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Abstract -i-

Abstract

We study the clustering of inertial particles using a periodic kinematic simulation. A

pre-defined Fourier based Eulerian flow field is established. The systematic Lagrangian

tracking of particles makes it possible to identify the particles’ clustering patterns for dif-

ferent values of particle inertia and drift velocity. The different cases are characterised

by different pairs of Stokes number (St) and Froude number (Fr).

The quantification of these clustering patterns is performed for a selection of ranges of

non-dimensional parameters and for the present study 0 ≤ St ≤ 1 and 0.4 ≤ Fr ≤ 1.4.

The main focus is to identify and then quantify the clustering attractor - when it ex-

ists -that is the set of points in the physical space where the particles settle when time

goes to infinity. Depending on gravity effect and inertia values, the Lagrangian attrac-

tors have different dimensions varying from the initial three-dimensional space to two-

dimensional layers or one-dimensional attractors that can be shifted from a horizontal

to a vertical position.

In the absence of gravity, particle clustering is not as significant as when gravity is in-

troduced. It has been noticed that the particle clustering is not obvious for all the values

of St and Fr. The particles with low St are more affected by the gravity as compared

with high St. In rare cases, the one-dimensional attractors are found and the curtain-like

two-dimensional attractors are observed above a certain value of St. The importance of

gravity in particle clustering is proved by using the KS model with much more precise

data as compared with a complex simulation such as DNS.
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KS can be used to model turbulent flow in steps and by construction the KS field has

an inertial range equivalent to that of a turbulent flow. The first part of this study is inves-

tigated by using the Kolmogorov energy spectrum in the steady flow conditions. Then

we proceed our work to further analyse the particle clustering with the modified energy

spectral conditions by introducing different energy spectra, unsteadiness frequencies

and Reynolds numbers. The variations in the flow change the clustering patterns and

it is observed that these changes are more significant for lower values of St and Fr. In

addition to this, we also examine the temporal variations of the Lagrangian attractors in

the unsteady KS model.
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Chapter 1

Introduction

The history of turbulent flows is as old as the Universe and owing to non-linear be-

haviour of turbulent flows, their dynamics are complicated to resolve. Turbulent flow

originates from the instabilities present in laminar flow which is affected by perturba-

tions due to imperfections or vibrations of the system or inlet passages. If the fluid

viscosity is significant, these perturbations are damped and the flow energy is converted

into heat. In a case when the flow rate is very high, the perturbations sustain and amplify

in the flow instead of decaying with time such a flow becomes turbulent.

Naturally, turbulent flows can be thought as random in time and space and this random-

ness in the flow is due to its sensitivity to initial and boundary conditions. This unique

feature of turbulence makes it very difficult to rely on deterministic approaches. Rather

statistical analyses are considered as more reliable options for turbulence modelling. In

addition, turbulent flow has a wide range of scales varying from large scale (size of con-

duit) to small scales (scales where flow energy dissipated into heat). All these aspects of

turbulence make it a complex problem to solve and it is a challenge for researchers and

scientists to model the flow close to a real turbulent flow.

In order to simplify the problem, assumptions are normally made during analysis and

the most commonly, incompressible homogeneous isotropic turbulence (HIT) is used.

That is, the flow has the same structure in all parts and directions. In this work, we are

also interested in incompressible homogeneous isotropic turbulence for studying parti-

cle clustering.
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Clustering could be defined as the propensity of an initially uniformly distributed

cloud of particles to accumulate in some regions of the physical space. The clustering

phenomenon is frequently referred to as preferential concentration in the flow. This is

an important task to understand in order to explore, identify and possibly monitor some

natural or hand-made mixing processes such as those causing rain formation (Falkovich

et al., 2002), sediment transportation (Pan et al., 2011), fuel mixing and combustion, the

development of planetesimals during process of planet formation (Cuzzi et al., 2001).

There are different ways to analyse particle clustering in turbulent flows and Direct Nu-

merical Simulation (DNS) is the most widely used method (e.g., Cencini et al. (2006);

Saw et al. (2012); Falkovich & Pumir (2004)). Particle clustering depends on both the

flow conditions and the particle characteristics. Different flow conditions can lead to

different clusters. The clustering mechanism would be different in the inertial or dissi-

pation range of turbulent flow (Bec et al., 2007). In this work, we only study the effect

of the scales in the inertial range and this is possible by using a synthetic model where

forcing and dissipation are not needed to develop the inertial range. While considering

particle characteristics, most of the studies on particle clustering have been conducted in

the absence of external forces on particles but the effect of gravity(external force) was

discussed in relation to cloud physics and rain formation in Falkovich & Pumir (2004);

Woittiez & Portela (2008).

More recently, the effect of gravity on clustering mechanism has been further empha-

sized in Dejoan & Monchaux (2013); Park & Lee (2014); Gustavsson et al. (2014);

Bec et al. (2014). In the present study, to observe the clustering pattern in the presence

of gravity, the particles are initially uniformly distributed in the Kinematic Simulation

(KS) flow. Though there is no particular difficulty in considering particles with different

inertia in Kinematic Simulation, this study is limited to mono-dispersed seeding i.e. par-

ticles having the same inertia. Furthermore, the particles are considered small enough

so that they neither affect the flow nor interact with each other (one-way coupling). The

positions of particles are monitored as a function of time and a Lagrangian attractor is

observed for some cases. That is, the initially uniformly distributed cloud of particles

will end in a set of loci as shown in Fig. 1.1 that does not evolve any further. The parti-

cles move within that set of loci which defines the structure of the Lagrangian attractor

and its dependence on St and Fr numbers is studied here.

We only consider attractors with integer dimensions (one-dimensional and two-dimensional

structures) which are easy to identify. Different types of methods can be found in the
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literature to identify and then quantify particle clustering patterns, e.g.: correlation di-

mension used in Bec et al. (2007), radial distribution function (RDF) Saw et al. (2012),

average-distance-to-nearest-neighbour method Park & Lee (2014). The selection of a

method is mainly based on the objective of the study. For example, the RDF has the

advantage of being directly related to the droplet collision rate. For the present work,

the Box counting method (BCM) and the nearest-neighbour distance analysis are im-

plemented to identify the integer dimensions of Lagrangian attractor in the presence of

gravity.

Figure 1.1. Evolution of particles with increasing values of drift parameter γ .

Following the successful findings of clustering patterns in the steady KS with Kol-

mogorov energy spectrum, we modify the energy and scale distributions in the flow.

Using the synthetic KS model, it is quite feasible to modify the flow conditions and

investigate the effects of these modifications on the particle clustering. Throughout this

thesis, we focus on the effect of gravity in the context of particle clustering.
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1.1 Outline of thesis

After a brief literature review and description of methodology in Chapter 2 and 3 respec-

tively, we present a qualitative analysis to identify the clustering patterns with respect to

different pairs of (St,Fr) in Chapter 4. In order to quantify the clustering attractors, dif-

ferent types of quantification methods are discussed and applied to the qualitative results

in Chapter 5. The clustering with modified spectral laws will be part of discussion in

Chapter 6 while in Chapter 7 the results obtained in Chapter 5 and 6 are related to the

flow vortex structures. In Chapter 8, we include the effects of unsteadiness, seeding and

Reynolds number on particle clustering. Finally, we conclude our achievements and rec-

ommend some future considerations in Chapter 9. It should be noticed that each result

chapter i.e. Chapter 4-8 has its own introduction , historical background and conclusion.
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Chapter 2

Literature review

In this chapter, we review the particle clustering phenomenon and different ways to

analyse it. In particular, we focus on the numerical simulations which have been used

to study particle clustering. In addition, we will also discuss different factors affecting

particle clustering by relating them with previous studies. As each of the result chapters

has a self-contained literature, here we present a brief historical background to set the

goals of our study.

2.1 Origin of heavy particle in the flow

A particle whose density is significantly higher than the density of the fluid is termed

as a heavy particle. It is important to know how the heavy particles behave in turbulent

flow to understand natural and artificial phenomena. Historically, a hydrostatic force on

an immersed body was first investigated by Archimedes. He described the hydrostatic

forces on the immersed object for all shapes and densities as well as concept of integra-

tion of these forces. His idea was implemented to develop instrument like pycnometer.

Further advancement in the field of floating bodies was made by Galileo who elaborated

the correct use of principle of Archimedes and its application for immersed and partially

immersed objects.

A few years later, Newton further explained the mechanics of immersed object. His

publication “monumental Principia” is considered as a mainstay of recent developed

mechanics. In addition to this, the first attention to hydrostatic forces on the spherical

objects in a inviscid flow was given by Poisson by calculating the force exerted by the

inviscid fluid on sphere. They achieved this by solving the equation of the potential flow
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around the sphere. In continuation, Green extended the results obtained by Poisson and

he studied the flow around an ellipsoid in an inviscid fluid. Furthermore, Poiseuille stud-

ied experimentally the motion of spheres in a solid conduit in order to understand the

flow of blood corpuscles. These early researches help us to develop basic understanding

of particle motion in a fluid.

Stokes was the first who analysed the motion of solid sphere in a viscous fluid. Using the

Navier-Stokes equation, he found the solution of a steady state flow around the sphere

and defined a force which is now known as the ‘Stokes drag force’. Further detailed

discussion on the forces acting on the spherical particles will be presented in Chapter 3.

Now we discuss the literature relevant to inertial particle clustering, methods of analyses

and factors affecting the clustering mechanism.

First qualitative measures of particle dispersion was tracked back by Crowe et al. (1988).

He reported the first experimental evidence related to preferential concentration of the

heavy particles by Brown & Roshko (1974) who discovered the interaction of the heavy

particles with large-scale turbulent structure. In most of the early researches (Squires &

Eaton, 1990, 1991; Tang et al., 1992; Fessler et al., 1994) etc.), a common phenomenon

of preferential concentration was analysed i.e. settling of particles in the saddle regions

of the flow ejected from the vortical regions was revealed.

Since these early developments on clustering, the number of contributions (experimen-

tal, theoretical and numerical) have significantly increased. Mainly based on numerical

simulations, different particle mechanisms such as dispersion, diffusion and clustering

have been investigated. Also by taking into account the interaction of particles within

themselves and with the surrounding fluid, a few number of studies have also figured

out the effect of particles on turbulence structure. In order to achieve the desired ob-

jective of a study, the specific flow conditions are designed according to given particle

characteristics. In the following sections we describe the different approaches have been

adopted for studying particle clustering.

2.2 Approaches to study the particle clustering

The particle laden turbulent flows can be studied either experimentally or numerically.

Most of early researches (before 90’s) on this topic are based on experimental results and

it is found that experimental set-up could generate a limited amount of results because of

complex constraints of the multi-particle flows. Another common way to see the particle
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clustering is by using numerical method which provide more flexibility in the method-

ology, designs and degree of precision. Therefore, numerical simulations are presently

preferred over experimental methods. Depending on the type of problem, precisions of

results and available computing facilities, different types of numerical techniques have

been employed. Before discussing the numerical simulation in detail, we would like to

describe some experimental works.

2.3 Experimental methods

Particle clustering has been mostly studied using the numerical simulations as state of

the art computing facilities are available. Instead of the structured flows, homogeneous

isotropic turbulence (HIT) is under consideration and a number of anisotropic flows

have been used to study the preferential concentration or clustering of inertial parti-

cles including boundary layers flows, free shear flows, jet flows, etc. Main experimental

researches can be classified into two types and these are briefly discussed here.

2.3.1 WIND-TUNNEL SET-UPS

Wind-tunnel experiments are widely used to analyse the single-phase or multiphase tur-

bulence problems. In such experiments, a flow is developed by using the fans/propellers

and particles are injected randomly or uniformly later in the flow. In case of particle

clustering, it is utmost difficult to build a new wind-tunnel set-up which can track a few

hundreds of particles to generate sophisticated results. Normally, turbulent flows are

created using a grid of uniform section that is positioned downstream in the convergent

section of tunnel and a large variety of grids have been deployed to investigate statistical

properties of turbulence. An optimum design of mesh grid actually controls the integral

length scales and Taylor micro-scales in turbulent flow. Eventually, these parameters are

used to define the Reynolds number which is a key factor in defining the turbulence.

In single-phase flow, depending on the size of wind-tunnel, one can achieve Reynolds

number starting from hundreds to a few thousands. Recently, an active-grid technology

has been introduced to increase the Reynolds number in small laboratory experiments

(Saw et al., 2008), but it creates the problems in measuring the turbulence statistics be-

cause of the continuous motion of the grid.

Even after successful generation of turbulence in a controlled environment, other issues

those can restrict the use of wind-tunnel experiments to study particle clustering are:

• It is difficult to inject and track inertial particles under unsteady flow conditions,
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specially at high Reynolds numbers. Therefore, a few hundreds of particles can be

tracked using the high speed cameras (Ayyalasomayajula et al., 2006).

• The selection of size and types (solid, liquid, synthetic, etc.) of particles is another

critical issue which may restrict the use of wind-tunnel experiments. Normally, it

is difficult to inject the large number of solid particles as they can wear and destroy

the mechanical parts of the wind tunnel. On the other hand, it is equally tricky to

inject the liquid particles of same size in a controlled flow conditions.

2.3.2 CLOSED TURBULENT FLOW

During the past few years, turbulent flows enclosed by a box or vessel had been ex-

tensively investigated in relation to particle clustering. In a close flow, particles remain

in a confined space and not in contact with the fan or propeller as happen in wind-

tunnel. Therefore, seeding is not an issue with this type of flow and particles with differ-

ent densities can be injected with ease. The most common closed flow is Von Kármán

experiment which used the counter rotating propellers to generate an inhomogeneous

anisotropic flow of Reλ =400. Later, other researchers (Salazar et al., 2008; Zimmer-

mann et al., 2010; Gibert et al., 2012) extended Von Kármán experiment to achieve the

homogeneous and isotropic turbulent flow.

Another kind of closed flows to produce an isotropic turbulence , using eight synthetic

jets, is proposed by Hwang & Eaton (2004) and their approach is followed by Goepfert

et al. (2010) to study the evaporation of droplets in turbulence.

It has been noted that different experiments have the different kind of limitations. Though

the findings of an experimental work can be more realistic and closer to nature, difficulty

of building a new set-up and tracking of particles restrict the application of this approach,

specially in the present era of state-of-the-art computing.

2.4 Numerical methods

At the present moment, it is considered as the most promising way to study turbulence

problems as the sources available today for this method are much sophisticated than

what we had twenty years ago. Of course, the cost of computing is one of the limitations

of this method, but this can be overcome by using simpler flow conditions. In general,

numerical simulations are used for two purposes as follows:

(1). The first is to understand and control the physical mechanisms governed by fluid
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dynamics and usually highly accurate results are generated by using all space-

time scales of turbulence. These types of simulation become complicated with

increasing range of scales and hard to simulate.

(2). Numerical simulations are also used to predict some design parameters instead

of flow characteristics. Normally, flow conditions are kept constant and some en-

gineering analysis is performed which depends on the flow, such as the forces

acting on the inertial particles in the flow. The purpose is to get a less expensive

and quick development of the prototype.

In the context of particle clustering, numerical simulations are the most widely used

method. Most of the numerical methods are based on the Maxey & Riley (1983) equation

of motion of particle with some assumptions. On the basis of flow tracking mechanism,

we can classify numerical methods into two different classes i.e., Eulerian approach and

Lagrangian approach. Here we are interested in discussing major types of numerical

simulation in relation to particle clustering.

2.4.1 DIRECT NUMERICAL SIMULATION (DNS):

Direct numerical simulation is the first and most developed method to deal with turbu-

lence by solving the unsteady three-dimensional Navier-Stokes equation. DNS has been

established as an extremely reliable tool for investigating inertial particle dynamics. Due

to the heavy computational demands of resolving all the scales (temporal and spatial),

modest values of Taylor Reynolds number (Reλ ≃ 500) have been achieved. When deal-

ing with particle clustering, a 3D flow is normally generated as a box of turbulence and

then particle phase is resolved in the flow.

One way is to simulate particle phase through a fully resolved particle-fluid DNS, but

this approach has limited application because of time and cost expenses. On the other

hand, Lagrangian tracking is another way to deal with DNS. With Lagrangian tracking

much detailed statistics of particles in the flow can be achieved (Holzner et al., 2008;

Tagawa et al., 2012). As a fully resolved turbulence, DNS can be used to study particle

clustering in dissipative and inertial ranges (Bec et al., 2007). They found that clustering

mechanism is different in inertial and dissipative length scales.

In addition to this, we also refer to some DNS studies dealing with particle dynamics

by applying the well-defined inertial ranges (Bec et al., 2010; Pan et al., 2011; Ray

& Collins, 2011; Rosa et al., 2013). All of these studies considered different values of

Reynolds number Re ≤ 500 and further work is required to fully understand the natural
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phenomena such as rain formation, planet formation, etc. In the presence of gravity, pre-

vious DNS studies emphasized on how turbulence changes settling velocity of particle

(Good et al., 2014; Bec et al., 2014; Park & Lee, 2014) or collision rate (Woittiez &

Portela, 2008; Rosa et al., 2013).

Apart from physical space, DNS can also be run as a pseudo-spectral method in which

linear terms are solved in spectral space while physical space is adopted for non-linear

terms. For producing a link between two spaces normally fast Fourier transform is used.

Using a pseudo-spectral 2D DNS, Coleman & Vassilicos (2009) proposed a new mech-

anism (sweep-stick mechanism) to investigate the clustering of inertial particles. They

found that heavy particles at zero-acceleration points move with the local fluid velocity.

Jin & He (2013); Bec et al. (2014) considered pseudo-spectral models to investigate the

clustering of particles in the presence of gravity.

2.4.2 LARGE EDDY SIMULATION (LES):

Another way to efficiently simulate the particle laden flow, with lower computation cost

as compared to DNS, is Large eddy simulation (LES). Using this method, the large

scales are computationally resolved while the smaller scales are represented through a

sub-grid model. The main advantage of LES over DNS is easy achievement of high

Reynolds numbers and its ability to simulate the complex shapes and geometries. In

terms of particle clustering, LES is only capable with particles sized larger than grid

size. As most of the flows consists of the particles much smaller than the smallest-

resolved scale, the accuracy of LES depends on the sub-grid model.

Early researches (Wang & Squires, 1996; Yang & Lei, 1998) used LES to study the par-

ticle dynamics in a isotropic homogeneous turbulence. Recently, Ray & Collins (2011,

2013) applied sub-grid models in LES to investigate the particle-pair dynamics at small

separations and to reproduce the particle clustering. They showed that their results in

terms of critical St are in agreement with DNS Salazar & Collins (2012). Moreover, Jin

et al. (2010) studied the collision of heavy particles in isotropic turbulence by using fil-

tered direct numerical simulation (FDNS) and large eddy simulation (LES). They found

the critical value of Stk > 3 above which collision rate can be predicted using both nu-

merical methods. While for low and intermediate St, selection of sub-grid scale for LES

is crucial. Besides a few attractive features of LES, selection of sub-grid model for the

small scales is considered as a drawback of LES and further work is required to resolve

this.
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2.4.3 SYNTHETIC FLOWS

Synthetic flows are used to test various ideas by isolating particular physical mecha-

nisms in turbulent flows. In general, these flows consist of analytical vortices whose po-

sitions and intensities can be deterministically or randomly defined. Specifically, these

less physical models have been used to test basic centrifuging phenomenology, such

as those experimentally reported by Eaton & J.R.Fessler (1994). Kinematic simulation

(KS) is one of the established synthetic flows and it has been successfully applied to

study particle dispersion and diffusion.

The first KS Eulerian flow was generated by Fung et al. (1992) for an isotropic homoge-

neous turbulence. They produced some new results for the statistics of the velocity and

pressure fields in a high Reynolds number turbulent flow, whereas the particle statistics

were obtained by tracking the trajectories of many particles and then taking the ensem-

ble average.

After the evolutionary findings by Fung et al. (1992), many studies have been presented

either for validating the KS model or for analysing the different aspects of particle dy-

namics. For example, two-particle diffusion in the turbulent flow was investigated by

Fung & Vassilicos (1998) while first comparison between DNS and KS was made by

Malik & Vassilicos (1999). Further to this, Nicolleau & Vassilicos (2003) studied the

particle-pair diffusion and their results were compared to previous experiments. They

investigated the effect of second order structure function of one particle Lagrangian

velocity, 〈v2(t)〉, as a function of energy spectrum power law and the unsteadiness pa-

rameter.

Nicolleau & Yu (2004) Examined one-particle and two-particle diffusion in a 3D ho-

mogeneous isotropic KS. They found the effect of changing the power law exponent on

two-particle diffusion and also revisited the locality assumption. Furthermore, Thom-

son & Devenish (2005) used a variable time-step in KS (varied with the particle pair

separation) with particular attention paid on the problem caused by the lack of sweeping

of the small scales by the large scales. After Thomson & Devenish (2005) findings,

Osborne et al. (2006) also chose to investigate the separation of particle pairs in kine-

matic simulation. They simulated the inertial sub-range in the range of kN/k1 = 104 and

concluded that KS reproduces Richardson’s power law over a wide range of scales in

the inertial range.

KS has also been complemented with other simulations in order to understand the clus-

tering. Such as, clustering of stagnation points and inertial particles in turbulent flow
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is investigated by Chen et al. (2006). They found the simultaneous sweeping of zero-

acceleration points and inertial particles by the large scales thus implying the kind of

persistence in time which might well cause droplet spectral broadening to occur as a

result of clustering. This phenomenon of sticking and sweeping is further explained by

Coleman & Vassilicos (2009) using the three-dimensional KS model.

The results in all above studies motivate us to study the clustering of laden particles

using KS. The detailed discussion on selected KS model and recent literature will be

provided in Chapter 3. We close this section by listing the reasons for choosing the KS

model. The less physical KS flow has eddying, straining and streaming regions simi-

lar to real turbulent flows. Though the sweeping from large to small scales is missing,

centrifugal effect created by the rotational eddies is enough to study the clustering. The

major advantages of KS over DNS are as follows:

• It is computationally cheap in comparison to DNS.

• High Reynold numbers can be achieved with fully developed turbulence.

• The energy spectrum can be chosen arbitrarily according to the nature of the prob-

lem.

• Efficient for parallel computing

• No forcing (no decay)

2.5 Factors affecting particle clustering

Once a method (experimental or numerical) to analyse particle clustering is decided,

next step is to control the flow conditions and particle characteristics. Depending on the

experimental or numerical technique, particles’ characteristics are chosen accordingly.

Usually, numerical simulations can be devised to investigate the clustering with a much

more precise data and flexible flow conditions. In the following sections, we discuss

different factors which have been related to particle clustering in the previous numerical

studies.

2.5.1 FLOW CONDITIONS

As mentioned earlier, most of the studies have adopted for incompressible homogeneous

isotropic turbulence (HIT) to study particle clustering. In such a complex flow, the most

important flow controlling parameter is Reynolds number and until now a few hundred
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values of Reynolds number have been achieved using DNS. It has been found that after

a certain particle size, Reynolds number does not affect the particle clustering (Collins

& Keswani, 2004; Bec et al., 2014). Collins & Keswani (2004) studied the clustering

of aerosols with the different values of Reynolds number and found that clustering of

particles is independent of Reynolds number. Similarly, Bec et al. (2014) observed same

trend of clustering variation with the different values of Reynolds number in DNS.

Furthermore, laden particles are mostly studied in an unsteady flow as it is difficult

to produce the steady flow conditions in an experimental method or DNS. In contrast,

it is quite viable to develop the steady flow using an analytical method. For example,

Sapsis & Haller (2010) defined a clustering criterion for the inertial particles in a three-

dimensional steady flow. They found that particles’ clusters are attracting towards the

inertial Lagrangian coherent structures. In similar way, Kinematic simulation has also

the capacity to produce a steady flow and then unsteadiness can be increasingly intro-

duced.

2.5.2 SEEDING OF PARTICLES

Depending on particles’ inertia and sizes, they can be seeded as mono-dispersed, bi-

dispersed or poly-dispersed. For the sake of convenience and better understanding, mono-

disperse particle seeding is frequently used method in the previous numerical studies. On

the contrary to this, a few of studies (Woittiez & Portela, 2008; Saw et al., 2012) consid-

ered bi-disperse and poly-disperse particle seeding as inestimable to study the particle

clustering. Woittiez & Portela (2008) compared the collision rate of mono-disperse or

bi-disperse inertial particles. It was found that for mono-disperse distributions, gravity

decreases the collision probability. On the other hand, the collision kernel is increased

by the gravity for bi-disperse distributions as a result of the fact that droplets of unequal

size possess different terminal falling velocities. In addition to this, Saw et al. (2012)

found that the effect of poly-disperse seeding is to diminish the particle clustering by

calculating the RDF for an arbitrary particle size distribution.

In terms of coupling of particles with flow structures, both one-way and two-way cou-

pling techniques have been employed to examine particle clustering. Clustering by con-

sidering particles as the passive tracers is a common approach used in the numerical

simulations. In such simulations, particle motion is affected by the fluid phase and there

is no influence of the particle phase on the fluid. While in case of two-way coupling, the

fluid phase affects the particle dynamics via aerodynamic drag and turbulence transfer

and also particle motion reduces the mean momentum and turbulent kinetic energy of
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the fluid phase.

Squires & Eaton (1990) were among the first who considered the two-way coupling in

DNS. An increase in turbulent kinetic energy was found at higher wavenumbers. Re-

cently, effect of St and mass loading on turbulence characteristics was further analysed

by Ferrante & Elghobashi (2003); Lucci et al. (2010, 2011). Ferrante & Elghobashi

(2003) related the particle dispersion with energy spectrum modification with and with-

out gravity using different aerodynamic response time. They found that spectrum of

turbulence with particles becomes anisotropic as compared to the particle-free turbu-

lence.

Furthermore, the modification in mean settling velocity is another parameter which has

been examined using two-way coupling. In this regard, Maxey (1987); Wang & Maxey

(1993) revealed an increase in mean settling velocity compared to the terminal velocity

of a single particle in a still fluid. Referring to their works, Bosse et al. (2006) strength-

ened the argument of an increase in settling velocity using the two-way coupling.

Regardless of coupling and types of particles, numerical simulations are normally initi-

ated with a uniform distribution of the particles. Then the particles are tracked by solv-

ing the equation of motion. Corresponding to flow conditions and seeding mechanisms,

particle characterisation is one more considerable feature needing to be discussed.

2.5.3 PARTICLE CHARACTERISATION

In order to relate with the pre-defined flow field, particle phase are usually characterised

using different non-dimensional parameters. Among these non-dimensional parameters,

Stokes number (St) is the mainly considered parameter which is defined as the ratio

between aerodynamic response time of particle and Kolmogorov or integral time-scale

of turbulence. A wide range of Stokes numbers (0 ≤ St ≤ 100) has been used in the

literature. Although St is considered as a representative of inertial effect of particles

(based on size and density of particles), a few of studies such as Qureshi et al. (2008)

considered size and density separately to measure the acceleration statics of inertial

particles in the turbulent flow. Using two-way coupling Lucci et al. (2010, 2011) also

showed that particles with different diameters but same response time have different

impact on the flow. Further to this, it has also been observed (Bec et al., 2007a, 2008)

that scale-by-scale clustering can be better understood by considering the local Stokes

number (related to local eddy-turn over time). Hence, the Stokes number for a particular

study must be defined on the basis of time-scale of local turbulence.
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Gravity-driven particles:

In the turbulence dominating regime, particles form clusters due to the centrifugal force

acting on particles and as a result particles accumulate in the strain region. This phe-

nomenon strongly linked with particles’ St. Other than the inertia, external forces (grav-

ity, electrical charge, etc.) can also affect particle clustering. In most of the previous

studies, the effect of gravity has been ignored either to avoid complexity in simulation

or insignificance of the effect was found on the clustering mechanism.

Under the effect of gravity, particles have an average relative velocity to the surround-

ing flows that may decrease the interaction time scale between the turbulent structures

and particles, thus it could change the particle clustering. Therefore, it is important to

consider the gravity for better understanding some of the natural process such as rain-

formations (Falkovich et al., 2002; Falkovich & Pumir, 2004). The Combined effects of

turbulence and gravity on droplet collisions in clouds (Woittiez & Portela, 2008) also

revealed the significance of gravity on particle clustering.

Most recently, gravity has been taken into account (Rosa et al., 2013; Dejoan & Mon-

chaux, 2013; Jin & He, 2013; Bec et al., 2014; Gustavsson et al., 2014; Angilella et al.,

2014; Park & Lee, 2014) in order to analyse the inertial particle motion in turbulence.

In terms of particle characterisation, different research teams used various Fr ranges to

include the role of gravity with different flow conditions.

Rosa et al. (2013) specifically addressed the role of gravity on collisions of cloud

droplets for a range of flow with Taylor micro-scale Reynolds numbers up to 500, us-

ing a highly scalable hybrid direct numerical simulation approach. They found a critical

value of droplet size below which gravity is not affected. For larger particles they ob-

served that the collision rate alters with the effect of gravity and also noted that the effect

of gravity is not same for different sized particles.

Jin & He (2013) elaborated the effect of gravity in relation to some chemical engineer-

ing applications. A pseudo-spectral method along with the particle tracking was im-

plemented to compute the point particle clustering in a forced isotropic turbulent flow,

while the finite-size particles were tracked by applying the lattice Boltzmann method in

a decaying isotropic turbulent flow. They found that the mean drift velocity could reduce

the point particles’ clustering. However, for the particle sized larger than characteristic

viscous scales, clustering is very weak.
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Bec et al. (2014) analysed the particle clustering to understand the intriguing inter-

play between turbulence, gravity, and particle sizes. They used three different values of

Taylor scale Reynolds number Reλ =130, 290 and 460 to investigate the particle clus-

tering with various values of St and Fr. On the basis of their quantified results, the effect

of gravity is confirmed depending on the particles’ St.

Further to this, Gustavsson et al. (2014) also reported the possible reduction or enhance-

ment of small particles clustering (depending on the Stokes number of the particles)

using incompressible velocity field and also found strong anisotropic clustering as the

result of gravity. Most recently, Park & Lee (2014) discovered the vertical stripe patterns

under the effect of gravity by quantifying the clustering using different St and Fr. In all

of the above studies of particle clustering shows that the Stokes number is not enough to

characterise the clustering of inertial particles and the effect of gravity must be included.

2.5.4 OTHER FACTORS

So far we have discussed different factors affecting the clustering mechanism. On top

of this, post processing and quantification methods are other important considerable

aspects to reveal the clustering patterns. Such as, in dissipative range, particles may

cluster as an invariant fractal structure and this kind of differentiation is made by Bec

et al. (2007) who quantified the clustering in both inertial and dissipation ranges. It

has been found that different types of quantification methods are employed to quantify

the clustering patterns in different turbulence scales. Further details on quantification

methods will be provided Chapter 5.

2.6 Motivation of present study

On the basis of previous studies on inertial clustering, we infer that there is a huge

demand of research to fully understand the clustering mechanism, particularly in the

presence of gravity. The effect of gravity on particle clustering has already been studied,

but there are some open questions to answer and these are main source of motivation for

the present work. In the light of our discussion, we set our goals as follows:

• In order to identify the clustering of inertial particles in turbulent flow, we aim

to use different ranges of St (based on particles inertia) and Fr (based on grav-

ity). Owing to simplicity of the KS model, more precise data can be generated as

compared to DNS.
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• After identification of clustering patterns, it is schemed to apply different quan-

tification methods to our visualised results. In this way, we can classify different

clustering attractors.

• The interpretation of clustering mechanism is very important to understand the

physical mechanisms such as, rain formation, mixing process, etc. So, we aim to

define inertial particle attractors with respect to critical values of St and Fr. Using

these critical values, we can define the importance of gravity effect for different

industrial and natural processes.

• By using KS, it is feasible to start the simulations with the simplest case of steady

homogeneous turbulence and then on later stages, we can impose the unsteady

conditions to flow field to study the particle clustering.

• Similarly, Kolmogorov spectrum is set as an input for the KS model which is then

modified to different power laws of energy spectrum in order to see the difference

in the attractors.

• Following the centrifugal phenomenology, it is very interested to see the particles’

positions among flow vortices under the effect of gravity. In order to do so, we first

consider different approaches to develop the vorticity structures and then locate

the inertial particles’ attractors in those flow vortices.

• The main objective of this work is to link the effect of gravity to the inertial par-

ticles clustering in different spectral conditions. Whether it is steady or unsteady

flow condition with Kolmogorov or non-Kolmogorov energy spectrum, our goal

is to emphasize the effect of gravity on inertial particle clustering using specific

ranges of St and Fr.
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Chapter 3

Synthetic Kinematic Simulation Model for

particle clustering

Kinematic Simulation (KS) is a particular case of synthetic turbulence where the fo-

cus is on particle’s trajectory at the expense of solving the Navier-Stokes equation. An

analytical formula ‘synthetic flow’ is used for the Eulerian flow field. The simplicity of

the KS model excludes some features of real turbulent flow but capture the part of the

physics which is required to perform Lagrangian particle tracking. Such is the idea with

synthetic turbulence which retains less information than the whole flow, but tries to keep

what is paramount for the Lagrangian story.

KS modelling has been successfully employed and validated (Fung et al., 1992; El-

liott & Majda, 1996; Malik & Vassilicos, 1999). This kind of simulation is much less

computing-time consuming than DNS which is important for the present study where

we need to run many cases (about 2000 cases for different perspective up to different

eddy turnover time). Each case corresponds to a given flow conditions and particle char-

acteristics (St, Fr) and involves 15625 particles.

With synthetic simulations, one can develop models where turbulence ingredients and

complexity can be added step by step helping to understand their respective importance.

These synthetic models can be a useful complement to Direct Numerical Simulation.

In particular, KS was instrumental in discriminating between the role of Lagrangian

and Eulerian correlations for vertical diffusion in stratified and rotating flows (Nicol-

leau & Yu, 2007). With KS it is also possible to play with the spectral law (Nicolleau

& Nowakowski, 2011) and its consequences in terms of particle’s dispersion. We also

refer to the work of (Malik, 2014a,b) for a discussion on how the work on KS can help
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to understand the sweeping effect on two-particle dispersion.

KS was first introduced as a way to understand particle dispersion rather than particles

clustering and in the last decades most of the attention has turned around its ability to

predict Richardson’s t3. That is

∆2(t)∼ t3 (3.1)

where ∆ is the average distance between two particles initially separated by ∆0. We pro-

pose here a work getting back to the main strength of KS. That is to provide a coherent

Lagrangian framework where some parameters (e.g. spectra Nicolleau & Nowakowski

(2011), waves Nicolleau & Yu (2007); Nicolleau et al. (2013)) can be studied in detail

posing the basis for a comparison with experiments. Previous work (Ijzermans et al.,

2010; Meneguz & Reeks, 2011) particularly supports the use of KS for studying the

evolution of the particle cloud in the absence of gravity effect which made the study

more about segregation than clustering.

As we are not interested in two-particle dispersion, we limit our study to small Reynolds

numbers, more precisely to scale ratio kimax/kimin = 91.

3.1 Periodic KS method for isotropic turbulence

In Kinematic Simulation the underlying Eulerian velocity field is generated as a sum

of random incompressible Fourier modes with a prescribed energy spectrum E(k). For

most part of study, spectrum is limited to a Kolmogorov type spectral law E(k)∼ k−5/3

which does not have delta-correlation in time at any level. The velocity field is a con-

tinuous function of space and time and incorporates turbulent-like flow structure, such

as eddying, straining and streaming regions similar to those expected and observed in

turbulent flow.

In the KS Eulerian velocity field (uE ) takes the form of a truncated Fourier series, sum

of Nk = N3 Fourier modes:

u(x, t) =
N

∑
i=1

N

∑
j=1

N

∑
l=1

aijlcos(kijl.x+ωijl.t)+bijlsin(kijl.x+ωijl.t) (3.2)

where aijl and bijl are the decomposition coefficients corresponding to the wavevector

kijl while ωijl represents the unsteadiness frequency.

1i = 1, 2 or 3



3.1. PERIODIC KS METHOD FOR ISOTROPIC TURBULENCE 20

3.1.1 THE WAVENUMBER DISTRIBUTION:

Unlike the classic KS decomposition (Fung & Vassilicos, 1998; Nicolleau & ElMaihy,

2006), in our study the wavevectors kijl = (ki,k j,kl) are implemented arithmetically to

enforce a periodic condition for the flow field:

ki =
2π

Lx

(ni −1) (3.3)

k j =
2π

Ly
(n j −1) (3.4)

kl =
2π

Lz
(nl −1) (3.5)

where (ni,n j,nk) are integers satisfying 1 ≤ ni ≤ N. In practice, we choose (Lx = Ly =

Lz) for creating an isotropic turbulence and to ensure the flow incompressibility the

Fourier coefficient vectors aijl and bijl are set orthogonal to the wavevector:

aijl ·kijl = bijl ·kijl = 0 (3.6)

Their magnitude is fixed by the energy spectrum, E(k)

∣

∣aijl

∣

∣

2
=
∣

∣bijl

∣

∣

2
= 2E(k)∆ki jl/mk (3.7)

where mk is the number of wavevectors of wavenumber k = ‖kijl‖.

3.1.2 ENERGY SPECTRUM:

The fully developed turbulence consists of a large number of different scales. Each scale

is associated with a certain kinetic energy; the smallest scale is associated with the max-

imum wave number and the largest scale is associated with the smallest wave number.

The large scale eddies, which receive energy from the mean flow, are unstable and able

to break up easily transferring their energy to the smaller eddy. These smaller eddies

undergo the same process and transfer their energy to the smallest eddies.

This process is called energy cascade in which the energy is transferred successively to

smaller and smaller eddies until it reaches a stable scale. The molecular viscosity takes

place in order to be effective in dissipating the kinetic energy. At these small scales the

kinetic energy of turbulence is converted into heat. The range between the largest scale,

L, and the smallest scale, η , is called the inertial sub-range. The dissipation process of

energy can be neglected and this range is characterised by a power law with an exponent

of −5/3. We use an energy spectrum which does not change with time (non-decaying

turbulence).

Nicolleau & Vassilicos (2003) and Khan et al. (2003) showed that kinematic simulation
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is in a good agreement with experiments for statistics of multi-particle when the Kol-

mogorov energy spectrum is used as an input. In this study, an energy spectrum has the

following form:

E(k) = Ak−5/3 for kmin ≤ k ≤ kmax (3.8)

where A is a constant. From the spectral law, the rms velocity and the integral length

scale can be defined as follows:

urms =

√

2

3

∫ kmax

kmin

E(k)dk (3.9)

L =
3π

4

∫ kmax

kmin
k−1E(k)dk

∫ kmax

kmin
E(k)dk

(3.10)

The Kolmogorov length scale is defined as η = 2π/kmax, whereas the largest physical

scale is L = 2π/kmin which determines the inertial range [η,L] over which (3.8) is ob-

served. It is worth noting that L ≃ L for sufficiently large inertial ranges. However,

here in contrast to other KS studies the inertial range is small and L ≃ 5L . In this work,

non-dimensional numbers (St and Fr) are based on the integral length scale L and for

the sake of comparisons both are reported in Table 3.1. The ratio between the largest

length scale and the Kolmogorov length scale is kmax/kmin and the associated Reynolds

number is: ReL = (kmax/kmin)
4/3. This is the standard way to define a Reynolds number

in KS and a DNS or an experiment yielding the same ratio kmax/kmin would have a much

larger Reynolds number.

3.1.3 UNSTEADINESS FREQUENCY

In its general form the KS field can also be a function of time by introducing the fre-

quency ωi jl that determines the unsteadiness associated with the nth wave mode. The

effect of introducing a time-dependence in the Fourier modes will be the objective of

the study in chapter 8 and discussed in detail.

3.1.4 CHARACTERISTIC TIME SCALES AND COMPUTING TIME STEP

It is equally important to define the time scales of turbulence. The eddy turn over time

scale is related to integral length scale. It is defined as the time taken by an eddy to turn

itself around. Mathematically:

td = L/urms. (3.11)
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T = L /urms. (3.12)

As we use the integral length scale L for defining the non-dimensional parameters,

the eddy turnover time T is considered throughout the study. Before the eddy turnover

time, the particle remembers its initial position, while after this time, the particles are

free to move randomly. The Kolmogorov time scale is another important time scale

which is defined as the time taken by a fluid particle to move a distance η (Kolmogorov

length scale) when its velocity is equal to Kolmogorov velocity uη and is mathematically

expressed as follows:

tη = η/uη . (3.13)

Both characteristic times can be related as follows:

tη = T (η/L )2/3. (3.14)

The time step, ∆t, must be smaller than both the eddy turnover time and the Kolmogorov

time scale. According to Fung (1990), a time step equal to 1/10 of the Kolmogorov time

scale is enough to ensure that the results are independent of the time step within the

statistical errors. All the periodic KS parameters are gathered in table 3.1.

Lx = Ly = Lz 1

N 10

Np 15625

urms 0·8703

L 0·2106

L 1

η 0·0642

T 0·2420

td 1·1491

ki/kimin 9

kmax/kmin 15·5885

ReL 38·94

TABLE 3.1. Periodic KS parameters (except modified conditions used in Chapter 8)

3.2 Heavy particle equation of motion

In continuation of the brief introduction of forces on immersed objects in Chapter 2,

we discuss the major types of forces acting on the spherical particles moving in a fluid.
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The selection of the equation of motion for inertial particles is still the subject of much

interest in current research. It could consist of all the forces acting on the particle and

these forces are of following types:

• The non-uniform distribution of the flow field around the particle causes lift force,

• The relative motion between the particle and the surrounding fluid elements pro-

duces the drag force,

• Force of gravity,

• Buoyant force,

• force due to the unsteadiness in flow.

3.2.1 FORCES ACTING ON HEAVY PARTICLE

Let us consider a heavy particle with mass mp centrally positioned x at time t, it moves

with a velocity V(t) in a flow of velocity u(x, t). The equation of motion can be intro-

duced in a fixed frame of reference originated from the centre of the particle as derived

by Maxey & Riley (1983) and it is expressed as follows:

mp
dV

dt
= ∑Facting. (3.15)

The drag force:

The drag force can be defined as the resistance to the movement of the heavy particle in

turbulent flow. As a result it is opposite to the flow direction and can be calculated from

the relative velocity of the particle and the surrounding fluid as follows:

FD =−
1

2
πa2CDρ f V2

rel, (3.16)

FD =−
1

2
πa2CDρ f (V−u)2, (3.17)

where CD is the drag coefficient and depends on the particle Reynolds number, Rep,

based on the particle diameter. The Stoke drag coefficient for a spherical particle, in

which the drag is assumed to be linear given that the particle Reynolds number is to be

less than unity Rep << 1, is:

CD =
24

Rep

=
24µ

ρ f |Vrel|A
=

24µ

2ρ f |V−u|a
, (3.18)

where µ is fluid dynamic viscosity and A is the diameter of the spherical particle. Then

by substituting the equation 3.18 in the equation 3.17:

FD =−6πaµ(V−u). (3.19)



3.2. HEAVY PARTICLE EQUATION OF MOTION 24

The Stokes drag can be revised to include both non-linear drag and the Faxén effect. The

later effect is due to the curvature in the velocity profile (second- order gradients of the

velocity field) by replacing in the relative velocity component (V−u) in equation 3.19

with the following to include such that effect:

V−u− (
a2

6
)∇2u. (3.20)

So the drag force can be revised to be as follows:

FD =−6πaµ(V−u− (
a2

6
)∇2u). (3.21)

Basset history force:

The friction effect in a viscous fluid flow in the transient state is known as the Basset

history force. This effect results from the diffusion of vorticity from the particle as the

particle is moving unsteadily. The past acceleration is included in this effect weighted

with (t−τ)1/2, where (t−τ) is the time lag from the past acceleration. It can be written

in the form (Maxey & Riley, 1983):

Fs =−6πa2µ

∫ t

0
(
dH

dτ
[πν(t − τ)]−1/2)dτ, (3.22)

where ν is the fluid kinematic viscosity and the term H(t) is represented as follows:

H(t) = V(t)−u(xp(t), t)−
a2

6
∇2u. (3.23)

3.2.2 ADVANCEMENTS IN EQUATION OF MOTION

Basset (1888); Boussinesq (1903); Oseen (1927) are among those early researchers who

examined the motion of a sphere settling in a fluid under the effect of gravity that was

otherwise at rest. The disturbance in the flow as a result of sphere motion was assumed

to be at sufficiently low Reynolds number. The forces acted by the fluid on the sphere

could be calculated as the results of unsteady Stokes flow. In actual, the flow near the

particle was split into two parts: the original fluid flow without the particle and the

particle affected flow. After calculating the forces separately for both parts, they were

summed up.

Since Tchen (1947), who first proposed an equation for the motion of a rigid sphere in a

non-uniform flow, several studies have been established either to correct or modify the

terms in his equation. His assumption ( the Eulerian velocity at the particle location is the

same as the fluid velocity along a fluid element trajectory) provided the first approximate

solution. This assumption required that both drift velocity and inertia of the particle set
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to be small.

Tchen (1947) extended his work first to a sphere settling under gravity in an unsteady

uniform flow. Later, it is further extended to an unsteady and non-uniform flow with a

view to apply it in different situations. He stated that it becomes necessary to introduce

an extra pressure term representing an extra force due to the fluid acceleration.

Corrsin & Lumley (1956) addressed some of the inconsistencies in Tchen’s equation.

They highlighted the role of the pressure gradient of the basic flow contributing also to

the net fluid force on the particle. They proposed a new equation, appears to be non-

linear with respect to velocities, for a small rigid sphere of radius ‘a’ and mass mp

instantaneously centred at x(t) and moving with velocity Vp(t) as follows:

∑Facting = (mp−m f )g+
3

2
m f

Du

Dt
−6πa2µ

∫ t

0
(
dH

dτ
[πν(t − τ)]−1/2)dτ. (3.24)

The terms on the right-hand-side of equation 3.24 are corresponding to the effects of the

pressure gradient of the undisturbed flow, added mass, viscous Stokes drag, Basset his-

tory term and the buoyancy force. The fluid acceleration as observed at the instantaneous

center of the sphere is:

Dui

Dt
|xp(t) = [

∂ui

∂ t
+u j

∂ui

∂x j

]x=xp(t). (3.25)

The pressure gradient term was written in the following form on the assumption that the

flow is incompressible:
Dui

Dt
=

−1

ρ

∂ p

∂xi

+gi +ν∇2ui. (3.26)

The equation 3.26 is not consistent. In fact, the effect of pressure gradient on the undis-

turbed flow has not been considered which may affect the particle motion as the result

of a viscous shear stress.

Buevich (1966) derived a new equation of motion by changing the frame of referencing

of the Basset-Boussinesq-Oseen to a coordinate system moving with the particle. He

concluded that the second term in the equation 3.24 should be replaced by a term

m f
dui

dt
. (3.27)

Riley (1971) used a similar analysis and concluded that the term describing the effect

of the pressure gradient in the flow field should be

m f
Dui

Dt
|xp(t). (3.28)
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This result is more physically realistic for small sphere because the effect of the undis-

turbed fluid stress (both from the pressure and viscosity) is to produce the same net force

as would act on the fluid sphere of the same size. This force must equal to the product

of the fluid mass and the local acceleration of the fluid which opposes the equation de-

scribed by Buevich (1966).

Maxey & Riley (1983) studied the problem of disturbed flow around a rigid Stokes

sphere in non-uniform undisturbed flow. They derived an equation of motion for the

sphere following the approach of Riley (1971). This equation is differs from the previ-

ous versions as the velocity gradient is introduced, known as Faxén correction (second-

order gradients of the velocity). This leads to modifications of the added mass terms,

the Stokes drag and the Basset history term due to the curvature in the velocity profile.

While in low Reynolds number limit there is no force due to shear or particle spin be-

sides the difference in the form of the fluid acceleration term.

The equation proposed by Maxey & Riley (1983) is the most recent full derivation of

the equation of motion for a sphere particle in a non-uniform unsteady flow with the

particle starting at rest relative to the fluid. Wang & Maxey (1993) used equation of

motion without the limitation of the initial velocity of the heavy particle to be equal to

that of the fluid. The equation of motion for a sphere heavy particle can be written as the

following:

mp
dVp

dt
= m f

Du
Dt
|Xp(t)−

1
2
m f

d
dt
{Vp(t)−u(Xp(t), t)−

1
10

a2∇2u|Xp(t)}−6πaµH(t)

+(mp−m f )g−6πa2µ
∫ t

0{
dH(t)

dτ [πν(t − τ)]−1/2}dτ.
(3.29)

where the first term represents the force exerted by the undisturbed fluid on the particle.

The second term is accounted for the added-mass effect which is defined as the mass

added to the particle when it moves relative to the fluid. The third term describes Stokes

drag due the fluid’s viscosity while the fourth represents the drag created by the force of

buoyancy. The last right-hand-side term of the equation 3.29 is the Basset Boussinesq

history term (discussed in previous section). It should be also noticed that the Faxén

correction is also included in the terms except the first term.

3.2.3 ASSUMPTIONS AND MODIFIED EQUATION

In our case, the motion of heavy spherical particles is studied in a uniform homogeneous

isotropic turbulence. The flow has a constant mean velocity taken to be zero. To consider

the Lagrangian tracking, the following assumptions are applied to simplify the equation



3.2. HEAVY PARTICLE EQUATION OF MOTION 27

of motion of the heavy particle in turbulent flow studied:

(1). The radius of the particle sphere is small enough such that Rep ≪ 1 to consider

linear drag force on the inertial particle. It means that we can apply equation 3.29

as it is valid for small particles at low Reynolds number and Faxén correction can

be neglected.

(2). The inertial particles are much heavier than the fluid particles i.e ρp ≫ ρ f . Using

this assumption, the added mass and the Basset history terms can be ignored.

(3). It is also assumed that there is no initial relative velocity of the particle with re-

spect to fluid velocity. With this assumption, we can exclude the last term of the

equation 3.29.

(4). The radius of the particle (a) is assumed to be smaller than the Kolmogorov length

scale of turbulence (η). So, the particle can respond to all the scales without af-

fecting the turbulence.

(5). The radius of particle is considered to be large enough as compared to fluid

molecules free path. The particle aerodynamic response time is much longer than

the mean molecular collision time. So, the effect of Brownian motion can be ig-

nored.

(6). The particle concentration in a flow must be dilute enough to ensure that the inter-

action between the particles could be ignored and also to avoid the modification

in flow structure.

(7). The relative fluid approaching the particle is assumed to be uniform such that no

lift force is present.

Simplified equation of motion:

After applying the assumptions 1-3, the equation of motion of heavy particle derived

by Maxey & Riley (1983); Gatignol (1983) can be simplified to achieve our goal and it

reduces the computing time with less cost. It is considered to be done in a fixed frame

of reference as follows:

mp

dVp

dt
= mp g−6πaµ(Vp(t)−u(xp(t), t)), (3.30)

where mp is the mass of the particle, g the gravity, a the spherical particle’s radius and

µ the dynamic viscosity of the fluid. Another form of the equation 3.30 is:

dVp

dt
=

u(xp(t), t)−Vp(t)+Vd

τa
, (3.31)
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where τa = mp/6πaµ is the particle’s aerodynamic response time and Vd = τa g the

particle’s terminal fall velocity or drift velocity.

3.3 Computing trajectory of particle using KS

The particles are initially homogeneously distributed as shown in Fig. 3.1a and whenever

a particle leaves the turbulence box domain (e.g. x1 > Lx), then it is re-injected from the

opposite side as shown in Fig. 3.1b to keep the periodic condition.

b )

Figure 3.1. Particles’ (a) initial distribution and (b) re-injection

Using KS, the computational task reduces to calculate the trajectory of each particle

placed in the turbulent field initially at X0. Each trajectory is, for a given initial condi-

tion, solution of the differential equation set:

dX

dt
= V(t), (3.32)

dV

dt
= F(uE(X, t),V, t), (3.33)

where X(t) is the particle’s position, V(t) its Lagrangian velocity and uE the analytical

Eulerian velocity used in KS. F is a function relating the Lagrangian acceleration to the

Eulerian and Lagrangian velocities. The flow charts of the KS model used for studying

the particle clustering are illustrated in Fig. 4.2.

3.4 Non-dimensional parameters

Three non-dimensional parameters are introduced to make qualitative and quantitative

analyses of the particle clustering.

(a). The Stokes number expresses the ratio between the particle’s response time (iner-

tia effect) and the turbulence characteristic time

St = τaurms/L . (3.34)
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Figure 3.2. (left) Flow chart of the Modified FORTRAN code for kinematic simulation model of the particle laden

clustering (right) Part of code showing re-injection of the particles
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It is relative of the particle inertia. In the limiting case St → 0; the particles recover

the motion of the fluid tracers; whereas for St → ∞, the particles are less affected

by the fluid.

(b). The Froude number is the ratio between inertial forces and gravitational forces.

Fr = urms/
√

gL . (3.35)

In our study the rms velocity urms and inertial length scale are constant and g is

varied.

(c). The Drift parameter is the ratio between the particle’s drift velocity and the turbu-

lence rms velocity:

γ =Vd/urms. (3.36)

The Drift parameter can still be defined without gravity. Then γ can be considered

as measuring the effect of a mean velocity Vd .

If Vd is caused by gravity, then

γ = τag/urms. (3.37)

In this case the drift parameter is affected by both the gravity and the particle’s

inertia. γ can be expressed as a function of Stokes and Froude numbers so for a

given turbulence the case corresponding to a constant gravity, that is varying τa

only, is given by

Fr = constant (3.38)

γ ∼ St (3.39)

In this work, all the three non-dimensional parameters (defined by 3.34-3.36) are used

for initial quantification in Chapter 4 and 5, but we only emphasize on St and Fr for the

most part of the thesis.
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Chapter 4

Visualisations of particle clustering in

Kinematic Simulation

4.1 Introduction

We analyse the clustering of inertial particles using a periodic kinematic simulation.

Practically, the shape of clustering pattern depends on flow conditions and particle char-

acteristics. In the KS model, the flow conditions are kept constant and the particle char-

acteristics can be changed by varying the inertial and gravity effects to observe the vari-

ation in clustering. We use Stokes number St as the main non-dimensional number to

control the inertial effect of the particles, while Froude number Fr and drift parameter

γ are used to define the role of gravity on clustering. In order to identify and charac-

terise the particle clustering in turbulent flow on the basis of non-dimensional numbers,

many qualitative and quantitative methods have been employed. In this Chapter, we only

discuss the qualitative visualisations of clustering patterns evolved as the results of par-

ticles’ motion in flow. The corresponding quantitative analysis will be presented in the

next chapter.

To observe the clustering variations, particles are initially uniformly distributed in the

Kinematic simulation flow. Though there is no particular difficulty in considering par-

ticles with different inertia in Kinematic Simulation, this study is limited to mono-

dispersed seeding, i.e. particles having the same inertia for each case. Furthermore, the

particles are considered small enough so that they neither affect the flow nor interact

with each other (one-way coupling). The particle (Np = 253) grid distribution is shown

in Fig. 4.1 and the values of St and Fr are randomly selected to see the evolution of
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the particles. It is clearly observed that the particles gather and produce some low and

high concentration regions as St and Fr are varied. For some pairs of (St,Fr), a strong

attractor hereinafter referred to as a Lagrangian attractor appears in the KS.

The topological dimension of the Lagrangian attractor is varied from one-dimensional

to two-dimensional or three-dimensional with varying values of St and Fr. The range of

Stokes number St and Froude number Fr can be selected depending on the objective of

the study. In the literature, the value of St is chosen from 0 to 10 while Fr is selected

ranging [0,∞]. In our study, we particularly focus on Stokes number ranging 0 ≤ St ≤ 1

and the Froude number Fr is ranged as 0.3 < Fr < 1.4.

−0.5

0

0.5

−0.5

0

0.5
−0.5

0

0.5

Particles’ distribution at t=0

Figure 4.1. Initial distribution of particles in the period box

4.1.1 TIME DEPENDENCY OF EVOLUTION

Initially uniformly positioned particles are monitored as a function of time in the flow

and a Lagrangian attractor is observed in some cases depending on St and Fr. That is,

the initially uniformly distributed cloud of particles will end in a set of loci that does not

evolve any further. The particles move within that set of loci which defines the structure

of the Lagrangian attractor and its dependence on St and Fr numbers is studied here.

For short times the attractor shape is time-dependent as shown in Figs 4.2 and Fig. 4.3.

The time evolution of the cluster depends on the non-dimensional parameters St and Fr

as illustrated in Fig. 4.2 where it takes 4 times longer to reach the one-dimensional La-

grangian attractor than in the case of Fig. 4.3. We do not intend to investigate the tempo-

ral evolution of attractor in this chapter and are only interested in attractor’s asymptotic

form (i.e. for t → ∞).
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Figure 4.2. Time evolution of inertial particles with St = 0.167 and γ = 0.689

Figure 4.3. Time evolution of inertial particles with St = 0.413 and γ = 0.575
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4.1.2 VISUALISATION OF PARTICLE CLUSTERING

Visualisation is one of the methods used to identify the particle clustering for varying

flow conditions and particle characteristics. Though these types of measures are very

limited to use in experimental set up, they have been successfully implemented to cap-

ture the clustering variations in many of the simulations such as DNS, LES, Stochastic

models, synthetic models, etc. Whether it is a two-dimensional simulation or three-

dimensional, visualisation can provide the initial idea on how particles are moving in

the flow. Normally, researchers consider the visualisation to start clustering analysis be-

fore applying the detailed quantitative measures. Chen et al. (2006) used visualisation

to identify the self-similar clustering of inertial particles and zero-acceleration points

in fully developed two-dimensional DNS. Similarly, Goto & Vassilicos (2006) showed

the particle distributions in two-dimensional DNS turbulence to see the clustering with

varying values of St.

In addition to 2D simulations, visualisation has also been used as the qualitative mea-

sures in a three-dimensional simulations. Beside the fact that three-dimensional flows

are more complex than two-dimensional flows in order to detect the particle clustering,

visualisation can still be considered as a successful tool to initiate the clustering analy-

sis. Using three-dimensional DNS, Yoshimoto & Goto (2007) have shown a series of

pictures as shown in Fig. 4.4 to see the spatial distribution of inertial particles in the flow.

Similar kinds of visuals are also described in 3D DNS by Bec et al. (2007) as shown

in Fig. 4.5. From Fig. 4.5, it is clear that fluctuation in the particle spatial distribution

extends to scales far inside the inertial range. Moreover, the large eddy simulation LES

(Jin et al., 2010) and the Stochastic models (Bec, 2005) also used visualisation to ob-

serve the particle distribution in flow. Whatever are the methods of simulation, there are

following common observations:

• Inertial particles tend to accumulate in the preferential regions of flow by increas-

ing Stokes number St.

• The particle clustering is not noticeable for any value of Stokes number when

St → 0 and St → ∞.

Furthermore, the clustering patterns have also been visualised by considering additional

external forces on inertial particles like gravitational force, Basset history force, added

mass term, etc. Usually, the effect of gravity has been ignored by most of the researchers

to avoid complexity of simulation and hence; to reduce the computing time, but the

effect of gravity can entirely change the particle clustering for a given St. Woittiez &
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Figure 4.4. Spatial distribution of inertial particles for eight different values of Stη in a thin layer (width 5η) (a) 0.05,

(b) 0.1, (c) 0.2, (d) 0 .5, (e) 1, (f) 2, ( g) 5 and (h) 10.

Figure 4.5. (a) The modulus of the pressure gradient, giving the main contribution to fluid acceleration, on a slice

512×512×4. B/W code low and high intensity, respectively. Particle positions in the same slice are shown for (b)

Sη =0.16, (c) 0.80 and (d) 3.30. Note the presence of voids with sizes much larger than the dissipative scale.
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Portela (2008) investigated the clustering by considering both mono-dispersed and poly-

dispersed particles in the presence of gravity. They observed the curtain-like manifolds

as shown in Fig. 4.6 which do not appear without gravity. Similar kinds of vertical stripe

patterns are also found by Park & Lee (2014) and Bec et al. (2014). This new type of

two-dimensional cluster shows the significance of gravity on inertial particle clustering.

Recently, Olivieri et al. (2014) analysed clustering of inertial particles in the presence

of Basset history force. They visualised snapshots of the clustering to sight the reduction

in clustering using Basset history term. In fact, visualisation is the simplest method to

estimate the variations in clustering and set proceedings for quantitative analysis.

Figure 4.6. (a)− (c) Two-dimensional and (d) three-dimensional snapshots of a droplet concentration field that is

driven by both gravity and turbulence. The slice thickness in (a)− (c) is one grid box. The snapshots show the

curtain-like manifolds of sediment droplets waving in the turbulent field.

We make a qualitative analysis in the steady KS flow and the study is classified into two

parts for different ranges of Stokes number. The main focus is on the Stokes number

ranged from 0 ≤ St ≤ 1 (discussed in § 4.2) as we found the clearest variations in the

Lagrangian attractor within this range. We also run a few cases for particles with St > 1

to determine the clustering patterns (discussed in § 4.3). All the cases are run for a

sufficient time of evolution to see the definite patterns of clustering. As some new types

of clustering structures are found in the KS and it is very important to categorically

define them in relation to non-dimensional the parameters St and Fr or γ . Therefore, we

describe the Lagrangian structure in detail in the following section.
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4.2 Visualisations of particle clustering for St ≤ 1

Before applying the Stokes number St to the particles, we look into the variations in

clustering for the particles with St = 0, i.e. the fluid tracers. These fluid tracers behave

differently from the inertial particles in turbulent flow and the evolution of the fluid

tracers is examined to differentiate the clustering inertial particle motion in the flow. In

Fig. 4.7a, it can be clearly noticed that there is no significant variation in fluid tracer

accumulation even at a longer time of evolution t = 100s. The effect of gravity is also

introduced to see whether there is any of inhomogeneity under action of drift but still no

clear variation is observed as shown in Fig. 4.7b. So, the particles with St = 0 follow the

flow structures and do not show any significant clustering.

Figure 4.7. Evolution of tracers in the flow field at t=100s (a). without gravity and (b). with gravity

We now study the clustering by applying different values St to the particles in the pres-

ence of gravity (Fr). The random selection of St and Fr showed the different shapes of

Lagrangian attractor whose dimensions are varied from 1D to 3D. It is rather difficult

to establish a relationship between the attractor patterns and non-dimensional parame-

ters. So, the study is organised for different values of St, Fr and/or γ and we choose the

different pairs of St and γ to observe the clustering variations. Three different values of

Stokes numbers are picked namely 0.167, 0.413, 0.827. Each St case is run with vary-

ing values of drift parameter ranging 0 ≤ γ ≤ 1 till the uniform distribution of particles

converts into an asymptotic Lagrangian attractor. We found that the dimensionality of a

Lagrangian attractor depends on both St and γ and the stronger clustering is observed for

the lower values of St. Such as, different types of one-dimensional Lagrangian attractors

are observed for St=0.167 as shown in Fig. 4.8.

On the basis of the final shapes of the attractors, the Lagrangian attractors are classi-

fied and we use following nomenclature;

i) 1D-H : horizontal one-dimensional Lagrangian attractor as in Fig. 4.8a.
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Figure 4.8. Attractors for St = 0.167 with increasing γ run at different times.

ii) 1D-V : vertical one-dimensional Lagrangian attractor as in Fig. 4.8b.

iii) 1D-HV : Intermediate one-dimensional Lagrangian attractor as in Fig. 4.3.

iv) 2D-L : two-dimensional vertical curtain-like layer as in Fig. 4.8d,

v) 3D : any three-dimensional structure without any particular structure in the cloud

as in Fig. 4.8c.

The qualitative results are split into three different categories which can take into

account the effect of gravity and/or inertia:

i) keeping St constant §4.2.1.

ii) keeping Fr constant §4.2.2.

iii) keeping γ constant §4.2.3.

4.2.1 VARIATION IN CLUSTERING IN RELATION TO St

In this sections, the variation in the clustering is analysed by fixing the St and varying the

Fr. The effectiveness of the gravity for a St is evident with different clustering patterns.

An adequate classification of St is adopted for a given range of Fr listed in Table 4.1

and we run each case for an arbitrary time of t = 300s to track Lagrangian attractors. As

these Lagrangian attractors are never found in the past studies, therefore, it is important

to discuss them in detail. We detect the different clustering patterns according to set
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nomenclature and marked them in the last column in the Table 4.1 (ticked after detailed

visualisations).

Case St range Fr range observed patterns

1D-H 1D-V 2D-L 3D

A 0.0-0.2 0.42-1.34 X X

B 0.2-0.4 0.42-1.34 X X X

C 0.4-0.5 0.42-1.34 X X X

D 0.5-1.0 0.42-1.34 X X

TABLE 4.1. Different cases for studying the attractor topology for different ranges of St.

Clustering patterns for range 0 ≤ St ≤ 0.2:

As the flow conditions are constant, the particles are likely to be trapped in the preferen-

tial localised regions and as a result, the accumulation of particles can be in a horizontal

or vertical direction. For the St values closer to 0, case A, the particle relaxation time is

much less than the flow integral time scale and no significant clustering is observed as

shown in Fig. 4.9.

When St is slightly increased, the relatively heavier particles depart from the initial grid

positions and start clustering with decreasing values of Fr (increasing gravity) as shown

in Fig. 4.10. The particles coagulate and one-dimensional attractors are observed for

some particular values of Fr. For a higher value of Fr, a 1D-H attractor is visualised

as shown in Fig. 4.10a. Further decreases in the Froude number Fr destroys the one-

dimensional structure and particles redistribute evenly in the flow as 3D structure as

shown in Fig. 4.10d. It means the high gravitational force pulls the particles out of that

one-dimensional space of the attractor.

Clustering patterns for range 0.2 < St ≤ 0.4:

In continuation to previous range, the Stokes number is further increased to examine

the Lagrangian attractors. The range of 0.2 ≤ St ≤ 0.4 is found to be the most difficult

to analyse as all types of attractors are observed within this range. We found that the

1D-H attractor still appears with the decreasing values of Fr. Rather than having only

1D-H attractor, a 1D-V attractor is also discovered for this range of St. For low value

of Stokes number (St = 0.249), case B, a 1D-H is observed at high Fr as shown in

Fig. 4.11a which converts into a 1D-V attractor as the Fr is further decreased as shown

in Fig. 4.11b. Further increases in the gravity eradicate the one-dimensional attractor



4.2. VISUALISATIONS OF PARTICLE CLUSTERING FOR ST ≤ 1 40

Figure 4.9. Clustering variations at St = 0.041 for decreasing value of Fr (increasing gravity) and t = 300s

Figure 4.10. Clustering variations at St = 0.124 for decreasing value of Fr and t = 300s
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and the particles rearrange themselves as the 3D attractors as seen in Figs. 4.11c and d.

Progressively, for St = 0.331, the 1D-H attractor is no longer observed and a 1D-HV

attractor starts appearing as shown Fig. 4.12b. This 1D-HV attractor restructures into a

1D-V attractor with decreasing values of Fr as shown in Fig. 4.12c. Ultimately, these

one-dimensional attractors transform into two-dimensional 2D-L patterns for very low

values of Froude number such as Fr = 0.49 as shown in Fig. 4.12d. The two-dimensional

structures confirm that the particles do not move randomly with the flow and are forced

to move on the planar structures in the direction of gravity. This shows the dominance

of gravity over turbulence structure and we can say that the gravity starts playing a more

important role on the particle clustering after a particular St range. The last important

Figure 4.11. Clustering variations at St = 0.249 for decreasing value of Fr and t = 300s

noticeable feature for this range of St is appearance of a 1D-V attractor for a high value

of Fr as illustrated in Fig. 4.13a. This 1D attractor does not stay longer with the fur-

ther increases in gravity and reproduces as the 2D-L pattern at Fr = 0.49 as shown in

Fig. 4.13c,d. Overall, we can state that the clustering stretch in the direction of gravity

either in the form of 1D-V attractor or 2D-L attractor depending on value of St.

Clustering patterns for range 0.4 < St ≤ 0.5:

The particles with the relaxation time almost half of the integral time scale, case C, do

not converge into the 1D-H or 1D-V structures, but still a 1D-HV attractor is observed

as shown in Fig. 4.14b for St = 0.413. When Froude number Fr is reduced, the 1D-HV

attractor reshuffles into a 2D-L structure as shown in Fig. 4.14d. A similar kind of 1D-

HV attractor can also be seen in Fig. 4.15a for St = 0.456. The difference in both cases
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Figure 4.12. Clustering variations at St = 0.331 for decreasing value of Fr and t = 300s

Figure 4.13. Clustering variations at St = 0.373 for decreasing value of Fr and t = 300s
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is the value of Fr at which the attractor appears, i.e. less gravity is required for higher

value of Stokes number St = 0.456 than that of St = 0.413.

Figure 4.14. Clustering variations at St = 0.413 for decreasing value of Fr and t = 300s

Figure 4.15. Clustering variations at St = 0.456 for decreasing value of Fr and t = 300s

Clustering patterns for range 0.5 < St ≤ 1.0:

The one-dimensional Lagrangian attractors are the indicators of strong clustering and

we do not observe any of them for St > 0.5. For this range of St, case D, the particles

settle predominantly as the 2D-L attractors at relatively higher values of Fr as shown

in Fig. 4.16b and Fig. 4.17b. There is also notable variations in clustering within the
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2D-L attractors as the Fr is decreased but the overall shape remains same as shown

in Fig. 4.16c,d and Fig. 4.17c,d. This type of 2D layered clustering pattern shows that

gravity holds the particles together on the attractor for a specific value of St.

Figure 4.16. Clustering variations at St = 0.663 for decreasing value of Fr and t = 300s

Figure 4.17. Clustering variations at St = 1.00 for decreasing value of Fr and t = 300s

4.2.2 VARIATION IN CLUSTERING IN RELATION TO Fr

A constant Froude number corresponds to the case of varying the particle’s property (τa)

for a given environment (turbulence and gravity) which exists in most of the experimen-

tal situations. The variations in clustering patterns are identified by keeping Fr constant
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while varying St. For the purpose of qualitative measures, three different ranges of Fr

listed in Table 4.2 are considered with small increments in St ranging [0-1].

Case Fr St range observed patterns

1D-H 1D-V 2D-L 3D

E > 1 0-1 X X X

F 0.6-1.0 0-1 X X X

G < 0.6 0-1 X X

TABLE 4.2. Different cases for studying the attractor topology for different ranges of Fr.

Evolution of particles without gravity:

First we observe the case with no gravity and the variation in the clustering is studied

for Fr = ∞. There is no noticeable variation observed in clustering with the increas-

ing values of St as shown in Fig. 4.18. An insignificant difference still exists between

clustering patterns for the low and high values of St. The cases in Fig. 4.18a,b illustrate

relatively more clustering than the cases presented in Fig. 4.18c,d.

Figure 4.18. Clustering variations at Fr = ∞ for increasing value of St and t = 300s

For high range Fr > 1:

A slight increase in gravity, in case E, can force the particles to come together and start

accumulating. A clear 1D-H attractor can be seen for a higher value of Fr=1.89 with

a low St as shown in Fig. 4.19b. As the St number is increased, the 1D-H attractor
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disappears and the particles repositions evenly in the flow as shown in Fig. 4.19d. It

illustrates that the relatively heavier particles are less affected by the gravity.

Further increases in gravity, relatively lower Froude number Fr = 1.34, shows the same

picture and the 1D-H attractor appears at higher values of Stokes number Fig. 4.20a,b

as compared to the case with Fr=1.34. The 1D-H attractor converts into a 3D attractor

with increasing values of St.

Figure 4.19. Clustering variations at Fr = 1.89 for increasing value of St and t = 300s

Figure 4.20. Clustering variations at Fr = 1.34 for increasing value of St and t = 300s



4.2. VISUALISATIONS OF PARTICLE CLUSTERING FOR ST ≤ 1 47

Another prosperous feature of the clustering observed within this range of Fr is exis-

tence of both 1D−H and 1D−V attractors for a given value of Fr for a range of St.

This elaborates that different particles can respond differently to a combined gravity-

turbulence effect. These variations can be observed in Fig. 4.21 where (a) and (b) repre-

sent the horizontal one-dimensional attractor while a vertical one-dimensional attractor

can be seen in Fig. 4.21c.

Figure 4.21. Clustering variations at Fr = 1.09 for increasing value of St and t = 300s

For medium range 0.6 < Fr < 1.0:

The mid-ranged values of Fr, in case F, show different settlement of particles in the

flow. The particles accumulate as different one-dimensional attractors for some pairs of

(St,Fr). First, the particles with low St cluster as a 1D-H attractor for high value of

Fr (as shown in Fig. 4.22a and Fig. 4.23a). Then these 1D-H attractors switch into the

1D-V attractors with the increasing values of St as shown in Fig. 4.22b and Fig. 4.23b.

The switching of a horizontal attractor into a vertical confirms that the heavier particles

respond better to the gravity than the lighter ones.

Further increment in St repositions the 1D-V attractor as 1D-HV attractor for an inter-

mediate value of St as shown in Fig. 4.22c and Fig. 4.23c. Finally, St → 1, these 1D

attractors get the shape of 2D-layered structure as shown in 4.22d and Fig. 4.23d. These

layered structures are the rare feature which generates as the result of gravity for the

relatively higher St particles.
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Figure 4.22. Clustering variations at Fr = 0.849 for increasing value of St and t = 300s

Figure 4.23. Clustering variations at Fr = 0.717 for increasing value of St and t = 300s
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For low range Fr < 0.6:

The gravitational force is kept very high to achieve Fr → 0. For this range of Fr, in

case G, the 1D-V attractor is identified for a very low value of St as shown in Fig. 4.24a

and Fig. 4.25a and it converts into the 2D-L attractors for high values of St as shown in

Fig. 4.24d and Fig. 4.25d.It is clearly evidenced that the higher values St and Fr reduce

the chances of appearance of the one-dimensional attractor while the 2D-L attractors

predominantly come out.

Figure 4.24. Clustering variations at Fr = 0.548 for increasing value of St and t = 300s

Figure 4.25. Clustering variations at Fr = 0.490 for increasing value of St and t = 300s
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4.2.3 VARIATION IN CLUSTERING IN RELATION TO γ

It results from the previous discussion that the variations in inertial and gravity effects

do not have a monotonic effect on the particle clustering. Physically gravity and inertia

are combined effects but one can consider a particle subjected to a drift velocity without

referring explicitly to gravity. This effect of drift can be assessed by identifying the

patterns with the drift parameter γ instead of Fr. So here we want to observe the variation

in the particle attractor by keeping the drift parameter γ constant. For the purpose we

have chosen three different ranges of γ .

For low drift parameter γ:

For very low range of drift parameter 0 < γ ≤ 0.2, the 1D-H attractors appear at low

St as shown in Fig. 4.26b and the particles redistribute evenly in the flow field when St

approaches to 1 as shown in Fig. 4.26d. The increment in γ forces the particles to move

in the direction of gravity and the 1D-H attractor transforms into a 1D-V attractor for a

intermediate value of St as shown in Fig. 4.27c. But the particles remain dispersed in the

flow for low and high values of St shown in Fig. 4.27a and d respectively. The constant

drift parameter γ can produce the same types of attractors for different St, and these

attractors are very sensitive to the gravity variations. Therefore, the range of the drift

parameter γ would be very limited for which the similar attractors can appear specially

for the lighter particles, i.e. for St < 0.3.

Figure 4.26. Attractor variation with increasing values St for γ=0.138 and t = 300s
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Figure 4.27. Attractor variation with increasing values St for γ=0.276 and t = 300s

For medium drift parameter γ:

When the drift parameter γ is increased to mid-ranged values 0.3 ≤ γ ≤ 0.8, instead

of 1D-H attractors, the 1D-HV attractor appears as illustrated in Fig. 4.28c. Another

significant observation can be made at γ = 0.689 where a 1D-V attractor is observed at

low values of Stoke number St = 0.165 Fig. 4.29b. This shows that the particles with

low inertia can also be accumulated in a vertical direction by keeping the γ very high.

Furthermore, the particles do not show any apparent clustering for high values of St as

shown in Fig. 4.28d and Fig. 4.29d.

Figure 4.28. Attractor variation with increasing values St for γ=0.345 and t = 300s
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Figure 4.29. Attractor variation with increasing values St for γ=0.689 and t = 300s

For high drift parameter γ:

By increasing the drift parameter γ > 1.0, we do not provide the enough time to the

particles for settling in the flow as compare to the low drift γ . The 2D-L layered patterns

are mostly observed for St > 0.3 and 0.8≤ γ ≤ 3 as shown in Fig. 4.30 and Fig. 4.31. We

also found that for a given γ , only one type of attractor is predominantly evolved. As a

result, we can have similar type of attractor for a very high gravity or inertia providing γ

constant for a specific flow conditions. This type of information is of extreme importance

in the practical situations where mean velocity can change the process altogether.

4.3 Visualisations of particle clustering for St > 1

We discussed the visualisations of the Lagrangian attractors in the KS flow for St ≤ 1,

and now intend to confirm the continuation of clustering patterns for St > 1. We run

a few cases with 1 < St ≤ 2 and found that with low gravity effect particles like to

stick with their initial positions and somewhat distributed structures are observed in

Fig. 4.32a, Fig. 4.33a and Fig. 4.34a. As Fr is decreased, the two-dimensional layered

attractors appear as shown in Fig. 4.32b, Fig. 4.33b and Fig. 4.34b whose dimensions

decrease with the decreasing values of Fr. It shows that the gravity is still effective for

Stokes number 1 < St ≤ 2 for a given inertial range scales of turbulence.
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Figure 4.30. Attractor variation with increasing values St for γ=2.0 and t = 300s

Figure 4.31. Attractor variation with increasing values St for γ=3.0 and t = 300s
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Figure 4.32. Clustering variations at St = 1.24 for decreasing value of Fr and t = 300s

Figure 4.33. Clustering variations at St = 1.63 for decreasing value of Fr and t = 300s
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Figure 4.34. Clustering variations at St = 1.86 for decreasing value of Fr and t = 300s

4.4 Conclusion

In this chapter, the effect of gravity on inertial particle clustering and variations in La-

grangian attractor is visualised. The evolution of particles in the homogeneous isotropic

flow provide a thorough information about the clustering depending on non-dimensional

parameters St and Fr. The topological dimension of the clustering pattern varies from

1D to 3D as described by different of attractors in Fig. 4.35. Because of the KS model

(a less time-computing), we able to run a number of cases to identify the shapes of

the Lagrangian attractor. The outcomes of this chapter are summarised in table 4.3 and

these will be used to quantify the clustering patterns. We conclude this part of study as

follows:

• Particle inertia in the absence of gravity does not affect much the clustering pat-

terns which can be visualised for the given inertial range of flow.

• The variations in clustering pattern become more observable as the gravity is in-

creased for a given Stokes number. These variations are clearly different for the

various ranges of St.

• It is found that particles with very low Stokes number (St) remain dispersed in the

flow even at the high gravity. This shows that particles’ inertia should be enough

to sense the effect of gravity.

• As St is slightly increased, the particles start accumulating as a one-dimensional

attractor for some particular values of Fr. The orientation of this one-dimensional
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Figure 4.35. Different types of attractors

attractor (1D-H, 1D-V or 1D-HV) depends on Fr. It means that the effect of grav-

ity does not only change the attractors shape but can also vary its orientation for a

given value of St.

• Normally a 1D-V attractor appears at a low Fr (high gravity), but we also identi-

fied some cases with low St and Fr which produced a 1D-V attractor. This shows

that the one-dimensional attractors appear as the combined effect of gravity and

inertia.

• For some specific values of St, one type of Lagrangian attractor (1D-H) can switch

into another (1D-V or 1D-HV) with varying values of Fr.

• The one-dimensional attractors are not observed after a particular St and rather

two-dimensional curtain-like layered patterns predominantly appear with low Fr.

• The 2D layered patterns are considered as a sign of dominance of the particle in-

ertial over the gravity. It is also observed that for the heavier particles, an increase

in gravity enhances the clustering within 2D-L structures.

• Finally, we found that particles clustering persists with St > 1 with the decreasing

values of Fr and the 2D-L attractors are mostly observed.
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Froude Number (Fr) Structure
Range of St

Low range Medium range High range

∞ (gravity=0)

1D-H No No No

1D-V No No No

2D-L No No No

3D Yes Yes Yes

High Fr (Low gravity)

1D-H Yes Yes No

1D-V No Yes Yes

2D-L No No No

3D Yes Yes Yes

Low Fr (High gravity)

1D-H No Yes No

1D-V Yes Yes Yes

2D-L No Yes Yes

3D Yes No No

TABLE 4.3. Summary of Observed patterns with varying values of St and Fr
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Chapter 5

Quantitative analysis of inertial particle

clustering

5.1 Introduction

The qualitative visualisation revealed the clustering of inertial particles in the KS flow

and the different types of Lagrangian attractor were identified in the previous chapter. In

particular, we noticed the topological variations in the Lagrangian attractors according

to the observed shapes of the attractor. Beyond the simple visualisation it is important to

analyse the Lagrangian attractors using an appropriate quantification and visualisations

of the particle cloud for small discrete increments of the non-dimensional parameters St

and Fr can be tedious. In this chapter, dependence of clustering pattern on St, Fr and γ

is quantified to establish a relationship, that is we aim to determine the critical values of

the non-dimensional parameters to identify the different types of attractors.

In the previous studies, the clustering has strongly been linked to the flow conditions

and these conditions are considered as the decisive factor for the selection of quantifica-

tion method. Bec (2005) developed a statistical description of heavy particle clustering

and showed that, differently from smooth flows, particles do not form fractal clusters

in the rough flows (variable velocity). They rather distribute inhomogeneously with a

statistics that only depends on a local Stokes number. In addition to this, Bec et al.

(2007) conclusively found that the particles with same St can evolve differently by vary-

ing the length scales in turbulence. They investigated the clustering in the dissipative

and inertial ranges of scales and it is concluded that particles form fractal clusters with

properties independent of the Reynolds number in the dissipative range. On the other
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hand, the clustering is characterised by voids generation in the inertial range scales. On

the basis of flow conditions and respective clustering mechanism, the fractal analysis

methods are normally chosen when finding fractal dimension in dissipative scales while

integer dimensions are considered for the clustering variation in the inertial range.

In the present study, we use a confined inertial range of scales specified by a set of

wave-numbers. Therefore, we aim to measure the integer dimension of the Lagrangian

attractors. In order to achieve this, we first discuss the methods generally used in the

literature to quantify the clustering patterns in turbulent flow. Then we apply some of

these methods to quantify the qualitative shapes of the Lagrangian attractors. The selec-

tion of the quantification method also depends on outcomes of a particular study and for

our work, the methods find:

• The critical values of Stokes number St and Froude number Fr at which the La-

grangian attractors can be differentiated as 1D-H, 1DV, 1D-HV, 2D-L, etc.

• The anisotropic behaviour of the Lagrangian attractors i.e. the value of St at which

the switching of one attractor from a horizontal to vertical direction occurs.

5.2 Methods of quantification

A number of methods have successfully been used to quantify the clustering patterns

in turbulent flow such as Box counting method (BCM), Correlation dimension (D2)

analysis, Voronoı̈ diagram analysis, Minkowski functional analysis, Radial distribution

function (RDF) or Particle-pair correlation, nearest neighbour (NN) analysis, etc. We

briefly introduce some of these methods along with their applications. Eventually, the

quantification methods will be proposed for the final quantitative analysis by comparing

the different aspects of methods.

Starting discussion from box-counting method (BCM), this simpler method has been

successfully used to characterise the voids by identifying the number of boxes required

to cover the particle positions. Though the prime application of Box counting method

is to find the fractal dimension, it can also be used to determine integer dimension. The

method has been applied by Aliseda et al. (2002) to figure out that clustering effect is

maximum at scales of order 10ηK . The same kind of analysis repeated by Monchaux

et al. (2010) on a experimentally collected data. They found that the clustering effect is

maximum when St is about 1.

Another widely used method, to find the fractal dimension of clustering patterns, is the
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correlation dimension (D2). This method was first introduced by Tang et al. (1992) for

quantifying the relative organization of the dispersion patterns as a function of the parti-

cle time scale ratio. Since then, many researchers (Fessler et al., 1994; Hogan & Cuzzi,

2001”; Bec et al., 2007) have successfully applied this method to quantify the particle

clustering in turbulent flow. The correlation dimension (D2) is defined as the exponent of

the power-law behaviour at small scales of the probability P2(r) to find two particles at

a distance less or equal to r. In practice, D2 reveals the space dimension when particles

are uniformly distributed and in case of clusters (as a fractal patterns), D2 decreases.

Fessler et al. (1994); Bec et al. (2007) found that the correlation dimension is minimum

for Stokes numbers around unity.

When interesting in scale by scale quantification of clusters along with particle collision

rate Radial distribution function (RDF) is preferred. It is calculated as the ratio of the

probability of finding a particle pair separated by a distance r normalized by the same

probability for a randomly distributed mixture. This clustering indicator has widely been

used in the literature, also referred to as particle-pair correlation. Many studies (Chun

et al., 2005; Salazar et al., 2008; Saw et al., 2012) have applied RDF to look into the

clustering of particles with varying Stokes number and at the same time they also inves-

tigated the collision rate of particles.

Another reliable method is proposed by Monchaux et al. (2010) who used Voronoı̈ di-

agrams to quantify the particle clustering. Each particle in a Voronoı̈ diagram for a nD

space is associated with an independent cell. One cell is characterised as the collection

of close points for a particle than any other. As the volume (V) of a Voronoı̈ cell is related

to local concentration in particles, the measure of Voronoı̈ volumes illustrates local con-

centration field. Moreover, Voronoı̈ volumes also allow the Lagrangian particle tracking

to investigate the particle concentration along the trajectories. Monchaux et al. (2010)

directly linked the PDF of Voronoı̈ volumes to particle clustering. As no prior scaling is

required, one can measure local concentration for any given intrinsic resolution.

After Monchaux et al. (2010) this method of quantification is also applied by oth-

ers. More recently, using Lagrangian autocorrelation of the Voronoı̈ volume, Tagawa

et al. (2012) found that inertial particles (light or heavy) cluster significantly in the flow

structures because of the inertial bias between particles and fluid tracers. Furthermore,

Dejoan & Monchaux (2013) extended the application of this method of quantification

while considering the gravity effect on inertial particle clustering.
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Minkowski functional has been implemented by Calzavarini et al. (2008) to geometri-

cally characterise the clustering patterns in turbulence . The method is widely used in

cosmology and normally, a collection of balls of radius r is centrally positioned with

initial particle cloud. Then morphological variations are calculated indicating as the

surface, the volume, etc. and these variations in structure provide an indirect measure

particle clustering. Calzavarini et al. (2008) evidently found the filamentary and tube-

like structures of bubble and heavy particle clusters respectively. As these results only

provides the global topological indications on clustering, individual cluster identifica-

tion is not possible with this method.

Furthermore, Jin & He (2013) applied wavenumber spectra of particle concentration

fluctuations to analyse the multi-scale nature of particle clusters. These methods have

restrictive applications as a long computational time is required to resolve the flow con-

tained a number of particles. In order to quantify the clustering phenomenon, another

promising spatial analysis technique (successfully adopted by Park & Lee (2014)) is

the nearest-neighbour analysis. Using the average distance to nearest neighbour, they

found the clustering variations with respect to St and Fr in the horizontal and vertical

directions which revealed the anisotropic behaviour in the particle clustering.

Because the different methods catch different features in a data set, it is good practice to

use more than one method to analyse the data and then the results can be compared for

a greater insight into the clustering characteristics. In this regard, we have selected four

different methods to analyse the spatial distribution of the Lagrangian attractors in the

KS flow. Two of these methods (box-counting method and nearest-neighbour analysis)

have already been used for the quantification of inertial particle clustering in turbulent

flow while Lacunarity analysis and Quadrat variance are applied here as a new tool for

spatial analysis of the Lagrangian attractors. In the following section, we discuss these

methods in detail. It has been found that the results obtained using Quadrat variance

methods are very similar to Box-counting method, this method has been reported in the

Appendix A to avoid any kind of confusion.

5.2.1 BOX-COUNTING METHOD

In ordinary geometry, where topological dimension is always a non-negative integer, the

Euclidean dimension represents the number of coordinates necessary to define an object.

For instance, the Point is of Euclidean size 0; the plane curves, segment and contour, are

of dimension 1; the surfaces, disc and planes, are of Euclidean size 2 and the volumes,

a ball and sphere, are of size 3.
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In real life, dimension enclosed by a space and time frame can be considered as fractal

dimension which is different from topological dimension. The word fractal is sourced

from Latin word of “fractus” meaning discontinuous feature. Fractal geometry can be

defined as the geometry of irregular shapes where an identical pattern repeats itself on

an ever-diminishing scale. The fractal geometry is a branch of the classical geometry but

does not replace it. Rather, it is used to figure out some hidden features of object which

cannot be identified by using simple geometrical shapes. The repeated or self similar

structure are found in nature configurations like clouds, rock formation, soft tissue of

human body etc. Despite of simple outlook of these features, detailed insight observa-

tions can emphasize the fractal features.

The fact of fractal has been addressed from long time ago and described on mathemat-

ical foundation in the year 1975, when a mathematician Mandelbrot assigned the word

“fractal” to describe such that non-smooth edged shapes of self-similar characteristics

or irregular shapes. Since that time, fractals have been received more attention due to

their graphic art potential in describing some complicated shapes, for example: moun-

tains, clouds and landscapes, in fact most computers graphic techniques actually employ

a stochastic approximation of true fractal functions.

The use of the fractal analysis spread to many directions because of its relatively many

applications to various fields. One of the methods for estimating D is the box-counting

method. The box-counting method (BCM) is the most popular way of estimating the

fractal dimension because of its simplicity. The problem with this method is that it fi-

nally produced results with high percentage of error as its structure is based on the

choice of a unit square box and then select a fraction of its side length to generate the

sequence.

The box-counting dimension (BCM) is applied to any structure in the plane and can be

adapted for structures in three-dimensional space. This dimension is sometimes called

grid dimension because for mathematical convenience the boxes are usually part of a

grid. In general, the “rougher” the line, the steeper the slope, the larger the fractal di-

mension.

The fractal dimension, D, represents the relation between the box counted needed to

cover that object, N, and the box side, r, as the following relation:

N ∼ rD. (5.1)

By taking the natural log of both sides, one could get the following relation:

lnN = D lnr. (5.2)
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Then, the fractal dimension can be found as follows:

D =
∆ lnN

∆ lnr
(5.3)

This is known as the Hausdorff dimension. Examined this way, fractal dimension, D,

needs not to be an integer as it was in Euclidean geometry, it could be a fraction, as it is

in fractal geometry. So, a general definition of D, representing the fractal dimension, is

given by the following equation.

D =
∆ lnNboxes

∆ ln(1/box size)
. (5.4)

The determination of the value of the fractal dimension is depending on the algorithm

used, the range selected and the resolution of the used image. Furthermore, this D is not

an absolute measure, thus the parameters associated with the given D value should be

specified to reproduce the results for comparison case and D can only be calculated for

a deterministic fractal.

5.2.2 LACUNARITY ANALYSIS

The word “Lacunarity” extracted from the word for “lake” means a gap or pool, but in

dimensional analysis it is defined as measure of gappiness, inhomogeneity, visual tex-

ture, etc. It is usually denoted as ‘Λ’. Lacunarity shows both gaps and heterogeneity in

the pattern distribution and measures the clustering by identifying the voids. It has been

widely used in ecology, medical sciences, environmental sciences and palaeontology for

spatial pattern analysis.

Lacunarity and fractal dimension can work together to identify and characterise patterns

i.e. it is possible to distinguish between two identical fractal dimensions by using Lacu-

narity and vice versa as demonstrated in Fig. 5.1. In order to calculate the Lacunarity in

a three-dimensional space, the gliding box method is normally used. Lacunarity depends

on the size of box(scale) and for a given scale (b), it is expressed as the ratio of the first

and second moments of counts within all possible boxes of that size. The first moment

is the average sum of values in all possible blocks of size b, while the second moment

is the average squared sum of values in all possible blocks of size b. Mathematically,

Lacunarity can be mathematically be defined as;

Λ(b) =
µ2(b)

[µ1(b)]2
(5.5)

where

µ1(b) =
∑

nx+1−b
x=1 ∑

ny+1−b

y=1 ∑
nz+1−b
z=1 (∑x+b−1

i=x ∑
y+b−1
j=y ∑z+b−1

k=z di jk)

(nx +1−b)(ny+1−b)(nz+1−b)
(5.6)



5.2. METHODS OF QUANTIFICATION 64

Figure 5.1. A relationship between box-counting dimension DB and Lacunarity Λ

µ2(b) =
∑

nx+1−b
x=1 ∑

ny+1−b

y=1 ∑
nz+1−b
z=1 (∑x+b−1

i=x ∑
y+b−1
j=y ∑z+b−1

k=z di jk)
2

(nx +1−b)(ny+1−b)(nz+1−b)
(5.7)

where nx is the size of the volume along the x-axis, ny is the size of the volume along

the y-axis and nz is the size of the volume along the z-axis, while di jk is the value of

count at grid point (i, j,k). Moreover, Lacunarity results are usually presented as a log-

log plot of Lacunarity Λ and scale b. In practice, random data produces a curve which is

concave upwards, clumped data possess more gaps and results in a curve which is con-

cave downwards. The regularly spaced data produces less Lacunarity and creates a curve

initialising with a straight line. Dale (2000) and Plotnick et al. (1996) discussed the

interpretation of the Lacunarity curves with examples. Lacunarity analysis can provide

different results for the identical looking patterns, which is considered as an advantage

of Lacunarity over BCM. However, the method is not precise in determining the scale

or the patch size in pattern with known properties.

5.2.3 NEAREST-NEIGHBOUR ANALYSIS

This is the procedure of finding a nearest neighbour to every point. The nearest neigh-

bour for a given point is simply the point that is closest to it. A nearest-neighbour con-

nections matrix does not have to be symmetric as shown in Figure 5.2, because the
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nearest neighbour of one point is not necessarily the neighbour of the other point. Fur-

thermore, a nearest-neighbour network does not have to completely span the points;

usually it will not. One also has the option of specifying the number of neighbours to

connect; the standard default is one, which is the traditional nearest-neighbour network,

but one can choose to connect the closest two neighbours, or closest three, etc.

The nearest neighbour method is widely used for the purpose of clustering identification

in Planetology and Ecology. The nearest neighbour method is chosen for analysing par-

ticle clustering as it can provide a direct numerical outcome rather than graphs. In our

case, this method of quantification can easily capture the clustering pattern varies from

initial 3D-distribution to strong clusters.

Figure 5.2. Example of a nearest-neighbour network. Points are only connected to their nearest neighbours.

In recent literature (Park & Lee, 2014), the average distance to the nearest neighbour

(∆) is introduced to clearly and systematically quantify the cluster patterns. At a given

time for each particle Xm its nearest neighbour Xn is such that;

∆2
mi = (xm − xi)

2 +(ym − yi)
2 +(zm− zi)

2 (5.8)

is minimum for i = n. Then we define the average distance to the closest neighbour as

∆ =
1

Np

√

√

√

√

Np

∑
n=1

∆2
mn (5.9)

Where Xn = (xn,yn,zn) is the nearest particle’s neighbour.
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5.3 Application of quantification methods

Now we apply the three methods (discussed in the previous section) to already attained

qualitative results. Initially, a small set of data mentioned in Table 5.1 is chosen to see

the differences in the results created by applying the different quantitative methods. The

advantages and limitations of each method are identified. On the basis of these results, a

quantitative relationship is established between particle clustering and non-dimensional

parameters (St,Fr).

Stokes number Froude Number Observed Patterns

0.124 (1.34,0.717,0.600,0.490) (1D-H,3D,3D, 3D)

0.249 (1.34,0.717,0.600,0.490) (1D-H,1D-V,3D, 3D)

0.331 (1.34,0.717,0.600,0.490) (3D,1D-HV,1D-V,2D-L)

0.373 (1.34,0.717,0.600,0.490) (1D-V,3D,2D-L, 2D-L)

0.663 (1.34,0.717,0.600,0.490) (3D,2D-L,2D-L,2D-L)

1 (1.34,0.717,0.600,0.490) (3D,3D,2D-L,2D-L)

TABLE 5.1. Cases with observed patterns used for method selection

5.3.1 RESULTS USING BOX-COUNTING METHOD

The box-counting method (BCM) is a commonly used method to determine the fractal

dimension of an object. Though in our simulation the range of scales is too short to

observe the fractal patterns described in Nicolleau & ElMaihy (2004), BCM remains a

useful tool to discriminate between one-dimension, two-dimension and three-dimension

clustering patterns.

First, box-counting method is validated for three clear identified shapes, namely the

one-dimensional Lagrangian attractor, the two-dimensional curtain-like layered pattern

and a three dimensional distribution. As shown in Fig. 5.3, the difference between these

three patterns is clearly captured by box-counting method. The method is then applied

to the set of data mentioned in Table 5.1 and the results are plotted as a log-log plot

for each case between number of boxes (N) and box size (1/r) as shown in Fig. 5.4. It

is clearly evident from Fig. 5.4(b), BCM can only identify the structure with a definite

1D-V attractor with Fr = 0.717 while it misses out the 1D-H attractor (surrounded by a

cloud of particles) created with Fr = 1.34.

In order to investigate this discrepancy of BCM, we run a case with different time of
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evolution as shown in Fig. 5.5 and then, apply BCM. We found that the BCM is sensitive

to the achievement of the attractor, that is if few particles have not settled on the attractor

they can alter the box-counting results. So, with this method it is necessary to make sure

that the cloud shape is the asymptotic final one which requires a very long time. As

illustrated in Fig. 5.5: though at a very short time t = 10s the position and shape of the

1D-V is obvious, it is necessary to wait up to t = 1200s to get the final cluster position

that will allow a correct measure for the BCM.
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100

101

102

103

104

105

106

Slope=1
Slope=2
Slope=3
ID Case
2D curtainlike layers
3D uniform distribution

Figure 5.3. Bench mark for box-counting method

Limitation of box-counting method

A major problem with the box-counting method is to identify the integer dimension D

of a pattern when particles do not reach asymptotic state. Therefore, we cannot find the

significant difference in the box-counting results of two different attractors as shown

in Fig. 5.6. As mentioned earlier, in order to be accurate, the BCM must be applied to

the Lagrangian attractor. If the particle cloud has not settled on the attractor as at time

t = 10s in Fig. 5.5, the BCM will not educe the 1D patterns. So, in practice, it means

running the cases for long times until the particles have all settled on the Lagrangian

attractor. In addition to this, BCM is also incapable of finding directional variations in

the attractors.
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Figure 5.4. (a)-(f) log-log plots showing box-counting dimension for different values of St with varying Fr at t=300s,

slopes are taken between inertial range of 3.96-15.85
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Figure 5.5. Time evolution of inertial particles with St = 0.207 and Fr = 0.55

Figure 5.6. Box-counting slope for very similar cases for different values of Fr at St = 0.207
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5.3.2 RESULTS USING LACUNARITY ANALYSIS

Using Lacunarity analysis, clustering patterns in the flow can also be quantified. For this

purpose, the gliding box method is used to the distribution of particles at a given time to

see the variations in the patterns. Lacunarity analysis is found to be a useful tool to recog-

nise clearly varied patterns, but the obtained results depend on the scale. After running

a number of cases with the different range of scales, we set a benchmark for comparing

different types of attractors as shown in Fig. 5.7. In practice, a one-dimensional attractor

is represented by a straight line and a three attractor creates a curve initialising with a

straight line. In between these two extremes, intermediate attractors can be identified

by concave downward curves. Moreover, the strength of one-dimensional clustering is

determined by the slope of the line. It means that the larger slope represents the stronger

clustering and vice versa.

Now we apply the Lacunarity analysis to each case presented in Table 5.1 and a better

outcome is achieved as shown in Fig. 5.8. Regardless of the scale of gliding box b, the

curves variation matches the patterns’ dimensions as reported in the column 3 of Ta-

ble 5.1. In this way, the incapability of BCM can be overcome without achieving the fi-

nal asymptotic patterns as illustrated in Fig. 5.8(b). Contrary to the BCM, Lacunarity for

Fr=1.34 and Fr=0.717 represented by straight lines shows the strong one-dimensional

clustering and the difference in slopes confirms that how close the particles are on the

attractors. Similarly, we can also compare the blue lines in Figs. 5.8(a) and (b). It can

be observed that there is stronger clustering in case of St = 0.124 and Fr = 1.34 than in

the case of St = 0.249 and Fr = 1.34 as illustrated in Fig. 5.9.

Limitation of Lacunarity analysis

Similar to BCM, Lacunarity is also sensitive to the scale and is normally considered

as a complementary tool in the fractal analysis. The output as curves with no defined

scale is a most prominent drawback of this method. Furthermore, Lacunarity analysis

cannot identify the directionality of the Lagrangian attractors as well. Hence, we can

only use this method as an additional tool along with another established method in

order to identify the clustering patterns.

5.3.3 RESULTS USING NEAREST-NEIGHBOUR ANALYSIS

Unlike above two methods, the results of nearest-neighbour analysis does not depend

on measuring scales and can provide the singularity to the result. We get three obvious

benchmark values for the average distance to nearest neighbour.
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Figure 5.7. Bench mark of Lacunarity for different clear Lagrangian attractors

i) If the particles are homogeneously distributed as at time t = 0, then ∆ ≃ Lx/N =

1/25 = 0.04.

ii) If the particles are distributed on a surface-like attractor 2D-L then ∆ ≃ Lx/N3/2 =

1/253/2 = 0.008.

iii) If the particles are distributed on a line-like attractor then ∆ ≃ Lx/N3 = 1/253 =

6.410−5.

In practice, the method will detect a one-dimensional structure (1D-H or 1-DV) for

∆ ≤ 0.008 while 2D layered structures are observed for 0.01 ≤ ∆ ≤ 0.014. In Fig. 5.10,

the plots between Fr and ∆ for different St clearly shows the pattern variations by using

the nearest-neighbour method. Basically, there can be one or more than minimum points

for each St representing the strongest clustering. For very low Stokes number (St =

0.041), no significant variation is observed with the decreasing values of Fr and same

observation is noted in case when St → 1. Moreover, we notice that the average distance

to the nearest neighbour is saturated for low Fr values irrespective of Stokes numbers

(encircled portion in Fig. 5.10).

Using the nearest-neighbour analysis, we can easily differentiate the variations in the

clustering patterns for constant Froude number Fr as shown in Fig. 5.11. In the ab-

sence of gravity, the minimum points (at St = 0.13) indicates the insignificant clustering

while the gravity consideration decreases the average distance to nearest neighbour (∆).
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Figure 5.8. Lacunarity curves (a)-(f) for different values of St with varying Fr at t=300s
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Figure 5.9. Clustering of inertial particles with Fr = 1.34 (a). St=0.124 and (b). St=0.249
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Hence for a gravitational conditions (constant Fr), we can have strong clustering (as

represented by the very sharp dips in 5.11) by changing the particle’s inertia (St).

By comparing the results obtained from the three quantification methods, we choose the

nearest neighbour (NN) analysis as the best method to quantify the Lagrangian attrac-

tors because of a well-defined outcome. In the following section, we apply NN analysis

along with BCM to figure out the critical values of St and Fr in the following section.
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Figure 5.11. Variation in ∆ for increasing values of St for different values of Fr

5.4 Quantitative analysis of the Lagrangian attractors

In this discussion, we aim to determine the critical values of St and Fr and preliminary

apply the box-counting method for a few cases with different times till the asymptotic

patterns achieved. In Fig. 5.12, iso-contours of box-counting dimension (D) as a function

of (St,Fr) are plotted for the clusters which reached their final shapes (attractors) and it

is observed that strong one-dimensional clustering disappears for St > 0.45. Moreover,

the different coloured regions identifies the variable clustering patterns in the presence

of gravity.

For further detailed analysis, the nearest neighbour analysis is complemented with BCM

in order to reduce the computing time for each case. The method is employed to a more

systematic data (listed in Table 5.2) and each case is run for an arbitrary time of t=300s.

Iso-contours of ∆ are plotted as a function of (St, Fr) in Fig. 5.13 to see the effect

of the variations in gravity and inertia on the Lagrangian attractors. Colour-wise blue

corresponds to the 1D Lagrangian attractor, yellow-green to the 2D-L and dark red to 3D
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structures. Fig. 5.13 confirms that the clustering of inertial particles is not a monotonic

function of either St or Fr number. However, it is possible to identify regions in the

plane (St,Fr).
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Figure 5.12. Iso-contours of the attractors fractal dimension D as a function of (St,Fr).

i) There is no one-dimensional structure for St ≥ 0.5 in agreement to Fig. 5.12 .

ii) The 2D-L attractors predominantly appear at low values of Fr and with the suffi-

cient high values of St.

iii) The lower half of the iso-contours plot (for Fr < 0.9 and St < 0.4) shows that

strong one-dimensional clustering depends on St i.e. for increasing values of St

less gravity is required to achieve the one-dimensional attractor and vice versa.

Furthermore, to examine the combined effect of gravity and inertia on the clustering, we

further extend the analysis in terms of γ . A few cases with high drift parameter (very

low values of Froude number Fr → 0) are included to find the existence of attractor at

lower St. Iso-contours of ∆ are plotted as a function of (St, γ) in the Fig. 5.14 which

shows the clear blue area for low St and high drift parameter γ . So, further remarks can

be added in relation to γ as follows:

i) For low values of the Stokes number (St < 0.3), relatively high drift parameter

γ > 1.5 is required to achieve the vertical one-dimensional attractors.
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Cases Stoke Number Froude Range

A1 0.04 0.42-1.34

B1 0.1 0.42-1.34

C1 0.12 0.42-1.34

D1 0.17 0.42-1.34

E1 0.21 0.42-1.34

F1 0.25 0.42-1.34

G1 0.3 0.42-1.34

H1 0.33 0.42-1.34

I1 0.37 0.42-1.34

J1 0.41 0.42-1.34

K1 0.5 0.42-1.34

L1 0.6 0.42-1.34

M1 0.66 0.42-1.34

N1 0.83 0.42-1.34

O1 1 0.42-1.34

TABLE 5.2. Systematic data set used to quantify the Lagrangian attractors

Stokes Number (St)

F
ro

ud
e 

N
um

be
r 

(F
r)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Increase
gravity

∆

Figure 5.13. Iso-contours of ∆ as a function of (St, Fr)
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ii) For higher values of the Stokes number (St > 0.3) and gravity effects (γ > 0.8)

the 2D-L structures are predominant. This is also in agreement with Gustavsson

et al. (2014); Park & Lee (2014) whose calculations show that for large values of

St particles may cluster strongly.

iii) In short, we can say that an increase in γ for a given St can create a 1D-V or 2D-L

while an increase in St destroys the one-dimensional attractor leading to a 2D-L

or 3D attractor. As a result, we often found 2D-L attractors for high γ and St.
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Figure 5.14. Iso-contours of ∆ as a function of (St, γ)

5.5 Anisotropy of Lagrangian attractor

In the previous section, we have discovered the Lagrangian attractors in KS representing

the strong clustering of inertial particles. The shapes and orientations of these attractors

depend on the non-dimensional parameters. For a given pair of St and Fr, the Lagrangian

attractors can either settle in a horizontal or vertical direction as shown in Fig. 5.15. It

is obvious that the initial uniform distribution first converts into 1D-H attractor and then

repositions as 1D-HV and 1D-V attractors with the increasing values of γ .

Quantitatively, BCM and Lacunarity analysis are not able to capture this anisotropic

behaviour. So, another advantage of the nearest neighbour analysis is that variations

in horizontal ∆H and vertical ∆V directions can be identified separately which help to
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Figure 5.15. 2D-planar views columns (a)-(d) showing different asymptotic 1-D attractor for St = 0.207 with different

γ .

monitor anisotropic patterns. In practice, ∆H and ∆V are defined as follows:

∆H =
1

Np

√

√

√

√

Np

∑
m=1

(xm − xn)2 +(ym − yn)2 (5.10)

∆V =
1

Np

√

√

√

√

Np

∑
m=1

(zm − zn)2 (5.11)
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Fig. 5.16(a) shows the iso-contours of ∆ as a function of (St, Fr) in the region where one-

dimensional Lagrangian attractors are observed, i.e. 0.05 ≤ St ≤ 0.4. The two different

types of one-dimensional attractor either horizontal (1D-H) or vertical (1D-V) can be

further analysed in Figs 5.16(b) and (c). Fig. 5.16(c) shows the ratio ∆H/∆ where one-

dimensional attractors exist, that is when ∆ ≤ 0.008. ∆H/∆ ≤ 0.5, that is blue points,

indicates 1D-V structures; whereas ∆H/∆ ≥ 0.75, that is red points, indicates 1D-H

structures. Fig. 5.16(b) describes a similar relationship based on ∆V . So it is clear from

the points’ colours distribution that horizontal attractors are predominant for large Fr

while vertical attractors are prevalent as Fr decreased.

In addition to above analysis, we repeat a similar analysis on the basis of drift parameter

γ as shown in Fig. 5.17. There is a clear partition along the ordinate for varying val-

ues of St to identify the 1D-H and 1D-V attractors as illustrated by coloured points in

Figs. 5.17(b) and (c). For γ > 0.4, the low values of ∆H/∆ in Fig. 5.17(b) represent the

1D-V attractors and the amount of γ required to achieve this 1D-V attractor is reduced

with the increasing values of St clearly evident from Fig. 5.17(a) (downward blue area

for γ > 0.4). On the basis of the anisotropic analysis, we can define the critical values

of non-dimensional parameters differentiating the horizontal and vertical Lagrangian

attractors.

5.6 Conclusion

The effect of gravity on the inertial particle clustering is quantified in this chapter.

Though a lot of efforts have been made to identify the particle clustering during last

three decades, the researchers usually ignored the effect of external forces like gravity
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on particle clustering. We have discussed and applied different methods of quantification

to inertial particles clustering in KS. In practice, the implementation of each method has

some limitations and based on the obtained results we chose the box-counting method

and nearest-neighbour analysis to develop a final quantitative analysis.

Finally, the main quantification results are summarised as follows (and as a more syn-

thetic presentation in Fig. 5.18):

• The effect of gravity may reduce or enhance inertial particles clustering (as no-

ticed in Gustavsson et al. (2014); Bec et al. (2014)) depending on the Stokes

number. This effect can lead to strongly anisotropic clusterings (1D or 2D-L) very

clearly evidenced by the KS model.

• The 1D structure is better observed with the synthetic flow, as in real flows un-

steadiness may prevent the particles from reaching that asymptotic state. These

1D attractors move from the horizontal to the vertical direction as the Fr number

decreases.

• For our range of Froude numbers, we found two critical Stokes numbers: for St >

Stcr1 = 0.3 there is never occurrence of a horizontal (1D-H) type attractor and no

1D-type attractor is found for St > Stcr2 = 0.5.

• On the basis of anisotropic analysis, we can also deduce the critical values of

Froude numbers. From Fig. 5.18, it is observed that there is no 1D-H attractor for

Frcr1 < 0.7.

• For low values of Froude number Frcr2 < 0.5, curtain-like two-dimensional lay-

ered structures similar to the curtain-like manifolds already observed in Woittiez

& Portela (2008) are recovered as the high gravity prevents the inertial particles

from settling uniformly in the turbulent flow.
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Figure 5.18. Flow chart describing the different attractors in relation to the two critical values of St
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Chapter 6

Conclusions and considerations for future

studies

6.1 Conclusion

The clustering of inertial particles is studied here in detail using kinematic simulations.

We simulated more than a thousand of cases with different particle characteristics and

flow conditions. This became only possible because of the synthetic KS model. Our

main objective was to emphasize the importance of gravity on inertial particle cluster-

ing in turbulent flows and throughout this thesis, we related our results to the gravity

effect (Fr). As most of the prior numerical studies dealing with preferential concentra-

tion/clustering considered St as the main non-dimensional parameter, particles’ inertia

was proved to be main cause of preferential concentration/clustering. During the last

two years, we notice that the research teams (Gustavsson et al., 2014; Bec et al., 2014;

Park & Lee, 2014; Angilella et al., 2014; Jin & He, 2013; Dejoan & Monchaux, 2013)

who were only considering the particle’s inertia in the past, have taken into account the

gravity effect in their studies. As a result, we found quite a brief literature to relate and

compare our results.

At the beginning of this work, we set the goals keeping in mind the strength of the KS

model. As the Lagrangian tracking and a simpler flow velocity are the attractive features

of KS, we aimed to study the particle clustering step by step by modifying the KS Eule-

rian velocity field. Though each task is investigated and concluded in separate chapters

(Chapters 4-8), here we summarise our main findings as follows:
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• Our results are unique in terms of precision for 0 ≤ St ≤ 1 and 0.4 ≤ Fr ≤ 1.4.

Using the steady KS, we were able to define the ranges of non-dimensional param-

eters for different types of the Lagrangian attractors. In terms of dimensionality,

we found that the one-dimensional attractors exist for a specific range of Stokes

number (Stcri2 < 0.5) and Froude number (Fr > 0.7). In order to understand the

anisotropic behaviour of clustering, the one-dimensional attractors were further

categorised into horizontal and vertical attractors. It is also observed that the drift

(a combination of the inertia and gravity effect) cause the particles to move in the

vertical direction. While the horizontal attractors appear as the result of turbulence

structure in the presence of low gravity. Consequently, we observed the variable

effect of gravity on the particle clustering which is in agreement with the results

of Bec et al. (2014); Park & Lee (2014); Dejoan & Monchaux (2013); Jin & He

(2013).

• We further investigated the clustering patterns with different spectral conditions.

By applying different power laws of energy spectrum, we found the modified

ranges of St and Fr which can lead to a one-dimensional attractor. For instance,

the St range is changed from [0-0.5] to [0.4-0.85] for Fr = 0.49 as the power

law is increased from p = 5/3 to p = 2.4. This shows that the particles with high

St can strongly cluster with the modified energy distribution among the scales.

Moreover, we also introduced the Kolmogorov Stokes number as a function of

p. We found that the range of Stokes number is significantly changed by using

Kolmogorov time scale instead of integral time scale. This type of finding can

help us to understand the clustering mechanism in the atmospheric and ocean

turbulence where energy distribution follows P 6= 5/3.

• We also explored the flow structure by applying different vortex region detection

methods and then related them with the particle clustering in terms of the cen-

trifugal phenomenology. Firstly, we located the attractors in the strain regions by

applying the Q-criterion and vorticity magnitude. Secondly, we calculated the Q-

criterion and vorticity on the particles’ final positions. The distributions of these

quantities in relation to particles initial distribution confirm the appearance of

strong attractors in the strain region. Moreover, the 1D-H and 1D-V attractors also

differentiated on the basis of Q-criterion. It is noticed that the 1D-H attractors are

developed as the result of vorticity differences in the flow structure that hold the

attractor in horizontal direction. While the 1D-V attractors arise as a consequence

of a combined effect of both turbulence and gravity.
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• The effect of temporal variations was introduced to the KS model by considering

the different values of unsteadiness parameter λ in the velocity field. We found

that the particles’ clusters destroy in the unsteady flow. With the help of detailed

analysis, we were also able to detect a critical value of the unsteadiness parame-

ter (λcri = 0.2) below which one can have the 2D-L attractors. In relation to the

gravity, it is observed that the clustering in the unsteady flow is increased with the

decreasing values of Fr. This phenomenon reassures that the gravity not only af-

fects the clustering in the steady KS, but also its effect continues with the unsteady

conditions.

• Further to this, the unsteadiness flow conditions were also used to see the tem-

poral variations in the Lagrangian attractors. In this way, we could find an effec-

tive value of unsteadiness parameter for a given attractor that can destroy it. This

mechanism is illustrated by initiating the simulation from different initial posi-

tions of the particles. In this regard, we chose the attractors final positions as the

starting point of simulation and then unsteadiness parameter was increased step by

step. We found that a small amount value of unsteadiness parameter (λ = 0.001)

is enough to destroy the one-dimensional attractor. By comparing two cases with

different (St,Fr) and the same unsteadiness parameter, we noticed that a longer

time is needed to break a one-dimensional attractor subjected to the lower Fr. It

means that the gravity hold the particles together in the unsteady flow as well.

• Finally, we presented a few cases with the modified Reynold numbers by chang-

ing the Kolmogorov length scale. With these modified scales, the one-dimensional

attractors disappear for ReL > 100, but still some attractors appear whose dimen-

sions may vary from 2D to 3D.

6.2 Considerations for future works

The main goals set for this study have been achieved, but still there is a lack of physics

that made the study much simpler than actual multiphase turbulent flows. To make the

study physically more appealing, a lot of flow and particle conditions can be added. In

this regard, we list some of the future aspects of this research as follows:

• Particle clustering has been studied by using the diverse ranges of St and Fr. To

compare our results with recent studies, more work is needed for different ranges

of St and Fr.

• We used a mono-dispersed mechanism for seeding the particles and it is also
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aimed to see the difference in clustering by considering the bi-dispersed and poly-

dispersed seeding.

• The particle-particle and particle-fluid interactions are crucial features, which can

affect the clustering in turbulent flows. These features are required to be explored

in order to understand some important physical mechanisms such as, collision

rate, modification in turbulence, etc.

• The quantification methods applied for the spatial analysis are based on the final

positions of particles. It is also recommended to consider other methods having

more statistics in contrast to the box counting method and the nearest-neighbour

analysis.

• Different energy spectra are applied to the steady KS and it is observed that the

particle clustering is considerably affected by the power law variations ranged

within 1.5 ≤ p ≤ 2.5. We could apply these spectral variations to the unsteady KS

as well.

• The range of Reynolds numbers, that can result in the Lagrangian attractors, is

one of the important tasks for the upcoming parts of this study. Though we have

introduced the effect of variations in Reynolds number using a few cases, more

work is required to decide a definite range of Reynolds numbers.

• In the unsteady KS, we also initiated the simulation by choosing different initial

positions of the particles. Similar to this, we can further look into the clustering

by setting the Lagrangian attractors as a initial position in different numerical

simulations such as DNS, LES, etc.

• The homogeneous isotropic kinematic simulation is successfully applied for study-

ing the particle clustering and pursuant to this, we could also aim to set a same

kind of study using the stratified and rotating KS.
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Appendix A

Quadrat variance method

Quadrat variance analysis is applied to determine the variance of the differences

among blocks of different sizes or scales and use the pattern of the variance to determine

the scale of the pattern. The methods differ primarily in the number and distribution of

blocks being compared (the shape of the logical spatial template). For three dimensional

data set, it can be applied as either eight cubed or twenty seven cubed local quadrat sys-

tem as shown in Figure A.1 and Figure A.2 respectively.

The sum of the values sb(x,y,z) in the b× b× b cube starting at position x,y,z can be

defined as;

sb(x,y,z) =
x+b−1

∑
i=x

y+b−1

∑
j=y

z+b−1

∑
k=z

di jk (A.1)

One block is considered as pivot block with respect to others. The eight-term local

quadrat variance (8TLQV ) for the pivot block is;

Vpivot(b) =
nx+1−2b

∑
x=1

ny+1−2b

∑
y=1

zx+1−2b

∑
z=1

(7Sp −S0)
2

32b5(nx +1−2b)(ny+1−2b)(nz+1−2b)
(A.2)

where nx,ny and nz are the size of the volume along the x-axis, y-axis and z-axis respec-

tively. Because any of 8 blocks can be considered as the pivot (choice of any specific

one is arbitrary), the average value of the 8T LQV variance is calculated as;

V8(b) =
2

∑
i=1

2

∑
j=1

2

∑
k=1

Vi, j,k(b)

8
(A.3)

Similarly, we can define the local quadrat variance for twenty seven blocks system

and variance can be calculated as;

V27(b) =
nx+1−3b

∑
x=1

ny+1−3b

∑
y=1

zx+1−3b

∑
z=1

(26Sp−S0)
2

648b5(nx +1−2b)(ny+1−2b)(nz+1−2b)
(A.4)
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Figure A.1. Representation of eight-term local quadrats

Figure A.2. Representation of twenty seven-term local quadrats
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A.0.1 RESULTS USING QUAD VARIANCE ANALYSIS

We apply the 27−LT QV method to identify the clustering (Table 5.1) Fig. A.3(a)-(e).

The results shows the clear difference in the curves for different attractors (shown in-

set). The main problem for this method is very similar to the BCM i.e. only definite

shapes of attractor can be captured.
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Figure A.3. Results using 27-LTQV method for different values of St with varying Fr at t=300
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Appendix B

Matlab Script to create Q-criterion and

vorticity using velocity field
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