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Abstract 

Due to the ever-increasing global drivers focused on increasing fuel 

economy in tandem with decreasing the environmental impact of automobile 

usage; the automotive sector is rapidly embracing widespread use of 

Diamond-Like Carbon (DLC) coatings. DLC coatings have the potential to 

reduce the required level of many traditional oil additives that can negatively 

impact on both the environment and certain parts of the car engine, 

specifically the catalytic converter. Furthermore DLC shows promise with 

regards to reducing friction and can be highly efficacious at reducing wear. 

The field of research into DLC is ever-developing and many examples of 

doped DLCs exist. Currently, there is no firm consensus on which dopants 

are best to include in the DLC matrix when it is being employed within the 

automotive field. Adding to this the lack of a sufficient understanding of how 

current engine oil additives interact with DLC; the motivation for undertaking 

an in-depth analysis of both a-C:H and Si-DLC with current engine oils is 

clear.  

This thesis addresses these issues and presents evidence on how both Si-

DLCs and a-C:H DLCs interact with current engine oil additives to reduce 

wear in the engine. The fundamental tribochemistry governing DLC‘s 

interactions at the interfaces are explored with specific reference to wearing 

of Si-DLCs. Tribological experiments are undertaken to emulate certain 

conditions within an engine using both reciprocating pin-on-plate tribometers 

and pin-on-disc tribometers. A novel Si-DLC is created and tested to explore 

the effect of tri-doping on the coating. Advanced surface analysis techniques 

are used to gain a full understanding of what processes have taken place at 

the interfaces. This includes use of X-ray Photoelectron Spectroscopy, 

Secondary Ion Mass Spectrometry and scanning light interferometry. Key 

findings include the effect that Si doping has on the DLC coating with 

regards to structure, friction and wear. The fundamental observation that the 

Si-DLCs examined consistently exhibited wear at higher rates when 

compared to the a-C:H DLC is explored and tribological mechanisms for this 

are proposed.  
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 Introduction Chapter 1

 

1.1. Background and Theories 

1.1.1. Tribology 

Tribology and tribochemistry, a sub discipline of the research area, are the 

key focus of this PhD thesis. Tribology is defined by the Oxford English 

dictionary (OED) asː 

 ―The branch of science and technology concerned with 

interacting surfaces in relative motion and with associated 

matters (as friction, wear, lubrication, and the design of 

bearings).‖[1] 

Tribology is not a new subject; there is evidence that in 2400 BC in ancient 

Egypt water was used as a lubricant to aid the building of the pyramids [2]. 

However, the real beginning of tribology seems to originate with Leonardo 

da Vinci (1452–1519) who appears to have drawn a schematic for a 

tribometer and used this to observe that the resistance of friction is directly 

proportional to applied load [3, 4]. Before moving on to the crux of the thesis, 

engine tribology, it must be noted that tribology is not limited to this 

application but is in fact dealt with every day in the natural world as 

discussed by Dowson [5]. The area of tribology is ever growing in both 

scope and importance, as will be addressed further on. The term 

tribochemistry, as the name suggests (tribo meaning ‗rubbing‘ in Greek), is 

focused specifically around the chemical reactions that happen at the sliding 

interfaces [1]. These reactions can be different to the analogous chemical 

reaction that would be found without tribological influence, in terms of 

products. This makes the area of tribochemistry a challenging one to 
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conduct research in, as a variety of disciplines have to be drawn upon to 

elucidate what happens at the interface. 

Despite its widespread prevalence, the area of tribology did not come to full 

prominence within the academic world until the release of the Jost report in 

1996 [6]. The OED definition seen above itself is credited to Peter Jost, who 

identified the potential within the subject for huge savings if necessary 

technological advancements were made [6]. When the Jost paper was first 

published it was expected that if proper research focus was paid to tribology, 

savings in the GNP of the UK could equate to 1.3 – 1.6 %, which irrefutably 

represents a valuable goal in terms of cost reduction. 

 

Figure 1-1 Economic savings through tribology, as identified by Jost [6] 

 

The economic impact of effectively understanding tribology is still just as 

relevant today. Holmberg et al [7] identified that even today (paper first 

published in 2012) the modern internal combustion engine is still incredibly 

inefficient.  Direct frictional losses (with braking friction excluded) equate to 

33% of the fuel energy used – this represents a huge area for fiscal savings 

[7].  
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Figure 1-2 Energy losses in an car as identified by Holmberg et al [7] 

Further modern day drivers in the field of tribochemistry include moving 

towards greener lubricant chemistry with the goal of reducing reliance on 

(Sulphated Ash, Phosphate and Sulphur) SAPS-heavy additives, whose 

emissions and use are known to be detrimental to the environment. These 

goals have been ratified following new EU legislation on emissions [8]. The 

overriding driving force herein is to reduce the emission of greenhouse 

gases from the internal combustion engine, Figure 1-3 . Both CH4 and N2O 

are regarded as greenhouse gases, both of which can be formed from 

inefficient burning of fuel in an engine [9-11]. This is usually prevented by 

effective functioning of the catalytic convert in the exhaust where a platinum 

or palladium catalyst species is located. The catalyst is able to convert 

carbonaceous species into carbon dioxide, and convert nitrous oxide into di-

nitrogen and oxygen [12]. However, sulphated ash, phosphate and sulphur 

(SAPS) containing additives are known to poison catalytic converters, thus 

contributing to general noxious emissions and similar environmental issues 

[13]. The complete burning of fuel is particularly key as CO2 alone has a 

much lower Global Warming Potential (GWP of CO2 = 1,  CH4 = 86 and N2O 

= 268 ) than either methane or nitrous oxide [14]. Furthermore, SAPS-heavy 

additives also contribute to particulate build up within an engine that can go 

on to cause huge amounts of wear [13]. As such, a clear goal for lubricant 

chemistry is to reduce reliance on SAPS type additives and move towards 

using NOCH additives (containing only Nitrogen, Oxygen, Carbon and 

Hydrogen) in their place. 
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Figure 1-3 Increase in nitrous oxide emissions over time [9] 

 

Obviously there is still much work to be done to reach the goal of further 

decreasing frictional losses within the engine. This represents a constantly 

moving goal-post as this directly relates to an increase in fuel economy, a 

constant driver for change. One approach identified as key is the use of 

coatings which can provide low friction and wear [7]. This clearly brings the 

family of coatings known as ‗Diamond-Like Carbon‘ to the forefront of 

tribological research.  

1.1.2.  Friction and Lubrication  

The principles concerned within this thesis are the friction, wear and 

lubrication of Diamond-Like Carbon (DLC) coatings when slid against steel. 

This is of course a vast area of research and much is already understood 

about the principals involved. Friction  is of course defined as the resistance 

a body meets with moving over a counter body [15]. Lubrication is divided 

into subsets, or regimes, which are detailed in the next paragraphs. 
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The hydrodynamic lubrication (HL) regime takes place when a thin layer of 

fluid is forced through two surfaces due to viscous entrainment. The fluid is 

then compressed by the bearing surfaces which creates enough pressure to 

support the load. This lubrication system is often referred to as the ideal 

lubrication system as very low wear and friction coefficients can be obtained, 

sometimes as low as 0.001 [16].  

A subset of hydrodynamic lubrication is elastohydrodynamic lubrication 

(EHL). Usually this is associated with a thinner film thickness within the 

range of 0.5 – 5 mm. In certain areas of the contact, asperities may touch 

which allows for an increase in pressure that causes a change in the 

viscosity of the lubricant. Combining this change with the minor elastic 

deformations that can occur at the contact allows for a good space in which 

the lubricant can flow though [17]. 

Mixed lubrication is the transition between HL/EHL and boundary lubrication. 

In this instance there can be frequent asperity/asperity contacts but there will 

remain an amount of bearing surface supported by a film [17]. 

Boundary lubrication is associated with an increase in the coefficient of 

friction. This is usually due to an increase in load, decrease in speed or a 

change in the fluid viscosity.  Boundary lubrication is the regime in which 

solid asperity contacts predominate as opposed to the film of lubricant [16]. 

When in boundary lubrication regimes, friction becomes very high if effective 

friction modifiers are not employed. Efficacious boundary lubricants such as 

graphite and MoS2 form easy-shear films on the two surface that can 

effectively reduce friction [17]. 

The Stribeck curve shows the transition between regimes in Figure 1-4. The 

modified stribeck diagram relates friction to surface roughness. This in turn 

indicates which regime predominates in which contact of the internal 

combustion engine, as shown in Figure 1-5. It can be seen that for the 

applications investigated within this thesis, boundary lubrication is the most 

relevant. It not only causes the most severe wear but also is the dominant 

regime at two highly important interfaces. 
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Figure 1-4 Showing the Stribeck curve with the lubrication regimes added  to 
the appropriate area [18] 

 

 

Figure 1-5 Modified Stribeck diagram which shows the regime relevant to 
certain engine components  [19] 

 

To verify that the boundary lubrication regime is indeed the one under 

investigation some calculations were performed to find the value of λ.  

Where film thickness ratio, λ, is given by this equation: 
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Equation 1 give the lambda ratio 

 

Sigma, σ, is the root mean square roughness of the body and counter body 

in contact, given by: 

   √  
    

  

Equation 2 gives sigma. 

 

The minimum film thickness, h0, is defined as: 
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Equation 3 Minimum film thickness equation [20]. 

 

Definition of terms used above: H0 = minimum film thickness, U = entraining 

surface velocity [m/s], Ŋ0 = viscosity at atmospheric pressure of the lubricant 

[Pas], E‘ = reduced Young‘s modulus [Pa], R‘ = reduced radius of curvature 

[m], α = pressure-viscosity coefficient [m2/N], W = contact load [N], K = 

ellipticity parameter defined as: k = a/b, ‗a‘ = semi axis of the contact ellipse 

in the transverse direction [m] and ‗b‘ is the semi axis in the direction of 

motion [m]. 

The equations above were used with known values and standard data 

available for the system (pressure-viscosity coefficient for mineral oil blends 

assumed to be 0.0157 mm2/N. Ellipticity parameter, k, for point contact = 1). 

The value of lambda was then found using MatLab for the piston-ring and 

liner contact. The value obtained was λ = 0.0040, as such the modified 

Stribeck diagram shows that the system is operating under boundary 

lubrication. This confirms that the friction regime of most relevance to this 

study is boundary lubrication, as anticipated. This friction regime is the 

predominant one, occurring in the internal combustion engines at key 

contacts. Specifically, the piston ring and liner contact as well as at the 

camshaft interface. These areas are key to an engine‘s performance as 

wear at these parts can be very detrimental to the performance of an engine 

[21, 22]. Low friction in these applications is also highly sought-after to 
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reduce fuel economy [7]. Both these interfaces can benefit from being 

coated with DLC as they operate within boundary lubrication. Within 

boundary lubrication, an important aspect to consider is durability of the 

contact area where metal-on-metal, or in this case DLC-on-metal, 

dominates. Here lubricant additives are required to modulate any damage 

that occurs as a result [23]. 

Reducing friction in engines has huge potential for reducing fuel 

consumption globally. It has been shown that only 21.5% of the energy put 

into an engine is actually translated to moving the vehicle [7]. Reduction in 

mechanical losses can translate to reduction in fuel consumption [24]. One 

way to reduce friction in systems like engines is by employing DLC coatings 

with the aim to reach lower friction, as is sometimes encountered with DLC 

[25-27]. 

The rise in demand for non-ferrous coatings has demonstrated the need for 

optimisation of the lubricant that DLC interacts with. Traditional lubricant 

formulations are optimised for interactions with ferrous materials and 

therefore there is an opportunity to improve on this current situation. This is 

because DLC can be regarded, tribologically, as fundamentally different to 

steel [28, 29]. This is where room for tribochemical innovation lies, both with 

respect to the various DLC coatings and oil formulations. 

1.1.3.  Wear 

In order to fully understand wear, first a definition is required: 

―The process or condition of being worn or gradually reduced 

in bulk or impaired in quality by continued use, friction, 

attrition, exposure to atmospheric or other natural destructive 

agencies; loss or diminution of substance or deterioration of 

quality due to these causes.‖[30] 

This definition allows for inclusion not only of mechanical wear as facilitated 

by friction but also chemical wear as caused by the atmosphere and any 

reactive species generated through wearing (reactive metal ions, radical 

species). These factors are far more relevant when looking at DLC contacts 
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due to the differences in reactivity of steel surfaces and carbonaceous 

surfaces. 

Wear includes changes in surface topography by displacement of material 

without loss of that material; as well as the more commonly encountered 

type of wear, involving loss of material to induce change in surface 

topography. This definition is also wide in scope and further allows for 

wearing by chemical means to be included. Wear rate is affected by the 

contact conditions including; materials qualities, pressure, velocity, and 

lubricant. 

Wear rate is a particularly useful parameter, where the influence of time is 

included to allow for a broader picture of the system‘s evolution to be 

obtained. In almost all instances, wear starts at a higher level; this is 

sometimes termed as the ‗running-in‘ period, after which wear reduces to a 

steady, lower state. This often coincides with the formation of a protective 

tribolayer, if and when the correct conditions are met (such as presence of 

an AW additive). 

Wear is broken down into several different mechanisms. The first two of 

which are most relevant to this study, these are: ‗abrasive wear‘, which can 

be caused by cutting of bulk surface, and ‗adhesive wear‘ which consists of 

shear and transfer. ‗Flow‘ and ‗fatigue‘ are also mechanisms of wear [23]. 

Wear of tribofilms is then further broken down in a similar manner. Tribofilm 

wear can be caused by delamination, corrosion and shear fracture [31, 32]. 

Mathematically, wear can be expressed by the Archard equation [23, 33]: 

   
  

 
 

Equation 4 Archard‘s wear law 

Where ‗Q‘ represents the volume of surface removed, ‗W‘ is the normal load 

applied, ‗K‘ is the wear coefficient. ‗H‘ is the indentation hardness of the 

surface that is being worn. The involvement of H shows the relevance of 

DLC coatings with respect to wear inhibition, as DLC films can and do 

exhibit very high hardness.  However, there have been some criticisms of 

Archard‘s theory, stating that it ignores the physics and physical  metallurgy 

of the issue as well as having other weak points [34, 35]. 
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It has more recently been theorised that the Archard wear equation does not 

hold at the nanoscale for materials like DLC under certain conditions [36]. 

nanoscale wear is proposed to take place as an ‗atom-by-atom attrition‘ 

process and that chemical transition state theory has a role to play in 

elucidating wear behaviour [37, 38].   

In engines and similarly lubricated systems, wear of the surfaces can be 

reduced by facilitating the formation of a protective film, or tribolayer. In 

ferrous systems this has been historically reached by using additives such 

as Zinc dithiophosphate (ZDDP), which is explored in more depth later [17]. 

The component that potentially undergoes most severe wear within an 

engine is the piston ring; this is due the complex tribology of the system it is 

part of. That is to say the piston ring undergoes  large and fast variations of: 

load, speed, temperature and lubricant availability [19]. Priest and Taylor 

[19] note that in one single stroke of the piston, the piston ring may 

experience boundary, mixed and full fluid-film lubrication.  In fact, cylinder 

liner wear can set a lifetime on the engine as whole, due to the very-thin 

films present that lubricate and protect them [39]. Combining this with the 

knowledge that boundary lubrication is the most destructive in terms of 

wearing of mechanical parts, the piston ring represents a valuable target for 

wear protection. Metal-on-metal wear in this context can be very-high, as 

such a possible solution to this could be coating either surface with an 

appropriate DLC coating. This represents one area of focus of the thesis 

research. Camshafts are also an important engine surface that undergoes 

enhanced wear within an engine. This is most-true in the diesel engine 

where loads are typically higher [22]. In particular: pitting, polish wear and 

scuffing are the typical modes of the follower failure in diesel engines [22]. 

Due to this, camshafts as an application for DLC coatings are also briefly 

explored within the work in the thesis. 

1.2. Diamond-Like Carbon coatings 

DLC films are a metastable type of amorphous carbon with a large amount 

of sp3 bonding incorporated into their structure [40]. There are many 

attractive properties of DLC from a materials perspective that helped initial 



- 11 - 

garner interest in research into the coating as a surface treatment. These 

include its high hardness, chemical inertness and ability to confer very low 

friction and wear coefficients [41].  The earliest examples of DLC films 

appear to be those created by Schmellenmeier in 1953, as reported by 

Erdemir and Donnet [41]. DLC films are currently being used in a wide range 

of applications including the automotive sector (Formula 1 cars, Nissan 

Global), as magnetic hard disks and on razor blades [41]. A variety of DLC 

films now exist including ones made exclusively of carbon and ones with 

other dopant elements (H, Si, Ti) included [41-43]. 

 

Figure 1-6 A selection of DLC coated engine components as produced by 
Sulzer 

 

1.2.1. Coatings examined within the thesis 

The coatings examined in this work were selected with the help of industry 

experts. The low Si-DLC is currently a commercial sample that is in use 

within certain automotive companies. As such, this was viewed as an 

excellent choice for analysis. The same is true for the a-C:H DLC. The high 

Si-DLC was chosen to assess the influence that increasing Si content would 

have on the DLC. This DLC was not an industry standard but was made by 

the sample company who produce the main two DLCs tested, removing any 

differences to do with interlayers and precursor materials. 



- 12 - 

1.3. Aims and objectives 

DLC coatings are no longer in their infancy as a novel research material. 

However, there is still no accepted consensus on which type of coating to 

use at which interface, how different dopants affect the tribology of the 

system and if current oil additives are the most effective they can be, when 

applied to DLC contacts. The overall aim of this work is to investigate 

DLC/steel contacts under boundary lubrication at conditions relevant to the 

internal combustion engine. The goal of this is to gain a better understanding 

of the friction, wear and tribochemistry of the system. Key objectives of this 

are: 

 A comparison of the tribology of Si doped DLC versus non-doped 

DLC 

 Optimization doping of DLC using tribochemical knowledge gained 

 Identifying the precise mechanism by which DLCs react with oil 

additives using surface analysis methods. For instance, although 

certain key interactions are already known, such as the role SiOX 

oxides play, the mechanism of their formation is not well explored. 

 Efficacy with regards to doping of DLCs. If Si doping can activate DLC 

surfaces toward additives in the oil this could lead to greatly improved 

friction profiles, however too much activation could be deleterious to 

overall wear. This complex relationship will be examined. 

 Exploring the importance of the role a ferrous body plays when paired 

with DLC at the contact. Metallic ions may fundamentally alter the 

tribochemistry of the contact due to their well-known catalytic 

behavior. This will be explored by comparing self-mated DLC contacts 

with steel/DLC ones. 

These aims were compiled with reference to current industry standards with 

regards to both coating manufacturers and lubricant manufacturers. As such 

the knowledge gained here should help to guide the future development of 

DLC coatings as well as lubricants developed for them. 
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1.4. Structure of thesis 

The thesis is split sequentially by key research areas. This is shown in 

Figure 1-7. Initially a review of the literature on DLCs is given in Chapter 2. 

Following this Chapter 3 details the materials and experimental methods 

used throughout the project, giving justifications of the procedures used and 

specifications of the coatings as well as experimental apparatus. Chapter 4 

provides the first experimental chapter of the thesis. In this chapter three 

coatings are examined with reference to steel to benchmark the coatings 

efficacy. After this initial work Chapter 5 then goes on to examine two 

coatings over varied test durations. This work was conducted as there is a 

distinct absence in the literature of studies on the long duration performance 

of DLC coatings.  

In Chapter 6 the relationship between oil formulations and Si--DLCs 

tribochemistry is explored, the goal of which is to elucidate whether current 

oil formulations are working in synergy with the coating. Chapter 7 then fully 

explores the effect incorporation of Si as a dopant in DLC has on many 

aspects of the coating. Finally results Chapter 8 then ties together many of 

the findings of earlier results chapters by addressing one of the key negative 

aspects of Si doping, the often encountered enhanced wear. Chapter 9 

represents the discussion of the results detailed in the earlier chapters and 

ties together the findings with the aim of tackling key issues. The 

overarching conclusions of the research are then outlined in the final 

chapter, Chapter 10. 
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Figure 1-7 Chapter outline shows how the research links together, exploring 
key areas and culminating in novel findings that helps better the current 
understanding of lubricated DLC/steel contacts. 

 Review of literature on lubrication of DLC Chapter 2

coatings 

The literature review in this chapter aims to explore key works that help 

explain the tribological behaviour of DLC coatings, particularly when paired 

with a metal counter body. It will also closely examine the affect that adding 
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a doping element can have on a DLC film, with particular reference to the 

use of silicon. Structurally, the review is split so as to deal with the many 

aspects of DLC coatings and lubrication in a systematic manner.  

Firstly DLC as a whole is addressed with a brief discussion of its inception. 

This is followed by production methods, which are not explored in depth but 

must be addressed due to the effect different methods can have on the 

coatings final structure. Also at this point the first instance of dangling bonds, 

a highly relevant aspect of DLCs tribology are initially explored. 

Following this, both doped and non-doped DLCs are discussed. Particular 

reference is made to Si doping as this is a major part of the thesis. Other 

notable dopants are also included.  

Friction and wear of non-lubricated DLC contacts are then examined, before 

moving on to the more relevant area of lubricated friction and wear of DLC 

contacts. The area of lubricated friction with regards to DLC is well-

developed, therefore firm focus was made on the tribology and 

tribochemistry concerning the contact of ferrous bodies versus DLC contacts   

Finally, surface modification of DLC coatings is addressed. This area of 

research is relatively novel and as such this section is brief. 

The second half of the literature review then focuses on lubrication in 

general. This includes lubricant additives and their well-known behaviour 

with steel systems. The tribochemistry of thermal films and tribofilms is then 

compared. Finally, a summary is presented to bring together the most salient 

points reported. 

2.1. DLC coatings 

The microstructure of DLCs can vary greatly depending on several factors 

including: source material (gas, liquid or physical target) chemistry, 

deposition method and similar parameters. However, broadly speaking 

hydrogenated DLCs can be visualised as a random network of covalently 

bonded sp3/sp2 carbons with varying degree of C-H bonds included [44]. 

Although there is no long-range order to the films (hence the name 

Diamond-like as opposed to diamond, which has long range crystalline 
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order) it has been observed that there is some medium-range order of about 

10 angstroms [44]. 

2.1.1. Fundamental differences between DLC and steel 

bodies 

DLC films and steel bodies are two very different surfaces. DLC is 

sometimes considered ‗inert‘ in comparison to steel [45]. This idea can be 

explained, to some extent, when the electronegativity (χ) of the constituent 

atoms are examined. DLC is predominately made up of C and H, whose 

respective electronegative values are χ  = 2.55 and χ  =  2.20 [46]. Due to 

the small difference between these values, the surface is comparatively non-

polar. When examining a ferrous surface the typical constituent atoms are 

Fe and O, where Fe χ  = 1.83 and O χ  = 3.44 [46]. This demonstrates that 

there is a distinct difference between steel and DLC in terms of surface 

energy. DLC has a lower surface energy than steel, however this can be 

manipulated as shown in Table 2-1 [47].  

Table 2-1 Surface energies of various DLCs compared to steel [47]. 

Classification Polymer metal F-
DLC 

Si-DLC Si-
DLC 

Non-
doped 
DLC 

Material Poly 
tetra 

flouro 
ethylene 

Steel 

(1000Cr6) 

C2H2 
+ 

C2F2 

C2H2 + 

HDMSO 

C2H2 

+ 

TMS 

C2H2  

Surface energy (mN/m) 18.5 >1000 19.9 24.2 31.2 41.3 

 

Surface energy is an important factor when considering interfaces within an 

engine as many important additives, specifically friction modifiers, have polar 

head groups with which they interact with the surface [48]. Additives like 

Glycerol Mono-oleate (GMO) and similar fatty acids have been reported to 

rely upon tribochemical reactions with metallic surfaces, as reported by 

Bowden, Gregory and Tabor [49]. As DLCs typically lack metallic 

components (unless otherwise doped) this could also affect the 
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tribochemistry of the system. However, this effect does not prevent tribofilm 

formation [43, 50, 51]. 

2.2. Production techniques for Diamond-Like Carbon 

Coatings 

A variety of methods exist for producing DLC films. As there are many 

different production techniques for DLC films, focus is drawn to the 

technique used to produce the films employed experimentally. The coatings 

used for this research are produced using the PECVD technique, a subset of 

PVD.   

Currently, PVD is the most common technique encountered with regards to 

creation of DLC films, having largely superseded CVD (chemical vapour 

deposition). CVD being a method that  relies on more reactive chemical 

species that are combined in a chamber for film formation, often by reduction 

or thermal decomposition [52]. CVD has specific disadvantages including the 

necessity of some highly-reactive precursor chemicals, certain noxious 

emissions and the use of very high temperatures (up to 1800 °C) [52]. 

The PVD technique in comparison is a more flexible method allowing for a 

different range of temperatures (from sub-zero to 400 °C) as well as control 

over other important variables that can effect film structure, such as bias 

voltage [41]. Furthermore, PVD is also a faster technique when compared to 

CVD, offering accelerated deposition rates [53]. PVD can be used to 

produce DLC films that are almost entirely carbon by using a solid graphite 

target. This is done using a plasma of an inert gas such as argon.  These 

films, ta-C or a-C typically exhibit very high harnesses‘ [54].  
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Figure 2-1 A schematic of the various methods used to produce DLC [2]. 

 

The PVD technique can be modified to also employ precursor  materials 

(such as acetylene or toluene) thus allowing for manipulation of the final 

hydrogen content of the film. This modification is typically referred to as 

PECVD (or in some instances Plasma Assisted CVD) which is a hybrid of 

PVD and CVD technologies. The plasma used is created from a reactive gas 

in place of argon. This reduces the need for very high temperatures as the 

vacuum facilitates the lower temperature deposition process [53]. The 

PECVD method employed for the synthesis of the DLC coatings used in this 

project generates a cold plasma with both the chamber and substrate acting 

as the electrodes.  

DLC coatings can be deposited on a wide range of substrates, as a virtue of 

the lower operating temperatures associated with PVD. To maximise the 

adhesion of the coating to ferrous substrates, interlayers are often 

employed, one of which can be Si based. Adhesion is covered in more depth 

later in the review.  
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2.2.1. Adhesion of the coating to the substrate 

Adhesion can be a problem with regards to DLC coatings on certain 

substrates. DLC coatings are able to form strongly bonded carbide and 

silicide layers which then enables enhanced coating adhesion to more 

commonly encountered materials such as ferrous surfaces or ceramic 

bodies [41]. The use of this strategy enables the coating to be deposited on 

a wider range of substrates. As such DLC coatings are often encountered 

bonded to metallic surfaces via an interlayer of SiC or TiC [41]. One such 

interlayer is shown in Figure 2-2. Several elements can be used for this 

purpose: Ti, Si, W and Cr with cost influencing which type to employ within 

which application. The elements listed are able to form stable compounds 

with both the metal substrate and the DLC, thus maximising adhesion [41, 

55].  

 

 

Figure 2-2 Interlayer structure of a-C:H DLC film (courtesy of LEMAS). 

 

The ability of a DLC coating to adhere to its substrate is crucial to the 

performance of the film. If the coating cannot adhere strongly to the steel (or 

similar) surface it is deposited on it will very quickly delaminate, which is 

viewed as coating failure [56]. Poor adhesion is typically caused by weak 
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bonding between the DLC and the substrate, as addressed previously. It can 

be caused by the presence of residual stresses in the film post deposition 

[57].  

Si based interlayers are often employed to ensure the DLC is firmly bonded 

to the substrate.  This type of interlayer will be explored in more depth as it 

can complicate the research on Si-DLCs, as an Si-doped DLC will 

intrinsically have better coating adhesion than a non-doped DLC without an 

interlayer present. An example of this is given in the graph in Figure 2-3. SiC 

incorporation increases critical load (as tested by scratch testing) to in 

excess of 50 N compared with less than 20 N for the non-SiC coating [58, 

59]. The interlayer here is a composite of an initial Si layer followed by a SiC 

layer which is believed to maximise film adhesion [58]. 

 

 

Figure 2-3 Data showing  incorporation of SiC increasing coating failure 
resistance [58] 

 

It is also noted that DLC adhesion is improved when an initial amorphous 

silicon layer is deposited on another metallic surface, a Ti6Al4V substrate. 

This effect was independent of surface morphology, with no differences in 

adhesion being observed over varying surface roughness values [60].  
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From this it is possible to see that Si-doping is an effective strategy to 

increase film adhesion. Furthermore, Si adhesion layers can be incorporated 

using cheaper precursor materials, such as silicon-containing organic 

reagents. This is opposed to the alternative of expensive, very high purity 

metals such as Ti and W. However, it must be noted that other approaches 

exist to combat adhesion problems, such as altering substrate bias to 

increase critical load [61]. Additionally, other factors exist that negatively 

affect coating adhesion, such as greatly increased coating thickness [62].  

 

2.3. Dangling bonds 

Dangling bonds are widely discussed in the literature concerning DLC. 

Having briefly discussed production methods a review of dangling bonds 

logically follows on from this. Dangling bonds can form at various stages in 

the lifetime of DLC coatings.  

Primarily however they appear as nascent DLC is removed from the 

production chamber [63-65]. This nascent DLC is surface-rich in carbon 

dangling bonds that then are able to react, or be passivated, by molecules in 

the air. This results in the formation of –OH and –H terminated carbons [65].  

These species are known to play a key role in friction [27, 41, 65]. Dangling 

bonds can be circumvented if a thermal annealing process is employed post 

production. This suggests a rearrangement of the DLCs microstructure 

occurs upon heating [64].  

A dangling bond is defined as being an immobilised carbon atom whose 

valance requirements are not fully satisfied. Chemically, the species would 

be viewed as a radical; these species are known to be highly reactive. If 

carbon dangling bonds are analogous with those found in similar silicon 

structures: it can be expected that  the electron wave function is largely p-

like as found in Si [66]. It can also be expected that 50-80% of the electron 

density is on the central atom, the rest being back bonded to a neighbour. 
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Figure 2-4 Illustration showing how dangling bonds are passivated in H-DLC 
from [8]. A) shows a super-hydrogenated DLC with di-hydrogenated surface 
carbons which enable greater chemical inertness. B) Shows the more usual 
case of mono-hydrogen terminated DLCs. 

The presence of dangling bonds has been widely reported in DLC and 

similar materials [64-70]. One of the key elements affecting friction within 

self-mated DLC contacts (particularly in vacuum and non-lubricated 

contacts) is the reactivity of dangling bonds. Erdemir [69] observed that prior 

to allowing reactive moist air in to a test chamber dangling bonds are able to 

form strong covalent interactions with the atoms of mated materials. This 

causes high adhesion and friction. Also noted was that once moist air was 

allowed into the test chamber these dangling bonds are ‗quenched‘ or 

‗passivated‘ by water molecules or oxygen present in the laboratory air. 

Erdemir [69] goes on to suggest that DLC surfaces sliding in an inert gas or 

vacuum have the species that were adsorbed on the dangling bond sites 

removed, possibly due to mechanical wear or thermal desorption. This re-

exposes the sigma bonds and correspondingly raises friction values.  

The highly hydrogenated DLC tested by Erdemir [69] has the opposite 

tribological profile. Super-low friction is observed for the dry sliding of the 
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DLC and this is attributed to the removal of the possibility of strong covalent 

and π–π* bonding at the interface as depicted in  Figure 2-4. The opposite 

tribological behaviour is observed when laboratory air is introduced to the 

test chamber. Super-low friction immediately ceases and μ values rises to 

0.06, which the author attributes to the development of capillary forces 

around the real contact spots. The friction trace of this experiment is shown 

in  Figure 2-5. 

 

Figure 2-5 Erdemir's comparison of H and H-free DLCs in different 
environments, with moist air being allowed into the test chamber at just 
before the 2000 second mark [69]. 

 

As yet it is unclear whether, at the sliding interface, passivation becomes a 

dynamic process; a cycle of bond cleavage and bond forming which affects 

friction and wear. The alternate case being that passivation could only be 

relevant during the ‗running in‘ period of any sliding contact. The most likely 

cases being the former as the inevitable consequence of wear is that some 

additional dangling bond sites will be created, thus ensuring that dangling 

bonds are always present. Dangling bonds must behave very differently in 

lubro due to the amount of species present that they can react with; this 

could in fact potentiate the formation of tribofilms on DLC. This is directly 

opposed to a metallic surface whereby the metallic structure (specifically the 

presence of delocalized electrons) does not allow for dangling bond 

formation.  
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Yamauchi  et al [65] employed Electron Spin Resonance (ESR), a technique 

which is only sensitive to unpaired electrons, to follow dangling bond sites 

(DBS). This showed that in vacuum conditions the DBS are quite stable. 

They do not decay when held under vacuum at room temperature for several 

hours. However, they do decay rapidly on exposure to air, a result of 

passivation [65]. Yamauchi [65] et al also looked into the effect of source gas 

chemistry on the prevalence of DBS in the DLC coatings produced. The 

results indicated that there is a strong link between unsaturated π bonds in 

the precursor molecules (e.g. acetylene) which are involved in the formation 

of DBS when plasma enhanced chemical vapour deposition (PECVD) is 

used as the production technique. Also the group showed that DBS are 

highly tenacious as long as they are contained in vacuum conditions. This 

indicates that all the DBS are immobilised. As, if the sites were not 

immobilised they could re-combine with each other and thus passivate the 

dangling bonds. However, upon exposure to air the intensity of DBS 

markedly drops, due to the reaction with oxygen. Yamauchi‘s [65] 

investigations into passivation of DLC draws parallel conclusions to those 

drawn by Tsu et al [67] who looked at a-Si films produced by molecular-

beam deposition. Tsu et al [67] passivated the DBS of Si using different gas, 

including fluorine, with success. Yamauchi et al [65] go on to suggest there 

are two types of DBS, classified by their behaviour in oxygen/air.  The DBS 

can be categorised as either ‗reactive‘ or ‗non-reactive‘ DBS, as depicted in 

Figure 2-6. 
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Figure 2-6 Two types of Dangling Bond Sites in DLC films (DBS) 

 

This is also outlined by Tsu et al [67] for a-Si films. Yamauchi  et al [64] 

supports the hypothesis with evidence of the DBS intensity decreasing to a 

limited value in air. The reactive sites are suggested to be reactive due to 

being close to the surface of the coating. This makes them easily accessible 

by molecular oxygen, the converse being true for the un-reactive sites which 

are sterically protected from reactive molecules in the air. 

In a later work, Yamauchi et al [64] explores the process of heat treating (still 

under anaerobic conditions, 150 °C for 6 hours) of DLC coatings so as to 

purposefully decay the DBS. After annealing, the film produced did not 

include any type of oxygen atoms when analysed by XPS, also the 

hydrophobicity of the surface was increased [64]. This suggests that the 

DLC is able to alter its internal microstructure to quench the dangling bonds 

without the need for external reactants. 

Konicek et al [70] suggest that the origin of ultralow friction is in fact from the 

passivation of dangling bonds in DLC type films and coatings. The 

mechanistic explanation for this is that a cycle occurs whereby: mechanical 

stress causes bond breakage and passivation follows this as gases like 

water vapour create –OH and –H terminated species. The low friction and 

wear observed is attributed to this cycle. The group performed 

comprehensive analysis using a variety of analytical techniques, including 
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NEXAFS (Near Edge X-ray Absorption Fine Structure), of 

ultrananocrystalline diamond as a model for DLC. Intensity of the C=O and 

C-H bonds in the worn area of tested samples in some cases increased by 

as much as 205%. It is suggested that this is evidence that dangling bonds 

were produced and passivated by air. The group also observed that ordered-

graphite is not formed in the wear scar; an often proposed mechanism for 

super lubricity in DLCs. NEXAFS is thought to a more accurate technique 

than TEM-EELS for detecting graphite [71].  

Passivation can also be manipulated to functionalized certain DLCs. Labile 

molecules can passivate carbon centred dangling bonds on DLC in addition 

to molecules in the air. This can only occur if the nascent DLC film is 

protected from air post production and exposed to a different species to 

oxygen [63, 72]. Tribologically it would be useful to establish if, when the 

dangling bonds are passivated with either C or H, as opposed to O species, 

this friction increase is conserved. As O species will typically be polar and 

increase body/counter-body interactions replacing these with –H terminated 

surfaces could result in lower friction. Similarly, using F to terminate the 

dangling bonds could also affect this change. Ideally, passivation could 

occur with a tribochemically useful element, such as sulphur, could then 

influence the reactivity of the surface with lubricant additives. This alteration 

could potentially mitigate some aspects of running-in wear. 

2.4. Non-doped DLC (ta-C, a-C:H) 
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Figure 2-7  Phase diagram of DLC adapted from [73] 

 

Non-doped DLCs would be the classification that applies to the two main 

types of DLC films; these are; hydrogenated and non-hydrogenated. These 

would both be regarded as non-doped as dopants in this sense typically 

refer to other (Ti, Si, W, and F) elements. The degree of hydrogenation 

within the DLC can affect various qualities of the final coating produced, as 

shown in the phase diagram above. This will be discussed in more depth 

later. Although amorphous carbon films are often reported in the literature, 

these films too must inevitably have a small amount of H and OH within 

them. This is due to the passivation of dangling bonds swiftly following 

manufacture of the film [41, 63-65, 69].  

The degree of hydrogenation affects the microstructure of the coating and 

many other properties. ta-C coatings tend to be the hardest of the DLCs 

produced and show low wear, however they often cause higher wear of 

counter bodies [55]. Hydrogenated DLCs are softer and typically show lower 

levels of internal stress [41, 74, 75]. 

 

2.5. Doping with Si 

Doping DLC coatings with silicon or silicon and oxygen is currently an active 

area of research as summarised in Table 2-2. Many Si-DLCs have been 

created that consist of varying amount of silicon, often with a co-dopant of 

oxygen. This has many effects on the coating produced. One of the most 

explored affects is how Si influences the bonding on the DLC. 

2.5.1. Si-DLC versus Si, O DLC 

There are many examples of doped DLCs, all created with the goal of further 

enhancing a particular attribute of the DLC coating. One widely explored 

dopant is Silicon. Silicon-doped DLC has garnered a lot of interest as it can 

affect the coating in various ways, this includes; sp3 content of the DLC, 

affecting better coating adhesion and lowering dry friction coefficients [25, 

26, 58, 59, 76-82]. Many examples of differing Si-DLCs exist and there are a 
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variety of ways to produce these films. Addition of silicon into DLC films can 

most easily be achieved by using a siloxane compound, a stable silicon and 

oxygen containing precursor [83]. If siloxanes are employed the film 

produced will have noticeable oxygen content, due to the Si-O-Si motif, 

which will further affect the films composition. Si-DLCs can be prepared from 

silanes, exclusively silicon and hydrogen-containing compounds, if oxygen 

content is not desirable.  

There is also no current consensus on the optimum amount of silicon to 

incorporate into Si-DLCs for best performance. In one study when various % 

doping of silicon were tested an optimum of 6.6 at% was found to be best for 

wear resistance [84]. However, to best reduce internal stresses of the DLC 

an optimum of 1-2 atomic % was established.  This parameter is to be 

examined experimentally herein by testing two different Si-DLCs. 

Author Deposition 
method 

Precursor Friction Wear Si-O 
species 

Iseki [85] PACVD TMS/ 
Methane/ 

H2 

Not tested Not 
tested 

Non 
detected 

Kato [86] PACVD TMS/ H2 Not tested Not 
tested 

Silanol (Si-
OH) 

Kim [77] RF PACVD Benzene/  
Silane/ H2 

(air) 
Friction 

coefficient 
decrease 

with 
increasing 

silicon 
content 

Wear 
increased 

with Si 
content 

Low 
friction 

attributed 
to silicon-
rich oxide 

debris 

Oguri [26] PACVD SiCl4 / 
Methane / 

H2 

Friction 
(air) μ = 

0.06, (N2) 
μ = 0.03 

Not given Silicon 
oxide/ 

silica sol 

Pham [79] RF PACVD Composite; 
Silane 

upper layer 

(air) 

μ = 0.02, 
1/3 of un-

doped  

Higher 
wear rate 
that un-
doped  

Si-O 
containing 
tribofilm 
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Table 2-2 Overview of current literature on Si-DLC 

 

Due to silicon‘s typical reactivity, whereby it does not readily form stable 

double bonds with carbon, Si can influence the sp ratio within a DLC film. It 

can also affect the coating‘s surface energy by enhancing wettability [29]. 

Doping with silicon can be regarded, to some extent, as a double-edged 

sword. This is because with increasing silicon concentration, the films tend 

to exhibit lower hardness [82]. 

2.5.2. Source material affects 

There are several strategies by which Si can be incorporated into the DLC 

matrix. Commonly, the PECVD technique is used with various organosilane 

compounds. Oguri and Araia [26] produced one of the earlier examples of 

Si-DLC using silicon tetrachloride (SiCl4) with methane. The tetrachloride 

was presumably used as it is easier to handle, being a liquid having a history 

of being used to yield high quality silicon. However, using SiCl4 as a silicon 

precursor for Si-DLCs inevitably results in a large proportion of chlorine 

being incorporated into the film. This results in creation of a dually doped 

system, a factor which was not accounted for in the paper [26]. The film 

produced was exclusively characterised with Fourier transformed infra-red 

spectroscopy, a technique which is known to be insensitive to Cl-C bonding. 

Following this, various other silanes were used to create Si doped DLCs. 

Source gas chemistry has been identified as highly influential in terms of the 

Si-DLC produced. Iseki [85] notes that when Si-DLC is prepared from 

Moolsradoo 
[78] 

Plasma 
based Ion 

implantation 

 

Acetylene/ 
TMS/ O2 

(Air) 34% 
at. Si 

μ = 0.04, 
25% at. Si 
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greater 

μ 

Wear 
increases 

with 
annealing 

in 
argon/air 

Silicon 
oxide layer 

Veres [87] RF CVD Methane or 
TMS or 
HMDSO 

Not given Not 
Given 

O 
sequesters 
Si from the 

coating 
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silanes exclusively there is a large fraction of both Si-C and Si-H bonding. 

Also established was that hardness increased as Si content increases, a 

finding which is at odds with some other research published [28]. 

Furthermore, increasing Si content resulted in decreased sp2 clustering 

within the film. Kato et al [86] compares silane based Si-DLC and non-doped 

DLC, with a range of 4 – 17% Si content. When examined, the Si-DLCs 

exhibit the presence of silanol on the surface. It was noted that there is no 

absorbed water on the non-doped DLC‘s surface, however for all Si-DCLs 

there is an adsorbed layer present, this shows Si-DLCs affinity towards 

oxygenated compounds. Additionally, Kim et al [77] examined Si-doped DLC 

created from a silane precursor and tribotested it under ambient conditions. 

Low and stable friction was observed and was attributed to the formation of 

silicon-rich oxide debris. Finally, Pham et al [79] investigated a silane based 

DLC and found that when tested in ambient conditions evidence of both Fe 

and Si oxides were noted and that the Si-DLC had higher wear than non-

doped DLC. 

When Si, O containing precursors are used a change in the coating structure 

occurs. FT-IR suggests that the dominant form of Si in the film is as a Si-O 

network with a smaller fraction coming from Si-C bonds thus affecting the 

coating‘s microstructure [78]. This trend was also identified by Veres et al 

[87], in that the presence of oxygen decreased the amount of Si in the 

carbon matrix.  

 

 

Figure 2-8 HMDSO, a common siloxane used to create Si, O doped DLCs 

 

The inclusion of a large proportion of oxygen must be acknowledged when 

examining the Si, O-DLCs derived from siloxanes as they can affect the film 

in a variety of ways. It has been noted that the Si-O backbone can survived 
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the PECVD process, thus disrupting the DLCs microstructure [78, 87, 88].  

Furthermore, inclusion of oxygen with Si will affect the coatings proclivity to 

react with atmospheric oxygen [43]. 

2.6. Other notable dopants (F, Ti, W) 

Silicon is a very-widely used dopant for DLCs. However, other elements are 

also used prominently within DLC coatings. These include, but are not 

limited to, fluorine (F), titanium (Ti) and tungsten (W). There are varying 

motivations for using these elements as dopants. Doping with fluorine is 

typically performed to reduce surface wettability of the coating [47, 89]. This 

goal is most likely motivated by the desire to create a surface more like 

PTFE with its non-stick properties. Some examples in the literature exist 

where fluorine has been incorporated in a dopant system with other additive 

elements to create novel DLCs with unique properties, in one instance an a-

C:H:Si:O:F DLC was created which was tribotested against an aluminium 

counter face [25].  

It was found that F was able to transfer to the counter body to form AlF3 and 

that F species also act in a passivating manner at carbon surfaces. 

Meanwhile, the Si dopant is able to facilitate low friction. The authors go on 

to explain a possible mechanism by which low friction is facilitated through F, 

H and OH, as shown in Figure 2-9. 

 

 

Figure 2-9 Proposed low friction mechanism of novel DLC [25] 
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However, the proposition that ‗easy-shearing‘ is facilitated by repulsive 

interactions from H, F and OH seems highly unlikely due to the well-known 

propensity of –OH and –F species to from hydrogen bonds, leading to strong 

surface-surface interactions, not the ‗repulsive interactions‘ postulated by the 

authors [90]. Therefore it would seem another mechanism is in operation. 

Doping with metallic elements is typically done with differing outcomes 

envisaged. Inclusion of Ti in DLCs microstructure has been shown to 

improve the ability of the DLC to adsorb tribologically relevant elements, 

particularly P and S [42, 91]. 

Kalin et al  hypothesis this enhanced adsorption is due to an increase in 

surface oxygenation [42]. This theory would explain well the increased 

affinity for traditional lubricant additives with these specific types of DLCs as 

they are tailored to work with ferrous surfaces which have inherently oxide 

rich surfaces. 

Doping DLCs with either W or Mo is a goal often pursued within the literature 

[29, 92]. Mo can influence the DLC film in several way including: lowering 

internal stress and imparting better coating adhesion [92]. Doping with Mo 

and W has also been shown to increase the films thermal stability [93]. 

Interestingly, where Mo/W DLC films are tested in formulated oils containing 

EP/AW additives no formation of MoS2 or WS2 is noted [29, 42].  In fact, 

even when W-DLCs are tested with MoDTC, the exclusive FM species 

produced is still MoS2 [94]. This is noteworthy as MoS2 and the analogous W 

species are well known friction modifiers. If a DLC can be created that is 

able to react with lubricant additives at the surface to produce FM species 

this would be a hugely useful coating. It would result in a reduction on the 

dependence of the friction performance on the lubricant additive package.  

2.7. Surface functionalization of Si-DLCs 

One research group has already attempted to exploit the presence of 

dangling bonds and their inherent reactivity with oxygen. Choi [95] et al 

created self-assembled monolayers (SAMs) on -OH terminated Si-DLC 

surfaces using a silicon substrate.  
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Figure 2-10 SAM layers on DLC [36] 

 

The process was carried out by dip coating of the DLC coupons. The group 

found that the treated DLC out-performed untreated DLC in un-lubricated 

conditions. This is presumably as the long chain SAM incorporated onto the 

DLCs surface can initially act so an immobilised friction modifier, until it is 

removed by the wear process. A variety of similar self-assembled 

monolayers have been created on DLCs [96]. 

2.8. Friction and wear of DLCs 

2.8.1. Lubricated Friction of DLCs 

The role dangling bonds play in the vacuum and dry sliding friction of self-

mated DLC films is key to the overall friction profile. However, when sliding 

against a metal contact or in oil lubricated conditions the friction profiles can 

change dramatically as dangling bonds have far less of an influence in lubro.  

In some cases, when lubricated DLC is used in a self-mated contact the 

enhanced lubricity associated with dry-sliding DLC can be maintained [27, 

97, 98]. This is especially true when using lubricants rich in –OH 

functionalities [97, 99]. However, for most applications, particularly 

automotive ones, coating both bodies with DLC is an unrealisable goal for 

many reasons; including cost and the difficult shape/geometries of certain 

engine parts. As such, self-mated DLC contacts will not be explored in-depth 

within this review. 

http://www.sciencedirect.com/science/article/pii/S0301679X02001998
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Figure 2-11 Friction behaviour of various DLCs mated with steel counter 
bodies [29] 

 

Various non-doped and doped DLCs (Ti, W and Si) mated with steel counter 

bodies do not show the very low friction often associated with self-mated 

DLCs as given in Figure 2-11. In fact, the coefficients of friction amongst 

these samples are fairly similar, suggesting a different factor is now dictating 

the friction of the system.  Further to this, when DLCs are tested against 

steel surface in the presence of ZDDP and MoS2, as shown in Figure 2-12., 

the friction performance does not show a large difference from that of 

steel/steel tribopairs [100].                                                                                                                                                                           

 

Figure 2-12 Various DLCs against steel in friction modified oil [100] 

 

It can be seen that the MoS2 friction modifier species is formed and does 

work with DLC coatings, however the performance of the tribopair does not 
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offer much of a benefit in terms of friction reduction compared with the 

steel/steel system [100]. Even when water is used as a lubricant (with a 

bearing steel ball as a counter a body) both the silicon-doped and non-

doped DLCs have higher than may be expected friction coefficients,  as 

shown from research findings in  Figure 2-13. 

The friction results in Figure 2-13 give a good indication of the values in the 

literature for lubricated DLC contacts. It can be seen that the DLC coating 

can exhibit excellent friction profiles but that there is still a need for greater 

understanding and development of the tribochemistry of the system, 

especially at DLC/steel contacts. 

Figure 
2-13 Friction performance of Si-doped and non-doped (S-0 represents a-
C:H) DLCs in water [17] 

 

Current lubricant blends are not tailored towards the DLC coatings and thus 

do not work as well as they perhaps could. It appears that, under the 

conditions explored in the literature, the most influential factor with regards 

to friction is the lubricant.  

Importantly, the boundary lubrication of DLC can be improved by inclusion of 

certain metallic dopants to the coating [28, 79, 91]. Miyake et al [91] tested 

three metal dopants (Ti, Mo, Fe) and of the three tested Ti showed the 

lowest friction with MoDTC containing lubricant as well as giving evidence 
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for a tribochemical reaction at the interface.  Certain metals have been 

shown to mediate the GMO-DLC synergy when considering hydrogen-free, 

metal doped DLC. It was found that boundary lubrication of DLC films was 

improved when certain metals (Co, Ce, Mg) were added, in particular Co 

showed very low friction (µ = 0.02) [101]. It would be useful to know how this 

low friction was facilitated. Metals are known to interact with certain 

lubricants, or additives, as explored by Bowden, Tabor and Gregory [49]. 

Metal ions are can react with fatty acids to form lubricious metal soaps. This 

affect could be playing a role here. However, the author does not expand on 

the mechanism. 

 

2.8.2. Dry sliding of Si-DLC contacts 

The dry lubricated Si-DLC contact has been widely explored experimentally. 

Typically, Si-DLCs at non lubricated contacts exhibit friction coefficients far 

lower than non-doped DLCs [79, 80, 102, 103]. Many mechanistic studies 

have been centred around finding the cause for the observed low friction; 

although there is not yet enough evidence to make a firm conclusion on the 

origin of the enhanced lubricity of the film. It would however appear that the 

formation of silicon oxides play a key role. Many authors note that when 

analysing the worn area with a variety of spectroscopic techniques there 

tend to be a large increase in the amount of various SiOx type species [26, 

77]. These species could affect friction through several mechanisms. One 

paper explores the low friction mechanism in some depth by comparing the 

friction obtained from a-C:H:Si:O:F doped DLC (paired with an Al counter 

body) with that of a silicate glass. The silicate glass gives far higher friction 

than the DLC in this instance and the authors use this as evidence that the 

SiO2 species alone is not what influences the friction but rather the Si and O 

within a DLC matrix [25]. 

2.8.3. Lubricated Si-DLC contacts 

Although Si-DLCs are known to have excellent friction profiles when in either 

vacuum or dry sliding conditions, this can change radically when a lubricant 

is employed with the DLC. As shown above in Figure 2-11, the coefficient of 
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friction of Si-DLCs when tested in various oils does not show the large 

reduction in friction associated with dry sliding Si-DLCs. 

 

2.8.4. Wear trends with Si-doped DLCs  

As already covered briefly, the wear of silicon doped DLCs tends to be 

higher than that of non-doped DLCs. The general rule being; increasing the 

% atomic doping of Si within the coating results in increased wear [76, 77, 

79, 84, 104]. Although there is some discourse about this in the literature as 

inclusion of Si also tends to increase film adhesion, therefore a poorly 

adhered a-C:H DLC may be outperformed by an analogous DLC with  a 

small inclusion of Si dopant [88, 102]. Several papers have explored the 

tribological basis of this in varying degrees of depth. Many authors note the 

presence of silicon rich oxide debris, SiOx particles or silica-sol type particles 

[43, 77, 79, 105]. Wear trends as identified in the literature are given in Table 

2-4. 

2.9. Lubricant additives and oil packages  

A problem encountered when lubricating DLC coatings is that, due to the 

relatively inert nature of DLC when compared to traditionally ferrous 

materials; knowledge gained on steel/steel tribological contacts cannot be 

directly applied to DLC [106]. Where metal components can easily adsorb 

lubricant molecules onto their surface, DLC coatings have a low surface 

energy which makes this process harder [107]. For metal-lubricant chemistry 

there is a chemical driving force whereby the polar groups of lubricant 

additives such as certain –OH, -COOH and –NH groups can make 

favourable interactions with the polar, metal surface [49]. 

Certain specific oils have shown promise when their lubricating properties 

have been tested on DLC coatings. When glycerol is used as a lubricant on 

hydrogen free ta-C the friction coefficient obtained by Matta et al [98] was 

below 0.01 at steady state. This super-lubricity regime was attributed to 

‗easy glide on triboformed OH-terminated surfaces‘. The authors go on to 
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further explain that this could be due to the breakdown of glycerol in to its 

constituent acids and water. 

This then allows for the long organic chain usually associated with these 

molecules to orientate the fatty chain into the oil, thus satisfying 

thermodynamic requirements [108].  DLC however is not as polar as its 

corresponding metal counterparts [48, 63, 109]. 

Table 2-3 Overview of literature of lubricated Si-DLC contacts 

Author DLC Counter 
body 

Lubricant Friction Wear 

Ando 
[110] 

Si-DLC 
(CD-

PACVD) 

High-
carbon 

chromium 
steel 

bearing 
ball 

ATF fluid 

(Ca, P, B, S 
containing) 

Initially lower 
friction than 
nitride steel 
(0.14 – 0.09). 

Remains 
steady at Si-

DLC 0.11 

Not 
quantified 

Ban 
[104] 

EBEP-
CVD 

Si-DLC 

Bearing 
steel 

ZDDP 

and base 
oil 

ZDDP friction: 
Si-DLC 0.07, 

steel 0.08 

Base oil 
wear: Si-

DLC wears 
more than 

steel. ZDDP: 
no wear 
reported 

Chapter 
6 p.125 

Si,O-
DLC 

PACVD 

Steel Fully-
formulated 

oil 

Low 
additive oil 

Formulated: 
0.09 

Low additive: 
0.1 

Wear in low 
additive Oil 
higher than 

in fully-
formulated 

Wu [84] Si,O-
DLC 

(thermal 
electron 

excited 
plasma 
CVD) 

AISI 440C 
bearing 

steel 

Water Lowest value 
= 0.07, highest 

value = 0.09 

Wear 
increased 

with silicon 
content. 

Less wear 
for non-
doped 
sample 

 

Importantly, Kalin et al [107] demonstrated that DLC is not as inert as was 

first thought; it was found that including polar groups and unsaturated fatty 

acids in the base oil can substantially improve the efficacy of the oil. In fact, 

the study showed that the non-polar oil had the worst tribological 
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performance. Several of these relationships have been observed between 

both glycerol and GMO (glycerol mono-oleate) when lubricating types of 

DLC, leading Topolovec-Miklozic et al to postulate a ‗polyol-DLC interaction‘ 

[97, 99, 111]. 

Glycerol monooleate (GMO) also showed a reduction in friction when tested 

upon two types of DLC coatings. The coatings investigated were; 

hydrogenated diamond like carbon and Cr-doped, (non-hydrogenated) 

graphitic DLC. On both the surfaces the additive  was shown to remarkably 

reduce friction at intermediate speeds [111]. 

Kano et al [99] also investigated GMO as an additive in Poly-alpha-Olefin 

(PAO) and recorded ultralow friction when two ta-C DLC counter faces slid 

against each other. Spectroscopic techniques (XPS, SIMS) were employed 

to elucidate a mechanistic explanation for this. It was found that, in the worn 

areas there were twice as many lower fragment ions of species though to be 

produced from decomposition of GMO. A suggested explanation is that 

degradation of GMO produces OH- species, which may go on to react with 

dangling bonds on the DLC surface. This is thought to facilitate easy sliding 

between the two hydroxylated surfaces as shown in Figure 2-14. 

Investigations on GMO in PAO have shown that GMO interacts with DLC 

(author does not specify hydrogen content) via the ester moiety but; that the 

hydroxyl groups ‗play significant roles in the interaction‘ [112]. ToF-SIMS 

was used to follow the reaction pathway of the GMO. DLC samples were 

submerged in solutions of both GMO and a dehydroxy analogue (Butyl 

oleate). Upon analysis, very little Butyl Oleate was found on the DLC 

surface; conversely evidence of GMO was found on the surface. The 

authors go on to note that rubbing the DLC surface did not lead to activation 

of it. Interestingly a synergism is noted between GMO and PAO. 
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Table 2-4 Wear trends when examining Si-DLCs 

 

Author Deposition 
method 

Precursor 
gas 

Si-DLC/ 

Si,O-DLC 

Observed 
Wear 

Si-O species 

Gilmore 
[113] 

PACVD TMS 

Or TMS/ 
acetylene 

Si-DLC Coating 
wear 

resistance 
adversely 

affected by 
addition of 

Si 

n/a 

Gilmore 
[76] 

PACVD TMS/ 
acetylene 

Si-DLC Addition of 
Si results in 
a significant 
increase in 
wear rate 

n/a 

Kim [77] RF 
PACVD 

Benzene/ 
Silane/H2 

Si-DLC Wear 
increased 

with Si 
content 

silicon-rich 
oxide debris 

detected 

Wu [84] CVD Toluene 
and 

HMDSO 

Si,O-DLC Wear 
increased 
with the Si 

content 

SiOx(OH)y gel 
detected 

Pham 
[79] 

RF 
PACVD 

Composit
e; Silane 

upper 
layer 

Si-DLC Higher wear 
rate than un-
doped DLC 

Si-O 
containing 
tribofilm 
detected 

Ban 
[104] 

electron 
beam 

excited 
plasma 

 

CH4, SiH4 Si-DLC Wear scar 
diameter of 
Si- DLC 1.5 
times larger 
than against 
the DLC film 

Si-DLCs 
wear scars 
contains 

additional 
oxygen - 

SiO2 detecte
d 

Lubwam
a [114] 

closed 
field 

unbalance
d 

magnetro
n sputter  

Ar and 
C4H10 

(solid Si 
target) 

Si-DLC Lowest wear 
depth was 

observed for 
DLC films 

n/a 
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Figure 2-14 Hydroxylation of DLC [112] 

 

When GMO was used as an additive in mineral oil it is far less effective as a 

lubricant. Minami et al suggest this is due to certain alkyl chains of PAO 

being able to insert themselves into GMO films on the DLC coating [112]. 

The wealth of literature available on DLC contacts not only shows DLCs can 

and do react and perform well with traditional lubricant packages; but also 

that next generation additives, like GMO, are able to work well with them too. 

This is important as next generation NOCH additives will soon be required to 

replace older, high-SAPS formulations [8]. 

 

2.9.1. The multi-role engine oil additive, ZDDP 

The traditional multi-role lubricant additive ZDDP, as shown in Figure 2-15, 

has been used in the internal combustion engines for many years, it is 

arguably the most important additive to date in terms of maintaining engine 

performance. ZDDP was introduced in the early 1930s and is still used 

currently as it is able to perform many roles within an engine, including 

oxidation inhibition, wear prevention and corrosion inhibition [115]. 
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Figure 2-15 One possible structural representation of ZDDP 

 

The efficacy of ZDDP is well-proven in steel-steel systems and is also being 

validated at the DLC interface, although via different tribochemical 

mechanisms [51, 100]. The effect of ZDDP on DLC coatings is an active 

area of research. The focus is typically around comparing the performance 

of DLCs with that of steel samples, and observing similarities or differences 

so that knowledge gained can lead to performance improvement.  

The ZDDP tribofilm formation mechanism most agreed upon with steel 

surfaces is that ZDDP is firstly adsorbed on to metallic surfaces, prior to any 

chemical reaction. This is followed by a chemical reaction at the surface 

resulting in the formation of phosphates and phosphothionic moieties on the 

metal [115]. Additional  phosphate film precursors are formed from oxidation 

of ZDDP [116]. Figure 2-16 depicts Willermet et al’s [116] proposed initiation 

of a ZDDP film. 

 

Figure 2-16 Willermet's proposed initial film forming step of ZDDP reacting 
with a ferrous surface 
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More recently this mechanistic explanation has been expanded upon, ZDDP 

is adsorbed onto the steel surface however when temperatures exceed 150 

°C Fuller et al [117] established that linkage isomers are formed. The linkage 

isomer then undergoes thermal-oxidation and forms long chain 

polyphosphates. These can, in some cases, be broken down in the presence 

of water to create shorter chain polyphosphates.[117, 118]. Spikes [115] 

further notes the role oxidation plays with regard to the formation of ZDDP 

films, with comment that in the absence of hyperoxide type species ZDDP 

thermally degrades at ~ 130 ° C yielding a film, the reaction of which is 

shown in Figure 2-17. 

Haque et al [119] elucidated that the mechanism for wear protection of 

ZDDP must be different on a DLC coated part when compared to the 

mechanism found on a steel sample. This was established as no Fe or P 

was detected in the tribofilm. In fact the tribofilm formed on the H-DLC 

coating was made up of different zinc species including oxides and 

sulphides [119]. 

 

Figure 2-17 Thermal degradation in the presence of oxygen. Nu- represents 
nucleophilic species, oxygen based nucleophile [115] 

 

Barros‘Bouchet et al  [51] have observed that MoDTC and ZDDP combined 

in poly-alpha olefin (PAO) have been shown to react on amorphous DLC 

coatings. XPS analysis conducted on the coating showed formation of MoS2 

in the wear scar and EDX indicated the presence of Zn and P. The authors 

suggest the composition of the tribofilm is ‗similar‘ to that obtained from the 

classic ferrous system -  a positive in terms of lubricant DLC interactions 

[100]. The authors comment that no Fe has been detected in the tribofilm 

and that no delamination or excessive wear is observed. In a similar 
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investigation Costa et al also established a tribofilm  containing MoS2, ZnO 

and ZnS is present in the DLC track from MoDTC and ZDDP decomposition 

[120]. Molybdenum disulphide will not be covered here in depth as this 

lubricant additive was excluded from all lubricant blends explored within the 

project.  

2.9.2. Organic friction modifiers 

There are a few key widely used inorganic friction modifiers, including 

molybdenum disulphide (and the analogous tungsten disulphide), as well as 

powdered graphite [121-123]. These compounds are typically classified as 

dry lubricants as they can lubricate without the presence of oil. MoDTC is the 

parent additive that creates MoS2 in situ and renders the compound oil 

soluble [51, 122, 124]. Graphite is not typically used within the engine as it 

can form soot which negatively affects wear [125]. The dichalcogenides 

however work extremely well within the internal combustion engine. When 

examining DLC, molybdenum based friction modifiers are known to increase 

wear rates, which often prohibits their usage [126].  This necessitates the 

use of novel, greener FM species to be used with DLC coatings. Certain 

NOCH additives have been trialled as friction modifiers for DLC interfaces, 

including amine based additives and fatty acid type-compounds [111]. These 

additives have a different mechanism to that of the dry lubricants and rely 

upon interaction with the surface through polar functional groups [49]. One 

widely investigated friction modifier is GMO [97, 99, 112]. GMO is very 

effective when used with certain DLCs, and it has been postulated that the 

presence of the oxygenated head groups interact well with the DLC surface. 

This behaviour is facilitated by formation of additional  –OH species at the 

contact interface help facilitate this relationship [70, 99]. However, to obtain 

friction coefficients as low as can be achieved with MoS2 in fully formulated 

additive packages there is still much optimisation required. Currently, 

organic FM species are not as effective when compared to MoDTC type 

additives which often give friction coefficients as low as 0.05. Whereas, 

GMO typically gives values of around 0.08 [111, 112]. 
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2.9.3. Detergent additives  

Detergents, as well as dispersants, are present in formulated engine oil 

blends to maintain the proper running of the engine. They do this by trapping 

insoluble products in suspension which allows for removal by filtration. 

Further to this, over-basing of the detergent (typically with CaCO3, as shown 

in Figure 2-18) can also prevent acidification of the lubricant. Acidification is 

a deleterious phenomenon within the engine as acidic species can corrode 

steel and cast iron [127]. Some detergents have been shown to have anti 

wear properties, with CaCO3 films being produced that are mechanically 

protective [127].  Detergents are also known to form films on DLC surfaces 

producing a similar protective layer [128]. 

 

Once the over-based detergent core has been released the hydrophilic 

pocket can then begin sequestering particulate debris from the lubricant 

[127]. Kubo et al [128] investigated the anti-wear and friction reducing 

qualities of calcium sulfonates on DLC/steel interfaces. It was observed that 

high friction and low wear was facilitated at the steel-DLC contact [128]. This 

is in line with the behaviour observed at the steel/steel contact [111].The 

group assessed the tribochemistry of the film using TOF-SIMS and showed 

that the additive provides a ‗high and stable friction coefficient‘ as well as low 

wear. An Fe rich tribofilm was found on DLC at 30 seconds into the testing. 

 

Detergent additives are able to reduce wear when in contact with DLC 

surfaces. It appears that forced coalescence plays a key role in detergents 

tribological behaviour, an effect mediated by mechanical agitation [111].  In 

contrast, ZDDP has been shown to rely on a variety of affects to accelerate 

film formation, including: thermal activation and ligand swapping [115]. 
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Figure 2-18 Schematic of detergent micelle with over-based core  

2.9.4. Dispersant additives  

Dispersants play another key role in the lubricant blend; they keep sludge, 

soot and other deposits from accruing in the system by sequestering them. 

Dispersants are typically succinimde based and have multiple polar head 

groups with which they can perform this task [129]. As the dispersant 

molecules have multiple succinimde head groups on each molecule this 

differentiates them from detergents and makes them less surface active 

[130]. That being said, shorter chain succinimide ions (including the head 

group) have been detected on in the worn area of ATF lubricated, tribotested 

Si-DLC when examined by ToF-SIMS [110]. 

2.9.5. Viscosity Index (VI) improvers 

Viscosity improvers are inherently surface inactive compounds due their 

large, polymeric nature that lack polar groups, with which to interact with a 

surface [131]. VI improvers are far more stable in oil; as such they are not 

the focus of any major attention herein. However, they are immensely useful 

engine additives and therefore could not be missed out from the overview. 

The primary role of VI additives only takes place at higher temperatures, 

when the engine is fully-fired.  VI additives are able to maintain the oil‘s high 
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viscosity which is key to reducing wear by maximising interface separation  

[131]. 

2.9.6. EP additives 

EP, extreme pressure, additives are not limited to the family of ZDDPs. 

Many oragno-sulphur based EP additives exist, as shown in Figure 2-19. 

 

Figure 2-19 EP additives a) Dibenzyl disulphide and b) Di-tert butyl 
disulphide. 

 

As most EP additives depend on sulphur for their efficacy, the traditional 

requirement of modern engine oils to be rich in SAPS is rationalised [132]. 

The mechanism by which EP additives are believed to work is dependent on 

the ease of cleavage of the C-S bonds in the additive molecule. This results 

in a protective FeS2 layer being formed [132]. 

2.10. Summary 

As explored in this thesis chapter, a large amount of research has already 

been conducted which establishes key trends and principles associated with 

the formation of tribofilms, especially with regards to metallic systems. This 

acts as useful platform from which to explore the tribochemistry that takes 

place at the, quite different interface of DLC/metal contacts. The differing 

mechanisms of thermally derived versus tribo- films will be all the more 

important for films on DLC. This is because DLC interfaces have fewer metal 

ions present. As identified above, metal ions appear to play a key role in the 

formation of the classical ZDDP film. The literature addressed effectively 

guides the aims of this research by highlighting areas which need further 
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study. As DLC is distinctly different from a ferrous surface it quite possibly 

interacts with oil additives through a variety of different mechanisms. 

Furthermore, due to DLC‘s innate ability to reduce wear, this allows for 

optimisation with regards to oil additives. The main areas that would be most 

beneficial in terms of further research are: 

 Identifying the precise mechanism by which DLCs react with oil 

additives using surface analysis methods. For instance, although 

certain key interactions are already known, such as the role SiOX 

oxides play, the mechanism of their formation is not well explored. 

 Efficacy with regards to doping of DLCs. If Si doping can activate DLC 

surfaces toward additives in the oil this could lead to greatly improved 

friction profiles, however too much activation could be deleterious to 

overall wear. This complex relationship will be examined. 

 Exploring the importance of the role a ferrous body plays when paired 

with DLC at the contact. Metallic ions may fundamentally alter the 

tribochemistry of the contact due to their well-known catalytic 

behavior. This will be explored by comparing self-mated DLC contacts 

with steel/DLC ones. 

 Materials and methods Chapter 3

3.1. Introduction 

This chapter outlines the main experimental procedures adopted within this 

project. This includes both mechanical and chemical surface analysis 

techniques, along with imaging techniques to gauge wear and surface 

properties. 
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3.2. Material parameters 

3.3. DLC coating specifications 

The DLC coatings used in this project were commercial samples produced 

by Sulzer Sorevi (now a part of Oerlikon) using the PECVD technique. The 

coatings are produced using lower temperature plasma; the substrate is 

negatively biased by 500 V with the chamber acting as the electrode. A hot 

cathode auxiliary system is also employed to enhance plasma generation. 

The process typically takes place at 10-3 mbar. The coatings can be viewed 

as multi-layered as there are interlayers (Ti, Si), Figure 3-1. The interlayers 

are employed to improve coating adhesion to the substrate. The substrate is 

first cleaned by argon ion etching before any deposition commences. Then a 

titanium layer is deposited, followed by a silicon based interlayer. After 

interlayer deposition the bulk DLC is deposited.  

3.3.1. Manufacturers’ ERDA data from the coatings 

examined 

Elastic recoil detection analysis (ERDA) of the coating shows the 

composition of all elements, including hydrogen, which allows full 

characterisation of the film. As shown in Table 3-1, the Si-doped coatings 

also include oxygen (as well as trace amounts of argon) in the coating. For 

the low Si-DLC there is twice as much silicon within the coating as oxygen 

when compared with the a-C:H DLC. 

As such it can be considered dually doped as it is highly likely that 

incorporation of additional oxygen into the film will affect the performance. 

Coating thickness is reported as 2.4 μm for both Si-DLCs. A-C:H DLC has a 

thickness of 1.4 μm. The manufacturer also supplied coating information 

including Nano hardness data and Young‘s modulus values for each coating 

provided. This information is given in  

Table 3-2. 
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Figure 3-1 TEM cross section with EDX mapping showing inter layer 
structure of DLCs 

 

Table 3-1 ERDA data from coatings 

Coating/ 

Element % 

C H O Si Ar 

High Si-doped 36 30 12 21 1 

a-C:H 66.5 33.5 0 n/a 0.2 

Low Si-doped 55.6 34 7 14 0.4 

Atom accuracy ± 3 2 2 2 0.05 

 

Table 3-2 Mechanical properties of the coatings 

Coating/ 
Property 

Nano hardness 
(GPa) 

St deviation 
± 

Young's 
modulus 
(GPa) 

St deviation 
± 

High Si-doped 15.4 0.9 144 6.6 

a-C:H 22 1.7 191 11.6 

Low Si-doped 17.9 1.2 150 6.1 
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3.3.2. Tri-doped DLC 

The novel coating was also produced using the Plasma Enhanced Chemical 

Vapour Deposition (PECVD) technique. These coatings, as per materials 

section 3.2, where prepared following the set procedure. The coatings can 

be viewed as multi-layered as there are interlayers employed to improve 

coating adhesion to the substrate. A titanium layer is deposited, followed by 

a silicon based interlayer. After interlayer deposition the bulk DLC is 

deposited. This layer is ~ 1.2 µm thick and is made from a precursor that is 

highly sp2 hybridised. The silicon containing component cannot be revealed 

due to commercial sensitivity. The fluorine component is introduced into the 

DLC exclusively by use of Fluoroform whose chemical structure is shown in 

Figure 8-1. 

 

Figure 3-2 F-doping agent, Fluoroform (Trifluoromethane) 

The specific protocol for production of a composite DLC with a Si,O,F doped 

top-layer, is as follows: 

 Layer 1 of Si,O doped DLC (undisclosed organometallic precursor 

material) 

 Layer 2 : Short transition of a mix of (organometallic precursor 

material) + CxHy + Argon  

 Layer 3 : Additional Si,O doped DLC   

 Layer 4: (top surface) Combination of the organometallic precursor 

and Fluoroform. Followed by venting with Fluoroform. 

The doped coatings were analysed by XPS as shown in Table 8-1, to 

ascertain the % atomic dopant levels. 
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Table 3-3 %Atomic concentration of dopants in doped samples. Nd = not 

detected 

Sample Si O F 

Si,O,F Doped 3% 11% 1% 

 

The novel coatings hardness, prior to wear testing is given below in Table 

8-2. 

Table 3-4 Coating hardness values 

Sample Hardness (GPa) St deviation ± 

Si,O,F Doped 13.9 3.8 

 

 

3.3.3. Coating Substrates and counter bodies 

For the pin on plate tribotesting, the DLCs were deposited on AISI 52100 

steel plates of dimensions 7x 7x 3 mm with a maximum roughness of (Ra) 

0.08 μm. Two pins were employed over the course of this project. These 

were:  

 AISI 52100 steel with semi spherical end with a radius of 120-150mm, 

58-60 HRC and a maximum roughness (Ra) of 0.3 μm.  This pin is 

used to simulate the lower pressure piston-ring/liner contact. 

 BS1452 cast iron pins with a semi spherical end with a radius of 10 

mm at the head were the second pin type used. The pin has a 

hardness of 44 – 46 HRC, a maximum roughness (Ra) of 0.2 – 0.3 μm 

was used to simulate the cam/follower conditions needed for the 

experiment. 
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For pin-on-disc testing, highly polished AISI 52100 chrome steel was used 

as a substrates for both body and counter bodies. Both contact surfaces 

were coated in low Si-DLC. The steel ball is of these parameters: (6.35 

mm/0.25 inch diameter) AISI 52100, a maximum roughness (Ra) = 12 nm.  

The steel disc has a 25 mm inner diameter/ 42 mm outer diameter,  it is 1 

mm thick, and had a maximum  roughness (Ra) of 112 nm. 

 

3.3.4. Lubricants used for the research programme 

There are four lubricants used within this work, they are summarized in 

Table 3-5. These include a commercially available diesel engine oil, 10w40 

viscosity grade (Oil B). A bespoke lubricant which is a version of the same 

also blended with GMO (Oil A). A heavy duty diesel engine oil (Oil C) and a 

low additive oil (Oil D). The lubricants are commercial samples and as such 

their exact composition cannot be disclosed however ICP analysis was 

provided and this data is given in Table 3-6.  

The fully-formulated oil also contains Ca, P, S and Zn elements. ZDDP is 

known to be blended into the lubricant. The oil also contains anti-oxidants, 

detergents and dispersants. The friction modified oil differs only by inclusion 

of 1.5% (w/v) Glycerol Mono Oleate (GMO) as a friction modifier, which is 

depicted in Figure 3-3.  

The final, low-additive oil was viscosity matched to the formulated oil and 

contains minimal additives. No corresponding ICP analysis is available for 

the oil D, as it has minimal additives contained in it. However, the oil does 

contain detergent molecules and viscosity modifiers to eliminate any 

difference caused by potential changes in viscosity between oils.  

Table 3-5 Oils used within the project 

Oil Type FM 

Oil A Fully-formulated GMO 

Oil B Fully-formulated None 

Oil C Heavy-duty (extra S based EP) None 
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Oil D Low-additive oil (no ZDDP, 
viscosity matched to other oils) 

None 

Table 3-6 ICP analysis of the oils A and B used throughout the project, with 
A having additional GMO. 

ICP 
analysis 

Ca Mg P S Si Zn 

PPM 2391 81 761 2064 4 833 

 

 

Figure 3-3 Skeletal formula of GMO, a well-known friction modifier species. 



- 55 - 

3.4. Experimental methods for surface analysis 

preparation/bulk analysis preparation 

 

Figure 3-4 Diagram of experimental work flow with analytical techniques 
included 

 

3.4.1. Assessing the tendency of low Si-DLC to oxidise 

under controlled environments 

In order to assess to what extent Si-DLCs oxidises without tribological 

influence, a test was devised. Low Si-DLC samples were submerged in Oil D 

and placed in flasks. One flask was flushed through with nitrogen for twenty 

minutes and then sealed; the other was kept open to laboratory air via a 

needle through a rubber bung. Both samples were heated at 80 °C for 600 

hours. 600 hours was an extended time period selected to fully assess how 

the DLC would behave not only in the initial stage of its life but over longer 

periods. The samples were then washed in heptane and analysed by XPS, 

along with an un-heated sample. 
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3.4.2. Thermal film forming capabilities of low Si-DLC 

In order to fully understand the differences between tribofilms and thermally 

derived films, it was necessary to prepare a thermal film on the low Si-DLC. 

This thermal study involved a low Si-DLC coated plate being heated at 80 ºC 

for seven hours in an open-beaker submerged in Oil A. This time period was 

chosen to allow full formation of any thermal film that may develop; in 

preliminary experimental work it had been observed that seven hours allows 

enough time for full formation of a tribofilm even on less reactive (a-C:H) 

DLCs. As such, this indicates that seven hours should allow for at least 

partial formation of a thermal film. Thermal films from fully formulated oils on 

steel coupons are able to form in short time periods [117, 133, 134]. 

3.4.3. Surface functionalization to explore influence of 

altering surface chemistry  

Within published works examining Si-DLCs, there is a key focus around the 

influence SiOx type species play with regards to friction and wear. To explore 

this further, it was deemed necessary to create a low Si-DLC surface that 

had the Si-OH type groups capped, using a dip-procedure. To form silyl 

ethers on low Si-DLC surfaces a modified preparation was adapted from a 

published work  [95]. The surface –OH groups of the Si-DLCs are key to the 

modified silanization reaction employed (Figure 3-5). The low Si-DLC coated 

components were submerged in chloroform (50 ml), the solution was then 

made up to a dilution of 1% (v/v) chlorotrimethylsilane by slow addition of the 

silane. The solution and submerged parts were then allowed to react at room 

temperature for two hours with occasional stirring. After this period the 

components were removed, rinsed with chloroform and then stored in 

chloroform until used. The reaction follows this general scheme: 



- 57 - 

 

Figure 3-5 Skeletal formula of surface functionalization reaction. Me = methyl 
group, CH3. 

 

3.4.4. Preparation of Samples for Solid-State Nuclear 

Magnetic Resonance (NMR) Analysis 

NMR is a very useful technique for probing carbon chemical state 

environments; however it is not surface sensitive. It instead examines a bulk 

of material. NMR works by interacting with non-spin paired nuclei, as found 

in hydrogen. In the case of carbon, the isotope that is most abundant is not 

NMR active. However 13C is NMR active and as this isotope represents 

approximately 1% of all total carbon atoms; if a sample of enough mass is 

prepared, NMR can yield very useful data. NMR probes the spin 

environment and returns chemical shift values of the species investigated. 

This is immensely useful for DLCs as carbon NMR chemical shift values can 

then be used to establish the sp3:sp2 ratio of carbons in a sample [85].  

The silicon-doped and a-C:H DLC samples were converted to powder, prior 

to any tribological testing, to allow for NMR analysis. The powders were 

prepared using a modified literature procedure [85]. A large coated 

aluminium substrate (~ 200 cm2 and 10 μm thick) was soaked in 15% 

hydrochloric acid solution for two hours with external cooling. The DLC 

remained intact. The metal substrate, including the interlayers, were 

sequestered by the acid resulting in black, flake-like products that were 

filtered from the solution, washed with purified water and heptane and then 

finally dried at 40 ºC overnight. Between 50–100 mg (50 mg a-C:H, 100 mg 

silicon doped) of the DLC powders from each sample was obtained and sent 

for analysis. A greater amount of both the Si-DLCs were required in order to 

obtain carbon signals from the sample, as incorporation of silicon reduces 
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carbon content of the overall coating. It is expected that the Ti interlayers 

were completely removed by exposure to acid, however if this is not the 

case, metallic Ti would not affect or appear in a C NMR spectrum and thus is 

not viewed as a pertinent issue.  

3.5. Tribometer testing methods 

3.5.1. Pin-on-plate tribometer testing procedures 

The ‗TE77‘ reciprocating pin on plate tribometer platform allows for 

tribological investigations under different temperatures and loads to simulate 

various conditions. In this case boundary lubrication is characterised by the  

as the lambda value for the piston ring and liner type system (with pin of 

radius 120 - 150mm) was calculated to be λ= 0.0040. Before experimental 

set-up, all mechanical parts are sonically cleaned in acetone for twenty 

minutes and dried thoroughly. Heating is controlled by a thermo couple that 

regulates the oil temperature according to a user defined value. The heater 

plate is positioned below the sample holder. The load cell is able to measure 

the frictional force and converts this to a digital signal, using an analogue to 

digital converter. Figure 3-6 shows a schematic of the TE77 tribometer. 

The frictional force is the average measurement read at five minute intervals 

for a set number of hours, all these variables are controlled through 

LabView. Friction data is then processed by the Labview software suite. 

 

 

Figure 3-6 Schematic of a TE77 tribometer [135] 
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An initial Hertzian contact pressure is given to emulate the conditions of a 

piston ring contact or a cam shaft and follower. DLC coatings can and are 

being used in both of these interfaces within the internal combustion engine 

which is why these pressures are the ones investigated [136]. Once finished, 

the pin and plate are rinsed in heptane to remove excess oil and stored in 

aluminium foil to avoid contamination.  Differing experimental set-ups are 

detailed in Table 3-7. Dry sliding experimental conditions were altered from 

the above to prevent catastropic wear, as detailed in Table 3-8.  

Table 3-7 TE77 running conditions 

Running Conditions Piston ring conditions Cam follower 
conditions 

Load 28 N 25 N 

Maximum Hertzian Pressure 0.15 GPa 0.81 GPa 

Running Speed 0.2 m/s 0.2 m/s 

Temperature 100 °C 100 °C 

Frequency 20 Hz 20 Hz 

Roughness (Ra) 0.08 µm 0.08 µm 

Volume of oil 4 mls 4 mls 

Pin radius 120 - 150 mm 6 mm 

 

 

3.5.2. Pin-on-disc tribometer setup 

For the self-mated DLC contact study, a pin-on-disc tribometer was chosen 

as the highly polished ball bearing counterpart was ideal for coating with 

DLC, which requires a surface to be below a specified roughness in order to 

ensure coating adhesion to the substrate.  The pin-on-disc tribometer has 

the added benefit that it can be run in unidirectional mode, thus allowing for 

lower wear but higher pressure regimes. For all experiments at least two 

repeats were obtained to allow for calculation of standard deviation. 
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Table 3-8 Dry sliding pin-on-plate conditions 

Running Conditions Dry sliding 

Load 6.9 N 

Maximum Hertzian Pressure 0.09 GPa 

Running Speed 0.2 m/s 

Temperature 100 °C 

Frequency 20 Hz 

Roughness  (Ra) 0.08 µm 

Pin radius 150 mm 

 

This factor is of high importance as it was necessary to produce a clearly 

identifiable tribofilm without exposing the steel substrate on either the plate 

or the pin. For the tribometer testing procedure a pressure of 1.5 GPa was 

selected following a brief optimisation study that found this pressure was 

able to create a visible wear track on both DLC bodies without overly-severe 

wear. The initial pressure of 1.5 GPa is a higher pressure than typically 

associated with engine lubrication. However, for this study it was deemed 

appropriate. This type of non-destructive wear is key herein so as to ensure 

that non-ferrous surfaces were present for the whole test duration. Thirty 

minutes was an adequate time frame to ensure the DLC coated pin did not 

wear through but the worn areas were clearly visible. Following tribotesting 

all samples were rinsed in heptane to remove excess lubricant and stored in 

aluminium foil. Only one lubricant was used for this experimental setup, this 

was Oil B with friction modifiers being left out of the lubricant blend. This 

allows for easier assessment of the friction profile as surface modification 

was explored using this setup. Experimental set-up is detailed in Table 3-9. 

Table 3-9 Pin-on-disc tribometer setup 

Running conditions Setting 

Load 14.7 N 
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Maximum Hertzian Pressure 1.5 GPa 

Running Speed 5 m/s 

Temperature 90 °C 

Lubricant Oil B 

 

3.6. Analytical techniques 

Certain analytical techniques were selected for use with the coatings both 

prior to and post testing. Nuclear Magnetic Resonance (NMR) and  Electron 

Energy Loss Spectroscopy (EELS) were both used to gauge sp2/sp3 content 

of the films. X-ray photoelectron spectroscopy (XPS) and Secondary Ion 

Mass Spectroscopy (SIMS) were used to asses the tribofilms, as was 

Energy-dispersive X-ray (EDX) mapping of the cross section. Water contact 

angle was used to asses surface energy of the DLCs and steel surfaces. 

Interferometry and contact profilometry were used to analyse wear results. 

Nanoindentation was used to give establish if a thick, mechanically hard 

tribofilm was formed at any point. 

3.6.1. X-ray Photoelectron Spectroscopy (XPS)  

XPS is a surface sensitive analytical technique that relies upon the 

interaction of X-rays with the surface on interest. Upon interaction with the 

surface, the x-ray provokes ejection of electrons that are characterised in 

terms of their kinetic energy, in electron volts (eV), by an electron detector. 

This technique takes place under high vacuum. 

XPS was primarily employed to completely assess any tribochemical 

interactions that may have occurred at the surface. XPS was carried out 

using a VG ESCALAB 250 X-ray Photoelectron Spectrometer which uses 

monochromatized X-rays from an aluminium K alpha source. The system 

also employs high transmission electron optics and a multi-channel detector. 

An approximate area of 500 μm2 was analysed in the worn area. 

XPS is surface specific in that it can only penetrate the upper few 

nanometres (typically 5-10 nm) of the sample [137, 138]. A short survey 
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scan was carried out at first to determine which elements were present. This 

was done with the settings of 200eV pass energy, 1eV  for energy step size 

and a 50ms dwell time.  Longer (high resolution) scans of selected element 

peak regions were carried out to allow for full resolution of the peak 

components present. The settings for high-resolution scans were: 40eV for 

pass energy, 0.1eV for energy step size and 100 ms for dwell time. CASA 

XPS software was used to analyse the data. Reported literature precedents 

for C1s calibrations for various DLC and Si-DLC samples were in agreement 

on the calibration reference value of 284.4 eV for the main C-H peak [87, 

139-141]. Evaluation of Si 2p position was also verified using literature 

values [87, 142-144]. For cases where steel surfaces were examined either 

the known eV value for iron oxide was used to calibrate the spectra or, in 

cases with thicker tribofilms, adventitious carbon was used as reference 

[143, 145, 146]. Steel counter parts were analysed at the seven hour mark 

using XPS to confirm presence of a tribofilm. Counter bodies were also 

tribochemically assessed for low Si-DLC in Oils A and D at the seven hour 

mark. This was again to show a tribofilm had formed and exhibited oil 

dependency. 

When profiling of samples was needed, an etching gun of mono atomic Ar 

gas ions with an energy of 4000 eV was employed. A raster size of 1 mm x 2 

mm was used. Etching allows removal of species when surface 

contamination is suspected or there is a need to spatially explore a film in 

the z axis.  

In certain instances XPS cannot definitively attribute how an element is 

incorporated into a film. Two prominent examples of this are calcium 

carbonate versus calcium phosphate which appear at very similar eV values 

(347 eV for both compounds) and zinc oxide versus zinc sulphide (1021 – 

1022 eV) [143, 146, 147]. In these instances other analytical techniques and 

fundamental chemical knowledge are invoked to fully attribute species 

present. A schematic showing the theory behind XPS analysis is given in 

Figure 3-7. 
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Figure 3-7 Schematic of how XPS analysis takes place, adapted from [148] 

 

3.6.2. Time-of-Flight Secondary Ion Mass Spectroscopy 

(ToF-SIMS) 

Static Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a 

highly surface-sensitive technique that outperforms XPS in terms of 

sensitivity and again requires high vacuum. ToF-SIMS can be sensitive 

down to 1-2 nm [138]. The ToF-SIMS technique used employs a primary ion 

beam source of bismuth, in the form of a liquid metal ion gun. The primary 

ions are fired at the worn area and impact the surface provoking ejection of 

secondary ions from the surface of interest.  The cluster ion beam used was 

Bi3+ with an energy of 2 KeV for static SIMS. The target current was 1 Pico 

Amp (or within the range 0.1-3 Pico Amps), from the flood gun to 

compensate for charge build up. A random scanning pattern, as opposed to 

raster scanning, was employed to further prevent charge build up on the 

sample. Depth profiles were undertaken using a C60 source to allow for 

slower profiling with a maximum time of 800 seconds.  Figure 3-8 shows the 

typical interaction that takes place when the primary ion beam encounters 

the surface on interest.  
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Figure 3-8 Schematic of how ToF-SIMS analysis takes place [149] 

 

All sample spectra were examined for the presence of: P, S, and O species 

along with various C, H, and (where applicable) Si species. Spectra obtained 

were analysed using ION-TOF software. Individual spectra were calibrated 

to the H, C, CH, O and OH signals for the negative spectra and a deviation 

limit of 70 ppm was used to ensure accuracy. 

3.6.3. Solid State Nuclear Magnetic Resonance (SS NMR) 

Solid state NMR was also used to analyse the DLC films. For this particular 

investigation, cross-polarisation was used, a technique that transfers radio 

frequency energy from hydrogen nuclei to carbon nuclei. This is useful for 

two reasons. It has been previously detailed in the literature on DLC and  it 

increases the response from the carbon nuclei and focuses the spectral data 

to carbons directly bonded to hydrogen atoms [85]. A frequency of 100 MHz 

was used to excite the target nuclei, with an acquisition time of 10.0 ms.  

A typical NMR spectrum of DLC will be composed of few peaks, depending 

on dopant level. Typically the C sp2 peak appears around 125-130 ppm and 

the C sp3 peak appears around 20-35 ppm. This may shift depending on, in 

the case of DLC, incorporation of O or Si [85]. 
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Solid-state NMR data is produced without repeats due to the difficulty in 

synthesis the large amount of DLC necessary. As such NMR was compared 

with EELS data to validate the outcome. The techniques show good 

agreement, NMR indicates  the low Si-DLC has a sp2 fraction of 46.9% and 

that the a-C:H DLC has a higher sp2 fraction of 61.8. EELS data of an 

unworn sample of a-C:H DLC is in good agreement with the SS-NMR data, 

as EELS indicates the sp2 fraction is 59.1 ± 6.3%. 

3.6.4. Water contact angle measurements 

The instrument used to measure water contact angles in this case was a 

‗FTA4000‘ video drop shape analysis system [150]. To ensure accurate 

results, ‗Mili-Q‘ high purity, deionised water is used this is pumped via a 

‗Nano Dispense‘ electronic pump to aid accurate dispensing. Two 

microscopes are fitted to the equipment: an analytical microscope to capture 

the drop shape image and a look-down alignment microscope. The 

analytical microscope has a zoomed horizontal field of view from 2 mm down 

to 200 µm. The viewing angle is adjustable to 0° or 3° with respect to the 

specimen surface. The apparatus is housed within a dark room and is 

enclosed to protect from local fluctuations in heat. The stage is back-lit by a 

high intensity LED source. Image capturing is dynamic with variable 

resolutions.  A schematic of a typical water drop experiment is giving below 

in Figure 3-9 where Θ represents the contact angle. L,S and V refer to the 

interfaces of liquid, solid and vapour phases, respectively. Lambda is the 

interfacial tension between the phases. 

 

Figure 3-9 Schematic of water contact angle experiment adapted from [151].  
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The software associated with the machine provides static contact angle 

analysis from the images captured. The contact angle of three water droplets 

were analysed for each sample, ensuring accuracy and allowing for standard 

deviation to be calculated. Surface wettability is highly relevant to DLCs 

within engines as many oil additives are surface active, polar molecules. As 

such a lower water contact angle should favour interactions of the DLC with 

the additives. A water contact angle of below 90º corresponds to a high 

wettability, whereas angles above 90° correspond to a low wettability [152]. 

3.6.5. Focused Ion Beam (FIB)  

A focused ion beam was coupled with scanning electron microscopy to 

enable the creation of cross sections from the worn area. Cross sections of 

the worn area are particularly useful as, with use of appropriate optical 

imagining techniques, accurate measurements of tribofilms can be obtained. 

To this end, a FEI Nova200 Nanolab dual beam SEM/FIB system was 

employed to image and etch into samples. In order to protect the area of 

interest an initial layer of platinum is laid down, using an electron beam, on 

top of the worn area. This prevents damage to the surface from the more 

destructive ion beam. Once a protective layer is formed a bulk layer of Pt is 

laid down using the ion beam to an approximate thickness of 1.5 μm. Once 

this was complete, material either side of the deposited Pt layer was milled 

away to an approximate depth of 10 μm using the ion beam at 30kV. 

Following this, trenches on all four sides of the area of interest are milled 

using the ion beam. Once the trenches are milled the cross section is 

thinned and cut away from the bulk material. The sample is then attached to 

a copper TEM grid using a micromanipulator; the attachment is achieved by 

bonding with Pt in a similar fashion to the protective layer deposition. Finally, 

in order to produce a cross section that is below a specific thickness (5 nm) 

further sample milling is conducted [153]. 

Figure 3-10 shows how a TEM cross section is prepared in a stepwise 

fashion. A) Area of interest identified and protected with an electron beam 

deposited layer of platinum. b) Areas around the cross section are milled 

away, c) the sides of the cross section are milled away d) the cross section 

is removed by attaching it to the micro-manipulator with a Pt layer e) the 
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cross section is attached a copper TEM grim and the manipulator is 

detached with ion etching. f) The cross section is thinned to the desired 

thickness appropriate for TEM. 

3.6.6. Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM) was employed to image any 

tribolayers present, as well as being used to examine the microstructure of 

the coating.  TEM uses the interaction between a beam of electrons (at 200 

kV) fired through the surface in question to form an image of the material. 

Energy-dispersive X-ray analysis was used to identify elements within the 

film. A Philips CM200 FEGTEM Field emission gun TEM/STEM with 

Supertwin Objective lens and cryoshielding, was used to obtain the TEM 

images. Oxford Instruments INCA EDX system and Gatan Imaging Filter 

were used to produce high resolution TEM images, microanalysis and 

mapping. 

3.6.7. Energy Dispersive X-ray analysis(EDX) 

EDX spectra were obtained using both ‗spot‘ analysis modes and ‗mapping‘ 

modes. Mapping modes were predominately used to verifying coating 

composition and interlayer structure. Spot analysis was employed to verify 

the presence of certain elements in the tribolayer and compare this with 

background spot analysis. 
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Figure 3-10 Annotated schematic of the production of a TEM cross section 
using the FIB.   

 

3.6.8. Electron Energy Loss Spectra (EELS) 

Electron Energy Loss Spectra (EELS) were obtained for certain films to 

investigate the carbon hybridisation in the worn area. The carbon peaks of 

these spectra can be analysed to yield useful sp2 data which gives 

information on the microstructure of the coating and how it chances with 

wear. EELS spectra were recorded using a Gatan imaging filter and both 

were processed using the Gatan digital micrograph software suite.  Initially, 

the thickness of the TEM cross section is computed using the software to 

ensure the slice is thin enough for accurate data. Then the data is calibrated 

to the zero loss peak ensuring the peak is centred at 0.0 eV. The sp2 fraction 

from the sample are then obtained using Gaussian peak fitting around the 

well-established π* peak at 285.0 eV [154]. C–H bonds are observed only in 

DLC films at energy positions around 287.5 eV. The C–C bonds are 

observed above 290 eV depending on the specimens and the dose [155].  

Three total contributions make up part of the 20 eV window, leaving a small 

residual signal that is representative of certain strained carbon bonds, Figure 

3-11. These peaks then represent the whole carbon signal of the sample. 

This allows for comparison of the obtained sp2 value to value of a known a 
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100% sp2 (highly ordered pyrolytic graphite) sample obtained from the 

literature [154]. 

 

Figure 3-11 Annotated EELS zero loss and core loss spectra. A) shows the 
zero loss peak, b) shows additional carbon peaks. 

 

3.6.9. Nano-hardness measurements 

Surface hardness values were obtained using a Nanotest™ Nano indenter 

produced by Micro Materials Ltd Wrexham, UK. The test apparatus is in an 

enclosed, temperature regulated box to ensure no fluctuations due to 

heating or cooling processes. The Nanotest platform software suite and 

micro capture camera were used to obtain, analyse and interpret the data. 

Following the experimental method devised by Oliver and Pharr [156] a 

diamond tipped probe  with a Berkovich indenter of 130 ° was employed for 

testing. All samples were mounted to the holder using a high strength 

adhesive. The maximum penetration depth employed was 51.3 nm or a 

penetration depth of 4% into the coating. Eight measurements were made 

either within or outside of the worn area to allow for good levels of accuracy, 

standard deviation is provided with the data. 
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Figure 3-12 Schematic of the indentation data as typically obtained from the 
experiment. Adapted from [157]. P represents load, h represents 
displacement and S represents the elastic unloading stiffness. 

3.7. Wear measurements 

3.7.1. Non-contact profilometry 

A variety of post wear analyses were conducted to fully characterise 

topographical, mechanical and chemical changes in the surface. For 

gauging wear, this includes scanning white light interferometry which was 

conducted using scanning white light interferometry on a Bruker NP FLEX™ 

interferometer. The interferometer is able to move in 3-dimensions to 

accurately use non-contact methods to produce an image of the surface 

examined. The ‗Vision64‘ software suite is then used to analyse the data 

obtained. This data is then interpreted by the software suite which is able to 

remove surface bias like curvature and tilt and then give information on 

volume lost, roughness and other useful surface parameters. All 

measurements were taken using vertical scanning interferometry mode, 

scan speed of x3, magnification of x2.5. Light interferometry is a highly 

precise technique for measuring small displacements and surface 

irregularities [158]. The technique works by directing a wave, typically from a 
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light or laser source, at a beam splitter which divides the beam into two. One 

beam encounters a reference surface whilst the other encounters the 

sample being examined. Both of these beams are reflected back to a 

detector. When being reflected back to the detector waves of the same 

frequency combine or undergo ‗constructive interference‗, and waves not of 

the same frequency destructively interfere. The points where the 

interference difference pattern is visible is the contour line for a given height 

[158].  

Wear can be calculated from profilometry data and then can be converted 

into dimensional wear coefficients. These values are useful as they allow 

comparisons of wear over different testing parameters. The dimensional 

wear coefficient is the volume worn (m3) divided by the sliding distance (m) 

multiplied by the unit of load (N). Wear of the coating can also be measured 

as the point of maximum depth loss to gauge loss of coating thickness.  

3.7.2. Contact Profilometry 

In cases where interferometry did not provide a high enough level of 

accuracy contact profilometry measurements were obtained. This is because 

contact profilometry is known to be more accurate than interferometry in 

certain circumstances [159-161]. Contact profilometry measurements were 

obtained using a Taylor Hobson Form Taly surf 120 L. Prior to 

measurements the stylus is calibrated with a standard to ensure accuracy. 

Measurements were interpreted using the ‗μltra 5.23.87‘ software suite to 

produce visual images and obtain numerical data. Four data sets were 

obtained for each measurement and these values were averaged. The 

standard deviation of each set was found. Worn volumes can be calculated 

from profilometry data and this then can be converted into a dimensional 

wear coefficient. Profilometry data yields wear scar width and depth 

measurements, length of the wear scar was already known as it is part of the 

experimental setup. This allows calculation of worn volumes.  

3.7.3. Leica optical microscope 

For certain tribopairs, optical images were necessary to establish the nature 

of wear and if a transfer/tribofilm is present. Optical images were obtained 
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for selections of both DLC coated plates and metal counter bodies. The 

Leica DM6000 optical microscope and accompanying software suite allows 

for accurate measurements to be made of wear scar length and width as 

well as wear scar radius on pins. Filters can be employed to better 

differentiate between worn and unworn areas, also specific illumination 

levels can be set to maximise visibility. Typically, a magnification of x2.5 was 

employed for imaging wear scar tracks and x10 for imaging counter bodies. 

LAS viewer, the software associated with the machine, then enables 

accurate measurements to be taken from the images produced.  
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 Results of preliminary lubricant and coating Chapter 4

investigation 

4.1. Introduction  

This chapter gives the initial experimental work associated with the project, 

the goals of which were to verify literature trends and gain early stage data 

on the coatings examined. Three DLC coatings were selected for initial 

testing, two of which were doped with amounts of silicon. The other was a 

hydrogenated DLC. In addition to this, two lubricants were also examined. 

The aim of this was to find the optimum coating/lubricant tribopair that would 

give the lowest friction and wear within an engine. To fully understand the 

tribology of the system, several different techniques were used to analyse 

and characterise the coatings both pre and post wearing. This includes NMR 

and XPS analysis as well as scanning light interferometry.  

4.2. Results 

4.2.1. Pre-wear coating characterisation  

4.2.2. Solid-state NMR analysis (pre wear) 

To validate literature findings on the effect that silicon (and oxygen) inclusion 

has on the film, solid-state NMR data was obtained. The coatings examined 

are all deposited using the same process, although changes in precursor 

materials and amounts is required to alter the amount of Si in the coating. 

Solid-state NMR (SS NMR) data can give information on the coatings 

sp2/sp3 ratio as well as information about other aspects of bonding. This ratio 

is highly influential with respect to the performance of the DLC coating as 

increasing the sp3 content forces the coating to be more ‗diamond-like‘ in 

structure, in accordance with the DLC phase diagram shown previously in 
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Figure 2-7 [40]. It is widely reported that incorporating silicon into the DLC 

microstructure as a dopant is able to increase the sp3 content [85, 88]. This 

is due to the unstable nature of Si π systems, or double bonds, which Si 

does not readily take part in sp2 bonding with carbon [162, 163]. Pre-wear 

solid-state NMR data, shown in Figure 4-1, identifies an unusual relationship 

between the Si incorporation in the films examined here and the sp3 bonding 

fractions. The low Si-DLC has a greater ratio of sp3 bonded carbons when 

compared to the a-C:H film. However, the high Si-doped sample has a lower 

amount of sp3 bonded carbons. In depth analysis of the high Si-doped DLC 

is not pursued although it seems that differing atomic concentrations of Si 

affects the DLC in different ways. The move from a mix of CxHy gas with the 

Si organometallic precursor (molecule comprised of CHSiO) as in the low Si-

DLC, to the high-Si doped coating, which is made exclusively from the 

organometallic precursor could also be causing a shift in sp2 ratios as this 

will inevitably also effect the coating microstructure.  

In one instance, high Si doping has been shown to inhibit sp2 clustering 

formation [85]. It has also been shown that the parameters under which the 

Si-DLC coating is created can affect the sp2/sp3 ratio [88]. Both these factors 

could explain why the high-Si DLC has a lower than expected amount of sp3 

bonded carbons. 

 

Figure 4-1 sp2 quantification by solid-state NMR analysis. Due to the nature 
of NMR measurements, whereby the technique requires a large amount of 
material to perform, repeats were not obtained.  
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NMR data, despite lacking standard deviation as no repetitions were 

possible, is later compared to EELS sp2 data. This allows validation as the 

sp2 content of the unworn, a-C:H film is found to be 59.6 ± 6.3 %. 

When the a-C:H and high-Si doped coatings are compared the carbon 

spectra appear quite similar, Figure 4-2 & Table 4-1. The main difference is 

the presence of an additional shoulder to the spectra of the high Si-DLC at 

around 200 ppm, indicative of additional C-O type compounds [164]. This 

suggests there are a variety of different bonding modes within the 

microstructure for this DLC.  

 

Figure 4-2 Solid-state NMR results of (A) a-C:H DLC (B) Highly Si-doped 
DLC (C) Low Si-doped DLC. Intensity in arbitrary units (au) 

 

Table 4-1 Tabulated carbon NMR data of the three coatings  
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Attribution of NMR  
peaks 

A-C:H (%) Low-Si (%) High-Si (%) 

Sp3 38.2 53.11 20.12 

Sp2 55.09 46.89 79.88 

C-O type 6.71   

 

Solid-state NMR spectra for the higher % Si coating was also able to yield 

useful data and is shown in Figure 4-3. It shows how Si is incorporated into 

the film. Similar data for the lower % Si coating is not available as it did not 

contain a high enough Si content to produce a significant response to the 

technique.  

The main peak is the large peak centred around 0 ppm [85, 164]. This is 

indicative of a tetravalent sp3 coordinated Si-(C)3 or similar Si-O-C species 

[85]. The three other peaks present in the spectra are all indicative of silanes 

and silicates, a combination of Si-H and SiOx networks [165, 166]. The data 

in Figure 4-3 confirms that Si is not only present in the film in a Si-C bonding 

motif. As a large proportion of the Si in the film is chemically bonded to 

oxygen this could explain the observed increased in sp3 fraction as the SiOx 

backbone could maximise C-C bonding.  

Table 4-2 Tabulated SS-NMR data. ppm range directly correlates to 
chemical species present [165, 166].  

 

ppm range: % amount: Attribution: 

60 to 0 ppm 40 SiC 

0  to -50 ppm 40 C-Si-O 

-50 to -80 ppm 7.8 Silane (Si-H) 

-80 to -125 ppm 7.5 Silicate (SiOx) 
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Figure 4-3 Silicon solid-state NMR spectrum of high Si DLC showing varying 
Si environments. 

 

4.2.3. Surface Wettability (pre-wear) 

Water contact angles were obtained for the Si and a-C:H coating and are 

given in Figure 4-4. Water contact angles give good indication of the affinity 

of a surface for a certain polar molecule. In this instance the values should 

give a picture of how active the surfaces are towards polar lubricant 

additives, like detergent species. A higher affinity for such additives can 

affect friction and wear. This is because detergent species have shown film 

forming and friction affecting behaviour in certain systems [127]. For 

reference the water contact angle of steel is recorded as 44 º [167]. This 

data suggests the low Si-DLC should have a higher affinity for certain polar 

additives. 
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Figure 4-4 Water contact angle of the coatings tested. Si-doped sample 
relates to low Si-DLC 

 

4.2.4. High-resolution XPS analysis of Si 2p peak from virgin, 

low % Si-DLC 

High-resolution XPS was obtained of the Si 2p peak at the low Si-DLC‘s 

surface. The spectrum was first calibrated to the main C 1s peak at 284.4 

eV. This is in line with other works in the literature whereby the spectra of 

DLC films are calibrated to the hydrocarbon (CHx) peak [87, 144, 168, 169]. 

Following this, the Si 2p peak window was fitted with the functional groups 

known to be pertinent to Si-DLC films, as confirmed by the eV position and 

their corresponding FWHM values, listed in Table 4-3 [144]. The value of 

FWHM of XPS peaks herein is a convolution of analyser resolution and of 

natural FWHM of the selected chemical species peaks.  

The most likely chemical species were determined using a variety of 

sources. ERDA data of the coating given earlier in Table 3-1 proves that Si, 

C, H and O are all incorporated in the coating, as expected with this type of 

DLC. As Si-H species are highly pyrophoric and unstable, if any were 

present within the upper 10 nm (as per XPS‘ penetration depth) they would 

instantaneously oxidise to Si-O species upon reaction with atmospheric 
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oxygen [83]. This means the species being detected must be only composed 

of Si, C and O. The prevalence of Si-O species within Si-DLCs is well known 

and thermodynamically, oxides of Si are to be expected at the surface. This 

leads to the firm conclusion that the peaks fitted in Figure 4-5 not only make 

sense chemically but also experimentally, as confirmed by agreement with 

FWHM  values and binding energies. 

The data confirms the survival (or reformation) of the C-Si-O backbone 

through the PECVD process as previously noted [87]. Also noted is the 

presence of the SiOx species in agreement with the results shown in Figure 

4-3. This species is likely only present in large quantities at the upper-

surface and is evidence of ambient oxidation of the coating. This conclusion 

can be drawn as ERDA data of the coating is provided by the manufacturer. 

This indicates a lower amount of oxygen in the coating as a whole than the 

amount found at the surface by XPS. 

 

Figure 4-5 High-resolution spectra of Si peak in low Si-DLC with peak 
attributions. 

Table 4-3 Si 2p peak data from the low Si-DLC 

 

Attribution Position (eV) FWHM % Concentration 

C-Si-O 100.3 2.0 36.3 

SiOx 101.2 2.3 51.4 

Si-C 99.6 1.5 12.3 
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4.2.5. Dry sliding results 

4.2.6. Friction 

The non-lubricated tribological behaviour of Si-doped DLCs is what 

generated first interest around the coating [26, 77-80]. This is because Si-

DLCs typically exhibit far lower coefficients of friction when compared to a-

C:H DLCs in unlubricated contacts when mated against a steel counterbody. 

This behaviour is typically attributed to the formation of silicon oxide species 

[26, 77, 79, 80, 102].  As such, the dry sliding of the two coatings (a-C:H and 

low Si-doped) was investigated to confirm this is true for the two specific 

coatings under anlaysis herein. Results from the dry sliding experiment, 

shown in Figure 4-6, confirms that the low Si-doped DLC outperforms the a-

C:H DLC in this nonlubricated contact. The high Si-doped coating was not 

explored with regards to dry sliding after the two initial dry sliding 

experiments were conducted. This was because the low Si DLC underwent 

very high wear and it is known that increasing Si % dopants correspondingly 

increases wear rates [76, 77, 79, 84, 104, 113, 114]. 

Literature works conducted on a-C:H DLC/steel contacts do tend to show 

high friction when tested in dry air. This is also seen in the experiments 

conducted and presented here, as shown in Figure 4-6. Typically, the 

coefficients of friction are bettween 0.1 – 0.45 [170, 171].  This high friction 

behaviour of a-C:H DLCs has also been noted by Erdemir [69] which is 

given for comparison in Figure 4-7. When a-C:H DLC films were tested in air 

they show significantly increased coefficients of friction in comparison to the 

sliding experiment conducted in nitrogen [69]. 

4.2.7. Wear 

In terms of wear, the low Si-DLC exhibits far higher volume loss than the a-

C:H sample; this trend is expected. This is because, consistently in the 

literature, doping DLCs with any amount of Si results in higher wear of the 

coating, when compared with a a-C:H analogous coating [76, 77, 79, 84, 

104, 113, 114]. 
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Figure 4-6 Friction plots of dry sliding low Si-DLC/a-C:H DLC against steel 
counter body. Running conditions as per experimental section on dry sliding, 
section 3.5.1.  

 

 

Figure 4-7 Literature results from Erdemir's work with a-C and a-C:H DLCs  
dry sliding showing the high friction values associated with these 
experiments [69]. 
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The worn volumes were used to calculate specific wear rates for both 

coatings as given in Figure 4-8. The enhanced wear of Si-DLC is expected 

as it is known that silicon oxides play a role in reducing the friction and these 

species are representative of systematic oxidative-destruction of the silicon 

within the DLC. These results are in line with findings in the literature of wear 

of Si-DLCs when compared with a-C:H DLCs [76, 77, 79, 84, 104, 113, 114]. 

 

Figure 4-8 Specific wear rate of DLC plates when tested against steel 
counter body without lubricant. Experimental details different to lubricated 
contacts to prevent catastrophic wear. Running conditions given in Table 
3-8. 

 

4.3. Tribological performance of lubricated tests (oil A) 

4.3.1. Friction profiles 

To assess the friction values for a range of DLCs under the boundary 

lubrication regime, a test matrix was devised. The high Si-DLC is included in 

this test matrix as the presence of fully formulated oil will reduce wear, which 

could allow the high Si-DLC to be a viable coating in this instance. The test 

duration was set for two hours, as per the experimental section. The results 

are detailed in Figure 4-9 and Figure 4-10. With respect to friction 

performance, the steel/steel tribopair slightly outperforms the DLCs tested. 

The coefficient of friction of the steel/steel system is lower than the DLCs but 
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somewhat unstable. Both the doped and a-C:H DLCs show very similar 

friction values in this oil. It is notable that the friction of both Si systems is not 

markedly lower than that of the a-C:H DLC, as is often the case in dry 

sliding.  The values obtained for both Si-DLCs are within those found in the 

literature for lubricated sliding [43, 104, 110, 172].  Friction values for a-C:H 

DLC/steel contacts are found to be within the range μ = 0.05- 0.1 with 

improved performance depending on inclusion of inorganic FM species [100, 

173]. However, higher friction values (μ = 0.3 – 0.4) have been recorded for 

a-C:H DLC/steel systems at higher (1GPa) contact pressures [29]. As such 

the friction values reported below are in-line with similar experiments in the 

literature. 

 

4.3.1. Wear results 

All samples were analysed with respect to wear. Optical examination of the 

a-C:H coating tested in Oil A confirmed that there was only very minor wear. 

For the a-C:H coating the wear was immeasurable with scanning light 

interferometry. The remaining three samples (high Si, low Si and steel) were 

examined using this technique to ascertain which pair gives overall lowest 

wear, Figure 4-11. Interferometry confirms that all DLCs are able to reduce 

wear when compared to steel. 
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Figure 4-9 Friction traces of coated and uncoated surfaces in Oil A. Error 

bars excluded for clarity. Conditions as per experimental for piston ring 

contact setup which are given in Table 3-7. 

 

 

Figure 4-10 Steady-state friction (last 20 minutes of testing) of all coatings 
tested in oil A. 

 

The low Si-DLC shows on average a 55% reduction in wear when compared 

with the steel surface. The high Si-DLC reduces wear when compared with 

steel but not as markedly as the other DLCs. It is well reported in the 

literature that incorporation of Si within DLC causes aggravated wear rates  

when compared to a-C:H DLC, as such the findings here agree with this 

trend [76, 77, 79, 84, 104, 113, 114].  
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Figure 4-11 Specific wear rate of coated and un-coated surfaces in oil A. 

 

4.3.2. Effect of friction modifier species 

In order to establish if inclusion of an organic friction modifier species in the 

lubricant blend for a DLC/steel tribopair affords an appreciable drop in 

friction, a non-FM containing oil (Oil B) was also tested against the various 

tribopairs, Figure 4-12. Steady state friction values, shown in Figure 4-12 

suggests that the organic friction modifier species appear to exert no effects 

on the a-C:H coating as the friction values for both oils are within 

experimental deviation of each other.   

The friction modifier MoS2 has been shown to positively affect the friction 

values of a-C:H/steel contacts [100, 174]. However, in an a-CH/CI system 

this friction reduction was not noted, with both fully formulated oils (one 

containing MoS2) giving a coefficient of friction of μ ~ 0.1 [175]. Work has 

been conducted on DLCs with organic friction modifiers but these are 

confined to ta-C and a-C DLCs. In some cases ultra-low friction is observed 

μ = 0.03 [98, 99]. The reported lubricated friction values of Si-DLCs are 

typically around μ ~ 0.1, depending on lubricant composition [43, 104, 110, 

172]. 
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The high Si-DLC shows better friction values with Oil A.  It can be seen that 

at steady state the low Si-doped DLC shows a slight friction reduction when 

compared to the a-C:H DLC.  

4.3.3. Wear of low Si-DLC plates in the lubricated contacts 

Of the two Si doped DLCs, the low doped Si outperforms the high-doped 

coating with respect to wear. This is in agreement with findings in the 

literature, increasing Si content typically results in higher wear rates [77, 84]. 

In order to assess to what extent surface active species like GMO affect 

wear rates, wear of the Si plates at the two hour interval in oils A & B were 

compared, Figure 4-13. Comparable data for the a-C:H sample is not 

available as the wear was immeasurable in either oil at that point. There is 

no significant change in wear rate between the two oils for the low Si-DLC. 

 

Figure 4-12 Steady state friction values compared for various tribopairs in 
oils A and B 

 

The same is true for the a-C:H DLC which shows no wear at two hours in 

either oil.  The high Si-DLC showed higher wear in both oils. This is most 

likely due to the tendency of Si within the DLC to oxidise and degrade the 

coating [43, 105]. Thus it follows that a greater incorporation of Si in the 

coating equates to a great wear rate. This mechanism of wear is discussed 

in depth later. This combined with it not imparting any advantage on friction 
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meant that it was excluded from the test matrix as the low Si-DLC showed 

an overall better friction profile.   

 

Figure 4-13 Low Si-DLC specific wear rate by oil. Inclusion of GMO as FM 
does not affect wear as the values are not outside error of each other. 

4.4. Surface analysis  

4.4.1. Surface analysis (XPS) of the steel tribopair 

To characterise surface interactions of the DLC/steel tribopair it is first 

necessary to understand the tribochemical reactions that take place at the  

steel/steel interface. Figure 4-14 and Table 4-4 show the XPS data obtained 

from both the pin and plate. 

XPS analysis confirms the presence of a tribofilm on both the plate and the 

pin. Carbon (omitted for scaling) makes up the bulk of this material which is 

likely from various sources including GMO and detergent species, which 

contain carbonate cores and similar carbonaceous additives. XPS indicates 

the presence of a calcium phosphate type film with trace amounts of zinc 

phosphate and zinc oxide within this film. Also noted is zinc sulphide. It is 

notable that Fe is not detected on the plate (however it is on the pin). This 

suggests a tribofilm thicker than 10 nm has formed. Otherwise, Fe would be 

detectable from the steel plate below as the penetration depth of XPS is well 

established [137].  
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The attributions made above cannot, at this stage be conclusive, although a 

calcium phosphate based tribofilm is indicated, there is difficulty in attributing 

the Ca and P peak as there are several molecules that would come at this 

eV point in the spectrum. The Ca peak at 347-348 eV coincides with both 

calcium carbonate and calcium phosphate [143, 147]. Both species are likely 

to be present in varying proportions. The formation of calcium phosphate 

based films, derived from ZDDP and detergents, at steel/steel interfaces in 

the literature are well reported [147, 176, 177]. As such, these results are in 

agreement with these findings, a calcium phosphate type film with partial 

inclusion of zinc phosphate and zinc oxide does represent a viable tribofilm. 

Calcium phosphate is well-known to act in an anti-wear capacity [176, 177].  

The sulphur peak also leaves room for multiple compounds to be present on 

the surface. This is because the eV position for sulphides ranges from 160 – 

163.5 eV [143, 146]. Furthermore, the zinc 2p3/2 peak is also difficult to 

deconvolute with the oxide and sulphide peaks overlapping at ~ 1022 eV 

[143, 146]. Fortunately knowing the stoichiometry of ZDDP, whereby the 

ratio of Zn:S is 1:4, it  is possible to conclude that there is more reactive 

sulphur available than zinc, therefore formation of FeS2 is not only viable but 

also likely.  It then follows that the presence of ZnS2, ZnO and FeS2 are all 

probable in this system.  It would be possible to gain more certain 

knowledge of the species present with further surface analysis. However, as 

the ZDDP at a ferrous/ferrous interface is well documented and commented 

on in the literature further analysis was not pursued.  

 

4.4.2. Surface analysis (XPS) of the DLC plates 

XPS spectra were obtained of the two DLCs that performed best. 

Specifically a-C:H DLC, for its low wear and the low Si-doped DLC, for its 

potential to alter the surface energy without the high wear seen with the high 

Si-DLC . This was to ascertain what tribochemical processes were taking 

place at the surface. 
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Figure 4-14 XPS data from steel/steel tribo-contact post testing. C and O left 
out for scaling. Error is measured as standard deviation over three anaylsis 
points.  

 

Table 4-4 XPS attribution of steel plate and steel pin post testing. nd = not 
detected. 

Element Pin (eV) Attribution Plate (eV) Attribution 

Ca 2p 347.1 Calcium 
carbonate/ 

calcium 
phosphate 

348.1 Calcium carbonate 

Fe 2p 710.1 Iron (III) oxide nd  

P 2p 133.1 Phosphate 133.6  Phosphate 

S 2p 161.1 ZnS/FeS 162.1 ZnS 

Zn 2p 1022.1 Zinc oxide/ Zinc 
sulphide 

1022.1 Zinc oxide/ Zinc 
sulphide 

 

XPS shows Ca adsorption from both DLCs tested and is given in Table 4-5. 

Where the a-C:H sample only shows inclusion of Ca in its tribofilm, the low 

Si-DLC appears to be more tribologically active at the two hour interval with 

inclusion of P and Zn. XPS results suggest the presence of calcium 

phosphate and zinc oxides within the film at the low Si-DLC.  
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Table 4-5 XPS data comparison of low Si-DLC and a-C:H DLC in Oil A. Nd = 
not detected  

Element % At 
Concentration 

low Si-DLC 

Attribution (eV) % At 
Concentration 

a-C:H 

Attribution 
(eV) 

C 1s 79.5 284.40 90.31 285.08 

Ca 2p 1.2 Ca phosphate/ 
CaCO3 (347.40) 

1.0 CaCO3 
(347.08) 

O 1s 12.8 531.30 8.9 532.08 

P 2p 0.3 Pyrophosphate 

/Pyrophosphate 
(133.00) 

Nd - 

Si 2p 6.2 SiC (100.00) Nd - 

Zn 2p 0.1 ZnO (1021.50) Nd - 

 

To elucidate the effect the inclusion of the surface active friction modifier 

GMO has on the friction performance XPS analysis was also obtained for 

low Si-DLC tested in Oil B, as shown in Figure 4-16. When comparing XPS 

data for the two samples of low Si-DLC, an interesting trend appears. The 

sample tested in the Oil A contains less calcium, phosphate and zinc.  

However, the film shows a greater inclusion of carbon. To attribute this 

finding solely to the presence of the friction modifier would require further 

experimental work. However, friction data combined with the XPS findings 

do firmly indicate that the FM species is playing a key role in tribofilm 

formation. It would seem that inclusion of GMO decreases the amount of 

elements other than carbon at the surface and that this slightly lowers the 

friction profile for the low Si-DLC. 

4.5. Initial long-duration test 

With the clear goal of assessing life-time performance of the DLCs 

examined, an initial long-duration study was carried out with the low Si-DLC; 

as it was shown to be the most tribologically active at two hours. The test 

was carried out within a specifically selected oil, Oil C (heavy duty, high 
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SAPS, engine oil) to ensure full tribofilm formation. The overall friction profile 

is given in Figure 4-15. The steady state friction value for this system was μ 

= 0.096. The coating gave no observable wear at seven hours in oil C, which 

had a high additive level. 

 

Figure 4-15 Initial long-duration test of low Si-DLC in oil C 

 

Figure 4-16 low Si-DLC surface %atomic concentration, separated by oil. NB 
P (0.29% for oil A) and Zn (0.28% for oil B, 0.04% for FM A) are present in 
both samples. 

 

Oil C is similar to Oil B, ICP analysis (available from the manufacturer) 

confirms it has a higher amount of sulphur based additives incorporated in 

the lubricant package. Oil B contains  2064 ppm S whereas Oil C contains 
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8309 ppm S. This is highly indicative of sulphur based EP additives being 

included [132]. The objective of using Oil C was to verify that the DLCs can 

and do form thick tribofilms that dictate their wear and friction profile.  

TEM and EDX were used in this instance to characterise a cross-section of 

the worn area of the film as it was essential to observe if a tribofilm was 

formed. Low Si-DLC, tribotested for fourteen hours, did yield interesting 

results shown in Figure 4-17. TEM/EDX analysis confirms the presence of a 

thick tribofilm (15.2 ± 1.2 nm), present consistently across the surface of the 

DLC comprising Ca, P, Si, S and trace Fe.  

However, this oil was not taken forward for further testing as the wear rate 

was far too low for the a-C:H DLC (no well-defined wear scar visible at the 

14 hour interval) that it would have made further experimentation difficult. 

Further to this, the oil would be classified as high SAPS and in general 

lubricants are moving away from such high SAPS formulations [8]. 
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Figure 4-17 TEM cross sectional image of the tribofilm formed on low Si-
DLC in Oil C. Inset of EDX spectra from the interface of the tribocontact 
showing Ca, P, S. Cu and Pt are artefacts from the creation of the cross 
section. 

4.6.  Summary 

To fully understand the tribochemical process taking place at both the a-C:H 

and the low Si-doped DLCs it is necessary to test the samples for longer 

time periods. This allows for full tribofilm formation and an accurate time 

wear/tribofilm relationship to be elucidated. Due to the immeasurable wear of 

the a-C:H sample it can therefore be identified as low wear. Whether this is 

due to the DLCs mechanical characteristics or tribological properties is 

unclear at this specific time interval  but is investigated in more depth later in 

Chapter 5. As Si-DLCs are typically supposed to have a better friction profile 

than the one obtained and shown in Figure 4-9, longer duration experiments 

were sought with both the a-C:H and Si-doped DLCs to investigate whether 

either the friction or wear profiles change with lifetime.  
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Currently, there are not many published papers on the long duration 

performance of DLCs, as such it seems highly relevant to explore the DLCs 

further, with longer term testing. Factors that could come into effect at longer 

durations include: enhanced polishing-wear, time dependence of 

tribochemistry and the move from running-in to steady-state friction and 

wear regimes. The a-C:H sample gave immeasurable wear in both oils A 

and B at the two hour interval. 

The three coatings exhibit very similar friction at the two hour interval. As 

such, the decision on which coatings to take forward to next stage of testing 

was based on the wear results. The a-C:H coating exhibits ultra-low wear, 

therefore this coating was taken forward, along with the low Si-DLC coating. 

Due to the similarities in the friction between the coatings, the need to 

optimize the lubricant becomes apparent. The coatings are both able to 

reduce wear very effectively; the remaining issue is reduction of friction.  As 

friction is the prominent factor, Oil A was chosen for longer duration testing. 

Oil A contains GMO which is purported to work well with certain DLC 

coatings with respect to friction, as such  this oil was taken forward [97, 99, 

112]. The main findings from the initial, short term testing are as follows: 

 Inclusion of Si into the DLC‘s matrix affects the DLC‘s microstructure 

and spx ratio, a phenomena consistent with findings in the literature 

[81, 82]. 

 Both the Si-DLC‘s showed friction performance in lubricated contacts 

with steel that is not superior to that of a-C:H DLC. This is the 

opposite of the behavior observed at the non-lubricated contact. The 

most likely mechanism of this is that the relevant SiOX species are 

removed from the contact area and further production is inhibiting by 

the tribofilm, a mechanism explored in more depth in the discussion. 

 Inclusion of Si increases overall wear of the DLC coating, when 

compared to the a-C:H coating. Further to this, Si-DLCs wear 

increases with increasing Si content. 

 The low Si-DLC forms thick (nm scale) tribofilms that protect them 

from wear. 
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 a-C:H DLCs appear to be less tribologically active than Si-DLCs at 

the two hour interval. 

 Si-doping affects the coatings‘ ability to interact with lubricant 

additives. A more polar surface favors reactions with more polar 

additives. 
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 Results: Comparison of the long-duration Chapter 5

performance of low Si-doped and a-C:H, hydrogenated 

DLC 

5.1. Introduction  

Chapter 4 deals with the shorter duration testing of DLCs. In this chapter the 

lack of literature focusing on the long duration performance of DLCs is 

addressed.  This study was motivated by the need to have a fuller 

comprehension of how DLCs perform over a longer testing duration. One 

main theme under investigation is to establish if there is an initial trade-of to 

be made, whereby Si-doped DLC‘s higher running-in wear is facilitated by a 

higher reactivity of the coating. This higher reactivity could actually be 

beneficial over the long duration in terms of tribofilm formation. 

The DLCs brought forward from the previous stage (a-C:H DLC and the low 

Si-DLC) were examined in Oil A at various time intervals up until thirty five 

hours. It must be noted that friction values are only given up until 14 hours, 

whereas wear data is available until 35 hours. This was due to employing 

two tribometers, one of which does not provide friction data. The thirty five 

hour time frame was chosen to give insight into lifetime performance of the 

DLCs whilst still being practical in terms of experimental work-load.  

5.2. Results 

5.2.1. Friction results 

Figure 5-1 shows the friction results obtained for both the coatings up to the 

thirty five hour mark as tested in Oil A. Steady state friction data was 

compiled from the last twenty minutes of testing and these are summarised 

in Figure 5-2.  From the friction data it appears that the silicon-doped and the 
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a-C:H DLCs are comparable, with low Si-DLC showing a slightly reduced  

friction profile toward the end of testing. These results are in-line with 

literature precedents of Si-DLCs tested in formulated oil, in that the inherent 

improved lubricity is lost when tested in lubro [104, 110, 172].  

 

 

Figure 5-1 Long duration friction of the DLCs (error bars excluded for clarity) 
Conditions as reported in the experimental section for the piston ring contact 
profile. 

 

 

Figure 5-2 Steady-state friction profiles (last twenty minutes of testing) of the 
DLCs, included to show error associated with either value. 
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5.2.2. Wear 

Wear analysis was undertaken at each time interval shown, including an 

additional time interval of thirty five hours to allow for a fuller picture of the 

wear-time relationship. This was done as it would be useful to know how the 

running-in period, in terms of wear performance, would affect the DLC 

coatings. If the running-in process is too severe it could compromise the 

entire coating and negate the benefits imparted. It was assumed that this 

process would have finished by thirty five hours, at which point the system 

would be at a steady state. For the first time interval, two hours, wear was 

immeasurable for the a-C:H sample. Worn volumes shown in Figure 5-3 

were converted into dimensional wear coefficients, shown in Figure 5-4. This 

allows for comparisons to be made with similar coatings/materials. These 

values are calculated from profilometry data. The dimensional wear 

coefficient is the volume worn (m3) divided by the sliding distance (m) 

multiplied by the unit of load (N).  It must be noted that despite the low Si-

DLC having a higher wear rate than the a-C:H DLC, both DLCs appear to be 

undergoing only polishing wear, rather than a more severe type of wear.  

The initial wear profiles of the two samples share some similarities. Both 

DLCs have higher initial wear rates when compared with longer-testing. This 

is associated with the running-in period; however the wear rate of the low Si-

DLC is far higher than that of the a-C:H DLC and occurs for a longer time 

(starting at two hours).   

Furthermore, there is a clear change present when examining the specific 

wear rate trace of both the DLCs between the seven and fourteen hour 

marks. This is indicative of an efficacious protective tribofilm forming. 

Optical microscope images taken of the thirty-five hour wear scar shows the 

differences in the two plate‘s wear behaviour, images are shown in Figure 

5-6. 
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Figure 5-3 Volume loss of each coating plotted against time. Initial wear 
value of a-C:H DLC is not given as it was immeasurable. 

 

 

Figure 5-4 Wear coefficients of the low Si and a-C:H DLC. Again, no initial 
two hour wear value is available for the a-C:H coating as wear was 
immeasurable at this time interval. Each point is the wear rate of the coating 
at that time interval. 

At the thirty five hour point, total coating depth loss was gauged as this is the 

standard by which coatings are assessed for overall wear performance. This 
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is given in Figure 5-5. As shown, the a-C:H coating outperforms the low Si-

doped DLC. The original coating thickness was 2.4 μm for the low Si-DLC, 

giving an overall reduction of thickness of 25% of the coating. For the a-C:H 

coating, the initial thickness is 1.4 μm, giving a loss of only 10% of the total 

thickness.  

 

Figure 5-5 Total coating depth loss at the end of testing 

 

 

Figure 5-6 Wear at 35 hours of a-C:H DLC a) and low Si-DLC b) 
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5.2.3. Surface analysis 

As there is clear evidence of a tribofilm forming, due to the reduction in wear, 

a range of different surface analysis techniques were employed to assess 

the tribochemistry at the interface. XPS analysis was sought for each time 

interval to get an overview of the composition of the tribofilm and how it 

developed as a function of time. Other techniques were employed at 

different, set time intervals for a more comprehensive picture and to validate 

conclusions made based on XPS data. 

5.2.4. XPS analysis of the low Si-DLC 

Time resolved XPS analysis of the low Si-DLC coupons were compiled to 

give an overall picture of tribofilm formation as shown in Figure 5-7.This 

gives an overview of the elemental composition of the film at various 

intervals. This data was then further interrogated to get information on how 

each element is present and how this evolves with time. It is crucial to know 

the type of species present when looking at wear impeding films. XPS data 

was tabulated as shown in Table 5-1, and attributed to show the most 

appropriate chemical species for the system. These attributions were set 

using XPS databases, reference books and fundamental tribochemical 

knowledge as well as from the literature [87, 143, 146, 178-180]. As 

mentioned earlier, the Ca peak at 347-348 eV coincides with both calcium 

carbonate and calcium phosphate [143, 147]. Both species are likely to be 

present. Zn peaks at 1022 eV coincide for either ZnS or ZnO, both are viable 

species [143].  

The main section of the XPS signal (excluding coating constituents) from the 

tribofilm on the Si-DLC at the two hour interval is from the Ca and P 

components of the spectrum. Comparison with eV values from the NIST 

database indicates  that calcium phosphate type species are present in the 

worn area with P incorporated as pyrophosphate [146].  Formation of 

calcium phosphate is viable within this lubricated system and is encountered 

when steel/steel contacts are lubricated in fully formulated oil [147, 176, 

177]. The tribofilm does appear to change in character with regards to time, 

this is thought to be partly due to the detection limits of XPS. This change 
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involves the evolution of a new peak on the C1s spectrum showing far 

greater incorporation of Ca. The novel C1s peak is in the correct binding 

energy for calcium carbonate, as shown in Figure 5-8.  This peak appears to 

occlude other elements of the tribofilm from being detected. 

 

 

 

Figure 5-7 XPS of low Si-doped DLC plotted against time. Separated by into 
tribofilm elements and coating constituents. Average is of 3 spot analysis. 
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Table 5-1 XPS key-peak breakdown of low Si-DLC. Nd = not detected 

Element/ 

Time 

Ca (eV) P (eV) S (eV) Zn (eV) 

2 347.4 calcium 
phosphate 

133.0 calcium 
phosphate 

(pyrophosphate) 

nd 1021.5 

zinc oxide 

7 347.2 calcium 
phosphate 

133.5 calcium 
phosphate 

(pyrophosphate) 

162 

Zinc 
sulphide 

1022 

zinc oxide/ 
sulphide 

14 347.5 calcium 
phosphate  

133.5 calcium 
phosphate 

(pyrophosphate) 

162 

zinc sulphide 

1022 

zinc oxide/ 
sulphide 

35 347.15 calcium 
carbonate rich 

layer  

nd nd nd 

 

 

Figure 5-8 C 1s peaks at 35h for low Si-DLC.  Clear evolution of second 
peak. 
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5.2.5. ToF-SIMS chemical maps of the low Si-DLC 

To verify the effect XPS sensitivities were having on detection of key 

species, ToF-SIMS chemical maps were also sought for certain species. 

Specifically to verify the presence of phosphate groups which are one of the 

most relevant species when exploring anti-wear films. Negative ion spectra 

chemical maps were compiled from a plate at the seven hour interval shown 

in Figure 5-9. ToF-SIMS chemical maps validate many of the XPS findings 

and show that even though certain species were undetectable by XPS they 

were still present in the film. S, HS and PO3 anion fragments are in good 

agreement with the species detected. Metal ions are not detected as 

negative spectra were obtained and metal ions occur in the positive side of 

the spectrum, as Ca and Zn showed good response to XPS this data was 

not obtained. 

 

Figure 5-9 ToF-SIMS negative ion chemical map of the low Si-DLC at 7 
hours, showing the presence of a) HS, b) S, c) PO3 and d) SO3H. 
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5.2.6. XPS analysis of a-C:H DLC  

Time-resoled XPS analysis of the a-C:H DLC coupons were compiled to give 

an overall picture of tribofilm formation as shown Figure 5-10. XPS data was 

tabulated in Table 5-2 and attributed to show the most appropriate chemical 

species for the system. These attributions were set using XPS databases, 

spectra reference books and fundamental tribochemical knowledge as well 

as literature precedents [143, 146]. The a-C:H DLC shows some similarities 

with the silicon doped sample. The first element identified is calcium as the 

carbonate or oxide. At the later stages of testing, greater amounts of certain 

elements and species appear in the worn area. This is indicative of the 

large-scale build-up of a wear impeding tribofilm. The species identified are 

very similar with those on the Si-DLC including a calcium phosphate species 

and varying Zn and S compounds. 

 

Figure 5-10 XPS of a-C:H DLC plotted against time 

Again, ToF-SIMS chemical mapping was employed to confirm the chemical 

species from the XPS data which is shown in Figure 5-11 and to assess how 

the sensitivity of XPS could effect tribofilm analysis. ToF-SIMS analysis is in 

good agreement with the general findings from the XPS data. This provides 

a good level of confidence in the identification of the species made thus far. 

However,  it also shows XPS is not as good a technique for thin films as 

SIMS as XPS cannot detect S at the seven hour time interval. 

Table 5-2 XPS attributions on a-C:H DLC at seven hours. Nd = not detected 
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Time/ 
Element 

Ca (eV) P (eV) S (eV) Zn (eV) 

2 346.0 calcium 
carbonate/ 

calcium oxide 

nd nd nd 

7 347.8 calcium 
phosphate 

133.5 
pyrophosphate 

nd 1022.8 zinc 
oxide 

14 347.1 calcium 
carbonate 

nd 169.1 
calcium 

/zinc 
sulphate 

1022.8 zinc 
oxide/sulphide 

35 347.1 calcium 
phosphate 

133.1  
pyrophosphate 

164.1 
organic 
sulphur 

1022.1 Zinc 
oxide/ 

sulphide 

5.2.6.1. ToF-SIMS chemical maps of a-C:H –DLC 

 

 

Figure 5-11 ToF-SIMS mapping of the a-C:H DLC at the seven hour interval 

showing a) SO2, b) PO2, c) S and d) PO3. 
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5.2.7. Dynamic SIMS profiles  

Dynamic SIMS profiles were also obtained in order to help estimate the 

thickness of the tribofilms on either sample. Although the dynamic SIMS 

experiments are not, in this case, calibrated against depth (as no reference 

is available for this type of tribofilm) comparing either profile will give an 

indication of tribofilm thickness that can be validated with other experimental 

techniques. For this purpose two species were picked, PO2 and SO3 as both 

of these groups are present in both tribofilms – the PO2 unit being 

particularly relevant as it could be involved in phosphate glass type 

compounds. Profiles are shown in Figure 5-12. SIMS depth profiling uses a 

C60 source which profiles through the tribofilm relatively quickly. 

The fact that the dynamic SIMS data herein is not calibrated against depth is 

not a major issue. This is because combination with additional data allows 

for more conclusive film-depth gauging later. The difference in depth profiles 

is indicative of a thicker tribofilm being present on the Si-DLC sample. This is 

because the time taken to reach baseline for important species (SO3, PO3) is 

greater for Si-DLC. When compared with the a-C:H DLC (t = 2 s) it takes a 

longer amount of time (t = 12 s) for the signals to reduce to baseline on the 

Si-DLC. Combining this information with TEM images, shown in Figure 5-14, 

offers firm evidence of a thicker tribofilm being formed on the Si-doped 

sample. 

  

Figure 5-12 Dynamic SIMS profile of both the DLCs tribofilms 
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5.2.8. XPS of steel counter bodies 

The steel counter bodies were analysed using XPS at the seven hour 

interval to gain insight into whether the films on the opposing bodies are 

analogous to the films on the DLCs. This data is given in Figure 5-13 and 

Table 5-3. XPS data of steel pins were used without further charge 

corrections as the steel counter body is conductive and does not allow for 

charge build up as the DLC coating does.  

The Fe peak (which is known to be Fe2O3 in steel materials as opposed to 

Fe in stainless steel where there is a mix of oxides) was used to validate the 

spectra [181]. There are slight differences on the film from the steel counter 

body in terms of composition when compared with the DLC film. There is 

clear evidence of a calcium phosphate type anti-wear film being generated 

on either pin. 

 

Figure 5-13 XPS of the steel counter bodies tested against DLC coated 
components, at the seven hour interval is shown. Zn was only recorded in 
one of the spots analysed for the a-C:H mated pin. 
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Table 5-3 Attributions of counter body XPS data. Nd = not detected 

 Low Si-Doped 
(eV) 

Attribution a-C:H (eV) Attribution 

Ca 2p 347 Calcium 
phosphate 

346 Calcium 
carbonate 

Fe 2p 711 Fe2O3 711 Fe2O3 

N 1s 400  nd N in organic 
matrix 

P 2p 133 pyrophosphate 132 Nd 

S 2p 162 zinc sulphide nd nd 

Zn 2p 1022 zinc sulphide/ 
zinc oxide 

1022 Zinc oxide 

 

5.2.9. TEM images of cross sections from the worn area 

TEM images were obtained of the samples at the fourteen hour interval 

shown in Figure 5-14.  This time interval was chosen to ensure as thick as 

possible a tribofilm would be present on the a-C:H DLC, as spectral 

characterisation indicated that it was less active toward building a tribolayer. 

At the seven hour interval, for the a-C:H DLC it is very difficult to distinguish 

the tribofilm from the Pt layer. As such, the fourteen hour time interval is the 

best choice for characterisation.  

Si-DLC a) shows a thicker (15.5 nm ± 1.3), uneven tribofilm present. The a-

C:H DLC indicates the presence of a (2.8 nm ± 0.3) tribolayer present on the 

sample. Spot-EDX was conducted to confirm the thin film is indeed a 

present. EDX, as given in Figure 5-15, confirms presence of calcium and 

oxygen, neither of which are present in the background EDX spectrum, 

further verifying the presence of a tribofilm. 
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Figure 5-14 A) low Si-DLC showing thicker tribofilm. B) a-C:H DLC showing 
very thin tribolayer. 

 

 

Figure 5-15 Spot EDX of the a-C:H DLC at 14 hours confirming presence of 
Ca and O  

 

5.2.10. Nano-mechanical analysis 

Nanoindentation data was obtained for the samples at two time intervals to 

ascertain what, if any role hardness plays within the wear profile. Hardness 

values are shown in Figure 5-16.  At both the fourteen hour interval and the 

thirty five hour interval there appears to be no change, outside of deviation, 

in hardness when comparing either coating‘s worn area to the unworn area‘s 
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value. To allow for accurate values, eight measurements were taken in a line 

along the wear scar, or outside of it for the unworn values).The a-C:H 

coating remains the hardest of the two coatings throughout the times tested 

and the error associated with the measurement decreases with time, this 

suggest the surface is undergoing polishing wear; removing some surface 

asperities. The error associated with the measurements appears to 

decrease with wear. This behaviour is again indicative of the surface 

becoming smoother through wearing and yielding more accurate 

nanoindentation results. This has been seen before in the literature where 

rough films give lower nanohardness values than the same smooth films 

[182].  

 

Figure 5-16 Nanoindentation data, carried out as per experimental section 
3.6.9. Indent depth was set to 50 nm, the values obtained will therefore be a 
convolution of tribofilm hardness and DLC hardness. 

 

5.2.11.  sp2 signal evolution as a function of time 

Carbon hybridisation, or sp ratios of DLC films often garner much interest as 

this type of bonding can influence the hardness of the DLC films produced. 

Furthermore, there is much discourse in the literature surrounding the 

relevance of graphitisation when examining DLC components. EELS can 

effectively address this issue. As such, the sp ratio was established for each 

film and its evolution with time followed at certain intervals. In order to get an 

accurate sp ratio value, for each sample examined three spots were picked 

for EELS analysis which is demonstrated in Figure 5-17.  
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For the three a-C:H samples examined, each cross-section exhibited local 

fluctuation in sp2 values dependant on analysis point. There was no 

continuous trend with which EELS spot (i.e. EELS 1, 2 or 3) would have the 

highest or lowest sp2 content. As such, average values for each cross-

section are used to give accurate sp ratios. These values are given in Table 

5-4. 

 

Figure 5-17 DLC cross-section with EELS analysis spots shown, 
purposefully avoiding shaded interlayer area. 

 

Table 5-4 showing sp2 evolution as function of time worn.  

 

Coating EELS 
unworn 

EELS seven 
hours 

EELS fourteen 
hours 

Total 
change 

a-C:H 59.63 (± 6.3) 75.45 (±  5.9) 82.07 (± 4.4) 20.27 
Low Si-
Doped 

38.39 (± 1.5) not obtained 40.97(± 4.2) n/a 

 

Due to the difficult and time-consuming nature of producing cross sections of 

the worn area, EELS analysis was not undertaken for the seven hour tested 

low Si-DLC sample. This decision was made as Si is known to stabilise the 
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coatings sp3 ratio and it was suspected that this would not change much with 

time.  

At the seven hour interval EELS indicates  a sp2 fraction of 75.4% ± 5.9 , 

showing an increase from the initial value. The sp2 fraction increases further 

by the fourteen hour point to 82.07 ± 4.4%.  This continual increase in sp2 

fraction suggests a change in the coatings microstructure is occurring for the 

a-C:H DLC. EELS data was not obtained for the a-C:H nor the low Si-doped 

sample at thirty-five  hours. 

EELS data from the low Si-DLC at the fourteen hour mark in the 

experimental matrix shows that the sp2 fraction is now 40.97 ± 4.2%. This 

does not show a change outside of standard deviation from the unworn 

coating. Comparison of unworn EELS data and NMR data does indicate a 

good level of correlation, adding further validity to the results. In addition to 

EELS data, TEM images were also obtained of the cross sections. These 

were obtained as graphite appears very distinctly in TEM images due to its 

long-range order as demonstrated by the TEM image in Figure 5-18 from 

[154]. 

 

 

Figure 5-18 TEM image of a graphite film on silica, showing highly ordered 
basal planes taken from Colby et al [183] 
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As such, graphitic regions should be easily identifiable in the images shown 

in Figure 5-19. However this is not the case; suggesting no bulk 

graphitisation has occurred. 

 

 

Figure 5-19 TEM images of a-C:H DLCs at 7 hours a) and 14 hours b) 
showing no evidence of graphitic planes in the carbonaceous area (light 
grey). 

5.3. Results: tribochemical analysis of engine tested, 

diamond-like carbon coated tappets 

5.3.1. DLC in Engines 

There are many reasons as to why DLC coatings are employed within the 

automotive industry and currently there are several factors driving forward 

research and development of DLCs. The on-going drive to reduce friction 

and improve fuel economy can be more easily reached by using DLC 

coatings which are known to exhibit low friction [7, 99]. In addition to this, the 

need to comply with EU legislation equates to reducing the allowed levels of 

certain car emissions. This limits Sulphated Ash, Phosphorous and Sulphur 

(SAPS) levels in oils which could be redressed using DLC with its intrinsic 

wear resistance [8, 184]. Finally the continuing move towards more compact 

engines can also be eased by employing these coatings, which are designed 

to withstand far harsher conditions [19]. DLC has the added benefit that only 
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one surface of the tribo-pair needs to be coated to affect the reduction in 

friction and impart other beneficial factors [45].  

Within this section the testing of DLC coated tappets (of the type already 

explored experimentally on the bench-top) will be presented. The aim of 

which is to give insight into the effect actual working conditions of an engine 

will have in terms of the wear performance of the DLCs. 

 

5.3.2. Engine Testing 

Engine testing of coatings is an excellent way to validate the performance of 

any novel coating or oil as it accounts for conditions and circumstances that 

may not occur during bench-top tribotesting. The differing factors within an 

engine that affect the tribology are mainly due to the various physical and 

chemical processes occurring. This includes formation of combustion 

products and alkyl radicals [185]. Various other gases that are not accounted 

for during bench tests could also influence the tribology of the system 

including highly-reactive gases that have not yet reached the catalytic 

converter: carbon monoxide, un-burnt hydrocarbons and NOx. Other non-

gaseous species such as fuel and trace water contaminants will also be 

present within the engine. Having these present will account for any affect 

they may have on the coating. There are different working pressures 

associated within an engine that may not be effectively accounted for during 

bench-top testing. Finally the length of an engine test, 300 hours, also helps 

further validate the lifetime performance of DLCs more fully as an engine 

test duration exceeds most standard lab test times in a tribometer.  

There are however major downsides associated with engine testing. This 

includes the large costs associated with running a fully-fired engine for a 

long period, the special test areas required for the running of them and the 

need for them to be supervised for the entire running cycle, in this case 300 

hours. Therefore, augmenting bench-top testing with engine testing data 

allows for a fuller picture of the tribology of the system. 



- 116 - 

5.3.3. Additional test methods 

Engine testing was undertaken in house by Lubrizol. Following engine 

testing, the tappets were analysed using various methods at the University 

of Leeds. As such, some of the experimental methods of this chapter are 

different to previous ones. 

5.3.4. Engine Testing at Lubrizol 

Wear testing was conducted at Lubrizol Limited using the CEC-L-099-08 test 

procedure which utilises a four cylinder, Mercedes-Benz OM646LA 2.2L 

diesel engine. This procedure is an industry standard and is an Association 

des Constructeurs Européens Del Automobile [Association of European 

automotive manufacturers] (ACEA) requirement for all categories of the A/B, 

C and E sequence for service-fill oils which defines the minimum acceptable 

oil quality level [186]. Engine details are shown in Table 5-4.  

Table 5-4 Engine test details as conducted in house at Lubrizol Ltd. 

Manufacturer Daimler 

Displacement 2148cc 

Fuel Common Rail Diesel Direct Injection 

Induction Turbocharged 

Cylinders In-line-4 

Valves 16 

Valve Actuation Direct Follower 

Exhaust After Treatment Oxy-Cat / DPF 

Emissions Compliance Level Euro IV 

 

The engine has eight inlet valves and eight exhaust valves, two of each per 

cylinder. In this work pairs of the standard steel tappets were replaced by 

tappets coated with different DLCs.  These were the silicon-doped and a-

C:H DLC as investigated above. Two tappets of each type were inserted into 

the inlet side of the engine and two tappets of each type were inserted into 

the exhaust side.  
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5.3.5. Engine Test Procedure  

The engine test consists of several phases; there is a short break-in period 

(~75  minutes) followed by a power curve (~ 65 minutes) and a short oil 

consumption run. The oil used for testing was Oil B. The main test repeats a 

one hour multi-stage speed and load profile for 300 hours. At the end of the 

test the engine is dismantled. 

5.3.6. Wear results – Cam  

Wear analysis of the cams was undertaken in-house at Lubrizol, cam wear 

data is given in Figure 5-20. Cam wear data clearly shows that DLC greatly 

enhances wear resistance when compared to steel alone. Both types of DLC 

have a significant impact on cam lobe wear. On the steel reference, the cam 

outlet wear level is higher compared to the inlet. This remains true for the a-

C:H DLC; The Si-doped DLC exhibits similar very low wear levels on both 

sides of the engine (inlet & outlet). 

 

Figure 5-20 Shows wear of cam lobe being sharply reduced by the presence 
of a DLC counter body 

 

5.3.7. Wear results - Tappets 

Examination by eye shows the clear difference in performance between the 

two samples. The low silicon-doped DLC which shows a large circular patch 
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of exposed steel (7 mm in diameter) where the most severe wear has taken 

place, at the centre of the tappet. In comparison the a-C:H DLC shows no 

such severe wear. Scanning light interferometry was employed on a 

representative central section of each tappet, shown in Table 5-5 and Figure 

5-21. 

 

Figure 5-21 Scanning light interferometry maps of sections of the worn areas 
of the tappets. a) shows the severely worn areas (given in blue) of the low 
Si-DLC tappet, b) shows the very mild wear of the a-C:H tappet.  

 

A maximum depth loss of 3 µm was recorded at the most severe point for 

the Si-doped tappet. For the a-C:H coated tappet, very minor wear is 

observed. A maximum loss in depth is recorded as 0.3 µm. When examined 

using the interferometer the coating appears polished, rather than 

destructively worn. This suggests the a-C:H has good anti-wear stability at 

all points in its lifetime. 

Table 5-5 DLC wear measurements 

 a-C:H Low Si-
DLC 

Maximum recorded  depth loss (μm) 0.3 3.0 
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5.3.8. Tribofilm analysis - XPS results 

XPS profiles were conducted on the central area of the tappets and are 

given in Figure 5-22. Fewer than expected tribologically relevant elements 

were identified using this technique. Only one of the three test spots showed 

Ca on the Si-doped sample, as such it is not given in the graph. 

 

Figure 5-22 XPS analysis of engine-tested, worn tappets. Carbon omitted for 

scaling 

Trace calcium is detected in both samples. However, the lack of other 

tribologically important species warranted further investigation as the engine 

was lubricated with fully formulated oil containing ZDDP and other additives.  

It is notable that the a-C:H sample has a slightly higher % atomic 

concentration of Ca on the surface. In previous testing, the low Si-doped 

sample usually accrues more species in the film than the a-C:H sample. To 

gain further insight into what tribological processes were taking place at the 

surface, an argon gas cluster ion beam (GCIB) was employed to etch into 

the tappet shown in Figure 5-23 and Table 5-6. GCIB was selected in this 

case, as opposed to other etching techniques, as it is known to be a slower, 

less aggressive profiling technique. 
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Figure 5-23 XPS GCIB profile of the low Si-DLC coated tappet. Area 
selected was intact DLC, away from completely worn area. Carbon, omitted 
for scaling, remains fairly constant around 73 – 65 % atomic concentration. 

 

Table 5-6 Data from gas cluster ion beam profiling of the low Si-DLC tappet 

Element Surface 

(% atomic conc.) 

After 30 s profiling 

(%atomic conc.) 

Change on profiling  

Ar 2p nd 0.4  Argon revealed 

C 1s 75.3 73.8     

N 1s 1.3 nd  Surface nitrogen removed 

O 1s 13.5 8.0  Surface oxides removed 

Si 2p 9.9 17.8  Far greater amount of Si in bulk 

 

The argon GCIB results show some changes that take place as the beam 

penetrates into the surface. Due the time consuming nature of GCIB 

profiling, no high-resolution spectra were obtained. As such no Ca is 

detected; Ca was previously only detected after high-resolution scans were 

employed.  

Although no new elements are uncovered, changes do take place in the 

spectra. C1s % atomic concentration (omitted from spectra for scaling) stays 

stable throughout the progress. Argon is revealed, nitrogen disappears, the 

oxygen signal decreases and the silicon signal increases. This again 
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underlines the propensity of the low Si-DLC tappet to oxidise at the surface. 

It also shows that the tribofilm is very thin as profiling with GCIB, typically a 

less destructive profiling technique (when compared to Ar ion etching), 

removes all traces of the film with no new elements being identified [187]. 

ToF-SIMS results were sought, as this technique is known to be far more 

sensitive than XPS to surface layers [137, 188].   When examining certain 

surfaces ToF-SIMS has been shown to have a detection limit of 0.1 ng/cm2 

compared to that of XPS, 10 ng/cm2 [188]. 

5.3.9. ToF-SIMS mapping 

Chemical maps were obtained of each of the engine tested tappets to fully 

characterise the  surface. As XPS data did not show the expected elements 

it could be the case that a film too thin for the detection limits of XPS is 

present. These are shown in 

 Figure 5-24 and Figure 5-25  Several functional groups were identified on 

the tappets and are given in Table 5-7 and Table 5-8. These species include 

P, S, Ca and Zn on both tappets. This confirms a thin tribofilm to be present. 

Table 5-7 ToF SIMS negative ion analysis 

Tappet/Element: O CNO P S Ca Si 

A-C:H OH CHNO PO3 SO3, 
SO4, HS 

nd nd 

Si-doped OH CHNO PO3 SO2, 
SO3, HS 

Ca(OH)2 SiO2, 
SiHO2 

nd = not detected 

Table 5-8 ToF SIMS positive ion analysis 

Tappet/Element: Zn Fe P S Ca Si 

A-C:H Zn n/a ZnP CaSO4 CaSO4 nd 

Si-doped Zn FeO2 nd nd nd Si2O 

 

nd = not detected 
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Figure 5-24 Shows ToF- SIMS mapping with of the a-C:H tappet with a) total 
ions, b) OH, c) CHNO, d) PO3, e) HS and f) SO3 anions. 

 

 

Figure 5-25 shows ToF- SIMS mapping of the low Si-DLC tappet with a) total 

ions, b) OH, c) CHNO, d) PO3, e) HS and f) SO3 anions. 
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5.4. Summary 

 In terms of wear performance the a-C:H film outperforms the low Si-

DLC which has higher wear particularly at the initial stages (running-

in) of experiment, as expected. This suggests Si-DLC shows higher 

dependence on tribofilm formation than the a-C:H DLC. A-C:H DLC 

shows lower running in-wear. 

 Effective nanometer tribofilms are present that confer enhanced wear 

resistance. DLCs‘ inherent hardness as a coating appears to greatly 

reduce the need for a ~100 nanometer scale, thicker tribofilm as 

encountered on ferrous surfaces. 

 The low Si-DLC‘s tribofilm is thicker than the a-C:H film (by a factor of 

5); however neither tribofilm appears to increase the hardness in the 

worn area, suggesting wear reduction is facilitated by a chemical anti-

wear mechanism. 

 An sp2 signal increase with time is noted for the a-C:H sample but it 

appears that inclusion of Si prevents this occurring in the low Si-DLC. 

The change in sp ratio does not appear to affect coating hardness. 

 Fired-engine tested tappets analyzed herein demonstrate a-C:H DLC 

outperforms the low Si-doped DLC in terms of wear reduction on both 

the tappet and cam. This is in line with similar bench top tests 

conducted at the University of Leeds, with the a-C:H DLC 

outperforming in terms of wear. 

 It is noted that DLCs should be considered an improvement on the 

standard steel/steel tribo-couple in terms of wear protection. 

 The low Si-DLC appears to give lower counter body wear. 

 It is most probable that the harsher conditions associated with fired-

engine testing accelerate the wear of the low Si-DLC as there are 

more oxidative processes taking place within the engine. 

 There may be room to further optimize oil formulations for use with Si-

doped DLCs by inclusion of additional anti-oxidant species. The 
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current oil formulation does however appear to work well with the a-

C:H DLC. 

 Tribofilms are present on both tappets. The comparison of XPS data 

with SIMS data suggests that the tribofilm present is in fact very thin, 

potentially on the scale of 1-2 nms  

 There are large amounts of similarity between the two tribofilms 

formed on either tappet. SIMS data suggests a variety of tribologically 

relevant elements present. In terms of wear the a-C:H DLC appears 

to be already activated towards lubricant additives, perhaps further 

doping for the purpose of wear protection is not necessary. 

  



- 125 - 

 Results: tribochemistry of low Si-doped DLC in oil Chapter 6

A compared with oil D 

6.1. Introduction 

In this chapter, the tribological dependence on oil formulation of the low  Si-

DLC examined in this project is explored. To fully assess to what extent 

wear protection depends on the highly effective and well known oil additive 

ZDDP, comparisons are made between a ZDDP containing oil (A) and low 

additive oil (D). The low Si-DLC is the focus of this study as it shows greater 

wear than a-C:H DLC so has the most potential to benefit from effective 

lubrication. It also shows enhanced activity towards tribofilm formation, as 

established previously. Oxygen is known to play a key role in the tribological 

behaviour of Si-DLCs, thus ZDDP could be a highly relevant additive when 

examining its performance within an engine. As such, an extensive analysis 

is carried out prior to and after tribotesting.  

6.2. Coating characterisation pre-wear 

6.2.1. Dynamic SIMS data of unworn sample 

Dynamic profile data was obtained of the low Si-DLC to investigated the 

relationship between surface rich compounds and compounds present in the 

bulk and allows for comparison after testing. Dynamic profile data (Figure 

6-1 a, b) confirms an inverse relationship of certain species within the DLC. 

It appears that hydrated carbon, silicon oxide and hydroxyl groups are at 

greatest concentration at the surface. 

However, with profiling deeper into the surface these species deplete. In 

comparison the unsaturated carbon chains and less oxidised silicon species 

appear to increase in concentration with etching; the main fragments being 

Si:O 1:1, compared with the surface.  This shows that there is indeed a rich 

oxide layer at the upper surface of the DLC and that this is not maintained in 

the bulk of the material. 
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Figure 6-1 a) ToF-SIMS dynamic profile of unworn low Si-DLC, separated to 
include only surface rich components. b) ToF-SIMS dynamic profile of 
unworn low Si-DLC, separated to show bulk DLC constituent ions. 

 

The dynamic profile is not directly calibrated to depth; however combining 

the SIMS data with XPS data, an approximate depth of the presence of the 

Si oxide layer would suggest a minimum of 10 nm if not greater based on 

XPS penetration depth. 

6.2.2. XPS pre-wear 

XPS analysis of the coating prior to wear gives insight into the surface rich 

species. XPS profile of the coating surface as shown in Figure 6-2 
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demonstrates that oxygen makes up 12% of the spectrum and silicon makes 

up 15%. ERDA data as given in section 3.3.1. Table 3-1 suggests there 

should be approximately twice as much silicon compared to oxygen when 

the coating is analysed as a whole. 

 

 

Figure 6-2 XPS of unworn low Si-DLC coupon 

6.3. Friction results from the low Si-DLC tested over seven 

hours 

Friction data has been presented in two graphs for clarity. Initial friction is 

given in Figure 6-3 and shows up to the two hour time interval with error bars 

included. This shows oil A giving a slight reduction in friction when compared 

to oil D, outside of error. However, the reduction observed is small being 

recorded as a maximum reduction of 10%. With the full friction profile error 

bars have been omitted for clarity, as toward the end of the experiment the 

values become close together, Figure 6-4. 
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Figure 6-3 Early stage friction with error bars included. This shows the 
different tribological profile, as dependant on oil. 

 

Figure 6-4 Full duration friction graph by oil, error bars omitted for clarity due 
to the closeness of values towards the end of testing. This shows the friction 
values merging toward the end of testing. 

 

The respective coefficients of friction appear to merge as shown in the with 

friction traces given in Figure 6-4. These tests show that the friction 

coefficient of the sample tested in oil D continues to reduce, whereas oil A 

affects no such gradual decline in friction.  
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6.4. Pin and plate microscope analysis 

Optical images of the pin  are shown in Figure 6-5. The sample tested in oil 

D shows a black layer on the pin. Optical images show a clear difference 

between the two tribopairs. The pair tested in oil D have higher wear and 

clear formation of a transfer film on the steel pin is seen. 

 

Figure 6-5 Optical images  of the worn areas on the plate and pin tested in 
oil D are labelled a and b, respectively. The worn areas as tested in oil A are 
given in c) and d). 

6.5. Wear results 

Wear of coatings are shown in Table 6-1. Wear is recorded after seven 

hours of testing and shows greater total wear of the low Si-DLC when tested 

in oil D, as predicted. Dimensional wear coefficients (k) were used to 

compare wear of the samples in the different oils. For the samples tested in 

oil A, k is recorded as 3.7E-18 ± 1.4E-18 m3/Nm. The sample tested in oil D 

has a k value of 9.0E-17 ± 6.2E-18 m3/Nm. This clearly indicates  fully-

formulated oil (oil A) works synergistically with the coating to reduce wear. 
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Wear of the coating was also measured at the point of maximum depth loss 

to gauge loss of coating thickness. The depth lost (2.2 μm ± 0.16 μm) when 

tested in the oil D suggests the coating, total thickness 2.4 μm, has been 

completely removed by wear in certain places. This can be further validated 

by inspection by eye as the steel substrate has been clearly revealed in 

specific sections of the sample. Following the wear progress it would appear 

that some of the more severe wear, where steel is revealed, takes place 

earlier on (~ 2 hours) into testing. However, the coating is not completely 

removed by the end of the test. This is not the case for oil A which only 

facilitates a loss in coating thickness of only 0.6 μm ± 0.09 μm.  

Table 6-1 Quantified plate wear 

 Wear of plate (m3/Nm) Max. Thickness lost (μm) 

Oil D 9.0E-17 ± 6.2E-18 2.2 ± 0.16 

Oil A 3.7E-18 ± 1.4E-18 0.6  ± 0.09 

 

6.6. Thermal effects of gas absorption upon the coating 

The importance of oxides on the surface of Si-DLC is made obvious from the 

literature. It is important to establish the mechanism by which silicon in the 

coating oxidises and whether this depends on tribological effects. XPS 

spectra of the samples were obtained after different treatments as shown in 

Figure 6-6. 

Heating the sample, as XPS data shows in Figure 6-6b, in an atmosphere of 

nitrogen induces a change in the coating. An additional peak appears that is 

indicative of more oxidised forms of Si being present. The sample heated in 

air as shown in Figure 6-6c produces an even more defined change, with a 

clearly visible shoulder to the Si 2p region. The emerging peak at 102.4 eV 

is indicative of silicon bonded to, proportionally more oxygen 
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Figure 6-6 XPS analysis of Si 2p peaks from the low Si-DLC heated under 
different conditions. a) low Si-DLC untreated, b) low Si-DLC heated under 
N2, and c) low Si-DLC heated under O2. 

 

The inclusion of additional oxygen atoms raises the eV for the environment 

at silicon 2p [144]. The oxygen signal for the sample heated in air is 533.34 

eV again confirming the presence of SiO2 type species. Therefore it can be 

observed that silicon doped DLC does oxidise when heated in air, without 

the need for any tribological influence.  

6.7. Wear scar analysis results 

6.7.1. XPS results for low Si-DLC in Oil D 

The upper surface of the sample tested in Oil D, as examined by XPS are 

given in Figure 6-7. The data shows the presence of O, C and Si, all of 

which are constituents of the DLC. XPS peak component break-down at Si is 

shown in Figure 6-8. Here, two distinct peaks are identifiable. One is at 
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102.8 eV, which is again indicative of Si at a higher oxidation state [144]. 

Oxygen peak components are in agreement with this.  

Figure 

6-7 XPS analysis showing % atomic concentration of elements on low Si-

DLC after testing in Oil D. 

 

Figure 6-8 High resolution Si 2p peak window as obtained in oil D, showing 
oxidation of Si. 

 

This shows that the silicon in the coating is being severely worn and 

exposed to oxygen. The rise in eV value of the Si 2p peak echoes the 

spectra of the sample that was heated in air. Both samples appear to be 
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oxidised quite severely.  However, the tribo-tested sample shows complete 

loss of the Si-C signal, indicating enhanced oxidation at the tribocontact. 

 

6.7.2. XPS results for low Si-DLC in Oil A 

Unlike in the oil D, oil A appears to suppress the emergence of a peak at a 

higher eV value in the low Si-DLC spectrum as shown in Figure 6-9. The two 

components of the peak are at 100.4 eV and 101.4 eV, indicating C-Si and 

Si-O-C respectively. The sole presence of these two components for the Si 

2p peak suggests that the coating resists most wear-based changes to its 

microstructure. In addition to this calcium, zinc and phosphorous peaks are 

present in the spectrum (Figure 6-10); evidence of the formation of a 

tribofilm.  

 

Figure 6-9 XPS analysis of Si 2p peak window when tested in Oil A, showing 
less oxidation of Si. 
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Figure 6-10 Elements in the tribofilm (carbon omitted for scaling) of oil A. 
The presence of nitrogen is noted as contamination. 

 

Table 6-2 Peak attributions of XPS data from the tribofilm composed from Oil 
A. 

Element Position (eV) Attribution [143, 146, 147] 

P 2p 133.8 Pyrophosphate 

S 2p 163.9 Sulphide 

O 1s 532.1 Phosphate 

Ca 2p 348.1 Calcium 
carbonate/phosphate 

Zn 2p 1023.1 Zinc sulphide 

 

6.7.3. XPS results for counter bodies 

XPS analysis of the pins reveals a tribofilm on the counter bodies as given in Table 

6-3. XPS analysis identifies Zn, S and P present on the pin tested in 

formulated oil but not on the pin tested in oil D, suggesting formation of a Zn 

based protective tribofilm.  
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Table 6-3 XPS analysis of counter bodies. Nd = not detected 

Element (% atomic 
concentration) 

Oil A Oil D 

O 25.5 23.8 

C 54 63.1 

N 1.5 2.4 

Zn 0.3 0.0 

Fe 1.1 0.8 

Ca 1.5 0.6 

Mg 12.5 7.3 

S 2.0 Nd 

P 1.6 Nd 

Cr Nd 0.3 

Si Nd 1.7 

 

Peak attribution for the Zn peak (1022.1 eV) and S peak (162.1 eV) 

suggests the presence of zinc sulphide. A calcium phosphate species is also 

indicated (Ca = 347.1 eV) as is pyrophosphate (P = 133.1 eV).The pin tested 

in oil D shows the presence of Si and Cr that are not observed in oil A. This 

is indicative of increased wear as both Si and Cr are components of the 

tribopairs. The Si signal appears at 102 eV and is indicative of an Si-O type 

compound [146]. It is notable that Si is lacking from the spectrum from oil A. 

 

6.7.4. TEM/EDX data from the low Si-DLC in oil A 

A Transmission Electron Microscope image (TEM) was obtained of a cross 

section of the worn area. Figure 6-11 shows the cross sectional area which 

was prepared using a focused ion beam. A tribofilm is evident for the low Si-

DLC when tested in oil A.  
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Figure 6-11 TEM image showing the uneven nature of the tribofilm. Area for 
analysis was selected as it contained the thickest section of the film. 

 

The tribofilm pictured appears to be unevenly distributed and thicker in 

certain areas. Maximum film thickness was recorded as 15.0 nm. EDX 

spectra shown in Figure 6-12 were obtained of the DLC, as background, and 

the tribolayer. Zinc, sulphur and calcium are all identified to be present in the 

tribofilm. The silicon signal appears to be far less intense in the tribolayer 

than in the DLC, in contrast the carbon peak intensity does not appear to 

change between the two. 

 

6.7.5. SIMS chemical map data from the sample tested in oil 

D  

Secondary-ion mass spectrometry was conducted on both samples post-

wear. Chemical maps were obtained.  Silicon species, as shown in Figure 

6-13, are present on the plate but they are now present as oxides and no 

longer appear to be fragments of a carbon chain. Silicon is now mainly 

present as smaller ion fragments including SiHO2 and SiO2. 
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Figure 6-12 EDX spectra showing a) the tribolayer confirming presence of 
Ca, Zn O and S. The background signal is shown on b). Cu, Pt are artefacts 
from the production process. Other trace elements noted as contaminants 
from manufacture of the cross-section. 

 

The lack of ions where silicon is within a carbon matrix is evidence of the 

severe wear the coating has undergone, suggesting that silicon has been 

actively sequestered from the coating during the wear process. The full 

mechanism of this is explored in the discussion section. However, it appears 

that sequential oxidation of silicon within the coating, as part of the wear 

process then goes on to accelerate overall wear of the coating. Preventing 

this oxidation is key to extending the lifetime of Si-DLCs. 
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Figure 6-13 SIMS chemical map of sample in oil D showing widespread 
oxidation of coating constituents. Negative ion ToF-SIMS map of low Si-DLC 
tribotested in oil D. (a) C4H, (b) SiHO2, (c) C6, and (d) SiO2. Lighter areas 
indicating greater concentration of ions 

 

6.7.6. SIMS chemical map data from oil A tested sample 

Chemical map data, shown in Figure 6-14, of the sample tested in oil A 

shows a well-defined, constrained wear track in which several trends are 

apparent. There is a pronounced difference from within the wear track when 

compared with the unworn section of the film. The worn area shows 

depletion of oxygen anions when compared to the whole plate. As well as 

loss of the higher oxides of silicon, where silicon: oxygen ratio is 1:2 or 

higher. An opposite trend is observed with sulphur and phosphorous 

species. The worn area contains a far larger amount of  anions: PO3, PO2 

and SO2 are noted. In addition to this there appears to be great 

concentration of silicon maintained in a carbon matrix, in that the signal for 

Si-C type compounds appear richer in the worn area. 

It would appear that build-up of P and S compounds, most likely originating 

from Zn-type additive molecules, in the worn area are able to reduce oxygen 

concentration in the worn area. They also appear to help maintain the DLCs 
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microstructure; with more silicon incorporated with carbon. This is 

demonstrated by the ToF-SIMS map of SiC2H5O in Figure 6-14, which is 

clearly richer in the worn area following protection from oxidation by the 

tribofilm that has formed. 

 

Figure 6-14 SIMS maps of samples tested in Oil A oil showing reduction in 
oxygen content within the worn area. Negative ion ToF-SIMS map of low Si-
DLC tribotested in Oil A. (a) CH2, (b) O, (c) PO3, (d) HS, (e) SiO2, (f) SiHO3, 
(g) SiHO2 and (h) SiC2H5O. Boxed area showing increases in amount of 
SiC2H5O and reduction in amount of O in wear scar. Lighter areas indicating 
greater concentration of ions. 

 

6.7.7. Dynamic SIMS profile data 

Dynamic SIMS profile data as given  in Figure 6-15 a, b and c was obtained 

for the sample tested in oil A. This was sought to help investigate the 

relationship of P and S ions with the Si-C type species. A C60 source was 

used to etch into the samples. 

The profile obtained shows a definite pattern emerging whereby the 

immediate surface layer is markedly different to the bulk material, further in. 

Present at the immediate surface are oxygenated species including 

hydroxides and oxides of sulphur and phosphorous. In addition to this there 

are also trace amounts of highly oxidised silicon type species at the surface, 

however these tail off very steeply; unlike the signal for both P and S which 

is prominent for longer. Presence of these species at the upper surface is 
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clearly indicative of tribofilm formation. Once these species are uncovered 

by profiling, new signals emerge that account for the further bulk of the DLC.  

 

 

 

Figure 6-15 Dynamic SIMS data from Oil A tested sample. 
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These include carbon chains, and species including silicon bonded to 

hydrogen and carbon as well as some oxygen, as expected. Si within the 

bulk of the film appears largely to be present as the hydride or bonded to 

carbon, along with some oxygen. Profiling data appears to confirm that 

presence of P and S at the upper surface reduces the amount of silicon 

oxides formed. Dynamic profiles of the samples tested in oil D were not 

obtained. 

6.8. Summary 

Characterisation of Si, O containing Diamond-like Carbon has been 

achieved both prior to and following wear testing. Chemical composition of 

the film can be seen to alter upon wear, depending on conditions. Chemical 

states of silicon show the most discernible change upon either exposure to 

oxygen or wear-processes. 

Si, O –doped, hydrogenated DLC has been tested in two different oils and 

analysed in terms of friction and wear profiles. Using a variety of spectral 

techniques elements important to wear protection were identified in the worn 

area including P, S, Zn and Ca species.  

 

 The role of oxygen in the wear of the coating is shown. 

 The low Si-DLC shows high dependence on oil formulation for 

improved-wear performance when tested over seven hours.  

 A mechanism is proposed whereby sequential oxidation of silicon 

within the coating accelerates degradation of the DLC. 

 Inclusion of anti-oxidant species within fully-formulated oils are 

proposed as the major factor limiting the wear of Si,O-DLC. 

In future, additional organic additives could be incorporated in to oil 

formulations to further guard against oxidative damage of Si,O-doped DLCs. 

DLCs doped solely with silicon, omitting oxygen, may behave differently to 
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those with both Si and O. However, the tendency of silicon within the coating 

to oxidize will be maintained and could be potentiated by the lack of oxygen 

in the bulk coating. 
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  Results: Investigating the influence of ferrous Chapter 7

surfaces with respect to DLC tribofilms 

7.1. Introduction 

In order to fully characterise surface interactions and tribological 

dependencies of Si-DLC, a study involving self-mated DLC contacts was 

undertaken. This also extends to exploring interactions that Si-DLC has with 

a lubricant when heated to observe formation of a thermal film. Investigating 

the tribocontact in absence of a ferrous body is the main motivation for this 

study to establish how tribologically reactive Si-DCLs are without influence 

from a ferrous counter body. This will also serve to help answer the question 

often posed in the literature; what role do Fe ions play within DLC/steel 

contacts in development of the tribofilm. Finally, a surface modification is 

carried out to further clarify the role of very-top surface functionalities on 

friction. 

7.2. Results 

7.2.1. Thermal film investigation 

To first confirm if Si-DLC coatings are able to form films without any 

influence from steel counter bodies or indeed Fe ions, a thermal dependency 

investigation was carried out. The DLC coupon was fully-submerged in Oil A 

at 80 °C and heated for seven hours. This time frame was chosen as it is 

noted as sufficient for tribofilm formation. The samples were then rinsed with 

heptane and allowed to dry. XPS analysis was then conducted on the 

surface, this data is presented in Table 7-1. This can be compared with 

previously obtained XPS data of an unworn low Si-DLC surface. Both sets of 

XPS data were calibrated to the 284.4 eV C 1s peak component associated 

with DLC bonding, specifically the C-H bond [87, 139]. As such the broader 
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C 1s parent peak does not exactly match the calibration point. The 

procedure is employed to ensure that any oxidation of carbon that may take 

place during thermal film formation does not skew the dataset. 

 

Table 7-1 Tabulated data from XPS analysis of the unworn low Si-DLC and 
the thermal film grown on the same DLC 

 Thermal Film Unworn low Si-DLC  

Element Position (eV) %At Conc. Position (eV) %At Conc. 

C 1s 285.8 74.0 284.3 71.9 

N 1s 400.8 1.1 400.3 0.6 

O 1s 532.8 10.6 532.3 13.4 

Si 2p 101.8 14.1 101.3 13.9 

Zn 2p 1022.8 0.1 Nnd nd 

Nd = not detected 

There is only one major chemical difference between the two surfaces 

analysed. Zn  is present on the thermally treated sample with a Zn 2p peak 

at 1022.8 eV. High-resolution scans were also conducted for Ca, P and S 

however none of these elements were detected. The Zn 2p peak cannot be 

definitively attributed without additional analytical techniques.  

However literature sources suggest a variety of species could account for 

this including various Zn oxides, hydroxides, silicates or carbonates [143, 

146].  Despite Zn only being present in 0.1 % this result can be relied upon 

as, Zn is both present in the survey scan and high-resolution scan. 

Furthermore, three XPS high-resolution spot analyses were conducted on 

the sample, all confirming the presence of Zn. The Zn 2p peak window is 

shown in Figure 7-1. 



- 145 - 

 

Figure 7-1 High-resolution Zn 2p peak window from XPS spectrum 

 

7.2.2. Friction of self-mated low Si-DLC versus self-mated 

steel 

The friction profiles of the self-mated steel and self-mated low Si-DLC 

contacts are shown in Figure 7-2 and Figure 7-3. The steel/steel contact 

shows constantly higher friction values when compared with the low Si-DLC 

tribopair. In the friction profile it can clearly be seen that both the coated and 

metal surface reach steady state friction in the testing period. 

 

7.2.1. Wear overview  

Optical micrographs were obtained of both the pin and plate worn areas. The 

pin shows clear evidence of formation of a tribofilm or transfer layer at the 

point of contact, as a dark pad is observed. This is shown in Figure 7-4 The 

wear track is difficult to distinguish due to the low-wear nature of the contact 

with the plate. Wear track width is measured as: 169.75 ± 6.03 μm and a 

darkening is observed within this area.  
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Figure 7-2 friction profile of self-mated steel and low Si-DLC contacts. 
Conditions as per experimental setup in section 3.5.2.  Error bars omitted for 
clarity. 

 

 

Figure 7-3  Steady-state and running-in friction (first and last five minutes of 
testing)  of both tribopoairs 
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Figure 7-4  Optical image of the self-mated DLC pin post-tribotesting, 
showing a dark pad or transfer/tribo film where contact occurred. The 
coating appears intact, with no steel being revealed XPS confirms no Fe is 
present. 

 

Optical imaging of a section of the wear track on the low Si-DLC disc is also 

imaged, as given in Figure 7-5. 
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Figure 7-5 Optical image of the plate post-tribotesting, showing a faint wear 
track contact occurred 

7.2.2. Surface analysis 

XPS spectra were obtained for both parts of all the tribocouples to fully-

characterise surface interactions. XPS analysis of the steel/steel tribopair 

shows evidence of a Ca-ZDDP type tribofilm being produced on the plate as 

given in Table 7-2. All peaks were calibrated to the presence of adventitious 

carbon on the steel sample, which comes higher in the spectra than any 

DLC associated peaks [189]. 

Table 7-2 XPS analysis of tribofilm on steel plate 

Element Position (eV) %Atomic Concentration Attribution 

C 1s 285.2 50.6 adventitious 

Ca 2p 347.4 2.7 CaCO3 

P 2p 133.5 7.2 pyrophosphate 

S 2p 161.8 1.2 sulphide 

O 1s 530.7 36.1 phosphate/iron oxide 
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Fe 2p 710.7 1.3 iron oxide 

Zn 2p 1022.4 1 zinc phosphate/ oxide 

 

When analysing the pin less species than expected were found, typically a 

classical ZDDP-ferrous system should leave a phosphate film [115]. As 

shown in the spectra shown in Figure 7-6 no P was detected. To ensure that 

surface contamination was not occluding the tribofilm proper, argon ion 

etching was conducted on the sample. An etch using mono atomic Ar gas 

ions with an energy of 4000 eV was employed for this purpose. A raster size 

of 1 mm x 2 mm was used.  

As shown below, no sulphur or phosphorous is detected on the worn area of 

the steel pin despite high-resolution scans being employed. Notable species 

in the worn area are limited to Zn (eV = 1022.4, indicative of ZnO) and Ca 

(eV = 347.8, indicative of CaCO3).  

 

 

This could be accounted for two different explanations. It is possible that: 

 different mechanisms govern the formation of tribofilm on the pin 

 or that the film on the pin is very thin ( <10 nms) and XPS analysis is 

not sensitive enough for examining this film. 

This will be explored in the discussion chapter. 



- 150 - 

 

Figure 7-6 XPS results from the pin of the steel/steel contact. Results 
showing etching data. The presence of Zn is noted at the 10s  mark as 0.1 
% atomic concentration. 

 

XPS analysis was also undertaken of the DLC/DLC pin-on-disc contact. 

Importantly, no Fe was detected when high-resolution scans were employed 

on either worn surface. This ensures any tribofilms identified were the 

product of low Si-DLC/low Si-DLC interactions and produced without any 

influence of Fe. XPS peaks values were used to attribute chemical species 

using literature values as shown in Table 7-3 [143, 146].  

XPS analysis of the tribopair indicates  the presence of a Zn, P, Ca, O 

species. Also noted are the presence of trace metal sulphides and 

sulphates. Again, three spot tests were used to ensure accuracy of results.  

There is a distinct difference between the body and counter-body makeup in 

terms of tribochemistry.  

 

Table 7-3 XPS breakdown of DLC plate and pin tribofilms. Nd = not 
detected. 

   Plate   Pin 

Element Position 
(eV) 

%At 
Conc. 

Attribution Position 
(eV) 
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Ca 2p 348.7 1.8 Calcium 
phosphate 

347.5 1.7 Calcium 
sulphate/ 
carbonate 

N 1s 400.7 1.1  399.5 1.0  

O 1s 532.7 20.1 SiO2 /SiC 531.5 12.4 SiO2 /SiC 

P 2p 134.7 1.0 Meta 

phosphate 

Nd Nd  

S 2p 162.8 0.1 ZnS 168.5 1.0 sulphate 

Si 2p 100.7 13.7 SiC 100.5 5.6 SiC 

Zn 2p 1022.7 0.1 ZnO, ZnS 1021.5 0.4 ZnO 

 

Tribochemically the pin contains different sulphur groups when compared to 

the plate, with sulphur at a higher eV value. This confirms the harsher 

oxidative conditions, sulphide is oxidised to the sulphate. XPS analysis of 

the pin reveals slightly different species in the worn area. Notably, no 

phosphorous is detected and the oxide of zinc is the predominant form.  

Comparing the Si peak regions on the plate and the pin again shows 

differences. 

High resolution spectra show that on the plate, as shown in Figure 7-7, there 

is a third peak contribution to the Si signal, this contribution appears to be 

from an SiO2 species as verified by the binding energy; the higher eV the 

more oxygen, proportionally, is bonded to the Si [144, 146]. The 

corresponding peak window of the pin, shown in Figure 7-7 lacks the SiOx 

species.  
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Figure 7-7 Showing the pin Si peak and the plate Si peak. FWHM values 
constrained to those of Si-C (100 eV), C-Si-O (101.5 eV) and (plate only) 
SiO2 (103 eV) 

 

7.2.3. Atomic Force Microscopy (AFM)  

AFM traces of the thermally treated sample and the tribo-tested samples 

were obtained to gain further insight into the differences and similarities 

between the two films produced. These traces are shown in Figure 7-8. It is 

clear that the two films have a distinctly different surface topography, with 

the tribofilm shown in Figure 7-8 a showing a smoother surface finish. It 

appears that the thermal film is not as thick as the tribofilm, and that 

because of this surface asperities are still visible. This is further evidence for 

the distinction between the thermal and tribological films. 

 



- 153 - 

 

Figure 7-8 AFM images of the tribofilm a) with  a smoother surface, and the 
thermal film b) with a far rougher surface. 

7.2.4. Surface functionalization 

The surface functionalization reaction was carried out (as detailed in page 

56 section 3.4.3) and the silanized tribopairs were tested. The surface 

functionalization, in this instance, was not envisaged as a long-term friction 

reducing method. Rather, as a technique to establish how influential SiOx 

groups are in dictating the friction profile and how converting these to Si-O-R 

affects friction. Due to the nature of the functionalization, the 

functionalization would not penetrate deeply (maximal depth of a few atomic 

layers) into the DLCs microstructure and is thus expected to be lost even 

when there is minimal wear. Figure 7-9 shows the effect the surface 

functionalization has on the friction.  

 

Figure 7-9 Effect on friction of the surface functionalization. Both contacts 
are the low Si-DLC/Si-DLC interfaces in oil b at 1.5 GPa. 
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The modified DLC does exhibit slightly lower initial coefficients of friction 

than the non-modified DLC. However, the values do remain close together at 

the start of the test. By the end of the testing the friction for the modified DLC 

is much higher than that of the low Si-DLC, suggesting the salinization 

process  (which is known to release acid) damaged the coating which 

negatively impacted friction. 

7.2.5. Summary 

This chapter explores the role iron plays with regards to DLC. By removing 

iron it is possible to see how dependant tribofilm formation is upon this 

reactive element. Iron‘s role is well known and defined with respect to ZDDP 

[115]. However, it would seem that even without a ferrous surface, tribofilms 

do form at the low Si-DLC/Si-DLC contacts. 

 Silicon-doped DLC contacts are able to make tribofilms independently 

of any ferrous body 

 These tribofilms are chemically different to thermal films observed 

and thus are definitively tribofilms 

 The self-mated low Si-DLC contacts show similar behavior to that 

observed with the steel/ low Si-DLC tribopair in that Si is sequestered 

from the coating with wear. 

 Si cannot be considered analogous to Fe in terms of tribochemistry as 

the thermal film observed is not similar to a ZDDP thermal film on a 

steel surface. 

 SiOx groups are not key to the lubricated friction performance of Si-

DLC as demonstrated by removing them from the surface 

 Ca plays a key role in the tribofilm formation at the low Si-DLC/ low 

Si-DLC interface investigated. 
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 Results: Repressing oxidative wear within Si Chapter 8

doped DLCs 

8.1. Introduction 

The mechanism of accelerated wear within Si-DLCs was explored 

extensively with XPS and ToF-SIMS in an earlier chapter[43]. It is widely 

accepted that the formation of silicon oxides play an integral role in the wear 

processes of Si-DLCs, Table 2-2- Table 2-4. In order to stabilise Si-DLCs 

with respect to wear the coating needs to have greater oxidative stability as 

silicon within a carbon matrix has a propensity to oxidise. This is because 

there is a strong thermodynamic driving force for this reaction [46]. Whether 

the Si-DLC is produced from solely a silane or a combination of hydrocarbon 

and siloxane, the wear is typically far higher for the Si-DLC, or Si,O –DLC 

than that of the a-C:H DLC. 

To fully explore the wear behaviour of Si-DLCs a novel doped DLC was 

produced and tested in formulated oil. Advanced surface analysis 

techniques were then conducted to explore the mechanisms underlying the 

frequently observed higher friction or wear with these types of DLC coatings. 

 

8.2. Coatings 

The DLC coatings used in this section include two commercially available 

DLCs, as well as a novel, DLC. All were produced using the Plasma 

Enhanced Chemical Vapour Deposition (PECVD) technique. These 

coatings, as per materials section 3.2, where prepared following a set 

procedure: using lower temperature plasma, the substrate is negatively 

biased by 500 V with the chamber acting as the electrode. A hot cathode 

auxiliary system is also employed to enhance plasma generation. The 
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process typically takes place at 10-3 mbar. The coatings can be viewed as 

multi-layered as there are interlayers employed to improve coating adhesion 

to the substrate. The substrate is first cleaned with argon ion etching before 

any deposition commences. Then a titanium layer is deposited, followed by 

a silicon based interlayer. After interlayer deposition the bulk DLC is 

deposited. This layer is ~ 1.2 µm thick and is made from a precursor that is 

highly sp2 hybridised. The silicon containing component cannot be revealed 

due to commercial sensitivity. The fluorine component is introduced into the 

DLC exclusively by use of Fluoroform whose chemical structure is shown in 

Figure 8-1. 

 

Figure 8-1 F-doping agent, Fluoroform (Trifluoromethane) 

The specific protocol for production of a composite DLC with a Si,O,F doped 

top-layer, is as follows: 

 Layer 1 of Si,O doped DLC (undisclosed organometallic precursor 

material) 

 Layer 2 : Short transition of a mix of (organometallic precursor 

material) + CxHy + Argon  

 Layer 3 : Additional Si,O doped DLC   

 Layer 4: (top surface) Combination of the organometallic precursor 

and Fluoroform. Followed by venting with Fluoroform. 

The doped coatings were analysed by XPS as shown in Table 8-1, to 

ascertain the % atomic dopant levels. 
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Table 8-1 %Atomic concentration of dopants in doped samples. Nd = not 

detected 

Sample Si O F 

Si,O,F Doped 3% 11% 1% 

Si,O Doped 18% 14% Nd 

 

It is noted that the %Si content of the two DLCs is different. Due to the 

nature of one DLC being a commercial sample and the difficulty of 

incorporating three dopants into the DLCs, this could not easily be altered. 

The potential affect this could have upon results is discussed later. Each 

coating‘s hardness prior to wear testing is given below in Table 8-2. 

Table 8-2 Coating hardness values 

Sample Hardness (GPa) St deviation ± 

Si,O,F Doped 13.9 3.8 

a-C:H 18.0 2.1 

Si,O Doped 14.4 3.0 

 

Thus, prior to testing, it can be seen that inclusion of Si does appear to 

reduce coating hardness. The dual combination of Si and F appears to 

reduce hardness further. This could be due to a variety of factors, most likely 

of which is the disruption of C-C bonding networks within the coating. This 

behaviour has been observed in the literature previously, with increasing 

fluorine content resulting in increased sp2 bonding [190, 191]. 

8.3. Preliminary optimisation of the surface modification 

process 

Initially the process modification envisaged was based around the 

manipulation of dangling bonds at the DLCs upper surface. These bonds are 

an artefact of the PVD/PECVD process and are always present at any 
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nascent DLCs surface post production, in a chamber under vacuum [63-65]. 

Previous work in the literature has shown that dangling bonds can be 

selectively modified using certain reagents [63]. This knowledge coupled 

with fundamental tribochemistry resulted in the selection of the gas 

trifluoromethane as a good candidate for surface reaction.  

Initial results, whereby the traditional a-C:H DLC was deposited and then 

held in the chamber whilst being exposed to trifluoromethane without any 

plasma activation were not as successful as hoped. This resulted in only a 

0.15 % atomic concentration of fluorine being incorporated on to the DLCs 

surface, ascertained by XPS analysis. This low amount would not be enough 

to affect the tribology of the system. From this unsuccessful modification 

attempt it was deduced that trifluoromethane was not active enough towards 

radical termination reactions; the reaction required to ‗cap‘ dangling bonds.  

To enable the fluorine containing reagent to fully react with the DLCs 

surface, the next experimental step was to use the plasma source available 

in the PVD rig. The process was run again with the plasma source left on 

whilst trifluoromethane was allowed into the chamber. XPS analysis revels 

that this yields a 4.69 % atomic concentration of fluorine on the DLCs 

surface. This represented a useful level of doping that, it was expected, 

would affect the tribology of the system. 

8.4.  Results 

8.4.1. ºSurface wettability of the coatings 

Water contact angle measurements were obtained for the three coatings 

examined which are given in Figure 8-2. Contact angle results suggest that 

the inclusion of both F and Si simultaneously does not affect the surface 

wettability when compared with a-C:H a-C:H DLC. The Si,O doped sample 

however does have improved wettability when compared to the a-C:H 

sample. Thus it can be expected that of the three coatings, the Si,O DLC 

should have greater affinities for any surface-active lubricant additives; such 

as detergent species. This concept is explored more thoroughly in the 

discussion section. 
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Figure 

8-2 Water contact angle of the DLCs examined 

 

8.4.2.  Friction profiles of the samples 

The friction profiles, as given in Figure 8-3 for the Si,O and a-C:H DLCs are, 

for the majority, within error of each other; suggesting there is no real 

difference between the friction performance of the two. However, the Si,O,F 

DLC shows a distinct rise in friction towards the end of testing.  
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Figure 8-3 Overall friction profiles of novel DLCs in oil. Conditions: as per 
experimental for camshaft contacts. Coatings tested in Oil D. 

Friction values from the literature of lubricated Si-DLC, as summarised in the 

discussion chapter, show similar friction profiles to the ones obtained herein. 

Initial friction data for the samples tested start at a similar value. However, 

by the end of the test duration Si,O,F-DLC actually has the higher friction of 

the three DLCs tested. 

8.4.3. Wear of the coatings 

8.4.4.   Optical microscope images of wear scars 

Optical microscope images, shown in Figure 8-4, identifies the nature of the 

wear within the scars on the plate. For the Si,O,F doped DLC the worn area 

undergoes only very minor polishing, made clear by the preservation of the 

scratches in the DLC surface; these are artefacts from the steel substrate. 

The a-C:H sample shows more severe wear than the Si,O,F doped sample, 

there is clear evidence of polishing wear on the plate. The Si,O-DLC shows 

the highest level of wear with the widest wear track. 
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Figure 8-4 Optical microscopy from the worn area a) a-C:H, b) Si,O-DLC, c) 
Si,O,F-DLC. 

 

8.4.5.  Wear of counter bodies 

Counter body wear was measured and is given in Figure 8-5 for the cast iron 

pin and was comparable for the Si,O,F and a-C:H samples.  Far greater 

wear was noticed on the pin mated with the Si,O-DLC. Optical microscope 

based measurements show that the Si,O,F doped DLC appears to have the 

better wear profile of the set tested as the Si,O,F-DLC‘s wear is lower than 

the a-C:H DLC in terms of plate wear.  

 

Figure 8-5 Wear of counter body 
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8.4.6. Contact profilometry measurements 

To verify the results obtained via optical microscopy, that the Si,O,F DLC 

outperformed the a-C:H DLC, contact profilometry measurements were also 

obtained of the worn areas and are given in  Figure 8-6 and converted into 

wear coefficients in Figure 8-7. 

 

 

Figure 8-6 Contact profilometry results of the coatings, a-C:H (a), Si,O (b) 
and Si,O,F (c) confirming the lower wear track depth of the SiOF doped 
sample (0.2 μm). 



- 163 - 

 

 

Figure 8-7 Dimensional wear coefficients of the coatings. Conditions of 
testing, as before: 25 N,  2 hours, 0.81 GPa , 0.2 m/s, 100 °C 

 

Wear as listed in Figure 8-6 and  Figure 8-7 of the modified surface is 

reduced on average by 43 % when compared to the a-C:H sample, showing 

a clear reduction in plate wear. The results here show that when Si is 

incorporated into the DLC with O and F, creating a tri-doped system, the 

wear is sharply reduced.  

8.4.7. Coating hardness 

The hardness of the novel and a-C:H coatings within the worn area were 

obtained to ascertain whether hardness was playing a key role in wear 

performance and if it changed with wear, hardness values are shown in  

Figure 8-8. 

0

0.5

1

1.5

2

2.5

3

a-C:H Si,O,F Doped

W
e
a
r 

ra
te

 x
 1

0
 -

 1
8
 (

m
3
/N

m
) 



- 164 - 

 

Figure 8-8 Coating hardness prior to wear testing and post- wear testing. 
Si,O doped DLC‘s hardness not examined within the wear scar following 
poor wear performance. 

 

Prior to tribotesting the DLCs are all within a similar range of each other in 

terms of coating hardness. This suggests that mechanical hardness is not 

the key issue in this case, with respect to wear reduction.  Roughness 

values of the worn and unworn areas were obtained to check whether this 

factor was skewing the nano hardness data as given in Figure 8-9. 

 

Figure 8-9 Ra values for the coatings within and outside of the wear track 
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Roughness remains unchanged for the tri-doped system. Whereas, the a-

C:H system shows an increase of surface roughness within the worn area. 

As such, nanoindenation of the worn area of the tri-doped system should be 

more reliable, as the surface is smoother.  

 

8.4.8. Surface analysis – XPS results 

XPS analysis of the Si,O,F plate are given in Figure 8-10. The data comes 

from within the worn area confirms the presence, and therefore preservation, 

of doping elements as well as a trace amount of sulphur. 

High-resolution scans were conducted for the Si peak region to verify peak 

components, which is shown in Figure 8-11. There appear to be three main 

peak contributions to the Si 2p peak window. These peaks have been 

constrained to the natural FWHM values given in Table 8-4, associated with 

the species expected. The peaks have been attributed as: Si-F, C-Si-O and 

Si-C. 

 

 

Figure 8-10 XPS data from the Si,O,F doped DLC. Carbon excluded for 
scaling. 
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Figure 8-11 High-resolution spectra of the Si 2p peak from the Si,O,F doped 
plate 

Table 8-3 Peak component attributions from the Si 2p peak 

Species % atomic 
concentration 

Peak position (eV) FWHM 

Si-F 49.60 102.6 2.7 

Si-O-C 29.75 101.6 2.0 

Si-C 20.65 100.6 1.4 

 

XPS data from the counter body are shown in Figure 8-12, this was also 

obtained to ascertain if a transfer-layer was present on the pin. Trace 

amounts of S and P were detected on individual spots but were not present 

consistently. 
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Figure 8-12 XPS analysis results of the cast iron counter body (carbon and 
oxygen omitted for scaling). Sodium is noted as contamination 

The counter body contains large amounts of carbon with a peak value of 

284.5 eV, suggesting this is transferred DLC from the plate. Also Si is 

detected again suggesting the DLC has transferred from the plate. High-

resolution scans again were recorded at Si 2p and are given in Figure 8-13. 

 

Figure 8-13 High-resolution spectra of the Si 2p peak from the pin mated 
against the Si,O,F doped plate 

 

The presence of SiOx and Si-O-C are noted following thorough peak 

component fitting with accurate FWHM values listed in Table 8-4, for 

expected compounds. No Si-C is detected on the pin.  

 

Table 8-4 Peak attribution of the Si2p peak components 
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Species % atomic 
concentration 

Peak position (eV) FWHM 

Si-O-C 49.95 101.3 2 

Si-O2 50.05 102.3 2.3 

 

8.4.9. ToF SIMS chemical mapping of Si,O,F DLC: 

To further clarify the surface reactions on the modified plate ToF-SIMS 

results were sought as this method is highly sensitive to the upper-most 

surface and therefore ideal for characterising nanometre thin films, like the 

one under investigation. They are given in Figure 8-14. 

ToF-SIMS chemical mapping is shown in Figure 8-14. It shows how certain 

F and Si species are distributed within the DLC. Various forms of both 

species are present across the plate. Enhanced build-up of a novel SiOF 

anion fragment on the plate is clear. As this fragment is far richer in the worn 

area it is demonstrable that this is produced as part of the wear process.  

Also, there is a noticeable amount of HS- in the wear scar; the source of HS- 

in this case is the lubricant.  The formation of the SiOF- fragment ion 

appears to represent a protective tribolayer. As the overall wear of the plate 

decreases and the friction increases it appears that this layer is similar to a 

ZDDP derived phosphate glassy film, increasing overall friction but lowering 

wear. 
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Figure 8-14 ToF-SIMS chemical maps of anions in the wear track and 
surrounding area. a) C2H2F b) SiF c) SiOF d) CF3 e) S f) HS 
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8.5. Summary 

The trend of Si-DLCs to exhibit enhanced oxidative wear is well 

documented. It would appear, following this initial research, that this trend 

can be inhibited by inclusion of F to the dopant matrix. This relies upon F 

being stable toward oxidation and forming strong bonds to Si. 

 A novel, tri-doped DLC has been produced that exhibits enhanced 

wear resistance both when compared with low Si-DLC and with a-C:H 

DLC films. 

 The novel DLC appears to mitigate wear by producing a SiOF 

containing species in the worn area that is able to limit oxidative wear. 

 It can be concluded that inclusion of F with Si impedes the wear of the 

coating, this is especially relevant to Si-DLCs as a whole, which 

typically undergo higher wear when compared to a-C:H DLCs. 

 The friction performance of the coating in low-additive oil is 

comparable with the other DLCs tested. 

 The mechanical parameters of the coating are also comparable, 

indicating the enhanced wear resistance is indeed due to the 

specifically tailored tribochemistry of the coating; as opposed to the 

hardness of the film. 
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 Discussion  Chapter 9

9.1. Overview of discussion 

This discussion chapter is split into seven main themes that have been 

identified following analysis of the results obtained. The results previously 

detailed will be compared to key findings with other literature available and 

both agreement and discord will be examined. The main areas of focus are: 

 Differences between the surfaces investigated, 

 Carbon hybridization state, 

 Friction of the systems examined, 

 Wear of the systems, 

 Tribochemistry, 

 Resolving oxidative wear of Si-DLCs, 

 The role of iron. 

9.2. Differences between surfaces investigated 

As addressed in the literature review in section 2.1.1, Diamond-Like Carbon 

coatings and steel are distinctly different surfaces. This is due to their 

different surface energies and surface chemistry, which in turn is largely 

controlled by the amount of oxygen at the surface. Oxygen is able to make 

polarised bonds with elements in the surface as well as form hydrogen 

bonds with species that adsorb onto the surface. These surface differences 

are also present when examining Si-DLC and a-C:H DLC, but to a lesser 

extent.  

Spectral analysis combined with known atomic compositional data of the 

low-Si DLC coating enables a large portion of the DLCs native, pre-worn 

structure to be elucidated. Pre-wear SIMS and XPS data was not sought for 

the current study on a-C:H DLC as this data would not be particularly useful. 
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This is because the bulk of the a-C:H DLC is made up of solely C and H; 

XPS would not yield interesting data in this instance as it cannot detect 

hydrogen.  Again, in depth analysis of the high Si-DLC was not pursued as 

this coating did not perform as well as the other two and was removed from 

the testing matrix after initial experiments. 

9.2.1. Surface wettability of the coatings  

One effect inclusion of Si and O has is via the surface wettability of the 

coating. The a-C:H coating is more hydrophobic than the low Si-doped 

coating as shown in Figure 4-4, section 4.2.3. This is because Si and O are 

able to combine to form polar species within the coating. This allows a 

greater amount of SiOx species at the surface, as verified by solid-state 

NMR and XPS analysis. These species could be considered as analogous to 

ferrous oxides on a steel surface [28, 29]. This is because Si and Fe have 

similar electronegativity values, as shown in Table 9-1, which allow polarised 

bonds to be formed with O. This makes the coating more like a steel surface 

when compared to the a-C:H coating [46]. In comparison, C is closer in 

value to O in terms of electronegativity, leading to a less polarised surface. 

These results are further validated by the practice of coating certain metal 

surfaces with Si oxides to maximise their surface wettability with water [167]. 

Increasing Si content of DLCs has previously been shown to increase water 

wettability of the coating [47]. 

Table 9-1 Electronegative values of certain elements [46] 

Element Electronegativity value (χ) 

Fe 1.83 

Si 1.90 

H 2.20 

C 2.55 

O 3.44 
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9.2.2. Si within the DLC coating 

To fully understand the role Si plays within the DLC matrix NMR analysis 

was obtained of the bulk coating. NMR characterisation of the chemical 

states of Si in the film is in line with previous literature characterisations [85]. 

For the high Si-DLC, Si is bonded to both C and O, thus affecting the sp3/sp2 

ratio. The precursor for this coating is a siloxane, where the Si-O-Si bond is 

the backbone of the molecule as shown in Figure 9-1. It seems that a large 

portion of the siloxane bonding survives, or is recombined and thus 

maintained during, the PECVD process.  

 

Figure 9-1 Formula of HMDSO 

 

This is verified as the XPS spectra of the low Si-DLC shows a large peak 

indicative of Si-O-C bonding, which is shown in Figure 4-5. This survival is 

most probably due to a combination of the very stable Si-O bond strength 

and also from the molecule being sterically protected from the process by 

the organic side chains [78, 82, 192]. 

The large content of oxygen within both the high and low Si films 

complicates characterisation of the bonding and microstructure within the 

films. The observed changes in the sp2 content as per NMR spectra as given 

in section 4.2.2, could be indicative of additional C-O type compounds as 

opposed to conjugated C systems which appear at a similar ppm range.  

It is evident from XPS and SIMS data as given in section 4.2.1 that at the 

surface of the low Si-DLC there are a large number of oxide rich Si species. 

Whereas, further into the coating, these species are less prevalent as shown 

by XPS  when compared to  ERDA data shown in Table 3-1.. From these 

data sets it is clear that oxidation of the surface has occurred. Various types 

of Si and O containing species have been shown to influence the friction and 

wear of Si doped DLCs, not only in this work but also previously in the 
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literature [25, 26, 76-80]. Therefore their prevalence at the surface prior to 

testing is noteworthy.  

This surface enrichment can be explained as an artefact of production, 

dangling bonds from the synthesis of DLC coatings at the upper most 

surface react with species present in the air upon release of vacuum [64]. 

This causes a higher than normal amount of –H and –OH terminated 

species at the upper-most surface. Dynamic SIMS data is in agreement with 

XPS results in that the predominant form of Si within the coating is as the 

siloxane type species, Si-O-C. This is often the case when siloxane 

precursors are used [78, 87]. 

9.2.3. Ambient coating oxidation  

XPS results of unworn, low Si-DLC compared with the two thermally treated 

surfaces yields interesting data as given in  section 6.6, Figure 6-6. The 

spectra confirms that the surface Si atoms have a tendency to oxidise when 

heated in air without the need for tribological influence.  Therefore it is 

reasonable to assume that the Si in the coating will also tend toward 

oxidation when heated during tribological testing. This surface oxidation will 

influence the coatings performance in terms of both friction and wear. This 

oxidation also represents the beginning of the coating degradation as Si-O 

bonds form at the expense of Si-H and Si-C bonds, sacrificing some of the 

diamond-like nature of the coating. Some surface oxidation may be 

beneficial to the coating, formation of surface oxides in metal systems have 

been reported to enhance surface wear resistance in certain cases [193]. 

Additionally, the role of oxides and Si-oxygen compounds are widely 

reported as being useful to reduce friction within specific Si-DLC systems 

[26]. Oxides and oxygenated species have previously been reported on 

unworn Si-DLC [78, 86]. 

9.3. Carbon hybridisation state 

Carbon hybridisation state, or the amount of carbon to carbon single, double 

or triple bonds is known to effect various properties of the film [75]. Donnet 

[75] shows the effect of carbon hybridisation state on coating microstructure 
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in Figure 9-2. As shown, increasing sp3 content is often linked with the 

‗diamond-like‘ nature of the film. 

 

Figure 9-2 sp3 content as related to diamond-like structure[75] 

 

From the data available from EELS, presented in section 5.2.11 and NMR 

data given in section 4.2.1; it can be shown that the a-C:H, hydrogenated 

coating has a large amount of sp2 hybridisation within the coating. The 

coating is also mechanically the hardest of the three coatings (22 ± 1.7 

GPa). This trend may appear unusual as typically sp3 type bonding is 

regarded as superior and more ‗diamond-like‘.  

However, when the coating‘s chemical composition is compared with the two 

Si coatings these findings are rationalised by the effect that Si and O 

inclusion have on the film. When Si and O are included together the chance 

of an Si,O network increases at the expense of Si-C bonding. A link between 

decreased hardness and increased Si,O content has been identified 

previously by some researchers [84, 102]. However, the effect of Si alone 

(with no O co-dopant) is slightly different, due to the absence of Si-O 

bonding which can disrupt the films typical order. This is shown in Figure 

9-3. It seems there is a complex relationship between Si content and 

hardness that includes C sp3 fractions and chemical bonding in the film. 
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Figure 9-3 Effect of sole Si doping on hardness [85] 

 

The low-Si DLC (with an atomic % Si of 14) tested within this thesis has an 

unworn sp2 fraction of ~40% and a hardness value 17.9 GPa. This suggests 

that for this particular Si-DLC the inclusion of oxygen as a co-dopant does 

not majorly alter the coatings microstructure in terms of physical properties, 

in comparison with other solely Si-doped DLCs. In fact it would appear that 

the inclusion of oxygen has possibly boosted the hardness,  when compared 

to the data shown in Figure 9-3. 

 

9.3.1. Effects of increasing Si doping on the coating’s 

microstructure  

When the Si fraction is increased even further, to 21 atomic % (high Si-

DLC), the sp2 fraction increases vastly which was not expected. Typically, 

inclusion of Si increases the sp3 fraction. This is due to the preference of Si 

atoms to not partake in sp2 bonding with C [81, 162, 163]. The majority of the 

literature on Si-DLC explains that incorporation of Si increases the fraction of 

sp3 bonding in the DLC [81, 82]. However, trends identified in the literature 

show that in some cases including Si at certain high levels can cause an 

increase in sp2 bonding [85, 88, 102]. For the high Si-doped DLC, 80% of the 

C signal for the sample appears at the 110 to 220 ppm area, associated with 
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π (or C=C) bonding. This would suggest that at low to medium 

concentrations of Si in the coating most of the Si is directly bonded to C 

atoms, enforcing an sp3 configuration. However, at higher concetrations it 

seems that Si‘s role in the coating changes. This trend has been seen 

before, whereby high levels of Si incorporation equate to higher C=C 

bonding, typically through a Si-C=C type bonding motif [85].  

Also, PECVD parameters like bias can affect sp2 fractions, Si-DLC films 

deposited at high values of bias can show an increased sp2 character [81]. 

This further underscores the complexity of the PECVD process and 

underlines the need for each coating to be examined seperately before 

generalised rules are applied. 

9.3.2. sp2 evolution with time 

A change in C hybridisation state is observed at the a-C:H DLC film which 

progresses with rubbing time. This time dependence could be reliant upon 

wear processes or perhaps the heating associated with tribotesting. The re-

hybridisation seen within the a-C:H coating is extensive, the sp2 fraction 

increases from 60% to in excess of 80%. As the increase in sp2 ratio is not 

seen with the low Si-DLC coating, which undergoes greater wear, it can be 

assumed that the sp2 change is not solely a function of wear. It may be 

assumed that this process is indicative of release of the compressive 

stresses associated with DLCs. The large increase of the sp2 signal for the 

a-C:H sample indicates  that the DLC substructure does now include a larger 

fraction of sp2 hybridised Cs than the initial, unworn sample. Interestingly, 

this fraction of sp2 carbons is not confined to the upper microstructure, near 

the contact area, but is present throughout the DLC; demonstrated by the 

fact that three locations in the coating were analysed.  

The low Si-DLC appears to be stable in terms of the coating‘s C 

hybridisation ratio as no major change is recorded with tribotesting. This is 

most likely due to Si‘s inability to form stable double bonds; thus forcing it to 

bond in a sp3 fashion within the coating and securing a network of Cs in this 

configuration. In addition to this, Si is known to reduce the compressive 

stresses associated with DLC coatings, as shown in Figure 9-4. This could 
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potentially remove the bias towards undergoing changes in the micro-

structure [81, 102, 194, 195]. 

 

Figure 9-4 Effect of varying Si concentration on internal film stress from a) 
[81] and b) [85]. 

 

Examination of the TEM images of worn and unworn a-C:H DLC is not 

indicative of formation of a graphitic-type crystalline lattice as shown in  

Figure 5-19. As such this would suggest that there may be local re-

hybridisation of bonding within the coating but this would appear to have no 

long range order. If elevated levels of sp2 bonding were confined to the 

upper surface of the a-C:H DLC this still would not be definitive evidence for 

graphitisation of the coating. Many C compounds include sp2 bonding 

without necessarily being graphitic, of which examples are given Figure 9-5. 

 

Figure 9-5 Molecules containing sp2 bonding, as distinct from graphitic 
sheets. a) benzene b)  penta-1,3-diene c) acetone. 
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Finally, five-membered ring species with pi systems may also be present in 

the DLCs microstructure. All of these structures could occur within a DLC 

coating. The prevalence of carbonyl groups at the upper surface of DLCs 

has been explored in the literature [70]. Formation of any of these 

compounds could contribute to an upshift in the sp2 fraction of the film. 

Aromatic structure like benzene are known to be a stable configuration that 

C can adopt and have been observed previously within DLC films [196]. If 

such structures are forming within the DLC it would appear to be beneficial, 

as proven by the lower wear rate of the a-C:H DLC. This is noteworthy as 

often high sp3 or ‗diamond-like‘ DLCs are sought as it is believed they will 

have enhanced wear resistance. In this case the opposite is true as the low-

Si DLC has higher amounts of sp3 bonding and higher wear rates. 

9.4. Friction of the systems examined 

9.4.1.  Dry friction of low-Si DLC and a-C:H DLC 

When in non-lubricated conditions the low Si-DLC shows a far better friction 

profile than a-C:H DLC. This is shown in the results chapter section 4.2.5, 

Si-DLC gives a two thirds reduction in friction when compared to a-C:H DLC. 

This phenomena is widely observed in the literature  [26, 77, 79]. The low 

friction coefficient of Si-DLCs in non-lubricated contacts is usually attributed 

to the formation of Si-O type species at the contact interface [26, 77-80, 86]. 

These species are rich in –OH bonds which are also recognised as 

potentially being able to reduce friction [25, 99]. Although no mechanism for 

the reduced friction in dry environemtns has been settled on, it would seem 

that the most likely factors are either: inclusion of additional –OH/polar 

speicies or production of an easy-shear layer of SiOx debris. An illustrative 

schematic of this is shown in Figure 9-6. 
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Figure 9-6 Schematic representation of hydroxyl and oxygen rich surface 
layer of Si-DLC 

 

 

9.4.2.  Lubricated friction  

Lubricated friction values of Si-DLC coatings are typically within the ranges 

shown below in Table 9-2. Allowing for the unique case of Si,O-DLC 

lubricated by water, which  is distinctly different than the systems lubricated 

by mineral oil; the friction results are typically higher than could be expected 

from the low friction behaviour as observed in dry sliding. 

Table 9-2 Data from the literature of Si and Si,O DLCs friction coefficients 

Author Lubricant DLC Coefficient of 
friction 

Yamaguchi [172] Commercial ATF (Ca,P, S, 
containing. No Zn) 

20 % Si-
DLC 

~ 0.1 – 0.12 

Ban [104] Mineral oil (with ZDDP) 3 - 36 %Si-
DLC 

~ 0.06 – 0.08 

Lanigan,  
(section 5.2.1) 

Commercial lubricant (Ca, P, 
Zn, S containing) 

14% Si,O-
DLC 

~ 0.09 – 0.1 

Wu [84] Water 3 – 10 % 
Si,O-DLC 

~ 0.06 – 0.09 

 

A variety of processes occur in lubricated contacts that would explain this 

loss of enhanced lubricity. These include: general dilution of SiOx species by 

the oil, active removal by lubricant additives (dispersants) and formation of a 

tribofilm that prevents replenishment of SiOx species. All these factors 
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therefore allow the friction of all the DLCs tested (both doped and a-C:H) to 

broadly fall into a similar range when tested in the same oil.   

This suggests that the friction in lubricated contacts is actually dictated by 

the tribofilm or lubricant additives as opposed to the coating.  It is likely that 

both these factors play key roles with regards to the friction. To explore the 

properties of fully formulated oils more fully, the lubricant package must be 

examined. Dispersant additives are typically succinimide based and are 

specifically added to the blend to remove soot and insoluble particles [110]. 

SiOx type compounds match this category very well and as such should be 

actively sequestered from the surface by the lubricant additive, as shown 

schematically in Figure 9-7.  

 

Figure 9-7 Si rich oxide debris being removed by dispersant species 

 

Further to this, fully formulated oils are blended specifically to form protective 

tribofilms at the contact. These films build upon the native substrate, this 

effect obscures the substrate as depicted in Figure 9-8. Therefore, any 

constituent of it that contributes to the friction profile, like SiOx species, 

would have their effects negated as they are no longer a surface rich 

speices; being effectively ‗buried‘ below the tribofilm. Thick tribofilms that 

obsure the initial contact surface are well-known and not only limited to 
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ZDDP films but also occur from reactions of detergent additives [115, 127, 

128]. 

 

Figure 9-8 Schematic of tribofilm obscuring the native oxide layer 

 

The friction results obtained in the results chapters sections 4.2.6 and 5.2.1 

show that in the oils examined, both Si-DLCs exhibit similar friction 

coefficients to that of a-C:H DLC.  In terms of the presence of a tribofilm, 

XPS and ToF-SIMS data confirms formation of a protective tribofilm on both 

the low-Si DLC and the a-C:H DLC. The tribofilms are composed of various 

elements including: Ca, P, Zn and S. Surface analysis results from the DLC 

suggest that the predominate species by which these elements are included 

are as Ca phosphate with some pyrophosphates, Zn oxide and some simple 

sulphides.  

Therefore it can be concluded that the formation of the tribofilm inhibits the 

low friction behaviour that can be observed at dry Si-DLC/steel contacts in a 

variety of ways. Primarily, mechanically hard tribofilms are known to foster 

higher coefficients of friction [115, 127, 197]. Further to this, the tribofilm 

protects the coating from oxidation as apparent from ToF-SIMS mapping of 

low Si-DLC inside and outside of the worn area. The worn area is richer in 

the less oxidised form of Si present in the coating.  This sharp decline in the 

rate of oxidation of the Si within the coating therefore equates to a reduction 

in formation of the Si-O type species. Thus no SiOx species are formed and 
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therefore cannot reduce the coefficient of friction. Correspondingly, the 

friction of the low Si-DLC system rises to a similar level of the a-C:H DLC.  

At longer time intervals, the inclusion of the friction modifier species, GMO, 

does not appear to enhance either DLCs friction performance when 

compared to the other one, as they show comparable coefficients of friction. 

This is again accounted for by the formation of a chemically similar tribofilm, 

the two surfaces have similar tribochemical properties once the films have 

formed. Therefore GMO will have a similar affinity for the surface, due to the 

similar surface interactions it will make. It is also possible that GMO is not an 

effective FM species for this tribocouple, despite showing promise in other 

DLC/DLC contacts [97, 99, 112].  

9.4.3. The dependance of the friction performance of low Si-

DLC on oil formulation 

As discussed above, oil additives can often dictate the friction regime of 

certain contacts. This can be achieved by creating a hard, wear resistant 

layer that increases friction or by the effective use of friction modifier 

species, like GMO [99, 197]. The friction profiles of the low Si-DLC/steel 

system when in oil A is compared to oil D in Figure 6-4 . As shown, oil A and 

oil D give similar coefficients of friction despite being distinctly different oils. 

The wear profiles however are very different depending on the oil; an 

overview of wear is explored in more depth in section 9.5. Friction of the 

system is complicated by these factors: 

 The presence of the friction modifier in Oil A 

 The possible antagonistic effect on friction of an anti-wear film as 

produced from Oil A  

 The formation of Si-O containing compounds in Oil D (which are 

inhibited by anti-oxidants in Oil A) 

 The presence of a dark transfer layer on the pin that appears to affect 

friction when tested in Oil D 
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The absence of a more pronounced difference between the two could be 

due to the well reported ability of Si-DLC‘s to self-lubricate  when trace water 

is present, as is inevitable in non-vacuum, laboratory conditions [26]. The 

presence of both Si and O within the DLC coating allow for formation of, 

previously discussed, Si-O species and Si-OH species. However, as the 

friction appears to be the same in oil D as it is for fully formulated oil toward 

the end of the test duration, this indicates  another factor affecting friction 

reduction for the sample tested in oil D. 

Optical examination of the plate and the pins given in Figure 6-5 gives useful 

information on what happens at the interface tested in oil D. The pin shows a 

black pad at the point of contact. XPS of this layer identifies the presence of 

a Si-O type species. This layer is not present on the pin that was tested in 

fully formulated oil. It would appear that this layer is the reason for reduced 

friction in oil D and represents a transfer layer from the low Si-DLC that 

maintains lower friction. Therefore, it would appear that the formation of the 

transfer film on the counter body for the oil D tested sample does reduce 

friction and this affect is continued after severe wear of the coating. The 

transfer layer contains Si-O type moieties as identified by XPS, as explored 

in section 6.7.2. This species is not observed when the pin tested in 

formulated oil is examined. Transfer films on self-mated DLC contacts have 

been shown to positively affect friction by reducing adhesive interactions 

[198] [199]. 

Presence of Zn, S and P containing groups on both the DLC and counter 

body tested in formulated oil confirms the presence of a protective tribofilm. 

Zn type tribofilms are known to raise friction values; this could explain why 

the friction is higher than may be expected for a system involving DLC [197].  

9.4.4. Friction modifier efficacy  

Glycerol mono-oleate, or GMO, was included as the friction modifier in one 

oil formulation. GMO is known to be an effective friction modifier for certain 

DLC interfaces [97, 99]. If GMO is an effective friction modifier for the 

steel/steel system however is not established. GMO is a surface active FM 

and as such has to adhere directly to either interface through the polar head 
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group [200, 201]. This allows for the long organic chain to extend outward 

into the oil and this reduces kinetic friction in the boundary regime by 

separating the two sliding bodies. This lubrication mechanism is known as 

the ‗Bowden-Tabor model‘ [49, 200]. It could be the case that GMO is 

actually able to interact in a different, superior way with the ferrous surfaces 

as explored in Figure 9-9. As GMO has a highly polar head group it is 

feasible that the increased polarity of the ferrous surfaces could enhance 

additive adsorption which thus fosters the decrease in friction. 

 

 

Figure 9-9 GMO's potential enhanced surface interaction with a ferrous 
surface. The iron oxide in a) could co-ordinate with the diol head-group to 
maximise GMOs adsorption to the surface. This is not possible with the DLC 
surfaces 

 

Finally, it is also possible that the Fe ion is playing a key role in mediating 

the friction reduction. Fe ions have been shown to break down esters in 

tribological contacts, thus creating carboxylates as shown in  Figure 9-9 

[201].  
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Figure 9-10 Reaction scheme of Lewis acid (Fe ion) catalysed degradation 
of the ester moiety in GMO 

 

These species have superior adherance to the ferrous bodies when 

compared to alcohols [201]. This superior adhereance could well result in a 

superior friction profile. Conversely, it has been shown that GMO interacts 

with DLC (when at a steel/DLC interface) via the ester group and that this 

can give very low coefficients of friction [112]. Due to the differences 

between a steel and a DLC surface it is likely that the mechanism via which 

GMO is adsobred to the DLC depends on terminal –OH groups. These 

groups on the DLCs surface would be able to form strong hydrogen bonds 

with the diol groups. 

Friction values for all the DLCs tested were slightly higher than the steel 

surface in oil A. DLC surfaces when sliding against DLC counter bodies 

typically show lower friction than this [27, 68, 70]. Oils A and B  used in 

these experiments are designed for optimum use within a ferrous system, as 

typically found in car engines. As such the lubricant blend has not been 

tailored toward the different parameters assocaited with a DLC surface. It is 

highly likely that these friction values could be improved with further 

modificiation of the lubricant package. Inclusion of the organic friction 

modifier, GMO, which has been reported to work well with DLCs is a good 

starting point [99].  
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9.4.5. Surface active species 

GMO is not the only surface active species inlcuded in the lubricant blend. 

Detergent additives are also known to be surface active and can form 

tribofilms under certain contiditions [127, 128].  The lubricant package used 

here has a Ca based detergent included. It would appear that in some cases 

there is competition between GMO and the detergent for surface space. This 

competion for surface space has been noted previously with ZDDP and 

other surface active additives [197, 202]. The low-Si DLC‘s friction 

performance is actually slightly improved when GMO is excluded from the 

lubricant blend as shown in Figure 4-10. It appears there is competiton for 

surface space between two additives in Oil A with regards to the low-Si DLC 

surface.The a-C:H DLC shows friction coefficients within error of each other 

for either oil. This therefore shows no preference for oil in terms of 

performance.  

Detergents interact with polar surfaces as they have charged head groups 

and long-hydrophobic tails; this makes them very similar to FM species. The 

detergent in this case is actually more polar than GMO which explains its 

affinity for the Si-DLC. This effect has been observed before where a Ca 

based detergent was able to form tribofilms and affect friction on steel and 

DLC films [128]. The detergent used herein could have the ability to reduce 

friction however; it would do this in a markedly different way to GMO, 

through a different bonding mechanism. 

XPS analysis confirms the presence of Ca early into the testing for the low 

Si-DLC when tested in oil B. The Ca cation present is brought to the surface 

from the detergent species. It is proposed that the difference in the head 

groups of the friction modifier and detergent species tested herein plays a 

key role in determining the friction of the system. The differing surface 

activities causes the inversion of predicted friction data for the Si coating, 

whereby Oil B shows the best friction profile.  
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Figure 9-11 Detergent type molecules a) compared with GMO b). The 
charged carboxylate head groups on the detergent molecule allow it to 
adhere more strongly to a polar surface (when not in a micelle). 

 

This can be shown from the XPS data which indicates  that when Oil A is 

tested with low Si-DLC there is a greater inclusion of C, but a decrease in 

Ca. This clearly indicates GMO is competing with the Ca containing 

detergent molecule for surface space at the interface. This also results in 

greatly diminished phosphorus and Zn signals for the DLC when tested with 

FM containing oil.  

The mechanism by which this competition occurs would appear to be from 

GMO physically preventing build-up of a ZDDP type tribofilm at the low Si-

DLC surface. GMO takes up surface space at the contact and retards film 

growth as shown in Figure 9-12. 
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Figure 9-12 Schematic of the interactions GMO has with the tribofilms. GMO 
occupies sites at the surface, preventing full build-up of an effective 
tribofilms. Additional inclusion of GMO equates to a loss of Ca, P and Zn. 

 

This type of surface competition has been seen before at steel/steel 

interfaces with organic friction modifiers [197, 202]. Taylor and Spikes [197] 

note that regardless of the additive, whether it be a detergent, friction 

modifier or dispersant; the film thickness when compared with ZDDP alone 

is always thinner [197]. This is shown in Figure 9-13. 

Although this may initially seem like a negative consequence of inclusion of 

the friction modifier, this could actually be beneficial as it allows greater 

understanding of what processes take place at the interface. The low Si-DLC 

clearly has an increased affinity for charged head groups, as found in 

detergents.  
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Figure 9-13 Effect of ZDDP film thickness by oil additives [197] 

 

This knowledge could be used to devise new FMs specifically for low Si-

doped DLCs. The competition for surface space between surface active 

species is also not a negative in and of itself. Even if the FM species can 

out-compete tribofilm forming additives like ZDDP, due to DLCs innate low-

wear nature, the friction reduction that could be afforded could well out-

weight the penalty of increased wear in some instances. 

When comparing the XPS data from the a-C:H and low Si-doped DLCs, the 

difference in species identified in the worn area is quite noticeable. The a-

C:H sample only appears to accrue Ca in the worn area by the two hour 

interval as illustrated in Figure 9-14. 

9.4.6. Self-mated friction  

When comparing the friction profiles of the steel/steel tribopair and the low 

Si-DLC/Si-DLC tribopair the results are notably different. Initially, the friction 

of the steel/steel system is low but as the experiment approaches the half-

way point the friction sharply increases.  
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Figure 9-14 Tribofilms at two hours compared. At two hours there is a fuller 
tribofilm on the Si-doped sample consisting of Ca,P and Zn. Whereas, the a-
C:H sample only contains Ca. 

 

Conversely, no change outside of standard deviation in friction coefficient is 

detected for the low Si-DLC tribopair. This friction behaviour could be the 

product of various phenomena. However, with the parameters of the 

experiment known, the most likely explanation is formation of a high-friction 

tribofilm on both surfaces. XPS analysis demonstrates that this is indeed 

what is happening at the surface. At all times measured, the low Si-DLC 

tribopair exhibits a far lower friction value than the steel tribopair. During the 

running in period the low Si-DLC‘s friction coefficient is approximately half 

the value of the steel tribopair, at steady state the low Si-DLC continues to 

outperform the steel/steel contact.  

The friction for the steel/steel system follows predictable trends, lower 

running in friction prior to full formation of a Ca/ZDDP tribofilm [197]. The 

lower initial friction is due to the fact that the mechanically harder Ca/ZDDP 

film has not yet fully formed. Upon its complete formation the friction of the 

system increases, this is especially noticeable at the steel/steel interface. 

The friction for the low  Si-DLC tribopair shows the expected low friction of a 

DLC coating [41, 68, 70, 97, 98]. The two surfaces are designed to be low 

friction when self-mated, prior to tribofilm formation.  The main mechanism 
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for this is that the majority of the sliding surfaces are C-H terminated and 

these surface sliding against each other do not form many strong interfacial 

interactions. A key role is also played by –OH terminated surfaces on the 

DLCs which help facilitate lower friction [68, 70, 99]. The steel/steel tribopair 

experiences more surface interactions which equates to higher friction, as 

the surfaces adhere more strongly, due to the metal oxide layer ever-present 

on steel surfaces.  

Steady state friction is constant and higher at the steel/steel interface due to 

formation of a tenacious tribofilm on the surfaces. Tribofilms in the steel/steel 

systems are known to be on the order of 50- 100 nm thick and are also 

known to negatively affect friction [115, 197]. The tribofilm on the low Si-DLC 

tribopair is far thinner, as observed from the large C and Si signals 

originating from the DLC still being present in the XPS spectra, suggesting a 

thickness of less than 10 nm [137]. The difference in tribofilm thickness 

could be key to the differing friction behaviours.  

The key role of Si oxides in reducing friction at Si-DLC/Si-DLC interfaces is 

well reported within the literature [26, 77, 113]. This beneficial relationship 

again disappears at the Si-DLC/Si-DLC contact  under oil lubrication. Data 

presented in section 7.2.4 (where surface modified of low Si-DLC is 

explored) helps to elucidate why this relationship is not maintained in 

lubricated conditions. Figure 9-15 shows how –OH groups are eliminated 

from the interface by silinizaton. 

 

Figure 9-15 'Capping' of free -OH groups on the Si-DLC surface. Me 
represents the methyl, or CH3 group. 

 

As there is a relatively small change in the initial friction values, it can be 

shown that the SiOx species do not play the dominant role in lubricated 



- 193 - 

friction of Si-DLCs. If the SiOx species were playing a dominant role it would 

be expected that silanization of the surface would alter the friction profile in 

some way. This is because the SiOx species are highly polar and incorporate 

many –OH functionalities onto the low Si-DLCs surface. Surface –OH 

groups are known to afford reduction in friction at DLC interfaces [98, 99, 

111]. Even when the free –OH groups are capped with organic, non-polar, 

groups the friction values of the system are not drastically altered as shown 

in Figure 7-9. With the effect of the Si-OH species shielded from the 

interface they can no longer contribute to the friction profile. However, the 

friction data remains unchanged even after this modification. This therefore 

confirms that in a lubricated contact the role of surface oxides on Si-DLC‘s 

friction performance is very minor.  In other work, salinization of Si-DLCs has 

been shown to improve friction performance by virtue of increasing 

hydrophobicity, however these test were conducted without lubricant [95]. 

9.5. Wear of the systems 

The process of wear is a complex one that involves many different 

mechanisms and influential factors. As such, it seemed important to get a 

good overview of the wear profile of the main system examined by 

conducting wear tests at different times. This would allow for running-in wear 

to occur and a tribofilm to be formed. This then can be used to assess if the 

running-in wear is mitigated by the formation of a tenacious tribofilm later in 

the testing that drastically reduces wear rates. This data can later be 

compared to very long duration testing, as conducted in an engine. Despite 

the experimental conditions being different between the two, it will still give 

useful data of the lifetime wear performance of the two main DLCs  

examined. 

9.5.1. Wear analysis from short and long duration tests 

As expected, both Si-DLCs had far higher wear rates than that of the a-C:H 

sample at the initial testing interval. This phenomena is consistently 

observed in the literature [77, 79, 104, 105, 113, 114]. Also observed is that 

increasing per cent Si atomic concentration of the coating results in 
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increased wear rates, this behaviour is also widely noted [77, 84, 104]. The 

role Si and Si oxides play in the enhanced wear of Si-DLCs has been 

previously detailed [43]. The a-C:H DLC shows no measurable wear in either 

oil (A or B) at the two hour interval. In part, this is one of the motivations for 

long duration tribotesting of the DLCs. Also, the ability of the low Si-DLC to 

form a thick tribofilm warranted further investigation. This thicker film could 

result in lower wear by the test end when compared to a-C:H DLC. It must 

be noted that the steel/steel tribopair has the highest wear of all the contacts 

and that, in all cases; the DLCs outperform steel in terms of wear 

performance. 

Wear profiles of the low Si-DLC and the a-C:H DLC over longer testing in Oil 

A show some differences. Initially the low Si-DLC has a constant wear rate, 

between two and five hours as shown on page 98, section 5.2.2. It would 

appear that this is the time interval during which the tribofilm is forming. After 

this period, the wear rate drops.  

For the a-C:H DLC there is a sharp drop in wear rate between the first 

instance of measurable wear (seven hours) and the next (fourteen hours). 

This indicates that the a-C:H DLC is not only inherently more wear resistant 

than the low Si-DLC, but also that it is able to form an effective tribofilm once 

wear has occurred. Conversely the low Si-DLC appears to require an 

‗activation time‘ as shown in Figure 5-4. The wear rate remains steady 

between the two and seven hour mark, despite the presence of calcium 

phosphate which is known to reduce wear [176, 177]. After this period the 

wear rate drops. Time-resolved XPS data explains this trend well. Initially the 

tribofilms on either DLC are rich in Ca and have less phosphorous, negligible 

amounts of Zn and no sulphur. It is known that phosphates and 

polyphosphate glass play a crucial role in wear reduction so it follows that 

whilst the phosphorous containing layer is still being formed wear is 

correspondingly higher [115, 176, 177]. Ca based detergents are known to 

act in an anti-wear fashion at steel/steel interfaces but the wear impeding 

ability of this type of film does not match ZDDP [127]. 

It becomes apparent that the manufacturer‘s design of each coatings allows 

for the differing wear profiles, with the low  Si-DLC being 1 μm thicker than 
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the a-C:H sample, this means the greater running-in wear does not 

jeopardise the coating‘s overall lifetime with respect to wear. The coatings 

behave very similarly with regards to species formed in the worn area, the 

only difference being that the low Si-DLC incorporates more tribologically 

relevant species (P, Zn) at a faster rate, a feature perhaps due to its 

enhanced wear. 

The type of Ca ZDDP film seen on both coatings is well documented and it 

appears that, without an abundance of Fe ions as would be present in the 

traditional steel/steel system Ca plays an even more important role in the oil. 

Ca replaces Zn in the phosphate glass network [147, 176, 177]. The 

exchange of Ca and Zn between ZDDP and the detergent molecules that 

occurs at the interface cannot be instantaneous as it depends on the 

detergent species encountering the surface and then going on to react with 

ZDDP. Thus, at the initial stages of the experiment the low Si-DLC 

undergoes a higher rate of wear while the Ca phosphate/pyrophosphate 

layer forms. The mechanism of this film formation is explored in more detail 

below. Mechanically the low Si-DLC coating is not as hard as the a-C:H 

coating, as well as being more prone to oxidative wear than the a-C:H 

coating. As such it is less able to resist wear without formation of a tribofilm. 

Zn type additives are known to have a time-dependence with regards to the 

build-up of the tribofilm [115, 203]. With the large drop in wear after the 

seven hour mark for the low Si-DLC it becomes apparent that a similar time-

dependant mechanism is operating here. 

9.5.2. Fully-fired engine wear test results 

The wear relationship elucidated above for the low Si-DLC and the a-C:H 

DLC appears to be maintained when tested in a fully fired engine for 300 

hours. The a-C:H DLC has lower wear than the low Si-DLC coating by the 

end of the testing. Wear of both DLC-coated mated parts is far lower than 

the steel/steel tribo-couple. This affirms that both DLCs do indeed reduce 

wear within a fully-fired engine. The tappet coated in the low Si-DLC is 

higher than the a-C:H DLC coated tappet by the end of testing. This verifies 

that incorporation of 14% Si increases overall wear of the coating which is in 

line with similar findings in the literature and within this project [84]. This then 
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confirms that Si-DLCs have innately higher wear when compared to a-C:H 

DLCs, and that this is conserved even in fully-formulated oil in a fired engine.  

9.5.3. Coating hardness in the worn area 

ZDDP films are known to produce hard films in the worn area that effectively 

resist wear [115]. Due to this well-known behaviour nanoindentation 

experiments were conducted on the worn DLCs, the data shows that, 

despite the formation of a thicker tribofilm in the case of the low Si-DLC; 

neither of the anti-wear films produced appear to increase measured 

hardness of the area. Typically, ZDDP films on steel/steel contacts can grow 

to 100 nanometres in depth and create a hard, physically protective film 

[115]. It would appear that this is not the mechanism of protection for the 

DLC films examined herein; as no improvement in surface hardness is 

observed. Due to the thin nature of the tribofilms formed it is extremely 

difficult to deconvolute the contribution of the coating from that of the film 

[204]. However, it appears that the main mechanism of protection from 

ZDDP in this instance is by the formation of a tenacious, chemically resistant 

tribofilm; as opposed to a thick, mechanically-hard layer.  There are changes 

associated in the measurements of the a-C:H coating whereby the error 

appears reduced as time progresses. It is probable that polishing wear has 

occurred and is the reason for this decrease in error. Polishing a surface is 

known to improve the accuracy of nanoindentation values, as surface 

asperities can influence data points for this type of measurement [182].   

 

9.6. Tribochemistry  

9.6.1. Tribofilm composition  

Time resolved XPS analysis sheds light on the growth of the tribofilm and 

helps elucidate the structure of the film. Analysis of the surfaces can be 

combined with knowledge of the lubricant blend and fundamentals of 

tribology to gain a fuller understanding of what is happening at the interface.  
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As certain parts of the oil‘s composition are known, specifically that the 

phosphorous content is solely accounted for by ZDDP in the oil. This means 

that the Ca phosphate/pyrophosphate novel species must be formed as a 

result of the tribo-contact. The phosphorous therefore must be sequestered 

from the ZDDP and combined with Ca at the surface to create the tribolayer 

observed, behaviour often seen in steel/steel systems [176, 177, 205]. This 

leaves Zn and S available to react with any other molecules present, leading 

to the formation of metal oxides and sulphides.  

With the low Si-DLC, high-resolution spectra of the C peak window at the 35 

hour point shows evolution of a third peak at a higher eV value. This 

suggests further build-up of detergent molecules on the upper surface of the 

tribofilm.  This would therefore suggest that at the thirty five hour mark the 

tribofilm is indeed fully formed as no more CaCO3 from the detergent core 

goes on to react with ZDDP, but instead forms a deposit on the top of the 

tribofilm. This behaviour of a tribofilm reaching its maximum thickness and 

plateauing has been seen before, as noted in the work by Spikes [115] 

shown below in Figure 9-16. The ability of ZDDP to prevent oxidation is a 

well-known phenomenon, as given in Figure 9-17. This appears to be key to 

reduction of wear with the low Si-DLC contact. 

 

 

Figure 9-16 ZDDP reaches a maximum thickness after approximately 50 
minutes [115] 
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Figure 9-17 Schematic of ZDDPs anti-oxidant reactions [115] 

 

XPS analysis of the steel counter bodies paired with either DLC plate were 

obtained. Both pins show strong evidence for formation of a Ca phosphate 

type anti-wear film, as expected in this system [176, 177]. When comparing 

the pin and the plate some differences are noted. All species that are 

present are incorporated onto the steel at a larger per cent atomic 

concentration than on the either DLCs, possibly due to enhanced surface 

wettability; facilitating a more fully-developed tribofilm. The XPS binding eV 

for FeS2 and ZnS have closely matched values of 162.8 and 162.6 eV 

respectively; as such it is difficult to accurately attribute which metal sulphide 

is presence on which surface. However, stoichiometry dictates that it is most 

likely a combination of both the sulphides. This  is because in the ZDDP 

molecule as given in Figure 9-21, contains more than double the atomic 

concentration of S when compared to Zn.  

Differences are to be expected between DLC surfaces and ferrous ones as 

the presence of Fe should enhance the formation of a ZDDP type film. The 

film forming behaviour of ZDDP is well known when examining steel 

surfaces under this type of lubrication [147, 206-208]. The acceleration of 

tribofilm formation is due to the labile nature of the dithiophosphate ligand 

which readily undergoes ligand exchange, swapping Zn2+ for Fe3+ [115, 209]. 

This new MDDP (M = Fe) complex is less thermally stable and therefore 

allows faster reactions [115]. 
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It would appear that for both DLCs examined Ca is playing a key role 

whereby it effectively replaces not only Zn, as seen previously in the 

literature, but also iron [176, 177]. This then facilitates formation of a tribofilm 

without the presence of a ferrous body (despite the fact that there is one in 

this instance). Tribofilms are present on both the DLCs and both of these 

show time dependencies.  

There is little stronger evidence for the formation of a polyphosphate film, as 

depicted in  

Figure 9-18, which are often associated with ZDDP. As the oil package 

contains both ZDDP and a Ca based detergent it is unlikely that a 

polyphosphate glass has formed, although it cannot be ruled out. What is 

most likely when considering the additives used (specifically ZDDP with a 

source of Ca) is the formation of shorter chain, pyrophosphates, and Ca 

phosphate [176, 177]. Both of which have been confirmed by XPS and SIMS 

analysis. 

 

Figure 9-18 Schematic of polyphosphate glass from [210] 
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Glassy phosphate films are some-what hard to accurately characterise as 

the repeating P-O unit that makes up the backbone of the glass is also 

present in phosphates and similar moieties that are more likely candidates 

when examining certain tribolayers [147]. Further to this, as the lubricant 

package has a Ca based detergent the likelihood of a glassy phosphate film 

occurring decreases as Ca promotes the formation of the phosphate anion 

and shorter chain polyphosphates. The CaxPOy
n
 species are able to afford 

wear protection to the coating, however literature on the topic indicates  that 

they are not as effective at doing so as the Zn polyphosphate glass [211, 

212].  

All DLC films represents a hard, physically protective layer. It would seem 

that a thick, mechanically hard tribofilm is unnecessary for the DLCs tested  

to effectively resist wear; a conclusion drawn from the lack of any great 

increase in surface hardness upon tribotesting. Although admittedly, it is 

difficult to extract nanohardness data from films as thin as the ones 

examined [204, 213]. The main mechanism of wear, as discussed previously 

appears to be from atomic-scale chemical processes, namely systematic 

oxidation of the coatings constituents [36, 37, 214]. This systemic oxidation 

is somewhat inevitable as thermodynamic driving forces tend to constantly 

push most carbonaceous systems to form the more stable oxides where 

possible. Since the role of oxygen in the wear processes of DLCs is a major 

factor, ZDDP can (and indeed already is) be used as an anti-wear additive 

for DLC/steel contacts. However, it could be argued that the main 

mechanism by which ZDDP inhibits wear at the DLC side of the interface is 

via anti-oxidant activity.  This is not to say that there is no scope for further 

lubricant optimisation. More tailored lubricant additives for DLC‘s specific 

wear profile could be developed, perhaps blended to include additional 

organic anti-oxidants. 

9.6.2. Engine test-derived tribofilms 

The tendency of Si-DLC films to produce Si rich oxides is well reported, as 

explored in Table 2-4. This trend is maintained when tested in a fully-fired 

engine as well. The harsher oxidative conditions of an engine, due to the 



- 201 - 

presence of oxygen radicals and reactive gases, could explain the higher 

wear rate the low Si-doped coating has when compared to the a-C:H 

coating. In comparison the a-C:H coating will undergo oxidation less easily 

as, thermodynamically; C is less amenable to spontaneous oxidation than 

Si. The Si-rich oxide species have, in some cases, been accredited with 

reducing friction [25, 26, 76-80]. To an extent, formation of these could 

possibly be looked upon as a positive event, if the overall wear was lower.  

It is notable that, despite engine testing being carried out for several hundred 

hours, there are not more elements within the worn area of either DLC as 

examined by XPS. ToF-SIMS data however expands on this showing a 

similar tribofilm is present on the tappets as is found from bench testing. 

Both include elements crucial to wear-reduction: Zn, S and P. Phosphorus is 

incorporated into the tribofilm as the phosphate group; this is significant as 

phosphate groups are a key part of the anti-wear film produced by ZDDP in 

steel systems. A similar chemical make-up to the classical ZDDP-steel film 

should result in enhanced wear protection [115]. When compiling XPS and 

SIMS data, it is possible to conclude that a very thin (less than 10 nm) 

tribofilm is present on both tappets. The film is made of Ca, P, S and Zn with 

P present as the phosphate in both films. The difficulty of analysing the film 

with XPS, before and after etching shows that the film is too thin for a strong 

response from XPS. These type of nanometre thin tribofilms have been 

found in similar engine tested DLC components [215].  

9.6.3. Comparison with bench test results 

Despite confounding factors such as different contact pressures (0.1 GPa for 

steel/DLC pin-on-plate tribometer, 1.5 GPa for DLC/DLC pin-on-disc) the 

major difference between the tribofilms produced from the engine testing 

appears to be the intensity and concentration of elements in the film. Bench 

top tribometers have, herein, given good responses to XPS. This suggests 

they have thick tribofilms in excess of tens of nanometres [137, 138]. These 

results are in-line with similar literature findings of engine tested DLC parts, 

having 2-3 nm thick tribofilms present [215]. The lower response from the 

engine tested components by XPS suggests a far thinner tribofilm is present. 

This does not appear to influence the ability of the film to repress wear, as 
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proven by the complete survival of the a-C:H coating after 300 hours testing. 

The reason for the thicker films on the tribometer tested samples would 

appear to be the ideal conditions allowed for with tribometers, specifically the 

nature of the point contact allowing for continued tribocontact in one well-

defined area. This allows for good build-up of species of interest. When 

compared to the real conditions associated with the engine, far less ideal 

conditions are encountered  as shown by the large worn area of the low Si-

doped tappet.  

9.6.4. Differences in tribofilms on low Si-DLC versus a-C:H 

DLC 

The main difference observed between the two DLCs tribofilms is that the 

low Si-DLC is able to produce a thicker tribofilm as verified by ToF-SIMS 

etching and from observing wear scar cross sections using TEM. The most 

probable explanation of this is that the thickness of these tribofilms is 

dependent on surface wettability. Steel is known to form thick tribofilms (on 

the scale of 100  nms) and has a high surface wettability due to the oxide 

layer on the surface [216]. The low Si-DLC has greater wettability when 

compared to a-C:H DLC. Enhanced surface wettability would appear to allow 

for larger build-up of surface active species including detergents and friction 

modifiers, shown schematically in Figure 9-19. 

 

Figure 9-19 Possible relationship between surface wettability and tribofilm 
thickness 
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9.6.5. Proposed tribofilm mechanism 

It appears that initiation of the two tribofilms is carried out by the over-based 

detergent species. This conclusion can be drawn from the observation that 

on the a-C:H coating, at the two hour time interval the tribolayer is made-up 

almost exclusively of a CaCO3 species. The a-C:H coating appears to have 

very similar tribochemistry as the Si-DLC, but with a slower onset of 

formation. As such, it is taken as a model for the initiation of the tribofilm. 

Knowledge of the lubricant blend helps elucidate the process; detergent 

species are initially more surface active than ZDDP due to ‗forced 

coalescence‘. 

This is depicted in Figure 9-20 and helps to explain the film forming 

mechanism [127]. Further to this, over-based detergents have been shown 

to produce CaO species at steel/DLC interfaces [128]. CaO is a highly 

reactive species, and therefore a highly viable candidate as a tribochemical 

initiator molecule [128]. Combining these factors, the initiation of the tribofilm 

would seem to begin with detergent micelles encountering the DLC surface 

and then releasing CaCO3. Over-based Ca detergent micelles encounter the 

surface and rupture releasing CaCO3. This then allows for formation of a 

more reactive form of Ca,ˑ the oxide. This process, evolution of CaO from 

CaO3 is known as calcination [217]. Simultaneously, a build-up of carbon-

rich surfactant molecules that previously encased the carbonate core occurs 

[128]. The detergent is the prime candidate for the initiation of the tribofilm 

as surfactant species require no activation period and are effective within a 

wide temperature range [218]. In addition to this CaO itself, when formed is 

a very reactive species [219]. 

A. Step A shows the DLC prior to film formation 

B. Step B shows the product of forced coalescence of the detergent 

micelle onto the DLC surface, with the detergent micelle core being 

revealed 

C.  Step C shows the augmentation of the tribofilm with other oil 

additives 
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Figure 9-20 Initiation of the tribofilm formation by the detergent in a tri-step 
process.  

 

ZDDP itself is not a polar molecule (a property that is partially reliant on the 

organic group chain length). It is soluble in oil without the need for a micelle 

type solubilising solution. Nor is it immediately surface active. Therefore the 

conclusion can be made that after film initiation by the detergent species, 

this allows further chemical reactions with ZDDP.  

 

Figure 9-21 Structural formula of ZDDP with R denoting variable organic 
side chains 

 



- 205 - 

The reactive Ca species is then able to initiate formation of the more 

effective wear-resistant, tenacious tribofilm. A reaction between ZDDP and 

the Ca species occurs to generate a Ca and PO3 type tribofilm, this is in line 

with known behaviour of these systems as well as chemical thermodynamics 

[177]. These species include the PO3 anion and similar oxides, evidence 

also indicates inclusion of pyro-phosphates.  

Zn and S species are then activated toward reaction with the surface due to 

the loss of P from ZDDP. XPS and SIMS are inconclusive about the exact 

nature of the species produced. It is probable that there is a mix of both ZnS 

and ZnO. Stoichiometry dictates that ZDDP contains an excess of S to 

exclude sole formation of the metal sulphide. Therefore some HS- type 

species are also expected, this is confirmed by ToF-SIMS.  

Toward the end of the experimental duration the atomic concentration of Ca 

appears to increase sharply. This is indicative of build-up of more detergent 

molecules on top of the already established tribofilm. High-resolution C peak 

fitting also supports this with a new peak apparent for the carbonate, as 

shown in  Figure 5-8. This suggests the detergent micelles are still 

encountering the interface and rupturing but are no longer reacting with 

ZDDP at this stage. 

There are some differences between XPS and ToF-SIMS data as can be 

expected with any differing analytical techniques. ToF-SIMS is a highly 

sensitive technique that can detect down to one atomic layer; as such it is 

more sensitive than XPS and can detect species that XPS would not [137]. 

This suggests that some species are present in minute amounts within the 

tribofilms and in some cases can only be detected by ToF-SIMS. 

9.7. Resolving oxidative wear of Si-DLCs  

9.7.1. Mechanism of enhanced wear of Si-DLC 

Many authors have noted the tendency of Si-DLCs to wear at a far higher 

rate than a-C:H DLCs [76, 77, 79, 84, 104, 113, 114]. A novel insight into the 

wear processes of Si-DLC is explored here. The findings of which were 
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disseminated in the paper associated with this work, the details of which are 

given in the preface. Due to the large difference in wear when comparing the 

low Si-DLC in Oils A and D it is demonstrable that Si, O-DLC shows high 

dependency on oil formulation. Oil D (the low additive oil) contains no anti-

wear or anti-oxidant additives whereas Oil A can be regarded as rich in 

these compounds. Well-established chemical thermodynamics can help to 

illustrate the wear process occurring at the DLC interface.   

There is a large bond dissociation energy, 798 kJ mol-1 associated with the 

O-Si bond. This is indicative of how strong the bond that forms is and the 

thermodynamic driving force for its production. When Si is incorporated to 

the DLC matrix it can only make certain bonds as listed in Table 9-3. These 

areː Si-H, Si-Si, Si-O and Si-C bonds. The oxidation of C-Si and Si-H bonds 

are thermodynamically favourable and as such can proceed via oxidation 

from atmospheric species [83, 220].  

Table 9-3 Dissociation energy of key bonds 

Bond Dissociation Energy (kJ/mol) [46] 

H-Si 298 

H-C 337 

C-O 377 

C-Si 435 

O-Si 798 

 

Oil additives like ZDDP and similar compounds are able to inhibit oxidation 

[115]. They do this by themselves being oxidised. It is interesting to note the 

large build-up of PO3 and SO2 in the worn area, indicative of oxidation of 

sulphur and phosphorous compounds.  The area they accrue in corresponds 

to the worn area on the chemical map where highly oxidised Si species are 

lacking. Preferential oxidation has taken place, protecting the Si-DLC from 

further oxidative wear.  

As well as these oxidised species the wear scar also contains HS-. This 

corresponds to sulphur at its lowest oxidation state which is also present 
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mainly in the worn area. It would seem that certain additives in the oil are 

accruing in the wear scar. Here they are able to protect the Si-coating from 

further oxidative wear by themselves being oxidised. 

As oil D does not contain the anti-oxidant species required to inhibit 

oxidation the process is allowed to proceed unfettered. This facilitates 

chemical break down of the coating and results in the observed higher wear, 

as demonstrated by chemical mapping that shows formation of SiOx species 

in the worn area. This behaviour is very similar to the tribochemistry 

observed when Si-DLCs undergo dry sliding. Formation of Si oxides are 

noted [26, 221]. Also, when lubricated by water which is a rich source of O, 

oxidation of Si is also noted [105]. 

Chemical deterioration of the coating is facilitated by mechanical wear. The 

reciprocating pin, cleaves apart bonded elements that make up the DLC 

coating. As the coating is predominately made up of C-H, C-C, C-Si, Si-H 

and Si-O bonds this bond breakage, in most cases will leave a reactive C, or 

C centred dangling bond, or the analogous reactive Si [68, 70].  

If the bond cleavage results in a C centred dangling bond being formed, 

several reactions can then take place, as shown in Figure 9-22. Both the 

formation of C-H and C-O-(H) bonds are thermodynamically favourable. 

Hydrogen for abstraction can be provided by anti-oxidants or other sources 

of H in the system. As such these species can passivate the dangling bonds 

effectively, thus terminating the radical species.  

However, if a Si dangling bond is created it is not thermodynamically 

favourable for a Si-H bond to form and remain stable. A Si-C bond would not 

represent the thermodynamic minimum for this system either and is also less 

likely to form as freely-available sources of reactive C are scarce. Sources of 

oxygen are abundant in various forms from both oxygen in the air and 

oxygen containing chemical moieties in the oil. 

As such the formation of Si-O bonds are favourable in these conditions and 

can be seen to form when allowed. The presence of the anti-oxidants and 

anti-wear additives in oil A can sharply reduce the oxidation of the Si in the 

coating. This is achieved by out-competing the Si for sources of oxygen. 
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This results in the formation of a layer of POx and SOx compounds, instead 

of the more oxidised Si species identified at the upper surface of the DLC. 

These compounds then build-up in the worn area forming a protective 

tribofilm. This film is able to reduce the rate of oxidation of Si within the 

coating resulting in reduced total wear when compared with Oil D. 

 

 

Figure 9-22 Schematic of wear caused by pin contact with DLC 

 

9.7.2. Repressing oxidative wear within Si-doped DLCs 

Following directly on from the finding that oxidation plays a major role in the 

wear of Si-DLCs and often limits its effectiveness, strategies to counter this 

behaviour were explored. One tribochemically valid and novel approach is 

detailed again in the paper of which details are in the preface. Inclusion of F 

as a co-dopant within the Si,O-DLC matrix appears to repress wear of the 

coating to levels below that of the undoped coating. Chemical tailoring of the 

DLC was designed to reduce wear at Si. A tribochemical justification of the 

mechanism by which wear is repressed is explored.  

A clear change in both friction and wear behaviour of the DLC is noticed 

when Si,F and O are simultaneously included as the dopant species. This in 
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itself is not unusual due to the extent this must affect the microstructure and 

reactivity of the coating. However, the inversion of the expected wear pattern 

for Si- and Si,O- DLCs, is notable; it would appear that doping Si,O-DLCs 

with F is an effective method to protect the coating from aggravated wear 

rates. 

ToF-SIMS also confirms the presence of a SiOF- fragment on the plate 

which is given in Figure 8-14. Therefore, it can be concluded that the 

dopants are still present and able to impart their tribological effects on the 

system. Si on the plate is present in varying forms including a Si-F species. 

This Si-F species is not maintained when the transferred DLC layer (present 

on the pin) is analysed.  The reduction in wear imparted by tri-doping could 

be hugely beneficial as Si dopants increase coating adherence to the 

substrate, alter the sp2:sp3 ratio and affect surface wettability [43, 85, 86]. 

Being able to effectively include all of Si‘s beneficial properties into the DLC 

coating without the intrinsic increase in wear would be an excellent prospect 

for DLCs within many applications. Adding to this, the enhanced wear 

resistance of the Si,O,F DLC when compared to the a-C:H DLC goes on to 

further prove that inclusion of this tri-dopant system is indeed an effective 

wear protection strategy for DLCs. 

The bond strengths of some Si compounds are available in  Table 9-3.  The 

pairing of Si and F represent the strongest bonds Si is able to make. This is 

because Si is an electropositive element whereas F is the most 

electronegative element known. Because of this, the two elements form very 

thermodynamically strong bonds [46, 222, 223].  

The combination of both these dopants in a DLC is an exciting prospect as it 

appears to effectively secure Si from oxidative wear without the need of oil-

based anti-oxidant or anti-wear additives. Si,O,F doping improves the overall 

wear profile of the samples explored by reducing plate wear whilst 

maintaining low-levels of counter body wear. Literature precedents of higher 

wear for Si-DLCs can easily be rationalised when the broader picture is 

observed by inclusion of F. The main mechanism for reduced friction in Si-

DLC contacts is identified as being caused by production of SiOx species. 

These are often referred to as Si rich oxide debris [26, 43, 77, 105]. This 
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debris represents oxidative destruction and removal of Si within the coating 

which in turn amplifies wear of the DLC as a whole.  

Typically, Si bonds to O in a silica lattice type arrangement facilitated by 

oxygen‘s bivalency, however fluorine is monovalent [224]. This monovalency 

effectively caps the formation of a Si-O lattice network and retards oxidative 

wear, as the Si-F bond is stable with regards to oxygen. The lattice network 

relies on bridging, divalent oxygen atoms. Fluorine atoms cannot facilitate 

this bridging as they are only able to form one bond. 

 

Figure 9-23 F-doped a-SiO2 glass 

 

Glassy films, specifically phosphate based ones, are known to be very good 

at reducing wear within boundary lubricated contacts [115, 116]. Si is known 

to form many glasses based around silica and silicate chemistry. There are 

many examples of doped silica glasses that exhibit different properties, an 

example of this is F doped a-SiO2 [225]. This specific glass exhibits good 

chemical durability at the cost of mechanical strength [226, 227].  

Structurally, the F doped glass is different to other glasses in that the 

inclusion of F depolymerises the silicate network as shown in Figure 9-23. 

This occurs via non bridging F which helps to remove strained bonds [225]. 

Stress within the silicate network is known to play a key role in the 

degradation of the Si-O-Si chain [25, 228]. It appears that removal of this 

strain and increasing chemical durability of the F doped silicate glass is what 

is the cause of repression of wear within the tri doped DLC. Coupled with 

this is the potential of the SiOF glass species to increase surface wettability 

and thus adsorption of useful species. The noticeable appreciation of HS- in 

the worn area would indicate that the worn area is indeed accruing 

tribologically relevant species, which is evidence for increased surface 

wettability.   
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9.8. The role of iron 

9.8.1. Thermal- vs. Tribo- films on low Si-DLC films 

In order to fully understand both the films formed on the DLC surfaces, 

comparisons must be made with the corresponding steel tribopair. 

Therefore, XPS analysis was obtained of the steel/steel tribopair. There is 

already literature surrounding the characterisation of the tribology associated 

with steel/steel contacts in fully-formulated lubricants which helps elucidate 

surface interactions. The most prominent feature of those films is that Ca 

(derived from the detergent) typically replaces Zn in the film producing 

shorter chain phosphates and metaphosphates [176, 177, 205]. These films 

are not quite as effective as the Zn derived polyphosphate glass at 

repressing wear but are nonetheless effective in this role. Typically Zn is 

found as the sulphide in these contacts [177].  

Thermal films of ZDDP can be derived when lubricants are heated in the 

presence of a ferrous substrate as shown in  Figure 9-24. These typically 

produce similar films to the tribologically obtained film withː polyphosphates, 

sulphides, sulphates and varying Zn species [133, 229]. 

 

Figure 9-24 Thermal-film as formed on a steel plate 
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9.8.2. Thermal films on DLC 

The thermal film produced on the low Si-DLC showed key differences to 

those encountered in the literature on steel thermal films. The main changes 

between the tabulated spectra as given in  Table 9-4; up-shift in C 1s 

position coupled with clear adsorption of Zn species, does indicate presence 

of a thermal film. This would suggest that a source of C (either DLC or 

lubricant based) on the surface has been oxidised. This could possibly be as 

part of a reaction to form ZnCO3, or merely to form additional C-O surface 

moieties. There are two possible mechanisms by which this Zn film could 

form. It is notable that there is no Ca signal from the film, tribofilms observed 

previously at DLC/steel interfaces (as tested under slightly different 

conditions)  appear to nucleate with Ca species that generate the basis of 

the tribofilm proper. Ca also plays a key role in the tribofilms reported earlier, 

with Ca contributing the most atomic per cent of elements derived from the 

oil formulation. In the case of the thermal film it is most likely that, due to lack 

of reciprocating motion, the detergent micelles are less likely to encounter 

and flocculate on the surface. This behaviour, dependence of detergent 

species‘ film thickness with surface rubbing, has been shown previously at 

steel contacts. Stable film thicknesses in those cases, being achieved after 

30 minutes of rubbing [127]. The dependence of the detergent species film 

forming abilities upon rubbing is unsurprising. This is because the detergents 

are formulated into the lubricant as micelles, and the micelles must rupture 

to release the CaCO3 core within. The micelles themselves are not surface 

active and are stable in the oil without presence of mechanical agitation, or 

‗forced coalescence‘ [127]. This results in greatly reduced Ca adsorption 

within the thermal film, to the extent where Ca is undetectable by XPS 

analysis.  

A dependence on rubbing or mechanical agitation is not seen for ZDDP, 

which is known to produce thermal films [133]. ZDDP is known to undergo 

thermal degradation to form films when in contact with a steel coupon [133, 

134]. Decomposition of ZDDP on steel results in several products, these 

include various organic and simple sulphides as well as insoluble 

phosphorous/Zn polyphosphates; these species are not the dominant 
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species found herein [117, 133, 134]. As shown in Table 9-4, the thermal 

film observed on the low Si-DLC is distinctly different to a steel-ZDDP 

thermal film, being exclusively composed of Zn species. 

Table 9-4 Tribochemistry of thermal films on steel compared with Si-DLC 
thermal film. Nd = not detected 

Element Low Si-DLC thermal 
film 

obtained herein 

Steel thermal film 
[133] 

Steel thermal film 
[229] 

P Nd Polyphosphates polyphosphates 

S Nd Sulphide Sulphide/SO4 

Zn Various Zn 
oxides/carbonates 

Zn 
pyro/polyphosphate 

ZnS/ZnSO4 

 

Due to the lack of other elements typically associated with a ZDDP film, it 

would seem that a catalyst is required to accelerate the formation of the 

thermal film. With the thermal films generated on steel, this catalyst could 

indeed be Fe; transition metal ions are well-known for their ability to catalyse 

various reactions [230]. This is partly due to their ability to switch between 

oxidation states and provide electrons for reactions; for Fe these states are 

typically Fe2+ and Fe3+ [231]. Zn however only has one typically viable 

oxidation state: Zn2+, this appears to be what prevents it from acting 

catalytically. 

However, as addressed earlier it seems that Ca is also able to accelerate 

film formation in the DLC system. Ca again only has one viable oxidation 

state Ca2+, however a route of initiation proposed around calcination does 

not require variable oxidation states. Of course, for Ca to do this the 

detergent micelles have to encounter the DLC‘s surface with sufficient force, 

as previously discussed. With the thermal film this does not appear to 

happen. 

In terms of a mechanistic explanation of the formation of the Zn species 

reported; firstly, thermal degradation of ZDDP in the presence of air could 

yield a source of reactive Zn that is then adsorbed onto the low Si-DLC 
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surface. This could then react with molecular oxygen as shown 

schematically in Figure 9-25.   

 

Figure 9-25 Possible route of formation of ZnO on Si-DLC surface 

 

With evidence from the XPS spectra obtained, it is most likely that the other 

species generated from this reaction with oxygen remain in solution. This 

then leaves the Zn species as the lone species strongly adsorbed to the 

DLCs surface. 

A second seemingly plausible but unlikely mechanism can be ruled out, 

which is: in solution ZDDP could undergoes a ligand exchange reaction with 

Ca from the detergent. This would yield ZnCO3 and a CaDDP species would 

remain in solution, explaining the lack of Ca, P and S in the spectra. 

However, the chelating behaviour of dithiophosphate ligands is well known 

to be preferential for heavy metals, like Zn, over alkali earth metals, like Ca 

[115, 209]. Therefore, it would seem most probable that the former 

mechanism is the relevant one in this case and that the film obtained is 

indeed the product of a thermally generated tribofilm, as opposed to the 

product of a homogenous ligand-exchange reaction. 

9.8.3. Tribofilms on DLCs 

As addressed above, the presence of elements including Zn, Ca, P and S is 

identified on the tribofilms examined. Research in the literature on Si-

DLC/steel contacts also finds tribofilms composed of ZnO/ZnS as well as Ca 

and P [104, 110, 172]. In this instance it would appear that Fe does not play 

a vital role in tribofilm formation as a multi-component film can be observed. 
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If Fe perhaps accelerates the formation of the polyphosphate glass cannot 

be commented on in this instance. This is due to the lubricant blend 

employed, the combination of detergent and ZDDP typically prevents 

polyphosphate glass formation under these conditions [177]. Instead, 

various Ca phosphates are the dominant species with shorter chain 

polyphosphates present. This behaviour is akin to the steel/steel system 

[177]. The thermal film produced when the low Si-DLC is heated at 80 ºC for 

seven hours was solely composed of ZnO and trace N. This is not the same 

as the tribologically obtained film. This suggests mechanical agitation does 

influence film formation. Mechanisms  for this most likely include the wearing 

of the DLC coating resulting in the formation of reactive C or Si centre which 

can then react with any available chemical moiety, as discussed in a 

previous paper [43]. Also included would be the integral role rubbing plays 

on the formation of detergent related films on surfaces [197]. Neither of 

these conditions are met for the thermally derived sample as mechanical 

wear is required for both. It seems that Ca plays a key role in dictating the 

tribochemistry of the system. When Ca is not observed in the film, in the 

case of the thermal film, a greatly altered film is produced. This is in spite of 

the presence of another metal on the surface, Zn.  When the system is 

exposed to mechanical agitation and therefore the detergent can flocculate, 

it seems that this helps initiate a tribochemical reaction. As previously 

discussed, Ca is known to replace Zn in ZDDP films so this is perhaps 

unsurprising. Again, it seems to be the case that Ca is acting in lieu of Fe in 

the Si-DLC/Si-DLC contact and creating the reactive, metallic layer required 

for formation of a more classical Zn/S/P type tribofilm.  

Figure 9-20 previously showed the postulated three-stage process of film 

nucleation. Initially, no film forms as the detergent has not encountered the 

DLC surface. Upon contact the detergent molecule is burst open, allowing 

the CaCO3 core to deposit on the surface. Finally this film goes on to react 

with species in the lubricant to form the tribofilm proper. 

It is unclear why the system has a preference for Ca as opposed to Zn with 

regards to a metallic tribochemical initiator. As addressed before, a possible 
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explanation is that localised heat spikes reach high enough temperatures to 

convert CaCO3 into CaO with loss of CO2.  

Compiling the data from XPS analysis as given in Figure 7-7, appears to 

show that formation of the tribofilm on the plate enables the SiOx species to 

be maintained in the film. This could maximize adsorption of ‗useful‘ species 

on the plate, as SiOx species are highly polar, similar to iron oxides. An 

increase in SiOx compounds at the surface should cause a higher surface 

wettability, as indicated by the low Si-DLC‘s greater wettability when 

compared with a-C:H DLC which was demonstrated in Figure 4-4.  

Furthermore, surface wettability of other Si-DLCs, as assessed in the 

literature (derived from HMDSO), have been shown to increase with heating. 

This is attributed to incorporation of additional oxygen [47]. Many important 

lubricant additives are surface active so maximisation of the surface polarity 

is highly relevant, with the ideal goal of matching a steel surface‘s energy 

profile.  
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 Overarching conclusions Chapter 10

This thesis examines many aspects of both Si-doped DLC and a-C:H DLC. 

Various findings have been made and novel research themes established.  

Some of the most prominent findings include: 

1. Inclusion of Si within a DLC matrix can affect both coating wettability 

and sp2ːsp3 ratio.  

2. Low Si-DLC/steel pairings do offer an advantage in terms of friction 

when compared to a-C:H/steel contacts, in dry sliding conditions.  

3. Si-DLC coatings consistently exhibit higher wear when compared to 

a-C:H DLC coatings. This is due to fundamental chemical 

thermodynamics associated with silicon doping. This is particularly 

true during the running-in phase of wear. 

4. Both DLCs form thin, tenacious tribofilms that markedly reduce wear.  

5. Increasing Si content correspondingly increases overall wear of the 

coating. 

6. Si-DLCs appear stabilised with respect to their sp2:sp3 ratio with 

regards to any change with wearing. This was not seen with the a-

C:H DLC which undergoes a change in the sp2:sp3 ratio when 

tribotested. This change in sp2 ratio could be caused by alleviation of 

compressive stress and part of the reason for lower wear within a-C:H 

DLCs. 

7. Si-DLCs appear to form thicker tribofilms than a-C:H DLCs, however 

this does not necessarily result in lower wear. This effect is attributed 

to increased surface wettability. 

8. Si-DLCs lose their inherent ability to self-lubricate when oil is used at 

the interface. 
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9. The inherent tendency of Si-DLC to oxidise can be attenuated with 

inclusion of F as a co-dopant. Inclusion of the dopant appears to 

promote formation of a glassy a-SiOF film in the worn area. 

10. Si-DLC/Si-DLC contacts can and do form tribofilms without the need 

for a ferrous body. These films are very similar to those obtained at 

Si-DLC/steel contacts.  

11. The low Si-DLC examined does not form a ZDDP based film 

analogous to a steel ZDDP thermal film. 

10.1. Optimisation strategies  

In order to maximise Si-DLCs performance several factors could be 

optimised: 

 Additional incorporation of NOCH anti-oxidants in lubricant 

blends. Ideally these would not require a prolonged activation 

period (as sometimes seen with ZDDP). This would protect the 

Si-DLC from oxidative wear.  

 Using only the lowest atomic % of Si required in the application 

so as to minimise tendency to wear via oxidation. 

 Employing a gradient whereby Si is only included at the 

substrate/DLC interface and not the DLC/counter-body 

interface could effective cap oxidative wear, yet offer the 

increased adherence associated with Si-DLCs. 

In dry-sliding applications that require low friction Si-DLC coatings are 

recommended. However, in lubricated contacts a-C:H performs better in 

terms of wear resistance. As the friction coefficients of the two are similar in 

lubricated contacts, a-C:H DLCs would be preferred here. 
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10.2. Future work 

Following on from the research generated within this thesis there are several 

topics that emerge as candidates for further in-depth study. These split into 

three main themes. 

 

10.2.1. Further elucidation of tribochemical mechanisms 

Building on the surface analysis work conducted in the thesis it would be 

interesting to further explore tribofilm forming mechanisms. This would allow 

for possible surface modifications or more effective doping; enabling faster 

forming, more tenacious tribofilms. 

 To validate the theory that over-based calcium carbonate detergent 

molecules are able to initiate the tribofilm, via formation of CaO, a 

study could be conducted whereby the gases given off are assessed 

for carbon dioxide. 

 Rate of formation of tribofilms on DLCs should be comparedˑ both 

with the presence of detergent additives and without, to verify their 

role in the process. 

 Filtering of post tribo-tested oil and separation of the particles from 

this would be valuable future work. If particulate debris was loaded on 

to a TEM grid, chemical information about the particles, including 

weather SiOx species are present in the debris could be established. 

This would be useful information as the role of SiOx species in 

lubricated contacts is still not fully understood. 

 Further work would also include auger electron spectroscopy to 

compliment the data from XPS. Auger spectroscopy is far more 

surface sensitive (2 – 10 atomic layers) when compared to XPS. It 

has the ability to detect species only present at 0.1%, making it ideal 

for the thin films encountered in this work, specifically those formed 

on the a-C:H DLC. 

 The effect of friction modifier species, like GMO, have on the tribofilm 

at DLC/steel contacts needs further investigation. It is known that at 

steel/steel contacts various species can inhibit and modify the 
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tribofilms structure, whether this remains true with DLCs needs to be 

established. 

10.2.2. Doping of DLCs 

As there is clear room to further optimise DLC with regards to doping, 

especially with Si content, more research could be undertaken here. 

 A lower %Si DLC (perhaps 1-2 atomic %) should be compared with a-

C:H DLCs in order to see if the positive effects of Si inclusion can be  

maintained without the need for co-dopants to repress the negative 

effects associated with Si- DLCs. 

 As inclusion of F as a co-dopant with Si appears to mitigate the higher 

wear often seen with Si-DLCs it would be interesting to test a Si-

DLC/steel contact in fully-formulated lubricant with an F-based oil 

additive.  This additive may impart the benefits of an Si,F doped DLC 

without the need for the PVD modification. 

10.2.3. Water based lubricants 

As DLCs are innately lower wear when compared with ferrous surfaces this 

opens up research into water based tribo-systems. As water is a far inferior 

lubricant in terms of wear protection than a fully-formulated oil, novel 

additives could be tested at DLC/steel interfaces to assess their compatibility 

within water lubrication. 

 This could extend to a water-based lubricant study of Si-DLC with an 

inorganic F additive, which may be easier to achieve as an inorganic 

F salt compound would most likely be more reactive than a C-F type 

organic species. 

 Water based lubricants would be ideal with regards to green goals. 

Testing a variety of water based additives that are environmentally 

acceptable with either Si-DLC or a-C:H type DLCs. There are many 

green additives already in existence that could be tested as a more 

benign vehicle for P or S incorporation into the tribofilm, such as 

naturally occurring molecules. 
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