	None	None	?
S276	LP0066	F	56	Definite	ALS	Unknown	40	Limb	43	Ν	None	None	?
S277	SP3267	Μ	55	Probable	ALS	Unknown	67	Limb	42	Y	None	None	Y
S278	BP6159	F	69	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	Vitamin C/E	?
S279	BP6079	М	69	Definite	ALS	Unknown	25	Limb	Unknown	Y	None	None	?
S280	BP6291	М	69	Probable	ALS	Unknown	13	Mixed	Unknown	Y	None	None	?
S281	LP0482	М	70	Probable	ALS	Unknown	Alive	Limb	44	Y	None	None	?

Table B6: Clinical Information Relating to Sporadic LCL's in the ECACC Replication Cohort

S282	LP0439	F	35	Probable	ALS	Unknown	76	Limb	38	Y	None	None	?
S283	BP6096	М	35	Definite	ALS	Unknown	59	Limb	Unknown	Y	None	Vitamin C/E	?
S284	SP3069	Μ	38	Probable	ALS	Unknown	Unknown	Limb	46	Y	None	Vitamin C/E	Ν
S285	LP0221	Μ	42	Definite	ALS	Unknown	72	Bulbar	41	Y	None	Vitamin C/E	?
S286	SP3435	М	43	Definite	ALS	Unknown	Unknown	Limb	43	Y	None	None	Y
S287	BP6208	F	46	Definite	ALS	C90RF72	36	Bulbar	Unknown	Y	None	None	?
S288	LP0323	F	63	Probable	ALS	Unknown	57	Limb	45	Ν	None	Multivitamin	?
S289	LPo0003	Μ	63	Definite	ALS	Unknown	41	Limb	19	Ν	None	None	?
S290	LNh0040	Μ	65	Probable	ALS	C90RF72	43	Limb	36	Ν	None	None	?
S291	BP6098	Μ	66	Definite	ALS	C90RF72	36	Limb	Unknown	Y	None	None	?
S292	BP6361	Μ	66	Probable	ALS	Unknown	29	Limb	Unknown	Y	None	None	?
S293	SP3302	Μ	67	Probable	ALS	Unknown	79	Limb	43	Ν	None	None	Ν
S294	BP6285	Μ	67	Definite	ALS	Unknown	38	Limb	Unknown	Y	None	Multivitamin	?
S295	BP6357	Μ	75	Probable	ALS	Unknown	31	Limb	Unknown	Y	None	None	?
S296	BP6369	F	67	Definite	ALS	Unknown	23	Bulbar	Unknown	discontd	None	None	?
S297	LP0448	Μ	58	Definite	ALS	Unknown	22	Bulbar	29	Y	None	Vitamin E	?
S298	LPo0001	Μ	72	Probable	ALS	Unknown	Alive	Limb	0	Y	None	None	?
S299	SNc0028	F	73	PBP	PBP	Unknown	91	Bulbar	44	Y	None	Vitamin C/E	?
S300	LNh0020	Μ	31	Probable	ALS	Unknown	Alive	Limb	Unknown	Y	None	Vitamin C	?
S301	SP3402	F	32	PLS	PLS	Unknown	Unknown	Limb	15	Y	None	Vitamin E	Ν
S302	LP0260	Μ	39	Definite	ALS	Unknown	32	Limb	40	Y	None	None	?
S303	BP6181	Μ	43	Definite	ALS	Unknown	94	Limb	Unknown	Y	None	Vitamin C/E	?
S304	LP0400	Μ	42	Probable	ALS	Unknown	Alive	Limb	42	Y	None	None	?
S305	SNc0043	F	45	Definite	ALS	Unknown	83	Limb	41	discontd	None	Vitamin C/E	?
S306	SP3439	Μ	46	Definite	ALS	Unknown	Unknown	Limb	41	Y	None	None	Ν
S307	LNh0048	М	48	Definite	ALS	Unknown	28	Limb	16	Y	None	None	?
S308	BP6328	Μ	50	PBP	PBP	Unknown	Unknown	Bulbar	Unknown	Y	None	None	?
S309	BP6363	F	50	Probable	ALS	C90RF72	45	Limb	Unknown	Y	None	Vitamin E	?
S310	LNh0018	F	51	Definite	ALS	Unknown	20	Mixed	Unknown	Y	None	None	?
S311	LP0086	Μ	52	Probable	ALS	Unknown	Alive	Limb	48	Y	None	Vitamin E	?
S312	LP0199	Μ	52	Definite	ALS	Unknown	17	Limb	46	Y	None	None	?
S313	BP6236	Μ	53	Definite	ALS	Unknown	Unknown	Bulbar	Unknown	Y	None	None	?
S314	LP0269	Μ	53	Definite	ALS	Unknown	84	Limb	30	Y	None	Multivitamin	?

S315	LP0403	F	53	Probable	ALS	Unknown	56	Bulbar	42	Y	None	None	?
S316	SP3332	М	53	Probable	ALS	Unknown	60	Limb	46	Y	None	Vitamin C/E	Ν
S317	LP0132	М	54	Probable	ALS	Unknown	28	Limb	27	Y	None	, Vitamin É	?
S318	LP0522	М	56	Probable	ALS	Unknown	28	Mixed	2	Y	None	None	?
S319	LP0203	F	57	Definite	ALS	C90RF72	24	Bulbar	44	Y	None	Multivitamin	?
S320	BP6171	F	58	Probable	ALS	Unknown	46	Mixed	Unknown	Y	None	None	?
S321	LP0003	М	59	Probable	ALS	Unknown	Alive	Limb	37	Y	None	Multivitamin	?
S322	LSh0002	М	58	Probable	ALS	C90RF72	30	Limb	39	Y	None	None	?
S323	LP0308	М	59	Definite	ALS	Unknown	18	Bulbar	32	Y	None	None	?
S324	SP3421	М	59	Probable	ALS+EL	Unknown	Unknown	Bulbar	45	Y	None	None	Y
S325	LP0248	F	61	Definite	ALS	C90RF72	25	Bulbar	36	Y	None	None	?
S326	LSh0016	F	60	Probable	ALS	Unknown	Alive	Bulbar	39	Y	None	None	?
S327	SDu0001	М	62	Probable	ALS	Unknown	53	Limb	39	Y	None	Vitamin C	?
S328	BP6070	М	63	Definite	ALS	Unknown	37	Bulbar	Unknown	Y	None	Vitamin E	?
S329	BP6256	М	65	Probable	ALS	Unknown	44	Unknown	Unknown	Y	None	None	?
S330	SP3311	F	63	Definite	ALS	Unknown	Unknown	Bulbar	45	Y	None	None	Ν
S331	BP6268	М	65	Definite	ALS	Unknown	19	Limb	Unknown	Y	None	None	?
S332	BP6305	М	65	Probable	ALS	Unknown	110	Limb	Unknown	Y	None	None	?
S333	LP0432	F	66	Probable	ALS	Unknown	29	Respiratory	45	Y	Copaxone®	Vitamin E	?
S334	LP0442	М	65	Definite	ALS	Unknown	Alive	Limb	44	Y	None	None	?
S335	SP3387	М	65	Definite	ALS	Unknown	Unknown	Limb	26	Y	None	Vitamin C/E	Ν
S336	BP6116	М	66	Probable	ALS	Unknown	57	Limb	Unknown	Ν	None	None	?
S337	LP0012	М	67	Probable	ALS	Unknown	42	Limb	0	Y	None	None	?
S338	LP0338	F	68	Probable	ALS	Unknown	39	Bulbar	48	discontd	None	None	?
S339	BP6294	М	69	Definite	ALS	Unknown	18	Limb	Unknown	Y	None	None	?
S340	LP0458	F	69	Probable	ALS	Unknown	24	Bulbar	43	Y	None	None	?
S341	BP6175	М	70	Definite	ALS	Unknown	19	Bulbar	Unknown	Y	None	None	?
S342	BP6275	М	71	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	Multivitamin	?
S343	LP0330	F	71	Probable	ALS	Unknown	30	Mixed	22	Y	None	None	?
S344	LNh0065	М	73	Definite	ALS	Unknown	55	Bulbar	37	Y	None	None	?
S345	BP6320	Μ	75	Probable	ALS	Unknown	90	Limb	Unknown	Y	None	None	?
S346	LPo0016	М	75	Definite	ALS	Unknown	45	Limb	32	Y	None	Multivitamin	?
S347	BP6169	F	75	Definite	ALS	Unknown	47	Bulbar	Unknown	Y	None	Multivitamin	?

S348	BP6177	F	82	Definite	ALS	Unknown	23	Bulbar	Unknown	Ν	None	None	?
S349	BP6100	М	70	PBP	PBP	Unknown	82	Bulbar	Unknown	Y	None	None	?
S350	LP0210	М	35	Probable	ALS	Unknown	33	Limb	41	Y	None	None	?
S351	LP0451	М	37	Definite	ALS	Unknown	Alive	Limb	31	Y	None	None	?
S352	SP3484	F	37	Probable	ALS	C9ORF72-TARDBP	57	Limb	42	Y	None	Vitamin E	Ν
S353	BP6075	М	43	Probable	ALS	Unknown	70	Limb	Unknown	Y	None	Vitamin C	?
S354	BP6215	М	45	Probable	ALS	Unknown	51	Limb	Unknown	Y	None	Vitamin C/E	?
S355	SP3031	F	47	Definite	ALS	Unknown	Unknown	Bulbar	38	Y	None	None	N
S356	LP0413	М	46	Probable	ALS	Unknown	54	Limb	44	Ν	None	Multivitamin	?
S357	LP0331	М	48	Definite	ALS	Unknown	47	Bulbar	42	discontd	None	None	?
S358	LP0321	М	50	Definite	ALS	Unknown	105	Mixed	26	Y	None	None	?
S359	SNt0012	F	49	PBP	PBP	Unknown	Unknown	Bulbar	35	Ν	None	Multivitamin	?
S360	BP6136	М	52	Probable	ALS	Unknown	27	Limb	Unknown	Y	None	Vitamin C/E	?
S361	BP6266	М	52	Probable	ALS	Unknown	60	Limb	Unknown	Y	None	None	?
S362	LPo0019	F	53	Probable	ALS	Unknown	27	Limb	36	discontd	None	None	?
S363	BP6355	М	52	Definite	ALS	Unknown	34	Limb	Unknown	Y	None	None	?
S364	LP0373	М	52	Definite	ALS	Unknown	37	Limb	40	Ν	None	None	?
S365	BP6348	М	55	Probable	ALS	Unknown	Unknown	Limb	Unknown	Ν	None	None	?
S366	LP0427	F	55	Probable	ALS	Unknown	54	Limb	44	Ν	None	None	?
S367	BP6233	F	56	Probable	ALS	Unknown	62	Limb	Unknown	Y	None	None	?
S368	LP0454	М	56	Probable	ALS	C90RF72	28	Bulbar	43	Y	None	None	?
S369	BP6197	F	58	Probable	ALS	Unknown	18	Bulbar	Unknown	Y	None	Vitamin C/E	?
S370	LP0350	М	59	Definite	ALS	Unknown	26	Mixed	39	Y	None	None	?
S371	BP6087	М	60	Probable	ALS	Unknown	44	Limb	Unknown	Y	None	None	?
S372	LP0339	F	60	Probable	ALS	Unknown	43	Bulbar	43	Y	None	None	?
S373	LP0359	М	61	Probable	ALS	C90RF72	47	Mixed	35	Y	None	None	?
S374	LP0395	М	62	Definite	ALS	Unknown	44	Limb	39	Y	None	Multivitamin	?
S375	BP6120	F	64	Probable	ALS	Unknown	21	Limb	Unknown	Ν	None	None	?
S376	BP6131	М	63	Probable	ALS	Unknown	67	Limb	Unknown	Y	None	Multivitamin	?
S377	BP6289	М	64	Probable	ALS	Unknown	19	Limb	Unknown	Y	None	None	?
S378	LP0280	М	64	Probable	ALS	Unknown	45	Limb	0	Y	None	None	?
S379	SP3212	F	64	Definite	ALS	Unknown	Unknown	Limb	0	Ν	None	None	N
S380	SNc0049	М	65	Probable	ALS	Unknown	Unknown	Limb	42	Y	None	Vitamin C/E	?

S381	BP6240	Μ	87	Probable	ALS	Unknown	59	Limb	Unknown	Y	None	Vitamin C/E	?
S382	LP0062	F	66	Probable	ALS	Unknown	38	Limb	42	Y	None	None	?
S383	LPo0018	F	67	Definite	ALS	Unknown	39	Limb	37	Y	None	None	?
S384	BP6343	Μ	68	Definite	ALS	Unknown	27	Bulbar	Unknown	Y	None	None	?
S385	LP0063	Μ	68	Definite	ALS	Unknown	29	Respiratory	28	Y	None	None	?
S386	LP0131	Μ	68	Probable	ALS	Unknown	30	Limb	31	Ν	None	Multivitamin	?
S387	BP6224	М	69	Probable	ALS	Unknown	17	Mixed	Unknown	Y	None	None	?
S388	BP6199	М	72	Probable	ALS	Unknown	31	Limb	Unknown	Unknown	Unknown	Unknown	?
S389	BP6137	F	72	Definite	ALS	Unknown	24	Bulbar	Unknown	Y	None	None	?
S390	LP0431	F	75	Probable	ALS	Unknown	49	Mixed	32	Y	None	None	?
S391	BP6161	Μ	76	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	None	?
S392	BP6324	Μ	81	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	None	?
S393	BP6250	F	83	Probable	ALS	Unknown	28	Bulbar	Unknown	Y	None	None	?
S394	LPo0009	М	57	Definite	ALS	Unknown	12	Limb	46	Y	None	None	?
S395	LP0109	Μ	59	Probable	ALS	Unknown	Alive	Unknown	44	Y	None	None	?
S396	BP6259	Μ	69	Probable	ALS	Unknown	37	Limb	Unknown	Y	None	None	?
S397	LPo0047	F	68	Probable	ALS	Unknown	33	Bulbar	31	Y	None	None	?
S398	BP6202	Μ	70	Probable	ALS	Unknown	52	Unknown	Unknown	Y	None	None	?
S399	LP0040	М	76	Probable	ALS	Unknown	48	Limb	43	Y	None	None	?
S400	BP6083	Μ	56	Probable	ALS	Unknown	78	Limb	Unknown	Y	None	None	?
S401	BP6184	Μ	56	Probable	ALS	Unknown	36	Limb	Unknown	Y	None	Multivitamin	?
S402	BP6307	F	58	Probable	ALS	Unknown	18	Bulbar	Unknown	Ν	None	None	?
S403	BP6331	М	58	Probable	ALS	Unknown	32	Bulbar	Unknown	Y	None	None	?
S404	LP0173	Μ	59	Definite	ALS	Unknown	71	Limb	45	Y	None	None	?
S405	LSh0028	Μ	59	Probable	ALS	Unknown	45	Limb	41	Y	None	None	?
S406	BP6153	F	62	Probable	ALS	Unknown	13	Mixed	Unknown	Y	None	None	?
S407	SNt0042	Μ	35	Definite	ALS	Unknown	17	Limb	29	Ν	None	None	?
S408	LP0082	М	40	Probable	ALS	Unknown	70	Limb	41	Ν	None	None	?
S409	LP0227	F	44	Definite	ALS	Unknown	65	Limb	40	Y	None	None	?
S410	BP6088	М	44	Probable	ALS	Unknown	29	Limb	Unknown	Y	None	Vitamin C/E	?
S411	LP0281	М	44	Probable	ALS	Unknown	30	Limb	40	Y	None	None	?
S412	SP3147	F	47	Probable	ALS	TARDBP	115	Limb	31	Y	None	None	N
S413	LP0019	М	70	Probable	ALS	C9ORF72	44	Limb	41	Ν	ONO-trial	None	?

S414	LP0313	М	70	Definite	ALS	Unknown	61	Limb	40	Y	None	Multivitamin	?
S415	BP6283	М	72	Definite	ALS	Unknown	69	Limb	Unknown	Y	None	None	?
S416	LP0028	F	83	Definite	ALS	Unknown	32	Bulbar	33	Ν	None	None	?
S417	BP6064	М	62	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	None	?
S418	SP3194	М	64	Probable	ALS+EL	Unknown	Unknown	Limb	21	Y	None	None	Ex-Smoker
S419	LP0206	F	64	Definite	ALS	Unknown	5	Bulbar	44	Y	None	None	?
S420	SNc0057	М	65	Definite	ALS	Unknown	123	Limb	41	Y	None	Vitamin C/E	?
S421	BP6314	М	66	Definite	ALS	Unknown	24	Limb	Unknown	Y	None	None	?
S422	LP0071	F	66	Probable	ALS	Unknown	29	Mixed	0	Y	None	None	?
S423	LP0384	М	67	Probable	ALS	Unknown	50	Limb	36	Y	None	None	?
S424	BP6174	F	69	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	None	?
S425	BP6228	М	70	Probable	ALS	Unknown	22	Unknown	Unknown	Unknown	Unknown	Unknown	?
S426	BP6279	М	51	Definite	ALS	Unknown	24	Limb	Unknown	Y	None	None	?
S427	SNt0021	F	51	Probable	ALS	Unknown	17	Limb	40	Y	None	None	?
S428	BP6299	F	54	Probable	ALS	Unknown	20	Limb	Unknown	Y	None	Vitamin E	?
S429	LPo0039	М	53	Probable	ALS	Unknown	17	Mixed	34	Y	None	None	?
S430	BP6270	М	54	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	Vitamin C/E	?
S431	BP6190	М	55	Definite	ALS	Unknown	16	Bulbar	Unknown	Y	None	Vitamin C/E	?
S432	BBe0015	М	45	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	None	?
S433	BP6353	М	46	Probable	ALS	Unknown	70	Limb	Unknown	Y	None	Vitamin C	?
S434	BP6306	М	51	Probable	ALS	Unknown	Unknown	Limb	Unknown	Y	None	None	?
S435	BP6349	F	56	Probable	ALS	Unknown	25	Bulbar	Unknown	Y	None	None	?
S436	BP6142	М	60	Probable	ALS	Unknown	28	Mixed	Unknown	Y	None	Multivitamin	?
S437	LP0355	F	61	Definite	ALS	Unknown	Unknown	Limb	40	Y	None	None	?
S438	LP0411	М	62	Probable	ALS	C90RF72	12	Limb	34	Y	None	None	?
S439	BP6090	М	64	Probable	ALS	Unknown	117	Unknown	Unknown	Ν	None	None	?
S440	BP6297	М	65	Definite	ALS	C90RF72	15	Limb	Unknown	discontd	None	None	?
S441	LP0119	F	64	Definite	ALS	Unknown	29	Bulbar	30	Ν	None	None	?
S442	SP3261	М	66	Probable	ALS	Unknown	Unknown	Limb	35	Y	None	None	Ν
S443	BP6239	F	67	Definite	ALS	Unknown	38	Limb	Unknown	Y	None	None	?
S444	LP0349	М	68	Probable	ALS	Unknown	78	Limb	17	Y	None	Vitamin C/E	?
S445	SP3407	М	69	Probable	ALS	Unknown	64	Limb	43	Y	None	None	Ν
S446	SPr0005	F	73	Probable	ALS	Unknown	67	Bulbar	37	Y	None	None	?

S447	BP6347	М	76	Probable	ALS	Unknown	19	Limb	Unknown	Y	None	None	?
S448	LP0078	F	78	Probable	ALS	Unknown	31	Bulbar	38	Ν	None	None	?
S449	BP6352	М	81	Probable	ALS	Unknown	Unknown	Respiratory	Unknown	Ν	None	None	?
S450	LP0014	М	31	Probable	ALS	Unknown	40	Limb	Unknown	Y	Novartis-trial	None	?
S451	BP6134	М	37	Definite	ALS	Unknown	55	Limb	Unknown	Y	None	Vitamin C/E	?
S452	LP0195	М	41	Probable	ALS	Unknown	Alive	Limb	0	Y	None	None	?
S453	LP0380	М	43	Probable	ALS	Unknown	Alive	Limb	43	Y	None	None	?
S454	LP0364	М	44	Probable	ALS	Unknown	Alive	Limb	43	Y	None	None	?
S455	BP6152	F	45	Definite	ALS+PD	Unknown	27	Mixed	Unknown	Y	None	None	?
S456	SPr0001	М	49	Definite	ALS	Unknown	49	Bulbar	32	Y	ONO-trial	Vitamin E	?
S457	LNh0016	М	50	Probable	ALS	Unknown	72	Limb	Unknown	Y	None	None	?
S458	BP6085	F	50	Probable	ALS	Unknown	56	Limb	Unknown	Y	None	Vitamin C	?
S459	BP6364	М	50	Probable	ALS	Unknown	53	Limb	Unknown	Y	None	None	?
S460	BP6167	F	51	Probable	ALS	Unknown	27	Bulbar	Unknown	Y	None	None	?
S461	SP3107	М	51	Probable	ALS	TARDBP	77	Limb	43	Y	None	Vitamin C/E	Y
S462	BP6094	F	54	Probable	ALS	C90RF72	31	Limb	Unknown	Y	None	Vitamin C/E	?
S463	SNt0013	F	54	Probable	ALS	Unknown	77	Bulbar	42	Y	None	Vitamin C/E	?
S464	SNt0040	М	55	Definite	ALS	Unknown	38	Mixed	38	Y	None	None	?
S465	SP3226	М	55	Probable	ALS	Unknown	33	Limb	0	Ν	None	None	?
S466	SNc0020	М	55	Probable	ALS	Unknown	98	Bulbar	35	Ν	None	None	?
S467	SP3198	М	56	Probable	ALS-FA	Unknown	Unknown	Limb	0	Y	None	None	Ex-Smoker
S468	BP6360	М	57	Probable	ALS	Unknown	31	Limb	Unknown	Y	None	None	?
S469	BP6277	М	59	Definite	ALS	Unknown	35	Limb	Unknown	Y	None	Vitamin C/E	?
S470	BP6122	М	60	Probable	ALS	Unknown	55	Bulbar	Unknown	Y	None	None	?
S471	LP0382	М	59	Probable	ALS	Unknown	68	Limb	46	Y	None	None	?
S472	BP6310	М	61	Probable	ALS	Unknown	81	Limb	Unknown	Y	None	None	?
S473	LSh0004	М	61	Definite	ALS	Unknown	73	Bulbar	36	Y	None	None	?
S474	LP0366	F	61	Definite	ALS	Unknown	53	Mixed	0	Ν	None	None	?
S475	BP6264	F	63	Probable	ALS	Unknown	41	Limb	Unknown	Y	None	None	?
S476	SDu0005	М	64	Probable	ALS	Unknown	18	Bulbar	36	Y	None	None	?
S477	LP0208	F	65	Probable	ALS	Unknown	38	Limb	30	Y	None	None	?
S478	LP0126	М	66	Definite	ALS	Unknown	17	Mixed	42	Y	None	None	?
S479	BP6069	М	66	Probable	ALS	Unknown	53	Limb	Unknown	Ν	None	None	?

S480	BP6278	М	67	Probable	ALS	Unknown	90	Limb	Unknown	Y	None	None	?
S481	BP6292	М	66	Probable	ALS	Unknown	95	Limb	Unknown	Y	None	None	?
S482	SP3367	Μ	67	Definite	ALS	Unknown	Unknown	Limb	37	Ν	None	None	Ν
S483	BP6252	Μ	68	Probable	ALS	Unknown	27	Respiratory	Unknown	Y	None	None	?
S484	BP6269	F	67	Probable	ALS	Unknown	25	Mixed	Unknown	Y	None	None	?
S485	LPo0005	М	68	Probable	ALS	C90RF72	47	Bulbar	0	Y	None	None	?
S486	SP3229	Μ	68	Probable	ALS	Unknown	Unknown	Limb	22	Y	None	None	?
S487	LP0398	М	70	Probable	ALS	Unknown	20	Bulbar	41	Ν	None	None	?
S488	BP6191	F	72	Probable	ALS	Unknown	23	Limb	Unknown	Y	None	Vitamin C	?
S489	LPo0017	М	74	Probable	ALS	Unknown	17	Limb	34	Y	None	None	?
S490	LP0312	F	75	Probable	ALS	Unknown	61	Limb	27	Ν	None	None	?
S491	SP3344	М	75	Definite	ALS	Unknown	69	Limb	38	Y	None	None	Ν
S492	SNt0019	Μ	76	Definite	ALS	Unknown	106	Bulbar	30	Y	None	None	?
S493	BP6321	Μ	82	Probable	ALS	Unknown	17	Bulbar	Unknown	Y	None	None	?
S494	BP6172	F	59	Probable	ALS	Unknown	40	Bulbar	Unknown	Y	None	None	?
S495	BP6316	М	66	Probable	ALS	Unknown	39	Limb	Unknown	Ν	None	Multivitamin	?
S496	BP6350	F	68	Probable	ALS	Unknown	34	Limb	Unknown	Y	None	None	?
S497	SP3234	F	79	PLS	PLS	Unknown	16	Limb	0	Y	None	None	Ν
S498	BP6326	М	53	Probable	ALS	Unknown	13	Bulbar	Unknown	Y	None	None	?
S499	BP6272	F	59	Probable	ALS	Unknown	17	Limb	Unknown	discontd	None	None	?

Sample	Collection	Extraction	260/280	260/230	RNA (ng/μl)	RIN	Amplification	as-cRNA (ng/μl)	ss-cDNA (ng/μl)	Frag/Lab	Scan Date	GeneChip [®]
C001	13/06/08	29/11/11	2.02	1.12	203.21	9.2	13/03/13	1049.94	278.81	03/04/13	23/04/13	LOT4188786
C002	21/12/10	01/12/11	2.02	1.43	120.40	8.7	07/12/12	1710.48	331.49	08/04/13	30/04/13	LOT4187458
C003	13/10/10	02/12/11	2.03	0.42	121.96	poor	26/03/13	2280.46	300.88	24/07/13	15/08/13	LOT4205079
C004	25/04/07	02/12/11	2.08	0.74	150.47	9.9	26/10/12	896.68	211.87	?	16/01/13	LOT4181223
C005	22/05/07	05/12/11	2.02	1.74	103.67	9.4	15/11/12	1446.52	262.65	?	29/01/13	LOT4181223
C006	17/04/07	05/12/11	1.99	1.85	112.12	8.5	16/03/12	1007.90	237.31	25/04/12	02/05/12	LOT4156426
C007	17/05/06	06/12/11	2.03	2.33	152.45	OK	24/10/12	724.60	218.01	?	30/01/13	LOT4184161
C008	28/01/09	06/12/11	2.00	2.33	150.16	poor	26/10/12	1249.30	245.70	?	30/01/13	LOT4184161
C009	04/04/08	06/12/11	1.91	2.00	48.85	6.5	20/03/13	1585.73	283.33	05/06/13	31/07/13	LOT4205079
C010	28/05/08	07/12/11	2.01	1.07	117.04	7.7	25/04/13	2560.20	286.43	27/04/13	22/05/13	LOT4181871
C011	15/06/06	07/12/11	2.05	2.00	91.10	9.3	07/12/12	2243.90	282.64	02/04/13	23/04/13	LOT4188786
C012	02/04/08	07/12/11	1.84	0.60	30.76	7.0	22/03/13	1337.98	245.98	11/06/13	18/07/13	LOT4188786
C013	06/02/09	08/12/11	2.01	1.86	141.51	7.0	19/03/13	1744.27	268.43	20/03/13	10/04/13	LOT4181871
C014	06/03/07	08/12/11	2.06	0.56	160.91	9.1	07/05/13	2267.51	265.04	14/05/13	18/07/13	LOT4188786
C015	10/06/09	08/12/11	1.98	0.83	67.52	8.3	30/04/13	1559.62	267.09	17/06/13	30/07/13	LOT4181223
C016	06/03/08	08/12/11	2.02	1.96	195.38	7.5	15/11/12	1370.07	266.72	?	29/01/13	LOT4181223
C017	25/01/07	09/12/11	1.98	2.42	164.98	7.2	05/12/12	1411.07	255.17	02/04/13	24/04/13	LOT4187458
C018	26/02/08	09/12/11	2.06	0.97	106.69	8.9	13/03/13	2198.64	274.72	03/04/13	24/04/13	LOT4187458
C019	17/04/08	09/12/11	2.03	1.60	113.88	9.8	05/12/12	2343.48	275.36	26/03/13	12/04/13	LOT4181871
C020	27/10/07	18/04/12	2.00	2.15	167.74	7.0	07/11/12	747.17	215.39	?	06/02/13	LOT4181871
C021	03/11/08	13/12/11	2.01	2.49	173.37	8.3	03/04/12	2156.61	311.82	26/04/12	03/05/12	LOT4156426
C022	10/12/10	13/12/11	1.97	2.70	81.46	7.0	28/11/12	949.07	370.68	26/03/13	25/04/13	LOT4187458
C023	17/07/10	14/12/11	1.97	1.60	148.86	7.8	22/03/13	2697.84	301.09	05/06/13	31/07/13	LOT4205079
C024	14/07/05	14/12/11	2.06	2.09	158.63	9.7	14/03/13	2124.93	285.46	26/03/13	24/04/13	LOT4187458
C025	17/02/11	15/12/11	2.02	2.56	149.47	9.3	20/03/13	2990.10	296.13	17/06/13	23/07/13	LOT4188786
C026	23/05/07	15/12/11	2.03	1.79	223.37	9.4	03/04/12	2541.23	267.16	25/04/12	02/05/12	LOT4156426
C027	28/10/05	16/12/11	1.95	1.76	183.78	9.5	28/11/12	2125.91	286.02	03/04/13	23/04/13	-
C028	08/11/07	16/12/11	2.04	2.35	112.66	9.3	22/03/13	2290.58	277.15	17/06/13	02/07/13	LOT4181871
C029	25/05/05	19/12/11	2.02	1.47	171.39	9.6	28/11/12	2238.83	277.64	26/03/13	23/04/13	LOT4188786
C030	29/07/09	19/12/11	2.03	1.21	143.87	9.3	26/03/13	2463.98	288.94	29/07/13	15/08/13	LOT4205079
C031	06/11/10	19/12/11	1.99	1.95	118.13	9.7	23/03/12	1142.49	221.59	26/04/12	01/05/12	LOT4153111
C032	18/03/08	20/12/11	2.03	2.51	138.58	9.5	13/03/13	1818.47	286.36	25/03/13	10/04/13	LOT4181871

 Table B7: ECACC LCL QIAGEN Extraction and Ambion[®] RNA Amplification Data for Exon 1.0ST Expression Arrays

_

C033	21/01/11	20/12/11	2.00	0.71	64.94	5.2	22/03/13	1841.56	244.33		FAILED -	
C034	26/08/05	20/12/11	2.01	3.15	62.10	9.4	16/04/13	1974.66	270.30	24/04/13	22/05/13	LOT4181871
C035	22/01/04	20/12/11	2.01	1.18	151.19	8.9	26/10/12	1023.09	243.60	?	05/02/13	LOT4184161
C036	22/02/10	21/12/11	2.04	1.81	153.13	9.5	09/03/12	682.30	226.04	25/04/12	01/05/12	LOT4153111
C037	19/02/09	21/12/11	2.05	0.95	138.30	9.6	12/04/12	868.78	249.42	25/04/12	09/05/12	LOT4158373
C038	13/09/07	21/12/11	2.01	1.95	127.38	2.9	22/03/13	2937.83	272.05	12/06/13	16/07/13	LOT4181871
C039	15/10/09	21/12/11	2.04	2.04	122.22	9.8	23/03/12	1125.91	217.39	26/04/12	02/05/12	LOT4156426
C040	08/11/08	21/12/11	2.04	2.30	163.49	9.8	14/03/13	2429.54	281.56	08/04/13	01/05/13	LOT4187458
C041	26/06/08	09/01/12	2.06	1.93	213.12	3.9	20/02/13	2606.84	269.00	25/03/13	11/04/13	LOT4188786
C042	07/04/06	09/01/12	2.02	2.13	141.28	9.3	16/04/13	1602.42	257.86	24/04/13	22/05/13	LOT4181871
C043	19/08/06	10/01/12	2.03	1.35	174.61	8.8	20/02/13	773.23	246.01	25/03/13	11/04/13	LOT4188786
C044	15/06/06	10/01/12	2.09	1.85	206.00	8.8	30/08/12	611.13	214.29	?	27/10/12	LOT4179034
C045	05/07/07	11/01/12	2.05	1.59	244.71	9.5	02/03/12	477.79	203.49	25/04/12	09/05/12	LOT4158373
C046	25/09/07	11/01/12	2.06	1.87	173.56	9.3	17/04/13	1664.34	263.85	17/06/13	24/07/13	LOT4181223
C047	11/12/08	11/01/12	2.10	1.77	73.99	8.3	27/03/13	2603.59	293.78	31/07/13	06/08/13	LOT4205911
C048	17/02/05	11/01/12	2.05	1.15	172.09	9.7	20/02/13	1877.06	263.63	02/04/13	25/04/13	LOT4187458
C049	18/06/04	11/01/12	2.04	1.99	116.56	9.3	06/08/12	674.92	212.53	?	26/10/12	LOT4174114
C050	19/09/05	09/01/12	2.03	1.88	105.05	8.9	12/04/13	1464.91	284.22	20/03/13	10/04/13	LOT4181871
C051	10/06/07	12/01/12	2.03	1.81	114.78	9.0	27/03/13	3498.70	298.36	24/07/13	13/08/13	LOT4205911
C052	26/08/09	12/01/12	1.99	1.82	90.79	8.0	26/03/13	2800.67	432.64	29/07/13	15/08/13	LOT4205079
C053	06/10/09	12/01/12	2.06	2.18	194.05	9.2	27/02/13	2194.73	282.66	02/04/13	23/04/13	LOT4188786
C054	25/03/07	26/01/12	2.07	2.22	137.07	9.0	12/04/13	2515.20	292.41		FAILED -	
C055	19/08/06	12/01/12	2.05	2.05	134.87	9.1	16/04/13	2397.82	271.77	24/04/13	18/07/13	-
C056	13/01/06	12/01/12	2.07	1.12	185.85	10	12/04/13	2311.03	276.93	05/06/13	31/07/13	LOT4205079
C057	25/10/07	12/01/12	2.05	1.66	134.50	9.2	27/03/13	2715.58	294.45	31/07/13	06/08/13	LOT4205911
C058	02/06/06	13/01/12	2.09	2.14	192.79	10	04/09/12	1051.20	196.83	?	25/10/12	LOT4174114
C059	06/04/06	13/01/12	2.03	1.60	128.20	8.7	27/02/13	1895.96	262.85	26/03/13	30/04/13	LOT4187458
C060	21/05/10	13/01/12	2.08	1.79	157.79	8.9	02/11/12	943.31	237.41	?	30/01/13	LOT4184161
C061	26/08/05	16/01/12	2.08	2.25	117.80	8.0	12/04/12	2666.64	252.83	25/04/12	03/05/12	LOT4156426
C062	26/02/05	23/04/12	2.05	1.57	308.32	8.1	01/05/13	2283.50	289.81	17/06/13	24/07/13	LOT4181223
C063	08/08/06	23/04/12	2.04	1.20	238.11	OK	25/04/13	1947.96	263.69	14/05/13	18/07/13	-
C064	09/10/10	23/04/12	2.08	0.75	162.01	10	02/05/13	1709.54	285.75	15/05/13	30/07/13	LOT4181223
C065	05/05/09	17/01/12	2.04	1.99	170.27	9.2	17/04/13	2042.11	271.05	15/05/13	23/07/13	LOT4188786

							_			_	-	
C066	13/01/06	17/01/12	2.05	0.98	182.55	10	18/04/13	3004.21	308.73	17/06/13	24/07/13	LOT4181223
C067	11/04/08	17/01/12	2.03	1.51	146.34	poor	28/09/12	793.89	222.89	?	29/01/13	LOT4181223
C068	17/11/08	19/01/12	2.09	0.73	91.23	4.1	16/04/13	2920.08	283.83	03/06/13	09/07/13	-
C069	13/10/06	19/01/12	1.97	1.77	117.27	8.9	17/04/13	2504.95	282.99	03/06/13	09/07/13	LOT4187458
C070	24/11/06	19/01/12	2.07	1.40	133.21	9.1	08/05/13	1985.57	269.82	12/06/13	16/07/13	LOT4188786
C071	29/04/08	19/01/12	2.04	1.03	142.94	9.3	19/04/13	2604.87	242.17	12/06/13	16/07/13	LOT4188786
C072	26/01/09	19/01/12	2.05	2.20	181.69	9.5	02/05/13	3050.58	293.85	17/06/13	17/07/13	LOT4188786
C073	12/05/05	20/01/12	2.08	1.90	283.45	3.0	02/11/12	2051.99	251.97		FAILED -	
C074	25/02/10	20/01/12	2.03	1.07	63.81	9.6	18/04/13	2195.63	297.27	17/06/13	31/07/13	LOT4205079
C075	21/04/06	20/01/12	2.05	2.22	151.01	9.7	28/09/12	578.21	221.99	?	05/02/13	LOT4184161
C076	24/04/08	20/01/12	2.05	0.97	121.32	3.3	18/04/13	2906.02	306.38	17/06/13	17/07/13	LOT4188786
C077	25/07/08	20/01/12	2.05	1.64	105.89	OK	03/05/13	2536.71	347.58	11/06/13	31/07/13	LOT4205079
C078	06/03/08	23/01/12	1.99	1.50	106.92	7.8	19/04/13	2130.91	299.15	12/06/13	24/07/13	LOT4188786
C079	13/06/06	26/01/12	2.06	1.25	57.39	4.0	16/04/13	1838.20	280.91	24/04/13	02/07/13	LOT4181871
C080	06/08/07	25/01/12	2.02	2.13	163.88	8.5	15/03/13	2449.40	279.63	08/04/13	25/04/13	LOT4187458
C081	19/02/11	23/01/12	1.95	1.50	128.88	6.3	07/05/13	2045.19	293.28	12/06/13	31/07/13	LOT4205079
C082	05/11/09	23/01/12	1.98	0.55	111.39	7.3	19/04/13	1526.32	279.38	05/06/13	31/07/13	LOT4205079
C083	12/03/11	19/04/12	2.02	2.17	220.37	9.6	01/05/13	2537.44	294.92	11/06/13	30/07/13	LOT4181223
C084	28/07/09	24/01/12	1.99	2.07	91.90	ОК	14/02/13	866.27	262.10	02/04/13	30/04/13	LOT4187458
C085	17/05/06	24/01/12	2.06	1.94	170.90	7.2	01/05/13	2342.98	294.67	12/06/13	31/07/13	LOT4205079
C086	07/08/10	24/01/12	2.00	2.12	193.39	7.6	02/05/13	2016.99	284.69		FAILED -	
C087	02/12/05	25/01/12	2.02	1.23	107.79	2.6	02/05/13	3140.04	286.58	17/06/13	17/07/13	LOT4188786
C088	30/08/07	27/01/12	2.10	2.22	201.12	10	11/09/12	1082.94	224.58	?	26/10/12	LOT4174114
C089	02/05/09	26/01/12	2.05	2.04	220.86	8.8	03/05/13	2319.70	278.72	17/06/13	17/07/13	LOT4188786
C090	03/02/11	31/01/12	2.00	2.06	145.08	7.4	01/05/13	2655.29	292.81	17/06/13	02/07/13	LOT4181871
C091	25/02/11	26/01/12	2.09	2.12	124.77	poor	08/05/13	2714.89	281.39	11/06/13	09/07/13	LOT4188786
C092	07/10/10	31/01/12	2.08	2.21	203.36	9.1	07/05/13	1105.14	247.41		FAILED -	
C093	07/03/10	01/02/12	2.06	2.02	206.06	9.6	09/04/13	2050.72	265.54	17/06/13	16/07/13	LOT4188786
C094	16/10/10	01/02/12	2.02	2.16	155.96	6.8	24/10/12	732.81	197.58	?	16/01/13	LOT4181223
C095	11/07/07	26/01/12	2.03	2.21	147.12	8.2	08/05/13	1675.19	275.87	12/06/13	17/07/13	LOT4188786
C096	28/10/09	26/01/12	2.06	1.90	136.21	8.5	30/04/13	1696.15	275.01	29/07/13	15/08/13	LOT4205079
C097	02/09/08	26/01/12	2.04	2.28	153.24	8.9	24/10/12	704.59	203.66	?	16/01/13	LOT4181223
C098	19/08/06	27/01/12	2.02	2.08	137.96	8.4	04/09/12	815.39	251.56	?	25/10/12	LOT4174114

		-					-			-	•	
C099	08/06/06	27/01/12	2.04	2.19	182.49	9.6	03/04/12	2090.20	264.17	26/04/12	01/05/12	LOT4153111
C100	07/03/08	13/03/12	2.04	1.86	101.83	8.3	09/04/13	3181.44	270.62	31/07/13	06/08/13	LOT4205911
F001	21/05/05	29/11/11	2.03	1.46	267.27	9.9	15/11/12	1508.44	283.67	?	16/01/13	LOT4181223
F002	17/11/08	01/12/11	2.05	1.88	160.47	8.6	07/12/12	1995.32	271.67	20/03/13	10/04/13	LOT4181871
F003	02/10/04	02/12/11	2.28	0.09	34.31	7.4	22/03/13	923.13	245.97	29/07/13	15/08/13	LOT4205079
F004	22/08/08	02/12/11	2.01	0.60	145.30	8.2	05/12/12	1598.97	253.32	26/03/13	12/04/13	LOT4181871
F005	12/11/05	02/12/11	2.10	0.18	77.32	7.7	07/11/12	528.08	205.64	?	05/02/13	LOT4184161
F006	01/06/06	05/12/11	2.04	1.86	207.82	8.4	22/03/13	2178.68	244.95	01/07/13	30/07/13	LOT4181223
F007	23/10/06	05/12/11	2.01	1.83	305.28	9.4	15/11/12	1279.09	243.87	?	05/02/13	LOT4184161
F008	17/03/05	05/12/11	2.04	2.25	166.78	6.9	15/11/12	1494.11	272.62	?	29/01/13	LOT4184161
F009	10/02/05	05/12/11	2.06	2.04	131.10	9.8	07/12/12	2122.76	284.80	25/03/13	11/04/13	LOT4188786
F010	10/12/10	06/12/11	2.01	1.45	161.47	7.0	13/03/13	1545.54	278.71	26/03/13	23/04/13	LOT4188786
F011	04/02/09	06/12/11	1.99	0.97	60.08	8.8	18/09/12	632.75	237.18	?	26/10/12	LOT4174114
F012	30/01/08	06/12/11	2.06	1.13	107.63	9.1	05/12/12	2587.67	321.98	25/03/13	12/04/13	LOT4188786
F013	19/03/10	07/12/11	2.05	0.96	74.57	5.4	13/03/13	1790.06	285.99	02/04/13	25/04/13	LOT4187458
F014	05/03/09	07/12/11	2.04	1.24	55.96	4.8	20/03/13	1894.30	273.43	01/07/13	24/07/13	LOT4181223
F015	13/03/07	07/12/11	1.99	1.96	143.40	8.8	07/05/13	2687.48	274.18	31/07/13	06/08/13	LOT4205911
F016	19/06/06	07/12/11	1.97	1.88	106.93	7.7	07/11/12	1014.75	256.50	?	29/01/13	LOT4184161
F017	17/03/05	07/12/11	2.03	1.97	184.91	9.1	24/10/12	683.23	198.58	?	05/02/13	LOT4184161
F018	13/06/08	08/12/11	2.04	1.11	164.06	OK	07/11/12	1782.70	261.24	?	16/01/13	LOT4181223
F019	10/06/08	08/12/11	2.02	1.71	149.66	7.5	26/03/13	3089.85	287.98	29/07/13	13/08/13	LOT4205911
F020	24/09/10	09/12/11	1.97	1.42	149.47	7.6	07/12/12	1463.05	275.11	26/03/13	23/04/13	LOT4188786
F021	23/04/05	09/12/11	2.04	2.23	134.45	9.1	07/12/12	2143.96	289.11	26/03/13	30/04/13	LOT4187458
F022	06/03/06	09/12/11	1.99	1.88	157.47	9.5	22/03/13	2188.56	272.61	30/07/13	06/08/13	LOT4205911
F023	13/01/05	09/12/11	2.00	2.55	142.05	8.7	30/03/12	814.89	230.41	25/04/12	09/05/12	LOT4156426
F024	26/08/05	25/01/12	2.02	0.60	104.02	7.5	16/03/12	652.66	217.10	26/04/12	03/05/12	LOT4156426
F025	11/09/09	13/12/11	2.01	1.65	150.93	8.9	20/03/13	2008.51	285.02	20/03/13	10/04/13	LOT4181871
F026	11/05/09	14/12/11	2.07	2.38	168.50	9.3	26/10/12	1479.01	242.38	?	05/02/13	LOT4184161
F027	07/10/10	14/12/11	2.03	2.01	216.52	9.3	14/03/13	1428.03	253.58	02/04/13	25/04/13	LOT4187458
F028	23/05/08	14/12/11	1.99	1.09	79.51	8.8	27/03/13	2715.58	291.01	24/07/13	13/08/13	LOT4205911
F029	16/07/08	14/12/11	2.00	2.07	145.99	7.6	28/11/12	1814.48	282.77	25/03/13	11/04/13	LOT4188786
F030	22/04/07	15/12/11	2.03	2.33	208.65	9.3	20/03/13	1747.25	294.81	30/07/13	13/08/13	LOT4205911
F031	13/06/08	15/12/11	2.07	1.31	193.34	3.5	14/03/13	2095.91	262.79	02/04/13	25/04/13	LOT4187458

							_			_	-	
F032	06/11/10	15/12/11	2.01	1.31	138.80	9.2	22/03/13	2354.91	252.12	31/07/13	06/08/13	LOT4205911
F033	08/12/03	16/12/11	1.83	2.93	52.10	7.0	27/03/13	2159.92	293.47	30/07/13	06/08/13	LOT4205911
F034	22/05/10	16/12/11	1.94	2.27	206.95	9.8	22/03/13	2170.01	282.25	30/07/13	02/05/12	-
F035	17/04/09	16/12/11	1.94	2.47	157.19	9.3	12/04/13	2304.89	301.92	01/07/13	23/07/13	LOT4188786
F036	19/09/05	14/02/12	2.07	2.33	188.19	9.4	13/03/13	2022.43	294.77	02/04/13	01/05/13	LOT4187458
F037	06/10/07	16/12/11	2.07	2.31	222.14	4.8	26/03/13	3022.23	277.94	29/07/13	13/08/13	LOT4205911
F038	08/01/11	16/12/11	2.04	2.55	128.63	10	20/03/13	3097.12	314.56	29/07/13	14/08/13	LOT4205079
F039	19/02/09	19/12/11	2.03	2.48	164.71	8.9	14/03/13	1658.03	260.03	02/04/13	30/04/13	LOT4187458
F040	04/11/04	19/12/11	2.01	1.20	208.45	7.7	18/04/13	2471.95	300.23	30/07/13	06/08/13	LOT4205911
F041	07/08/07	19/12/11	2.01	1.36	131.62	8.8	12/04/13	2163.25	326.15	20/03/13	10/04/13	LOT4181871
F042	02/09/06	19/12/11	2.03	1.68	206.17	9.7	02/03/12	521.92	278.34	25/04/12	09/05/12	LOT4158373
F043	21/07/06	20/12/11	2.05	1.08	144.55	9.4	09/03/12	633.61	253.39	25/04/12	03/05/12	LOT4156426
F044	04/04/07	20/12/11	2.01	0.95	98.79	8.1	12/04/12	1743.77	231.77	25/04/12	01/05/12	LOT4181223
F045	08/01/11	20/12/11	1.98	2.42	180.17	7.8	12/04/13	2602.51	349.24	29/07/13	13/08/13	LOT4205911
F046	22/03/04	20/12/11	2.03	2.54	141.95	8.8	30/03/12	1247.74	259.22	25/04/12	01/05/12	LOT4153111
F047	14/05/10	21/12/11	2.04	0.30	86.67	4.6	28/11/12	1437.49	266.90	08/04/13	24/04/13	LOT4187458
F048	10/06/08	21/12/11	2.02	1.32	161.27	9.7	28/11/12	2172.48	279.21	20/03/13	10/04/13	LOT4181871
F049	01/08/07	09/01/12	2.02	2.05	138.63	9.5	17/04/13	2919.98	280.37	30/07/13	06/08/13	LOT4205911
F050	22/06/07	09/01/12	2.03	2.06	129.59	8.8	18/04/13	2222.23	303.80	30/07/13	06/08/13	LOT4205911
F051	13/04/06	10/01/12	2.07	1.13	129.05	8.7	27/02/13	2272.21	301.16	20/03/13	10/04/13	LOT4181871
F052	27/05/08	10/01/12	2.03	1.81	136.23	6.6	20/02/13	1913.20	261.05	03/04/13	24/04/13	LOT4187458
F053	29/08/09	10/01/12	2.06	2.00	174.91	7.7	24/10/12	480.70	192.97	?	16/01/13	LOT4181223
F054	10/06/04	11/01/12	2.06	2.15	171.37	9.4	09/03/12	467.77	254.34	25/04/12	02/05/12	LOT4156426
F055	12/09/09	11/01/12	2.04	1.29	188.70	8.7	16/04/13	2225.63	275.43	24/04/13	22/05/13	LOT4181871
F056	03/01/08	11/01/12	2.04	2.03	162.91	ОК	26/03/13	2152.75	282.69	31/07/13	06/08/13	LOT4205911
F057	16/03/10	11/01/12	2.00	1.80	136.45	9.4	17/04/13	2086.50	281.52	08/04/13	31/07/13	LOT4205079
F058	20/03/07	11/01/12	2.03	0.79	119.32	8.6	16/04/13	2117.25	286.53	24/04/13	22/05/13	LOT4181871
F059	07/10/05	09/01/12	2.09	1.36	152.87	10	27/02/13	2121.25	289.81	08/04/13	01/05/13	LOT4187458
F060	27/06/08	09/01/12	2.07	0.77	78.96	9.8	20/02/13	1937.19	271.70	03/04/13	24/04/13	LOT4187458
F061	16/03/06	12/01/12	2.00	2.06	147.64	9.0	19/04/13	2857.14	309.61	15/05/13	18/07/13	LOT4188786
F062	25/05/05	12/01/12	2.08	2.14	142.68	8.8	18/04/13	2747.67	305.15	17/06/13	16/07/13	LOT4188786
F063	18/01/07	12/01/12	2.02	2.11	126.81	9.0	07/05/13	2628.46	269.28	03/06/13	30/07/13	LOT4181223
F064	23/09/06	12/01/12	2.04	1.39	129.96	9.1	23/03/12	1477.31	243.77	26/04/12	09/05/12	LOT4156426

		-					-			-	-	
F065	04/09/04	12/01/12	2.10	0.41	67.69	9.4	17/04/13	2387.06	275.53	12/06/13	02/07/13	LOT4181871
F066	03/07/10	13/01/12	2.07	0.90	177.55	9.5	24/10/12	779.18	202.58	?	06/02/13	LOT4181871
F067	08/03/07	13/01/12	2.06	2.05	159.03	7.4	27/03/13	3243.61	313.24	29/07/13	14/08/13	LOT4205079
F068	28/01/05	13/01/12	2.06	2.04	108.32	9.4	19/04/13	2133.06	284.08	17/06/13	17/07/13	LOT4188786
F069	10/06/05	13/01/12	2.05	2.02	138.80	9.1	03/05/13	2369.75	287.66	12/06/13	02/07/13	LOT4181871
F070	24/07/10	13/01/12	2.08	1.22	169.60	4.8	26/10/12	1159.85	234.36	?	16/01/13	LOT4181223
F071	29/03/06	13/01/12	2.03	1.12	81.92	8.8	12/04/12	854.84	241.28	25/04/12	03/05/12	LOT4156426
F072	10/01/11	13/01/12	2.10	2.06	96.67	8.6	16/04/13	2068.14	297.22	24/04/13	22/05/13	LOT4181871
F073	02/12/05	16/01/12	2.05	1.76	182.94	10	28/09/12	1425.80	245.62	?	29/01/13	LOT4181223
F074	19/03/11	16/01/12	2.06	1.87	260.55	7.1	25/04/13	2266.57	285.61	14/05/13	24/07/13	-
F075	02/12/10	16/01/12	2.04	1.55	148.39	10	01/05/13	2059.86	277.72	11/06/13	09/07/13	LOT4188786
F076	17/07/10	23/04/12	2.03	1.66	256.42	8.6	02/05/13	1897.40	295.05	05/06/13	30/07/13	LOT4181223
F077	27/02/07	17/01/12	2.06	2.12	172.65	8.7	28/09/12	1831.61	240.46	?	30/01/13	LOT4184161
F078	21/05/08	17/01/12	2.03	1.03	153.59	3.8	11/09/12	967.66	220.53	?	26/10/12	LOT4174114
F079	11/08/06	17/01/12	2.07	2.11	269.73	8.3	02/05/13	2727.61	298.97		FAILED -	
F080	18/04/08	17/01/12	2.06	1.91	97.14	3.3	01/05/13	3129.51	259.76	05/06/13	31/07/13	LOT4205079
F081	18/04/08	19/01/12	2.07	1.32	172.56	8.7	06/08/12	787.05	223.70	?	27/10/12	LOT4174114
F082	29/04/08	19/01/12	2.05	1.61	251.17	9.1	03/05/13	2179.55	272.63	17/06/13	17/07/13	LOT4188786
F083	31/05/09	19/01/12	2.08	1.60	146.00	8.9	19/04/13	2124.35	304.21	20/03/13	10/04/13	LOT4181871
F084	10/02/05	19/01/12	2.05	2.15	215.08	9.1	19/03/13	1953.99	258.41	20/03/13	10/04/13	LOT4181871
F085	17/05/04	19/01/12	2.01	2.12	159.24	4.2	03/05/13	2103.62	290.37	03/06/13	24/07/13	LOT4188786
F086	02/10/04	19/01/12	2.05	2.21	231.04	9.3	08/05/13	1810.39	280.43	17/06/13	02/07/13	LOT4181871
F087	07/02/06	19/01/12	2.09	2.02	162.87	2.9	01/05/13	2439.63	249.62	11/06/13	09/07/13	LOT4187458
F088	15/02/05	20/01/12	2.03	2.22	205.31	10	07/05/13	2193.17	276.36	11/06/13	18/07/13	-
F089	08/12/06	20/01/12	2.03	1.85	152.64	6.6	06/08/12	1735.60	236.44	?	25/10/12	LOT4174114
F090	27/08/04	20/01/12	2.05	1.83	194.74	9.3	01/05/13	2203.54	288.50		FAILED -	
F091	01/08/08	20/01/12	2.05	1.50	212.08	9.0	30/08/12	1184.40	237.32	?	27/10/12	LOT4174114
F092	01/09/05	20/01/12	2.01	1.79	154.16	9.0	02/05/13	2501.73	291.59	17/06/13	16/07/13	LOT4188786
F093	18/03/04	23/01/12	2.05	1.57	169.87	9.7	28/09/12	2155.02	245.04	?	30/01/13	LOT4184161
F094	21/12/10	23/01/12	2.06	1.50	214.23	5.2	25/04/13	2086.82	287.38	14/05/13	31/07/13	LOT4205079
F095	18/04/08	23/01/12	2.06	2.13	245.41	2.9	08/05/13	2088.15	273.67	17/06/13	18/07/13	LOT4188786
F096	28/03/07	12/04/12	2.06	1.73	179.77	7.7	19/09/12	770.48	230.45	?	25/10/12	LOT4174114
F097	02/06/06	23/01/12	2.05	1.64	267.54	10	02/11/12	751.76	216.98	?	06/02/13	-

							-			-	-	
F098	20/07/05	23/01/12	2.03	2.12	340.78	9.9	02/11/12	557.82	193.34	?	06/02/13	LOT4181871
F099	28/01/05	19/04/12	2.06	2.17	303.23	9.3	02/05/13	2085.13	295.28	05/06/13	31/07/13	LOT4205079
F100	17/11/04	19/04/12	2.04	2.25	313.03	2.9	19/09/12	745.23	218.94	?	26/10/12	LOT4174114
F101	14/07/08	24/01/12	2.06	2.13	288.81	8.2	03/05/13	2289.08	284.83	17/06/13	16/07/13	LOT4188786
F102	10/06/09	24/01/12	2.03	2.10	291.74	9.4	19/03/13	2076.06	276.29	20/03/13	10/04/13	LOT4181871
F103	12/03/11	25/01/12	2.07	2.03	271.11	8.7	30/04/13	1880.94	272.62	12/06/13	24/07/13	LOT4188786
F104	29/07/10	25/01/12	2.02	1.04	169.40	8.2	26/10/12	657.76	198.42	?	30/01/13	LOT4184161
F105	22/05/10	25/01/12	2.04	1.19	147.63	9.3	14/02/13	1433.23	259.47	03/04/13	30/04/13	LOT4187458
F106	15/10/04	26/01/12	2.04	0.82	187.66	8.2	03/04/12	2054.21	264.95	25/04/12	02/05/12	LOT4156426
F107	25/10/07	31/01/12	2.02	2.12	161.16	9.1	03/05/13	2030.45	289.93	15/05/13	09/07/13	LOT4181871
F108	02/05/09	27/01/12	2.07	2.05	196.40	9.4	30/04/13	2366.21	316.79	12/06/13	17/07/13	LOT4188786
F109	20/08/10	31/01/12	2.06	2.09	216.28	9.3	07/05/13	1977.93	285.68	17/06/13	16/07/13	LOT4188786
F110	14/02/05	31/01/12	2.05	2.09	250.15	8.8	25/04/13	2006.88	278.70	14/05/13	18/07/13	LOT4188786
F111	29/04/08	01/02/12	2.11	0.87	81.09	7.6	30/04/13	1548.27	276.66		FAILED -	
F112	26/09/05	26/01/12	2.05	2.04	242.88	9.8	07/05/13	1705.33	273.91	11/06/13	02/07/13	LOT4181871
F113	04/11/06	26/01/12	2.07	1.30	192.71	9.0	09/04/13	2009.71	279.91	12/06/13	17/07/13	LOT4188786
F114	14/10/08	27/01/12	2.03	1.92	178.61	9.0	04/09/12	1005.40	206.38	?	27/10/12	LOT4174114
F115	27/05/05	27/01/12	2.04	2.23	219.45	8.4	03/04/12	2121.27	268.69	26/04/12	01/05/12	LOT4153111
F116	30/03/05	26/01/12	2.05	2.01	363.00	9.6	09/04/13	1528.37	290.66		FAILED -	
F117	03/07/10	27/01/12	2.05	2.18	349.83	9.6	02/11/12	619.00	201.64	?	06/02/13	LOT4181871
F118	03/02/10	25/01/12	2.03	1.88	247.45	9.5	14/02/13	1523.96	270.12	26/03/13	23/04/13	LOT4188786
F119	03/02/05	27/01/12	2.04	1.67	245.51	9.0	03/04/12	2490.18	264.45	25/04/12	02/05/12	LOT4156426
F120	01/02/07	27/01/12	2.04	2.10	148.19	9.3	09/04/13	2489.04	290.10	05/06/13	31/07/13	LOT4205079
S001	15/12/04	29/11/11	1.99	1.58	154.16	ОК	07/11/12	955.90	239.70	?	05/02/13	LOT4184161
S002	05/12/03	29/11/11	1.96	1.38	94.58	ОК	12/04/12	1046.55	236.26	26/04/12	01/05/12	LOT4153111
S003	23/07/04	01/12/11	2.01	1.68	135.97	9.0	15/11/12	1253.41	271.19	?	05/02/13	LOT4184161
S004	01/03/08	01/12/11	2.03	1.77	120.80	8.8	07/11/12	1961.13	273.53	?	30/01/13	LOT4184161
S005	15/08/07	02/12/11	2.09	0.90	158.61	10	15/11/12	1736.32	259.96	?	29/01/13	LOT4181223
S006	27/08/04	02/12/11	2.41	0.05	23.19	poor	22/03/13	738.71	238.59	17/06/13	17/07/13	LOT4188786
S007	21/10/05	02/12/11	2.05	0.47	115.25	9.4	07/12/12	2134.28	293.89	26/03/13	12/04/13	LOT4188786
S008	11/05/05	02/12/11	2.10	0.31	93.58	7.9	15/11/12	1488.19	257.40	?	22/01/13	LOT4181223
S009	17/02/08	02/12/11	2.11	0.31	100.42	9.9	07/12/12	1880.84	265.98	02/04/13	23/04/13	LOT4188786
S010	04/06/06	05/12/11	2.03	1.65	137.79	3.5	20/03/13	3083.96	305.38		FAILED -	

S011	10/02/05	05/12/11	2.06	1.80	200.56	9.6	19/03/13	1951.71	279.59		FAILED -	
S012	27/05/05	05/12/11	2.03	1.48	222.92	9.7	07/11/12	1316.08	259.14	?	30/01/13	LOT4184161
S013	06/05/05	05/12/11	2.02	2.06	154.82	9.2	05/12/12	2259.23	289.16	08/04/13	01/05/13	LOT4187458
S014	27/08/04	05/12/11	2.07	1.97	188.06	8.4	28/09/12	1142.99	230.93	?	30/01/13	LOT4184161
S015	18/08/06	05/12/11	2.07	1.99	285.68	9.9	07/05/13	1946.25	277.64	05/06/13	18/07/13	-
S016	23/09/05	06/12/11	2.01	2.20	95.04	8.8	07/05/13	2002.05	272.44	05/06/13	18/07/13	LOT4188786
S017	30/09/05	06/12/11	2.05	2.24	228.11	9.5	05/12/12	2336.30	302.27	03/04/13	12/04/13	LOT4188786
S018	10/11/05	06/12/11	2.03	1.76	83.69	9.6	07/12/12	1979.80	282.58	08/04/13	30/04/13	LOT4187458
S019	06/10/05	06/12/11	2.02	1.98	188.43	8.4	30/03/12	566.15	229.86	26/04/12	02/05/12	LOT4156426
S020	20/08/04	06/12/11	2.03	0.66	120.47	7.9	20/03/13	2073.13	295.82	12/06/13	09/07/13	LOT4181871
S021	06/04/06	06/12/11	2.05	1.60	179.06	9.4	19/03/13	2107.41	287.73	03/04/13	12/04/13	LOT4188786
S022	21/05/04	06/12/11	2.05	2.14	194.44	9.7	19/03/13	2142.93	276.76	03/04/13	12/04/13	LOT4188786
S023	16/07/04	07/12/11	2.00	1.36	110.68	7.4	11/09/12	1003.06	237.00	?	25/10/12	LOT4174114
S024	05/02/05	07/12/11	2.07	1.88	264.48	9.7	19/03/13	1923.57	264.04	08/04/13	24/04/13	LOT4187458
S025	03/03/05	07/12/11	2.03	1.34	141.68	8.9	05/12/12	2035.98	309.03	26/03/13	30/04/13	LOT4187458
S026	30/01/04	07/12/11	2.07	0.79	106.37	9.0	12/04/12	938.51	285.72	25/04/12	01/05/12	LOT4156428
S027	19/08/05	07/12/11	2.02	1.07	153.80	9.2	07/12/12	2516.20	285.86	26/03/13	24/04/13	LOT4187458
S028	01/04/04	07/12/11	2.01	1.49	160.70	9.4	15/11/12	2422.41	266.67	?	22/01/13	LOT4181223
S029	26/11/04	07/12/11	2.00	0.79	92.56	8.7	07/05/13	1754.24	280.65	14/05/13	09/07/13	LOT4181871
S030	18/06/04	07/12/11	1.98	1.44	165.49	8.9	05/12/12	1934.41	277.91	08/04/13	25/04/13	LOT4187458
S031	05/05/05	08/12/11	2.07	1.54	191.96	9.9	24/10/12	794.36	202.31	?	29/01/13	LOT4181223
S032	17/05/07	08/12/11	2.06	1.85	230.34	9.8	03/04/12	2406.06	328.15	25/04/12	03/05/12	LOT4156426
S033	07/05/04	08/12/11	2.12	1.98	200.71	9.7	07/12/12	2057.15	293.74	03/04/13	12/04/13	LOT4188786
S034	23/03/07	08/12/11	1.76	0.69	174.57	9.0	22/03/13	2064.59	270.02		FAILED -	
S035	27/04/06	08/12/11	2.03	2.28	213.90	9.5	15/11/12	1847.11	268.39	?	22/01/13	LOT4181223
S036	14/07/05	08/12/11	2.05	1.20	231.10	9.6	15/11/12	2246.07	278.74	?	29/01/13	LOT4181223
S037	21/05/04	08/12/11	2.03	1.98	215.97	9.4	05/12/12	2222.43	280.30	08/04/13	23/04/13	LOT4188786
S038	10/12/04	08/12/11	2.00	1.16	159.89	9.7	07/11/12	1794.18	253.68	?	29/01/13	LOT4181223
S039	28/11/03	08/12/11	2.03	1.30	217.06	8.9	03/04/12	2245.35	217.31	25/04/12	03/05/12	LOT4156426
S040	12/05/06	09/12/11	2.06	1.42	229.66	9.7	07/11/12	1330.06	269.86	?	30/01/13	LOT4184161
S041	16/02/05	09/12/11	2.07	1.77	202.29	9.3	05/12/12	2042.73	290.40	26/03/13	24/04/13	LOT4187458
S042	08/07/05	09/12/11	2.07	1.45	183.35	9.1	06/08/12	1850.81	236.23	?	26/10/12	LOT4174114
S043	14/10/05	09/12/11	2.05	1.85	181.43	9.9	13/03/13	2121.19	287.19	02/04/13	23/04/13	LOT4188786

							—			_	-	
S044	18/11/06	09/12/11	2.08	0.91	306.79	4.8	15/11/12	1845.13	282.64	?	22/01/13	LOT4181223
S045	04/07/06	09/12/11	2.03	1.37	156.00	8.8	13/03/13	2185.36	302.11	08/04/13	25/04/13	LOT4187458
S046	29/01/05	09/12/11	2.07	1.22	251.09	9.2	07/05/13	2036.52	290.69	05/06/13	18/07/13	-
S047	12/05/06	09/12/11	2.03	1.99	221.87	8.6	22/03/13	1987.72	273.39	11/06/13	30/07/13	LOT4181223
S048	27/10/04	09/12/11	2.03	1.87	190.44	9.3	24/10/12	807.40	206.84	?	05/02/13	LOT4184161
S049	02/07/05	25/01/12	2.04	1.36	135.14	9.3	07/11/12	1648.54	270.28	?	22/01/13	LOT4181223
S050	05/02/04	27/01/12	2.03	1.93	130.16	7.4	07/11/12	1812.26	284.12	?	29/01/13	LOT4181223
S051	08/09/07	13/12/11	2.00	1.20	147.55	8.9	22/03/13	2646.40	278.28	?	14/08/13	LOT4205079
S052	21/11/07	13/12/11	2.02	1.74	186.95	9.0	26/10/12	1999.49	266.59	?	29/01/13	LOT4181223
S053	08/03/07	13/12/11	2.03	1.15	132.87	9.5	22/03/13	2325.78	270.24	30/07/13	14/08/13	LOT4205079
S054	13/10/05	13/12/11	2.02	1.41	242.85	9.3	14/03/13	1731.47	266.93	03/04/13	25/04/13	LOT4187458
S055	18/08/06	13/12/11	2.05	1.38	188.31	9.9	28/09/12	2208.73	238.47	?	22/01/13	LOT4181223
S056	11/02/05	14/12/11	2.04	1.75	191.92	9.5	24/10/12	832.56	198.66	?	29/01/13	LOT4181223
S057	22/02/07	14/12/11	2.04	0.91	114.75	9.5	22/03/13	2614.14	292.49	30/07/13	06/08/13	LOT4205079
S058	09/08/07	14/12/11	2.07	2.14	392.49	8.6	28/11/12	2276.57	280.57	02/04/13	23/04/13	LOT4188786
S059	22/04/04	14/12/11	2.04	1.92	230.11	9.8	03/04/12	2624.19	258.43	25/04/12	02/05/12	LOT4156426
S060	22/12/06	14/12/11	2.08	1.39	144.34	9.7	20/03/13	2088.02	273.54	30/07/13	14/08/13	LOT4205079
S061	15/10/04	20/12/11	2.04	1.12	123.55	8.7	22/03/13	2607.22	293.65	29/07/13	13/08/13	LOT4205911
S062	18/08/06	14/12/11	2.07	2.43	181.61	10	26/10/12	795.58	212.80	?	06/02/13	LOT4181871
S063	01/07/05	14/12/11	2.06	0.93	218.09	9.5	20/03/13	1914.06	279.29	30/07/13	14/08/13	LOT4205079
S064	12/05/06	14/12/11	2.02	2.40	178.13	8.4	07/05/13	1898.51	272.46	29/07/13	13/08/13	LOT4205911
S065	23/05/07	15/12/11	2.07	2.09	339.50	9.9	03/04/12	2147.53	253.31	25/04/12	03/05/12	LOT4156426
S066	07/12/05	20/01/12	2.06	1.42	196.76	10	13/03/13	2435.44	293.76	25/03/13	11/04/13	LOT4188786
S067	12/11/05	15/12/11	2.01	2.32	153.15	9.4	26/03/13	2866.31	301.02	30/07/13	14/08/13	LOT4205079
S068	17/03/04	16/12/11	1.92	1.37	153.20	9.7	28/11/12	2655.00	265.67	26/03/13	23/04/13	LOT4188786
S069	25/02/06	16/12/11	1.95	2.26	254.78	8.9	14/03/13	2014.04	279.78	25/03/13	12/04/13	LOT4188786
S070	09/03/06	23/04/12	2.03	2.32	237.96	9.5	30/04/13	2329.43	277.95	29/07/13	15/08/13	LOT4205079
S071	10/09/04	23/04/12	2.04	2.12	267.82	9.4	25/04/13	1918.56	280.55	24/07/13	14/08/13	LOT4205079
S072	26/01/05	16/12/11	2.04	1.89	166.33	9.4	22/03/13	2092.88	268.55	31/07/13	15/08/13	LOT4205079
S073	23/12/04	16/12/11	2.01	1.96	131.46	8.8	13/03/13	1824.37	278.21	03/04/13	24/04/13	LOT4187458
S074	29/11/07	18/04/12	2.03	1.22	128.01	7.1	13/03/13	1712.30	308.64	08/04/13	30/04/13	LOT4187458
S075	14/07/05	16/12/11	2.04	1.39	201.88	9.8	20/03/13	2564.60	298.30	01/07/13	09/07/13	LOT4181871
S076	17/05/07	19/12/11	2.01	2.17	190.38	9.0	24/10/12	1119.00	232.85	?	05/02/12	LOT4184161

							_			_	-	
S077	15/06/06	19/12/11	2.05	1.51	136.13	10	22/03/13	2771.65	280.09	31/07/13	14/08/13	LOT4205079
S078	11/08/05	19/12/11	2.04	1.12	185.14	10	26/10/12	1592.67	261.81	?	06/02/13	LOT4181871
S079	03/06/05	19/12/11	2.06	1.49	194.97	4.4	14/03/13	2135.62	270.73	03/04/13	25/04/13	LOT4187458
S080	08/08/06	19/12/11	2.05	2.13	206.53	10	14/03/13	2258.33	277.57	26/03/13	01/05/13	LOT4187458
S081	01/02/07	19/12/11	2.03	2.17	188.99	7.2	28/09/12	2116.58	228.77	?	22/01/13	LOT4181223
S082	18/01/07	23/04/12	2.03	2.04	281.54	9.5	30/04/13	1505.78	269.64	01/07/13	16/07/13	LOT4188786
S083	15/02/07	23/04/12	2.04	2.19	267.04	10	25/04/13	1796.19	278.28	24/07/13	14/08/13	LOT4205079
S084	17/01/08	20/12/11	2.04	0.71	117.14	8.7	14/03/13	1958.79	258.91	02/04/13	23/04/13	LOT4188786
S085	11/11/04	20/12/11	2.05	1.25	190.15	1.9	28/09/12	2041.01	229.10	?	06/02/13	LOT4181871
S086	19/08/04	20/12/11	2.02	2.32	146.03	poor	13/03/13	2026.22	309.25	25/03/13	11/04/13	LOT4188786
S087	23/09/07	20/12/11	2.03	0.87	177.77	5.9	22/03/13	2644.11	271.97	31/07/13	15/08/13	LOT4205079
S088	09/11/06	20/12/11	2.08	2.31	266.16	6.5	27/03/13	3185.96	302.72	24/07/13	13/08/13	LOT4205911
S089	15/06/06	20/12/11	2.05	0.31	93.92	9.5	12/04/12	1987.11	262.27	25/04/12	09/05/12	LOT4158373
S090	13/09/06	20/12/11	2.04	0.79	157.12	9.8	07/05/13	2518.51	257.44	29/07/13	15/08/13	LOT4205079
S091	11/08/05	20/12/11	2.06	1.02	111.87	9.3	28/11/12	2323.34	271.92	02/04/13	30/04/13	LOT4187458
S092	22/09/06	21/12/11	2.03	0.95	140.15	8.6	26/03/13	3055.09	318.62	29/07/13	15/08/13	LOT4205079
S093	18/06/04	21/12/11	2.07	2.31	134.90	9.5	09/03/12	885.18	284.29	25/04/12	09/05/12	LOT4156426
S094	26/11/04	21/12/11	2.05	1.78	192.05	10	24/10/12	826.81	209.80	?	30/01/13	LOT4184161
S095	10/03/05	21/12/11	2.06	0.91	176.66	10	28/11/12	2052.47	329.36	08/04/13	25/04/13	LOT4187458
S096	10/02/05	21/12/11	2.06	2.50	143.36	9.4	22/03/13	2459.44	272.07	17/06/13	09/07/13	LOT4181871
S097	15/09/06	21/12/11	2.09	0.30	81.68	3.5	20/03/13	2568.65	290.34	12/06/13	09/07/13	LOT4181871
S098	19/09/07	21/12/11	2.05	1.78	176.61	9.7	26/03/13	2640.22	289.40	30/07/13	15/08/13	LOT4205079
S099	11/11/04	21/12/11	2.08	1.20	145.20	9.5	14/03/13	2200.19	312.91	03/04/13	24/04/13	LOT4187458
S100	25/02/05	21/12/11	2.06	0.69	124.65	8.8	22/03/13	2109.23	272.90	12/06/13	16/07/13	LOT4188786
S101	15/05/04	09/01/12	2.06	1.67	175.24	4.5	22/03/13	2659.45	267.66		FAILED -	
S102	05/05/06	09/01/12	2.03	1.71	193.39	9.3	30/03/12	1432.11	240.09	25/04/12	02/05/12	LOT4156426
S103	15/09/05	09/01/12	2.03	1.91	158.18	9.0	20/02/13	1942.87	262.85	02/04/13	25/04/13	LOT4187458
S104	07/04/05	09/01/12	1.98	0.40	111.49	9.7	26/03/13	2425.84	284.51	31/07/13	13/08/13	LOT4205911
S105	27/04/05	10/01/12	2.10	0.94	202.97	9.9	20/02/13	2783.43	290.68	03/04/13	24/04/13	LOT4187458
S106	12/10/06	10/01/12	2.06	1.84	279.27	9.7	27/02/13	2202.53	320.92	03/04/13	24/04/13	LOT4187458
S107	23/01/07	10/01/12	2.07	2.08	319.61	8.5	02/11/12	667.15	220.05	?	30/01/13	LOT4184161
S108	31/03/07	11/01/12	2.06	1.07	176.77	3.2	26/03/13	3053.39	271.60	24/07/13	13/08/13	LOT4205911
S109	12/07/07	11/01/12	2.05	1.53	121.20	10	27/03/13	2518.69	292.77	24/07/13	14/08/13	LOT4205079

		•					-			-		
S110	02/09/06	11/01/12	2.03	1.35	201.66	9.1	12/04/12	1423.50	253.12	25/04/12	03/05/12	LOT4156426
S111	06/11/03	11/01/12	2.06	2.17	268.01	9.7	27/03/13	1672.81	285.77	30/07/13	06/08/13	LOT4205911
S112	22/02/07	11/01/12	2.08	1.56	162.68	3.4	27/03/13	2814.67	283.32	30/07/13	13/08/13	LOT4205911
S113	30/01/07	11/01/12	2.08	1.06	153.85	9.3	22/03/13	2267.01	300.11	11/06/13	30/07/13	LOT4181223
S114	09/02/07	11/01/12	2.06	0.34	98.14	9.2	12/04/12	1486.18	254.12	25/04/12	01/05/12	LOT4153111
S115	17/02/05	11/01/12	2.07	2.10	232.75	9.5	12/04/13	2215.33	313.29	11/06/13	30/07/13	LOT4181223
S116	01/02/07	11/01/12	2.09	1.41	120.47	8.8	23/03/12	528.06	195.56	26/04/12	03/05/12	LOT4156426
S117	03/02/05	11/01/12	2.01	1.58	141.14	8.8	12/04/13	2421.62	290.92	12/06/13	17/07/13	LOT4188786
S118	11/03/04	11/01/12	2.04	1.22	87.59	7.8	07/05/13	2522.19	267.79		FAILED -	
S119	16/12/04	11/01/12	2.04	1.40	86.70	3.8	20/02/13	2697.62	259.26	03/04/13	24/04/13	LOT4187458
S120	09/07/07	11/01/12	2.04	0.75	54.55	9.5	27/03/13	2575.59	295.13	15/05/13	23/07/13	LOT4188786
S121	09/08/07	11/01/12	2.07	1.88	107.69	8.9	16/03/12	701.93	195.49	25/04/12	09/05/12	LOT4156426
S122	27/10/07	09/01/12	2.06	2.05	138.25	9.3	16/04/13	1904.39	269.12	24/04/13	22/05/13	LOT4181871
S123	23/09/04	09/01/12	2.07	1.03	185.14	2.7	19/09/12	854.39	231.38	?	25/10/12	LOT4174114
S124	20/08/04	12/01/12	2.04	2.04	193.46	9.6	26/03/13	2926.16	298.89	29/07/13	14/08/13	LOT4205079
S125	22/12/06	26/01/12	2.02	1.69	114.92	8.4	07/05/13	2490.64	289.30	05/06/13	30/07/13	-
S126	14/01/05	12/01/12	2.05	2.05	248.08	9.1	16/04/13	2082.28	290.35	24/04/13	22/05/13	LOT4181871
S127	28/10/05	12/01/12	2.00	2.04	125.53	9.8	27/02/13	2039.99	261.80	25/03/13	10/04/13	LOT4181871
S128	04/11/05	12/01/12	2.06	1.89	158.12	9.0	12/04/13	2292.95	304.59		FAILED -	
S129	14/07/05	12/01/12	2.08	0.65	191.49	9.5	24/10/12	969.49	222.08	?	29/01/13	LOT4181223
S130	24/02/05	12/01/12	2.08	0.88	223.38	3.8	18/04/13	3107.25	294.05	11/06/13	30/07/13	LOT4181223
S131	04/02/06	12/01/12	2.11	0.24	82.05	8.9	20/02/13	1965.53	265.74	08/04/13	30/04/13	LOT4187458
S132	12/07/07	12/01/12	2.06	1.07	124.13	9.3	23/03/12	1845.94	222.69	26/04/12	09/05/12	LOT4156426
S133	05/01/08	12/01/12	2.04	0.79	135.78	9.5	23/03/12	603.05	200.72	26/04/12	09/05/12	LOT4156426
S134	12/05/06	12/01/12	2.08	0.51	86.28	9.4	16/04/13	1842.55	283.61	24/04/13	22/05/13	LOT4181871
S135	13/02/06	12/01/12	2.02	1.72	101.98	8.9	18/04/13	2332.22	300.03		FAILED -	
S136	06/08/07	13/01/12	2.07	2.18	113.51	9.0	12/04/13	2174.75	285.07		FAILED -	
S137	12/11/05	25/01/12	2.05	1.84	101.44	6.0	27/02/13	1837.41	282.65	08/04/13	30/04/13	LOT4187458
S138a	20/04/05	13/01/12	2.07	2.14	199.52	9.4	20/02/13	2653.52	272.39	02/04/13	01/05/13	LOT4187458
S138b	08/04/05	13/01/12	2.01	2.03	107.22	7.1	18/04/13	2621.71	291.70		FAILED -	
S139	24/03/05	13/01/12	2.02	1.91	134.31	9.0	27/02/13	2861.15	282.68	26/03/13	25/04/13	LOT4187458
S140	29/04/05	13/01/12	2.01	2.01	126.86	9.0	27/03/13	2431.47	292.40	24/07/13	15/08/13	LOT4205079
S141	14/07/06	13/01/12	2.02	0.96	120.39	8.9	17/04/13	2366.14	278.14	12/06/13	17/07/13	-

		•					-			-	-	
S142	08/01/04	13/01/12	2.10	0.78	94.41	9.5	16/04/13	2594.63	300.89	24/04/13	22/05/13	LOT4181871
S143	03/02/06	13/01/12	2.03	0.73	117.66	9.4	20/02/13	2610.71	284.17	26/03/13	12/04/13	LOT4181871
S144	02/03/06	13/01/12	2.05	1.92	151.66	4.9	12/04/13	2539.75	285.07	11/06/13	24/07/13	LOT4188786
S145	08/10/04	13/01/12	2.07	2.02	143.87	2.5	27/02/13	2127.97	288.90	03/04/13	24/04/13	LOT4187458
S146	08/04/05	13/01/12	2.12	1.15	116.90	8.6	12/04/13	2201.52	297.89	03/06/13	09/07/13	LOT4181871
S147	15/10/07	13/01/12	2.06	1.20	123.74	8.9	17/04/13	3023.54	288.38	05/06/13	24/07/13	LOT4181223
S148	02/03/07	13/01/12	2.11	0.63	96.55	9.0	16/04/13	1700.73	261.42	24/04/13	22/05/13	LOT4181871
S149	10/05/07	13/01/12	2.09	1.40	142.57	9.4	09/03/12	806.19	302.47	25/04/12	01/05/12	LOT4153111
S150	09/03/06	16/01/12	2.07	1.43	164.69	2.3	17/04/13	2205.00	267.96	15/05/13	23/07/13	LOT4188786
S151	30/01/08	16/01/12	2.07	1.77	245.61	9.5	03/04/12	2172.91	258.18	25/04/12	09/05/12	LOT4158373
S152	25/04/07	16/01/12	2.05	1.56	157.81	9.6	16/04/13	2317.23	297.40	24/04/13	22/05/13	LOT4181871
S153	09/08/07	23/04/12	2.05	2.16	313.11	3.0	30/04/13	1863.97	267.15	12/06/13	17/07/13	LOT4188786
S154	15/03/07	23/04/12	2.06	2.13	333.95	2.8	01/05/13	1820.78	237.97		FAILED -	
S155	15/06/06	23/04/12	2.11	2.20	493.02	9.4	25/04/13	2305.79	290.14	14/05/13	30/07/13	LOT4181223
S156	23/03/06	23/04/12	2.04	1.59	399.34	7.6	25/04/13	1771.20	266.66	14/05/13	24/07/13	-
S157	24/06/04	17/01/12	2.03	0.76	189.15	9.9	28/09/12	1144.85	242.92	?	22/01/13	LOT4181223
S158	25/02/05	17/01/12	2.04	2.02	130.49	9.7	18/04/13	2740.18	314.93		FAILED -	
S159	10/12/04	17/01/12	2.05	2.06	145.24	9.9	19/04/13	2442.12	306.76	12/06/13	17/07/13	LOT4188786
S160	02/12/04	17/01/12	2.03	0.98	145.92	4.4	17/04/13	2354.82	279.88	11/06/13	24/07/13	-
S161	06/10/05	17/01/12	2.05	1.74	287.17	2.5	17/04/13	2904.61	266.12	11/06/13	09/07/13	LOT4188786
S162	10/11/06	17/01/12	2.06	1.38	134.34	2.0	25/04/13	2673.10	268.44	14/05/13	23/07/13	LOT4188786
S163	20/10/05	17/01/12	2.10	1.84	234.04	poor	30/08/12	1586.62	221.49	?	26/10/12	LOT4174114
S164	19/10/04	17/01/12	2.10	1.42	262.64	9.7	17/04/13	2035.26	298.06	03/06/13	23/07/13	LOT4188786
S165	22/02/06	17/01/12	2.09	1.42	205.73	10	11/09/12	735.44	215.62	?	27/10/12	LOT4174114
S166	27/01/05	19/01/12	2.05	2.14	343.34	9.6	30/04/13	2165.92	296.69	17/06/13	17/07/13	LOT4188786
S167	29/11/06	19/01/12	2.07	1.56	287.71	10	08/05/13	1516.29	275.07	05/06/13	31/07/13	LOT4205079
S168	26/02/04	19/01/12	2.06	0.84	77.00	9.2	19/04/13	1826.81	299.64	11/06/13	24/07/13	-
S169	18/05/04	19/01/12	2.07	0.97	169.04	9.2	18/04/13	1695.88	289.32	17/06/13	16/07/13	LOT4188786
S170	20/04/04	19/01/12	2.06	2.11	204.14	9.2	30/03/12	994.31	227.59	26/04/12	02/05/12	LOT4156426
S171	16/07/04	19/01/12	2.03	1.24	112.30	9.5	06/08/12	664.21	221.15	?	26/10/12	LOT4174114
S172	29/10/04	19/01/12	2.05	2.01	237.67	7.5	02/11/12	651.73	239.45	?	06/02/13	-
S173	19/04/05	19/01/12	2.06	1.37	182.51	9.8	12/04/12	1899.85	245.80	25/04/12	02/05/12	LOT4156426
S174	22/03/04	19/01/12	2.06	2.04	144.00	8.0	18/04/13	2409.12	295.67	17/06/13	16/07/13	LOT4188786

S175	22/09/06	19/01/12	2.08	1.38	135.38	ОК	30/04/13	2258.40	291.59		FAILED -	
S176	19/04/07	19/01/12	2.07	1.38	104.88	9.7	28/03/12	395.64	194.04	26/04/12	03/05/12	LOT4156426
S177	13/12/04	19/01/12	2.05	1.31	149.07	3.0	25/04/13	3209.71	299.71	14/05/13	18/07/13	-
S178	18/08/05	20/01/12	2.08	1.31	233.92	4.4	02/11/12	1157.17	248.77	?	05/02/13	LOT4184161
S179	22/03/07	20/01/12	2.04	1.10	90.18	9.7	01/05/13	2326.04	281.85	31/07/13	13/08/13	LOT4205911
S180	15/10/04	20/01/12	2.07	0.46	165.24	2.4	19/04/13	2277.57	289.00	30/07/13	13/08/13	LOT4205911
S181	27/09/07	20/01/12	2.00	1.46	170.31	9.3	01/05/13	2260.42	292.53	29/07/13	14/08/13	LOT4205079
S182	01/03/05	20/01/12	2.05	2.19	254.44	9.4	19/04/13	2682.08	305.71	31/07/13	14/08/13	LOT4205079
S183	20/01/05	20/01/12	0.07	1.33	225.74	9.9	01/05/13	2067.72	294.80	01/07/13	09/07/13	LOT4181871
S184	15/04/06	20/01/12	2.07	1.65	268.59	10	25/04/13	1906.88	290.59	24/07/13	14/08/13	LOT4205079
S185	23/03/07	20/01/12	2.06	1.02	156.34	3.3	19/04/13	2631.04	293.84	29/07/13	13/08/13	LOT4205911
S186	06/09/07	20/01/12	2.04	0.73	105.53	8.5	16/03/12	885.01	233.57	25/04/12	01/05/12	LOT4156428
S187	04/03/05	20/01/12	2.03	2.06	174.87	9.5	02/05/13	2412.62	290.98	01/07/13	16/07/13	LOT4188786
S188	29/10/04	20/01/12	2.01	0.71	140.66	8.9	03/05/13	2429.15	289.25	31/07/13	15/08/13	LOT4205079
S189	25/02/05	20/01/12	1.98	0.72	73.19	9.3	19/04/13	2229.01	300.17	29/07/13	13/08/13	LOT4205911
S190	02/03/06	20/01/12	2.03	0.73	173.85	9.5	02/05/13	2648.59	285.96	29/07/13	15/08/13	LOT4205079
S191	27/04/04	23/01/12	2.07	1.26	266.01	10	06/03/13	2138.39	279.40	03/04/13	30/04/13	LOT4187458
S192	31/01/08	23/01/12	2.04	1.32	166.25	9.1	02/05/13	1763.91	281.78	01/07/13	17/07/13	LOT4188786
S193	26/08/05	23/01/12	2.06	1.74	228.80	9.4	03/05/13	1925.14	287.50	31/07/13	06/08/13	LOT4205079
S194	08/06/06	23/01/12	2.07	0.43	133.64	9.6	03/05/13	1977.24	285.60	01/07/13	16/07/13	LOT4188786
S195	10/11/06	25/01/12	2.01	0.78	84.63	OK	08/05/13	707.06	247.50	01/07/13	16/07/13	LOT4188786
S196	25/10/07	25/01/12	2.06	2.24	205.85	OK	30/04/13	2158.75	267.13	31/07/13	06/08/13	LOT4181223
S197	02/12/05	26/01/12	2.07	2.02	119.82	8.5	02/05/13	2675.95	287.44	05/06/13	30/07/13	LOT4181223
S198	07/04/05	26/01/12	2.03	2.18	182.46	8.3	26/10/12	1738.62	230.31	?	29/01/13	LOT4181223
S199	09/09/05	01/02/12	2.01	2.13	99.87	7.2	02/11/12	1394.56	272.97	?	30/01/13	LOT4184161
S200	27/03/06	23/01/12	2.02	2.12	232.99	9.2	03/05/13	2146.87	291.39	11/06/13	18/07/13	LOT4188786
S201	17/01/08	23/01/12	2.01	2.09	151.96	9.4	08/05/13	1544.26	274.67	15/05/13	23/07/13	LOT4188786
S202	15/01/05	23/01/12	2.00	1.32	194.21	7.4	04/09/12	1063.12	250.14	?	27/10/12	LOT4174114
S203	15/06/06	23/01/12	2.05	2.17	241.16	9.5	30/08/12	947.31	225.87	?	25/10/12	LOT4179034
S204	10/09/04	19/04/12	2.05	2.13	261.02	9.3	30/04/13	1267.09	281.71	30/07/13	14/08/13	LOT4205911
S205	06/09/07	19/04/12	2.04	2.06	280.13	9.5	11/09/12	1301.20	234.57	?	27/10/12	LOT4179034
S206	25/01/08	19/04/12	2.06	2.29	256.74	9.3	03/05/13	1994.19	266.68	11/06/13	18/07/13	LOT4188786
S207	21/01/04	19/04/12	2.03	2.22	333.41	9.1	10/05/13	1867.19	273.47	05/06/13	30/07/13	LOT4181223
S208	13/01/05	19/04/12	2.03	1.49	258.08	9.1	10/05/13	1652.51	250.13		FAILED -	
------	----------	----------	------	------	--------	------	----------	---------	--------	----------	----------	------------
S209	25/02/05	24/01/12	2.04	1.89	199.98	9.4	10/05/13	2102.08	277.92	05/06/13	24/07/13	-
S210	04/12/04	24/01/12	2.06	1.13	188.41	9.4	28/09/12	1345.72	232.30	?	06/02/13	LOT4181871
S211	13/01/05	24/01/12	2.08	0.59	88.66	2.7	10/05/13	2123.93	274.16		FAILED -	
S212	29/01/05	25/01/12	2.01	0.94	118.66	7.3	10/05/13	1951.42	296.12	05/06/13	18/07/13	LOT4188786
S213	07/10/05	25/01/12	2.00	0.91	152.36	8.9	18/09/12	545.93	232.57	?	26/10/12	LOT4174114
S214	10/04/04	25/01/12	2.06	0.72	142.00	poor	15/03/13	2166.61	258.90	08/04/13	30/04/13	LOT4187458
S215	03/11/05	31/01/12	2.00	2.09	140.19	3.9	10/05/13	2097.93	280.88	11/06/13	24/07/13	-
S216	15/06/06	31/01/12	2.02	2.16	187.75	8.5	28/09/12	1866.10	258.48	?	30/01/13	-
S217	15/10/04	27/01/12	2.03	1.96	198.12	7.4	10/05/13	1307.94	279.91	03/06/13	31/07/13	LOT4205079
S218	23/03/07	27/01/12	2.03	2.12	182.03	9.1	26/10/12	1906.36	266.75	?	30/01/13	LOT4184161
S219	22/09/05	26/01/12	2.08	1.50	185.32	9.9	26/10/12	1177.26	238.29	?	06/02/13	LOT4181871
S220	29/04/05	26/01/12	2.06	1.59	98.70	poor	09/04/13	2919.29	276.62	12/06/13	17/07/13	LOT4188786
S221	14/12/04	26/01/12	2.02	1.91	157.71	8.6	10/05/13	1656.25	275.76	03/06/13	30/07/13	LOT4181223
S222	03/01/08	26/01/12	2.05	2.10	246.65	9.3	09/04/13	2570.63	285.68		FAILED -	
S223	26/02/08	31/01/12	2.06	2.02	216.87	8.4	09/04/13	2449.39	283.88	15/05/13	31/07/13	LOT4205079
S224	15/05/04	31/01/12	2.05	2.01	283.46	9.2	02/11/12	1126.74	256.13	?	29/01/13	LOT4181223
S225	09/07/07	27/01/12	2.08	2.11	256.90	9.5	15/03/13	1966.03	270.31	08/04/13	01/05/13	LOT4187458
S226	29/04/05	26/01/12	2.05	2.03	177.99	5.2	09/04/13	2024.22	251.87	05/06/13	18/07/13	LOT4188786
S227	06/05/04	26/01/12	2.09	2.02	219.29	2.4	14/02/13	2211.91	281.03	08/04/13	30/04/13	LOT4187458
S228	11/11/04	31/01/12	2.03	1.93	282.32	8.9	09/04/13	2299.09	278.55	15/05/13	09/07/13	LOT4181871
S229	15/08/06	31/01/12	2.05	1.99	411.28	8.5	02/11/12	978.14	235.77	?	05/02/13	LOT4184161
S230	15/09/05	31/01/12	2.07	1.97	317.31	9.6	02/11/12	668.92	229.33	?	30/01/13	LOT4184161
S231	24/11/06	01/02/12	2.04	2.18	212.11	8.5	15/03/13	2046.53	268.01	26/03/13	01/05/13	LOT4187458
S232	15/06/06	01/02/12	2.04	2.26	284.99	10	09/04/13	2258.55	276.43		FAILED -	
S233	21/05/05	01/02/12	2.06	1.94	199.76	9.2	09/04/13	2149.72	276.43	15/05/13	02/07/13	LOT4181871
S234	20/08/04	26/01/12	2.01	2.00	185.56	8.8	12/04/12	2049.73	306.49	25/04/12	02/05/12	LOT4156426
S235	04/04/06	26/01/12	2.03	2.02	166.20	7.7	07/05/13	1828.61	282.75		FAILED -	
S236	15/06/06	26/01/12	2.05	2.02	210.24	7.2	30/03/12	582.87	222.95	26/04/12	03/05/12	LOT4156426
S237	15/05/04	27/01/12	2.02	2.10	263.97	7.6	14/02/13	1280.58	274.03	26/03/13	25/04/13	LOT4187458
S238	12/12/05	27/01/12	2.02	2.03	199.26	9.5	10/05/13	1279.63	269.87	11/06/13	30/07/13	LOT4181223
S239	30/12/04	26/01/12	2.09	2.13	296.96	8.1	15/03/13	1880.88	263.49	03/04/13	30/04/13	LOT4187458
S240	14/07/05	27/01/12	2.05	1.40	166.22	9.4	14/02/13	1821.56	272.16	02/04/13	25/04/13	LOT4187458

Table B7: ECACC LCL QIAGEN Extraction and Ambion[®] RNA Amplification Data for Exon 1.0ST Expression Arrays

		•					-			-	U	
S241	11/06/04	27/01/12	2.06	2.18	229.92	8.6	14/02/13	1640.17	272.77	03/04/13	25/04/13	LOT4187458
S242	30/08/07	25/01/12	2.05	2.11	251.82	9.3	03/04/12	2374.99	279.17	25/04/12	01/05/12	LOT4158373
S243	20/12/03	25/01/12	2.04	2.08	222.00	9.1	15/03/13	1803.93	260.74	25/03/13	10/04/13	LOT4181871
S244	05/01/05	25/01/12	2.02	2.06	168.29	1.9	14/02/13	2391.92	259.21	02/04/13	23/04/13	LOT4188786
S245	08/04/05	18/04/12	2.01	2.17	208.92	9.8	14/02/13	1778.67	293.96	25/03/13	10/04/13	LOT4181871
S246	22/05/07	25/01/12	2.04	1.86	145.57	9.4	15/03/13	2420.68	278.54	08/04/13	01/05/13	LOT4187458
S247	01/02/07	31/01/12	1.98	0.42	126.77	7.9	15/03/13	1721.38	261.67	02/04/13	23/04/13	LOT4188786
S248	06/08/07				SAI	MPLE N	OT RECEIVED FR	OM ECACC				
S249	01/07/04	31/01/12	2.39	2.14	78.32	8.0	14/02/13	1751.73	268.03	08/04/13	24/04/13	LOT4187458
S268	08/04/05	03/02/12	2.02	1.95	165.61	9.1	30/08/12	996.88	241.23	?	26/10/12	LOT4174114
S319	03/10/05	09/02/12	2.06	1.86	196.36	9.4	18/09/12	1232.66	257.00	?	26/10/12	LOT4174114
S352	28/02/08	14/02/12	2.02	0.12	47.96	4.8	11/09/12	1492.86	221.79	?	25/10/12	LOT4179034
S368	17/04/07	15/02/12	2.07	2.09	136.00	8.6	06/03/13	2160.88	271.99	20/03/13	10/04/13	LOT4181871
S373	06/09/06	15/02/12	2.09	1.84	154.03	8.9	18/09/12	915.91	286.97	?	26/10/12	LOT4174114
S438	12/01/07	13/03/12	1.99	2.18	167.39	6.2	06/03/13	2255.68	298.73	20/03/13	10/04/13	LOT4181871
S440	06/06/07	15/03/12	2.01	2.13	151.77	6.9	30/08/12	1696.08	264.04	?	27/10/12	LOT4174114

Table B7: ECACC LCL QIAGEN Extraction and Ambion[®] RNA Amplification Data for Exon 1.0ST Expression Arrays

RefSeq #	Transcript	Symbol	Gene Name		Fold	p-value
Apoptosis						
NM_012138	3719362	AATF	apoptosis antagonizing transcription factor	Û	1.21	3.19E-04
NM_032306	3818395	ALKBH7	alkB, alkylation repair homolog 7 (<i>E. coli</i>)	Û	1.28	0.020
NM_001188	2950753	BAK1	BCL2-antagonist/killer 1	仓	1.28	0.001
NM_003824	3338424	FADD	Fas (TNFRSF6)-associated via death domain	Û	1.20	0.012
NM_005256	3323891	GAS2	growth arrest-specific 2	Û	1.42	0.044
NM_014320	2927722	HEBP2	heme binding protein 2	Û	1.28	0.001
NM_003897	2948630	IER3	immediate early response 3	Û	1.31	0.010
NM_018622	2708229	PARL	presenilin associated, rhomboid-like	Û	1.21	0.002
NM_007350	3462816	PHLDA1	pleckstrin homology-like domain, family A, member 1	Û	1.22	0.027
NM_019006	3603884	ZFAND6	zinc finger, AN1-type domain 6	仓	1.29	0.001
Autophagy						
NM_003766	3758157	BECN1	beclin 1, autophagy related	仓	1.25	8.27E-04
NM_017983	3768474	WIPI1	WD repeat domain, phosphoinositide interacting 1	仓	1.20	0.034
Cell Adhesion	n/Extracel	lular Matrix				
NM_058172	2774971	ANTXR2	anthrax toxin receptor 2	Û	1.28	0.009
NM_006614	2607568	CHL1	cell adhesion molecule with homology to L1CAM (close homolog of L1)	Û	1.80	0.016
NM_004273	3251298	CHST3	carbohydrate (chondroitin 6) sulfotransferase 3	Û	1.21	0.019
NM_001858	2912649	COL19A1	collagen, type XIX, alpha 1	Û	1.22	0.038
NM_017549	2997907	EPDR1	ependymin related protein 1 (zebrafish)	Û	1.20	0.034
NM_000885	2518272	ITGA4	integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)	Û	1.25	0.007
NM_002205	3456732	ITGA5	integrin, alpha 5 (fibronectin receptor, alpha polypeptide)	Û	1.34	0.032
NM_002211	3284188	ITGB1	integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)	Û	1.24	0.019
NM_021219	3916527	JAM2	junctional adhesion molecule 2	Û	1.27	0.028
NM_004994	3887210	MMP9	matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)	Û	1.31	0.038
NM_001142864	3704376	PIEZO1	piezo-type mechanosensitive ion channel component 1	Û	1.24	6.41E-04
NM_000302	2320581	PLOD1	procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1	Û	1.25	0.002
NM_021111	3168309	RECK	reversion-inducing-cysteine-rich protein with kazal motifs	Û	1.21	0.016
NR_028076	3740432	SCARF1	scavenger receptor class F, member 1	Û	1.23	0.020
NM_003118	2882098	SPARC	secreted protein, acidic, cysteine-rich (osteonectin)	Û	1.33	0.040

NM_014000	3252071	VCL	vinculin	Û	1.39	0.007
Cellular Resp	onse to Sti	ress				
NM_015696	2336439	GPX7	glutathione peroxidase 7	Û	1.36	0.043
NM_001540	3009399	HSPB1	heat shock 27kDa protein 1	Û	1.24	0.046
NM_016126	2413519	HSPB11	heat shock protein family B (small), member 11	Û	1.21	0.020
NM_000305	3061997	PON2	paraoxonase 2	Û	1.39	0.038
NM_003330	3429460	TXNRD1	thioredoxin reductase 1	Û	1.21	5.48E-04
Cytoskeleton						
NM_005720	3014714	ARPC1B	actin related protein 2/3 complex, subunit 1B, 41kDa	Û	1.22	0.002
NM_018462	2662581	BRK1	BRICK1, SCAR/WAVE actin-nucleating complex subunit	Û	1.51	0.026
NM_020240	2828146	CDC42SE2	CDC42 small effector 2	Û	1.25	6.72E-06
NM_001011546	3878025	DSTN	destrin (actin depolymerizing factor)	Û	1.20	0.038
NM_000259	3624607	MYO5A	myosin VA (heavy chain 12, myoxin)	Û	1.20	0.015
NM_001142287	4051226	SEMA4D	sema domain, immunoglobin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain,	Û	1.31	3.25E-05
			(semaphoring) 4D			
NM_020846	2726323	SLAIN2	SLAIN motif family, member 2	Û	1.20	0.001
NM_006088	4050485	TUBB2C	tubulin, beta 2C	Û	1.20	0.001
NM_006087	3847959	TUBB4	tubulin, beta 4	Û	1.27	0.020
Development	-					
NM_031443	3000167	CCM2	cerebral cavernous malformation 2	Û	1.26	5.76E-04
NM_130468	3589972	CHST14	carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 14	Û	1.24	0.002
NM_005618	2986350	DLL1	delta-like 1 (Drosophila)	Û	1.24	0.003
NM_000138	3623031	FBN1	fibrillin 1	Û	1.53	0.001
NM_018972	3103607	GDAP1	ganglioside-induced differentiation-associated protein 1	Û	1.21	0.013
NM_001448	4022370	GPC4	glypican 4	Û	1.86	0.001
NM_019590	3238962	KIAA1217	KIAA1217	Û	1.28	0.023
NM_013349	2379068	NENF	neuron derived neurotrophic factor	Û	1.26	1.78E-04
NM_017617	3230141	NOTCH1	notch 1	Û	1.30	6.87E-05
NM_002586	2949859	PBX2	B-cell leukemia homeobox 2	Û	1.20	0.023
NM_015068	3013255	PEG10	paternally expressed 10	Û	1.31	0.017
NM_024299	3893458	PPDPF	pancreatic progenitor cell differentiation and proliferation factor homolog (Zebrafish)	Û	1.33	5.63E-04

NM_013441	2325479	RCAN3	RCAN family member 3	Û	1.40	1.41E-04
NM_001122752	2651165	SERPINI1	serpin peptidase inhibitor, clade I (neuroserpin), member 1	Ŷ	1.34	0.004
NM_005841	2/42224	SPRYI	sprout homolog 1, antagonist of FGF signalling (Drosophila)	Ŷ	1.37	0.008
DNA Damage	e & Repair					
NM_000465	2598099	BARD1	BRCA1 associated RING domain 1	Û	1.21	0.001
NM_152266	3829160	C19orf40	chromosome 19 open reading frame 40	Û	1.26	1.47E-04
NM_022774	2331959	DEM1	defects in morphology 1 homolog (S. cerevisiae)	Û	1.23	2.04E-04
NM_023015	2359817	INTS3	integrator complex subunit 3	Û	1.21	6.25E-06
NM_001174084	3303870	POLL	polymerase (DNA directed), lambda	Û	1.21	4.01E-04
NM_006515	2608419	SETMAR	SET domain and mariner transposase fusion gene	Û	1.28	0.001
NM_003211	3429365	TDG	thymine-DNA glycosylase	Û	1.21	0.004
DNA Replicat	tion & the (Cell Cycle				
NR_024400	2696379	ANAPC13	anaphase promoting complex subunit 13	Û	1.25	0.011
NM_173473	3251353	ANAPC16	anaphase promoting complex subunit 16	Û	1.29	0.002
NM_021178	3555300	CCNB1IP1	cyclin B1 interacting protein 1	Û	1.25	0.018
NM_032436	3503119	CHAMP1	chromosome alignment maintaining phosphoprotein 1	Û	1.26	6.63E-04
NM_001177611	3580319	CINP	cyclin-dependent kinase 2 interacting protein	Û	1.20	0.019
NM_052951	3887017	DNTTIP1	deoxynucleotidyltransferase, terminal, interacting protein 1	Û	1.28	2.81E-04
NM_022731	2452637	NUCKS1	nuclear casein kinase and cyclin-dependent kinase substrate 1	Û	1.20	8.75E-04
NM_032346	3829751	PDCD2L	programmed cell death 2-like	Û	1.23	3.74E-04
NM_001130475	3067644	THAP5	THAP domain containing 5	Û	1.21	0.004
NM_175866	2364155	UHMK1	U2AF homology motif (UHM) kinase 1	Û	1.25	9.64E-05
NM_016478	3072368	ZC3HC1	zinc finger, C3HC-type containing 1	Û	1.23	8.56E-05
Hormone Fu	nction					
NM_015893	2534324	PRLH	prolactin releasing hormone	Û	1.25	0.018
Immune Resp	oonse & Inf	lammation				
NM_001178098	3655109	CD19	CD19 molecule	Û	1.24	0.005
NM_001782	3204648	CD72	CD72 molecule	Û	1.27	0.023
NM_000651	2377332	CR1	complement component (3b/4b) receptor 1 (Knops blood group)	Û	1.56	0.007
NR_024548	3005332	CRCP	CGRP receptor component	Û	1.20	0.003

NM_018284	2421843	GBP3	guanylate binding protein 3	企	1.24	0.020
NM_130759	3031544	GIMAP1	GTPase, IMAP family member 1	Û	1.32	0.016
NM_012483	2491745	GNLY	granulysin	Û	1.32	0.019
NM_024503	2408681	HIVEP3	human immunodeficiency virus type I enhancer binding protein 3	Û	1.23	0.007
NM_002125	4048241	HLA-DRB5	major histocompatibility complex, class II, DR beta 5	Û	3.61	0.027
NM_024013	3164825	IFNA1	interferon, alpha 1	Û	1.34	0.012
NM_001551	3980455	IGBP1	immunoglobulin (CD79A) binding protein 1	Û	1.31	0.011
NM_002201	3607275	ISG20	interferon stimuluated exonuclease gene 20kDa	Û	1.21	0.012
NM_000575	2571483	IL1A	interleukin 1, alpha	Û	1.46	0.041
NM_000880	3141589	IL7	interleukin 7	Û	1.29	0.045
NM_007360	3444086	KLRK1	killer cell lectin-like receptor subfamily K, member 1	Û	1.41	0.008
NM_005565	2886595	LCP2	lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa)	Û	1.27	0.045
NM_001531	2370317	MR1	Mov10, Moloney leukemia virus 10, homolog (mouse)	Û	1.20	0.008
NM_032322	3716993	RNF135	ring finger protein 135	Û	1.22	0.001
NM_022136	3925473	SAMSN1	SAM domain, SH3 domain and nuclear localization signals 1	Û	1.24	0.046
NM_003037	2440327	SLAMF1	signalling lymphocytic activation molecule family member 1	Û	1.21	1.28E-04
NM_001104587	3753500	SLFN11	schlafen family member 11	Û	1.28	0.009
NM_001030288	3655574	SPN	sialophorin	Û	1.24	6.75E-05
NM_001077238	3816424	SPPL2B	signal peptide peptidase-like 2B	Û	1.24	3.22E-05
Ion Binding						
NM 017623	2494749	CNNM3	cyclin M3	Û	1.29	5.21E-05
NM_005950	3692999	MT1G	metallothionein 1G	Û	1.82	0.001
NM_005951	3662201	MT1H	metallothionein 1H	Û	1.54	0.007
Membrane T	rafficking					
NM 000443	3060117	ABCB4	ATP-hinding cassette sub-family B (MDR/TAP) member 4	Л	1 2 1	0.032
NM 004996	3649890	ABCC1	ATP-binding cassette, sub-family C (CFTR/MRP), member 1	л	1.22	2.33E-04
NM 005845	3521174	ABCC4	ATP-binding cassette sub-family C (CFTR/MRP) member 4	л	1 25	0.005
NM 005050	3571810	ABCD4	ATP-binding cassette, sub-family D (ALD), member 4	л	1.24	1.83E-07
NM 002940	2746024	ABCE1	ATP-binding cassette, sub-family E (OABP), member 1	Ŷ	1.29	0.003
NM 020980	3595594	AOP9	aquaporin 9	Û	1.39	0.016
NM 022089	2398736	ATP13A2	ATPase type 13A2	Ũ	1.23	0.005
NM 001679	2645764	ATP1B3	ATPase. Na+/K+ transporting, beta 3 polypeptide	Ũ	1.29	0.009
				*		

NM_001001323	3464983	ATP2B1	ATPase, Ca++ transporting, plasma membrane 1	Û	1.20	0.002
NM_014382	2642325	ATP2C1	ATPase, Ca++ transporting, type 2C, member 1	Û	1.24	5.19E-05
NM_006095	2767378	ATP8A1	ATPase, aminophospholipid transporter (APLT), class I, type 8A, member 1	Û	1.20	0.002
NM_001048210	2426791	CLCC1	chloride channel CLIC-like 1	Û	1.24	7.24E-04
NM_013943	2325593	CLIC4	chloride intracellular channel 4	Û	1.24	0.012
NM_001293	3382948	CLNS1A	chloride channel, nucleotide-sensitive, 1A	Û	1.20	0.007
NM_020897	2360818	HCN3	hyperpolarization activated cyclic nucleotide-gated potassium channel 3	Û	1.20	0.003
NM_012281	3021009	KCND2	potassium voltage-gated channel, Shal-related subfamily, member 2	Û	1.39	0.021
NM_001160133	2913277	KCNQ5	potassium voltage-gated channel, KQT-like subfamily, member 5	Û	1.21	3.74E-04
NM_153259	2420642	MCOLN2	mucolipin 2	Û	1.21	0.002
NM_198887	2979056	NUP43	SAM domain, SH3 domain and nuclear localization signals 1	Û	1.21	9.11E-05
NM_032790	3434888	ORAI1	ORAI calcium release-activated calcium modulator 1	Û	1.21	0.011
NM_006598	2845699	SLC12A7	solute carrier family 12 (potassium/chloride transporters), member 7	Û	1.37	0.020
NM_201566	3708245	SLC16A13	solute carrier family 16, member 13 (monocarboxylic acid transporter 13)	Û	1.27	0.004
NM_004170	3160658	SLC1A1	solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system xag), member 1	Û	1.30	0.016
NM_001040454	2673547	SLC26A6	solute carrier family 26, member 6	Û	1.31	1.58E-05
NM_001532	3378244	SLC29A2	solute carrier organic anion transporter family, member 2B1	Û	1.22	0.004
NM_021194	2454378	SLC30A1	solute carrier family 30 (zinc transporter), member 1	Û	1.20	0.013
NM_198277	3354443	SLC37A2	solute carrier family 37 (glycerol-3-phosphate transporter), member 2	Û	1.29	0.035
NM_003627	3373893	SLC43A1	solute carrier family 43, member 1	Û	1.24	0.015
NM_080669	3750685	SLC46A1	solute carrier family 46 (folate transporter), member 1	Û	1.20	0.012
NM_033262	3570373	SLC8A3	solute carrier family 8 (sodium/calcium exchanger), member 3	Û	1.45	0.006
NM_007256	3340449	SLCO2B1	solute carrier organic anion transporter family, member 2B1	Û	1.24	0.010
NM_152468	3736162	TMC8	transmembrane channel-like 8	Û	1.24	2.90E-04
Metabolism						
NM_006821	3543673	ACOT2	acyl-CoA thioesterase 2	Û	1.22	0.030
NM_025149	3726406	ACSF2	acyl-CoA synthetase family member 2	Û	1.23	0.013
NR_023318	3632298	ADPGK	ADP-dependent glucokinase	Û	1.20	0.011
NM_000687	3903361	AHCY	adenosylhomocysteinase	Û	1.30	0.002
NM_006995	2899340	BTN2A2	butyrophilin, subfamily 2, member A2	Û	1.22	0.002
NM_006090	2351632	CEPT1	choline/ethanolamine phosphotransferase 1	Û	1.20	0.008
NM_183075	2738697	CYP2U1	cytochrome P450, family 2, subfamily U, polypeptide 1	Û	1.30	5.77E-04

NM_024090	2781813	ELOVL6	ELOVL family member 6, elongation of long chain fatty acids (FEN1/Elo2, SUR4/Elo3-like, yeast)	Û	1.26	0.020
NM_005670	2977949	EPM2A	epilepsy, progressive myoclonus type 2A, Lafora disease (laforin)	兌	1.20	1.44E-04
NM_018638	3408018	ETNK1	ethanolamine kinase 1	Û	1.29	2.10E-06
NM_207122	3328389	EXT2	exostosin 2	Û	1.20	0.012
NM_004265	3333247	FADS2	fatty acid desaturase 2	Û	1.24	0.002
NM_021727	3375582	FADS3	fatty acid desaturase 3	Û	1.20	0.002
NM_017423	2751936	GALNT7	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GalNAc-T7)	Û	1.26	0.010
NM_000155	3167511	GALT	galactose-1-phosphate uridylyltransferase	Û	1.20	6.30E-04
NM_021996	3228523	GBGT1	globoside alpha-1,3-N-acetylgalactosaminyltransferase 1	Û	1.34	0.014
NM_002061	2423625	GCLM	glutamate-cysteine ligase, modifier subunit	仓	1.24	3.37E-06
NM_001128227	3205108	GNE	glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase	兌	1.20	0.001
NM_000190	3351841	HMBS	hydroxymethylbilane synthase	兌	1.36	0.011
NM_000859	2815965	HNGCR	3-hydroxy-3-methylglutaryl-CoA reductase	Û	1.24	3.55E-04
NM_012262	2345196	HS2ST1	heparin sulfate 2-0-sulfotransferase 1	Û	1.21	0.004
NM_016142	3328069	HSD17B12	hydroxysteroid (17-beta) dehydrogenase 12	Û	1.24	0.013
NM_024552	3819401	LASS4	LAG1 homolog, ceramide synthase 4	Û	1.24	1.32E-05
NM_000527	3821015	LDLR	low density lipoprotein receptor	Û	1.23	7.82E-04
NM_153613	3617412	LPCAT4	lysophosphatidylcholine acyltransferase 4	Û	1.27	7.79E-05
NM_145693	2469910	LPIN1	lipin 1	兌	1.21	0.032
NM_205834	3830246	LSR	lipolysis stimulated lipoprotein receptor	Û	1.25	4.87E-04
NM_013283	2838688	MAT2B	methionine adenosyltransferase II, beta	얍	1.27	6.51E-04
NM_001080480	2944491	MBOAT1	membrane bound O-acyltransferase domain containing 1	Û	1.22	4.72E-04
NM_138799	2539607	MBOAT2	membrane bound O-acyltransferase domain containing 2	Û	1.57	0.008
NM_002413	2744734	MGST2	microsomal glutathione S-transferase 2	Û	1.37	0.008
NM_001018137	3726960	NME2	non-metastatic cells 2, protein (NM23B) expressed in	얍	1.20	0.003
NM_005793	2673136	NME6	NME/NM23 nucleoside diphosphate kinase 6	Û	1.25	0.001
NM_002537	3629206	OAZ2	ornithine decarboxylase antizyme 2	얍	1.21	0.003
NM_018425	3259978	PI4K2A	phosphatidylinositol 4-kinase type 2 alpha	Û	1.36	0.002
NM_018323	2721777	PI4K2B	phosphatidylinositol 4-kinase type 2 beta	Û	1.24	0.001
NM_006556	2436920	PMVK	phosphomevalonate kinase	Û	1.22	3.28E-06
NM_001136113	3192171	POMT1	protein-O-mannosyltransferase 1	Û	1.20	1.30E-05
NM_017750	2562233	RETSAT	retinol saturase (all-trans-retinol 13,14-reductase)	Û	1.21	0.010
NM_012235	2672712	SCAP	SREBF chaperone	Û	1.26	7.58E-05

NM_005505	3476665	SCARB1	scavenger receptor class F, member 1	Û	1.29	3.77E-06
NM_005063	3260586	SCD	stearoyl-CoA desaturase (delta-9-desaturase)	Û	1.21	4.41E-04
NM_001037582	2775735	SCD5	stearoyl-CoA desaturase 5	Û	1.30	0.026
NM_152386	2529421	SGPP2	sphingosine-1-phosphate phosphatase 2	Û	1.25	3.68E-06
NM_003101	2369557	SOAT1	sterol O-acyltransferase 1	Û	1.21	0.016
NM_006415	3214582	SPTLC1	serine palmitoyltransferase, long chain base subunit 1	Û	1.22	0.005
NM_000351	3967689	STS	steroid sulfatase (microsomal), isozyme S	Û	1.24	0.043
NM_003129	3114832	SQLE	squalene epoxidase	Û	1.27	8.78E-04
NM_003358	3185063	UGCG	UDP-glucose ceramide glucosyltransferase	Û	1.21	0.006
NM_022167	3726325	XYLT2	xylosyltransferase II	Û	1.22	6.76E-04
Mitochondri	on & the Re	espiratory Ele	ctron Transport Chain			
NM_001190329	2588127	ATP5G3	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C3 (subunit 9)	Û	1.22	0.003
NM_006012	3818376	CLPP	ClpP caseinolytic peptidase, ATP-dependent, proteolytic subunit homolog (<i>E. coli</i>)	얍	1.21	2.95E-04
NM_001040431	3758148	COA3	cytochrome c oxidase assembly factor 3	얍	1.24	8.76E-04
NR_029466	2961300	COX7A2	cytochrome c oxidase subunit VIIa polypeptide 2 (liver)	얍	1.29	0.013
NM_152783	2536800	D2HGDH	D-2-hydroxyglutarate dehydrogenase	Û	1.21	0.014
NM_001985	3868963	ETFB	electron-transfer-flavoprotein, beta polypeptide	Û	1.31	9.96E-06
NM_001085411	2853388	NADKD1	NAD kinase domain containing 1	兌	1.20	6.68E-04
NM_004541	3988987	NDUFA1	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa	얍	1.31	0.011
NM_005000	3070658	NDUFA5	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5, 13kDa	얍	1.31	0.038
NM_004546	3027538	NDUFB2	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8kDa	얍	1.20	0.021
NM_003000	2398789	SDHB	succinate dehydrogenase complex, subunit B, iron sulphur (Ip)	얍	1.27	0.001
NM_001024465	2982319	SOD2	sûeroxide dismutase 2, mitochondrial	Û	1.26	0.001
NM_013442	3204534	STOML2	stomatin (EPB72)-like 2	얍	1.28	7.01E-05
NM_003355	3381817	UCP2	uncoûling protein 2 (mitochondrial, proton carrier)	Û	1.24	2.19E-04
NM_006830	3845352	UQCR11	ubiquinol-cytochrome c reductase, complex III subunit XI	얍	1.27	0.026
Neurotransn	nission					
NM_001114	3659966	ADCY7	adenylate cyclase 7	Û	1.25	1.05E-05
NM_001009566	2395890	CLSTN1	calsyntenin 1	Û	1.22	6.03E-04
NM_014718	3403244	CLSTN3	calsyntenin 3	Û	1.38	4.58E-05
NM_003632	3721989	CNTNAP1	contactin associated protein 1	Û	1.52	9.81E-04
NM_001184796	3417371	ESYT1	extended synaptotagmin-like protein 1	Û	1.25	0.002

NM_012428 3632492 NPTN neuroplastin 9 1.24 0.0 NM_004782 393775 SNAP29 synaptosomal-associated protein, 29kDa 0 1.48 1.45E- Nulcleosome NM_032482 3816264 DOT1L DOT1-like, histone H3 methyltransferase (S. cerevisiae) 0 1 1.24 2.03E- NM_032162 2946224 HIST1H2B0 histone cluster 1, H2b0 1 1.34 3.10E- NM_003527 2900116 HIST1H2B0 histone cluster 1, H2b0 1 1.34 3.10E- NM_003540 289243 HIST1H4D histone cluster 1, H4d 1 1.23 0.00 NM_003540 2895243 HIST1H4D histone cluster 1, H4f 1 1.23 0.00 NM_00317 3557614 APIG2 adaptor-related protein complex 1, sigma 3 subunit 1 1.24 0.00 NM_013470 3965393 ALG12 asparagine-linked glycosylation 12, alpha-1,6-mannosyltransferase 1 1.20 0.00 NM_00139569 201287 APS3 adaptor-related protein complex 1, sigma 3 subunit 1 1.21 0.00 </th <th>NM_007278</th> <th>3743486</th> <th>GABARAP</th> <th>GABA(A) receptor-associated protein</th> <th>Û</th> <th>1.21</th> <th>4.72E-04</th>	NM_007278	3743486	GABARAP	GABA(A) receptor-associated protein	Û	1.21	4.72E-04
NM_004782 3937755 SNAP29 synaptosomal-associated protein, 29kDa © 1.48 1.45E- Nucleosome v<	NM_012428	3632492	NPTN	neuroplastin	Û	1.24	0.001
Nucleosome N 0.032482 3816264 DOT1L DOT1-like, histone II3 methyltransferase (S. cerevisiae) 0 1.24 0.0 NIL 53275 2777447 NAPIL5 nucleosome assembly protein 1-like 5 1 1.24 2.03E- NM_003527 2900116 HIST1H2BB histone cluster 1, H2bo 1 1.44 3.0E- NM_003527 2900116 HIST1H4D histone cluster 1, H4bo 1 1.44 3.0E- NM_003540 2899243 HIST1H4P histone cluster 1, H4f 1 1.23 0.0 Protecin Procestrip - - adaptor-related protein complex 1, gamma 2 subunit 1 1.20 0.0 NM_00139569 2601287 APS3 adaptor-related protein complex 1, gamma 2 subunit 1 1.24 0.0 NM_00149570 3965287 ARFCAP3 ADP-ribosylation factor GTPase activating protein 1.24 0.0 NM_00149576 3962587 ARFCAP3 ADP-ribosylation factor GTPase activating protein 1.24 0.0 NM_0014570 3962569 GAPA31	NM_004782	3937755	SNAP29	synaptosomal-associated protein, 29kDa	Û	1.48	1.45E-06
NM.032482 3816264 DOT1. DOT1-like, histone H3 methyltransferase (S. cerevisiae) 0 1.20 0.00 NM.153757 2777447 NAP1L5 nucleosome assembly protein 1-like 5 0 1.24 2.036- NM_021062 2946225 HIST1H2BB histone cluster 1, H2bo 1.54 3.00- NM_003527 2900116 HIST1H4D histone cluster 1, H2bo 1.43 3.00- NM_003540 2899243 HIST1H4D histone cluster 1, H4d 0 0 NM_003540 2899243 HIST1H4D histone cluster 1, H4d 1.23 0.00 Protein Processing 1.21 aptor-related protein complex 1, gamma 2 subunit 1.22 0.0 NM_00319569 2601287 APS3 adaptor-related protein complex 1, sigma 3 subunit 1.24 0.0 NM_014570 3962587 ARFGAP3 ADP-ribosylation factor CTPase activating protein 1.24 0.0 NM_014570 3962587 ARFGAP3 ADP-ribosylation factor CTPase activating protein 1.23 0.0 NM_014570 3962587 ARFGAP3 ADP-ribosylation factor CTPase activating protein 1.24	Nucleosome						
NM_153757 2777447 NAP1L5 nucleosome assembly protein 1-like 5 ft 1.24 2.03E- NM_021062 2946225 HIST1H2BB histone cluster 1, H2b ft 1.34 3.10E- NM_003537 2900116 HIST1H2B0 histone cluster 1, H2b ft 1.40 0.0 NM_003530 299431 HIST1H4D histone cluster 1, H4d ft 0.0 Protein Processor ft 1.42 2.00 0.0 NM_00317 3557614 AP162 asparagine-linked glycosylation 12, alpha-1,6-mannosyltransferase 0 1.20 0.0 NM_00139509 2601287 APS3 adaptor-related protein complex 1, sigma 3 subunit 1.21 0.0 NM_014570 3962587 ARFGAP3 ADP-ribosylation factor GTPase activating protein 1 1.24 0.0 NM_0139457 4026669 BCAP31 B-cell receptor-associated protein complex 1, sigma 3 subunit 1 1.27 0.0 NM_00139457 4026669 BCAP31 B-cell receptor-associated protein 31 1 1.27 0.0 NM_0013457 385324 COPE coatomer protein comple	NM_032482	3816264	DOT1L	DOT1-like, histone H3 methyltransferase (<i>S. cerevisiae</i>)	Û	1.20	0.004
NM_021062 2946225 HIST1H2BB histone cluster 1, H2bb 1 1.57 0.00 NM_003527 2900116 HIST1H2BO histone cluster 1, H2bo 1 1.40 0.00 NM_003539 2946319 HIST1H4D histone cluster 1, H4f 1 1.40 0.0 Protectin Processing - - 1.42 0.0 NM_00317 3557614 AP162 adaptor-related protein complex 1, gamma 2 subunit 1 1.20 0.0 NM_00317 3557614 AP162 adaptor-related protein complex 1, gamma 2 subunit 1 1.21 0.0 NM_014570 3962587 ARFGAP3 ADP-ribosylation factor GTPase activating protein 1 1.24 0.0 NM_02405 3453036 ASB8 ankyrin repeat and SOCS box-containing 8 1 1.36 0.0 NM_00139457 402669 BCAP31 B-cell receptor-associated protein 31 1.31 1.275 2.64F- NM_00263 385324 COPE coatiner protein complex, subunit epsilon 1 1.24 0.0 NM_013245 38355324 COPE coatiner protein complex,	NM_153757	2777447	NAP1L5	nucleosome assembly protein 1-like 5	Û	1.24	2.03E-04
NM_003527 2900116 HIST HEBO histone cluster 1, H2bo 1.34 3.06. NM_003539 2946319 HIST 1H4D histone cluster 1, H4d 1 1.40 0.0 NM_003540 2899243 HIST 1H4F histone cluster 1, H4f 1 1.23 0.0 Protein Processing 1.22 0.0 NM_003917 3557614 AP1G2 adaptor-related protein complex 1, gamma 2 subunit 1 1.20 0.0 NM_0013950 260127 APS3 adaptor-related protein complex 1, gamma 2 subunit 1 1.21 0.0 NM_0014570 3962587 ARFGAP3 ADP-ribosylation factor GTPase activating protein 1 1.24 0.0 NM_0014570 3962587 ARFGAP3 ADP-ribosylation factor GTPase activating protein 1 1.34 1.27 0.0 NM_0014574 026669 BCRP31 B-cell receptor-associated protein 31 1.31 1.27E 1.44 0.0 NM_002763 3855332 COFE coatomer protein complex, subunit epsilon 1 1.24 0.0 NM_0026831 2664607 DPH3	NM_021062	2946225	HIST1H2BB	histone cluster 1, H2bb	Û	1.57	0.024
NM_003539 2946319 HIST1H4D histone cluster 1, H4d 1 1.40 0.00 NM_003540 2899243 HIST1H4F histone cluster 1, H4f 1 1.20 0.00 Protein Processing stane cluster 1, H4f 1 1.20 0.00 NM_003917 3557614 AP162 adaptor-related protein complex 1, gama 2 subunit 1 1.20 0.00 NM_010139569 2601287 ARFGAP3 adaptor-related protein complex 1, sigma 3 subunit 1 1.21 0.00 NM_024095 3453036 ASB8 ankyrin repeat and SOCS box-containing 8 1 1.36 0.00 NM_024195 3453036 ASB8 ankyrin repeat and SOCS box-containing 8 1 1.22 0.02 NM_024141 3018652 CBL1 Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1 1 1.22 5.64E NM_007263 3855324 COPE coatomer protein complex, subunit epsilon 1 1.27 0.0 NM_007263 3855324 COPE coatomer protein complex, subunit epsilon	NM_003527	2900116	HIST1H2BO	histone cluster 1, H2bo	Û	1.34	3.10E-04
NM_003540 2899243 HIST1H4F histone cluster 1, H4f 1.23 0.0 Protein Processing N 0.24105 3965393 ALG12 asparagine-linked glycosylation 12, alpha-1,6-mannosyltransferase 0 1.20 0.0 NM_00317 3557614 APIC2 adaptor-related protein complex 1, gamma 2 subunit 1 1.21 0.00 NM_001039569 2601287 APS3 adaptor-related protein complex 1, sigma 3 subunit 1 1.24 0.00 NM_024095 3453036 ASB8 ankyrin repeat and SOCS box-containing 8 1 1.36 0.00 NM_001139457 4026669 BCAP31 B-cell receptor-associated protein 31 1.21 1.27E NM_024814 3018652 CBLL1 Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1 1 1.25 2.64E- NM_005776 3565303 CNH contichon homolog (<i>Drosophila</i>) 1 1.27 0.00 NM_024050 382512 DDA1 DET1 and DDB1 associated 1 1 1.27 0.00 NM_026831 266467 DPH3 DPH3, KT111 homolog (<i>S. cerevisiae</i>) 1 1.25 0	NM_003539	2946319	HIST1H4D	histone cluster 1, H4d	Û	1.40	0.002
Protein Processing Image: Stress of the stresstres of the stress of the stress of the stress of the st	NM_003540	2899243	HIST1H4F	histone cluster 1, H4f	Û	1.23	0.010
NM_024105 3965393 ALG12 asparagine-linked glycosylation 12, alpha-1,6-mannosyltransferase J 1.20 0.0 NM_003917 3557614 AP162 adaptor-related protein complex 1, gamma 2 subunit J 1.20 0.0 NM_001039569 2601287 APS3 adaptor-related protein complex 1, gamma 2 subunit I 1.21 0.0 NM_014570 3962587 ARFGAP3 ADP-ribosylation factor GTPase activating protein I 1.24 0.0 NM_024095 3453036 ASB ankyrin repeat and SOCS box-containing 8 I 1.36 0.0 NM_02414 3018652 CBLL1 Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1 I 1.22 2.64E NM_007263 385524 COPE coatomer protein complex, subunit epsilon I 1.24 0.0 NM_024050 382412 DDA1 DET1 and DDB1 associated 1 I 1.25 0.0 NM_024051 2664607 DPH3 DPH3, KT111 homolog (S. cerevisiae) I I 1.33 1.68E- NM_001417 345546 EIF4E eukaryotic translation initiation factor 4B I	Protein Proc	essing					
NM_003917 3557614 AP1G2 adaptor-related protein complex 1, gamma 2 subunit 0 1.20 0.0 NM_001039569 2601287 APS3 adaptor-related protein complex 1, sigma 3 subunit 0 1.21 0.0 NM_014570 3962587 ARFGAP3 ADP-ribosylation factor GTPase activating protein 0 1.24 0.0 NM_024095 3453036 ASB8 ankyrin repeat and SOCS box-containing 8 0 1.36 0.0 NM_024814 3018652 CBL1 Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1 1 1.22 2.64E- NM_005776 3565303 CNIH cornichon homolog (<i>Drosophila</i>) 0 1.24 0.0 NM_007263 3855324 COPE coatomer protein complex, subunit epsilon 1 1.27 0.0 NM_013234 382616 EIFAB eukaryotic translation initiation factor 4B 1.34 1.23 0.0 NM_001317 3455946 EIF4B eukaryotic translation initiation factor 5 1 1.23 0.0 NM_0018304 355307 EIF5 eukaryotic translation initiation factor 5 1 1.23	NM_024105	3965393	ALG12	asparagine-linked glycosylation 12, alpha-1,6-mannosyltransferase	Û	1.20	0.001
NM_001039569 2601287 APS3 adaptor-related protein complex 1, sigma 3 subunit 1 1.21 0.0 NM_014570 3962587 ARFGAP3 ADP-ribosylation factor GTPase activating protein 1 1.24 0.0 NM_024095 3453036 ASB8 ankyrin repeat and SOCS box-containing 8 1 1.36 0.0 NM_01139457 4026669 BCAP31 B-cell receptor-associated protein 31 1 1.27E 2.64E- NM_005776 3565303 CNIH cornichon homolog (Drosophila) 1 1.24 0.0 NM_020450 3824212 DDA1 DET1 and DDB1 associated 1 1 1.27 0.0 NM_013234 3832616 EIF3K eukaryotic translation initiation factor 3, subunit K 1 1.33 1.68E- NM_004846 2532422 EIF4B eukaryotic translation initiation factor 4E family member 2 1 1.23 0.0 NM_04846 2532422 EIF4B eukaryotic translation initiation factor 5 1 1.20 0.0 NM_001417 3455946 EIF4B eukaryotic translation initiation factor 4E family member 2 1 1.23 <t< td=""><td>NM_003917</td><td>3557614</td><td>AP1G2</td><td>adaptor-related protein complex 1, gamma 2 subunit</td><td>Û</td><td>1.20</td><td>0.001</td></t<>	NM_003917	3557614	AP1G2	adaptor-related protein complex 1, gamma 2 subunit	Û	1.20	0.001
NM_014570 3962587 ARFGAP3 ADP-ribosylation factor GTPase activating protein 1 1 1 1 0.0 NM_024095 3453036 ASB8 ankyrin repeat and SOCS box-containing 8 0.0 1.36 0.0 NM_001139457 4026669 BCAP31 B-cell receptor-associated protein 31 1.27E 1.27E NM_0241841 3018652 CBLL1 Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1 1 1.25 2.64E NM_005776 3565303 CNIH cornichon homolog (<i>Drosophila</i>) 1 1.20 5.18E- NM_007263 3855324 COPE coatomer protein complex, subunit epsilon 1 1.27 0.0 NM_024050 3824212 DDA1 DET1 and DDB1 associated 1 1 1.27 0.0 NM_013234 3832616 EIF3K eukaryotic translation initiation factor 3, subunit K 1 1.33 1.68E- NM_001417 3455946 EIF4B eukaryotic translation initiation factor 4E family member 2 1 1.20 0.00 NM_003864 286977 FBXW11 F-box and WD repeeat domain containing 11 1 <	NM_001039569	2601287	APS3	adaptor-related protein complex 1, sigma 3 subunit	Û	1.21	0.010
NM_024095 3453036 ASB8 ankyrin repeat and SOCS box-containing 8 1 1.36 0.0 NM_001139457 4026669 BCAP31 B-cell receptor-associated protein 31 1 1.31 1.27E- NM_024814 3018652 CBL1 Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1 1 1.25 2.64E- NM_005776 3565303 CNIH contichon homolog (<i>Drosophila</i>) 1 1.20 5.18E- NM_007263 3855324 COPE coatomer protein complex, subunit epsilon 1 1.24 0.0 NM_024050 3824212 DDA1 DET1 and DDB1 associated 1 1 1.25 0.0 NM_013234 3832616 EIF3K eukaryotic translation initiation factor 3, subunit K 1 1.33 1.68E- NM_01417 3455946 EIF4B eukaryotic translation initiation factor 4B 1 1.20 0.0 NM_038404 2532422 EIF4E2 eukaryotic translation initiation factor 5 1 1.20 0.00 NM_03864 2586977 FBXW11 Fbox and WD repeat domain containing 11 1 1.22 1.02E- NM_00801 3894601 FKBP1A FK506 binding protein 1A, 12kDa 1 1.20	NM_014570	3962587	ARFGAP3	ADP-ribosylation factor GTPase activating protein	Û	1.24	0.001
NM_0011394574026669BCAP31B-cell receptor-associated protein 31I.311.27E-NM_0248143018652CBLL1Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 111.252.64E-NM_0057763565303CNIHcornichon homolog (<i>Drosophila</i>)I1.205.18E-NM_0072633855324COPEcoatomer protein complex, subunit epsilon11.270.0NM_2040503824212DDA1DET1 and DDB1 associated 111.270.0NM_2068312664607DPH3DPH3, KTI11 homolog (<i>S. cerevisiae</i>)11.250.00NM_0132343832616EIF3Keukaryotic translation initiation factor 3, subunit K11.450.0NM_0048462532422EIF4Eeukaryotic translation initiation factor 4B11.450.0NM_036442886977FBSW11F-box and WD repeat domain containing 1111.221.02E-NM_008013894601FKBP1AFK506 binding protein 1A, 12kDa11.230.00NM_0159492986906GET4golgi to ER traffic protein 4 homolog (<i>S. cerevisiae</i>)11.240.00NM_0121302852337GOLPH3golgi phosphoprotein 3 (coat-protein)11.200.00NM_0147613667766IST1increased sodium tolerance 1 homolog (yeast)11.200.00NM_0146753538324IKAMPINK1/MAPK8-associated membrane protein11.269.14E-	NM_024095	3453036	ASB8	ankyrin repeat and SOCS box-containing 8	Û	1.36	0.020
NM_0248143018652CBLL1Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1	NM_001139457	4026669	BCAP31	B-cell receptor-associated protein 31	Û	1.31	1.27E-05
NM_0057763565303CNIHcornichon homolog (Drosophila)I1.205.18E-NM_0072633855324COPEcoatomer protein complex, subunit epsilonI1.240.0NM_0240503824212DDA1DET1 and DDB1 associated 1I1.270.0NM_2068312664607DPH3DPH3, KTI11 homolog (S. cerevisiae)II1.250.0NM_0132343832616EIF3Keukaryotic translation initiation factor 3, subunit KI1.331.68E-NM_0014173455946EIF4Beukaryotic translation initiation factor 4BI1.230.0NM_1830043553607EIF5eukaryotic translation initiation factor 5I1.200.00NM_0336442886977FBXW11F-box and WD repeat domain containing 11I1.221.02E-NM_008013894601FKBP1AFK506 binding protein 1A, 12kDaI1.230.00NM_0159492986906GET4golgi to ER traffic protein 4 homolog (S. cerevisiae)I1.240.00NM_0121302852237GOLPH3golgi phosphoprotein 3 (coat-protein)I1.200.00NM_0147613667766IST1increased sodium tolerance 1 homolog (yeast)I1.200.00NM_0164753538324IKAMPINK1/MAPK8-associated membrane proteinI1.26914E-	NM_024814	3018652	CBLL1	Cas-Br-M (murine) ecotropic retroviral transforming sequence-like 1	Û	1.25	2.64E-06
NM_0072633855324COPEcoatomer protein complex, subunit epsilon $\hat{\Gamma}$ 1.240.0NM_0240503824212DDA1DET1 and DDB1 associated 1 $\hat{\Gamma}$ 1.270.0NM_2068312664607DPH3DPH3, KTI11 homolog (S. cerevisiae) $\hat{\Gamma}$ 1.250.0NM_0132343832616EIF3Keukaryotic translation initiation factor 3, subunit K $\hat{\Gamma}$ 1.331.68E-NM_0014173455946EIF4Beukaryotic translation initiation factor 4B $\hat{\Gamma}$ 1.450.0NM_0048462532422EIF4E2eukaryotic translation initiation factor 5 $\hat{\Gamma}$ 1.200.0NM_0336442886977FBXW11F-box and WD repeat domain containing 11 $\hat{\Gamma}$ 1.221.02E-NM_008013894601FKBP1AFK506 binding protein 1A, 12kDa $\hat{\Gamma}$ 1.240.0NM_0121302852237GOLPH3golgi plosphoprotein 3 (coat-protein) $\hat{\Gamma}$ 1.200.0NM_0147613667766IST1increased sodium tolerance 1 homolog (yeast) $\hat{\Gamma}$ 1.200.0NM_0164753538324IKAMPINK1/MAPK8-associated membrane protein $\hat{\Gamma}$ 1.200.0	NM_005776	3565303	CNIH	cornichon homolog (<i>Drosophila</i>)	Û	1.20	5.18E-04
NM_024050 3824212 DDA1 DET1 and DDB1 associated 1 1.27 0.0 NM_206831 2664607 DPH3 DPH3, KTI11 homolog (S. cerevisiae) 1 1.25 0.0 NM_013234 3832616 EIF3K eukaryotic translation initiation factor 3, subunit K 1 1.33 1.68E- NM_001417 3455946 EIF4B eukaryotic translation initiation factor 4B 1 1.45 0.0 NM_004846 2532422 EIF4E2 eukaryotic translation initiation factor 4E family member 2 1 1.23 0.0 NM_033644 2886977 FBXW11 F-box and WD repeat domain containing 11 1 1.22 1.02E- NM_00801 3894601 FKBP1A FK506 binding protein 1A, 12kDa 1 1.23 0.00 NM_0122130 2852237 GOLPH3 golgi to ER traffic protein 4 homolog (S. cerevisiae) 1 1.24 0.00 NM_014761 3667766 IST1 increased sodium tolerance 1 homolog (yeast) 1 1.20 0.00 NM_016475 3538324 IKAMP INK1/MAPK8-associated membrane protein 1 1.26 914E-1 <td>NM_007263</td> <td>3855324</td> <td>COPE</td> <td>coatomer protein complex, subunit epsilon</td> <td>Û</td> <td>1.24</td> <td>0.002</td>	NM_007263	3855324	COPE	coatomer protein complex, subunit epsilon	Û	1.24	0.002
NM_2068312664607DPH3DPH3, KTI11 homolog (S. cerevisiae) $\hat{\Upsilon}$ 1.250.0NM_0132343832616EIF3Keukaryotic translation initiation factor 3, subunit K $\hat{\Upsilon}$ 1.331.68E-NM_0014173455946EIF4Beukaryotic translation initiation factor 4B $\hat{\Upsilon}$ 1.450.0NM_0048462532422EIF4E2eukaryotic translation initiation factor 4E family member 2 $\hat{\Upsilon}$ 1.230.0NM_1830043553607EIF5eukaryotic translation initiation factor 5 $\hat{\Upsilon}$ 1.200.00NM_0336442886977FBXW11F-box and WD repeat domain containing 11 $\hat{\Upsilon}$ 1.221.02E-NM_0008013894601FKBP1AFK506 binding protein 1A, 12kDa $\hat{\Psi}$ 1.230.00NM_0159492986906GET4golgi to ER traffic protein 4 homolog (S. cerevisiae) $\hat{\Psi}$ 1.240.00NM_0147613667766IST1increased sodium tolerance 1 homolog (yeast) $\hat{\Psi}$ 1.200.00NM_0164753538324IKAMPINK1/MAPK8-associated membrane protein $\hat{\Psi}$ 1.26914E-	NM_024050	3824212	DDA1	DET1 and DDB1 associated 1	Û	1.27	0.031
NM_0132343832616EIF3Keukaryotic translation initiation factor 3, subunit K	NM_206831	2664607	DPH3	DPH3, KTI11 homolog (<i>S. cerevisiae</i>)	Û	1.25	0.016
NM_0014173455946EIF4Beukaryotic translation initiation factor 4B $\hat{1}$ 1.450.0NM_0048462532422EIF4E2eukaryotic translation initiation factor 4E family member 2 $\hat{1}$ 1.230.0NM_1830043553607EIF5eukaryotic translation initiation factor 5 $\hat{1}$ 1.200.0NM_0336442886977FBXW11F-box and WD repeat domain containing 11 $\hat{1}$ 1.221.02E-1NM_0008013894601FKBP1AFK506 binding protein 1A, 12kDa $\hat{1}$ 1.230.0NM_0159492986906GET4golgi to ER traffic protein 4 homolog (<i>S. cerevisiae</i>) $\hat{1}$ 1.200.00NM_0147613667766IST1increased sodium tolerance 1 homolog (yeast) $\hat{1}$ 1.200.00NM_0164753538324IKAMPINK1/MAPK8-associated membrane protein $\hat{1}$ 1.269.14E-1	NM_013234	3832616	EIF3K	eukaryotic translation initiation factor 3, subunit K	Û	1.33	1.68E-04
NM_0048462532422EIF4E2eukaryotic translation initiation factor 4E family member 2111.230.0NM_1830043553607EIF5eukaryotic translation initiation factor 511.200.0NM_0336442886977FBXW11F-box and WD repeat domain containing 1111.221.02E-NM_0008013894601FKBP1AFK506 binding protein 1A, 12kDa11.230.0NM_0159492986906GET4golgi to ER traffic protein 4 homolog (<i>S. cerevisiae</i>)11.240.0NM_01221302852237GOLPH3golgi phosphoprotein 3 (coat-protein)11.200.00NM_0147613667766IST1increased sodium tolerance 1 homolog (yeast)11.200.00NM_0164753538324IKAMPINK1/MAPK8-associated membrane protein11.269.14E-1	NM_001417	3455946	EIF4B	eukaryotic translation initiation factor 4B	Û	1.45	0.011
NM_1830043553607EIF5eukaryotic translation initiation factor 51.200.0NM_0336442886977FBXW11F-box and WD repeat domain containing 1111.221.02E-NM_0008013894601FKBP1AFK506 binding protein 1A, 12kDa11.230.0NM_0159492986906GET4golgi to ER traffic protein 4 homolog (<i>S. cerevisiae</i>)11.240.0NM_0221302852237GOLPH3golgi phosphoprotein 3 (coat-protein)11.200.00NM_0147613667766IST1increased sodium tolerance 1 homolog (yeast)11.200.00NM_0164753538324IKAMPINK1/MAPK8-associated membrane protein11.269.14E-1	NM_004846	2532422	EIF4E2	eukaryotic translation initiation factor 4E family member 2	Û	1.23	0.011
NM_0336442886977FBXW11F-box and WD repeat domain containing 11	NM_183004	3553607	EIF5	eukaryotic translation initiation factor 5	Û	1.20	0.001
NM_000801 3894601 FKBP1A FK506 binding protein 1A, 12kDa Image: 1.23 0.0 NM_015949 2986906 GET4 golgi to ER traffic protein 4 homolog (<i>S. cerevisiae</i>) Image: 1.24 0.0 NM_022130 2852237 GOLPH3 golgi phosphoprotein 3 (coat-protein) Image: 1.20 0.0 NM_014761 3667766 IST1 increased sodium tolerance 1 homolog (yeast) Image: 1.20 0.0 NM_016475 3538324 IKAMP INK1/MAPK8-associated membrane protein Image: 1.26 9.14E-1	NM_033644	2886977	FBXW11	F-box and WD repeat domain containing 11	Û	1.22	1.02E-04
NM_015949 2986906 GET4 golgi to ER traffic protein 4 homolog (<i>S. cerevisiae</i>) 1.24 0.0 NM_022130 2852237 GOLPH3 golgi phosphoprotein 3 (coat-protein) 1.20 0.0 NM_014761 3667766 IST1 increased sodium tolerance 1 homolog (yeast) 1.20 0.0 NM_016475 3538324 IKAMP INK1/MAPK8-associated membrane protein 1.26 9.14E-1	NM_000801	3894601	FKBP1A	FK506 binding protein 1A, 12kDa	Û	1.23	0.006
NM_022130 2852237 GOLPH3 golgi phosphoprotein 3 (coat-protein) 1/2 0.0 NM_014761 3667766 IST1 increased sodium tolerance 1 homolog (yeast) 1/2 0.0 NM_016475 3538324 IKAMP INK1/MAPK8-associated membrane protein 1/2 9.14E-1	NM_015949	2986906	GET4	golgi to ER traffic protein 4 homolog (<i>S. cerevisiae</i>)	Û	1.24	0.002
NM_014761 3667766 IST1 increased sodium tolerance 1 homolog (yeast) [↑] 1.20 0.0 NM_016475 3538324 IKAMP INK1/MAPK8-associated membrane protein	NM_022130	2852237	GOLPH3	golgi phosphoprotein 3 (coat-protein)	Û	1.20	0.002
NM 016475 3538324 IKAMP INK1/MAPK8-associated membrane protein Λ 1.26 9.14E-i	NM_014761	3667766	IST1	increased sodium tolerance 1 homolog (yeast)	Û	1.20	0.008
	NM_016475	3538324	JKAMP	JNK1/MAPK8-associated membrane protein	Û	1.26	9.14E-04

NR_033646	3675462	LMF1	lipase maturation factor 1	Û	1.21	0.015
NM_005358	3494137	LM07	LIM domain 7	Û	1.28	0.025
NM_022149	2708610	MAGEF1	melanoma antigen family F, 1	Û	1.20	0.007
NM_032868	3817464	MPND	MPN domain containing	Û	1.22	1.86E-04
NM_145255	3760945	MRPL10	mitochondrial ribosomal protein L10	Û	1.21	0.037
NM_014175	3098454	MRPL15	mitochondrial ribosomal protein L15	Û	1.27	1.83E-04
NM_017840	3374856	MRPL16	mitochondrial ribosomal protein L16	Û	1.20	0.022
NM_014763	2489806	MRPL19	mitochondrial ribosomal protein L19	Û	1.22	0.012
NM_181515	3379708	MRPL21	mitochondrial ribosomal protein L21	Û	1.32	0.003
NM_145212	2495806	MRPL30	mitochondrial ribosomal protein L30	Û	1.20	0.014
NM_023937	3824197	MRPL34	mitochondrial ribosomal protein L34	仓	1.33	6.39E-05
NM_146388	3820414	MRPL4	mitochondrial ribosomal protein L4	Û	1.21	0.002
NM_003776	3936887	MRPL40	mitochondrial ribosomal protein L40	仓	1.22	0.023
NM_053050	2560141	MRPL53	mitochondrial ribosomal protein L53	仓	1.22	3.77E-04
NM_031420	2435195	MRPL9	mitochondrial ribosomal protein L9	仓	1.21	0.007
NM_022839	3607183	MRPS11	mitochondrial ribosomal protein S11	Û	1.33	1.60E-05
NM_021107	3832777	MRPS12	mitochondrial ribosomal protein S12	仓	1.29	1.89E-05
NM_016065	3294348	MRPS16	mitochondrial ribosomal protein S16	仓	1.21	1.83E-04
NM_016034	3193900	MRPS2	mitochondrial ribosomal protein S2	Û	1.26	0.001
NM_016100	3878934	NAA20	N(alpha)-acetyltransferase 20, NatB catalytic subunit	仓	1.22	0.002
NM_015678	3485292	NBEA	neurobeachin	Û	1.27	0.014
NM_006812	3418436	0S9	osteosarcoma amplified 9, endoplasmic reticulum lectin	Û	1.20	0.007
NM_000287	2954280	PEX6	peroxisomal biogenesis factor 6	Û	1.25	1.61E-04
NM_012394	2440612	PFDN2	prefoldin subunit 2	仓	1.20	0.003
NM_176787	3811086	PIGN	phosphatidylinositol glycan anchor biosynthesis, class N	Û	1.26	9.66E-04
NM_032634	3204496	PIGO	phosphatidylinositol glycan anchor biosynthesis, class O	Û	1.26	0.010
NM_006221	3820177	PIN1	peptidylprolyl cis/trans isomerase, NIMA-interacting 1	仓	1.37	1.52E-05
NM_012388	3592484	PLDN	pallidin homolog (mouse)	仓	1.30	6.86E-04
NM_017958	2505957	PLEKHB2	pleckstrin homology domain containing, family B (evectins) member 2	仓	1.21	0.008
NM_005817	3847005	PLIN3	perilipin 3	仓	1.20	0.004
NM_152329	3534785	PPIL5	peptidylprolyl isomerase (cyclophilin)-like 5	Û	1.24	0.002
NM_002792	3912861	PSMA7	proteasome (prosome, macropain) subunit, alpha type, 7	Û	1.28	5.44E-05
NM_002800	2903285	PSMB9	proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional peptidase 2)	Û	1.22	0.001

NM_002814	4017519	PSMD10	proteasome (prosome, macropain) 26S subunit, non-ATPase, 10	Û	1.22	7.62E-05
NM_031296	2744674	RAB33B	RAB33B, member RAS oncogene family	Û	1.27	0.004
NM_014372	2335986	RNF11	ring finger protein 11	Û	1.23	0.004
NM_015528	3707352	RNF167	ring finger protein 167	Û	1.23	2.12E-05
NM_017763	3764399	RNF43	ringer finger protein 43	Û	1.20	0.007
NM_000975	2325192	RPL11	ribosomal protein L11	Û	1.25	0.035
NM_000983	2394558	RPL22	ribosomal protein L22	Û	1.40	1.06E-04
NM_052969	2709606	RPL39L	ribosomal protein L39-like	Û	1.35	0.007
NM_021104	3717034	RPL41	ribosomal protein L41	Û	1.32	0.003
NM_001024921	2766419	RPL9	ribosomal protein L9	Û	1.24	0.014
NM_001019	3683018	RPS15A	ribosomal protein S15a	Û	1.27	0.039
NM_002952	3676300	RPS2	ribosomal protein S2	Û	1.49	0.003
NM_001042576	3899173	RRBP1	ribosome binding protein 1 homolog 180kDa (dog)	Û	1.26	0.009
NM_005619	3865422	RTN2	reticulon 2	Û	1.23	4.12E-05
NM_013346	4011768	SNX12	sorting nexin 12	Û	1.20	0.002
NM_003134	3619165	SRP14	signal recognition particle 14kDa (homologous Alu RNA binding protein)	Û	1.34	0.002
NM_152713	3354764	STT3A	STT3, subunit of the oligosaccharyltransferase complex, homolog A (S. cerevisiae)	Û	1.21	0.009
NM_004853	3744800	STX8	syntaxin 8	Û	1.22	0.013
NM_006936	3934669	SUM03	SMT3 suppressor of mif two 3 homolog 3 (S. cerevisiae)	Û	1.32	5.38E-04
NR_028383	3391234	TIMM8B	translocase of inner mitochondrial membrane 8 homolog B (yeast)	Û	1.20	0.015
NM_014506	3191147	TOR1B	torsin family 1, member B (torsin B)	Û	1.20	0.006
NM_003338	3247757	UBE2D1	ubiquitin-conjugating enzyme E2D 1 (UBC4/5 homolog, yeast)	Û	1.21	0.001
NM_015983	2999640	UBE2D4	ubiquitin-conjugating enzyme E2D 4 (putative)	Û	1.30	1.32E-04
NM_003342	3742067	UBE2G1	ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog, yeast)	Û	1.22	0.004
NM_005339	2766532	UBE2K	ubiquitin-conjugating enzyme E2K (UBC1 homolog, yeast)	Û	1.38	0.009
NM_015853	3376023	UBXN1	UBX domain protein 1	Û	1.21	0.015
NM_006634	2491676	VAMP5	vesicle-associated membrane protein 5 (myobrevin)	Û	1.24	0.040
NM_006555	2999816	YKT6	YKT6 v-SNARE homolog (<i>S. cerevisiae</i>)	Û	1.28	5.00E-05
RNA Process	ing					
NM_001002252	3435681	ARL6IP4	ADP-ribosylation-like factor 6 interacting protein 4	Û	1.26	8.01E-05
NM_018696	3788270	ELAC1	elaC homolog 1 (<i>E. coli</i>)	Û	1.24	0.001
NM_019037	3120008	EXOSC4	exosome component 4	Û	1.27	2.04E-04

NM_032288	2659887	FYTTD1	forty-two-three domain containing 1	Û	1.33	1.59E-04
NM_203505	2773756	G3BP2	GTPase activating protein (SH3 domain) binding protein 2	仓	1.24	4.20E-05
NM_018983	2739242	GAR1	GAR1 ribonucleoprotein homolog (yeast)	仓	1.31	6.95E-05
NM_002047	2995420	GARS	glycyl-tRNA synthetase	仓	1.24	0.004
NM_024775	2477980	GEMIN6	gem (nuclear organelle) associated protein 6	仓	1.29	1.16E-04
NM_004966	3286286	HNRNPF	heterogeneous nuclear ribonucleoprotein F	仓	1.22	6.15E-04
NM_015155	3273484	LARP4B	La ribonucleoprotein domain family, member 4B	仓	1.20	0.025
NM_016648	2740005	LARP7	La ribonucleoprotein domain family, member 7	仓	1.20	0.022
NM_139242	3629378	MTFMT	mitochondrial methionyl-tRNA formyltransferase	仓	1.24	0.007
NM_007362	2713074	NCBP2	nuclear cap binding protein subunit 2, 20kDa	Û	1.20	0.010
NM_007006	3692895	NUDT21	nudix (nucleoside diphosphate linked moiety X)-type motif 21	Û	1.20	6.68E-05
NM_005008	3962054	NHP2L1	NHP2 non-histone chromosome protein 2-like 1 (S. cerevisiae)	Û	1.22	4.57E-04
NM_001127460	3457696	PAN2	PAN2 poly(A) specific ribonuclease subunit homolog (S. cerevisiae)	Û	1.21	2.09E-05
NM_020528	3924254	PCBP3	poly(rC) binding protein 3	Û	1.23	0.025
NM_032758	3961955	PHF5A	PHD finger protein 5A	Û	1.21	0.020
NM_004805	2575134	POLR2D	polymerase (RNA) II (DNA directed) polypeptide D	Û	1.22	0.010
NM_021974	3945133	POLR2F	polymerase (RNA) II (DNA directed) polypeptide F	Û	1.22	0.020
NM_002696	3333622	POLR2G	polymerase (RNA) II (DNA directed) polypeptide G	Û	1.24	3.80E-04
NM_006627	3828032	POP4	processing of precursor 4, ribonuclease P/MRP subunit (S. cerevisiae)	Û	1.20	0.022
NM_016059	2952065	PPIL1	peptidylprolyl isomerase (cyclophilin)-like 1	Û	1.22	0.017
NM_006743	3976519	RBM3	RNA binding motif (RNP1, RRM) protein 3	兌	1.22	9.22E-05
NM_053043	3033397	RBM33	RNA binding motif protein 33	Û	1.20	4.75E-04
NM_001098783	2626141	RPP14	ribonuclease P/MRP 14kDa subunit	Û	1.37	0.001
NM_014502	3375049	PRPF19	PSO4 pre-mRNA processing factor 19 homolog (S. cerevisiae)	兌	1.21	2.24E-04
NM_024839	2901552	RPP21	ribonuclease P/MRP 21kDa subunit	兌	1.23	0.005
NM_183005	3236538	RPP38	ribonuclease P/MRP 38kDa subunit	Û	1.34	0.011
NM_016047	2544179	SF3B14	splicing factor 3B, 14kDa subunit	兌	1.21	0.002
NM_005850	2434159	SF3B4	splicing factor 3b, subunit 4, 49kDa	兌	1.20	0.019
NM_019108	3864597	SMG9	Smg-9 homolog, nonsense mediated mRNA decay factor (<i>C. elegans</i>)	Û	1.24	6.65E-05
NM_177542	3865568	SNRPD2	small nuclear ribonucleoprotein D2 polypeptide 16.5kDa	Û	1.23	0.012
NM_014188	2391647	SSU72	SSU72 RNA polymerase II CTD phosphatase homolog (S. cerevisiae)	仓	1.25	1.64E-04
NM_007178	3406421	STRAP	serine/threonine kinase receptor associated protein	Û	1.20	0.001
NM_005646	2461473	TARBP1	TAR (HIV-1) RNA binding protein 1	Û	1.22	0.002

NR_027962	2342391	TYW3	tRNA-yW synthesizing protein 3 homolog (S. cerevisiae)	Û	1.24	0.010
NM_007187	3486807	WBP4	WW domain binding protein 4 (formin binding protein 21)	Û	1.20	0.002
NM_033114	3451318	ZCRB1	zinc finger CCHC-type and RNA binding motif 1	Û	1.26	7.15E-05
Sensory Perc	eption					
NM_001001963	2390253	OR2L8	olfactory receptor, family 2, subfamily L, member 8	Û	1.34	0.032
NM_001005278	2439508	OR6N2	olfactory receptor, family 6, subfamily N, member 2	Û	1.34	0.032
Signal Trans	duction					
NM_001040196	2320411	AGTRAP	angiotensin II receptor-associated protein	Û	1.22	0.006
NM_130847	3345222	AMOTL1	angiomotin like 1	Û	1.20	0.036
NM_018287	3283920	ARHGAP19	Rho GTPase activating protein 12	Û	1.20	0.007
NM_032900	3302177	ARHGAP19	Rho GTPase activating protein 19	Û	1.22	0.042
NM_012106	3662650	ARL2BP	ADP-ribosylation factor-like 2 binding protein	Û	1.20	0.022
NM_016289	2531522	CAB39	calcium binding protein 39	Û	1.25	7.76E-04
NM_030925	3513752	CAB39L	calcium binding protein 39-like	Û	1.27	0.007
NM_005795	2591367	CALCRL	calcitonin receptor-like	Û	1.33	0.037
NM_006833	3015216	COPS6	COP9 constitutive photomorphogenic homolog subunit 6 (Arabidopsis)	Û	1.22	0.004
NM_001130048	3522398	DOCK9	dedicator of cytokinesis 9	Û	1.39	0.033
NM_000118	3226097	ENG	endoglin	Û	1.31	0.002
NM_004447	3445908	EPS8	epidermal growth factor receptor pathway substrate 8	Û	1.51	0.035
NM_004101	2863363	F2RL2	coagulation factor II (thrombin) receptor-like 2	Û	1.20	0.002
NM_004112	3708644	FGF11	fibroblast growth factor 11	Û	1.33	0.005
NM_001174064	3132016	FGFR1	fibroblast growth factor receptor 1	Û	1.73	6.68E-04
NM_213647	2842911	FGFR4	fibroblast growth factor receptor 4	Û	1.21	0.001
NM_138445	2986999	GPR146	G protein-coupled receptor 146	Û	1.55	0.003
NM_014181	2485406	HSPC159	galectin-related protein	Û	1.34	0.011
NM_002224	2903782	ITPR3	inositol 1,4,5-triphosphate receptor, type 3	Û	1.22	7.81E-04
NM_017907	3380980	LAMTOR1	late endosomal/lysosomal adaptor, MAPK and mTOR activator 1	Û	1.29	6.93E-04
NM_002309	3957160	LIF	leukemia inhibitory factor (cholinergic differentiation factor)	Û	1.23	0.013
NM_001040056	3687494	MAPK3	mitogen-activated protein kinase 3	Û	1.32	0.001
NM_001142633	3744680	PIK3R5	phosphoinositide-3-kinase, regulatory subunit 5	Û	1.25	0.014
NM_021959	2901352	PPP1R11	protein phosphatase 1, regulatory (inhibitor) subunit 11	Û	1.21	0.002
NM_001009552	3130211	PPP2CB	protein phosphatase 2, catalytic subunit, beta isozyme	Û	1.32	4.81E-04

NM_001033582	2316245	PRKCZ	protein kinase C, zeta	Û	1.26	8.50E-04
NM_000956	3535780	PTGER2	prostaglandin E receptor 2 (subtype EP2), 53kDa	Û	1.23	6.53E-04
NM_002838	2373842	PTPRC	protein tyrosine phosphatase, receptor type, C	Û	1.24	0.011
NM_014990	3561110	RALGAPA1	Ral GTPase activating protein, alpha subunit 1 (catalytic)	仓	1.20	0.023
NM_001010935	2351872	RAP1A	RAP1A, member of RAS oncogene family	Û	1.20	0.004
NM_002886	2648378	RAP2B	RAP2B, member of RAS oncogene family	Û	1.24	1.87E-04
NM_024599	3771602	RHBDF2	rhomboid 5 homolog 2 (<i>Drosophila</i>)	Û	1.28	4.45E-05
NM_022157	2407729	RRAGC	Ras-related GTP binding C	Û	1.25	6.98E-04
NM_021244	2964231	RRAGD	Ras-related GTP binding D	Û	1.71	0.004
NM_174919	3759824	SH3D20	SH3 domain containing 20	Û	1.20	0.027
NM_054114	2982076	TAGAP	T-cell activation Rho GTPase activating protein	Û	1.22	0.007
NM_014604	3741528	TAX1BP3	Tax1 (human T-cell leukemia virus type I) binding protein 3	Û	1.24	0.036
NM_003839	3791254	TNFRSF11A	tumor necrosis factor receptor superfamily, member 11a, NFKB activator	Û	1.36	0.034
NM_002546	3150455	TNFRSF11B	tumor necrosis factor receptor superfamily 11b	Û	1.34	0.027
NM_014452	2956052	TNFRSF21	tumor necrosis factor receptor superfamily, member 21	Û	1.28	0.039
NM_001243	2320683	TNFRSF8	tumor necrosis factor receptor superfamily, member 8	Û	1.22	0.003
NM_005981	3418492	TSPAN31	tetraspanin 31	Û	1.25	0.005
NM_003353	2545645	UCN	urocortin	Û	1.20	0.003
NM_003904	3392871	ZNF259	zinc finger protein 259	Û	1.21	0.002
Transcription	n					
NM_001129	2999755	AEBP1	AE binding protein 1	Û	1.25	0.020
NM_007021	3286776	C10orf10	chromosome 10 open reading frame 10	Û	1.26	0.005
NM_005760	2548459	CEBPZ	CCAAT/enhancer binding protein (C/EBP), zeta	Û	1.20	0.015
NM_001127192	2694644	CNBP	CCHC-type zinc finger, nucleic acid binding protein	Û	1.21	0.008
NM_014335	3593261	EID1	interacting inhibitor of differentiation 1	Û	1.23	0.005
NM_032377	3851055	ELOF1	elongation factor 1 homolog (S. cerevisiae)	Û	1.21	0.022
NM_002095	3130113	GTF2E2	general transcription factor IIE, polypeptide 2, beta 34kDa	Û	1.23	0.002
NM_001516	3435946	GTF2H3	general transcription factor IIH, polypeptide 3, 34kDa	仓	1.20	0.003
NM_012259	2924492	HEY2	hairy/enhancer-of-split related with YRPW motif 2	Û	1.27	0.003
NM_001080424	3709153	KDM6B	lysine (K)-specific demethylase 6B	Û	1.20	0.004
NM_199072	3019981	MDFIC	MyoD family inhibitor domain containing	Û	1.20	0.010
NM_020963	2352275	MOV10	Mov10, Moloney leukemia virus 10, homolog (mouse)	Û	1.20	0.002

NM_018270	3892918	MRGBP	MRG/MORF4L binding protein	Û	1.21	0.010
NM_030759	3248897	NRBF2	nuclear receptor binding factor 2	兌	1.24	2.93E-05
NM_013388	2545509	PREB	prolactin regulatory element binding	兌	1.21	7.15E-04
NM_005859	2831567	PURA	purine-rich element binding protein A	兌	1.20	1.39E-05
NM_152501	2362351	PYHIN1	pyrin and HIN domain family, member 1	兌	1.49	0.010
NM_002904	2948713	RDBP	RNA binding protein	兌	1.21	0.002
NM_134428	3196842	RFX3	regulatory factor X, 3 (influences HLA class II expression)	Û	1.20	0.006
NM_001134338	3895795	RNF24	ring finger protein 24	Û	1.21	0.002
NM_001035235	2878347	SRA1	steroid receptor RNA activator 1	仓	1.21	8.68E-04
NM_004599	3947123	SREBF2	sterol regulatory element binding transcription factor 2	Û	1.21	2.29E-06
NM_003935	3954331	TOP3B	topoisomerase (DNA) III beta	Û	1.24	3.93E-05
NM_020368	2730531	UTP3	UTP3, small subunit (SSU) processome component, homolog (S. cerevisiae)	압	1.24	0.002
NM_153477	4007216	UXT	ubiquitously-expressed transcript	仓	1.25	0.035
NM_016535	3842301	ZNF581	zinc finger protein 581	Û	1.21	0.034
NM_152457	3677612	ZNF597	zinc finger protein 597	Û	1.27	2.12E-04
NM_001082480	3119735	ZNF623	zinc finger protein 623	仓	1.20	0.002
NM_016331	2653902	ZNF639	zinc finger protein 639	Û	1.32	2.20E-04
NM_001159293	3856184	ZNF737	zinc finger protein 737	Û	1.20	0.047
NM_170783	2901333	ZNRD1	zinc ribbon domain containing 1	仓	1.24	0.002
NM_017580	3269373	ZRANB1	zinc finger, RAN-binding domain containing 1	Û	1.29	0.039
Miscellaneou	S					
NM_133174	2878368	APBB3	amyloid beta (A4) precursor protein-binding, family B, member 3	Û	1.23	4.07E-04
NM_001034850	2849992	FAM134B	family with sequence similarity 134, member B	Û	1.33	0.043
NM_014053	2379280	FLVCR1	feline leukemia virus subgroup C cellular receptor 1	Û	1.22	0.012
NM_173794	4006416	FUNDC1	FUN14 domain containing 1	仓	1.27	0.004
NM_198682	2787902	GYPE	glycophorin E (MNS blood group)	兌	1.26	0.043
NM_198527	3639007	HDDC3	HD domain containing 3	仓	1.22	3.63E-04
NM_001005405	3380769	KRTAP5-11	keratin associated protein 5-11	兌	1.27	6.69E-04
NM_018368	2960010	LMBRD1	LMBR1 domain containing 1	Û	1.20	0.012
NM_014623	2954324	MEA1	male-enhanced antigen 1	企	1.31	0.001
NM_001161	3167383	NUDT2	nudix (nucleoside diphosphate linked moiety X)-type motif 2	兌	1.29	0.005
NM_016422	3362795	RNF141	ring finger protein 167	얍	1.23	0.005

NM_016104	2922756	RWDD1	RWD domain containing 1	Û	1.26	2.93E-04
NM_170601	3396003	SIAE	sialic acid acetylesterase	Û	1.32	0.005
NM_145251	3535922	STYX	serine/threonine/tyrosine interacting protein	얍	1.20	0.004
NM_022152	2599371	TMBIM1	transmembrane BAX inhibitor motif containing 1	Û	1.20	0.004
NM_199360	3893760	TPD52L2	tumor protein D52-like 2	Û	1.20	0.007
Unknown Fu	nction					
NM_019048	2519860	ASNSD1	asparagine synthetase domain containing 1	Û	1.20	0.009
NM_173694	4024160	ATP11C	ATPase, class VI, type 11C	Û	1.24	0.001
NM_003910	3014742	BUD31	BUD31 homolog (S. cerevisiae)	Û	1.21	0.005
NM_024099	3375999	C11orf48	chromosome 11 open reading frame 48	Û	1.27	0.049
NM_014267	3322048	C11orf58	chromosome 11 open reading frame 58	Û	1.20	7.36E-04
NM_013300	3431553	C12orf24	chromosome 12 open reading frame 24	Û	1.20	0.049
NM_025113	3512948	C13orf18	chromosome 13 open reading frame 18	Û	1.47	0.034
NM_017799	3537264	C14orf101	chromosome 14 open reading frame 101	Û	1.27	3.37E-06
BC030270	3743734	C17orf61	chromosome 17 open reading frame 61	Û	1.22	0.021
NM_001162530	2330393	C1orf113	chromosome 1 open reading frame 113	Û	1.21	0.006
NM_020362	2325274	C1orf128	chromosome 1 open reading frame 128	Û	1.26	7.02E-05
NM_001136494	2460325	C1orf198	chromosome 1 open reading frame 198	Û	1.22	0.001
BC001508	2332767	C1orf50	chromosome 1 open reading frame 50	Û	1.29	0.002
NR_026761	2378710	C1orf97	chromosome 1 open reading frame 97	Û	1.24	0.010
NR_026562	388397	C20orf24	chromosome 20 open reading frame 24	Û	1.23	0.004
NM_015500	3933331	C2CD2	C2 calcium-dependent domain containing 2	Û	1.27	4.14E-05
NM_032319	2559494	C2orf7	chromosome 2 open reading frame 7	Û	1.28	0.017
NM_016474	2611981	C3orf19	chromosome 3 open reading frame 19	Û	1.21	0.022
NM_018356	2805176	C5orf22	chromosome 5 open reading frame 22	Û	1.28	0.001
NM_001048249	2858793	C5orf43	chromosome 5 open reading frame 43	Û	1.27	5.44E-05
NM_199184	2954489	C6orf108	chromosome 6 open reading frame 108	Û	1.34	3.28E-04
NM_001135674	3096271	C8orf40	chromosome 8 open reading frame 40	Û	1.26	8.96E-04
NM_033428	3198289	C9orf123	chromosome 9 open reading frame 123	Û	1.24	0.003
NM_032357	2575980	CCDC115	coiled-coil domain containing 115	Û	1.21	0.012
NM_015510	3714659	DHRS7B	dehydrogenase/reductase (SDR family) member 7B	Û	1.20	0.007
NM_207325	3828949	DPY19L3	dpy-19-like 3 (<i>C. elegans</i>)	Û	1.23	0.002

NM_024693	3235255	ECHDC3	enoyl CoA hydratase domain containing 3	Û	1.21	0.002
NM_001015045	2777487	FAM13A	family with sequence similarity 13, member A	Û	1.30	0.028
NM_018999	3255402	FAM190B	family with sequence similarity 190, member B	Û	1.20	0.019
NM_030797	2541699	FAM49A	family with sequence similarity 49, member A	Û	1.33	0.003
NM_004699	3996430	FAM50A	family with sequence similarity 50, member A	Û	1.22	8.57E-04
AK127183	3110055	FLJ45248	FLJ45248 protein	Û	1.23	0.001
NR_002188	2437205	GBAP1	glucosidase, beta, acid pseudogene 1	Û	1.34	0.014
NR_002830	2422227	GEMIN8P4	gem (nuclear organelle) associated protein 8 pseudogene 4	Û	1.25	0.014
NM_022343	3168385	GLIPR2	GLI pathogenesis-related 2	Û	1.21	0.018
NM_001001413	3583541	GOLGA6L1	golgin A6 family-like 1	Û	1.20	0.011
NM_001036645	2341645	HHLA3	HERV-H LTR-associating 3	Û	1.26	0.014
BC034589	2399620	KIAA0090	KIAA0090	Û	1.21	0.007
NM_014734	3542145	KIAA0247	KIAA0247	Û	1.20	0.004
NM_033426	3545311	KIAA1737	KIAA1737	Û	1.22	0.001
NM_020803	2776998	KLHL8	kelch-like 8 (Drosophila)	Û	1.27	1.94E-06
NM_006014	4027345	LAGE3	L antigen family, member 3	Û	1.24	3.69E-07
NR_036496	2555252	LOC339803	hypothetical LOC339803	Û	1.26	0.011
NR_015341	3717452	LRRC37BP1	leucine rich repeat containing 37B pseudogene 1	Û	1.22	0.001
NM_052940	2336913	LRRC42	leucine rich repeat containing 42	Û	1.26	3.59E-05
NM_001168465	4002081	MAP7D2	MAP7 domain containing 2	Û	1.39	0.025
NM_018349	3609592	MCTP2	multiple C2 domains, transmembrane 2	Û	1.20	0.013
NR_027345	3433466	NCRNA00173	non-protein coding RNA 173	Û	1.35	0.031
NM_004337	3106276	OSGIN2	oxidative stress induced growth inhibitor family member 2	Û	1.22	0.035
NM_207351	2662473	PRRT3	proline-rich transmembrane protein 3	Û	1.25	0.002
NM_017699	2636483	SIDT1	SID1 transmembrane family, member 1	Û	1.26	2.04E-04
NM_018225	3203382	SMU1	smu-1 suppressor of mec-8 and unc-52 homolog (<i>C. elegans</i>)	Û	1.32	0.011
NM_139015	3474697	SPPL3	signal peptide peptidase 3	Û	1.20	9.51E-04
NM_003731	3195296	SSNA1	Sjogren syndrome nuclear autoantigen 1	Û	1.25	0.015
NM_001163436	2780734	ТВСК	TBC1 domain containing kinase	Û	1.23	8.60E-04
NM_198563	2676471	TMEM110	transmembrane protein 110	Û	1.20	0.011
NM_032928	3194613	TMEM141	transmembrane protein 141	Û	1.21	0.005
NM_018342	2749380	TMEM144	transmembrane protein 144	Û	1.28	0.039
NM_017854	3866339	TMEM160	transmembrane protein 160	Û	1.20	0.007

NM_018004	2633691	TMEM45A	transmembrane protein 45A	Û	1.30	0.019
NM_014698	2458513	TMEM63A	transmembrane protein 63A	Û	1.33	8.31E-07
NM_032824	2500615	TMEM87B	transmembrane protein 87B	Û	1.22	4.61E-04
NM_001193451	3449068	TMTC1	transmembrane and tetratricopeptide repeat containing 1	Û	1.49	0.034
NM_01167942	3817602	TNFAIP8L1	tumor necrosis factor, alpha-induced protein 8-like 1	Û	1.27	4.07E-05
NM_182752	2317434	TPRG1L	tumor protein p63 regulated 1-like	Û	1.21	0.015
NM_181713	2472914	UBXN2A	UBX domain protein 2A	Û	1.33	8.80E-05
NM_020945	3245783	WDFY4	WDFY family member 4	Û	1.22	1.44E-04
NM_018268	2863535	WDR41	WD repeat domain 41	Û	1.22	1.50E-04
NM_018471	2519140	ZC3H15	zinc finger CCCH-type containing 15	Û	1.20	3.26E-04
NM_153251	3504691	ZDHHC20	zinc finger, DHHC-type containing 20	Û	1.22	0.002
NM_001011657	4016001	ZMAT1	zinc finger, amtrin-type 1	Û	1.40	0.018
NM_019103	3956984	ZMAT5	zinc finger, matrin-type 5	Û	1.26	2.98E-04
NM_005649	2889753	ZNF354A	zinc finger protein 354A	Û	1.24	0.006

RefSeq #	Transcript	Symbol	Gene Name	Fo	old	p-value	Fo	ld	p-value	
	_				<i>C90</i>	RF72	SALS			
Apoptosis										
NM_006305	3630912	ANP32A	acidic (leucine-rich) nuclear phosphoprotein 32 family, member A	仓	1.26	1.91E-04	Û	1.23	2.77E-04	
NM_000484	3927226	APP	amyloid beta (A4) precursor protein	Û	1.36	0.005	Û	1.39	0.001	
NM_001114735	3635198	BCL2A1	BCL2-related protein A1	仓	1.34	0.007	仓	1.26	0.020	
NM_001168	3736290	BIRC5	baculoviral IAP repeat-containing 5	仓	1.21	0.003	仓	1.31	8.64E-06	
NM_145018	3342426	C11orf82	chromosome 11 open reading frame 82	仓	1.25	0.024	仓	1.64	2.72E-07	
NM_004346	2796484	CASP3	caspase 3	仓	1.42	4.50E-05	仓	1.30	8.42E-04	
NM_001226	2781693	CASP6	caspase 6	Û	1.21	0.011	Û	1.32	1.15E-04	
AF151902	3823613	FAM32A	family with sequence similarity 32, member A	仓	1.25	0.004	Û	1.34	6.12E-05	
NM_002342	3402444	LTBR	lymphotoxin beta receptor (TNFR superfamily, member 3)	Û	1.21	0.037	Û	1.20	0.030	
NM_003804	2892341	RIPK1	receptor (TNFRSF)-interacting serine-threonine kinase 1	仓	1.27	0.003	仓	1.21	0.008	
NM_024787	3130850	RNF122	ring finger protein 122	Û	1.38	7.97E-04	Û	1.23	0.016	
NM_053055	2435347	THEM4	thioesterase superfamily member 4	仓	1.23	0.042	仓	1.20	0.045	
NM_032027	2415728	TM2D1	TM2 domain containing 1	Û	1.25	8.03E-04	Û	1.28	8.08E-05	
NM_003842	3127703	TNFRSF10B	tumor necrosis factor receptor superfamily, member 10b	Û	1.32	1.64E-04	Û	1.25	0.001	
Autophagy										
NM_052936	3986672	ATG4A	ATG4 autophagy related 4 homolog A (S. cerevisiae)	仓	1.24	3.02E-04	Û	1.24	9.89E-05	
NM_001077198	2599955	ATG9A	ATG9 autophagy related 9 homolog A (S. cerevisiae)	Û	1.28	6.35E-06	Û	1.26	8.27E-06	
Cell Adhesion	n/Extracel	lular Matrix								
NM_001110	3626555	ADAM10	ADAM metallopeptidase domain 10	Û	1.22	3.91E-04	Û	1.23	6.52E-05	
NM_003183	2539821	ADAM17	ADAM metallopeptidase domain 17	Û	1.26	0.001	Û	1.32	2.72E-05	
NM_021723	3011492	ADAM22	ADAM metallopeptidase domain 22	Û	1.47	1.39E-05	Û	1.32	6.61E-04	
NM_007002	3892607	ADRM1	adhesion regulating molecule 1	仓	1.24	2.48E-05	仓	1.20	9.75E-05	
NM_022842	2671728	CDCP1	CUB domain containing protein 1	Û	1.66	4.81E-04	Û	1.53	0.001	
NM_001185072	3012019	CLDN12	claudin 12	Û	1.22	0.039	Û	1.40	1.75E-04	
NM_003798	3219621	CTNNAL1	catenin (cadherin-associated protein), alpha-like 1	Û	1.30	0.004	Û	1.41	4.76E-05	
NM_016938	3377933	EFEMP2	EGF-containing fibulin-like extracellular matrix protein 2	Û	1.33	0.002	Û	1.35	5.51E-04	
NM_138961	3396107	ESAM	endothelial cell adhesion molecule	Û	1.35	0.003	Û	1.24	0.021	

NM_001099786	3766621	ICAM2	intracellular adhesion molecule 2	Û	1.21	0.016	Û	1.22	0.006
NM_002210	2519229	ITGAV	integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51)	Û	1.20	0.001	Û	1.28	7.71E-06
NM_004763	2539765	ITGB1BP1	integrin beta 1 binding protein 1	Û	1.20	0.016	兌	1.33	7.71E-06
NM_000212	3724545	ITGB3	integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)	Û	1.52	0.005	Û	1.53	0.003
NM_002293	2371065	LAMC1	laminin, gamma 1 (formerly LAMB2)	Û	1.34	0.003	Û	1.31	0.003
NM_022356	2409004	LEPRE1	leucine proline-enriched proteoglycan (leprecan) 1	Û	1.30	8.39E-05	Û	1.29	4.00E-05
NM_002428	3663074	MMP15	matrix metallopeptidase 15 (membrane-inserted)	Û	1.23	0.043	兌	1.57	6.22E-06
NM_002508	2462160	NID1	nidogen 1	Û	1.45	0.009	Û	1.34	0.027
NM_000285	3859026	PEPD	peptidase D	Û	1.20	0.008	兌	1.29	8.90E-05
NM_182943	2699564	PLOD2	procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 2	Û	1.69	0.006	Û	1.57	0.010
NM_001084	3064541	PLOD3	procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 3	Û	1.25	6.22E-05	Û	1.32	1.62E-07
NM_002855	3394488	PVRL1	poliovirus receptor-related 1 (herpesvirus entry mediator C)	Û	1.23	0.004	Û	1.21	0.004
NM_001235	3340589	SERPINH1	serpin peptidase inhibitor, clade H (heat shock protein 47), member 1	Û	1.40	2.90E-04	Û	1.21	0.024
			(collagen binding protein 1)						
NM_001099401	3061805	SGCE	sarcoglycan, epsilon	Û	1.48	1.15E-04	Û	1.33	0.002
Cellular Resp	oonse to St	tress							
NM_000637	3130161	GSR	glutathione reductase	Û	1.36	2.29E-04	仓	1.23	0.006
NM_006948	3925439	HSPA13	heat shock protein 70kDa family, member 13	Û	1.21	0.048	Û	1.39	3.64E-04
NM_020677	3678147	NMRAL1	NmrA-like family domain containing 1	Û	1.23	0.007	仓	1.21	0.006
NM_007262	2318736	PARK7	Parkinson disease (autosomal recessive, early onset) 7	Û	1.25	6.36E-05	仓	1.20	3.54E-04
NM_001012961	2333168	SZT2	seizure threshold 2 homolog (mouse)	Û	1.22	8.40E-04	Û	1.20	9.92E-04
NM_032731	3707990	TXNDC17	thioredoxin domain containing 7	Û	1.22	0.019	仓	1.29	0.001
Cytoskeleton									
NM_002313	3307939	ABLIM1	acting binding LIM protein 1	Û	1.32	3.10E-04	仓	1.40	3.55E-06
NM_001613	3299504	ACTA2	actin, alpha 2, smooth muscle, aorta	Û	1.26	0.027	仓	1.27	0.016
NM_013427	3999568	ARHGAP6	Rho GTPase activating protein 6	Û	1.25	0.032	Û	1.32	0.005
NM_005717	2447454	ARPC5	actin related protein $2/3$ complex, subunit 5, 16kDa	Û	1.20	0.009	仓	1.22	0.003
NM_030978	3188993	ARPC5L	actin related protein 2/3 complex, subunit 5-like	Û	1.31	3.22E-04	仓	1.29	2.53E-04
NM_004368	3815399	CNN2	calponin 2	Û	1.34	0.002	仓	1.50	6.63E-06
NM_021149	3702547	COTL1	coactosin-like 1 (Dictylostelium)	Û	1.25	0.044	仓	1.51	9.13E-05
NM_144666	3318844	DNHD1	dynein heavy chain domain 1	Û	1.25	3.31E-04	Û	1.20	0.002
NM_001037494	3434393	DYNLL1	dynein, light chain, LC8-type 1	仓	1.26	0.020	仓	1.23	0.023

NM_080677	3728509	DYNLL2	dynein, light chain, LC8-type 2	Û	1.29	8.27E-07	仓	1.25	4.32E-06
NM_006520	4004819	DYNLT3	dynein, light chain, Tctex-type 3	Û	1.25	0.024	仓	1.20	0.041
NM_005103	3396593	FEZ1	fasciculation and elongation protein zeta 1 (zygin I)	Û	1.59	0.008	兌	1.49	0.016
NM_201274	3712363	MPRIP	myosin phosphatase Rho interacting protein	Û	1.20	0.034	Û	1.22	0.015
NM_032242	2640579	PLXNA1	plexin A1	Û	1.22	0.007	Û	1.40	2.30E-06
NM_203401	2402459	STMN1	stathmin 1	Û	1.21	0.034	兌	1.42	3.02E-05
NM_001039141	3944922	TRIOBP	TRIO and F-actin binding protein	Û	1.20	0.003	兌	1.21	0.001
NM_001070	3721926	TUBG1	tubulin, gamma 1	仓	1.29	0.005	仓	1.37	2.68E-04
Development	t								
NM_014913	3795501	ADNP2	ADNP homeobox 2	仓	1.36	1.02E-04	仓	1.26	0.001
AY358167	2494579	ARID5A	AT rich interactive domain 5A	Û	1.25	3.26E-04	Û	1.22	5.55E-04
NM_004078	2450865	CSRP1	cysteine and glycine-rich protein 1	Û	1.22	0.008	兌	1.31	1.20E-04
NM_019074	3590239	DLL4	delta-like 4 (<i>Drosophil</i> a)	Û	1.32	0.012	Û	1.33	0.006
NM_001197293	3091077	DPYSL2	dihydropyrimidinase-like 2	Û	1.29	0.042	兌	1.40	0.004
NM_021783	4011096	EDA2R	ectodysplasin A2 receptor	Û	1.33	0.003	Û	1.30	0.003
NM_002146	3761313	HOXB3	homeobox B3	Û	1.38	3.38E-06	Û	1.23	0.001
NM_024019	2782267	NEUROG2	neurogenin 2	Û	1.40	0.009	Û	1.52	5.26E-04
NM_024408	2431112	NOTCH2	notch 2	Û	1.28	0.044	Û	1.42	0.002
NM_020796	2872047	SEMA6A	sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A	Û	1.52	8.13E-04	Û	1.33	0.013
NM 000346	3733590	SOX9	SRY (sex determining region Y)-box 9	Û	1.30	0.008	Û	1.27	0.009
NM_181642	3590164	SPINT1	serine peptidase inhibitor, Kunitz type 1	Û	1.37	0.001	Û	1.26	0.008
NM_001025366	2908179	VEGFA	vascular endothelial growth factor A	Û	1.28	0.002	Û	1.29	8.93E-04
NM_025216	2528159	WNT10A	wingless-type MMTV integration site family, member 10A	Û	1.30	0.008	Û	1.22	0.027
DNA Damage	e & Repair	-							
NM_015251	3670668	ATMIN	ATM interactor	仓	1.45	3.82E-07	仓	1.24	0.001
NM_020375	3401756	C12orf5	chromosome 12 open reading frame 5	Û	1.47	0.004	仓	1.51	0.001
NM_022836	2352743	DCLRE1B	DNA cross-link repair 1B	Û	1.22	6.15E-04	仓	1.27	1.96E-05
NM_024086	3687789	DCTPP1	dCTP pyrophosphatase 1	Û	1.30	4.82E-04	仓	1.27	7.24E-04
NM_138287	2638962	DTX3L	deltex 3-like (Drosophila)	仓	1.22	0.039	仓	1.31	0.003
NM_006482	3420854	DYRK2	dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2	Û	1.33	0.003	①	1.22	0.022
NM_005236	3648995	ERCC4	excision repair cross-complementing rodent repair deficiency,	仓	1.22	0.018	仓	1.28	0.001

NM_130398 2388219 EXO1 exonuclease 1 f 1.21 0.027 f 1.49 1.85E-06 NM_004111 3333226 FEN1 fipa structure-specific endonuclease 1 f 1.25 0.007 f 1.33 2.25E-04 NM_0021218 3221135 INIP INTS and NAPB interacting protein f 1.23 6.79E-04 f 1.24 3.03E-04 f 1.24 4.99E-06 NM_002584 3750625 POLDIP2 polymerase (DNA directed), deta interacting protein 2 f 1.24 0.002 f 1.44 2.03E-06 NM_002894 3781429 BBBP8 retinoblastoma binding protein 8 f 1.24 0.002 f 1.34 1.03E-05 NM_018124 A649247 RMI2 RMI2, ReQ mediated genome instability 2, homolog (S. cerevisiae) f 1.30 0.003 f 1.23 0.002 f 1.23 0.001 f 1.23 0.002 f 1.23 0.002<				complementation group 4						
NN_004111 3333226 FKN1 flap structure-specific endonuclease 1 ¹ 1.23 0.007 ¹ 1.23 2.25F.04 NM_0021218 3221135 INIP INTS3 and NAPB interacting protein ¹ 1.20 6.79F.04 ¹ 1.22 2.71F.05 NM_0025292 3896200 PCNA proliferating cell nuclear antigen ¹ 1.20 0.03E-04 ¹ 1.22 3.03E-04 ¹ 1.24 3.99E-06 NM_0025292 3896200 PCNA proliferating cell nuclear antigen ¹ 1.21 0.02E-04 ¹ 1.22 4.91E-05 NM_002692 356395 POLE2 polymerase (DNA-directed), epsilon 2 (p5 subunit) ¹ 1.21 4.02E-04 ¹ 1.24 4.03E-05 NM_002894 3781429 RBBP8 retinoblastoma binding protein 8 ¹ 1.24 4.0000 1.33 1.0003 1.39 2.0003 1.23 1.397 2.0024 NM_0101094 2.285 SPRTN SprT-Hike N-terminal domain 1.28 6.47E-04 1.20 1.200 1.20 1	NM 130398	2388219	EXO1	exonuclease 1	Û	1.21	0.027	兌	1.49	1.85E-06
NM_021218 3221135 INIP IN ¹ S3 and NAPB interacting protein 1.23 6.79E-04 1.28 2.71E-05 NM_0027349 3080843 PAXIP1 PAX interacting (with transcription-activation domain) protein 1 1.20 3.03E-04 0 1.24 3.99E-06 NM_002592 3896200 PCNA proliferating cell unclear antigen 1 1.30 2.11E-04 0 1.24 3.99E-06 NM_002675 3550395 POLEZ polymerase (DNA-directed), epsilon 2 (p59 subunit) 1 1.20 0.024 0 1.44 0.0207 1 1.45 8.04E-07 NM_002675 3590086 RAD51 RAD51 homolog (RecA homolog, <i>E. coli</i>) (<i>S. cerevisiae</i>) 1 1.24 0.002 1 1.44 1.34 1.03E-05 NM_012124 3699044 RFWD3 ring finger and WD repeat domain 3 1 1.25 1.22E-044 1 3.09 1.30 0.003 1 1.37 7.20E-05 NM_012058 3649247 RMI2 RMI2, RecQ mediated genome instability 2, homolog (<i>S. cerevisiae</i>) 1 1.28 6.47E-04 1 1.23 0.000 1	NM 004111	3333226	FEN1	flap structure-specific endonuclease 1	Û	1.25	0.007	Û	1.33	2.25E-04
NM_007349 3080843 PAXIP1 PAX interacting (with transcription-activation domain) protein 1 1:20 3.03E-04 1:14 3.99E-06 NM_002592 3896200 PCNA proliferating cell nuclear antigen 1:1 1:00 2.11E-04 1:14 3.91E-08 NM_015584 3750625 POLDIP2 polymerase (DNA directed), delta interacting protein 2 1:21 0.024 1:14 2.03E-06 NM_002692 3563395 POLE2 polymerase (DNA directed), epsilon 2 (p59 subunit) 1:23 0.007 1:44 2.03E-06 NM_002894 3781429 RBBP8 retinoblastoma binding protein 8 1:24 0.003 1:34 1.03E-05 NM_152308 3648247 RMI2 RMI2, RecQ mediated genome instability 2, homolog (S. cerevisiae) 1:32 0.003 1:32 0.003 1:32 0.001 1:32 0.002 1:32 0.001 1:32 0.002 1:32 0.002 1:32 0.002 1:32 0.002 1:32 0.001 1:32 0.002 1:32 0.002 1:32 0.002 1:32 0.002 1:32 0.0141 0.003 1:32 0.0	NM_021218	3221135	INIP	INTS3 and NAPB interacting protein	Û	1.23	6.79E-04	Û	1.28	2.71E-05
NM_002592 3996200 PCNA proliferating cell nuclear antigen 1 1.30 2.11E-04 1 1.43 91E-08 NM_0125584 3750625 POLDIP2 polymerase (DNA directed), delta interacting protein 2 1 1.21 4.02E-04 1 1.22 4.91E-05 NM_002875 35503395 POLE2 polymerase (DNA directed), pesilon 2 (p59 subunit) 1 1.20 0.024 1 1.44 2.03E-06 NM_002875 3590086 RAD51 RAD51 homolog (RecA homolog, E. coll) (S. cerevisiae) 1 1.23 0.007 1 4.03E-05 NM_018124 369044 RFWD3 ring finger and WD repeat domain 3 1 1 1.30 0.003 1 1.37 7.05E-05 NM_01010984 2403301 RPA2 replication protein A2, 32LDa 1 1.28 6.47E-04 1 1.23 0.002 1 1.32 0.003 1 1.32 0.002 1 1.32 0.001 1 1.32 0.002 1 1.32 0.001 1 1.32 3.55E-04 1 1.28 6.47E-04 1 1.30	NM 007349	3080843	PAXIP1	PAX interacting (with transcription-activation domain) protein 1	Û	1.20	3.03E-04	兌	1.24	3.99E-06
NM_015584 3750625 POLDIP2 polymerase (DNA directed), delta interacting protein 2 1 1.21 4.02E-04 1 1.22 4.91E-05 NM_002692 3550086 RDD51 RAD51 homolog (Exc Al homolog, E. coli) (S. cerevisiae) 1 1.20 0.024 1 1.44 2.03E-06 NM_002894 3781429 RBBP8 retinoblastoma binding protein 8 1 1.24 0.002 1 1.34 1.03E-05 NM_152308 3648247 RMI2 RMI2, RecQ mediated genome instability 2, homolog (<i>S. cerevisiae</i>) 1 1.32 0.003 1 1.23 0.003 1 1.23 0.003 1 1.23 0.002 1 1.23 0.003 1 1.23 0.003 1 1.23 0.003 1 1.23 0.003 1 1.23 0.002 1.23 0.001 1 1.23 0.002 1 1.24 0.001 1 1.24 0.002 1.23 0.002 1 1.23 0.002 1 1.23 0.002 1 1.23 0.002 1 1.23 0.002 1 1.24 0.	NM_002592	3896200	PCNA	proliferating cell nuclear antigen	Û	1.30	2.11E-04	Û	1.46	3.91E-08
NM_002692 3563395 POLEZ polymerase (DNA directed), epsilon 2 (p59 subunit) 1 1.20 0.024 1 1.44 2.03E-06 NM_002875 3590086 RAD51 RAD51 homolog (RecA homolog, E. coll) (S. cerevisiae) 1 1.23 0.007 1 1.45 8.04E-07 NM_002894 3781429 RBBP8 retinoblastoma binding protein 8 1 1.25 1.22E-0.03 1 1.34 1.03E-05 NM_018124 3699044 RFWD3 ring finger and WD repeat domain 3 1 1.25 1.22E-0.03 1 1.39 7.20E-05 NM_002946 2403301 RPA2 replication protein A2, 32kba 1 1.28 6.47E-04 1 1.23 0.002 NM_01010984 238528 SPRTN SprT-like N-terminal domain 1 1.28 6.47E-04 1 1.23 0.003 1 1.23 3.53E-04 1 1.23 0.302 1 1.23 0.003 1 1.23 0.302 1 1.23 0.302 1 1.23 0.302 1 1.23 0.322 1 1.77 0.048	NM_015584	3750625	POLDIP2	polymerase (DNA-directed), delta interacting protein 2	Û	1.21	4.02E-04	Û	1.22	4.91E-05
NM_002875 3590086 RADS1 RADS1 homolog (RecA homolog, E. coli) (S. cerevisiae) 1 1.23 0.007 1 1.45 8.04E-07 NM_002894 3781429 RBBP8 retinoblastoma binding protein 8 1 1.24 0.002 1 1.34 1.03E-05 NM_018124 3699044 RFWD3 ring finger and WD repeat domain 3 1 1.25 1.22 1.22E-04 1 1.30 1.03E-05 NM_0020246 2403301 RPA2 replication protein A2, 32kDa 1 1.32 3.35E-04 1 1.25 0.001 NM_01010984 2385258 SPRTN SprT-like N-terminal domain 1 1.28 0.47E-04 1 1.23 0.002 1 1.23 3.35E-04 1 1.26 0.001 NM_0101084 2385268 SPRTN SprT-like N-terminal domain 1 1.28 0.47E-04 1 1.23 3.35E-04 1 1.23 3.53E-04 1 1.23 3.53	NM_002692	3563395	POLE2	polymerase (DNA directed), epsilon 2 (p59 subunit)	仓	1.20	0.024	仓	1.44	2.03E-06
NM_002894 3781429 RBP8 retinoblastoma binding protein 8 1 1.24 0.002 1 1.34 1.03E-05 NM_018124 3699044 RFWD3 ring finger and WD repeat domain 3 1 1.25 1.22E-04 1 1.30 1.93E-05 NM_002946 2403301 RPA2 replication protein A2, 32kDa 1 1.32 3.35E-04 1 1.26 0.001 NM_010101984 2385258 SPRTN SpT-like N-terminal domain 1 1.28 6.47E-04 1 1.23 3.35E-04 1 1.26 0.001 NM_0101010984 2385258 SPRTN SpT-like N-terminal domain 1 1.28 0.003 1 1.23 3.0002 NM_01614 2945645 TDP2 tyrosyl-DNA phosphodiesterase 2 1 1.28 0.003 1 1.50 5.93E-08 DNA Replication & the Cell Cycle anaphase promoting complex subunit 15 1 1.22 0.000 1 1.30 0.003 1 1.40 4.06E-05 NM_001203 3828112 CCNE1 cyclin E1 aurora kinase A and ninein	NM_002875	3590086	RAD51	RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)	仓	1.23	0.007	仓	1.45	8.04E-07
NM_018124 3699044 RFWD3 ring finger and WD repeat domain 3 1 1.25 1.22E-04 1 1.30 1.30 1.30 1.30 7.20E-05 NM_002946 2403301 RPA2 replication protein A2, 32kDa 1 1.23 3.35E-04 1 1.26 0.003 1 1.23 0.002 NM_001010984 285528 SPRTN SprT-like N-terminal domain 1 1.28 6.47E-04 1 1.23 0.002 NM_01614 2945645 TDP2 tyrosyl-DNA phosphodiesterase 2 1 1.28 6.47E-04 1 1.23 3.53E-04 NM_017858 363009 TIPIN TIMELESS interacting protein 1 1.22 0.000 1 1.30 5.93E-08 DNA Replication & the Cell Cycle manphase promoting complex subunit 15 1 1.32 0.002 1 1.27 0.048 NM_0024037 2402416 AUNP arciac (leucine-rich) nuclear phosphoptotein 32 family, member B 1 1.20 0.003 1 1.40 4.06E-05 NM_001789 2673085 CDCD25A cell division cycle 25 homolog A(S.	NM_002894	3781429	RBBP8	retinoblastoma binding protein 8	Û	1.24	0.002	仓	1.34	1.03E-05
NM_152308 3648247 RMI2 RMI2, RecQ mediated genome instability 2, homolog (S. cerevisiae) 1 1.30 0.003 1 1.39 7.20E-05 NM_001010984 238258 SPRTN SprT-like N-terminal domain 1 1.28 6.47E-04 1 1.23 3.35E-04 1 1.23 0.002 NM_0116614 2945645 TDP2 tyrosyl-DNA phosphodiesterase 2 1 1.28 6.47E-04 1 1.30 3.35E-04 NM_017858 363009 TIPIN TIMELESS interacting protein 1 1.22 0.000 1 1.30 5.93E-08 DNA_017858 363009 TIPIN TIMELESS interacting protein 1 1.22 0.000 1 1.30 0.003 1 1.30 5.93E-08 DNA_014042 338096 ANAPC15 anaphase promoting complex subunit 15 1 1.32 0.006 1 1.38 6.01E-04 NM_0024037 2402416 AUNIP aurora kinase A and ninein interacting protein 32 family, member B 1.30 0.003 1 1.40 4.06E-05 NM_001288 3828112 C	NM_018124	3699044	RFWD3	ring finger and WD repeat domain 3	Û	1.25	1.22E-04	仓	1.30	1.95E-06
NM_002946 2403301 RPA2 replication protein A2, 32kDa 1 1.32 3.35E-04 1 1.26 0.001 NM_010101984 2385258 SPRTN SprT-like N-terminal domain 1 1.28 6.47E-04 1 1.23 0.003 1 1.23 0.002 NM_01614 2945645 TDP2 tyrosyl-DNA phosphodiesterase 2 1 1 1.28 0.003 1 1.23 3.53E-04 N 1.50 5.93E-08 DNA Replication & the Cell Cycle TIMELESS interacting protein 1 1.22 0.006 1 1.38 6.01E-04 NM_014042 3380996 ANAPC15 anaphase promoting complex subunit 15 1 1.32 0.032 1 1.27 0.048 NM_0024037 2402416 AUNIP aurora kinase A and ninein interacting protein 1 1.30 0.003 1 1.40 4.06E-05 NM_001789 2673085 CDC25A cell division cycle 25 homolog A (<i>S pombe</i>) 1 1.24 0.003 1 1.40 4.06E-05 NM_001789 2673085 CDC25A cell division cycle 25 hom	NM_152308	3648247	RMI2	RMI2, RecQ mediated genome instability 2, homolog (S. cerevisiae)	Û	1.30	0.003	仓	1.39	7.20E-05
NM_001010984 2385258 SPRTN SprT-like N-terminal domain P 1.28 6.47E-04 P 1.23 0.002 NM_016614 2945645 TDP2 tyrosyl-DNA phosphodiesterase 2 P 1.28 0.003 P 1.32 3.53E-04 NM_017858 363009 TIPIN TIMELESS interacting protein P 1.22 0.000 P 1.32 3.53E-04 DNA Replication & the Cell Cycle TIMELESS interacting protein anaphase promoting complex subunit 15 P 1.32 0.006 P 1.38 6.01E-04 NM_004010 3181417 ANP32B acidic (leucine-rich) nuclear phosphoprotein 32 family, member B P 1.32 0.003 P 1.20 3.69E-05 NM_001789 2673085 CDC25A cell division cycle 25 homolog A (S. pombe) P 1.24 0.004 P 1.32 2.93E-05 NM_001786 3248289 CDK1 cyclin-dependent kinase 1 P 1.24 0.033 P 1.31 0.005 NM_001786 3248289 CDK1A cyclin-dependent kinase 2 associated protein 1 P 1.24 0.031 <td>NM_002946</td> <td>2403301</td> <td>RPA2</td> <td>replication protein A2, 32kDa</td> <td>Û</td> <td>1.32</td> <td>3.35E-04</td> <td>Û</td> <td>1.26</td> <td>0.001</td>	NM_002946	2403301	RPA2	replication protein A2, 32kDa	Û	1.32	3.35E-04	Û	1.26	0.001
NM_016614 2945645 TDP2 tyrosyl-DNA phosphodiesterase 2 1 1.28 0.003 1 1.32 3.53E-04 NM_017858 3630099 TIPIN TIMELESS interacting protein 1 1.22 0.009 1 1.50 5.93E-08 DNA Replication & the Cell Cycle anaphase promoting complex subunit 15 1 1.32 0.006 1 1.32 0.004 1 1.27 0.048 NM_00401 3181417 ANP32B acidic (leucine-rich) nuclear phosphoprotein 32 family, member B 1 1.32 0.003 1 1.40 4.06E-05 NM_001238 3828112 CCNE1 cyclin E1 1.20 1.24 0.003 1 1.47 2.85E-06 NM_001786 3248289 CDK1 cyclin-dependent kinase 1 1 1.24 0.035 1 1.47 2.85E-06 NM_001786 3248289 CDK1 cyclin-dependent kinase 2 associated protein 1 1 1.24 0.035 1 1.47 2.85E-06 NM_001786 3248289 CDK1 cyclin-dependent kinase 2 associated protein 1 1 1.24 0.013	NM_001010984	2385258	SPRTN	SprT-like N-terminal domain	Û	1.28	6.47E-04	Û	1.23	0.002
NM_017858 3630099 TIPIN TIMELESS interacting protein 1 <t< td=""><td>NM_016614</td><td>2945645</td><td>TDP2</td><td>tyrosyl-DNA phosphodiesterase 2</td><td>Û</td><td>1.28</td><td>0.003</td><td>Û</td><td>1.32</td><td>3.53E-04</td></t<>	NM_016614	2945645	TDP2	tyrosyl-DNA phosphodiesterase 2	Û	1.28	0.003	Û	1.32	3.53E-04
DNA Replication & the Cell Cycle NM_014042 3380996 ANAPC15 anaphase promoting complex subunit 15 1.32 0.006 1.38 6.01E-04 NM_006401 3181417 ANP32B acidic (leucine-rich) nuclear phosphoprotein 32 family, member B 1.32 0.032 1 1.20 3.69E-05 NM_001238 3828112 CCNE1 cyclin E1 1.30 0.003 1 1.40 4.06E-05 NM_001789 2673085 CDC25A cell division cycle 25 homolog A (S. pombe) 1 1.24 0.004 1 1.35 2.93E-05 NM_001786 3248289 CDK1 cyclin-dependent kinase 1 1 1.20 0.035 1 1.47 2.85E-06 NM_001786 3248289 CDK1 cyclin-dependent kinase 2 associated protein 1 1 1.24 0.003 1 1.29 0.002 NM_001195132 3201437 CDKN2A cyclin-dependent kinase 2 associated protein 1 1 1.24 0.003 1 1.29 0.002 NM_00125248 3593147 DUT centromere protein H 1 1.35 4.95E-04 1 1.	NM_017858	3630099	TIPIN	TIMELESS interacting protein	Û	1.22	0.009	얍	1.50	5.93E-08
NM_014042 3380996 ANAPC15 anaphase promoting complex subunit 15 1 1.32 0.006 1.38 6.01E-04 NM_006401 3181417 ANP32B acidic (leucine-rich) nuclear phosphoprotein 32 family, member B 1 1.32 0.032 1 1.27 0.048 NM_024037 2402416 AUNIP aurora kinase A and ninein interacting protein 1 1.20 1.20E-04 1 1.20 3.69E-05 NM_001238 3828112 CCNE1 cyclin E1 1 1.30 0.003 1 1.40 4.06E-05 NM_001789 2673085 CDC25A cell division cycle 25 homolog A (<i>S. pombe</i>) 1 1.24 0.035 1 1.47 2.85E-06 NM_001786 3248289 CDK1 cyclin-dependent kinase 1 1 1.24 0.013 1 1.29 0.002 NM_001795132 3201437 CDK2AP1 cyclin-dependent kinase 2 associated protein 1 1 1.24 0.013 1 1.29 0.002 NM_00122090 2813442 CENPH centromere protein H 1.35 4.95E-04 1.45 5.06E-06	DNA Replicat	tion & the (Cell Cycle							
NM_006401 3181417 ANP32B acidic (leucine-rich) nuclear phosphoprotein 32 family, member B 1 1.32 0.032 1 1.27 0.048 NM_024037 2402416 AUNIP aurora kinase A and ninein interacting protein 1 1.20 1.20e-04 1 1.20 3.69E-05 NM_001238 3828112 CCNE1 cyclin E1 1 1.30 0.003 1 1.40 4.06E-05 NM_001789 2673085 CDC25A cell division cycle 25 homolog A (<i>S. pombe</i>) 1 1.20 0.035 1 1.47 2.85E-06 NM_001786 3248289 CDK1 cyclin-dependent kinase 1 1 1.24 0.013 1 1.29 0.002 NM_0014642 3476097 CDK2AP1 cyclin-dependent kinase 2 associated protein 1 1 1 1.24 0.013 1 1.29 0.002 NM_00125248 3593147 DUT centromere protein H 1 1 1.40 1.51 3.35E-06 NM_012231 3628923 FAM96A family with sequence similarity 96, member A 1 1.30 0.031 1	NM_014042	3380996	ANAPC15	anaphase promoting complex subunit 15	Û	1.32	0.006	Û	1.38	6.01E-04
NM_024037 2402416 AUNIP aurora kinase A and ninein interacting protein 1.20 1.20E-04 1.20 3.69E-05 NM_001238 3828112 CCNE1 cyclin E1 1.30 0.003 1.40 4.06E-05 NM_001789 2673085 CDC25A cell division cycle 25 homolog A (S. pombe) 1.124 0.004 1.35 2.93E-05 NM_080668 3377423 CDCA5 cell division cycle associated 5 1.120 0.035 1.47 2.85E-06 NM_001786 3248289 CDK1 cyclin-dependent kinase 1 1.24 0.013 1.29 0.002 NM_001786 3248289 CDK1 cyclin-dependent kinase 2 associated protein 1 1 1.24 0.013 1.29 0.002 NM_001795132 3201437 CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) 1 1.24 0.003 1 1.25 0.002 NM_022304 B93147 DUT centromere protein H 1 1.35 4.95E-04 1 1.45 5.06E-06 NM_032231 3628923 FAM96A family with sequence similarity 96, member A 1	NM_006401	3181417	ANP32B	acidic (leucine-rich) nuclear phosphoprotein 32 family, member B	Û	1.32	0.032	仓	1.27	0.048
NM_0012383828112CCNE1cyclin E1f1.300.003f1.404.06E-05NM_0017892673085CDC25Acell division cycle 25 homolog A (<i>S. pombe</i>)f1.240.004f1.352.93E-05NM_0806683377423CDCA5cell division cycle associated 5f1.200.035f1.472.85E-06NM_0017863248289CDK1cyclin-dependent kinase 1f1.240.003f1.290.002NM_0046423476097CDK2AP1cyclin-dependent kinase 2 associated protein 1f1.240.013f1.290.002NM_0011951323201437CDKN2Acyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)f1.354.95E-04f1.455.06E-06NM_0012252483593147DUTdeoxyuridine triphosphatasef1.300.003f1.240.009NM_0322313628923FAM96Afamily with sequence similarity 96, member Af1.330.048I1.440.008NM_0210673880827GINS1GINS complex subunit 1 (Psf1 homolog)f1.433.33E-04f1.571.66E-06NM_0160953703112GINS2GINS complex subunit 2 (Psf2 homolog)f1.290.006f1.364.25E-04	NM_024037	2402416	AUNIP	aurora kinase A and ninein interacting protein	Û	1.20	1.20E-04	仓	1.20	3.69E-05
NM_001789 2673085 CDC25A cell division cycle 25 homolog A (S. pombe) 1 1.24 0.004 1 1.35 2.93E-05 NM_080668 3377423 CDCA5 cell division cycle associated 5 1 1.20 0.035 1 1.47 2.85E-06 NM_001786 3248289 CDK1 cyclin-dependent kinase 1 1 1.24 0.013 1 1.29 0.002 NM_001195132 3201437 CDKN2A cyclin-dependent kinase 2 associated protein 1 1 1.24 0.005 1 1.25 0.002 NM_0012909 2813442 CENPH centromere protein H centromere protein H 1.35 4.95E-04 1 1.45 5.06E-06 NM_032231 3628923 FAM96A family with sequence similarity 96, member A 1 1.33 0.003 1 1.24 0.009 NM_023037 3484497 FRY furry homolog (Drosophila) 1 1.43 3.33E-04 1 1.44 0.008 NM_016095 3703112 GINS2 GINS complex subunit 2 (Psf2 homolog) 1 1.43 3.33E-04 1 1	NM_001238	3828112	CCNE1	cyclin E1	Û	1.30	0.003	仓	1.40	4.06E-05
NM_0806683377423CDCA5cell division cycle associated 5 $\hat{1}$ 1.200.035 $\hat{1}$ 1.472.85E-06NM_0017863248289CDK1cyclin-dependent kinase 1 $\hat{1}$ 1.240.039 $\hat{1}$ 1.310.005NM_0046423476097CDK2AP1cyclin-dependent kinase 2 associated protein 1 $\hat{1}$ 1.240.013 $\hat{1}$ 1.290.002NM_0011951323201437CDKN2Acyclin-dependent kinase 2 associated protein 1 $\hat{1}$ 1.240.005 $\hat{1}$ 1.250.002NM_0229092813442CENPHcentromere protein H $\hat{1}$ 1.354.95E-04 $\hat{1}$ 1.455.06E-06NM_0010252483593147DUTdeoxyuridine triphosphatase $\hat{1}$ 1.300.003 $\hat{1}$ 1.240.009NM_0322313628923FAM96Afamily with sequence similarity 96, member A $\hat{1}$ 1.300.003 $\hat{1}$ 1.240.008NM_021067380827GINS1GINS complex subunit 1 (Psf1 homolog) $\hat{1}$ 1.433.33E-04 $\hat{1}$ 1.571.66E-06NM_0160953703112GINS2GINS complex subunit 2 (Psf2 homolog) $\hat{1}$ 1.290.006 $\hat{1}$ 1.364.25E-04	NM_001789	2673085	CDC25A	cell division cycle 25 homolog A (<i>S. pombe</i>)	Û	1.24	0.004	兌	1.35	2.93E-05
NM_0017863248289CDK1cyclin-dependent kinase 1 $\hat{1}$ 1.240.039 $\hat{1}$ 1.310.005NM_0046423476097CDK2AP1cyclin-dependent kinase 2 associated protein 1 $\hat{1}$ 1.240.013 $\hat{1}$ 1.290.002NM_0011951323201437CDKN2Acyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) $\hat{1}$ 1.240.005 $\hat{1}$ 1.250.002NM_0229092813442CENPHcentromere protein H $\hat{1}$ 1.354.95E-04 $\hat{1}$ 1.455.06E-06NM_0010252483593147DUTdeoxyuridine triphosphatase $\hat{1}$ 1.300.031 $\hat{1}$ 1.513.35E-04NM_0322313628923FAM96Afamily with sequence similarity 96, member A $\hat{1}$ 1.330.048 $\hat{1}$ 1.440.008NM_0210673880827GINS1GINS complex subunit 1 (Psf1 homolog) $\hat{1}$ 1.433.33E-04 $\hat{1}$ 1.571.66E-06NM_0160953703112GINS complex subunit 2 (Psf2 homolog) $\hat{1}$ 1.290.006 $\hat{1}$ 1.364.25E-04	NM_080668	3377423	CDCA5	cell division cycle associated 5	Û	1.20	0.035	Û	1.47	2.85E-06
NM_0046423476097CDK2AP1cyclin-dependent kinase 2 associated protein 1 $\hat{1}$ 1.240.013 $\hat{1}$ 1.290.002NM_0011951323201437CDKN2Acyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) $\hat{1}$ 1.240.005 $\hat{1}$ 1.250.002NM_0229092813442CENPHcentromere protein H $\hat{1}$ 1.354.95E-04 $\hat{1}$ 1.455.06E-06NM_0010252483593147DUTdeoxyuridine triphosphatase $\hat{1}$ 1.300.031 $\hat{1}$ 1.513.35E-04NM_0322313628923FAM96Afamily with sequence similarity 96, member A $\hat{1}$ 1.300.003 $\hat{1}$ 1.240.008NM_0230373484497FRYfurry homolog (<i>Drosophila</i>) $\hat{1}$ 1.330.048 $\hat{1}$ 1.440.008NM_0210673880827GINS1GINS complex subunit 1 (Psf1 homolog) $\hat{1}$ 1.433.33E-04 $\hat{1}$ 1.571.66E-06NM_0160953703112GINS2GINS complex subunit 2 (Psf2 homolog) $\hat{1}$ 1.290.006 $\hat{1}$ 1.364.25E-04	NM_001786	3248289	CDK1	cyclin-dependent kinase 1	Û	1.24	0.039	仓	1.31	0.005
NM_001195132 3201437 CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) ¹ 1.24 0.005 ¹ 1.25 0.002 NM_022909 2813442 CENPH centromere protein H ¹ 1.35 4.95E-04 ¹ 1.45 5.06E-06 NM_001025248 3593147 DUT deoxyuridine triphosphatase ¹ 1.30 0.031 ¹ 1.51 3.35E-04 NM_023037 3484497 FRY family with sequence similarity 96, member A ¹ 1.30 0.003 ¹ 1.24 0.008 NM_021067 380827 GINS1 GINS complex subunit 1 (Psf1 homolog) ¹ 1.29 0.006 ¹ 1.36 4.25E-04 NM_016095 3703112 GINS2 GINS complex subunit 2 (Psf2 homolog) ¹ 1.29 0.006 ¹ 1.36 4.25E-04	NM_004642	3476097	CDK2AP1	cyclin-dependent kinase 2 associated protein 1	Û	1.24	0.013	Û	1.29	0.002
NM_022909 2813442 CENPH centromere protein H 1.35 4.95E-04 1.45 5.06E-06 NM_001025248 3593147 DUT deoxyuridine triphosphatase 1 1.30 0.031 1 1.51 3.35E-04 NM_032231 3628923 FAM96A family with sequence similarity 96, member A 1 1.30 0.003 1 1.24 0.009 NM_023037 3484497 FRY furry homolog (<i>Drosophila</i>) 1 1.33 0.048 1 1.44 0.008 NM_021067 3880827 GINS1 GINS complex subunit 1 (Psf1 homolog) 1 1.43 3.33E-04 1 1.57 1.66E-06 NM_016095 3703112 GINS2 GINS complex subunit 2 (Psf2 homolog) 1 1.29 0.006 1 1.36 4.25E-04	NM_001195132	3201437	CDKN2A	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	Û	1.24	0.005	Û	1.25	0.002
NM_001025248 3593147 DUT deoxyuridine triphosphatase 1.30 0.031 1 1.51 3.35E-04 NM_032231 3628923 FAM96A family with sequence similarity 96, member A 1 1.30 0.003 1 1.24 0.009 NM_023037 3484497 FRY furry homolog (<i>Drosophila</i>) 1.33 0.048 1.44 0.008 NM_021067 3880827 GINS1 GINS complex subunit 1 (Psf1 homolog) 1 1.43 3.33E-04 1 1.57 1.66E-06 NM_016095 3703112 GINS2 GINS complex subunit 2 (Psf2 homolog) 1 1.29 0.006 1 1.36 4.25E-04	NM_022909	2813442	CENPH	centromere protein H	Û	1.35	4.95E-04	仓	1.45	5.06E-06
NM_032231 3628923 FAM96A family with sequence similarity 96, member A 1.30 0.003 1.24 0.009 NM_023037 3484497 FRY furry homolog (<i>Drosophila</i>) 1.33 0.048 1.44 0.008 NM_021067 3880827 GINS1 GINS complex subunit 1 (Psf1 homolog) 1.43 3.33E-04 1.57 1.66E-06 NM_016095 3703112 GINS2 GINS complex subunit 2 (Psf2 homolog) 1.29 0.006 1.36 4.25E-04	NM_001025248	3593147	DUT	deoxyuridine triphosphatase	Û	1.30	0.031	Û	1.51	3.35E-04
NM_023037 3484497 FRY furry homolog (Drosophila) Image: 1.33 0.048 Image: 1.44 0.008 NM_021067 3880827 GINS1 GINS complex subunit 1 (Psf1 homolog) Image: 1.43 3.33E-04 Image: 1.57 1.66E-06 NM_016095 3703112 GINS2 GINS complex subunit 2 (Psf2 homolog) Image: 1.29 0.006 Image: 1.36 4.25E-04	NM_032231	3628923	FAM96A	family with sequence similarity 96, member A	Û	1.30	0.003	兌	1.24	0.009
NM_021067 3880827 GINS1 GINS complex subunit 1 (Psf1 homolog) 1.43 3.33E-04 1.57 1.66E-06 NM_016095 3703112 GINS2 GINS complex subunit 2 (Psf2 homolog) 1.29 0.006 1.36 4.25E-04	NM_023037	3484497	FRY	furry homolog (Drosophila)	Û	1.33	0.048	Û	1.44	0.008
NM_016095 3703112 GINS complex subunit 2 (Psf2 homolog) \$\u0192\$ 1.29 0.006 \$\u0192\$ 1.36 4.25E-04	NM_021067	3880827	GINS1	GINS complex subunit 1 (Psf1 homolog)	仓	1.43	3.33E-04	얍	1.57	1.66E-06
	NM_016095	3703112	GINS2	GINS complex subunit 2 (Psf2 homolog)	Û	1.29	0.006	仓	1.36	4.25E-04

0 3663228	CINS3	CINS complex subunit 3 (PSf3 homolog)	Ŷ	1 2 8	647E-04	Ŷ	1 3 7	6 07F-06
2808507	CMNN	gominin DNA replication inhibitor		1.20	0.171-04	ц Ф	1.57	0.071-00
2501044		HAUS augmin like complex subunit 2	⊔ ☆	1.21	2 25F 04	L A	1.20	7 29E 04
2626522		honotoma dorived growth factor related protein 2		1.23	0.002		2.10	2 E O E 10
2775050		lin E4 homolog (C, clogano)		1.49	0.002 2.74E.04		2.19	3.30E-10
2//3030		MAD21.1 hinding protoin		1.23	2.74E-04		1.25	2.19E-05
0 2900144		MADZLI Dilulig protein		1.27	7.94E-05		1.25	0.30E-U3
3097132		minicin omosome maintenance complex component 4	U A	1.21	0.019		1.39	5.71E-05
38/5195		minichromosome maintenance complex component 8	U A	1.29	1.93E-04	U A	1.29	4.86E-05
3/0//59	MIS12	MIS12, MIND kinetochore complex component, nomolog (S. pombe)	۲ م	1.26	0.011	۲ م	1.24	0.012
2796510	MLFIIP	MLF1 interacting protein	۲ م	1.27	0.023	۲ م	1.57	6.22E-06
2334404	NASP	nuclear autoantigenic sperm protein (histone-binding)	ប	1.20	0.023	ប	1.33	2.57E-04
2326799	NUDC	nuclear distribution gene C homolog (A. nidulans)	ប	1.32	5.44E-04	۲ ر	1.39	1.49E-05
3129149	PBK	PDZ binding kinase	Û	1.21	0.022	Û	1.35	1.36E-04
3986514	PRPS1	phosphoribosyl pyrophosphate synthetase 1	Û	1.23	0.013	Û	1.36	9.54E-05
1 3969047	PRPS2	phosphoribosyl pyrophosphate synthetase 2	Û	1.26	9.64E-05	۲ ۱	1.34	2.63E-07
3904747	RBL1	retinoblastoma-like 1 (p107)	Û	1.20	0.008	Û	1.26	4.76E-04
3056414	RFC2	replication factor C (activator 1) 2, 40kDa	Û	1.28	8.26E-04	Û	1.34	2.33E-05
3485074	RFC3	replication factor C (activator 1) 3, 38kDa	Û	1.21	0.004	Û	1.39	4.19E-07
1 2469252	RRM2	ribonucleotide reductase M2	Û	1.23	0.043	Û	1.55	6.07E-06
5 3788049	SKA1	spindle and kinetochore associated complex 1	Û	1.24	0.029	Û	1.33	0.002
3850660	SPC24	SPC24, NDC80 kinetochore complex component, homolog (S. cerevisiae)	Û	1.31	0.011	仓	1.53	2.98E-05
2696802	STAG1	stromal antigen 1	Û	1.20	0.019	Û	1.28	7.71E-04
sponse & I	nflammation							
9 2899372	BTN3A1	butyrophilin, subfamily 3, member A1	Û	1.20	0.001	Û	1.25	3.48E-05
7 2899298	BTN3A2	butyrophilin, subfamily 3, member A2	Û	1.41	0.001	Û	1.36	0.007
2899413	BTN3A3	butyrophilin, subfamily 3, member A3	Û	1.32	6.35E-06	Û	1.28	1.37E-05
3848039	C3	complement component 3	Û	1.31	0.017	Û	1.30	0.011
3830353	CD22	CD22 molecule	Û	1.31	0.005	Û	1.31	0.002
2440385	CD244	CD244 molecule, natural killer cell receptor 2B4	Û	2.05	8.73E-04	Û	1.75	0.005
3161082	CD274	CD274 molecule	Û	1.27	0.014	Û	1.38	5.69E-04
3734379	CD300A	CD300a molecule	Û	1.29	2.28E-04	Û	1.24	5.83E-04
3402786	CD4	CD4 molecule	Û	1.37	0.008	Û	1.31	0.016
	 3663228 2898597 3591044 3636522 2775858 2908144 3097152 3875195 3707759 2796510 2334404 2326799 3129149 3986514 3969047 3904747 3056414 3485074 2469252 3788049 3850660 2696802 2899372 2899372 2899298 2899413 3848039 3830353 2440385 3161082 3734379 3402786) 3663228 GINS3 2898597 GMNN 3591044 HAUS2 3636522 HDGFRP3 2775858 LIN54) 2908144 MAD2L1BP 3097152 MCM4 3875195 MCM8 3707759 MIS12 2796510 MLF1IP 2334404 NASP 2326799 NUDC 3129149 PBK 3986514 PRPS1 1 3969047 PRPS2 3904747 RBL1 3056414 RFC3 1 3969047 RRS1 3056414 RFC3 1 2469252 RRM2 5 3788049 SKA1 3850660 SPC24 2696802 2696802 STAG1 2899372 BTN3A1 7 2899298 BTN3A2 2899413 BTN3A3 3848039 C3 3830353 CD22 2440385 CD244 3161082 CD274	 3) 3663228 GINS3 GINS complex subunit 3 (PSf3 homolog) 2898597 GMNN geminin, DNA replication inhibitor 3591044 HAUS2 HAUS augmin-like complex, subunit 2 3636522 HDGFRP3 hepatoma-derived growth factor, related protein 3 2775858 LIN54 lin-54 homolog (<i>C. elegans</i>) 2908144 MAD2L1BP MAD2L1 binding protein 3097152 MCM4 minichromosome maintenance complex component 4 3875195 MCM8 minichromosome maintenance complex component, homolog (<i>S. pombe</i>) 2796510 MLF1IP MLF1 interacting protein 2334404 NASP nuclear autoantigenic sperm protein (histone-binding) 2326799 NUDC nuclear distribution gene C homolog (<i>A. nidulans</i>) 3129149 PBK PDZ binding kinase 3966514 PRPS1 phosphoribosyl pyrophosphate synthetase 1 3960477 PRPS2 phosphoribosyl pyrophosphate synthetase 1 3960477 RFC3 replication factor C (activator 1) 2, 40kDa 2469252 RRM2 ribonic factor C (activator 1) 3, 38kDa 2469252 RRM2 ribonic factor C (activator 1) 3, 38kDa 2469252 RRM2 ribonic distribution disting thine chore complex 1 3850660 SPC24 SPC24, SPC24, NDC80 kinetochore complex component, homolog (<i>S. cerevisiae</i>) 2696802 STAG1 stromal antigen 1 sponse & Inflammation 2899372 BTN3A1 butyrophilin, subfamily 3, member A1 7 2899298 BTN3A2 butyrophilin, subfamily 3, member A3 3848039 C3 complement component 3 383033 CD22 CD22 molecule 2440385 CD244 CD244 molecule, natural killer cell receptor 2B4 3161082 CD274 CD274 molecule 34203 	 3663228 GINS3 GINS complex subunit 3 (PSI3 homolog) 2898597 GMNN geminin, DNA replication inhibitor 3591044 HAUS2 HAUS augmin-like complex, subunit 2 163636522 HDGFRP3 hepatoma-derived growth factor, related protein 3 2775858 LIN54 lin-54 homolog (<i>C. elegans</i>) 179097152 MCM4 minichromosome maintenance complex component 4 38701759 MIS12 MIS12, MIND kinetochore complex component 6 3707759 MIS12 MIS12, MIND kinetochore complex component, homolog (<i>S. pombe</i>) 2785610 MLF11P MLF1 interacting protein 2334404 NASP nuclear autoantigenic sperm protein (histone-binding) 21208144 PRPS1 phosphoribosyl pyrophosphate synthetase 1 3906514 PRPS2 phosphoribosyl pyrophosphate synthetase 1 3906474 RBL1 retinobastoma-like 1 (p107) 3056414 RFC2 replication factor C (activator 1) 2, 40kDa 3485074 RFC3 replication factor C (activator 1) 3, 38kDa 2469252 RRM2 ribonucleotide reductase M2 3780849 SKA1 spindle and kinetochore complex component, homolog (<i>S. cerevisiae</i>) 28999372 BTN3A1 butyrophilin, subfamily 3, member A1 3880630 SPC24 SPC24, NDC80 kinetochore complex component, homolog (<i>S. cerevisiae</i>) 28999378 BTN3A3 butyrophilin, subfamily 3, member A1 3840039 C3 complement component 3 3840039 C3 2440385 CD244 CD244 molecule 3440385 CD244 CD244 molecule 	 3663228 GINS3 GINS complex subunit 3 (PSr3 homolog) 128 2898597 GMNN geminin, DNA replication inhibitor 1.21 3591044 HAUS2 HAUS augmin-like complex, subunit 2 1.23 3636522 HDGFRP3 hepatoma-derived growth factor, related protein 3 1.49 2775858 LIN54 lin-54 homolog (<i>C. elegans</i>) 1.23 2908144 MAD2L1BP MAD2L1 binding protein 1.27 3097152 MCM4 minichromosome maintenance complex component 4 1.21 3875195 MCM8 minichromosome maintenance complex component 4 1.29 3707759 MIS12 MIS12 MIS12, MIND kinetochore complex component, homolog (<i>S. pombe</i>) 1.26 2796510 MLF1IP MLF1 interacting protein 1.27 2334404 NASP nuclear autoantigenic sperm protein (histone-binding) 1.20 2326799 NUDC nuclear autoantigenic sperm protein (histone-binding) 1.23 3129149 PBK PDZ binding kinase 1.21 3966514 PRPS1 phosphoribosyl pyrophosphate synthetase 1 2.20 3904747 RBL1 retinoblastoma-like 1 (p107) 1.20 3056414 RFC2 replication factor C (activator 1) 2, 40kDa 2469252 RRM2 ribonucleotide reductase M2 1.23 378049 SKA1 spindle and kinetochore complex component, homolog (<i>S. cerevisiae</i>) 1.21 2469252 RRM2 ribonucleotide reductase M2 1.23 378049 SKA1 spindle and kinetochore complex component, homolog (<i>S. cerevisiae</i>) 1.20 2590782 <i>B</i> IN3A1 butyrophilin, subfamily 3, member A1 2899372 BTN3A1 butyrophilin, subfamily 3, member A3 3803053 CD22 CD22 Molecule 31.31 3803053 CD24 CD24 Molecule, attral killer cell receptor 2B4 203 3161082 CD244 CD244 molecule, attral kille	3 663228 GINS GINS complex subunit 3 (PSR3 homolog) 1 1.28 6.47E-04 2898597 GMNN geminin, DNA replication inhibitor 1 1.21 0.034 3591044 HAUS augmin-like complex, subunit 2 1 1.25 3.35E-04 3636522 HDGFRP3 hepatoma-derived growth factor, related protein 3 1 1.23 2.74E-04 2775858 LINS4 lin-54 homolog (C. elegans) 1 1.21 0.012 3875195 MCM4 minichromosome maintenance complex component 4 1 1.21 0.011 370759 MIS12 MIS12, MIND kinetochore complex component, homolog (S. pombe) 1 1.26 0.011 2334704 NASP nuclear distribution gene C homolog (A. nidulans) 1 1.20 0.023 2334709 NUDC nuclear distribution gene C homolog (A. nidulans) 1 1.22 9.44E-04 3986514 PRPS1 phosphoribosyl pyrophosphate synthetase 1 1 1.23 0.013 3960474 RBC2 replication factor C (activator 1) 2, 40kDa 1	3 G63228 GINS GINS GINS complex subunit 3 (PS13 homolog) © 1.28 6.47E-04 © 2898597 GMNN geminin, DNA replication inhibitor © 1.21 0.034 © 3591044 HAUS augmin-like complex, subunit 2 © 1.25 3.35E-04 © 2775858 LINS 4 lin-54 homolog (C. elegans) © 1.23 2.74F-04 © 2908144 MAD2L1BP MAD2L1 binding protein © 1.27 7.94E-05 © 3077759 MCM4 minichromosome maintenance complex component 4 © 1.21 0.019 © 2334404 NASP nuclear autoantigenic sperm protein (histone-binding) © 1.22 0.023 © 2334404 NASP nuclear autoantigenic sperm protein (histone-binding) © 1.22 0.022 © 3986514 PRPS1 phosphoribosyl pyrophosphate synthetase 1 © 1.23 0.044 © 39806474 RFC2 replication factor C (activator 1) 2, 40kDa © 1.26 0.004) 3663228 GINS complex subunit 3 (PST3 homolog) 1 1 1.28 6.47E-04 1 1.37 2898577 GMNN gemin, DNA replication inhibitor 1 1.21 0.034 1 1.20 3636522 HDGFRP3 hepatoma-derived growth factor, related protein 3 1 1.49 0.002 1 2.23 3636522 HDGFRP3 hepatoma-derived growth factor, related protein 3 1 1.49 0.002 1 2.23 275858 LINS4 lin-54 homolog (C elegans) 1 1.23 2.74E-05 1 1.25 3097152 MCM4 minichromosome maintenance complex component 4 1 1.29 1.37 3707759 MIS12 MIS12, MIND kinetochore complex component, homolog (S. pombe) 1 1.26 0.011 1 1.24 2796510 MLF1P MLF1 interacting protein 1.20 0.023 1 1.33 3236799 NUDC nuclear autoantigenic sperm protein (histone-binding) 1 1.20 0.023 1 1.36

NM_001250	3887302	CD40	CD40 molecule, TNF receptor superfamily member 5	Û	1.32	0.001	Û	1.37	6.66E-05
NM_001114752	2377229	CD55	CD55 molecule, decay accelerating factor for complement (Cromer blood group)	Û	1.23	0.006	Û	1.38	7.02E-06
NM_203330	3368707	CD59	CD59 molecule, complement regulatory protein	Û	1.20	0.004	Û	1.27	8.89E-05
NM_000626	3766533	CD79B	CD79b molecule, immunoglobulin-associated beta	Û	1.29	0.007	Û	1.20	0.032
NM_002621	4007164	CFP	complement factor properdin	Û	1.28	0.043	Û	1.41	0.003
NM_001276	2451593	CHI3L1	chitinase 3-like 1 (cartilage glycoprotein-39)	Û	1.79	0.008	Û	1.89	0.002
NM_005127	3443891	CLEC2B	C-type lectin domain family 2, member B	Û	1.41	0.015	Û	1.57	6.47E-04
NM_001935	2584018	DPP4	dipeptidyl-peptidase 4	Û	1.45	0.012	Û	1.51	0.003
NM_000605	3201319	IFNA2	interferon, alpha 2	Û	1.48	0.013	Û	1.60	0.001
NM_001562	3391255	IL18	interleukin 18 (interferon-gamma-inducing factor)	仓	1.29	0.017	仓	1.34	0.003
NM_002286	3402757	LAG3	LTV1 homolog (S. cerevisiae)	Û	1.41	0.002	Û	1.29	0.014
NM_005356	2328841	LCK	lymphocyte-specific protein tyrosine tyrosine kinase	仓	1.25	0.008	仓	1.46	3.48E-06
NM_052925	3841474	LENG8	leukocyte receptor cluster (LRC) member 8	Û	1.23	0.002	Û	1.24	4.77E-04
NM_138441	2960872	MB21D1	Mab-21 domain containing 1	仓	1.26	0.002	①	1.20	0.008
NM_001172567	2617563	MYD88	myeloid differentiation primary response gene (88)	仓	1.22	0.004	仓	1.25	5.04E-04
NM_00136022	3529908	NFATC4	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4	Û	1.27	0.002	Û	1.24	0.003
NM_022162	3660175	NOD2	nucleotide-binding oligomerization domain containing 2	Û	1.21	0.001	Û	1.20	9.69E-04
BC008975	3526425	PCID2	PCI domain containing 2	Û	1.38	7.87E-04	Û	1.62	1.25E-07
NM_001184714	2440258	SLAMF6	SLAM family member 6	Û	1.25	0.002	Û	1.28	2.22E-04
NM_030956	2766192	TLR10	toll-like receptor 10	Û	1.37	7.79E-05	Û	1.34	7.28E-05
NM_012452	3747522	TNFRSF13B	tumor necrosis factor receptor superfamily, member 13B	Û	1.36	0.002	Û	1.33	0.002
AK303468	2392584	TNFRSF14	tumor necrosis factor receptor superfamily, member 14 (herpesvirus entry mediator)	Û	1.23	0.011	Û	1.36	4.53E-05
Ion Binding									
NM_017649	3261971	CNNM2	cyclin M2	Û	1.20	0.003	Û	1.22	5.18E-04
NM_152516	2484752	COMMD1	copper metabolism (Murr1) domain containing 1	Û	1.33	4.78E-05	仓	1.20	0.003
NM_024843	2515240	CYBRD1	cytochrome b reductase 1	Û	1.22	0.048	Û	1.34	0.002
NM_002032	3375648	FTH1	ferritin, heavy polypeptide 1	Û	1.29	0.026	Û	1.41	0.002
NM_005929	2713111	MFI2	antigen p97 (melanoma associated) identified by monoclonal antibodies 133.2 and 96.5)	Û	1.32	7.19E-04	Û	1.29	9.32E-04
NM_012449	3011838	STEAP1	six transmembrane epithelial antigen of the prostate 1	Û	1.29	0.013	Û	1.32	0.004

NM_152999	3011861	STEAP2	six transmembrane epithelial antigen of the prostate 2	Û	1.40	0.025	Û	1.79	5.72E-05
Membrane T	'rafficking								
NM_007189	3079463	ABCF2	ATP-binding cassette, sub-family F (GCN20), member 2	仓	1.20	0.014	Û	1.26	9.48E-04
NM_001677	2366422	ATP1B1	ATPase, Na+/K+ transporting, beta 1 polypeptide	Û	1.66	7.06E-04	Û	1.37	0.021
NM_001001396	2375706	ATP2B4	ATPase, Ca++ transporting, plasma membrane 4	Û	1.39	0.020	Û	1.47	0.004
NM_000052	3982423	ATP7A	ATPase, Cu++ transporting, alpha polypeptide	Û	1.28	0.011	Û	1.41	1.58E-04
NM_001286	2320472	CLCN6	chloride channel 6	Û	1.32	4.73E-05	Û	1.23	7.09E-04
NM_016433	3470964	GLTP	glyolipid transfer protein	仓	1.23	0.004	仓	1.21	0.004
NM_003740	2952834	KCNK5	potassium channel, subfamily K, member 5	Û	1.26	0.020	Û	1.42	2.33E-04
NM_153369	2921456	KIAA1919	KIAA1919	Û	1.25	5.47E-04	Û	1.27	1.01E-04
NM_001146069	2758043	MFSD10	major facilitator superfamily domain containing 10	Û	1.21	3.98E-04	Û	1.21	1.57E-04
NM_001126340	3016768	ORAI2	ORAI calcium release-activated calcium modulator 2	仓	1.23	0.013	①	1.24	0.006
NM_022068	3798829	PIEZO2	piezo-type mechanosensitive ion channel component 2	Û	1.77	0.027	Û	1.64	0.037
NM_001174129	3454576	SLC11A2	solute carrier family 11 (proton-coupled divalent metal ion transporters) member 2	Û	1.24	0.004	Û	1.43	1.25E-06
NM_001046	2827525	SLC12A2	solute carrier family 12 (sodium/potassium/chloride transporters) member 2	Û	1.26	0.008	Û	1.20	0.023
NM_021082	2638728	SLC15A2	solute carrier family 15 (H+/peptide transporter) member 2SLC12A2	Û	1.36	0.010	Û	1.27	0.031
NM_001042422	3738629	SLC16A3	solute carrier family 16, member 3 (monocarboxylic acid transporter 4)	Û	1.41	2.93E-06	Û	1.36	5.03E-06
NM_012434	2960955	SLC17A5	solute carrier family 17 (anion/sugar transporter), member 5	Û	1.21	0.010	Û	1.28	2.94E-04
NM_001039355	3579501	SLC25A29	solute carrier family 25, member 29	Û	1.32	0.007	Û	1.31	0.005
NM_032315	2319340	SLC25A33	solute carrier family 25, member 33SLC17A5	Û	1.57	3.19E-04	Û	1.29	0.028
NM_00104647	2645275	SLC25A36	solute carrier family 25, member 36	Û	1.22	0.012	Û	1.29	4.68E-04
NM_016612	3090006	SLC25A37	solute carrier family 25, member 37	Û	1.23	0.033	Û	1.21	0.036
NM_006516	2409104	SLC2A1	solute carrier family 2 (facilitated glucose transporter), member 1	Û	1.29	0.04	Û	1.23	0.014
NM_006931	3442854	SLC2A3	solute carrier family 2 (facilitated glucose transporter), member 3	Û	1.35	9.02E-04	Û	1.33	6.90E-04
NM_006416	2916345	SLC35A1	solute carrier family 35 (CMP-sialic acid transporter), member 1	Û	1.36	1.07E-04	Û	1.24	0.003
NM_015139	2417095	SLC35D1	solute carrier family 35 (UDP-glucuronic acid/UDP-N-acetylgalactosamine dual transporter), member D1	Û	1.21	0.036	Û	1.21	0.024
NM_012319	3804195	SLC39A6	solute carrier family 39 (zinc transporter), member 6	Û	1.22	0.004	Û	1.23	0.001
NM_033102	2452615	SLC45A3	solute carrier family 45, member 3	Û	1.22	0.002	Û	1.20	0.002
NM_001098484	2730746	SLC4A4	solute carrier family 4, sodium bicarbonate cotransporter, member 4	Û	1.40	0.018	Û	1.33	0.032
NM_003615	2666904	SLC4A7	solute carrier family 4, sodium bicarbonate cotransporter, member 7	Û	1.21	0.004	Û	1.20	0.003

NM_006933	3919033	SLC5A3	solute carrier family 5 (sodium/myo-inositol cotransporter), member 3	Û	1.28	3.54E-06	Û	1.30	1.73E-07
NM_016354	3892812	SLCO4A1	solute carrier organic anion transporter family member 4A1	Û	1.32	0.002	Û	1.20	0.028
NM_030958	3139580	SLC5A1	solute carrier organic anion transporter family member 5A1	Û	1.41	2.30E-04	Û	1.33	0.001
NM_003156	3317915	STIM1	stromal interaction molecule 1	Û	1.43	1.32E-08	Û	1.31	2.76E-06
NM_001169118	2722377	STIM2	stromal interaction molecule 2	Û	1.23	0.008	Û	1.21	0.007
NM_183240	2502842	TMEM37	transmembrane protein 37	Û	1.32	0.026	Û	1.29	0.027
NM_001143819	3432678	TPCN1	two pore segment channel 1	Û	1.26	1.54E-05	Û	1.22	4.06E-05
NM_016113	3712062	TRPV2	transient receptor potential cation channel, subfamily V, member 2	Û	1.28	2.54E-04	Û	1.25	3.46E-04
Metabolism									
NM_016006	2619761	ABHD5	abhydrolase domain containing 5	Û	1.34	7.33E-04	仓	1.26	9.84E-04
NM_032169	2695648	ACAD11	acyl-CoA dehydrogenase family, member 11	Û	1.22	0.002	Û	1.26	2.31E-04
NM_032592	3328349	ACCS	aminocyclopropane-1-carobxylate synthase homolog (Arabidopsis) (non-	Û	1.42	2.23E-05	Û	1.33	1.86E-04
			functional)						
NM_00160094	2898562	ACOT13	acyl-CoA thioesterase 13	Û	1.30	0.001	仓	1.20	0.014
NM_018269	2538600	ADI1	acireductone dioxygenase 1	Û	1.32	0.006	仓	1.34	0.002
NM_020133	2983030	AGPAT4	1-acylglycerol-3-phosphate 0-acyltransferase 4 (lysophosphatidic acid	Û	1.23	5.62E-04	Û	1.22	3.93E-04
			acyltransferase, delta)						
NM_001628	3073981	AKR1B1	aldo-keto reductase family 1, member B1 (aldose reductase)	Û	1.27	0.020	兌	1.25	0.019
NM_000692	3169331	ALDH1B1	aldehyde dehydrogenase 1 family, member B1	Û	1.25	0.016	仓	1.23	0.015
NM_000712	2999544	BLVRA	biliverdin reductase A	Û	1.24	0.009	仓	1.24	0.005
NM_078476	2899437	BTN2A1	butyrophilin, subfamily 2, member A1	Û	1.29	3.78E-05	Û	1.20	0.001
NM_001757	3919785	CBR1	carbonyl reductase 1	Û	1.21	0.028	仓	1.31	0.001
NM_022766	3964154	CERK	ceramide kinase	Û	1.25	0.001	仓	1.25	4.91E-04
NM_203463	2514122	CERS6	ceramide synthase 6	Û	1.23	0.011	Û	1.21	0.012
NM_004820	3138204	CYP7B1	cytochrome P450, family 7, subfamily B, polypeptide 1	Û	1.39	0.026	Û	1.34	0.036
NM_001360	3380697	DHCR7	dehydrocholesterol reductase	Û	1.28	0.002	Û	1.20	0.012
NM_006209	3150579	ENPP2	ectonucleotide pyrophosphatase/phosphodiesterase 2	Û	1.59	0.005	Û	1.44	0.018
NM_032020	2977510	FUCA2	fucosidase, alpha-L-2, plasma	Û	1.22	0.030	Û	1.20	0.030
NM_000153	3575103	GALC	galactosylceramidease	Û	1.21	0.005	Û	1.29	9.93E-05
NM_001498	2957700	GCLC	glutamate-cysteine ligase, catalytic subunit	Û	1.23	0.001	仓	1.22	9.11E-04
NM_024051	3044129	GGCT	gamma-glutamylcyclotransferase	Û	1.21	0.023	兌	1.25	0.003
NM_000404	2668205	GLB1	galactosidase, beta 1	Û	1.22	0.020	Û	1.27	0.003

NM_000181	3053691	GUSB	glucuronidase, beta	Û	1.24	0.001	Û	1.25	4.99E-04
NM_004130	2647154	GYG1	Glycogenin 1	兌	1.36	0.002	仓	1.38	4.99E-04
NM_152740	3043165	HIBADH	3-hydroxyisobutyrate dehydrogenase	Û	1.29	0.001	仓	1.21	0.009
NM_001127205	3646199	HMOX2	heme oxygenase (decycling) 2	Û	1.23	0.003	仓	1.27	2.41E-04
NM_031207	2409368	HYI	hydroxypyruvate isomerase (putative)	Û	1.21	0.043	仓	1.24	0.012
NM_016133	2502424	INSIG2	insulin induced gene 2	Û	1.34	0.004	Û	1.44	1.44E-04
NM_006033	3787855	LIPG	lipase, endothelial	Û	1.72	2.11E-04	Û	1.56	9.85E-04
NM_014873	2454485	LPGAT1	lysophosphatidylglycerol acyltransferase 1	Û	1.30	0.025	Û	1.30	0.016
NM_004897	3256560	MINPP1	multiple inositol-polyphosphate phosphatase 1	Û	1.32	6.65E-04	Û	1.25	0.003
NM_006441	3635125	MTHFS	5,10-methenyltetrahydrofolate synthetase (5-formyltetrahydrofolate cyclo-	兌	1.28	0.009	仓	1.32	0.002
			ligase)						
NM_002539	2540157	ODC1	ornithine decarboxylase 1	兌	1.25	9.26E-04	仓	1.38	3.83E-07
NM_015900	2638077	PLA1A	phospholipase A1 member A	Û	1.39	0.013	Û	1.45	0.002
NM_001031689	3202171	PLAA	phospholipase A2-activating protein	Û	1.21	0.003	仓	1.28	4.89E-05
NM_002662	2705445	PLD1	phospholipase D1, phosphatidylcholine-specific	Û	1.60	0.009	Û	1.45	0.024
NM_016026	3569401	RDH11	retinol dehydrogenase 11 (all-trans/9-cis/11-cis)	Û	1.20	0.007	Û	1.20	0.004
NM_144563	2492938	RPIA	ribose 5-phosphate isomerase A	仓	1.24	0.002	仓	1.20	0.004
NM_006745	2750594	SC4MOL	sterol-C4-methyl oxidase-like	Û	1.20	0.016	Û	1.21	0.005
NM_006918	3352904	SC5DL	sterol-C5-desaturase (ERG3 delta-5-desaturase homolog, <i>S. cerevisiae</i>)	Û	1.21	0.008	Û	1.20	0.008
NM_004169	3748323	SHMT1	serine hydroxymethyltransferase 1 (soluble)	仓	1.28	0.011	仓	1.36	7.94E-04
NM_003132	2396461	SRM	spermidine synthase	Û	1.37	7.38E-06	仓	1.21	0.002
NM_000367	2944025	TPMT	thiopurine S-methyltransferase	Û	1.64	8.09E-05	仓	1.50	4.74E-04
NR_033437	2639874	UMPS	uridine monophosphate synthetase	仓	1.23	0.005	仓	1.26	9.06E-04
NR_036510	2334279	UROD	uroporphyrinogen decarboxylase	Û	1.31	2.28E-05	兌	1.21	0.001
Mitochondrie	on & the Re	espiratory Ele	ctron Transport Chain						
NM 003488	3728097	AKAP1	A kinase (PRKA) anchor protein 1	Û	1.21	0.008	Û	1.24	9.43E-04
NM 001001937	3806253	ATP5A1	ATP synthase. H+ transporting, mitochondrial F1 complex, alpha subunit 1.	Ŷ	1.31	5.92E-04	Ŷ	1.28	6.44E-04
-			cardiac muscle						
NM 005175	3725456	ATP5G1	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1	兌	1.21	5.14E-04	①	1.23	8.17E-05
-			(subunit 9)						
NM_025147	2521446	COQ10B	coenzyme Q10 homolog B (<i>S. cerevisiae</i>)	兌	1.26	3.21E-04	仓	1.23	3.99E-04
NM_017421	2966232	COQ3	coenzyme Q3 homolog, methyltransferase (<i>S. cerevisiae</i>)	Û	1.20	5.42E-04	仓	1.27	2.06E-06

NM_004374	3146433	COX6C	cytochrome c oxidase subunit Vic	仓	1.26	0.033	仓	1.29	0.012
NM_012062	3410695	DNM1L	dynamin 1-like	Û	1.36	0.004	仓	1.44	2.88E-04
AY568085	2950798	MNF1	mitochondrial nucleoid factor 1	Û	1.22	0.018	仓	1.33	3.09E-04
NM_001099286	2975655	MTFR2	mitochondrial fission regulator 2	Û	1.27	0.007	仓	1.26	0.005
NR_027405	2489172	MTHFD2	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2,	Û	1.23	0.004	仓	1.26	6.50E-04
			methenyltetrahydrofolate cyclohydrolase						
NM_014222	3224197	NDUFA8	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8, 19kDa	Û	1.34	7.20E-04	兌	1.29	0.001
NM_016013	3619991	NDUFAF1	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 1	Û	1.22	0.032	仓	1.38	2.55E-04
NM_004548	3644220	NDUFB10	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10, 22kDa	Û	1.25	0.006	兌	1.22	0.008
NM_002493	3203162	NDUFB6	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6, 17kDa	Û	1.28	0.013	兌	1.32	0.003
NM_004552	2331178	NDUFS5	NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa (NADH-coenzyme	Û	1.31	0.003	①	1.23	0.015
			Q reductase)						
Neurotransm	nission								
NM_032810	3299255	ATAD1	ATPase family, AAA domain containing 1	Û	1.30	1.61E-05	Û	1.30	3.21E-06
NM_033133	3721548	CNP	2',3'-cyclic nucleotide 3' phosphodiesterase	Û	1.24	0.005	仓	1.22	0.005
NM_031412	3404636	GABARAPL1	GABA(A) receptor-associated protein like 1	Û	1.43	0.005	仓	1.41	0.003
NM_005467	3344142	NAALAD2	N-acetylated alpha-linked acidic dipeptidase 2	Û	1.36	0.023	Û	1.40	0.008
NM_006228	3091699	PNOC	prepronociceptin	Û	1.27	0.009	仓	1.20	0.028
NM_014849	2434139	SV2A	synaptic vesicle glycoprotein 2A	Û	1.49	7.63E-04	Û	1.39	0.003
Nucleosome									
NM 018154	3852565	ASF1B	ASF1 anti-silencing function 1 homolog B (<i>S. cerevisiae</i>)	Û	1.31	0.002	介	1.38	6.13E-05
NM 005441	3920003	CHAF1B	chromatin assembly factor 1, subunit B (p60)	Û	1.24	0.004	①	1.43	5.36E-07
NM_017444	3118451	CHRAC1	chromatin accessibility complex 1	Û	1.26	0.005	仓	1.25	0.003
NM_005325	2946194	HIST1H1A	histone cluster 1, H1a	Û	1.37	0.026	仓	1.65	1.95E-04
NM_080596	2899772	HIST1H2AH	histone cluster 1, H2ah	Û	1.37	0.008	仓	1.29	0.020
NM_021018	2946364	HIST1H3F	histone cluster 1, H3f	Û	1.34	0.021	仓	1.33	0.017
NM_003538	2899095	HIST1H4A	histone cluster 1, H4a	Û	1.51	0.007	仓	1.32	0.048
NM_003544	2946208	HIST1H4B	histone cluster 1, H4b	Û	1.35	0.019	仓	1.38	0.007
NM_175055	2384268	HIST3H2BB	histone cluster 3, H2bb	Û	1.30	0.038	①	1.27	0.043
Protein Proc	essing								
NM_018089	2528347	ANKZF1	ankyrin repeat and zinc finger domain containing 1	Û	1.26	5.00E-04	Û	1.34	2.45E-06

NM_001663	3535000	ARF6	ADP-ribosylation factor 6	仓	1.31	5.27E-05	仓	1.21	0.002
NM_198150	2820865	ARSK	arylsulfatase family, member K	Û	1.59	2.39E-05	Û	1.54	2.52E-05
NM_004317	3821847	ASNA1	arsA arsenite transporter, ATP-binding, homolog 1 (bacterial)	Û	1.22	6.46E-04	Û	1.26	2.24E-05
NM_004775	3803120	B4GALT6	UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 6	Û	1.29	7.99E-04	Û	1.23	0.003
NM_004282	2911372	BAG2	BCL2-associated athanogene 2	Û	1.49	9.47E-04	Û	1.56	1.02E-04
NM_005868	3061651	BET1	blocked early in transport 1 homolog (S. cerevisiae)	Û	1.20	0.026	Û	1.23	0.006
NM_001487	3416909	BLOC1S1	biogenesis of lysosomal organelles complex-1, subunit 1	仓	1.39	2.24E-04	①	1.24	0.008
NM_025238	3636470	BTBD1	BTB (POZ) domain containing 1	仓	1.20	1.17E-04	Û	1.21	3.32E-05
NM_001219	3023060	CALU	calmodulin 1 (phosphorylase kinase, delta)	Û	1.21	0.033	Û	1.26	0.007
NM_001762	3003193	CCT6A	chaperonin containing TCP1, subunit 6A (zeta 1)	仓	1.24	0.020	仓	1.21	0.023
NM_014169	3557947	CHMP4A	charged multivesicular body protein 4A	①	1.42	2.94E-05	仓	1.36	8.71E-05
NM_018590	3243908	CSGALNACT2	chondroitin sulfate N-acetylgalactosaminyltransferase 2	Û	1.26	0.002	Û	1.27	5.81E-04
NM_015397	3203855	DCAF12	DDB1 and CUL4 associated factor 12	①	1.24	2.14E-04	仓	1.24	4.74E-05
NM_003677	3435490	DENR	density-regulated protein	Û	1.30	0.002	Û	1.31	5.76E-04
NM_001539	3166718	DNAJA1	DnaJ (Hsp40) homolog, subfamily A, member 1	Û	1.30	0.019	Û	1.36	0.004
NM_017629	2330002	EIF2C4	eukaryotic translation initiation factor 2C, 4	仓	1.22	0.002	仓	1.20	0.002
NM_003758	3591963	EIF3J	eukaryotic translation initiation factor, subunit J	①	1.23	0.012	仓	1.24	0.006
NM_022170	3008144	EIF4H	eukaryotic translation initiation factor 4H	Û	1.31	0.005	Û	1.38	4.23E-04
NM_006459	3303255	ERLIN1	ER lipid raft associated 1	Û	1.28	0.003	Û	1.22	0.009
NM_004730	2877465	ETF1	eukaryotic translation termination factor 1	①	1.27	6.75E-05	仓	1.21	7.48E-04
NM_001439	2425400	EXTL2	exostoses (multiple)-like 2	Û	1.53	3.40E-05	Û	1.37	8.07E-04
NM_024619	3739108	FN3KRP	fructosamine 3 kinase related protein	Û	1.24	7.73E-04	Û	1.33	4.58E-06
NMN_004481	2384788	GALNT2	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyl	Û	1.23	5.30E-05	Û	1.21	6.58E-05
NM 198066	3564872	GNPNAT1	glucosamine-nhosnhate N-acetyltransferase 1	介	1 2 9	0.004	介	1 33	5 93E-04
NM 016548	3212848	GOLM1	golgi membrane protein 1	Л	1.51	0.008	Л	1.55	0.010
NM 016072	3407824	GOLT1B	golgi transnort 1B	х	1.01	0.000	х	1.10	1 56E-05
NM 004466	3496409	GPC5	glynican 5	х́л	1.21	0.004	л	1 34	0.014
NM 001545	3734575	ICT1	immature colon carcinoma transcript 1	× ۲	1.10	0.001	Ŷ	1 32	4 28E-05
NM 006547	2992863	IGF2RP3	insulin-like growth factor 2 mRNA hinding protein 3	ں 1	1 35	1 85F-05	ں 1	1.02	3 77F-04
NM 018439	3782166	IMPACT	impact homolog (mouse)	ں ۲	1.33	0.022	ں ۲	1.20	0.005
NM 030980	2438482	ISG20L2	interferon stimulated exonuclease gene 20kDa-like 2	ں 1	1.27	6.09E-05	ں 1	1.34	643E-07
NM 002268	2703217	KPNA4	karvonherin alnha 4 (importin alnha 3)	ں 1	1.20	1 79E-05	ں 1	1 20	3 75E-04
1111_002200	2/00/1/		har jophorm arpha i (importin arpha o)	L	1.47	1, 1, 00	L	1.20	5.751 01

NM_001142292	2565484	LMAN2L	lectin, mannose-binding 2-like	Û	1.23	0.011	Û	1.21	0.012
NM_144703	3892452	LSM14B	LSM14B, SCD6 homolog B (<i>S. cerevisiae</i>)	仓	1.35	0.010	Û	1.28	0.025
NM_006122	3608466	MAN2A2	mannosidase, alpha, class 2A, member 2	Û	1.26	6.07E-05	Û	1.26	1.76E-05
NM_005908	2779897	MANBA	mannosidase, beta A, lysosomal	Û	1.31	3.15E-04	Û	1.37	6.74E-06
NM_014730	3434525	MLEC	malectin	Û	1.20	2.99E-04	Û	1.23	1.07E-05
NM_006302	2560122	MOGS	mannosyl-oligosaccharide glucosidase	Û	1.21	0.004	Û	1.25	2.97E-04
NM_014161	2934167	MRPL18	mitochondrial ribosomal protein L18	仓	1.22	0.005	仓	1.28	1.85E-04
NM_014180	2836886	MRPL22	mitochondrial ribosomal protein L22	仓	1.22	0.014	仓	1.31	4.23E-04
NM_032477	3195344	MRPL41	mitochondrial ribosomal protein L41	仓	1.43	5.85E-04	仓	1.27	0.014
NM_020409	2706985	MRPL47	mitochondrial ribosomal protein L47	仓	1.34	0.003	仓	1.26	0.011
NM_016497	3441955	MRPL51	mitochondrial ribosomal protein L51	仓	1.22	1.80E-05	Û	1.23	1.97E-06
NM_016183	2323559	MRTO4	mRNA turnover 4 homolog (<i>S. cerevisiae</i>)	仓	1.36	9.11E-04	Û	1.22	0.022
NM_033049	2692883	MUC13	mucin 13, cell surface associated	Û	1.49	0.025	Û	1.59	0.002
NM_025146	2689208	NAA50	N(alpha)-acetyltransferase 50, NatE catalytic subunit	Û	1.23	0.002	仓	1.28	1.12E-04
NM_016101	3666686	NIP7	nuclear import 7 homolog (<i>S. cerevisiae</i>)	Û	1.34	6.11E-05	仓	1.32	4.53E-05
NM_006178	3724197	NSF	ethylmaleimide-sensitive factor	仓	1.20	0.046	仓	1.36	3.83E-04
NM_002484	3647956	NUBP1	nucleotide binding protein 1 (MinD homolog, <i>E. coli</i>)	Û	1.21	0.003	仓	1.28	4.28E-05
NM_000917	3294159	P4HA1	prolyl 4-hydroxylase, alpha polypeptide I	Û	1.25	0.002	Û	1.31	4.99E-05
NM_004199	2875193	P4HA2	prolyl 4-hydroxylase, alpha polypeptide II	Û	1.26	0.033	Û	1.38	0.002
NM_000919	2822215	PAM	peptidylglycine alpha-amidating monooxygenase	Û	1.27	2.69E-05	Û	1.26	1.73E-05
NM_001146106	2692060	PARP9	poly (ADP-ribose) polymerase family, member 9	仓	1.32	0.005	仓	1.24	0.023
NM_024989	2593407	PGAP1	post-GPI attachment to proteins 1	Û	1.24	0.011	Û	1.41	2.14E-05
NM_173074	2551690	PIGF	phosphatidylinositol glycan anchor biosynthesis, class F	Û	1.23	0.034	Û	1.45	7.08E-05
NM_080476	3903481	PIGU	phosphatidylinositol glycan anchor biosynthesis, class U	Û	1.29	0.011	Û	1.22	0.035
NM_138717	2903075	PPT2	palmitoyl-protein thioesterase 2	Û	1.22	4.74E-04	Û	1.30	1.37E-06
NM_018137	2349848	PRMT6	protein arginine methyltransferase 6	仓	1.29	4.87E-04	仓	1.26	5.39E-04
NM_002790	2427074	PSMA5	proteasome (prosome, macropain) subunit, alpha type, 5	仓	1.28	0.001	仓	1.30	3.36E-04
NM_002798	3707199	PSMB6	proteasome (prosome, macropain) subunit, beta type, 6	仓	1.48	7.64E-05	仓	1.26	0.010
NM_002804	3372209	PSMC3	proteasome (prosome, macropain) 26S subunit, ATPase, 3	仓	1.26	0.002	仓	1.42	1.94E-06
NM_002805	3730941	PSMC5	proteasome (prosome, macropain) 26S subunit, ATPase, 5	仓	1.24	0.038	Û	1.41	5.11E-04
NM_176863	3722152	PSME3	proteasome (prosome, macropain) activator subunit 3 (PA28 gamma; Ki)	Û	1.21	0.004	Û	1.25	3.77E-04
NM_017659	3836432	QPCTL	glutaminyl-peptide cyclotransferase-like	Û	1.26	2.27E-04	Û	1.20	0.001

NM_020673	3890870	RAB22A	RAB22A, member RAS oncogene family	仓	1.21	0.002	仓	1.22	6.36E-04
NM_004580	3625271	RAB27A	RAB27A, member RAS oncogene family	仓	1.31	0.002	仓	1.26	0.005
NM_173647	2567583	RNF149	ringer finger protein 149	Û	1.22	0.012	Û	1.36	5.16E-05
NM_015169	3101622	RRS1	RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)	仓	1.40	1.40E-04	兌	1.26	0.004
NR_027280	3837132	SAE1	SUMO1 activating enzyme subunit 1	仓	1.20	0.004	仓	1.35	6.92E-07
NM_015490	3303478	SEC31B	SEC31 homolog B (<i>S. cerevisiae</i>)	Û	1.25	5.76E-04	Û	1.26	1.52E-04
NM_013257	3101802	SGK3	serum/glucocorticoid regulated kinase family, member 3	仓	1.20	0.003	仓	1.20	0.002
NM_007241	3761632	SNF8	SNF8, ESCRT-II complex subunit, homolog (<i>S. cerevisiae</i>)	兌	1.33	9.36E-04	仓	1.34	2.84E-04
NM_014035	2826343	SNX24	sorting nexin 24	仓	1.24	0.028	仓	1.23	0.023
NM_006100	2633256	ST3GAL6	ST3 beta-galactoside alpha-2,3-sialyltransferase 6	Û	1.40	0.025	Û	1.67	2.97E-04
NM_003764	2929127	STX11	syntaxin 11	仓	1.51	0.001	兌	1.31	0.018
NM_016360	3730784	TACO1	translational activator of mitochondrially encoded cytochrome c oxidase 1	仓	1.20	0.004	仓	1.34	1.12E-06
NM_019022	3812206	TMX3	thioredoxin-related transmembrane protein 3	Û	1.23	1.12E-04	Û	1.20	3.51E-04
NM_020243	3945376	TOMM22	translocase of outer mitochondrial membrane 22 homolog (yeast)	仓	1.26	4.26E-04	兌	1.23	6.15E-04
NM_0022347	2446240	TOR1AIP2	torsin A interacting protein 2	仓	1.43	0.007	仓	1.42	0.004
NM_003596	3005444	TPST1	tyrosylprotein sulfotransferase 1	Û	1.31	0.018	Û	1.38	0.003
NM_015049	2594812	TRAK2	trafficking protein, kinesin binding 2	仓	1.26	0.002	兌	1.29	2.47E-04
NM_015939	3896524	TRMT6	tRNA methyltransferase 6 homolog (S. cerevisiae)	仓	1.27	1.11E-05	仓	1.26	5.41E-06
NM_003314	2838042	TTC1	tetratricopeptide repeat domain 1	仓	1.33	6.88E-04	仓	1.33	2.48E-04
NM_005783	2566740	TXNDC9	thioredoxin domain containing 9	仓	1.21	0.001	仓	1.29	8.42E-06
NM_080678	2534564	UBE2F	ubiquitin-conjugating enzyme E2F (putative)	仓	1.26	0.004	仓	1.26	0.002
NM_016021	2964200	UBE2J1	ubiquitin-conjugating enzyme E2, J1 (UBC6 homolog, yeast)	仓	1.20	0.008	仓	1.22	0.003
NM_005339	2724472	UBE2K	ubiquitin-conjugating enzyme E2K (UBC1 homolog, yeast)	仓	1.23	6.65E-05	仓	1.22	3.92E-05
NM_145049	2837810	UBLCP1	ubiquitin-like domain containing CTD phosphatase 1	仓	1.27	0.015	仓	1.37	6.60E-04
NM_152277	2887128	UBTD2	ubiquitin domain containing 2	仓	1.45	6.18E-05	仓	1.42	5.35E-05
NM_001048201	3817698	UHRF1	ubiquitin-like with PHD and ring finger domains 1	仓	1.31	0.041	仓	1.80	5.01E-06
NM_003368	2339414	USP1	ubiquitin specific peptidase 1	仓	1.33	8.09E-04	仓	1.32	4.48E-04
NM_025076	2568968	UXS1	UDP-glucuronate decarboxylase 1	Û	1.21	0.039	Û	1.32	0.001
NM_016079	2562821	VPS24	vacuolar protein sorting 24 homolog (S. cerevisiae)	仓	1.26	0.002	仓	1.34	2.75E-05
NM_022916	3475545	VPS33A	vacuolar protein sorting 33 homolog A (S. cerevisiae)	仓	1.20	0.006	仓	1.21	0.002
NM_018639	3473727	WSB2	WD repeat and SOCS box-containing 2	仓	1.25	0.001	仓	1.27	2.90E-04
NM_022494	3307120	ZDHHC6	zinc finger, DHHC-type containing 6	Û	1.30	6.49E-06	Û	1.23	1.05E-04
NM_016032	4021341	ZDHHC9	zinc finger, DHHC-type containing 9	Û	1.23	0.004	Û	1.27	5.35E-04

2336497	ZYG11B	zyg-11 homolog B (<i>C. elegans</i>)	Û	1.31	1.05E-04	Û	1.20	0.004
ing								
3273667	ADARB2	adenosine deaminase, RNA-specific, B2	Û	1.36	0.012	Û	1.34	0.010
3687698	CD2BP2	CD2 (cytoplasmic tail) binding protein 2	仓	1.21	0.015	仓	1.29	4.86E-04
3355114	DCPS	decapping enzyme, scavenger	仓	1.22	0.003	仓	1.20	0.003
3250055	DDX21	DEAD (Asp-Glu-Ala-Asp) box polypeptide 21	仓	1.21	0.004	仓	1.22	0.001
2409220	EBNA1BP2	EBNA1 binding protein 2	仓	1.29	0.003	仓	1.48	1.04E-06
3035682	FTSJ2	FtsJ homolog 2 (E. coli)	仓	1.30	1.86E-04	仓	1.20	0.005
3656904	FUS	fused in sarcoma	仓	1.23	7.50E-04	仓	1.33	6.02E-07
2878474	HARS	histidyl-tRNA synthetase	仓	1.20	0.005	仓	1.20	0.002
2877141	HNRNPA0	heterogeneous nuclear ribonucleoprotein A0	仓	1.23	2.35E-07	仓	1.23	4.48E-08
2843619	HNRNPAB	heterogeneous nuclear ribonucleoprotein A/B	仓	1.26	6.49E-05	仓	1.29	2.25E-06
3984779	HNRNPH2	heterogeneous nuclear ribonucleoprotein H2 (H')	仓	1.28	0.024	①	1.32	0.006
3819543	HNRNPM	heterogeneous nuclear ribonucleoprotein M	仓	1.21	0.008	仓	1.35	2.01E-05
3699757	KARS	lysyl-tRNA synthetase	仓	1.20	2.32E-04	仓	1.23	1.03E-05
3854892	LSM4	LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae)	Û	1.24	0.008	①	1.21	0.012
3617403	NOP10	NOP10 ribonucleoprotein homolog (yeast)	仓	1.32	0.013	仓	1.25	0.031
2827156	PHAX	phosphorylated adaptor for RNA export	仓	1.27	1.79E-04	仓	1.22	7.09E-04
3015769	POP7	processing of precursor 7, ribonuclease P/MRP subunit (<i>S. cerevisiae</i>)	兌	1.23	0.009	①	1.28	0.001
3293280	PPA1	pyrophosphatase (inorganic) 1	兌	1.34	0.005	①	1.20	0.028
3434201	PRPF39	PRP39 pre-mRNA processing factor 39 homolog (S. cerevisiae)	Û	1.24	4.00E-05	Û	1.21	1.05E-04
3185558	PRPF4	PRP4 pre-mRNA processing factor 4 homolog (yeast)	仓	1.24	7.62E-05	仓	1.24	2.10E-05
3336402	RBM14	RNA binding motif protein 14	Û	1.30	0.002	Û	1.22	0.012
2583602	RBMS1	RNA binding motif, single stranded interacting protein 1	仓	1.43	0.034	仓	1.71	7.17E-04
2907596	RRP36	ribosomal RNA processing 36 homolog (<i>S. cerevisiae</i>)	仓	1.31	0.004	仓	1.34	0.001
3962448	RRP7A	ribosomal RNA processing 7 homolog A (S. cerevisiae)	兌	1.27	0.002	①	1.26	0.001
2682568	SHQ1	SHQ1 homolog (S. cerevisiae)	仓	1.20	0.011	仓	1.24	0.002
2404377	SNRNP40	small nuclear ribonucleoprotein 40kDa (U5)	仓	1.30	0.027	仓	1.50	2.21E-04
3642162	SNRPA1	small nuclear ribonucleoprotein polypeptide A'	Û	1.27	0.011	Û	1.40	1.67E-04
3877776	SNRPB2	small nuclear ribonucleoprotein polypeptide B	仓	1.24	0.040	仓	1.38	0.001
3427014	SNRPF	small nuclear ribonucleoprotein polypeptide F	仓	1.27	0.007	仓	1.27	0.004
2905118	SRSF3	serine/arginine-rich splicing factor 3	仓	1.20	0.015	①	1.33	9.47E-05
	2336497 ng 3273667 3687698 3355114 3250055 2409220 3035682 3656904 2878474 2877141 2843619 3984779 3819543 3699757 3854892 3617403 2827156 3015769 3293280 3434201 3185558 3336402 2583602 2907596 3962448 2682568 2404377 3642162 3877776 3427014 2905118	2336497ZYG11Bng3273667ADARB23687698CD2BP23355114DCPS3250055DDX212409220EBNA1BP23035682FTSJ23656904FUS2878474HARS2877141HNRNPA02843619HNRNPAB3984779HNRNPH23819543HNRNPM3699757KARS3854892LSM43617403NOP102827156PHAX3015769POP73293280PPA13434201PRPF393185558PRPF4336402RBM142583602RBM512907596RR9363962448RRP7A2682568SHQ12404377SNRNP403642162SNRPA1387776SNRPB23427014SNRPF2905118SRSF3	2336497ZYG11Bzyg-11 homolog B (C. elegans)ing3273667ADARB2adenosine deaminase, RNA-specific, B23687698CD2BP2CD2 (cytoplasmic tail) binding protein 23355114DCPSdecapping enzyme, scavenger3250055DDX21DEAD (Asp-Glu-Ala-Asp) box polypeptide 212409220EBNA1BP2EBNA1 binding protein 23035682FTSJ2FtsJ homolog 2 (E. col)3656904FUSfused in sarcoma2878474HARShistidyl-tRNA synthetase2877141HNRNPA0heterogeneous nuclear ribonucleoprotein A02843619HNRNPABheterogeneous nuclear ribonucleoprotein H2 (H')3819543HNRNPAheterogeneous nuclear ribonucleoprotein H2 (H')3819543HNRNPMheterogeneous nuclear ribonucleoprotein M369777KARSJysyl-tRNA synthetase3854892LSM4LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae)3015769POP7processing of precursor 7, ribonuclease P/MRP subunit (S. cerevisiae)3035402RBM14RNA binding motif, single stranded interacting protein 1303563RPF4PRP4 pre-mRNA processing factor 4 homolog (yeast)3336402RBM51RNA binding motif, single stranded interacting protein 1303564SNP10SHQ1 homolog (S. cerevisiae)304558PRP4PRP4 pre-mRNA processing 36 homolog (S. cerevisiae)305676RR936ribosomal RNA processing 7 homolog A (S. cerevisiae)305769SNRP40SHQ1 homolog (S. cerevisiae) <td< td=""><td>2336497ZYG11Bzyg-11 homolog B (C. elegans)13273667ADARB2adenosine deaminase, RNA-specific, B233687698CD2BP2CD2 (cytoplasmic tail) binding protein 203355114DCPSdecapping enzyme, scavenger13250055DDX21DEAD (Asp-Glu-Ala-Asp) box polypeptide 2112409220EBNA1BP2EBNA1 binding protein 213035682FTSJ2Fts] homolog 2 (E. coli)13686904FUSfused in sarcoma12878474HARShistidyl-tRNA synthetase12878174HNRNPABheterogeneous nuclear ribonucleoprotein A/B13843619HNRNPABheterogeneous nuclear ribonucleoprotein A/B1384779HNRNPABheterogeneous nuclear ribonucleoprotein M13894779HNRNPH2heterogeneous nuclear ribonucleoprotein M13894779HNRNPABheterogeneous nuclear ribonucleoprotein M13894779HNRNPABheterogeneous nuclear ribonucleoprotein M13809757KARSJysyl-tRNA synthetase13814543HNRNPMheterogeneous nuclear ribonucleoprotein M13815554PPA1DP7processing factor 39 homolog (S. cerevisiae)13125555PPA1pyrophosphatase (inorganic) 1113336402RBM14RNA binding motif protein 1433336402RBM14RNA binding motif protein 14333905258PPA1pyrophosphatase (inorganic) 1</td><td>2336497ZYG11Bzyg-11 homolog B (C. elegans)11.31ng3273667ADARB2adenosine deaminase, RNA-specific, B2J1.363687698CD2BP2CD2 (cytoplasmic tail) binding protein 2J1.213355114DCPSdecapping enzyme, scavengerJ1.223250055DDX21DEAD (Asp-Glu-Ala-Asp) box polypeptide 21T1.212409220EBNA1BP2EBNA1 binding protein 2J1.303656904FUSfused in sarcomaJ1.232878474HARShistidyl-tRNA synthetaseJ1.232878474HARShistidyl-tRNA synthetaseJ1.263984779HNRNPABheterogeneous nuclear ribonucleoprotein A0J1.233819543HNRNPABheterogeneous nuclear ribonucleoprotein H2 (H')J1.24369757KARSJysyl-tRNA synthetaseJ1.203854892LSM4LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae)J1.243617403NOP10NOP10 ribonucleoprotein homolog (yeast)J1.2431756PHAXphosphorylated adaptor for RNA exportJ1.243236402RBM14RNA binding motif, single stranded interacting protein 1J1.433243201PRF39PRP39 pre-mRNA processing factor 3 homolog (S. cerevisiae)J1.24336402RBM14RNA binding motif, single stranded interacting protein 1J1.433907596RPF36ribosomal RNA processing f</td><td>2336497 ZYG11B zyg-11 homolog B (C. elegans) 1 1.31 1.05E-04 ng 3273667 ADARB2 adenosine deaminase, RNA-specific, B2 1 1.36 0.012 3687698 CD2BP2 CD2 (cytoplasmic tail) binding protein 2 1 1.21 0.015 355114 DCPS decapping enzyme, scavenger 1 1.22 0.003 3250055 DDX1 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 1 1.29 0.003 3035682 FTSJ2 FtSJ homolog 2 (E. coll) 1 1.20 0.004 209200 EBNA1BP2 EBNA1 binding protein 2 1 1 1.20 0.005 3035682 FTSJ2 FtSJ homolog 2 (E. coll) 1 1.20 0.005 2877141 HNRPA0 heterogeneous nuclear ribonucleoprotein A0 1 1.23 2.35E-07 2843619 HNRNPAB heterogeneous nuclear ribonucleoprotein A/B 1 1.26 6.49E-05 3984779 HNRNPAB heterogeneous nuclear ribonucleoprotein M 1 1.21 0.008 3699757 KARS lysyl-tRNA synthetase 1</td><td>2336497 ZYG11B zyg-11 homolog B (C. elegans) 0 1.31 1.05E-04 0 <i>hg</i> 3273667 ADARB2 adenosine deaminase, RNA-specific, B2 0 1.36 0.012 0 335714 DCPS decapping enzyme, scavenger 0 1.21 0.015 0 3355114 DCPS decapping enzyme, scavenger 0 1.22 0.003 0 3250055 DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 0 1.20 0.003 0 3035682 FTSJ2 Fts] homolog 2 (<i>E. coli</i>) 0 1.23 7.50E-04 0 3270047 HARN PAD heterogeneous nuclear ribonucleoprotein AO 1.23 2.55E-07 0 2878474 HARS histidyl-tRNA synthetase 0 1.20 0.005 0 2878474 HARN PAD heterogeneous nuclear ribonucleoprotein A/B 1.24 0.024 0 384779 HNRNPAB heterogeneous nuclear ribonucleoprotein M2 (H') 1.24 0.008 0 3849792 LSM4 LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae) 1.24 0.008</td></td<> <td>2336497 ZYG11B zyg-11 homolog B (<i>C. elegans</i>) 1 1.31 1.05E-04 1 1.20 <i>hg</i> 3273667 ADARB2 adenosine deaminase, RNA-specific, B2 1 1.36 0.012 1 1.34 3667698 CD2BP2 CD2 (cytoplasmic tail) binding protein 2 1 1.22 0.003 1 1.20 355114 DCPS decapping enzyme, scavenger 1 1.21 0.004 1 1.22 3250055 DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 1 1.30 1.86E-04 1 1.20 3250654 FUS fused in sarcoma 1 1.23 7.50E-04 1 1.33 3656904 FUS fused in sarcoma 1 1.20 0.005 1 1.20 3878474 HARS heterogeneous nuclear ribonucleoprotein A/B 1 1.22 0.003 1 1.48 3878479 HNRNPAD heterogeneous nuclear ribonucleoprotein A/B 1 1.26 6.49E-05 1 1.29 384797 HARNPAD heterogeneous nuclear ribonucleoprotein M 1 1.26<!--</td--></td>	2336497ZYG11Bzyg-11 homolog B (C. elegans)13273667ADARB2adenosine deaminase, RNA-specific, B233687698CD2BP2CD2 (cytoplasmic tail) binding protein 203355114DCPSdecapping enzyme, scavenger13250055DDX21DEAD (Asp-Glu-Ala-Asp) box polypeptide 2112409220EBNA1BP2EBNA1 binding protein 213035682FTSJ2Fts] homolog 2 (E. coli)13686904FUSfused in sarcoma12878474HARShistidyl-tRNA synthetase12878174HNRNPABheterogeneous nuclear ribonucleoprotein A/B13843619HNRNPABheterogeneous nuclear ribonucleoprotein A/B1384779HNRNPABheterogeneous nuclear ribonucleoprotein M13894779HNRNPH2heterogeneous nuclear ribonucleoprotein M13894779HNRNPABheterogeneous nuclear ribonucleoprotein M13894779HNRNPABheterogeneous nuclear ribonucleoprotein M13809757KARSJysyl-tRNA synthetase13814543HNRNPMheterogeneous nuclear ribonucleoprotein M13815554PPA1DP7processing factor 39 homolog (S. cerevisiae)13125555PPA1pyrophosphatase (inorganic) 1113336402RBM14RNA binding motif protein 1433336402RBM14RNA binding motif protein 14333905258PPA1pyrophosphatase (inorganic) 1	2336497ZYG11Bzyg-11 homolog B (C. elegans)11.31ng3273667ADARB2adenosine deaminase, RNA-specific, B2J1.363687698CD2BP2CD2 (cytoplasmic tail) binding protein 2J1.213355114DCPSdecapping enzyme, scavengerJ1.223250055DDX21DEAD (Asp-Glu-Ala-Asp) box polypeptide 21T1.212409220EBNA1BP2EBNA1 binding protein 2J1.303656904FUSfused in sarcomaJ1.232878474HARShistidyl-tRNA synthetaseJ1.232878474HARShistidyl-tRNA synthetaseJ1.263984779HNRNPABheterogeneous nuclear ribonucleoprotein A0J1.233819543HNRNPABheterogeneous nuclear ribonucleoprotein H2 (H')J1.24369757KARSJysyl-tRNA synthetaseJ1.203854892LSM4LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae)J1.243617403NOP10NOP10 ribonucleoprotein homolog (yeast)J1.2431756PHAXphosphorylated adaptor for RNA exportJ1.243236402RBM14RNA binding motif, single stranded interacting protein 1J1.433243201PRF39PRP39 pre-mRNA processing factor 3 homolog (S. cerevisiae)J1.24336402RBM14RNA binding motif, single stranded interacting protein 1J1.433907596RPF36ribosomal RNA processing f	2336497 ZYG11B zyg-11 homolog B (C. elegans) 1 1.31 1.05E-04 ng 3273667 ADARB2 adenosine deaminase, RNA-specific, B2 1 1.36 0.012 3687698 CD2BP2 CD2 (cytoplasmic tail) binding protein 2 1 1.21 0.015 355114 DCPS decapping enzyme, scavenger 1 1.22 0.003 3250055 DDX1 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 1 1.29 0.003 3035682 FTSJ2 FtSJ homolog 2 (E. coll) 1 1.20 0.004 209200 EBNA1BP2 EBNA1 binding protein 2 1 1 1.20 0.005 3035682 FTSJ2 FtSJ homolog 2 (E. coll) 1 1.20 0.005 2877141 HNRPA0 heterogeneous nuclear ribonucleoprotein A0 1 1.23 2.35E-07 2843619 HNRNPAB heterogeneous nuclear ribonucleoprotein A/B 1 1.26 6.49E-05 3984779 HNRNPAB heterogeneous nuclear ribonucleoprotein M 1 1.21 0.008 3699757 KARS lysyl-tRNA synthetase 1	2336497 ZYG11B zyg-11 homolog B (C. elegans) 0 1.31 1.05E-04 0 <i>hg</i> 3273667 ADARB2 adenosine deaminase, RNA-specific, B2 0 1.36 0.012 0 335714 DCPS decapping enzyme, scavenger 0 1.21 0.015 0 3355114 DCPS decapping enzyme, scavenger 0 1.22 0.003 0 3250055 DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 0 1.20 0.003 0 3035682 FTSJ2 Fts] homolog 2 (<i>E. coli</i>) 0 1.23 7.50E-04 0 3270047 HARN PAD heterogeneous nuclear ribonucleoprotein AO 1.23 2.55E-07 0 2878474 HARS histidyl-tRNA synthetase 0 1.20 0.005 0 2878474 HARN PAD heterogeneous nuclear ribonucleoprotein A/B 1.24 0.024 0 384779 HNRNPAB heterogeneous nuclear ribonucleoprotein M2 (H') 1.24 0.008 0 3849792 LSM4 LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae) 1.24 0.008	2336497 ZYG11B zyg-11 homolog B (<i>C. elegans</i>) 1 1.31 1.05E-04 1 1.20 <i>hg</i> 3273667 ADARB2 adenosine deaminase, RNA-specific, B2 1 1.36 0.012 1 1.34 3667698 CD2BP2 CD2 (cytoplasmic tail) binding protein 2 1 1.22 0.003 1 1.20 355114 DCPS decapping enzyme, scavenger 1 1.21 0.004 1 1.22 3250055 DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 1 1.30 1.86E-04 1 1.20 3250654 FUS fused in sarcoma 1 1.23 7.50E-04 1 1.33 3656904 FUS fused in sarcoma 1 1.20 0.005 1 1.20 3878474 HARS heterogeneous nuclear ribonucleoprotein A/B 1 1.22 0.003 1 1.48 3878479 HNRNPAD heterogeneous nuclear ribonucleoprotein A/B 1 1.26 6.49E-05 1 1.29 384797 HARNPAD heterogeneous nuclear ribonucleoprotein M 1 1.26 </td

NM_015679	3226493	TRUB2	TruB pseudouridine (psi) synthase homolog 2 (<i>E. coli</i>)	Û	1.21	0.002	Û	1.32	1.86E-06
NR_023349	2371474	TSEN15	tRNA splicing endonuclease 15 homolog (<i>S. cerevisiae</i>)	Û	1.28	0.006	仓	1.26	0.006
NM_032175	2815455	UTP15	UTP15, U3 small nucleolar ribonucleoprotein, homolog (S. cerevisiae)	Û	1.28	5.25E-04	仓	1.20	0.005
NM_032334	3112543	UTP23	UTP23, small subunit (SSU) processome component, homolog (yeast)	仓	1.25	0.001	仓	1.28	2.38E-04
Sensory Perc	eption								
NM_176889	3444476	TAS2R20	taste receptor, type 2, member 20	Û	1.34	0.030	Û	1.69	4.07E-05
Signal Trans	duction								
NM_015270	3453252	ADCY6	adenylate cyclase 6	Û	1.35	1.98E-04	Û	1.20	0.015
NM_004309	3774283	ARHGDIA	Rho GDP dissociation inhibitor (GDI) alpha	Û	1.39	0.009	Û	1.48	8.17E-04
NM_014786	3339812	ARHGEF17	Rho guanine nucleotide exchange factor (GEF) 17	Û	1.33	0.004	Û	1.25	0.015
NM_005737	2604390	ARL4C	ADP-ribosylation factor-like 4C	Û	1.47	2.88E-04	仓	1.41	5.04E-04
NM_006888	3548346	CALM1	calmodulin 1 (phosphorylase kinase, delta)	Û	1.24	0.003	仓	1.35	1.74E-05
NM_001278	3303300	СНИК	conserved helix-loop-helix ubiquitous kinase	Û	1.33	1.45E-04	仓	1.37	9.87E-06
NM_020248	2395965	CTNNBIP1	catenin, beta interacting protein 1	Û	1.27	0.018	Û	1.26	0.012
NM_001008540	2578028	CXCR4	chemokine (C-X-C motif) receptor 4	Û	1.70	6.76E-06	Û	1.57	3.41E-05
NM_020311	2533999	CXCR7	chemokine (C-X-C motif) receptor 7	Û	1.61	0.009	Û	1.51	0.015
NM_144973	3449760	DENND5B	DENN/MADD domain containing 5B	Û	1.27	0.042	仓	1.31	0.012
NM_005306	3830484	FFAR2	free fatty acid receptor 2	Û	1.64	0.005	Û	1.49	0.013
NM_001042747	2403215	FGR	Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog	Û	1.23	0.009	Û	1.24	0.003
NM_002019	3507282	FLT1	fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular	Û	1.61	0.006	Û	1.47	0.017
NM 002569	3608308	FURIN	furin (naired basic aming acid cleaving enzyme)	п	1 2 1	0.026	п	1 2 2	2 97F-01
NM_002303	3035802	CNA12	guanine nucleotide hinding protein (C protein) alpha 12	↔ ☆	1.21	0.020	↔ ☆	1.33	0.006
NM_007333	3761714	GNGT2	guanine nucleotide binding protein (G protein) gamma transducing activity	⊔ 介	1.24	0.029	ц С	1.20	0.000
NM_031470	5/01/14		polypeptide 2	Ц	1.20	0.000	U	1.20	0.000
NM_001039966	2987038	GPER	G protein-coupled estrogen receptor 1	Û	1.26	0.033	Û	1.29	0.012
NM_016472	3550328	GSKIP	GSK3B interacting protein	Û	1.47	7.01E-04	Û	1.43	7.93E-04
NM_000876	2934308	IGF2R	insulin-like growth factor 2 receptor	Û	1.22	1.49E-04	Û	1.22	4.83E-05
NM_000208	3848243	INSR	insulin receptor	Û	1.48	2.59E-04	Û	1.64	1.01E-06
NM_018697	3002873	LANCL2	LanC lantibiotic synthetase component C-like 2 (bacterial)	Û	1.49	1.85E-04	仓	1.55	1.43E-05
NM_002758	3733065	MAP2K6	mitogen-activated protein kinase kinase 6	Û	1.37	0.009	Û	1.57	9.65E-05
NM_139068	2890605	MAPK9	mitogen-activated protein kinase 9	Û	1.20	0.009	兌	1.28	2.30E-04

NM_004759	2376922	MAPKAPK2	mitogen-activated protein kinase-activated protein kinase 2	얍	1.20	0.011	仓	1.27	4.46E-04
NM_019094	3426169	NUDT4	nudix (nucleoside diphosphate linked moiety X)-type motif 4	Û	1.20	0.027	Û	1.25	0.003
NM_014142	3277751	NUDT5	nudic (nucleoside diphosphate linked moiety X)-type motif 5	仓	1.39	0.003	仓	1.31	0.009
NM_001165899	2858134	PDE4D	phosphodiesterase 4D, cAMP-specific	Û	1.28	0.044	Û	1.37	0.006
NM_001008709	3378790	PPP1CA	protein phosphatase 1, catalytic subunit, alpha isozyme	仓	1.24	0.001	仓	1.32	1.49E-05
NM_212461	3453556	PRKAG1	protein kinase, AMP-activated, gamma 1 non-catalytic subunit	仓	1.24	1.30E-04	仓	1.24	4.66E-05
NM_016203	3079803	PRKAG2	protein kinase, AMP-activated, gamma 2 non-catalytic subunit	仓	1.29	3.28E-04	仓	1.21	0.003
NM_000960	3866094	PTGIR	prostaglandin I2 (prostacyclin) receptor (IP)	Û	1.26	0.006	Û	1.27	0.002
NM_002834	3432333	PTPN11	protein tyrosine phosphatase, non-receptor type 11	兌	1.24	0.007	仓	1.34	8.68E-05
NM_006504	3270270	PTPRE	protein tyrosine phosphatase, receptor type, E	兌	1.20	0.025	仓	1.28	0.001
NM_002881	2503200	RALB	v-ral simian leukemia viral oncogene homolog B (ras related; GTP binding protein)	Û	1.23	0.013	Û	1.21	0.016
NM_178169	3419898	RASSF3	Ras association (RalGDS/AF-6) domain family member 3	仓	1.36	1.33E-04	仓	1.25	0.002
NM_012425	3279575	RSU1	Ras suppressor protein 1	仓	1.28	0.001	仓	1.30	2.17E-04
NM_178006	3508898	STARD13	StAR-related lipid transfer (START) domain containing 13	Û	1.27	0.036	Û	1.27	0.023
NM_012338	3069955	TSPAN12	tetraspanin 12	Û	1.38	0.021	Û	1.67	1.05E-04
NM_001025237	3316375	TSPAN4	tetraspanin 4	Û	1.32	0.008	Û	1.33	0.002
NM_003383	3160175	VLDLR	very low density lipoprotein receptor	Û	1.58	0.001	Û	1.33	0.003
NM_003405	3943207	YWHAH	tyrosine 3-monooxygenase/tryptophoan 5-monooxygenase activation protein, eta polypeptide	Û	1.27	0.002	Û	1.66	1.26E-04
NM_016653	2515933	ZAK	sterile alpha motif and leucine zipper containing kinase AZK	仓	1.27	0.004	Û	1.32	3.74E-04
Transcription	1								
NM_013375	2899519	ABT1	activator of basal transcription 1	仓	1.22	0.001	仓	1.22	4.45E-04
NM_178042	2654023	ACTL6A	actin-like 6A	얍	1.22	0.016	仓	1.34	2.03E-04
NM_005171	3414695	ATF1	activating transcription factor 1	얍	1.43	4.14E-04	仓	1.31	0.004
NM_003972	3257938	BTAF1	BTAF1 RNA polymerase II, B-TFIID transcription factor-associated, 170kDa	Û	1.22	0.002	Û	1.27	8.75E-05
			(Mot 1 homolog, <i>S. cerevisiae</i>)						
NM_001755	3665116	CBFB	core-binding factor, beta subunit	仓	1.23	4.95E-04	仓	1.23	1.82E-04
NM_001806	3829313	CEBPG	CCAAT/enhancer binding protein (C/EBP), gamma	仓	1.24	0.008	仓	1.23	0.007
NM_005225	3903146	E2F1	E2F transcription factor 1	仓	1.25	2.01E-04	仓	1.20	0.001
NM_203394	3463112	E2F7	E2F transcription factor 7	仓	1.21	0.019	①	1.41	7.39E-06
NM_024680	3365776	E2F8	E2F transcription factor 8	仓	1.24	0.012	仓	1.44	6.61E-06

NM_005230	3427098	ELK3	ELK3, ETS-domain protein (SRF accessory protein 2)	兌	1.27	0.038	仓	1.25	0.041
NM_012081	2867873	ELL2	elongation factor, RNA polymerase II, 2	Û	1.25	0.037	仓	1.47	1.51E-04
NM_002097	3482888	GTF3A	general transcription factor IIIA	兌	1.35	0.001	仓	1.31	0.001
NM_138408	2921346	GTF3C6	general transcription factor IIIC, polypeptide 6, alpha 35kDa	兌	1.30	0.019	仓	1.33	0.006
NM_004133	3103818	HNF4G	hepatocyte nuclear factor 4, gamma	Û	1.33	0.008	Û	1.27	0.018
NM_006060	3001479	IKZF1	IKAROS family zinc finger 1 (ikaros)	Û	1.32	0.005	仓	1.35	0.001
NM_021078	3757630	KAT2A	K (lysine) acetyltransferase 2A	Û	1.26	4.50E-05	Û	1.24	5.50E-05
NM_006769	2345286	LMO4	LIM domain only 4	兌	1.20	0.035	仓	1.32	5.07E-04
NM_145113	3568667	MAX	MYC associated factor X	Û	1.23	0.005	Û	1.33	4.46E-05
NM_001001683	3707127	MED11	mediator complex subunit 11	얍	1.31	0.004	仓	1.35	7.07E-04
NM_001127392	3333169	MYRF	myelin regulatory factor	Û	1.22	0.021	Û	1.26	0.003
NM_004688	2580955	NMI	myc (and STAT) interactor	얍	1.29	0.046	仓	1.40	0.004
NM_001080951	2977621	PLAGL1	pleiomorphic adenoma gene-like 1	Û	1.26	0.018	Û	1.27	0.009
NM_007212	2371694	RNF2	ring finger protein 2	얍	1.26	0.008	仓	1.25	0.006
NM_015138	3590422	RTF1	Rtf1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)	Û	1.25	5.80E-04	兌	1.24	2.72E-04
NM_001001890	3930360	RUNX1	runt-related transcription factor 1	얍	1.25	0.005	仓	1.25	0.003
NM_003707	2694123	RUVBL1	RuvB-like 1 (E. coli)	Û	1.29	0.006	兌	1.31	0.002
NM_006049	3630156	SNAPC5	small nuclear RNA activating complex polypeptide 5, 19kDa	Û	1.27	0.015	兌	1.44	8.83E-05
NM_017635	3379390	SUV420H1	suppressor of variegation 4-20 homolog 1 (Drosophila)	얍	1.23	0.004	仓	1.23	0.002
NM_001135218	2403585	TAF12	TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 20kDa	Û	1.30	1.98E-04	仓	1.27	0.004
NM_005645	4054117	TAF13	TAF13 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 18kDa	Û	1.38	3.44E-04	Û	1.27	0.004
NM_015975	4013434	TAF9B	TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor, 31kDa	Û	1.34	0.014	Û	1.42	0.002
NM_001139466	3967122	TBL1X	transducing (beta)-like 1X-linked	仓	1.28	0.011	仓	1.33	0.001
NM_007109	2902178	TCF19	transcription factor 19	仓	1.31	0.003	仓	1.29	0.002
NM_021045	3285552	ZNF248	zinc finger protein 248	Û	1.31	0.002	Û	1.35	2.23E-04
NM_080764	3954525	ZNF280B	zinc finger protein 280B	仓	1.35	6.65E-05	①	1.20	0.008
NM_199441	3907934	ZNF334	zinc finger protein 334	Û	1.25	0.024	Û	1.33	0.002
NM_152493	2329266	ZNF362	zinc finger protein 362	Û	1.25	0.048	①	1.51	1.47E-04
NM_153695	3216319	ZNF367	zinc finger protein 367	Û	1.25	2.45E-05	①	1.25	5.71E-06
NM_024106	3849752	ZNF426	zinc finger protein 426	企	1.28	0.001	仓	1.20	0.008
NM_152478	3842724	ZNF583	zinc finger protein 583	Û	1.20	0.026	仓	1.29	8.17E-04
--------------	---------	----------	---	---	------	----------	---	------	----------
NM_015871	2326311	ZNF593	zinc finger protein 593	Û	1.42	2.94E-04	兌	1.23	0.020
NM_017865	2466039	ZNF692	zinc finger protein 692	Û	1.21	2.48E-04	Û	1.20	2.61E-04
Miscellaneou	IS								
NM_004318	3137530	ASPH	aspartate beta-hydroxylase	Û	1.38	3.70E-05	Û	1.21	0.007
NM_001707	3056108	BCL7B	B-cell CLL/lymphoma 7B	Û	1.21	0.001	兌	1.28	1.29E-05
NM_001874	3461341	СРМ	carboxypeptidase M	Û	1.45	0.047	Û	1.47	0.028
NM_001165958	3755903	GSDMB	gasdermin B	Û	1.28	0.027	Û	1.62	8.97E-06
NM_015987	3445123	HEBP1	heme binding protein 1	Û	1.30	0.002	仓	1.20	0.020
NM_000271	3801411	NPC1	Niemann-Pick disease, type C1	Û	1.33	2.35E-05	Û	1.34	3.64E-06
NM_012383	3175119	OSTF1	osteoclast stimulating factor 1	Û	1.29	0.013	仓	1.40	3.93E-04
NM_178422	2402431	PAQR7	progestin and adipoQ receptor family member VII	Û	1.21	0.025	Û	1.41	2.05E-05
NM_015393	2731636	PARM1	prostate androgen-regulated mucin-like protein 1	Û	1.67	0.002	Û	1.41	0.024
NM_002658	3252036	PLAU	plasminogen activator, urokinase	Û	1.26	0.031	Û	1.41	6.59E-04
NM_018465	3197528	PLGRKT	plasminogen receptor, C-terminal lysine transmembrane protein	Û	1.22	0.003	兌	1.20	0.003
NM_018663	3439178	PXMP2	peroxisomal membrane protein 2, 22kDA	Û	1.49	7.55E-04	兌	1.29	0.020
NM_018339	3210457	RFK	riboflavin kinase	Û	1.28	1.16E-04	仓	1.21	0.001
NM_003116	3883441	SPAG4	sperm associated antigen 4	Û	1.27	0.003	Û	1.43	3.57E-06
NM_001013694	3941010	SRRD	SRR1 domain containing	Û	1.31	0.002	兌	1.22	0.013
NM_003714	2887490	STC2	stanniocalcin 2	Û	1.39	0.006	Û	1.50	3.60E-04
NM_001171137	3224591	STRBP	spermatid perinuclear RNA binding protein	Û	1.22	0.001	仓	1.25	1.57E-04
NM_004237	2798915	TRIP13	thyroid hormone receptor interactor 13	Û	1.31	0.003	仓	1.52	1.36E-06
NM_007275	2675192	TUSC2	tumor suppressor candidate 2	Û	1.24	0.004	얍	1.22	0.003
Unknown Fu	nction								
NM_025092	3315607	ATHL1	ATH1, acid trehalase-like 1 (yeast)	Û	1.24	0.002	Û	1.23	0.001
NM_020453	2726072	ATP10D	ATPase, class V, type 10D	Û	1.36	2.73E-04	Û	1.21	0.012
NM_001031746	3288518	C10orf72	chromosome 10 open reading frame 72	Û	1.22	0.022	Û	1.25	0.005
NM_020374	3441215	C12orf4	chromosome 12 open reading frame 4	仓	1.21	3.51E-04	仓	1.28	2.33E-06
BC014661	3474815	C12orf43	chromosome 12 open reading frame 43	仓	1.20	0.021	仓	1.36	4.12E-05
AK298857	3473331	C12orf49	chromosome 12 open reading frame 49	仓	1.23	0.003	仓	1.20	0.004
BC027935	3862564	C19orf47	chromosome 19 open reading frame 47	仓	1.21	2.80E-05	仓	1.20	1.27E-05
NM_023077	2412988	C1orf163	chromosome 1 open reading frame 163	仓	1.24	9.43E-04	仓	1.20	0.003
			477						

NM_032324	2385696	C1orf57	chromosome 1 open reading frame 57	①	1.30	0.012	仓	1.25	0.022
NM_016407	3890218	C20orf43	chromosome 20 open reading frame 43	仓	1.26	0.003	Û	1.37	2.80E-05
NM_00110042	3926138	C21orf91	chromosome 21 open reading frame 91	仓	1.38	1.77E-04	Û	1.27	0.002
NM_014807	3351895	C2CD2L	C2CD2-like	Û	1.24	0.005	Û	1.24	0.002
NM_032359	2633460	C3orf26	chromosome 3 open reading frame 26	仓	1.24	0.004	Û	1.24	0.002
NM_173552	2646327	C3orf58	chromosome 3 open reading frame 58	Û	1.34	1.19E-04	Û	1.20	0.007
NM_020199	2875929	C5orf15	chromosome 5 open reading frame 15	Û	1.30	2.68E-04	Û	1.34	1.25E-05
NM_022090	2884647	C5orf54	chromosome 5 open reading frame 54	Û	1.29	0.003	Û	1.29	0.001
AK298490	2931683	C6orf211	chromosome 6 open reading frame 211	仓	1.29	0.003	Û	1.37	1.51E-04
NM_032307	3212277	C9orf64	chromosome 9 open reading frame 64	仓	1.24	0.003	Û	1.28	3.14E-04
NM_016520	3227121	C9orf78	chromosome 9 open reading frame 78	仓	1.37	8.53E-05	Û	1.27	0.001
NM_144609	3759305	CCDC43	coiled-coil domain containing 43	仓	1.20	8.32E-04	Û	1.26	1.05E-05
NM_015621	2881860	CCDC69	coiled-coil domain containing 69	仓	1.27	0.003	Û	1.29	6.09E-04
NM_025140	3476330	CCDC92	coiled-coil domain containing 92	仓	1.28	0.030	仓	1.26	0.027
NM_001008708	2482211	CHAC2	ChaC, cation transport regulator homolog 2 (<i>E. coli</i>)	仓	1.20	0.023	仓	1.30	6.53E-04
NM_016094	2700500	COMMD2	COMM domain containing 2	仓	1.32	2.35E-04	Û	1.20	0.010
NM_017845	2768145	COMMD8	COMM domain containing 8	仓	1.27	0.009	Û	1.36	3.26E-04
NM_014186	3369762	COMMD9	COMM domain containing 9	仓	1.34	3.90E-04	仓	1.33	2.23E-04
NM_145858	3929821	CRYZL1	crystalline, zeta (quinone reductase)-like 1	Û	1.26	4.61E-04	Û	1.21	0.001
NM_032299	3388914	DCUN1D5	DCN1, defective in cullin neddylation 1, domain containing 5 (<i>S. cerevisiae</i>)	仓	1.29	0.004	仓	1.30	0.001
NM_015291	2321849	DNAJC16	DnaJ (Hsp 40) homolog, subfamily C, member 16	Û	1.21	0.003	Û	1.25	2.79E-04
NM_015190	3294280	DNAJC9	DnaJ (Hsp 40) homolog, subfamily C, member 9	仓	1.22	0.012	仓	1.27	0.001
NM_173666	2872471	DTWD2	DTW domain containing 2	仓	1.20	0.018	Û	1.20	0.012
NM_133455	3941848	EMID1	EMI domain containing 1	Û	1.32	0.017	Û	1.33	0.008
NM_014936	2909020	ENPP4	ectonucleotide pyrophosphatase/phosphodiesterase 4 (putative)	Û	1.43	0.006	Û	1.44	0.003
NR_034165	3541937	EXD2	exonuclease 3'-5' domain containing 2	Û	1.29	0.008	Û	1.22	0.026
BC064407	3278813	FAM107B	family with sequence similarity 107, member B	仓	1.55	1.05E-05	Û	1.36	7.18E-04
NM_024556	3355021	FAM118B	family with sequence similarity 118, member B	仓	1.39	0.001	仓	1.54	8.81E-06
NM_001134456	2634058	FAM55C	family with sequence similarity 55, member C	仓	1.22	0.043	仓	1.30	0.005
NM_018172	3339167	FAM86C	family with sequence similarity 86, member C	仓	1.26	0.016	仓	1.22	0.028
NM_015475	2547716	FAM98A	family with sequence similarity 98, member A	仓	1.22	0.004	仓	1.22	0.003
NM_031904	3335131	FRMD8	FERM domain containing 8	仓	1.26	0.001	Û	1.24	0.001
NM_001142623	3757745	GHDC	GH3 domain containing	Û	1.26	1.27E-04	Û	1.26	3.97E-05

NR_027264	3698919	GLG1	golgi glycoprotein 1	\hat{U}	1.26	9.38E-06	Û	1.24	6.70E-06
NM_001164372	3471224	GPN3	GPN-loop GTPase 3	Û	1.20	0.045	仓	1.33	8.96E-04
NM_198827	3438061	GPR133	G protein-coupled receptor 133	Û	1.38	0.027	Û	1.66	2.31E-04
NM_022036	3734355	GPRC5C	G protein-coupled receptor, family C, group 5, member C	Û	1.44	0.001	Û	1.40	0.001
NM_006613	3748659	GRAP	GRB2-related adaptor protein	Û	1.25	0.005	Û	1.21	0.010
NM_016185	3770606	HN1	haematological and neurological expressed 1	Û	1.27	6.16E-04	Û	1.29	8.84E-05
NR_003086	3243262	HSD17B7P2	hydroxysteroid (17-beta) dehydrogenase 7 pseudogene 2	Û	1.45	0.003	Û	1.38	0.006
NR_028045	3444180	KLRAP1	killer cell lectin-like receptor subfamily A pseudogene 1	Û	1.30	0.001	Û	1.20	0.014
NM_018113	3453774	LMBR1L	limb region 1 homolog (mouse)-like	Û	1.24	4.69E-04	Û	1.36	1.51E-07
AY358681	3396179	LOC100130428	LOC100130428	Û	1.25	0.015	Û	1.25	0.009
AY358688	2802681	LOC100133299	LOC100133299	Û	1.40	0.009	Û	1.52	5.71E-04
NM_032860	2929036	LTV1	LTV1 homolog (<i>S. cerevisiae</i>)	Û	1.30	0.001	Û	1.27	0.002
NM_017816	2758686	LYAR	Ly1 antibody reactive homolog (mouse)	Û	1.28	1.43E-04	兌	1.28	4.81E-05
NM_203462	2759303	MRFAP1L1	Morf4 family associated protein 1-like 1	Û	1.27	0.003	Û	1.45	1.31E-06
NM_001020818	3841076	MYADM	myeloid-associated differentiation marker	Û	1.25	0.026	Û	1.23	0.030
NR_024321	2390976	NCRNA00115	non-protein coding RNA 115	Û	1.20	0.030	Û	1.34	2.03E-04
NM_016391	2888284	NOP16	NOP16 nucleolar protein homolog (yeast)	Û	1.27	0.008	Û	1.22	0.018
NM_024028	2835021	PCYOX1L	prenylcysteine oxidase 1 like	Û	1.24	0.002	Û	1.21	0.003
NM_024854	3407793	PYROXD1	pyridine nucleotide-disulphide oxidoreductase domain 1	Û	1.34	0.003	兌	1.25	0.015
NM_178865	2328273	SERINC2	serine incorporator 2	Û	1.48	0.007	Û	1.83	1.18E-05
NM_001040455	3350775	SIDT2	SID1 transmembrane family, member 1	Û	1.28	2.17E-05	Û	1.29	4.48E-06
NM_016045	3911814	SLM02	slowmo homolog 2 (Drosophila)	Û	1.36	5.88E-05	Û	1.20	0.008
NM_018373	3570475	SYNJ2BP	synaptojanin 2 binding protein	Û	1.36	0.002	兌	1.29	0.004
NM_022484	3068476	TMEM168	transmembrane protein 168	Û	1.20	0.003	Û	1.26	6.53E-05
NM_018247	2961317	TMEM30A	transmembrane protein 30A	Û	1.21	0.004	Û	1.27	1.16E-04
NM_018266	2690850	TMEM39A	transmembrane protein 39A	Û	1.26	0.003	Û	1.33	1.19E-04
NM_024334	2611779	TMEM43	transmembrane protein 43	Û	1.23	0.001	Û	1.27	5.39E-05
NM_001136216	2321645	TMEM51	transmembrane protein 51	Û	1.32	0.005	Û	1.51	8.59E-06
NM_152588	3424442	TMTC2	transmembrane and tetratricopeptide repeat containing 2	Û	1.30	0.001	Û	1.34	1.64E-04
NM_030927	3254521	TSPAN14	tetraspanin 14	Û	1.26	0.019	Û	1.33	0.002
NM_024331	3886512	TTPAL	tocopherol (alpha) transfer protein-like	Û	1.29	0.004	Û	1.27	0.003
NM_005452	2950561	WDR46	WD repeat domain 46	Û	1.25	0.001	仓	1.24	9.39E-04
NM_024908	3591704	WDR76	WD repeat domain 76	Û	1.23	0.002	仓	1.40	2.94E-07

NM_016258	2327630	YTHDF2	YTH domain family, member 2	① 1.24	0.022	企 1.25	0.009
NM_018684	4010768	ZC4H2	zinc finger, C4H2 domain containing	① 1.21	0.029	① 1.26	0.004

RefSeq #	Transcript	Symbol	Gene Name		Fold	p-value
Apoptosis						
NM_020371	3617170	AVEN	apoptosis, caspase activation inhibitor	仓	1.20	0.004
NM_004323	3203482	BAG1	BCL2-associated athanogene 1	仓	1.22	1.18E-04
NM_001015049	3580791	BAG5	BCL2-associated athanogene 5	仓	1.51	0.001
NM_003921	2420808	BCL10	B-cell CLL/lymphoma 10	仓	1.25	0.001
NM_138578	3902489	BCL2L1	BCL2-like 1	仓	1.24	0.003
NM_004050	3529064	BCL2L2	BCL2-like 2	Û	1.21	4.61E-05
NM_033338	3264948	CASP7	caspase 7, apoptosis-related cysteine peptidase	仓	1.22	0.010
NM_033657	2361036	DAP3	death associated protein 3	仓	1.22	8.44E-04
NM_00114196	2950668	DAXX	death-domain associated protein	仓	1.20	2.22E-05
NM_004944	2678298	DNASE1L3	deoxyribonuclease I-like 3	Û	1.70	0.007
NM_001375	3851826	DNASE2	deoxyribonuclease II, lysosomal	Û	1.29	1.36E-05
NM_00103303	2644702	FAIM	Fas apoptotic inhibitory molecule	仓	1.37	3.30E-04
NM_001564	2753952	ING2	inhibitor of growth family, member 2	仓	1.33	4.20E-06
NM_020360	3743701	PLSCR3	phospholipid scramblase 3	仓	1.21	8.41E-05
NM_015316	3580876	PPP1R13B	protein phosphatase 1, regulatory (inhibitor) subunit 13B	仓	1.24	2.14E-04
NM_013258	3688311	PYCARD	PYD and CARD domain containing	仓	1.31	7.39E-04
NM_194271	3434823	RNF34	ring finger protein 34	仓	1.29	6.18E-05
NM_004760	2999485	STK17A	serine/threonine kinase 17a	仓	1.23	7.77E-04
NM_003844	3127775	TNFRSF10A	tumor necrosis factor receptor superfamily, member 10a	Û	1.27	0.002
NM_003840	3127745	TNFRSF10D	tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain	Û	1.32	0.005
NM_001066	2320727	TNFRSF1B	tumor necrosis factor receptor superfamily, member 1B	Û	1.21	0.019
NM_005802	3203135	TOPORS	topoisomerase I binding, arginine/serine-rich, E3 ubiquitin protein ligase	仓	1.20	0.004
NM_000546	3743906	TP53	tumor protein p53	Û	1.35	1.34E-05
Autophagy						
NM_020773	2717165	TBC1D14	TBC1 domain family, member 14	仓	1.20	7.75E-04
NM_006405	3557898	TM9SF1	transmembrane 9 superfamily member 1	Û	1.21	0.013
NM_004872	2413578	TMEM59	transmembrane protein 59	Û	1.25	0.001
Cell Adhesion/	Extracellul	ar Matrix				
NM_000610	3326635	CD44	CD44 molecule (Indian blood group)	仓	1.22	0.036
			401			

				_		
NM_001777	2687739	CD47	CD47 molecule	Û	1.24	6.37E-04
NM_022478	3557069	CDH24	cadherin 24, type 2	Û	1.35	2.09E-06
NM_016946	2440476	F11R	F11 receptor	Û	1.32	8.68E-06
NM_000201	3820443	ICAM1	intercellular adhesion molecule 1	Û	1.26	1.90E-04
NM_004517	3318890	ILK	integrin-linked kinase	Û	1.22	9.94E-06
NM_181501	2809128	ITGA1	integrin, alpha 1	Û	1.35	0.020
NM_000425	4026798	L1CAM	L1 cell adhesion molecule	Û	1.20	0.005
NM_005567	3772719	LGALS3BP	lectin, galactoside-binding, soluble, 3 binding protein	Û	1.42	0.014
NM_001143995	3374402	LPXN	leupaxin	Û	1.21	3.05E-05
NM_005926	3621692	MFAP1	microfibrillar-associated protein 1	Û	1.28	4.53E-06
NM_004385	2818517	VCAN	versican	Û	1.43	0.025
NM_003461	3029129	ZYX	zyxin	Û	1.28	4.99E-05
Cellular Respon	ise to Stres	S				
NM_012111	3545466	AHSA1	AHA1, activator of heat shock 90kDa protein ATPase homolog 1 (yeast)	Û	1.37	1.26E-05
NM_152392	2484552	AHSA2	AHA1, activator of heat shock 90kDa protein ATPase homolog 2 (yeast)	Û	1.22	0.003
NM_000067	3105600	CA2	carbonic anhydrase II	Û	1.37	0.004
NM_001752	3326400	CAT	catalase	Û	1.23	0.001
NM_016230	2915490	CYB5R4	cytochrome b5 reductase 4	Û	1.20	0.004
NM_004417	2887309	DUSP1	dual specificity phosphatase 1	Û	1.41	0.002
NM_007207	2457261	DUSP10	dual specificity phosphatase 10	Û	1.31	1.13E-04
NM_014584	3564790	ER01L	ERO1-like (S. cerevisiae)	Û	1.21	0.013
NM_019891	2462329	ERO1LB	ERO1-like beta (S. cerevisiae)	Û	1.33	1.55E-04
NM_000402	4027416	G6PD	glucose-6-phosphate dehydrogenase	Û	1.20	3.57E-04
NM_032569	3678395	GLYR1	glyoxylate reductase 1 homolog (<i>Arabidopsis</i>)	Û	1.22	0.010
NM_201397	2674229	GPX1	glutathione peroxidase 1	Û	1.22	0.001
NM_000178	3903670	GSS	glutathione synthetase	Û	1.21	4.77E-04
NM_001031720	2738314	GSTCD	glutathione S-transferase, C-terminal domain containing	Û	1.21	8.13E-04
NM_013332	3022814	HILPDA	hypoxia inducible lipid droplet-associated	Û	1.50	0.003
NM_005348	3580179	HSP90AA1	heat shock protein 90kDa alpha (cytosolic), class A member 1	Û	1.31	1.42E-05
NM_002154	2828856	HSPA4	heat shock 70kDa protein 4	Û	1.22	0.002
NM_006644	3508330	HSPH1	heat shock 105kDa/110kDa protein 1	Û	1.27	0.003
NM_203500	3850363	KEAP1	kelch-like ECH-associated protein 1	Û	1.25	0.001

NM_000903	3696666	NQO1	NAD(P)H dehydrogenase, quinone 1	Û	1.47	1.41E-05
NM_016332	3676262	SEPX1	selenoprotein X, 1	Û	1.34	0.009
NM_000454	3917851	SOD1	superoxide dismutase 1	Û	1.34	3.36E-04
NM_006819	3334224	STIP1	stress-induced-phosphoprotein 1	Û	1.23	0.001
Cytoskeleton						
NM_001005386	2485784	ACTR2	ARP2 actin-related protein 2 homolog (yeast)	Û	1.35	0.001
NM_016824	3263555	ADD3	adducing 3 (gamma)	Û	1.21	0.006
NM_016293	3454841	BIN2	bridging integrator 2	Û	1.32	0.013
NM_006136	3020444	CAPZA2	capping protein (actin filament) muscle Z-line, alpha 2	Û	1.40	6.34E-04
NM_005507	3377886	CFL1	cofilin 1 (non-muscle)	Û	1.27	1.45E-07
NM_018204	3490655	CKAP2	cytoskeleton associated protein 2	Û	1.21	5.92E-04
NM_014063	2999710	DBNL	drebrin-like	Û	1.22	2.75E-04
NM_00104251	3515965	DIAPH3	diaphanous homolog 3 (<i>Drosophila</i>)	Û	1.36	6.90E-05
NM_144666	3318731	DNHD1	dynein heavy chain domain 1	Û	1.28	0.003
NM_007044	2978957	KATNA1	katanin p60 (ATPase-containing) subunit A1	Û	1.23	9.33E-05
NM_001014380	3507962	KATNAL1	katanin p60 subunit A-like 1	Û	1.20	0.012
NM_014846	3152220	KIAA0196	KIAA0196	Û	1.20	0.001
NM_015634	3250093	KIAA1279	KIAA1279	Û	1.20	0.007
NM_004523	3258168	KIF11	kinesin family member 11	Û	1.30	4.47E-04
NM_020242	2620256	KIF15	kinesin family member 15	Û	1.41	7.49E-05
NM_024704	3898796	KIF16B	kinesin family member 16B	Û	1.25	5.63E-04
NM_138555	3599811	KIF23	kinesin family member 23	Û	1.25	2.93E-04
NM_007054	2875419	KIF3A	kinesin family member 3A	Û	1.32	0.006
NM_004798	3881824	KIF3B	kinesin family member 3B	Û	1.29	1.53E-04
NM_012310	3980560	KIF4A	kinesin family member 4A	Û	1.20	1.53E-04
NM_006148	3719980	LASP1	LIM and SH3 protein 1	Û	1.22	6.46E-05
NM_001113546	3454331	LIMA1	LIM domain and actin binding 1	Û	1.21	0.020
NM_002314	3008108	LIMK1	LIM domain kinase 1	Û	1.23	1.04E-04
NM_005573	2827185	LMNB1	lamin B1	Û	1.32	2.00E-04
AK023285	2331505	MACF1	microtubule-actin crosslinking factor 1	Û	1.27	0.040
NM_012325	3882069	MAPRE1	microtubule-associated protein, RP/EB family, member 1	Û	1.23	2.97E-05
NM_001172303	3240012	MASTL	microtubule-associated serine/threonine kinase-like	Û	1.21	2.16E-05
NM_013262	2896784	MYLIP	myosin regulatory light chain interacting protein	Û	1.22	0.009

NM_006901	3631794	MYO9A	myosin IXA	仓	1.20	4.58E-04
NM_144573	2343231	NEXN	nexilin (F actin binding protein)	Û	1.43	0.002
NM_016418	3942062	NF2	neurofibromin 2	Û	1.34	3.14E-07
NM_020992	3301218	PDLIM1	PDZ and LIM domain 1	Û	1.25	2.37E-05
NM_005022	3742400	PFN1	profilin 1	Û	1.24	0.015
NM_016274	2358044	PLEKH01	pleckstrin homology domain containing, family O member 1	Û	1.27	5.01E-06
NM_001080855	3474372	PXN	paxillin	Û	1.35	1.84E-06
NM_021021	3150844	SNTB1	syntrophin, beta 1 (dystrophin-associated protein A1, 59kDa, basic component 1)	仓	1.42	5.75E-04
NM_006750	3666601	SNTB2	syntrophin, beta 2 (dystrophin-associated protein A1, 59kDa, basic component 2)	Û	1.27	2.22E-05
NM_001024858	3568485	SPTB	spectrin, beta, erythrocytic	Û	1.22	0.010
NM_003128	2482505	SPTBN1	spectrin, beta, non-erythrocytic 1	Û	1.22	9.67E-06
NM_001130965	2986825	SUN1	Sad1 and UNC84 domain containing 1	Û	1.34	9.33E-07
NM_001079515	2386418	TBCE	tubulin folding cofactor E	Û	1.34	2.66E-06
NM_015602	2446244	TOR1AIP1	torsin A interacting protein 1	Û	1.30	1.11E-04
NM_012112	3881443	TPX2	TPX2, microtubule-associated, homolog (Xenopus laevis)	Û	1.21	7.03E-04
NR_027779	3962734	TTLL1	tubulin tyrosine ligase-like family, member 1	Û	1.22	2.60E-04
NR_003659	3612166	WASH3P	WAS protein family homolog 3 pseudogene	Û	1.23	0.024
NM_017491	2760371	WDR1	WD repeat domain 1	Û	1.22	8.86E-05
Development						
NM_152698	2505793	AMER3	APC membrane recruitment protein 3	\mathbb{T}	1.21	8.55E-04
NM_001002858	3627248	ANXA2	annexin A2	仓	1.23	0.002
NM_031301	3597521	APH1B	anterior pharynx defective 1 homolog B (<i>C. elegans</i>)	Û	1.21	0.003
NM_147147	2967249	BVES	blood vessel epicardial substance	Û	1.33	0.001
BC022092	3432641	C12orf52	chromosome 12 open reading frame 52	仓	1.20	4.15E-04
NM_006324	3699508	CFDP1	craniofacial development protein 1	仓	1.20	0.003
NM_145234	4018080	CHRDL1	chordin-like 1	Û	1.31	1.05E-04
NM_025212	2780388	CXXC4	CXXC finger protein 4	仓	1.44	4.33E-04
NM_016651	3538087	DACT1	dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)	Û	1.23	0.041
NM_005227	2360633	EFNA4	ephrin-A4	$\hat{\mathbb{T}}$	1.21	0.038
NM_000399	3291601	EGR2	early growth response 2	Û	1.23	0.018
NM_003633	2862696	ENC1	ectodermal-neural cortex 1 (with BTB-like domain)	仓	1.40	0.004
NM_018063	3258910	HELLS	helicase, lymphoid-specific	Û	1.33	3.40E-04

NM_022475	2745899	HHIP	hedgehog interacting protein	Û	1.20	0.031
NM_000597	2527253	IGFBP2	isulin-like growth factor binding protein 2, 36kDa	Û	1.28	4.47E-04
NM_016269	2781138	LEF1	lymphoid enhancer-binding factor 1	Û	1.46	0.026
NM_022458	3081613	LMBR1	limb region 1 homolog (mouse)	Û	1.44	2.31E-05
NM_014839	2348514	LPPR4	lipid phosphate phosphatase-related protein type 4	Û	1.28	0.001
NM_015884	3971329	MBTPS2	membrane-bound transcription factor peptidase, site 2	Û	1.22	0.011
NM_001012334	3329343	MDK	midkine (neurite growth-promoting factor 2)	Û	1.20	0.042
NM_014791	3168508	MELK	maternal embryonic leucine zipper kinase	仓	1.38	3.11E-04
NM_006154	3625539	NEDD4	neural precursor cell expressed, developmentally up-regulated 4, E3 ubiquitin protein ligase	兌	1.21	0.011
NM_015514	3529156	NGDN	neuroguidin, EIF4E binding protein	兌	1.25	0.002
NM_153026	3451375	PRICKLE1	prickle homolog 1 (<i>Drosophila</i>)	Ŷ	1.28	0.005
NM_006717	3178416	SPIN1	spindlin 1	兌	1.21	0.003
NM_153365	2761941	TAPT1	transmembrane anterior posterior transformation 1	Û	1.31	8.09E-07
NM_005149	2366184	TBX19	T-box 19	Û	1.25	4.09E-04
NM_001135243	2835440	TCOF1	Treacher Collins-Franceschetti syndrome 1	仓	1.22	7.97E-06
NM_015631	3301556	TCTN3	tectonic family member 3	Û	1.23	0.002
NM_020457	3665846	THAP11	THAP domain containing 11	仓	1.27	1.47E-04
NM_181783	3425134	TMTC3	transmembrane and tetratricopeptide repeat containing 3	Û	1.21	8.40E-04
NM_020648	3778372	TWSG1	twisted gastrulation homolog 1 (Drosophila)	Û	1.31	0.002
NM_138959	2353283	VANGL1	vang-like 1 (van gogh, Drosophila)	仓	1.37	0.016
NM_004626	3382523	WNT11	wingless-type MMTV integration site family, member 11	Û	1.24	0.025
DNA Damage &	Repair					
NM_139178	3328214	ALKBH3	alkB, alkylation repair homolog 3 (<i>E. coli</i>)	Û	1.28	4.14E-05
NM_138775	3389878	ALKBH8	alkB, alkylation repair homolog 8 (<i>E. coli</i>)	仓	1.21	7.09E-05
NM_014481	3978620	APEX2	APEX nuclease (apurinic/apyrimidinic endonuclease) 2	仓	1.21	1.90E-04
NM_024857	3716893	ATAD5	ATPase family, AAA domain containing 5	仓	1.24	0.001
NM_001033549	3824153	BABAM1	BRISC and BRCA1 A complex member 1	仓	1.20	2.26E-04
NM_032408	3056044	BAZ1B	bromodomain adjacent to zinc finger domain, 1B	仓	1.20	7.07E-05
NM_000057	3608298	BLM	Bloom syndrome, RecQ helicase-like	Û	1.43	7.44E-06
NM_007300	3758317	BRCA1	breast cancer 1, early onset	仓	1.44	4.57E-06
NM_000059	3484641	BRCA2	breast cancer 2, early onset	仓	1.26	9.43E-04
NM_024332	3996755	BRCC3	BRCA1/BRCA2-containing complex, subunit 3	Û	1.26	0.002

NM_032043	3765580	BRIP1	BRCA1 interacting protein C-terminal helicase 1	Û	1.32	1.05E-05
NM_001114122	3354799	CHEK1	CHK1 checkpoint homolog (<i>S. pombe</i>)	Û	1.29	1.49E-05
NM_022111	2406420	CLSPN	claspin	Û	1.39	1.14E-04
NM_00103385	3278977	DCLRE1C	DNA cross-link repair 1C	Û	1.21	0.005
NM_016448	2378937	DTL	denticleless homolog (Drosophila)	Û	1.25	6.88E-04
NM_139076	2776088	FAM175A	family with sequence similarity 175, member A	Û	1.22	0.004
NM_00101811	4000370	FANCB	Fanconi anemia, complementation group B	Û	1.25	2.29E-04
NM_000136	3215701	FANCC	Fanconi anemia, complementation group C	Û	1.35	1.24E-05
NM_021922	2904663	FANCE	Fanconi anemia, complementation group E	Û	1.20	4.56E-05
NM_00111337	3607537	FANCI	Fanconi anemia, complementation group I	Û	1.38	1.19E-05
NM_202002	3440598	FOXM1	forkhead box M1	Û	1.39	4.55E-06
NM_015675	3816509	GADD45B	growth arrest and DNA-damage-inducible, beta	Û	1.27	0.017
NM_007266	2474681	GPN1	GPN-loop GTPase 1	Û	1.21	0.002
NM_016426	3949055	GTSE1	G-2 and S-phase expressed 1	Û	1.27	2.48E-05
NM_001130688	2793951	HMGB2	high-mobility group box 2	Û	1.31	0.003
NM_014736	3629103	KIAA0101	KIAA0101	Û	1.47	1.12E-04
NM_000251	2480992	MSH2	mutS homolog 2, colon cancer, nonpolyposis type 1 (<i>E. coli</i>)	Û	1.35	6.98E-05
NM_000179	2481142	MSH6	mutS homolog 6 (<i>E. coli</i>)	Û	1.25	1.05E-04
NM_173685	3114878	NSMCE2	non-SMC element 2, MMS21 homolog (<i>S. cerevisiae</i>)	Û	1.29	2.18E-04
NM_024675	3685329	PALB2	partner and localizer of BRCA2	Û	1.26	6.30E-06
NM_002690	3096171	POLB	polymerase (DNA directed), beta	Û	1.22	9.80E-05
NM_199420	2691575	POLQ	polymerase (DNA directed), theta	Û	1.26	0.005
NM_005053	3822074	RAD23A	RAD23 homolog A (<i>S. cerevisiae</i>)	Û	1.20	2.71E-04
NM_058216	3728776	RAD51C	RAD51 homolog C (<i>S. cerevisiae</i>)	Û	1.44	4.01E-06
NM_134424	3439836	RAD52	RAD52 homolog (<i>S. cerevisiae</i>)	Û	1.22	4.37E-05
NM_003579	2334646	RAD54L	RAD54-like (<i>S. cerevisiae</i>)	Û	1.20	0.002
NM_002945	3706000	RPA1	replication protein A1, 70kDa	Û	1.21	3.50E-05
NM_006666	3838118	RUVBL2	RuvB-like 2 (<i>E. coli</i>)	Û	1.22	3.32E-04
NM_001042550	3182781	SMC2	structural maintenance of chromosomes 2	Û	1.32	6.79E-05
NM_005496	2650199	SMC4	structural maintenance of chromosomes 4	Û	1.21	0.002
NM_003350	3097208	UBE2V2	ubiquitin-conjugating enzyme E2 variant 2	Û	1.22	0.017
NM_003362	3430926	UNG	uracil-DNA glycosylase	Û	1.30	5.61E-05
NM_005431	3080283	XRCC2	X-ray repair complementing defective repair in Chinese hamster cells 2	Û	1.50	2.89E-04

NM_022550	2818454	XRCC4	X-ray repair complementing defective repair in Chinese hamster cells 4	Û	1.22	0.003
NM_032143	2577700	ZRANB3	zinc finger, RAN-binding domain containing 3	Û	1.25	0.002
DNA Replication	n & the Cel	l Cycle				
NM_015120	2488785	ALMS1	Alstrom syndrome 1	Û	1.26	0.009
NM_198433	3910785	AURKA	aurora kinase A	Û	1.27	0.002
NM_058243	3853193	BRD4	bromodomain containing 4	Û	1.26	0.001
NM_001211	3589697	BUB1B	BUB1 mitotic checkpoint serine/threonine kinase B	Û	1.26	2.83E-04
NM_001100619	3781531	CABLES	Cdk5 and Abl enzyme substrate 1	Û	1.22	2.71E-04
NM_001743	2551924	CALM2	calmodulin 2 (phosphorylase kinase, delta)	Û	1.25	0.022
NM_005184	3836841	CALM3	calmodulin 3 (phosphorylase kinase, delta)	Û	1.25	8.06E-07
NM_001237	2784113	CCNA2	cyclin A2	Û	1.32	9.36E-05
NM_031966	2813414	CCNB1	cyclin B1	Û	1.25	0.002
NM_004701	3595979	CCNB2	cyclin B2	Û	1.26	6.56E-04
NM_057749	3145107	CCNE2	cyclin E2	Û	1.52	3.82E-04
NM_004748	3625326	CCPG1	cell cycle progression 1	Û	1.25	0.004
NM_006023	3235461	CDC123	cell division cycle 123 homolog (<i>S. cerevisiae</i>)	Û	1.32	3.04E-06
NM_001255	2333136	CDC20	cell division cycle 20 homolog (<i>S. cerevisiae</i>)	Û	1.30	0.032
NM_021873	3874439	CDC25B	cell division cycle 25 homolog B (<i>S. pombe</i>)	Û	1.22	1.06E-05
NM_001178010	3936913	CDC45	cell division cycle 45 homolog (<i>S. cerevisiae</i>)	Û	1.37	1.33E-04
NM_001254	3720896	CDC6	cell division cycle 6 homolog (<i>S. cerevisiae</i>)	Û	1.62	8.87E-05
NM_152562	3090697	CDCA2	cell division cycle associated 2	Û	1.26	0.002
NM_031942	2516023	CDCA7	cell division cycle associated 7	Û	1.27	0.002
NM_001127370	3040897	CDCA7L	cell division cycle associated 7-like	Û	1.24	0.027
NM_018101	2330773	CDCA8	cell division cycle associated 8	Û	1.44	1.80E-04
NM_000075	3458783	CDK4	cyclin-dependent kinase 4	Û	1.20	0.003
NM_001260	3482498	CDK8	cyclin-dependent kinase 8	Û	1.21	0.003
NM_004064	3405440	CDKN1B	cyclin-dependent kinase inhibitor 1B (p27, Kip1)	Û	1.20	0.018
NM_005192	3536336	CDKN3	cyclin-dependent kinase inhibitor 3	Û	1.31	6.29E-06
NM_006733	3984655	CENPI	centromere protein I	Û	1.30	6.71E-04
NM_022145	2859667	CENPK	centromere protein K	Û	1.25	0.004
NM_024322	2473284	CENPO	centromere protein 0	Û	1.33	4.69E-04
NM_001012267	3179359	CENPP	centromere protein P	Û	1.42	6.13E-05

NM_018132	2909723	CENPQ	centromere protein Q	Û	1.24	0.003
NM_018131	3258444	CEP55	centrosomal protein 55kDa	Û	1.36	1.21E-04
NM_024899	3799542	CEP76	centrosomal protein 76kDa	Û	1.20	1.17E-04
NM_004344	4026263	CETN2	centrin, EF-hand protein, 2	Û	1.36	1.63E-05
NM_005483	3817501	CHAF1A	chromatin assembly factor 1, subunit A (p150)	Û	1.32	3.84E-08
NM_001039690	369454	CHTF8	CTF8, chromosome transmission fidelity factor 8 homolog (S. cerevisiae)	Û	1.24	8.92E-05
NM_001827	3178583	CKS2	CDC28 protein kinase regulatory subunit 2	Û	1.27	0.014
NM_014711	3651018	CP110	centriolar coiled coil protein 110kDa	Û	1.23	0.003
NM_015986	3752002	CRLF3	cytokine receptor-like factor 3	Û	1.22	7.69E-04
NM_00114601	3565663	DLGAP5	discs, large (<i>Drosophila</i>) homolog-associated protein 5	Û	1.22	0.013
NM_014689	2601648	DOCK10	dedicator of cytokinesis 10	Û	1.25	0.001
NM_024094	3150715	DSCC1	defective in sister chromatid cohesion 1 homolog (S. cerevisiae)	Û	1.31	3.26E-05
NM_001943	3783529	DSG2	desmoglein 2	Û	1.60	0.007
NM_207042	2434490	ENSA	endosulfine alpha	Û	1.32	2.09E-04
NM_017669	4012142	ERCC6L	excision repair cross-complementing rodent repair deficiency, complementation group 6-like	Û	1.21	2.73E-04
NM_030919	3884892	FAM83D	family with sequence similarity 83, member D	Û	1.25	0.003
NM_012177	2980241	FBXO5	F-box protein 5	Û	1.35	3.22E-05
NM_033417	3854218	HAUS8	HAUS augmin-like complex, subunit 8	Û	1.21	3.80E-05
NM_033402	3105430	LRRCC1	leucine rich repeat and coiled-coil domain containing 1	Û	1.48	7.34E-07
NM_182751	3235789	MCM10	minichromosome maintenance complex component 10	Û	1.52	5.02E-06
NM_004526	2640855	MCM2	minichromosome maintenance complex component 2	Û	1.29	3.41E-05
NM_002388	2957126	MCM3	minichromosome maintenance complex component 3	Û	1.30	8.17E-05
NM_005915	2577896	MCM6	minichromosome maintenance complex component 6	Û	1.23	8.93E-04
NM_018944	3929038	MIS18A	MIS18 kinetochore protein homolog A (S. pombe)	Û	1.24	2.25E-06
NM_022045	3113456	MTBP	Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse) binding protein, 104kDa	Û	1.30	6.93E-05
NM_002466	3886223	MYBL2	v-myb myeloblastosis viral oncogene homolog (avian)-like 2	Û	1.41	3.70E-04
NM_015261	3399545	NCAPD3	non-SMC condensin II complex, subunit D3	Û	1.22	4.65E-04
NM_022346	2720251	NCAPG	non-SMC condensin I complex, subunit G	Û	1.24	0.003
NM_017760	3082181	NCAPG2	non-SMC condensin II complex, subunit G2	Û	1.30	2.46E-04
NM_015341	2494484	NCAPH	non-SMC condensin I complex, subunit H	Û	1.30	3.57E-04
NM_006101	3776139	NDC80	NDC80 homolog, kinetochore complex component (<i>S. cerevisiae</i>)	Û	1.46	4.89E-06
NM_004542	3841198	NDUFA3	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3, 9kDa	Û	1.39	0.004
NM_002497	2454444	NEK2	NIMA (never in mitosis gene a)-related kinase 2	Û	1.28	0005

NM_003157	2676352	NEK4	NIMA (never in mitosis gene a)-related kinase 4	Û	1.21	0.001
NM_004741	3261492	NOLC1	nucleolar and coiled-body phosphoprotein 1	Û	1.26	5.22E-04
NM_001033714	3442024	NOP2	NOP2 nucleolar protein homolog (yeast)	Û	1.22	5.71E-04
NM_001042549	2454838	NSL1	NSL1, MIND kinetochore complex component, homolog (S. cerevisiae)	Û	1.22	2.73E-05
NM_016359	3590388	NUSAP1	nucleolar and spindle associated protein 1	Û	1.20	7.16E-04
NM_007280	3619945	OIP5	Opa interacting protein 5	Û	1.38	7.77E-06
NM_004153	2412799	ORC1	origin recognition complex, subunit 1	Û	1.27	0.001
NM_006191	3417309	PA2G4	proliferation-associated 2G4, 38kDa	Û	1.21	3.75E-05
NM_017884	3124180	PINX1	PIN2/TERF1 interacting, telomerase inhibitor 1	Û	1.24	1.74E-04
NM_014264	2742985	PLK4	polo-like kinase 4	Û	1.31	3.01E-04
NM_016937	3972093	POLA1	polymerase (DNA directed), alpha 1, catalytic subunit	Û	1.31	8.12E-04
NM_006591	3340269	POLD3	polymerase (DNA-directed), delta 3, accessory subunit	Û	1.37	2.86E-06
NR_027261	3221646	POLE3	polymerase (DNA directed), epsilon 3 (p17 subunit)	Û	1.20	4.54E-04
NM_005973	2361731	PRCC	papillary renal cell carcinoma (translocation-associated)	Û	1.21	8.56E-05
NM_000946	3458133	PRIM1	primase, DNA, polypeptide 1 (49kDa)	Û	1.26	2.43E-04
NM_000321	3489020	RB1	retinoblastoma 1	Û	1.23	0.004
NR_030725	2327482	RCC1	regulator of chromosome condensation 1	Û	1.20	3.80E-04
NM_002916	2709486	RFC4	replication factor C (activator 1) 4, 37kDa	Û	1.23	0.012
NM_181578	3433747	RFC5	replication factor C (activator 1) 5, 36.5kDa	Û	1.26	2.31E-04
NM_024945	3176999	RMI1	RMI1, RecQ mediated genome instability 1, homolog (S. cerevisiae)	Û	1.24	0.001
NM_006397	3821908	RNASEH2A	ribonuclease H2, subunit A	Û	1.22	3.03E-04
NM_001033	3318009	RRM1	ribonucleotide reductase M1	Û	1.31	1.00E-04
NM_144710	2569908	SEPT10	septin 10	Û	1.91	0.008
NM_001012410	2665572	SGOL1	shugoshin-like 1 (S. pombe)	Û	1.24	0.005
NM_152524	2522212	SGOL2	shugoshin-like 2 (S. pombe)	Û	1.22	0.004
NM_182620	3764738	SKA2	spindle and kinetochore associated complex subunit 2	Û	1.43	0.005
NM_145061	3504617	SKA3	spindle and kinetochore associated complex subunit 3	Û	1.36	1.01E-04
NM_005983	2806517	SKP2	S-phase kinase-associated protein 2 (p45)	Û	1.25	4.01E-05
NM_006306	4009238	SMC1A	structural maintenance of chromosomes 1A	Û	1.27	7.12E-04
NM_020675	2585933	SPC25	SPC25, NDC80 kinetochore complex component, homolog (S. cerevisiae)	Û	1.52	3.88E-05
NM_017785	2840002	SPDL1	spindle apparatus coiled-coil protein 1	Û	1.29	0.002
NM_001048166	2411228	STIL	SCL/TAL1 interrupting locus	Û	1.23	0.008
NM_003173	3976797	SUV39H1	suppressor of variegation 3-9 homolog 1 (Drosophila)	Û	1.45	1.18E-05

NM_001193424	3236448	SUV39H2	suppressor of variegation 3-9 homolog 2 (Drosophila)	Û	1.22	5.95E-04
NM_006342	2714955	TACC3	transforming, acidic coiled-coil containing protein 3	Û	1.34	9.79E-05
NM_001071	3775842	TYMS	thymidylate synthetase	Û	1.20	2.24E-04
NM_015045	3298738	WAPAL	wings apart-like homolog (<i>Drosophila</i>)	Û	1.21	3.64E-05
NM_007086	3565571	WDHD1	WD repeat and HMG-box DNA binding protein 1	Û	1.37	2.21E-06
NM_004724	3391769	ZW10	ZW10, kinetochore associated, homolog (<i>Drosophila</i>)	Û	1.25	3.27E-05
NR_003105	3598721	ZWILCH	Zwilch, kinetochore associated, homolog (Drosophila)	Û	1.41	1.56E-05
NM_032997	3290210	ZWINT	ZW10 interactor	Û	1.57	5.09E-05
Hormone Funct	tion					
NM_001124	3320123	ADM	adrenomedullin	Û	1.62	0.002
NM_022640	3766480	CSH1	chorionic somatomammotropin hormone 1 (placental lactogen)	Û	1.42	0.008
NM_000805	3721421	GAST	gastrin	Û	1.21	0.029
NM_000515	3766512	GH1	growth hormone 1	Û	1.22	0.019
NM_000233	2552368	LHCGR	luteinizing hormone/choriogonadot ropin receptor	Û	1.24	0.002
NM_005575	2821413	LNPEP	leucyl/cystinyl aminopeptidase	Û	1.65	1.37E-05
Immune Respor	nse & Inflar	nmation				
NM_181780	2688717	BTLA	B and T lymphocyte associated	Û	1.25	0.001
NM_007047	2899333	BTN3A2	butyrophilin, subfamily 3, member A2	Û	1.24	0.046
NM_148672	2855542	CCL28	chemokine (C-C motif) ligand 28	Û	1.22	0.038
NM_002984	3718930	CCL4	chemokine (C-C motif) ligand 4	Û	1.21	0.049
NM_002985	3753860	CCL5	chemokine (C-C motif) ligand 5	Û	1.24	0.037
NM_001838	3756319	CCR7	chemokine (C-C motif) receptor 7	Û	1.21	2.28E-04
NM_001004196	2636125	CD200	CD200 molecule	Û	1.53	2.50E-04
NM_006139	2523801	CD28	CD28 molecule	Û	2.18	3.68E-04
NM_002389	2377427	CD46	CD46 molecule, complement regulatory protein	Û	1.29	7.80E-08
NM_005191	2690900	CD80	CD80 molecule	Û	1.35	7.24E-06
NM_001184879	2440295	CD84	CD84 molecule	Û	1.43	0.001
NM_198390	3670772	CMIP	c-Maf-inducing protein	Û	1.21	4.49E-04
NM_001142343	3470193	CMKLR1	chemokine-like receptor 1	Û	1.29	0.013
NM_000757	2351063	CSF1	colony stimulating factor 1 (macrophage)	Û	1.24	0.018
NM_014395	2737318	DAPP1	dual adaptor of phosphotyrosine and 3-phosphoinositides	Û	1.32	1.83E-04
NM_005755	3817380	EBI3	Epstein-Barr virus induced 3	Û	1.32	1.67E-05

NM_001040458	2868131	ERAP1	endoplasmic reticulum aminopeptidase 1	Û	1.23	0.002
NM_001007253	3053380	ERV3	endogenous retroviral sequence 3	Û	1.33	0.024
NM_002001	2362537	FCER1A	Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide	Û	1.22	0.023
NM_031282	2438938	FCRL4	Fc receptor-like 4	Û	1.46	0.008
NM_002053	2421883	GBP1	guanylate binding protein 1, interferon-inducible, 67kDa	Û	1.38	0.003
NM_004951	3522662	GPR183	G protein-coupled receptor 183	Û	1.22	0.005
NM_012206	2883317	HAVCR1	hepatitis A virus cellular receptor 1	Û	1.24	2.08E-04
NM_032782	2883349	HAVCR2	hepatitis A virus cellular receptor 2	Û	1.44	0.017
NM_005335	2691668	HCLS1	hematopoietic cell-specific Lyn substrate 1	Û	1.21	0.001
NM_002119	2950307	HLA-DOA	major histocompatibility complex, class II, DO alpha	Û	1.27	0.002
NM_005516	2901620	HLA-E	major histocompatibility complex, class I, E	Û	1.20	3.51E-04
NM_001098479	2900974	HLA-F	major histocompatibility complex, class I, F	Û	1.37	6.11E-07
NR_027822	2901463	HLA-L	major histocompatibility complex, class I, L	Û	1.22	0.048
NM_005533	3722338	IFI35	interferon-induced protein 35	Û	1.22	0.027
NM_002038	2403261	IFI6	interferon, alpha-inducible protein 6	Û	1.22	0.009
NM_001548	3257246	IFIT1	interferon-induced protein with tetratricopeptide repeats 1	Û	1.38	0.021
NM_021068	3201188	IFNA4	interferon, alpha 4	Û	1.33	0.033
NM_000416	2976113	IFNGR1	interferon gamma receptor 1	Û	1.33	0.005
NM_016584	3417557	IL23A	interleukin 23, alpha subunit p19	Û	1.21	0.015
NM_002184	2857416	IL6ST	interleukin 6 signal transducer (gp130, oncostatin M receptor)	Û	1.21	0.006
NM_002339	3317071	LSP1	lymphocyte-specific protein 1	Û	1.31	2.61E-05
NM_002349	2583254	LY75	lymphocyte antigen 75	Û	1.33	2.81E-05
NM_002348	2363248	LY9	lymphocyte antigen 9	Û	1.26	0.033
NM_002432	2362333	MNDA	myeloid cell nuclear differentiation antigen	Û	1.36	0.035
NM_012340	3909553	NFATC2	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2	Û	1.41	0.008
NM_020393	2435961	PGLYRP4	peptidoglycan recognition protein 4	Û	1.20	0.005
BC035736	3442249	PIANP	PILR alpha associated neural protein	Û	1.22	0.003
NM_017831	3783723	RNF125	ring finger protein 125	Û	1.49	0.005
NM_015474	3904691	SAMHD1	SAM domain and HD domain 1	Û	1.41	8.63E-04
NM_021966	3578152	TCL1A	T-cell leukemia/lymphoma 1A	Û	1.23	0.004
NM_006068	2766262	TLR6	toll-like receptor 6	Û	1.39	8.88E-04
NM_001561	2395146	TNFRSF9	tumor necrosis factor receptor superfamily, member 9	Û	1.28	0.036
NM_003701	3487299	TNFSF11	tumor necrosis factor (ligand) superfamily, member 11	Û	1.38	0.004

NM_003141	3360142	TRIM21	tripartite motif-containing 21	仓	1.21	0.021
NM_015294	3764680	TRIM37	tripartite motif-containing 37	Û	1.21	3.47E-05
NM_198057	4017381	TSC22D3	TSC22 domain family, member 3	Û	1.30	0.029
Ion Binding						
NM_002197	3166477	ACO1	aconitase 1, soluble	Û	1.25	0.001
NM_000146	3838094	FTL	ferritin, light polypeptide	Û	1.53	0.001
NM_003234	2712632	TFRC	transferrin receptor (p90, CD71)	Û	1.23	4.19E-05
Membrane Tra	fficking					
NM_001089	3676763	ABCA3	ATP-binding cassette, sub-family A (ABC1), member 3	Û	1.23	7.28E-04
NM_018672	3768969	ABCA5	ATP-binding cassette, sub-family A (ABC1), member 5	Û	1.30	0.001
NM_005689	2599993	ABCB6	ATP-binding cassette, sub-family B (MDR/TAP), member 6	Û	1.28	9.71E-07
NM_00102509	2901687	ABCF1	ATP-binding cassette, sub-family F (GCN20), member 1	Û	1.20	3.21E-05
NM_173872	2751385	CLCN3	chloride channel 3	Û	1.22	5.66E-05
NM_004004	3504193	GJB2	gap junction protein, beta 2, 26kDa	Û	1.38	0.033
NM_005497	3759335	GJC1	gap junction protein, gamma 1, 45kDa	Û	1.58	0.018
NM_020401	3421177	Nû107	nucleoporin 107kDa	Û	1.24	2.36E-04
NM_024057	3468261	N û37	nucleoporin 37kDa	Û	1.20	0.001
NM_018698	3986933	NXT2	nuclear transport factor 2-like export factor 2	Û	1.21	0.009
NM_002560	3434760	P2RX4	purinergic receptor P2X, ligand-gated ion channel, 4	Û	1.26	0.001
NM_002561	3741547	P2RX5	purinergic receptor P2X, ligand-gated ion channel, 5	Û	1.45	0.025
NM_001042496	3617312	SLC12A6	solute carrier family 12 (potassium/chloride transporters), member 6	Û	1.20	0.002
NM_016582	3375091	SLC15A3	solute carrier family 15, member 3	Û	1.22	0.025
NM_145648	3477917	SLC15A4	solute carrier family 15, member 4	Û	1.23	4.94E-05
NM_018593	2921402	SLC16A10	solute carrier family 16, member 10 (aromatic amino acid transporter)	Û	1.43	0.004
NM_005116	3896078	SLC23A2	solute carrier family 23 (nucleobase transporters), member 2	Û	1.50	0.010
NM_024103	3847873	SLC25A23	solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 23	Û	1.31	4.07E-04
AF495725	3090053	SLC25A37	solute carrier family 25, member 37	Û	1.20	0.028
NM_133496	2349043	SLC30A7	solute carrier family 30 (zinc transporter), member 7	Û	1.20	7.71E-04
NM_004733	2701927	SLC33A1	solute carrier family 33 (acetyl-CoA transporter), member 1	Û	1.27	0.003
NM_012243	2348702	SLC35A3	solute carrier family 35 (UDP-N-acetylglucosamine (UDP-GlcNAc) transporter), member A3	Û	1.23	0.003
NM_017945	2636185	SLC35A5	solute carrier family 35, member A5	Û	1.21	0.002
NM_178148	2955061	SLC35B2	solute carrier family 35, member B2	Û	1.31	0.002

NM_024881	3854000	SLC35E1	solute carrier family 35, member E1	Û	1.20	3.61E-05
NM_025181	2571979	SLC35F5	solute carrier family 35, member F5	Û	1.21	1.34E-04
NM_014437	2436378	SLC39A1	solute carrier family 39 (zinc transporter), member 1	Û	1.22	2.59E-05
NM_001128431	3089360	SLC39A14	solute carrier family 39 (zinc transporter), member 14	Û	1.23	0.032
NM_006979	2903470	SLC39A7	solute carrier family 39 (zinc transporter), member 7	Û	1.28	0.002
NM_001012661	3333711	SLC3A2	solute carrier family 3 (activators of dibasic and neutral amino acid transport), member 2	Û	1.27	8.12E-04
NM_018112	3183364	TMEM38B	transmembrane protein 38B	Û	1.39	8.37E-04
NM_003304	2645951	TRPC1	transient receptor potential cation channel, subfamily C, member 1	Û	1.46	2.82E-04
NM_032646	3734236	TTYH2	tweety homolog 2 (Drosophila)	Û	1.38	0.004
Metabolism						
NM_017436	3962578	A4GALT	alpha 1,4-galactosyltransferase	Û	1.22	0.026
NM_005763	3070183	AASS	aminoadipate-semialdehyde synthase	Û	1.33	0.002
NR_033426	2641341	ACAD9	acyl-CoA dehydrogenase family, member 9	Û	1.21	0.012
NM_005891	2934131	ACAT2	acetyl-CoA acetyltransferase 2	Û	1.22	0.006
NM_152331	3543714	ACOT4	acyl-CoA thioesterase 4	Û	1.27	0.002
NM_001099	2642720	ACPP	acid phosphatase, prostate	Û	1.28	0.048
NM_001995	2796553	ACSL1	acyl-CoA synthetase long-chain family member 1	Û	1.21	0.001
NM_001159280	3591365	ADAL	adenosine deaminase-like	Û	1.21	0.002
NM_006721	3252170	ADK	adenosine kinase	Û	1.20	0.002
NM_000026	3946351	ADSL	adenylosuccinate lyase	Û	1.24	1.04E-04
NM_018361	3083936	AGPAT5	1-acylglycerol-3-phosphate 0-acyltransferase 5 (lysophosphatidic acid acyltransferase, epsilon)	Û	1.24	1.44E-05
NM_003659	2517408	AGPS	alkylgylcerone phosphate synthase	Û	1.27	1.04E-05
NM_000696	2442103	ALDH9A1	aldehyde dehydrogenase 9 family, member A1	Û	1.27	2.66E-04
NM_015957	3369249	APIP	APAF1 interacting protein	Û	1.44	0.040
NM_177924	3126087	ASAH1	N-acylsphingosine amidohydrolase (acid ceramidase) 1	Û	1.27	4.39E-04
NM_006085	2456805	BPNT1	3'(2'), 5'-bisphosphate nucleotidase 2	Û	1.23	2.61E-04
NM_000078	3662417	CETP	cholesteryl ester transfer protein, plasma	Û	1.20	0.029
NM_138809	2848265	CMBL	carboxymethylenebute nolidase homolog (<i>Pseudomonas</i>)	Û	1.39	0.002
NM_001905	2332144	CTPS	CTP synthase	Û	1.30	0.001
NM_000774	3833967	CYP2F1	cytochrome P450, family 2, subfamily F, polypeptide 1	Û	1.28	0.038
NM_015954	3406493	DERA	deoxyribose-phosphate aldolase (putative)	Û	1.31	7.62E-04
NM_016029	3567187	DHRS7	dehydrogenase/reductase (SDR family) member 7	Û	1.26	2.67E-05

NM_005700	3336238	DPP3	dipeptidyl-peptidase 3	Û	1.23	0.014
NM_138924	3845175	GAMT	guanidinoacetate N-methyltransferase	Û	1.21	0.014
NM_000161	3565524	GCH1	GTP cyclohydrolase 1	Û	1.23	0.008
NM_000169	4015763	GLA	galactosidase, alpha	Û	1.27	0.017
NM_000405	2835792	GM2A	GM2 ganglioside activator	Û	1.23	0.003
NM_002079	3302990	GOT1	glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1)	Û	1.21	0.003
NM_000521	2815791	HEXB	hexosaminidase B	Û	1.21	8.27E-04
NM_002035	3811459	KDSR	ketodihydrosphingosine reductase	Û	1.21	9.42E-05
NM_000221	2474240	КНК	ketohexokinase (fructokinase)	Û	1.46	0.007
NM_001145437	3935243	LSS	lanosterol synthase (2,3-oxidosqualene-lanosterol cyclase)	Û	1.26	0.003
NM_002395	2962820	ME1	malic enzyme 1, NADP(+)-dependent, cytosolic	Û	1.52	0.003
NM_018396	3022841	METTL2B	methyltransferase like 2B	Û	1.25	4.25E-04
NM_004685	3506153	MTMR6	myotubularin related protein 6	Û	1.30	6.90E-04
NM_000434	2949471	NEU1	sialidase 1 (lysosomal sialidase)	Û	1.28	1.10E-04
NM_198175	3726934	NME1	non-metastatic cells 1, protein (NM23A) expressed in	Û	1.37	2.41E-04
NM_002513	3676113	NME3	non-metastatic cells 3, protein expressed in	Û	1.29	6.63E-05
NM_024829	3445544	PLBD1	phospholipase B domain containing 1	Û	1.29	0.002
NM_018129	3724969	PNPO	pyridoxamine 5'-phosphate oxidase	Û	1.22	0.009
NM_002778	3293762	PSAP	prosaposin	Û	1.20	0.003
NM_144660	3252534	SAMD8	sterile alpha motif domain containing 8	Û	1.20	0.004
NR_027783	3971806	SAT1	spermidine/spermine N1-acetyltransferase 1	Û	1.21	0.014
NM_030791	3568108	SGPP1	sphingosine-1-phosphate phosphatase 1	Û	1.21	0.004
NM_000199	3773340	SGSH	N-sulfoglucosamine sulfohydrolase	Û	1.29	4.52E-06
NM_021947	3706219	SRR	serine racemase	Û	1.34	0.009
NM_003896	2562529	ST3GAL5	ST3 beta-galactoside alpha-2,3-sialyltransferase 5	Û	1.31	0.002
NM_006755	3316208	TALDO1	transaldolase 1	Û	1.29	8.50E-05
NR_027483	3402935	TPI1	triosephosphate isomerase 1	Û	1.23	0.003
NM_022445	3077766	TPK1	thiamin pyrophosphokinase 1	Û	1.26	6.13E-05
NM_000375	3311715	UROS	uroporphyrinogen III synthase	Û	1.26	2.67E-04
Mitochondrion	& the Respi	iratory Electro	on Transport Chain			
NM_000690	3432090	ALDH2	aldehyde dehydrogenase 2 family (mitochondrial)	Û	1.36	0.006
NM_017812	3073597	CHCHD3	coiled-coil-helix-coiled-coil-helix domain containing 3	Û	1.35	3.94E-05

NM_015697	2775965	COQ2	coenzyme Q2 homolog, prenyltransferase (yeast)	Û	1.32	0.011
NM_016035	3190339	COQ4	coenzyme Q4 homolog (S. cerevisiae)	Û	1.23	5.94E-06
NM_004077	3457614	CS	citrate synthase	Û	1.27	6.36E-04
NM_030579	3666732	CYB5B	cytochrome b5 type B (outer mitochondrial membrane)	Û	1.22	5.14E-06
NM_001359	3106310	DECR1	2,4-dienoyl CoA reductase 1, mitochondrial	Û	1.22	0.002
NM_001931	3348852	DLAT	dihydrolipoamide S-acetyltransferase	Û	1.23	7.26E-05
NM_024417	3770457	FDXR	ferredoxin reductase	Û	1.21	4.27E-04
NM_001012515	3809621	FECH	ferrochelatase	Û	1.28	8.80E-05
NM_017547	3355056	FOXRED1	FAD-dependent Oxidoreductase domain containing 1	Û	1.30	0.001
NM_000144	3173831	FXN	frataxin	Û	1.22	0.002
NM_025196	2759404	GRPEL1	GrpE-like 1, mitochondrial (<i>E. coli</i>)	Û	1.30	2.18E-06
NM_005333	3968664	HCCS	holocytochrome c synthase	Û	1.23	0.018
NM_004493	4009288	HSD17B10	hydroxysteroid (17-beta) dehydrogenase 10	Û	1.20	0.007
NM_016098	2984616	MPC1	mitochondrial pyruvate carrier 1	Û	1.29	3.26E-04
NM_018116	2360989	MST01	misato homolog 1 (Drosophila)	Û	1.23	0.003
NM_014342	3372368	MTCH2	mitochondrial carrier homolog 2 (<i>C. elegans</i>)	Û	1.21	6.69E-06
ENST0000361681	4037708	ND6	NADH dehydrogenase, subunit 9 (complex I)	Û	1.34	0.020
NM_17883	2780099	NHEDC2	Na+/H+ exchanger domain containing 2	Û	1.24	0.011
NM_001161778	3107342	PDP1	pyruvate dehydrogenase phosphatase catalytic subunit 1	Û	1.23	7.41E-04
NM_018292	2919873	QRSL1	glutaminyl-tRNA synthase (glutamine-hydrolyzing)-like 1	Û	1.31	3.51E-04
NM_003850	3513293	SUCLA2	succinate-CoA ligase, ADP-forming, beta subunit	Û	1.33	1.05E-05
AK295839	2663083	TAMM41	TAM41, mitochondrial translocation assembly and maintenance protein homolog (<i>S. cerevisiae</i>)	Û	1.29	0.005
NM_003201	3247784	TFAM	transcription factor A, mitochondrial	Û	1.20	0.002
NM_012456	3373946	TIMM10	translocase of inner mitochondrial membrane 10 homolog (yeast)	Û	1.44	0.001
NM_006335	2374956	TIMM17A	translocase of inner mitochondrial membrane 17 homolog A (yeast)	Û	1.25	0.020
Neurotransmiss	rion					
NM_004857	3540068	AKAP5	A kinase (PRKA) anchor protein 5	Û	1.24	0.002
NM_000721	2370433	CACNA1E	calcium channel, voltage-dependent, R type, alpha 1E subunit	Û	1.36	0.047
NM_005183	4007919	CACNA1F	calcium channel, voltage-dependent, L type, alpha 1F subunit	Û	1.20	0.003
NM_001039771	3558270	CBLN3	cerebellin 3 precursor	Û	1.22	0.013
NM_014848	3608638	SV2B	synaptic vesicle glycoprotein 2B	Û	1.38	9.29E-04
NM_152280	2361154	SYT11	synaptotagmin XI	Û	1.31	1.32E-04
NM_014848 NM_152280	3608638 2361154	SV2B SYT11	synaptic vesicle glycoprotein 2B synaptotagmin XI	Û	1.38 1.31	9.29E-04 1.32E-04

NM_199245	3441941	VAMP1	vesicle-associated membrane protein 1 (synaptobrevin 1)	Û	1.32	0.001
Nucleosome						
NM 014034	2923359	ASF1A	ASF1 anti-silencing function 1 homolog A (<i>S. cerevisiae</i>)	Û	1.23	0.006
NM_012412	3639479	H2AFV	H2A histone family, member V	Û	1.22	9.15E-04
NM_002105	3394183	H2AFX	H2A histone family, member X	仓	1.24	9.11E-05
NM_004893	2876479	H2AFY	H2A histone family, member Y	仓	1.24	0.001
NM_005324	3770944	H3F3B	H3 histone, family 3B (H3.3B)	仓	1.26	0.024
NM_003642	2515369	HAT1	histone acetlytransferase 1	仓	1.35	1.62E-04
NM_005322	2947073	HIST1H1B	histone cluster 1, H1b	Û	1.39	0.003
NM_021058	2946681	HIST1H2BJ	histone cluster 1, H2bj	Û	1.29	0.014
NM_080593	2946714	HIST1H2BK	histone cluster 1, H2bk	Û	1.37	0.009
NM_003529	2899090	HIST1H3A	histone cluster 1, H3a	Û	1.22	0.041
NM_003531	2899102	HIST1H3C	histone cluster 1, H3c	Û	1.22	0.006
NM_003535	2947095	HIST1H3J	histone cluster 1, H3j	Û	1.47	0.002
NM_003545	2899216	HIST1H4E	histone cluster 1, H4e	仓	1.21	0.024
NM_003543	2946383	HIST1H4H	histone cluster 1, H4h	仓	1.25	0.011
NM_004537	3462843	NAP1L1	nucleosome assembly protein 1-like 1	Û	1.29	0.005
Protein Processing						
NM_018672	3768969	AAGAB	alpha- and gamma-adaptin binding protein	仓	1.33	1.16E-06
NM_001144	3692856	AMFR	autocrine motility factor receptor	Û	1.21	0.001
NM_003916	4000704	AP1S2	adaptor-related protein complex 1, sigma 2 subunit	Û	1.20	4.13E-04
NM_007347	3593770	AP4E1	adaptor-related protein complex 4, epsilon 1 subunit	仓	1.20	4.13E-04
NM_006577	2484841	B3GNT2	UDP-GlcNAc:betaGalbeta-1,3-N-acetylglucosaminyltransferase 2	Û	1.28	8.53E-05
NM_033637	3261165	BTRC	beta-transducin repeat containing E3 ubiquitin protein ligase	Û	1.24	7.21E-08
NM_012073	2801526	CCT5	chaperonin containing TCP1, subunit 5 (epsilon)	Û	1.32	2.80E-04
NM_001083314	3704896	CHMP1A	charged multivesicular body protein 1A	Û	1.20	1.46E-05
NM_152284	3105033	CHMP4C	charged multivesicular body protein 4C	仓	1.21	0.006
NM_006493	3494502	CLN5	ceroid-lipofuscinosis, neuronal 5	Û	1.40	4.52E-07
NM_153607	2841491	CREBRF	CREB3 regulatory factor	Û	1.36	0.002
NM_004388	2420467	CTBS	chitobiase, di-N-acetyl-	Û	1.22	0.022
NM_147780	3124537	CTSB	cathepsin B	Û	1.42	3.96E-05
NM_001909	3358950	CTSD	cathepsin D	Û	1.25	0.002

NM_004079	2434575	CTSS	cathepsin S	Û	1.21	2.48E-04
NM_006145	3852783	DNAJB1	DnaJ (Hsp40) homolog, subfamily B, member 1	仓	1.28	0.001
NM_058246	3034027	DNAJB6	DnaJ (Hsp40) homolog, subfamily B, member 6	仓	1.27	0.004
NM_012328	3018866	DNAJB9	DnaJ (Hsp40) homolog, subfamily B, member 9	Û	1.28	0.044
NM_018198	2394841	DNAJC11	DnaJ (Hsp40) homolog, subfamily C, member 11	仓	1.25	2.59E-04
NR_037148	3184940	DNAJC25	DnaJ (Hsp40) homolog, subfamily C, member 25	Û	1.21	6.79E-04
NM_003315	3757487	DNAJC7	DnaJ (Hsp40) homolog, subfamily C, member 7	仓	1.23	3.66E-06
NM_001402	2960903	EEF1A1	eukaryotic translation elongation factor 1 alpha 1	Û	1.29	5.02E-05
NR_027062	3484436	EEF1DP3	eukaryotic translation elongation factor 1 delta pseudogene 3	Û	1.30	7.07E-04
NM_004280	2940920	EEF1E1	eukaryotic translation elongation factor 1 epsilon 1	Û	1.27	0.008
NM_032325	3378024	EIF1AD	eukaryotic translation initiation factor 1A domain containing	Û	1.20	2.52E-05
NM_004681	4031136	EIF1AY	eukaryotic translation initiation factor 1A, Y-linked	仓	1.67	0.016
NM_004836	2563654	EIF2AK3	eukaryotic translation initiation factor 2-alpha kinase 3	Û	1.24	0.003
NM_020365	2409904	EIF2B3	eukaryotic translation initiation factor 2B, subunit 3 gamma, 58kDa	Û	1.44	1.29E-04
NM_004096	3250699	EIF4EBP2	eukaryotic translation initiation factor 4E binding protein 2	Û	1.32	6.27E-05
NM_001418	3362719	EIF4G2	eukaryotic translation initiation factor 4 gamma, 2	仓	1.22	3.89E-06
NM_015904	2495881	EIF5B	eukaryotic translation initiation factor 5B	仓	1.21	3.32E-04
NM_019053	3258260	EXOC6	exocyst complex component 6	仓	1.26	0.011
NM_052966	2447877	FAM129A	family with sequence similarity 129, member A	仓	1.33	0.015
NM_012166	3205506	FBXO10	F-box protein 10	仓	1.23	7.68E-04
NM_012176	2807886	FBXO4	F-box protein 4	仓	1.20	0.003
NM_017946	3043936	FKBP14	FK506 binding protein 14, 22kDa	Û	1.43	1.31E-04
NM_002013	3562721	FKBP3	FK506 binding protein 3, 25kDa	仓	1.24	0.003
NM_198335	3375951	GANAB	glucosidase, alpha; neutral AB	Û	1.22	3.26E-04
NM_001097634	3175494	GCNT1	glucosaminyl (N-acetyl) transferase 1, core 2	仓	1.56	0.013
NM_004751	3596147	GCNT3	glucosaminyl (N-acetyl) transferase 3, mucin type	Û	1.25	0.041
NM_005836	3145980	HRSP12	heat-responsive protein 12	仓	1.26	0.004
NM_018085	2374872	IPO9	importin 9	仓	1.20	5.82E-04
NM_002267	3513883	KPNA3	karyopherin alpha 3 (importin alpha 4)	仓	1.21	4.29E-05
NM_022126	3269065	LHPP	phospholysine phosphohistidine inorganic pyrophosphate phosphatase	仓	1.21	2.99E-04
NM_005570	3810472	LMAN1	lectin, mannose-binding, 1	Û	1.32	6.32E-07
NM_005907	2971801	MAN1A1	mannosidase, alpha, class 1A, member 1	Û	1.28	0.003
NM_024641	2917767	MANEA	mannosidase, endo-alpha	Û	1.27	0.032

NM_005885	2801608	MARCH6	membrane-associated ring finger (C3HC4) 6	Û	1.24	1.66E-06
NM_006838	3426917	METAP2	methionyl aminopeptidase 2	仓	1.21	8.83E-04
NM_020236	2732611	MRPL1	mitochondrial ribosomal protein L1	仓	1.28	0.001
NM_014078	3150797	MRPL13	mitochondrial ribosomal protein L13	仓	1.21	0.004
NM_022915	2529782	MRPL44	mitochondrial ribosomal protein L44	仓	1.21	0.040
NM_022163	3638048	MRPL46	mitochondrial ribosomal protein L46	仓	1.29	0.001
NM_019051	3218067	MRPL50	mitochondrial ribosomal protein L50	仓	1.20	0.045
NM_015969	3003143	MRPS17	mitochondrial ribosomal protein S17	仓	1.46	0.014
NM_018997	2358153	MRPS21	mitochondrial ribosomal protein S21	Û	1.27	2.34E-05
NM_016070	3764002	MRPS23	mitochondrial ribosomal protein S23	Û	1.24	0.013
NM_005830	3510925	MRPS31	mitochondrial ribosomal protein S31	Û	1.24	0.002
NM_023936	3676127	MRPS34	mitochondrial ribosomal protein S34	仓	1.34	4.23E-07
NM_021821	3409330	MRPS35	mitochondrial ribosomal protein S35	Û	1.23	0.001
NM_033281	2813465	MRPS36	mitochondrial ribosomal protein S36	Û	1.21	5.15E-04
NM_031902	2564599	MRPS5	mitochondrial ribosomal protein S5	仓	1.20	0.003
NM_003491	4026902	NAA10	N(alpha)-acetyltransferase 10, NatA catalytic subunit	Û	1.20	0.001
NM_022080	3901191	NAPB	N-ethylmaleimide-sensitive factor attachment protein, beta	Û	1.40	4.37E-06
NM_005381	2603460	NCL	nucleolin	Û	1.23	3.41E-05
NM_173474	3681674	NTAN1	N-terminal asparagine amidase	仓	1.21	0.002
NM_016118	3032017	NUB1	negative regulator of ubiquitin-like proteins	Û	1.21	0.004
NM_016297	2487696	PCYOX1	prenylcysteine oxidase 1	Û	1.28	0.018
NM_001185181	2903588	PFDN6	prefoldin subunit 6	仓	1.21	3.48E-04
NM_005482	2418929	PIGK	phosphatidylinositol glycan anchor biosynthesis, class K	Û	1.23	0.045
NM_004278	3711986	PIGL	phosphatidylinositol glycan anchor biosynthesis, class L	Û	1.33	1.75E-05
NM_033198	3750740	PIGS	phosphatidylinositol glycan anchor biosynthesis, class S	Û	1.20	0.002
NM_178517	3719150	PIGW	phosphatidylinositol glycan anchor biosynthesis, class W	仓	1.20	0.011
NM_032906	2777412	PIGY	phosphatidylinositol glycan anchor biosynthesis, class Y	仓	1.20	0.021
NM_015227	3934867	POFUT2	protein O-fucosyltransferase 2	Û	1.28	2.61E-06
NM_014337	3938244	PPIL2	peptidylprolyl isomerase (cyclophilin)-like 2	仓	1.21	3.70E-04
NM_002795	3719962	PSMB3	proteasome (prosome, macropain) subunit, beta type, 3	仓	1.33	0.002
NM_002803	3017206	PSMC2	proteasome (prosome, macropain) 26S subunit, ATPase, 2	仓	1.33	0.009
NM_002807	2531712	PSMD1	proteasome (prosome, macropain) 26S subunit, non-ATPase, 1	仓	1.30	2.24E-04
NM_002815	3717737	PSMD11	proteasome (prosome, macropain) 26S subunit, non-ATPase, 11	Û	1.24	2.07E-05

NM_014814	2679864	PSMD6	proteasome (prosome, macropain) 26S subunit, non-ATPase, 6	Û	1.30	4.44E-06
NM_002818	3557811	PSME2	proteasome (prosome, macropain) activator subunit 2 (PA28 beta)	Û	1.27	0.041
NM_004578	2384562	RAB4A	RAB4A. member RAS oncogene family	Û	1.24	0.005
NM_201434	3757664	RAB5C	RAB5C, member RAS oncogene family	Û	1.20	0.003
NM_002869	3381607	RAB6A	RAB6A, member RAS oncogene family	Û	1.35	0.009
NM_005370	3823554	RAB8A	RAB8A, member RAS oncogene family	Û	1.26	2.03E-04
NM_002871	245149	RABIF	RAB interacting factor	Û	1.21	0.030
NM_006013	3996306	RPL10	ribosomal protein L10	Û	1.36	5.40E-04
NM_033251	3674146	RPL13	ribosomal protein L13	Û	1.29	0.016
NM_000985	3807487	RPL17	ribosomal protein L17	Û	1.28	0.004
NR_002229	2482683	RPL23AP32	ribosomal protein L23a pseudogene 32	Û	1.23	0.007
NR_026982	3951136	RPL23AP82	ribosomal protein L23a pseudogene 82	Û	1.21	0.002
NM_000969	2346863	RPL5	ribosomal protein L5	Û	1.28	8.73E-05
NR_002775	3333086	RPLP0P2	ribosomal protein, large, P0 pseudogene 2	Û	1.22	0.003
NM_002950	2694397	RPN1	ribophorin I	Û	1.21	0.002
NM_001008	4028512	RPS4Y1	ribosomal protein S4, Y-linked 1	Û	1.61	0.041
NM_018144	3235414	SEC61A2	Sec61 alpha 2 subunit (<i>S. cerevisiae</i>)	Û	1.27	2.89E-05
NM_005065	3574207	SEL1L	sel-1 suppressor of lin-12-like 1 (<i>C. elegans</i>)	Û	1.24	3.60E-05
NM_015670	3708798	SENP3	SUM01/sentrin/SMT3 specific peptidase 3	Û	1.21	8.04E-05
NM_001037633	2877639	SIL1	SIL1 homolog, endoplasmic reticulum chaperone (<i>S. cerevisiae</i>)	Û	1.35	0.001
NM_153816	2963313	SNX14	sorting nexin 14	Û	1.23	1.94E-04
NM_002959	2427007	SORT1	sortilin 1	Û	1.56	0.013
NM_001002255	2930698	SUM04	SMT3 suppressor of mif two 3 homolog 4 (S. cerevisiae)	Û	1.34	0.001
NM_201631	3621080	TGM5	transglutaminase 5	Û	1.40	0.010
NM_007364	3603687	TMED3	transmembrane emp24 protein transport domain containing 3	Û	1.24	1.81E-05
NM_182547	3048778	TMED4	transmembrane emp24 protein transport domain containing 4	Û	1.30	5.78E-06
NM_015476	3804358	TPGS2	tubulin polyglutamylase complex subunit 2	Û	1.29	5.57E-05
NM_000391	3361041	TPP1	tripeptidyl peptidase I	Û	1.21	0.002
NM_018955	3712041	UBB	ubiquitin B	Û	1.25	0.003
NM_003336	3988874	UBE2A	ubiquitin-conjugating enzyme E2A (RAD6 homolog)	Û	1.20	0.006
NM_003337	2829275	UBE2B	ubiquitin-conjugating enzyme E2B (RAD6 homolog)	Û	1.20	0.020
NM_020131	2437893	UBQLN4	ubiquilin 4	Û	1.22	0.025
NM_175748	3549220	UBR7	ubiquitin protein ligase E3 component n-recognin 7 (putative)	Û	1.38	7.44E-04

2725013 2448971	UCHL1	ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)	Û	1.53	0.024
2448971					
	UCHLS	ubiquitin carboxyl-terminal hydrolase L5	Û	1.20	6.48E-04
3365487	UEVLD	UEV and lactate/malate dehydrogenase domains	仓	1.24	0.001
2654091	USP13	ubiquitin specific peptidase 13 (isopeptidase T-3)	Û	1.20	0.004
3685051	USP31	ubiquitin specific peptidase 31	仓	1.21	2.48E-05
2769063	USP46	ubiquitin specific peptidase 46	Û	1.22	0.001
3748400	USP6	ubiquitin specific peptidase 6 (Tre-2 oncogene)	Û	1.46	1.73E-04
4030063	USP9Y	ubiquitin specific peptidase 9, Y-linked	Û	1.43	0.015
3475838	VPS37B	vacuolar protein sorting 37 homolog B (S. cerevisiae)	Û	1.21	0.022
3569374	VTI1B	vesicle transport through interaction with t-SNAREs homolog 1B (yeast)	Û	1.30	0.012
3666897	WWP2	WW domain containing E3 ubiquitin protein ligase 2	Û	1.25	2.19E-05
3209623	ZFAND5	zinc finger, AN1-type domain 5	Û	1.30	4.01E-04
3260018	ZFYVE27	zinc finger, FYVE domain containing 27	Û	1.29	4.40E-07
ng					
3699707	ADAT1	adenosine deaminase, tRNA-specific 1	仓	1.28	7.55E-04
2988882	AIMP2	aminoacyl tRNA synthetase complex-interacting multifunctional protein 2	仓	1.25	0.004
3679533	CARHSP1	calcium regulated heat stable protein 1, 24kDa	仓	1.21	6.62E-04
2391532	CCNL2	cyclin L2	Û	1.21	0.005
2594497	CLK1	CDC-like kinase 1	Û	1.36	8.73E-04
2889698	CLK4	CDC-like kinase 4	Û	1.32	5.00E-05
3548788	CPSF2	cleavage and polyadenylation specific factor 2, 100kDa	仓	1.21	3.91E-04
2468920	CPSF3	cleavage and polyadenylation specific factor 3, 73kDa	仓	1.26	1.40E-05
3899954	CRNKL1	crooked neck pre-mRNA splicing factor-like 1 (Drosophila)	Û	1.21	9.28E-05
3884324	CTNNBL1	catenin, beta like 1	Û	1.23	2.00E-05
2812120	CWC27	CWC27 spliceosome-associated protein homolog (S. cerevisiae)	Û	1.22	0.003
2470654	DDX1	DEAD (Asp-Glu-Ala-Asp) box polypeptide 1	Û	1.26	1.53E-04
4030162	DDX3Y	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked	Û	1.64	0.028
3203086	DDX58	DEAD (Asp-Glu-Ala-Asp) box polypeptide 58	Û	1.29	0.016
3937183	DGCR8	DiGeorge syndrome critical region gene 8	Û	1.25	3.30E-05
2549007	DHX57	DEAH (Asp-Glu-Ala-Asp/His) box polypeptide 57	Û	1.24	0.001
2370991	DHX9	DEAH (Asp-Glu-Ala-Asp/His) box polypeptide 9	仓	1.21	0.015
3598613	DIS3L	DIS3 mitotic control homolog (S. cerevisiae)-like	Û	1.20	0.006
	3365487 2654091 3685051 2769063 3748400 4030063 3475838 3569374 3666897 3209623 3260018 <i>ing</i> 3699707 2988882 3679533 2391532 2594497 2889698 3548788 2468920 3899954 3884324 2812120 2470654 4030162 3203086 3937183 2549007 2370991 3598613	3365487 UEVLD 2654091 USP13 3685051 USP31 2769063 USP46 3748400 USP6 4030063 USP9Y 3475838 VPS37B 3569374 VTI1B 36666897 WWP2 3209623 ZFAND5 3260018 ZFYVE27 <i>ing</i> 3679533 CARHSP1 2391532 2594497 CLK1 2889698 CLK4 3548788 CPSF2 2468920 CPSF3 389954 CRNKL1 3884324 CTNNBL1 2812120 CWC27 2470654 DDX1 4030162 DDX3Y 3203086 DDX58 3937183 DGCR8 2549007 DHX57 2370991 DHX9 3598613 DIS3L	2110711Control336547UEVLDUEV and lactate/malate dehydrogenase domains2654091USP13ubiquitin specific peptidase 13 (isopeptidase T-3)3685051USP31ubiquitin specific peptidase 312769063USP46ubiquitin specific peptidase 463748400USP6ubiquitin specific peptidase 9, Y-linked3475838VPS37Bvacuolar protein sorting 37 homolog B (S. cerevisiae)3569374VT11Bvesicle transport through interaction with t-SNAREs homolog 1B (yeast)3666897WWP2WW domain containing E3 ubiquitin protein ligase 23209623ZFAND5zinc finger, AN1-type domain 53260018ZFYVE27zinc finger, FYVE domain containing 27 <i>ng</i> 3699707ADAT1adenosine deaminase, tRNA-specific 1298882AIMP2aminoacyl tRNA synthetase complex-interacting multifunctional protein 23679533CARHSP1calcium regulated heat stable protein 1, 24kDa2391532CCKL2cyclin L22594497CLK1CDC-like kinase 12889688CLK4CDC-like kinase 43548788CPSF2cleavage and polyadenylation specific factor 2, 100kDa384324CTNNBL1catenin, beta like 1288124CDX1DEAD (Asp-Glu-Ala-Asp) box polypeptide 1384324CTNNBL1catenin, beta like 128120CWC27CWC27 spliceosome-associated protein homolog (<i>S. cerevisiae</i>)2470654DDX1DEAD (Asp-Glu-Ala-Asp) box polypeptide 583937183DGCR8DiGeorge syndrome criti	2 Hor 11ControlControlControl3365487UEVLDUEV and lactate/malate dehydrogenase domains12654091USP13ubiquitin specific peptidase 13 (isopeptidase T-3)13665051USP31ubiquitin specific peptidase 3112769063USP46ubiquitin specific peptidase 4613748400USP4ubiquitin specific peptidase 6 (Tre-2 oncogene)14030063USP9Yubiquitin specific peptidase 9, Y-linked13669374VTI1Bvesicle transport through interaction with t-SNAREs homolog 1B (yeast)13660187ZFYVE27zinc finger, AN1-type domain 533209623ZFYVE27zinc finger, FVVE domain containing 2733099707ADAT1adenosine deaminase, tRNA-specific 11298882AIMP2aminoacyl tRNA synthetase complex-interacting multifunctional protein 213699707ADAT1adenosine deaminase, tRNA-specific 12298882CIK4CDC-like kinase 13289698CLK4CDC-like kinase 132886989CLK4CDC-like kinase 132889698CLK4CDC-like kinase 43384324CTNNBL1catein, beta like 112812120CWC27CWC27 spliccosome-associated protein homolog (S. cerevisiae)13937183DGCR8DiEdarden-Assp) box polypeptide 114030162DDX3YDEAD (Asp-Glu-Ala-Asp) box polypeptide 11303162DDX3YDEAD (Asp-Glu-Ala-Asp) box	2 + FOT 1ControlControl13365487UEVLDUEV and lactate/malate dehydrogenase domains11.242654091USP13ubiquitin specific peptidase 13 (isopeptidase T-3)11.213665051USP31ubiquitin specific peptidase 3111.212769063USP46ubiquitin specific peptidase 4611.223748400USP6ubiquitin specific peptidase 6 (Tre-2 oncogene)11.434030063USP9Yubiquitin specific peptidase 9, Y-linked11.433475838VPS37Bvacuolar protein sorting 37 homolog B (<i>S. cerevisiae</i>)11.213660187WWP2WW domain containing 13 ubiquitin protein ligase 211.303260018ZFYVE27zinc finger, AN1-type domain 511.303260018ZFYVE27zinc finger, FYVE domain containing 2711.253209623ZFAND5zinc finger, FYVE domain containing 2711.21298882AIMP2aminoacyl tRNA synthetase complex-interacting multifunctional protein 211.21298152CCNL2cyclin L211.211.253699707ADAT1adenosine deaminase, tRNA-specific 111.22298882AIMP2aminoacyl tRNA synthetase complex-interacting multifunctional protein 211.212981532CCNL2cyclin L211.211.253699797ADAT1adenosine deaminase, tRNA-specific factor 2, 100kDa11.212984998CLK4<

NM_001363	3996667	DKC1	dyskeratosis congenita 1, dyskerin	仓	1.26	3.63E-05
NM_013235	2851965	DROSHA	drosha, ribonuclease type III	Û	1.20	3.80E-04
NM_014285	3191695	EXOSC2	exosome component 2	Û	1.27	3.17E-06
NM_015962	3544216	FCF1	FCF1 small subunit (SSU) prcessome component homolog (S. cerevisiae)	Û	1.22	0.001
NM_017647	3766373	FTSJ3	FtsJ homolog 3 (<i>E. coli</i>)	Û	1.21	0.002
NM_015721	3739812	GEMIN4	gem (nuclear organelle) associated protein 4	Û	1.24	2.11E-04
NM_031370	2775463	HNRNPD	heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa)	Û	1.21	1.03E-05
NM_033416	2505501	IMP4	IMP4, U3 small nucleolar ribonucleoprotein, homolog (yeast)	Û	1.22	2.50E-04
NM_017813	3136413	IMPAD1	inositol monophosphatase domain containing 1	Û	1.26	0.011
NM_020701	2694617	ISY1	ISY1 splicing factor homolog (S. cerevisiae)	Û	1.31	3.26E-05
NM_007080	2746269	LSM6	LSM6 homolog, U6 small nuclear RNA associated (<i>S. cerevisiae</i>)	Û	1.23	1.29E-04
NM_016424	3726772	LUC7L3	LUC7-like 3 (S. cerevisiae)	Û	1.20	0.004
NM_018388	4022106	MBNL3	muscleblind-like splicing regulator 3	Û	1.25	0.006
NM_002486	3181302	NCBP1	nuclear cap binding protein subunit 1, 80kDa	Û	1.21	0.002
NM_001145408	3980887	NONO	non-POU domain containing, octamer-binding	Û	1.29	1.45E-04
NM_003703	2758076	NOP14	NOP14 nucleolar protein homolog (yeast)	Û	1.23	4.09E-05
NM_032141	2343170	NSRP1	nuclear speckle splicing regulatory protein 1	Û	1.21	2.12E-04
NM_005016	3416036	PCBP2	poly(rC) binding protein 2	Û	1.23	0.011
NM_031307	3396736	PUS3	pseudouridylate synthase 3	Û	1.26	6.95E-04
NM_016732	3882720	RALY	RNA binding protein, autoantigenic (hnRNP-associated with lethal yellow (mouse))	Û	1.22	6.04E-06
NM_017793	3633236	RPP25	ribonuclease P/MRP 25kDa subunit	Û	1.30	7.51E-05
NM_015056	3923218	RRP1B	ribosomal RNA processing 1 homolog B (S. cerevisiae)	Û	1.22	0.001
NM_016625	2649532	RSRC1	arginine/serine-rich coiled-coil 1	Û	1.39	4.09E-05
NM_006802	2407439	SF3A3	splicing factor 3a, subunit 3, 60kDa	Û	1.20	1.18E-06
NM_005066	2406064	SFPQ	splicing factor proline/glutamine-rich	Û	1.24	2.23E-04
NM_006527	2757319	SLBP	stem-loop binding protein	Û	1.28	0.003
NM_024571	3642572	SNRNP25	small nuclear ribonucleoprotein 25kDa (U11/U12)	Û	1.32	3.29E-05
NM_003093	2904248	SNRPC	small nuclear ribonucleoprotein polypeptide C	Û	1.24	7.91E-04
NM_006938	3781082	SNRPD1	small nuclear ribonucleoprotein polypeptide 16kDa	Û	1.43	7.62E-05
NM_005701	3633522	SNUPN	snurportin 1	Û	1.22	0.002
NM_003142	2514566	SSB	Sjogren syndrome antigen B (autoantigen La)	Û	1.21	7.59E-06
NM_014393	3140640	STAU2	staufen, RNA binding protein, homolog 2 (<i>Drosophila</i>)	Û	1.22	7.68E-04
NM_001159677	2963407	SYNCRIP	synaptotagmin binding, cytoplasmic RNA interacting protein	Û	1.23	0.002

NM_152295	2805786	TARS	threonyl-tRNA synthetase	Û	1.24	0.005
NM_014290	3181193	TDRD7	tudor domain containing 7	Û	1.22	4.97E-04
NM_024831	3098935	TGS1	trimethylguanosine synthase 1	Û	1.26	6.41E-05
NM_017872	2837479	THG1L	tRNA-histidine guanylyltransferase 1-like (<i>S. cerevisiae</i>)	Û	1.20	7.90E-04
AB052759	3041550	TRA2A	transformer 2 alpha homolog (<i>Drosophila</i>)	Û	1.31	0.013
NM_004593	2709062	TRA2B	transformer 2 beta homolog (Drosophila)	Û	1.23	1.82E-05
NM_006701	3814734	TXNL4A	thioredoxin-like 4A	Û	1.24	2.86E-04
NM_016037	2330899	UTP11L	UTP11-like, U3 small nucleolar ribonucleoprotein, (yeast)	Û	1.27	0.001
NM_006649	3990566	UTP14A	UTP14, U3 small nucleolar ribonucleoprotein, homolog A (yeast)	Û	1.40	3.24E-06
NM_014503	3428447	UTP20	UTP20, small subunit (SSU) processome component, homolog (yeast)	兌	1.20	0.007
NM_018428	3752437	UTP6	UTP6, small subunit (SSU) processome component, homolog (yeast)	Û	1.24	1.04E-04
NM_018256	2595443	WDR12	WD repeat domain 12	兌	1.23	0.001
NM_024102	2427930	WDR77	WD repeat domain 77	Û	1.41	6.98E-06
NM_032345	3457315	WIBG	within bgcn homolog (<i>Drosophila</i>)	Û	1.24	5.82E-06
Sensory Percep	tion					
NM_001004473	2362270	OR10K1	olfactory receptor, family 10, subfamily K, member 1	Û	1.21	0.008
NM_001004474	3395811	OR10S1	olfactory receptor, family 10, subfamily S, member 1	Û	1.42	0.002
NM_001004458	3331692	OR1S	olfactory receptor, family 1, subfamily S, member 1	Û	1.34	9.14E-05
NM_001001659	3029521	OR2A14	olfactory receptor, family 2, subfamily A, member 14	Û	1.23	0.002
NM_001005180	3318495	OR56B1	olfactory receptor, family 56, subfamily B, member 1	Û	1.32	0.045
NM_001004738	3330786	OR5L1	olfactory receptor, family 5, subfamily L, member 1	Û	1.20	0.031
NM_001005283	3331686	OR9Q2	olfactory receptor, family 9, subfamily Q, member 2	Û	1.22	2.09E-04
NM_005388	3224341	PDCL	phosducin-like	Û	1.20	0.011
NM_024065	2496280	PDCL3	phosducin-like 3	Û	1.21	8.72E-05
NM_016943	3027943	TAS2R3	taste receptor, type 2, member 3	Û	1.23	0.010
NM_176885	3444503	TAS2R31	taste receptor, type 2, member 31	Û	1.33	0.036
NM_016944	3027956	TAS2R4	taste receptor, type 2, member 4	Û	1.37	0.017
Signal Transdu	ction					
NM_007313	3191724	ABL1	abl oncogene 1, non-receptor tyrosine kinase	Û	1.30	1.63E-04
NM_006869	3034987	ADAP1	ArfGAP with dual PH domains 1	Û	1.28	0.003
NM_182901	3319685	AKIP1	A kinase (PRKA) interacting protein 1	Û	1.27	0.002
NM_001014432	3581132	AKT1	v-akt murine thymoma viral oncogene homolog 1	Û	1.24	2.89E-06
			500			

NM_004308	3371673	ARHGAP1	Rho GTPase activating protein 1	Û	1.26	5.13E-06
NM_014783	3587457	ARHGAP11A	Rho GTPase activating protein 11A	Û	1.28	1.43E-04
NM_152432	3346147	ARHGAP42	Rho GTPase activating protein 42	Û	1.20	0.008
NM_015313	3352503	ARHGEF12	Rho guanine nucleotide exchange factor (GEF) 12	Û	1.43	7.56E-04
NM_178815	3237548	ARL5B	ADP-ribosylation factor-like 5B	Û	1.20	0.003
NM_018482	3153428	ASAP1	ArfGAP with SH3 domain, ankyrin repeat and PH domain 1	Û	1.24	0.003
NM_005186	3334954	CAPN1	calpain 1, (mu/I) large subunit	Û	1.23	1.13E-04
NM_0017848	2382117	CAPN2	calpain 2, (mu/II) large subunit	Û	1.43	0.008
NM_004357	3316344	CD151	CD151 molecule (Raph blood group)	Û	1.36	0.005
NM_001780	3457160	CD63	CD63 molecule	Û	1.23	3.10E-04
NM_002231	3328520	CD82	CD82 molecule	Û	1.24	4.21E-05
NM_078481	3822657	CD97	CD97 molecule	Û	1.23	1.33E-05
NM_007236	3590341	СНР	calcium binding protein P22	Û	1.25	0.001
NM_000740	2387606	CHRM3	cholinergic receptor, muscarinic 3	Û	1.23	2.95E-04
NM_001004419	3404436	CLEC2D	C-type lectin domain family 2, member D	Û	1.29	5.79E-04
NM_003653	3747717	COPS3	COP9 constitutive photomorphogenic homolog subunit 3 (Arabidopsis)	Û	1.23	2.03E-04
NM_016129	2733928	COPS4	COP9 constitutive photomorphogenic homolog subunit 4 (Arabidopsis)	Û	1.33	2.09E-04
NM_177559	3894228	CSNK2A1	casein kinase 2, alpha 1 polypeptide	Û	1.25	1.72E-05
NM_004227	3037251	СҮТНЗ	cytohesin 3	Û	1.34	0.016
NM_139179	3037344	DAGLB	diacylglycerols lipase, beta	Û	1.23	1.83E-05
NM_013993	2901970	DDR1	discoidin domain receptor tyrosine kinase 1	Û	1.22	0.015
NM_015213	3362263	DENND5A	DENN/MADD domain containing 5A	Û	1.28	0.002
NM_003647	3727962	DGKE	diacylglycerol kinase, epsilon 64kDa	Û	1.23	0.006
NM_004717	3074912	DGKI	diacylglycerol kinase, iota	Û	1.21	0.025
NM_004418	3565119	DUSP2	dual specificity phosphatase 2	Û	1.21	0.006
NM_005228	3002640	EGFR	epidermal growth factor receptor	Û	1.29	0.001
NM_001098785	3335338	FAM89B	family with sequence similarity 89, member B	Û	1.31	0.005
NM_207123	2745547	GAB1	GRB2-associated binding protein 1	Û	1.32	0.008
NM_057169	3471005	GIT2	G protein-coupled receptor kinase interacting ArfGAP 2	Û	1.29	3.93E-05
NM_002069	3010439	GNAI1	guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1	Û	1.23	0.022
NM_021629	2706938	GNB4	guanine nucleotide binding protein (G protein), beta polypeptide 4	Û	1.24	2.62E-04
NM_004126	3012978	GNG11	guanine nucleotide binding protein (G protein), gamma 11	Û	1.32	9.52E-04
NM_001145772	3662808	GPR56	G protein-coupled receptor 56	Û	1.23	0.009

NM_003608	3547375	GPR65	G protein-coupled receptor 65	Û	1.22	0.003
NM_003979	3405587	GPRC5A	G protein-coupled receptor, family C, group 5, member A	Û	1.35	3.07E-04
NM_212492	3738490	GPS1	G protein pathway suppressor 1	Û	1.21	1.54E-04
NM_015666	3892509	GTPBP5	GTP binding protein 5 (putative)	Û	1.25	3.92E-06
NM_000867	2603395	HTR2B	5-hydroxytryptamine (serotonin) receptor 2B	Û	1.20	0.038
NM_001130699	2980449	IPCEF1	interaction protein for cytohesin exchange factors 1	Û	1.43	8.27E-04
NM_015541	2680591	LRIG1	leucine-rich repeats and immunoglobulin-like domains 1	Û	1.35	0.003
NM_004631	2413203	LRP8	low density lipoprotein receptor-related protein associated protein 8, apolipoprotein E receptor	Û	1.25	1.39E-05
NM_002337	2758298	LRPAP1	low density lipoprotein receptor-related protein associated protein 1	Û	1.25	0.002
NM_145109	3714729	MAP2K3	mitogen-activated protein kinase kinase 3	Û	1.20	0.001
NM_005204	3240987	MAP3K8	mitogen-activated protein kinase kinase kinase 8	Û	1.20	0.006
NM_004579	3377091	MAP4K2	mitogen-activated protein kinase kinase kinase kinase 2	Û	1.25	1.86E-04
NM_001006617	3225456	MAPKAP1	mitogen-activated protein kinase associated protein 1	Û	1.21	1.81E-04
NM_002436	4027585	MPP1	membrane protein, palmitoylated 1, 55kDa	Û	1.24	0.012
NM_000906	2359780	NPR1	natriuretic peptide receptor A/guanylate cyclase A (atrionatriuretic peptide receptor A)	Û	1.24	0.009
NM_201266	2524301	NRP2	neuropilin 2	Û	1.37	2.32E-05
NM_017906	2894663	PAK1IP1	PAK1 interacting protein 1	Û	1.41	2.87E-05
NM_002603	3138464	PDE7A	phosphodiesterase 7A	Û	1.30	0.001
NM_002609	2881239	PDGFRB	platelet-derived growth factor receptor, beta polypeptide	Û	1.22	0.008
NM_006207	3087703	PDGFRL	platelet-derived growth factor receptor-like	Û	1.24	0.002
NM_002567	3433796	PEBP1	phosphatidylethanolamine binding protein 1	Û	1.35	0.020
NM_002649	3018309	PIK3CG	phosphoinositide-3-kinase, catalytic, gamma polypeptide	Û	1.44	0.019
NM_052880	3957790	PIK3IP1	phosphoinositide-3-kinase interacting protein 1	Û	1.33	1.81E-04
NM_003629	2410470	PIK3R3	phosphoinositide-3-kinase, regulatory subunit 3 (gamma)	Û	1.28	0.006
NM_005028	3281068	PIP4K2A	phosphatidylinositol-5-phosphate 4-kinase, type II, alpha	Û	1.20	1.80E-05
NM_006224	3740304	PITPNA	phosphatidylinositol transfer protein, alpha	Û	1.24	0.001
NM_181671	3732230	PITPNC1	phosphatidylinositol transfer protein, cytoplasmic 1	Û	1.66	0.004
NM_001195608	3268274	PLEKHA1	pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1	Û	1.23	0.024
NM_002481	2375212	PPP1R12B	protein phosphatase 1, regulatory (inhibitor) subunit 12B	Û	1.39	3.92E-05
NM_006241	2712147	PPP1R2	protein phosphatase 1, regulatory (inhibitor) subunit 2	Û	1.49	1.04E-06
NM_002712	2536183	PPP1R7	protein phosphatase 1, regulatory (inhibitor) subunit 7	Û	1.21	2.24E-04
NM_000944	2449638	PPP3CA	protein phosphatase 3, catalytic subunit, alpha isozyme	Û	1.30	0.003
NM_001042388	3798291	PPP4R1	protein phosphatase 4, regulatory subunit 1	Û	1.27	3.72E-04

NM_006247	3836760	PPP5C	protein phosphatase 5, catalytic subunit	Û	1.22	6.06E-04
NM_014931	3871256	PPP6R1	protein phosphatase 6, regulatory subunit 1	Û	1.20	1.16E-05
NM_005399	2433209	PRKAB2	protein kinase, AMP-activated, beta 2 non-catalytic subunit	Û	1.33	2.66E-05
NM_002730	3852529	PRKACA	protein kinase, cAMP-dependent, catalytic, alpha	Û	1.30	1.54E-06
NM_182948	2344393	PRKACB	protein kinase, cAMP-dependent, catalytic, beta	Û	1.36	0.013
NM_016457	3866135	PRKD2	protein kinase D2	Û	1.22	1.01E-04
NM_080391	2404819	PTP4A2	protein tyrosine phosphatase type IVA, member 2	Û	1.32	4.08E-05
NM_014369	2505529	PTPN18	protein tyrosine phosphatase, non-receptor type 18 (brain-derived)	Û	1.20	7.76E-05
NM_080549	3403092	PTPN6	protein tyrosine phosphatase, non-receptor type 6	Û	1.21	3.11E-09
NM_002833	3633460	PTPN9	protein tyrosine phosphatase, non-receptor type 9	Û	1.23	0.002
NM_002843	3329983	PTPRJ	protein tyrosine phosphatase, receptor type, J	Û	1.54	0.004
NM_006861	3474228	RAB35	RAB35, member RAS oncogene family	Û	1.22	5.63E-05
NM_001100426	2736853	RAP1GDS1	RAP1, GTP-GDP dissociation stimulator 1	Û	1.29	0.007
NM_005739	3618736	RASGRP1	RAS guanyl releasing protein 1 (calcium and DAG-regulated)	Û	1.36	0.017
NM_002928	2447148	RGS16	regulator of G-protein signalling 16	Û	1.23	0.034
NM_001039467	3914307	RGS19	regulator of G-protein signalling 19	Û	1.23	0.001
NM_002923	2372858	RGS2	regulator of G-protein signalling 2, 24kDa	Û	1.74	0.002
NM_021205	2384401	RHOU	ras homolog gene family, member U	Û	1.42	0.001
NM_033103	3858852	RHPN2	rhophilin, Rho GTPase binding protein 2	Û	1.27	0.005
NM_002966	2435383	S100A10	S100 calcium binding protein A10	Û	1.43	0.003
NM_017789	2565592	SEMA4C	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic	Û	1.32	5.97E-05
			domain, (semaphorin) 4C			
NM_003612	3632907	SEMA7A	semaphorin 7A, GPI membrane anchor (John Milton Hagen blood group)	Û	1.22	8.72E-05
NM_004844	2664209	SH3BP5	SH3-domain binding protein 5 (BTK-associated)	Û	1.36	0.030
NM_003028	3205659	SHB	Src homology 2 domain containing adaptor protein B	Û	1.22	0.024
NM_024745	3689880	SHCBP1	SHC SH2-domain binding protein 1	Û	1.44	2.40E-05
NM_003930	3042610	SKAP2	src kinase associated phosphoprotein 2	Û	1.22	5.55E-04
NM_005900	2746119	SMAD1	SMAD family member 1	Û	1.32	0.029
NM_021069	2796995	SORBS2	sorbin and SH3 domain containing 2	Û	1.25	0.003
NM_181784	2556752	SPRED2	sprout-related, EVH1 domain containing 2	Û	1.30	0.001
NM_012108	2729667	STAP1	signal transducing adaptor family member 1	Û	1.27	0.008
NM_018201	3190737	TBC1D13	TBC1 domain family, member 13	Û	1.21	3.24E-04
NM_004257	2568630	TGFBRAP1	transforming growth factor, beta receptor associated protein 1	Û	1.32	5.72E-07

NM_012339	3250373	TSPAN15	tetraspanin 15	Û	1.48	0.001
NM_213655	3400384	WNK1	WNK lysine deficient protein kinase 1	Û	1.35	0.010
NM_003404	3886639	YWHAB	tyrosine 3-monooxygenase/tryptophoan 5-monooxygenase activation protein, beta polypeptide	Û	1.21	9.37E-04
NR_024058	3740126	YWHAE	tyrosine 3-monooxygenase/tryptophoan 5-monooxygenase activation protein, epsilon polypeptide	Û	1.24	4.48E-04
Transcription						
NM_018011	3524618	ARGLU1	arginine and glutamate rich 1	Û	1.26	2.52E-05
NM_004674	3094447	ASH2L	ash 2 (absent, small, or homeotic)-like (<i>Drosophila</i>)	얍	1.29	5.94E-07
NM_014670	2522439	BZW1	basic leucine zipper and W2 domains 1	Û	1.22	0.016
NM_138414	3686587	CCDC101	coiled-coil domain containing 101	Û	1.28	2.10E-05
NM_015076	2969467	CDK19	cyclin-dependent kinase 19	Û	1.24	1.79E-04
NM_015442	2616018	CNOT10	CCR4-NOT transcription complex, subunit 10	Û	1.20	1.21E-04
NM_004779	2836856	CNOT8	CCR4-NOT transcription complex, subunit 8	Û	1.20	6.46E-04
NM_182898	2994558	CREB5	cAMP responsive element binding protein 5	Û	1.27	0.023
NM_001039618	3385003	CREBZF	CREB/ATF bZIP transcription factor	Û	1.26	3.82E-05
NM_183013	3242353	CREM	cAMP responsive element modulator	Û	1.27	6.12E-05
NM_005730	3458911	CTDSP2	CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 2	Û	1.22	7.21E-04
NM_014633	3320301	CTR9	Ctr9, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)	Û	1.22	5.02E-04
NM_003472	2944068	DEK	DEK oncogene	Û	1.30	7.87E-06
NM_194249	2878461	DND1	dead end homolog 1 (zebrafish)	Û	1.21	0.034
NM_001130823	3850069	DNMT1	DNA (cytosine-5-)-methyltransferase 1	Û	1.32	9.61E-06
NM_014597	2423597	DNTTIP2	deoxynucleotidyltransferase, terminal, interacting protein 2	兌	1.30	7.72E-05
NM_032574	2547386	DPY30	dpy-30 homolog (<i>C. elegans</i>)	얍	1.21	0.002
NM_001950	3665288	E2F4	E2F transcription factor 4, p107/p130-binding	Û	1.30	2.80E-05
NM_024757	3195400	EHMT1	euchromatic histone-lysine N-methyltransferase 1	兌	1.23	2.49E-04
NM_001421	4021433	ELF4	E74-like factor 4 (ets domain transcription factor)	兌	1.27	2.58E-05
NR_036472	3111530	ENY2	enhancer of yellow 2 homolod (<i>Drosophila</i>)	兌	1.24	0.014
NM_015630	2509832	EPC2	enhancer of polycomb homolog 2 (Drosophila)	Û	1.28	7.83E-05
NM_002017	3355733	FLI1	Friend leukemia virus integration 1	兌	1.22	0.004
NM_004514	3775147	FOXK2	forkhead box K2	Û	1.26	4.41E-04
NM_003934	3191589	FUBP3	far upstream element (FUSE) binding protein 3	Û	1.23	6.94E-04
NM_005254	3623683	GABPB1	GA binding protein transcription factor, beta subunit 1	Û	1.21	1.48E-04
NM_001002295	3234277	GATA3	GATA binding protein 3	Û	1.22	0.037

NM_017660	3825713	GATAD2A	GATA zinc finger domain containing 2A	Û	1.28	1.77E-05
NM_006582	2327603	GMEB1	glucocorticoid modulatory element binding protein 1	Û	1.23	7.98E-05
NM_001514	2421753	GTF2B	general transcription factor IIB	Û	1.27	0.001
NM_005513	2638467	GTF2E1	general transcription factor IIE, polypeptide 1, alpha 56kDa	Û	1.26	0.003
NM_207118	29335522	GTF2H5	general transcription factor IIH, polypeptide 5	Û	1.39	0.020
NR_033441	2970532	HDAC2	histone deacetylase 2	Û	1.20	1.64E-05
NM_030763	4013828	HMGN5	high-mobility group nucleosome binding domain 5	Û	1.48	0.001
NM_001163280	3992521	HTATSF1	HIV-1 Tat specific factor 1	Û	1.28	3.48E-04
NM_002166	2468622	ID2	inhibitor of DNA binding 2, dominant negative helix-loop-helix protein	Û	1.30	0.014
NM_003884	2613441	KAT2B	K(lysine) acetyltransferase 2B	Û	1.23	0.002
NM_003597	2469213	KLF11	Kruppel-like factor 11	Û	1.23	0.046
NM_031918	3845553	KLF16	Kruppel-like factor 16	Û	1.26	7.89E-05
NM_001730	3493543	KLF5	Kruppel-like factor 5 (intestinal)	Û	1.22	0.001
NM_030973	3838947	MED25	mediator complex subunit 25	Û	1.27	1.56E-08
NM_006337	3453882	MCRS1	microspherule protein 1	Û	1.20	6.87E-05
NM_005098	3140213	MSC	musculin	Û	1.28	7.16E-04
NM_006800	3968833	MSL3	male-specific lethal 3 homolog (Drosophila)	Û	1.29	0.001
NM_005966	2520225	NAB1	NGFI-A binding protein 1 (EGR1 binding protein 1)	Û	1.29	0.006
NM_052876	3822195	NACC1	nucleus accumbens associated 1, BEN and BTB (POZ) domain containing	Û	1.29	9.63E-07
NM_147223	2473149	NCOA1	nuclear receptor coactivator 1	Û	1.34	6.71E-07
NM_020967	3907652	NCOA5	nuclear receptor coactivator 5	Û	1.35	2.94E-05
NM_003204	3725035	NFE2L1	nuclear factor (erythroid-derived 2)-like 1	Û	1.25	9.84E-05
NM_205843	3816919	NFIC	nuclear factor I/C (CCAAT-binding transcription factor)	Û	1.20	8.77E-05
NM_021005	3610110	NR2F2	nuclear receptor subfamily 2, group F, member 2	Û	1.45	0.022
NM_012345	3512449	NUFIP1	nuclear fragile X mental retardation protein interacting protein 1	Û	1.24	7.46E-04
NM_018165	2676219	PBRM1	polybromo 1	Û	1.20	0.002
NM_020524	2436938	PBXIP1	pre-B-cell leukemia homeobox interacting protein 1	Û	1.31	4.48E-06
NM_003662	4000560	PIR	pirin (iron-binding nuclear protein)	Û	1.22	0.048
NM_002657	3902682	PLAGL2	pleiomorphic adenoma gene-like 2	Û	1.20	0.007
NM_018082	3430129	POLR3B	polymerase (RNA) III (DNA directed) polypeptide B	Û	1.26	0.001
NM_032305	2432571	POLR3GL	polymerase (RNA) III (DNA directed) polypeptide G (32kD)-like	Û	1.32	2.96E-09
NM_007062	3430552	PWP1	PWP1 homolog (S. cerevisiae)	Û	1.27	2.45E-06
NM_014868	3434413	RNF10	ring finger protein 10	Û	1.20	4.96E-04

NM_024604	3452622	RPAP3	RNA polymerase II associated protein 3	Û	1.32	5.74E-06
NM_002957	3193339	RXRA	retinoid X receptor, alpha	Û	1.26	4.73E-04
NM_005870	3480657	SAP18	Sin3A-associated protein, 18kDa	Û	1.20	0.012
NR_024084	2836665	SAP30L	SAP30-like	Û	1.21	2.76E-04
NM_012237	3861689	SIRT2	sirtuin 2	Û	1.21	0.019
NM_024755	3626704	SLTM	SAFB-like, transcription modulator	Û	1.29	8.81E-04
NM_003079	3756344	SMARCE1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily E, member 1	Û	1.23	1.87E-05
NM_020197	2379754	SMYD2	SET and MYND domain containing 2	Û	1.35	3.53E-05
NM_001167740	2464909	SMYD3	SET and MYND domain containing 3	Û	1.21	3.01E-04
NM_003113	2531377	SP100	SP100 nuclear antigen	Û	1.20	0.006
NM_003121	3839346	SPIB	Spi-B transcription factor (Spi-1/PU.1 related)	Û	1.32	0.002
NM_145716	2413685	SSBP3	single stranded DNA binding protein 3	Û	1.36	0.005
NM_003146	3373724	SSRP1	structure specific recognition protein 1	Û	1.29	2.72E-04
NM_006713	2805581	SUB1	SUB1 homolog (S. cerevisiae)	Û	1.21	0.013
NM_139215	3718791	TAF15	TAF15 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 68kDa	Û	1.20	4.58E-05
NM_005680	2469094	TAF1B	TATA box binding protein (TBP)-associated factor, RNA polymerase I, B, 63kDa	Û	1.23	0.009
NM_138572	2907018	TAF8	TAF8 RNA polymerase II, TATA box binding protein (TBP)-associated factor 43kDa	Û	1.20	0.003
NM_001006933	3985644	TCEAL3	transcription elongation factor A (SII)-like 3	Û	1.20	0.005
NM_007111	3502710	TFDP1	transcription factor Dp-1	Û	1.32	3.18E-08
NM_007005	3176209	TLE4	transducin-like enhancer of split 4 (E(sp1) homolog, <i>Drosophila</i>)	Û	1.38	9.07E-05
NM_033502	2954025	TRERF1	transcriptional regulating factor 1	Û	1.21	0.038
NM_001076683	3758967	UBTF	ûstream binding transcription factor, RNA polymerase I	Û	1.26	5.49E-07
NM_003796	3828162	URI1	URI1, prefoldin-like chaperone	Û	1.22	1.95E-04
NM_007146	3764066	VEZF1	vascular endothelial zinc finger 1	Û	1.21	2.66E-04
NM_025234	3634588	WDR61	WD repeat domain 61	Û	1.20	7.41E-04
NM_006530	3421523	YEATS4	YEATS domain containing 4	Û	1.22	0.003
NM_006977	3568310	ZBTB25	zinc finger and BTB domain containing 25	Û	1.35	1.28E-04
NM_014383	3830680	ZBTB32	zinc finger and BTB domain containing 32	Û	1.26	0.011
NM_015898	3846594	ZBTB7A	zinc finger and BTB domain containing 7A	Û	1.21	1.22E-06
NM_153688	3668898	ZFP1	zinc finger protein 1 homolog (mouse)	Û	1.24	3.27E-04
NM_001143823	3797015	ZFP161	zinc finger protein 161 homolog (mouse)	Û	1.24	8.88E-04
NM_020828	3842794	ZFP28	zinc finger protein 28 homolog (mouse)	Û	1.30	0.005
NM_133458	3666282	ZFP90	zinc finger protein 90 homolog (mouse)	Û	1.20	0.007

NM_003411	4028568	ZFY	zinc finger protein Y-linked	Û	1.25	0.008
NM_006624	3231389	ZMYND11	zinc finger, MYND domain containing 11	Û	1.25	5.99E-04
NM_033204	3825911	ZNF101	zinc finger protein 101	Û	1.22	0.025
NM_003431	2465551	ZNF124	zinc finger protein 124	Û	1.25	0.003
NM_003432	2808290	ZNF131	zinc finger protein 131	Û	1.27	0.003
NM_013256	3864921	ZNF180	zinc finger protein 180	Û	1.23	0.002
NR_024565	3784509	ZNF271	zinc finger protein 271	Û	1.21	0.006
NM_001172674	3870135	ZNF347	zinc finger protein 347	Û	1.31	0.002
NM_001007094	3243164	ZNF37A	zinc finger protein 37A	Û	1.20	0.002
NM_007130	4007086	ZNF41	zinc finger protein 41	Û	1.20	2.26E-04
NM_001001668	3842839	ZNF470	zinc finger protein 470	Û	1.22	9.59E-04
NM_144684	3840142	ZNF480	zinc finger protein 480	Û	1.41	2.96E-04
NM_020855	3826803	ZNF492	zinc finger protein 492	Û	1.34	0.005
NR_003699	3840944	ZNF525	zinc finger protein 525	Û	1.22	0.007
NM_020951	3860552	ZNF529	zinc finger protein 529	Û	1.21	0.008
NM_018181	3790361	ZNF532	zinc finger protein 532	Û	1.25	0.017
NR_033418	3842675	ZNF542	zinc finger protein 542	Û	1.36	1.81E-04
NM_014630	3605832	ZNF592	zinc finger protein 592	Û	1.24	4.94E-04
NM_025040	3869379	ZNF614	zinc finger protein 614	Û	1.24	0.004
NM_145295	3821301	ZNF627	zinc finger protein 627	Û	1.21	0.021
NM_152320	3453120	ZNF641	zinc finger protein 641	Û	1.20	0.009
NM_023070	3453120	ZNF643	zinc finger protein 643	Û	1.27	6.36E-04
NM-152373	2331974	ZNF684	zinc finger protein 684	Û	1.20	2.84E-06
NM_001042510	3147020	ZNF706	zinc finger protein 706	Û	1.24	0.014
NM_153028	3645816	ZNF75A	zinc finger protein 75A	Û	1.30	0.004
AK093979	3645836	ZNF75A	zinc finger protein 75A	Û	1.33	0.005
NM_001008401	3840857	ZNF761	zinc finger protein 761	Û	1.22	0.032
NR_027788	3078656	ZNF767	zinc finger protein 767	Û	1.21	0.010
NM_015694	3078597	ZNF777	zinc finger protein 777	Û	1.21	3.42E-04
NR_027049	3821701	ZNF788	zinc finger protein 788	Û	1.26	1.91E-05
NM_001145434	3840194	ZNF880	zinc finger protein 880	Û	1.28	0.024
NM_152626	3005069	ZNF92	zinc finger protein 92	Û	1.24	6.18E-04

Miscellaneous

NM_001143948	2941972	ADTRP	androgen-dependent TFPI-regulatory protein	Û	1.30	0.019
NM_018046	2816563	AGGF1	angiogenic factor with G patch and FHA domains 1	Û	1.23	1.66E-04
NM_031917	3850020	ANGPTL6	angiopoietin-like 6	Û	1.28	3.80E-04
NM_145343	3944404	APOL1	apolipoprotein L, 1	Û	1.31	0.025
NR_027833	3959350	APOL3	apolipoprotein L, 3	Û	1.22	0.008
NM_001174150	2632453	ARL13B	ADP-ribosylation factor-like 13B	Û	1.23	1.18E-04
NM_001183	3996381	ATP6AP1	ATPase, H+ transporting, lysosomal accessory protein 1	Û	1.27	6.13E-05
NM_004047	2333658	ATP6V0B	ATPase, H+ transporting, lysosomal 21kDa, V0 subunit b	Û	1.27	0.002
NM_012105	3921933	BACE2	beta-site APP-cleaving enzyme 2	Û	1.55	0.010
NM_001042440	2821194	CAST	calpastatin	Û	1.23	1.46E-05
NM_007097	2888304	CLTB	clathrin, light chain B	Û	1.21	3.75E-05
NM_001304	3716411	CPD	carboxypeptidase D	Û	1.24	0.014
NM_182485	2719361	CPEB2	cytoplasmic polyadenylation element binding protein 2	Û	1.20	0.022
NM_001308	3303227	CPN1	carboxypeptidase N, polypeptide 1	Û	1.20	0.033
NM_006565	3665603	CTCF	CCCTC-binding factor (zinc finger protein)	Û	1.20	1.36E-04
NM_00112605	3859761	DMKN	dermokine	Û	1.21	0.032
NM_182314	4021633	ENOX2	ecto-NOX disulphide-thiol exchanger 2	Û	1.32	2.37E-05
NM_018145	3619595	FAM82A2	family with sequence similarity 82, member A2	Û	1.23	6.37E-04
NR_024042	3382698	GUCY2E	guanylate cyclase 2E	Û	1.23	0.005
NM_001142556	2838656	HMMR	hyaluronan-mediated motility receptor (RHAMM)	Û	1.21	0.048
NM_020153	3393834	IFT46	intraflagellar transport 46 homolog (<i>Chlamydomonas</i>)	Û	1.20	8.72E-04
NM_016004	3886179	IFT52	intraflagellar transport 52 homolog (<i>Chlamydomonas</i>)	Û	1.26	4.00E-05
NM_198690	3923857	KRTAP10-9	keratin associated protein 10-9	Û	1.23	0.005
NM_181605	3917582	KRTAP6-3	keratin associated protein 6-3	Û	1.35	0.003
NM_002294	4019849	LAMP2	lysosomal-associated membrane protein 2	Û	1.23	0.003
NM_178428	2359377	LCE2A	late cornified envelope 2A	Û	1.30	8.90E-04
NM_000427	2359646	LOR	loricrin	Û	1.21	0.033
NM_001136493	2331679	MFSD2A	major facilitator superfamily domain containing 2A	Û	1.20	0.004
NM_152649	3699080	MLKL	mixed lineage kinase domain-like	Û	1.20	0.031
NM_032117	2748163	MND1	meiotic nuclear divisions 1 homolog (<i>S. cerevisiae</i>)	Û	1.47	6.57E-04
NM_018365	3625761	MNS1	meiosis-specific nuclear structural 1	Û	1.39	4.19E-05

NM_000252	3994795	MTM1	myotubularin 1	Û	1.41	6.29E-05
NM_006432	3571904	NPC2	Niemann-Pick disease, type C2	Û	1.21	2.35E-04
NM_002616	3744150	PER1	period homolog 1 (<i>Drosophila</i>)	Û	1.21	0.016
NM_003847	3638566	PEX11A	peroxisomal biogenesis factor 11 alpha	Û	1.22	0.002
NM_000941	3009229	POR	P450 (cytochrome) oxidoreductase	Û	1.23	0.001
NM_016488	3412008	PPHLN1	periphilin 1	Û	1.22	1.23E-05
NM_000311	3874751	PRNP	prion protein	Û	1.26	0.004
NM_007238	3903169	PXMP4	peroxisomal membrane protein 4, 24kDa	Û	1.23	2.86E-04
NM_004160	3758775	РҮҮ	peptide YY	Û	1.26	0.008
NR_024210	3942805	RNF185	ring finger protein 185	Û	1.22	0.013
NM_001031709	3299408	RNLS	renalase, FAD-dependent amine oxidase	Û	1.24	0.002
NM_006461	3750785	SPAG5	sperm associated antigen 5	Û	1.20	0.004
NM_004890	3742415	SPAG7	sperm associated antigen 7	Û	1.21	0.001
NM_080608	3907507	SPATA25	spermatogenesis associated 25	Û	1.34	5.99E-06
NM_145207	2742134	SPATA5	spermatogenesis associated 5	Û	1.26	8.44E-05
NM_001100422	2522094	SPATS2L	spermatogenesis associated, serine-rich 2-like	Û	1.39	8.44E-05
NM_004099	3223928	STOM	stomatin	Û	1.20	0.011
NM_032300	3431318	ТСНР	trichoplein, keratin filament binding	Û	1.24	5.78E-05
NM_018073	3360189	TRIM68	tripartite motif-containing 68	Û	1.27	1.78E-05
NM_004622	2503618	TSN	translin	Û	1.21	9.99E-04
NM_178562	3023318	TSPAN33	tetraspanin 33	Û	1.22	0.002
NM_003920	3457824	TIMELESS	timeless homolog (Drosophila)	Û	1.22	0.003
NM_014688	3277468	USP6NL	USP6 N-terminal like	Û	1.35	8.93E-05
NM_172005	3887004	WFDC13	WAP four-disulfide core domain 13	Û	1.21	0.007
NM_032312	2476176	YIPF4	Yip1 domain family, member 4	Û	1.26	9.68E-04
Unknown Funct	tion					
NM_020676	2626097	ABHD6	adhydrolase domain containing 6	Û	1.51	1.06E-04
NM_020186	3013952	ACN9	ACN9 homolog (S. cerevisiae)	Û	1.29	1.12E-06
NM_139056	2800026	ADAMTS16	ADAM metallopeptidase with thromospondin type 1 motif, 16	Û	1.26	3.31E-05
NM_178563	3025678	AGBL3	ATP/GTP binding protein-like 3	Û	1.20	0.048
NR_026903	3767280	AMZ2P1	archaelysin family metallopeptidase 2 pseudogene 1	Û	1.22	0.008
NM_017664	3525679	ANKRD10	ankyrin repeat domain 10	Û	1.28	2.46E-05

NR_003366	2564520	ANKRD20B	ankyrin repeat domain 20B	Û	1.22	0.012
NM_032139	3858659	ANKRD27	ankyrin repeat domain 27 (VPS9 domain)	Û	1.33	8.03E-04
NM_052855	3762416	ANKRD40	ankyrin repeat domain 40	Û	1.23	1.92E-04
NM_030920	2434319	ANP32E	acidic (leucine-rich) nuclear phosphoprotein 32 family, member E	Û	1.34	1.91E-04
NM_174890	3286975	ANUBL1	AN1, ubiquitin-like, homolog (<i>Xenopus laevis</i>)	Û	1.25	0.002
NM_006407	2628682	ARL6IP5	ADP-ribosylation-like factor 6 interacting protein 5	Û	1.25	0.003
NM_182482	3924929	BAGE2	B melanoma antigen family, member 2	Û	1.30	0.019
NM_004326	2356818	BCL9	B-cell CLL/lymphoma 9	Û	1.29	3.38E-04
NM_032320	3363645	BTBD10	BTB (POZ) domain containing 10	Û	1.28	1.81E-04
NM_022153	3293724	C10orf54	chromosome 10 open reading frame 54	Û	1.34	1.51E-04
NM_025125	3254337	C10orf57	chromosome 10 open reading frame 57	Û	1.27	0.004
NM_170746	3331603	C11orf31	chromosome 11 open reading frame 31	Û	1.22	4.86E-04
BC056402	3333999	C11orf84	chromosome 11 open reading frame 84	Û	1.23	4.88E-06
NM_018169	3410384	C12orf35	chromosome 12 open reading frame 35	Û	1.21	0.033
NM_138779	3523855	C13orf27	chromosome 13 open reading frame 27	Û	1.39	8.70E-06
NM_032490	3577256	C14orf142	chromosome 14 open reading frame 142	Û	1.67	3.03E-04
NM_152446	3573933	C14orf145	chromosome 14 open reading frame 145	Û	1.41	3.89E-04
NM_152446	3573994	C14orf145	chromosome 14 open reading frame 145	Û	1.23	0.011
NM_015492	3602116	C15orf39	chromosome 15 open reading frame 39	Û	1.23	0.001
NM_020314	3651057	C16orf62	chromosome 16 open reading frame 62	Û	1.21	0.006
NM_024109	3647368	C16orf68	chromosome 16 open reading frame 68	Û	1.21	3.76E-04
NM_030806	2371547	C1orf21	chromosome 1 open reading frame 21	Û	1.39	0.029
NM_020317	2402111	C1orf63	chromosome 1 open reading frame 63	Û	1.21	0.003
NM_012261	3876084	C20orf103	chromosome 20 open reading frame 103	Û	1.82	0.006
NM_017896	3893072	C20orf11	chromosome 20 open reading frame 11	Û	1.22	0.001
NM_016470	3906821	C20orf111	chromosome 20 open reading frame 111	Û	1.20	0.042
NM_022106	3891643	C20orf177	chromosome 20 open reading frame 177	Û	1.22	2.46E-04
AF391113	3923982	C21orf70	chromosome 21 open reading frame 70	Û	1.38	8.61E-05
NR_026997	3965102	C22orf34	chromosome 22 open reading frame 34	Û	1.22	0.036
NM_00100988	3963676	C22orf9	chromosome 22 open reading frame 9	Û	1.22	0.005
AF236158	2627080	C3orf14	chromosome 3 open reading frame 14	Û	1.25	0.005
NM_178339	2617148	C3orf35	chromosome 3 open reading frame 35	Û	1.21	0.005
NM_178496	2711034	C3orf59	chromosome 3 open reading frame 59	Û	1.77	0.002
NM_017867	2793310	C4orf27	chromosome 4 open reading frame 27	Û	1.31	0.001
--------------	---------	----------	---	---	------	----------
NM_198567	2842429	C5orf25	chromosome 5 open reading frame 25	①	1.26	1.94E-05
NM_198566	2855614	C5orf34	chromosome 5 open reading frame 34	Û	1.22	0.003
NM_021243	2927967	C6orf115	chromosome 6 open reading frame 115	Û	1.33	0.005
NR_024185	3074101	C7orf49	chromosome 7 open reading frame 49	Û	1.20	0.018
NM_001001551	3176933	C9orf103	chromosome 9 open reading frame 103	Û	1.21	0.002
NM_016390	3226709	C9orf114	chromosome 9 open reading frame 114	Û	1.20	0.003
AY598327	3182199	C9orf30	chromosome 9 open reading frame 30	Û	1.42	1.05E-05
NR_024274	3164999	C9orf53	chromosome 9 open reading frame 53	Û	1.38	1.81E-04
NM_153045	3186207	C9orf91	chromosome 9 open reading frame 91	Û	1.28	8.45E-04
NM_005093	3882533	CBFA2T2	core-binding factor, runt domain, alpha subunit 2; translocated to, 2	Û	1.22	8.53E-04
NM_201453	3208355	CBWD3	COBW domain containing 3	Û	1.41	0.008
NM_138442	3824648	CCDC124	coiled-coil domain containing 124	Û	1.29	1.22E-05
NM_176816	2860614	CCDC125	coiled-coil domain containing 125	Û	1.22	5.46E-04
NM_024821	3947096	CCDC134	coiled-coil domain containing 134	Û	1.20	0.026
NR_036647	3748449	CCDC144B	coiled-coil domain containing 144B	Û	1.43	0.046
NM_025004	3354389	CCDC15	coiled-coil domain containing 15	Û	1.27	1.66E-05
NM_206886	2347023	CCDC18	coiled-coil domain containing 18	Û	1.20	0.031
NM_199342	2409069	CCDC23	coiled-coil domain containing 23	Û	1.41	0.048
NM_018246	3129121	CCDC25	coiled-coil domain containing 25	Û	1.20	1.70E-04
NM_030771	3367036	CCDC34	coiled-coil domain containing 34	Û	1.32	5.57E-06
NM_020198	3766334	CCDC47	coiled-coil domain containing 47	Û	1.21	1.27E-04
NM_024661	2673257	CCDC51	coiled-coil domain containing 51	Û	1.20	0.003
NM_005436	3290785	CCDC6	coiled-coil domain containing 6	Û	1.22	1.82E-05
NM_032358	3400190	CCDC77	coiled-coil domain containing 77	仓	1.20	3.07E-04
NM_024098	3332548	CCDC86	coiled-coil domain containing 86	Û	1.22	0.002
NM_018074	3817400	CCDC94	coiled-coil domain containing 94	Û	1.20	9.83E-05
NM_052848	3834149	CCDC97	coiled-coil domain containing 97	仓	1.22	9.77E-05
NM_176096	3724989	CDK5RAP3	CDK5 regulatory subunit associated protein 3	Û	1.25	1.37E-04
NM_207390	3822849	CLEC17A	C-type lectin domain family 17, member A	Û	1.28	1.07E-04
NM_024734	3577940	CLMN	calmin (calponin-like, transmembrane)	Û	1.49	0.008
NM_001294	3835935	CLPTM1	cleft lip and palate associated transmembrane protein 1	Û	1.20	7.15E-04
NM_020184	2494709	CNNM4	cyclin M4	Û	1.31	0.002

NM_001031717	2610136	CRELD1	cysteine-rich with EGF-like domains 1	Û	1.26	5.71E-05
NM_033027	2669930	CSRNP1	cysteine-serine-rich nuclear protein 1	Û	1.26	0.008
NM_024040	3304355	CUEDC2	CUE domain containing 2	Û	1.20	5.12E-06
BC001220	3982242	CXorf26	chromosome X open reading frame 26	Û	1.26	4.60E-04
NM_138496	3158697	CYHR1	cysteine/histidine-rich 1	Û	1.20	0.002
NM_032576	4031068	CYorf15B	chromosome Y open reading frame 15B	Û	1.44	0.032
NM_018369	2858592	DEPDC1B	DEP domain containing 1B	Û	1.34	1.05E-04
NM_024308	3719210	DHRS11	dehydrogenase/reductase (SDR family) member 11	Û	1.22	0.004
NM_017613	3929775	DONSON	upstream neighbour of SON	Û	1.23	8.53E-04
NM_152726	3504791	EFHA1	EF-hand domain family, member A1	Û	1.23	1.37E-04
NM_015036	3345427	ENDOD1	endonuclease domain containing 1	Û	1.21	0.005
NM_014805	2669157	EPM2AIP1	EPM2A (laforin) interacting protein 1	Û	1.22	5.93E-05
NM_020728	3082248	ESYT2	extended synaptotagmin-like protein 2	Û	1.21	2.90E-05
NM_138348	2802739	FAM105B	family with sequence similarity 105, member B	Û	1.22	0.002
NM_198947	3331903	FAM111B	family with sequence similarity 111, member B	Û	1.59	1.18E-06
NM_00107952	2889241	FAM153B	family with sequence similarity 153, member B	Û	1.23	0.008
NM_199133	2848233	FAM173B	family with sequence similarity 173, member B	Û	1.20	0.039
NM_198507	2821981	FAM174A	family with sequence similarity 174, member A	Û	1.32	0.003
NM_207446	3639406	FAM174B	family with sequence similarity 174, member B	Û	1.38	0.010
NM_004816	3173974	FAM189A2	family with sequence similarity 189, member A2	Û	1.27	0.001
NM_198076	2464484	FAM36A	family with sequence similarity 36, member A	Û	1.29	0.002
NM_017709	2353988	FAM46C	family with sequence similarity 46, member C	Û	1.50	0.033
BC017297	3153328	FAM49B	family with sequence similarity 49, member B	Û	1.29	5.39E-04
NM_152450	3596109	FAM81A	family with sequence similarity 81, member A	Û	1.20	0.004
AK123321	2536996	FLJ41327	FLJ41327 protein	Û	1.44	0.002
AK127732	3902372	FLJ45832	FLJ45832 protein	Û	1.20	0.009
NM_207647	3183238	FSD1L	fibronectin type III and SPRY domain containing 1-like	Û	1.27	0.013
NM_015660	3031556	GIMAP2	GTPase, IMAP family member 2	Û	1.32	0.004
NM_024711	3079103	GIMAP6	GTPase, IMAP family member 6	Û	1.33	0.011
NM_016080	3739827	GLOD4	glyoxalase domain containing 4	Û	1.26	3.62E-04
NM_144669	3437500	GLT1D1	glycosyltransferase 1 domain containing 1	Û	1.36	0.036
NM_015698	4007815	GPKOW	G patch domain and KOW motifs	Û	1.22	2.26E-04
NM_001136557	3191338	GPR107	G protein-coupled receptor 107	Û	1.28	1.73E-05

NM_001136557	3191273	GPR107	G protein-coupled receptor 107	Û	1.26	9.66E-07
NM_001033045	2587790	GPR155	G protein-coupled receptor 155	Û	1.21	0.025
NM_014373	2651835	GPR160	G protein-coupled receptor 160	Û	1.50	0.005
NM_001146321	2827057	GRAMD3	GRAM domain containing 3	Û	1.30	0.034
NR_003081	3955070	GSTTP1	glutathione S-transferase theta pseudogene 1	Û	1.29	0.027
NM_014170	2636272	GTPBP8	GTP-binding protein 8 (putative)	Û	1.20	0.010
NR_003660	2958861	GUSBP4	glucuronidase, beta pseudogene 4	Û	1.32	0.004
NM_014282	3180957	HABP4	hyaluronan binding protein 4	仓	1.21	0.008
AY358246	2948169	HCG8	HLA complex group 8	Û	1.27	0.022
NM_016063	2972759	HDDC2	HD domain containing 2	Û	1.21	0.003
NM_001001520	3817546	HDGFRP2	hepatoma-derived growth factor-related protein 2	Û	1.21	1.21E-04
NM_001135565	3998444	HDHD1	haloacid dehalogenase-like hydrolase domain containing 1	Û	1.32	1.89E-04
NM_024746	2457496	HHIPL2	HHIP-like 2	Û	1.20	0.008
NM_145014	3354879	HYLS1	hydrolethalus syndrome 1	Û	1.20	0.006
NM_001542	2429914	IGSF3	immunoglobulin superfamily, member 3	Û	1.25	8.68E-04
NM_006844	3853063	ILVBL	ilvB (bacterial acetolactate synthase)-like	Û	1.21	1.40E-05
NM_004867	4013549	ITM2A	integral membrane protein 2A	Û	1.22	0.016
NM_017969	2574884	IWS1	IWS1 homolog (<i>S. cerevisiae</i>)	Û	1.27	5.65E-05
NM_001039846	3816225	IZUM04	IZUMO family member 4	Û	1.37	6.75E-05
NM_032505	2628260	KBTBD8	kelch repeat and BTB (POZ) domain containing 8	Û	1.23	0.025
NM_152387	2594435	KCTD18	potassium channel tetramerisation domain containing 18	Û	1.21	0.007
NM_018992	3645204	KCTD5	potassium channel tetramerisation domain containing 5	Û	1.23	2.24E-04
NM_153033	3005684	KCTD7	potassium channel tetramerisation domain containing 7	Û	1.24	0.004
NM_014949	2437753	KIAA0907	KIAA0907	Û	1.20	6.35E-04
NM_001080392	3076753	KIAA1147	KIAA1147	Û	1.26	0.021
NR_026716	3841525	KIR3DX1	killer cell immunoglobulin-like receptor, three domain, X1	Û	1.23	0.049
ENST00000392647	2514563	KLHL23	kelch-like 23 (Drosophila)	Û	1.22	0.028
NM_017644	2655113	KLHL24	kelch-like 24 (Drosophila)	Û	1.28	0.007
NM_016027	3139950	LACTB2	lactamase, beta 2	Û	1.26	0.006
NM_014713	2542737	LAPTM4A	lysosomal protein transmembrane 4 alpha	Û	1.20	5.77E-04
NM_144652	3094611	LETM2	lymphoid enhancer-binding factor 1	Û	1.21	0.006
NM_032338	3460584	LLPH	LLP homolog, long-term synaptic facilitation (Aplysia)	Û	1.34	2.60E-04
AY358109	3440998	LOC100128816	LOC100128816	Û	1.28	0.001

NR_034127	2855443	LOC100132356	hypothetical LOC100132356	Û	1.22	0.002
XM_003119162	2464129	LOC100506975	hypothetical protein LOC100506975	Û	1.20	0.020
NR_024333	3850501	LOC147727	hypothetical LOC147727	Û	1.30	0.001
NM_030891	3923764	LRRC3	leucine rich repeat containing 3	Û	1.21	0.002
NM_001105659	2418339	LRRIQ3	leucine-rich repeats and IQ motif containing 3	仓	1.27	0.005
NM_001128301	3651588	LYRM1	LYR motif containing 1	仓	1.23	5.32E-05
NM_153374	3624273	LYSMD2	LysM, putative peptidoglycan-binding, domain containing 2	仓	1.22	0.013
NR_002776	3924518	MCM3AP-AS	MCM3AP antisense RNA (non-protein coding)	Û	1.28	4.15E-04
NR_027350	3496366	MIR17HG	MIR17 host gene (non-protein coding)	Û	1.26	0.005
NM_024761	3202316	MOBKL2B	MOB1, Mps One Binder kinase activator-like 2B (yeast)	仓	1.45	6.11E-04
AB014771	2775390	MOP-1	MOP-1	Û	1.24	0.013
NM_015529	2974413	MOXD1	monooxygenase, DBH-like 1	Û	1.60	0.018
NM_018229	3537557	MUDENG	MU-2/AP1M2 domain containing, death-inducing	Û	1.24	1.01E-04
NM_052818	3508644	N4BP2L1	NEDD4 binding protein 2-like 1	Û	1.23	0.015
NM_174928	3504392	N6AMT2	N-6 adenine-specific DNA methyltransferase 2 (putative)	Û	1.21	0.002
AY168775	3996598	NCRNA00204	non-protein coding RNA 204	Û	1.48	0.029
NR_024277	2983138	NCRNA00241	non-protein coding RNA 241	Û	1.21	0.016
NM_018376	3182984	NIPSNAP3B	nipsnap homolog 3B (<i>C. elegans</i>)	Û	1.44	4.48E-04
NM_130464	3684100	NPIPL3	nuclear pore complex interacting protein-like 3	Û	1.20	0.013
NM_001128211	3148796	NUDCD1	NudC domain containing 1	Û	1.21	0.005
NM_018233	3662041	OGFOD1	2-oxoglutarate and iron-dependent oxygenase domain containing 1	Û	1.24	3.38E-04
NM_016018	3116535	PHF20L1	PHD finger protein 20-like 1	Û	1.22	0.002
NM_024297	3743464	PHF23	PHD finger protein 23	Û	1.30	1.22E-04
NM_016619	2775909	PLAC8	placenta-specific 8	Û	1.23	0.033
NM_020143	2486740	PNO1	partner of NOB1 homolog (S. cerevisiae)	Û	1.28	0.001
NR_034180	2360939	POU5F1P4	POU class 5 homeobox 1 pseudogene 4	Û	1.34	7.77E-06
NM_001102559	3131881	PPAPDC1B	phosphatidic acid phosphatase type 2 domain containing 1B	Û	1.31	4.35E-05
NM_018304	3728964	PRR11	proline rich 11	Û	1.22	0.011
NM_004676	4031692	PRY	PTPN13-like, Y-linked	Û	1.49	0.005
NM_030664	3236786	PTER	phosphotriesterase related	Û	1.26	2.41E-05
NM_017432	3839006	PTOV1	prostate tumor overexpressed 1	Û	1.29	4.25E-04
NM_019042	3066436	PUS7	pseudouridylate synthase 7 homolog (<i>S. cerevisiae</i>)	Û	1.20	0.006
NM_015361	2507380	R3HDM1	R3H domain containing 1	Û	1.21	3.03E-04

						JIOID 00
NM_016024	3990795	RBMX2	RNA binding motif protein, X-linked 2	仓	1.34	1.54E-05
NM_001268	3513549	RCBTB2	regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing 2	Û	1.46	3.07E-04
NM_002901	3325503	RCN1	reticulocalbin 1, EF-hand calcium binding domain	Û	1.41	0.010
NM_002902	3602723	RCN2	reticulocalbin 2, EF-hand calcium binding domain	Û	1.28	0.003
NM_172239	3143112	REX01L1	REX1, RNA exonuclease 1 homolog (<i>S. cerevisiae</i>)-like 1	Û	1.62	0.002
NM_031480	2893721	RIOK1	RIO kinase 1 (yeast)	얍	1.23	0.001
NM_032194	2921374	RPF2	ribosome production factor 2 homolog (S. cerevisiae)	얍	1.29	4.22E-04
BC0171734	3383046	RPS20P27	ribosomal protein S20 pseudogene 27	Û	1.30	0.005
NM_152260	3589997	RPUSD2	RNA pseudouridylate synthase domain containing 2	企	1.21	8.54E-05
NM_198467	3010030	RSBN1L	round spermatid basic protein 1-like	企	1.21	0.001
NM_032167	3648412	RUNDC2A	RUN domain containing 2A	Û	1.21	0.002
NM_016940	3928040	RWDD2B	RWD domain containing 2B	企	1.24	0.005
NM_152682	2796066	RWDD4	RWD domain containing 4	企	1.26	0.046
NM_017654	3061438	SAMD9	sterile alpha motif domain containing 9	企	1.30	0.015
NR_004859	3605780	SCAND2	SCAN domain containing 2, pseudogene	Û	1.21	2.04E-04
NM_001143998	3735752	SEC14L1	SEC14-like 1 (S. cerevisiae)	企	1.22	0.003
NM_015187	2764192	SEL1L3	sel-1 suppressor of lin-12-like 3 (<i>C. elegans</i>)	Û	1.32	0.041
NM_020755	2972310	SERINC1	serine incorporator 1	Û	1.31	7.62E-07
NM_001174072	2864449	SERINC5	serine incorporator 5	Û	1.25	0.015
NM_002640	3791996	SERPINB8	serpin peptidase inhibitor, clade B (ovalbumin), member 8	Û	1.41	5.40E-04
NM_006216	2601414	SERPINE2	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2	Û	1.22	0.040
NM_032840	3455973	SPRYD3	SPRY domain containing 3	企	1.22	9.62E-04
NM_018079	2551327	SRBD1	S1 RNA binding domain 1	企	1.36	2.15E-06
NM_022906	3006133	STAG3L4	stromal antigen 3-like 4	Û	1.28	0.005
NM_020799	3257031	STAMBPL1	STAM binding protein-like 1	Û	1.23	0.017
NM_012453	3056131	TBL2	transducing (beta)-like 2	Û	1.26	2.16E-05
NM_198524	3594986	TEX9	testis expressed 9	企	1.48	0.008
NM_024838	3239380	THNSL1	threonine synthase-like 1 (<i>S. cerevisiae</i>)	企	1.36	8.25E-04
NM_017736	3683783	THUMPD1	THUMP domain containing 1	企	1.21	2.88E-04
NM_145715	2735598	TIGD2	tigger transposable element derived 2	얍	1.29	2.35E-04
NM_003258	3772158	TK1	thymidine kinase 1, soluble	얍	1.46	1.69E-06
NM_078474	3642358	TM2D3	TM2 domain containing 3	Û	1.45	1.47E-06

NM_020123	3301857	TM9SF3	transmembrane 9 superfamily member 3	Û	1.20	0.004
NM_014742	3881686	TM9SF4	transmembrane 9 superfamily protein member 4	Û	1.22	6.56E-06
NM_020698	3466206	TMCC3	transmembrane and coiled-coil domain family 3	Û	1.25	0.007
NM_018447	2662491	TMEM111	transmembrane protein 111	Û	1.23	0.002
NM_031925	3057520	TMEM120A	transmembrane protein 120A	Û	1.26	0.030
NM_018295	3025740	TMEM140	transmembrane protein 140	Û	1.31	1.80E-04
NM_024943	2766289	TMEM156	transmembrane protein 156	Û	1.35	0.037
NM_017814	3855506	TMEM161A	transmembrane protein 161A	Û	1.20	4.54E-04
NM_198536	3850832	TMEM205	transmembrane protein 205	Û	1.20	0.004
NM_018252	2454661	TMEM206	transmembrane protein 206	Û	1.27	0.002
NM_014187	3665357	TMEM208	transmembrane protein 208	Û	1.40	8.90E-06
NM_152417	3136015	TMEM68	transmembrane protein 68	Û	1.26	0.010
NM_015497	3620515	TMEM87A	transmembrane protein 87A	Û	1.23	9.16E-05
NM_016456	2450668	TMEM9	transmembrane protein 9	Û	1.27	1.48E-04
NM_001042595	3834176	TMEM91	transmembrane protein 91	Û	1.26	0.037
NM_003449	2948259	TRIM26	tripartite motif-containing 26	Û	1.46	1.39E-06
NM_017583	3326842	TRIM44	tripartite motif-containing 44	Û	1.21	2.55E-04
NM_032765	2845078	TRIM52	tripartite motif-containing 52	Û	1.22	0.025
NM_030912	3261820	TRIM8	tripartite motif-containing 8	Û	1.21	0.003
NM_018259	3327948	TTC17	tetratricopeptide repeat domain 17	Û	1.20	5.83E-06
NM_001135993	3781980	TTC39C	tetratricopeptide repeat domain 39C	Û	1.56	2.54E-04
NM_175852	2328713	TXLNA	taxilin alpha	Û	1.23	4.43E-05
NM_014044	2495555	UNC50	ubiquitin specific peptidase 9, Y-linked	Û	1.20	7.82E-04
NM_007125	4035017	UTY	ubiquitously transcribed tetratricopeptide repeat gene, Y-linked	Û	1.49	0.043
NM_024029	3850576	YIPF2	Yip1 domain family, member 2	Û	1.31	4.28E-04
NM_017665	2875634	ZCCHC10	zinc finger, CCHC domain containing 10	Û	1.20	0.002
NM_016505	2328236	ZCCHC17	zinc finger, CCHC domain containing 17	Û	1.20	9.05E-04
NM_144723	2832081	ZMAT2	zinc finger, matrin-type 2	Û	1.23	6.85E-04

Transcript	Symbol	p-value									
3173880	TJP2	4.08E-18	3346548	BIRC3	1.71E-08	3023350	SMO	3.80E-07	3604147	KIAA1199	2.20E-06
3253880	PPIF	3.77E-16	3129731	DUSP4	1.78E-08	3459120	LRIG3	4.09E-07	3064361	ACHE	2.25E-06
3666779	NFAT5	1.58E-15	2400322	HP1BP3	2.22E-08	2878726	HDAC3	4.12E-07	3303059	SLC25A28	2.29E-06
3002640	EGFR	1.69E-14	2888648	RAB24	2.41E-08	3806525	PIAS2	4.37E-07	2775214	PRKG2	2.30E-06
2622469	RBM5	4.76E-14	2456849	RAB3GAP2	2.43E-08	3064006	C7orf47	4.40E-07	3081862	PTPRN2	2.31E-06
3542207	SRSF5	8.59E-14	3233431	FBX018	2.68E-08	3087813	PCM1	4.47E-07	3363923	COPB1	2.42E-06
3377044	SF1	6.88E-13	3847814	KHSRP	2.81E-08	3628650	HERC1	5.14E-07	2768273	NFXL1	2.48E-06
2655688	EIF4G1	1.42E-12	3393200	PCSK7	2.82E-08	2891241	DUSP22	5.50E-07	2610336	VHL	2.73E-06
3989721	STAG2	1.57E-12	3204744	TLN1	4.26E-08	2800026	ADAMTS16	5.70E-07	2546008	SUPT7L	2.73E-06
2400793	HSPG2	1.72E-12	3475717	RSRC2	4.67E-08	3724591	C17orf57	5.75E-07	2878778	FCHSD1	2.74E-06
3400034	WNK1	1.74E-12	3860208	ALKBH6	5.72E-08	3741528	TAX1BP3	7.24E-07	3835675	CEACAM19	2.88E-06
3955815	HPS4	1.95E-12	3484497	FRY	6.03E-08	2892738	PRPF4B	7.68E-07	3416256	HOXC13	2.88E-06
3708663	CHRNB1	1.82E-11	3553872	KLC1	6.90E-08	3643966	CRAMP1L	7.83E-07	2436401	JTB	2.91E-06
2964350	MDN1	3.65E-11	3602116	C15orf39	6.92E-08	3966000	TYMP	7.94E-07	3425108	C12orf29	3.13E-06
3518496	MYCBP2	1.09E-10	2639054	PARP14	9.40E-08	3536706	LGALS3	8.65E-07	3815493	HMHA1	3.14E-06
3614087	UBE3A	1.21E-10	3824395	PGLS	9.45E-08	3729834	TBX2	9.69E-07	2409344	MED8	3.30E-06
3417842	LRP1	1.24E-10	2664099	MRPS25	9.97E-08	4027176	FLNA	1.10E-06	2476219	BIRC6	3.47E-06
2704894	PHC3	1.41E-10	2842951	NSD1	1.05E-07	2545653	MPV17	1.10E-06	3719161	GGNBP2	4.17E-06
3413344	PFKM	2.78E-10	3704717	ANKRD11	1.12E-07	3430776	ISCU	1.11E-06	2548500	PRKD3	4.22E-06
2560254	AUP1	6.16E-10	2329887	NCDN	1.78E-07	2589017	PDE11A	1.12E-06	3611744	LRRK1	4.36E-06
3607447	ABHD2	1.40E-09	3880767	PYGB	1.83E-07	2881747	ANXA6	1.17E-06	3338060	MYEOV	4.46E-06
3372459	FNBP4	1.77E-09	3199790	PSIP1	2.04E-07	2673345	COL7A1	1.21E-06	2419235	FUBP1	4.65E-06
2838598	CCNG1	2.20E-09	3539724	SYNE2	2.12E-07	3631498	LARP6	1.22E-06	2647898	MED12L	4.79E-06
3607275	ISG20	3.56E-09	3552847	DYNC1H1	2.28E-07	2373336	CFH	1.25E-06	2320727	TNFRSF1B	4.80E-06
2508611	ARHGAP15	4.52E-09	3310479	NSMCE4A	2.32E-07	2698738	XRN1	1.26E-06	2986546	PDCD2	5.11E-06
3820865	CARM1	6.50E-09	2852591	ADAMTS12	2.33E-07	2866704	ARRDC3	1.26E-06	2524653	ADAM23	5.19E-06
3311269	FAM53B	8.21E-09	3923436	TRAPPC10	2.83E-07	2372781	RGS1	1.27E-06	3831831	HKR1	5.21E-06
3110999	OXR1	8.39E-09	2532699	INPP5D	2.95E-07	3387033	MRE11A	1.55E-06	3654859	ATXN2L	5.26E-06
2888485	HK3	9.27E-09	3339261	IL18BP	3.05E-07	2621122	NBEAL2	1.57E-06	2831719	ANKHD1	5.69E-06
3548346	CALM1	9.71E-09	3082248	ESYT2	3.36E-07	2789957	FBXW7	1.64E-06	2548970	SRSF7	6.17E-06
2809128	ITGA1	1.27E-08	3795680	THOC1	3.46E-07	3860003	PRODH2	1.88E-06	3498502	TM9SF2	6.66E-06
3708306	ACADVL	1.28E-08	3719883	MLLT6	3.73E-07	2434776	CDC42SE1	1.89E-06	2409970	HECTD3	6.72E-06

2560076	RTKN	7.21E-06	3841157	CACNG8	1.73E-05	3466206	TMCC3	2.87E-05	3063685	MCM7	4.21E-05
3868183	NUP62	7.63E-06	2340845	MIER1	1.75E-05	4012511	NAP1L2	2.98E-05	2619344	NKTR	4.24E-05
3190463	ODF2	7.71E-06	3335517	KAT5	1.75E-05	2949885	GPSM3	3.01E-05	3703799	KLHDC4	4.27E-05
2522616	CFLAR	7.90E-06	2520429	MY01B	1.79E-05	3391816	USP28	3.02E-05	3261544	GBF1	4.42E-05
3655140	NFATC2IP	7.95E-06	3665550	FAM65A	1.89E-05	3418214	MBD6	3.05E-05	2609960	TTLL3	4.43E-05
3771513	PRPSAP1	8.33E-06	3282463	MKX	1.92E-05	2927506	TNFAIP3	3.09E-05	2991233	AHR	4.68E-05
3744229	TMEM107	8.81E-06	3192693	CEL	1.93E-05	3551935	WDR25	3.12E-05	3457101	ITGA7	4.71E-05
3354879	HYLS1	8.99E-06	2414505	C8B	1.98E-05	3976299	ARAF	3.20E-05	3850859	RGL3	4.76E-05
3529601	FITM1	9.42E-06	3952360	PRODH	2.00E-05	2363248	LY9	3.23E-05	3690388	ABCC12	4.79E-05
2714132	PDE6B	9.63E-06	2446198	TOR1AIP2	2.01E-05	3744263	AURKB	3.25E-05	3042421	HNRNPA2B1	4.86E-05
3693183	CIAPIN1	9.76E-06	3000984	ABCA13	2.07E-05	3568310	ZBTB25	3.31E-05	3908963	B4GALT5	4.94E-05
2920962	FIG4	9.98E-06	3986647	VSIG1	2.12E-05	3670772	CMIP	3.40E-05	3704299	MVD	4.95E-05
2546795	CAPN13	1.00E-05	2321238	PRDM2	2.13E-05	3383081	INTS4	3.41E-05	4002081	MAP7D2	4.99E-05
3741585	ITGAE	1.05E-05	2322103	SPEN	2.22E-05	3703164	COX4NB	3.49E-05	3417249	ERBB3	5.05E-05
3120887	ZNF517	1.07E-05	3739679	VPS53	2.32E-05	2674229	GPX1	3.57E-05	3182409	ZNF189	5.07E-05
3057550	STYXL1	1.09E-05	3381377	FCHSD2	2.32E-05	3740479	PRPF8	3.57E-05	3257559	RPP30	5.24E-05
3354174	TBRG1	1.14E-05	2673937	QARS	2.34E-05	3914072	ARFRP1	3.63E-05	2788511	SLC10A7	5.26E-05
2692573	CCDC14	1.27E-05	3933999	U2AF1	2.37E-05	2732844	ANXA3	3.78E-05	3284596	PARD3	5.29E-05
3762198	COL1A1	1.28E-05	2992197	SP4	2.48E-05	3194635	C9orf86	3.87E-05	3119945	GRINA	5.32E-05
2800906	MTRR	1.33E-05	2491615	MAT2A	2.50E-05	3750740	PIGS	3.88E-05	2406677	STK40	5.41E-05
3721956	TUBG2	1.35E-05	2877028	KLHL3	2.50E-05	4011464	PJA1	3.90E-05	2539125	CMPK2	5.42E-05
4015602	TRMT2B	1.37E-05	2623922	STAB1	2.59E-05	2655387	EIF2B5	3.95E-05	3190394	URM1	5.60E-05
2318086	KCNAB2	1.40E-05	2889382	PROP1	2.63E-05	2934801	MAP3K4	3.96E-05	3011861	STEAP2	5.68E-05
3335600	SNX32	1.42E-05	3795312	CTDP1	2.64E-05	2673312	PFKFB4	3.96E-05	3961955	PHF5A	5.73E-05
4025339	IDS	1.42E-05	3556418	METTL3	2.66E-05	2806799	NIPBL	3.97E-05	2826159	SNCAIP	5.75E-05
3634852	RASGRF1	1.45E-05	3706736	TMEM93	2.68E-05	3942648	TUG1	4.03E-05	3653317	RBBP6	5.76E-05
3770944	H3F3B	1.46E-05	2827709	ISOC1	2.76E-05	3620380	PLA2G4D	4.05E-05	2362892	ATP1A2	6.01E-05
3225003	PSMB7	1.50E-05	3273601	IDI1	2.77E-05	3147321	UBR5	4.09E-05	2442800	ADCY10	6.05E-05
3656829	BCKDK	1.54E-05	3449368	CAPRIN2	2.79E-05	3933550	TFF2	4.11E-05	2590452	CERKL	6.05E-05
3441941	VAMP1	1.56E-05	2551327	SRBD1	2.81E-05	3962997	EFCAB6	4.11E-05	3772581	USP36	6.14E-05
3535125	ATP5S	1.65E-05	2402536	TRIM63	2.82E-05	2758978	EVC2	4.12E-05	3023318	TSPAN33	6.17E-05
3445643	HIST4H4	1.66E-05	2623180	RAD54L2	2.82E-05	3168415	CLTA	4.13E-05	3334954	CAPN1	6.17E-05
3334025	MARK2	1.70E-05	3393536	TMPRSS13	2.84E-05	3941907	EWSR1	4.19E-05	3771800	SRSF2	6.22E-05

3141857	TPD52	6.33E-05	3620880	UBR1	9.78E-05	3029129	ZYX	1.29E-04	2326912	WDTC1	1.68E-04
3743611	NEURL4	6.35E-05	3490504	ALG11	9.92E-05	3260895	SEMA4G	1.30E-04	2389247	KIF26B	1.69E-04
3911177	ZBP1	6.45E-05	3261723	TMEM180	1.00E-04	2798952	NKD2	1.31E-04	2730257	C4orf40	1.70E-04
2346074	ZNF326	6.62E-05	2823820	WDR36	1.01E-04	2638988	PARP15	1.31E-04	3757690	KCNH4	1.71E-04
3068519	C7orf60	6.73E-05	3708764	TNFSF12-13	1.02E-04	3442427	LPCAT3	1.31E-04	2442493	GPA33	1.75E-04
2957499	ICK	6.98E-05	3859761	DMKN	1.03E-04	2475042	PLB1	1.33E-04	3655708	C16orf53	1.77E-04
3164181	RRAGA	7.04E-05	3942179	MTMR3	1.03E-04	3960061	RAC2	1.34E-04	2886130	PANK3	1.80E-04
2905664	ZFAND3	7.36E-05	3923257	PDXK	1.04E-04	2775994	HPSE	1.35E-04	3647504	PMM2	1.80E-04
2621333	PTPN23	7.37E-05	3228007	SETX	1.04E-04	3625052	WDR72	1.39E-04	3484768	PDS5B	1.81E-04
2425118	SASS6	7.38E-05	2592268	STAT1	1.07E-04	2903034	CYP21A2	1.40E-04	3685610	ARHGAP17	1.86E-04
2491386	TCF7L1	7.42E-05	3360941	ARFIP2	1.09E-04	3290210	ZWINT	1.45E-04	3454006	FMNL3	1.86E-04
2462329	ERO1LB	7.51E-05	2560625	FAM176A	1.10E-04	2443335	SLC19A2	1.48E-04	2659676	LOC152217	1.89E-04
3903836	EIF6	7.54E-05	3118818	PTP4A3	1.11E-04	3279698	CUBN	1.48E-04	3229741	LHX3	1.90E-04
3514639	DHRS12	7.54E-05	3692280	IRX3	1.11E-04	3771037	WBP2	1.51E-04	3837081	NPAS1	1.90E-04
3034987	ADAP1	7.61E-05	2847264	MED10	1.13E-04	3398482	SNX19	1.52E-04	3010503	CD36	1.92E-04
2450568	CACNA1S	7.75E-05	3349660	HTR3B	1.15E-04	3634588	WDR61	1.54E-04	2991395	HDAC9	1.93E-04
3645549	CLDN9	7.94E-05	3701433	C16orf46	1.16E-04	2686646	SENP7	1.54E-04	2332999	WDR65	1.94E-04
3663055	C16orf57	7.99E-05	3976766	WAS	1.16E-04	3848745	FBN3	1.56E-04	3040073	SNX13	1.94E-04
3773174	CBX4	8.01E-05	3108901	VPS13B	1.16E-04	3962678	PACSIN2	1.56E-04	3398754	C11orf39	1.95E-04
3846403	MATK	8.03E-05	4018080	CHRDL1	1.16E-04	2390489	ZNF672	1.57E-04	3204721	TPM2	1.97E-04
2903574	B3GALT4	8.19E-05	3380365	SHANK2	1.19E-04	3304301	PSD	1.58E-04	3222534	ASTN2	2.09E-04
3452865	COL2A1	8.20E-05	2440625	DEDD	1.19E-04	3268669	BUB3	1.59E-04	3597603	USP3	2.09E-04
3633890	SCAPER	8.24E-05	3259087	C10orf129	1.20E-04	3475679	ZCCHC8	1.59E-04	2878987	PCDH12	2.09E-04
3387771	CCDC82	8.43E-05	3977651	MAGED1	1.20E-04	2369110	RASAL2	1.61E-04	3336238	DPP3	2.10E-04
3686080	NSMCE1	8.63E-05	3335952	PACS1	1.21E-04	2942432	C6orf114	1.61E-04	2755897	MGC39584	2.13E-04
2756673	GAK	8.71E-05	4000704	AP1S2	1.22E-04	3866135	PRKD2	1.61E-04	2904788	C6orf81	2.14E-04
2550790	LRPPRC	8.82E-05	3804000	INO80C	1.22E-04	3886889	PIGT	1.62E-04	3276337	ITIH5	2.15E-04
3036985	RNF216	8.94E-05	3994964	GPR50	1.25E-04	3679812	GRIN2A	1.62E-04	3894545	SDCBP2	2.18E-04
3822849	CLEC17A	9.41E-05	3741800	ATP2A3	1.26E-04	3085874	MTMR9	1.63E-04	3761395	HOXB6	2.19E-04
3301556	TCTN3	9.50E-05	3768015	HELZ	1.27E-04	3867796	TEAD2	1.63E-04	2426385	VAV3	2.20E-04
3846238	C19orf28	9.56E-05	2789266	LRBA	1.27E-04	2459793	C1orf96	1.64E-04	2342176	FPGT	2.22E-04
2881370	CD74	9.62E-05	2876011	SKP1	1.27E-04	3028011	MGAM	1.65E-04	3281068	PIP4K2A	2.22E-04
4027708	MTCP1	9.71E-05	3708704	POLR2A	1.28E-04	3075136	CREB3L2	1.66E-04	3940001	SPECC1L	2.24E-04

2616596	ARPP21	2.24E-04	3035892	GNA12	2.99E-04	2835792	GM2A	3.75E-04	2319225	H6PD	4.71E-04
3754469	ACACA	2.28E-04	2673594	CELSR3	2.99E-04	3592214	DUOX1	3.84E-04	3662876	CCDC135	4.73E-04
3639031	PRC1	2.30E-04	3241316	ZEB1	3.03E-04	3741715	CAMKK1	3.88E-04	3750767	ALDOC	4.74E-04
3846363	APBA3	2.31E-04	2626097	ABHD6	3.05E-04	3240340	WAC	3.89E-04	3619595	FAM82A2	4.79E-04
2870828	STARD4	2.33E-04	3939498	SLC2A11	3.07E-04	2407496	POU3F1	3.98E-04	2742224	SPRY1	4.79E-04
2769810	KDR	2.36E-04	2962525	IBTK	3.09E-04	2580304	ORC4	3.99E-04	2420790	C1orf52	4.80E-04
2694817	PLXND1	2.39E-04	3922369	UMODL1	3.09E-04	2326954	TMEM222	4.09E-04	3075550	ZC3HAV1L	4.83E-04
3326183	CAPRIN1	2.42E-04	3803194	TRAPPC8	3.10E-04	2389834	LOC149134	4.10E-04	3838757	SCAF1	4.89E-04
3035464	MAD1L1	2.45E-04	3708399	SLC2A4	3.14E-04	3529064	BCL2L2	4.13E-04	3907335	SPINLW1	4.90E-04
3304718	PCGF6	2.47E-04	3699335	LDHD	3.14E-04	3470734	FOXN4	4.15E-04	3204833	GBA2	4.92E-04
2697490	CEP70	2.51E-04	2978989	LATS1	3.15E-04	3119017	BAI1	4.18E-04	3947604	BIK	4.94E-04
3391029	PPP2R1B	2.54E-04	2832115	PCDHA12	3.20E-04	3758606	SOST	4.18E-04	3735107	SAP30BP	4.94E-04
2767710	KCTD8	2.58E-04	3716411	CPD	3.20E-04	2909404	CD2AP	4.25E-04	2399908	TMCO4	4.95E-04
3743906	TP53	2.58E-04	3147508	KLF10	3.21E-04	2960399	C6orf155	4.26E-04	2935475	QKI	4.99E-04
2608801	EDEM1	2.60E-04	2766588	PDS5A	3.21E-04	2798586	AHRR	4.27E-04	2395245	RERE	5.01E-04
3870449	VSTM1	2.65E-04	2655845	EPHB3	3.25E-04	3731228	CCDC45	4.27E-04	3862452	CNTD2	5.02E-04
2418000	ZRANB2	2.66E-04	3951719	CECR6	3.26E-04	3672455	COX4I1	4.27E-04	2620538	LARS2	5.08E-04
3446919	ABCC9	2.69E-04	2881165	TIGD6	3.32E-04	2570616	BUB1	4.29E-04	2731257	AFM	5.09E-04
2904563	DEF6	2.72E-04	3815834	DAZAP1	3.36E-04	2544238	ITSN2	4.29E-04	3557504	MYH7	5.12E-04
3875642	PLCB1	2.73E-04	3038065	ICA1	3.38E-04	3457201	SARNP	4.37E-04	3696016	PSMB10	5.14E-04
3178611	SECISBP2	2.80E-04	2800503	PAPD7	3.40E-04	3814033	MBP	4.50E-04	3368054	PAX6	5.26E-04
2321813	CELA2A	2.81E-04	2510713	FMNL2	3.46E-04	2817291	JMY	4.50E-04	3893033	DPH3P1	5.28E-04
3453513	WNT10B	2.84E-04	3308619	PDZD8	3.46E-04	3742627	C17orf87	4.51E-04	3647632	C16orf72	5.30E-04
2337147	ACOT11	2.88E-04	3907652	NCOA5	3.47E-04	3927949	LTN1	4.54E-04	3897505	JAG1	5.31E-04
3305313	ITPRIP	2.88E-04	3458837	METTL1	3.47E-04	3461341	CPM	4.58E-04	3989180	MCTS1	5.43E-04
3709244	CHD3	2.89E-04	3761291	HOXB2	3.48E-04	3924674	DIP2A	4.59E-04	3707990	TXNDC17	5.47E-04
3104489	STMN2	2.89E-04	2634965	BBX	3.50E-04	3436117	DNAH10	4.60E-04	3844512	THEG	5.49E-04
3746040	ELAC2	2.90E-04	4011096	EDA2R	3.51E-04	3660213	CYLD	4.60E-04	3494629	SCEL	5.50E-04
3995975	SSR4	2.92E-04	2438657	ARHGEF11	3.53E-04	3458337	STAT6	4.62E-04	3548929	RIN3	5.52E-04
2882897	GEMIN5	2.92E-04	3620421	PLA2G4F	3.54E-04	2525533	MAP2	4.66E-04	3779817	CEP192	5.53E-04
2403261	IFI6	2.96E-04	3226804	SH3GLB2	3.59E-04	3764471	MTMR4	4.67E-04	3405032	ETV6	5.63E-04
3373795	PRG3	2.97E-04	3380142	FGF4	3.62E-04	3621029	EPB42	4.69E-04	3017547	MLL5	5.74E-04
3393744	CD3D	2.97E-04	3816664	ZNF555	3.75E-04	2766122	FLJ13197	4.69E-04	2853055	AGXT2	5.74E-04

2475911	EHD3	5.78E-04	3021158	C7orf58	6.81E-04	3551407	HHIPL1	8.24E-04	3023103	CCDC136	9.39E-04
3716113	TP53I13	5.83E-04	3934439	DNMT3L	6.87E-04	3016692	PRKRIP1	8.28E-04	3076076	SLC37A3	9.42E-04
2706297	TBL1XR1	5.85E-04	3020496	ST7	6.92E-04	3750369	NOS2	8.29E-04	2543066	C2orf43	9.52E-04
3709010	DNAH2	5.93E-04	3219788	EPB41L4B	7.02E-04	2360186	AQP10	8.34E-04	3056838	WBSCR16	9.59E-04
2392528	PANK4	5.94E-04	2927604	KIAA1244	7.04E-04	3119289	GML	8.37E-04	3954545	ZNF280A	9.60E-04
3274361	KLF6	5.94E-04	2606026	HDAC4	7.10E-04	3329206	CREB3L1	8.38E-04	3272761	PRAP1	9.77E-04
3249788	CCAR1	5.99E-04	3846076	TLE2	7.12E-04	4041300	FAM195B	8.46E-04	4015763	GLA	9.88E-04
3735447	FAM100B	6.02E-04	3619773	INO80	7.18E-04	3723378	FMNL1	8.48E-04	2809885	SKIV2L2	9.91E-04
2404766	SPOCD1	6.03E-04	3278977	DCLRE1C	7.22E-04	3474935	ANAPC5	8.49E-04	2954771	GTPBP2	9.94E-04
3393796		6.08E-04	3451246	GXYLT1	7.25E-04	2968144	OSTM1	8.51E-04	3872542	ZNF418	9.95E-04
3591909	CTDSPL2	6.09E-04	2360310	TDRD10	7.30E-04	3893796	DNAJC5	8.51E-04	3434681	HNF1A	1.01E-03
2331822	ZMPSTE24	6.13E-04	2359780	NPR1	7.44E-04	3666897	WWP2	8.51E-04	2363679		1.03E-03
2636786	TIGIT	6.16E-04	3836317	VASP	7.47E-04	2947889	GABBR1	8.56E-04	2327283	C1orf38	1.03E-03
3416577	NCKAP1L	6.17E-04	3335751	TSGA10IP	7.47E-04	3454680	TFCP2	8.59E-04	3051907	PHKG1	1.04E-03
2955282	SUPT3H	6.24E-04	3488253	COG3	7.52E-04	2902463	BAT2	8.77E-04	2316953	PRDM16	1.04E-03
3036476	RADIL	6.24E-04	3186137	ORM2	7.52E-04	2565119	DUSP2	8.84E-04	3088048	NSAP11	1.04E-03
2408477	SLFNL1	6.26E-04	4051619	EXD3	7.53E-04	2566021	ACTR1B	8.85E-04	2542795	SDC1	1.04E-03
3456260	ATF7	6.30E-04	3181417	ANP32B	7.54E-04	3455388	KRT75	8.85E-04	2890326	TBC1D9B	1.05E-03
4029079	TBL1Y	6.31E-04	3394412	THY1	7.56E-04	3886765	PI3	8.88E-04	3154700	ZFAT	1.05E-03
3791341	ZCCHC2	6.33E-04	3978819	RRAGB	7.57E-04	2869124	SLCO6A1	8.91E-04	3687752	SEPT1	1.06E-03
3881443	TPX2	6.37E-04	2434746	FAM63A	7.60E-04	3229837	CARD9	8.92E-04	3853814	EPS15L1	1.07E-03
2776305	NKX6-1	6.37E-04	3701297	CDYL2	7.67E-04	2375916	SOX13	8.93E-04	3155937	TRAPPC9	1.07E-03
3012213	FZD1	6.37E-04	4002173	RPS6KA3	7.69E-04	3790704	PMAIP1	8.96E-04	3629811	DENND4A	1.07E-03
3825260	KLHL26	6.39E-04	3414390	SMARCD1	7.73E-04	3132940	ANK1	8.97E-04	3352070	CBL	1.08E-03
3474885	CAMKK2	6.41E-04	2832963	KIAA0141	7.77E-04	3146103	STK3	9.00E-04	2967249	BVES	1.09E-03
2899216	HIST1H4E	6.50E-04	3576812	TRIP11	7.80E-04	2369843	CEP350	9.03E-04	3766651	ERN1	1.09E-03
2524301	NRP2	6.53E-04	2489228	WDR54	7.84E-04	3431553	C12orf24	9.16E-04	3439603	KDM5A	1.09E-03
3617230	C15orf24	6.54E-04	2428313	ST7L	7.93E-04	3902609	PDRG1	9.18E-04	3976930	PQBP1	1.10E-03
3720739	CASC3	6.58E-04	3976716	WDR13	7.93E-04	3655806	TMEM219	9.21E-04	3045338	AAA1	1.10E-03
3396249	HEPACAM	6.63E-04	2413943	USP24	7.98E-04	3029030	CASP2	9.21E-04	2327630	YTHDF2	1.10E-03
3815165	PTBP1	6.70E-04	3862661	BLVRB	7.99E-04	3892409	LSM14B	9.26E-04	3819016	STXBP2	1.11E-03
3413875	TROAP	6.74E-04	3859946	HSPB6	8.02E-04	2725332	TMEM33	9.32E-04	3897280	PAK7	1.11E-03
3540091	ZBTB1	6.75E-04	3029198	TAS2R60	8.18E-04	3201277	KLHL9	9.35E-04	2469252	RRM2	1.12E-03

3768969	ABCA5	1.12E-03	3883207	PROCR	1.31E-03	2612401	BTD	1.48E-03	3190939	PPP2R4	1.69E-03
2453881	IRF6	1.13E-03	2651671	MYNN	1.34E-03	2646818	ZIC1	1.50E-03	3569441	ZFYVE26	1.71E-03
2453370	PLXNA2	1.13E-03	2703750	SI	1.34E-03	2391255	UBE2J2	1.51E-03	3188780	GPR144	1.71E-03
3685051	USP31	1.13E-03	3000010	ZMIZ2	1.34E-03	3944129	HMOX1	1.53E-03	4007919	CACNA1F	1.71E-03
2328465	KHDRBS1	1.13E-03	2316905	ACTRT2	1.34E-03	3394315	C1QTNF5	1.54E-03	3437801	PIWIL1	1.72E-03
3726569	SPATA20	1.13E-03	3188299	RABGAP1	1.34E-03	3422231	TMEM19	1.55E-03	2609560	THUMPD3	1.73E-03
3542847	SIPA1L1	1.14E-03	2662698	ATP2B2	1.35E-03	3188111	PTGS1	1.55E-03	3165825	TEK	1.73E-03
3202421	C9orf72	1.16E-03	3773244	TBC1D16	1.35E-03	3444820	LRP6	1.56E-03	3336277	BBS1	1.74E-03
3035281	INTS1	1.19E-03	3217167	CORO2A	1.35E-03	2448232	TPR	1.56E-03	3712675	RAI1	1.75E-03
3663287	NDRG4	1.19E-03	3995885	PLXNB3	1.36E-03	3733275	KCNJ2	1.56E-03	3030799	KRBA1	1.76E-03
3707141	ZMYND15	1.20E-03	2825514	DMXL1	1.37E-03	3249738	HNRNPH3	1.56E-03	3166844	CHMP5	1.76E-03
3572278	NEK9	1.20E-03	2555277	USP34	1.38E-03	3665230	HSF4	1.57E-03	2453006	PIGR	1.80E-03
2416522	JAK1	1.20E-03	2948630	IER3	1.39E-03	3507465	SLC46A3	1.57E-03	2759654	ABLIM2	1.81E-03
3189545	LMX1B	1.21E-03	3523881	KDELC1	1.39E-03	2414958	TACSTD2	1.58E-03	3167553	IL11RA	1.81E-03
3991992	ZNF449	1.21E-03	2943434	ATXN1	1.39E-03	2774365	CCNI	1.59E-03	2726483	OCIAD1	1.81E-03
3646542	ALG1	1.22E-03	3484641	BRCA2	1.40E-03	2950384	COL11A2	1.60E-03	3995633	BGN	1.82E-03
3881874	ASXL1	1.22E-03	2845879	CLPTM1L	1.40E-03	2550542	THADA	1.60E-03	3103062	KCNB2	1.83E-03
2759158	JAKMIP1	1.22E-03	3381241	ARAP1	1.40E-03	2553282	PSME4	1.60E-03	3758615	DUSP3	1.83E-03
2845043	TRIM41	1.24E-03	3852743	GIPC1	1.42E-03	3515009	VPS36	1.61E-03	2622607	SLC38A3	1.83E-03
3627363	NARG2	1.24E-03	3833443	PLD3	1.42E-03	2437577	YY1AP1	1.61E-03	3919124	FAM165B	1.84E-03
3231774	GTPBP4	1.24E-03	2897635	CDKAL1	1.44E-03	3403045	ATN1	1.61E-03	2441386	RGS5	1.85E-03
3033209	INSIG1	1.25E-03	2415910	DOCK7	1.44E-03	2340695	SGIP1	1.61E-03	3288707	ERCC6	1.85E-03
3188050	MRRF	1.25E-03	3371303	PEX16	1.44E-03	2673684	IP6K2	1.62E-03	2622638	GNAI2	1.86E-03
3815210	AZU1	1.26E-03	2623568	PPM1M	1.44E-03	3449008	OVCH1	1.64E-03	3817116	TJP3	1.86E-03
3387469		1.27E-03	2334098	KIF2C	1.45E-03	2358136	C1orf51	1.65E-03	3374083	MED19	1.86E-03
3017123	PMPCB	1.27E-03	3376914	NRXN2	1.45E-03	3603199	IDH3A	1.66E-03	3924929	BAGE2	1.87E-03
2401448	E2F2	1.28E-03	2862380	ANKRA2	1.45E-03	3620590	ZFP106	1.66E-03	2953751	PGC	1.87E-03
3405748	EMP1	1.29E-03	3427820	SLC25A3	1.46E-03	2705690	GHSR	1.68E-03	3842456	NLRP4	1.87E-03
2478748	EML4	1.29E-03	2907754	CUL9	1.46E-03	4000370	FANCB	1.68E-03	3588125	C15orf55	1.88E-03
2689378	DRD3	1.30E-03	3217395	ANKS6	1.46E-03	3601889	LMAN1L	1.68E-03	3715368	NLK	1.89E-03
3847590	RFX2	1.30E-03	3866605	NAPA	1.47E-03	3624410	BCL2L10	1.69E-03	3803882	ZSCAN30	1.89E-03
2322957	ARHGEF10L	1.30E-03	2565246	TMEM127	1.48E-03	3908631	PREX1	1.69E-03	2333599	IPO13	1.89E-03
2877861	SLC23A1	1.31E-03	2376168	NFASC	1.48E-03	2946369	HIST1H3G	1.69E-03	2429147	DENND2C	1.90E-03

3958475	SYN3	1.90E-03	3406179	H2AFJ	2.14E-03	3466110	CCDC41	2.39E-03	2363444	USP21	2.65E-03
2796995	SORBS2	1.91E-03	3678516	NAGPA	2.15E-03	2948713	RDBP	2.39E-03	3362263	DENND5A	2.66E-03
2337392	BSND	1.92E-03	3308489	KIAA1598	2.20E-03	3345427	ENDOD1	2.40E-03	3843848	ZNF544	2.67E-03
3208995	KLF9	1.94E-03	2889542	COL23A1	2.20E-03	2669488	PLCD1	2.41E-03	3329983	PTPRJ	2.68E-03
3815757	MUM1	1.94E-03	4021433	ELF4	2.20E-03	3981164	ACRC	2.42E-03	2428699	PHTF1	2.69E-03
3597125	TLN2	1.94E-03	2557759	CNRIP1	2.21E-03	3614305	ATP10A	2.42E-03	3463727	LIN7A	2.72E-03
3972862	MAGEB1	1.95E-03	3013054	COL1A2	2.21E-03	3988874	UBE2A	2.43E-03	3793760	CNDP2	2.73E-03
3833040	SUPT5H	1.95E-03	3774029	NPLOC4	2.21E-03	2525989	CPS1	2.44E-03	3182019	STX17	2.74E-03
3817984	SAFB	1.96E-03	3656665	ORAI3	2.21E-03	3190151	SLC25A25	2.44E-03	3403140	EMG1	2.75E-03
3942838	LIMK2	1.96E-03	3278198	РНҮН	2.22E-03	2763805	DHX15	2.44E-03	3393311	DSCAML1	2.75E-03
3178952	SYK	1.96E-03	3420442	IRAK3	2.23E-03	3681377	PARN	2.45E-03	2793221	NEK1	2.76E-03
3990512	SASH3	1.97E-03	2440354	CD48	2.23E-03	3802254	KCTD1	2.45E-03	2699844	ZIC4	2.76E-03
3082373	VIPR2	1.97E-03	3766269	LIMD2	2.24E-03	2843163	GRK6	2.48E-03	3428783	DRAM1	2.77E-03
3303774	LBX1	1.99E-03	3549033	GOLGA5	2.27E-03	3498589	CLYBL	2.49E-03	3867032	CCDC114	2.77E-03
3443464	PZP	1.99E-03	3187577	CEP110	2.28E-03	3416036	PCBP2	2.49E-03	2660648	CRBN	2.79E-03
2723605	C4orf19	1.99E-03	3447798	CASC1	2.28E-03	3918098	C21orf119	2.49E-03	3913821	KCNQ2	2.80E-03
2495555	UNC50	1.99E-03	2910364	TMEM14A	2.28E-03	2955638	CLIC5	2.53E-03	2507209	CCNT2	2.81E-03
2913123	RIMS1	1.99E-03	2952102	MTCH1	2.29E-03	3849044	MY01F	2.53E-03	3358262	DEAF1	2.82E-03
3870054	ZNF160	2.00E-03	3293390	NODAL	2.30E-03	3778372	TWSG1	2.54E-03	2454532	INTS7	2.84E-03
2742093	BBS12	2.00E-03	2732068	SHROOM3	2.30E-03	3822551	IL27RA	2.54E-03	2975385	AHI1	2.84E-03
3850725	DOCK6	2.00E-03	2692883	MUC13	2.30E-03	2451463	ADIPOR1	2.55E-03	3456212	MAP3K12	2.87E-03
2376548	MFSD4	2.01E-03	2858134	PDE4D	2.30E-03	2476411	TTC27	2.56E-03	3679564	USP7	2.88E-03
3642060	CHSY1	2.01E-03	3541137	EIF2S1	2.30E-03	4006326	EFHC2	2.56E-03	3707596		2.88E-03
3521484	UGGT2	2.01E-03	3866117	DACT3	2.31E-03	3797015	ZFP161	2.56E-03	3470927	TRPV4	2.88E-03
3758692	MPP2	2.04E-03	3847356	LONP1	2.31E-03	3431483	ATP2A2	2.56E-03	3403015	ENO2	2.89E-03
3729123	DHX40	2.05E-03	3348891	C11orf57	2.34E-03	3677356	HCFC1R1	2.58E-03	2704441	MECOM	2.90E-03
3557069	CDH24	2.05E-03	2437871	SSR2	2.36E-03	3278234	SEPHS1	2.58E-03	2876793	TRPC7	2.90E-03
3044518	NEUROD6	2.06E-03	3358854	DUSP8	2.37E-03	2486520	ETAA1	2.58E-03	3736087	TNRC6C	2.91E-03
3180880	LOC158435	2.06E-03	3041875	OSBPL3	2.37E-03	3940124	UPB1	2.60E-03	3087703	PDGFRL	2.92E-03
3083936	AGPAT5	2.08E-03	3861738	SARS2	2.38E-03	3908786	STAU1	2.60E-03	2334986	CYP4X1	2.92E-03
2467249	ALLC	2.10E-03	2343823	LPHN2	2.38E-03	2555490	XPO1	2.61E-03	3624448	GNB5	2.92E-03
2598868	TNP1	2.12E-03	3489212	FNDC3A	2.38E-03	2976417	PBOV1	2.62E-03	2515707	PDK1	2.92E-03
3985511	TCEAL7	2.14E-03	2326157	FAM54B	2.39E-03	3418513	MARCH9	2.62E-03	3933536	TFF3	2.94E-03

2916502	SPACA1	2.95E-03	2951916	STK38	3.43E-03	3209623	ZFAND5	3.80E-03	2655438	DVL3	4.13E-03
3063795	GAL3ST4	2.97E-03	2409507	SLC6A9	3.44E-03	2967151	HACE1	3.81E-03	2443476	SELE	4.15E-03
3507798	UBL3	2.98E-03	3896034	RASSF2	3.46E-03	3820571	ATG4D	3.81E-03	3103494	TMEM70	4.16E-03
2317512	DFFB	2.98E-03	3120917	ZNF7	3.47E-03	3853495	PGLYRP2	3.83E-03	3715489	TMEM97	4.16E-03
2898971	HIST1H2BA	2.99E-03	3279108	NMT2	3.47E-03	2896177	JARID2	3.85E-03	2663130	TIMP4	4.16E-03
3158190		3.02E-03	3811339	BCL2	3.49E-03	3865344	PPP1R13L	3.86E-03	2890148	HNRNPH1	4.18E-03
3652489	POLR3E	3.02E-03	3150715	DSCC1	3.51E-03	3048517	CAMK2B	3.86E-03	2618665	ZNF619	4.19E-03
3861352	GGN	3.04E-03	2887164	SH3PXD2B	3.52E-03	2793054	CBR4	3.87E-03	3675285	WDR24	4.20E-03
2334404	NASP	3.07E-03	3698422	C16orf47	3.54E-03	2737257	MTTP	3.87E-03	2467691	TTC15	4.20E-03
3373962	UBE2L6	3.07E-03	3544905	C14orf118	3.55E-03	2842530	ARL10	3.90E-03	3816225	IZUMO4	4.21E-03
4011008	VSIG4	3.08E-03	3450775	KIF21A	3.56E-03	3114111	FAM83A	3.95E-03	3686339	XPO6	4.21E-03
2783207	PRSS12	3.09E-03	3419239	MON2	3.57E-03	3614774	OCA2	3.96E-03	3713627	SLC5A10	4.22E-03
3077004	TRYX3	3.11E-03	2527747	SLC11A1	3.58E-03	2471978	RHOB	3.99E-03	3646156	VASN	4.22E-03
2746693	ARHGAP10	3.14E-03	3401920	GALNT8	3.58E-03	3268274	PLEKHA1	3.99E-03	3853658	CYP4F11	4.22E-03
3938175	UBE2L3	3.18E-03	3633236	RPP25	3.59E-03	2532399	CHRNG	3.99E-03	3545564	ADCK1	4.23E-03
3232944	AKR1E2	3.19E-03	3436082	DNAH10	3.60E-03	3499453	TPP2	3.99E-03	2393654	KIAA0495	4.23E-03
3893910	TCEA2	3.20E-03	2726828	DCUN1D4	3.60E-03	3903525	NCOA6	4.00E-03	2771342	EPHA5	4.25E-03
3571059	DPF3	3.25E-03	2572909	EN1	3.61E-03	3289948	PCDH15	4.00E-03	2438792	ETV3	4.25E-03
3716337	CCDC55	3.26E-03	2473735	HADHB	3.61E-03	3444195	MAGOHB	4.01E-03	3839880		4.27E-03
2816681	PDE8B	3.27E-03	3915936	NCAM2	3.61E-03	3649714	C16orf45	4.01E-03	3844656	POLRMT	4.27E-03
3191695	EXOSC2	3.28E-03	3832256	SPINT2	3.62E-03	4019486	SEPT6	4.02E-03	3464912	POC1B	4.27E-03
3871302	HSPBP1	3.28E-03	3532313	SRP54	3.62E-03	3458857	AVIL	4.02E-03	2762468	DCAF16	4.27E-03
3686750	RABEP2	3.30E-03	3816645	ZNF554	3.64E-03	3699634	TMEM231	4.02E-03	4007617	PIM2	4.31E-03
3818596	EMR1	3.30E-03	3305081	COL17A1	3.66E-03	3216356	CDC14B	4.04E-03	2372924	TROVE2	4.32E-03
3854311	USHBP1	3.31E-03	3290649	FAM13C	3.67E-03	2360728	TRIM46	4.04E-03	3381150	PDE2A	4.32E-03
2573232	TMEM185B	3.35E-03	3557791	FAM158A	3.69E-03	3531163	COCH	4.04E-03	3765299	APPBP2	4.32E-03
3096368	HOOK3	3.37E-03	3626826	MY01E	3.69E-03	3065638	DNAJC2	4.04E-03	3471538	FAM109A	4.33E-03
2946146	SLC17A2	3.38E-03	3236448	SUV39H2	3.71E-03	3845175	GAMT	4.08E-03	3214668	IARS	4.34E-03
3601741	CLK3	3.40E-03	3666033	NFATC3	3.71E-03	3656418	SRCAP	4.08E-03	3693083	FAM192A	4.36E-03
3450899	SLC2A13	3.40E-03	2438531	HDGF	3.75E-03	3464967	GALNT4	4.08E-03	2378121	TRAF3IP3	4.37E-03
2934089	WTAP	3.42E-03	2624565	IL17RB	3.76E-03	2557948	BMP10	4.09E-03	2408111	TRIT1	4.38E-03
3451814	NELL2	3.42E-03	2362351	PYHIN1	3.76E-03	3197509	RLN1	4.10E-03	2669803	SCN11A	4.39E-03
2585236	TTC21B	3.42E-03	3531032	SCFD1	3.77E-03	2439861	IGSF9	4.13E-03	3887049	UBE2C	4.41E-03

2692319	ADCY5	4.43E-03	3713794	EPN2	4.88E-03	3855701		5.42E-03	3620022	LTK	5.98E-03
3174121	MAMDC2	4.45E-03	3715839	TRAF4	4.90E-03	2866543	CETN3	5.43E-03	2746645	TMEM184C	5.99E-03
3414632	DIP2B	4.47E-03	3529113	CMTM5	4.91E-03	3948528	UPK3A	5.45E-03	3719474	TADA2A	6.04E-03
3080033	MLL3	4.47E-03	3707041	SMTNL2	4.93E-03	2813414	CCNB1	5.46E-03	3087167	TUSC3	6.05E-03
3158478	FBXL6	4.50E-03	3777991	KIAA0802	4.93E-03	3961023	CBX7	5.47E-03	3554104	KIF26A	6.06E-03
3620741	CDAN1	4.52E-03	2427898	OVGP1	4.94E-03	3947011	C22orf46	5.48E-03	3522327	SLC15A1	6.06E-03
3016791	LRWD1	4.52E-03	3597421	LACTB	4.97E-03	2479560	ABCG8	5.49E-03	3199431	ZDHHC21	6.07E-03
3368304	WT1	4.55E-03	2555174	PUS10	4.99E-03	2544781	DTNB	5.49E-03	3223738	TRAF1	6.08E-03
2635263	DZIP3	4.56E-03	2993206	MPP6	5.00E-03	3430228	RFX4	5.53E-03	2442424	ILDR2	6.10E-03
3737677		4.59E-03	2754673	ANKRD37	5.00E-03	3762339	MRPL27	5.57E-03	3650953	TMC5	6.10E-03
3853108	NOTCH3	4.61E-03	3842379	EPN1	5.02E-03	2523689	ABI2	5.64E-03	3457824	TIMELESS	6.11E-03
2497252	SLC9A2	4.65E-03	3975455	DUSP21	5.05E-03	3836841	CALM3	5.64E-03	2655338	HTR3E	6.12E-03
3015682	PCOLCE	4.67E-03	3977083	CCDC22	5.06E-03	2611122	TSEN2	5.64E-03	3950726	PPP6R2	6.12E-03
3619400	C15orf52	4.67E-03	3744377	SLC25A35	5.07E-03	2690776	B4GALT4	5.65E-03	2993727	SNX10	6.13E-03
3880629	CST7	4.67E-03	3339423	INPPL1	5.08E-03	2585476	SCN7A	5.65E-03	3229994	INPP5E	6.13E-03
3918447	IFNAR2	4.68E-03	3867865	PIH1D1	5.08E-03	3045739	HERPUD2	5.66E-03	3390067	NPAT	6.15E-03
3233605	PFKFB3	4.68E-03	3824596	B3GNT3	5.08E-03	2342475	LHX8	5.69E-03	3728625	OR4D2	6.16E-03
2767295	BEND4	4.69E-03	3882720	RALY	5.09E-03	2554018	EFEMP1	5.72E-03	2565410	KIAA1310	6.17E-03
3351531	ARCN1	4.72E-03	3757154	KRT14	5.10E-03	3094286	PROSC	5.73E-03	3409006	MED21	6.20E-03
3848039	C3	4.74E-03	3092808	NRG1	5.13E-03	3671607	LRRC50	5.75E-03	3914327	C20orf201	6.21E-03
2608469	ITPR1	4.76E-03	3859915	U2AF1L4	5.13E-03	3571553	C14orf43	5.77E-03	3456049	ITGB7	6.24E-03
3710515	DNAH9	4.76E-03	2462456	HEATR1	5.16E-03	3018535	BCAP29	5.79E-03	2813524	RAD17	6.27E-03
3490741	SUGT1	4.77E-03	3894995	SNRPB	5.19E-03	2560178	LBX2	5.79E-03	2910868	TINAG	6.29E-03
2501140	IL1F6	4.79E-03	3846011	SGTA	5.22E-03	3568108	SGPP1	5.79E-03	2790486	DCHS2	6.36E-03
3599669		4.79E-03	2683763	ROBO1	5.24E-03	2464909	SMYD3	5.81E-03	3179975	PHF2	6.36E-03
3973556	CXorf59	4.80E-03	3066751	SYPL1	5.25E-03	3436329	FAM101A	5.87E-03	3383322	NARS2	6.38E-03
2708457	CLCN2	4.80E-03	2441043	OLFML2B	5.27E-03	3662750	POLR2C	5.90E-03	3012633	GATAD1	6.39E-03
3751541	GIT1	4.81E-03	3745781	ZNF18	5.31E-03	3474787		5.91E-03	2841802	HMP19	6.39E-03
3766415	SMARCD2	4.81E-03	2737220	C4orf17	5.33E-03	3992747	ZIC3	5.91E-03	2855963	HCN1	6.39E-03
2734629	PTPN13	4.82E-03	3972657	IL1RAPL1	5.33E-03	3048373	POLM	5.91E-03	3194896	TRAF2	6.40E-03
2849992	FAM134B	4.84E-03	3573051	C14orf148	5.36E-03	2998536	CDK13	5.93E-03	3280902	DNAJC1	6.41E-03
3851720	HOOK2	4.85E-03	3834519	ARHGEF1	5.40E-03	3556386	RAB2B	5.98E-03	3113133	COLEC10	6.41E-03
2494537	ARID5A	4.88E-03	2548402	EIF2AK2	5.41E-03	3981959	SLC16A2	5.98E-03	3166718	DNAJA1	6.41E-03

3230490	EDF1	6.43E-03	3029900	CNTNAP2	6.88E-03	3933039	TMPRSS2	7.57E-03	2818035	CKMT2	8.10E-03
3954596	RTDR1	6.44E-03	3680583	RSL1D1	6.89E-03	2657025	RTP4	7.59E-03	3377789	RELA	8.10E-03
2673509	UQCRC1	6.45E-03	2775965	COQ2	6.89E-03	3356115	APLP2	7.65E-03	3329724	MADD	8.11E-03
3444304	TAS2R8	6.45E-03	3667281	SF3B3	6.90E-03	2675998	TLR9	7.66E-03	3934642	KRTAP12-1	8.11E-03
3911485	APCDD1L	6.48E-03	3770305	CD300C	6.94E-03	3976341	TIMP1	7.66E-03	3418249	KIF5A	8.12E-03
3825383	UPF1	6.48E-03	2421883	GBP1	6.97E-03	3318383	OR52B6	7.67E-03	2540210	NOL10	8.13E-03
2595042	ALS2	6.50E-03	3238466	COMMD3	7.00E-03	2808748	PARP8	7.70E-03	2391302	ACAP3	8.15E-03
3951927	BID	6.52E-03	3766960	SMURF2	7.00E-03	2906934	PRICKLE4	7.70E-03	3856554	ZNF100	8.16E-03
3381063	CLPB	6.53E-03	3490655	CKAP2	7.01E-03	3740462	RILP	7.70E-03	2396480	EXOSC10	8.17E-03
3434594	ACADS	6.53E-03	3429754	KIAA1033	7.04E-03	3332276	MS4A2	7.70E-03	2369252	C1orf49	8.18E-03
2816298	IQGAP2	6.53E-03	2607110	HDLBP	7.04E-03	3004768	ZNF273	7.71E-03	2599433	USP37	8.23E-03
2388794	ZNF238	6.54E-03	2443537	SCYL3	7.08E-03	2733287	PRDM8	7.72E-03	2716246	FLJ35424	8.23E-03
2662491	TMEM111	6.56E-03	3528605	OR4E2	7.17E-03	4036497	TTTY5	7.73E-03	3345157	PIWIL4	8.24E-03
3558012	TINF2	6.57E-03	3064462	VGF	7.18E-03	3715109	WSB1	7.74E-03	2382043	C1orf65	8.28E-03
3628104	C2CD4B	6.57E-03	2820893	RFESD	7.19E-03	3560711	BAZ1A	7.75E-03	2641769	RHO	8.30E-03
2899808	PRSS16	6.59E-03	2436576	C1orf43	7.23E-03	3727033	FLJ42842	7.77E-03	3581442	JAG2	8.31E-03
2532314	ALPI	6.60E-03	3707095	ARRB2	7.23E-03	3074912	DGKI	7.79E-03	3509910	FAM48A	8.31E-03
3695107	TK2	6.60E-03	3766512	GH1	7.24E-03	2973995	EPB41L2	7.79E-03	3674840	POLR3K	8.32E-03
3956781	AP1B1	6.62E-03	3971923	ZFX	7.24E-03	2317317	TP73	7.79E-03	2805786	TARS	8.32E-03
3820758	DNM2	6.64E-03	2756497	ATP5I	7.25E-03	3371339	PHF21A	7.80E-03	2350952	GSTM2	8.34E-03
3826504	ZNF431	6.66E-03	2857112	CCNO	7.28E-03	3302572	CRTAC1	7.85E-03	3816509	GADD45B	8.36E-03
2895945		6.69E-03	3253683	ZMIZ1	7.29E-03	3438061	GPR133	7.86E-03	3759137	ITGA2B	8.41E-03
3065740	RELN	6.71E-03	4013460	CYSLTR1	7.31E-03	3152220	KIAA0196	7.87E-03	2932219	OPRM1	8.41E-03
3428190	SLC17A8	6.73E-03	3375894	EML3	7.33E-03	2721087	GBA3	7.96E-03	3228279	C9orf98	8.42E-03
3071700	IMPDH1	6.73E-03	2358949	CGN	7.35E-03	3757433	ACLY	7.96E-03	3943101	DEPDC5	8.51E-03
3149161	CSMD3	6.74E-03	3047581	INHBA	7.38E-03	2699145	SLC9A9	7.98E-03	3011830	DPY19L2P4	8.53E-03
2593464	ANKRD44	6.74E-03	3680953	CPPED1	7.39E-03	3015276	CNPY4	7.99E-03	3899111	BFSP1	8.54E-03
3891163	GNAS	6.76E-03	3948640	FBLN1	7.41E-03	3720817	RAPGEFL1	8.02E-03	2666566	NGLY1	8.57E-03
3513147	HTR2A	6.76E-03	3113280	DEPDC6	7.43E-03	3973803	XK	8.03E-03	4027355	UBL4A	8.61E-03
2943874	KIF13A	6.80E-03	3635456	MESDC2	7.43E-03	3816815	GNA15	8.06E-03	3611126	MEF2A	8.62E-03
2454935	ANGEL2	6.82E-03	3226160	SIAT7F	7.44E-03	3836217	KLC3	8.09E-03	2809245	ITGA2	8.63E-03
3453592	MLL2	6.85E-03	2593670	SF3B1	7.51E-03	2734992	NUDT9	8.09E-03	3000276	RAMP3	8.66E-03
3751184	PHF12	6.85E-03	2954355	CUL7	7.52E-03	3013894	DLX6	8.09E-03	2667809	OSBPL10	8.68E-03

3817316	CREB3L3	8.68E-03	3972093	POLA1	9.35E-03	2969886	FYN	0.010	2324634	CDC42	0.011
2405192	YARS	8.69E-03	3759410	GFAP	9.37E-03	3293244	SAR1A	0.010	3003228	SUMF2	0.011
2952927	KCNK16	8.75E-03	2644418	CLDN18	9.39E-03	2779992	UBE2D3	0.010	3315712	B4GALNT4	0.011
2691798	IQCB1	8.77E-03	3986412		9.41E-03	2584520	FIGN	0.010	3863060	EXOSC5	0.011
3883690	EPB41L1	8.77E-03	3834439	DMRTC2	9.47E-03	3970833	PDHA1	0.010	3119572	RHPN1	0.011
3721886	MLX	8.79E-03	3379597	MTL5	9.49E-03	3354293	ROBO3	0.010	3992408	FHL1	0.011
3744300	C17orf44	8.79E-03	2661992	OXTR	9.50E-03	3343008	TMEM126A	0.010	3735392	ZACN	0.011
2523419	ALS2CR8	8.81E-03	3124353		9.53E-03	3406195	C12orf60	0.010	3458819	CYP27B1	0.011
3090697	CDCA2	8.84E-03	3883309	CEP250	9.56E-03	2930957	ULBP2	0.010	3815014	BSG	0.011
2343334	GIPC2	8.85E-03	3722739	G6PC3	9.57E-03	3770029	CDC42EP4	0.010	3399545	NCAPD3	0.011
2428405	RHOC	8.89E-03	3601840	CSK	9.61E-03	3131916	WHSC1L1	0.010	2880905	CSNK1A1	0.011
3437500	GLT1D1	8.90E-03	3429008	ASCL1	9.63E-03	3884922	DHX35	0.010	2379009	PPP2R5A	0.011
2777333	PPM1K	8.95E-03	2484970	EHBP1	9.64E-03	3244539	ZNF22	0.010	3042952	HOXA10	0.011
2607757	CNTN6	8.95E-03	3017068	NFE4	9.64E-03	3186191	ATP6V1G1	0.010	3478957	DDX51	0.011
2650357	ARL14	9.00E-03	2949038	BAT1	9.66E-03	2456805	BPNT1	0.010	2527856	RQCD1	0.011
3185643	RGS3	9.01E-03	4018194	CAPN6	9.67E-03	3892456	SS18L1	0.010	3978999	UBQLN2	0.011
3790259	MALT1	9.04E-03	2368840	FAM5B	9.68E-03	2689452	ZNF80	0.011	2488252	DYSF	0.011
3883819	DLGAP4	9.06E-03	2933536	TULP4	9.71E-03	3441542	ANO2	0.011	3638337	POLG	0.011
3402836	LEPREL2	9.06E-03	2622026	CCDC36	9.71E-03	3128954	TRIM35	0.011	3012677	C7orf64	0.011
3665083	B3GNT9	9.07E-03	2597552	ERBB4	9.73E-03	3631964	PKM2	0.011	2889486	AGXT2L2	0.011
3434490	CABP1	9.10E-03	3555492	TMEM55B	9.76E-03	3026495	AKR1D1	0.011	3571634	COQ6	0.011
3850990	ZNF653	9.13E-03	2460551	EGLN1	9.76E-03	3932148	BRWD1	0.011	3160500	C9orf70	0.011
3632671	STOML1	9.16E-03	2361697	C1orf66	9.77E-03	2792161	TKTL2	0.011	3829049	RGS9BP	0.011
2701081	P2RY12	9.18E-03	2925510	L3MBTL3	9.77E-03	3872733	ZNF329	0.011	3113180	MAL2	0.011
2500875	CHCHD5	9.23E-03	2889698	CLK4	9.79E-03	2903673	PHF1	0.011	3633403	SIN3A	0.011
2551189	SIX2	9.26E-03	3421897	CNOT2	9.81E-03	2648535	ARHGEF26	0.011	3005995	TYW1	0.011
3427282	C12orf63	9.28E-03	3008108	LIMK1	9.84E-03	3903952	GDF5	0.011	3205834	ANKRD18A	0.011
3887241	SLC12A5	9.28E-03	3871043	PPP1R12C	9.85E-03	3564071	NIN	0.011	3593652	USP8	0.011
3907320	WFDC6	9.30E-03	3193482	COL5A1	9.94E-03	2437801	ARHGEF2	0.011	3674960	LUC7L	0.011
3507710	SLC7A1	9.32E-03	3764103	SRSF1	9.94E-03	3723627	CRHR1	0.011	3203636	SUGT1P1	0.011
3415148	ACVR1B	9.33E-03	2892262		9.95E-03	3855660	SUGP1	0.011	3848651	TIMM44	0.011
2444363	SLC9A11	9.35E-03	2336585	SCP2	9.96E-03	2326463	CD52	0.011	3049522	TNS3	0.011
3556888	RBM23	9.35E-03	2999334	HECW1	9.96E-03	3182063	INVS	0.011	3842481	NLRP8	0.011

2730714	DCK	0.012	3126191	PSD3	0.012	3401804	RAD51AP1	0.013	3056226	STX1A	0.013
2614663	LRRC3B	0.012	3842768	ZNF471	0.012	2358221	RPRD2	0.013	2360633	EFNA4	0.013
2487082	ANTXR1	0.012	3878308	CSRP2BP	0.012	3728820	PPM1E	0.013	3260957	LZTS2	0.013
3403224	LOC283314	0.012	2323951	VWA5B1	0.012	2929870	STXBP5	0.013	3886453	HNF4A	0.013
3415915	PFDN5	0.012	3294576	USP54	0.012	3930781	SETD4	0.013	2647109	CPA3	0.013
2773719	CDKL2	0.012	3348608	SIK2	0.012	2460817	SIPA1L2	0.013	3822322	MRI1	0.013
2434490	ENSA	0.012	2638886	FAM162A	0.012	3465274	DCN	0.013	3891278	TH1L	0.014
2796790	KIAA1430	0.012	2435149	CELF3	0.012	3747288	ZNF287	0.013	2796553	ACSL1	0.014
2894689	TMEM14C	0.012	2707824	MCCC1	0.012	3766549	SCN4A	0.013	2593733	HSPD1	0.014
2678526	C3orf67	0.012	3696697	NOB1	0.012	3031383	REPIN1	0.013	2956593	CRISP1	0.014
2556529	SERTAD2	0.012	3360874	HPX	0.012	3189422	FAM125B	0.013	3455865	KRT4	0.014
3320301	CTR9	0.012	3652338	VWA3A	0.012	2903507	RING1	0.013	3683549	UMOD	0.014
2640263	ROPN1B	0.012	3070183	AASS	0.012	2398193	CROCCP3	0.013	2633039	OR5AC2	0.014
3838004	PPP1R15A	0.012	2622590	GNAT1	0.012	3462630	CAPS2	0.013	3259920	ANKRD2	0.014
2487527	SNRNP27	0.012	3580498	CDC42BPB	0.012	2586845	SLC25A12	0.013	3682028	MYH11	0.014
2339139	INADL	0.012	3638819	CIB1	0.012	3174224	SMC5	0.013	2758298	LRPAP1	0.014
2888385	GPRIN1	0.012	3953033	TRMT2A	0.012	2988336	KIAA0415	0.013	2547751	MYADML	0.014
3618736	RASGRP1	0.012	2410470	PIK3R3	0.012	3970338	NHS	0.013	3823488	FLJ25328	0.014
2969406	SLC22A16	0.012	3358049	RNH1	0.012	3377091	MAP4K2	0.013	2672532	SETD2	0.014
3741171	KIAA0664	0.012	3260423	CUTC	0.012	2401347	TCEA3	0.013	3008220	CLIP2	0.014
2915268	DOPEY1	0.012	4052378	SNRNP35	0.012	3916290	FLJ42200	0.013	3873777	TGM6	0.014
3595846	FAM63B	0.012	3630736	ITGA11	0.012	2380991	IARS2	0.013	2527971	STK36	0.014
2843091	RGS14	0.012	3223872	RAB14	0.012	3261165	BTRC	0.013	3415368	KRT86	0.014
2426676	C1orf59	0.012	3762040	TAC4	0.012	2635184	HHLA2	0.013	3659888	HEATR3	0.014
3692735	CES5A	0.012	3007829	FZD9	0.012	3871935	ZNF667	0.013	3318186	MMP26	0.013
3753452	NLE1	0.012	3350850	RNF214	0.013	2878943	PCDH1	0.013	2835213	PPARGC1B	0.014
2589255	FKBP7	0.012	3564997	DDHD1	0.013	4053462	KLHL17	0.013	3888613	CEBPB	0.014
2488732	CCT7	0.012	3441685	VWF	0.013	2899768	HIST1H4I	0.013	2910236	EFHC1	0.014
3377226	EHD1	0.012	2620685	SACM1L	0.013	2692816	ITGB5	0.013	3075742	KLRG2	0.014
3886639	YWHAB	0.012	3337168	GSTP1	0.013	3977067	PLP2	0.013	3446355	PLCZ1	0.014
2412529	NRD1	0.012	2419219	C1orf118	0.013	4026902	NAA10	0.013	3128411	EBF2	0.014
2697652	FOXL2	0.012	3182489	RNF20	0.013	3861037	ZNF607	0.013	3512527	TPT1	0.014
2967989	SCML4	0.012	3349918	RBM7	0.013	2712906	RNF168	0.013	3867538	GYS1	0.014

3893287	ARFGAP1	0.014	3394192	DPAGT1	0.015	3157132	SLURP1	0.016	3956226	MN1	0.016
2408855	FOXJ3	0.014	3852880	EMR2	0.015	3563734	SOS2	0.016	3226138	AK1	0.016
3409127	ARNTL2	0.014	3399004	OPCML	0.015	2394784	NOL9	0.016	4007086	ZNF41	0.016
2997272	EEPD1	0.014	3944620	MPST	0.015	2687255	CBLB	0.016	3259253	ENTPD1	0.016
3975987	RBM10	0.014	3723348	HEXIM1	0.015	3386737	C11orf75	0.016	3895614	SIGLEC1	0.016
4054437	GJB5	0.014	2324341	NBPF3	0.015	2581000	NEB	0.016	3933243	PRDM15	0.016
3828887	ZNF507	0.014	3019158	LRRN3	0.015	3677592	ZNF434	0.016	2416218	ITGB3BP	0.016
2734784	AFF1	0.014	3976240	ZNF157	0.015	2626802	PTPRG	0.016	3168032	CCDC107	0.016
2949148	BAT3	0.014	2954506	CRIP3	0.015	3899404	OVOL2	0.016	2701109	IGSF10	0.016
2674963	MON1A	0.014	3049700	PKD1L1	0.015	3841134	CACNG7	0.016	3868587	SHANK1	0.017
3705539	RNMTL1	0.014	2390050	NLRP3	0.015	3451670	PUS7L	0.016	2667181	AZI2	0.017
3936442	PEX26	0.014	3996142	OPN1LW	0.015	2653114	NAALADL2	0.016	2409820	BEST4	0.017
3873185	RBCK1	0.014	3642993	C16orf11	0.015	3182930	OR13D1	0.016	3980170	EFNB1	0.017
2773872	NAAA	0.014	3260001	MARVELD1	0.015	2719617	BST1	0.016	3094157	ZNF703	0.017
3564250	TRIM9	0.014	3854627	JAK3	0.014	2519038	FSIP2	0.016	3832830	PAK4	0.017
3944147	MCM5	0.014	3867374	IZUM01	0.015	2331771	RLF	0.016	3135340	OPRK1	0.017
2348702	SLC35A3	0.014	2617041	GOLGA4	0.015	2625546	SPATA12	0.016	2824483	YTHDC2	0.017
2645951	TRPC1	0.015	2874794	RAPGEF6	0.015	2799509	C5orf38	0.016	2440440	ITLN2	0.017
3906709	GTSF1L	0.015	2914777	ТТК	0.015	3131720	BRF2	0.016	2356115	TXNIP	0.017
3334304	DNAJC4	0.015	2515783	RAPGEF4	0.015	3347431	ELMOD1	0.016	3736232	SYNGR2	0.017
4025771	CD99L2	0.015	3175494	GCNT1	0.015	2824872	AP3S1	0.016	3907473	ACOT8	0.017
2462415	LGALS8	0.015	3899551	RBBP9	0.015	2695200	PIK3R4	0.016	2781138	LEF1	0.017
2892170	WRNIP1	0.015	3687889	ZNF785	0.015	3972551	MAGEB10	0.016	3191724	ABL1	0.017
2329920	TFAP2E	0.015	3716664	SUZ12P	0.015	3125116	DLC1	0.016	2900269	ZSCAN16	0.017
2812539	SREK1	0.015	3842675	ZNF542	0.015	3643019	PIGQ	0.016	2492015	MRPL35	0.017
3934837	C21orf122	0.015	3335643	MUS81	0.015	3361072	DCHS1	0.016	2458921	ІТРКВ	0.017
3238761	MSRB2	0.015	3020192	TES	0.015	3203753	UBAP2	0.016	2926802	MYB	0.017
4027009	IRAK1	0.015	2681195	UBA3	0.015	3643892	TELO2	0.016	3392332	CADM1	0.017
3357237	JAM3	0.015	3157563	NAPRT1	0.015	2939034	SERPINB9	0.016	3876084	C20orf103	0.017
3632806	STRA6	0.015	3226644	ZDHHC12	0.016	3857523		0.016	3630701	CLN6	0.017
2345128	SH3GLB1	0.015	3301713	BLNK	0.016	3800116	MC2R	0.016	3389745	CWF19L2	0.017
2655476	AP2M1	0.015	3747792	RASD1	0.016	2633166	OR5K2	0.016	3843797	ZNF274	0.017
3344990	PANX1	0.015	3330710	OR4C6	0.016	3894337	SCRT2	0.016	2808438	NNT	0.017

3168508	MELK	0.017	2620256	KIF15	0.018	3815685	C19orf24	0.019	2717518	AFAP1	0.020
3501661	ARHGEF7	0.017	3529237	DHRS2	0.018	2925871	ENPP3	0.019	7385683	VPS41	0.020
3391653	DRD2	0.017	3659670	FLJ44674	0.018	2360989	MST01	0.019	3972025	PDK3	0.020
2609824	CPNE9	0.017	2583631	RBMS1	0.018	2489071	TET3	0.019	3330700	OR4P4	0.020
3854066	C19orf42	0.017	3751164	DHRS13	0.018	3708528	TNK1	0.019	2865860	CCNH	0.020
3977205	GAGE12G	0.017	3190762	ENDOG	0.018	3869714	ZNF611	0.019	3653398	TNRC6A	0.020
2390180	TRIM58	0.017	3914786	ABCC13	0.018	3991650	PHF6	0.019	3694657	CDH11	0.020
3224556		0.017	3855633	TM6SF2	0.018	3867734	SLC6A16	0.019	3109191	POLR2K	0.020
2623413	GPR62	0.017	3580769	СКВ	0.018	2639225	PDIA5	0.019	2441940	LMX1A	0.020
3359469	NAP1L4	0.017	3560403	EGLN3	0.018	3262490	C10orf78	0.019	2511603	GALNT5	0.020
3963289	LDOC1L	0.017	2770469	IGFBP7	0.018	3064024	C7orf61	0.019	3571944	LTBP2	0.020
3107661	INTS8	0.017	3832292	KCNK6	0.018	3595315	CGNL1	0.019	2835576	SYNPO	0.020
2362723	FCRL6	0.017	3330965	OR8U1	0.018	3891048	NPEPL1	0.019	3812385	CD226	0.020
2325002	KDM1A	0.017	2455699	USH2A	0.018	3757423	KLHL11	0.019	4015661	TAF7L	0.020
3677795	CREBBP	0.017	2475678	LBH	0.018	3709213	CYB5D1	0.019	2771839	TMPRSS11D	0.020
3603405		0.017	3675205	C16orf13	0.018	3656151	MYLPF	0.019	3920385	TTC3	0.020
3688381	ZNF843	0.017	2413685	SSBP3	0.018	2675457	C3orf18	0.019	3284073	EPC1	0.020
2805078	CDH6	0.017	3417075	DGKA	0.018	2677723	ARHGEF3	0.019	2901970	DDR1	0.020
2451419	RABIF	0.017	3056131	TBL2	0.018	3928620	KRTAP11-1	0.019	3090053	SLC25A37	0.020
2620985	TMIE	0.018	3849267	ZNF558	0.018	2730554	RUFY3	0.019	3884640	RALGAPB	0.020
2620150	ZNF660	0.018	3610982	SYNM	0.018	3526831	RASA3	0.019	3710108	GLP2R	0.020
3835467	ZNF234	0.018	3511031	ELF1	0.018	3848907	KANK3	0.019	2451309	KDM5B	0.020
2487882	VAX2	0.018	3459801	DPY19L2	0.018	2948259	TRIM26	0.019	3843386	ZNF530	0.020
3722195	AOC3	0.018	3459434	FAM19A2	0.018	3791482	PHLPP1	0.019	3601348	LOXL1	0.020
3643100	WFIKKN1	0.018	3991109	MST4	0.018	3715614	SLC13A2	0.019	3939470	MMP11	0.020
3854297	NR2F6	0.018	2469157	GRHL1	0.018	3527662	RNASE6	0.019	3669171	CNTNAP4	0.020
2928930	PHACTR2	0.017	3271687	PPP2R2D	0.018	3743194	SLC13A5	0.019	2910477	FBX09	0.020
3734270	DNAI2	0.017	3910724	CBLN4	0.018	3737140	GAA	0.019	3869237	FPR1	0.020
3759335	GJC1	0.017	2672190	LRRC2	0.018	3260636	WNT8B	0.019	3179551	FGD3	0.020
2963929	RNGTT	0.017	3393622	SCN4B	0.018	3133233	PLAT	0.019	2318157	RNF207	0.020
3758317	BRCA1	0.017	2716124	HGFAC	0.019	3705967	SERPINF1	0.019	3358174	IRF7	0.020
3919952	MORC3	0.017	3669092	TERF2IP	0.019	2326410	CCDC21	0.019	3198346	PTPRD	0.020
3558290	KHNYN	0.017	3656223	ITGAL	0.019	2883541	SOX30	0.019	2989050	RAC1	0.020

			-	_	-			_			
2558844	CLEC4F	0.020	2964553	BACH2	0.021	3644593	MLST8	0.022	2780143	BDH2	0.023
3709327	CNTROB	0.020	3347658	ATM	0.021	3747966	SREBF1	0.022	2695941	TOPBP1	0.023
3594825	PIGB	0.020	3501999	SOX1	0.021	3401259	TEAD4	0.022	2574984	LIMS2	0.023
3643431	CHTF18	0.020	2757751	MXD4	0.021	3453882	MCRS1	0.022	3673583	IL17C	0.023
3818468	TNFSF9	0.020	2339454	ANGPTL3	0.021	3717539	RHOT1	0.022	3514879	TPTE2P2	0.023
2362323	OR6K6	0.020	3931112	HLCS	0.021	3181302	NCBP1	0.022	2955691	RCAN2	0.023
3354380	HEPN1	0.020	3693240	CCDC102A	0.021	2953435	C6orf130	0.022	2343170	CCDC55	0.023
2732391	CCNG2	0.020	3310413	ATE1	0.021	3825713	GATAD2A	0.022	2831519	C5orf32	0.023
3629494	CLPX	0.020	2879927	LARS	0.021	3624513	MY05C	0.022	2323087	ACTL8	0.023
2853642	C5orf42	0.020	3892561	FLJ44790	0.021	3354719		0.022	2828520	SLC22A5	0.023
3195034	PTGDS	0.021	3994610	MAGEA8	0.021	3960246	ANKRD54	0.022	3902764	C20orf112	0.023
3304746	USMG5	0.020	3587495	SCG5	0.021	2961929	HMGN3	0.022	3621080	TGM5	0.023
2345196	HS2ST1	0.021	3451375	PRICKLE1	0.021	3589212	FAM98B	0.022	3874498	MAVS	0.023
3592109	SORD	0.021	3644625	E4F1	0.021	3937814	AIFM3	0.022	3215395	BARX1	0.023
2553192	ASB3	0.021	3476457	NCOR2	0.021	2521479	HSPE1	0.022	3340697	UVRAG	0.023
3553531	TNFAIP2	0.021	3810542	CCBE1	0.021	2605674	ILKAP	0.022	2476671	RASGRP3	0.023
3593452	DTWD1	0.021	3557430	MYH6	0.021	3735847	SEPT9	0.022	3903999	C20orf173	0.023
3347549	CUL5	0.021	3282016	ABI1	0.021	2702610	SHOX2	0.022	3402039	KCNA5	0.023
4018436	LHFPL1	0.021	2527939	BCS1L	0.021	3699178	WDR59	0.022	2992243	DNAH11	0.023
3841184	CACNG6	0.021	3302805	HPS1	0.022	2880463	C5orf46	0.022	3870733	LILRB2	0.023
2456204	GPATCH2	0.021	3823982	MYO9B	0.022	2361342	SEMA4A	0.022	3200762	SLC24A2	0.023
3864286	PSG9	0.021	3606304	AKAP13	0.022	3734236	TTYH2	0.022	3894727	SIRPB1	0.023
3683879	DNAH3	0.021	2960146	COL9A1	0.022	3673600	MGC23284	0.022	2427930	WDR77	0.023
3882949	DYNLRB1	0.021	3319018	NLRP14	0.022	3681956	KIAA0430	0.022	3212420	SLC28A3	0.023
3960302	SOX10	0.021	2764478	CCKAR	0.022	2606741	ANKMY1	0.022	3071878	КСР	0.023
3762625	MBTD1	0.021	3931946		0.022	3025740	TMEM140	0.023	3975893	PHF16	0.023
3025005	EXOC4	0.021	2318455	CAMTA1	0.022	3965447	IL17REL	0.023	3655665	MAZ	0.023
3318961	OR10A5	0.021	3589756	PAK6	0.022	3065244	RASA4	0.023	2693569	ZXDC	0.023
3559690	HEATR5A	0.021	3289392	FLJ31958	0.022	3614901	HERC2	0.023	2435443	ТСНН	0.024
3820469	ICAM5	0.021	3653516	SLC5A11	0.022	3378830	CORO1B	0.023	2376799	IKBKE	0.024
3562671	KLHL28	0.021	3258966	CYP2C18	0.022	3791254	TNFRSF11A	0.023	2712236	MUC4	0.024
3127878	ENTPD4	0.021	3252382	MYST4	0.022	3607698	C15orf42	0.023	3418610	XRCC6BP1	0.024
3940901	SEZ6L	0.021	2436526	ТРМЗ	0.022	3670631	CENPN	0.023	3992041		0.024

2982270	FLJ27255	0.024	3719980	LASP1	0.024	2906333	DAAM2	0.025	2654394	FXR1	0.026
3853761	CIB3	0.024	3673806	ACSF3	0.025	3064293	EPHB4	0.025	4002809	APOO	0.026
3994915	HMGB3	0.024	3860737	ZNF585A	0.025	3869312	ZNF649	0.026	3695916	CENPT	0.026
3250278	HK1	0.024	3623552	ATP8B4	0.025	3212706		0.026	3884892	FAM83D	0.026
3896078	SLC23A2	0.024	3842839	ZNF470	0.025	3258384	CYP26A1	0.026	3359910	NUP98	0.026
3603408	PSMA4	0.024	2855542	CCL28	0.025	3145149	TP53INP1	0.026	2742829	INTU	0.026
2564816	ANKRD36B	0.024	3164312	ACER2	0.025	3204928	HINT2	0.026	3473586	KSR2	0.026
3375340	CPSF7	0.024	3849688	ZNF266	0.025	3815649	CIRBP	0.026	2828135	LYRM7	0.027
3127745	TNFRSF10D	0.024	3869396	ZNF841	0.025	3401325	TSPAN9	0.026	2924851	RSPO3	0.027
2970086	LAMA4	0.024	3904119	CPNE1	0.025	2791419	FAM198B	0.026	2468105	LOC150622	0.027
3917155	USP16	0.024	2672016	FYCO1	0.025	2698565	TFDP2	0.026	3248470	C10orf107	0.027
3534128	FAM179B	0.024	2331857	SMAP2	0.025	3499632	ERCC5	0.026	3331603	C11orf31	0.027
3239437	GPR158	0.024	2524743	FASTKD2	0.025	3815888	APC2	0.026	3833893	CYP2B7P1	0.027
4007765	PRAF2	0.024	3005069	ZNF92	0.025	2511153	KCNJ3	0.026	3161042	INSL4	0.027
3784783	MOCOS	0.024	3755934	ORMDL3	0.025	2475116	PLB1	0.026	3934785	C21orf67	0.027
2358855	ZNF687	0.024	2394817	KLHL21	0.025	2799184	NDUFS6	0.026	3212143	UBQLN1	0.027
3751625	SSH2	0.024	3718185	CCL11	0.025	3929664	TMEM50B	0.026	2536531	FARP2	0.027
3863597	CNFN	0.024	2476075	SPAST	0.025	3072630	TSGA13	0.026	2841491	C5orf41	0.027
3323413	HTATIP2	0.024	3708462	ACAP1	0.025	2878809	ARAP3	0.026	3878220	C20orf72	0.027
2530539	MFF	0.024	2882747	HAND1	0.025	2534252	MLPH	0.026	2496628	C2orf29	0.027
3772661	TIMP2	0.024	3833757	SNRPA	0.025	2602770	DNER	0.026	3840224	ZNF528	0.027
3457752	STAT2	0.024	2609870	BRPF1	0.025	3757770	STAT5B	0.026	3742236	PELP1	0.027
2875685	FSTL4	0.024	2877314	CDC23	0.025	3830320	MAG	0.026	3830649	COX6B1	0.027
3647993	CIITA	0.024	2595560	RAPH1	0.025	3067250	SLC26A3	0.026	2472054	GDF7	0.027
2909263	MEP1A	0.024	2334319	TOE1	0.025	2497161	IL18RAP	0.026	2522247	AOX1	0.027
3957790	PIK3IP1	0.024	3300211	FGFBP3	0.025	3190190	LCN2	0.026	2756029	FRG1	0.027
3527785	SLC39A2	0.024	2554975	BCL11A	0.025	3402874	GNB3	0.026	2957314	GSTA2	0.027
3320123	ADM	0.024	2685944	СРОХ	0.025	3922100	MX1	0.026	3216529	ZNF782	0.027
2425212	DBT	0.024	2675720	IQCF1	0.025	4021508	ZNF280C	0.026	3063968	ZCWPW1	0.027
2620894	RTP3	0.024	3469319	APPL2	0.025	3983105	APOOL	0.026	2453036	FCAMR	0.027
2649532	RSRC1	0.024	2443575	KIFAP3	0.025	3388631	TMEM123	0.026	2461786	ARID4B	0.027
3769779	SLC39A11	0.024	2544625	POMC	0.025	2603987	NGEF	0.026	3257268	IFIT5	0.027
3306516	SMNDC1	0.024	3473750	VSIG10	0.025	3687910	ZNF689	0.026	3318666	SMPD1	0.027

2920327	NR2E1	0.027	4023467	ARHGEF6	0.028	3330685	OR4C15	0.029	2346625	EPHX4	0.030
3507686	LOC728437	0.027	3528115	TOX4	0.028	3447129	KIAA0528	0.029	3319937	WEE1	0.030
2440664	B4GALT3	0.027	3192062	BAT2L1	0.028	2652669		0.029	3603840	C15orf37	0.030
3456688	GPR84	0.027	3316447	AP2A2	0.028	3512769	ZC3H13	0.029	4005392	BCOR	0.030
3452664	ENDOU	0.027	2658595	HES1	0.028	3267678	WDR11	0.029	2617433	VILL	0.030
3456130	AAAS	0.027	3643143	WDR90	0.028	2818079	ZCCHC9	0.029	3845899	TIMM13	0.030
3173974	FAM189A2	0.027	2901393	TRIM40	0.028	3181728	TGFBR1	0.029	2363084	NCSTN	0.030
3860596	ZNF461	0.027	3844822	MED16	0.028	3431892	SH2B3	0.029	2709750	SST	0.030
2452977	FAIM3	0.027	2830450	NPY6R	0.028	2562685	IMMT	0.029	3770361	CD300LF	0.030
3502411	F7	0.027	3381038	PHOX2A	0.028	3533397	SIP1	0.029	3680249	PRM3	0.030
2662956	VGLL4	0.027	2363784	HSPA6	0.028	2372169	OCLM	0.029	3209060	TRPM3	0.030
2743370	C4orf33	0.027	3512294	TSC22D1	0.028	3883013	TP53INP2	0.029	3693214	DOK4	0.030
2677356	WNT5A	0.027	3159735	DMRT3	0.028	3778601	VAPA	0.029	3493448	PIBF1	0.030
3909777	SALL4	0.027	2572601	CCDC93	0.028	2871617	TRIM36	0.029	2854824	HEATR7B2	0.030
3834176	TMEM91	0.027	3604267	C15orf26	0.028	2319550	RBP7	0.029	3331217	P2RX3	0.030
3752709	MY01D	0.027	2717857	CPZ	0.028	2674047	LAMB2	0.029	2987523	CHST12	0.030
3251566	OIT3	0.027	3764199	MKS1	0.028	2412834	ZCCHC11	0.029	4042392	MIB2	0.030
2562343	GGCX	0.027	3577360	PRIMA1	0.028	2328750	CCDC28B	0.029	3223776	C5	0.030
3944637	KCTD17	0.027	2643901	PPP2R3A	0.028	3835035	CD177	0.029	2440586	PVRL4	0.031
2880679	SH3TC2	0.027	2378019	CAMK1G	0.028	3191352	NCS1	0.029	3119516	ZNF696	0.031
3551566	EVL	0.027	2784027	ANXA5	0.028	3690470	ABCC11	0.029	3301141	CYP2C8	0.031
3260829	FAM178A	0.027	3646434	UBN1	0.028	3621728	FRMD5	0.029	3443868	CD69	0.031
2399765	CAPZB	0.027	3994451	CXorf40A	0.028	3821079	DOCK6	0.029	3930942	CLDN14	0.031
3555736	NDRG2	0.028	3455914	KRT78	0.028	3894637	NSFL1C	0.029	3502259	MCF2L	0.031
3346584	BIRC2	0.028	2973376	PTPRK	0.029	3377569	SLC25A45	0.030	3746675	CDRT4	0.031
3845120	C19orf23	0.028	3467720	GOLGA2B	0.029	3712835	LRRC48	0.030	2635741	CD96	0.031
3482219	NUPL1	0.028	2380440	SPATA17	0.029	3094611	LETM2	0.030	3999148	GPR143	0.031
3336652	SYT12	0.028	2690715	IGSF11	0.029	3344861	C11orf54	0.030	2663295	TMEM40	0.031
3553998	TDRD9	0.028	3670918	PLCG2	0.029	2629345	GPR27	0.030	2322226	CLCNKA	0.031
3461795	PTPRB	0.028	2853102	PRLR	0.029	3884191	SRC	0.030	3227696	RAPGEF1	0.031
3715703	SUPT6H	0.028	2337217	C1orf175	0.029	3561381	NKX2-1	0.030	3518766	EDNRB	0.031
3987029	TMEM164	0.028	2796623	SLED1	0.029	2587730	SP9	0.030	2452754	SLC26A9	0.031
2950307	HLA-DOA	0.028	3937183	DGCR8	0.029	3676669	RNPS1	0.030	3822723	PKN1	0.031

3742708	C1QBP	0.031	2664760	DAZL	0.032	3335338	FAM89B	0.033	3503164	CDC16	0.034
2573326	LOC84931	0.031	3675266	JMJD8	0.032	3175274	PCSK5	0.033	3623865	SPPL2A	0.034
2552368	LHCGR	0.031	3942124	CABP7	0.032	3149843	RAD21	0.033	3955102	GSTT1	0.034
2623662	DNAH1	0.031	2545534	C2orf53	0.032	2888674	MXD3	0.033	3704567	CBFA2T3	0.034
3646000	DNASE1	0.031	3870135	ZNF347	0.032	2358700	GABPB2	0.033	2856995	ESM1	0.034
3315584	NLRP6	0.031	3079576	SMARCD3	0.032	3418394	SLC26A10	0.033	3932270	HMGN1	0.034
3263944	PDCD4	0.031	3907234	SDC4	0.032	2417016	WDR78	0.033	3555461	OSGEP	0.034
3101851	C8orf45	0.031	3447348	SOX5	0.032	3818515	TRIP10	0.033	2364438	NUF2	0.034
4009288	HSD17B10	0.031	3481296	SGCG	0.032	3545634	NRXN3	0.033	2771718	UBA6	0.034
2338487	FGGY	0.031	3363266	DKK3	0.032	2876213	CDKN2AIP	0.033	2351854	C1orf162	0.034
3974957	GPR82	0.031	2702307	CCNL1	0.032	2903343	BRD2	0.033	2608765	ARL8B	0.034
3022422	FSCN3	0.031	3628832	DAPK2	0.032	3951302	POTEM	0.033	3566383	C14orf105	0.034
2669979	CX3CR1	0.031	3890099	MC3R	0.032	2942306	TBC1D7	0.033	3059464	SEMA3A	0.034
2559849	SLC4A5	0.031	2398073	FBXO42	0.032	3580832	XRCC3	0.033	2974671	C6orf192	0.034
3315952	RASSF7	0.032	3476012	MPHOSPH9	0.032	3176999	RMI1	0.033	2926969	PDE7B	0.034
3973692	PRRG1	0.032	3674659	GAS8	0.032	3472755	TBX3	0.033	3312045	C10orf90	0.034
2914070	MY06	0.032	3740664	C17orf91	0.032	3571347	NUMB	0.033	3573870	DIO2	0.034
2975867	MAP3K5	0.032	3913018	LAMA5	0.033	2453365	PLXNA2	0.033	4023006	ZNF75D	0.034
2327677	EPB41	0.032	2708066	KLHL6	0.033	2594773	ALS2CR12	0.033	3284882	CUL2	0.034
3414029	KCNH3	0.032	3111530	ENY2	0.033	3643047	RAB40C	0.033	3739162	TBCD	0.034
3977347	CCNB3	0.032	2714407	IDUA	0.033	2464129		0.033	2738146	TET2	0.034
3675101	MRPL28	0.032	2408499	SCMH1	0.033	3349437		0.033	4007186	ELK1	0.034
3289631	CSTF2T	0.032	3578089	C14orf49	0.033	2998192	POU6F2	0.033	3415988	AMHR2	0.035
2770039	NMU	0.032	2980870	NOX3	0.033	3011675	ZNF804B	0.033	3969455	OFD1	0.035
3819312	SNAPC2	0.032	2367154	BAT2L2	0.033	3738490	GPS1	0.034	3324162	LUZP2	0.035
3949229	TBC1D22A	0.032	3269373	ZRANB1	0.033	2673873	IMPDH2	0.034	3299970	ANKRD1	0.035
3303109	COX15	0.032	2902804	C2	0.033	3453169	LALBA	0.034	3432394	RPH3A	0.035
2477438	QPCT	0.032	3316234	NS3BP	0.033	3144740	FP6628	0.034	3884830	PPP1R16B	0.035
3603295	CRABP1	0.032	3376046	LRRN4CL	0.033	2357845	FCGR1A	0.034	3864390	PHLDB3	0.035
2922881	RFX6	0.032	3048468	GCK	0.033	3867693	C19orf73	0.034	3820501	PDE4A	0.035
3860793	ZNF585B	0.032	3901851	ABHD12	0.033	3753935	LYZL6	0.034	2644461	ARMC8	0.035
4004035	FTHL17	0.032	2621583	ZNF589	0.033	2447246	C1orf14	0.034	2842157	HRH2	0.035
3895075	IDH3B	0.032	3127259	NUDT18	0.033	2821347	ERAP2	0.034	3430462	BTBD11	0.035

2828757	ANKRD43	0.035	3393257	BACE1	0.036	2727587	KIT	0.037	3952880	TXNRD2	0.038
2973694	ARHGAP18	0.035	4001029		0.036	3139035	ARFGEF1	0.037	3023246	IRF5	0.038
3902682	PLAGL2	0.035	3817380	EBI3	0.036	2340078	CACHD1	0.037	2505779	GPR148	0.038
3015241	AP4M1	0.035	3837866	SULT2B1	0.036	2891768	FOXC1	0.037	3783435	DSG4	0.038
3230811	DPP7	0.035	4000944	RBBP7	0.036	3437780	FZD10	0.037	2491686	RNF181	0.038
3304116	C10orf76	0.035	3806366	LOXHD1	0.036	2900497	ZKSCAN3	0.037	3374224	OR10W1	0.038
2701892	C3orf33	0.035	2622359	RBM6	0.036	3111695	EBAG9	0.037	2790999	ACCN5	0.039
2405576	CSMD2	0.035	3870824	LAIR1	0.036	3543857	PTGR2	0.038	2685034	CGGBP1	0.039
2528504	SPEG	0.035	3202528	LINGO2	0.036	3319119	OLFML1	0.038	3001345	VWC2	0.039
3360622	TRIM5	0.035	3397951	FLJ45950	0.036	2321960	PLEKHM2	0.038	3914021	GMEB2	0.039
3150844	SNTB1	0.035	2881923	SLC36A3	0.036	2897172	RNF144B	0.038	3070507	RNF148	0.039
2362333	MNDA	0.035	3601387	PML	0.037	2738664	SGMS2	0.038	2387126	RYR2	0.039
2487639	PCBP1	0.035	2359993	CREB3L4	0.037	3726465	RSAD1	0.038	2971801	MAN1A1	0.039
4026346	PNMA5	0.035	2318242		0.037	3090294	ADAMDEC1	0.038	3944778	GGA1	0.039
2647647	TSC22D2	0.035	3887069	SNX21	0.037	3009520	UPK3B	0.038	2772450	SULT1E1	0.039
2949859	PBX2	0.035	3725779	MYST2	0.037	3819263	MAP2K7	0.038	3615556	NDNL2	0.039
3532353	FAM177A1	0.036	3788302	SMAD4	0.037	3989826	SH2D1A	0.038	3450234	PKP2	0.039
3332964	C11orf66	0.036	2518889	ZNF804A	0.037	2430762	WARS2	0.038	3755510	PLXDC1	0.039
3429159	STAB2	0.036	3398076	NFRKB	0.037	3241601	C10orf68	0.038	3765580	BRIP1	0.039
2633737	GPR128	0.036	3590498	TYRO3	0.037	3825523	SLC25A42	0.038	2601648	DOCK10	0.039
3318543	OR52E5	0.036	3255361	RGR	0.037	2585701	STK39	0.038	3403539	FOXJ2	0.039
2908423	SLC29A1	0.036	2989141	C7orf26	0.037	3671935	CRISPLD2	0.038	2949330	CLIC1	0.039
3632037	PARP6	0.036	4009667	FGD1	0.037	3815936	REEP6	0.038	3533184	SSTR1	0.039
2964139	GABRR2	0.036	2830861	EGR1	0.037	2912416	BAI3	0.038	3955875	TFIP11	0.039
2573112	SCTR	0.036	3780287	RNMT	0.037	3753568	SLFN13	0.038	3695235	CCDC79	0.039
2619480	CCBP2	0.036	4014387	RPSA	0.037	4015548	XKRX	0.038	3333417	SCGB2A1	0.039
3914050	STMN3	0.036	3318390	TRIM6-34	0.037	3506093	FAM123A	0.038	3143970	NBN	0.039
2434872	TMOD4	0.036	2901503	TRIM39	0.037	3015519	PILRA	0.038	2445643	SEC16B	0.039
2713555	KIAA0226	0.036	3239667	GAD2	0.037	3317056	TNNI2	0.038	2383999	OBSCN	0.039
3190420	CERCAM	0.036	3124180	PINX1	0.037	2715476	FAM193A	0.038	3807261	SMAD7	0.039
3045570	TBX20	0.036	3468103	GNPTAB	0.037	3572340	TMED10	0.038	3890640	PCK1	0.039
2339328		0.036	3895330	SLC4A11	0.037	2691014	GSK3B	0.038	3224366	RC3H2	0.039
3190925	DOLPP1	0.036	2419046	ZZZ3	0.037	3294854	CAMK2G	0.038	2761285	BOD1L	0.039

Table B11: C90RF72vCtrl Alternatively Spliced List (n=2,511) [Partek® p-value (alt. splicing) <0.05]</th> 2357961 801 A1 0.041 2610136 CBELD1 0.041 2610136 CBELD1 0.041 2663396 0.042 3924424 COL642 0.043

235/961	BOLAI	0.039	2610136	CRELDI	0.041	2663396	IQSECI	0.042	3924424	COL6A2	0.043
2970044	TUBE1	0.040	3057520	TMEM120A	0.041	2351940	DDX20	0.042	3291682	JMJD1C	0.043
3085065	ERI1	0.040	3890154	CSTF1	0.041	2746269	LSM6	0.042	2412082	FAF1	0.043
3145107	CCNE2	0.040	3767531	CCDC46	0.041	2850676	CDH18	0.042	3532560	BRMS1L	0.043
3072014	TNPO3	0.040	4010183	SPIN3	0.041	3719231	MRM1	0.042	3662723	COQ9	0.043
3944873	PDXP	0.040	2768354	ТХК	0.041	3168136	RGP1	0.042	3851493	ZNF443	0.043
3589822	DISP2	0.040	2415266	CYP2J2	0.041	3869078	SIGLEC12	0.042	3786471	SETBP1	0.043
3557268	PPP1R3E	0.040	3625326	CCPG1	0.041	3224220	LHX6	0.042	2459587	TRIM17	0.043
2460189	PGBD5	0.040	3545183	C14orf166B	0.041	3527418	PARP2	0.042	3661065	RBL2	0.043
3652271	C16orf52	0.040	3947627	TSPO	0.041	3758209	LOC388387	0.042	2875954	VDAC1	0.043
3661940	GNA01	0.040	3770588	NT5C	0.041	2966636	ASCC3	0.042	2532021	PTMA	0.043
3807965	MRO	0.040	2454343	RD3	0.041	3475764	GPR81	0.042	3266408	EMX2	0.043
3357397	GLB1L2	0.040	2322786	PADI1	0.041	2744597	NAA15	0.042	3825446	DDX49	0.043
3119213	LY6K	0.040	3952566	CLTCL1	0.041	3821159	LPPR2	0.042	2694314	GATA2	0.043
3254468	DYDC2	0.040	2632919	ARL6	0.041	4019599	RNF113A	0.042	3389566	KBTBD3	0.043
3420713	CAND1	0.040	3059667	SEMA3D	0.041	2551786	MCFD2	0.042	2427981	ADORA3	0.043
3377177	CDC42BPG	0.040	2322894	PADI6	0.041	2978050	SHPRH	0.042	3349719	ZBTB16	0.043
3880467	TMEM90B	0.040	3305017	OBFC1	0.041	3580876	PPP1R13B	0.042	3332838	DAK	0.043
2493813	ZNF2	0.040	3737430	FLJ35220	0.041	2553771	CCDC88A	0.042	3316057	DRD4	0.043
3978706	PAGE5	0.040	3768703	ABCA9	0.041	3535674	C14orf166	0.042	2498911	SULT1C2	0.043
2327572	RAB42	0.040	2404209	SDC3	0.041	3924041	ADARB1	0.042	2356300	PIAS3	0.043
3548538	C14orf159	0.040	3722060	VPS25	0.041	3645322	PRSS41	0.042	2770023	PDCL2	0.044
3086206	FDFT1	0.040	2887309	DUSP1	0.041	2340350	DNAJC6	0.043	3893338	COL20A1	0.044
2686371	TOMM70A	0.040	3309383	PRDX3	0.041	2943236	DTNBP1	0.043	2330334	THRAP3	0.044
2962998	KIAA1009	0.040	3115504	MYC	0.042	3959918	TST	0.043	3876645	BTBD3	0.044
2779823	SLC39A8	0.040	2405284	TMEM54	0.042	2460296	AGT	0.043	3129588	KIF13B	0.044
2949971	C6orf10	0.040	2503374	GLI2	0.042	3708961	WRAP53	0.043	2471316	GEN1	0.044
3359461	PHLDA2	0.040	3763656	TRIM25	0.042	3844152	ZNF324	0.043	3304797	CALHM3	0.044
2655606	ECE2	0.041	2546409	ALK	0.042	3759105	FAM171A2	0.043	3035223	MICALL2	0.044
3631517	THAP10	0.041	3456306	ATF7	0.042	3015299	MBLAC1	0.043	3848492	FCER2	0.044
3907711	CDH22	0.041	2997231	PP13004	0.042	3174643	TMC1	0.043	3838809	PRMT1	0.044
3136229	SDR16C5	0.041	2475710	LCLAT1	0.042	3743340	ASGR2	0.043	3469687	CKAP4	0.044
3273251	DIP2C	0.041	3130244	TEX15	0.042	3272834	MTG1	0.043	3237548	ARL5B	0.044

3363979	PSMA1	0.044	2451428	KLHL12	0.045	3285119	FZD8	0.046	3603436	CHRNA5	0.048
3924518	MCM3AP-AS	0.044	3680254	PRM2	0.045	2399718	AKR7A2	0.046	3256074	BMPR1A	0.048
3385509	FZD4	0.044	2349211	HEJ1	0.045	3873057	DEFB125	0.047	3579546	WARS	0.048
3840562	HERV-V1	0.044	2832447	PCDHB13	0.045	2400718	USP48	0.047	2324919	EPHB2	0.048
3695433	TRADD	0.044	2772160		0.045	3988638	LONRF3	0.047	3975869	RP2	0.048
3757602	DHX58	0.044	3861557	LGALS4	0.045	3977611	CXorf67	0.047	2840002	CCDC99	0.048
3935486	S100B	0.044	2451816	C1orf157	0.045	2374414	GPR25	0.047	3635198	BCL2A1	0.048
3351711	FOXR1	0.044	3382216	ARRB1	0.045	3066297	SRPK2	0.047	3855011	ELL	0.048
3766373	FTSJ3	0.044	3435362	KNTC1	0.045	3452417	SLC38A4	0.047	2900940	MOG	0.048
3717052	NF1	0.044	3605780	SCAND2	0.046	3923426	AGPAT3	0.047	3044597	PDE1C	0.048
2468811	ASAP2	0.044	2768056	GABRA4	0.046	2438117	VHLL	0.047	2951881	PXT1	0.048
3625234	RSL24D1	0.044	2902013	GTF2H4	0.046	2517013	MTX2	0.047	2434178	MTMR11	0.048
3715809	NEK8	0.044	3569814	ACTN1	0.046	2365872	RCSD1	0.047	3652902	SCNN1B	0.048
3016380	CUX1	0.044	2359885	SLC27A3	0.046	3118651	DENND3	0.047	2844479	SQSTM1	0.048
2644014	PCCB	0.044	3322521	KCNC1	0.046	3642875	RAB11FIP3	0.047	3743571	YBX2	0.048
2830742	KDM3B	0.044	3148582	EIF3E	0.046	2833078	NDFIP1	0.047	2953481	TREML1	0.048
3346453	YAP1	0.044	3996404	GDI1	0.046	3360333	OR51A2	0.047	2350922	GSTM4	0.048
2350741	ATXN7L2	0.044	3818732	ARHGEF18	0.046	2615060	RBMS3	0.047	3094245	ERLIN2	0.048
3756997	KRT32	0.044	2536874	GAL3ST2	0.046	3714779	KCNJ12	0.047	3448744	PTHLH	0.049
3417435	MYL6B	0.045	3113894	ZHX2	0.046	3448481	TM7SF3	0.047	3156193	EIF2C2	0.049
3375990	INTS5	0.045	2838462	GABRG2	0.046	2505833	ARHGEF4	0.047	2602304	TM4SF20	0.049
3696142	DPEP2	0.045	3361381	CYB5R2	0.046	3393993	BCL9L	0.047	4001223	RAI2	0.049
3062576	ASNS	0.045	3845944	GNG7	0.046	2435383	S100A10	0.047	3738353	ASPSCR1	0.049
3101385	MTFR1	0.045	2806517	SKP2	0.046	2429613	NHLH2	0.047	3728037	SCPEP1	0.049
3838444	CCDC155	0.045	2350316	FNDC7	0.046	2560317	C2orf65	0.047	2876897	SPOCK1	0.049
2435347	THEM4	0.045	2332144	CTPS	0.046	3421300	MDM2	0.047	2677200	LRTM1	0.049
3091000	BNIP3L	0.045	2749191	GLRB	0.046	3079336	FASTK	0.047	3837464	GLTSCR2	0.049
2443370	F5	0.045	2360850	FDPS	0.046	3843180	ZNF304	0.047	2432647	POLR3C	0.049
2659521	LRRC33	0.045	3221571	RNF183	0.046	3772158	TK1	0.048	2516853	HOXD9	0.049
3380065	CCND1	0.045	3502497	CUL4A	0.046	3764592	TEX14	0.048	2888399	SNCB	0.049
3540839		0.045	2961816	PHIP	0.046	2438612	INSRR	0.048	2829416	SEC24A	0.049
2404546	COL16A1	0.045	3679503	TMEM186	0.046	3885537	PLCG1	0.048	3180342	C9orf3	0.049
2675088	IFRD2	0.045	3887165	PCIF1	0.046	3544605	BATF	0.048	3359134	IGF2	0.049

3544251	YLPM1	0.049	3217194	TBC1D2	0.049	3633578	CSPG4	0.049	3940751	MY018B	0.049
3894365	C20orf54	0.049	2797771	TRIML2	0.049	3042001	CYCS	0.049	3743440	DVL2	0.049
3015786	ZAN	0.049	3841881	NCR1	0.049	3757840	STAT3	0.049	3095766	GINS4	0.049
2414558	DAB1	0.049	3707175	TM4SF5	0.049	2459352	WNT9A	0.049			

Transcript	Symbol	p-value	Transcript	Symbol	p-value	Transcript	Symbol	p-value	Transcript	Symbol	p-value
2979871	SYNE1	0.000	3928866	SFRS15	3.02E-13	3843848	ZNF544	8.80E-11	2843091	RGS14	1.70E-09
2715076	WHSC1	1.96E-38	2971267	ROS1	5.56E-13	2367963	RABGAP1L	8.88E-11	3895722	CENPB	2.12E-09
3377044	SF1	2.44E-36	2845591	BRD9	6.18E-13	2664099	MRPS25	1.02E-10	2334052	C1orf228	2.24E-09
3653317	RBBP6	8.93E-32	3509910	FAM48A	6.18E-13	3712835	LRRC48	1.10E-10	2348634	AGL	2.43E-09
2321238	PRDM2	1.51E-23	3036985	RNF216	7.43E-13	3620457	VPS39	1.11E-10	3659156	РНКВ	2.52E-09
3771513	PRPSAP1	3.09E-23	3529609	PSME1	7.53E-13	2723997	KLF3	1.11E-10	2870113	FBXL17	2.54E-09
3896621	FERMT1	7.71E-23	3310479	NSMCE4A	9.13E-13	3869361	ZNF615	1.16E-10	3253683	ZMIZ1	2.80E-09
2548970	SRSF7	2.13E-22	3430776	ISCU	1.03E-12	3629811	DENND4A	1.18E-10	2871821	TMED7	3.06E-09
3081862	PTPRN2	3.72E-22	3368054	PAX6	1.10E-12	3398076	NFRKB	1.22E-10	3536706	LGALS3	3.54E-09
3194635	C9orf86	6.83E-22	2622469	RBM5	1.19E-12	2662087	SRGAP3	1.37E-10	3661559	IRX5	3.56E-09
3771800	SRSF2	2.81E-21	3816264	DOT1L	2.27E-12	3597125	TLN2	2.04E-10	3318390	TRIM6-34	4.45E-09
3868183	NUP62	6.28E-20	3249886	TET1	2.31E-12	3908149	ZMYND8	2.23E-10	3746881	NCOR1	4.63E-09
2593464	ANKRD44	6.87E-20	3604287	IL16	2.62E-12	2928930	PHACTR2	2.44E-10	3036476	RADIL	4.72E-09
3240340	WAC	8.72E-18	2967151	HACE1	2.64E-12	2927506	TNFAIP3	2.52E-10	3661065	RBL2	5.00E-09
3882012	DNMT3B	4.11E-17	2818079	ZCCHC9	5.22E-12	3470831	MMAB	2.57E-10	2610336	VHL	5.55E-09
3708663	CHRNB1	5.43E-17	2358743	SCNM1	1.09E-11	2675801	PCBP4	2.72E-10	3159946	SMARCA2	6.50E-09
3778252	ANKRD12	1.23E-16	3557268	PPP1R3E	1.20E-11	3427820	SLC25A3	2.82E-10	3228373	TSC1	6.55E-09
3962997	EFCAB6	1.82E-16	3645253	SRRM2	1.41E-11	3222534	ASTN2	2.98E-10	3553690	MARK3	7.30E-09
3764103	SRSF1	1.86E-16	3335517	KAT5	1.74E-11	2548500	PRKD3	3.21E-10	2752478	WDR17	8.06E-09
3499453	TPP2	5.02E-16	3403015	ENO2	1.79E-11	3017547	MLL5	3.41E-10	2496727	MAP4K4	8.56E-09
2520291	GLS	2.00E-15	2317512	DFFB	2.11E-11	4027708	MTCP1	3.48E-10	3341440	RN28S1	9.52E-09
3571347	NUMB	4.36E-15	3257031	STAMBPL1	2.12E-11	3737430	FLJ35220	3.58E-10	2897899	SOX4	9.75E-09
2962998	KIAA1009	4.38E-15	2708720	EHHADH	2.69E-11	2935475	QKI	3.82E-10	3500055	DAOA	9.79E-09
3249738	HNRNPH3	1.50E-14	2459793	C1orf96	3.47E-11	3168415	CLTA	3.84E-10	2617687	XYLB	1.01E-08
2943236	DTNBP1	2.25E-14	2407755	GJA9	3.73E-11	3614087	UBE3A	4.58E-10	3151473	ZHX1	1.01E-08
2575054	WDR33	2.63E-14	2705266	TNIK	3.81E-11	2662331	CAMK1	5.81E-10	3167731	UNC13B	1.02E-08
3336857	ANKRD13D	2.78E-14	3239760	APBB1IP	4.00E-11	2943874	KIF13A	6.75E-10	2343473	IFI44L	1.20E-08
2704894	PHC3	4.67E-14	3848745	FBN3	5.20E-11	2395245	RERE	7.11E-10	2524743	FASTKD2	1.31E-08
3634852	RASGRF1	5.00E-14	3517251	DACH1	6.16E-11	2785282	SCLT1	7.58E-10	2789266	LRBA	1.47E-08
3199790	PSIP1	6.47E-14	2642911	UBA5	6.65E-11	3940901	SEZ6L	9.96E-10	3907524	PLTP	1.50E-08
3543411	RBM25	1.38E-13	3933999	U2AF1	7.02E-11	3708764	TNFSF12-13	1.09E-09	3868587	SHANK1	1.63E-08
3148796	NUDCD1	2.59E-13	3847356	LONP1	8.02E-11	2488252	DYSF	1.26E-09	3155637	COL22A1	1.77E-08

3886704	STK4	1.79E-08	3400034	WNK1	5.55E-08	2727226	PDGFRA	1.68E-07	3851267	ZNF625	4.00E-07
3452145	SRSF2IP	1.94E-08	2376548	MFSD4	5.97E-08	3251848	SEC24C	1.71E-07	3267036	GRK5	4.61E-07
3154700	ZFAT	1.94E-08	3304718	PCGF6	6.19E-08	3320717	MICAL2	1.72E-07	3647993	CIITA	4.64E-07
3470597	SSH1	1.99E-08	3837431	EHD2	6.26E-08	3413344	PFKM	1.75E-07	3294499	PPP3CB	4.86E-07
2417791	ANKRD13C	2.12E-08	3064082	LRCH4	6.27E-08	2645690	RNF7	1.93E-07	2372924	TROVE2	4.88E-07
3282519	ARMC4	2.22E-08	3911177	ZBP1	6.32E-08	2451428	KLHL12	1.95E-07	2452754	SLC26A9	5.40E-07
3701481	PKD1L2	2.23E-08	3764592	TEX14	6.40E-08	3547696	TTC8	1.98E-07	3726618	CACNA1G	5.47E-07
3351531	ARCN1	2.49E-08	3377358	BATF2	6.48E-08	3923257	PDXK	2.02E-07	2360468	FLAD1	5.61E-07
2909263	MEP1A	2.80E-08	2779163	ADH6	7.29E-08	2606574	NDUFA10	2.03E-07	3919860	DOPEY2	5.70E-07
2400322	HP1BP3	2.90E-08	3134034	PRKDC	7.98E-08	2712794	TCTEX1D2	2.19E-07	3607275	ISG20	5.78E-07
2346074	ZNF326	2.92E-08	2424524	DPYD	8.30E-08	3924674	DIP2A	2.22E-07	2328320	TINAGL1	5.82E-07
3893760	TPD52L2	2.99E-08	3839206	MYH14	8.94E-08	3893338	COL20A1	2.22E-07	3381241	ARAP1	6.04E-07
3091000	BNIP3L	3.02E-08	2488959	STAMBP	9.00E-08	3129731	DUSP4	2.27E-07	2320411	AGTRAP	6.16E-07
3741997	ANKFY1	3.13E-08	2366490	BLZF1	9.01E-08	2904563	DEF6	2.28E-07	3188299	RABGAP1	6.27E-07
3168136	RGP1	3.18E-08	2450568	CACNA1S	9.04E-08	2531233	SP140	2.36E-07	3672455	COX4I1	6.46E-07
3708399	SLC2A4	3.26E-08	3978819	RRAGB	9.28E-08	3645881	ZNF174	2.51E-07	3108901	VPS13B	6.50E-07
2404546	COL16A1	3.60E-08	3014957	ZNF498	9.32E-08	3125342	SGCZ	2.51E-07	2853388	C5orf33	6.83E-07
3434193	CCDC64	3.65E-08	2925871	ENPP3	9.42E-08	2407163	SNIP1	2.55E-07	3894098	C20orf96	6.86E-07
3064039	TSC22D4	3.72E-08	2429147	DENND2C	9.47E-08	3762753	CA10	2.65E-07	3823982	MYO9B	7.11E-07
2927873	CCDC28A	3.77E-08	3605395	ADAMTSL3	9.68E-08	3252382	MYST4	2.71E-07	3524999	LIG4	7.17E-07
3223738	TRAF1	3.94E-08	3430959	ACACB	1.01E-07	3389566	KBTBD3	2.78E-07	3041875	OSBPL3	7.24E-07
2877314	CDC23	4.07E-08	3529877	LTB4R2	1.02E-07	3064204	ACTL6B	2.81E-07	3962530	CYB5R3	7.27E-07
3340913	C11orf30	4.15E-08	2798586	AHRR	1.04E-07	3738969	FOXK2	2.98E-07	2969677	REV3L	7.45E-07
2419235	FUBP1	4.27E-08	3947604	BIK	1.06E-07	3387771	CCDC82	3.11E-07	2621705	ATRIP	7.50E-07
3720921	RARA	4.34E-08	2549455	THUMPD2	1.15E-07	3421446	CPSF6	3.16E-07	2333794	DMAP1	7.97E-07
3740838	SMG6	4.34E-08	3503164	CDC16	1.20E-07	3989721	STAG2	3.18E-07	2534126	COPS8	8.06E-07
3471264	VPS29	4.46E-08	3258671	PDE6C	1.36E-07	2678400	ACOX2	3.49E-07	2780522	PPA2	8.67E-07
2612175	NR2C2	4.50E-08	3510755		1.38E-07	3758692	MPP2	3.51E-07	3756630	KRT40	9.60E-07
3716481	GOSR1	4.57E-08	2546008	SUPT7L	1.40E-07	3980078	STARD8	3.75E-07	2622970	DOCK3	9.71E-07
3923436	TRAPPC10	4.58E-08	3653398	TNRC6A	1.43E-07	3707214	PLD2	3.78E-07	2508520	KYNU	9.93E-07
3553872	KLC1	5.12E-08	3845647	MKNK2	1.55E-07	3584443	SNRPN	3.80E-07	2824872	AP3S1	1.03E-06
2341565	SRSF11	5.16E-08	3804143	RPRD1A	1.55E-07	3620741	CDAN1	3.80E-07	3427352	NEDD1	1.05E-06
3701433	C16orf46	5.21E-08	2476671	RASGRP3	1.65E-07	3806525	PIAS2	3.86E-07	2793221	NEK1	1.08E-06

3843419 **ZNF211** 1.23E-06 3177880 DAPK1 2.46E-06 2405576 CSMD2 4.35E-06 2369252 C1orf49 6.54E-06 **ZNF200** 3336277 BBS1 1.29E-06 3677498 2.50E-06 2678526 C3orf67 4.38E-06 3409605 FAR2 6.64E-06 3090326 1.33E-06 3347658 3454006 4.52E-06 CDK10 ADAM7 ATM 2.51E-06 FMNL3 3674303 6.69E-06 2929870 STXBP5 1.40E-06 3892409 LSM14B 2.60E-06 2475407 CLIP4 4.56E-06 3868857 KLK12 6.74E-06 3357885 SIGIRR 1.40E-06 3377789 RELA 2.63E-06 3820758 DNM2 4.61E-06 2559386 SFXN5 6.76E-06 ERAP2 3501661 ARHGEF7 1.42E-06 2821347 2.74E-06 3653516 SLC5A11 4.64E-06 3372253 CELF1 6.90E-06 3178952 SYK 1.42E-06 3158516 CPSF1 2.74E-06 3604006 ARNT2 4.66E-06 3644764 CCNF 7.28E-06 3878220 C20orf72 1.43E-06 3844978 SBN02 2.76E-06 2522728 CASP8 4.68E-06 3824395 PGLS 7.36E-06 2599901 C2orf24 2454935 LCN2 1.49E-06 ANGEL2 2.83E-06 3048413 POLD2 4.74E-06 3190190 7.40E-06 2891241 DUSP22 1.59E-06 3933243 2.87E-06 2431886 4.76E-06 3528944 REM2 PRDM15 PDE4DIP 7.45E-06 3757037 KRT36 2666478 TOP2B 3.07E-06 3948953 3185976 COL27A1 1.60E-06 PPARA 4.84E-06 7.56E-06 3010503 1.64E-06 3904594 3.09E-06 3751323 4.90E-06 ARID3B 7.73E-06 CD36 C20orf117 **MY018A** 3601675 2902326 3545183 C14orf166B 1.64E-06 HCP5 3.11E-06 3654111 IMID5 4.98E-06 2724377 7.75E-06 ---PTK2B STMN3 7.77E-06 3091301 1.67E-06 3881261 REM1 3.13E-06 2434776 CDC42SE1 4.99E-06 3914050 3870478 OSCAR 1.83E-06 3709327 **CNTROB** 3.18E-06 3819374 CCL25 5.17E-06 3580498 CDC42BPB 7.78E-06 2375664 BTG2 1.84E-06 3486383 COG6 3.19E-06 3371114 SYT13 5.20E-06 3918959 MRPS6 8.07E-06 DHX34 WDFY4 H3F3B 3837276 1.86E-06 3245783 3.20E-06 3770944 5.23E-06 2353988 FAM46C 8.56E-06 3883309 **CEP250** 5.29E-06 2666566 NGLY1 1.87E-06 3.22E-06 3706071 DPH1 2638824 CASR 8.62E-06 2362892 5.30E-06 3710515 DNAH9 1.91E-06 ATP1A2 3.22E-06 3031181 ATP6V0E2 2486811 PLEK 8.65E-06 3469319 APPL2 1.96E-06 2570238 NPHP1 3.36E-06 2474019 DPYSL5 5.35E-06 EHF 8.73E-06 3326461 3854132 3678231 5.40E-06 3273601 2.03E-06 CPAMD8 3.39E-06 FAM100A 3016380 CUX1 8.76E-06 IDI1 5.69E-06 2692573 CCDC14 2.11E-06 3959451 MYH9 3.42E-06 3188050 MRRF 3033728 RNF32 8.79E-06 2758733 3048373 POLM 2.16E-06 STX18 3.54E-06 3035795 C7orf27 5.81E-06 3758234 AARSD1 8.86E-06 2360850 FDPS 2.18E-06 3260829 FAM178A 3.58E-06 3604147 KIAA1199 6.04E-06 2550122 COX7A2L 8.91E-06 2.19E-06 3471538 2746693 ARHGAP10 2731417 MTHFD2L 3.61E-06 FAM109A 6.09E-06 2623662 DNAH1 8.95E-06 2326954 **TMEM222** 2.23E-06 2954678 XPO5 3.71E-06 3343202 EED 6.12E-06 2948630 IER3 9.25E-06 3226160 SIAT7F 2.23E-06 3913018 LAMA5 3.77E-06 2435005 SELENBP1 6.23E-06 2343511 IFI44 9.49E-06 3891664 CDH26 2.28E-06 3747657 FLCN 3.83E-06 3743611 NEURL4 6.25E-06 3505937 CENPI 9.51E-06 SLC9A7 2.29E-06 3451814 NELL2 3.91E-06 2336439 6.26E-06 3417201 IKZF4 4006841 GPX7 9.72E-06 3189864 LRSAM1 2.34E-06 3309345 SFXN4 3.93E-06 2387126 RYR2 6.38E-06 2899216 HIST1H4E 9.90E-06 3147286 RRM2B 2.39E-06 2319661 KIF1B 3.98E-06 3326635 CD44 6.44E-06 3811339 BCL2 1.01E-05 3531736 NPAS3 2738146 TET2 3906062 ZHX3 6.47E-06 3266408 EMX2 2.40E-06 4.10E-06 1.03E-05 PRKCZ 3182409 **ZNF189** 4.10E-06 3422458 6.48E-06 2316245 2.46E-06 TRHDE 3179551 FGD3 1.05E-05

3010439 GNAI1 1.06E-05 3657041 ITGAX 1.80E-05 3590460 ITPKA 2.44E-05 3825650 MAU2 3.48E-05 AP1G2 ILKAP 3888055 3557614 1.06E-05 2605674 1.84E-05 ARFGEF2 2.45E-05 2367495 C1orf105 3.51E-05 2645906 1.07E-05 3595846 FAM63B 1.84E-05 2939034 SERPINB9 2.47E-05 3697434 HYDIN PLS1 3.52E-05 3304012 MGEA5 1.11E-05 2892170 WRNIP1 1.86E-05 2617041 GOLGA4 2.50E-05 2523689 ABI2 3.56E-05 3849923 COL5A3 1.12E-05 2967550 ATG5 1.88E-05 3244061 ZNF487P 2.56E-05 3.62E-05 2524653 ADAM23 3938113 HIC2 PPM1B 2.57E-05 3705911 **WDR81** 1.14E-05 1.95E-05 2479640 3107724 C8orf38 3.63E-05 3768791 ABCA6 1.16E-05 3740264 INPP5K 1.96E-05 3540862 GPHN 2.64E-05 3590853 CAPN3 3.65E-05 2350596 CELSR2 1.18E-05 3011317 CROT 1.98E-05 3344861 C11orf54 2.68E-05 3378043 CATSPER1 3.74E-05 2674919 MST1R 3212008 1.98E-05 2.68E-05 1.19E-05 FRMD3 3071630 2698844 ATR 3.77E-05 ---2951541 1.19E-05 2577482 2.01E-05 3030799 2.70E-05 2451958 PLEKHA6 TULP1 **TMEM163** KRBA1 3.87E-05 3882652 **ZNF341** 1.25E-05 3314630 C10orf92 2.01E-05 3723378 2.71E-05 3676279 RPL3L 3.92E-05 FMNL1 2.73E-05 2939593 PECI 1.26E-05 2927722 HEBP2 2.04E-05 3966929 GYG2 3.92E-05 3965314 BRD1 2.92E-05 3737488 RPTOR 1.29E-05 3531032 SCFD1 2.04E-05 2986546 PDCD2 3860296 COX7A1 3.97E-05 3.97E-05 4009560 FAM120C 1.29E-05 2819779 GPR98 2.06E-05 2553730 MTIF2 2.96E-05 3376914 NRXN2 2.98E-05 3241601 C10orf68 1.33E-05 3841949 EPS8L1 2.06E-05 3438027 RAN 2345239 ---3.97E-05 3130244 TEX15 1.35E-05 2603544 NMUR1 2.07E-05 2787459 INPP4B 3.00E-05 2749699 RAPGEF2 4.03E-05 NCAM1 1.35E-05 ZCRB1 4.12E-05 3349293 3537967 KIAA0586 2.08E-05 2957499 ICK 3.01E-05 3451318 3.03E-05 3086100 GATA4 1.39E-05 2840036 DOCK2 2.10E-05 2581000 3840224 ZNF528 4.34E-05 NEB 3374083 MED19 3.03E-05 2406926 GRIK3 1.40E-05 2.11E-05 3464589 C12orf50 2954489 C6orf108 4.38E-05 3.03E-05 1.50E-05 3815649 CIRBP 2.15E-05 CCDC21 2686727 ZBTB11 4.39E-05 3854627 IAK3 2326410 3155489 2399908 TMCO4 3.07E-05 COL2A1 4.42E-05 3300211 FGFBP3 1.50E-05 FAM135B 2.16E-05 3452865 3.08E-05 3883690 1.50E-05 C16orf74 2.16E-05 2757427 LETM1 PDCD4 4.45E-05 EPB41L1 3703129 3263944 3891048 NPEPL1 1.56E-05 2664288 METTL6 2.17E-05 3971845 CXorf58 3.08E-05 2950384 COL11A2 4.46E-05 3016791 2951664 CLPS 1.58E-05 LRWD1 2.17E-05 3847112 PTPRS 3.10E-05 3427282 C12orf63 4.47E-05 3282213 YME1L1 2.18E-05 E2F2 CLASP1 4.47E-05 1.58E-05 3338783 C11orf76 2401448 3.10E-05 2573641 3717539 RHOT1 1.61E-05 2420642 MCOLN2 2.21E-05 2374746 NAV1 3.13E-05 3909064 **TMEM189** 4.48E-05 TPT1 2476510 LTBP1 1.63E-05 3308378 C10orf82 2.21E-05 3018605 SLC26A4 3.17E-05 3512527 4.61E-05 3315114 TUBGCP2 1.63E-05 3936256 BCL2L13 2.26E-05 3515009 VPS36 3.19E-05 2688180 DPPA4 4.74E-05 3992304 SAGE1 1.67E-05 2712417 TNK2 2.27E-05 3103494 3.23E-05 3437801 PIWIL1 4.92E-05 TMEM70 3501219 COL4A2 1.70E-05 3571944 LTBP2 2.33E-05 3754797 HNF1B 3.24E-05 2522616 CFLAR 4.93E-05 3855660 SUGP1 1.73E-05 2410158 TESK2 2.38E-05 2404344 NKAIN1 3.26E-05 3302886 HPSE2 5.00E-05 2941784 NEDD9 1.77E-05 3644593 MLST8 2920619 3.33E-05 2548871 HNRPLL 2.43E-05 ARMC2 5.16E-05 3807370 1.79E-05 2707045 PEX5L 2.43E-05 3302360 3.47E-05 CDH16 DYM MMS19 3695315 5.23E-05

3609592 MCTP2 5.24E-05 2734784 AFF1 6.66E-05 3225096 NR6A1 8.89E-05 3985615 TCEAL4 1.08E-04 LBX2 5.27E-05 MVD 3821183 8.92E-05 PLCE1 2560178 3704299 6.69E-05 C19orf39 3258477 1.09E-04 2528407 5.28E-05 3438617 EP400 6.75E-05 3191805 9.00E-05 2452977 FAIM3 TUBA4B LAMC3 1.11E-04 3468009 5.29E-05 2637980 POGLUT1 6.83E-05 2545653 MPV17 9.11E-05 4021508 ZNF280C 1.13E-04 ARL1 3918779 ITSN1 5.36E-05 3815268 KISS1R 6.85E-05 3257670 PCGF5 9.19E-05 3802980 DSC2 1.14E-04 9.20E-05 2648991 KCNAB1 5.55E-05 3311157 OAT 6.95E-05 2337147 ACOT11 3542275 SMOC1 1.14E-04 2945741 FAM65B 5.69E-05 2402493 PAFAH2 7.08E-05 3005363 ASL 9.21E-05 2979111 LRP11 1.15E-04 3040518 MACC1 5.70E-05 3713794 EPN2 7.14E-05 3447933 IFLTD1 9.24E-05 2930592 TAB2 1.15E-04 3867195 7.22E-05 ITPA 3476457 NCOR2 5.76E-05 FAM83E 3795866 ENOSF1 9.51E-05 3874249 1.16E-04 2788366 **ZNF827** 5.81E-05 3274934 CALML5 7.31E-05 3453592 9.51E-05 3360622 MLL2 TRIM5 1.16E-04 2778727 C4orf37 5.83E-05 2327338 XKR8 7.37E-05 2949885 GPSM3 9.56E-05 2674808 TRAIP 1.16E-04 3296386 DLG5 5.83E-05 3371339 PHF21A 7.39E-05 9.58E-05 2438892 FCRL5 1.17E-04 3036844 FBXL18 2368198 CACYBP 5.88E-05 3644297 7.40E-05 2786657 SETD7 9.59E-05 3903089 NECAB3 1.18E-04 GFER C6orf114 1.20E-04 3164601 **KIAA1797** 5.93E-05 2942432 7.41E-05 3760957 SCRN2 9.61E-05 3887049 UBE2C 1.22E-04 4018729 IL13RA2 5.94E-05 3558145 CIDEB 7.45E-05 2335922 CDKN2C 9.63E-05 2327375 ATPIF1 2667181 AZI2 5.96E-05 2358520 SETDB1 7.54E-05 2889382 PROP1 9.66E-05 2755053 CYP4V2 1.22E-04 ABI3BP PSMG3 1.24E-04 2686458 5.96E-05 3777263 ARHGAP28 7.70E-05 3338552 CTTN 9.68E-05 3035408 2891556 9.87E-05 2403027 MAP3K6 5.98E-05 FOXQ1 7.76E-05 2726396 ZAR1 3851589 C19orf56 1.24E-04 3642200 PCSK6 3672059 9.94E-05 2956904 PKHD1 6.04E-05 7.79E-05 **KIAA0513** 3293963 DNAJB12 1.25E-04 2353021 9.98E-05 3035281 INTS1 6.14E-05 SYCP1 7.82E-05 3255220 GHITM CAMKK2 1.25E-04 3474885 3995885 PLXNB3 ZFYVE26 7.82E-05 3662851 9.99E-05 PCLO 1.26E-04 6.15E-05 3569441 GPR97 3059226 3907987 SLC13A3 6.16E-05 IL17A 7.85E-05 IL12RB1 1.00E-04 2537290 TMEM18 1.26E-04 2910138 3854693 MGLL 1.00E-04 3866845 PLA2G4C 6.18E-05 2694001 7.87E-05 3393993 BCL9L 3723627 CRHR1 1.27E-04 3135340 OPRK1 6.18E-05 4000538 FIGF 7.88E-05 3941907 EWSR1 1.01E-04 3924573 PCNT 1.29E-04 3032243 6.19E-05 CSMD3 1.29E-04 GALNT11 3776504 TGIF1 7.94E-05 3835131 **ZNF576** 1.01E-04 3149161 3902983 CDK5RAP1 6.24E-05 2321813 CELA2A 8.02E-05 3843947 ZSCAN22 1.03E-04 2379863 CENPF 1.32E-04 3250486 COL13A1 6.26E-05 3549264 **KIAA1409** 8.12E-05 3996227 TKTL1 1.03E-04 3439268 NHP2L1 1.32E-04 CASP5 SH3TC2 3389330 6.27E-05 3218041 BAAT 8.24E-05 3359171 INS 1.03E-04 2880679 1.32E-04 1.03E-04 2378019 CAMK1G 6.34E-05 4026842 ARHGAP4 8.34E-05 3560527 C14orf147 3238962 1.33E-04 **KIAA1217** 3417249 ERBB3 6.38E-05 3821159 LPPR2 8.48E-05 2588066 ATF2 1.04E-04 3561532 SLC25A21 1.33E-04 2585400 SCN9A 6.44E-05 3721851 COASY 8.53E-05 2491615 MAT2A 1.07E-04 3094286 PROSC 1.34E-04 2806091 2398820 PADI2 3015865 1.08E-04 3157751 RAI14 6.48E-05 8.62E-05 SLC12A9 SCRIB 1.36E-04 3083778 2465778 2948587 FLOT1 1.08E-04 OTOF MCPH1 6.56E-05 OR6F1 8.76E-05 2545200 1.38E-04

3633890 **SCAPER** 1.38E-04 3225952 FAM129B 1.61E-04 3437500 GLT1D1 1.89E-04 2594905 ALS2CR11 2.27E-04 LUZP1 4021469 AIFM1 2.28E-04 2401193 1.39E-04 3815757 MUM1 1.61E-04 1.89E-04 3683549 UMOD 2425118 1.39E-04 3736162 TMC8 1.61E-04 **ZNF713** 1.90E-04 3701297 CDYL2 2.28E-04 SASS6 3003107 3726691 ABCC3 1.39E-04 3706753 GSG2 1.64E-04 3686750 RABEP2 1.90E-04 2590736 NCKAP1 2.28E-04 2483016 CCDC104 1.40E-04 3894601 FKBP1A 1.64E-04 3575567 FOXN3 1.91E-04 2363525 NDUFS2 2.30E-04 3711869 1.91E-04 3600283 THSD4 3393311 DSCAML1 1.41E-04 ADORA2B 1.64E-04 2949038 BAT1 2.30E-04 1.92E-04 3940001 SPECC1L 1.42E-04 3489644 TRIM13 1.64E-04 3656990 ITGAM 2394478 CHD5 2.31E-04 3762519 SPAG9 1.43E-04 3264391 VTI1A 1.64E-04 3952718 UFD1L 1.94E-04 3110341 DCAF13 2.33E-04 2970086 1.94E-04 2485784 ACTR2 1.44E-04 LAMA4 1.68E-04 3988596 ZCCHC12 2439314 **OR10K2** 2.35E-04 1.96E-04 2793054 CBR4 1.69E-04 2673830 DALRD3 3894322 SRXN1 2.40E-04 3671552 NECAB2 1.46E-04 MEF2A 2413633 1.72E-04 1.96E-04 3336906 SSH3 2.40E-04 3611126 1.46E-04 CYB5RL 2876011 SKP1 2360346 CHRNB2 1.47E-04 3620380 1.72E-04 3592755 1.96E-04 2519981 2.41E-04 PLA2G4D SEMA6D PMS1 3545564 ADCK1 1.47E-04 3443464 PZP 1.73E-04 3087813 PCM1 1.97E-04 2880905 CSNK1A1 2.43E-04 2.44E-04 3502259 MCF2L 1.47E-04 3951927 BID 1.73E-04 2949859 PBX2 1.98E-04 2436283 DENND4B 1.98E-04 3146103 STK3 1.49E-04 3526378 PCID2 1.75E-04 3848651 TIMM44 3685610 ARHGAP17 2.46E-04 3415668 TENC1 1.50E-04 2560881 LRRTM4 1.75E-04 2775562 HNRPDL 1.98E-04 2669803 SCN11A 2.47E-04 C17orf57 1.50E-04 GATA3 3293215 **TUBGCP6** 2.47E-04 3724591 3234277 1.75E-04 TYSND1 1.99E-04 3965631 2.00E-04 2.51E-04 3862661 BLVRB 1.50E-04 3497659 RAP2A 1.76E-04 3419585 TMEM5 2905432 TBC1D22B 2926323 EYA4 3765299 2.05E-04 2606859 KIF1A 1.51E-04 1.77E-04 APPBP2 3166880 NFX1 2.51E-04 2.07E-04 2920377 1.51E-04 3662696 CX3CL1 1.78E-04 2401994 RUNX3 KERA 2.53E-04 LACE1 3465227 CPNE8 3062794 2.09E-04 3878972 C20orf26 1.52E-04 3450655 1.78E-04 TECPR1 3397003 KIRREL3 2.55E-04 2.10E-04 3712978 **MY015A** 1.52E-04 1.79E-04 **ZNF770** 3756046 NR1D1 2.55E-04 3697712 TAT 3617830 2742829 2461786 ARID4B 1.53E-04 INTU 1.80E-04 3916138 C21orf74 2.11E-04 2989050 RAC1 2.56E-04 3855633 TM6SF2 1.54E-04 3243846 RET 1.80E-04 3303652 MRPL43 2.11E-04 2816030 POLK 2.56E-04 3833323 ZNF546 1.54E-04 BCOR 2.58E-04 2810015 DDX4 1.81E-04 4005392 2.13E-04 3608427 FES 2.15E-04 2583631 RBMS1 1.55E-04 3913960 PRIC285 1.81E-04 3478457 STX2 2479746 C2orf34 2.60E-04 3589141 SPRED1 1.55E-04 3458857 AVIL 1.82E-04 3441280 АКАРЗ 2.17E-04 3301263 SORBS1 2.60E-04 3822100 DAND5 1.56E-04 2841699 CPEB4 1.84E-04 3913737 NKAIN4 2.17E-04 3074531 SLC13A4 2.60E-04 2.19E-04 2900195 **ZNF165** 1.57E-04 3888383 SLC9A8 1.84E-04 4023006 3549033 GOLGA5 2.62E-04 ZNF75D 2615808 GPD1L 1.57E-04 3646366 C16orf71 1.85E-04 2984543 **PRR18** 2.23E-04 3304004 NPM3 2.62E-04 2619120 TRAK1 1.58E-04 3893287 ARFGAP1 1.86E-04 3226340 PTGES2 2.23E-04 3064501 MOGAT3 2.62E-04 3049025 TBRG4 1.58E-04 3894637 1.88E-04 3673892 CDH15 2.24E-04 3821377 2.64E-04 NSFL1C **ZNF441** 3945942 1.58E-04 3822322 1.88E-04 2.27E-04 3394356 USP2 CACNA1I MRI1 2963707 RARS2 2.65E-04

Table B12: NonC90RF72-Related_SALSvCtrl Alternatively Spliced List (n=3,163) [Partek® p-value (alt. splicing) <0.05] 3836243 **CD3EAP** 2.66E-04 3638607 ANPEP 3.06E-04 3874023 PTPRA 3.60E-04 2712236 MUC4 4.30E-04 3903836 3490741 SUGT1 2.66E-04 2913123 RIMS1 3.07E-04 EIF6 3.62E-04 3375894 EML3 4.31E-04 2359664 3405207 BCL2L14 S100A9 3.08E-04 3742212 3.62E-04 FOXN1 2.66E-04 ALOX15 3715642 4.35E-04 3066496 ATXN7L1 2.66E-04 2771718 UBA6 3.10E-04 2631556 CADM2 3.63E-04 2459837 ACTA1 4.36E-04 3389647 GUCY1A2 2.67E-04 3537884 ARID4A 3.10E-04 3856554 **ZNF100** 3.64E-04 3194284 GPSM1 4.38E-04 2892979 2.69E-04 3421706 RAB3IP 3.64E-04 DDX28 CDYL 3.10E-04 2539387 C2orf46 3696194 4.38E-04 2359036 SNX27 2.70E-04 3627363 NARG2 3.10E-04 2925013 C6orf58 3.66E-04 2901552 RPP21 4.39E-04 3010082 PHTF2 2.71E-04 3278057 CCDC3 3.11E-04 2438042 3.66E-04 2813060 PIK3R1 4.39E-04 SMG5 3272027 3.67E-04 CSTF2T 3497586 MBNL2 2.72E-04 LRRC27 3.13E-04 3823681 KLF2 3289631 4.41E-04 3699335 LDHD 2.73E-04 2672016 FYC01 NFE2 3.68E-04 2479698 SLC3A1 4.42E-04 3.15E-04 3456666 2583014 BAZ2B 2.75E-04 3531355 NUBPL 2599670 3.72E-04 3230760 C9orf140 4.44E-04 3.15E-04 CRYBA2 2334932 2.78E-04 3572975 NGB 3.17E-04 3.81E-04 2360728 4.45E-04 CYP4B1 3661684 MMP2 TRIM46 3.90E-04 3868998 NKG7 2.79E-04 3268222 BTBD16 3.17E-04 2407496 POU3F1 2339139 INADL 4.46E-04 3.90E-04 4.51E-04 4012299 PHKA1 2.85E-04 3095223 ID01 3.18E-04 2799184 NDUFS6 3157647 PYCRL 3.92E-04 3695450 EXOC3L 2.88E-04 3838845 CPT1C 3.19E-04 2655955 VPS8 3662723 C0Q9 4.52E-04 3501471 ING1 2.88E-04 3752258 EVI2B 3.22E-04 2627390 ATXN7 3.95E-04 3846709 STAP2 4.55E-04 2365391 FM09P 2.89E-04 ANK2 PCMTD2 DVL2 4.57E-04 2740067 3.24E-04 3894047 3.95E-04 3743440 2.92E-04 3.99E-04 3734683 ARMC7 2469825 GREB1 3.26E-04 3390195 3126191 PSD3 4.58E-04 EXPH5 3528994 ACIN1 4.00E-04 3332449 C11orf64 2.92E-04 3.27E-04 3676421 PKD1 2875454 SEPT8 4.59E-04 4.02E-04 3904797 C20orf132 2.95E-04 3853108 NOTCH3 3.31E-04 2772968 3739668 VPS53 4.60E-04 COX18 2.96E-04 4021149 SMARCA1 3.32E-04 3438847 4.04E-04 4.62E-04 3809826 ATP8B1 FBRSL1 3518086 TBC1D4 4.09E-04 3621417 CATSPER2 2.98E-04 3499585 BIVM 3.36E-04 3325052 EIF2AK2 3838809 PRMT1 4.63E-04 4.12E-04 2550522 ZFP36L2 2.99E-04 3847858 SLC25A41 3.37E-04 3833620 LTBP4 3848020 TNFSF14 4.67E-04 3632424 HCN4 3.00E-04 2491386 TCF7L1 3.45E-04 2381368 HLX 4.13E-04 2664452 ANKRD28 4.68E-04 2320392 C1orf187 C6orf130 CYP4F11 3.00E-04 3863606 LIPE 3.45E-04 2953435 4.13E-04 3853658 4.68E-04 2992766 NUPL2 3.01E-04 2569649 EDAR 3.46E-04 2879927 LARS 4.15E-04 3615579 TJP1 4.71E-04 3999148 GPR143 3.03E-04 2340529 PDE4B 3.46E-04 3835855 **TOMM40** 4.16E-04 2585236 TTC21B 4.72E-04 STK33 3291435 RTKN2 3.03E-04 2327630 YTHDF2 3.46E-04 2367743 PRDX6 4.16E-04 3361811 4.72E-04 3089597 3.04E-04 3881404 COX4I2 3.53E-04 2449559 4.17E-04 3089740 4.73E-04 **KIAA1967** ASPM RHOBTB2 3707041 SMTNL2 3.04E-04 3154263 SLA 3.55E-04 3697933 PKD1L3 4.17E-04 3261723 **TMEM180** 4.76E-04 2716025 RGS12 3.05E-04 3246141 CHAT 3.57E-04 3226138 4.28E-04 2556017 C2orf86 4.76E-04 AK1 3442785 CLEC4C 3864375 LYPD3 2332999 4.28E-04 2380055 KCTD3 3.06E-04 3.57E-04 WDR65 4.78E-04 3.06E-04 2465519 3.59E-04 2624074 4.29E-04 2745220 ZNF330 3768412 SLC16A6 **ZNF669** GNL3 4.83E-04

2652027	CLDN11	4.88E-04	2675088	IFRD2	5.91E-04	2377332	CR1	6.66E-04	2915268	DOPEY1	7.58E-04
2946324	HIST1H3D	4.90E-04	2812273	PPWD1	5.92E-04	3357397	GLB1L2	6.77E-04	3020804	NAA38	7.64E-04
2593796	RFTN2	4.91E-04	3504526	LATS2	6.01E-04	3513147	HTR2A	6.80E-04	3126368	PSD3	7.64E-04
3227070	PTGES	4.95E-04	2676182	NT5DC2	6.05E-04	2891644	FOXF2	6.83E-04	3910347	SUM01P1	7.70E-04
3741875	ZZEF1	4.97E-04	2618702	ZNF620	6.07E-04	3409432	CCDC91	6.85E-04	3484768	PDS5B	7.80E-04
2610732	ATG7	5.01E-04	3487360	C13orf30	6.11E-04	3680213	SOCS1	6.87E-04	3895702	SPEF1	7.83E-04
3406880	PIK3C2G	5.06E-04	3644810	C16orf59	6.13E-04	2592356	STAT4	6.87E-04	3534923	KLHDC2	7.87E-04
3865776	IRF2BP1	5.12E-04	3204833	GBA2	6.14E-04	3421579	FRS2	6.89E-04	3867458	PLEKHA4	7.89E-04
2777333	PPM1K	5.12E-04	3644249	TBL3	6.15E-04	2601995	IRS1	6.89E-04	2817731	ZFYVE16	7.91E-04
3120613	PPP1R16A	5.13E-04	3062193	SLC25A13	6.21E-04	2717059	LOC93622	6.90E-04	3831620	ZNF568	7.92E-04
2641263	RAB7A	5.14E-04	3944543	NCF4	6.21E-04	3480508	IL17D	6.90E-04	3091699	PNOC	7.93E-04
2422612	HFM1	5.14E-04	2474791	BRE	6.22E-04	2950823	IP6K3	6.93E-04	2769182	SCFD2	7.94E-04
3981027	TAF1	5.15E-04	2860666	TAF9	6.22E-04	3192525	GTF3C4	6.95E-04	3734609	KCTD2	7.99E-04
2423422	BCAR3	5.16E-04	2437577	YY1AP1	6.25E-04	3893642	LIME1	6.95E-04	3835318	ZNF155	8.03E-04
3645683	ZNF213	5.16E-04	2353396	C1orf161	6.31E-04	2714132	PDE6B	7.00E-04	2949488	SLC44A4	8.04E-04
3396726	PATE2	5.17E-04	3379644	CPT1A	6.32E-04	2796790	KIAA1430	7.03E-04	3489350	CDADC1	8.05E-04
3062868	BAIAP2L1	5.17E-04	3985169	NXF4	6.32E-04	3100166	RAB2A	7.03E-04	3726465	RSAD1	8.05E-04
2346738	RPAP2	5.17E-04	3861372	RASGRP4	6.40E-04	2328767	IQCC	7.04E-04	3350908	CEP164	8.06E-04
3651509	ERI2	5.18E-04	2321911	DDI2	6.43E-04	3946146	FAM83F	7.08E-04	2799758	IRX1	8.12E-04
3015299	MBLAC1	5.19E-04	2479433	PLEKHH2	6.44E-04	2875555	AFF4	7.11E-04	3730161	EFCAB3	8.24E-04
2356181	RBM8A	5.25E-04	3352040	PDZD3	6.44E-04	3622176	DUOX2	7.15E-04	3015241	AP4M1	8.26E-04
3642875	EFERIN	5.28E-04	2429277	CSDE1	6.44E-04	2952497	BTBD9	7.21E-04	3557350	SLC22A17	8.31E-04
2730531	UTP3	5.34E-04	3820727	QTRT1	6.45E-04	3669552	VAT1L	7.24E-04	3475926	PITPNM2	8.32E-04
2725779	GUF1	5.37E-04	3559690	HEATR5A	6.46E-04	3687277	SEZ6L2	7.25E-04	3339812	ARHGEF17	8.33E-04
2326993	SYTL1	5.51E-04	2845450	TPPP	6.47E-04	3715558	SARM1	7.28E-04	3761127	CBX1	8.34E-04
2877171	FAM13B	5.51E-04	2964553	BACH2	6.48E-04	3474831	OASL	7.37E-04	3744965	GAS7	8.40E-04
2326912	WDTC1	5.58E-04	3102372	SULF1	6.49E-04	2622696	SEMA3B	7.38E-04	3322700	SAA1	8.42E-04
3417184	SUOX	5.62E-04	3884612	SNHG11	6.53E-04	2574646	BIN1	7.39E-04	2375144	LGR6	8.45E-04
3158581	SLC39A4	5.62E-04	3947227	SEPT3	6.55E-04	2694314	GATA2	7.41E-04	3269939	DOCK1	8.48E-04
3868659	C19orf48	5.66E-04	2697490	CEP70	6.55E-04	3644510	RAB26	7.48E-04	3932524	DSCAM	8.56E-04
2669888	GORASP1	5.77E-04	3236958	VIM	6.59E-04	2756630	CPLX1	7.55E-04	3597914	SNX22	8.59E-04
3179669	C9orf89	5.84E-04	3299578	CH25H	6.59E-04	3409127	ARNTL2	7.56E-04	2486520	ETAA1	8.61E-04
3771037	WBP2	5.91E-04	2610044	JAGN1	6.60E-04	3374934	MS4A6A	7.57E-04	2574798	MAP3K2	8.62E-04
3887210 MMP9 8.89E-04 2811812 LRRC70 9.91E-04 3853036 SLC1A6 1.07E-03 2519756 WDR75 1.21E-03 MESP1 9.92E-04 HSCB 1.22E-03 3976299 ARAF 9.01E-04 3638590 3606682 AGBL1 1.07E-03 3941623 2491089 9.01E-04 3308489 9.93E-04 2687840 IFT57 1.08E-03 2768197 CORIN 1.22E-03 DNAH6 **KIAA1598** 2327542 TRNAU1AP 9.08E-04 3085270 TNKS 9.93E-04 3655687 PRRT2 1.08E-03 3731228 CCDC45 1.22E-03 2333195 **KIAA0467** 9.10E-04 3067250 SLC26A3 9.99E-04 3865618 SIX5 1.08E-03 3902674 TSPY26P 1.23E-03 2779527 9.12E-04 3651294 9.99E-04 1.08E-03 2408855 FOX₃ DDIT4L ACSM5 2830450 NPY6R 1.23E-03 2988726 FSCN1 9.15E-04 3897431 MKKS 1.00E-03 3466110 CCDC41 1.08E-03 3238231 MLLT10 1.23E-03 3723005 FZD2 9.15E-04 4027135 TEX28 1.00E-03 3336197 NPAS4 1.09E-03 2486178 MEIS1 1.23E-03 2777447 2828564 RAD50 9.17E-04 NAP1L5 1.01E-03 3990727 RAB33A 1.10E-03 4023467 ARHGEF6 1.24E-03 1.10E-03 3873480 RAD21L1 9.21E-04 2459042 CDC42BPA 1.01E-03 3382830 3954729 1.24E-03 GDPD4 ---**ZNF433** 9.25E-04 3046739 1.01E-03 3138978 COPS5 1.10E-03 3742130 MYBBP1A 1.24E-03 3851150 AMPH 3830789 LIN37 9.28E-04 4011464 1.01E-03 1.11E-03 2993727 1.24E-03 PIA1 2669732 SCN10A SNX10 3119656 GSDMD 9.28E-04 3281703 PRTFDC1 1.01E-03 2558150 1.13E-03 3019793 FOXP2 1.24E-03 AAK1 ARHGEF26 SSTR2 GTF2H4 1.24E-03 2648535 9.31E-04 3733911 1.02E-03 3235293 C10orf47 1.13E-03 2902013 SIAH2 1.02E-03 1.14E-03 1.25E-03 3629125 CSNK1G1 9.41E-04 2700828 3858993 CEBPA 3267314 BAG3 2397847 ZBTB17 9.42E-04 2864118 DMGDH 1.02E-03 2984655 RPS6KA2 1.15E-03 2571457 CKAP2L 1.25E-03 BCL2L11 9.44E-04 SCNN1G ANKS4B 1.15E-03 4027176 FLNA 1.25E-03 2500275 3652867 1.03E-03 3651672 9.49E-04 1.03E-03 1.15E-03 DZIP1 1.25E-03 3721956 TUBG2 3984702 DRP2 3259503 DNTT 3521372 2353773 TTF2 1.04E-03 3893520 1.15E-03 3863597 CNFN 9.51E-04 RTEL1 2807686 CARD6 1.25E-03 2950199 9.54E-04 PSMB8 1.04E-03 3329404 1.16E-03 3316834 BRSK2 1.26E-03 4006210 MAOB ATG13 2779992 UBE2D3 2743800 1.16E-03 1.26E-03 3065740 RELN 9.55E-04 1.04E-03 PCDH10 3900091 RALGAPA2 3151970 MTSS1 9.56E-04 3779950 1.04E-03 2969289 WASF1 1.16E-03 3168210 TMEM8B 1.26E-03 C18orf1 1.16E-03 2826159 SNCAIP 9.58E-04 4027639 F8 1.04E-03 3269694 FANK1 2929168 UTRN 1.26E-03 2332812 ERMAP 9.63E-04 3320604 USP47 1.05E-03 3989678 XIAP 1.18E-03 2614369 RARB 1.27E-03 1.27E-03 2992197 SP4 9.63E-04 3770923 GALK1 1.05E-03 3078520 **ZNF746** 1.19E-03 2554975 BCL11A 3913335 3446297 RERGL 9.65E-04 C20orf166 1.05E-03 3762339 MRPL27 1.19E-03 2391255 UBE2]2 1.28E-03 3065963 ORC5 9.67E-04 2874920 ACSL6 1.06E-03 3509677 C13orf38 1.19E-03 3995105 CNGA2 1.28E-03 3806366 LOXHD1 9.70E-04 2404958 MTMR9LP 1.06E-03 2604138 USP40 1.19E-03 2756309 ABCA11P 1.31E-03 1.19E-03 TPM2 9.70E-04 3190242 DNM1 1.06E-03 3849044 MY01F 3319352 TUB 3204721 1.31E-03 2969886 FYN 9.72E-04 3639601 RGMA 1.07E-03 3416996 MMP19 1.20E-03 3624697 ARPP19 1.31E-03 2508611 ARHGAP15 9.76E-04 2910477 FBX09 1.07E-03 3893973 MYT1 1.20E-03 2837232 ITK 1.32E-03 2904329 ANKS1A 9.76E-04 3882413 C20orf114 1.07E-03 2625793 1.21E-03 2772450 SULT1E1 1.32E-03 SLMAP 2489606 9.91E-04 2700780 FAM194A 1.07E-03 2792161 TKTL2 1.21E-03 OR52K2 POLE4 3318115 1.33E-03

Table B12: NonC90RF72-Related_SALSvCtrl Alternatively Spliced List (n=3,163) [Partek® p-value (alt. splicing) <0.05] 2579439 GTDC1 1.34E-03 3223425 CDK5RAP2 1.46E-03 4026119 MAGEA10 1.60E-03 3986291 TBC1D8B 1.76E-03 CYTH4 1.35E-03 HAS3 3833827 ADAMTS2 3944690 3666542 1.46E-03 EGLN2 1.60E-03 2889916 1.76E-03 3435548 1.35E-03 3357723 BET1L 2648677 1.61E-03 TTC15 HIP1R 1.46E-03 MME 2467691 1.77E-03 3896594 LRRN4 1.35E-03 2589011 TTC30A 1.47E-03 2888385 GPRIN1 1.61E-03 3651152 IQCK 1.78E-03 2826343 SNX24 1.35E-03 3098378 RGS20 1.47E-03 4008427 NUDT11 1.62E-03 4018218 DCX 1.79E-03 3027538 2453006 PIGR 1.62E-03 NDUFB2 1.35E-03 1.47E-03 2480619 SOCS5 3337042 CARNS1 1.80E-03 3000342 ADCY1 1.36E-03 3746040 ELAC2 1.47E-03 3871302 HSPBP1 1.62E-03 3318239 OR51F2 1.80E-03 2388794 **ZNF238** 1.36E-03 2638676 EAF2 1.48E-03 3132940 1.62E-03 3657168 ARMC5 1.81E-03 ANK1 3899404 OVOL2 1.36E-03 3216476 **ZNF510** 1.48E-03 3469865 CRY1 1.64E-03 3623717 FLI10038 1.81E-03 3377226 1.37E-03 3258221 HHEX 1.49E-03 2342176 FPGT 1.65E-03 3957429 GAL3ST1 1.82E-03 EHD1 2618940 CTNNB1 1.37E-03 3807965 MRO 1.49E-03 SERF2 1.65E-03 2434925 1.82E-03 3591650 PI4KB 3200762 SLC24A2 1.37E-03 3021377 PTPRZ1 1.49E-03 3458735 1.65E-03 3916290 FLJ42200 1.82E-03 AGAP2 PRSS23 3209060 TRPM3 1.37E-03 2782822 NDST4 1.50E-03 3381540 FAM168A 1.66E-03 3343452 1.82E-03 1.83E-03 3768627 ABCA8 1.38E-03 4025339 IDS 1.51E-03 2320048 TARDBP 1.66E-03 3976406 **ZNF81** 1.67E-03 3204019 C9orf25 1.38E-03 2988410 RNF216L 1.54E-03 3861037 **ZNF607** 3642687 HBQ1 1.83E-03 3815888 APC2 1.38E-03 2634153 ZPLD1 1.54E-03 2877028 KLHL3 1.67E-03 3567050 RTN1 1.83E-03 TICAM1 1.39E-03 RFX1 1.55E-03 1.68E-03 SENP6 1.85E-03 3846982 3852407 3697632 ZNF23 2913983 2970044 1.69E-03 2369713 FAM163A 1.40E-03 TUBE1 1.55E-03 3455344 KRT82 3151719 ANXA13 1.87E-03 1.40E-03 HGS 1.69E-03 2388525 SDCCAG8 3738138 1.56E-03 2474637 C2orf16 3260700 PAX2 1.87E-03 3429754 **KIAA1033** 1.41E-03 3940631 ADRBK2 1.56E-03 2559849 1.69E-03 2476075 SPAST 1.87E-03 SLC4A5 3929325 2753732 WWC2 1.70E-03 SYNJ1 1.41E-03 1.57E-03 3676669 RNPS1 3743074 PITPNM3 1.87E-03 2491523 ELMOD3 1.41E-03 3675020 RGS11 1.57E-03 2383859 GUK1 1.70E-03 3753760 MMP28 1.88E-03 1.70E-03 3629610 IGDCC3 1.41E-03 3452417 SLC38A4 1.57E-03 2766893 APBB2 3293469 C10orf27 1.88E-03 2810395 C5orf35 1.42E-03 2406579 COL8A2 1.57E-03 3241316 ZEB1 1.70E-03 2509740 MBD5 1.88E-03 PMAIP1 1.42E-03 DNAH5 ZNF24 1.89E-03 3790704 2849056 1.58E-03 3571553 C14orf43 1.70E-03 3803917 3012064 CDK14 1.42E-03 3000010 ZMIZ2 1.58E-03 3667508 CALB2 1.71E-03 3315802 PKP3 1.89E-03 3015338 STAG3 1.42E-03 3418610 XRCC6BP1 1.58E-03 3602264 COMMD4 1.73E-03 3779817 CEP192 1.90E-03 3378895 TAOK2 PITPNM1 1.42E-03 3655826 1.59E-03 3016070 MUC17 1.74E-03 2801694 ROPN1L 1.91E-03 2585972 ABCB11 1.43E-03 2995811 C7orf16 1.59E-03 3838185 SNRNP70 1.74E-03 3021009 KCND2 1.91E-03 2359453 SMCP 1.43E-03 3772437 DNAH17 1.59E-03 3457947 BAZ2A 1.74E-03 3956909 NIPSNAP1 1.91E-03 3942502 SLC35E4 1.44E-03 3761395 HOXB6 1.59E-03 2901503 TRIM39 1.75E-03 3865344 PPP1R13L 1.91E-03 3601229 CD276 3472755 TBX3 3267678 WDR11 1.75E-03 3965784 MAPK11 1.44E-03 1.60E-03 1.92E-03 3930235 1.44E-03 3418249 KIF5A 1.60E-03 3415937 1.75E-03 1.93E-03 RCAN1 C12orf10 3851840 KLF1

2982319 SOD2 1.93E-03 2973694 ARHGAP18 2.11E-03 3704939 C16orf7 2.26E-03 2759038 CRMP1 2.47E-03 3332276 1.95E-03 CACHD1 2900074 HIST1H2BN 2.26E-03 FGF19 MS4A2 2340078 2.11E-03 3380126 2.47E-03 3581442 1.95E-03 2386867 LGALS8 2.11E-03 2513758 2.27E-03 IAG2 XIRP2 3456081 RARG 2.48E-03 3647504 PMM2 1.96E-03 3190420 CERCAM 2.12E-03 3608787 SLCO3A1 2.27E-03 3360941 ARFIP2 2.49E-03 3282601 MPP7 1.96E-03 3339774 P2RY6 2.12E-03 3042001 CYCS 2.28E-03 2424740 **MIR137** 2.49E-03 3721989 1.97E-03 3839910 FPR2 2495279 VWA3B 2.30E-03 CNTNAP1 2.12E-03 2620641 LIMD1 2.49E-03 3082874 ARHGEF10 1.97E-03 3334659 SLC22A12 2.12E-03 2532894 DGKD 2.30E-03 3887479 EYA2 2.50E-03 3529725 REC8 1.98E-03 2328750 CCDC28B 2.13E-03 3827427 **ZNF254** 2.31E-03 2439801 CCDC19 2.51E-03 3838683 PRRG2 2.32E-03 ELOVL4 3781654 RIOK3 1.98E-03 2.13E-03 2435443 TCHH 2962113 2.52E-03 2.32E-03 3031383 1.99E-03 2734270 CDS1 2.13E-03 3962469 3498589 CLYBL 2.52E-03 REPIN1 RRP7B 2430422 SPAG17 2.00E-03 2947283 ZSCAN12 2.14E-03 3181976 2.32E-03 MRM1 2.53E-03 NR4A3 3719231 3743734 2.00E-03 3761551 TTLL6 2.14E-03 3335751 TSGA10IP 2.33E-03 3367788 DCDC5 2.54E-03 C17orf61 2.33E-03 PER3 3489212 FNDC3A 2.00E-03 3599432 FEM1B 2.15E-03 3543857 PTGR2 2318656 2.54E-03 **ZNF443** CDCA3 2.54E-03 3403482 NANOGP1 2.00E-03 3851493 2.15E-03 3603932 FAH 2.34E-03 3442322 3182063 2.34E-03 3842481 NLRP8 2.01E-03 INVS 2.16E-03 3217194 TBC1D2 4014191 POF1B 2.54E-03 3934652 UBE2G2 2.01E-03 3242839 ANKRD30A 2.17E-03 3225560 LOC51145 2.34E-03 2854737 PRKAA1 2.55E-03 3506093 FAM123A 2.01E-03 2.17E-03 VSIG1 2.56E-03 3788560 DCC 2428855 AP4B1 2.36E-03 3986647 2.02E-03 2.18E-03 2.37E-03 2.57E-03 3185522 SLC31A1 2368590 PAPPA2 3520934 DCT 2584712 GRB14 2.02E-03 3738842 HEXDC 2.18E-03 2.39E-03 2620160 **ZNF197** 3120917 ZNF7 3829857 **ZNF302** 2.57E-03 2.39E-03 3918535 IL10RB 2.03E-03 3298557 GRID1 2.18E-03 3532313 3914786 ABCC13 2.58E-03 SRP54 2977949 EPM2A 2.03E-03 3940124 UPB1 2.19E-03 3976930 2.40E-03 MON1A PQBP1 2674963 2.59E-03 2.41E-03 3767169 LRRC37A3 2.04E-03 PRR3 2.20E-03 3662876 CCDC135 3608520 UNC45A 2.59E-03 2901660 FGFR10P 3882343 BASE 2.04E-03 2936564 2.20E-03 3483468 MTUS2 2.41E-03 3532785 ---2.60E-03 3695235 CCDC79 2.04E-03 2325593 CLIC4 2.20E-03 2439960 KCNJ10 2.44E-03 3879699 PAX1 2.60E-03 3633048 2.05E-03 NRXN1 NUAK1 SERPINA3 2.60E-03 EDC3 2552643 2.20E-03 3469597 2.45E-03 3549757 2640485 C3orf46 2.07E-03 3347533 RAB39 2.22E-03 2582562 ACVR1 2.45E-03 3841881 NCR1 2.61E-03 3203753 UBAP2 2.07E-03 2808308 MGC42105 2.23E-03 2987843 SDK1 2.45E-03 4011637 PDZD11 2.62E-03 3957699 2.07E-03 TP73 PLA2G3 2317317 2.23E-03 3458451 R3HDM2 2.45E-03 3671448 HSBP1 2.62E-03 3990927 ARHGAP36 2.45E-03 3633109 ULK3 2.08E-03 2.24E-03 2768981 SGCB 3880629 CST7 2.63E-03 2757751 MXD4 2.09E-03 3645901 NAT15 2.24E-03 2394588 ICMT 2.46E-03 3791254 RANK 2.63E-03 3542847 SIPA1L1 2.09E-03 3490073 FAM124A 2.24E-03 3738439 LRRC45 2.46E-03 3682182 ABCC6 2.64E-03 3746809 CDRT1 2.09E-03 3952880 TXNRD2 2.25E-03 3646613 RBFOX1 2.47E-03 3358262 DEAF1 2.66E-03

Table B12: NonC9ORF72-Related_SALSvCtrl Alternatively Spliced List (n=3,163) [Partek® p-value (alt. splicing) <0.05]

3901955

NINL

2.47E-03

2968232

SNX3

2.66E-03

2.25E-03

3818842

ZNF358

2.10E-03

NTF4

3867660

3861617	HNRNPL	2.67E-03	2385797	KIAA1804	2.84E-03	3548929	RIN3	3.50E-03	2447066	GLUL	3.77E-03
3637818	NTRK3	2.67E-03	3652902	SCNN1B	3.20E-03	3726537	EPN3	3.50E-03	3271687	PPP2R2D	3.78E-03
3027915	SSBP1	2.67E-03	3842456	NLRP4	3.21E-03	2672774	C3orf75	3.51E-03	3359267	TRPM5	3.78E-03
2916502	SPACA1	2.67E-03	2739792	ALPK1	3.22E-03	2876213	CDKN2AIP	3.51E-03	3379708	MRPL21	3.78E-03
3132927	NKX6-3	2.68E-03	3335643	MUS81	3.22E-03	2621122	NBEAL2	3.52E-03	3376023	UBXN1	3.79E-03
3761348	HOXB4	2.68E-03	2832325	PCDHB5	3.22E-03	3792273	CDH7	3.53E-03	2442800	ADCY10	3.80E-03
3965536	MLC1	2.68E-03	3873017	MZF1	3.24E-03	3522644	GPR18	3.54E-03	3004628	ZNF107	3.81E-03
2754673	ANKRD37	2.68E-03	3101851	C8orf45	3.24E-03	2647216	HPS3	3.55E-03	2998192	POU6F2	3.81E-03
3673723	TRAPPC2L	2.69E-03	3861948	GMFG	3.25E-03	3724360	GOSR2	3.56E-03	3771259	EVPL	3.85E-03
2771342	EPHA5	2.69E-03	3141809	MRPS28	3.25E-03	3203086	DDX58	3.56E-03	3051907	PHKG1	3.85E-03
3315549	PSMD13	2.70E-03	3832256	SPINT2	3.28E-03	2551651	ATP6V1E2	3.56E-03	3079313	CDK5	3.87E-03
3331487	CTNND1	2.70E-03	2724338	LIAS	3.30E-03	3379597	MTL5	3.56E-03	3799415	AFG3L2	3.87E-03
2486927	ARHGAP25	2.71E-03	2643312	TF	3.31E-03	2835715	GPX3	3.57E-03	2348992	VCAM1	3.89E-03
2677388	ERC2	2.71E-03	3557791	FAM158A	3.34E-03	2817708	SPZ1	3.57E-03	2516967	HOXD1	3.90E-03
2964092	GABRR1	2.71E-03	3775808	CLUL1	3.37E-03	3748188	FLII	3.60E-03	2328936	ZBTB8A	3.91E-03
2655511	ABCF3	2.72E-03	3459120	LRIG3	3.37E-03	2809245	ITGA2	3.61E-03	2436576	C1orf43	3.92E-03
3816424	SPPL2B	2.72E-03	2458082	WDR26	3.38E-03	3352485	TMEM136	3.61E-03	3304624	NT5C2	3.93E-03
2708066	KLHL6	2.72E-03	3839057	TBC1D17	3.39E-03	3332334	MS4A14	3.61E-03	3597702	FBXL22	3.93E-03
2907568	KLHDC3	2.72E-03	3862785	C19orf54	3.40E-03	3387537	MAML2	3.65E-03	3389529	KIAA1826	3.94E-03
2556215	VPS54	2.73E-03	2987038	GPER	3.40E-03	3464622	CEP290	3.65E-03	3302240	RRP12	3.94E-03
3268059	TACC2	2.75E-03	2905469	RNF8	3.41E-03	2488114	ZNF638	3.67E-03	3952825	C22orf29	3.96E-03
3945815	TAB1	2.75E-03	3062576	ASNS	3.41E-03	3872945	SLC27A5	3.68E-03	3315217	C10orf125	3.97E-03
2949830	AGER	2.76E-03	3307580	NRAP	3.41E-03	2521239	CCDC150	3.68E-03	2451918	KISS1	3.97E-03
3594129	MAPK6	2.77E-03	3993515	MAGEC1	3.42E-03	3535515	FRMD6	3.69E-03	3872678	ZSCAN18	3.98E-03
2485433	AFTPH	2.77E-03	3219788	EPB41L4B	3.42E-03	3364878	ABCC8	3.69E-03	3852966	OR7A10	3.99E-03
3612763	POTEB	2.80E-03	3259978	PI4K2A	3.42E-03	2845043	TRIM41	3.70E-03	3771160	FBF1	3.99E-03
3458551	ARHGAP9	2.81E-03	3643431	CHTF18	3.45E-03	3878373	ZNF133	3.70E-03	3927446	ADAMTS1	4.00E-03
3593408	FGF7	2.81E-03	3016692	PRKRIP1	3.45E-03	3479355	GOLGA3	3.71E-03	3274898	TUBAL3	4.00E-03
3495968	SLITRK5	2.82E-03	2623821	PHF7	3.46E-03	2528020	TTLL4	3.71E-03	3687839	ZNF747	4.00E-03
3866958	CARD8	2.82E-03	2895841	CD83	3.46E-03	2720584	SLIT2	3.75E-03	3095766	GINS4	4.00E-03
2589017	PDE11A	2.83E-03	3026834	TTC26	3.49E-03	3755198	SRCIN1	3.75E-03	2363876	FCRLB	4.01E-03
3836614	IGFL2	2.83E-03	2369339	RALGPS2	3.49E-03	3318354	OR52D1	3.76E-03	3266583	CASC2	4.02E-03
3707498	USP6	2.83E-03	3445908	EPS8	3.50E-03	3775425	B3GNTL1	3.77E-03	3553337	TRAF3	4.02E-03

2807621 PTGER4 4.02E-03 3950846 MIOX 4.36E-03 2332091 KCNQ4 4.71E-03 3555272 TTC5 5.15E-03 FEM1C 3679959 EMP2 4.05E-03 2871801 4.36E-03 3794458 **ZNF236** 4.71E-03 4024493 SPANXE 5.16E-03 2746164 2823326 2436985 SHC1 4.73E-03 2522247 MMAA 4.06E-03 FER 4.36E-03 AOX1 5.18E-03 3757770 STAT5B 4.06E-03 2520533 OBFC2A 4.38E-03 3063727 TAF6 4.73E-03 3188478 CRB2 5.18E-03 3103187 TERF1 4.06E-03 3676328 NOX01 4.40E-03 3070873 GPR37 4.74E-03 2531310 SP140L 5.18E-03 2351572 CD53 4.79E-03 TXNIP 4011889 ZMYM3 4.06E-03 4.42E-03 3920566 DYRK1A 2356115 5.20E-03 3743167 MED31 4.07E-03 2469910 LPIN1 4.45E-03 3221633 HDHD3 4.81E-03 3071700 IMPDH1 5.20E-03 3485292 NBEA 4.07E-03 3177563 NAA35 4.46E-03 3695157 CMTM4 4.81E-03 3439549 SLC6A13 5.21E-03 3762198 3818596 5.22E-03 4.08E-03 EMR1 4.46E-03 4041300 FAM195B 4.82E-03 2489035 DGUOK COL1A1 2519577 COL3A1 4.10E-03 2515783 RAPGEF4 4.48E-03 3895679 C20orf27 4.84E-03 2541944 5.23E-03 SMC6 3899173 RRBP1 4.49E-03 3725517 IGF2BP1 4.84E-03 3529467 CPNE6 5.24E-03 3643580 CACNA1H 4.10E-03 3607510 4.13E-03 3843690 ZSCAN1 4.50E-03 4.84E-03 IL26 5.26E-03 FANCI 2780143 BDH2 3461121 3166718 DNAJA1 4.13E-03 3132333 TM2D2 4.51E-03 3467720 GOLGA2B 4.85E-03 2517588 OSBPL6 5.27E-03 SLC01B1 5.28E-03 2556010 ELP1P 4.13E-03 3407683 4.51E-03 3833728 ITPKC 4.87E-03 3379452 C11orf24 2707909 3834732 PRR19 4.13E-03 MCF2L2 4.51E-03 3870990 GP6 4.87E-03 3276421 KIN 5.30E-03 2757621 POLN 4.14E-03 3455388 KRT75 4.52E-03 3774883 CD7 4.87E-03 3934903 5.30E-03 ---4.16E-03 TBCEL 5.31E-03 2654394 FXR1 3352813 4.53E-03 3973768 LANCL3 4.88E-03 3726298 **TMEM92** 4.93E-03 5.32E-03 3571059 DPF3 4.17E-03 2358092 CA14 4.53E-03 2545509 PREB 2348854 RTCD1 3380080 ORAOV1 4.54E-03 SNCB 4.97E-03 NXPH4 5.32E-03 3723348 HEXIM1 4.18E-03 2888399 3417988 2393538 WDR8 4.18E-03 3723204 **CCDC103** 4.55E-03 4.97E-03 3179706 WNK2 5.34E-03 3887241 SLC12A5 2542816 2515276 DYNC1I2 ENTHD1 4.99E-03 PUM2 4.19E-03 4.60E-03 3961325 2880361 JAKMIP2 5.35E-03 2794792 VEGFC 4.20E-03 3982689 TBX22 4.61E-03 2866704 ARRDC3 CHRNB4 5.35E-03 4.99E-03 3634682 2643592 EPHB1 2688955 CD200R1 4.24E-03 4.61E-03 2448232 TPR 5.01E-03 3522398 DOCK9 5.35E-03 2812539 SREK1 4.24E-03 3726114 DLX4 4.62E-03 2811145 PART1 5.03E-03 2817212 BHMT2 5.37E-03 2752725 4.28E-03 3240095 CD247 5.38E-03 NEIL3 3189311 PBX3 4.64E-03 RAB18 5.03E-03 2442587 3920385 2493858 4.28E-03 TTC3 4.64E-03 3753729 GAS2L2 5.04E-03 3762040 TAC4 5.38E-03 MAL 3872584 C19orf18 4.29E-03 3643360 HAGHL 4.66E-03 2613386 RAB5A 5.05E-03 3846860 SEMA6B 5.38E-03 OSBPL7 3760894 4.30E-03 2445876 4.67E-03 3894288 TCF15 5.06E-03 2584957 SCN3A 5.38E-03 ---3512948 C13orf18 4.30E-03 2999334 HECW1 4.67E-03 2489440 DOK1 5.06E-03 2397948 EPHA2 5.39E-03 2772805 GC 4.32E-03 2436973 PYGO2 4.68E-03 3234083 ITIH2 5.07E-03 3581404 GPR132 5.39E-03 3378433 SPTBN2 4.34E-03 2988336 **KIAA0415** 4.69E-03 2528476 DES 5.08E-03 3315341 SYCE1 5.40E-03 2971692 MCM9 3681705 2911226 5.09E-03 3744094 4.35E-03 RRN3 4.71E-03 BEND6 ALOXE3 5.40E-03 2387006 4.35E-03 3557430 MYH6 4.71E-03 2657250 LPP 5.13E-03 4023907 FGF13 MTR 5.41E-03

2943434	ATXN1	5.41E-03	3982975	POU3F4	5.77E-03	3772581	USP36	6.18E-03	2883440	ADAM19	6.71E-03
2487918	ATP6V1B1	5.41E-03	3655012	SH2B1	5.80E-03	3353914	VWA5A	6.20E-03	3756546	KRT12	6.72E-03
3390860	POU2AF1	5.42E-03	2989493	MIOS	5.80E-03	2759582	AFAP1	6.21E-03	3914181	UCKL1	6.72E-03
2601414	SERPINE2	5.43E-03	2416522	JAK1	5.80E-03	3406015	ATF7IP	6.22E-03	3120682	MFSD3	6.76E-03
3737192	CARD14	5.44E-03	3284302	NRP1	5.82E-03	2369609	C1orf125	6.23E-03	3662774	GPR114	6.79E-03
2509900	KIF5C	5.46E-03	2339511	ATG4C	5.83E-03	3758845	HDAC5	6.24E-03	2988594	SLC29A4	6.79E-03
3526831	RASA3	5.48E-03	3947434	SERHL	5.83E-03	3851250	ZNF20	6.26E-03	2830818	REEP2	6.80E-03
2772876	ADAMTS3	5.51E-03	2827057	GRAMD3	5.84E-03	3683584	PDILT	6.27E-03	3033307	EN2	6.80E-03
3224650	DENND1A	5.52E-03	2556302	PELI1	5.85E-03	3527831	RNASE7	6.27E-03	3789680	ST8SIA3	6.80E-03
3767230	LRRC37A3	5.52E-03	2735362	HERC6	5.85E-03	3227634	BAT2L1	6.31E-03	3072546	TSGA14	6.80E-03
2527747	SLC11A1	5.53E-03	3159132	COMMD5	5.85E-03	3813840	ZNF516	6.34E-03	3082990	MYOM2	6.82E-03
3376367	SLC22A8	5.53E-03	3941076	CRYBA4	5.89E-03	2677922	ASB14	6.35E-03	3214749	NOL8	6.82E-03
3661940	GNA01	5.53E-03	3784670	C18orf21	5.92E-03	3032446	ACTR3B	6.38E-03	2955076	NFKBIE	6.83E-03
3721010	IGFBP4	5.55E-03	3908901	KCNB1	5.93E-03	3574121	STON2	6.43E-03	3085403	MSRA	6.83E-03
3906709	GTSF1L	5.55E-03	3479438	CHFR	5.94E-03	3113352	COL14A1	6.43E-03	2413879	PARS2	6.84E-03
3403140	EMG1	5.58E-03	2374414	GPR25	5.98E-03	2364438	NUF2	6.45E-03	4002011	CXorf23	6.85E-03
3985305	GPRASP2	5.63E-03	2378584	RCOR3	5.99E-03	3771068	TRIM47	6.47E-03	3614774	OCA2	6.85E-03
2853275	CAPSL	5.63E-03	3127505		6.00E-03	2327283	C1orf38	6.50E-03	3259400	CCNJ	6.87E-03
2390253	OR2L8	5.64E-03	2487063	GKN1	6.00E-03	2607020	MTERFD2	6.52E-03	3191877	AIF1L	6.89E-03
3303059	SLC25A28	5.64E-03	2323347	PAX7	6.01E-03	2591643	COL5A2	6.55E-03	3498315	UBAC2	6.92E-03
3628650	HERC1	5.65E-03	3928070	CCT8	6.01E-03	2412082	FAF1	6.56E-03	2324084	CDA	6.93E-03
3037944	RPA3	5.66E-03	2907943	ABCC10	6.02E-03	2621032	PTH1R	6.56E-03	3934623	KAP12.2	6.93E-03
3464276	SLC6A15	5.67E-03	3544562	JDP2	6.05E-03	3815416	ABCA7	6.59E-03	2359885	SLC27A3	6.94E-03
2830504	PKD2L2	5.67E-03	3934479	C21orf2	6.06E-03	3336117	TMEM151	6.60E-03	2964350	MDN1	6.95E-03
3085933	C8orf12	5.68E-03	3031399	ZNF775	6.08E-03	3414326	AQP6	6.61E-03	3601889	LMAN1L	6.98E-03
3251068	CDH23	5.68E-03	3845081	C19orf26	6.10E-03	3597338	TPM1	6.62E-03	4035017	UTY	6.99E-03
2817464	CMYA5	5.68E-03	2379974	KCNK2	6.11E-03	3070543	SLC13A1	6.63E-03	3551029	C14orf177	7.00E-03
2382467	CNIH3	5.70E-03	2736060	GRID2	6.11E-03	3575241	KCNK10	6.64E-03	3550139	TCL1B	7.01E-03
3624513	MY05C	5.71E-03	3560403	EGLN3	6.12E-03	3840562	HERV-V1	6.65E-03	2594569	ORC2	7.01E-03
2837029	SGCD	5.71E-03	3023825	C7orf45	6.13E-03	3560575	EAPP	6.65E-03	3363091	GALNTL4	7.03E-03
3131916	WHSC1L1	5.74E-03	3774535	DCXR	6.14E-03	3257268	IFIT5	6.67E-03	2585129	GALNT3	7.04E-03
3182229	TMEFF1	5.74E-03	2527672	PNKD	6.16E-03	2924081	NKAIN2	6.70E-03	3096271	C8orf40	7.10E-03
3599495	CORO2B	5.76E-03	3144859	CDH17	6.17E-03	3693837	GOT2	6.71E-03	3227482	FIBCD1	7.12E-03

2891015 TRIM7 7.16E-03 3145586 MTERFD1 7.64E-03 3742236 PELP1 8.13E-03 2461531 IRF2BP2 8.50E-03 MYEOV2 7.17E-03 MED9 2324594 8.13E-03 IL1F10 2606643 3712582 7.64E-03 CELA3A 2501178 8.53E-03 2396781 MAD2L2 7.17E-03 3089049 NPM2 7.66E-03 8.13E-03 3543756 2401493 ID3 DNAL1 8.57E-03 3715839 TRAF4 7.18E-03 3188780 GPR144 7.67E-03 3886576 WISP2 8.14E-03 2985781 THBS2 8.58E-03 2742935 HSPA4L 7.18E-03 3918104 C21orf63 7.69E-03 2511432 GPD2 8.15E-03 3632037 PARP6 8.59E-03 7.18E-03 2550175 2867836 8.17E-03 2345128 SH3GLB1 KCNG3 7.69E-03 GLRX 3665049 CES4A 8.61E-03 2417008 INSL5 7.20E-03 3698081 PMFBP1 7.71E-03 2922246 FLJ34503 8.17E-03 3579458 DEGS2 8.62E-03 3000276 7.23E-03 3455186 KRT5 7.72E-03 3826542 **ZNF738** 8.19E-03 2742581 FAT4 8.64E-03 RAMP3 3913483 2704188 7.72E-03 8.24E-03 TCFL5 7.24E-03 PDCD10 3521484 UGGT2 3659691 C16orf78 8.65E-03 3955102 GSTT1 7.25E-03 3883013 TP53INP2 7.75E-03 3791341 ZCCHC2 8.26E-03 2580635 8.67E-03 MMADHC 2774365 7.26E-03 2672629 KIF9 7.75E-03 3743038 8.26E-03 3420497 8.67E-03 CCNI AIPL1 HELB STK38 3851911 PRG6 7.27E-03 2951916 7.76E-03 LRP2 8.26E-03 3457872 MIP 8.72E-03 2586038 PPP2R1B 3757399 3391029 7.27E-03 NT5C3L 7.77E-03 3796335 LPIN2 8.26E-03 3066297 SRPK2 8.73E-03 IMID1C 8.76E-03 3089102 EPB49 7.27E-03 2653902 **ZNF639** 7.78E-03 3291682 8.30E-03 2566764 REV1 8.34E-03 4017747 GUCY2F 7.29E-03 3523156 TMTC4 7.79E-03 3336220 PELI3 2949118 LTB 8.77E-03 3636216 AP3B2 7.29E-03 3230697 NPDC1 7.80E-03 3075742 KLRG2 8.34E-03 3675369 NARFL 8.79E-03 RING1 FSTL3 RCBTB1 8.80E-03 2903507 7.29E-03 3815097 7.82E-03 3468888 GLT8D2 8.35E-03 3513794 TEAD2 8.35E-03 8.82E-03 2906872 MDFI 7.30E-03 3867796 7.86E-03 2622435 RBM6 2827177 C5orf48 3283920 ARHGAP12 7.88E-03 3538403 8.35E-03 3545403 GSTZ1 7.30E-03 LRRC9 3824666 KCNN1 8.85E-03 8.37E-03 2956586 PGK2 7.30E-03 3952956 ARVCF 7.88E-03 CCNDBP1 2950515 VPS52 8.89E-03 3591327 3374189 OR9I1 7.89E-03 2682088 8.37E-03 HLCS 2633773 TFG 7.31E-03 EIF4E3 3931112 8.90E-03 4003017 PCYT1B 7.31E-03 3136229 SDR16C5 7.92E-03 B3GNT6 8.38E-03 3190796 PHYHD1 8.90E-03 3341137 8.38E-03 2890148 HNRNPH1 7.33E-03 3305313 ITPRIP 7.92E-03 3529799 GMPR2 2532626 C2orf82 8.91E-03 2681044 FAM19A4 7.38E-03 3467637 SHIP164 7.93E-03 3722060 VPS25 8.40E-03 2713382 BDH1 8.91E-03 3904119 CPNE1 7.38E-03 **ZNF782** LRRC67 8.92E-03 3216529 7.94E-03 3359601 OSBPL5 8.40E-03 3138929 2435410 S100A11 7.41E-03 2405469 PHC2 7.95E-03 3638871 ATG8D 8.41E-03 3339406 FOLR1 8.93E-03 3360874 HPX 7.41E-03 3084950 CLDN23 7.98E-03 3695631 TPPP3 8.42E-03 3642747 ARHGDIG 8.94E-03 USP3 2379399 3272566 KNDC1 7.45E-03 3597603 7.99E-03 3964049 CELSR1 8.42E-03 RPS6KC1 8.94E-03 2373406 CFHR3 7.46E-03 2497082 IL1RL1 8.00E-03 2717014 MAN2B2 8.43E-03 3621117 TGM7 8.97E-03 3995765 2475678 LBH 7.52E-03 DUSP9 8.00E-03 2975680 BCLAF1 8.48E-03 2602653 PID1 8.97E-03 4020655 0DZ1 7.55E-03 2791419 FAM198B 8.06E-03 3589905 IVD 8.48E-03 3680223 PRM1 8.99E-03 2837499 LSM11 7.56E-03 2721777 PI4K2B 2337407 PCSK9 8.48E-03 2343289 8.11E-03 DNAJB4 8.99E-03 2601341 7.62E-03 2422517 ZNF644 8.12E-03 3534248 8.49E-03 FGF4 WDFY1 FANCM 3380142 9.01E-03

3699133 FA2H 9.02E-03 2489322 TTC31 9.63E-03 3984840 ARMCX4 0.010 3865586 FBX046 0.011 2439373 SPTA1 9.03E-03 2632832 EPHA6 ZNF383 9.67E-03 3541073 MPP5 0.010 3831774 0.011 3625234 9.05E-03 2371346 9.72E-03 3678279 2688499 ZBED2 RSL24D1 RGL1 ANKS3 0.010 0.011 3936442 PEX26 9.05E-03 2832431 PCDHB11 9.73E-03 2758658 **TMEM128** 2577106 NCKAP5 0.011 0.010 2896177 9.05E-03 2955164 9.74E-03 2501120 IL1F9 2439101 FCRL1 0.011 JARID2 ---0.010 9.05E-03 2781387 9.75E-03 2322211 C1orf64 TTTY5 2612100 FGD5 AGXT2L1 0.010 4036497 0.011 3173673 PIP5K1B 9.08E-03 2769095 ---9.75E-03 2892734 ---0.010 3501999 SOX1 0.011 2441386 RGS5 9.09E-03 3029646 ARHGEF5 9.77E-03 3913272 3361021 **TAF10** 0.011 GATA5 0.010 2892393 9.09E-03 2783916 TNIP3 9.80E-03 3625823 **BPHL ZNF280D** 0.010 3146898 YWHAZ 0.011 3408966 FGFR10P2 9.10E-03 2906105 GLP1R 9.86E-03 3219215 3840406 ZNF137P KLF4 0.010 0.011 2377094 PFKFB2 9.14E-03 2772614 GRSF1 9.87E-03 3811000 **RNF152** 3794341 0.010 FLJ44313 0.011 3714779 KCNJ12 9.19E-03 3461496 BEST3 9.90E-03 IFT172 3754227 MY019 2545869 0.010 0.011 3972025 PDK3 3683879 9.19E-03 DNAH3 9.92E-03 3977651 MAGED1 0.010 3289445 A1CF 0.011 LAMA2 0.011 2925237 9.20E-03 2412690 KTI12 9.93E-03 3642060 CHSY1 0.010 3910980 BMP7 3680249 PRM3 2408111 TRIT1 9.21E-03 9.94E-03 3413643 CCDC65 0.011 3433929 SRRM4 0.011 3548538 C14orf159 9.25E-03 2946106 SLC17A3 9.97E-03 3278401 FRMD4A 0.011 3416651 PDE1B 0.011 3808745 CCDC68 9.26E-03 TPSD1 3654175 IL4R 9.98E-03 3000984 ABCA13 0.011 3643679 0.011 9.27E-03 3553998 3633081 CYP1A1 TDRD9 9.99E-03 3866117 DACT3 0.011 2689286 **KIAA1407** 0.011 9.30E-03 3329537 2532852 3760137 **KIAA1267** C11orf49 0.010 SAG 0.011 3023103 CCDC136 0.011 LCOR 2632051 C3orf38 9.30E-03 3817437 FSD1 0.010 2325358 3259631 GRHL3 0.011 0.011 2985368 FRMD1 2924898 2436754 2673312 PFKFB4 9.31E-03 RNF146 0.010 ADAR 0.011 0.011 3082373 VIPR2 9.34E-03 3376121 ZBTB3 0.010 3235516 3800779 ESC01 0.011 CAMK1D 0.011 4009990 USP51 9.34E-03 2913564 DDX43 0.010 2832403 PCDHB9 0.011 3249788 CCAR1 0.011 3923537 C21orf33 9.36E-03 3042973 HOXA11 0.010 3738081 TSPAN10 0.011 2761503 0.011 ---2980870 NOX3 9.38E-03 0.010 FOXB1 0.011 3209726 ALDH1A1 3871792 **ZSCAN5A** 0.011 3596263 2389130 EFCAB2 9.38E-03 2494064 FAHD2A 0.010 3987228 PAK3 0.011 2623568 PPM1M 0.011 3195238 GRIN1 9.39E-03 3760552 RPRML 0.010 3012381 AKAP9 0.011 3722681 C17orf88 0.011 3417767 **GPR182** 9.41E-03 3981592 CDX4 0.010 2378662 TRAF5 0.011 2536531 FARP2 0.011 3602526 2776305 NKX6-1 9.43E-03 FBX022 0.010 3663287 NDRG4 2670481 ULK4 0.011 0.011 3613725 3576014 C14orf102 9.46E-03 NDN 0.010 3555088 **KIAA0125** 0.011 3252577 VDAC2 0.011 2939213 3815710 EFNA2 9.47E-03 TUBB2A 0.010 3711165 COX10 0.011 2400027 PLA2G2A 0.011 2440625 DEDD 9.51E-03 3262715 SORCS3 3147985 LRP12 3636956 WDR73 0.010 0.011 0.011 3697125 9.59E-03 2623922 ITPK1 COG4 STAB1 0.010 3577160 0.011 2414505 C8B 0.011

Table D	12. NUIIC/U		icu_JALJ		actively Sp		. (n=3,103) [i ai tek ⁻ p	value (a	it spliting)	[0.03]
3011454	DBF4	0.011	2522693	CASP10	0.012	2829562	TXNDC15	0.013	2334986	CYP4X1	0.013
3086181	NEIL2	0.011	2521278	CCDC150	0.012	2739308	EGF	0.013	2623611	GLYCTK	0.013
3958157	SLC5A4	0.011	4016955	TEX13A	0.012	3922793	PDE9A	0.013	3984468	SRPX2	0.013
2465753	OR2C3	0.011	3669092	TERF2IP	0.012	3862650	SERTAD3	0.013	2460487	C1orf131	0.013
3951302	POTEM	0.011	2437417	ASH1L	0.012	3994610	MAGEA8	0.013	3623552	ATP8B4	0.013
3602423	ODF3L1	0.011	3107661	INTS8	0.012	3201144	IFNB1	0.013	2473026	C2orf84	0.013
2318398	PHF13	0.011	3655723	MVP	0.012	3598199	ANKDD1A	0.013	3023279	TPI1P2	0.013
2405192	YARS	0.011	2678029	DNAH12	0.012	3934187	HSF2BP	0.013	2361241	ROBLD3	0.013
3378758	CLCF1	0.011	2458701	ACBD3	0.012	3819880	ZNF317	0.013	3883236	MMP24	0.013
3190762	ENDOG	0.011	3307795	C10orf118	0.012	2647647	TSC22D2	0.013	3157217	CYP11B1	0.013
3042730	HOXA1	0.011	3677268	PRSS22	0.012	3204174	C9orf23	0.013	2374126	NR5A2	0.013
3333595	GNG3	0.011	3256689	PTEN	0.012	3392973	APOA4	0.013	3020646	CFTR	0.013
3474104	CIT	0.012	2609608	SETD5	0.012	2783715	MAD2L1	0.013	3063463	CYP3A7	0.013
3830712	MLL4	0.012	3583638	CYFIP1	0.012	2468351	RSAD2	0.013	2829275	UBE2B	0.013
3310041	FGFR2	0.012	2961647	HTR1B	0.012	3359529	CARS	0.013	2789957	FBXW7	0.013
3203996	C9orf24	0.012	3884524	BPI	0.012	2778440	UNC5C	0.013	3343252	C11orf73	0.013
3863380	GRIK5	0.012	3030873	ZNF862	0.012	3554452	KIAA0284	0.013	3893891		0.013
2709235	DGKG	0.012	3974838	DDX3X	0.012	3257559	RPP30	0.013	3959918	TST	0.013
3336951	RAD9A	0.012	2669184	LRRFIP2	0.012	2921086	CDC40	0.013	2845362	SLC9A3	0.013
2663785	CHCHD4	0.012	3301713	BLNK	0.012	2533670	AGAP1	0.013	3850331	CDC37	0.014
3934529	C21orf29	0.012	2440664	B4GALT3	0.012	3638337	POLG	0.013	3317569		0.014
2429069	TRIM33	0.012	2910364	TMEM14A	0.012	3379777	MRGPRF	0.013	2831719	ANKHD1	0.014
2743315	PHF17	0.012	2376799	IKBKE	0.012	3169043	RG9MTD3	0.013	3028011	MGAM	0.014
3786471	SETBP1	0.012	3200648	PLIN2	0.012	3023835	CPA2	0.013	2764678	FLJ45721	0.014
2987410	NUDT1	0.012	2567167	LONRF2	0.012	3067644	THAP5	0.013	2867392	C5orf36	0.014
3272455	GPR123	0.012	3593014	SLC24A5	0.012	2713837	ZNF718	0.013	2874794	RAPGEF6	0.014
2324820	EPHA8	0.012	2953481	TREML1	0.012	3334749	PPP2R5B	0.013	3660075	NKD1	0.014
3665722	PARD6A	0.012	3551407	HHIPL1	0.013	3869215	HAS1	0.013	3061046	KRIT1	0.014
3414029	KCNH3	0.012	2905296	PI16	0.013	2666807	NEK10	0.013	3393536	TMPRSS13	0.014
3553947	ZFYVE21	0.012	3474495	TRIAP1	0.013	3335465	SIPA1	0.013	3819968	ZNF177	0.014
3642837	DECR2	0.012	2717757	C4orf23	0.013	3680524	ZC3H7A	0.013	2946056	SLC17A1	0.014
3436544	BRI3BP	0.012	3846076	TLE2	0.013	2878943	PCDH1	0.013	2947219	ZKSCAN4	0.014
2518889	ZNF804A	0.012	3939470	MMP11	0.013	3752097	C17orf42	0.013	2632919	ARL6	0.014

Tuble D	12.110110/01			v Gui i muci m	utively Sp	need his	(II=3,103) [rarten p	value (a	ic splicing)	
3555736	NDRG2	0.014	3788976	RAB27B	0.014	3182019	STX17	0.015	3334325	VEGFB	0.016
3948590	RIBC2	0.014	3415763	SOAT2	0.014	3146723	SNX31	0.015	3913220	C20orf151	0.016
3689981	MYLK3	0.014	3445768	ERP27	0.014	3352159		0.015	2333707	CCDC24	0.016
3376235	WDR74	0.014	3208640	PRKACG	0.014	2546054	RBKS	0.015	2479510	DYNC2LI1	0.016
2840393	GABRP	0.014	2535976	AGXT	0.014	2330133	EIF2C3	0.015	3927105	MRPL39	0.016
3820458	ICAM4	0.014	2809793	GZMK	0.014	3377474	SYVN1	0.015	2674646	AMIGO3	0.016
2947248	ZNF323	0.014	2382781	DNAH14	0.014	3568534	SPTB	0.015	2981976	OSTCL	0.016
3984125	RPA4	0.014	2693682	TXNRD3	0.014	3562557	FSCB	0.015	3781245	GATA6	0.016
3929237	TCP10L	0.014	3766013	MARCH10	0.014	3953033	TRMT2A	0.015	3359134	IGF2	0.016
3332530	MS4A10	0.014	3835911	APOC4	0.014	2947681	OR2W1	0.015	2851511	CDH9	0.016
3015786	ZAN	0.014	2909404	CD2AP	0.015	2650357	ARL14	0.015	2769810	KDR	0.016
3090006	SLC25A37	0.014	2549092	SOS1	0.015	3336094	CNIH2	0.015	2775994	HPSE	0.016
2638988	PARP15	0.014	3223157	DBC1	0.015	2371255	SMG7	0.015	3371928	ARFGAP2	0.016
3015682	PCOLCE	0.014	2975867	MAP3K5	0.015	3014808	ZNF789	0.015	3862188	FCGBP	0.016
3950629	TRABD	0.014	2671422	ZNF445	0.015	3079172	TMEM176B	0.015	3991006	OR13H1	0.016
3105749	ATP6V0D2	0.014	3882214	BPIL3	0.015	3371719	CKAP5	0.016	3835361	ZNF222	0.016
3079257	ATG9B	0.014	2954527	ZNF318	0.015	3851801	RTBDN	0.016	2626802	PTPRG	0.016
3965447	IL17REL	0.014	2837192	PPP1R2P3	0.015	3474418	PXN	0.016	2362950	ATP1A4	0.016
3555492	TMEM55B	0.014	3846507	DAPK3	0.015	2968652	SESN1	0.016	3619690	PPP1R14D	0.016
3347118	GRIA4	0.014	4051619	EXD3	0.015	3715512	TNFAIP1	0.016	2716124	HGFAC	0.016
3504213	GJB6	0.014	3836217	KLC3	0.015	3414440	C12orf62	0.016	3238702	ARMC3	0.016
3152558	FAM84B	0.014	3259836	ZDHHC16	0.015	3693141	PLLP	0.016	2622359	RBM6	0.016
2708457	CLCN2	0.014	3401878	NDUFA9	0.015	3371225	CHST1	0.016	3718401	LIG3	0.016
3527390	OR11H4	0.014	3729569	BCAS3	0.015	3075531	ZC3HAV1L	0.016	3332729	CD5	0.016
3269328	ZRANB1	0.014	2481308	KLRAQ1	0.015	3322638	MRGPRX3	0.016	3526544	DCUN1D2	0.017
3934245	CSTB	0.014	3699581	TMEM170A	0.015	3957679	SELM	0.016	3992148	DDX26B	0.017
3852586	LPHN1	0.014	2819044	RASA1	0.015	2722291	TBC1D19	0.016	3387033	MRE11A	0.017
2420681	MCOLN3	0.014	2600155	DNPEP	0.015	3842130	TMEM190	0.016	3754677	SYNRG	0.017
2783316	SEC24D	0.014	3458837	METTL1	0.015	3978999	UBQLN2	0.016	2628081	SLC25A26	0.017
2521574	PLCL1	0.014	3388696	MMP20	0.015	2951567	FKBP5	0.016	3726252	SGCA	0.017
2602304	TM4SF20	0.014	2855285	SEPP1	0.015	2687255	CBLB	0.016	3334604		0.017
3311694	MMP21	0.014	2946219	HIST1H2AB	0.015	2794704	ASB5	0.016	2333574	ARTN	0.017
3934785	C21orf67	0.014	2761842	PROM1	0.015	2743370	C4orf33	0.016	3920512	DSCR9	0.017

3976716 WDR13 0.017 3950452 CRELD2 0.017 2840789 **FGF18** 0.018 3994100 FMR1 0.019 PHOX2B 3678542 C16orf89 BIRC6 0.019 2767159 0.017 0.017 3459604 PPM1H 0.018 2476219 3742627 0.017 3834341 0.017 3468743 NT5DC3 FUT1 0.019 C17orf87 CEACAM5 0.018 3867400 2669533 ACAA1 0.017 3268274 PLEKHA1 0.017 3221205 SLC46A2 3655060 ATP2A1 0.019 0.018 3197231 3455651 KRT72 0.017 C9orf68 0.017 3759704 MAP3K14 0.018 3753538 SLFN12 0.019 3951493 2397999 FILIP1L 0.019 3296046 KCNMA1 0.017 CCT8L2 0.017 ARHGEF19 0.018 2686213 2623308 GRM2 0.017 2607757 CNTN6 0.018 3833793 RAB4B 0.019 2351763 CHIA 0.019 4054204 0.017 3746625 TEKT3 0.018 3903952 GDF5 0.019 2716246 FLJ35424 0.019 APOD 3986087 2529782 SCUBE2 3239667 GAD2 0.017 NRK 0.018 MRPL44 0.019 3362191 0.019 0.017 3545022 ESRRB 0.018 2868265 0.019 2610972 SYN2 0.019 3762185 HILS1 LIX1 3741040 2953262 0.018 3456212 MAP3K12 0.019 MNT 0.017 FLI41649 2800477 SRD5A1 0.019 2528198 CDK5R2 0.017 2321960 PLEKHM2 0.018 3631397 3486096 FREM2 0.020 UACA 0.019 2418700 3033397 RBM33 0.017 0.018 3968303 SHROOM2 0.019 2990043 PHF14 0.020 ASB17 RASSF8 0.018 PRPF8 0.020 3408733 0.017 2446567 STX6 2746507 ---0.019 3740479 3928559 3289948 PCDH15 0.017 KRTAP6-1 0.018 3791782 SERPINB5 0.019 3649811 NDE1 0.020 3345940 CNTN5 0.017 2716432 ZBTB49 0.018 2854445 DAB2 0.019 2977510 FUCA2 0.020 DCLK1 DAZAP2 0.018 0.020 3509473 0.017 3414846 3157441 MAFA 0.019 3658561 MGC34800 3220846 SUSD1 0.017 3675620 C1QTNF8 0.018 2907444 PTCRA 0.019 3127610 PEBP4 0.020 2726828 3198974 0.020 3826306 ZNF85 0.017 DCUN1D4 0.018 MPDZ 0.019 3185643 RGS3 3974708 2318212 C1orf211 0.017 USP9X 0.018 2992243 3969713 MOSPD2 0.020 DNAH11 0.019 2827299 MEGF10 3444195 3217361 ADD2 0.020 0.017 MAGOHB 0.018 ANKS6 0.019 2558736 3432798 SDSL 0.017 2337217 C1orf175 0.018 2735459 HERC3 RAD51L1 0.020 0.019 3541497 3226237 2592598 TMEFF2 0.017 DPM2 0.018 3901401 CST5 0.019 3693788 SLC38A7 0.020 2500919 3202421 C9orf72 0.017 2389718 CNST 0.018 SLC20A1 0.019 3664952 PDP2 0.020 3339971 PLEKHB1 PLCXD2 0.018 HS1BP3 0.020 0.017 2635812 3936992 SEPT5 0.019 2542990 4014251 3825292 CRTC1 0.017 CHM 0.018 2762468 DCAF16 0.019 3340066 PAAF1 0.020 2443305 C1orf114 0.017 3773558 FLJ90757 0.018 2352275 MOV10 0.019 2409847 PTCH2 0.020 HIPK2 3272795 3744127 HES7 0.017 3864414 PHLDB3 0.018 3075778 0.019 PAOX 0.020 4008078 PAGE1 0.017 3980867 0.018 3621276 0.019 3229449 C9orf116 0.020 GJB1 PPIP5K1 3540155 C14orf50 0.017 2790626 FGA 0.018 3752709 MY01D 0.019 2510485 RIF1 0.020 2734421 ARHGAP24 0.017 3854477 **TMEM221** 0.018 3662750 POLR2C 0.019 3418153 MARS 0.020 2894790 SYCP2L 3125915 0.018 3231846 WDR37 3697005 EXOSC6 0.020 0.017 MTUS1 0.019 3334087 3399004 2421121 0.020 NAA40 0.017 OPCML 0.018 ODF2L 0.019 4026010 GABRE

I ubic D					natively op		. (ii 0,100)	li ui cen p	varae (a	iei spiteing)	
3079576	SMARCD3	0.020	3922921	NDUFV3	0.021	3589972	CHST14	0.022	3384718	DLG2	0.023
3475511	DIABLO	0.020	2333481	ST3GAL3	0.021	3664779		0.022	3939125	GNAZ	0.023
3654956	LAT	0.020	2399988	RNF186	0.021	2641232		0.022	2565082	ADRA2B	0.023
3375840	TUT1	0.020	3231010	PNPLA7	0.021	3179646	SUSD3	0.022	3994451	CXorf40A	0.023
2863964	ARSB	0.020	2681195	UBA3	0.021	3072014	TNPO3	0.022	2788195	OTUD4	0.023
3835085	ZNF575	0.020	3139035	ARFGEF1	0.021	3851630	FBXW9	0.022	3526772	FAM70B	0.023
3755089	GPR179	0.020	3840253	ZNF534	0.021	3996289	EMD	0.022	3720695	THRA	0.023
3886444	R3HDML	0.020	2392095	C1orf86	0.021	2452571	ELK4	0.022	3955940	CRYBB1	0.023
3481890	ATP12A	0.020	3987876	HTR2C	0.021	2405036	BSDC1	0.022	3242425	CCNY	0.023
2420790	C1orf52	0.020	3959411	APOL2	0.021	3434594	ACADS	0.022	2644619	ESYT3	0.023
3192609	GFI1B	0.020	2567669	RFX8	0.021	2953711	TFEB	0.022	2413943	USP24	0.023
2709402	CRYGS	0.020	3963990	PKDREJ	0.021	3947627	TSPO	0.022	2759857	ACOX3	0.023
3718185	CCL11	0.020	2523540	NBEAL1	0.021	3214050		0.022	3939450	C22orf15	0.023
3177111	NTRK2	0.020	3341221	MYO7A	0.021	3697183	MTSS1L	0.022	2468138		0.023
3666146	SLC7A6	0.020	3320819	MICALCL	0.021	3000953	UPP1	0.022	2887164	SH3PXD2B	0.023
3688120	STX1B	0.020	3899495	C20orf12	0.021	3300115	PPP1R3C	0.022	3239437	GPR158	0.023
2641769	RHO	0.020	2597273	C2orf67	0.021	3969115	TLR8	0.022	2316953	PRDM16	0.023
3581373		0.020	3039247	DGKB	0.021	2773545	BTC	0.022	3572929	ZDHHC22	0.023
2413484	YIPF1	0.020	2326846	TRNP1	0.021	4011189	OPHN1	0.022	3702499	KIAA1609	0.023
3818395	ALKBH7	0.020	3094980	HTRA4	0.021	3162529	C9orf150	0.022	2782292	C4orf21	0.023
3842059	BRSK1	0.021	3157563	NAPRT1	0.021	2924514	NCOA7	0.022	2757278	FAM53A	0.023
3851545	MAN2B1	0.021	3226097	ENG	0.021	3932397	C21orf88	0.022	2400247	KIF17	0.023
2884727	ATP10B	0.021	3824497	MAP1S	0.021	2349211	HEJ1	0.022	4051723	ENTPD8	0.023
3676356	ZNF598	0.021	3373630	APLNR	0.021	3048886	PURB	0.022	3557504	MYH7	0.023
3717052	NF1	0.021	4030162	DDX3Y	0.021	2793441	AADAT	0.022	3828067	PLEKHF1	0.023
2427500	HBXIP	0.021	3975893	PHF16	0.021	3753966	CCL14-15	0.022	2613293	KCNH8	0.023
3662612	RSPRY1	0.021	3923608	AIRE	0.021	3709540	PFAS	0.022	3851776	PRDX2	0.023
3731543	RGS9	0.021	3852079	STX10	0.021	3774906	SECTM1	0.022	3822122	NFIX	0.023
3938215	CCDC116	0.021	3402899	USP5	0.021	3381682	CHCHD8	0.022	3326826	FJX1	0.023
3323413	HTATIP2	0.021	3917549	KAP13-1	0.021	3720402	ERBB2	0.022	2908052	POLR1C	0.023
4015440	SYTL4	0.021	2514304	DHRS9	0.021	3817933	ZNRF4	0.022	2535859	CAPN10	0.024
2447107	TEDDM1	0.021	3351688	UPK2	0.022	2339454	ANGPTL3	0.022	3242555	GJD4	0.024
3966891	XG	0.021	3103745	CRISPLD1	0.022	3255311	CDHR1	0.023	2900143	OR2B6	0.024

Tuble D					natively op		(ii 0)100) [runten p	value (u	iei spiteing)	
3783481	DSG3	0.024	2322036	FBLIM1	0.024	2545144	GPR113	0.025	2545144	GPR113	0.025
2814527	BDP1	0.024	3071304	PAX4	0.024	2700727	SERP1	0.025	2700727	SERP1	0.025
2456687	SLC30A10	0.024	3837193	CCDC9	0.024	3269587	C10orf137	0.025	3269587	C10orf137	0.025
2926437	MGC34034	0.024	3362096	C11orf16	0.024	3791815	SERPINB12	0.025	3791815	SERPINB12	0.025
2466002	SH3BP5L	0.024	3168309	RECK	0.024	3872542	ZNF418	0.025	3872542	ZNF418	0.025
3887069	SNX21	0.024	2852742	AMACR	0.024	3180342	C9orf3	0.025	3180342	C9orf3	0.025
3835544	ZNF227	0.024	3846363	APBA3	0.024	3026969	C7orf55	0.025	3026969	C7orf55	0.025
3607927	SEMA4B	0.024	3352948	SORL1	0.024	3334484	ESRRA	0.025	3334484	ESRRA	0.025
2640449	CHST13	0.024	3820906	C19orf52	0.025	3491948	TDRD3	0.025	3491948	TDRD3	0.025
3143575	DCAF4L2	0.024	3402150	NTF3	0.025	2735759	MMRN1	0.025	2735759	MMRN1	0.025
3468473	PAH	0.024	2887048	STK10	0.025	3187834	DAB2IP	0.025	3187834	DAB2IP	0.025
3516228	PCDH20	0.024	2591614	DIRC1	0.025	3193725	OLFM1	0.025	3193725	OLFM1	0.025
3860261	THAP8	0.024	3799461	SPIRE1	0.025	3907040	LOC79015	0.025	3907040	LOC79015	0.025
2752085		0.024	3334831	ZFPL1	0.025	2438792	ETV3	0.025	2438792	ETV3	0.025
2976768	CITED2	0.024	3957738	RNF185	0.025	2495446	INPP4A	0.025	2495446	INPP4A	0.025
2843283	B4GALT7	0.024	3931765	ERG	0.025	2672966	MAP4	0.025	2672966	MAP4	0.025
3747522	TNFRSF13	0.024	3189800	SLC2A8	0.025	2730933	NPFFR2	0.025	2730933	NPFFR2	0.025
3830065	HPN	0.024	2911413	PRIM2	0.025	3836705	HIF3A	0.025	3836705	HIF3A	0.025
3114365	FAM91A1	0.024	2493992	KCNIP3	0.025	3911217	PMEPA1	0.025	3911217	PMEPA1	0.025
3594825	PIGB	0.024	4003155	ARX	0.025	3706736	TMEM93	0.026	3706736	TMEM93	0.026
3106539	OTUD6B	0.024	3457667	CNPY2	0.025	3869030	SIGLEC10	0.026	3869030	SIGLEC10	0.026
3422215	THAP2	0.024	3246046	C10orf71	0.025	2745067	ELMOD2	0.026	2745067	ELMOD2	0.026
2631940	HTR1F	0.024	2366156	SFT2D2	0.025	2415910	DOCK7	0.026	2415910	DOCK7	0.026
2655845	EPHB3	0.024	3344897	MED17	0.025	3976670	EBP	0.026	3976670	EBP	0.026
3261063	TLX1	0.024	2888800	DBN1	0.025	3961955	PHF5A	0.026	3961955	PHF5A	0.026
2550542	THADA	0.024	3015395	PVRIG	0.025	2726234	NIPAL1	0.026	2726234	NIPAL1	0.026
3138618	CRH	0.024	3049522	TNS3	0.025	2923868	PKIB	0.026	2923868	PKIB	0.026
3611744	LRRK1	0.024	3029475	OR6B1	0.025	3153961	HHLA1	0.026	3153961	HHLA1	0.026
2850071	MY010	0.024	2812690	MAST4	0.025	2887633	BOD1	0.026	2887633	BOD1	0.026
3007960	CLDN4	0.024	3180142	PTPDC1	0.025	4037778	DMBT1	0.026	4037778	DMBT1	0.026
2717253	SORCS2	0.024	3333942	RTN3	0.025	2380440	SPATA17	0.026	2380440	SPATA17	0.026
2362323	OR6K6	0.024	2830698	FAM53C	0.025	2769346	LNX1	0.026	2769346	LNX1	0.026
2662657	SEC13	0.024	2377165	C4BPA	0.025	3839499	ACPT	0.026	3839499	ACPT	0.026

i ubic b					lucively op		(ii 0)100) [runten p	vulue (u	in spitcing)	
3645656	ZNF205	0.026	2336585	SCP2	0.027	2721809	ZCCHC4	0.028	2756497	ATP5I	0.029
3444086	KLRK1	0.026	2442397	TADA1	0.027	3841862	FCAR	0.028	3323052	NAV2	0.029
2902609	C6orf25	0.026	3819130	CLEC4M	0.027	3511031	ELF1	0.028	3743937		0.029
3832865	NCCRP1	0.026	2700332	TM4SF18	0.027	3158011	PARP10	0.028	2398040	C1orf89	0.029
3258713	LGI1	0.026	3812074	DSEL	0.027	2376168	NFASC	0.028	2318157	RNF207	0.029
3747812	PEMT	0.026	3292169	CTNNA3	0.027	2772341	UGT2B4	0.028	2957314	GSTA2	0.029
3866491	MEIS3	0.026	2874686	HINT1	0.027	2900453	PGBD1	0.028	3354719		0.029
2750476	TRIM60	0.026	3415068	ANKRD33	0.027	2797393	FAT1	0.028	2409344	MED8	0.029
3345593	CEP57	0.026	3735089		0.027	2651989	SKIL	0.028	3293537	PCBD1	0.029
3123541	MFHAS1	0.026	3675101	MRPL28	0.027	4054414	GJB3	0.028	3331355	SERPING1	0.029
2404122	MATN1	0.026	3774516	STRA13	0.027	3001345	VWC2	0.028	2324634	CDC42	0.029
3770422	GRIN2C	0.027	3270224	FOXI2	0.027	3674349	ZNF276	0.028	3836401	GIPR	0.029
3037535	ZNF12	0.027	3852133	CACNA1A	0.028	3978518	MAGED2	0.028	4009751	ITIH5L	0.029
3535186	ATL1	0.027	3048134	C7orf44	0.028	2711957	C3orf21	0.028	3840194	ZNF880	0.029
3592054	TRIM69	0.027	2423017	EVI5	0.028	3941793	KREMEN1	0.028	3359224	ASCL2	0.029
3610804	IGF1R	0.027	3588346	ZNF770	0.028	3046197	ELMO1	0.028	3922602	UBASH3A	0.029
2897453	ID4	0.027	2542651	WDR35	0.028	2433432	GJA5	0.028	2604223	DNAJB3	0.029
3982721	FAM46D	0.027	2620410	EXOSC7	0.028	3961042	FLJ23865	0.028	3265918	PNLIPRP1	0.029
3858285	TSHZ3	0.027	2962525	IBTK	0.028	3632107	CELF6	0.028	3757020	KRT35	0.029
3934837	C21orf122	0.027	2823880	CAMK4	0.028	2459487	TRIM11	0.028	2771839	TMPRSS11D	0.029
3945014	GCAT	0.027	2472651	KLHL29	0.028	2950753	BAK1	0.028	3094778	TACC1	0.029
3721485	KLHL10	0.027	3371964	PACSIN3	0.028	2881165	TIGD6	0.028	3026988	LUC7L2	0.029
3273578	IDI2	0.027	3688254	PRSS8	0.028	3544071	VSX2	0.028	3848907	KANK3	0.029
3529775	TSSK4	0.027	2576526	NOC2L	0.028	2359504	SPRR3	0.029	3408831	SSPN	0.029
2930418	UST	0.027	3061319	CDK6	0.028	3480013	MPP8	0.029	2516332	SCRN3	0.029
3930942	CLDN14	0.027	3249641	MYPN	0.028	3431143	UBE3B	0.029	3954596	RTDR1	0.029
3096368	HOOK3	0.027	3575371	EML5	0.028	2754538	SLC25A4	0.029	2400373	EIF4G3	0.030
2390335	OR2M2	0.027	2427898	OVGP1	0.028	3458248	MY01A	0.029	3790259	MALT1	0.030
3833238	LGALS14	0.027	3722700	NAGS	0.028	2360541	DCST1	0.029	3448744	PTHLH	0.030
2439052	FCRL2	0.027	2713664	IQCG	0.028	3970714	PPEF1	0.029	3824713	ARRDC2	0.030
3915569	CHODL	0.027	2940987	SLC35B3	0.028	2612278	CAPN7	0.029	3330864	OR5AS1	0.030
3696524	COG8	0.027	2322103	SPEN	0.028	3443206	AICDA	0.029	2462511	HEATR1	0.030
2606959	C2orf54	0.027	3523318	NALCN	0.028	3258772	TMEM20	0.029	2532699	INPP5D	0.030

Tuble D	12. 11011070				actively op		(n=0,100) [runten p	vulue (u	ici spiteingj	
3442579	RBP5	0.030	3949097	TRMU	0.032	2888341	RNF44	0.033	3826504	ZNF431	0.033
3843452	ZSCAN4	0.030	2434233	OTUD7B	0.032	2437205	GBAP1	0.033	3727449	TOM1L1	0.033
3449910	AMN1	0.030	2617276	CTDSPL	0.032	3695541	FHOD1	0.033	3906390	PTPRT	0.033
2874371	FBN2	0.030	2432851	NBPF11	0.032	3446845	GYS2	0.033	2448382	PTGS2	0.033
3366519	FANCF	0.030	2953852	MED20	0.032	3421824	C12orf28	0.033	3701000	MAF	0.034
2375596	ADORA1	0.030	3821410	ZNF440	0.032	2475911	EHD3	0.033	2566504	C2orf55	0.034
3942940	FLJ20464	0.030	2431031	HMGCS2	0.032	2857204	PPAP2A	0.033	3873086	DEFB129	0.034
2673594	CELSR3	0.030	2565410	KIAA1310	0.032	3352847	TECTA	0.033	3430086	TCP11L2	0.034
2443575	KIFAP3	0.030	3822976	CASP14	0.032	3882949	DYNLRB1	0.033	2906990	BYSL	0.034
3770345	CD300E	0.030	3935374	C21orf58	0.032	3110171	ATP6V1C1	0.033	2332711	PPIH	0.034
2892277	NQO2	0.030	3444820	LRP6	0.032	2910680	LRRC1	0.033	3063273	PTCD1	0.034
4019412	CXorf56	0.030	2448710	FAM5C	0.032	3105506	CA13	0.033	3455890	KRT79	0.034
3067890	IMMP2L	0.030	2699145	SLC9A9	0.032	3607332	ACAN	0.033	3679643		0.034
3734399	C17orf77	0.030	2623859	NISCH	0.032	3845944	GNG7	0.033	2491745	GNLY	0.034
2602403	SLC19A3	0.030	2697372	TXNDC6	0.032	3869062	SIGLEC8	0.033	3717635	ZNF207	0.034
3230610	ABCA2	0.030	2460817	SIPA1L2	0.032	2731782	C4orf26	0.033	3935192	FTCD	0.034
2808438	NNT	0.030	2807195	EGFLAM	0.032	3111375	TTC35	0.033	2783207	PRSS12	0.034
2672333	PRSS45	0.030	3184408	PALM2	0.032	2731542	AREG	0.033	4007009	NDUFB11	0.034
3108859	OSR2	0.030	3870449	VSTM1	0.032	2875491	SHROOM1	0.033	3843058	ZNF264	0.034
2524016	PARD3B	0.030	2586603	TLK1	0.032	3053312		0.033	3868816	KLK9	0.034
2403446	PTAFR	0.030	3219547	IKBKAP	0.032	2503257	INHBB	0.033	3303392	BLOC1S2	0.034
3190514	GLE1	0.030	3643196	WDR90	0.032	3644664	DNASE1L2	0.033	2407224	RSP01	0.034
3354380	HEPN1	0.030	2674168	C3orf62	0.032	3023211	ATP6V1F	0.033	3860793	ZNF585B	0.034
3300597	MYOF	0.030	4007550	PCSK1N	0.032	2504595	PROC	0.033	3564620	NID2	0.034
3579114	BCL11B	0.030	2724671	RHOH	0.032	2329386	HMGB4	0.033	2452859	LGTN	0.034
3660858	CHD9	0.031	3248470	C10orf107	0.032	2404254	PUM1	0.033	3934263		0.034
3391653	DRD2	0.031	3677516	MEFV	0.032	3332465	MS4A8B	0.033	3579969	DIO3-OS	0.034
3331822	GLYATL1	0.031	2443370	F5	0.032	3378228	B3GNT1	0.033	3354293	ROBO3	0.034
3713951	SLC47A1	0.031	3977347	CCNB3	0.032	3233605	PFKFB3	0.033	3091403	EPHX2	0.034
2816506	S100Z	0.031	2662956	VGLL4	0.032	3657219	SLC5A2	0.033	2952198	TMEM217	0.034
2871241	MCC	0.031	3960440	HS506A	0.032	3416740	OR6C74	0.033	3899346	SNX5	0.034
2756404	ZNF721	0.031	3699178	WDR59	0.033	3956670	C22orf31	0.033	2673902	QRICH1	0.034
2723752	TBC1D1	0.031	3709244	CHD3	0.033	2749484	RXFP1	0.033	3515109	PCDH8	0.034

rubie b					actively op		(II 0)100) [P P	ruide (u	ici opneme)	
2772160		0.034	2443235	NME7	0.036	2375795	LAX1	0.036	3638699	C15orf38	0.037
3352438	POU2F3	0.035	3314720	C10orf93	0.036	3642993	C16orf11	0.036	3454157	FAIM2	0.037
3194567	FAM69B	0.035	3551566	EVL	0.036	3512719	SIAH3	0.036	3026495	AKR1D1	0.037
2985342	C6orf54	0.035	3873744	TGM3	0.036	3391724	TMPRSS5	0.036	3506936	MTIF3	0.037
3554315	INF2	0.035	3900833	FOXA2	0.036	3715460	PYY2	0.036	2708203	MAP6D1	0.037
3461105	IFNG	0.035	3886810	RBPJL	0.036	3223687	PHF19	0.036	2383639	PRSS38	0.037
2502686	MARCO	0.035	3017080	ARMC10	0.036	3592420	C15orf21	0.036	3263624	MXI1	0.037
3737697	BAIAP2	0.035	4054639	NOC2L	0.036	3635198	BCL2A1	0.037	3830825	C19orf55	0.037
3527722	RNASE2	0.035	3079336	FASTK	0.036	3914021	GMEB2	0.037	3515088	LECT1	0.037
3400730	CACNA1C	0.035	3807474	C18orf32	0.036	3874198	OXT	0.037	2685304	PROS1	0.037
3348990	TEX12	0.035	2754937	TLR3	0.036	3864107	PSG7	0.037	3656318	PRR14	0.037
2383524	ZNF678	0.035	2902884	SKIV2L	0.036	3953879	MGC16703	0.037	3436987		0.038
2547114	XDH	0.035	2932593	CLDN20	0.036	3994158	FMR1NB	0.037	3220740	C9orf84	0.038
4054690	HES4	0.035	2536965	FLJ38379	0.036	2934801	MAP3K4	0.037	2326774	SFN	0.038
2843855	ZFP2	0.035	2515471	DLX1	0.036	3268548	PSTK	0.037	3936009	IL17RA	0.038
2805939	RXFP3	0.035	2322848	PADI4	0.036	2755111	KLKB1	0.037	2875685	FSTL4	0.038
3729910	TBX4	0.035	2422967	GFI1	0.036	2503109	EPB41L5	0.037	2427688	C1orf103	0.038
3461883	PTPRR	0.035	3838004	PPP1R15A	0.036	4015693	TIMM8A	0.037	2638017	C3orf1	0.038
3441190	FGF6	0.035	3462567	KCNC2	0.036	2656598	AHSG	0.037	3330769	OR5D13	0.038
2577958	DARS	0.035	3882265	C20orf186	0.036	2905664	ZFAND3	0.037	3839718	CD33	0.038
2752006	SAP30	0.035	4026624	PNCK	0.036	2600881	PAX3	0.037	2343418	PTGFR	0.038
3660213	CYLD	0.035	3773742	SLC38A10	0.036	2577028	NCKAP5	0.037	2373511	CFHR5	0.038
3907514	NEURL2	0.035	2906824	FOXP4	0.036	2941546	C6orf218	0.037	3371003	TP53I11	0.038
3877892	PCSK2	0.035	3939875	SUSD2	0.036	3351931	HINFP	0.037	3292779	SLC25A16	0.038
3033127	HTR5A	0.035	3377569	SLC25A45	0.036	3540839		0.037	3779612	SLM01	0.038
3945314	KDELR3	0.035	3048212	MRPS24	0.036	3070658	NDUFA5	0.037	3662150	MT1M	0.038
2322598	CROCC	0.035	2899756	H2AFP	0.036	3806711	IER3IP1	0.037	3376155	NXF1	0.038
3581221	AHNAK2	0.035	3807261	SMAD7	0.036	3837934	FUT2	0.037	3971451	PHEX	0.038
3471769	TMEM116	0.035	3727583	HLF	0.036	3549605	PPP4R4	0.037	3332663	CD6	0.038
3376193	STX5	0.035	2443952	MYOC	0.036	3221571	RNF183	0.037	3450775	KIF21A	0.038
3121751	CSMD1	0.035	2336809	DMRTB1	0.036	3934642	KAP12-1	0.037	3674659	GAS8	0.038
3863723	CEACAM8	0.036	3360277	OR52R1	0.036	3186191	ATP6V1G1	0.037	2982524	SLC22A2	0.038
3995035	PASD1	0.036	3821937	MAST1	0.036	2395418		0.037	3456840	PPP1R1A	0.038

Tuble D					utively op	need hist	(ii 0)100) [runten p	vulue (u	ie spiteing)	
2440413	ITLN1	0.038	2528645	ACCN4	0.040	3471753	C12orf47	0.041	3611684	LRRK1	0.043
3335697	CTSW	0.038	3603295	CRABP1	0.040	3752424	C17orf79	0.041	2852712	SLC45A2	0.043
3810413	RAX	0.038	3602634	ISL2	0.040	3351975	ABCG4	0.041	2831897	TMCO6	0.043
4002394	SMPX	0.038	2577644	YSK4	0.040	3004768	ZNF273	0.041	3661645	IRX6	0.043
2889753	ZNF354A	0.038	3537030	RPL13AP3	0.040	3333572	C11orf83	0.041	2649182	LEKR1	0.043
3041294	FAM126A	0.038	3807809	CXXC1	0.040	3373392	OR8H1	0.041	3398145	PRDM10	0.043
2911303	ZNF451	0.039	2334319	TOE1	0.040	3502475	PROZ	0.041	3736204	C17orf99	0.043
3846214	DOHH	0.039	3044938	RP9P	0.040	3712922	C17orf39	0.041	3815936	REEP6	0.043
3749432	RNFT1	0.039	3675205	C16orf13	0.040	2766492	C4orf34	0.041	3664924	CA7	0.043
3507134	CDX2	0.039	2410574	LRRC41	0.040	3461795	PTPRB	0.041	3543355	DCAF4	0.043
3349719	ZBTB16	0.039	2916307	C6orf165	0.040	3549517	OTUB2	0.041	3559936	C14orf128	0.043
2624639	CACNA2D3	0.039	3321592	CALCB	0.040	3765642	INTS2	0.041	3318329	OR51M1	0.043
2551284	UNQ6975	0.039	2638869	CSTA	0.040	2500875	CHCHD5	0.041	3210497	PRUNE2	0.043
3425108	C12orf29	0.039	2416218	ITGB3BP	0.040	3357346	GLB1L3	0.042	2790999	ACCN5	0.043
2521556	MARS2	0.039	3837707	ZNF114	0.040	3969802	BMX	0.042	3074362	CNOT4	0.043
3288707	ERCC6	0.039	3533435	PNN	0.040	2926447	TCF21	0.042	3341539	KCTD21	0.043
2561182	REG1B	0.039	3145509	GDF6	0.040	3315584	NLRP6	0.042	2315739	PUSL1	0.043
3377826	RNASEH2C	0.039	2379314	VASH2	0.040	2501204	IL1RN	0.042	2617659	SLC22A14	0.043
3650861	SYT17	0.039	3097580	C8orf22	0.040	2326237	EXTL1	0.042	2877257	BRD8	0.043
3551485	EML1	0.039	3371660	HARBI1	0.041	3379269	UNC93B1	0.042	3159483	KANK1	0.043
3190151	SLC25A25	0.039	2453370	PLXNA2	0.041	3638068	DET1	0.042	3654699	NUPR1	0.043
3362159	NRIP3	0.039	3191113	PRRX2	0.041	3673661	FAM38A	0.042	3059258	PCLO	0.043
3836057	LRRC68	0.039	3352130	RNF26	0.041	3450180	YARS2	0.042	2829864	SLC25A48	0.043
2394699	TNFRSF25	0.039	3644887	TBC1D24	0.041	2437645	GON4L	0.042	3250602	H2AFY2	0.043
3589570	EIF2AK4	0.039	2358646	BNIPL	0.041	2359646	LOR	0.042	3165780	IFT74	0.043
2514745	MY03B	0.039	3551935	WDR25	0.041	3039177	ETV1	0.042	2453065	C1orf116	0.043
3708938	ATP1B2	0.039	3865635	DMPK	0.041	3164181	RRAGA	0.042	3318329	OR51M1	0.043
3970476	SCML1	0.039	2491572	SH2D6	0.041	2493813	ZNF2	0.042	3210497	PRUNE2	0.043
3680130	DEXI	0.039	3845439	ATP8B3	0.041	3159330	DOCK8	0.042	2790999	ACCN5	0.043
2548699	CYP1B1	0.039	3490433	CCDC70	0.041	2360677	EFNA1	0.042	3074362	CNOT4	0.043
3749767	TMEM11	0.039	3445741	MGP	0.041	3980614	GDPD2	0.042	3341539	KCTD21	0.043
2671936	SLC6A20	0.040	2773997	NUP54	0.041	3829471	KCTD15	0.042	2315739	PUSL1	0.043
3455692	KRT2	0.040	2330687	ZC3H12A	0.041	2918388	POU3F2	0.043	2617659	SLC22A14	0.043

14510 2		/ _ 11010						P P	l'ana (a		
2877257	BRD8	0.043	3630378		0.044	3283613	ZNF438	0.044	3830649	COX6B1	0.045
3159483	KANK1	0.043	2521997	C2orf69	0.044	3917555	KAP13-4	0.044	3606034	PDE8A	0.045
3654699	NUPR1	0.043	3355860	KCNJ5	0.044	2954324	MEA1	0.045	3996467	PLXNA3	0.045
3059258	PCLO	0.043	3358425	LRDD	0.044	2906934	PRICKLE4	0.045	3256669	CFLP1	0.045
2829864	SLC25A48	0.043	2326327	CNKSR1	0.044	3042994	HOXA13	0.045	3330943	OR8K1	0.045
3250602	H2AFY2	0.043	3559570	HECTD1	0.044	2607055	PASK	0.045	3938792	VPREB1	0.046
3165780	IFT74	0.043	2436526	TPM3	0.044	3830649	COX6B1	0.045	3759587	PLCD3	0.046
2453065	C1orf116	0.043	3540398	FNTB	0.044	3606034	PDE8A	0.045	3095114	ADAM5P	0.046
3283613	ZNF438	0.044	3734903	LLGL2	0.044	3996467	PLXNA3	0.045	2958325	DST	0.046
3917555	KAP13-4	0.044	3577545	IFI27L2	0.044	3834046	AXL	0.045	2966496	MCHR2	0.046
3816686	ZNF556	0.044	3642390	TARSL2	0.044	3490892	OLFM4	0.045	2401581	GALE	0.046
2988536	WIPI2	0.044	3308560	VAX1	0.044	3750685	SLC46A1	0.045	3260265	CNNM1	0.046
3186324	DEC1	0.044	3740704	SMYD4	0.044	2883541	SOX30	0.045	2695453	CPNE4	0.046
3451708	TWF1	0.044	3911485	APCDD1L	0.044	2620985	TMIE	0.045	3250806	ADAMTS14	0.046
2986906	GET4	0.044	3302693	LOXL4	0.044	3664664	CDH5	0.045	3413852	PRPH	0.046
3630378		0.044	2827772	ADAMTS19	0.044	3932917	PLAC4	0.045	2834579	SPINK6	0.046
2521997	C2orf69	0.044	3679564	USP7	0.044	3339423	INPPL1	0.045	3751625	SSH2	0.046
3355860	KCNJ5	0.044	3830925	KIRREL2	0.044	3214451	NFIL3	0.045	3128372	KCTD9	0.046
3358425	LRDD	0.044	2676471	TMEM110	0.044	3373411	OR5R1	0.045	2603844	ECEL1	0.046
2326327	CNKSR1	0.044	2817291	JMY	0.044	3834046	AXL	0.045	2317686	AJAP1	0.046
3559570	HECTD1	0.044	2825514	DMXL1	0.044	3490892	OLFM4	0.045	3403841	RIMKLB	0.046
2436526	TPM3	0.044	4015884	ARMCX2	0.044	3750685	SLC46A1	0.045	3737677		0.046
3540398	FNTB	0.044	2791197	PDGFC	0.044	2883541	SOX30	0.045	3318639	CCKBR	0.046
3734903	LLGL2	0.044	3816686	ZNF556	0.044	2620985	TMIE	0.045	2656627	FETUB	0.046
3577545	IFI27L2	0.044	2988536	WIPI2	0.044	3664664	CDH5	0.045	4046481	ING5	0.046
3642390	TARSL2	0.044	3186324	DEC1	0.044	3932917	PLAC4	0.045	2611504	HDAC11	0.046
3679564	USP7	0.044	3451708	TWF1	0.044	3339423	INPPL1	0.045	3871142	C19orf51	0.046
3830925	KIRREL2	0.044	2986906	GET4	0.044	3214451	NFIL3	0.045	2435323	THEM5	0.046
2676471	TMEM110	0.044	3308560	VAX1	0.044	3373411	OR5R1	0.045	3064024	C7orf61	0.046
2817291	JMY	0.044	3740704	SMYD4	0.044	2954324	MEA1	0.045	3852735	PTGER1	0.047
2825514	DMXL1	0.044	3911485	APCDD1L	0.044	2906934	PRICKLE4	0.045	3658925	ORC6	0.047
4015884	ARMCX2	0.044	3302693	LOXL4	0.044	3042994	HOXA13	0.045	3042063	NPVF	0.047
2791197	PDGFC	0.044	2827772	ADAMTS19	0.044	2607055	PASK	0.045	2642441	NEK11	0.047

Table D	12. NUIIC/UI	Ar / 2-Acia	ieu_JALJ	VGUIAICEI	natively Spi	liceu List	(II=3,103)		-value (a	ne sphengj	_0.03]
3437780	FZD10	0.047	3065684	SLC26A5	0.047	2385146	TRIM67	0.048	3067592	PNPLA8	0.049
3815610	ATP5D	0.047	2351465	PROK1	0.047	3194613	TMEM141	0.048	2545007	KIF3C	0.049
3174816	ANXA1	0.047	2675315	CACNA2D2	0.048	3449008	OVCH1	0.048	3133233	PLAT	0.049
3902081	ZNF337	0.047	2661992	OXTR	0.048	3552083	DLK1	0.048	4054481	GABRD	0.049
3379091	ALDH3B2	0.047	3566176	OTX2	0.048	3148463	ANGPT1	0.048	3945781	SYNGR1	0.049
3552847	DYNC1H1	0.047	3945006	H1F0	0.048	3857171	ZNF675	0.048	2467855	SOX11	0.049
3614012		0.047	3262535	GSTO2	0.048	3105467	E2F5	0.048	3393704	MPZL3	0.049
3581090	TMEM179	0.047	3688362	COX6A2	0.048	3849117	ADAMTS10	0.048	2599798	IHH	0.049
3959953	TMPRSS6	0.047	2426840	WDR47	0.048	2615360	TGFBR2	0.048	3691193	SNX20	0.049
2317434	TPRG1L	0.047	3382216	ARRB1	0.048	2353749	CD101	0.048	3120653	GPT	0.049
3854836	KIAA1683	0.047	3977646	GSPT2	0.048	2448073	IVNS1ABP	0.049	2730281	ODAM	0.049
2652217		0.047	2702724	LXN	0.048	2460551	EGLN1	0.049	3416483	HNRNPA1	0.049
2562729	REEP1	0.047	2919399	LIN28B	0.048	2518743	NUP35	0.049	3576411	GPR68	0.049
3576284	RPS6KA5	0.047	2715580	SH3BP2	0.048	3625391	DYX1C1	0.049			

Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value
3718555	SLFN5	Û	2.49	5.10E-03	2423175	FAM69A	Û	1.65	0.034	2734047	AGPAT9	Û	1.48	0.045
2548699	CYP1B1	Û	2.30	0.042	3507282	FLT1	仓	1.65	0.026	2459173	PR02012	Û	1.48	0.029
2940202	F13A1	Û	2.21	0.020	3945314	KDELR3	Û	1.65	0.011	3838094	FTL	Û	1.47	0.048
2940145	NRN1	Û	2.17	0.022	2378068	G0S2	Û	1.63	0.019	2522094	SPATS2L	仓	1.47	0.028
3174510	GDA	얍	2.13	1.87E-03	3494137	LM07	仓	1.62	1.09E-03	3018866	DNAJB9	Û	1.47	0.033
2678298	DNASE1L3	Û	2.08	9.05E-03	3496409	GPC5	仓	1.61	0.011	3309602	RGS10	Û	1.47	0.018
2738378	NPNT	Û	1.97	0.045	3065244	RASA4	Û	1.60	0.010	2582124	NR4A2	Û	1.47	1.25E-03
3445908	EPS8	Û	1.95	0.015	3020496	ST7	Û	1.60	7.63E-04	3663074	MMP15	仓	1.46	9.89E-03
3409605	FAR2	얍	1.93	5.93E-03	3403841	RIMKLB	仓	1.60	0.041	3925639	NRIP1	Û	1.46	0.031
3560403	EGLN3	얍	1.91	1.52E-03	3273667	ADARB2	仓	1.59	4.10E-03	2375212	PPP1R12B	Û	1.46	1.86E-03
2902707	HSPA1A	Û	1.91	2.29E-04	3969946	ZRSR2	仓	1.59	1.56E-03	3316344	CD151	Û	1.46	0.010
3141755	HEY1	얍	1.89	0.013	2902725	HSPA1B	Û	1.58	2.16E-03	3958658	LARGE	Û	1.46	0.015
2523801	CD28	Û	1.88	0.021	3450899	SLC2A13	仓	1.58	1.60E-03	3215146	NINJ1	Û	1.46	0.038
3972929	GK	Û	1.84	3.19E-04	3856646	ZNF208	仓	1.58	0.024	3202316	MOBKL2B	仓	1.46	0.012
2665199	SATB1	Û	1.81	0.049	2761837	FGFBP2	Û	1.56	9.43E-03	2877939	DNAJC18	Û	1.46	9.36E-03
2399743	AKR7A3	Û	1.79	4.55E-03	2474240	KHK	Û	1.55	0.033	2950145	HLA-DOB	Û	1.46	0.027
3566383	C14orf105	Û	1.78	0.049	3540552	FUT8	Û	1.54	0.027	2471978	RHOB	仓	1.45	0.022
3382216	ARRB1	Û	1.77	0.040	3705151	DBNDD1	仓	1.54	0.024	2363248	LY9	Û	1.45	0.031
3214451	NFIL3	Û	1.76	2.01E-03	3447863	KRAS	仓	1.54	3.00E-05	2902574	LY6G5B	Û	1.45	3.43E-03
3449068	TMTC1	Û	1.75	0.018	3263944	PDCD4	仓	1.53	6.53E-04	2469910	LPIN1	Û	1.45	2.99E-03
2816459	F2R	Û	1.72	0.019	3623031	FBN1	仓	1.53	0.023	3434490	CABP1	Û	1.45	1.50E-03
2452691	SLC41A1	Û	1.70	1.34E-03	3141589	IL7	仓	1.52	0.016	3507798	UBL3	Û	1.45	1.47E-03
2781138	LEF1	Û	1.69	0.020	3703885	SLC7A5	Û	1.52	7.95E-03	3945545	APOBEC3B	Û	1.45	0.023
2664209	SH3BP5	Û	1.68	7.17E-03	3944129	HMOX1	Û	1.51	0.017	3824993	GDF15	Û	1.45	0.042
2973376	PTPRK	Û	1.68	0.040	3841621	LILRB4	Û	1.51	0.034	3216276	SLC35D2	Û	1.45	8.79E-03
2400518	ECE1	Û	1.67	0.015	2768981	SGCB	Û	1.51	0.049	2820865	ARSK	Û	1.45	0.021
2362333	MNDA	Û	1.67	0.022	3892812	SLCO4A1	Û	1.50	9.17E-04	2324634	CDC42	Û	1.44	6.43E-03
3369249	APIP	Û	1.66	0.025	3385175	PICALM	仓	1.50	0.018	3208355	CBWD3	Û	1.44	0.032
2626097	ABHD6	Û	1.65	2.18E-03	2845274	CCDC127	Û	1.49	1.92E-03	3257204	IFIT3	仓	1.44	0.023
3896078	SLC23A2	Û	1.65	0.016	3887210	MMP9	仓	1.49	0.026	3936442	PEX26	仓	1.44	7.27E-04
3797295	L3MBTL4	Û	1.65	2.51E-03	2957227	TRAM2	Û	1.48	0.030	4005859	CASK	仓	1.44	0.014

Table B13: C9-LongvShort Gene List (n=628) ALL SAMPLES COMBINED [Partek[®] unadjusted p<0.05, FC $\ge \pm 1.20$]

3876645	BTBD3	仓	1.44	0.022	2604390	ARL4C	Û	1.40	0.011	2500919	SLC20A1	Û	1.37	0.028
3851072	ACP5	Û	1.44	0.015	3761632	SNF8	Û	1.40	2.35E-03	3434393	DYNLL1	仓	1.36	9.68E-03
4035833	CD24	Û	1.43	0.038	3969422	RAB9A	Û	1.40	4.33E-03	3204243	SIGMAR1	Û	1.36	0.044
3409211	PPFIBP1	Û	1.43	0.015	3409127	ARNTL2	Û	1.40	2.19E-03	3981735	NCRNA00183	仓	1.36	0.012
3727712	РСТР	仓	1.43	0.010	3447694	BCAT1	Û	1.40	0.032	3397589	ETS1	仓	1.36	1.50E-03
2775909	PLAC8	仓	1.43	7.86E-03	2948169	HCG8	Û	1.40	7.97E-03	3594031	TMOD2	仓	1.36	0.018
3055608	TYW1B	Û	1.43	0.015	2932508	TIAM2	Û	1.39	0.024	3293537	PCBD1	仓	1.36	0.016
2990342	TMEM106B	Û	1.43	0.029	3464967	GALNT4	Û	1.39	3.48E-05	3517793	KLF12	仓	1.36	3.20E-03
3103523	LY96	Û	1.43	0.011	3167383	NUDT2	Û	1.39	9.11E-03	2330773	CDCA8	Û	1.36	0.015
3101153	BHLHE22	仓	1.43	0.039	2320727	TNFRSF1B	Û	1.39	4.13E-03	2841699	CPEB4	Û	1.36	5.10E-03
2638988	PARP15	Û	1.43	0.047	2877893	MGC29506	Û	1.39	0.044	3791482	PHLPP1	仓	1.36	0.041
2970897	FRK	Û	1.42	3.99E-03	2764192	SEL1L3	Û	1.39	0.042	2714376	TMEM175	Û	1.36	0.022
2437247	GBA	Û	1.42	0.046	3450655	CPNE8	Û	1.39	0.010	2997376	ANLN	Û	1.36	8.35E-03
2361342	SEMA4A	Û	1.42	3.30E-03	3149528	TRPS1	Û	1.39	0.031	3645836	ZNF75A	仓	1.36	9.21E-03
2327677	EPB41	Û	1.42	6.09E-03	2351004	GSTM5	Û	1.39	9.83E-03	3577246	MOAP1	仓	1.36	0.011
3893849	PRPF6	Û	1.42	4.30E-03	2888879	DOK3	Û	1.38	1.57E-04	2360633	EFNA4	Û	1.36	0.025
3466284	NDUFA12	仓	1.41	1.48E-04	3812385	CD226	Û	1.38	7.26E-03	2780172	CENPE	Û	1.35	0.014
3900091	RALGAPA2	Û	1.41	0.015	3375091	SLC15A3	Û	1.37	0.026	2621583	ZNF589	Û	1.35	0.011
3916527	JAM2	Û	1.41	0.011	3382061	XRRA1	Û	1.37	0.047	3927081	NCRNA00158	仓	1.35	0.017
2420467	CTBS	Û	1.41	0.016	2902178	TCF19	Û	1.37	7.96E-03	2331679	MFSD2A	Û	1.35	3.48E-03
3624145	DMXL2	Û	1.41	1.27E-03	2866590	LYSMD3	Û	1.37	0.012	3390641	ARHGAP20	仓	1.35	3.77E-03
3166844	CHMP5	Û	1.41	0.036	3132940	ANK1	Û	1.37	0.049	3004768	ZNF273	Û	1.35	0.025
2626167	РХК	Û	1.41	8.78E-03	2425118	SASS6	Û	1.37	9.10E-04	2601414	SERPINE2	Û	1.35	0.012
2454661	TMEM206	Û	1.41	8.47E-03	2371346	RGL1	Û	1.37	0.035	2360989	MST01	Û	1.35	3.63E-03
3081525	C7orf13	Û	1.41	0.030	2452977	FAIM3	Û	1.37	0.012	3540353	CHURC1	Û	1.35	9.26E-03
3005684	KCTD7	Û	1.41	7.87E-04	3089360	SLC39A14	Û	1.37	0.044	2492496	NCRNA00152	Û	1.35	0.020
3023883	CPA4	Û	1.41	0.033	2603320	GPR55	Û	1.37	0.048	2830638	KIF20A	Û	1.35	0.010
3845352	UQCR11	Û	1.41	4.96E-03	3242425	CCNY	Û	1.37	2.03E-03	2446198	TOR1AIP2	Û	1.35	1.58E-04
3175119	OSTF1	Û	1.40	8.46E-03	2892277	NQO2	Û	1.37	1.93E-03	3824666	KCNN1	Û	1.35	0.012
3538213	DAAM1	Û	1.40	0.041	3994451	CXorf40A	Û	1.37	3.29E-03	2914777	ТТК	Û	1.34	5.24E-03
2766492	C4orf34	Û	1.40	0.041	3344861	C11orf54	Û	1.37	3.95E-03	2957462	GSTA4	Û	1.34	7.95E-03
2604254	HJURP	Û	1.40	2.28E-03	3460584	LLPH	Û	1.37	6.02E-03	3177111	NTRK2	仓	1.34	6.03E-03

2829562	TXNDC15	Û	1.34	6.58E-03	3860101	NFKBID	Û	1.32	0.021	3882949	DYNLRB1	仓	1.30	3.62E-03
3824212	DDA1	Û	1.34	0.021	3403077	C12orf57	仓	1.32	3.61E-03	3666649	VPS4A	Û	1.30	3.22E-03
3518169	COMMD6	Û	1.34	4.11E-03	3706659	ASPA	仓	1.32	0.013	2676182	NT5DC2	Û	1.30	0.018
2413423	TMEM48	Û	1.34	0.030	2436826	KCNN3	Û	1.31	0.011	3494102	UCHL3	Û	1.30	6.78E-03
2841491	C5orf41	Û	1.34	0.043	3827218	RPSAP58	仓	1.31	0.031	3485292	NBEA	Û	1.29	0.031
2571457	CKAP2L	Û	1.34	1.30E-03	3706651	OR3A3	Û	1.31	9.19E-03	2946845	ZNF204P	Û	1.29	3.94E-03
2442698	CREG1	Û	1.34	0.026	3111695	EBAG9	Û	1.31	2.33E-03	3426257	SOCS2	仓	1.29	0.010
3441941	VAMP1	Û	1.33	0.027	3978169	TSPYL2	Û	1.31	8.45E-03	2444842	KIAA0040	Û	1.29	0.039
2838656	HMMR	Û	1.33	0.039	2639225	PDIA5	Û	1.31	0.032	2402431	PAQR7	Û	1.29	0.032
3332615	TMEM109	Û	1.33	0.044	2820893	RFESD	Û	1.31	0.016	3726498	MYCBPAP	Û	1.29	0.024
2336302	ZFYVE9	仓	1.33	8.56E-04	2411799	BEND5	仓	1.31	2.84E-03	3066818	NAMPT	Û	1.29	0.025
3462843	NAP1L1	兌	1.33	0.031	3892452	LSM14B	仓	1.31	0.046	2579572	ZEB2	Û	1.29	0.032
2638789	CD86	Û	1.33	0.048	3820370	P2RY11	Û	1.31	0.047	3894098	C20orf96	Û	1.29	5.77E-04
3139580	SLC05A1	仓	1.33	0.027	3332886	TMEM138	Û	1.31	0.026	3353914	VWA5A	Û	1.29	0.011
3712041	UBB	仓	1.33	0.011	3451264	YAF2	仓	1.31	5.03E-03	3611049	LRRC28	兌	1.29	4.86E-03
2925724	AKAP7	仓	1.33	5.53E-03	2317317	TP73	Û	1.31	0.033	3067592	PNPLA8	Û	1.29	0.036
3476330	CCDC92	仓	1.33	0.029	2411228	STIL	Û	1.31	0.020	2681157	TMF1	Û	1.29	1.30E-03
3413950	SPATS2	仓	1.33	9.23E-04	2899413	BTN3A3	Û	1.31	5.82E-03	2494484	NCAPH	Û	1.29	0.019
2612401	BTD	Û	1.33	0.019	2515050	GORASP2	Û	1.31	0.014	2757319	SLBP	Û	1.29	0.028
2956438	MUT	Û	1.33	6.14E-03	3072435	TMEM209	Û	1.31	0.026	2437401	FDPS	Û	1.29	2.74E-03
2334098	KIF2C	Û	1.32	9.72E-03	3427014	SNRPF	얍	1.31	0.043	4003895	CXorf21	兌	1.29	0.042
3513995	DLEU2	仓	1.32	0.031	3435980	TCTN2	Û	1.30	0.046	3487432	DNAJC15	Û	1.29	0.036
3016636	SH2B2	Û	1.32	0.024	2950277	HLA-DMA	Û	1.30	0.047	3382698	GUCY2E	Û	1.29	0.014
3869954	ZNF321	仓	1.32	0.017	2749560	ETFDH	Û	1.30	0.020	3807595	MY05B	兌	1.29	0.014
2835792	GM2A	Û	1.32	8.90E-03	3584728	SNRPN	얍	1.30	0.017	2375664	BTG2	Û	1.29	0.029
3774096	PDE6G	仓	1.32	7.04E-03	3254488	C10orf58	Û	1.30	0.045	3753538	SLFN12	Û	1.29	0.013
3936550	USP18	仓	1.32	0.028	3272205	INPP5A	仓	1.30	0.020	3705412	C17orf97	兌	1.29	1.09E-03
2495446	INPP4A	Û	1.32	0.017	2949801	AGPAT1	Û	1.30	3.58E-03	3846742	SH3GL1	兌	1.29	0.011
3147020	ZNF706	仓	1.32	0.027	3726406	ACSF2	Û	1.30	0.022	2955061	SLC35B2	Û	1.29	0.041
3142932	C8orf59	Û	1.32	2.16E-03	4002148	EIF1AX	仓	1.30	0.015	2610241	FANCD2	Û	1.29	0.015
3417457	MYL6	仓	1.32	0.016	3870135	ZNF347	仓	1.30	0.023	2690850	TMEM39A	Û	1.29	0.036
4005627	CXorf38	仓	1.32	0.030	3825013	SSBP4	仓	1.30	0.035	2902207	HCG27	Û	1.29	0.018

3005956	C7orf42	Û	1.28	2.20E-03	2690900	CD80	Û	1.27	0.020	3829768	UBA2	仓	1.26	7.29E-03
2784113	CCNA2	Û	1.28	0.013	2367843	DARS2	Û	1.27	0.014	3840224	ZNF528	仓	1.26	0.046
3670700	BCM01	Û	1.28	0.031	2487549	MXD1	Û	1.27	0.035	3633699	NRG4	仓	1.26	0.049
2949471	NEU1	Û	1.28	9.42E-03	3571542	PNMA1	Û	1.27	6.05E-04	2608765	ARL8B	Û	1.26	2.95E-03
3058156	TMEM60	Û	1.28	0.015	3283920	ARHGAP12	Û	1.27	2.94E-03	3725083	SNX11	Û	1.26	0.021
3512050	CCDC122	Û	1.28	0.010	3088213	SH2D4A	Û	1.27	0.022	2546008	SUPT7L	Û	1.26	3.01E-03
2940551	SSR1	Û	1.28	0.031	2599433	USP37	Û	1.27	4.63E-03	3665230	HSF4	Û	1.26	0.037
3244539	ZNF22	Û	1.28	0.032	3624273	LYSMD2	Û	1.27	0.017	3348189	FDX1	仓	1.26	1.78E-04
2379863	CENPF	Û	1.28	0.036	3120358	HSF1	Û	1.27	0.040	2645579	RASA2	Û	1.26	0.019
3998632	PNPLA4	Û	1.28	1.55E-04	2611848	SLC6A6	Û	1.27	0.026	3756344	SMARCE1	Û	1.26	5.22E-04
2435251	LINGO4	Û	1.28	0.040	2773348	PF4	Û	1.27	0.034	3521174	ABCC4	Û	1.26	0.032
2428796	PTPN22	Û	1.28	1.51E-03	3210179	C9orf95	Û	1.27	0.013	2909723	CENPQ	Û	1.26	0.017
2364438	NUF2	Û	1.28	0.011	3406421	STRAP	Û	1.27	5.70E-03	3227454	QRFP	Û	1.26	0.036
3609592	MCTP2	Û	1.28	0.016	2673547	SLC26A6	Û	1.27	5.17E-03	3750685	SLC46A1	Û	1.26	0.010
3486728	SLC25A15	Û	1.28	9.00E-03	4000132	TRAPPC2	Û	1.27	0.011	2816298	IQGAP2	Û	1.26	0.046
2475407	CLIP4	Û	1.28	0.011	2570616	BUB1	Û	1.27	0.018	3053691	GUSB	Û	1.26	0.016
3101385	MTFR1	Û	1.28	0.025	2366184	TBX19	Û	1.27	4.17E-03	3832292	KCNK6	Û	1.26	9.77E-03
3168700	ZCCHC7	Û	1.28	5.84E-03	3830216	FXYD5	Û	1.27	0.048	3693511	C16orf80	Û	1.26	0.014
2716655	MSX1	Û	1.28	0.022	3383227	GAB2	Û	1.27	0.041	3710870	ARHGAP44	Û	1.25	0.043
3126504	CSGALNACT1	Û	1.28	0.038	3191338	GPR107	Û	1.27	0.013	2872471	DTWD2	Û	1.25	0.021
3373487	OR5M1	Û	1.28	3.63E-03	3869714	ZNF611	Û	1.27	8.48E-03	3341440	RN28S1	Û	1.25	0.047
2608419	SETMAR	Û	1.28	0.013	3289235	SGMS1	Û	1.27	0.024	4009288	HSD17B10	Û	1.25	0.037
3656760	STX4	Û	1.28	3.83E-03	2384562	RAB4A	Û	1.27	0.024	3914286	SOX18	Û	1.25	0.045
2499158	RANBP2	Û	1.27	4.30E-03	3945376	TOMM22	Û	1.27	0.013	2633587	TBC1D23	Û	1.25	0.016
3740432	SCARF1	Û	1.27	0.026	2908179	VEGFA	Û	1.27	0.047	2639309	SEC22A	Û	1.25	0.017
2862380	ANKRA2	Û	1.27	0.014	2708407	ALG3	Û	1.27	0.015	3490251	WDFY2	Û	1.25	2.41E-03
3421762	RAB3IP	Û	1.27	3.33E-03	2522509	NIF3L1	Û	1.26	1.86E-03	3010082	PHTF2	Û	1.25	0.019
3454680	TFCP2	Û	1.27	1.24E-03	2482230	ERLEC1	Û	1.26	0.042	3756856	KRTAP17-1	Û	1.25	0.036
4027532	GAB3	Û	1.27	0.011	2390976	NCRNA00115	Û	1.26	0.041	2913594	MT01	Û	1.25	4.97E-03
3421706	RAB3IP	Û	1.27	3.39E-03	3470964	GLTP	Û	1.26	0.015	3782166	IMPACT	Û	1.25	0.038
2722377	STIM2	Û	1.27	0.028	2486927	ARHGAP25	Û	1.26	0.036	2988882	AIMP2	Û	1.25	0.045
3406493	DERA	Û	1.27	0.027	2620538	LARS2	Û	1.26	0.041	2815965	HMGCR	Û	1.25	0.026

2829416	SEC24A	Û	1.25	0.014	3978706	PAGE5	Û	1.24	0.039	3781124	MIB1	仓	1.23	2.96E-03
3708826	EIF4A1	Û	1.25	0.047	3978819	RRAGB	仓	1.24	0.013	3851441	ZNF442	Û	1.23	0.022
3868905	CTU1	Û	1.25	0.033	3037385	KDELR2	Û	1.24	0.034	3948590	RIBC2	Û	1.23	6.13E-03
2712906	RNF168	Û	1.25	0.026	2841184	ERGIC1	Û	1.24	0.011	3911814	SLMO2	Û	1.23	0.021
2694397	RPN1	Û	1.25	0.017	3514849	NEK3	仓	1.24	0.026	2360158	HAX1	Û	1.23	0.040
2478748	EML4	Û	1.25	0.043	2436228	GATAD2B	Û	1.24	2.41E-05	2316245	PRKCZ	Û	1.23	0.032
3439063	ZNF26	Û	1.25	4.42E-03	3828162	C19orf2	仓	1.24	4.12E-03	3890109	C20orf108	Û	1.23	7.28E-03
2782292	C4orf21	Û	1.25	0.039	3707481	ZFP3	仓	1.24	0.030	2883609	CLINT1	Û	1.23	0.037
3186207	C9orf91	Û	1.25	0.041	3822805	TECR	Û	1.24	0.023	3535780	PTGER2	Û	1.23	0.032
3335070	CDC42EP2	Û	1.25	0.011	2974188	MED23	Û	1.24	4.06E-03	3017795	RINT1	Û	1.23	0.027
3471264	VPS29	Û	1.25	0.035	2456746	EPRS	Û	1.24	3.55E-03	3078656	ZNF767	Û	1.23	0.047
3082824	CLN8	Û	1.25	6.03E-03	2623515	ALAS1	Û	1.24	4.96E-03	3488942	NUDT15	Û	1.23	0.015
2559494	C2orf7	Û	1.25	0.049	3042603	KIAA0087	仓	1.24	8.01E-03	2708817	TMEM41A	Û	1.23	0.039
2651782	SEC62	Û	1.25	0.047	3099561	T1560	仓	1.24	0.042	3859622	ZNF792	Û	1.23	5.87E-03
3048778	TMED4	Û	1.25	8.52E-03	2750594	SC4MOL	Û	1.24	0.046	3489481	PHF11	Û	1.23	7.69E-03
2687739	CD47	Û	1.25	0.024	3670918	PLCG2	Û	1.24	0.030	3499585	BIVM	Û	1.23	5.27E-03
3540862	GPHN	Û	1.25	5.28E-03	3854954	LRRC25	Û	1.24	0.026	3969455	OFD1	Û	1.23	0.031
3181193	TDRD7	Û	1.25	7.08E-03	2949210	BAT4	Û	1.24	0.012	2353773	TTF2	Û	1.23	0.044
2652675	ECT2	Û	1.25	0.029	2353881	MAN1A2	Û	1.24	0.042	2678367	PDHB	Û	1.23	0.017
2738146	TET2	Û	1.25	4.34E-03	3490741	SUGT1	仓	1.24	0.039	3428088	ACTR6	Û	1.23	0.029
3089740	RHOBTB2	Û	1.25	0.013	2962767	PGM3	Û	1.24	0.049	2356181	RBM8A	Û	1.23	0.017
3697563	FTSJD1	仓	1.25	0.011	3347549	CUL5	仓	1.24	1.01E-03	3040073	SNX13	Û	1.23	0.022
3531479	ARHGAP5	Û	1.25	0.038	2813414	CCNB1	Û	1.24	0.044	3319613	RPL27A	Û	1.23	2.92E-03
3407926	CMAS	仓	1.24	0.027	2984655	RPS6KA2	仓	1.24	0.046	2772968	COX18	Û	1.23	0.018
3845647	MKNK2	Û	1.24	0.010	2608469	ITPR1	Û	1.24	9.91E-03	2617041	GOLGA4	Û	1.23	0.041
3713575	PRPSAP2	仓	1.24	0.037	2908423	SLC29A1	Û	1.24	0.026	2378180	C1orf107	Û	1.23	8.47E-03
3260666	HIF1AN	Û	1.24	7.75E-03	3846280	TBXA2R	仓	1.24	7.25E-03	3851150	ZNF433	Û	1.23	1.40E-03
3668898	ZFP1	Û	1.24	4.20E-03	3726375	EME1	Û	1.24	0.040	2879509	YIPF5	Û	1.23	0.026
2326410	CCDC21	Û	1.24	5.93E-03	3048869	H2AFV	Û	1.24	0.027	2735459	HERC3	Û	1.23	0.022
3726960	NME2	Û	1.24	0.015	2622359	RBM6	Û	1.23	0.031	3243078	ZNF33A	Û	1.23	0.010
2436338	CRTC2	Û	1.24	1.05E-04	3328214	ALKBH3	仓	1.23	0.020	2358171	PRPF3	Û	1.23	1.22E-04
2855443	LOC100132356	Û	1.24	0.016	2889698	CLK4	Û	1.23	0.033	2474322	C2orf28	Û	1.23	6.75E-03

3475324	TMEM120B	仓	1.23	0.037	2817291	JMY	Û	1.22	0.048	2336963	C1orf83	Û	1.21	0.039
2878368	APBB3	Û	1.23	5.72E-03	2711644	ATP13A3	Û	1.22	0.042	3869339	ZNF350	Û	1.21	5.58E-03
2731831	USO1	Û	1.23	0.026	3458911	CTDSP2	Û	1.22	0.037	3282268	ACBD5	Û	1.21	0.031
3464912	POC1B	Û	1.23	0.023	2342576	ACADM	Û	1.22	0.025	3843399	ZNF134	Û	1.21	0.031
2417528	DEPDC1	Û	1.23	0.044	3016692	PRKRIP1	Û	1.22	0.040	2954527	ZNF318	Û	1.21	0.025
2433209	PRKAB2	Û	1.23	0.036	3366519	FANCF	Û	1.22	0.032	2818454	XRCC4	Û	1.21	0.042
3903598	GGT7	Û	1.23	0.014	2862716	GFM2	Û	1.22	8.03E-03	3409364	KLHDC5	Û	1.21	9.71E-03
3840944	ZNF525	Û	1.23	0.044	4021341	ZDHHC9	Û	1.22	0.047	3730899	DDX42	兌	1.21	0.021
2899437	BTN2A1	Û	1.23	0.011	2524743	FASTKD2	Û	1.22	0.017	3870162	ZNF665	Û	1.21	5.37E-04
3334847	C11orf2	Û	1.22	9.22E-03	3989678	XIAP	Û	1.22	0.018	3602039	PPCDC	Û	1.21	0.011
3860491	ZNF260	Û	1.22	9.42E-03	2437307	SCAMP3	Û	1.22	0.048	2514441	PPIG	Û	1.21	2.66E-03
3412296	IRAK4	Û	1.22	0.026	3716337	CCDC55	Û	1.22	0.015	3664952	PDP2	Û	1.21	0.041
3209497	FAM108B1	Û	1.22	5.26E-03	2902348	MICB	Û	1.22	0.027	3497659	RAP2A	Û	1.21	0.038
3438027	RAN	Û	1.22	0.013	3734453	SLC9A3R1	Û	1.22	0.028	3763270	MMD	Û	1.21	0.031
2659521	LRRC33	Û	1.22	0.020	3079005	RARRES2	Û	1.22	6.94E-03	2759857	ACOX3	Û	1.21	5.62E-03
3803120	B4GALT6	Û	1.22	0.034	3361811	STK33	Û	1.22	0.025	2346863	RPL5	Û	1.21	0.043
3221633	HDHD3	Û	1.22	0.032	3439305	ZNF84	Û	1.22	5.61E-03	2466039	ZNF692	Û	1.21	9.61E-03
2456849	RAB3GAP2	Û	1.22	3.79E-03	2349863	NTNG1	Û	1.22	0.039	3625761	MNS1	Û	1.21	0.031
3282117	ANKRD26	Û	1.22	0.018	2542737	LAPTM4A	Û	1.22	0.018	2560122	MOGS	Û	1.21	0.046
2553730	MTIF2	Û	1.22	0.021	3750785	SPAG5	Û	1.22	0.020	3334501	PRDX5	Û	1.21	0.036
2451200	UBE2T	Û	1.22	0.022	4053534	ISG15	Û	1.22	0.041	3566304	EXOC5	Û	1.21	3.84E-03
2783316	SEC24D	Û	1.22	0.048	2814642	MCCC2	Û	1.22	0.022	2380991	IARS2	Û	1.21	0.033
3702689	ZDHHC7	Û	1.22	6.43E-03	2830010	SMAD5	Û	1.22	9.43E-03	3037142	PMS2	Û	1.21	8.60E-03
3064361	ACHE	Û	1.22	0.036	2708610	MAGEF1	Û	1.22	0.025	2596162	INO80D	Û	1.21	3.77E-03
2528620	GMPPA	Û	1.22	0.016	3859915	U2AF1L4	Û	1.22	0.035	3130211	PPP2CB	Û	1.21	0.044
2712632	TFRC	Û	1.22	0.011	3916576	GABPA	Û	1.22	3.64E-03	2604223	DNAJB3	仓	1.21	6.39E-03
3140640	STAU2	Û	1.22	0.022	3352813	TBCEL	Û	1.22	0.021	3119376	C8orf31	Û	1.21	0.023
2739242	GAR1	Û	1.22	0.035	3619595	FAM82A2	Û	1.21	0.024	3441011	PARP11	Û	1.21	0.016
3510858	FOX01	Û	1.22	0.048	2979056	NUP43	Û	1.21	0.024	2907018	TAF8	Û	1.21	0.015
3311715	UROS	Û	1.22	0.024	3761054	COPZ2	仓	1.21	2.99E-03	3956290	PITPNB	仓	1.21	4.35E-03
3595979	CCNB2	Û	1.22	0.025	3092663	WRN	Û	1.21	0.029	2363919	ATF6	Û	1.21	0.029
3453556	PRKAG1	Û	1.22	0.014	2437753	KIAA0907	Û	1.21	0.013	2911944	PHF3	Û	1.21	0.017

2694785	MBD4	Û	1.21	0.023	2588827	NFE2L2	Û	1.20	0.040	2693937	TPRA1	Û	1.20	8.58E-03
2577896	MCM6	Û	1.21	0.040	3428131	SCYL2	Û	1.20	0.034	3814063	MBP	仓	1.20	0.040
3860824	ZNF569	仓	1.21	2.35E-03	3929664	TMEM50B	Û	1.20	0.031	2835848	SLC36A1	Û	1.20	0.020
3766960	SMURF2	仓	1.21	0.036	3737647	CHMP6	仓	1.20	0.012	3890870	RAB22A	仓	1.20	0.015
3215701	FANCC	仓	1.21	0.032	2586989	DLX2	Û	1.20	4.61E-03	3433538	RNFT2	Û	1.20	0.028
3346548	BIRC3	仓	1.21	0.026	2531779	ARMC9	Û	1.20	0.028	3737140	GAA	Û	1.20	0.012
2369796	TOR1AIP1	Û	1.21	0.027	3088983	XPO7	Û	1.20	8.56E-03	3740171	CRK	仓	1.20	0.048
3489957	RNASEH2B	仓	1.21	8.01E-03	3212728	AGTPBP1	仓	1.20	0.014	2548776	ATL2	Û	1.20	0.045
3419641	SRGAP1	Û	1.21	5.66E-03	3164601	KIAA1797	Û	1.20	0.035	3081707	MNX1	仓	1.20	0.012
3602569	C15orf27	Û	1.20	6.61E-03	2786578	NDUFC1	仓	1.20	0.041	3432754	PLBD2	Û	1.20	0.044
2784131	BBS7	Û	1.20	0.034	3210130	C9orf41	Û	1.20	0.034	3636956	WDR73	仓	1.20	0.019
2541230	NBAS	Û	1.20	6.58E-03	2690776	B4GALT4	Û	1.20	9.35E-03	3738205	MRPL12	仓	1.20	0.038
3418298	KIF5A	Û	1.20	3.82E-03	2893847	SNRNP48	Û	1.20	0.027	2714230	PCGF3	Û	1.20	0.019
3261886	C10orf26	Û	1.20	0.048	3784509	ZNF271	仓	1.20	0.048	2900299	ZNF192	Û	1.20	0.010
3611126	MEF2A	①	1.20	4.73E-03	2801608	MARCH6	Û	1.20	7.71E-03	3860596	ZNF461	仓	1.20	6.97E-03
2437329	CLK2	Û	1.20	0.033	3614087	UBE3A	仓	1.20	0.014	3704896	CHMP1A	仓	1.20	3.48E-03
3739162	TBCD	Û	1.20	0.017	3465409	BTG1	Û	1.20	2.52E-03	3806913	SMAD2	仓	1.20	0.012
3710681	MAP2K4	Û	1.20	0.016	2619344	NKTR	Û	1.20	8.93E-03	3131844	LSM1	仓	1.20	0.033
3835280	ZNF221	仓	1.20	9.31E-03										

Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value
4048241	HLA-DRB5	Û	8.28	1.78E-03	2437247	GBA	Û	1.52	0.014	2408189	PPT1	Û	1.44	0.043
4048265	HLA-DRB1	Û	5.58	0.015	3797295	L3MBTL4	仓	1.51	9.05E-03	2899413	BTN3A3	Û	1.43	1.71E-04
3841621	LILRB4	Û	1.91	6.96E-04	3790479	SEC11C	Û	1.50	8.48E-03	3743734	C17orf61	仓	1.43	2.38E-03
2821347	ERAP2	얍	1.89	0.028	3507798	UBL3	仓	1.50	3.30E-04	2325192	RPL11	Û	1.43	8.87E-03
3369249	APIP	Û	1.77	8.99E-03	2505993	POTEKP	仓	1.50	5.07E-03	3927226	APP	Û	1.43	5.68E-03
2399743	AKR7A3	Û	1.75	4.50E-03	3761632	SNF8	仓	1.50	1.72E-04	3727712	PCTP	仓	1.43	8.20E-03
2913694	CD109	Û	1.73	5.45E-03	3550328	C14orf129	仓	1.50	8.83E-03	3913483	TCFL5	Û	1.43	0.027
2845274	CCDC127	Û	1.72	2.22E-05	2436826	KCNN3	Û	1.50	1.48E-04	2407478	FHL3	仓	1.43	0.013
2909020	ENPP4	Û	1.72	3.90E-03	3385175	PICALM	仓	1.50	0.015	2452691	SLC41A1	Û	1.43	0.023
2643592	EPHB1	Û	1.72	0.043	3053691	GUSB	Û	1.49	3.33E-05	3470964	GLTP	仓	1.42	2.05E-04
2678298	DNASE1L3	Û	1.70	0.045	3618736	RASGRP1	Û	1.49	0.044	3470523	SELPLG	Û	1.42	0.048
3142217	PAG1	Û	1.68	5.43E-03	3936442	PEX26	仓	1.49	1.48E-04	2447824	EDEM3	Û	1.42	0.014
3892812	SLCO4A1	Û	1.68	1.87E-05	3864551	PLAUR	Û	1.48	6.09E-03	3244539	ZNF22	仓	1.42	1.96E-03
2820865	ARSK	Û	1.67	1.05E-03	3824212	DDA1	仓	1.48	1.67E-03	2418929	PIGK	Û	1.42	0.039
2768981	SGCB	Û	1.64	0.015	3208355	CBWD3	仓	1.47	0.019	2514563	KLHL23	仓	1.42	0.013
3403841	RIMKLB	Û	1.62	0.029	3407793	PYROXD1	仓	1.47	2.67E-03	2319225	H6PD	Û	1.42	0.019
3856646	ZNF208	Û	1.61	0.014	4002148	EIF1AX	仓	1.47	2.60E-04	3428268	GAS2L3	Û	1.42	0.035
2671101	ANO10	Û	1.61	0.031	2454661	TMEM206	Û	1.47	2.14E-03	3035892	GNA12	Û	1.42	4.68E-03
3018866	DNAJB9	Û	1.60	7.21E-03	3375999	C11orf48	仓	1.46	6.47E-03	3435490	DENR	仓	1.42	2.16E-03
3916527	JAM2	Û	1.59	4.79E-04	2673547	SLC26A6	Û	1.46	8.96E-06	3434393	DYNLL1	仓	1.42	2.78E-03
3309602	RGS10	Û	1.57	3.97E-03	3202316	MOBKL2B	仓	1.46	8.38E-03	3770290	CD300LB	Û	1.41	4.57E-03
3166844	CHMP5	Û	1.57	4.57E-03	3476330	CCDC92	仓	1.46	2.89E-03	2877639	SIL1	Û	1.41	9.28E-03
3925639	NRIP1	Û	1.57	8.74E-03	2877893	MGC29506	Û	1.46	0.017	3656223	ITGAL	Û	1.41	0.033
3518086	TBC1D4	Û	1.55	0.010	2949256	BAT5	Û	1.46	4.08E-04	2950307	HLA-DOA	Û	1.41	0.011
3333899	RARRES3	Û	1.55	5.12E-03	3167383	NUDT2	仓	1.46	2.20E-03	3130211	PPP2CB	仓	1.41	2.56E-04
3892452	LSM14B	Û	1.54	1.11E-03	3462843	NAP1L1	仓	1.45	3.78E-03	3845352	UQCR11	仓	1.41	3.05E-03
3023883	CPA4	Û	1.54	5.61E-03	3782166	IMPACT	仓	1.45	4.94E-04	3827218	RPSAP58	仓	1.41	4.79E-03
3263944	PDCD4	Û	1.53	3.93E-04	3703885	SLC7A5	Û	1.45	0.014	3917204	C21orf7	Û	1.41	7.47E-03
3160658	SLC1A1	Û	1.53	0.015	2899437	BTN2A1	Û	1.44	9.18E-06	3403077	C12orf57	仓	1.41	2.09E-04
2626097	ABHD6	Û	1.52	6.82E-03	3994451	CXorf40A	Û	1.44	4.06E-04	4006416	FUNDC1	Û	1.41	4.32E-04
2958325	DST	Û	1.52	0.025	2766492	C4orf34	仓	1.44	0.022	3619165	SRP14	Û	1.40	4.82E-03

3820370	P2RY11	Û	1.40	0.010	3023060	CALU	Û	1.37	0.013	2836451	MFAP3	Û	1.35	0.014
3406421	STRAP	仓	1.40	8.01E-05	3712041	UBB	仓	1.37	3.51E-03	2794902	AGA	Û	1.35	0.027
2409104	SLC2A1	Û	1.40	5.48E-03	3716993	RNF135	仓	1.37	8.50E-05	3257670	PCGF5	Û	1.35	1.11E-03
2320727	TNFRSF1B	Û	1.40	2.61E-03	2336302	ZFYVE9	仓	1.37	1.68E-04	3341440	RN28S1	Û	1.35	6.88E-03
3540353	CHURC1	仓	1.40	2.69E-03	2645764	ATP1B3	Û	1.37	0.025	3410695	DNM1L	Û	1.35	0.036
3253438	RPS24	Û	1.40	0.013	2361342	SEMA4A	Û	1.37	6.16E-03	3076753	KIAA1147	Û	1.35	0.012
2865050	RPS23	Û	1.40	0.014	2714376	TMEM175	Û	1.37	0.016	2594497	CLK1	Û	1.35	0.019
2643324	SRPRB	Û	1.39	0.013	2611848	SLC6A6	Û	1.36	2.94E-03	2878662	DIAPH1	Û	1.35	1.37E-03
3537030	RPL13AP3	Û	1.39	8.58E-03	3055608	TYW1B	Û	1.36	0.027	3020496	ST7	Û	1.35	0.022
2975385	AHI1	Û	1.39	0.022	2990342	TMEM106B	Û	1.36	0.048	3851267	ZNF625	Û	1.35	3.90E-04
3473727	WSB2	Û	1.39	1.17E-03	3557947	CHMP4A	仓	1.36	4.32E-03	3417457	MYL6	兌	1.35	7.19E-03
2420467	CTBS	Û	1.39	0.016	2373842	PTPRC	Û	1.36	0.010	2413423	TMEM48	Û	1.35	0.022
3890870	RAB22A	Û	1.39	1.75E-05	3184218	C9orf6	仓	1.36	0.040	3634811	CTSH	Û	1.35	0.022
3114832	SQLE	Û	1.39	2.50E-03	3747199	CENPV	仓	1.36	0.019	3878934	NAA20	仓	1.35	4.71E-04
3950452	CRELD2	Û	1.39	8.37E-03	3861302	YIF1B	Û	1.36	0.011	2504883	UGGT1	Û	1.34	0.046
3432754	PLBD2	Û	1.39	2.73E-04	3010082	PHTF2	Û	1.36	1.09E-03	2835021	PCYOX1L	Û	1.34	3.75E-03
2960955	SLC17A5	Û	1.39	2.50E-03	3645836	ZNF75A	仓	1.36	6.51E-03	2949801	AGPAT1	Û	1.34	8.41E-04
3842301	ZNF581	仓	1.39	3.74E-03	2830638	KIF20A	Û	1.36	6.15E-03	3708245	SLC16A13	Û	1.34	0.019
3494102	UCHL3	Û	1.39	4.80E-04	2375212	PPP1R12B	Û	1.36	8.16E-03	2318736	PARK7	兌	1.34	1.52E-04
4015763	GLA	Û	1.39	0.037	2409004	LEPRE1	Û	1.36	9.52E-04	3458911	CTDSP2	Û	1.34	2.10E-03
2536996	FLJ41327	Û	1.38	0.032	3453556	PRKAG1	仓	1.36	1.59E-04	2971801	MAN1A1	Û	1.34	0.020
3447863	KRAS	仓	1.38	7.97E-04	2528159	WNT10A	Û	1.36	0.038	3741528	TAX1BP3	Û	1.34	0.037
3726960	NME2	仓	1.38	2.60E-04	3837464	GLTSCR2	兌	1.36	2.39E-03	3849797	ZNF561	Û	1.34	1.16E-04
3936550	USP18	仓	1.38	8.05E-03	3893033	DPH3P1	兌	1.36	0.047	3198289	C9orf123	Û	1.34	1.82E-03
2726483	OCIAD1	Û	1.38	1.52E-03	3475324	TMEM120B	兌	1.35	1.56E-03	2620538	LARS2	Û	1.34	6.48E-03
3725083	SNX11	仓	1.38	8.67E-04	3433843	SUDS3	仓	1.35	0.018	2668205	GLB1	Û	1.34	0.025
3969946	ZRSR2	仓	1.38	0.020	3072435	TMEM209	Û	1.35	8.96E-03	2442134	TMC01	Û	1.34	3.02E-03
2320411	AGTRAP	Û	1.38	3.68E-03	3868905	CTU1	兌	1.35	3.07E-03	2690850	TMEM39A	Û	1.34	0.011
3507962	KATNAL1	仓	1.38	3.85E-03	3216276	SLC35D2	兌	1.35	0.025	3197318	AK3	Û	1.34	7.77E-04
3447694	BCAT1	Û	1.38	0.032	3490741	SUGT1	仓	1.35	2.61E-03	2815965	HMGCR	Û	1.34	2.64E-03
2384562	RAB4A	①	1.38	1.72E-03	3420854	DYRK2	仓	1.35	0.023	3988987	NDUFA1	얍	1.34	0.028
3555300	CCNB1IP1	仓	1.38	0.028	3750685	SLC46A1	Û	1.35	6.28E-04	3210457	RFK	兌	1.34	4.28E-04

2450668	TMEM9	Û	1.34	3.27E-03	2363084	NCSTN	Û	1.33	0.024	2639225	PDIA5	Û	1.32	0.023
3774096	PDE6G	Û	1.34	3.56E-03	3962448	RRP7A	Û	1.33	9.47E-03	3486728	SLC25A15	Û	1.32	2.61E-03
2426791	CLCC1	Û	1.33	5.96E-03	2780172	CENPE	Û	1.32	0.020	3406493	DERA	仓	1.32	9.17E-03
2608469	ITPR1	Û	1.33	4.41E-04	2705748	NCEH1	Û	1.32	0.027	2413907	DHCR24	Û	1.32	0.022
3430389	C12orf23	Û	1.33	7.78E-03	3442854	SLC2A3	Û	1.32	0.015	3722338	IFI35	Û	1.32	0.020
3421523	YEATS4	Û	1.33	3.90E-03	3075136	CREB3L2	Û	1.32	0.029	2502424	INSIG2	Û	1.32	0.047
3078656	ZNF767	Û	1.33	5.20E-03	4005627	CXorf38	Û	1.32	0.024	3633699	NRG4	Û	1.32	0.015
3821015	LDLR	Û	1.33	1.38E-03	3388914	DCUN1D5	Û	1.32	0.028	3191338	GPR107	Û	1.32	3.05E-03
3185063	UGCG	Û	1.33	6.29E-03	2704267	GOLIM4	Û	1.32	2.48E-03	2955061	SLC35B2	Û	1.32	0.021
3828162	C19orf2	Û	1.33	1.24E-04	3444252	CSDA	Û	1.32	2.04E-03	3173479	FOXD4L3	Û	1.31	0.020
2884647	C5orf54	Û	1.33	0.022	2892277	NQO2	Û	1.32	4.29E-03	3260423	CUTC	Û	1.31	7.72E-03
2899340	BTN2A2	Û	1.33	2.64E-03	3989678	XIAP	Û	1.32	7.05E-04	3394488	PVRL1	Û	1.31	2.57E-03
2452977	FAIM3	Û	1.33	0.019	2708610	MAGEF1	Û	1.32	1.04E-03	2379280	FLVCR1	Û	1.31	0.018
3460584	LLPH	Û	1.33	9.39E-03	3674146	RPL13	Û	1.32	0.049	2518272	ITGA4	Û	1.31	0.024
2816298	IQGAP2	Û	1.33	0.012	2876257	SAR1B	Û	1.32	0.019	3129731	DUSP4	Û	1.31	0.044
3665116	CBFB	Û	1.33	1.26E-03	3836432	QPCTL	Û	1.32	1.09E-03	3130850	RNF122	Û	1.31	0.028
3642815	NME4	仓	1.33	2.24E-03	3470689	ALKBH2	Û	1.32	1.46E-03	2560122	MOGS	Û	1.31	3.95E-03
2415084	JUN	Û	1.33	0.041	2324634	CDC42	Û	1.32	0.029	3758775	РҮҮ	仓	1.31	0.026
2529421	SGPP2	Û	1.33	2.36E-04	3303300	СНИК	Û	1.32	5.82E-03	3946351	ADSL	仓	1.31	2.52E-04
2568968	UXS1	Û	1.33	0.025	3868963	ETFB	Û	1.32	1.39E-04	3665230	HSF4	Û	1.31	0.010
3435681	ARL6IP4	仓	1.33	2.40E-04	3996381	ATP6AP1	Û	1.32	3.64E-03	3397589	ETS1	仓	1.31	3.53E-03
2514122	LASS6	Û	1.33	0.027	3427014	SNRPF	Û	1.32	0.027	3175119	OSTF1	仓	1.31	0.027
3255284	C10orf99	Û	1.33	0.029	3822805	TECR	Û	1.32	2.30E-03	2692411	PTPLB	Û	1.31	0.022
3629103	KIAA0101	仓	1.33	0.038	3426215	MRPL42	Û	1.32	6.81E-03	3969047	PRPS2	仓	1.31	1.05E-04
3031967	CHPF2	Û	1.33	5.66E-03	3066751	SYPL1	Û	1.32	7.06E-03	2841184	ERGIC1	Û	1.31	9.53E-04
3866302	AP2S1	仓	1.33	2.92E-05	3434760	P2RX4	Û	1.32	8.92E-03	3358950	CTSD	Û	1.31	0.015
3277468	USP6NL	Û	1.33	0.015	3129121	CCDC25	Û	1.32	8.52E-04	3099561	T1560	Û	1.31	7.77E-03
3625271	RAB27A	仓	1.33	0.020	3942161	UQCR10	Û	1.32	3.31E-05	3840224	ZNF528	仓	1.31	0.015
3758148	CCDC56	仓	1.33	1.23E-03	3969422	RAB9A	Û	1.32	0.013	3466284	NDUFA12	仓	1.31	1.68E-03
3806253	ATP5A1	Û	1.33	3.51E-03	2997376	ANLN	Û	1.32	0.012	2878368	APBB3	Û	1.31	2.76E-04
3041260	TOMM7	Û	1.33	0.032	2370317	MR1	Û	1.32	0.015	2599955	ATG9A	Û	1.31	5.87E-04
3630912	ANP32A	Û	1.33	1.20E-03	3869379	ZNF614	Û	1.32	4.24E-03	3663055	C16orf57	Û	1.31	0.014

2930863	PCMT1	Û	1.31	6.75E-03	3723348	HEXIM1	仓	1.30	6.64E-04	2948522	KIAA1949	Û	1.29	1.97E-03
3665857	NUTF2	Û	1.31	3.99E-04	3584728	SNRPN	Û	1.30	0.014	2829562	TXNDC15	Û	1.29	0.013
2902574	LY6G5B	Û	1.31	0.026	3103523	LY96	Û	1.30	0.048	3293537	PCBD1	Û	1.29	0.039
3413787	TUBA1C	Û	1.31	7.96E-03	3682135	C16orf63	Û	1.30	6.34E-03	3579205	SETD3	Û	1.29	1.17E-03
2853388	C5orf33	Û	1.31	2.10E-05	3344861	C11orf54	仓	1.30	0.012	3195344	MRPL41	兌	1.29	0.027
2412668	TXNDC12	Û	1.31	0.029	2977621	PLAGL1	Û	1.30	0.036	2542737	LAPTM4A	Û	1.29	2.31E-03
2628682	ARL6IP5	Û	1.31	0.032	3934669	SUM03	Û	1.30	0.018	2604254	HJURP	Û	1.29	0.015
3916576	GABPA	Û	1.31	6.26E-05	3954525	ZNF280B	Û	1.30	2.63E-03	3311715	UROS	Û	1.29	3.02E-03
3996467	PLXNA3	Û	1.31	9.08E-04	2541230	NBAS	Û	1.30	1.16E-04	3463522	PAWR	Û	1.29	0.022
3451318	ZCRB1	Û	1.30	5.33E-04	3528895	LRP10	Û	1.30	0.022	3726325	XYLT2	Û	1.29	4.04E-03
3480681	MRP63	Û	1.30	2.47E-03	3850576	YIPF2	Û	1.30	0.018	3518169	COMMD6	Û	1.29	9.44E-03
3566304	EXOC5	Û	1.30	5.52E-05	2964327	LYRM2	Û	1.30	4.92E-05	2443335	SLC19A2	Û	1.29	0.047
3426257	SOCS2	Û	1.30	6.07E-03	3865568	SNRPD2	仓	1.29	0.039	3555340	TEP1	Û	1.29	4.58E-04
3976670	EBP	Û	1.30	0.020	3956984	ZMAT5	仓	1.29	4.34E-04	3513995	DLEU2	Û	1.29	0.043
2889698	CLK4	Û	1.30	5.43E-03	3617412	LPCAT4	Û	1.29	9.00E-04	3242425	CCNY	Û	1.29	9.11E-03
3886512	TTPAL	Û	1.30	0.024	2968144	OSTM1	Û	1.29	3.37E-03	3625234	RSL24D1	Û	1.29	0.011
3349918	RBM7	Û	1.30	0.016	3882949	DYNLRB1	仓	1.29	2.67E-03	3377826	RNASEH2C	Û	1.29	5.80E-05
3790704	PMAIP1	仓	1.30	0.011	3726406	ACSF2	Û	1.29	0.019	2758298	LRPAP1	Û	1.29	0.023
3943207	YWHAH	Û	1.30	0.015	3338424	FADD	仓	1.29	1.92E-03	3877776	SNRPB2	Û	1.29	0.045
3438027	RAN	Û	1.30	8.25E-04	3441011	PARP11	仓	1.29	9.82E-04	2601414	SERPINE2	Û	1.28	0.032
3240095	RAB18	仓	1.30	8.62E-03	3380697	DHCR7	Û	1.29	0.019	2815331	BTF3	兌	1.28	3.13E-04
3719362	AATF	仓	1.30	4.50E-04	2614142	NR1D2	仓	1.29	0.037	2721777	PI4K2B	兌	1.28	3.48E-03
2330773	CDCA8	Û	1.30	0.030	3130113	GTF2E2	仓	1.29	4.10E-03	3697563	FTSJD1	兌	1.28	3.36E-03
3339167	FAM86C	仓	1.30	0.016	2930243	SASH1	Û	1.29	0.019	3362795	RNF141	兌	1.28	4.53E-03
3263624	MXI1	仓	1.30	0.037	3137875	GGH	Û	1.29	0.025	2908179	VEGFA	Û	1.28	0.028
2520138	MFSD6	Û	1.30	7.99E-03	3833443	PLD3	Û	1.29	7.58E-03	4021341	ZDHHC9	Û	1.28	9.22E-03
2363919	ATF6	Û	1.30	1.85E-03	3982423	ATP7A	Û	1.29	0.047	3451264	YAF2	兌	1.28	6.37E-03
3870135	ZNF347	仓	1.30	0.018	3060117	ABCB4	Û	1.29	0.019	3404436	CLEC2D	Û	1.28	0.028
3630099	TIPIN	Û	1.30	0.011	2656569	DNAJB11	Û	1.29	0.023	3432333	PTPN11	Û	1.28	5.73E-03
2325290	LYPLA2	Û	1.30	3.77E-03	4004819	DYNLT3	仓	1.29	0.028	3318844	DNHD1	Û	1.28	7.32E-04
3886179	IFT52	Û	1.30	8.32E-04	2970897	FRK	仓	1.29	0.027	2866590	LYSMD3	Û	1.28	0.037
3589972	CHST14	Û	1.30	1.40E-03	3707127	MED11	仓	1.29	0.017	2379863	CENPF	Û	1.28	0.029

3559794	C14orf126	Û	1.28	0.012	3315549	PSMD13	仓	1.27	9.06E-05	3379390	SUV420H1	仓	1.27	5.76E-03
3361041	TPP1	Û	1.28	7.74E-03	2724671	RHOH	Û	1.27	3.42E-03	3368707	CD59	Û	1.27	0.020
3864921	ZNF180	仓	1.28	2.44E-03	3739108	FN3KRP	Û	1.27	2.49E-03	3064638	RABL5	兌	1.27	5.98E-04
3988740	PGRMC1	Û	1.28	0.026	3996815	VBP1	Û	1.27	0.028	3441955	MRPL51	兌	1.27	1.19E-04
3409127	ARNTL2	仓	1.28	0.017	3347549	CUL5	Û	1.27	2.04E-04	2390976	NCRNA00115	Û	1.27	0.032
2874686	HINT1	仓	1.28	0.025	3131844	LSM1	Û	1.27	4.36E-03	3464967	GALNT4	仓	1.27	1.60E-03
3722739	G6PC3	Û	1.28	0.024	2330253	ADPRHL2	Û	1.27	0.036	3728509	DYNLL2	兌	1.27	1.57E-03
3843399	ZNF134	仓	1.28	4.29E-03	3866276	SLC1A5	Û	1.27	0.020	3130161	GSR	仓	1.27	0.035
3775157	WDR45L	仓	1.28	0.045	3727962	DGKE	Û	1.27	0.030	2781693	CASP6	仓	1.27	6.76E-03
3269328	ZRANB1	仓	1.28	2.65E-03	3734479	TMEM104	Û	1.27	0.021	3666649	VPS4A	兌	1.27	5.18E-03
2902736	C6orf48	仓	1.28	4.73E-03	3378790	PPP1CA	Û	1.27	5.25E-03	2599371	TMBIM1	Û	1.27	4.19E-03
3352813	TBCEL	仓	1.28	2.88E-03	3142519	ZFAND1	Û	1.27	0.025	2562233	RETSAT	Û	1.27	0.024
3336378	RBM14	Û	1.28	0.023	3303392	BLOC1S2	Û	1.27	0.015	2835792	GM2A	Û	1.27	0.020
2750594	SC4MOL	Û	1.28	0.017	3941010	SRRD	Û	1.27	0.041	2924492	HEY2	兌	1.26	0.019
3976519	RBM3	仓	1.28	3.13E-04	4000132	TRAPPC2	Û	1.27	7.25E-03	4011768	SNX12	兌	1.26	1.51E-03
3707990	TXNDC17	仓	1.28	0.016	3328214	ALKBH3	Û	1.27	5.63E-03	2712632	TFRC	Û	1.26	1.96E-03
2611779	TMEM43	Û	1.28	6.30E-03	3190420	CERCAM	Û	1.27	0.027	3730899	DDX42	兌	1.26	3.70E-03
3991698	HPRT1	企	1.28	4.98E-03	3619595	FAM82A2	Û	1.27	3.07E-03	2363202	SLAMF7	Û	1.26	0.028
3369762	COMMD9	仓	1.28	0.022	3681674	NTAN1	Û	1.27	7.24E-03	2320762	VPS13D	Û	1.26	6.85E-04
3830216	FXYD5	Û	1.28	0.034	3849865	FBXL12	Û	1.27	9.86E-03	3642358	TM2D3	Û	1.26	0.036
3759305	CCDC43	企	1.28	3.64E-03	3703112	GINS2	Û	1.27	0.033	3738205	MRPL12	Û	1.26	5.94E-03
3708826	EIF4A1	企	1.28	0.025	2370123	XPR1	Û	1.27	0.014	3064541	PLOD3	Û	1.26	1.44E-03
3824395	PGLS	仓	1.28	7.68E-05	3280902	DNAJC1	Û	1.27	0.010	3929931	ATP50	兌	1.26	8.41E-03
3784509	ZNF271	仓	1.27	7.02E-03	3333622	POLR2G	Û	1.27	2.41E-03	3487432	DNAJC15	Û	1.26	0.043
3224197	NDUFA8	仓	1.27	0.019	3394123	HYOU1	Û	1.27	0.035	2515933	ZAK	兌	1.26	0.024
2413578	TMEM59	Û	1.27	0.030	3890109	C20orf108	Û	1.27	1.51E-03	3303255	ERLIN1	Û	1.26	0.040
3770632	SUM02	仓	1.27	0.024	4022106	MBNL3	Û	1.27	0.034	2612401	BTD	Û	1.26	0.042
3043165	HIBADH	仓	1.27	0.011	2916345	SLC35A1	Û	1.27	0.031	3422703	ATXN7L3B	兌	1.26	4.76E-03
2663551	NUP210	Û	1.27	5.47E-03	3922793	PDE9A	Û	1.27	0.023	3840164	ZNF610	兌	1.26	0.014
3412296	IRAK4	仓	1.27	6.37E-03	3421630	CCT2	Û	1.27	1.72E-03	2428501	SLC16A1	Û	1.26	0.021
2364155	UHMK1	仓	1.27	1.59E-04	3822347	C19orf53	仓	1.27	0.049	3862167	FBL	企	1.26	1.52E-05
2822215	PAM	Û	1.27	5.43E-03	2717014	MAN2B2	Û	1.27	0.018	2377427	CD46	Û	1.26	4.83E-04

3878025	DSTN	仓	1.26	0.030	2640579	PLXNA1	Û	1.26	0.016	3325680	EIF3M	仓	1.25	2.26E-03
3387483	MTMR2	Û	1.26	2.04E-03	3821727	ZNF136	仓	1.26	7.98E-04	3704896	CHMP1A	Û	1.25	1.67E-04
3945056	EIF3L	Û	1.26	3.06E-03	3708074	XAF1	仓	1.26	5.36E-03	3432678	TPCN1	Û	1.25	2.62E-03
3770944	H3F3B	Û	1.26	0.049	3770606	HN1	仓	1.26	0.016	3142932	C8orf59	Û	1.25	8.39E-03
3577246	MOAP1	Û	1.26	0.041	3522225	STK24	仓	1.26	0.013	3391255	IL18	Û	1.25	0.041
3860491	ZNF260	Û	1.26	1.94E-03	3009229	POR	Û	1.26	0.036	3855506	TMEM161A	Û	1.25	9.60E-03
2924604	HINT3	Û	1.26	0.036	3617920	ATPBD4	兌	1.26	6.28E-03	3947123	SREBF2	Û	1.25	8.65E-05
3629350	SPG21	Û	1.26	2.02E-03	3678147	NMRAL1	仓	1.26	0.012	3719515	DUSP14	Û	1.25	4.06E-03
3221633	HDHD3	Û	1.26	9.84E-03	3507710	SLC7A1	Û	1.26	0.028	3843058	ZNF264	Û	1.25	0.015
2440664	B4GALT3	Û	1.26	0.034	2572601	CCDC93	Û	1.26	8.33E-05	3536663	MAPK1IP1L	Û	1.25	6.79E-04
3690084	DNAJA2	①	1.26	8.25E-03	2331679	MFSD2A	Û	1.26	0.019	3705412	C17orf97	Û	1.25	2.27E-03
2395890	CLSTN1	Û	1.26	0.013	3468925	NFYB	兌	1.26	2.39E-05	3706651	OR3A3	Û	1.25	0.024
2777447	NAP1L5	Û	1.26	2.40E-03	2908052	POLR1C	兌	1.26	6.36E-04	3829857	ZNF302	Û	1.25	1.06E-03
4017519	PSMD10	Û	1.26	2.26E-03	3860596	ZNF461	兌	1.26	4.12E-04	3668898	ZFP1	Û	1.25	2.70E-03
3376023	UBXN1	①	1.26	0.028	3345107	ANKRD49	仓	1.26	7.13E-03	3563814	L2HGDH	Û	1.25	5.00E-04
2766192	TLR10	Û	1.26	0.039	3020192	TES	Û	1.26	5.62E-03	3788270	ELAC1	Û	1.25	6.22E-03
2621122	NBEAL2	Û	1.26	7.93E-03	3719150	PIGW	兌	1.26	0.021	2583254	LY75	Û	1.25	0.022
2523213	BMPR2	Û	1.26	0.020	3421706	RAB3IP	仓	1.26	3.81E-03	3994795	MTM1	Û	1.25	0.049
3304004	NPM3	Û	1.26	0.029	3019401	ZNF277	兌	1.26	0.011	2690776	B4GALT4	Û	1.25	9.39E-04
3838665	RCN3	Û	1.26	2.77E-03	3403140	EMG1	兌	1.26	0.031	3869714	ZNF611	Û	1.25	9.29E-03
2594435	KCTD18	Û	1.26	2.23E-03	2514516	KLHL23	兌	1.26	0.032	3471374	PPP1CC	Û	1.25	1.22E-04
2369796	TOR1AIP1	Û	1.26	5.45E-03	3812385	CD226	Û	1.26	0.044	3685306	NDUFAB1	Û	1.25	0.023
3845175	GAMT	Û	1.26	0.049	3048778	TMED4	Û	1.25	4.89E-03	3190659	SET	Û	1.25	6.53E-04
2655168	YEATS2	Û	1.26	4.08E-03	3962000	PMM1	兌	1.25	5.55E-04	3890218	C20orf43	Û	1.25	0.014
3250019	DDX50	Û	1.26	0.023	2815791	HEXB	Û	1.25	7.68E-03	3806913	SMAD2	Û	1.25	1.56E-03
3354764	STT3A	Û	1.26	0.027	2599993	ABCB6	Û	1.25	3.40E-03	3434413	RNF10	Û	1.25	5.42E-03
3887117	CTSA	Û	1.26	0.018	2439975	IGSF8	Û	1.25	3.89E-03	3114600	TRMT12	Û	1.25	5.08E-04
2694397	RPN1	Û	1.26	0.010	2888243	KIAA1191	兌	1.25	0.017	4015693	TIMM8A	Û	1.25	2.65E-03
3822657	CD97	Û	1.26	1.70E-03	3557898	TM9SF1	Û	1.25	0.042	2482230	ERLEC1	Û	1.25	0.043
3831260	ZNF146	Û	1.26	4.64E-03	3360364	OR52A4	仓	1.25	0.031	3195296	SSNA1	Û	1.25	0.031
3624448	GNB5	Û	1.26	1.68E-03	3340449	SLCO2B1	Û	1.25	0.033	3357785	SIRT3	Û	1.25	3.04E-03
2647458	RNF13	Û	1.26	0.047	2731542	AREG	Û	1.25	0.027	2622859	HEMK1	Û	1.25	2.47E-03

FIF2 A IZ2													
EIFZAKZ	Û	1.25	0.031	2406139	KIAA0319L	Û	1.24	5.53E-03	2773655	RCHY1	仓	1.24	0.018
TRRAP	Û	1.25	1.66E-03	3426917	METAP2	仓	1.24	8.04E-03	3744039	TRAPPC1	Û	1.24	3.17E-04
RPN2	Û	1.25	0.015	3779756	SEH1L	仓	1.24	9.16E-03	3851603	DHPS	Û	1.24	0.026
ERAP1	Û	1.25	0.025	2466039	ZNF692	Û	1.24	2.42E-03	2398736	ATP13A2	Û	1.24	0.042
ALCAM	Û	1.25	0.015	3376867	TRMT112	仓	1.24	7.98E-03	3233547	RBM17	Û	1.24	2.19E-03
PEF1	仓	1.25	0.014	3832777	MRPS12	仓	1.24	2.20E-03	2666904	SLC4A7	Û	1.24	0.021
SOD1	仓	1.25	0.043	3104698	ZBTB10	仓	1.24	0.015	2365958	MPZL1	Û	1.24	5.49E-03
C12orf44	仓	1.25	0.013	3934591	KRTAP10-5	仓	1.24	0.026	3820906	C19orf52	Û	1.24	1.39E-04
ITPR3	Û	1.25	4.47E-03	3553607	EIF5	仓	1.24	3.26E-03	3775147	FOXK2	Û	1.24	0.013
PNPLA4	仓	1.25	4.24E-04	2681157	TMF1	Û	1.24	3.82E-03	2828146	CDC42SE2	仓	1.24	1.88E-03
EIF3G	仓	1.25	1.11E-04	3387259	SESN3	仓	1.24	0.018	3212728	AGTPBP1	仓	1.24	2.95E-03
CDC26	仓	1.25	0.016	3608466	MAN2A2	Û	1.24	7.02E-03	2527672	PNKD	Û	1.24	0.028
SCAMP3	Û	1.25	0.021	3474104	CIT	Û	1.24	0.011	3457523	RNF41	Û	1.24	2.72E-03
RBM33	Û	1.25	1.53E-03	3821301	ZNF627	仓	1.24	0.038	2327259	PPP1R8	Û	1.24	2.23E-04
WDR73	仓	1.25	3.55E-03	3742727	DHX33	仓	1.24	2.95E-04	2404819	PTP4A2	仓	1.24	0.022
PAAF1	仓	1.25	6.48E-03	3025740	TMEM140	Û	1.24	0.049	3781124	MIB1	Û	1.24	1.90E-03
STYX	仓	1.25	0.019	3590422	RTF1	仓	1.24	8.92E-03	2321849	DNAJC16	Û	1.23	0.033
AKR1A1	仓	1.24	0.014	2474322	C2orf28	Û	1.24	2.76E-03	3191589	FUBP3	Û	1.23	9.27E-03
TPD52L2	仓	1.24	6.78E-03	3031345	LRRC61	仓	1.24	1.34E-03	3223605	FBXW2	仓	1.23	4.09E-05
C11orf59	仓	1.24	0.013	2363902	DUSP12	仓	1.24	2.64E-03	4015838	ARMCX6	Û	1.23	7.14E-03
POLR1D	仓	1.24	2.02E-03	2565246	TMEM127	Û	1.24	3.85E-03	3593261	EID1	Û	1.23	0.012
ARMC1	仓	1.24	6.46E-03	3534923	KLHDC2	仓	1.24	4.02E-03	2336271	BTF3L4	Û	1.23	4.03E-03
LMBRD1	Û	1.24	0.033	3823613	FAM32A	仓	1.24	0.030	3633550	IMP3	仓	1.23	0.013
MST01	Û	1.24	0.028	2654855	ATP11B	Û	1.24	0.016	2413203	LRP8	Û	1.23	2.67E-03
UBXN2A	仓	1.24	0.019	2437401	FDPS	Û	1.24	7.71E-03	2977949	EPM2A	仓	1.23	5.27E-04
PTPN9	仓	1.24	0.023	2408681	HIVEP3	Û	1.24	0.028	3737140	GAA	Û	1.23	3.10E-03
POM121	Û	1.24	0.031	2359817	INTS3	Û	1.24	1.19E-04	3985644	TCEAL3	Û	1.23	0.045
PRPSAP2	仓	1.24	0.033	3743906	TP53	仓	1.24	0.042	2954280	PEX6	Û	1.23	8.98E-04
MRFAP1L1	仓	1.24	0.032	2320472	CLCN6	Û	1.24	0.019	2620315	TMEM42	仓	1.23	8.94E-04
MBOAT1	Û	1.24	0.015	2358171	PRPF3	Û	1.24	3.66E-05	3235255	ECHDC3	Û	1.23	1.67E-03
ZMAT3	①	1.24	0.017	2571457	CKAP2L	Û	1.24	0.013	2906591	APOBEC2	Û	1.23	0.020
STK19	仓	1.24	0.015	3005956	C7orf42	Û	1.24	6.48E-03	2877257	BRD8	Û	1.23	0.020
	TRRAP RPN2 ERAP1 ALCAM PEF1 SOD1 C12orf44 ITPR3 PNPLA4 EIF3G CDC26 SCAMP3 RBM33 WDR73 PAAF1 STYX AKR1A1 TPD52L2 C11orf59 POLR1D ARMC1 LMBRD1 MSTO1 UBXN2A PTPN9 POM121 PRPSAP2 MRFAP1L1 MBOAT1 ZMAT3 STK19	TRRAP J RPN2 J ERAP1 J ALCAM J PEF1 D SOD1 D C12orf44 D ITPR3 J PNPLA4 D EIF3G D CDC26 D SCAMP3 J RBM33 J WDR73 D PAAF1 D STYX D AKR1A1 D TPD52L2 D C11orf59 D POLR1D D ARMC1 D LMBRD1 J MSTO1 J PRPSAP2 D MRFAP1L1 D MRFAP1L1 J MBOAT1 J STK19 D	TRRAP ↓ 1.25 RPN2 ↓ 1.25 RPN2 ↓ 1.25 ERAP1 ↓ 1.25 ALCAM ↓ 1.25 PEF1 ↑ 1.25 SOD1 ↑ 1.25 SOD1 ↑ 1.25 C12orf44 ↑ 1.25 C12orf44 ↑ 1.25 ITPR3 ↓ 1.25 PNPLA4 ↑ 1.25 EIF3G ↑ 1.25 SCAMP3 ↓ 1.25 RBM33 ↓ 1.25 WDR73 ↑ 1.25 STYX ↑ 1.25 STYX ↑ 1.25 STYX ↑ 1.24 TPD52L2 ↑ 1.24 POLR1D ↑ 1.24 POLR1D ↑ 1.24 POLR1D ↓ 1.24 MST01 ↓ 1.24 PRSAP2 ↑ 1.24 PRSAP2 ↑ 1.24 PRPSA	TRRAP Image: 125 marger of the second se	TRRAP01.251.66E-033426917RPN201.250.0153779756ERAP101.250.0252466039ALCAM01.250.0153376867PEF111.250.0143832777SOD111.250.0133934591ITPR301.254.47E-033553607PNPLA411.254.47E-033553607PNPLA411.250.0163608466SCAMP301.251.11E-04387259CDC2611.250.0213474104RBM3301.251.53E-033821301WDR7311.253.55E-033742727PAAF111.250.0142474322TPD52L211.240.0142474322TPD52L211.240.0132363902POLR1D11.240.028265246ARMC111.240.0333823613MST0101.240.0232408681POM12101.240.0333743906MRFAP1L111.240.0333743906MRFAP1L111.240.0152358171ZMAT311.240.0152358171ZMAT311.240.0152358171ZMAT311.240.0153005956	TRRAP 1.12 1.12 1.66-03 3426917 METAP2 RPN2 1.25 1.66E-03 3426917 METAP2 RPN2 1.25 0.015 3779756 SEH1L ERAP1 1.25 0.025 2466039 ZNF692 ALCAM 1.25 0.014 3832777 MRPS12 SOD1 1 1.25 0.013 3934591 KRTAP10-5 ITPR3 1.25 4.47E-03 3553607 EIF5 PNPLA4 1.25 4.24E-04 2681157 TMF1 EIF3G 1.25 1.11E-04 3387259 SESN3 CDC26 1.25 1.016 3608466 MAN2A2 SCAMP3 1.25 0.55E-03 3742727 DHX33 PAAF1 1.25 0.48E-03 3025740 TMEM140 STYX 1.25 0.014 2474322 C2orf28 TPD52L2 1.24 0.78E-03 3031345 LRRC61 C11orf59 1.24 0.013 2363902 DUSP12 POLR1D 1.24 0.028 2	TRRAP 1.25 1.66E-03 3426917 METAP2 î RPN2 1.25 0.015 3779756 SEH1L î ERAP1 1.25 0.025 2466039 ZNF692 J ALCAM 1.25 0.015 3376867 TRMT112 î PEF1 1.25 0.014 3832777 METAP10-5 î SOD1 1.25 0.013 3934591 KRTAP10-5 î ITPR3 1.25 4.47E-03 3553607 EIF5 î PNPLA4 1.25 0.013 3934591 KRTAP10-5 î ITPR3 1.25 4.47E-03 3553607 EIF5 î PNPLA4 1.25 0.016 3608466 MAN2A2 J SCAMP3 1.25 0.021 3474104 CIT J SCAMP3 1.25 0.55E-03 3742727 DHX33 î PAAF1 1.25 0.013 2363902 DUSP12 î AKR1A1 1.24 0.013 2363902 DUSP12 î <t< td=""><td>TRRAP 1 1 1000000000000000000000000000000000000</td><td>TRRAP 1.25 1.66E-03 3426917 METAP2 1.24 8.04E-03 RPN2 1.25 0.015 3779756 SEH1L 1 1.24 8.04E-03 ERAP1 1.125 0.025 2466039 ZNF692 1 1.24 2.42E-03 ALCAM 1.25 0.015 3376867 TRMT112 1 1.24 2.20E-03 SOD1 1 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.026 TPR3 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.026 TPR3 1.25 4.47E-03 3553607 EIF5 1 1.24 0.026 TPR3 1.25 1.11E-04 3387259 SESN3 1 1.24 0.018 CDC26 1 1.25 0.016 3608466 MAN2A2 1.24 0.021 RBM33 1.25 1.53E-03 3742727 DHX33 1.24 0.049 STYX 1.25 0.019 3590422 RTF1 1.24 0.049 STYX<!--</td--><td>TRRAP 0 1.25 1.66E-03 3426917 METAP2 0 1.24 8.04E-03 3744039 RPN2 0 1.25 0.015 3779756 SEH1L 1.24 9.16E-03 3851603 ERAP1 0 1.25 0.015 337667 TRMT112 1.24 2.94E-03 2398736 ALCAM 0 1.25 0.014 3832777 MRPS12 1.24 2.94E-03 2366904 SOD1 1 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.026 3820906 ITPR3 0 1.25 4.47E-03 3553607 EIF5 1 1.24 3.02E-03 2828146 EIF3G 1 1.25 4.47E-03 3553607 EIF5 1 1.24 3.018 3212728 CDC26 1 1.25 0.016 3608466 MAN2A2 0 1.24 0.018 3227259 WDR73 1 1.25 0.021 3474104 CIT 1 1.24 0.013 32375723 RBM33 0</td><td>TRRAP 0 1.25 1.66E-03 3426917 METAP2 1 1.24 8.04E-03 3744039 TRAPPC1 RPN2 0 1.25 0.015 3779756 SEH1L 1 1.24 9.16E-03 3851603 DHPS ERAP1 0 1.25 0.015 3376867 TRMT112 1 1.24 7.98E-03 2398736 ATP13A2 ALCAM 0 1.25 0.014 3832777 MRPS12 1 1.24 2.06E-03 3265958 MPZL1 C12orf44 1 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.005 3820906 C190rf52 ITPR3 0 1.25 4.47E-03 3553607 EIF5 1 1.24 326E-03 3775147 FOXK2 PNPLA4 1 1.25 4.47E-03 387259 SESN3 1 1.24 0.018 3212728 ACTPPP1 CDC26 1 1.25 0.016 3608466 MAN2A2</td></td></t<> <td>TRRAP 0 1.25 1.660-03 3426917 METAP2 0 1.24 8.04E-03 3744039 TRAPC1 0 RPN2 0 1.25 0.015 3779756 SEH1L 0 1.24 8.04E-03 3851603 DHPS 0 ALCAM 0 1.25 0.015 3376867 TRMT112 1.24 2.24E-03 3233547 RBM17 1 PEF1 1.25 0.014 33323777 MRP512 1.124 2.00E-03 3265958 MP2L1 0 SOD1 1.25 0.013 3934591 KRTAP10-5 1.124 3.26E-03 3275147 FOXK2 0 TIPR3 0 1.25 4.44E-04 2601157 TMF1 1.124 3.28E-03 282146 CDC42SE2 0 FIPG 1.25 4.34E-04 2601157 TMF1 1.24 0.018 3212728 AGTPBP1 0 CD2626 1.25 0.016 3608466 MAN2A2 1.24 0.0</td> <td>TRRAP i 1.25 1.66.P-03 3426917 METAP2 i 1.24 8.04E-03 3744039 TRAPC i 1.24 RPN2 i 1.25 0.015 3779756 SEH1L i 1.24 9.16E-03 3851603 DHPS i 1.24 ALCAM i 1.25 0.015 3376867 TRMT112 i 1.24 7.98E-03 3233547 RBM17 i 1.24 ALCAM i 1.25 0.014 3832777 MRPS12 i 1.24 2.02E-03 266994 SLC4A7 i 1.24 SOD1 i 1.25 0.013 3934591 KRTAP10-5 i 1.24 0.015 3820906 C190rf52 i 1.24 G12orf44 i 1.25 4.47E-03 3553607 EIF5 i 1.24 3.82E-03 32828146 CDC24SE2 i 1.24 PNPLA4 i 1.25 4.47E-04 387259 SESN3 i 1.24 7.02E-03 3227672 PNKD i 1.24 CDC26<!--</td--></td>	TRRAP 1 1 1000000000000000000000000000000000000	TRRAP 1.25 1.66E-03 3426917 METAP2 1.24 8.04E-03 RPN2 1.25 0.015 3779756 SEH1L 1 1.24 8.04E-03 ERAP1 1.125 0.025 2466039 ZNF692 1 1.24 2.42E-03 ALCAM 1.25 0.015 3376867 TRMT112 1 1.24 2.20E-03 SOD1 1 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.026 TPR3 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.026 TPR3 1.25 4.47E-03 3553607 EIF5 1 1.24 0.026 TPR3 1.25 1.11E-04 3387259 SESN3 1 1.24 0.018 CDC26 1 1.25 0.016 3608466 MAN2A2 1.24 0.021 RBM33 1.25 1.53E-03 3742727 DHX33 1.24 0.049 STYX 1.25 0.019 3590422 RTF1 1.24 0.049 STYX </td <td>TRRAP 0 1.25 1.66E-03 3426917 METAP2 0 1.24 8.04E-03 3744039 RPN2 0 1.25 0.015 3779756 SEH1L 1.24 9.16E-03 3851603 ERAP1 0 1.25 0.015 337667 TRMT112 1.24 2.94E-03 2398736 ALCAM 0 1.25 0.014 3832777 MRPS12 1.24 2.94E-03 2366904 SOD1 1 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.026 3820906 ITPR3 0 1.25 4.47E-03 3553607 EIF5 1 1.24 3.02E-03 2828146 EIF3G 1 1.25 4.47E-03 3553607 EIF5 1 1.24 3.018 3212728 CDC26 1 1.25 0.016 3608466 MAN2A2 0 1.24 0.018 3227259 WDR73 1 1.25 0.021 3474104 CIT 1 1.24 0.013 32375723 RBM33 0</td> <td>TRRAP 0 1.25 1.66E-03 3426917 METAP2 1 1.24 8.04E-03 3744039 TRAPPC1 RPN2 0 1.25 0.015 3779756 SEH1L 1 1.24 9.16E-03 3851603 DHPS ERAP1 0 1.25 0.015 3376867 TRMT112 1 1.24 7.98E-03 2398736 ATP13A2 ALCAM 0 1.25 0.014 3832777 MRPS12 1 1.24 2.06E-03 3265958 MPZL1 C12orf44 1 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.005 3820906 C190rf52 ITPR3 0 1.25 4.47E-03 3553607 EIF5 1 1.24 326E-03 3775147 FOXK2 PNPLA4 1 1.25 4.47E-03 387259 SESN3 1 1.24 0.018 3212728 ACTPPP1 CDC26 1 1.25 0.016 3608466 MAN2A2</td>	TRRAP 0 1.25 1.66E-03 3426917 METAP2 0 1.24 8.04E-03 3744039 RPN2 0 1.25 0.015 3779756 SEH1L 1.24 9.16E-03 3851603 ERAP1 0 1.25 0.015 337667 TRMT112 1.24 2.94E-03 2398736 ALCAM 0 1.25 0.014 3832777 MRPS12 1.24 2.94E-03 2366904 SOD1 1 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.026 3820906 ITPR3 0 1.25 4.47E-03 3553607 EIF5 1 1.24 3.02E-03 2828146 EIF3G 1 1.25 4.47E-03 3553607 EIF5 1 1.24 3.018 3212728 CDC26 1 1.25 0.016 3608466 MAN2A2 0 1.24 0.018 3227259 WDR73 1 1.25 0.021 3474104 CIT 1 1.24 0.013 32375723 RBM33 0	TRRAP 0 1.25 1.66E-03 3426917 METAP2 1 1.24 8.04E-03 3744039 TRAPPC1 RPN2 0 1.25 0.015 3779756 SEH1L 1 1.24 9.16E-03 3851603 DHPS ERAP1 0 1.25 0.015 3376867 TRMT112 1 1.24 7.98E-03 2398736 ATP13A2 ALCAM 0 1.25 0.014 3832777 MRPS12 1 1.24 2.06E-03 3265958 MPZL1 C12orf44 1 1.25 0.013 3934591 KRTAP10-5 1 1.24 0.005 3820906 C190rf52 ITPR3 0 1.25 4.47E-03 3553607 EIF5 1 1.24 326E-03 3775147 FOXK2 PNPLA4 1 1.25 4.47E-03 387259 SESN3 1 1.24 0.018 3212728 ACTPPP1 CDC26 1 1.25 0.016 3608466 MAN2A2	TRRAP 0 1.25 1.660-03 3426917 METAP2 0 1.24 8.04E-03 3744039 TRAPC1 0 RPN2 0 1.25 0.015 3779756 SEH1L 0 1.24 8.04E-03 3851603 DHPS 0 ALCAM 0 1.25 0.015 3376867 TRMT112 1.24 2.24E-03 3233547 RBM17 1 PEF1 1.25 0.014 33323777 MRP512 1.124 2.00E-03 3265958 MP2L1 0 SOD1 1.25 0.013 3934591 KRTAP10-5 1.124 3.26E-03 3275147 FOXK2 0 TIPR3 0 1.25 4.44E-04 2601157 TMF1 1.124 3.28E-03 282146 CDC42SE2 0 FIPG 1.25 4.34E-04 2601157 TMF1 1.24 0.018 3212728 AGTPBP1 0 CD2626 1.25 0.016 3608466 MAN2A2 1.24 0.0	TRRAP i 1.25 1.66.P-03 3426917 METAP2 i 1.24 8.04E-03 3744039 TRAPC i 1.24 RPN2 i 1.25 0.015 3779756 SEH1L i 1.24 9.16E-03 3851603 DHPS i 1.24 ALCAM i 1.25 0.015 3376867 TRMT112 i 1.24 7.98E-03 3233547 RBM17 i 1.24 ALCAM i 1.25 0.014 3832777 MRPS12 i 1.24 2.02E-03 266994 SLC4A7 i 1.24 SOD1 i 1.25 0.013 3934591 KRTAP10-5 i 1.24 0.015 3820906 C190rf52 i 1.24 G12orf44 i 1.25 4.47E-03 3553607 EIF5 i 1.24 3.82E-03 32828146 CDC24SE2 i 1.24 PNPLA4 i 1.25 4.47E-04 387259 SESN3 i 1.24 7.02E-03 3227672 PNKD i 1.24 CDC26 </td

3323443	PRMT3	①	1.23	2.11E-03	2877141	HNRNPA0	仓	1.23	3.99E-04	2999544	BLVRA	얍	1.23	0.042
3569200	ATP6V1D	Û	1.23	0.022	3750625	POLDIP2	仓	1.23	4.56E-03	3969396	TCEANC	兌	1.23	2.63E-03
3886050	SRSF6	Û	1.23	5.56E-05	3119339	LY6E	Û	1.23	0.021	3565361	GMFB	얍	1.23	0.014
2872471	DTWD2	Û	1.23	0.022	2437645	GON4L	Û	1.23	1.16E-03	2349848	PRMT6	얍	1.23	0.019
2324743	ZBTB40	Û	1.23	2.91E-03	2940987	SLC35B3	Û	1.23	0.021	3563317	RPS29	兌	1.23	0.023
3806905	SMAD2	Û	1.23	0.016	3339880	RELT	Û	1.23	1.00E-03	3459956	C12orf66	兌	1.22	1.01E-03
3428131	SCYL2	Û	1.23	0.013	2608801	EDEM1	Û	1.23	0.011	2828115	LYRM7	얍	1.22	1.64E-03
2722377	STIM2	Û	1.23	0.047	3504791	EFHA1	仓	1.23	9.86E-03	3829751	PDCD2L	兌	1.22	0.010
2335986	RNF11	Û	1.23	5.14E-03	2963313	SNX14	Û	1.23	0.022	3591909	CTDSPL2	兌	1.22	7.09E-04
3778823	NAPG	Û	1.23	0.012	3879467	XRN2	仓	1.23	3.40E-03	3301512	ALDH18A1	Û	1.22	0.041
3364119	CYP2R1	兌	1.23	0.016	2961317	TMEM30A	Û	1.23	0.032	3581132	AKT1	얍	1.22	2.94E-03
3659966	ADCY7	Û	1.23	8.62E-03	2334404	NASP	仓	1.23	0.041	3260666	HIF1AN	얍	1.22	0.010
3819104	TRAPPC5	Û	1.23	5.77E-04	2690900	CD80	Û	1.23	0.036	2500615	TMEM87B	Û	1.22	9.41E-03
3815538	GPX4	兌	1.23	0.023	2427074	PSMA5	兌	1.23	0.044	2968054	SEC63	Û	1.22	0.025
3223551	MEGF9	Û	1.23	0.039	3326400	CAT	仓	1.23	0.013	2331213	MACF1	Û	1.22	0.012
3576889	ATXN3	兌	1.23	0.020	3707352	RNF167	Û	1.23	2.49E-03	3168841	GRHPR	얍	1.22	0.017
3977299	CLCN5	Û	1.23	5.64E-03	3338552	CTTN	仓	1.23	9.18E-03	3851826	DNASE2	Û	1.22	0.043
3433538	RNFT2	Û	1.23	0.012	3728097	AKAP1	Û	1.23	0.024	3210130	C9orf41	Û	1.22	0.014
3548346	CALM1	兌	1.23	0.020	3996667	DKC1	兌	1.23	0.015	2376799	IKBKE	Û	1.22	0.017
3440017	FBXL14	Û	1.23	3.15E-03	3844897	C19orf6	Û	1.23	9.92E-03	2716655	MSX1	Û	1.22	0.048
2732611	MRPL1	Û	1.23	0.018	3375147	VPS37C	仓	1.23	4.12E-03	3454680	TFCP2	Û	1.22	4.68E-03
3639007	HDDC3	Û	1.23	3.12E-03	3458614	DCTN2	仓	1.23	8.20E-03	3224259	RBM18	Û	1.22	8.53E-03
3472225	DDX54	兌	1.23	7.55E-04	3334501	PRDX5	仓	1.23	0.021	3320251	LOC100129827	얍	1.22	0.045
3517793	KLF12	Û	1.23	0.038	2484752	COMMD1	仓	1.23	0.029	2369843	CEP350	Û	1.22	3.16E-04
3127334	REEP4	Û	1.23	0.035	2353881	MAN1A2	Û	1.23	0.041	3825141	C19orf50	Û	1.22	7.76E-04
2352106	CTTNBP2NL	Û	1.23	0.029	2429842	CD58	Û	1.23	5.02E-03	3506431	RNF6	Û	1.22	0.025
3864286	PSG9	Û	1.23	0.010	3168938	POLR1E	仓	1.23	0.047	3719161	GGNBP2	Û	1.22	0.012
3375545	FADS1	Û	1.23	0.026	3135184	RB1CC1	仓	1.23	1.67E-03	3821908	RNASEH2A	Û	1.22	6.44E-03
3686080	NSMCE1	Û	1.23	0.038	2724472	UBE2K	仓	1.23	3.91E-03	3687698	CD2BP2	Û	1.22	0.035
2540157	ODC1	仓	1.23	0.027	3535780	PTGER2	企	1.23	0.031	2383479	BTF3P9	얍	1.22	0.011
3580947	C14orf2	仓	1.23	6.97E-03	3401099	FKBP4	企	1.23	3.15E-03	3088213	SH2D4A	얍	1.22	0.046
3436236	ZNF664	Û	1.23	6.57E-04	3468103	GNPTAB	Û	1.23	0.031	3209497	FAM108B1	兌	1.22	4.00E-03

2411799	BEND5	Û	1.22	0.020	3960875	DNAL4	仓	1.22	3.41E-04	3883787	C20orf4	얍	1.22	7.02E-04
3464912	POC1B	①	1.22	0.023	3849549	ZNF562	仓	1.22	0.035	3944922	TRIOBP	仓	1.22	7.25E-03
2610241	FANCD2	Û	1.22	0.043	3860793	ZNF585B	仓	1.22	0.039	3248897	NRBF2	Û	1.22	4.43E-03
3729123	DHX40	仓	1.22	3.98E-03	3712098	SNORD49A	仓	1.22	5.23E-03	3632940	UBL7	Û	1.21	1.68E-03
3636470	BTBD1	①	1.22	1.61E-03	2589255	FKBP7	Û	1.22	0.017	3430552	PWP1	仓	1.21	2.90E-03
3804143	RPRD1A	仓	1.22	2.06E-03	3409330	MRPS35	仓	1.22	0.017	2550122	COX7A2L	Û	1.21	6.58E-03
2427688	C1orf103	Û	1.22	0.017	3608113	IQGAP1	Û	1.22	0.013	3680130	DEXI	兌	1.21	0.041
3527684	RNASE3	仓	1.22	0.038	2539765	ITGB1BP1	仓	1.22	0.029	2339139	INADL	Û	1.21	0.032
3486807	WBP4	仓	1.22	7.92E-03	3923537	C21orf33	얍	1.22	4.96E-03	2438504	MRPL24	仓	1.21	0.029
3820443	ICAM1	Û	1.22	0.026	3560617	SNX6	얍	1.22	9.66E-03	3334783	SNX15	仓	1.21	2.79E-03
3227645	UCK1	仓	1.22	1.10E-03	2837479	THG1L	企	1.22	0.031	3446868	LDHB	兌	1.21	0.019
3014714	ARPC1B	仓	1.22	0.013	3417345	RPL41	얍	1.22	0.025	2438282	IQGAP3	Û	1.21	0.014
3838795	BCL2L12	仓	1.22	1.72E-03	3012381	AKAP9	Û	1.22	8.89E-03	3820177	PIN1	仓	1.21	0.025
3474228	RAB35	仓	1.22	3.88E-03	2675304	TMEM115	Û	1.22	9.71E-03	3716579	LRRC37BP1	兌	1.21	0.042
3250055	DDX21	仓	1.22	0.028	2949471	NEU1	Û	1.22	0.032	4027813	F8A1	仓	1.21	0.034
3282268	ACBD5	仓	1.22	0.020	2639054	PARP14	Û	1.22	0.015	3954238	MAPK1	兌	1.21	5.82E-03
3883941	TGIF2	仓	1.22	8.33E-03	3439063	ZNF26	企	1.22	8.56E-03	3752002	CRLF3	仓	1.21	0.020
3902609	PDRG1	兌	1.22	0.018	3854892	LSM4	仓	1.22	0.049	3600212	LRRC49	Û	1.21	0.020
2691718	GOLGB1	Û	1.22	2.51E-03	3203855	DCAF12	企	1.22	3.92E-03	2437753	KIAA0907	Û	1.21	8.73E-03
3510858	FOX01	仓	1.22	0.041	3136129	RPS20	企	1.22	0.017	3742384	SLC25A11	仓	1.21	5.28E-03
3108901	VPS13B	Û	1.22	0.022	2324571	CELA3B	Û	1.22	6.77E-03	3376529	PLA2G16	Û	1.21	8.47E-03
3821847	ASNA1	兌	1.22	0.012	3560575	EAPP	仓	1.22	8.27E-03	2909499	GPR115	Û	1.21	0.023
3740171	CRK	仓	1.22	0.028	3317309	CD81	Û	1.22	8.40E-04	3816834	NCLN	Û	1.21	0.017
3402039	KCNA5	仓	1.22	9.11E-03	2786578	NDUFC1	企	1.22	0.022	3348189	FDX1	仓	1.21	1.10E-03
3652424	EEF2K	Û	1.22	2.04E-03	2842570	FAF2	Û	1.22	0.046	3893072	C20orf11	仓	1.21	0.043
3056131	TBL2	Û	1.22	0.012	2619344	NKTR	Û	1.22	3.10E-03	2639309	SEC22A	Û	1.21	0.034
3035049	C7orf50	仓	1.22	0.012	3914346	NPBWR2	企	1.22	4.21E-03	3895795	RNF24	Û	1.21	0.030
3381817	UCP2	仓	1.22	5.27E-03	3147591	AZIN1	企	1.22	2.89E-03	2916825	ANKRD6	仓	1.21	9.13E-04
3726375	EME1	Û	1.22	0.046	3643813	GNPTG	Û	1.22	0.024	2899022	TRIM38	Û	1.21	5.29E-03
3911795	ATP5E	仓	1.22	0.028	2415728	TM2D1	Û	1.22	0.036	2950590	RGL2	Û	1.21	0.021
3656760	STX4	仓	1.22	0.012	3758157	BECN1	仓	1.22	0.017	3734575	ICT1	仓	1.21	0.024
3952703	C22orf39	仓	1.22	0.020	2925724	AKAP7	仓	1.22	0.045	3837836	CYTH2	Û	1.21	4.70E-03

		-							—		—			_
3829768	UBA2	①	1.21	0.019	2813364	SLC30A5	Û	1.21	0.026	3919124	FAM165B	仓	1.20	1.19E-03
3956290	PITPNB	仓	1.21	3.09E-03	2674748	CDHR4	仓	1.21	0.012	3762416	ANKRD40	Û	1.20	0.020
3434525	MLEC	Û	1.21	0.017	3428573	SPIC	兌	1.21	0.020	3311775	DHX32	Û	1.20	0.027
2367537	C1orf9	Û	1.21	0.043	2331158	AKIRIN1	兌	1.21	0.019	2694617	ISY1	Û	1.20	0.028
3851441	ZNF442	仓	1.21	0.034	2436938	PBXIP1	Û	1.21	0.019	3261971	CNNM2	Û	1.20	0.020
2706938	GNB4	仓	1.21	0.038	3000010	ZMIZ2	Û	1.21	0.018	3474344	RPLP0	Û	1.20	1.40E-03
3710681	MAP2K4	仓	1.21	7.74E-03	3558226	RIPK3	Û	1.20	6.14E-03	4011844	IL2RG	Û	1.20	0.013
3407926	CMAS	仓	1.21	0.044	3335070	CDC42EP2	兌	1.20	0.027	3429365	TDG	Û	1.20	0.040
2758043	MFSD10	Û	1.21	8.90E-03	2479640	PPM1B	兌	1.20	7.67E-03	3845782	PLEKHJ1	Û	1.20	9.86E-03
3951732	CECR5	仓	1.21	0.042	2403557	SNORA44	Û	1.20	0.041	3725035	NFE2L1	Û	1.20	0.034
3184940	DNAJC25	Û	1.21	0.039	3394068	RPS25	兌	1.20	0.013	3375951	GANAB	Û	1.20	0.025
2446198	TOR1AIP2	Û	1.21	9.74E-03	3708798	SENP3	仓	1.20	8.95E-03	2916716	PNRC1	Û	1.20	0.015
2448232	TPR	Û	1.21	1.89E-03	2999948	OGDH	Û	1.20	0.032	2423264	TMED5	Û	1.20	0.045
3676649	DCI	仓	1.21	2.96E-03	2829416	SEC24A	Û	1.20	0.033	2974188	MED23	Û	1.20	8.85E-03
3934245	CSTB	仓	1.21	3.99E-03	2642562	NUDT16	兌	1.20	6.72E-03	3575567	FOXN3	Û	1.20	0.025
3971923	ZFX	仓	1.21	0.025	3977646	GSPT2	仓	1.20	0.020	2380991	IARS2	Û	1.20	0.031
3333433	SCGB2A2	仓	1.21	0.036	2503618	TSN	兌	1.20	0.017	3903598	GGT7	Û	1.20	0.022
3504691	ZDHHC20	Û	1.21	0.035	2698738	XRN1	Û	1.20	2.29E-03	3860824	ZNF569	Û	1.20	1.78E-03
3821701	ZNF788	仓	1.21	5.07E-03	2345196	HS2ST1	Û	1.20	0.042	3768103	PSMD12	Û	1.20	0.012
3939545	MIF	仓	1.21	0.030	3740998	TSR1	兌	1.20	8.90E-03	3454740	PHB	Û	1.20	0.045
3824153	C19orf62	仓	1.21	7.05E-03	3893910	TCEA2	兌	1.20	0.040	3872441	ZNF552	Û	1.20	0.038
2327418	MED18	仓	1.21	2.83E-03	2618702	ZNF620	兌	1.20	7.04E-04	3496916	GPR180	Û	1.20	0.028
3959631	EIF3D	仓	1.21	2.65E-03	3144235	TMEM55A	兌	1.20	0.019	3065015	POLR2J	Û	1.20	0.027
3633148	SCAMP2	Û	1.21	0.025	3688424	C16orf58	Û	1.20	0.011	3466740	LTA4H	Û	1.20	0.035
4027532	GAB3	仓	1.21	0.037	3160735	CDC37L1	兌	1.20	0.012	3823390	OR10H3	Û	1.20	0.038
3856594	ZNF43	仓	1.21	0.013	3864597	C19orf61	Û	1.20	0.015	3413950	SPATS2	Û	1.20	0.022
2671652	ZDHHC3	Û	1.21	0.020	3005332	CRCP	兌	1.20	0.016	2328633	TMEM39B	Û	1.20	0.012
2723391	MGC42157	仓	1.21	0.018	3893086	SLC17A9	Û	1.20	7.29E-03	2468138	LOC400940	Û	1.20	2.09E-03
3617230	C15orf24	Û	1.21	0.040	3203482	BAG1	兌	1.20	0.013	2330002	EIF2C4	Û	1.20	0.011
3894228	CSNK2A1	仓	1.21	8.59E-03	2390298	OR2L2	仓	1.20	0.040	2588319	KIAA1715	Û	1.20	0.026
3903836	EIF6	仓	1.21	2.72E-03	3980560	KIF4A	Û	1.20	0.045	3845620	BTBD2	Û	1.20	0.033
2545645	UCN	仓	1.21	0.034	3576441	CCDC88C	Û	1.20	9.88E-03	3040073	SNX13	Û	1.20	0.032
3978819	RRAGB	Û	1.20	0.027	2801608	MARCH6	Û	1.20	5.37E-03	3326842	TRIM44	仓	1.20	0.014
---------	---------	---	------	----------	---------	---------	---	------	----------	---------	------------	---	------	----------
2437417	ASH1L	Û	1.20	9.06E-03	2465324	AHCTF1	Û	1.20	0.015	3974838	DDX3X	仓	1.20	9.16E-03
2482505	SPTBN1	Û	1.20	4.48E-03	2514658	UBR3	Û	1.20	8.17E-03	2460325	C1orf198	仓	1.20	8.21E-03
3200689	RPS6	仓	1.20	6.01E-03	3476265	EIF2B1	Û	1.20	2.71E-03	3202171	PLAA	仓	1.20	0.030
3819880	ZNF317	仓	1.20	2.62E-03	3797015	ZFP161	Û	1.20	0.023	3734797	KIAA0195	Û	1.20	4.37E-03
2599433	USP37	Û	1.20	0.023	3961981	POLR3H	仓	1.20	0.038	3121023	C8orf33	仓	1.20	4.32E-03
3872542	ZNF418	仓	1.20	0.026	3515009	VPS36	仓	1.20	9.91E-03	2746164	MMAA	Û	1.20	0.028
2982319	SOD2	仓	1.20	0.042	2903189	HLA-DRA	Û	1.20	9.92E-03	3816919	NFIC	仓	1.20	0.013
3462949	OSBPL8	仓	1.20	0.034	2672712	SCAP	Û	1.20	0.037	3657286	KIAA0664L3	Û	1.20	0.046
3488942	NUDT15	仓	1.20	0.026	3740304	PITPNA	仓	1.20	0.039	2359444	LCE1B	企	1.20	0.030
3149754	EIF3H	仓	1.20	1.63E-03	3829020	PDCD5	仓	1.20	0.021	3765299	APPBP2	企	1.20	6.07E-03
2397732	AGMAT	仓	1.20	1.37E-03	3389273	CASP4	仓	1.20	0.040	4012868	RLIM	仓	1.20	8.53E-03
3479438	CHFR	仓	1.20	8.80E-03	3725456	ATP5G1	仓	1.20	0.024	2486740	PNO1	企	1.20	0.031
2414998	MYSM1	Û	1.20	0.022	3696057	SLC12A4	Û	1.20	0.031	3837796	GRWD1	企	1.20	0.034
3627076	BNIP2	仓	1.20	0.013	3507003	LNX2	Û	1.20	8.47E-03	3201999	TUSC1	Û	1.20	0.031
3307680	DCLRE1A	仓	1.20	8.67E-03	3091797	EXTL3	Û	1.20	0.033	3736162	TMC8	Û	1.20	0.032
3502710	TFDP1	仓	1.20	9.66E-03	3842264	NAT14	Û	1.20	6.01E-03					

Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value
2350981	GSTM1	Û	3.05	0.022	2973376	PTPRK	Û	1.66	0.011	3944404	APOL1	Û	1.49	4.16E-03
3566383	C14orf105	Û	2.09	1.66E-03	2936657	CCR6	Û	1.65	0.013	2427208	GSTM3	仓	1.48	5.30E-03
2440385	CD244	Û	2.01	2.51E-03	2477073	CRIM1	Û	1.63	0.011	3409605	FAR2	Û	1.48	0.033
3388673	MMP7	Û	1.99	0.016	3209384	TMEM2	Û	1.62	0.013	3662201	MT1H	仓	1.48	0.043
3507282	FLT1	Û	1.97	1.84E-04	3791254	TNFRSF11A	Û	1.62	9.00E-03	3754797	HNF1B	Û	1.47	0.012
2607568	CHL1	Û	1.90	9.38E-03	2705445	PLD1	Û	1.61	8.38E-03	2849992	FAM134B	Û	1.47	6.84E-03
3456805	GTSF1	①	1.90	0.013	2485406	HSPC159	仓	1.60	6.41E-04	2615360	TGFBR2	Û	1.47	7.52E-03
3692999	MT1G	①	1.89	3.78E-03	3129361	FBX016	仓	1.59	0.016	2973232	C6orf174	Û	1.47	6.06E-03
2915828	NT5E	Û	1.88	0.013	3599709	GLCE	Û	1.59	6.10E-03	3201319	IFNA2	Û	1.46	0.036
3623031	FBN1	Û	1.88	3.87E-05	3494137	LM07	Û	1.58	1.10E-04	2730746	SLC4A4	Û	1.46	0.016
3791958	SERPINB10	仓	1.84	0.020	2403446	PTAFR	Û	1.56	0.021	2732844	ANXA3	Û	1.46	7.32E-03
3445908	EPS8	Û	1.84	4.82E-03	3323891	GAS2	Û	1.56	0.012	2818517	VCAN	Û	1.46	0.044
2459042	CDC42BPA	Û	1.84	5.71E-03	3174510	GDA	Û	1.56	0.018	3420442	IRAK3	Û	1.45	0.028
3569814	ACTN1	Û	1.81	2.33E-03	3141755	HEY1	Û	1.55	0.027	3450775	KIF21A	Û	1.45	0.021
2853102	PRLR	Û	1.81	4.53E-03	3138204	CYP7B1	Û	1.55	3.00E-03	2775735	SCD5	Û	1.45	6.58E-04
4022370	GPC4	Û	1.80	8.64E-03	4002081	MAP7D2	Û	1.55	0.014	3519309	SPRY2	Û	1.45	0.025
3778504	RAB31	Û	1.74	0.012	2664209	SH3BP5	兌	1.55	4.18E-03	3895118	CPXM1	Û	1.45	0.010
2731636	PARM1	Û	1.74	1.24E-03	3841357	LILRA2	Û	1.54	1.34E-03	2325593	CLIC4	仓	1.45	3.01E-03
3284596	PARD3	Û	1.73	8.10E-04	3382216	ARRB1	Û	1.54	0.046	3721989	CNTNAP1	Û	1.45	0.011
2898746	LRRC16A	Û	1.72	1.82E-03	3996598	NCRNA00204	兌	1.52	0.040	2809128	ITGA1	Û	1.44	0.011
3150579	ENPP2	Û	1.72	5.00E-03	2760869	HS3ST1	Û	1.52	0.021	3396593	FEZ1	仓	1.44	0.015
2699564	PLOD2	Û	1.71	5.40E-03	2459173	PRO2012	Û	1.51	3.54E-03	3139580	SLCO5A1	Û	1.44	4.89E-04
3512948	C13orf18	Û	1.71	4.37E-03	3941848	EMID1	Û	1.51	1.37E-03	3852880	EMR2	Û	1.44	0.038
3393446	FXYD2	Û	1.70	5.83E-03	2924253	RNF217	Û	1.51	0.033	2830861	EGR1	仓	1.43	0.026
3718555	SLFN5	Û	1.70	0.035	3560403	EGLN3	Û	1.51	9.31E-03	2362333	MNDA	仓	1.43	0.040
2571483	IL1A	Û	1.70	0.013	3461341	СРМ	Û	1.51	0.031	3724545	ITGB3	Û	1.43	0.033
2635741	CD96	Û	1.69	0.018	3212848	GOLM1	Û	1.50	4.65E-03	3091077	DPYSL2	仓	1.43	7.30E-03
2738664	SGMS2	Û	1.69	0.010	2422035	GBP5	Û	1.49	2.48E-03	2879105	SPRY4	Û	1.43	2.47E-03
3496409	GPC5	Û	1.68	5.20E-04	2986999	GPR146	Û	1.49	0.011	3061997	PON2	Û	1.42	0.047
3944129	HMOX1	①	1.67	2.41E-04	2462160	NID1	Û	1.49	5.43E-03	3344142	NAALAD2	Û	1.42	0.027
3449068	TMTC1	Û	1.66	6.83E-03	3450899	SLC2A13	Û	1.49	5.32E-04	3164825	IFNA1	Û	1.42	6.58E-03

2584018	DPP4	Û	1.41	0.033	3761313	HOXB3	Û	1.35	3.82E-06	3005444	TPST1	Û	1.33	0.017
3385752	RAB38	Û	1.41	0.025	3273667	ADARB2	Û	1.35	0.016	3057955	FGL2	Û	1.33	8.85E-03
3402757	LAG3	Û	1.41	2.34E-03	2425400	EXTL2	Û	1.35	7.11E-03	2351004	GSTM5	仓	1.33	4.03E-03
3705151	DBNDD1	Û	1.41	0.022	3816827	S1PR4	Û	1.35	8.34E-03	3570373	SLC8A3	Û	1.33	0.029
3753500	SLFN11	Û	1.40	4.71E-05	3887302	CD40	Û	1.35	9.46E-04	2777487	FAM13A	Û	1.33	0.014
2910868	TINAG	Û	1.40	4.73E-03	3016636	SH2B2	仓	1.35	2.31E-03	3712062	TRPV2	Û	1.33	3.02E-04
3011838	STEAP1	Û	1.40	4.89E-03	2912649	COL19A1	Û	1.35	6.12E-03	3447348	SOX5	Û	1.33	0.010
2533999	CXCR7	Û	1.40	0.048	3067302	LAMB1	Û	1.35	0.015	3082590	LOC286161	仓	1.33	9.64E-03
3887210	MMP9	Û	1.40	0.017	3796620	DLGAP1	Û	1.35	0.028	3141589	IL7	Û	1.33	0.038
2522094	SPATS2L	Û	1.40	0.016	3136178	PLAG1	仓	1.34	0.026	3443891	CLEC2B	Û	1.33	0.036
2748923	GUCY1B3	Û	1.40	0.045	3150455	TNFRSF11B	Û	1.34	0.022	3714068	ALDH3A2	Û	1.33	3.32E-04
2446240	TOR1AIP2	Û	1.39	0.013	2338625	HOOK1	Û	1.34	0.014	3712062	TRPV2	Û	1.33	3.02E-04
2328273	SERINC2	Û	1.39	0.042	3734379	CD300A	Û	1.34	1.50E-04	3447348	SOX5	Û	1.33	0.010
3972929	GK	Û	1.39	0.011	2848265	CMBL	仓	1.34	8.85E-03	3082590	LOC286161	Û	1.33	9.64E-03
4005859	CASK	Û	1.39	4.60E-03	3220846	SUSD1	Û	1.34	0.013	3141589	IL7	Û	1.33	0.038
2327677	EPB41	Û	1.38	1.28E-03	3228523	GBGT1	Û	1.34	0.013	3443891	CLEC2B	Û	1.33	0.036
3609592	MCTP2	Û	1.38	1.17E-04	3103818	HNF4G	Û	1.34	0.020	3714068	ALDH3A2	仓	1.33	3.32E-04
3054165	SBDS	仓	1.38	0.013	3302177	ARHGAP19	仓	1.34	0.022	2902178	TCF19	仓	1.32	3.14E-03
2842561	HIGD2A	Û	1.38	1.46E-03	2879028	GNPDA1	仓	1.34	4.99E-03	2902178	TCF19	Û	1.32	3.14E-03
3766533	CD79B	Û	1.38	7.82E-03	3011492	ADAM22	Û	1.34	3.92E-03	3424442	TMTC2	Û	1.32	2.36E-04
3788049	SKA1	仓	1.38	1.01E-03	2848265	CMBL	仓	1.34	8.85E-03	2929127	STX11	仓	1.32	0.022
3132940	ANK1	Û	1.37	0.012	3220846	SUSD1	Û	1.34	0.013	4018080	CHRDL1	Û	1.32	0.018
3065244	RASA4	仓	1.37	0.028	3228523	GBGT1	Û	1.34	0.013	3067644	THAP5	仓	1.32	4.95E-04
3236538	RPP38	仓	1.37	0.019	3103818	HNF4G	Û	1.34	0.020	2449711	DENND1B	仓	1.32	0.045
2626167	РХК	仓	1.37	2.39E-03	3302177	ARHGAP19	仓	1.34	0.022	2946219	HIST1H2AB	仓	1.32	0.047
2932508	TIAM2	仓	1.37	7.33E-03	2879028	GNPDA1	仓	1.34	4.99E-03	3825013	SSBP4	Û	1.32	4.95E-03
2323559	MRT04	Û	1.36	1.15E-03	3011492	ADAM22	Û	1.34	3.92E-03	3040897	CDCA7L	Û	1.32	0.018
2956052	TNFRSF21	Û	1.36	0.023	3005444	TPST1	Û	1.33	0.017	2601287	AP1S3	仓	1.32	4.10E-04
2933175	ZDHHC14	Û	1.36	0.024	3057955	FGL2	Û	1.33	8.85E-03	2336585	SCP2	仓	1.32	6.03E-03
3847112	PTPRS	Û	1.36	0.042	2351004	GSTM5	仓	1.33	4.03E-03	3424442	TMTC2	Û	1.32	2.36E-04
2538600	ADI1	Û	1.36	4.76E-03	3570373	SLC8A3	Û	1.33	0.029	2929127	STX11	兌	1.32	0.022
2626141	RPP14	仓	1.36	3.11E-03	2777487	FAM13A	Û	1.33	0.014	4018080	CHRDL1	Û	1.32	0.018

3067644	THAP5	仓	1.32	4.95E-04	2608419	SETMAR	Û	1.30	8.10E-04	2861952	MRPS27	仓	1.28	1.51E-04
2449711	DENND1B	Û	1.32	0.045	2514441	PPIG	仓	1.30	1.24E-06	3624145	DMXL2	Û	1.28	2.87E-03
2946219	HIST1H2AB	Û	1.32	0.047	2715440	RNF4	仓	1.30	0.011	2582124	NR4A2	Û	1.28	7.31E-03
3825013	SSBP4	Û	1.32	4.95E-03	3009399	HSPB1	仓	1.30	0.026	3740432	SCARF1	Û	1.28	4.31E-03
3040897	CDCA7L	仓	1.32	0.018	3259978	PI4K2A	仓	1.30	0.017	3887107	ZSWIM1	Û	1.28	4.59E-03
2601287	AP1S3	Û	1.32	4.10E-04	2385696	C1orf57	仓	1.29	0.026	3385769	CTSC	Û	1.28	0.033
2336585	SCP2	Û	1.32	6.03E-03	3234277	GATA3	Û	1.29	0.011	3278813	FAM107B	Û	1.28	0.030
3761291	HOXB2	Û	1.31	8.05E-03	3074912	DGKI	Û	1.29	6.79E-03	2403470	DNAJC8	Û	1.28	0.017
2712906	RNF168	Û	1.31	6.94E-04	2438482	ISG20L2	仓	1.29	2.27E-04	3848243	INSR	Û	1.28	0.034
3663074	MMP15	Û	1.31	0.019	2604390	ARL4C	仓	1.29	0.013	3018652	CBLL1	Û	1.28	4.79E-05
2350489	KIAA1324	Û	1.31	0.041	2331178	NDUFS5	仓	1.29	0.018	2910680	LRRC1	Û	1.28	0.036
3345222	AMOTL1	Û	1.31	2.73E-03	2471978	RHOB	Û	1.29	0.045	2723710	PGM2	Û	1.28	7.12E-04
2826295	SNX2	Û	1.31	7.47E-03	3450655	CPNE8	Û	1.29	0.011	3245783	WDFY4	Û	1.28	4.65E-05
2350489	KIAA1324	Û	1.31	0.041	3931112	HLCS	Û	1.29	7.78E-05	2437893	UBQLN4	Û	1.28	0.012
3345222	AMOTL1	Û	1.31	2.73E-03	3396107	ESAM	Û	1.29	0.021	3635198	BCL2A1	Û	1.28	0.041
2826295	SNX2	Û	1.31	7.47E-03	2316245	PRKCZ	仓	1.29	1.37E-03	2442424	ILDR2	Û	1.27	0.032
3761291	HOXB2	Û	1.31	8.05E-03	3845944	GNG7	仓	1.29	7.26E-03	2728189	PAICS	Û	1.27	1.41E-03
2712906	RNF168	仓	1.31	6.94E-04	3803120	B4GALT6	Û	1.29	9.87E-04	3747522	TNFRSF13B	Û	1.27	0.037
3663074	MMP15	Û	1.31	0.019	3402506	CD27	仓	1.29	0.046	2434159	SF3B4	Û	1.27	7.22E-03
2925590	TMEM200A	Û	1.31	0.045	2682568	SHQ1	仓	1.29	3.23E-03	3851493	ZNF443	Û	1.27	0.014
2427791	DENND2D	Û	1.31	0.012	3044753	LSM5	仓	1.29	4.37E-03	2900059	HIST1H2BM	Û	1.27	4.51E-03
2744734	MGST2	Û	1.31	0.046	2325479	RCAN3	仓	1.29	1.54E-03	2748346	TLR2	Û	1.27	0.019
3687494	MAPK3	仓	1.31	3.50E-03	2676182	NT5DC2	仓	1.29	3.46E-03	2350922	GSTM4	Û	1.27	0.043
2805176	C5orf22	仓	1.31	2.06E-03	2558483	C2orf42	仓	1.29	6.99E-03	2961300	COX7A2	Û	1.27	0.024
3284188	ITGB1	Û	1.31	2.01E-03	3674659	GAS8	Û	1.28	0.038	3332886	TMEM138	Û	1.27	0.012
2829275	UBE2B	仓	1.30	4.67E-03	3590239	DLL4	Û	1.28	0.044	3289235	SGMS1	Û	1.27	3.90E-03
2692060	PARP9	仓	1.30	0.017	2478748	EML4	仓	1.28	4.42E-03	3503119	ZNF828	Û	1.27	4.65E-03
3161113	PDCD1LG2	Û	1.30	0.025	2927722	HEBP2	仓	1.28	2.87E-03	3538087	DACT1	Û	1.27	0.019
3245881	WDFY4	Û	1.30	5.72E-03	4003895	CXorf21	Û	1.28	0.013	2655113	KLHL24	Û	1.27	0.028
3004768	ZNF273	仓	1.30	0.013	2371346	RGL1	仓	1.28	0.033	2820893	RFESD	Û	1.27	6.91E-03
2827525	SLC12A2	Û	1.30	3.39E-03	2505957	PLEKHB2	仓	1.28	2.40E-03	2689208	NAA50	Û	1.27	8.49E-04
3061651	BET1	仓	1.30	2.89E-03	2531522	CAB39	仓	1.28	1.12E-03	2706985	MRPL47	Û	1.27	0.037

2638962	DTX3L	仓	1.27	0.027	2336913	LRRC42	仓	1.26	1.48E-04	2703217	KPNA4	仓	1.24	2.27E-03
2713111	MFI2	Û	1.27	0.016	3279982	PTPLA	Û	1.26	0.039	2367963	RABGAP1L	얍	1.24	0.047
2434139	SV2A	Û	1.27	0.025	2520069	C2orf88	Û	1.26	0.024	3816264	DOT1L	Û	1.24	4.29E-03
3291601	EGR2	仓	1.27	0.045	2364189	UAP1	仓	1.26	6.33E-03	2905404	PIM1	얍	1.24	0.024
3342426	C11orf82	仓	1.26	0.015	3286975	ANUBL1	仓	1.26	2.81E-03	2758686	LYAR	兌	1.24	8.94E-04
3508898	STARD13	Û	1.26	0.032	2898562	ACOT13	仓	1.26	0.011	3927081	NCRNA00158	Û	1.24	0.027
2659887	FYTTD1	仓	1.26	7.46E-03	3622386	GATM	仓	1.25	0.011	3344990	PANX1	Û	1.24	0.014
2871241	MCC	Û	1.26	9.38E-03	3073981	AKR1B1	仓	1.25	0.027	3288518	C10orf72	Û	1.24	0.046
2696379	ANAPC13	仓	1.26	0.012	2469910	LPIN1	仓	1.25	0.020	2813442	CENPH	얍	1.24	0.023
2626258	KCTD6	仓	1.26	4.82E-03	2766456	UGDH	仓	1.25	7.14E-03	2363444	USP21	얍	1.24	1.85E-04
3350775	SIDT2	Û	1.26	9.52E-05	3316375	TSPAN4	Û	1.25	0.047	3037304	C7orf70	얍	1.24	0.015
3880827	GINS1	仓	1.26	0.024	3670700	BCM01	Û	1.25	0.014	2560141	MRPL53	얍	1.24	1.89E-04
3091699	PNOC	仓	1.26	0.015	2724094	FAM114A1	仓	1.25	0.040	2945645	TDP2	얍	1.24	8.23E-03
3101385	MTFR1	仓	1.26	7.72E-03	2538000	RNASEH1	仓	1.25	5.58E-03	3438617	EP400	Û	1.24	2.04E-03
2979679	ZBTB2	仓	1.26	2.85E-03	2564599	MRPS5	仓	1.25	8.70E-03	3833238	LGALS14	얍	1.24	0.044
2957462	GSTA4	仓	1.26	7.23E-03	3311157	OAT	仓	1.25	0.036	2444790	MRPS14	얍	1.24	2.68E-04
2334279	UROD	仓	1.26	4.43E-04	3850660	SPC24	仓	1.25	0.035	3758291	VAT1	얍	1.24	0.047
3498837	PCCA	Û	1.26	8.25E-03	3272205	INPP5A	Û	1.25	0.012	2931683	C6orf211	仓	1.24	0.020
3655574	SPN	Û	1.26	6.84E-04	2624147	ITIH1	Û	1.25	0.015	3864430	ETHE1	얍	1.24	0.013
3934407	ICOSLG	Û	1.26	1.01E-04	3118451	CHRAC1	仓	1.25	3.16E-03	3736087	TNRC6C	Û	1.24	2.56E-03
2443989	VAMP4	仓	1.26	0.018	2814642	MCCC2	仓	1.25	1.25E-03	2815455	UTP15	仓	1.24	6.43E-03
2724338	LIAS	仓	1.26	7.91E-03	2359433	LCE1E	仓	1.25	7.71E-03	3914273	SAMD10	Û	1.24	0.017
2332767	C1orf50	仓	1.26	3.93E-03	2523354	FAM117B	仓	1.25	1.76E-03	3079803	PRKAG2	얍	1.24	4.69E-04
3521484	UGGT2	Û	1.26	0.037	2317317	TP73	仓	1.25	0.025	3704376	FAM38A	Û	1.24	4.67E-03
3005717	RABGEF1	仓	1.26	1.17E-03	2901660	PRR3	仓	1.25	1.10E-03	3454576	SLC11A2	Û	1.24	9.89E-03
3267382	INPP5F	兌	1.26	0.018	3742067	UBE2G1	얍	1.25	5.67E-03	2798915	TRIP13	仓	1.23	0.030
2633460	C3orf26	仓	1.26	7.48E-03	3222128	TNFSF15	Û	1.24	8.11E-03	3561110	RALGAPA1	Û	1.23	0.013
2745220	ZNF330	仓	1.26	3.49E-03	2479943	SIX3	Û	1.24	9.88E-03	2838042	TTC1	仓	1.23	0.014
2636272	GTPBP8	仓	1.26	3.59E-03	3596109	FAM81A	仓	1.24	3.45E-03	2434862	LYSMD1	仓	1.23	3.44E-03
4024160	ATP11C	Û	1.26	3.09E-03	3662247	MT1X	仓	1.24	0.014	3904527	NDRG3	兌	1.23	0.017
2489172	MTHFD2	仓	1.26	0.016	3394412	THY1	Û	1.24	0.040	2413943	USP24	兌	1.23	0.046
3748323	SHMT1	仓	1.26	0.031	3851055	ELOF1	仓	1.24	0.014	3741800	ATP2A3	Û	1.23	0.022

3164601	KIAA1797	Û	1.23	2.34E-03	3416909	BLOC1S1	Û	1.23	0.038	3293724	C10orf54	Û	1.22	0.039
2855443	LOC100132356	Û	1.23	3.67E-03	3841574	LILRB1	Û	1.23	0.037	2559494	C2orf7	Ŷ	1.22	0.027
3106243	RIPK2	Û	1.23	0.039	2907568	KLHDC3	仓	1.23	1.77E-04	3094286	PROSC	Ŷ	1.22	0.017
2636483	SIDT1	Û	1.23	7.39E-03	3590108	GCHFR	얍	1.23	0.027	2541699	FAM49A	仓	1.22	0.048
2885099	NUDCD2	Û	1.23	2.96E-03	3487095	DGKH	Û	1.23	0.021	3634458	TBC1D2B	Û	1.22	1.35E-03
2443518	C1orf156	Û	1.23	0.013	2934167	MRPL18	仓	1.23	3.15E-03	3757745	GHDC	Û	1.22	2.78E-03
3920385	TTC3	Û	1.23	0.024	2327630	YTHDF2	얍	1.22	0.048	3448152	ITPR2	Û	1.21	0.044
3936887	MRPL40	Û	1.23	0.015	2334350	MMACHC	仓	1.22	0.033	3648247	C16orf75	Û	1.21	0.044
3852565	ASF1B	Û	1.23	0.030	3829313	CEBPG	仓	1.22	0.029	3651955	METTL9	Ŷ	1.21	7.92E-03
2877465	ETF1	Û	1.23	6.98E-03	2342576	ACADM	仓	1.22	3.80E-03	2911903	PTP4A1	Ŷ	1.21	7.01E-03
3328389	EXT2	Û	1.23	9.44E-03	2492496	NCRNA00152	얍	1.22	0.044	2949210	BAT4	仓	1.21	3.48E-03
2548617	CDC42EP3	Û	1.23	0.035	2339414	USP1	仓	1.22	0.014	3929395	GCFC1	Ŷ	1.21	0.022
3434490	CABP1	Û	1.23	0.020	3542689	PCNX	Û	1.22	1.71E-03	3940992	ASPHD2	Û	1.21	0.019
3539724	SYNE2	Û	1.23	0.014	3396179	LOC100130428	Û	1.22	0.023	3006133	STAG3L4	ſ	1.21	0.044
2694644	CNBP	Û	1.23	7.62E-03	3489481	PHF11	Û	1.22	1.15E-03	2881413	RPS14	ſ	1.21	0.031
2889753	ZNF354A	Û	1.23	9.43E-03	2596955	CRYGC	얍	1.22	0.011	3836317	VASP	Û	1.21	4.00E-03
2964200	UBE2J1	Û	1.23	0.013	2693149	SNX4	얍	1.22	6.54E-03	2597273	C2orf67	Û	1.21	4.10E-03
3771675	ST6GALNAC2	Û	1.23	0.027	3662444	NLRC5	Û	1.22	1.33E-03	2359780	NPR1	Û	1.21	0.030
2645579	RASA2	Û	1.23	7.98E-03	2403215	FGR	Û	1.22	0.013	2398789	SDHB	ſ	1.21	6.33E-03
2986350	DLL1	Û	1.23	0.013	3255938	OPN4	얍	1.22	0.044	3175597	VPS13A	Û	1.21	7.84E-03
3660175	NOD2	Û	1.23	1.62E-03	2700500	COMMD2	얍	1.22	0.013	3005684	KCTD7	仓	1.21	0.015
2976727	TXLNB	Û	1.23	0.018	3339812	ARHGEF17	Û	1.22	0.045	2666566	NGLY1	①	1.21	5.76E-03
3721926	TUBG1	Û	1.23	0.010	3048869	H2AFV	얍	1.22	9.23E-03	2712858	UBXN7	仓	1.21	2.43E-03
2356205	PEX11B	Û	1.23	3.13E-04	3919033	SLC5A3	Û	1.22	1.67E-03	2595443	WDR12	仓	1.21	9.71E-03
2351872	RAP1A	Û	1.23	1.16E-03	2515183	DCAF17	Û	1.22	4.14E-03	3800070	C18orf19	仓	1.21	0.041
2396121	DFFA	Û	1.23	1.18E-03	2544164	C2orf44	Û	1.22	0.015	3445643	HIST4H4	Û	1.21	0.035
2435195	MRPL9	Û	1.23	6.45E-03	3907934	ZNF334	Û	1.22	0.046	3015178	ZSCAN21	仓	1.21	1.57E-03
2489806	MRPL19	Û	1.23	0.010	2654069	NDUFB5	Û	1.22	8.23E-03	3818897	PNPLA6	Û	1.21	3.03E-04
2389016	PPPDE1	Û	1.23	0.028	2723752	TBC1D1	Û	1.22	3.18E-03	2598099	BARD1	①	1.21	8.11E-04
3830993	HCST	Û	1.23	0.022	2555630	CCT4	얍	1.22	1.20E-04	3072368	ZC3HC1	仓	1.21	1.51E-04
2835006	GRPEL2	얍	1.23	3.99E-03	3665997	DUS2L	얍	1.22	6.61E-03	3824427	FAM129C	仓	1.21	0.022
3146103	STK3	Û	1.23	5.91E-03	2601341	WDFY1	얍	1.22	0.013	3761348	HOXB4	Û	1.21	1.83E-03

3521174	ABCC4	Û	1.21	0.027	2385258	C1orf124	Û	1.21	8.12E-03	2356181	RBM8A	仓	1.20	7.20E-03
2999816	YKT6	Û	1.21	5.69E-03	2802398	TRIO	Û	1.20	1.17E-03	3148963	KCNV1	Û	1.20	2.02E-03
3860101	NFKBID	Û	1.21	0.044	3747717	COPS3	仓	1.20	8.37E-04	2842911	FGFR4	Û	1.20	0.018
3536905	KTN1	Û	1.21	1.17E-03	3934695	PTTG1IP	Û	1.20	9.67E-03	2409220	EBNA1BP2	Û	1.20	0.046
2319802	PGD	Û	1.21	0.022	2946268	HIST1H2BC	仓	1.20	0.019	3018509	DUS4L	Û	1.20	1.64E-04
3323052	NAV2	Û	1.21	5.62E-03	3774218	DYSFIP1	Û	1.20	3.88E-03	3325820	DEPDC7	Û	1.20	0.010
2662473	PRRT3	Û	1.21	0.027	3859915	U2AF1L4	Û	1.20	0.013	2317434	TPRG1L	Û	1.20	0.013
3337516	LRP5	Û	1.21	0.024	3275690	IL15RA	Û	1.20	1.14E-03	2379132	ATF3	Û	1.20	0.022
2750227	C4orf43	Û	1.21	2.07E-03	3715874	ERAL1	Û	1.20	0.012	3282974	SVIL	Û	1.20	0.011
2979056	N1243	Û	1.21	4.94E-03	2739160	CCDC109B	Û	1.20	0.020	2807862	C5orf51	Û	1.20	0.023
2621583	ZNF589	Û	1.21	0.043	2534564	UBE2F	Û	1.20	0.046	3563395	POLE2	Û	1.20	0.049
2519140	ZC3H15	Û	1.21	1.24E-03	2991103	BZW2	仓	1.20	0.033	3283920	ARHGAP12	Û	1.20	4.54E-03
3831475	ZNF382	Û	1.21	0.038	2831567	PURA	Û	1.20	3.65E-04	3329904	NDUFS3	Û	1.20	4.10E-03
2475407	CLIP4	Û	1.21	0.011	2863535	WDR41	仓	1.20	1.50E-04	2990464	ARL4A	Û	1.20	5.10E-03
3537264	C14orf101	Û	1.21	2.45E-03	3000167	CCM2	Û	1.20	0.013	2852274	MTMR12	Û	1.20	1.25E-03
2484970	EHBP1	Û	1.21	0.032	2952834	KCNK5	Û	1.20	0.047	2716432	ZBTB49	Û	1.20	1.39E-03
3302495	AVPI1	Û	1.21	5.28E-03	2963614	CGA	Û	1.20	9.74E-03	3556966	HAUS4	Û	1.20	0.036
3352948	SORL1	Û	1.21	4.21E-03	3542145	KIAA0247	Û	1.20	0.031	3048413	POLD2	Û	1.20	1.61E-03
3944690	CYTH4	Û	1.21	0.024	3139722	NCOA2	Û	1.20	8.39E-03	2767378	ATP8A1	Û	1.20	0.019
2942578	CCDC90A	Û	1.21	1.69E-03	2685776	MINA	Û	1.20	9.32E-03	3101802	SGK3	Û	1.20	1.15E-03
2549260	MAP4K3	Û	1.21	0.025	2443537	SCYL3	Û	1.20	5.33E-04	2951221	C6orf106	Û	1.20	0.010
2847264	MED10	Û	1.21	0.012	2827388	PRRC1	仓	1.20	3.03E-03	3662106	MT1A	仓	1.20	0.049
2825629	TNFAIP8	Û	1.21	4.27E-03	2950214	TAP1	Û	1.20	1.47E-03	3191147	TOR1B	Û	1.20	0.013
3304746	USMG5	Û	1.21	0.020	3048212	MRPS24	Û	1.20	4.37E-04	3244622	ALOX5	Û	1.20	0.025
2901352	PPP1R11	Û	1.21	6.81E-03	3590086	RAD51	Û	1.20	0.031	3781429	RBBP8	Û	1.20	0.010
3610982	SYNM	Û	1.21	4.97E-03	3015603	AGFG2	仓	1.20	7.54E-03	3153428	ASAP1	仓	1.20	5.04E-03
3654956	LAT	Û	1.21	4.02E-03	3675116	TMEM8A	Û	1.20	1.23E-03	3901665	C20orf3	Û	1.20	3.91E-03
3416522	COPZ1	Û	1.21	0.044	3019981	MDFIC	얍	1.20	0.023	2519860	ASNSD1	仓	1.20	0.015
3074260	WDR91	Û	1.21	4.34E-03	2838688	MAT2B	Û	1.20	0.013					

Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value
2421995	GBP4	Û	2.90	4.49E-03	2452691	SLC41A1	Û	1.80	0.015	2845274	CCDC127	Û	1.57	0.026
2523801	CD28	仓	2.68	0.040	3055608	TYW1B	Û	1.79	3.88E-04	3016636	SH2B2	Û	1.57	0.010
3174510	GDA	仓	2.54	0.021	3726498	MYCBPAP	Û	1.76	1.96E-03	2320727	TNFRSF1B	Û	1.57	0.016
2497161	IL18RAP	Û	2.50	0.032	2869438	NUDT12	仓	1.75	0.011	3645836	ZNF75A	Û	1.57	0.012
2742109	FGF2	仓	2.49	4.96E-04	4035833	CD24	仓	1.74	0.020	2775259	RASGEF1B	Û	1.56	9.88E-03
2821347	ERAP2	仓	2.49	0.039	3203382	SMU1	仓	1.74	0.011	3250093	KIAA1279	Û	1.56	0.011
3141755	HEY1	Û	2.41	9.20E-03	3238962	KIAA1217	Û	1.72	0.016	3066818	NAMPT	Û	1.56	0.015
2678298	DNASE1L3	Û	2.37	0.045	3382061	XRRA1	仓	1.71	9.10E-03	3434393	DYNLL1	仓	1.56	0.028
2522094	SPATS2L	仓	2.36	4.11E-05	3916527	JAM2	Û	1.70	0.024	2502424	INSIG2	Û	1.55	0.024
3748449	CCDC144B	Û	2.23	0.030	3175119	OSTF1	仓	1.70	0.013	2902574	LY6G5B	Û	1.54	0.014
3433466	NCRNA00173	Û	2.23	0.012	3840224	ZNF528	仓	1.69	6.06E-03	3856184	ZNF737	仓	1.54	7.04E-03
2973376	PTPRK	Û	2.22	0.015	2422035	GBP5	仓	1.69	0.042	3375091	SLC15A3	Û	1.54	0.043
3409605	FAR2	Û	2.17	0.020	3149528	TRPS1	仓	1.69	0.030	3857105	ZNF91	仓	1.53	0.043
3652902	SCNN1B	Û	2.08	0.030	3100497	CLVS1	仓	1.68	0.019	4007216	UXT	仓	1.52	0.030
2760869	HS3ST1	Û	2.03	0.041	3494137	LM07	仓	1.68	0.034	3969422	RAB9A	仓	1.52	0.021
3840194	ZNF880	Û	1.97	6.99E-04	3184218	C9orf6	Û	1.66	9.56E-03	3565524	GCH1	Û	1.52	0.027
2734047	AGPAT9	Û	1.96	0.022	2324634	CDC42	Û	1.66	0.016	3883064	ACSS2	Û	1.52	8.22E-03
3156307	PTK2	Û	1.96	5.47E-03	3444086	KLRK1	仓	1.65	4.97E-03	3876645	BTBD3	仓	1.51	0.030
2528159	WNT10A	Û	1.95	1.36E-03	2638728	SLC15A2	Û	1.65	0.023	2469910	LPIN1	Û	1.51	0.013
3214451	NFIL3	Û	1.94	0.027	3216276	SLC35D2	仓	1.60	0.046	4027585	MPP1	仓	1.51	0.045
3453036	ASB8	Û	1.89	8.76E-03	3101153	BHLHE22	仓	1.60	0.021	2343231	NEXN	仓	1.51	0.036
3839103	ATF5	Û	1.88	0.036	3581637	ADAM6	Û	1.60	0.034	3830216	FXYD5	Û	1.50	0.023
3519309	SPRY2	Û	1.88	0.024	2908179	VEGFA	Û	1.60	0.016	3851441	ZNF442	Û	1.50	1.54E-03
2777564	FAM13A	Û	1.87	0.047	2957462	GSTA4	Û	1.60	9.60E-03	3375735	AHNAK	Û	1.50	0.028
3703885	SLC7A5	Û	1.87	5.16E-03	3507798	UBL3	Û	1.60	0.014	3142485	IMPA1	Û	1.50	1.62E-03
2877893	MGC29506	Û	1.86	0.019	3651639	TMEM159	Û	1.59	0.017	2361342	SEMA4A	Û	1.50	0.040
3841357	LILRA2	Û	1.84	3.67E-03	3227816	RAPGEF1	Û	1.59	8.38E-03	3577246	MOAP1	仓	1.50	0.027
3450899	SLC2A13	Û	1.84	6.29E-04	3382698	GUCY2E	Û	1.59	0.014	3413875	TROAP	Û	1.49	3.70E-04
3944129	HMOX1	Û	1.82	0.047	3311715	UROS	仓	1.58	2.65E-04	2620641	LIMD1	Û	1.49	0.021
3892812	SLCO4A1	Û	1.81	4.13E-03	3476330	CCDC92	仓	1.58	0.017	3846831	PLIN5	Û	1.49	0.040
3969946	ZRSR2	Û	1.81	7.88E-03	3390641	ARHGAP20	仓	1.58	0.013	2740507	UGT8	仓	1.49	0.025

	0		•		L L	,			E.		<i>,</i> 1	•		
2691575	POLQ	Û	1.49	0.035	3088213	SH2D4A	仓	1.45	0.031	3590108	GCHFR	Û	1.41	0.022
3726375	EME1	Û	1.49	0.020	3090697	CDCA2	Û	1.45	0.045	3716664	SUZ12P	Û	1.41	0.030
3325052	EIF2AK2	仓	1.49	0.029	3904508	SLA2	仓	1.45	0.033	3320169	AMPD3	Û	1.41	5.18E-03
3727712	РСТР	仓	1.48	0.043	3366519	FANCF	仓	1.45	0.011	2603897	TIGD1	Û	1.41	0.014
3137875	GGH	Û	1.48	0.030	3286393	ZNF32	仓	1.45	0.011	2866045	TMEM161B	Û	1.41	0.045
3167383	NUDT2	仓	1.48	0.011	2579572	ZEB2	仓	1.45	0.027	2330393	C1orf113	Û	1.41	4.42E-03
2327677	EPB41	Û	1.48	0.023	2949801	AGPAT1	Û	1.45	0.014	3860491	ZNF260	Û	1.40	3.03E-05
3531479	ARHGAP5	仓	1.48	3.18E-03	3860824	ZNF569	仓	1.45	9.59E-05	3845352	UQCR11	Û	1.40	0.037
2878622	TAF7	仓	1.48	0.046	3075932	PARP12	仓	1.44	0.035	3890218	C20orf43	Û	1.40	0.021
2914777	ТТК	Û	1.48	0.038	3670668	ATMIN	仓	1.44	9.86E-03	2332711	PPIH	Û	1.40	0.040
2735362	HERC6	Û	1.48	0.040	4014191	POF1B	Û	1.44	0.038	3633460	PTPN9	Û	1.40	0.015
2673547	SLC26A6	Û	1.47	3.57E-03	2813414	CCNB1	Û	1.44	0.038	3986230	CXorf57	Û	1.40	2.49E-03
3351895	C2CD2L	Û	1.47	0.012	2432851	NBPF11	Û	1.44	0.026	3375935	B3GAT3	Û	1.40	0.016
3517793	KLF12	仓	1.47	0.022	3724989	CDK5RAP3	Û	1.44	6.35E-03	3251353	ANAPC16	Û	1.40	0.019
2782292	C4orf21	Û	1.47	0.030	3881874	ASXL1	Û	1.43	5.08E-03	3976670	EBP	Û	1.40	0.032
3697563	FTSJD1	仓	1.47	2.02E-03	3380996	C11orf51	仓	1.43	0.016	3494706	SLAIN1	Û	1.40	0.037
3665230	HSF4	Û	1.47	0.012	3882949	DYNLRB1	仓	1.43	4.54E-03	3376556	ATL3	Û	1.39	0.045
3120358	HSF1	Û	1.47	0.029	3648306	SNN	仓	1.43	0.021	3854877	JUND	Û	1.39	4.23E-03
2360989	MST01	Û	1.46	0.027	3409127	ARNTL2	仓	1.43	0.041	3140640	STAU2	Û	1.39	0.013
2908261	C6orf223	Û	1.46	0.026	3894098	C20orf96	Û	1.43	2.46E-03	2878368	APBB3	Û	1.39	6.54E-03
3511698	EPSTI1	仓	1.46	0.012	3439356	ZNF140	얍	1.43	0.048	2391425	DVL1	Û	1.39	0.013
3518169	COMMD6	仓	1.46	0.017	2396009	LZIC	얍	1.42	0.019	4010768	ZC4H2	Û	1.39	0.015
2475678	LBH	仓	1.46	0.016	3968664	HCCS	仓	1.42	0.036	3911814	SLM02	Û	1.39	5.18E-03
3145240	C8orf37	仓	1.46	0.040	3242425	CCNY	仓	1.42	0.038	3139950	LACTB2	Û	1.39	0.023
3177111	NTRK2	仓	1.46	0.011	3909395	DPM1	仓	1.42	6.12E-03	3440192	DCP1B	Û	1.38	0.047
2604254	HJURP	Û	1.45	0.030	2925724	AKAP7	얍	1.42	0.025	2957499	ICK	Û	1.38	0.020
3426215	MRPL42	仓	1.45	6.73E-03	2336302	ZFYVE9	仓	1.42	8.46E-03	3841474	LENG8	Û	1.38	4.22E-03
3403244	CLSTN3	Û	1.45	0.014	3351359	ATP5L	仓	1.42	0.042	2411799	BEND5	Û	1.38	0.028
3686080	NSMCE1	仓	1.45	0.017	2941784	NEDD9	仓	1.42	0.018	2458742	LIN9	Û	1.38	0.021
2485784	ACTR2	얍	1.45	0.023	3793760	CNDP2	仓	1.41	6.82E-03	3507710	SLC7A1	Û	1.38	0.018
3512050	CCDC122	얍	1.45	0.014	3514849	NEK3	仓	1.41	0.027	2924492	HEY2	Û	1.37	0.037
2826295	SNX2	兌	1.45	0.035	2413153	CPT2	仓	1.41	0.016	3621140	LCMT2	Û	1.37	9.30E-03

									L		F	,-		
3397589	ETS1	Û	1.37	0.037	3464967	GALNT4	仓	1.35	5.57E-03	2349848	PRMT6	仓	1.33	0.037
3318443	TRIM22	얍	1.37	0.015	3996467	PLXNA3	Û	1.35	4.69E-03	3788270	ELAC1	①	1.33	0.036
3931112	HLCS	Û	1.37	4.56E-03	3680213	SOCS1	Û	1.35	0.027	3462949	OSBPL8	Û	1.33	0.041
3364119	CYP2R1	Û	1.37	0.026	3253683	ZMIZ1	Û	1.35	0.030	2437753	KIAA0907	Û	1.33	0.025
3750785	SPAG5	Û	1.37	0.017	2949118	LTB	Û	1.35	0.036	2758043	MFSD10	Û	1.33	0.019
3643938	TMEM204	Û	1.37	0.031	2571457	CKAP2L	Û	1.35	0.019	3541137	EIF2S1	仓	1.33	0.020
3608095	ZNF774	얍	1.37	8.89E-03	4052881	FAM72D	Û	1.35	0.042	3929395	GCFC1	Û	1.33	0.030
3344897	MED17	Û	1.37	1.36E-03	3079005	RARRES2	Û	1.35	9.57E-03	2673312	PFKFB4	Û	1.33	0.012
2706791	ZMAT3	Û	1.37	0.026	3432754	PLBD2	Û	1.35	0.027	3893086	SLC17A9	Û	1.33	4.66E-03
2426791	CLCC1	Û	1.37	0.042	3553607	EIF5	Û	1.35	0.024	3198289	C9orf123	仓	1.33	0.047
3294438	ANXA7	얍	1.37	7.52E-03	3197318	AK3	Û	1.35	0.012	3839305	POLD1	Û	1.33	5.90E-03
2621122	NBEAL2	Û	1.36	0.028	2528275	FAM134A	Û	1.34	0.017	2777639	GPRIN3	ſ	1.32	0.033
3706659	ASPA	Û	1.36	0.017	3656760	STX4	Û	1.34	7.97E-03	3942384	MTFP1	Û	1.32	0.029
2899437	BTN2A1	Û	1.36	7.34E-03	3644057	MAPK8IP3	Û	1.34	9.73E-05	2888879	DOK3	Û	1.32	0.045
3521174	ABCC4	Û	1.36	0.047	2642543	NUDT16P1	Û	1.34	0.037	2335922	CDKN2C	仓	1.32	4.96E-03
3127334	REEP4	Û	1.36	0.040	3677612	ZNF597	Û	1.34	0.026	3256689	PTEN	ſ	1.32	3.32E-04
3470964	GLTP	Û	1.36	0.039	3441011	PARP11	Û	1.34	0.013	3864921	ZNF180	仓	1.32	0.035
2422885	GLMN	Û	1.36	0.039	3903598	GGT7	Û	1.34	0.033	3367036	CCDC34	Û	1.32	1.01E-03
3474104	CIT	Û	1.36	0.020	3374856	MRPL16	Û	1.34	0.039	3114600	TRMT12	Ŷ	1.32	6.32E-04
2560122	MOGS	Û	1.36	0.036	3381241	ARAP1	Û	1.34	2.41E-03	2974469	STX7	ſ	1.32	6.38E-03
3611744	LRRK1	Û	1.36	0.020	3447863	KRAS	Û	1.34	0.040	3007438	POM121	Û	1.32	0.033
3494102	UCHL3	Û	1.36	0.031	3257268	IFIT5	Û	1.34	0.030	2356142	LIX1L	仓	1.32	0.030
2739242	GAR1	仓	1.36	0.027	2902427	LST1	Û	1.34	0.035	3836432	QPCTL	Û	1.32	0.017
3885537	PLCG1	Û	1.35	0.019	3771602	RHBDF2	Û	1.34	0.016	3970130	SYAP1	ſ	1.32	0.044
2422227	GEMIN8P4	Û	1.35	0.032	3704980	FANCA	Û	1.34	0.024	3310413	ATE1	Ŷ	1.32	0.030
2741901	KIAA1109	Û	1.35	7.49E-03	2528620	GMPPA	Û	1.34	0.042	3282268	ACBD5	ſ	1.32	0.023
3226181	ST6GALNAC4	Û	1.35	0.012	3742783	NLRP1	Û	1.34	0.030	3569200	ATP6V1D	Ŷ	1.32	0.031
2629782	EBLN2	Û	1.35	0.018	3865586	FBXO46	Û	1.33	0.016	3630668	CALML4	Û	1.32	6.85E-03
3767465	AXIN2	Û	1.35	0.030	3387483	MTMR2	Û	1.33	5.04E-03	3603408	PSMA4	仓	1.31	0.032
3644764	CCNF	Û	1.35	0.037	3954238	MAPK1	Û	1.33	9.97E-03	3303478	SEC31B	Û	1.31	6.08E-03
3019401	ZNF277	얍	1.35	0.019	3696035	LCAT	Û	1.33	0.012	3945376	TOMM22	Û	1.31	0.039
2345196	HS2ST1	Û	1.35	0.040	3659966	ADCY7	Û	1.33	0.014	3971923	ZFX	仓	1.31	0.027

	0				C C	,			•		<i>,</i> 1			
3253880	PPIF	Û	1.31	0.019	2327259	PPP1R8	仓	1.30	1.38E-03	3333622	POLR2G	仓	1.28	0.046
3945863	MGAT3	Û	1.31	0.033	3536663	MAPK1IP1L	Û	1.30	9.78E-03	3025500	BPGM	仓	1.28	0.017
3256590	PAPSS2	Û	1.31	9.40E-03	3480508	IL17D	Û	1.30	0.028	3620054	RPAP1	Û	1.28	0.030
2619344	NKTR	Û	1.31	7.86E-03	3302328	EXOSC1	Û	1.30	0.023	2365958	MPZL1	Û	1.28	0.024
3716893	ATAD5	Û	1.31	0.035	7385611	HPCAL1	Û	1.30	0.028	2694617	ISY1	仓	1.28	0.038
3000010	ZMIZ2	Û	1.31	0.035	2891092	TRIM52	Û	1.30	0.015	3475545	VPS33A	얍	1.28	0.039
3657286	KIAA0664L3	Û	1.31	0.023	3319613	RPL27A	Û	1.30	0.017	3405531	DDX47	兌	1.28	0.046
2944021	NHLRC1	Û	1.31	0.048	3051753	FKBP9	Û	1.30	0.039	3707352	RNF167	Û	1.28	0.022
3928040	RWDD2B	Û	1.31	0.027	3005332	CRCP	Û	1.29	0.039	3751164	DHRS13	Û	1.28	0.031
3303392	BLOC1S2	Û	1.31	0.033	3969396	TCEANC	Û	1.29	0.034	3649052	MKL2	얍	1.28	0.022
2744674	RAB33B	Û	1.31	0.046	3452970	SENP1	Û	1.29	0.031	2982319	SOD2	兌	1.28	0.048
3996755	BRCC3	Û	1.31	0.023	3209497	FAM108B1	Û	1.29	0.017	3960388	PLA2G6	Û	1.28	0.011
2681157	TMF1	Û	1.31	0.037	3947123	SREBF2	Û	1.29	3.00E-03	3826601	ZNF493	얍	1.28	0.030
2386828	EDARADD	Û	1.31	6.83E-03	3719362	AATF	Û	1.29	0.022	3843346	ZNF549	얍	1.28	7.51E-03
3027503	ADCK2	Û	1.31	0.013	2439975	IGSF8	Û	1.29	0.027	3594066	TMOD3	얍	1.28	6.23E-04
3578089	C14orf49	Û	1.31	0.035	3591674	C15orf63	Û	1.29	0.037	3965393	ALG12	Û	1.28	0.037
2786567	C4orf49	Û	1.31	0.013	3333358	INCENP	Û	1.29	6.72E-03	3756344	SMARCE1	仓	1.28	0.011
2954355	CUL7	Û	1.31	0.019	3339880	RELT	Û	1.29	0.014	3891643	C20orf177	兌	1.28	0.043
3310479	NSMCE4A	Û	1.31	6.16E-03	3378895	PITPNM1	Û	1.29	0.015	3882533	CBFA2T2	Û	1.28	0.040
3835280	ZNF221	Û	1.30	0.013	3260586	SCD	Û	1.29	9.20E-04	3031383	REPIN1	Û	1.28	0.035
3399623	THYN1	Û	1.30	0.049	4027387	FAM3A	Û	1.29	4.91E-03	2913594	MT01	Û	1.28	0.046
2771654	CENPC1	Û	1.30	0.039	3414512	LARP4	Û	1.29	0.049	2622859	HEMK1	Û	1.27	0.013
3325680	EIF3M	Û	1.30	0.022	3580876	PPP1R13B	Û	1.29	0.020	3317309	CD81	Û	1.27	8.99E-04
3765299	APPBP2	Û	1.30	0.019	3948590	RIBC2	Û	1.29	0.019	2955025	MRPL14	Û	1.27	0.046
2715580	SH3BP2	Û	1.30	0.032	2559619	NAT8	Û	1.29	0.047	3192653	GTF3C5	Û	1.27	0.016
3695916	CENPT	Û	1.30	2.56E-03	3428573	SPIC	Û	1.29	0.039	3439305	ZNF84	兌	1.27	0.011
3899551	RBBP9	Û	1.30	0.027	3347549	CUL5	Û	1.29	0.016	2544012	ATAD2B	Û	1.27	0.046
2674963	MON1A	Û	1.30	0.035	3931329	DSCR3	Û	1.29	0.027	3617412	LPCAT4	Û	1.27	0.035
2404521	PEF1	Û	1.30	0.043	2436283	DENND4B	Û	1.29	0.010	3823625	AP1M1	얍	1.27	0.021
3204721	TPM2	仓	1.30	0.038	3623683	GABPB1	仓	1.29	0.025	2333168	C1orf84	Û	1.27	0.039
3099566	FAM110B	仓	1.30	7.69E-03	3499585	BIVM	仓	1.29	0.016	3576441	CCDC88C	Û	1.27	9.55E-03
2939814	RPP40	Û	1.30	4.71E-03	3982811	SH3BGRL	Û	1.28	0.047	3722770	C17orf53	Û	1.27	0.039

	0		-		•				•		<i>,</i> 1	•		-
3600212	LRRC49	仓	1.27	0.035	3887049	UBE2C	Û	1.26	0.031	3689922	VPS35	仓	1.25	0.013
3841545	LILRA1	Û	1.27	5.12E-03	3848871	CD320	Û	1.26	0.024	3985218	ARMCX5	Û	1.24	0.016
2890859	MGAT1	Û	1.27	0.043	3157138	LYPD2	Û	1.26	0.026	3327906	API5	Û	1.24	2.81E-03
2950474	RXRB	Û	1.27	0.022	3692895	NUDT21	Û	1.26	0.022	2900299	ZNF192	Û	1.24	0.048
3672661	FOXL1	Û	1.27	0.027	3226709	C9orf114	仓	1.26	0.040	2407729	RRAGC	仓	1.24	0.030
3611049	LRRC28	Û	1.27	0.037	3504392	N6AMT2	仓	1.26	0.020	2904528	ZNF76	Û	1.24	0.028
3688424	C16orf58	Û	1.27	0.030	3860208	ALKBH6	Û	1.26	0.042	3244061	ZNF487P	Û	1.24	0.039
3201277	KLHL9	Û	1.27	0.022	2852742	AMACR	仓	1.26	0.029	3602526	FBX022	仓	1.24	0.023
3918696	SON	Û	1.27	0.015	2609608	SETD5	Û	1.25	0.015	2375011	ELF3	仓	1.24	0.025
2954423	MRPL2	Û	1.27	0.048	2806376	SPEF2	仓	1.25	0.015	2711225	ATP13A4	Û	1.24	9.82E-03
2888674	MXD3	Û	1.27	0.021	3229797	QSOX2	Û	1.25	0.037	2607020	MTERFD2	Û	1.24	0.044
3843399	ZNF134	Û	1.26	0.045	3657367	ZNF267	Û	1.25	0.027	3275611	ANKRD16	Û	1.24	0.020
3184940	DNAJC25	Û	1.26	0.048	2493813	ZNF2	Û	1.25	6.67E-03	3892561	FLJ44790	Û	1.24	0.037
3636470	BTBD1	Û	1.26	0.014	2451155	PTPN7	Û	1.25	6.46E-03	2903782	ITPR3	Û	1.24	0.036
3212277	C9orf64	Û	1.26	0.024	3774635	FASN	Û	1.25	0.040	3294242	ECD	Û	1.24	0.028
2395626	GPR157	Û	1.26	0.042	3709327	CNTROB	Û	1.25	0.014	3224259	RBM18	Û	1.24	0.041
3487600	C13orf31	Û	1.26	5.34E-03	3739827	GLOD4	Û	1.25	0.011	3334749	PPP2R5B	Û	1.24	0.049
4051226	SEMA4D	Û	1.26	4.91E-03	3391029	PPP2R1B	仓	1.25	1.91E-03	2907018	TAF8	Û	1.23	0.047
3599432	FEM1B	Û	1.26	0.020	2440018	DCAF8	Û	1.25	4.58E-03	3377358	BATF2	Û	1.23	0.041
3482977	POLR1D	Û	1.26	7.06E-03	3677315	PKMYT1	Û	1.25	0.036	2715076	WHSC1	Û	1.23	0.032
3555340	TEP1	Û	1.26	0.037	3340410	NEU3	仓	1.25	0.023	3204692	C9orf100	Û	1.23	0.035
2620985	TMIE	Û	1.26	0.047	3895297	DDRGK1	Û	1.25	0.011	2633166	OR5K2	Û	1.23	0.027
3363979	PSMA1	Û	1.26	0.016	4011768	SNX12	Û	1.25	0.012	2348792	CCDC76	Û	1.23	0.014
3645253	SRRM2	Û	1.26	2.65E-04	3590422	RTF1	Û	1.25	0.036	3820921	SMARCA4	Û	1.23	0.041
3168309	RECK	Û	1.26	0.022	3334325	VEGFB	Û	1.25	0.031	2621917	WDR6	Û	1.23	9.49E-03
2488114	ZNF638	Û	1.26	0.043	3874438	CDC25B	Û	1.25	0.010	3677356	HCFC1R1	Û	1.23	0.018
3195363	ARRDC1	Û	1.26	0.013	3294476	ZMYND17	Û	1.25	0.034	2325358	GRHL3	Û	1.23	0.049
3908631	PREX1	Û	1.26	3.91E-03	3865776	IRF2BP1	Û	1.25	1.17E-03	2333678	B4GALT2	Û	1.23	0.036
3221646	POLE3	Û	1.26	0.045	2892738	PRPF4B	Û	1.25	0.049	2949588	DOM3Z	Û	1.23	0.034
3228373	TSC1	Û	1.26	0.021	3181600	GALNT12	Û	1.25	0.049	3751323	MY018A	Û	1.23	0.013
3719150	PIGW	Û	1.26	0.041	3695631	TPPP3	Û	1.25	0.048	3863021	TGFB1	Û	1.23	0.014
2502300	DDX18	Û	1.26	0.049	3299578	CH25H	Û	1.25	1.71E-03	3601675	ARID3B	Û	1.23	0.023

	8		1		· ·	,			L .		, 1	,		
3418513	MARCH9	Û	1.23	0.037	2436338	CRTC2	Û	1.22	0.036	3652424	EEF2K	Û	1.20	0.021
2500875	CHCHD5	Û	1.23	0.026	2949148	BAT3	Û	1.22	0.012	3513883	KPNA3	兌	1.20	0.036
2829463	CAMLG	Û	1.23	0.039	2662956	VGLL4	Û	1.22	0.025	3830712	MLL4	Û	1.20	0.027
3139722	NCOA2	仓	1.23	0.034	3325307	ELP4	仓	1.22	0.036	3016098	TRIM56	Û	1.20	0.036
3653619	LCMT1	仓	1.23	0.015	3077766	TPK1	仓	1.22	0.048	2655438	DVL3	Û	1.20	1.84E-03
3853063	ILVBL	Û	1.23	0.036	2358520	SETDB1	Û	1.22	0.039	3195174	MAN1B1	Û	1.20	7.53E-03
2410574	LRRC41	Û	1.23	0.032	2756673	GAK	Û	1.21	0.039	3863435	POU2F2	Û	1.20	0.030
3855410	SUGP2	Û	1.22	4.99E-03	3432438	OAS1	仓	1.21	0.012	2560149	CCDC142	Û	1.20	4.94E-03
2402601	UBXN11	Û	1.22	6.18E-03	2977471	ADAT2	Û	1.21	0.048	3642060	CHSY1	Û	1.20	0.045
2834093	TCERG1	Û	1.22	0.030	3064230	GIGYF1	Û	1.21	0.012	3224087	TTLL11	①	1.20	0.034
3645881	ZNF174	仓	1.22	0.028	3645402	FLYWCH1	Û	1.21	0.030	2358171	PRPF3	Û	1.20	0.016
3475350	LOC338799	Û	1.22	0.039	2335048	CYP4A22	仓	1.21	8.26E-03	3742236	PELP1	Û	1.20	8.47E-03
3834674	CIC	Û	1.22	3.13E-03	2964052	SRSF12	仓	1.21	0.016	3963754	SMC1B	①	1.20	0.039
3826542	ZNF738	仓	1.22	0.012	3742384	SLC25A11	仓	1.21	0.024	3223605	FBXW2	仓	1.20	0.017
3264004	SHOC2	仓	1.22	0.040	3373962	UBE2L6	仓	1.21	6.52E-03	2713016	C3orf34	仓	1.20	0.041
2643095	BFSP2	仓	1.22	0.034	2641532	COPG	Û	1.21	0.049	2536625	BOK	仓	1.20	0.033
3334604	LOC439914	Û	1.22	0.044	3228097	TTF1	Û	1.21	6.66E-03	2867145	FAM172A	仓	1.20	0.049
3754227	MY019	Û	1.22	0.024	3742212	ALOX15	仓	1.21	0.022	3748909	SLC47A2	仓	1.20	0.033
3807370	DYM	兌	1.22	0.045	3845365	TCF3	Û	1.21	0.042	3707258	MINK1	Û	1.20	4.83E-03
3549708	SERPINA4	兌	1.22	0.040	2582562	ACVR1	仓	1.21	0.026	3595096	TCF12	①	1.20	7.03E-03
3135452	ATP6V1H	兌	1.22	0.015	3483348	POMP	仓	1.20	0.046	2894711	TMEM14B	①	1.20	9.40E-03
3436236	ZNF664	Û	1.22	0.017										

Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value
4048241	HLA-DRB5	Û	11.7	0.018	2766492	C4orf34	仓	1.77	0.015	3257204	IFIT3	Û	1.65	0.044
3718555	SLFN5	仓	2.97	0.023	2768981	SGCB	Û	1.77	0.046	3351841	HMBS	Û	1.65	0.019
2821347	ERAP2	仓	2.44	0.026	3507798	UBL3	仓	1.76	1.62E-03	2899437	BTN2A1	Û	1.65	2.24E-05
2678298	DNASE1L3	Û	2.40	0.026	2528159	WNT10A	Û	1.76	2.51E-03	3453036	ASB8	Û	1.65	0.021
3175971	PSAT1	Û	2.26	0.019	2820865	ARSK	Û	1.76	0.013	3061805	SGCE	Û	1.64	0.014
3456805	GTSF1	仓	2.05	0.052	3945314	KDELR3	Û	1.76	0.031	3782166	IMPACT	Û	1.64	4.75E-03
3841621	LILRB4	Û	2.04	0.020	3840194	ZNF880	仓	1.76	1.55E-03	3380996	C11orf51	Û	1.63	6.78E-04
3856646	ZNF208	Û	1.97	0.046	4007216	UXT	얍	1.75	2.47E-03	3916527	JAM2	Û	1.63	0.022
3892812	SLCO4A1	Û	1.93	7.09E-04	3354443	SLC37A2	Û	1.75	0.030	3761714	GNGT2	Û	1.63	1.46E-03
2887490	STC2	Û	1.91	9.30E-03	3458587	DDIT3	Û	1.74	0.018	3849752	ZNF426	Û	1.63	1.15E-03
3023883	CPA4	Û	1.90	0.024	3433466	NCRNA00173	Û	1.74	0.049	3911814	SLMO2	Û	1.63	3.50E-05
2734047	AGPAT9	Û	1.90	0.017	3309602	RGS10	仓	1.74	4.03E-03	3137875	GGH	Û	1.63	4.24E-03
3439178	PXMP2	仓	1.89	5.99E-03	2475678	LBH	仓	1.73	3.47E-04	3707199	PSMB6	Û	1.62	8.93E-03
2400518	ECE1	Û	1.88	0.028	3741528	TAX1BP3	얍	1.73	0.011	3311715	UROS	Û	1.62	4.57E-05
3764738	SKA2	Û	1.86	0.015	3216276	SLC35D2	Û	1.72	0.014	3175119	OSTF1	仓	1.62	0.013
3913483	TCFL5	Û	1.85	0.022	3236538	RPP38	Û	1.72	2.73E-03	2638728	SLC15A2	Û	1.62	0.016
3925639	NRIP1	Û	1.85	0.039	2786322	SLC7A11	Û	1.72	0.024	3969422	RAB9A	仓	1.62	4.70E-03
3333899	RARRES3	Û	1.85	0.010	2909020	ENPP4	Û	1.71	0.021	4035833	CD24	仓	1.62	0.025
3127745	TNFRSF10D	Û	1.84	7.50E-03	3727712	PCTP	Û	1.71	3.78E-03	3651639	TMEM159	仓	1.62	7.43E-03
2877893	MGC29506	Û	1.84	0.012	3721989	CNTNAP1	Û	1.71	0.029	3840142	ZNF480	仓	1.62	0.031
3043936	FKBP14	Û	1.81	0.036	3839103	ATF5	Û	1.70	0.050	3403244	CLSTN3	Û	1.61	9.55E-04
3703885	SLC7A5	Û	1.81	3.73E-03	3402315	CD9	Û	1.70	0.039	2756029	FRG1	Û	1.61	0.021
3476330	CCDC92	Û	1.80	1.27E-03	3132016	FGFR1	Û	1.69	0.019	2594497	CLK1	Û	1.61	0.021
3550328	C14orf129	Û	1.80	0.010	3618736	RASGRP1	Û	1.69	0.041	3670668	ATMIN	仓	1.61	5.26E-04
3676262	SEPX1	Û	1.79	8.12E-03	2908179	VEGFA	Û	1.69	4.18E-03	2949256	BAT5	Û	1.61	1.28E-03
3577940	CLMN	Û	1.79	0.053	2601414	SERPINE2	Û	1.68	4.75E-03	3202316	MOBKL2B	Û	1.60	0.027
3969946	ZRSR2	Û	1.78	4.52E-03	3382061	XRRA1	Û	1.68	5.68E-03	2725013	UCHL1	Û	1.60	0.052
3018866	DNAJB9	Û	1.78	0.024	3936550	USP18	Û	1.68	9.55E-03	2877639	SIL1	Û	1.60	0.019
3453405	FKBP11	Û	1.78	7.39E-03	2845274	CCDC127	Û	1.66	7.47E-03	3987446	ALG13	仓	1.59	0.025
3203382	SMU1	Û	1.78	4.19E-03	2742109	FGF2	仓	1.66	0.021	3057755	POMZP3	Û	1.59	5.94E-03
2354634	PHGDH	Û	1.77	0.037	3980455	IGBP1	Û	1.65	3.13E-03	3432754	PLBD2	Û	1.59	4.66E-04

3543673	ACOT2	仓	1.59	0.021	3866276	SLC1A5	Û	1.54	5.21E-03	3224197	NDUFA8	仓	1.49	0.011
3251353	ANAPC16	Û	1.59	8.06E-04	2502424	INSIG2	Û	1.54	0.015	3719362	AATF	Û	1.49	3.16E-04
3994451	CXorf40A	Û	1.59	7.19E-04	3184218	C9orf6	仓	1.54	0.015	3114832	SQLE	Û	1.49	7.36E-03
2356115	TXNIP	Û	1.59	0.051	2452691	SLC41A1	Û	1.54	0.046	3557947	CHMP4A	Û	1.49	0.014
3663055	C16orf57	Û	1.58	1.83E-03	2892277	NQO2	Û	1.53	7.22E-03	3716411	CPD	Û	1.49	0.034
3355021	FAM118B	Û	1.58	0.015	4010768	ZC4H2	仓	1.53	8.94E-04	3890218	C20orf43	Û	1.49	4.00E-03
3840224	ZNF528	Û	1.58	8.10E-03	3666686	NIP7	仓	1.53	0.012	2320727	TNFRSF1B	Û	1.49	0.020
3936442	PEX26	Û	1.58	3.63E-03	4022106	MBNL3	仓	1.53	0.012	2640579	PLXNA1	Û	1.49	0.011
2407478	FHL3	Û	1.58	0.038	3996467	PLXNA3	Û	1.52	6.71E-05	3507710	SLC7A1	Û	1.48	1.93E-03
2438892	FCRL5	Û	1.58	0.052	3416909	BLOC1S1	仓	1.52	7.43E-03	3333711	SLC3A2	Û	1.48	2.90E-03
3375999	C11orf48	Û	1.58	0.035	3992408	FHL1	仓	1.52	0.045	3244539	ZNF22	Û	1.48	0.011
3747199	CENPV	Û	1.58	0.023	3988538	IL13RA1	Û	1.52	0.047	3101153	BHLHE22	Û	1.48	0.033
3156307	PTK2	Û	1.58	0.031	3976670	EBP	Û	1.52	4.64E-03	3857105	ZNF91	Û	1.48	0.040
2643324	SRPRB	Û	1.57	0.016	3055608	TYW1B	Û	1.52	3.33E-03	3665230	HSF4	Û	1.48	5.56E-03
3263944	PDCD4	Û	1.57	0.013	2384562	RAB4A	仓	1.52	4.18E-03	3190420	CERCAM	Û	1.48	6.54E-03
3645338	PRSS21	Û	1.57	0.034	2349848	PRMT6	仓	1.52	1.68E-03	3907111	TOMM34	Û	1.48	0.012
3734355	GPRC5C	Û	1.56	0.047	3023060	CALU	Û	1.52	0.024	3866094	PTGIR	Û	1.48	0.013
3893033	DPH3P1	仓	1.56	0.048	2821981	FAM174A	Û	1.52	0.018	2409104	SLC2A1	Û	1.48	0.027
2837810	UBLCP1	Û	1.56	0.033	3238962	KIAA1217	Û	1.52	0.038	2794902	AGA	Û	1.48	0.040
2826295	SNX2	Û	1.56	6.84E-03	2443335	SLC19A2	Û	1.51	0.026	3543619	C14orf169	Û	1.48	0.044
2379280	FLVCR1	Û	1.56	0.015	2690850	TMEM39A	Û	1.51	0.034	3256560	MINPP1	Û	1.47	0.019
2324634	CDC42	Û	1.56	0.018	2673547	SLC26A6	Û	1.51	9.18E-04	3242425	CCNY	仓	1.47	0.014
2562821	VPS24	Û	1.56	2.44E-03	3100497	CLVS1	仓	1.51	0.039	2951567	FKBP5	Û	1.47	2.59E-03
3002873	LANCL2	Û	1.56	0.026	3407793	PYROXD1	仓	1.51	0.032	3821015	LDLR	Û	1.47	1.21E-03
3387537	MAML2	Û	1.55	0.043	2954324	MEA1	仓	1.51	4.40E-03	3440192	DCP1B	Û	1.47	0.011
2375212	PPP1R12B	Û	1.55	5.78E-03	2560122	MOGS	Û	1.51	3.16E-03	3404436	CLEC2D	Û	1.47	0.024
3434726	P2RX7	Û	1.55	0.026	3053691	GUSB	Û	1.50	6.74E-03	3397589	ETS1	Û	1.47	6.66E-03
3697563	FTSJD1	Û	1.55	2.21E-04	3945376	TOMM22	仓	1.50	1.49E-03	3659966	ADCY7	Û	1.47	6.84E-04
3605268	TM6SF1	Û	1.55	0.047	3633460	PTPN9	仓	1.50	2.06E-03	3826803	ZNF492	仓	1.47	0.047
4013434	TAF9B	Û	1.55	0.011	3198289	C9orf123	Û	1.49	3.05E-03	2320581	PLOD1	Û	1.47	0.016
3414695	ATF1	Û	1.55	0.029	3950452	CRELD2	Û	1.49	0.026	3254488	C10orf58	Û	1.47	0.050
3019401	ZNF277	Û	1.55	5.09E-04	3645836	ZNF75A	Û	1.49	0.014	3101622	RRS1	Û	1.47	0.034

2318736	PARK7	仓	1.47	2.98E-03	3130211	PPP2CB	仓	1.44	0.011	2395890	CLSTN1	Û	1.42	0.017
2899216	HIST1H4E	仓	1.47	0.030	3177111	NTRK2	兌	1.44	7.62E-03	3225398	HSPA5	Û	1.42	0.052
3434393	DYNLL1	仓	1.46	0.037	3617920	ATPBD4	仓	1.44	2.84E-03	3628923	FAM96A	仓	1.42	0.035
3230141	NOTCH1	Û	1.46	5.98E-03	4027585	MPP1	仓	1.43	0.053	2436826	KCNN3	Û	1.42	0.040
3726325	XYLT2	Û	1.46	4.69E-03	3790704	PMAIP1	兌	1.43	0.015	3590422	RTF1	仓	1.42	7.71E-04
3243908	CSGALNACT2	Û	1.46	0.019	3986933	NXT2	仓	1.43	4.54E-03	2829171	TCF7	仓	1.42	0.038
2899413	BTN3A3	Û	1.46	6.13E-03	3380980	C11orf59	Û	1.43	4.69E-03	4000132	TRAPPC2	仓	1.42	0.021
2439508	OR6N2	仓	1.46	0.019	2888243	KIAA1191	仓	1.43	7.89E-03	2562233	RETSAT	Û	1.42	0.014
3595846	FAM63B	Û	1.46	8.19E-03	3277468	USP6NL	仓	1.43	0.049	3904527	NDRG3	仓	1.42	0.011
3888949	MOCS3	仓	1.46	4.65E-03	3725083	SNX11	Û	1.43	0.023	3076753	KIAA1147	Û	1.42	0.039
3928040	RWDD2B	仓	1.46	1.31E-03	3708826	EIF4A1	Û	1.43	0.041	2639225	PDIA5	Û	1.42	0.048
4004819	DYNLT3	仓	1.45	0.035	3931329	DSCR3	Û	1.43	1.18E-03	3184940	DNAJC25	Û	1.42	2.29E-03
3892918	C20orf20	仓	1.45	0.013	3860491	ZNF260	Û	1.43	3.97E-06	3590341	СНР	仓	1.42	6.68E-03
2495806	MRPL30	仓	1.45	0.013	2912889	SMAP1	仓	1.43	8.85E-03	3856184	ZNF737	仓	1.42	0.016
3793760	CNDP2	仓	1.45	1.73E-03	3010082	PHTF2	Û	1.43	0.014	3557898	TM9SF1	Û	1.42	0.019
3771602	RHBDF2	Û	1.45	1.12E-03	3954525	ZNF280B	仓	1.43	4.68E-03	3387483	MTMR2	仓	1.41	4.16E-04
3886512	TTPAL	仓	1.45	0.013	3369762	COMMD9	仓	1.43	0.027	2529546	ACSL3	Û	1.41	0.029
3564872	GNPNAT1	仓	1.45	0.029	3840164	ZNF610	仓	1.43	0.028	2706791	ZMAT3	얍	1.41	7.57E-03
2620538	LARS2	Û	1.45	0.012	3899551	RBBP9	仓	1.43	1.96E-03	3565524	GCH1	仓	1.41	0.042
2941784	NEDD9	仓	1.45	6.68E-03	3625326	CCPG1	Û	1.43	0.029	3836432	QPCTL	Û	1.41	1.71E-03
2426791	CLCC1	Û	1.45	9.54E-03	3375935	B3GAT3	Û	1.43	6.17E-03	2878368	APBB3	Û	1.41	2.04E-03
3167383	NUDT2	仓	1.45	8.25E-03	3747522	TNFRSF13B	Û	1.42	0.023	3201437	CDKN2A	얍	1.41	0.029
3738629	SLC16A3	Û	1.45	3.41E-03	3881282	HM13	Û	1.42	0.015	3850576	YIPF2	Û	1.41	0.025
3883064	ACSS2	Û	1.44	0.010	3227816	RAPGEF1	Û	1.42	0.024	2957499	ICK	仓	1.41	7.36E-03
2539765	ITGB1BP1	仓	1.44	0.011	3954238	MAPK1	仓	1.42	8.90E-04	3453556	PRKAG1	얍	1.41	2.11E-03
3031967	CHPF2	Û	1.44	0.024	3340589	SERPINH1	Û	1.42	0.038	3325680	EIF3M	얍	1.41	1.89E-03
3489538	ARL11	仓	1.44	9.86E-03	2356142	LIX1L	Û	1.42	3.62E-03	3394123	HYOU1	Û	1.41	0.042
3406421	STRAP	仓	1.44	6.13E-03	3607927	SEMA4B	Û	1.42	0.017	3351895	C2CD2L	Û	1.41	0.013
3648306	SNN	Û	1.44	0.010	3531479	ARHGAP5	Û	1.42	3.31E-03	2611848	SLC6A6	Û	1.41	0.016
3722338	IFI35	仓	1.44	0.021	3494102	UCHL3	Û	1.42	7.34E-03	3474104	CIT	Û	1.41	5.09E-03
3486728	SLC25A15	仓	1.44	0.015	3629378	MTFMT	Û	1.42	2.95E-03	3303300	CHUK	얍	1.41	0.035
3470964	GLTP	仓	1.44	8.84E-03	2515933	ZAK	仓	1.42	0.039	3344861	C11orf54	Û	1.41	0.014

3073981	AKR1B1	仓	1.41	0.027	2565579	ANKRD39	仓	1.40	8.68E-05	3434760	P2RX4	Û	1.38	0.031
2450668	TMEM9	Û	1.41	0.029	3687789	DCTPP1	仓	1.40	0.026	3742067	UBE2G1	Û	1.38	4.47E-03
3815014	BSG	Û	1.41	7.98E-03	2599955	ATG9A	Û	1.40	0.011	2704267	GOLIM4	Û	1.38	0.014
3558145	CIDEB	Û	1.41	0.018	3406493	DERA	仓	1.40	0.019	3078656	ZNF767	Û	1.38	0.016
3849797	ZNF561	Û	1.41	3.39E-03	2464484	FAM36A	Û	1.39	0.017	2360989	MST01	Û	1.38	0.038
3946351	ADSL	Û	1.41	1.21E-03	2835576	SYNPO	Û	1.39	0.015	3328214	ALKBH3	Û	1.38	8.33E-03
3588658	C15orf41	Û	1.41	0.016	3317309	CD81	Û	1.39	6.95E-06	3597977	TRIP4	Û	1.38	5.27E-03
3861302	YIF1B	Û	1.41	0.047	2815965	HMGCR	Û	1.39	0.019	2899333	BTN3A2	Û	1.38	0.031
3197318	AK3	Û	1.40	2.07E-03	3881874	ASXL1	Û	1.39	4.56E-03	3712363	MPRIP	Û	1.38	0.021
2396461	SRM	Û	1.40	9.65E-03	2758043	MFSD10	Û	1.39	3.58E-03	2621122	NBEAL2	Û	1.38	0.014
3442854	SLC2A3	Û	1.40	0.022	3708074	XAF1	仓	1.39	9.97E-03	3824197	MRPL34	Û	1.38	0.015
3517793	KLF12	Û	1.40	0.026	3065638	DNAJC2	Û	1.39	0.024	2741901	KIAA1109	Û	1.38	2.33E-03
2567583	RNF149	Û	1.40	0.011	3607183	MRPS11	Û	1.39	2.60E-03	3677612	ZNF597	Û	1.38	8.47E-03
2579572	ZEB2	Û	1.40	0.025	3257670	PCGF5	仓	1.39	0.018	2730531	UTP3	Û	1.38	0.029
2739242	GAR1	Û	1.40	8.12E-03	3748432	FAM106A	Û	1.39	2.10E-03	3145240	C8orf37	Û	1.38	0.053
3579205	SETD3	Û	1.40	2.97E-03	2617563	MYD88	Û	1.39	0.017	3148582	EIF3E	Û	1.38	0.027
3750685	SLC46A1	Û	1.40	0.020	3023384	AHCYL2	仓	1.39	0.018	3617412	LPCAT4	Û	1.38	3.27E-03
3962219	NAGA	Û	1.40	0.019	3986514	PRPS1	仓	1.39	0.040	3698055	TXNL4B	Û	1.37	0.026
2813414	CCNB1	Û	1.40	0.035	3127334	REEP4	Û	1.39	0.017	2574798	MAP3K2	Û	1.37	5.40E-03
3589972	CHST14	Û	1.40	7.09E-03	2407729	RRAGC	Û	1.39	7.77E-04	3704376	FAM38A	Û	1.37	7.78E-03
3820370	P2RY11	Û	1.40	0.028	3317915	STIM1	Û	1.39	9.63E-03	3686080	NSMCE1	Û	1.37	0.023
2503200	RALB	Û	1.40	0.027	2409004	LEPRE1	Û	1.39	0.020	3872560	ZNF256	Û	1.37	4.99E-03
2620641	LIMD1	Û	1.40	0.031	2439975	IGSF8	Û	1.39	2.91E-03	3260586	SCD	Û	1.37	2.49E-05
2889698	CLK4	Û	1.40	0.028	3285552	ZNF248	Û	1.39	0.045	2696379	ANAPC13	Û	1.37	0.029
3806253	ATP5A1	Û	1.40	0.022	3590164	SPINT1	Û	1.39	0.037	3774096	PDE6G	Û	1.37	0.027
2594435	KCTD18	Û	1.40	1.45E-03	3823625	AP1M1	仓	1.39	1.12E-03	3982811	SH3BGRL	Û	1.37	7.51E-03
4027813	F8A1	Û	1.40	7.34E-03	3453120	ZNF641	仓	1.39	0.030	3064541	PLOD3	Û	1.37	6.08E-03
2668035	DYNC1LI1	Û	1.40	0.016	2721777	PI4K2B	仓	1.39	0.027	2642543	NUDT16P1	Û	1.37	0.014
3657286	KIAA0664L3	Û	1.40	2.92E-03	3535628	GNG2	仓	1.38	0.027	3452970	SENP1	Û	1.37	5.06E-03
2331158	AKIRIN1	Û	1.40	6.05E-03	3848871	CD320	Û	1.38	9.95E-04	3559794	C14orf126	仓	1.37	0.017
2929036	LTV1	Û	1.40	0.028	3441011	PARP11	仓	1.38	3.18E-03	3893086	SLC17A9	Û	1.37	7.84E-04
3947123	SREBF2	Û	1.40	8.10E-05	3566652	TIMM9	仓	1.38	0.031	3428131	SCYL2	Û	1.37	5.18E-03

3575567	FOXN3	Û	1.37	4.13E-03	2934308	IGF2R	Û	1.36	7.87E-03	4002148	EIF1AX	Û	1.35	0.050
3692895	NUDT21	仓	1.37	1.15E-03	3699707	ADAT1	Û	1.36	0.029	3380697	DHCR7	Û	1.35	0.052
2402111	C1orf63	Û	1.37	0.016	2473149	NCOA1	Û	1.36	0.023	3294438	ANXA7	Û	1.35	4.88E-03
3833443	PLD3	Û	1.37	0.016	3823583	HSH2D	Û	1.36	0.035	2437753	KIAA0907	Û	1.35	0.010
3075932	PARP12	仓	1.37	0.046	2902633	MSH5	Û	1.36	0.011	2694617	ISY1	Û	1.35	7.40E-03
3841474	LENG8	Û	1.37	2.48E-03	2599993	ABCB6	Û	1.36	4.94E-03	3852565	ASF1B	Û	1.35	0.024
3974904	NYX	仓	1.37	0.032	2494749	CNNM3	Û	1.36	0.016	3717737	PSMD11	Û	1.35	0.012
2815455	UTP15	仓	1.37	0.037	3354764	STT3A	Û	1.36	0.026	3592484	PLDN	Û	1.35	0.025
3114600	TRMT12	仓	1.37	6.13E-05	3823613	FAM32A	Û	1.36	0.028	2901333	ZNRD1	Û	1.35	0.017
2713789	ZNF595	仓	1.37	0.039	3480681	MRP63	Û	1.36	0.036	2404521	PEF1	Û	1.35	0.013
3743906	TP53	仓	1.37	0.043	2903782	ITPR3	Û	1.36	1.92E-03	3031345	LRRC61	Û	1.35	3.26E-03
3375545	FADS1	Û	1.37	0.014	3996381	ATP6AP1	Û	1.36	0.019	2403557	SNORA44	Û	1.35	0.012
2782292	C4orf21	Û	1.37	0.052	3886639	YWHAB	Û	1.36	0.015	3412296	IRAK4	Û	1.35	0.011
3600212	LRRC49	仓	1.36	3.72E-03	3824471	GLT25D1	Û	1.36	0.034	2674748	CDHR4	Û	1.35	6.32E-03
2656569	DNAJB11	Û	1.36	0.041	4017519	PSMD10	仓	1.36	4.72E-03	2982319	SOD2	仓	1.35	0.011
2320472	CLCN6	Û	1.36	0.026	3886179	IFT52	Û	1.35	2.93E-03	3724989	CDK5RAP3	Û	1.34	0.013
3845352	UQCR11	仓	1.36	0.036	3619595	FAM82A2	Û	1.35	8.86E-03	3678147	NMRAL1	仓	1.34	0.028
3318731	DNHD1	Û	1.36	0.032	2872471	DTWD2	仓	1.35	0.026	3417371	ESYT1	Û	1.34	0.034
3980035	YIPF6	Û	1.36	3.78E-03	3042012	C7orf31	仓	1.35	0.027	3976120	INE1	Û	1.34	4.45E-03
3816834	NCLN	Û	1.36	2.46E-03	2949471	NEU1	Û	1.35	0.019	3685610	ARHGAP17	仓	1.34	0.027
2898499	ALDH5A1	仓	1.36	8.02E-03	3209497	FAM108B1	仓	1.35	2.77E-03	2968144	OSTM1	Û	1.34	0.011
3728097	AKAP1	Û	1.36	1.28E-03	2726483	OCIAD1	Û	1.35	0.043	3991698	HPRT1	Û	1.34	0.031
3389273	CASP4	仓	1.36	0.023	2336706	CPT2	仓	1.35	4.40E-03	3373893	SLC43A1	Û	1.34	0.025
3687452	YPEL3	仓	1.36	0.039	3304746	USMG5	仓	1.35	0.038	3554282	INF2	Û	1.34	0.026
4011768	SNX12	仓	1.36	3.76E-04	2365958	MPZL1	Û	1.35	3.53E-03	4006416	FUNDC1	仓	1.34	0.041
2485784	ACTR2	仓	1.36	0.036	3303478	SEC31B	Û	1.35	1.23E-03	3290785	CCDC6	Û	1.34	9.95E-03
3962054	NHP2L1	仓	1.36	9.55E-03	3319685	C11orf17	仓	1.35	0.026	2899506	HMGN4	仓	1.34	0.012
3832616	EIF3K	仓	1.36	9.32E-03	2564634	ZNF514	Û	1.35	0.011	3476097	CDK2AP1	仓	1.34	0.048
3318844	DNHD1	Û	1.36	3.96E-03	3970130	SYAP1	仓	1.35	0.018	3653619	LCMT1	仓	1.34	3.37E-04
3943207	YWHAH	仓	1.36	0.053	2392584	TNFRSF14	Û	1.35	0.023	2824286	SRP19	仓	1.34	0.031
3831260	ZNF146	仓	1.36	6.04E-03	3255402	FAM190B	Û	1.35	8.76E-03	3286921	MARCH8	仓	1.34	9.38E-03
3724969	PNPO	仓	1.36	2.77E-03	3225456	MAPKAP1	Û	1.35	1.15E-03	3856594	ZNF43	Û	1.34	0.018

3210457	RFK	仓	1.34	7.65E-03	3280902	DNAJC1	Û	1.33	0.037	3129121	CCDC25	仓	1.32	0.016
3846900	C19orf10	Û	1.34	0.015	3850832	TMEM205	Û	1.33	0.017	3578089	C14orf49	Û	1.32	0.016
2642562	NUDT16	仓	1.34	3.89E-03	3413875	TROAP	Û	1.33	3.31E-03	3879467	XRN2	仓	1.32	7.14E-03
3555340	TEP1	Û	1.34	5.43E-03	2726323	SLAIN2	仓	1.33	6.02E-04	4017281	N162CL	Û	1.32	0.042
3927226	APP	Û	1.34	0.051	3873629	SIRPA	Û	1.33	0.039	3806913	SMAD2	仓	1.32	9.08E-03
3591044	HAUS2	仓	1.34	0.011	2489035	DGUOK	仓	1.33	0.020	3758148	CCDC56	仓	1.32	0.030
3682135	C16orf63	仓	1.34	0.024	3843399	ZNF134	仓	1.33	9.33E-03	3644057	MAPK8IP3	Û	1.32	4.93E-05
3496916	GPR180	Û	1.34	0.015	3643813	GNPTG	Û	1.33	0.037	3775147	FOXK2	Û	1.32	0.012
3260666	HIF1AN	仓	1.34	7.48E-03	3560575	EAPP	仓	1.33	1.93E-03	2690776	B4GALT4	Û	1.32	0.018
3227121	C9orf78	仓	1.34	0.017	3173831	FXN	仓	1.33	0.029	3757745	GHDC	Û	1.32	5.30E-03
3565361	GMFB	①	1.34	0.032	3226138	AK1	Û	1.33	0.038	3378895	PITPNM1	Û	1.32	4.06E-03
2414998	MYSM1	Û	1.34	0.014	2815791	HEXB	Û	1.33	0.020	4053534	ISG15	仓	1.32	0.037
3896034	RASSF2	仓	1.34	9.45E-03	2986825	SUN1	Û	1.33	9.93E-03	3142554	SNX16	Û	1.32	0.040
3914307	RGS19	①	1.34	0.031	2878662	DIAPH1	Û	1.33	0.028	3007438	POM121	Û	1.32	0.019
3104260	PKIA	①	1.34	4.52E-03	3416522	COPZ1	仓	1.33	0.047	2694397	RPN1	Û	1.32	0.042
2734992	NUDT9	Û	1.33	0.036	3909395	DPM1	仓	1.33	0.014	3629350	SPG21	兌	1.32	0.011
2824872	AP3S1	①	1.33	0.036	3340066	PAAF1	仓	1.33	0.024	3226709	C9orf114	仓	1.32	8.82E-03
3127878	ENTPD4	Û	1.33	0.024	2505957	PLEKHB2	仓	1.33	0.026	3969396	TCEANC	仓	1.32	0.013
3855910	ATP13A1	Û	1.33	0.038	3339880	RELT	Û	1.33	3.47E-03	3719150	PIGW	仓	1.32	8.16E-03
3952543	SLC25A1	①	1.33	0.047	2899340	BTN2A2	Û	1.33	0.030	2672712	SCAP	Û	1.32	0.027
3687475	GDPD3	Û	1.33	0.013	3851826	DNASE2	Û	1.33	0.037	3714068	ALDH3A2	仓	1.32	0.027
3056414	RFC2	仓	1.33	0.047	3980560	KIF4A	Û	1.33	0.035	2703217	KPNA4	仓	1.32	0.021
3667766	KIAA0174	①	1.33	0.026	2848464	DAP	仓	1.33	0.033	3996755	BRCC3	仓	1.32	0.010
2676041	WDR82	仓	1.33	0.036	3869379	ZNF614	仓	1.33	0.035	3632940	UBL7	仓	1.32	3.88E-05
3444180	KLRAP1	Û	1.33	0.053	3318443	TRIM22	仓	1.33	0.016	3362795	RNF141	仓	1.32	0.022
2398789	SDHB	仓	1.33	0.031	3783749	RNF138	仓	1.33	0.013	2729884	UGT2B10	Û	1.32	0.012
3893910	TCEA2	仓	1.33	4.16E-03	3240095	RAB18	仓	1.33	0.049	3934867	POFUT2	Û	1.32	0.025
3742783	NLRP1	Û	1.33	0.019	3611049	LRRC28	仓	1.32	8.09E-03	3759305	CCDC43	仓	1.32	0.016
2538000	RNASEH1	仓	1.33	0.018	3625271	RAB27A	仓	1.32	0.043	2722377	STIM2	Û	1.32	0.044
2484752	COMMD1	仓	1.33	0.053	3765299	APPBP2	仓	1.32	7.09E-03	2428501	SLC16A1	Û	1.32	0.022
3806689	HDHD2	仓	1.33	7.71E-03	3064638	RABL5	仓	1.32	2.51E-03	3014714	ARPC1B	仓	1.32	0.016
2813364	SLC30A5	Û	1.33	0.018	3029129	ZYX	仓	1.32	0.044	3504791	EFHA1	仓	1.32	0.022

3726960	NME2	仓	1.32	0.035	3986230	CXorf57	Û	1.31	6.15E-03	3893760	TPD52L2	Û	1.30	0.015
3569200	ATP6V1D	Û	1.32	0.018	3866605	NAPA	Û	1.31	0.012	3936256	BCL2L13	仓	1.30	9.74E-03
3567984	PPP2R5E	Û	1.32	0.017	2374422	C1orf106	Û	1.31	0.013	3844897	C19orf6	Û	1.30	0.015
2454378	SLC30A1	Û	1.32	0.029	2542737	LAPTM4A	Û	1.31	0.016	2707359	DNAJC19	Û	1.30	0.014
3891643	C20orf177	Û	1.32	0.013	3446868	LDHB	Û	1.31	0.024	2359329	LCE3B	仓	1.30	0.016
3202171	PLAA	Û	1.32	0.029	3302328	EXOSC1	Û	1.31	0.010	3822805	TECR	Û	1.30	0.032
2327259	PPP1R8	Û	1.32	3.11E-04	3191338	GPR107	Û	1.31	0.031	3752002	CRLF3	仓	1.30	0.022
2761941	TAPT1	Û	1.32	0.042	3348852	DLAT	Û	1.31	2.78E-03	2572601	CCDC93	Û	1.30	1.39E-03
3458614	DCTN2	Û	1.32	7.00E-03	2711644	ATP13A3	Û	1.31	0.029	3134922	PCMTD1	仓	1.30	0.037
2954280	PEX6	Û	1.32	3.88E-03	3990512	SASH3	Û	1.31	0.050	3436236	ZNF664	仓	1.30	1.03E-03
3969047	PRPS2	Û	1.32	5.00E-03	3432678	TPCN1	Û	1.31	0.019	3828032	POP4	仓	1.30	0.018
2434633	ARNT	Û	1.32	5.74E-03	3734453	SLC9A3R1	Û	1.31	0.024	2327630	YTHDF2	仓	1.30	0.038
3945863	MGAT3	Û	1.32	0.019	3945056	EIF3L	Û	1.31	6.88E-03	2528275	FAM134A	Û	1.30	0.021
3629206	OAZ2	Û	1.32	9.51E-03	3888850	BCAS4	Û	1.31	0.042	3368707	CD59	Û	1.30	0.023
3882949	DYNLRB1	Û	1.32	0.014	3608095	ZNF774	Û	1.31	0.013	3603199	IDH3A	仓	1.30	0.010
2330393	C1orf113	Û	1.32	0.010	3426215	MRPL42	Û	1.31	0.027	3743486	GABARAP	仓	1.30	6.13E-04
3377933	EFEMP2	Û	1.32	0.022	3774635	FASN	Û	1.31	8.79E-03	2916246	C6orf162	仓	1.30	0.033
3580876	PPP1R13B	Û	1.32	6.69E-03	2712632	TFRC	Û	1.31	0.013	3256689	PTEN	仓	1.30	2.66E-04
3662041	OGFOD1	Û	1.32	0.013	3825141	C19orf50	Û	1.31	6.42E-04	2377427	CD46	Û	1.30	3.09E-03
3005332	CRCP	Û	1.32	0.017	3364119	CYP2R1	仓	1.31	0.036	3464983	ATP2B1	Û	1.30	0.030
3665116	CBFB	Û	1.31	0.026	4003954	TAB3	仓	1.31	4.64E-03	2358171	PRPF3	Û	1.30	4.99E-04
3205162	RNF38	Û	1.31	4.12E-04	3127579	FLJ14107	Û	1.31	0.051	3310413	ATE1	仓	1.30	0.026
2902427	LST1	Û	1.31	0.033	3864921	ZNF180	Û	1.31	0.027	3841231	PRPF31	仓	1.30	0.014
3048778	TMED4	Û	1.31	0.027	2695648	ACAD11	Û	1.31	0.016	2406597	TRAPPC3	仓	1.30	0.023
2924492	HEY2	①	1.31	0.053	2367537	C1orf9	Û	1.31	0.045	2822215	PAM	Û	1.30	0.016
3421523	YEATS4	①	1.31	0.052	3687870	ZNF688	仓	1.31	7.27E-03	3828162	C19orf2	仓	1.30	0.019
3168841	GRHPR	Û	1.31	6.66E-03	3644764	CCNF	Û	1.31	0.041	3563734	SOS2	仓	1.30	1.15E-03
2610317	C3orf10	Û	1.31	4.24E-03	3666649	VPS4A	仓	1.31	0.037	3636470	BTBD1	仓	1.30	2.86E-03
3742384	SLC25A11	Û	1.31	8.78E-04	3566304	EXOC5	仓	1.31	7.39E-03	2708610	MAGEF1	仓	1.30	0.015
3513883	KPNA3	Û	1.31	1.51E-03	3380769	KRTAP5-11	Û	1.30	0.031	3451318	ZCRB1	仓	1.30	5.80E-03
3740304	PITPNA	Û	1.31	0.026	2901620	HLA-E	Û	1.30	0.013	3965393	ALG12	Û	1.30	0.014
2663551	Nû210	Û	1.31	0.027	2523540	NBEAL1	Û	1.30	0.037	3645402	FLYWCH1	Û	1.30	1.76E-03

3883787	C20orf4	仓	1.30	2.96E-03	3690084	DNAJA2	仓	1.29	0.053	2901660	PRR3	仓	1.28	0.044
3818897	PNPLA6	Û	1.30	1.14E-03	3757630	KAT2A	Û	1.29	0.032	3699044	RFWD3	얍	1.28	0.037
2484552	AHSA2	Û	1.30	0.023	2622859	HEMK1	Û	1.29	4.99E-03	3878934	NAA20	Û	1.28	0.048
3513096	ESD	仓	1.30	0.023	3885537	PLCG1	Û	1.29	0.028	3347549	CUL5	Û	1.28	9.37E-03
2903285	PSMB9	仓	1.30	0.019	3191589	FUBP3	仓	1.29	0.039	3944922	TRIOBP	仓	1.28	1.13E-03
3988874	UBE2A	仓	1.30	0.021	2364155	UHMK1	仓	1.29	6.03E-03	3435681	ARL6IP4	Û	1.28	0.020
3775842	TYMS	Û	1.30	0.029	2771654	CENPC1	Û	1.29	0.031	3779684	PSMG2	Û	1.28	0.019
3680610	GSPT1	仓	1.30	9.36E-03	3696454	CHTF8	仓	1.29	0.022	3252170	ADK	Û	1.28	8.02E-03
3375582	FADS3	Û	1.30	0.023	3418436	OS9	Û	1.29	0.053	2603897	TIGD1	Û	1.28	0.043
3831168	CAPNS1	仓	1.30	3.58E-03	3190737	TBC1D13	仓	1.29	8.39E-03	3139950	LACTB2	兌	1.28	0.051
3352813	TBCEL	Û	1.30	0.050	3869954	ZNF321	仓	1.29	0.047	3817072	GIPC3	Û	1.28	0.011
3772090	TMC6	Û	1.30	9.35E-03	3788270	ELAC1	仓	1.29	0.041	3872542	ZNF418	Û	1.28	0.020
3333622	POLR2G	仓	1.30	0.022	3860824	ZNF569	仓	1.29	1.67E-03	3063337	ZNF394	兌	1.28	0.018
3933331	C2CD2	Û	1.30	0.014	3774701	CCDC57	Û	1.29	0.035	3707352	RNF167	Û	1.28	0.012
3447863	KRAS	仓	1.30	0.040	2776998	KLHL8	仓	1.29	5.52E-03	3217123	TRIM14	仓	1.28	0.031
3633794	ETFA	仓	1.30	0.014	3315549	PSMD13	仓	1.29	9.36E-03	3710681	MAP2K4	兌	1.28	0.028
3434142	PRKAB1	仓	1.30	0.010	2336302	ZFYVE9	仓	1.29	0.032	3645881	ZNF174	仓	1.28	3.83E-03
2571457	CKAP2L	Û	1.30	0.022	3035049	C7orf50	仓	1.29	0.018	2681157	TMF1	Û	1.28	0.033
3750625	POLDIP2	Û	1.30	7.60E-03	2622359	RBM6	Û	1.29	0.044	3329904	NDUFS3	Û	1.28	0.023
3681674	NTAN1	仓	1.30	0.034	3706659	ASPA	仓	1.29	0.031	3849865	FBXL12	仓	1.28	0.031
3454662	CSRNP2	兌	1.30	0.049	3751164	DHRS13	Û	1.29	0.016	2553576	RTN4	Û	1.28	0.021
2950590	RGL2	Û	1.29	0.050	3822657	CD97	Û	1.29	9.23E-03	3945877	SMCR7L	Û	1.28	1.29E-03
3536663	MAPK1IP1L	仓	1.29	5.48E-03	3688424	C16orf58	Û	1.29	0.012	3859026	PEPD	仓	1.28	0.029
3505937	CENPJ	Û	1.29	0.020	3375951	GANAB	Û	1.29	0.021	3653123	PRKCB	Û	1.28	0.021
3405531	DDX47	兌	1.29	0.024	3269065	LHPP	仓	1.29	5.33E-03	2404999	MARCKSL1	Û	1.28	0.023
3887107	ZSWIM1	兌	1.29	0.022	3056108	BCL7B	仓	1.29	0.030	3764384	S矿T4H1	얍	1.28	7.35E-03
3721548	CNP	兌	1.29	0.053	3851603	DHPS	仓	1.29	3.39E-03	3140640	STAU2	Û	1.28	0.035
2921022	GPR6	兌	1.29	0.017	2320762	VPS13D	Û	1.29	0.012	2589255	FKBP7	Û	1.28	0.051
3855506	TMEM161A	Û	1.29	0.025	2877257	BRD8	Û	1.29	0.027	3758157	BECN1	얍	1.28	0.036
3591674	C15orf63	Û	1.29	0.023	3462949	OSBPL8	仓	1.29	0.042	3415273	C12orf44	仓	1.28	0.036
2536298	SEPT2	仓	1.29	3.97E-03	3475545	VPS33A	仓	1.29	0.020	3971367	YY2	Û	1.28	0.043
4027387	FAM3A	Û	1.29	2.20E-03	3257938	BTAF1	Û	1.29	0.036	3337918	TPCN2	Û	1.28	8.89E-03

2939814	RPP40	仓	1.28	3.79E-03	3580319	CINP	仓	1.27	0.028	3015216	COPS6	仓	1.26	0.031
2458513	TMEM63A	Û	1.28	0.041	2427342	ALX3	仓	1.27	0.011	3005280	VKORC1L1	Û	1.26	0.020
2384956	COG2	仓	1.28	0.032	3706651	OR3A3	Û	1.27	0.041	3722152	PSME3	Û	1.26	0.050
2892738	PRPF4B	Û	1.28	0.019	3553607	EIF5	仓	1.27	0.042	3757664	RAB5C	Û	1.26	4.95E-03
3809324	TXNL1	仓	1.28	0.010	2486811	PLEK	仓	1.27	0.042	3381241	ARAP1	Û	1.26	6.16E-03
3035682	FTSJ2	仓	1.28	0.039	2827156	PHAX	仓	1.27	0.025	3471374	PPP1CC	仓	1.26	2.72E-03
3581132	AKT1	仓	1.28	8.65E-03	3195174	MAN1B1	Û	1.27	3.78E-04	3057650	YWHAG	Û	1.26	0.027
3807370	DYM	仓	1.28	8.12E-03	2336497	ZYG11B	仓	1.27	0.034	3506648	GPR12	仓	1.26	2.50E-03
3894228	CSNK2A1	仓	1.28	2.46E-03	3896524	TRMT6	仓	1.27	0.039	3843346	ZNF549	仓	1.26	6.15E-03
2893847	SNRNP48	Û	1.28	0.030	3301218	PDLIM1	仓	1.27	0.030	2866576	MBLAC2	Û	1.26	0.027
2924619	TRMT11	Û	1.28	0.040	3541137	EIF2S1	仓	1.27	0.029	3961981	POLR3H	Û	1.26	0.044
3923218	RRP1B	仓	1.28	9.75E-03	3578152	TCL1A	仓	1.27	0.039	2899519	ABT1	仓	1.26	0.029
3929821	CRYZL1	Û	1.28	0.035	2545092	HADHA	仓	1.27	0.014	3816424	SPPL2B	Û	1.26	0.032
3624697	ARPP19	仓	1.27	0.013	3264004	SHOC2	仓	1.27	8.61E-03	3698919	GLG1	Û	1.26	0.015
2610136	CRELD1	Û	1.27	0.042	3435853	TMED2	Û	1.27	7.10E-03	3502632	TMCO3	Û	1.26	0.021
3391029	PPP2R1B	仓	1.27	3.57E-04	3909064	TMEM189	仓	1.27	0.017	2817386	PAPD4	Û	1.26	0.011
3976519	RBM3	仓	1.27	4.65E-03	2619344	NKTR	Û	1.27	0.010	3880706	ENTPD6	Û	1.26	0.025
3866302	AP2S1	仓	1.27	5.59E-03	2890292	C5orf45	Û	1.27	0.032	2361697	C1orf66	Û	1.26	0.031
3645204	KCTD5	仓	1.27	8.44E-03	3723572	MGC57346	Û	1.27	0.037	2924898	RNF146	Û	1.26	0.035
2877141	HNRNPA0	仓	1.27	0.011	3695433	TRADD	仓	1.27	0.016	3868283	VRK3	Û	1.26	9.86E-03
3238491	BMI1	仓	1.27	0.043	3235255	ECHDC3	仓	1.27	0.025	2519140	ZC3H15	Û	1.26	0.033
3099561	T1560	仓	1.27	0.046	2547386	DPY30	仓	1.27	0.048	2833024	RNF14	Û	1.26	0.029
2391647	SSU72	仓	1.27	0.046	2989537	GLCCI1	仓	1.27	0.042	3256669	CFLP1	Û	1.26	3.13E-03
3338424	FADD	仓	1.27	0.026	3850040	EIF3G	仓	1.27	1.30E-03	3456700	ZNF385A	Û	1.26	0.022
3282268	ACBD5	仓	1.27	0.030	2922521	NT5DC1	仓	1.26	0.017	3656760	STX4	Û	1.26	0.020
3466740	LTA4H	仓	1.27	0.036	2816506	S100Z	仓	1.26	0.017	3025500	BPGM	Û	1.26	0.015
3972025	PDK3	仓	1.27	0.050	3666732	CYB5B	仓	1.26	7.64E-03	3560617	SNX6	Û	1.26	0.046
2436132	ILF2	仓	1.27	0.053	3954331	TOP3B	Û	1.26	0.028	3560864	PPP2R3C	Û	1.26	0.035
2899393	BTN2A3	Û	1.27	0.025	3426917	METAP2	仓	1.26	0.035	3377964	FIBP	Û	1.26	0.011
3878533	DTD1	仓	1.27	0.043	2777639	GPRIN3	仓	1.26	0.048	3590709	PLA2G4B	Û	1.26	4.13E-03
3750842	SGK494	Û	1.27	1.78E-03	3837731	EMP3	Û	1.26	7.49E-03	3164914	MTAP	Û	1.26	0.022
3943414	FBX07	①	1.27	0.014	3773742	SLC38A10	Û	1.26	0.024	3630668	CALML4	Û	1.26	0.011

		-							_		-			_
2440625	DEDD	仓	1.26	6.35E-03	3051753	FKBP9	仓	1.25	0.046	3147591	AZIN1	Û	1.25	0.018
2352501	LRIG2	Û	1.26	0.018	3964154	CERK	仓	1.25	0.036	2768273	NFXL1	Û	1.25	0.038
3846280	TBXA2R	仓	1.26	0.025	3589141	SPRED1	Û	1.25	0.049	4041923	CCNL2	Û	1.25	0.036
3830246	LSR	Û	1.26	0.034	3077766	TPK1	仓	1.25	0.016	3535922	STYX	얍	1.25	0.044
3220977	ROD1	仓	1.26	2.02E-03	3434193	CCDC64	Û	1.25	3.20E-03	3221135	C9orf80	仓	1.25	0.031
3129948	TMEM66	Û	1.26	2.56E-03	2317434	TPRG1L	仓	1.25	0.034	3294242	ECD	얍	1.25	0.012
3815210	AZU1	仓	1.26	4.86E-03	3378007	C11orf68	仓	1.25	0.017	2443537	SCYL3	얍	1.25	0.035
3830712	MLL4	Û	1.26	3.52E-03	4007086	ZNF41	仓	1.25	2.70E-03	3633048	EDC3	仓	1.25	0.025
3666282	ZFP90	仓	1.26	0.050	3684782	RRN3P3	仓	1.25	0.038	3225003	PSMB7	얍	1.25	0.033
3705135	CENPBD1	仓	1.26	5.21E-03	3482977	POLR1D	仓	1.25	5.21E-03	3405032	ETV6	얍	1.25	1.04E-03
2801608	MARCH6	Û	1.26	0.016	2359817	INTS3	Û	1.25	0.016	3226181	ST6GALNAC4	Û	1.25	0.037
3820443	ICAM1	Û	1.26	0.044	3725481	UBE2Z	仓	1.25	0.012	3971923	ZFX	얍	1.25	0.044
4051226	SEMA4D	Û	1.26	2.44E-03	3283378	MTPAP	仓	1.25	0.026	3985218	ARMCX5	얍	1.25	7.80E-03
2536625	BOK	仓	1.26	4.16E-03	3418513	MARCH9	Û	1.25	0.015	3739827	GLOD4	얍	1.24	7.64E-03
3005069	ZNF92	仓	1.26	0.035	3405207	BCL2L14	仓	1.25	0.030	3864597	C19orf61	Û	1.24	0.037
3363979	PSMA1	仓	1.26	8.91E-03	2858793	C5orf43	仓	1.25	7.80E-03	3337390	TCIRG1	Û	1.24	0.041
3712582	MED9	仓	1.26	0.022	3014159	LMTK2	Û	1.25	0.053	2525182	CCNYL1	얍	1.24	9.96E-03
3644220	NDUFB10	仓	1.26	0.051	2724472	UBE2K	仓	1.25	0.041	2759404	GRPEL1	企	1.24	0.032
2608469	ITPR1	Û	1.26	0.025	3723264	NMT1	仓	1.25	0.010	3643703	UBE2I	얍	1.24	0.014
3959631	EIF3D	仓	1.26	0.013	2575980	CCDC115	仓	1.25	0.040	2545869	IFT172	Û	1.24	8.93E-03
3722417	NBR1	仓	1.26	0.032	2488959	STAMBP	仓	1.25	0.013	2620315	TMEM42	얍	1.24	0.012
3168245	LOC92973	Û	1.26	0.040	2666904	SLC4A7	Û	1.25	0.050	3841545	LILRA1	얍	1.24	5.20E-03
4026669	BCAP31	Û	1.25	0.045	3453774	LMBR1L	Û	1.25	0.036	3329793	SLC39A13	Û	1.24	0.043
3737140	GAA	Û	1.25	0.033	2698565	TFDP2	仓	1.25	0.043	2548274	STRN	얍	1.24	0.020
3638048	MRPL46	仓	1.25	0.052	2890859	MGAT1	Û	1.25	0.035	3662265	Nû93	얍	1.24	0.050
3135452	ATP6V1H	仓	1.25	3.35E-03	2964327	LYRM2	仓	1.25	0.011	2429842	CD58	Û	1.24	0.042
3713195	SMCR8	仓	1.25	7.36E-03	3275611	ANKRD16	仓	1.25	8.20E-03	3223605	FBXW2	仓	1.24	2.77E-03
3902609	PDRG1	仓	1.25	0.042	3185558	PRPF4	仓	1.25	0.035	4014251	СНМ	얍	1.24	0.047
3677592	ZNF434	仓	1.25	0.011	4043943	INPP5B	仓	1.25	0.028	3421706	RAB3IP	仓	1.24	0.046
3549708	SERPINA4	①	1.25	0.013	3195363	ARRDC1	①	1.25	8.28E-03	3322048	C11orf58	仓	1.24	0.051
3497790	IPO5	①	1.25	2.43E-03	3382319	GDPD5	Û	1.25	0.047	3851441	ZNF442	仓	1.24	0.048
3729014	GDPD1	Û	1.25	0.016	2867145	FAM172A	仓	1.25	9.32E-03	4019486	SEPT6	仓	1.24	5.93E-03

		-		-	-				-	-	-			-
3470793	KCTD10	仓	1.24	0.049	3623683	GABPB1	Û	1.24	0.035	3386638	SLC36A4	Û	1.23	0.029
3479181	POLE	Û	1.24	0.049	3821727	ZNF136	仓	1.24	0.013	3453370	ARF3	仓	1.23	7.96E-03
3074640	LUZP6	仓	1.24	0.024	3962734	TTLL1	仓	1.24	0.044	2831209	PAIP2	仓	1.23	0.050
3620276	EHD4	仓	1.24	0.045	3433538	RNFT2	Û	1.24	0.038	3268588	ACADSB	仓	1.23	0.044
3942998	SFI1	Û	1.24	0.022	2333168	C1orf84	Û	1.24	0.044	3642060	CHSY1	Û	1.23	0.015
2405893	C1orf212	仓	1.24	0.042	3394092	SLC37A4	Û	1.24	0.044	3696035	LCAT	Û	1.23	0.042
3311775	DHX32	仓	1.24	0.053	4026722	IDH3G	仓	1.24	0.042	2336099	OSBPL9	仓	1.23	0.044
2643095	BFSP2	仓	1.24	0.013	3515009	VPS36	Û	1.24	0.041	3602873	HMG20A	仓	1.23	0.016
3702293	MBTPS1	Û	1.24	0.049	3819880	ZNF317	Û	1.24	0.027	3865464	OPA3	仓	1.23	4.69E-03
3310675	CUZD1	Û	1.24	0.031	2474527	NRBP1	仓	1.24	0.034	3887017	DNTTIP1	仓	1.23	0.024
3377886	CFL1	仓	1.24	0.050	3867195	FAM83E	仓	1.24	0.048	2400220	DDOST	Û	1.23	0.023
2446198	TOR1AIP2	Û	1.24	0.048	3027503	ADCK2	Û	1.24	0.029	3371673	ARHGAP1	仓	1.23	0.022
3421630	CCT2	仓	1.24	0.035	3231389	ZMYND11	仓	1.23	0.051	3986672	ATG4A	仓	1.23	0.051
3903836	EIF6	仓	1.24	0.011	3551303	CCNK	仓	1.23	2.03E-03	3705641	TIMM22	仓	1.23	0.011
2428405	RHOC	仓	1.24	3.77E-03	3619650	DNAJC17	仓	1.23	0.030	3476265	EIF2B1	仓	1.23	9.20E-03
3603687	TMED3	Û	1.24	0.027	3847989	CD70	Û	1.23	0.015	3459604	PPM1H	仓	1.23	0.036
3719515	DUSP14	仓	1.24	0.032	3421579	FRS2	仓	1.23	0.053	3751323	MY018A	Û	1.23	7.24E-03
3466284	NDUFA12	仓	1.24	0.047	3327948	TTC17	Û	1.23	2.67E-03	3382948	CLNS1A	仓	1.23	0.028
2413203	LRP8	Û	1.24	0.050	3432030	ACAD10	Û	1.23	0.011	2488114	ZNF638	Û	1.23	0.048
3778823	NAPG	仓	1.24	0.047	3960388	PLA2G6	Û	1.23	0.016	3225348	PPP6C	仓	1.23	0.042
2436283	DENND4B	Û	1.24	0.014	2320347	FBXO44	Û	1.23	0.022	2325479	RCAN3	仓	1.23	0.032
3577078	LGMN	Û	1.24	0.047	2659577	PAK2	仓	1.23	0.034	3192525	GTF3C4	仓	1.23	0.044
3292590	PBLD	仓	1.24	0.044	2406139	KIAA0319L	Û	1.23	0.039	2853388	C5orf33	仓	1.23	0.029
3037344	DAGLB	Û	1.24	0.041	3340410	NEU3	仓	1.23	0.019	3430552	PWP1	仓	1.23	0.023
2336271	BTF3L4	仓	1.24	0.052	3294816	NDST2	Û	1.23	0.022	3558012	TINF2	仓	1.23	4.38E-03
3159167	ZNF252	仓	1.24	0.022	3795466	RBFA	仓	1.23	0.052	3639007	HDDC3	仓	1.23	0.017
3557614	AP1G2	Û	1.24	0.012	3862167	FBL	仓	1.23	2.90E-03	3757487	DNAJC7	仓	1.23	0.016
2828146	CDC42SE2	仓	1.24	0.023	3689922	VPS35	仓	1.23	0.011	2899110	HFE	Û	1.23	0.040
3759356	EFTUD2	仓	1.24	0.013	3755714	MED1	仓	1.23	6.41E-03	3952453	DGCR2	Û	1.23	0.046
3372368	MTCH2	仓	1.24	0.018	4012204	HDAC8	仓	1.23	0.041	3860596	ZNF461	仓	1.23	0.026
3534201	PRPF39	Û	1.24	0.025	3079005	RARRES2	얍	1.23	0.040	3479438	CHFR	仓	1.23	0.046
3797015	ZFP161	Û	1.24	0.029	3294854	CAMK2G	Û	1.23	5.86E-03	3315024	ADAM8	Û	1.23	0.029

	_	-		-	-				_		-			_
3623424	COPS2	Û	1.22	0.047	3865776	IRF2BP1	Û	1.22	1.23E-03	3683783	THUMPD1	Û	1.22	0.028
3602526	FBX022	仓	1.22	0.021	2786567	C4orf49	仓	1.22	0.037	3439305	ZNF84	Û	1.22	0.022
3299255	ATAD1	Û	1.22	0.033	2431031	HMGCS2	仓	1.22	0.040	3440017	FBXL14	Û	1.22	0.049
2844461	LTC4S	仓	1.22	5.79E-03	2363902	DUSP12	仓	1.22	0.024	3467315	IKBIP	Û	1.22	0.041
2780999	PAPSS1	仓	1.22	0.038	3327906	API5	仓	1.22	2.62E-03	3981959	SLC16A2	Û	1.22	0.028
3645850	OR2C1	仓	1.22	0.026	3915087	USP25	仓	1.22	0.027	3819104	TRAPPC5	Û	1.22	0.020
3831143	TBCB	仓	1.22	0.012	3382861	PAK1	仓	1.22	0.036	2624110	SPCS1	Û	1.22	0.017
2928392	VTA1	仓	1.22	0.050	3597857	SNX1	仓	1.22	0.050	3074362	CNOT4	Û	1.21	0.051
3435946	GTF2H3	仓	1.22	0.039	2964052	SRSF12	仓	1.22	6.16E-03	2475628	YPEL5	Û	1.21	0.049
3225224	GOLGA1	Û	1.22	1.22E-03	3754227	MY019	Û	1.22	0.012	3565303	CNIH	Û	1.21	0.023
2392528	PANK4	Û	1.22	0.016	3708798	SENP3	仓	1.22	0.048	3847005	PLIN3	仓	1.21	0.016
3818376	CLPP	仓	1.22	0.017	2600068	TUBA4A	仓	1.22	0.033	3333358	INCENP	Û	1.21	0.022
3691193	SNX20	仓	1.22	0.039	2397732	AGMAT	仓	1.22	0.046	2538924	FLJ42418	Û	1.21	0.033
2902884	SKIV2L	Û	1.22	0.011	3599432	FEM1B	仓	1.22	0.025	3226005	PTRH1	仓	1.21	8.37E-03
3970833	PDHA1	仓	1.22	6.50E-03	3417842	LRP1	Û	1.22	0.047	3576812	TRIP11	Û	1.21	0.029
3853063	ILVBL	Û	1.22	0.026	2460325	C1orf198	仓	1.22	0.012	3099566	FAM110B	仓	1.21	0.030
2977949	EPM2A	仓	1.22	0.023	2324743	ZBTB40	Û	1.22	0.043	3704717	ANKRD11	Û	1.21	0.029
2586989	DLX2	仓	1.22	0.040	2834093	TCERG1	Û	1.22	0.018	3825225	C19orf60	Û	1.21	0.040
3681377	PARN	仓	1.22	9.30E-03	2606643	MYEOV2	仓	1.22	0.031	3529547	DCAF11	仓	1.21	0.029
3119735	ZNF623	仓	1.22	0.030	2675836	ABHD14B	仓	1.22	0.038	2365496	POGK	Û	1.21	0.013
3895297	DDRGK1	Û	1.22	0.012	3269328	ZRANB1	仓	1.22	0.049	3462693	KRR1	Û	1.21	0.037
3645253	SRRM2	Û	1.22	5.24E-04	3282016	ABI1	仓	1.22	0.050	3645377	FLYWCH2	Û	1.21	0.044
3571542	PNMA1	仓	1.22	0.053	2838598	CCNG1	仓	1.22	0.033	3548152	TDP1	Û	1.21	2.29E-03
2436716	UBE2Q1	兌	1.22	0.037	3457696	PAN2	Û	1.22	0.033	3128362	GNRH1	Û	1.21	0.017
3688197	VKORC1	Û	1.22	0.025	2886977	FBXW11	仓	1.22	0.024	3882069	MAPRE1	Û	1.21	0.039
2358044	PLEKHO1	兌	1.22	0.053	2571979	SLC35F5	Û	1.22	0.050	3996339	TAZ	Û	1.21	0.012
3802129	SS18	仓	1.22	0.030	3976848	HDAC6	Û	1.22	2.53E-03	4007376	SSX3	Û	1.21	0.053
2560141	MRPL53	兌	1.22	0.011	3947863	PARVB	仓	1.22	0.011	2966253	SFRS18	Û	1.21	0.036
3230282	AGPAT2	Û	1.22	0.048	3755396	CWC25	Û	1.22	0.027	3845620	BTBD2	Û	1.21	0.042
2642325	ATP2C1	Û	1.22	0.051	2495555	UNC50	Û	1.22	0.013	2561955	SUCLG1	仓	1.21	0.027
2620222	ZNF501	仓	1.22	0.048	3837836	CYTH2	仓	1.22	0.011	3865378	ERCC1	仓	1.21	0.052
2335986	RNF11	仓	1.22	0.024	3649052	MKL2	仓	1.22	0.038	3998632	PNPLA4	Û	1.21	0.043

3756344	SMARCE1	仓	1.21	0.029	3377358	BATF2	仓	1.21	0.040	3445786	ARHGDIB	仓	1.20	0.016
2391188	SDF4	Û	1.21	0.026	3922100	MX1	Û	1.21	0.047	3675116	TMEM8A	Û	1.20	0.044
3345340	KDM4D	①	1.21	0.029	3624448	GNB5	Û	1.21	0.011	3656800	ZNF646	Û	1.20	0.037
3708306	ACADVL	Û	1.21	3.95E-03	3742727	DHX33	Û	1.21	0.019	2386828	EDARADD	仓	1.20	0.036
3919124	FAM165B	①	1.21	0.017	2904528	ZNF76	Û	1.20	0.037	3770699	MIF4GD	仓	1.20	0.038
2614054	UBE2E1	①	1.21	0.029	3812426	RTTN	Û	1.20	0.028	3755580	CACNB1	Û	1.20	0.015
4007643	OTUD5	仓	1.21	0.034	3538470	C14orf135	Û	1.20	0.024	3167511	GALT	Û	1.20	0.032
2950214	TAP1	Û	1.21	0.052	3228373	TSC1	Û	1.20	0.037	3159132	COMMD5	仓	1.20	8.68E-03
3832777	MRPS12	①	1.21	0.045	3251926	KIAA0913	Û	1.20	0.032	3015706	MOSPD3	仓	1.20	0.046
3159013	ZNF34	①	1.21	0.042	2676352	NEK4	Û	1.20	0.049	3628994	PPIB	Û	1.20	0.021
3696571	TERF2	仓	1.21	7.84E-03	3332838	DAK	Û	1.20	0.042	2530599	AGFG1	仓	1.20	0.015
3956854	THOC5	①	1.21	0.018	3571810	ABCD4	Û	1.20	0.024	2881370	CD74	Û	1.20	7.51E-03
4016045	TCEAL6	Û	1.21	0.032	3502710	TFDP1	Û	1.20	0.033	3774975	C17orf101	Û	1.20	0.016
3748126	ATPAF2	仓	1.21	0.021	3855410	SUGP2	Û	1.20	4.59E-03	3033397	RBM33	Û	1.20	0.043
3301713	BLNK	仓	1.21	5.12E-03	3934407	ICOSLG	Û	1.20	0.015	3294348	MRPS16	仓	1.20	0.031
2351872	RAP1A	①	1.21	0.026	3654227	IL21R	Û	1.20	0.036	3924674	DIP2A	Û	1.20	0.018
3224366	RC3H2	仓	1.21	5.12E-03	2874794	RAPGEF6	Û	1.20	0.048	3824226	GTPBP3	Û	1.20	0.027
3994846	MTMR1	仓	1.21	0.020	3673921	ZNF778	Û	1.20	0.022	2321942	RSC1A1	Û	1.20	0.045
3878429	POLR3F	仓	1.21	6.67E-03	3696295	SLC7A6OS	Û	1.20	0.017	3332626	TMEM132A	Û	1.20	0.046
3686164	GTF3C1	Û	1.21	0.012	3458033	ATP5B	Û	1.20	2.42E-03	3429312	HSP90B1	Û	1.20	0.018
3948590	RIBC2	仓	1.21	0.045	2333195	KIAA0467	Û	1.20	0.012	2562198	TGOLN2	Û	1.20	0.014
2348792	CCDC76	Û	1.21	0.013	3872983	CHMP2A	Û	1.20	0.022	3668898	ZFP1	Û	1.20	0.036
2325274	C1orf128	仓	1.21	0.026	3483348	POMP	Û	1.20	0.031	3545403	GSTZ1	Û	1.20	0.037
3591909	CTDSPL2	仓	1.21	0.010	3377149	MEN1	Û	1.20	0.016	3695916	CENPT	Û	1.20	0.019
3504392	N6AMT2	仓	1.21	0.028	2863535	WDR41	仓	1.20	0.035	4050485	TUBB2C	仓	1.20	0.032
3702382	TAF1C	Û	1.21	0.024	3815610	ATP5D	仓	1.20	0.011	3334954	CAPN1	Û	1.20	0.045
3538703	MNAT1	仓	1.21	0.038	3831917	ZNF570	仓	1.20	0.034	3442812	SLC2A14	Û	1.20	2.73E-03
2921086	CDC40	仓	1.21	7.07E-03	3047202	C7orf11	仓	1.20	0.043	2894711	TMEM14B	仓	1.20	6.07E-03
2983030	AGPAT4	Û	1.21	0.035	3869339	ZNF350	仓	1.20	0.052	2402942	SLC9A1	Û	1.20	0.024
3709540	PFAS	Û	1.21	0.021	3509910	FAM48A	Û	1.20	8.39E-03	3414390	SMARCD1	Û	1.20	0.020
3645901	NAT15	仓	1.21	0.037	3056264	ABHD11	Û	1.20	0.040	3541073	MPP5	Û	1.20	0.019
3843233	ZNF17	仓	1.21	0.040	3945084	MICALL1	Û	1.20	0.039	3542063	SLC39A9	Û	1.20	0.030

Table D17.	C9-Long Spe	CII	ic delle	LISC (II-	-1,230,1120	IALL UNLI 5		пгог	I al ten	unaujuste	u p<0.05, rC		1.20	
3435050	PSMD9	Û	1.20	0.020	3456006	CSAD	Û	1.20	0.036	3212277	C9orf64	Û	1.20	0.049
2560254	A①1	Û	1.20	0.045										

Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value
3662201	MT1H	仓	2.05	0.023	3847873	SLC25A23	Û	1.39	7.79E-03	3931112	HLCS	Û	1.30	8.65E-03
3433796	PEBP1	仓	1.76	0.033	2986350	DLL1	Û	1.39	0.040	3901665	C20orf3	Û	1.30	5.70E-03
2933522	GTF2H5	仓	1.74	0.046	2356818	BCL9	仓	1.38	6.15E-03	2362157	CD1D	Û	1.30	0.016
3507282	FLT1	Û	1.73	0.033	3788049	SKA1	仓	1.38	0.033	3839006	PTOV1	仓	1.30	0.040
3212848	GOLM1	Û	1.72	0.034	3974556	ATP6AP2	Û	1.38	0.035	3856075	ZNF682	仓	1.29	0.030
3948543	FAM118A	Û	1.67	0.049	2992963	CCDC126	仓	1.38	0.040	3767465	AXIN2	仓	1.29	0.042
3318500	OR52N4	仓	1.66	0.019	3188231	OR1L4	仓	1.38	2.73E-03	3251648	FAM149B1	兌	1.29	0.039
3933625	RSPH1	仓	1.66	0.030	3120358	HSF1	仓	1.38	0.043	3392871	ZNF259	兌	1.29	0.025
2775735	SCD5	Û	1.64	8.04E-03	3016636	SH2B2	仓	1.37	0.042	3454576	SLC11A2	Û	1.29	0.045
2676854	CHDH	仓	1.60	0.035	3730240	TLK2	仓	1.36	0.025	3275690	IL15RA	Û	1.28	2.08E-03
2703377	B3GALNT1	Û	1.60	0.049	3894098	C20orf96	仓	1.36	4.01E-03	2606574	NDUFA10	兌	1.28	0.012
3444476	TAS2R20	Û	1.57	0.047	2803329	BASP1	仓	1.35	9.34E-03	3458133	PRIM1	仓	1.28	0.029
2950125	HLA-DQB2	Û	1.54	0.032	2832081	ZMAT2	仓	1.35	7.91E-03	2861952	MRPS27	兌	1.28	0.029
3325503	RCN1	Û	1.53	0.017	2774971	ANTXR2	Û	1.35	0.036	3567187	DHRS7	Û	1.28	0.012
2869438	NUDT12	Û	1.53	0.031	3498589	CLYBL	仓	1.35	0.028	3677356	HCFC1R1	仓	1.27	3.61E-03
3841357	LILRA2	Û	1.52	0.023	2360939	POU5F1P4	Û	1.34	0.010	3302495	AVPI1	仓	1.27	0.042
3917582	KRTAP6-3	Û	1.51	0.018	3590086	RAD51	仓	1.34	0.035	2438531	HDGF	兌	1.27	0.033
2893392	LY86	Û	1.49	0.043	2422227	GEMIN8P4	仓	1.34	0.024	3735505	AANAT	仓	1.27	0.014
3903361	AHCY	仓	1.46	0.023	2723752	TBC1D1	仓	1.33	0.015	3334325	VEGFB	兌	1.27	0.012
3850660	SPC24	仓	1.46	0.039	3990795	RBMX2	Û	1.33	0.032	3811459	KDSR	Û	1.27	9.42E-03
3868659	C19orf48	仓	1.46	7.85E-03	4019849	LAMP2	Û	1.33	0.034	3325839	TCP11L1	仓	1.26	0.018
3830993	HCST	Û	1.45	0.024	2666566	NGLY1	仓	1.32	0.028	2383550	ZNF678	仓	1.26	0.035
3959593	TXN2	仓	1.45	0.019	3354879	HYLS1	仓	1.32	0.024	3713093	ALKBH5	仓	1.26	0.042
3164181	RRAGA	Û	1.43	0.018	2728189	PAICS	仓	1.32	0.032	2440476	F11R	Û	1.26	0.021
3450899	SLC2A13	Û	1.42	0.020	2673873	IMPDH2	仓	1.31	0.011	2334279	UROD	仓	1.26	0.043
2842561	HIGD2A	仓	1.41	0.038	3328389	EXT2	Û	1.31	0.032	3203482	BAG1	仓	1.26	0.026
2610417	C3orf42	仓	1.41	0.018	3168309	RECK	Û	1.31	4.94E-03	3816699	ZNF57	兌	1.26	0.044
2520069	C2orf88	Û	1.40	0.049	3191147	TOR1B	Û	1.31	0.046	3918696	SON	Û	1.26	9.81E-03
3726498	MYCBPAP	仓	1.40	0.033	2712794	TCTEX1D2	仓	1.31	0.046	2335922	CDKN2C	Û	1.25	0.011
3124537	CTSB	Û	1.40	0.027	2359433	LCE1E	仓	1.31	0.034	3844855	C19orf22	仓	1.25	0.036
3377423	CDCA5	①	1.39	0.045	3819522	MARCH2	Û	1.31	0.037	3442282	MLF2	仓	1.25	2.77E-03

		-							-	-	-		-	
3261419	HPS6	①	1.25	0.049	3079756	RHEB	仓	1.23	9.25E-03	3862564	C19orf47	Û	1.21	9.43E-03
2444117	PIGC	Û	1.25	0.029	2881554	DCTN4	Û	1.23	0.038	3724931	SP2	仓	1.21	0.033
3142485	IMPA1	Û	1.25	0.044	3157138	LYPD2	Û	1.23	0.029	3883941	TGIF2	仓	1.21	0.048
3016177	AP1S1	Û	1.25	0.045	2831875	SLC35A4	Û	1.23	0.040	3216319	ZNF367	仓	1.21	0.018
3855071	FKBP8	Û	1.24	0.017	2878726	HDAC3	Û	1.22	0.024	2737069	METAP1	仓	1.21	0.033
2399718	AKR7A2	Û	1.24	0.013	3920512	DSCR9	Û	1.22	7.15E-03	3417485	OBFC2B	仓	1.20	0.013
2955025	MRPL14	Û	1.24	0.048	3712517	NT5M	Û	1.22	3.85E-03	3822195	NACC1	仓	1.20	0.019
2390489	ZNF672	仓	1.24	0.039	3401197	C12orf32	仓	1.22	4.28E-03	2943236	DTNBP1	仓	1.20	0.018
3637006	SEC11A	Û	1.24	0.027	2832467	PCDHB18	Û	1.21	0.023	3643552	SSTR5	仓	1.20	9.87E-03
3621140	LCMT2	Û	1.24	0.049	3200689	RPS6	Û	1.21	3.58E-03	3673684	CDT1	仓	1.20	0.033
2363042	PEA15	Û	1.24	2.72E-03	2450865	CSRP1	Û	1.21	0.048	3240012	MASTL	仓	1.20	0.040
3029213	TAS2R41	Û	1.23	0.030	2619120	TRAK1	仓	1.21	0.015	3620515	TMEM87A	Û	1.20	0.015
3980745	FOXO4	Û	1.23	0.017	2410330	GPBP1L1	Û	1.21	0.017	3536396	CGRRF1	Û	1.20	0.023
2363444	USP21	Û	1.23	0.018	3644541	TRAF7	Û	1.21	7.47E-03	3825496	ARMC6	仓	1.20	0.043
2712906	RNF168	Û	1.23	0.032										

Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value
2940145	NRN1	Û	3.24	0.018	2534324	PRLH	Û	1.80	7.39E-03	2826295	SNX2	Û	1.64	2.64E-03
3369249	APIP	仓	2.54	2.58E-03	2474240	КНК	Û	1.80	0.043	2902178	TCF19	Û	1.64	3.85E-03
3560403	EGLN3	仓	2.51	1.33E-03	2761837	FGFBP2	Û	1.79	0.023	2773907	SDAD1	Û	1.64	8.43E-03
2902707	HSPA1A	Û	2.50	5.88E-04	2477933	GALM	Û	1.78	0.028	3444436	TAS2R14	Û	1.63	0.023
3385175	PICALM	仓	2.39	2.77E-04	3020496	ST7	Û	1.77	4.54E-03	3151943	TATDN1	Û	1.63	0.013
3972929	GK	兌	2.38	6.17E-04	2371346	RGL1	Û	1.76	7.66E-03	3009399	HSPB1	Û	1.62	0.031
2662581	C3orf10	Û	2.38	3.78E-03	3635198	BCL2A1	Û	1.75	4.18E-03	2638962	DTX3L	Û	1.62	0.010
3449068	TMTC1	兌	2.29	0.018	3444493	TAS2R19	仓	1.75	0.030	3147020	ZNF706	Û	1.62	0.014
3403841	RIMKLB	仓	2.29	0.016	2454661	TMEM206	Û	1.74	3.82E-03	3466284	NDUFA12	Û	1.61	4.88E-04
4022370	GPC4	兌	2.23	0.048	2638988	PARP15	Û	1.74	0.037	2893392	LY86	Û	1.61	5.63E-03
2944025	TPMT	Û	2.21	2.86E-03	2638789	CD86	Û	1.74	0.012	3818395	ALKBH7	Û	1.61	0.026
2950125	HLA-DQB2	Û	2.21	0.040	2895841	CD83	Û	1.73	0.012	2351004	GSTM5	Û	1.61	0.016
4002081	MAP7D2	兌	2.19	6.23E-03	3447863	KRAS	仓	1.72	3.61E-04	2841491	C5orf41	Û	1.60	0.013
3945545	APOBEC3B	Û	2.14	4.01E-03	2708855	LIPH	Û	1.72	0.036	2626097	ABHD6	Û	1.60	0.032
2399743	AKR7A3	Û	2.12	7.82E-03	3324713	METT5D1	仓	1.72	0.041	2350922	GSTM4	Û	1.60	0.026
2633191	GPR15	Û	2.05	0.021	3893849	PRPF6	仓	1.72	1.58E-03	3887107	ZSWIM1	Û	1.60	4.51E-03
3617458	GOLGA8A	兌	2.01	0.025	3513995	DLEU2	仓	1.71	8.52E-03	2443518	C1orf156	Û	1.59	1.18E-03
2878246	PFDN1	Û	1.96	0.022	2638017	C3orf1	Û	1.71	0.037	2587618	OLA1	Û	1.59	2.30E-03
3577443	ASB2	Û	1.96	0.040	3851072	ACP5	Û	1.70	0.013	2447414	NCF2	Û	1.59	0.043
2902725	HSPA1B	Û	1.95	1.14E-03	2950307	HLA-DOA	Û	1.69	0.014	2334350	MMACHC	Û	1.58	0.010
2362333	MNDA	Û	1.94	0.030	2946364	HIST1H3F	仓	1.68	0.041	3742627	C17orf87	Û	1.58	0.034
2677723	ARHGEF3	Û	1.93	0.011	3288013	BMS1P1	仓	1.68	1.53E-03	2515050	GORASP2	Û	1.58	6.37E-03
2950145	HLA-DOB	Û	1.92	0.012	2976113	IFNGR1	Û	1.67	0.025	2608419	SETMAR	Û	1.57	8.38E-04
2991233	AHR	Û	1.87	3.80E-03	3103523	LY96	Û	1.66	9.76E-03	2367843	DARS2	Û	1.57	1.10E-03
3797295	L3MBTL4	仓	1.86	0.014	2378068	G0S2	Û	1.66	0.039	3427014	SNRPF	Û	1.57	0.028
3273667	ADARB2	仓	1.84	6.04E-03	3263944	PDCD4	仓	1.66	2.81E-03	3074039	SLC35B4	Û	1.57	0.024
2408189	PPT1	Û	1.84	0.026	3518086	TBC1D4	仓	1.66	0.040	2711818	LSG1	Û	1.56	0.025
3434490	CABP1	仓	1.82	2.15E-04	2970897	FRK	仓	1.66	8.35E-03	2837810	UBLCP1	Û	1.56	0.025
2664209	SH3BP5	Û	1.82	0.019	3812385	CD226	Û	1.65	5.67E-03	3981735	NCRNA00183	仓	1.56	0.021
4037708	ND6	仓	1.81	0.023	3281621	ARHGAP21	Û	1.65	0.029	2950277	HLA-DMA	Û	1.56	0.030
2418929	PIGK	Û	1.81	0.026	2582124	NR4A2	Û	1.65	5.68E-03	3067592	PNPLA8	Û	1.56	0.011

3848243	INSR	Û	1.56	0.021	2403470	DNAJC8	Û	1.50	0.020	3444195	MAGOHB	仓	1.47	1.02E-03
3304970	SH3PXD2A	仓	1.55	0.038	2501317	LOC654433	Û	1.50	0.042	3494137	LM07	仓	1.47	0.046
3761632	SNF8	仓	1.54	2.80E-03	3210179	C9orf95	仓	1.50	1.82E-03	3705412	C17orf97	仓	1.47	1.99E-03
3743734	C17orf61	仓	1.54	5.69E-03	2612401	BTD	Û	1.50	0.024	2626167	РХК	Û	1.47	0.030
3420497	HELB	仓	1.54	2.29E-03	2835792	GM2A	Û	1.50	0.012	2409368	HYI	Û	1.47	0.027
3462843	NAP1L1	仓	1.54	0.026	3334847	C11orf2	Û	1.50	8.79E-04	2708407	ALG3	Û	1.47	7.26E-03
3373487	OR5M1	仓	1.54	8.66E-04	2375212	PPP1R12B	Û	1.49	0.023	2633773	TFG	Û	1.47	0.011
2499158	RANBP2	Û	1.54	1.79E-04	2790570	PLRG1	Û	1.49	5.77E-03	2692411	PTPLB	Û	1.46	0.040
3624145	DMXL2	仓	1.54	2.18E-03	3250019	DDX50	Û	1.49	7.54E-03	3221543	CDC26	仓	1.46	5.90E-03
3471264	VPS29	仓	1.54	4.08E-03	3362468	SBF2	Û	1.49	0.030	3845647	MKNK2	仓	1.46	2.64E-03
3458400	NDUFA4L2	仓	1.54	0.013	2668205	GLB1	Û	1.49	0.046	2845274	CCDC127	Û	1.46	0.035
2420467	CTBS	Û	1.54	0.040	3712041	UBB	Û	1.49	0.011	2744674	RAB33B	Û	1.46	0.031
3513856	EBPL	仓	1.54	7.49E-03	3058156	TMEM60	Û	1.49	6.09E-03	3609592	MCTP2	仓	1.46	0.018
3564919	FERMT2	仓	1.54	7.84E-03	2628682	ARL6IP5	Û	1.49	0.036	2495446	INPP4A	Û	1.46	0.026
2500919	SLC20A1	Û	1.53	0.042	3403077	C12orf57	Û	1.48	4.02E-03	3260423	CUTC	仓	1.46	0.012
3413950	SPATS2	仓	1.53	1.37E-03	2604390	ARL4C	Û	1.48	0.026	2464129	LOC100506975	兌	1.46	0.011
2836451	MFAP3	Û	1.53	0.019	2939034	SERPINB9	Û	1.48	0.017	3009198	RHBDD2	Û	1.46	0.016
2716655	MSX1	仓	1.53	5.88E-03	3405515	APOLD1	仓	1.48	0.019	3978819	RRAGB	얍	1.46	4.80E-03
3951732	CECR5	仓	1.53	3.16E-03	3460584	LLPH	Û	1.48	0.021	2621583	ZNF589	Û	1.46	0.035
3332886	TMEM138	Û	1.53	0.026	2879028	GNPDA1	Û	1.48	0.028	2342576	ACADM	Û	1.46	3.71E-03
3714068	ALDH3A2	Û	1.53	1.89E-03	2331679	MFSD2A	Û	1.48	9.46E-03	3347615	ACAT1	Û	1.46	0.039
3683018	RPS15A	仓	1.52	0.043	2888879	DOK3	Û	1.48	7.98E-04	3595846	FAM63B	仓	1.46	0.029
2946845	ZNF204P	Û	1.52	1.35E-03	2979056	N①43	Û	1.48	1.19E-03	3451264	YAF2	얍	1.46	7.09E-03
2385095	ARV1	Û	1.52	0.049	2428796	PTPN22	Û	1.48	8.06E-04	3216529	ZNF782	얍	1.46	0.018
2879739	PRELID2	仓	1.52	0.019	3719112	ZNHIT3	Û	1.48	9.97E-03	3475324	TMEM120B	仓	1.46	9.55E-03
2330773	CDCA8	Û	1.52	0.018	2369557	SOAT1	Û	1.48	0.029	3829768	UBA2	仓	1.46	2.57E-03
2752725	NEIL3	Û	1.51	0.036	3547375	GPR65	Û	1.48	0.027	3464967	GALNT4	얍	1.46	1.60E-03
3865223	TRAPPC6A	仓	1.51	0.038	3825823	NDUFA13	仓	1.48	0.021	3507962	KATNAL1	仓	1.46	0.026
3864551	PLAUR	Û	1.51	0.035	3490741	SUGT1	Û	1.48	0.013	3111695	EBAG9	Û	1.45	5.52E-03
3633699	NRG4	仓	1.51	0.017	3936442	PEX26	Û	1.48	9.34E-03	3996083	TMEM187	얍	1.45	2.63E-03
3485292	NBEA	仓	1.51	0.018	2805176	C5orf22	Û	1.47	0.021	2831519	C5orf32	Û	1.45	0.037
3072435	TMEM209	Û	1.50	0.023	3521484	UGGT2	Û	1.47	0.049	2394784	NOL9	Û	1.45	0.015

2871176	REEP5	Û	1.45	0.026	2750594	SC4MOL	Û	1.42	0.026	3428088	ACTR6	仓	1.40	0.013
2954022	TRERF1	仓	1.45	0.032	3005684	KCTD7	Û	1.42	8.00E-03	2363919	ATF6	Û	1.40	7.38E-03
3762625	MBTD1	仓	1.45	5.91E-04	2522439	BZW1	Û	1.42	0.032	3421706	RAB3IP	Û	1.40	5.23E-03
2378180	C1orf107	Û	1.45	1.64E-03	2616932	MLH1	Û	1.42	0.018	2973168	ECHDC1	Û	1.40	0.022
2845078	TRIM52	仓	1.45	0.023	3384321	RAB30	Û	1.42	0.027	3540353	CHURC1	얍	1.40	0.013
2820893	RFESD	Û	1.44	0.017	3807753	MBD1	仓	1.42	0.023	3841901	NLRP2	Û	1.40	4.23E-03
2792069	NAF1	Û	1.44	0.016	3354879	HYLS1	仓	1.42	4.01E-04	2363202	SLAMF7	Û	1.40	0.028
3335124	TIGD3	仓	1.44	0.045	3942384	MTFP1	仓	1.42	0.033	2796911	CCDC110	仓	1.40	0.025
3035892	GNA12	仓	1.44	0.015	2425212	DBT	Û	1.42	0.010	2731831	USO1	Û	1.40	0.011
3438027	RAN	仓	1.44	1.77E-03	3464912	POC1B	仓	1.41	9.95E-03	2876257	SAR1B	Û	1.39	0.039
2639309	SEC22A	Û	1.44	6.79E-03	3470689	ALKBH2	仓	1.41	7.77E-03	3426257	SOCS2	얍	1.39	0.016
3020273	CAV2	仓	1.44	0.026	2411228	STIL	Û	1.41	0.023	2900269	ZSCAN16	Û	1.39	0.011
3025740	TMEM140	Û	1.43	0.042	2970985	TSPYL4	Û	1.41	8.86E-03	4002148	EIF1AX	Û	1.39	0.023
2636185	SLC35A5	Û	1.43	0.030	2777070	HSD17B11	Û	1.41	0.044	3554592	BTBD6	Û	1.39	0.023
2608469	ITPR1	Û	1.43	4.68E-03	3396770	CDON	仓	1.41	8.47E-03	3361811	STK33	仓	1.39	6.28E-03
2743370	C4orf33	Û	1.43	7.49E-03	3221633	HDHD3	Û	1.41	6.62E-03	2366156	SFT2D2	Û	1.39	0.010
2409770	TMEM53	Û	1.43	0.014	3179669	C9orf89	仓	1.41	5.58E-03	2506903	MGAT5	Û	1.39	0.041
2333658	ATP6V0B	Û	1.43	0.046	3864430	ETHE1	Û	1.41	0.037	3537030	RPL13AP3	仓	1.39	0.036
2452977	FAIM3	Û	1.43	0.046	2436228	GATAD2B	Û	1.41	1.05E-06	2784113	CCNA2	Û	1.39	0.019
3488942	NUDT15	仓	1.43	2.67E-03	3098977	LYN	Û	1.41	5.79E-03	2437401	FDPS	Û	1.39	6.95E-03
2668035	DYNC1LI1	Û	1.43	4.74E-03	2807862	C5orf51	Û	1.41	0.015	3784509	ZNF271	Û	1.39	7.91E-03
3706651	OR3A3	Û	1.43	0.029	3168700	ZCCHC7	仓	1.41	0.012	3462630	CAPS2	Û	1.39	8.11E-05
2870397	PJA2	Û	1.43	5.50E-03	2682568	SHQ1	Û	1.41	0.012	2770427	C4orf14	Û	1.39	0.030
3061456	SAMD9L	Û	1.43	0.043	3292634	RUFY2	仓	1.41	0.013	3756856	KRTAP17-1	仓	1.39	0.027
2841699	CPEB4	Û	1.43	9.14E-03	3584728	SNRPN	仓	1.41	0.049	3998632	PNPLA4	Û	1.39	4.14E-04
2446198	TOR1AIP2	Û	1.43	1.37E-03	2531377	SP100	Û	1.41	0.045	3359751	ZNF195	Û	1.39	6.76E-03
2878474	HARS	Û	1.43	5.34E-03	2773348	PF4	仓	1.40	0.025	2596162	INO80D	Û	1.39	1.79E-04
3005956	C7orf42	Û	1.43	1.87E-03	3807261	SMAD7	仓	1.40	5.76E-03	3439063	ZNF26	Û	1.39	7.02E-03
2588827	NFE2L2	Û	1.42	9.86E-03	2690900	CD80	Û	1.40	0.028	4043943	INPP5B	Û	1.39	3.20E-03
3283920	ARHGAP12	仓	1.42	8.24E-04	2894663	PAK1IP1	Û	1.40	0.037	3344861	C11orf54	Û	1.39	0.038
3458911	CTDSP2	①	1.42	0.017	3716664	SUZ12P	仓	1.40	0.024	2348702	SLC35A3	Û	1.38	0.031
2336963	C1orf83	Û	1.42	6.64E-03	2433209	PRKAB2	Û	1.40	0.017	3749432	RNFT1	Û	1.38	0.011

3487095	DGKH	Û	1.38	0.039	3846742	SH3GL1	仓	1.37	0.034	3402978	DSTNP2	Û	1.36	0.013
2334459	TMEM69	Û	1.38	9.21E-04	2442134	TMC01	Û	1.37	0.031	2523213	BMPR2	Û	1.36	0.036
3788833	POLI	仓	1.38	5.59E-03	2738146	TET2	Û	1.37	6.46E-03	3332131	STX3	Û	1.36	1.75E-03
3636956	WDR73	Û	1.38	5.38E-03	2522509	NIF3L1	Û	1.37	5.88E-03	3716579	LRRC37BP1	仓	1.36	0.036
3414440	C12orf62	仓	1.38	0.021	3836317	VASP	仓	1.37	9.33E-03	2911413	PRIM2	Û	1.36	0.035
2903435	HLA-DPB2	Û	1.38	0.023	3853453	RASAL3	仓	1.37	0.047	3409127	ARNTL2	仓	1.36	0.045
3994451	CXorf40A	Û	1.38	0.039	2820925	RHOBTB3	Û	1.37	0.035	3781124	MIB1	Û	1.36	1.22E-03
2866590	LYSMD3	Û	1.38	0.036	2369796	TOR1AIP1	Û	1.37	0.012	2835021	PCYOX1L	Û	1.36	0.049
3353914	VWA5A	Û	1.38	0.035	2351940	DDX20	Û	1.37	0.026	3939545	MIF	Û	1.36	8.34E-03
2608765	ARL8B	Û	1.38	2.21E-03	3914286	SOX18	Û	1.37	0.036	2356181	RBM8A	Û	1.36	0.011
3822216	IER2	Û	1.38	4.17E-03	2899022	TRIM38	Û	1.37	6.49E-04	2524743	FASTKD2	Û	1.36	5.41E-03
3417457	MYL6	Û	1.38	0.044	2899243	HIST1H4F	Û	1.37	0.031	2457261	DUSP10	Û	1.36	0.047
3368398	CCDC73	Û	1.38	0.023	2386747	GPR137B	Û	1.37	0.026	2544164	C2orf44	Û	1.36	0.047
3753500	SLFN11	Û	1.38	0.022	2413484	YIPF1	Û	1.37	0.036	2474322	C2orf28	Û	1.36	5.42E-03
2321849	DNAJC16	Û	1.38	0.026	2649113	TIPARP	Û	1.37	0.026	3454680	TFCP2	仓	1.36	2.59E-03
2814642	MCCC2	Û	1.38	9.52E-03	2476075	SPAST	Û	1.37	6.47E-03	3985644	TCEAL3	Û	1.36	0.039
2956438	MUT	Û	1.38	0.030	3444525	TAS2R46	Û	1.37	0.014	2829562	TXNDC15	Û	1.36	0.042
3434413	RNF10	Û	1.38	7.12E-03	2372781	RGS1	Û	1.37	0.028	3589141	SPRED1	Û	1.36	0.021
2451544	MYOG	Û	1.38	0.026	3738205	MRPL12	Û	1.37	0.018	3851150	ZNF433	仓	1.36	2.54E-03
3840372	ZNF701	Û	1.38	0.045	3416943	GDF11	Û	1.37	0.039	2902348	MICB	Û	1.36	0.022
3431220	MVK	Û	1.38	9.02E-04	2599433	USP37	Û	1.37	0.010	2457573	AIDA	仓	1.36	0.019
4027532	GAB3	Û	1.38	0.029	2678367	PDHB	Û	1.37	5.90E-03	2604254	HJURP	Û	1.36	0.047
2855443	LOC100132356	Û	1.37	0.014	2859195	DIMT1L	Û	1.37	0.010	2494484	NCAPH	Û	1.36	0.047
2575949	TUBA3E	Û	1.37	1.54E-03	2336913	LRRC42	Û	1.37	2.91E-03	2501697	ACTR3	Û	1.36	1.66E-04
2429338	SIKE1	Û	1.37	4.50E-03	3044753	LSM5	Û	1.37	0.033	3227454	QRFP	仓	1.36	0.048
3854756	RAB3A	Û	1.37	0.020	3869714	ZNF611	仓	1.37	0.026	3761054	COPZ2	仓	1.36	8.49E-04
3726960	NME2	Û	1.37	9.19E-03	2527253	IGFBP2	仓	1.37	0.049	2892277	NQO2	Û	1.36	0.015
2551786	MCFD2	Û	1.37	0.015	3830277	USF2	仓	1.36	8.24E-03	2784131	BBS7	Û	1.35	0.011
2818454	XRCC4	Û	1.37	1.19E-03	3662444	NLRC5	仓	1.36	7.37E-03	3230490	EDF1	仓	1.35	5.01E-03
2495782	LIPT1	Û	1.37	0.022	3644887	TBC1D24	Û	1.36	0.027	2330334	THRAP3	Û	1.35	5.42E-03
3738629	SLC16A3	얍	1.37	0.047	3668898	ZFP1	仓	1.36	9.63E-03	3223551	MEGF9	Û	1.35	0.045
2713555	KIAA0226	Û	1.37	2.40E-03	3426301	CRADD	Û	1.36	2.54E-04	3142932	C8orf59	仓	1.35	0.015

3029030	CASP2	Û	1.35	0.017	3490251	WDFY2	Û	1.34	3.56E-03	3385003	CREBZF	Û	1.33	0.021
2642791	DNAJC13	Û	1.35	2.04E-03	3644541	TRAF7	仓	1.34	0.015	3705967	SERPINF1	仓	1.33	0.043
2835006	GRPEL2	Û	1.35	0.029	2546008	S①T7L	Û	1.34	5.45E-03	2512330	MARCH7	Û	1.33	1.92E-03
2316245	PRKCZ	Û	1.35	0.033	3884793	SLC32A1	仓	1.34	0.043	3835966	RELB	仓	1.33	0.034
3468925	NFYB	仓	1.35	5.14E-04	2676219	PBRM1	Û	1.34	0.019	2477302	CCDC75	仓	1.33	0.031
3666649	VPS4A	仓	1.35	0.014	3665997	DUS2L	Û	1.34	0.026	3571542	PNMA1	仓	1.33	2.50E-03
2425118	SASS6	Û	1.35	0.013	3225096	NR6A1	仓	1.34	0.026	3315024	ADAM8	仓	1.33	0.016
2355615	SEC22B	Û	1.35	2.53E-03	2954527	ZNF318	Û	1.34	0.015	3851703	C19orf43	仓	1.33	0.019
3739162	TBCD	仓	1.35	7.60E-03	3510858	FOX01	仓	1.34	0.047	2517737	PLEKHA3	仓	1.33	0.033
3119376	C8orf31	Û	1.35	0.015	2708817	TMEM41A	Û	1.34	0.033	2460519	EXOC8	Û	1.33	0.014
3108433	MTDH	Û	1.35	0.046	3346584	BIRC2	仓	1.34	4.57E-03	2734018	MRPS18C	Û	1.33	0.018
3182409	ZNF189	仓	1.35	0.016	2366184	TBX19	Û	1.34	7.12E-03	2906607	NFYA	Û	1.32	3.62E-03
3673091	BANP	Û	1.35	5.70E-04	2362394	IFI16	Û	1.34	4.80E-04	3892660	RPS21	Û	1.32	0.018
3824395	PGLS	Û	1.35	2.64E-03	2673902	QRICH1	Û	1.34	6.02E-03	2541944	SMC6	Û	1.32	3.27E-03
2636726	QTRTD1	Û	1.35	7.39E-03	3421762	RAB3IP	仓	1.34	2.84E-03	3770699	MIF4GD	Û	1.32	0.011
2385258	C1orf124	Û	1.35	0.026	2434892	VPS72	Û	1.34	0.019	2835531	NDST1	Û	1.32	0.032
2447993	C1orf25	Û	1.35	5.97E-04	3195296	SSNA1	仓	1.34	0.036	2986493	PSMB1	Û	1.32	3.30E-03
3191338	GPR107	Û	1.35	0.032	3989678	XIAP	仓	1.34	0.011	3468301	РМСН	Û	1.32	1.38E-03
3456313	ATP5G2	Û	1.35	0.035	2757319	SLBP	Û	1.34	0.049	3204261	CCL27	Û	1.32	0.020
3816264	DOT1L	Û	1.35	0.034	3346147	ARHGAP42	仓	1.34	0.028	2339511	ATG4C	Û	1.32	0.019
2439345	OR6Y1	Û	1.35	5.79E-03	2899146	HIST1H4C	仓	1.34	0.048	3421824	C12orf28	Û	1.32	0.016
3476665	SCARB1	Û	1.35	0.012	2404254	PUM1	Û	1.33	1.76E-06	3448428	C12orf11	Û	1.32	4.28E-03
2559807	MOBKL1B	Û	1.35	0.020	2342665	MSH4	仓	1.33	4.84E-03	2519756	WDR75	Û	1.32	0.030
2318637	VAMP3	Û	1.35	5.88E-03	3837464	GLTSCR2	仓	1.33	0.044	3870162	ZNF665	Û	1.32	4.48E-04
2603395	HTR2B	Û	1.34	0.031	2456849	RAB3GAP2	Û	1.33	7.80E-04	2575196	SAP130	Û	1.32	3.22E-03
3752097	C17orf42	Û	1.34	0.036	3985665	TCEAL1	仓	1.33	0.016	3334501	PRDX5	Û	1.32	0.034
3564210	PYGL	Û	1.34	0.048	3409432	CCDC91	仓	1.33	0.038	3601840	CSK	Û	1.32	0.026
3929395	GCFC1	Û	1.34	0.044	3836044	GEMIN7	仓	1.33	0.027	3855071	FKBP8	Û	1.32	4.37E-03
3726772	LUC7L3	Û	1.34	0.019	3864286	PSG9	仓	1.33	0.033	3825838	YJEFN3	Û	1.32	5.28E-03
2893895	BMP6	Û	1.34	0.011	4019465	NKRF	仓	1.33	0.039	2841184	ERGIC1	Û	1.32	0.020
2986084	PHF10	Û	1.34	0.045	2997952	STARD3NL	Û	1.33	0.040	3103494	TMEM70	Û	1.32	0.015
2367086	FMO4	Û	1.34	0.016	2974188	MED23	Û	1.33	4.09E-03	3143330	FAM82B	Û	1.32	5.33E-03

3348189	FDX1	仓	1.32	5.30E-03	2723710	PGM2	Û	1.31	0.028	2694785	MBD4	Û	1.30	0.011
3828162	C19orf2	仓	1.32	7.18E-03	3418513	MARCH9	仓	1.31	9.44E-03	2811745	IPO11	Û	1.30	0.037
2328936	ZBTB8A	Û	1.32	0.048	2892341	RIPK1	Û	1.31	0.046	3075550	ZC3HAV1L	仓	1.30	0.049
2550959	PREPL	Û	1.32	3.36E-03	2545092	HADHA	Û	1.31	0.017	3831168	CAPNS1	Û	1.30	0.047
3761313	HOXB3	仓	1.32	0.023	2358221	RPRD2	Û	1.31	0.023	3409364	KLHDC5	仓	1.30	0.014
2901660	PRR3	Û	1.32	0.014	3197014	GLIS3	Û	1.31	0.029	2950515	VPS52	Û	1.30	0.038
3693837	GOT2	仓	1.32	0.045	3578089	C14orf49	仓	1.31	0.030	2430370	GDAP2	Û	1.30	0.010
3947627	TSPO	仓	1.32	0.049	2636272	GTPBP8	Û	1.31	0.025	3923896	KRTAP10-12	Û	1.30	9.09E-03
2516332	SCRN3	Û	1.32	0.027	3229591	UBAC1	仓	1.30	0.012	2429069	TRIM33	Û	1.30	1.23E-03
3081707	MNX1	仓	1.32	7.74E-03	2930753	C6orf72	Û	1.30	0.032	3766960	SMURF2	Û	1.30	0.042
3337168	GSTP1	仓	1.32	6.93E-03	3673684	CDT1	仓	1.30	0.020	2555630	CCT4	Û	1.30	1.24E-03
2909723	CENPQ	Û	1.32	0.037	3809671	NARS	Û	1.30	0.010	3670772	CMIP	Û	1.30	0.025
2659887	FYTTD1	Û	1.32	0.029	3655723	MVP	仓	1.30	6.94E-03	3402935	TPI1	Û	1.30	0.042
2662491	TMEM111	Û	1.31	0.044	2595443	WDR12	Û	1.30	0.037	3608787	SLCO3A1	Û	1.30	8.82E-03
3418298	KIF5A	仓	1.31	8.72E-03	2949210	BAT4	Û	1.30	0.024	3135184	RB1CC1	Û	1.30	4.99E-03
3697090	ST3GAL2	仓	1.31	0.033	2631845	CHMP2B	Û	1.30	0.032	2458649	C1orf55	Û	1.30	0.022
2826064	SRFBP1	Û	1.31	6.21E-03	3432333	PTPN11	仓	1.30	0.043	3737647	CHMP6	Û	1.29	0.012
3712098	SNORD49A	仓	1.31	0.014	3636879	UBE2Q2P1	仓	1.30	9.41E-03	3530002	KHNYN	Û	1.29	6.36E-03
2398789	SDHB	Û	1.31	0.012	2446244	TOR1AIP1	Û	1.30	0.037	3611126	MEF2A	Û	1.29	5.06E-03
3503224	☆F3A	仓	1.31	3.68E-03	2336706	CPT2	Û	1.30	0.013	3822723	PKN1	Û	1.29	0.015
3784727	ELP2	仓	1.31	0.012	3423184	ZDHHC17	仓	1.30	0.022	3642604	MPG	兌	1.29	4.58E-04
3821847	ASNA1	仓	1.31	8.07E-03	2676319	GLT8D1	Û	1.30	0.041	3642390	TARSL2	Û	1.29	0.026
3707715	RPAIN	仓	1.31	8.62E-03	4026842	ARHGAP4	仓	1.30	0.025	3424442	TMTC2	兌	1.29	0.041
3947310	C22orf32	仓	1.31	0.029	3308864	RAB11FIP2	仓	1.30	0.038	3570599	MAP3K9	兌	1.29	1.13E-03
2623515	ALAS1	Û	1.31	8.37E-03	3338552	CTTN	仓	1.30	0.016	2726323	SLAIN2	Û	1.29	0.011
2325526	SRRM1	Û	1.31	0.016	2344542	RPF1	Û	1.30	0.021	2328990	RBBP4	Û	1.29	0.046
2876046	PPP2CA	Û	1.31	0.021	3476457	NCOR2	仓	1.30	7.62E-03	3713195	SMCR8	Û	1.29	0.035
3292413	DNAJC12	仓	1.31	0.015	2437645	GON4L	Û	1.30	4.30E-03	2822407	PPIP5K2	Û	1.29	0.032
2548274	STRN	Û	1.31	5.60E-03	3026599	TRIM24	Û	1.30	8.24E-03	3417435	MYL6B	Û	1.29	0.018
3882720	RALY	仓	1.31	0.017	2542737	LAPTM4A	Û	1.30	0.036	3304718	PCGF6	仓	1.29	0.010
3465409	BTG1	仓	1.31	9.38E-04	3834519	ARHGEF1	仓	1.30	0.018	3241601	C10orf68	仓	1.29	0.048
2708610	MAGEF1	仓	1.31	0.041	2336302	ZFYVE9	仓	1.30	0.027	2963614	CGA	Û	1.29	0.031

3829020	PDCD5	仓	1.29	0.039	2745288	IL15	Û	1.28	6.72E-03	3348891	C11orf57	Û	1.28	0.024
3161566	KDM4C	仓	1.29	0.016	3218496	OR13C9	仓	1.28	0.030	2744597	NAA15	Û	1.28	0.018
2396121	DFFA	Û	1.29	0.021	3331129	OR5AK2	仓	1.28	0.015	3303530	NDUFB8	仓	1.28	3.94E-03
2336099	OSBPL9	Û	1.29	6.17E-03	2548402	EIF2AK2	Û	1.28	0.020	2559649	DUSP11	Û	1.28	0.035
3537164	PELI2	仓	1.29	0.028	2360083	UBAP2L	Û	1.28	1.62E-04	2363444	USP21	Û	1.28	0.021
3088983	XPO7	Û	1.29	6.96E-03	3015178	ZSCAN21	Û	1.28	0.025	2570616	BUB1	Û	1.28	0.049
3389745	CWF19L2	仓	1.29	0.025	3381241	ARAP1	仓	1.28	0.040	3747324	ZNF624	仓	1.28	1.48E-03
2928392	VTA1	Û	1.29	0.017	3243078	ZNF33A	仓	1.28	0.031	3415812	ZNF740	仓	1.28	5.93E-03
3697125	COG4	仓	1.29	0.041	3229943	SDCCAG3	仓	1.28	6.68E-03	3538789	SLC38A6	Û	1.27	0.039
3396883	RPUSD4	仓	1.29	0.015	3614087	UBE3A	仓	1.28	0.018	3992148	DDX26B	Û	1.27	0.020
3535515	FRMD6	仓	1.29	0.013	3578069	C14orf139	仓	1.28	0.028	2601021	FARSB	Û	1.27	0.027
3177563	NAA35	仓	1.29	6.44E-03	2349086	DPH5	仓	1.28	0.043	2522728	CASP8	Û	1.27	0.033
3037142	PMS2	Û	1.29	0.011	3195174	MAN1B1	仓	1.28	3.14E-03	3018484	GPR22	Û	1.27	9.27E-04
3687715	TBC1D10B	仓	1.29	0.021	3865511	EML2	仓	1.28	0.018	3851267	ZNF625	Û	1.27	0.047
3472225	DDX54	仓	1.29	7.96E-03	3390852	C11orf92	Û	1.28	0.038	3191176	USP20	Û	1.27	5.65E-04
3181193	TDRD7	仓	1.29	0.026	3383081	INTS4	Û	1.28	0.026	2528020	TTLL4	Û	1.27	0.014
2484305	PAPOLG	Û	1.29	0.023	3761127	CBX1	仓	1.28	7.23E-03	3730899	DDX42	Û	1.27	0.028
3829857	ZNF302	Û	1.29	7.44E-03	3403224	LOC283314	仓	1.28	0.024	3349014	PTS	Û	1.27	0.010
2436338	CRTC2	Û	1.29	6.15E-04	2474527	NRBP1	Û	1.28	0.033	2681157	TMF1	Û	1.27	0.030
3416344	HOXC9	Û	1.29	6.41E-03	3386638	SLC36A4	仓	1.28	0.048	3942161	UQCR10	Û	1.27	5.85E-03
3088544	ATP6V1B2	Û	1.29	0.020	3382015	CHRDL2	仓	1.28	0.029	3429555	EID3	Û	1.27	4.09E-03
3067080	COG5	Û	1.29	0.015	3320604	USP47	仓	1.28	4.16E-03	2671652	ZDHHC3	Û	1.27	0.041
2877465	ETF1	Û	1.29	0.045	2693937	TPRA1	Û	1.28	0.014	3243164	ZNF37A	Û	1.27	0.032
4013224	ATRX	仓	1.29	0.010	2950329	HLA-DPA1	Û	1.28	0.040	2714230	PCGF3	Û	1.27	0.032
3932148	BRWD1	仓	1.29	0.024	2531522	CAB39	Û	1.28	0.048	2717059	LOC93622	仓	1.27	0.021
3464622	CEP290	仓	1.29	5.10E-03	2356205	PEX11B	Û	1.28	0.012	3803418	KLHL14	仓	1.27	0.034
2866225	MEF2C	Û	1.28	2.81E-03	3292735	SLC25A16	仓	1.28	7.85E-03	3474228	RAB35	仓	1.27	7.94E-03
3831698	ZNF420	仓	1.28	1.59E-03	2320210	UBIAD1	Û	1.28	0.035	3009959	PTPN12	Û	1.27	0.025
3345774	JRKL	仓	1.28	0.023	2827388	PRRC1	Û	1.28	0.022	3424379	C12orf26	仓	1.27	0.020
2515183	DCAF17	Û	1.28	0.024	3447129	KIAA0528	仓	1.28	2.01E-03	2347788	RWDD3	Û	1.27	8.87E-03
2920962	FIG4	Û	1.28	0.020	3272795	PAOX	仓	1.28	5.97E-03	3975987	RBM10	Û	1.27	0.014
2924898	RNF146	Û	1.28	0.011	3657318	ZNF720	仓	1.28	0.023	3819401	LASS4	Û	1.27	0.031
2384375	DUSP5P	Û	1.27	0.024	4007734	TFE3	仓	1.26	0.029	3962165	CENPM	Û	1.25	0.031
---------	----------	---	------	----------	---------	--------------	---	------	----------	---------	-----------	---	------	----------
3655877	INO80E	仓	1.27	7.36E-03	2721809	ZCCHC4	Û	1.26	0.016	3847515	NDUFA11	仓	1.25	6.94E-03
2596201	NDUFS1	Û	1.27	0.021	2436132	ILF2	Û	1.26	0.038	3982560	P2RY10	Û	1.25	0.047
2421782	CCBL2	Û	1.27	0.046	3757602	DHX58	仓	1.26	0.045	3735346	C17orf106	仓	1.25	0.011
2600068	TUBA4A	Û	1.27	0.034	2411638	LOC100128922	仓	1.26	0.033	3271220	CTAGE7P	仓	1.25	0.027
3504134	GJA3	仓	1.27	0.040	2943808	Nû153	Û	1.26	4.44E-03	2359036	SNX27	Û	1.25	0.019
3914230	ZNF512B	仓	1.27	4.61E-03	2741768	EXOSC9	Û	1.26	9.17E-03	3489957	RNASEH2B	仓	1.25	0.032
2662520	CIDECP	Û	1.27	6.96E-03	3815493	HMHA1	仓	1.26	0.019	3756344	SMARCE1	仓	1.25	0.022
3514711	CTAGE3P	仓	1.27	0.016	2766359	RFC1	Û	1.26	0.031	3939707	CABIN1	仓	1.25	0.018
2695200	PIK3R4	Û	1.27	0.047	2772968	COX18	Û	1.26	0.033	3459956	C12orf66	仓	1.25	0.017
3466826	CDK17	仓	1.27	8.12E-03	3846114	AES	仓	1.26	0.049	3228097	TTF1	仓	1.25	0.046
3476012	MPHOSPH9	仓	1.27	0.022	3320717	MICAL2	Û	1.26	0.038	2862716	GFM2	Û	1.25	0.017
3955940	CRYBB1	Û	1.27	0.014	3015216	COPS6	Û	1.26	0.036	2641263	RAB7A	Û	1.25	0.013
3110171	ATP6V1C1	Û	1.27	0.026	3859622	ZNF792	仓	1.26	0.025	3816686	ZNF556	仓	1.25	4.84E-03
3457315	WIBG	仓	1.26	0.034	3849688	ZNF266	仓	1.26	0.025	3944620	MPST	仓	1.25	0.024
2616317	PDCD6IP	Û	1.26	5.02E-03	3866302	AP2S1	仓	1.26	0.025	3808096	MEX3C	仓	1.25	0.030
2860614	CCDC125	Û	1.26	0.042	2466039	ZNF692	Û	1.26	0.026	2908100	POLH	Û	1.25	0.015
3372235	RAPSN	Û	1.26	0.022	2688070	GUCA1C	仓	1.26	0.028	3317223	IGF2AS	仓	1.25	0.021
3674559	DEF8	仓	1.26	0.044	3169043	RG9MTD3	仓	1.26	0.041	3886050	SRSF6	仓	1.25	1.25E-03
3768880	ABCA10	仓	1.26	0.040	3212728	AGTPBP1	仓	1.26	0.020	2621949	NDUFAF3	Û	1.25	0.020
2821417	LNPEP	Û	1.26	0.033	4053462	KLHL17	仓	1.26	5.62E-04	3830002	GRAMD1A	仓	1.25	0.013
4000269	GEMIN8	仓	1.26	0.032	3478457	STX2	仓	1.26	0.030	3202224	LRRC19	仓	1.25	7.29E-03
3214359	AUH	仓	1.26	1.89E-03	3299782	FLJ37201	仓	1.26	0.019	2526759	ATIC	Û	1.25	0.034
3949097	TRMU	仓	1.26	5.11E-04	3708160	ALOX12	仓	1.25	1.51E-03	3352813	TBCEL	仓	1.25	0.025
3704896	CHMP1A	仓	1.26	7.89E-03	2541230	NBAS	Û	1.25	0.011	3923632	PFKL	仓	1.25	1.70E-03
3197479	INSL6	仓	1.26	0.022	3343202	EED	仓	1.25	0.035	3710681	MAP2K4	仓	1.25	0.031
3741383	OR1E2	仓	1.26	5.36E-03	3735847	SEPT9	仓	1.25	0.046	3224650	DENND1A	仓	1.25	0.040
3056292	CLDN3	仓	1.26	3.53E-03	2963929	RNGTT	Û	1.25	6.19E-03	2595252	SUM01	仓	1.25	0.024
2462456	HEATR1	Û	1.26	0.028	3846783	UBXN6	仓	1.25	8.89E-03	3702689	ZDHHC7	仓	1.25	0.025
2978989	LATS1	Û	1.26	0.014	2712632	TFRC	Û	1.25	0.047	3870054	ZNF160	仓	1.25	0.033
3729123	DHX40	①	1.26	0.018	3817167	MRPL54	Û	1.25	0.041	3199790	PSIP1	仓	1.25	0.027
3720322	PPP1R1B	Û	1.26	0.014	2527939	BCS1L	Û	1.25	0.044	2454532	INTS7	Û	1.25	0.045

Table B19: C9-LongvShort Gene List (n=1,024) MALE ONLY SAMPLES [Partek[®] unadjusted p<0.05, FC \ge ±1.20]

3671850	KLHL36	Û	1.25	0.014	3637006	SEC11A	仓	1.24	0.044	2396480	EXOSC10	Û	1.23	6.36E-04
3394183	H2AFX	仓	1.25	0.035	3804143	RPRD1A	仓	1.24	0.027	3758845	HDAC5	仓	1.23	0.027
3030448	ZNF398	Û	1.25	0.044	3427876	APAF1	仓	1.24	0.036	3833323	ZNF546	仓	1.23	0.035
2852333	ZFR	Û	1.25	3.52E-03	2525272	PIKFYVE	Û	1.24	0.014	3747966	SREBF1	Û	1.23	0.017
2882555	FAM114A2	Û	1.25	0.014	3716337	CCDC55	仓	1.24	0.047	2659918	LRCH3	Û	1.23	0.032
3761348	HOXB4	仓	1.24	0.041	2544925	ASXL2	Û	1.24	0.013	3713874	MAPK7	Û	1.23	1.83E-03
2759857	ACOX3	Û	1.24	0.038	3416114	TARBP2	Û	1.24	0.011	2843619	HNRNPAB	Û	1.23	0.040
3845365	TCF3	仓	1.24	0.021	3045739	HERPUD2	Û	1.24	0.034	3481543	SPATA13	Û	1.23	0.046
3949229	TBC1D22A	仓	1.24	0.016	3724989	CDK5RAP3	Û	1.24	0.045	3303913	FBXW4	Û	1.23	4.40E-03
2890859	MGAT1	Û	1.24	0.025	2392421	PEX10	Û	1.24	0.035	2564816	ANKRD36B	Û	1.23	0.039
2729884	UGT2B10	Û	1.24	0.027	2389789	SCCPDH	Û	1.24	0.030	3414632	DIP2B	Û	1.23	0.045
3431426	IFT81	Û	1.24	0.015	3027808	AGK	Û	1.24	0.026	2456746	EPRS	Û	1.23	0.022
2331511	BMP8A	Û	1.24	0.046	3046556	TARP	Û	1.24	0.032	3412008	PPHLN1	Û	1.23	0.031
3671448	HSBP1	Û	1.24	0.026	2742093	BBS12	Û	1.24	9.65E-03	3015778	EPO	Û	1.23	0.029
2612175	NR2C2	Û	1.24	1.94E-03	3791168	KIAA1468	Û	1.24	0.023	2320374	FBX06	Û	1.23	0.022
3829575	LSM14A	Û	1.24	0.032	2678029	DNAH12	Û	1.24	0.019	3131720	BRF2	Û	1.23	0.019
3843525	ZNF586	仓	1.24	0.022	3018652	CBLL1	Û	1.24	0.033	2975680	BCLAF1	Û	1.23	0.044
3662170	MT1DP	仓	1.24	1.67E-03	3747657	FLCN	仓	1.24	0.013	2693569	ZXDC	Û	1.23	0.010
2796384	IRF2	Û	1.24	0.026	3874249	ITPA	Û	1.24	0.035	2504645	MY07B	Û	1.23	0.024
3601675	ARID3B	仓	1.24	0.040	3860596	ZNF461	仓	1.23	0.027	3740201	MY01C	Û	1.23	0.027
2815331	BTF3	仓	1.24	0.034	3834651	ZNF526	仓	1.23	6.27E-03	2675628	VPRBP	Û	1.23	0.031
3359469	NAP1L4	仓	1.24	0.023	3474344	RPLP0	仓	1.23	0.013	2535927	GPR35	Û	1.23	0.024
2647898	MED12L	仓	1.24	0.043	2604223	DNAJB3	仓	1.23	0.036	3687849	ZNF764	仓	1.23	0.044
3928534	KRTAP19-4	仓	1.24	0.048	3851250	ZNF20	仓	1.23	0.032	2831719	ANKHD1	Û	1.23	6.43E-03
3960827	SUN2	Û	1.24	0.035	3185205	HSDL2	Û	1.23	0.026	3946563	RBX1	Û	1.23	2.85E-04
3419239	MON2	Û	1.24	2.31E-03	2739079	SEC24B	Û	1.23	0.011	3421446	CPSF6	Û	1.23	5.81E-03
3145953	RPL30	仓	1.24	0.029	3378867	TMEM134	仓	1.23	0.028	3018696	DLD	Û	1.23	0.019
4019900	CUL4B	Û	1.24	0.028	3245783	WDFY4	Û	1.23	0.035	3701297	CDYL2	Û	1.23	0.037
3272027	LRRC27	Û	1.24	0.011	3642707	ITFG3	Û	1.23	0.032	3358174	IRF7	Û	1.23	0.038
2851274	CDH10	①	1.24	1.72E-03	3894098	C20orf96	Û	1.23	0.041	3540862	GPHN	Û	1.23	0.046
3856720	ZNF99	仓	1.24	0.038	2901841	ATAT1	Û	1.23	0.011	2950242	PPP1R2P1	Û	1.23	8.19E-03
3965833	SBF1	仓	1.24	0.010	2529627	KCNE4	Û	1.23	0.032	3956290	PITPNB	Û	1.23	0.014

Table B19: C9-LongvShort Gene List (n=1,024) MALE ONLY SAMPLES [Partek[®] unadjusted p<0.05, FC \ge ±1.20]

2419235	FUBP1	Û	1.23	4.11E-05	3401099	FKBP4	仓	1.22	0.037	3893796	DNAJC5	仓	1.21	0.049
2837499	LSM11	仓	1.23	8.67E-03	3479438	CHFR	仓	1.22	0.040	3908786	STAU1	Û	1.21	0.028
3276421	KIN	仓	1.23	0.045	2408855	FOXJ3	Û	1.22	0.026	3817222	ITGB1BP3	仓	1.21	0.023
3592366	SPATA5L1	仓	1.22	0.033	2400373	EIF4G3	Û	1.22	8.98E-03	3824713	ARRDC2	Û	1.21	4.12E-03
3708462	ACAP1	仓	1.22	6.82E-03	2333907	RNF220	Û	1.22	3.58E-03	3478957	DDX51	仓	1.21	3.80E-03
3119735	ZNF623	Û	1.22	0.032	2971692	MCM9	仓	1.22	0.026	3419849	TBK1	Û	1.21	0.011
2878446	NDUFA2	Û	1.22	0.034	3458783	CDK4	仓	1.22	0.046	4009062	KDM5C	Û	1.21	0.015
2909404	CD2AP	Û	1.22	0.012	3696016	PSMB10	仓	1.22	2.28E-03	3938113	HIC2	仓	1.21	0.043
2877314	CDC23	Û	1.22	6.26E-03	3135156	FAM150A	仓	1.22	0.037	2502952	TMEM177	Û	1.21	0.036
2470654	DDX1	Û	1.22	0.039	2532510	GIGYF2	Û	1.22	2.12E-03	2545750	EIF2B4	Û	1.21	0.026
3589947	BAHD1	仓	1.22	0.026	3892409	LSM14B	仓	1.22	0.020	2459866	Nû133	Û	1.21	0.038
2352228	CAPZA1	Û	1.22	3.27E-03	3260957	LZTS2	仓	1.22	0.010	3667902	DHX38	Û	1.21	0.012
2662020	RAD18	Û	1.22	0.030	3407229	AEBP2	仓	1.22	0.015	3063727	TAF6	Û	1.21	0.025
3850409	KRI1	Û	1.22	0.039	2717049	MRFAP1	仓	1.22	0.044	3840642	ZNF818P	Û	1.21	0.024
3962293	CYP2D7P1	Û	1.22	0.047	3602569	C15orf27	仓	1.22	0.035	3279410	FAM188A	Û	1.21	0.020
3668834	ZNRF1	仓	1.22	0.045	2618940	CTNNB1	Û	1.22	8.41E-03	2806231	BRIX1	Û	1.21	0.041
3869761	ZNF600	Û	1.22	0.033	2435044	POGZ	Û	1.22	0.010	2507495	UBXN4	Û	1.21	0.033
3438417	SFSWAP	仓	1.22	0.016	3250726	KIAA1274	兌	1.22	0.038	3347549	CUL5	Û	1.21	0.040
3924100	C21orf89	Û	1.22	0.048	3159754	DMRT2	仓	1.22	1.27E-03	3292448	HERC4	Û	1.21	0.027
2358171	PRPF3	Û	1.22	8.26E-03	3770588	NT5C	兌	1.22	6.42E-03	3816988	FZR1	Û	1.21	0.015
2947572	TRIM27	Û	1.22	0.038	3662265	N193	Û	1.22	0.038	2835960	G3BP1	Û	1.21	3.30E-03
2594569	ORC2	Û	1.22	0.027	2452319	RBBP5	Û	1.21	9.16E-04	3566304	EXOC5	Û	1.21	0.043
3216476	ZNF510	仓	1.22	0.037	2775756	SEC31A	Û	1.21	2.46E-03	3230371	LCN10	Û	1.21	5.27E-03
3980981	ITGB1BP2	仓	1.22	0.013	3959829	IFT27	仓	1.21	0.043	3202293	C9orf11	仓	1.21	0.019
3916576	GABPA	仓	1.22	7.22E-03	2773756	G3BP2	Û	1.21	0.031	2319881	PEX14	Û	1.21	0.011
3674349	ZNF276	仓	1.22	0.034	3358361	PDDC1	仓	1.21	0.048	3603295	CRABP1	仓	1.21	0.017
2477980	GEMIN6	Û	1.22	0.042	2800906	MTRR	Û	1.21	0.033	2964327	LYRM2	仓	1.21	0.038
3358262	DEAF1	仓	1.22	0.043	3658980	GPT2	仓	1.21	0.013	2545653	MPV17	Û	1.21	5.25E-03
3504526	LATS2	仓	1.22	0.035	2407191	GNL2	Û	1.21	0.045	3267273	GRK5	仓	1.21	0.044
2519140	ZC3H15	Û	1.22	0.025	2461786	ARID4B	Û	1.21	0.041	2464499	HNRNPU	Û	1.21	0.017
2815043	TNP01	Û	1.22	5.05E-03	2695941	TOPBP1	Û	1.21	0.031	3844656	POLRMT	Û	1.21	0.037
3337329	ALDH3B1	Û	1.22	9.57E-03	2709235	DGKG	Û	1.21	0.041	3302360	MMS19	Û	1.21	0.017

Table B19: C9-LongvShort Gene List (n=1,024) MALE ONLY SAMPLES [Partek[®] unadjusted p<0.05, FC ≥ ±1.20]

2756831	SLC26A1	Û	1.21	9.71E-03	2902013	GTF2H4	Û	1.20	0.048	3060300	SRI	Û	1.20	0.048
2367154	BAT2L2	Û	1.21	1.55E-03	2451139	ARL8A	Û	1.20	0.036	2993639	CBX3	Û	1.20	0.014
3281068	PIP4K2A	Û	1.21	0.011	3832865	NCCRP1	Û	1.20	0.029	3545403	GSTZ1	Û	1.20	0.019
3559497	STRN3	Û	1.21	0.031	3514488	INTS6	Û	1.20	0.021	3977083	CCDC22	Û	1.20	0.014
2512601	TANK	Û	1.21	0.040	3299469	ANKRD22	仓	1.20	0.014	3929272	TCP10L	仓	1.20	0.031
3406195	C12orf60	Û	1.21	4.83E-03	2440143	COPA	Û	1.20	0.013	3532560	BRMS1L	Û	1.20	0.028
3441955	MRPL51	Û	1.21	0.038	3157901	PLEC	Û	1.20	0.038	2536531	FARP2	Û	1.20	0.047
3923498	PWP2	仓	1.21	0.028	3740479	PRPF8	Û	1.20	9.92E-03	3732885	PRKAR1A	Û	1.20	0.024
3503976	PSPC1	仓	1.21	0.037	3362934	ZBED5	仓	1.20	0.036	3330919	OR5T3	仓	1.20	0.018
3862167	FBL	Û	1.21	0.019	3339423	INPPL1	Û	1.20	3.16E-03	3157311	LY6H	Û	1.20	0.011
3832830	PAK4	Û	1.21	1.77E-03	3334257	FERMT3	仓	1.20	0.033	3873185	RBCK1	仓	1.20	0.011
3825201	UBA52	Û	1.21	0.011	3458337	STAT6	Û	1.20	0.022	3955327	C22orf13	Û	1.20	0.026
3029213	TAS2R41	Û	1.21	0.043	2602901	TRIP12	Û	1.20	1.98E-03	3742727	DHX33	Û	1.20	0.049
3849190	ACTL9	Û	1.21	0.042	3091628	ELP3	Û	1.20	0.023	3739867	NXN	仓	1.20	0.016
2336383	PRPF38A	Û	1.21	0.030	3633109	ULK3	Û	1.20	0.011	3488253	COG3	Û	1.20	0.032
2321911	DDI2	Û	1.21	0.044	2333599	IPO13	Û	1.20	0.049	2908572	CDC5L	Û	1.20	0.036
3699133	FA2H	Û	1.21	0.015	3315835	PTDSS2	仓	1.20	0.025	2684851	VGLL3	仓	1.20	0.011
2895159	HIVEP1	Û	1.21	0.019	2514441	PPIG	Û	1.20	0.033	3468080	SYCP3	仓	1.20	0.011
3074362	CNOT4	Û	1.21	0.021	3572869	C14orf4	Û	1.20	0.037	2832431	PCDHB11	Û	1.20	0.047
2508611	ARHGAP15	Û	1.21	0.031	3075566	ZC3HAV1	Û	1.20	0.013	2921086	CDC40	Û	1.20	6.63E-03
3727499	TOM1L1	仓	1.21	0.026	2396201	CASZ1	Û	1.20	0.026	3629272	PIF1	Û	1.20	0.016
3290368	IPMK	①	1.20	0.032	3576545	SMEK1	仓	1.20	0.024	2479640	PPM1B	兌	1.20	0.037
3060450	C7orf62	Û	1.20	0.021										

Table B19: C9-LongvShort Gene List (n=1,024) MALE ONLY SAMPLES [Partek[®] unadjusted p<0.05, FC \ge ±1.20]

Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value
3369249	APIP	Û	2.93	5.73E-04	3743734	C17orf61	仓	1.75	4.87E-04	3035892	GNA12	仓	1.62	1.62E-03
3403841	RIMKLB	仓	2.43	9.61E-03	3208355	CBWD3	仓	1.75	0.027	2638789	CD86	Û	1.62	0.026
3617574	GOLGA8B	仓	2.42	0.014	3444336	PRR4	仓	1.75	0.023	3760945	MRPL10	仓	1.61	0.012
3385175	PICALM	仓	2.27	5.14E-04	2363618	SDHC	Û	1.74	0.017	3074039	SLC35B4	Û	1.61	0.016
2899095	HIST1H4A	仓	2.17	8.67E-03	2946364	HIST1H3F	仓	1.74	0.029	2514122	LASS6	Û	1.61	0.027
2671101	ANO10	Û	2.17	0.021	2437247	GBA	Û	1.73	0.036	2727762	SRD5A3	Û	1.61	0.021
2913694	CD109	Û	2.00	0.021	2735362	HERC6	Û	1.73	0.027	3564919	FERMT2	仓	1.61	3.24E-03
3945545	APOBEC3B	Û	2.00	7.73E-03	3324713	METT5D1	仓	1.72	0.040	2766893	APBB2	仓	1.60	0.037
2878246	PFDN1	Û	1.97	0.020	3507962	KATNAL1	仓	1.71	1.77E-03	2668205	GLB1	Û	1.60	0.018
2638077	PLA1A	Û	1.96	0.013	2501317	LOC654433	仓	1.71	8.02E-03	2788511	SLC10A7	Û	1.59	0.019
3577443	ASB2	Û	1.96	0.038	2946319	HIST1H4D	仓	1.70	0.011	2820865	ARSK	Û	1.58	0.041
2708855	LIPH	Û	1.93	0.012	3188111	PTGS1	Û	1.70	0.049	2836451	MFAP3	Û	1.58	0.011
2633191	GPR15	Û	1.92	0.033	3403077	C12orf57	仓	1.68	2.50E-04	3818395	ALKBH7	仓	1.58	0.030
3942472	TCN2	Û	1.92	0.028	2991233	AHR	Û	1.67	0.015	3260423	CUTC	仓	1.58	2.82E-03
2409069	CCDC23	仓	1.90	0.042	3470689	ALKBH2	仓	1.67	1.47E-04	3619165	SRP14	仓	1.58	9.88E-03
2893392	LY86	Û	1.90	3.16E-04	3410695	DNM1L	仓	1.66	0.019	2325192	RPL11	仓	1.58	0.021
2399743	AKR7A3	Û	1.89	0.022	2514563	KLHL23	仓	1.66	0.017	3166844	CHMP5	仓	1.57	0.046
3518086	TBC1D4	仓	1.88	0.011	3160658	SLC1A1	Û	1.65	0.033	3633699	NRG4	仓	1.57	8.72E-03
3617458	GOLGA8A	仓	1.85	0.044	2505993	POTEKP	仓	1.65	0.017	3903361	AHCY	仓	1.56	0.015
3275729	IL2RA	Û	1.83	0.049	3173479	FOXD4L3	仓	1.64	8.54E-03	3927226	APP	Û	1.56	0.033
3142217	PAG1	Û	1.82	0.043	3797295	L3MBTL4	仓	1.64	0.046	3253438	RPS24	仓	1.56	0.027
3841621	LILRB4	Û	1.81	0.023	2468622	ID2	Û	1.64	0.020	3020273	CAV2	仓	1.56	6.81E-03
2418929	PIGK	Û	1.80	0.026	3427014	SNRPF	仓	1.64	0.016	3513995	DLEU2	仓	1.56	0.027
2369557	SOAT1	Û	1.80	1.43E-03	3761632	SNF8	仓	1.64	7.65E-04	3420854	DYRK2	仓	1.55	0.037
2395564	SLC2A5	Û	1.78	0.040	3226097	ENG	Û	1.64	0.020	3851072	ACP5	Û	1.55	0.036
2963859	CNR1	Û	1.78	0.031	4002148	EIF1AX	仓	1.63	1.06E-03	2766192	TLR10	Û	1.55	6.06E-03
2944025	TPMT	Û	1.78	0.026	3490741	SUGT1	仓	1.63	1.97E-03	2587618	OLA1	仓	1.55	3.61E-03
2845274	CCDC127	Û	1.77	2.06E-03	3462843	NAP1L1	仓	1.63	0.012	3892452	LSM14B	仓	1.55	0.036
2950145	HLA-DOB	Û	1.76	0.027	3288013	BMS1P1	仓	1.63	2.42E-03	3770944	H3F3B	仓	1.55	0.015
3362468	SBF2	仓	1.76	2.50E-03	2792800	DDX60	Û	1.63	0.046	3842301	ZNF581	仓	1.55	0.012
2950307	HLA-DOA	Û	1.76	8.27E-03	2424102	CNN3	Û	1.62	0.046	3458400	NDUFA4L2	仓	1.55	0.012

3405515	APOLD1	仓	1.54	9.47E-03	3512527	TPT1	仓	1.50	6.16E-03	2608469	ITPR1	Û	1.46	2.85E-03
2370317	MR1	Û	1.54	0.013	3444195	MAGOHB	仓	1.50	5.36E-04	3824212	DDA1	仓	1.46	0.021
3854454	BST2	Û	1.54	0.042	3634811	CTSH	Û	1.50	0.038	3827218	RPSAP58	仓	1.46	0.042
3733911	SSTR2	Û	1.54	0.038	3513856	EBPL	仓	1.50	0.010	3704495	APRT	仓	1.46	0.019
2930243	SASH1	Û	1.54	0.013	3916527	JAM2	Û	1.50	0.023	2835021	PCYOX1L	Û	1.46	0.017
3221543	CDC26	仓	1.54	2.04E-03	2628682	ARL6IP5	Û	1.50	0.031	3451264	YAF2	仓	1.46	6.90E-03
3542145	KIAA0247	Û	1.53	9.98E-03	3784509	ZNF271	仓	1.50	1.32E-03	2899022	TRIM38	Û	1.46	7.33E-05
3438027	RAN	仓	1.53	3.09E-04	3435490	DENR	仓	1.50	0.019	2320411	AGTRAP	Û	1.45	0.025
3595846	FAM63B	仓	1.53	0.014	3447863	KRAS	仓	1.49	6.10E-03	2442134	TMC01	Û	1.45	0.010
3169331	ALDH1B1	仓	1.53	0.021	3250019	DDX50	仓	1.49	6.95E-03	2970897	FRK	仓	1.45	0.046
3072435	TMEM209	Û	1.53	0.017	3103523	LY96	Û	1.49	0.038	3458911	CTDSP2	仓	1.45	0.012
2542795	SDC1	仓	1.53	0.033	2692411	PTPLB	Û	1.49	0.032	3917204	C21orf7	仓	1.45	0.045
3864551	PLAUR	Û	1.53	0.029	3962448	RRP7A	仓	1.49	0.015	3556966	HAUS4	仓	1.45	0.025
2977621	PLAGL1	Û	1.53	0.017	3053691	GUSB	Û	1.48	3.26E-03	3712041	UBB	仓	1.45	0.016
3263624	MXI1	仓	1.53	0.027	3951732	CECR5	仓	1.48	5.59E-03	3289392	FLJ31958	仓	1.44	0.033
2960955	SLC17A5	Û	1.52	0.011	2363919	ATF6	Û	1.48	2.10E-03	3341440	RN28S1	仓	1.44	0.030
2865050	RPS23	仓	1.52	0.049	3837464	GLTSCR2	仓	1.48	5.85E-03	2705748	NCEH1	Û	1.44	0.046
2330773	CDCA8	Û	1.52	0.016	3167383	NUDT2	仓	1.48	0.046	3189311	PBX3	Û	1.44	6.07E-03
2454661	TMEM206	Û	1.52	0.025	3025740	TMEM140	Û	1.48	0.027	3407793	PYROXD1	仓	1.44	0.043
3263944	PDCD4	仓	1.52	0.012	2352106	CTTNBP2NL	Û	1.48	3.93E-03	2415084	JUN	Û	1.44	0.042
3185063	UGCG	Û	1.52	0.011	3414440	C12orf62	仓	1.48	5.67E-03	3336378	RBM14	Û	1.44	0.035
3742708	C1QBP	仓	1.52	0.019	3812385	CD226	Û	1.48	0.028	3510963	SUGT1P3	仓	1.44	0.024
2796911	CCDC110	仓	1.51	5.96E-03	3254337	C10orf57	Û	1.48	0.038	3391255	IL18	仓	1.44	0.042
3475324	TMEM120B	仓	1.51	4.39E-03	3939545	MIF	仓	1.48	1.10E-03	3868905	CTU1	仓	1.44	0.014
3453837	TUBA1A	仓	1.51	0.041	3468925	NFYB	仓	1.47	1.41E-05	2437736	RIT1	Û	1.44	0.034
3388914	DCUN1D5	仓	1.51	0.020	3061456	SAMD9L	Û	1.47	0.027	3770290	CD300LB	Û	1.44	0.033
3147020	ZNF706	仓	1.51	0.031	2523213	BMPR2	Û	1.47	8.64E-03	3923702	TRPM2	Û	1.44	0.047
2946681	HIST1H2BJ	仓	1.51	0.029	3726960	NME2	仓	1.47	1.97E-03	3547375	GPR65	Û	1.44	0.038
3712197	CCDC144A	仓	1.51	3.70E-03	3989678	XIAP	仓	1.47	1.29E-03	2820925	RHOBTB3	Û	1.43	0.016
2324616	HSPC157	仓	1.50	0.021	3463522	PAWR	仓	1.46	0.024	2841184	ERGIC1	Û	1.43	3.03E-03
3433843	SUDS3	仓	1.50	0.047	2403261	IFI6	Û	1.46	0.018	2989435	C1GALT1	Û	1.43	0.032
3770632	SUM02	仓	1.50	9.03E-03	3845352	UQCR11	仓	1.46	0.040	3027204	TBXAS1	Û	1.43	0.046

3345107	ANKRD49	仓	1.43	6.11E-03	2939034	SERPINB9	Û	1.41	0.035	2520138	MFSD6	Û	1.39	0.026
3892812	SLCO4A1	Û	1.43	0.028	3985644	TCEAL3	Û	1.41	0.021	3474344	RPLP0	仓	1.39	1.70E-04
3373487	OR5M1	Û	1.43	4.61E-03	2437645	GON4L	Û	1.41	2.86E-04	3580769	СКВ	仓	1.39	0.033
3589141	SPRED1	Û	1.43	7.47E-03	3130113	GTF2E2	仓	1.41	7.46E-03	3997946	PRKX	仓	1.39	0.012
2370123	XPR1	Û	1.43	0.018	3748659	GRAP	①	1.41	0.049	3916576	GABPA	仓	1.39	3.09E-05
3942161	UQCR10	Û	1.43	7.00E-05	3886050	SRSF6	仓	1.41	3.21E-06	3962000	PMM1	仓	1.39	1.30E-03
3475838	VPS37B	Û	1.43	0.036	3829857	ZNF302	仓	1.41	4.51E-04	2815331	BTF3	仓	1.39	1.67E-03
3928534	KRTAP19-4	Û	1.43	1.55E-03	3720322	PPP1R1B	Û	1.41	3.98E-04	2367843	DARS2	Û	1.39	0.013
3221633	HDHD3	Û	1.43	4.77E-03	3948047	PARVG	Û	1.40	0.025	3857171	ZNF675	Û	1.39	0.029
2409368	HYI	Û	1.43	0.037	3473727	WSB2	仓	1.40	0.042	3762625	MBTD1	仓	1.39	1.85E-03
3460584	LLPH	Û	1.43	0.035	2876257	SAR1B	Û	1.40	0.036	3468301	РМСН	仓	1.39	2.19E-04
2321849	DNAJC16	Û	1.43	0.014	2398736	ATP13A2	Û	1.40	0.040	3665857	NUTF2	仓	1.39	1.57E-03
3466284	NDUFA12	Û	1.42	7.30E-03	2941784	NEDD9	Û	1.40	0.024	2386867	LGALS8	Û	1.39	0.011
3864286	PSG9	Û	1.42	9.19E-03	2363202	SLAMF7	Û	1.40	0.027	3417345	RPL41	仓	1.39	0.010
2899146	HIST1H4C	Û	1.42	0.018	2949801	AGPAT1	Û	1.40	5.05E-03	3390852	C11orf92	仓	1.39	7.21E-03
2726483	OCIAD1	Û	1.42	0.016	2830638	KIF20A	Û	1.40	0.037	3042001	CYCS	仓	1.39	2.06E-03
3722739	G6PC3	Û	1.42	0.038	2372781	RGS1	Û	1.40	0.020	3470964	GLTP	仓	1.39	0.018
2336302	ZFYVE9	Û	1.42	3.49E-03	3207241	FLJ20444	仓	1.40	0.038	3454740	PHB	仓	1.39	0.021
3824395	PGLS	Û	1.42	4.49E-04	2899413	BTN3A3	Û	1.40	0.016	3304004	NPM3	仓	1.38	0.039
2369796	TOR1AIP1	Û	1.42	5.67E-03	3636956	WDR73	仓	1.40	3.45E-03	4015693	TIMM8A	仓	1.38	7.68E-04
3878934	NAA20	Û	1.42	5.16E-03	2835792	GM2A	Û	1.40	0.031	2488596	EMX1	Û	1.38	0.019
3430389	C12orf23	仓	1.42	0.023	3396770	CDON	仓	1.40	8.80E-03	2462589	MT1H	Û	1.38	0.037
3936442	PEX26	Û	1.42	0.018	3705412	C17orf97	仓	1.40	5.50E-03	3223551	MEGF9	Û	1.38	0.030
3368398	CCDC73	Û	1.42	0.014	2868904	ST8SIA4	Û	1.40	0.030	3952703	C22orf39	仓	1.38	0.017
3738205	MRPL12	Û	1.41	9.07E-03	2973995	EPB41L2	Û	1.40	0.043	2708407	ALG3	Û	1.38	0.020
3774385	SIRT7	仓	1.41	0.046	2773655	RCHY1	仓	1.40	9.77E-03	3417457	MYL6	仓	1.38	0.042
2527253	IGFBP2	Û	1.41	0.029	4019465	NKRF	仓	1.40	0.016	3947310	C22orf32	仓	1.38	9.75E-03
3712098	SNORD49A	Û	1.41	2.24E-03	2922215	MARCKS	仓	1.40	0.029	2750594	SC4MOL	Û	1.38	0.038
3729123	DHX40	仓	1.41	5.61E-04	3432333	PTPN11	仓	1.40	0.011	3441955	MRPL51	仓	1.38	8.08E-04
3428088	ACTR6	仓	1.41	0.011	2384375	DUSP5P	仓	1.39	2.38E-03	3435681	ARL6IP4	Û	1.38	6.08E-03
3630099	TIPIN	仓	1.41	0.012	3331487	CTNND1	Û	1.39	0.014	2875929	C5orf15	Û	1.38	0.048
3866302	AP2S1	Û	1.41	1.34E-03	3444252	CSDA	仓	1.39	0.015	2955025	MRPL14	仓	1.38	0.026

3121228	ERICH1	仓	1.38	0.038	2474322	C2orf28	Û	1.36	4.85E-03	2964327	LYRM2	仓	1.35	1.95E-03
3108901	VPS13B	Û	1.38	9.62E-03	3426257	SOCS2	Û	1.36	0.024	3687698	CD2BP2	兌	1.35	0.042
2542226	RDH14	Û	1.38	0.019	3869714	ZNF611	Û	1.36	0.027	3394488	PVRL1	Û	1.35	0.017
2482683	RPL23AP32	Û	1.38	0.029	3413787	TUBA1C	Û	1.36	0.034	3468103	GNPTAB	Û	1.35	0.044
3376867	TRMT112	仓	1.38	6.01E-03	2878662	DIAPH1	Û	1.36	0.029	3815566	STK11	仓	1.35	0.032
3119339	LY6E	Û	1.38	0.013	2708610	MAGEF1	Û	1.36	0.019	3292634	RUFY2	仓	1.35	0.027
2986084	PHF10	仓	1.38	0.028	3804143	RPRD1A	Û	1.36	1.92E-03	2716655	MSX1	兌	1.35	0.047
3056292	CLDN3	仓	1.38	8.99E-05	2813060	PIK3R1	Û	1.36	0.026	3422703	ATXN7L3B	仓	1.35	0.013
2558150	AAK1	Û	1.38	0.033	2930863	PCMT1	Û	1.36	0.047	3716993	RNF135	兌	1.34	0.021
3856554	ZNF100	仓	1.38	0.042	3195296	SSNA1	Û	1.36	0.029	3372235	RAPSN	Û	1.34	4.00E-03
2423017	EVI5	仓	1.37	0.042	3346147	ARHGAP42	Û	1.36	0.022	3056656	GTF2IRD2	仓	1.34	3.92E-03
2457573	AIDA	仓	1.37	0.014	3292735	SLC25A16	Û	1.36	1.27E-03	2386747	GPR137B	Û	1.34	0.036
2331511	BMP8A	仓	1.37	4.16E-03	2902736	C6orf48	Û	1.36	0.021	3728509	DYNLL2	Û	1.34	0.012
3462630	CAPS2	仓	1.37	1.43E-04	4011844	IL2RG	Û	1.35	8.47E-03	2428796	PTPN22	Û	1.34	8.95E-03
3434413	RNF10	仓	1.37	8.16E-03	2427074	PSMA5	Û	1.35	0.032	3060182	ABCB1	Û	1.34	0.040
2671652	ZDHHC3	Û	1.37	6.57E-03	3822805	TECR	Û	1.35	0.032	3018484	GPR22	仓	1.34	6.82E-05
3332131	STX3	仓	1.37	1.11E-03	3442785	CLEC4C	Û	1.35	0.025	3459956	C12orf66	仓	1.34	1.99E-03
3210179	C9orf95	仓	1.37	0.012	3716579	LRRC37BP1	仓	1.35	0.035	3191338	GPR107	Û	1.34	0.037
3872441	ZNF552	仓	1.37	0.029	3665116	CBFB	Û	1.35	0.023	3522225	STK24	仓	1.34	0.013
3799615	PTPN2	仓	1.37	0.042	2842570	FAF2	Û	1.35	0.040	3225096	NR6A1	仓	1.34	0.024
2908052	POLR1C	仓	1.37	1.45E-03	3338552	CTTN	仓	1.35	6.18E-03	3005956	C7orf42	Û	1.34	8.80E-03
2541230	NBAS	Û	1.37	5.41E-04	2559696	TPRKB	仓	1.35	9.06E-03	2465324	AHCTF1	仓	1.34	0.017
3996083	TMEM187	仓	1.37	9.45E-03	3752097	C17orf42	仓	1.35	0.031	2864237	HOMER1	仓	1.34	0.049
3540353	CHURC1	仓	1.37	0.018	3464967	GALNT4	仓	1.35	9.39E-03	3474228	RAB35	仓	1.34	1.28E-03
3828162	C19orf2	仓	1.37	2.39E-03	2868131	ERAP1	Û	1.35	0.043	3749432	RNFT1	仓	1.34	0.021
3716664	SUZ12P	仓	1.37	0.035	3066751	SYPL1	Û	1.35	0.030	3725083	SNX11	仓	1.33	0.026
3829768	UBA2	仓	1.37	0.010	2415910	DOCK7	Û	1.35	0.024	3978819	RRAGB	仓	1.33	0.029
3406421	STRAP	仓	1.37	9.11E-03	3292413	DNAJC12	仓	1.35	6.99E-03	2717518	AFAP1	仓	1.33	0.015
3046556	TARP	仓	1.37	2.06E-03	3391234	TIMM8B	仓	1.35	0.042	3758148	CCDC56	仓	1.33	0.024
2342665	MSH4	仓	1.36	1.92E-03	3944620	MPST	兌	1.35	2.77E-03	3135184	RB1CC1	Û	1.33	2.04E-03
3421523	YEATS4	仓	1.36	0.041	3464912	POC1B	兌	1.35	0.024	2544925	ASXL2	Û	1.33	1.22E-03
2437401	FDPS	Û	1.36	9.98E-03	3145953	RPL30	Û	1.35	3.06E-03	3129121	CCDC25	Û	1.33	0.024

3308864	RAB11FIP2	仓	1.33	0.025	3518169	COMMD6	얍	1.32	0.047	3323443	PRMT3	仓	1.31	0.012
3642815	NME4	仓	1.33	0.026	3695359	FAM96B	얍	1.32	0.023	2977265	HIVEP2	Û	1.31	0.028
3494102	UCHL3	仓	1.33	0.040	2477302	CCDC75	얍	1.32	0.033	2707824	MCCC1	Û	1.31	0.023
3435902	DDX55	仓	1.33	5.83E-03	3668898	ZFP1	얍	1.32	0.018	3633550	IMP3	仓	1.31	0.033
2950515	VPS52	Û	1.33	0.023	3829020	PDCD5	Û	1.32	0.024	3402935	TPI1	仓	1.31	0.035
2883878	EBF1	Û	1.33	0.020	3784727	ELP2	얍	1.32	0.010	2447993	C1orf25	Û	1.31	1.64E-03
3892660	RPS21	仓	1.33	0.014	2501697	ACTR3	Û	1.32	4.80E-04	3862167	FBL	仓	1.30	1.47E-03
3741305	OR1D2	仓	1.33	0.018	3439063	ZNF26	Û	1.32	0.019	3730899	DDX42	仓	1.30	0.014
2954527	ZNF318	Û	1.33	0.016	3535515	FRMD6	얍	1.32	6.79E-03	3741383	OR1E2	仓	1.30	1.44E-03
2893895	BMP6	仓	1.33	0.014	3378790	PPP1CA	얍	1.32	0.038	2676219	PBRM1	Û	1.30	0.029
3361041	TPP1	Û	1.33	0.043	3402978	DSTNP2	Û	1.32	0.022	2835531	NDST1	Û	1.30	0.041
3563814	L2HGDH	仓	1.33	3.97E-03	3197014	GLIS3	Û	1.31	0.024	3421706	RAB3IP	仓	1.30	0.024
2545645	UCN	①	1.33	0.029	3334847	C11orf2	Û	1.31	0.018	2742009	ADAD1	仓	1.30	0.012
3961664	ST13	Û	1.33	0.020	2425212	DBT	Û	1.31	0.040	3257670	PCGF5	仓	1.30	0.044
3403299	PEX5	Û	1.33	8.49E-03	3385003	CREBZF	Û	1.31	0.025	2654855	ATP11B	Û	1.30	0.036
2961317	TMEM30A	Û	1.33	0.049	3415915	PFDN5	Û	1.31	0.029	3136129	RPS20	仓	1.30	0.038
2729884	UGT2B10	Û	1.33	4.20E-03	3488942	NUDT15	Û	1.31	0.019	2734018	MRPS18C	仓	1.30	0.025
3608113	IQGAP1	Û	1.33	0.024	3472225	DDX54	Û	1.31	4.50E-03	3453556	PRKAG1	仓	1.30	0.030
3838665	RCN3	Û	1.33	6.86E-03	2411638	LOC100128922	Û	1.31	0.012	3860596	ZNF461	仓	1.30	6.14E-03
3420497	HELB	Û	1.33	0.036	2777447	NAP1L5	Û	1.31	0.019	3094778	TACC1	Û	1.30	1.50E-03
3821847	ASNA1	仓	1.33	5.20E-03	3190659	SET	Û	1.31	9.40E-03	3418513	MARCH9	仓	1.30	9.71E-03
3624448	GNB5	仓	1.32	0.021	3820906	C19orf52	Û	1.31	1.40E-03	3566304	EXOC5	仓	1.30	4.93E-03
3051928	CHCHD2	Û	1.32	0.010	3218496	OR13C9	Û	1.31	0.017	2438504	MRPL24	仓	1.30	0.048
2565246	TMEM127	Û	1.32	0.015	2548402	EIF2AK2	Û	1.31	9.94E-03	2717049	MRFAP1	仓	1.30	8.00E-03
2971692	MCM9	仓	1.32	2.55E-03	3159040	RPL8	Û	1.31	2.94E-04	3471704	BRAP	仓	1.30	0.011
3739108	FN3KRP	仓	1.32	0.027	3998632	PNPLA4	Û	1.31	2.64E-03	2639309	SEC22A	Û	1.30	0.043
2508520	KYNU	Û	1.32	0.015	3457523	RNF41	Û	1.31	0.013	2362394	IFI16	Û	1.30	1.53E-03
2871717	CCDC112	仓	1.32	0.018	2415728	TM2D1	Û	1.31	0.039	2748198	KIAA0922	Û	1.30	2.51E-03
3781124	MIB1	仓	1.32	2.78E-03	3225292	SCAI	Û	1.31	2.20E-03	3409364	KLHDC5	仓	1.30	0.013
2916825	ANKRD6	①	1.32	2.10E-04	3451318	ZCRB1	Û	1.31	0.027	3750685	SLC46A1	Û	1.30	0.025
2437307	SCAMP3	Û	1.32	0.047	3243078	ZNF33A	얍	1.31	0.017	3890109	C20orf108	仓	1.30	0.014
2466039	ZNF692	Û	1.32	7.89E-03	3014411	TRRAP	Û	1.31	0.010	2756831	SLC26A1	Û	1.30	6.92E-04

2499158	RANBP2	Û	1.30	0.016	3307680	DCLRE1A	Û	1.29	0.020	2915133	TPBG	Û	1.28	0.029
3929931	ATP50	仓	1.30	0.045	3825201	UBA52	얍	1.29	1.10E-03	3131844	LSM1	仓	1.28	0.045
2888879	DOK3	Û	1.30	0.020	2599433	USP37	Û	1.29	0.036	2534483	RBM44	仓	1.28	0.029
2915268	DOPEY1	Û	1.30	9.31E-03	3530002	KHNYN	仓	1.29	6.02E-03	2867432	ANKRD32	仓	1.28	0.026
3444525	TAS2R46	仓	1.30	0.039	2573641	CLASP1	Û	1.29	7.98E-04	3961253	RPS19BP1	仓	1.28	0.038
3396883	RPUSD4	Û	1.30	0.012	3898224	ESF1	仓	1.29	4.23E-03	3707715	RPAIN	仓	1.28	0.015
3502829	GAS6	Û	1.30	2.70E-03	3053827	NCRNA00174	Û	1.29	0.032	2715476	FAM193A	Û	1.28	0.012
2330334	THRAP3	Û	1.30	0.014	2731831	USO1	Û	1.28	0.049	3976519	RBM3	仓	1.28	0.020
3636442	C15orf40	Û	1.30	8.38E-03	3375147	VPS37C	仓	1.28	0.015	3562721	FKBP3	仓	1.28	0.037
2545092	HADHA	Û	1.29	0.020	2706938	GNB4	仓	1.28	0.023	2542737	LAPTM4A	Û	1.28	0.044
2521479	HSPE1	Û	1.29	0.044	3143330	FAM82B	얍	1.28	0.011	3033397	RBM33	Û	1.28	0.021
3673684	CDT1	Û	1.29	0.023	3676156	IGFALS	Û	1.28	0.046	3279857	TRDMT1	仓	1.28	0.038
3421630	CCT2	Û	1.29	0.028	3821701	ZNF788	얍	1.28	8.36E-03	3458783	CDK4	企	1.28	0.013
2993639	CBX3	仓	1.29	7.78E-04	3761054	COPZ2	얍	1.28	5.26E-03	3080033	MLL3	Û	1.28	0.011
3937743	SERPIND1	Û	1.29	0.040	3386638	SLC36A4	얍	1.28	0.047	3580947	C14orf2	얍	1.28	0.022
2489440	DOK1	仓	1.29	0.015	3742727	DHX33	얍	1.28	7.02E-03	2436228	GATAD2B	Û	1.27	1.89E-04
2946845	ZNF204P	Û	1.29	0.040	3233547	RBM17	얍	1.28	0.025	3779756	SEH1L	얍	1.27	0.037
2349086	DPH5	仓	1.29	0.037	2648378	RAP2B	Û	1.28	0.020	3229591	UBAC1	企	1.27	0.020
2599371	TMBIM1	Û	1.29	0.038	2958117	HMGCLL1	Û	1.28	6.84E-03	2353021	SYCP1	企	1.27	0.017
2376799	IKBKE	Û	1.29	0.029	3673091	BANP	얍	1.28	3.22E-03	4012868	RLIM	仓	1.27	8.89E-03
2369325	C1orf220	Û	1.29	2.21E-03	3849797	ZNF561	Û	1.28	0.024	3923896	KRTAP10-12	仓	1.27	0.014
3413950	SPATS2	Û	1.29	0.045	2688070	GUCA1C	Û	1.28	0.020	3831698	ZNF420	仓	1.27	1.80E-03
2514566	SSB	①	1.29	0.011	2359444	LCE1B	얍	1.28	0.023	3873160	TRIB3	仓	1.27	0.043
2601230	SCG2	Û	1.29	0.026	3332325	MS4A6E	Û	1.28	0.015	3838795	BCL2L12	仓	1.27	0.013
3534923	KLHDC2	Û	1.29	0.028	2541944	SMC6	Û	1.28	8.82E-03	3416344	HOXC9	仓	1.27	8.85E-03
3204261	CCL27	Û	1.29	0.032	2347732	TMEM56	仓	1.28	0.019	3747236	C17orf76	Û	1.27	3.75E-03
3883941	TGIF2	Û	1.29	0.028	3855071	FKBP8	Û	1.28	0.011	2781693	CASP6	仓	1.27	0.048
3977646	GSPT2	Û	1.29	0.040	3203482	BAG1	Û	1.28	0.023	3761127	CBX1	仓	1.27	9.09E-03
3962054	NHP2L1	Û	1.29	0.026	2698738	XRN1	Û	1.28	9.40E-04	2550122	COX7A2L	仓	1.27	0.024
3530982	G2E3	仓	1.29	0.020	3250726	KIAA1274	Û	1.28	0.010	2978989	LATS1	Û	1.27	1.00E-02
2821417	LNPEP	Û	1.29	0.020	3576545	SMEK1	Û	1.28	3.41E-03	2659918	LRCH3	Û	1.27	0.014
3644541	TRAF7	仓	1.29	0.031	3142932	C8orf59	얍	1.28	0.043	2482505	SPTBN1	Û	1.27	0.011

3676649	DCI	Û	1.27	0.011	2328909	TSSK3	Û	1.26	0.013	2405284	TMEM54	仓	1.25	5.90E-03
3431220	MVK	仓	1.27	0.010	3817167	MRPL54	Û	1.26	0.035	3347549	CUL5	仓	1.25	0.016
3421824	C12orf28	仓	1.27	0.037	3932148	BRWD1	Û	1.26	0.039	2713555	KIAA0226	Û	1.25	0.023
3671448	HSBP1	仓	1.27	0.015	3315549	PSMD13	Û	1.26	5.96E-03	3675815	C16orf42	仓	1.25	0.024
2945677	C6orf62	仓	1.27	0.034	3062576	ASNS	Û	1.26	0.031	2363902	DUSP12	仓	1.25	0.049
2596162	INO80D	Û	1.27	4.22E-03	3403224	LOC283314	Û	1.26	0.037	2731417	MTHFD2L	仓	1.25	9.26E-03
3351166	IL10RA	Û	1.27	0.041	3960875	DNAL4	Û	1.26	6.89E-03	3417435	MYL6B	仓	1.25	0.037
4046481	ING5	仓	1.27	0.035	3656622	CTF1	Û	1.26	8.13E-03	2629693	PPP4R2	仓	1.25	0.035
3229943	SDCCAG3	仓	1.27	7.66E-03	3318390	TRIM6-TRIM34	Û	1.26	0.045	3226181	ST6GALNAC4	仓	1.25	0.014
3821727	ZNF136	仓	1.27	0.029	2642791	DNAJC13	Û	1.26	0.015	2684851	VGLL3	仓	1.25	2.17E-03
3923312	RRP1	仓	1.27	0.016	3177563	NAA35	Û	1.26	0.013	2903488	HSD17B8	仓	1.25	0.034
3529064	BCL2L2	仓	1.27	0.010	3454680	TFCP2	Û	1.26	0.022	3581386	CDCA4	仓	1.25	0.017
3890870	RAB22A	仓	1.27	0.026	2436920	PMVK	Û	1.26	0.014	2479640	PPM1B	仓	1.25	0.012
3718382	ZNF830	仓	1.27	0.016	3654614	SULT1A1	Û	1.26	2.21E-03	3407229	AEBP2	仓	1.25	6.39E-03
3401099	FKBP4	仓	1.26	0.015	2899437	BTN2A1	Û	1.26	0.044	2674526	NICN1	Û	1.25	0.022
2655168	YEATS2	Û	1.26	0.038	2644333	SOX14	Û	1.26	4.53E-03	2380554	RRP15	仓	1.25	0.036
3288337	ARHGAP22	Û	1.26	0.045	3227645	UCK1	Û	1.26	8.20E-03	2978026	FBXO30	仓	1.25	0.020
3259253	ENTPD1	Û	1.26	0.044	3346584	BIRC2	Û	1.25	0.025	3642390	TARSL2	仓	1.25	0.046
3230490	EDF1	仓	1.26	0.026	3228097	TTF1	Û	1.25	0.040	3352813	TBCEL	仓	1.25	0.022
3819104	TRAPPC5	仓	1.26	0.012	3465409	BTG1	Û	1.25	4.25E-03	2500615	TMEM87B	Û	1.25	0.049
3837504	SEPW1	企	1.26	0.046	3870162	ZNF665	Û	1.25	3.29E-03	2369843	CEP350	Û	1.25	9.84E-04
2597010	IDH1	Û	1.26	0.034	3812589	GTSCR1	Û	1.25	0.023	3404496	KLRF1	仓	1.25	0.036
2427688	C1orf103	Û	1.26	0.032	2723391	MGC42157	Û	1.25	0.046	2762334	QDPR	仓	1.25	0.042
3558226	RIPK3	Û	1.26	0.018	3336351	CCS	Û	1.25	7.60E-03	3221571	RNF183	仓	1.25	0.025
2900453	PGBD1	仓	1.26	9.51E-03	3642604	MPG	Û	1.25	1.59E-03	3503224	UPF3A	仓	1.25	0.016
3212728	AGTPBP1	企	1.26	0.021	2851274	CDH10	Û	1.25	9.29E-04	2828115	LYRM7	仓	1.25	0.033
3300869	PIPSL	仓	1.26	0.033	3330927	OR5T1	Û	1.25	0.015	3555492	TMEM55B	仓	1.25	0.013
2678367	PDHB	Û	1.26	0.038	3478457	STX2	Û	1.25	0.033	3657318	ZNF720	仓	1.25	0.039
3358262	DEAF1	企	1.26	0.021	2324743	ZBTB40	Û	1.25	0.037	2772375	UGT2A1	仓	1.25	0.031
3676209	C16orf73	仓	1.26	0.036	3999395	MID1	Û	1.25	0.036	3348891	C11orf57	企	1.25	0.041
2837499	LSM11	仓	1.26	3.26E-03	3892941	OGFR	Û	1.25	0.043	2437417	ASH1L	Û	1.25	0.037
3486807	WBP4	仓	1.26	0.035	3416114	TARBP2	Û	1.25	8.46E-03	3442396	PHB2	仓	1.25	4.42E-03

2320762	VPS13D	Û	1.25	0.024	2612175	NR2C2	Û	1.24	1.95E-03	2790652	FGG	얍	1.23	9.01E-03
2834574	SPINK14	Û	1.25	5.88E-03	2581430	STAM2	Û	1.24	0.017	2835166	ARHGEF37	Û	1.23	0.011
3334783	SNX15	Û	1.25	0.025	3824153	C19orf62	Û	1.24	0.048	2377427	CD46	Û	1.23	0.047
3200689	RPS6	Û	1.25	0.042	2476219	BIRC6	Û	1.24	1.58E-03	2514365	BBS5	Û	1.23	4.12E-03
2448232	TPR	Û	1.24	2.44E-03	2832115	PCDHA12	Û	1.24	0.045	3202293	C9orf11	Û	1.23	0.010
2451139	ARL8A	Û	1.24	0.014	3471374	PPP1CC	Û	1.24	0.016	2730281	ODAM	Û	1.23	6.95E-03
3348189	FDX1	Û	1.24	0.024	3476012	MPHOSPH9	仓	1.24	0.038	3191113	PRRX2	Û	1.23	8.60E-04
3469844	MTERFD3	Û	1.24	0.037	2977949	EPM2A	Û	1.24	0.016	2572601	CCDC93	Û	1.23	0.019
2373494	CFHR2	Û	1.24	0.037	2895159	HIVEP1	Û	1.24	8.89E-03	2711139	ATP13A5	Û	1.23	0.047
2951057	C6orf1	Û	1.24	0.020	2966636	ASCC3	Û	1.24	0.047	3418298	KIF5A	Û	1.23	0.044
2903189	HLA-DRA	Û	1.24	0.042	3337168	GSTP1	仓	1.24	0.032	2943808	NUP153	Û	1.23	9.51E-03
2954678	XPO5	Û	1.24	0.036	2389789	SCCPDH	Û	1.24	0.028	3183757	RAD23B	Û	1.23	0.022
3712517	NT5M	Û	1.24	0.012	3012910	GNGT1	仓	1.24	0.040	2693937	TPRA1	Û	1.23	0.039
2336271	BTF3L4	Û	1.24	0.036	3349014	PTS	Û	1.24	0.020	2691718	GOLGB1	Û	1.23	7.89E-03
2745288	IL15	Û	1.24	0.014	3424379	C12orf26	仓	1.24	0.039	3271220	CTAGE7P	仓	1.23	0.040
2532699	INPP5D	Û	1.24	5.36E-03	3647632	C16orf72	Û	1.24	8.96E-03	3882854	ITCH	Û	1.23	0.020
3272027	LRRC27	Û	1.24	9.65E-03	2564816	ANKRD36B	仓	1.24	0.033	3792952	SOCS6	仓	1.23	0.037
3435653	OGFOD2	兌	1.24	0.024	2633631	NIT2	Û	1.24	0.045	2974188	MED23	Û	1.23	0.035
2878630	SLC25A2	Û	1.24	4.73E-03	3513953	C13orf1	仓	1.23	0.038	3131720	BRF2	仓	1.23	0.020
3969115	TLR8	兌	1.24	5.37E-03	3317223	IGF2AS	仓	1.23	0.027	2828146	CDC42SE2	仓	1.23	0.046
3747324	ZNF624	兌	1.24	4.89E-03	2334459	TMEM69	Û	1.23	0.025	2400373	EIF4G3	Û	1.23	5.54E-03
3882720	RALY	兌	1.24	0.049	2923270	PLN	仓	1.23	0.018	3360982	RRP8	仓	1.23	0.035
2815139	FCHO2	兌	1.24	0.014	3376529	PLA2G16	仓	1.23	0.045	2346657	BTBD8	仓	1.23	0.036
2576788	ANKRD30BL	Û	1.24	1.03E-03	2435044	POGZ	Û	1.23	6.69E-03	3440017	FBXL14	Û	1.23	0.047
3850040	EIF3G	Û	1.24	0.013	3145567	UQCRB	企	1.23	5.75E-03	3135156	FAM150A	仓	1.23	0.031
3016211	ZNHIT1	Û	1.24	0.033	4007734	TFE3	Û	1.23	0.046	3064024	C7orf61	Û	1.23	0.047
2840036	DOCK2	Û	1.24	6.66E-04	3846538	EEF2	仓	1.23	4.04E-03	3331129	OR5AK2	仓	1.23	0.040
3843525	ZNF586	Û	1.24	0.021	2418700	ASB17	企	1.23	0.016	3665846	THAP11	仓	1.23	0.044
3854877	JUND	Û	1.24	0.048	2987410	NUDT1	Û	1.23	0.012	3591909	CTDSPL2	Û	1.23	0.026
2391465	MXRA8	仓	1.24	3.15E-03	2664891	TBC1D5	Û	1.23	0.011	2608765	ARL8B	Û	1.23	0.039
3971877	EIF2S3	仓	1.24	0.018	3157844	NRBP2	Û	1.23	0.010	3258997	CYP2C19	仓	1.23	0.020
3379390	SUV420H1	仓	1.24	0.042	2359817	INTS3	Û	1.23	5.51E-03	3672455	COX4I1	仓	1.23	0.044

3045739	HERPUD2	Û	1.23	0.035	3029213	TAS2R41	Û	1.22	0.036	3257750	HECTD2	Û	1.21	0.026
3114358	FAM91A1	仓	1.22	0.031	2519038	FSIP2	Û	1.22	0.026	2618702	ZNF620	Û	1.21	0.017
3715809	NEK8	仓	1.22	0.011	3584443	SNRPN	兌	1.22	0.040	3713874	MAPK7	Û	1.21	4.06E-03
2512330	MARCH7	Û	1.22	0.027	2830742	KDM3B	Û	1.22	1.04E-03	3956290	PITPNB	Û	1.21	0.022
3907373	WFDC9	仓	1.22	0.046	3894194	TBC1D20	Û	1.22	0.027	3236395	HSPA14	Û	1.21	5.16E-03
4021149	SMARCA1	Û	1.22	0.040	2486851	APLF	Û	1.22	0.044	2544238	ITSN2	Û	1.21	9.07E-03
2318736	PARK7	Û	1.22	0.044	2550959	PREPL	Û	1.22	0.031	3464622	CEP290	仓	1.21	0.027
2575949	TUBA3E	Û	1.22	0.038	3662170	MT1DP	Û	1.22	3.87E-03	3330961	OR8J1	Û	1.21	8.52E-03
3974838	DDX3X	Û	1.22	0.042	3514488	INTS6	Û	1.22	0.013	3874023	PTPRA	Û	1.21	0.029
3704896	CHMP1A	Û	1.22	0.020	3466826	CDK17	仓	1.21	0.029	3507003	LNX2	仓	1.21	0.042
2347788	RWDD3	Û	1.22	0.029	3430552	PWP1	仓	1.21	0.047	3846783	UBXN6	仓	1.21	0.022
3892409	LSM14B	Û	1.22	0.016	2862716	GFM2	Û	1.21	0.036	2516780	HOXD13	Û	1.21	6.56E-03
2404254	PUM1	Û	1.22	2.25E-04	3511817	ENOX1	仓	1.21	5.76E-03	2413203	LRP8	Û	1.21	0.046
3121023	C8orf33	Û	1.22	0.038	2676397	ITIH4	Û	1.21	0.031	3832865	NCCRP1	仓	1.21	0.023
3735346	C17orf106	仓	1.22	0.019	2817576	THBS4	仓	1.21	0.024	3149754	EIF3H	兌	1.21	0.033
2367154	BAT2L2	Û	1.22	9.55E-04	2351572	CD53	Û	1.21	0.019	3488253	COG3	仓	1.21	0.024
3476130	SBN01	仓	1.22	0.036	3835339	ZNF230	仓	1.21	0.037	3982410	COX7B	兌	1.21	0.040
2546008	SUPT7L	Û	1.22	0.047	3300115	PPP1R3C	얍	1.21	0.033	2692909	HEG1	Û	1.20	0.040
3829575	LSM14A	仓	1.22	0.045	3226311	NAIF1	仓	1.21	0.044	3360702	OR52L1	兌	1.20	0.028
3899641	HSPC072	仓	1.22	0.037	7385683	VPS41	Û	1.21	0.045	3727499	TOM1L1	兌	1.20	0.031
3429555	EID3	①	1.22	0.013	3407629	SLCO1B3	얍	1.21	0.017	3447129	KIAA0528	兌	1.20	0.017
3758845	HDAC5	仓	1.22	0.031	2559849	SLC4A5	仓	1.21	0.032	2961647	HTR1B	Û	1.20	0.034
3954746	IGLL1	Û	1.22	5.85E-03	3856908	ZNF99	仓	1.21	0.044	2573570	TFCP2L1	Û	1.20	0.040
3026599	TRIM24	Û	1.22	0.038	3721851	COASY	仓	1.21	0.012	3555272	TTC5	Û	1.20	2.10E-03
2816030	POLK	Û	1.22	0.041	2607923	CNTN4	仓	1.21	3.39E-03	2340819	TCTEX1D1	Û	1.20	9.05E-03
3127610	PEBP4	Û	1.22	0.014	3871576	FIZ1	仓	1.21	0.014	2780296	TACR3	Û	1.20	0.018
2556667	RAB1A	仓	1.22	0.033	3419849	TBK1	仓	1.21	9.99E-03	3154185	TMEM71	Û	1.20	0.036
3923498	PWP2	仓	1.22	0.022	3202224	LRRC19	仓	1.21	0.019	2519480	GULP1	Û	1.20	0.034
2675088	IFRD2	仓	1.22	0.013	2423422	BCAR3	兌	1.21	0.022	2678029	DNAH12	Û	1.20	0.038
2907190	UBR2	Û	1.22	2.75E-03	3928545	KRTAP19-6	얍	1.21	7.33E-04	2950242	PPP1R2P1	얍	1.20	0.015
3431426	IFT81	①	1.22	0.024	3223605	FBXW2	얍	1.21	0.011	2717757	C4orf23	Û	1.20	0.042
2399409	UBR4	Û	1.22	2.53E-03	2456849	RAB3GAP2	Û	1.21	0.021	2468138	LOC400940	仓	1.20	6.70E-03

3955327	C22orf13	仓	1.20	0.020	2977122	NMBR	仓	1.20	0.016	3696194	DDX28	仓	1.20	6.19E-03
3348990	TEX12	Û	1.20	0.035	2672532	SETD2	Û	1.20	2.76E-03	2318416	THAP3	仓	1.20	0.017
2326640	ARID1A	Û	1.20	0.036	3453348	RND1	兌	1.20	0.034	2811145	PART1	仓	1.20	0.033
2620315	TMEM42	Û	1.20	0.049	2327418	MED18	仓	1.20	0.047	2880463	C5orf46	Û	1.20	0.043
3934903	NCRNA00205	Û	1.20	0.038	3344897	MED17	Û	1.20	0.037	2353477	ATP1A1	Û	1.20	0.041
3788560	DCC	Û	1.20	0.021	2627390	ATXN7	Û	1.20	7.66E-03	3702352	HSDL1	仓	1.20	3.66E-03
2761321	BOD1L	Û	1.20	0.026	3834651	ZNF526	仓	1.20	0.016	2824144	FLJ11235	仓	1.20	0.040
2525272	PIKFYVE	Û	1.20	0.035	3833827	EGLN2	仓	1.20	1.16E-03	3755359	PIP4K2B	Û	1.20	0.045
3836266	FOSB	Û	1.20	0.043	2594569	ORC2	Û	1.20	0.042	2491046	FUNDC2P2	仓	1.20	0.030
3337329	ALDH3B1	Û	1.20	0.018	3321269	FAR1	仓	1.20	0.045	2959596	EYS	仓	1.20	8.56E-03
3569778	C14orf181	Û	1.20	0.019	3868472	FAM71E1	Û	1.20	3.05E-03	2927255	PEX7	仓	1.20	0.043

Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value	Transcript ID	Symbol		Fold	p-value
3566383	C14orf105	Û	2.69	2.33E-03	3754797	HNF1B	Û	1.87	6.98E-03	3852880	EMR2	Û	1.61	0.031
2459042	CDC42BPA	Û	2.53	2.29E-03	3496409	GPC5	Û	1.86	9.06E-04	2899243	HIST1H4F	Û	1.60	2.19E-05
2440385	CD244	Û	2.45	2.61E-03	3129361	FBX016	仓	1.86	9.40E-03	2362333	MNDA	仓	1.60	0.027
3718555	SLFN5	Û	2.39	3.18E-03	2973376	PTPRK	Û	1.85	0.023	2371547	C1orf21	Û	1.60	0.034
3393446	FXYD2	Û	2.30	2.16E-03	3382216	ARRB1	Û	1.85	0.027	3344142	NAALAD2	Û	1.59	0.033
3388673	MMP7	Û	2.25	0.044	3996598	NCRNA00204	仓	1.82	0.026	3944404	APOL1	Û	1.59	5.96E-03
2607568	CHL1	Û	2.22	0.027	2924253	RNF217	Û	1.82	0.020	2730746	SLC4A4	Û	1.58	0.026
3456805	GTSF1	仓	2.19	0.027	3560403	EGLN3	Û	1.82	2.41E-03	3841357	LILRA2	Û	1.58	0.012
2569908	SEPT10	仓	2.15	0.028	3944129	HMOX1	仓	1.80	2.53E-04	3174510	GDA	Û	1.58	0.041
3445908	EPS8	Û	2.13	0.010	2477073	CRIM1	Û	1.79	0.034	2902707	HSPA1A	仓	1.58	0.010
2731636	PARM1	Û	2.13	2.22E-03	2571483	IL1A	仓	1.79	0.045	2973232	C6orf174	Û	1.58	0.015
3623031	FBN1	Û	2.13	3.10E-04	3209384	TMEM2	Û	1.78	0.024	3609592	MCTP2	Û	1.57	1.38E-04
3507282	FLT1	Û	2.12	2.93E-03	3955102	GSTT1	仓	1.78	0.015	4005859	CASK	Û	1.56	6.24E-03
3150579	ENPP2	Û	2.10	3.12E-03	3599709	GLCE	Û	1.76	8.10E-03	3396593	FEZ1	Û	1.56	0.034
3132016	FGFR1	Û	2.06	9.91E-04	2403446	PTAFR	Û	1.74	0.018	2584018	DPP4	Û	1.56	0.037
2898746	LRRC16A	Û	2.04	3.14E-03	2485406	HSPC159	仓	1.73	9.30E-04	2378068	G0S2	仓	1.55	0.011
2699564	PLOD2	Û	2.02	8.64E-03	3494137	LMO7	Û	1.72	1.53E-04	2879105	SPRY4	Û	1.55	2.46E-03
2635741	CD96	Û	2.02	0.022	3351675	CXCR5	兌	1.70	0.022	2899223	HIST1H2AE	仓	1.55	0.036
4022370	GPC4	Û	2.02	0.014	3972929	GK	Û	1.70	2.19E-03	2895244	EDN1	Û	1.54	0.034
3512948	C13orf18	仓	2.01	6.44E-03	3791254	TNFRSF11A	Û	1.68	0.031	3420442	IRAK3	Û	1.54	0.037
3778504	RAB31	仓	2.01	0.011	2615360	TGFBR2	Û	1.68	7.10E-03	3082590	LOC286161	仓	1.54	1.62E-03
3569814	ACTN1	Û	2.01	4.22E-03	2705445	PLD1	Û	1.68	0.022	2351854	C1orf162	仓	1.54	0.027
3933566	TMPRSS3	Û	1.99	0.042	3724545	ITGB3	Û	1.66	0.015	3644191	FAHD1	Û	1.54	5.11E-04
2915828	NT5E	Û	1.98	0.035	3941848	EMID1	Û	1.66	3.73E-03	2633691	TMEM45A	Û	1.54	0.013
3449068	TMTC1	Û	1.98	5.42E-03	2986999	GPR146	Û	1.65	8.46E-03	3450899	SLC2A13	Û	1.54	7.46E-03
2853102	PRLR	Û	1.97	0.011	3323891	GAS2	Û	1.64	0.031	3197955	GLDC	仓	1.53	0.048
2459173	PR02012	Û	1.95	9.66E-04	2662581	C3orf10	仓	1.64	0.015	3164825	IFNA1	Û	1.53	7.19E-03
4002081	MAP7D2	Û	1.91	1.41E-03	3409605	FAR2	Û	1.63	0.045	2879028	GNPDA1	Û	1.53	1.06E-03
3692999	MT1G	Û	1.89	0.017	3139580	SLCO5A1	Û	1.63	3.23E-04	2439001	FCRL3	Û	1.53	0.030
2664209	SH3BP5	仓	1.87	6.83E-04	3417583	RBMS2	仓	1.62	0.028	3132940	ANK1	Û	1.52	0.011
3284596	PARD3	Û	1.87	6.65E-03	2462160	NID1	Û	1.61	4.17E-03	2910868	TINAG	Û	1.52	2.70E-03

3624145	DMXL2	Û	1.52	4.26E-05	2396461	SRM	仓	1.47	6.74E-05	3712062	TRPV2	Û	1.42	4.59E-04
3054165	SBDS	仓	1.52	0.011	3245881	WDFY4	Û	1.47	1.21E-03	3424442	TMTC2	Û	1.42	1.19E-04
3136178	PLAG1	仓	1.51	9.63E-03	3091077	DPYSL2	仓	1.46	0.019	2351004	GSTM5	Û	1.42	0.010
3899173	RRBP1	Û	1.51	8.97E-05	2331178	NDUFS5	Û	1.46	5.48E-03	3302177	ARHGAP19	Û	1.42	0.037
3225855	ANGPTL2	Û	1.51	0.022	3402757	LAG3	Û	1.46	8.55E-03	4018080	CHRDL1	Û	1.42	0.029
3887210	MMP9	Û	1.50	0.024	2336585	SCP2	仓	1.46	3.38E-03	2471978	RHOB	Û	1.42	0.048
2338625	HOOK1	Û	1.50	0.020	3851493	ZNF443	Û	1.45	3.59E-03	3005444	TPST1	Û	1.41	0.046
2849992	FAM134B	Û	1.50	0.024	3101153	BHLHE22	Û	1.45	0.047	2371346	RGL1	Û	1.41	0.017
2932508	TIAM2	仓	1.49	3.28E-03	3663074	MMP15	Û	1.45	0.017	2325479	RCAN3	Û	1.41	2.55E-03
3403244	CLSTN3	Û	1.49	1.08E-03	3352438	POU2F3	Û	1.45	0.028	2732844	ANXA3	Û	1.41	0.042
3273667	ADARB2	Û	1.49	9.47E-03	2427208	GSTM3	Û	1.45	0.034	3714068	ALDH3A2	Û	1.41	3.72E-04
2422035	GBP5	Û	1.49	0.015	3687789	DCTPP1	仓	1.45	1.29E-03	2316245	PRKCZ	Û	1.41	7.76E-04
2902725	HSPA1B	仓	1.48	4.61E-03	3447348	SOX5	Û	1.44	9.78E-03	3203382	SMU1	仓	1.41	0.026
3184218	C9orf6	仓	1.48	0.015	3234277	GATA3	Û	1.44	3.68E-03	2385696	C1orf57	Û	1.40	0.026
3946095	GRAP2	仓	1.48	0.016	2946219	HIST1H2AB	Û	1.44	0.027	2586744	METTL8	Û	1.40	1.29E-03
2933175	ZDHHC14	Û	1.48	0.021	3838094	FTL	仓	1.44	0.036	2692060	PARP9	仓	1.40	0.012
2829275	UBE2B	仓	1.48	9.66E-04	3351841	HMBS	Û	1.44	0.013	2767295	BEND4	Û	1.40	0.040
3252071	VCL	Û	1.48	0.014	2327677	EPB41	Û	1.44	6.56E-03	3708644	FGF11	Û	1.40	0.025
3101622	RRS1	仓	1.48	2.44E-03	4007164	CFP	Û	1.44	0.043	2601287	AP1S3	Û	1.40	8.20E-04
2362351	PYHIN1	仓	1.47	0.031	2626258	KCTD6	Û	1.44	5.42E-04	2885099	NUDCD2	Û	1.40	1.86E-05
3727449	TOM1L1	Û	1.47	0.024	3766533	CD79B	Û	1.44	0.017	3887302	CD40	Û	1.40	3.58E-03
3538213	DAAM1	Û	1.47	0.017	2449711	DENND1B	Û	1.44	0.029	3840327	ZNF808	Û	1.40	8.51E-03
2626167	РХК	Û	1.47	2.10E-03	3734379	CD300A	Û	1.44	1.66E-04	3103818	HNF4G	Û	1.40	0.027
3543619	C14orf169	Û	1.47	6.04E-03	3753500	SLFN11	Û	1.44	4.12E-04	3734355	GPRC5C	Û	1.39	0.042
3825013	SSBP4	Û	1.47	1.60E-03	2826295	SNX2	Û	1.44	1.65E-03	3067302	LAMB1	Û	1.39	0.033
2651835	GPR160	仓	1.47	0.037	3761313	HOXB3	Û	1.43	6.58E-05	2848265	CMBL	Û	1.39	0.030
2956052	TNFRSF21	Û	1.47	0.040	3236538	RPP38	Û	1.43	0.044	2319225	H6PD	Û	1.39	0.032
2912649	COL19A1	Û	1.47	0.012	3020302	CAV1	仓	1.43	0.036	2323559	MRTO4	Û	1.39	6.75E-03
3914273	SAMD10	Û	1.47	1.57E-03	3011838	STEAP1	Û	1.43	9.03E-03	3738629	SLC16A3	Û	1.39	3.45E-03
3230141	NOTCH1	Û	1.47	1.40E-04	4027176	FLNA	Û	1.43	4.33E-03	3453252	ADCY6	Û	1.39	1.87E-03
2369339	RALGPS2	Û	1.47	0.035	2437893	UBQLN4	Û	1.42	6.86E-03	2992863	IGF2BP3	Û	1.39	8.80E-04
2796484	CASP3	Û	1.47	1.40E-03	2443989	VAMP4	Û	1.42	2.89E-03	2866576	MBLAC2	Û	1.39	6.75E-04

3450655	CPNE8	Û	1.39	0.014	2495806	MRPL30	仓	1.37	2.44E-03	3286975	ANUBL1	Û	1.35	1.42E-03
3592484	PLDN	仓	1.39	6.37E-03	3788049	SKA1	仓	1.37	0.016	2608419	SETMAR	仓	1.35	1.33E-03
2855443	LOC100132356	仓	1.38	4.82E-04	2492496	NCRNA00152	仓	1.37	0.021	3758510	ETV4	Û	1.35	0.017
3848243	INSR	Û	1.38	0.015	3199207	NFIB	Û	1.37	0.037	2715440	RNF4	仓	1.35	0.021
3687494	MAPK3	仓	1.38	0.010	3564872	GNPNAT1	仓	1.37	6.51E-03	2549260	MAP4K3	仓	1.35	3.63E-03
2871241	MCC	Û	1.38	6.29E-03	2604390	ARL4C	仓	1.37	0.011	3893849	PRPF6	Û	1.35	9.82E-03
3628923	FAM96A	仓	1.38	2.85E-03	3004768	ZNF273	仓	1.37	0.020	3824890	MPV17L2	仓	1.35	0.038
2531522	CAB39	仓	1.38	4.41E-04	3396107	ESAM	Û	1.37	9.47E-03	2478748	EML4	仓	1.35	7.56E-03
3538087	DACT1	Û	1.38	5.88E-03	3816827	S1PR4	Û	1.37	0.030	3161113	PDCD1LG2	Û	1.35	0.035
3937755	SNAP29	仓	1.38	7.15E-03	3429566	CHST11	Û	1.37	4.31E-05	2929036	LTV1	仓	1.35	3.40E-03
3245783	WDFY4	Û	1.38	1.93E-05	3168385	GLIPR2	兌	1.36	0.011	3988987	NDUFA1	仓	1.35	0.029
3278813	FAM107B	仓	1.38	0.018	3900091	RALGAPA2	Û	1.36	0.013	2443518	C1orf156	仓	1.34	2.63E-03
2999640	UBE2D4	仓	1.38	4.44E-03	2712906	RNF168	兌	1.36	6.66E-03	3414695	ATF1	仓	1.34	0.035
3288518	C10orf72	Û	1.38	0.026	3761291	HOXB2	Û	1.36	0.024	3651955	METTL9	仓	1.34	2.28E-03
2558483	C2orf42	兌	1.38	4.93E-03	3892918	C20orf20	仓	1.36	0.022	3553531	TNFAIP2	Û	1.34	0.023
2341645	HHLA3	仓	1.38	7.48E-03	2842561	HIGD2A	兌	1.36	0.017	2835006	GRPEL2	仓	1.34	2.49E-03
2713111	MFI2	Û	1.38	0.010	2775735	SCD5	Û	1.36	0.029	3402736	PTMS	Û	1.34	0.029
2626141	RPP14	兌	1.38	9.26E-03	2376894	DYRK3	仓	1.36	5.84E-03	3332886	TMEM138	仓	1.34	0.025
3748323	SHMT1	仓	1.38	0.016	3333247	FADS2	Û	1.36	5.75E-03	3130850	RNF122	Û	1.34	0.023
3926138	C21orf91	仓	1.38	8.50E-03	2777487	FAM13A	Û	1.36	0.029	3875195	MCM8	仓	1.34	2.71E-03
2538600	ADI1	兌	1.38	0.027	3833238	LGALS14	仓	1.36	0.028	3279982	PTPLA	Û	1.34	0.043
2805176	C5orf22	얍	1.38	6.78E-03	2636272	GTPBP8	仓	1.36	4.08E-04	3816264	DOT1L	Û	1.34	3.86E-03
2362537	FCER1A	仓	1.37	0.033	4003895	CXorf21	Û	1.36	0.027	3118451	CHRAC1	仓	1.34	6.19E-03
2902178	TCF19	얍	1.37	6.68E-03	2350489	KIAA1324	Û	1.36	0.041	3508898	STARD13	Û	1.34	0.032
3009399	HSPB1	兌	1.37	0.041	2997907	EPDR1	Û	1.35	0.021	2778980	EIF4E	仓	1.34	0.018
2676182	NT5DC2	얍	1.37	1.07E-03	3005717	RABGEF1	仓	1.35	6.78E-04	3074912	DGKI	Û	1.34	0.011
3048869	H2AFV	仓	1.37	4.14E-04	2724338	LIAS	兌	1.35	9.75E-03	2327375	ATPIF1	仓	1.34	2.00E-03
2514441	PPIG	兌	1.37	2.68E-06	3011492	ADAM22	Û	1.35	0.022	3944690	CYTH4	Û	1.34	0.014
2427791	DENND2D	Û	1.37	0.027	3289235	SGMS1	Û	1.35	5.85E-03	3015395	PVRIG	Û	1.34	0.046
2682568	SHQ1	仓	1.37	1.05E-03	3259978	PI4K2A	仓	1.35	0.036	3803120	B4GALT6	Û	1.34	4.39E-03
2425400	EXTL2	Û	1.37	0.018	3336402	RBM14	Û	1.35	8.23E-03	2655113	KLHL24	仓	1.34	0.045
3887107	ZSWIM1	兌	1.37	5.67E-03	3016636	SH2B2	仓	1.35	0.020	3864430	ETHE1	仓	1.34	0.012

3267382	INPP5F	Û	1.33	0.027	3934407	ICOSLG	Û	1.32	1.08E-03	3982612	GPR174	Û	1.31	0.026
2746024	ABCE1	仓	1.33	9.82E-03	3005684	KCTD7	仓	1.32	2.70E-03	3284188	ITGB1	Û	1.31	0.027
2515183	DCAF17	仓	1.33	2.94E-04	3521484	UGGT2	Û	1.32	0.042	3417371	ESYT1	Û	1.31	0.028
3733590	SOX9	Û	1.33	0.043	2945645	TDP2	仓	1.32	5.18E-03	2352743	DCLRE1B	仓	1.31	2.36E-03
2674168	C3orf62	仓	1.33	4.17E-04	3377933	EFEMP2	Û	1.32	0.029	3866094	PTGIR	Û	1.31	0.030
2560141	MRPL53	仓	1.33	3.93E-04	3329343	MDK	Û	1.32	0.039	3164601	KIAA1797	Û	1.30	2.55E-03
2659887	FYTTD1	仓	1.33	1.53E-03	3057650	YWHAG	仓	1.32	2.53E-04	2544164	C2orf44	仓	1.30	0.014
3539724	SYNE2	Û	1.33	0.014	2723710	PGM2	仓	1.32	1.58E-03	2900059	HIST1H2BM	仓	1.30	0.011
3379708	MRPL21	仓	1.33	0.017	3596109	FAM81A	仓	1.32	5.63E-03	3698055	TXNL4B	仓	1.30	0.024
2389016	PPPDE1	仓	1.33	0.014	2477980	GEMIN6	仓	1.32	1.55E-04	3318666	SMPD1	Û	1.30	0.031
2548459	CEBPZ	仓	1.33	1.15E-03	2654069	NDUFB5	仓	1.32	8.17E-03	4024160	ATP11C	Û	1.30	0.014
2332767	C1orf50	仓	1.33	4.58E-03	3079803	PRKAG2	仓	1.32	8.91E-04	3498837	PCCA	Û	1.30	0.016
3635198	BCL2A1	仓	1.33	0.031	2523478	NBEAL1	仓	1.32	0.012	2320581	PLOD1	Û	1.30	0.021
2827525	SLC12A2	Û	1.33	0.017	3741800	ATP2A3	Û	1.32	0.025	2559494	C2orf7	兌	1.30	7.97E-03
2491676	VAMP5	仓	1.33	0.039	3044129	GGCT	仓	1.32	0.027	3317915	STIM1	Û	1.30	2.38E-03
2638962	DTX3L	仓	1.33	0.027	3255938	OPN4	仓	1.32	0.030	3073981	AKR1B1	仓	1.30	0.048
3106243	RIPK2	仓	1.33	0.038	3485292	NBEA	Û	1.32	0.022	2356142	LIX1L	兌	1.30	0.046
3836317	VASP	Û	1.33	9.36E-04	2548617	CDC42EP3	仓	1.32	0.044	2412988	C1orf163	兌	1.30	6.12E-04
3438617	EP400	Û	1.33	2.44E-03	3771602	RHBDF2	Û	1.31	6.76E-03	3015769	POP7	兌	1.30	0.018
3649890	ABCC1	Û	1.32	7.34E-04	2766456	UGDH	仓	1.31	0.012	3635125	MTHFS	兌	1.30	0.023
4019412	CXorf56	仓	1.32	1.32E-03	2562271	CAPG	Û	1.31	0.037	2877465	ETF1	Û	1.30	3.39E-03
3761348	HOXB4	Û	1.32	3.51E-04	3740432	SCARF1	Û	1.31	0.020	2596763	FZD5	Û	1.30	0.039
2367743	PRDX6	仓	1.32	3.63E-04	3996306	RPL10	仓	1.31	0.045	3654956	LAT	Û	1.30	1.81E-03
2343289	DNAJB4	仓	1.32	0.018	2403470	DNAJC8	仓	1.31	0.024	2447148	RGS16	Û	1.30	0.027
3002873	LANCL2	仓	1.32	0.033	2779408	MAPKSP1	仓	1.31	3.05E-03	3146103	STK3	Û	1.30	6.13E-03
2325274	C1orf128	仓	1.32	4.69E-04	3340589	SERPINH1	Û	1.31	0.046	3845944	GNG7	Û	1.30	0.016
3707199	PSMB6	仓	1.32	0.042	2758686	LYAR	仓	1.31	1.35E-03	2773872	NAAA	Û	1.30	0.029
3583541	GOLGA6L1	仓	1.32	0.019	3035682	FTSJ2	仓	1.31	9.17E-04	3094286	PROSC	Û	1.30	0.015
2396121	DFFA	仓	1.32	5.04E-04	4027345	LAGE3	仓	1.31	1.20E-03	3489481	PHF11	Û	1.30	1.13E-03
2696379	ANAPC13	仓	1.32	0.025	2815455	UTP15	仓	1.31	3.52E-03	3670668	ATMIN	兌	1.30	0.011
2494749	CNNM3	Û	1.32	2.13E-03	2775909	PLAC8	Û	1.31	0.034	3205488	ZBTB5	얍	1.30	0.018
3677612	ZNF597	仓	1.32	1.63E-03	2905404	PIM1	仓	1.31	0.027	2927722	HEBP2	兌	1.30	0.010

2745220	ZNF330	仓	1.30	8.23E-03	2505957	PLEKHB2	Û	1.29	0.020	3251298	CHST3	Û	1.28	0.035
2898562	ACOT13	仓	1.30	0.026	3655574	SPN	Û	1.29	3.99E-03	2802398	TRIO	Û	1.28	5.47E-04
3714659	DHRS7B	Û	1.30	0.015	2931683	C6orf211	仓	1.29	0.013	3542689	PCNX	Û	1.28	3.43E-03
2582124	NR4A2	仓	1.30	0.033	2730313	CSN3	仓	1.29	0.023	2798915	TRIP13	仓	1.28	0.039
3487095	DGKH	Û	1.30	0.018	2621122	NBEAL2	Û	1.29	2.67E-03	2769512	RPL21P44	仓	1.28	3.51E-03
2821761	RGMB	仓	1.30	2.34E-05	2438482	ISG20L2	仓	1.29	5.36E-03	2861952	MRPS27	仓	1.28	3.18E-03
2603531	C2orf52	仓	1.30	3.77E-03	3766960	SMURF2	Û	1.29	4.85E-03	2942578	CCDC90A	仓	1.28	3.56E-03
2706985	MRPL47	仓	1.30	0.031	2820893	RFESD	仓	1.29	0.018	2336913	LRRC42	仓	1.28	8.33E-04
3193900	MRPS2	仓	1.30	0.024	2472914	UBXN2A	仓	1.29	8.28E-03	2564599	MRPS5	仓	1.28	0.021
3662444	NLRC5	Û	1.30	1.55E-03	2432607	GNRHR2	仓	1.29	8.29E-04	3590108	GCHFR	仓	1.28	0.043
3798291	PPP4R1	仓	1.30	0.020	3139722	NCOA2	Û	1.29	8.64E-03	3893458	PPDPF	仓	1.28	0.023
2773907	SDAD1	仓	1.30	0.041	3690034	C16orf87	仓	1.29	8.57E-03	3476665	SCARB1	Û	1.28	3.48E-03
3101385	MTFR1	仓	1.29	0.019	3323052	NAV2	Û	1.29	6.22E-03	2409770	TMEM53	仓	1.28	0.015
4007216	UXT	仓	1.29	0.042	3697090	ST3GAL2	Û	1.29	5.34E-03	3766651	ERN1	Û	1.28	0.017
3708938	ATP1B2	①	1.29	0.018	3704376	FAM38A	Û	1.29	0.011	4026669	BCAP31	Û	1.28	0.018
3945133	POLR2F	仓	1.29	0.025	3939707	CABIN1	Û	1.29	2.24E-04	3316234	NS3BP	仓	1.28	2.47E-03
3272205	INPP5A	Û	1.29	0.025	3561110	RALGAPA1	Û	1.29	0.030	2633460	C3orf26	仓	1.28	0.032
3350775	SIDT2	Û	1.29	4.34E-04	2838688	MAT2B	仓	1.29	5.87E-03	2317317	TP73	仓	1.28	0.045
3849752	ZNF426	仓	1.29	7.36E-03	3751042	TLCD1	仓	1.29	0.037	2873785	ALDH7A1	仓	1.28	0.037
3721926	TUBG1	①	1.29	0.015	3015178	ZSCAN21	仓	1.29	1.31E-03	3040454	TWISTNB	仓	1.28	1.36E-04
2689208	NAA50	仓	1.29	7.67E-03	3940992	ASPHD2	Û	1.29	0.031	2954324	MEA1	仓	1.28	0.030
2767378	ATP8A1	Û	1.29	0.014	3548929	RIN3	Û	1.29	0.025	2492938	RPIA	仓	1.28	0.015
2957462	GSTA4	①	1.29	0.014	3020444	CAPZA2	仓	1.29	0.045	3545311	KIAA1737	仓	1.28	2.88E-03
2538000	RNASEH1	仓	1.29	0.018	2908144	MAD2L1BP	仓	1.29	2.14E-03	3837731	EMP3	Û	1.28	2.98E-04
2465493	ZNF670	仓	1.29	0.011	3529908	NFATC4	Û	1.29	0.014	3850817	RAB3D	Û	1.28	8.01E-03
2961300	COX7A2	仓	1.29	0.015	2847264	MED10	仓	1.28	0.010	3832383	PSMD8	仓	1.28	0.011
2360257	IL6R	①	1.29	0.016	2754538	SLC25A4	仓	1.28	0.043	3831514	ZNF567	仓	1.28	0.017
2924492	HEY2	仓	1.29	0.013	3736162	TMC8	Û	1.28	2.27E-03	2814642	MCCC2	仓	1.28	4.83E-03
3074260	WDR91	Û	1.29	4.18E-03	2475407	CLIP4	仓	1.28	3.31E-03	2709486	RFC4	仓	1.27	0.045
3535922	STYX	仓	1.29	0.012	2595443	WDR12	仓	1.28	5.55E-03	2979679	ZBTB2	仓	1.27	0.014
2842911	FGFR4	Û	1.29	5.97E-03	3822347	C19orf53	仓	1.28	0.032	2649113	TIPARP	仓	1.27	0.014
3342426	C11orf82	①	1.29	0.043	3018652	CBLL1	仓	1.28	5.52E-04	3685306	NDUFAB1	仓	1.27	6.88E-03

2484970	EHBP1	Û	1.27	0.021	2911903	PTP4A1	仓	1.27	5.98E-03	2435849	SPRR2D	仓	1.26	0.034
2360818	HCN3	Û	1.27	0.014	3969455	OFD1	Û	1.27	0.014	3485074	RFC3	仓	1.26	0.026
3740367	SLC43A2	Û	1.27	0.044	3712675	RAI1	Û	1.27	0.016	2642325	ATP2C1	Û	1.26	6.33E-03
2465182	TFB2M	Û	1.27	2.48E-03	3283920	ARHGAP12	Û	1.27	1.20E-03	2519140	ZC3H15	Ŷ	1.26	4.04E-04
3340449	SLCO2B1	Û	1.27	0.038	2960872	C6orf150	Û	1.27	0.012	3454006	FMNL3	Û	1.26	6.24E-03
3304746	USMG5	Û	1.27	0.015	3228463	RALGDS	Û	1.27	4.69E-03	2574798	MAP3K2	仓	1.26	3.07E-03
2458629	LEFTY2	Û	1.27	0.018	2346863	RPL5	Û	1.27	0.017	2407729	RRAGC	仓	1.26	0.010
3101802	SGK3	Û	1.27	1.24E-03	2319802	PGD	Û	1.27	0.027	2619323	SS18L2	仓	1.26	0.042
2374422	C1orf106	Û	1.27	5.45E-03	2889753	ZNF354A	Û	1.27	0.026	2331959	DEM1	Ŷ	1.26	2.74E-04
2351872	RAP1A	Û	1.27	5.66E-03	2934308	IGF2R	Û	1.27	9.66E-03	2618640	RPL14	Ŷ	1.26	2.58E-03
2434490	ENSA	Û	1.27	0.041	3728325	FLJ11710	Û	1.26	0.034	2379132	ATF3	仓	1.26	0.016
2721809	ZCCHC4	Û	1.27	5.07E-04	2588827	NFE2L2	Û	1.26	0.013	3489538	ARL11	Ŷ	1.26	0.012
3540862	GPHN	Û	1.27	1.17E-03	2417272	GNG12	Û	1.26	5.62E-03	3316344	CD151	仓	1.26	0.047
2434862	LYSMD1	Û	1.27	0.012	2786657	SETD7	Û	1.26	5.63E-03	2334279	UROD	Ŷ	1.26	5.72E-03
2378180	C1orf107	Û	1.27	3.07E-03	2597273	C2orf67	Û	1.26	8.21E-03	2435195	MRPL9	Ŷ	1.26	0.013
3660175	NOD2	Û	1.27	7.90E-03	3417574	SPRYD4	Û	1.26	0.016	2859494	SREK1IP1	Ŷ	1.26	0.020
2895721	NOL7	Û	1.27	0.022	2988459	RBAK	Û	1.26	0.028	3631214	TLE3	Û	1.26	3.51E-03
3995254	GABRQ	Û	1.27	0.047	2336497	ZYG11B	仓	1.26	4.71E-03	4054117	TAF13	①	1.26	0.039
2339414	USP1	Û	1.27	0.012	3175597	VPS13A	Û	1.26	0.013	2773756	G3BP2	仓	1.26	4.07E-04
2404521	PEF1	Û	1.27	0.012	2700828	SIAH2	仓	1.26	9.84E-03	3864597	C19orf61	Û	1.26	3.86E-03
2954489	C6orf108	Û	1.27	0.035	2636483	SIDT1	Û	1.26	0.020	2635983	ABHD10	①	1.26	0.017
3740201	MYO1C	Û	1.27	4.26E-04	3578089	C14orf49	Û	1.26	7.28E-03	2460325	C1orf198	①	1.26	3.59E-03
2555630	CCT4	Û	1.27	4.22E-05	4026842	ARHGAP4	Û	1.26	5.34E-03	2700500	COMMD2	①	1.25	0.028
3941010	SRRD	Û	1.27	0.023	2407128	MEAF6	仓	1.26	0.013	3829160	C19orf40	①	1.25	3.68E-03
2385258	C1orf124	Û	1.27	0.011	3527684	RNASE3	仓	1.26	0.018	3662265	NUP93	①	1.25	9.11E-04
2534126	COPS8	Û	1.27	1.88E-05	2819747	POLR3G	Û	1.26	7.93E-03	2519860	ASNSD1	仓	1.25	0.015
2336383	PRPF38A	Û	1.27	2.58E-04	3742067	UBE2G1	仓	1.26	0.031	2320657	MIIP	①	1.25	4.13E-04
2383550	ZNF678	Û	1.27	1.21E-03	2408681	HIVEP3	Û	1.26	0.016	3818897	PNPLA6	Û	1.25	1.45E-03
2523354	FAM117B	Û	1.27	0.011	3829313	CEBPG	Û	1.26	0.048	2601341	WDFY1	仓	1.25	0.025
3325820	DEPDC7	Û	1.27	0.019	2694644	CNBP	얍	1.26	0.020	3904527	NDRG3	仓	1.25	0.048
2562821	VPS24	Û	1.27	0.018	3456260	ATF7	Û	1.26	6.69E-03	2364189	UAP1	①	1.25	0.039
2900269	ZSCAN16	仓	1.27	9.39E-03	2703217	KPNA4	仓	1.26	8.67E-03	3516639	PCDH9	Û	1.25	1.37E-03

2662473	PRRT3	Û	1.25	0.043	3748026	TOM1L2	Û	1.25	8.61E-04	2500838	POLR1B	얍	1.24	0.038
2489806	MRPL19	仓	1.25	0.028	3715874	ERAL1	仓	1.25	0.022	3376235	WDR74	仓	1.24	2.19E-03
2612278	CAPN7	仓	1.25	8.60E-03	3161566	KDM4C	Û	1.24	3.33E-03	3453592	MLL2	Û	1.24	0.010
3131741	RAB11FIP1	Û	1.25	0.031	4009315	HUWE1	Û	1.24	3.07E-04	2433209	PRKAB2	Û	1.24	0.030
2342576	ACADM	仓	1.25	0.013	3063337	ZNF394	仓	1.24	3.13E-03	3936887	MRPL40	仓	1.24	0.042
3195174	MAN1B1	Û	1.25	2.81E-04	2934167	MRPL18	①	1.24	8.22E-03	2825629	TNFAIP8	兌	1.24	9.68E-03
3415763	SOAT2	Û	1.25	1.08E-03	3185205	HSDL2	①	1.24	1.27E-03	2827388	PRRC1	兌	1.24	5.19E-03
3963676	C22orf9	Û	1.25	0.025	3383322	NARS2	仓	1.24	0.019	2693149	SNX4	仓	1.24	0.026
2685776	MINA	仓	1.25	8.74E-03	3847959	TUBB4	仓	1.24	0.019	3591044	HAUS2	仓	1.24	4.39E-03
2833286	ARHGAP26	Û	1.25	0.032	3216023	C9orf130	①	1.24	0.011	3441849	TNFRSF1A	Û	1.24	0.045
3747717	COPS3	Û	1.25	2.77E-03	3710870	ARHGAP44	①	1.24	0.012	2728189	PAICS	Û	1.24	0.019
2367086	FMO4	①	1.25	7.62E-03	2401275	HNRNPR	①	1.24	4.34E-04	3564210	PYGL	Û	1.24	0.039
2371694	RNF2	Û	1.25	0.023	2886977	FBXW11	①	1.24	1.63E-03	2356181	RBM8A	Û	1.24	0.012
3611744	LRRK1	Û	1.25	0.026	2639874	UMPS	仓	1.24	0.032	2317434	TPRG1L	仓	1.24	0.032
3382972	RSF1	仓	1.25	0.039	2921374	RPF2	仓	1.24	0.035	2451544	MYOG	仓	1.24	0.033
2963614	CGA	仓	1.25	7.28E-03	3923354	AGPAT3	Û	1.24	8.41E-04	2361279	LMNA	Û	1.24	0.014
2831567	PURA	仓	1.25	2.85E-04	3537264	C14orf101	Û	1.24	8.67E-03	3852783	DNAJB1	仓	1.24	0.025
3157901	PLEC	Û	1.25	4.47E-04	2950214	TAP1	Û	1.24	4.62E-03	2838598	CCNG1	仓	1.24	0.012
2904000	HMGA1	仓	1.25	4.79E-04	2709414	TBCCD1	仓	1.24	8.95E-04	3535000	ARF6	仓	1.24	0.018
2905327	FGD2	Û	1.25	8.58E-03	3058156	TMEM60	仓	1.24	0.027	2779486	H2AFZ	仓	1.23	6.24E-03
3707352	RNF167	Û	1.25	1.03E-03	3629206	OAZ2	仓	1.24	0.023	2377094	PFKFB2	仓	1.23	0.016
3044753	LSM5	仓	1.25	0.028	2979056	NUP43	仓	1.24	8.28E-03	2934801	MAP3K4	Û	1.23	0.019
3153428	ASAP1	仓	1.25	0.011	2906607	NFYA	仓	1.24	1.12E-03	3240095	RAB18	仓	1.23	0.043
2830010	SMAD5	仓	1.25	3.58E-03	2343231	NEXN	仓	1.24	0.046	2405893	C1orf212	仓	1.23	0.013
3197318	AK3	仓	1.25	0.018	2460487	C1orf131	仓	1.24	7.67E-04	3693837	GOT2	Û	1.23	0.030
3709244	CHD3	Û	1.25	2.18E-03	2739160	CCDC109B	仓	1.24	0.025	2982319	SOD2	仓	1.23	0.030
3959986	IL2RB	Û	1.25	0.028	2805581	SUB1	仓	1.24	0.019	2901660	PRR3	仓	1.23	7.67E-03
3417767	GPR182	仓	1.25	9.06E-03	2664288	METTL6	仓	1.24	0.011	3368814	LMO2	仓	1.23	4.97E-03
3020804	NAA38	얍	1.25	0.016	3607183	MRPS11	仓	1.24	0.011	3434525	MLEC	Û	1.23	0.017
2489071	TET3	Û	1.25	0.015	2413519	HSPB11	仓	1.24	0.018	2857416	IL6ST	Û	1.23	0.044
3959451	MYH9	Û	1.25	6.69E-04	3307939	ABLIM1	仓	1.24	0.010	2434527	GOLPH3L	仓	1.23	8.04E-03
2986906	GET4	仓	1.25	9.46E-03	2601414	SERPINE2	仓	1.24	0.035	2838042	TTC1	仓	1.23	0.036

3325052	EIF2AK2	Û	1.23	0.026	2575980	CCDC115	仓	1.23	0.047	2901352	PPP1R11	仓	1.22	0.027
3334749	PPP2R5B	Û	1.23	0.025	3828887	ZNF507	Û	1.23	5.96E-03	3377091	MAP4K2	Û	1.22	0.023
2486740	PNO1	Û	1.23	9.50E-03	3056414	RFC2	Û	1.23	0.024	2491788	ATOH8	兌	1.22	2.23E-04
3601931	CPLX3	Û	1.23	0.011	3739962	ABR	Û	1.23	7.97E-03	3304853	SH3PXD2A	Û	1.22	5.11E-03
3757745	GHDC	Û	1.23	0.016	3666282	ZFP90	Û	1.23	0.031	2458649	C1orf55	仓	1.22	0.013
3919033	SLC5A3	Û	1.23	0.011	3110171	ATP6V1C1	Û	1.23	6.98E-03	3883971	C20orf24	仓	1.22	0.015
2610336	VHL	仓	1.23	6.63E-03	3048886	PURB	Û	1.23	9.65E-03	2859195	DIMT1L	仓	1.22	0.019
3725456	ATP5G1	Û	1.23	0.027	2743370	C4orf33	Û	1.22	0.028	2783484	C4orf3	仓	1.22	0.039
3816424	SPPL2B	Û	1.23	9.98E-03	3261820	TRIM8	Û	1.22	0.022	3536905	KTN1	Û	1.22	0.012
3869379	ZNF614	仓	1.23	0.042	3757154	KRT14	Û	1.22	0.013	3335465	SIPA1	Û	1.22	5.74E-04
3119735	ZNF623	仓	1.23	2.28E-03	3822657	CD97	Û	1.22	0.013	3222128	TNFSF15	Û	1.22	0.011
2949210	BAT4	Û	1.23	0.012	3329904	NDUFS3	Û	1.22	0.011	3544346	DLST	仓	1.22	0.017
2438344	GPATCH4	仓	1.23	0.037	3098454	MRPL15	Û	1.22	0.025	2712858	UBXN7	仓	1.22	0.020
2327219	STX12	仓	1.23	0.011	3048212	MRPS24	Û	1.22	3.24E-03	3830002	GRAMD1A	Û	1.22	1.26E-03
3267314	BAG3	仓	1.23	3.61E-03	2356205	PEX11B	Û	1.22	3.89E-03	3354879	HYLS1	Û	1.22	2.40E-03
3854477	TMEM221	Û	1.23	0.016	3362795	RNF141	Û	1.22	0.024	3408018	ETNK1	Û	1.22	0.013
3705641	TIMM22	仓	1.23	4.70E-03	3017795	RINT1	Û	1.22	0.029	2495782	LIPT1	仓	1.22	0.032
3705491	FAM57A	Û	1.23	0.014	2812315	C5orf44	Û	1.22	5.11E-03	2602997	SLC16A14	仓	1.22	0.013
3204744	TLN1	Û	1.23	3.27E-03	3307120	ZDHHC6	Û	1.22	0.033	2351940	DDX20	仓	1.22	0.040
3261886	C10orf26	Û	1.23	0.027	3282974	SVIL	Û	1.22	0.022	2906824	FOXP4	Û	1.22	0.034
3624697	ARPP19	仓	1.23	0.016	3642707	ITFG3	Û	1.22	4.08E-03	2472955	MFSD2B	仓	1.22	0.012
2645579	RASA2	Û	1.23	0.034	2903782	ITPR3	Û	1.22	0.019	2501238	PSD4	Û	1.22	0.029
3031827	SLC4A2	Û	1.23	0.012	3926080	BTG3	Û	1.22	0.034	2567242	CHST10	仓	1.22	0.049
2964200	UBE2J1	仓	1.23	0.037	3426828	VEZT	Û	1.22	0.048	3634458	TBC1D2B	Û	1.22	7.82E-03
3041875	OSBPL3	Û	1.23	0.031	2807862	C5orf51	Û	1.22	0.040	2694785	MBD4	仓	1.22	5.02E-03
2403215	FGR	Û	1.23	0.018	3090922	PPP2R2A	仓	1.22	0.026	3047202	C7orf11	仓	1.22	8.50E-03
3665997	DUS2L	仓	1.23	0.020	2863535	WDR41	Û	1.22	1.34E-03	3922664	SLC37A1	Û	1.22	5.57E-03
2363444	USP21	仓	1.23	5.21E-03	3960827	SUN2	Û	1.22	6.12E-03	2999816	YKT6	仓	1.22	0.026
3337516	LRP5	Û	1.23	0.048	3996467	PLXNA3	Û	1.22	0.019	2757720	HAUS3	仓	1.22	2.26E-03
3146012	NIPAL2	Û	1.23	2.60E-03	2503618	TSN	仓	1.22	0.016	2903574	B3GALT4	Û	1.22	9.46E-03
2708229	PARL	仓	1.23	0.020	2536800	D2HGDH	Û	1.22	0.035	2899206	HIST1H2BF	兌	1.22	0.013
2442980	ANKRD36BP1	仓	1.23	0.012	3072368	ZC3HC1	Û	1.22	9.70E-04	3698919	GLG1	Û	1.22	0.018

3100166	RAB2A	仓	1.22	4.98E-03	2750227	C4orf43	仓	1.21	9.65E-03	3614901	HERC2	Û	1.21	0.011
2921456	KIAA1919	Û	1.22	0.032	2927993	HECA	①	1.21	2.78E-03	3753372	RFFL	Û	1.21	0.010
3675116	TMEM8A	Û	1.22	6.18E-03	2484752	COMMD1	①	1.21	0.036	3851703	C19orf43	Û	1.21	0.022
2948648	NCRNA00243	仓	1.22	0.018	3880706	ENTPD6	Û	1.21	6.59E-03	3683845	DCUN1D3	仓	1.21	3.57E-03
3050367	FIGNL1	仓	1.22	0.047	3743486	GABARAP	①	1.21	7.52E-03	2678090	ARF4	仓	1.21	0.044
2852274	MTMR12	仓	1.22	6.99E-03	2903703	SYNGAP1	①	1.21	1.29E-03	3315024	ADAM8	Û	1.21	0.019
3759778	ARHGAP27	Û	1.22	0.013	3032243	GALNT11	①	1.21	0.016	2870397	PJA2	仓	1.21	0.028
3693533	CSNK2A2	Û	1.22	4.95E-03	2950885	MLN	仓	1.21	0.041	3701297	CDYL2	仓	1.21	5.71E-03
2827156	PHAX	仓	1.22	6.10E-03	3855538	MEF2B	①	1.21	6.80E-03	3934695	PTTG1IP	Û	1.21	0.041
3434374	GATC	仓	1.22	0.047	2398789	SDHB	①	1.21	0.012	4017810	ACSL4	Û	1.21	0.049
2642562	NUDT16	仓	1.22	4.49E-03	2548776	ATL2	①	1.21	0.042	3839489	GPR32	Û	1.21	0.032
3835645	PVR	Û	1.21	5.35E-03	3610982	SYNM	Û	1.21	0.032	2623388	PARP3	Û	1.21	0.048
3363091	GALNTL4	Û	1.21	0.011	3874313	ATRN	Û	1.21	0.043	3565303	CNIH	Û	1.21	0.015
2822215	PAM	Û	1.21	0.035	2315739	PUSL1	①	1.21	1.71E-03	3880767	PYGB	Û	1.20	0.038
2444790	MRPS14	仓	1.21	1.25E-03	3375545	FADS1	Û	1.21	0.049	3918104	C21orf63	Û	1.20	5.35E-03
3978706	PAGE5	仓	1.21	0.022	2947572	TRIM27	①	1.21	5.78E-03	4026722	IDH3G	仓	1.20	0.021
3819401	LASS4	Û	1.21	0.013	3884191	SRC	Û	1.21	7.62E-03	2843619	HNRNPAB	Û	1.20	8.60E-03
3003153	GBAS	仓	1.21	8.19E-03	2596955	CRYGC	仓	1.21	0.047	2451200	UBE2T	Û	1.20	0.025
2907568	KLHDC3	仓	1.21	7.02E-03	2327188	FAM76A	①	1.21	5.68E-03	3945863	MGAT3	Û	1.20	0.028
3830712	MLL4	Û	1.21	7.87E-03	2522014	C2orf47	仓	1.21	1.40E-03	2977471	ADAT2	Û	1.20	0.033
3564250	TRIM9	Û	1.21	0.022	2545509	PREB	仓	1.21	6.53E-03	3639007	HDDC3	仓	1.20	0.014
3328520	CD82	Û	1.21	0.010	2560704	C2orf3	仓	1.21	0.021	3179551	FGD3	Û	1.20	0.027
3189714	GARNL3	仓	1.21	0.025	2444451	CENPL	①	1.21	4.35E-03	3551303	CCNK	仓	1.20	5.05E-03
3325768	QSER1	Û	1.21	0.013	3770029	CDC42EP4	Û	1.21	4.57E-03	2649609	MLF1	仓	1.20	0.018
3558270	CBLN3	Û	1.21	0.033	3552847	DYNC1H1	Û	1.21	0.028	3774218	DYSFIP1	仓	1.20	0.024
2641577	C3orf37	仓	1.21	0.022	2452311	TMEM81	仓	1.21	2.70E-03	3729569	BCAS3	Û	1.20	0.017
3775038	C17orf62	Û	1.21	9.27E-03	2318637	VAMP3	①	1.21	0.012	3928477	KRTAP26-1	仓	1.20	0.049
3841901	NLRP2	仓	1.21	0.016	3851545	MAN2B1	Û	1.21	0.015	2641479	GP9	Û	1.20	0.015
3717452	LRRC37BP1	Û	1.21	0.015	2916246	C6orf162	①	1.21	0.018	3867400	FUT1	Û	1.20	0.019
3048749	DDX56	仓	1.21	6.52E-03	2678116	FAM116A	①	1.21	6.92E-03	3221135	C9orf80	Û	1.20	0.030
2845591	BRD9	仓	1.21	0.012	2565143	STARD7	①	1.21	0.021	2855614	C5orf34	Û	1.20	0.047
3347658	ATM	Û	1.21	9.53E-03	2443537	SCYL3	①	1.21	6.12E-04	2526806	FN1	Û	1.20	0.026

2951221	C6orf106	Û	1.20	0.045	3259400	CCNJ	仓	1.20	1.00E-03	2382336	FBX028	Û	1.20	0.015
3655723	MVP	Û	1.20	6.94E-03	3181728	TGFBR1	Û	1.20	0.036	3816664	ZNF555	Û	1.20	8.84E-03
3995848	ABCD1	Û	1.20	2.58E-03	3923218	RRP1B	仓	1.20	0.038	3192171	POMT1	Û	1.20	2.32E-03
3472000	C12orf51	Û	1.20	0.043	4017519	PSMD10	仓	1.20	0.020	3648412	RUNDC2A	Û	1.20	0.049
2663551	NUP210	Û	1.20	0.036	3396144	C11orf61	Û	1.20	0.036	3992148	DDX26B	Û	1.20	0.012
3375990	INTS5	Û	1.20	0.024	2598099	BARD1	仓	1.20	7.07E-03	3484005	USPL1	Û	1.20	0.025
2832431	PCDHB11	仓	1.20	5.42E-03	3251926	KIAA0913	Û	1.20	6.55E-03	3937294	LOC150197	Û	1.20	3.34E-03
3432678	TPCN1	Û	1.20	0.013	3190558	SPTAN1	Û	1.20	0.020	2695941	TOPBP1	Û	1.20	4.05E-03
2949830	AGER	Û	1.20	5.99E-03	3635456	MESDC2	Û	1.20	0.042	2966232	COQ3	Û	1.20	5.25E-03
3257559	RPP30	①	1.20	0.022	3865422	RTN2	Û	1.20	1.91E-04	2565579	ANKRD39	Û	1.20	0.041
2921296	AMD1	Û	1.20	0.013	2878474	HARS	仓	1.20	0.036	3341362	AQP11	Û	1.20	7.88E-03
2916952	CASP8AP2	仓	1.20	0.037	3255220	GHITM	仓	1.20	0.014	2995189	PLEKHA8	Û	1.20	2.09E-03
2367287	METTL13	①	1.20	0.014	3269587	C10orf137	Û	1.20	0.011	2886535	LOC100133106	Û	1.20	0.041
3442514	C1RL	Û	1.20	0.013	2877141	HNRNPA0	仓	1.20	1.11E-03	3029646	ARHGEF5	Û	1.20	0.010
3695541	FHOD1	Û	1.20	0.018	2662087	SRGAP3	仓	1.20	0.015	3352618	GRIK4	Û	1.20	0.019
2403585	TAF12	①	1.20	0.046	3540136	HSPA2	仓	1.20	7.83E-03	3809671	NARS	Û	1.20	0.012
3014714	ARPC1B	Û	1.20	0.027	3933331	C2CD2	Û	1.20	0.020	2724235	WDR19	Û	1.20	0.022
2735027	SPP1	Û	1.20	0.045	4026956	HCFC1	Û	1.20	0.026	2437801	ARHGEF2	Û	1.20	7.97E-03
2878446	NDUFA2	兌	1.20	7.55E-03										