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Abstract 

ToF-SIMS is a powerful and information rich tool with high resolution and sensitivity 

compared to conventional mass spectrometers. Recently, its application has been 

extended to metabolic profiling analysis. However, there are only a few algorithms 

currently available to handle such output data from metabolite samples. Therefore 

some novel and innovative algorithms are undoubtedly in need to provide new 

insights into the application of ToF-SIMS for metabolic profiling analysis. In this 

thesis, we develop novel multivariate analysis techniques that can be used in 

processing ToF-SIMS data extracted from metabolite samples. 

Firstly, several traditional multivariate analysis methodologies that have previously 

been suggested for ToF-SIMS data analysis are discussed, including Clustering, 

Principal Components Analysis (PCA), Maximum Autocorrelation Factor (MAF), and 

Multivariate Curve Resolution (MCR). In particular, PCA is selected as an example to 

show the performance of traditional multivariate analysis techniques in dealing 

with large ToF-SIMS data extracted from metabolite samples. In order to provide 

more realistic and meaningful interpretation of the results, Non-negative Matrix 

Factorisation (NMF) is presented. This algorithm is combined with the Bayesian 

Framework to improve the reliability of the results and the convergence of the 

algorithm. However, the iterative process involved leads to considerable 

computational complexity in the estimation procedure.  

Another novel algorithm is also proposed which is an optimised MCR algorithm 

within alternating non-negativity constrained least squares (ANLS) framework. It 

provides a more simple approximation procedure by implementing a dimensionality 

reduction based on a basis function decomposition approach. The novel and main 

feature of the proposed algorithm is that it incorporates a spatially continuous 

representation of ToF-SIMS data which decouples the computational complexity of 
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the estimation procedure from the image resolution. The proposed algorithm can 

be used as an efficient tool in processing ToF-SIMS data obtained from metabolite 

samples. 
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Chapter 1  

Introduction 

1.1 Background 

Metabolomics is one of the most profound and significant milestones in the long 

history of life science research. Since it was developed in the mid-1990s, 

metabolomics has become a vital part of biological systems and has already 

penetrated into many important research subjects. While genomics and proteomics 

strive to explore the activities of life from the aspect of genes and proteins, many of 

the inter-cellular life activities is actually regulated by metabolites, such as cell 

signalling, energy transfer, as well as the inter-cellular communication. Metabolites 

can be considered as a reflection of the environment in the cell, which contains 

information about the nutritional state, the effects of drug treatment and 

environmental changes, and the impacts of other external factors (Clarke & 



Spatial Mass Spectral Data Analysis Using Factor and Correlation Models 

 2      
 

Haselden, 2008). Some researchers believe that, as compared with genomics and 

proteomics, metabolomics would play an increasingly important role in clinical 

practice (Schmidt, 2004). It can provide an in-depth examination of the actual 

impacts from gene expression with less information required.  

The term “metabolic profiling” refers to the process of measuring the chemical 

reactions or dynamic responses of metabolites to external factors (Miura et al., 

2009). This terminology was introduced by Horning et al. in the early 1970s when 

they studied the compounds in human biological samples, which was based on the 

idea initially developed by Williams et al. (1956) that human biological fluids might 

carry certain type of patterns or gene expression of genetically caused diseases. 

Nowadays, metabolic profiling has been widely approved by professionals and 

academic society, owing to its ability to examine the changes caused by external 

factors, understand the biological variation, detect genetic diseases in the early 

stage, and allow more tailored health solutions (Clarke & Haselden, 2008).  

The main metabolic profiling tools are nuclear magnetic resonance (NMR) and mass 

spectrometry (MS) (Beckonert et al., 2007). NMR is a relatively insensitive tool 

which is particularly suitable for identification of structural information of 

metabolites (Ibáñez et al., 2013). By detecting the NMR spectra of a series of 

samples, the pathophysiological state of an organism can be determined with 

pattern recognition methods. It is also possible to identify the biomarkers in order 

to provide a predictable platform for the relevant research. By contrast, MS is 

typically combined with some separation techniques, such as liquid 

chromatography (LC-MS) and gas chromatography (GC-MS), in order to study 

specific chemicals or substances of interest (Clarke & Haselden, 2008).  

In general, MS related technologies outperform NMR in the sense that it is capable 

of providing spectra with high sensitivity and resolution (Ibáñez et al., 2013). The 

most common MS include quadrupole, time-of-flight (ToF) analysers, magnetic 

sectors, Fourier transform, and quadrupole ion trap, among which ToF-SIMS 
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(time-of-flight secondary ions mass spectrometer) is one of the most powerful 

surface characterisation techniques that allows spectral analysis and direct 

chemical state imaging (Choi et al., 2003; Belu, Graham, & Castner, 2003). Similar to 

many other spectrometers, the main function of ToF-SIMS is to separate or resolve 

the ions formed in the ionisation source according to their mass-to-charge (m/z) 

ratios. The m denotes the mass number of the molecule since the molecular ion is 

equal to the molecular weight of the compound, while z refers to the charge 

number of the ion. Tof-SIMS is typically implemented along with some imaging 

mass spectrometer techniques, such as matrix-assisted laser desorption ionisation 

(MALDI) and electrospray ionisation (ESI) (Cotter, 2011). With the assistance of 

ToF-SIMS, researchers can obtain large amount of information about the 

biomolecules from the mass spectral features of the metabolites samples. The 

following chart shows the basic structure of a typical secondary ions mass 

spectrometer (Figure 1.1): 
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Figure 1.1 The basic structure of a secondary ions mass spectrometry. The sample is mass analysed 

using secondary ions mass spectrometer, static SIMS spectra from the surface of samples can be 

obtained by the end of the spectrometer process. The ions sources can be employed in three ways: 

surface ionisation, electron ionisation and liquid metal ionisation, with Bi+, Bi3+, Bi3++, Cs+ and 

C60+ ion sources commonly equipped (Dubey et al.,2011). 

 

The flexibility of the ToF-SIMS technique and the high utility of data produced have 

generated strong interest in its application for biochemical characterisation (Belu, 

Graham, & Castner, 2003). While ToF-SIMS has been originally utilised in material 

http://science.uvu.edu/ochem/index.php/alphabetical/m-n/molecular-ion/
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science, there is a growing research effort on the application in bioscience field, 

such as analysis of lipid, peptide, tumour spheroids and cancer cell samples 

(Vickerman & Briggs, 2001; Passarelli & Winograd, 2011; Kotze et al., 2013; Aoyagi 

et al., 2013).  

 

1.2 Motivation and Purpose 

ToF-SIMS is increasingly popular due to its in-situ ion separation methodology. It 

involves the free flight of the ionised molecules in a field-free drift tube. ToF-SIMS is 

widely utilised by analysts and researchers because of the following notable 

features (Belu, Graham, & Castner, 2003): 

 Fast parallel detection of all ions and high sensitivity 

 High mass range (theoretically unlimited) 

 High mass resolution > 10,000 

 High mass accuracy (1-10 ppm) 

 High transmission and spatial resolution 

 Ability to cover all elements, isotopes, as well as molecular species 

While the advantages of ToF-SIMS are particularly attractive to metabolomics 

research and application, the output data can be substantially large due to the high 

spectral and spatial resolution (Graham, Wagner, & Castner, 2006). It is therefore 

very difficult to find relevant information or detect specific species, which makes 

data mining problematic (Sodhi, 2004). 

The output data of ToF-SIMS can be represented as a combination of thousands of 

individual spectrum. One typical ToF-SIMS spectrum contains hundreds or 

thousands of different intensity peaks, depending on the order, structure, 

composition, and orientation of the surface species. It is not uncommon that many 

of the peaks within a given spectrum are somehow interrelated, since they are 

often derived from the same surface species. As a result, one of the challenges in 
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ToF-SIMS data analysis is to determine which peaks are interrelated and how they 

contribute to the chemical differences present on the surface. This is further 

complicated by the fact that ToF-SIMS dataset typically contains multiple spectra 

generated from multiple samples, which result in a large and complex data matrix 

to be analysed.  

The large size of the output dataset can cause a number of problems for the 

interpretation of metabolites. When comparison between two features needs to be 

made, the high cost of computation caused by a large dataset would hamper the 

research process and incur considerable costs. Thus ToF-SIMS dataset is usually 

decomposed into different profiles containing distinct components, which also 

provide the possibility of template matching with stored templates in a database. 

Another serious concern for analysing large ToF-SIMS dataset is that it is extremely 

difficult to separate the original chemical compounds from fragmentation of 

species resulting in numerous number of peaks, especially when prior knowledge of 

the components is not available. Therefore, researchers always attempt to explore 

appropriate and efficient techniques that can be used to address the problems 

arising from ToF-SIMS data analysis (Tyler, Rayal, & Castner, 2007). 

Since metabolic profiling appears to be a new area of application for ToF-SIMS, 

there are only a few algorithms currently available to handle the output data from 

metabolite samples. Thanks to prior development of dimensionality reduction and 

noise removal techniques, several multivariate analysis techniques have been 

suggested for large and multi-dimensional chemical spectral data processing, such 

as Principal Components Analysis (PCA), Maximum Autocorrelation Factors (MAF), 

and Multivariate Curve Resolution (MCR) (Tyler, 2006). However, none of them can 

efficiently extract information from a large dataset while produce a clear 

representation and interpretation in the context of metabolic profiling analysis. 

Therefore development of novel and innovative algorithms are undoubtedly 

needed to demonstrate the potential of ToF-SIMS for metabolic profiling analysis. In 
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this thesis, novel multivariate analysis techniques for processing ToF-SIMS data 

extracted from metabolite samples are derived and its application demonstrated.  

 

1.3 Materials and Methods 

The data set used throughout this thesis was obtained from the Department of 

Chemical and Biological Engineering, University of Sheffield. Three metabolites, 

tyrosine (T), phenylalanine (P) and citric acid (C) (all from Sigma Aldrich, UK) were 

used in the study. They are spotted on a dish as individual pure species and mixed 

species, resulting in a total of five separate experiments and each having three 

replicates. TC mixture contains T and C species in equimolar proportions and TPC 

mixture comprises T, P, and C species in equimolar proportions. These metabolites 

were spotted on hexamethyldisilazane (HMDS) (Sigma Aldrich, UK) coated silicon 

wafers (Compart Technology, UK), prepared as detailed by Salim, Wright, & 

Vaidyanathan (2012). The images consisted of 128 × 128 pixels. Each spectrum 

was calibrated using hydrocarbon fragment peaks. Spectral data up to m/z = 200 

was considered for analysis although only the intensities for 100 m/z data points 

were provided for the image analysis for this work.  

The given dataset with known chemical compounds provides us with a controlled 

environment in which to test the performance of any developed algorithm. The use 

of the known dataset also provides the ground truth and gives us the ability to 

interpret whether the results have a valid explanation. This is particularly important 

when using scale dependent methods such as PCA or MCR since the results 

obtained will be affected by the assumptions made when pre-processing the data. 

However, there is no knowledge of the exact spatial localisation of the different 

species, no quantitative measures exist to test for the complete validation of a given 

result. The development of the methods and their analysis was carried out using 

one dataset and tested with the two replicates in order to examine and validate the 
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results.  

The underlying properties of the data that any algorithm needs to exploit result in 

the following requirements for the algorithms to be developed:  

 1. Dimensionality reduction – Removing redundant information 

 2. Feature extraction – Identification of discriminatory spectral peaks 

 3. Factorisation – Separation of spatial and spectral information 

 4. Sparsity analysis – Exploit redundancy in data (number of components) 

 5. Spatial correlation analysis – Exploiting spatial correlation 

These requirements were the backbone for the development of the methodologies 

in this thesis.  

 

1.4 Thesis Structure  

The remainder of this thesis is organised as follows:  

Firstly, a brief background and general working principle of the ToF-SIMS process 

will be detailed in Chapter 2. An outline of several multivariate analysis 

methodologies that have previously been suggested for ToF-SIMS data analysis are 

discussed and their contribution to ToF-SIMS data processing is reviewed.  

Chapter 3 presents the implementation of a widely used method, the principal 

component analysis (PCA) to the ToF-SIMS dataset. This application is an 

unsupervised analysis procedure aimed at extracting features from large scale 

dataset while reducing the dimensionality. This implementation results are 

discussed and is shown to be promising in overcoming the complexity challenges 

presented by ToF-SIMS data.  

Chapter 4 introduces a non-negativity constrained algorithm, namely non-negative 

matrix factorisation (NMF), which focuses on improving the interpretability of the 
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results. This exploits the fact that ToF-SIMS data are essentially non-negative 

quantities. Unlike the PCA and other multivariate analysis techniques, this algorithm 

is capable of providing physically meaningful results and facilitating data mining 

procedure.   

The algorithm in Chapter 4 is extended in Chapter 5 by incorporating a Bayesian 

framework, and referred to as B-NMF. This method shows its capability in reducing 

the uncertainty and correlations that exist in the dataset. Moreover, it also provides 

an appropriate number of components indicative of the number of species in an 

unknown complex metabolic system.  

A novel Alternating Non-negative Least Squares method (ANLS) is presented in 

Chapter 6. This technique is combined with MCR in order to take advantage of its 

ability to identify the chemical compounds or species of interest while taking the 

spatial correlation into account. It provides a simplified approximation of the data 

by implementing a dimensionality reduction method based on a basis function 

decomposition approach, significantly reducing the computational demand. This 

novel algorithm has high potential to be used as a effective tool in processing 

ToF-SIMS data extracted from metabolite samples.  

The conclusions from the findings of the thesis are given in Chapter 7, where we 

will also discuss possible improvements that can be made to the analysis methods 

proposed here. It also includes suggestions for future research in metabolic 

profiling.  
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Chapter 2  

Multivariate Statistical Analysis 

Methods 

2.1 Introduction 

Perhaps no other instrument that is more indispensable than mass spectrometer to 

today’s science research. It has also become an essential tool in metabolic profiling 

analysis (Balmer et al., 2013). Because of the accuracy and high sensitivity provided, 

a ToF-SIMS can produce a high dimensional data cube, which provides detailed 

molecular information and high spatial resolution. However, due to the complexity 

of the species and the fragmentary nature of ToF-SIMS dataset, the resulting data is 

not always easy to interpret. This poses a serious threat to the usefulness and 

practical applications of mass spectrometer related techniques. Several multivariate 
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analysis methods have been previously used in addressing this problem. Currently 

the most popular method is principal component analysis (PCA) with singular value 

decomposition (SVD) approach, which is a basic as well as one of the earliest 

decomposition methods (Pearson, 1901; Hotelling, 1933). It identifies 

discriminatory features by finding the new projection with maximum variances 

between the components. Maximum autocorrelation factors (MAF) is an alternative 

to PCA based on maximising the autocorrelation between neighbouring pixels 

(Switzer & Green, 1984; Larsen, 2002). Another similar method is independent 

component analysis (ICA), it selects component from one unknown ‘blind’ mixture 

with a more rigorous assumption that the components are independent to each 

other (Linsker, 1992; Bell & Sejnowski, 1995). By contrast, multivariate curve 

resolution (MCR) is a feature extraction technique that is useful for providing the 

pure spectra of components in the system (Lawton & Sylvestre, 1971; de Juan & 

Tauler, 2006). Some other classical statistical methods, like clustering, can provide 

the benefit of grouping components with similar patterns into subsets. 

This chapter will firstly provide a brief background of ToF-SIMS and description of its 

basic working principle. We will then explain the property a method should have to 

solve those problems by introducing the general data problem of ToF-SIMS. In 

addition, we will outline several well-known methodologies that have been 

extensively used in processing multi-dimensional data, including clustering, PCA, 

ICA, MAF, and MCR.  

 

2.2 Background 

A century has passed since the first prototype of mass spectrometer was originated 

by the winner of 1906 Nobel Prize in Physics, Sir Joseph John Thomson (Downard, 

2012). This special analyser provides mass spectrum of an identical chemical 

sample, which is a plot of the ion signal as a function of the mass-to-charge ratio. 
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Mass spectrum can be considered as the fingerprint of the chemicals compounds. It 

is useful for determining the composition of the molecules, the distribution of 

chemical species, and chemical structures on the observed surface (Sodhi, 2004). 

Mass spectrometry can provide numerous possibilities for the analysis of complex 

systems, especially in the field of chemistry, biology, geology, military, environment 

and astronomy.  

Currently, considerable research effort has concentrated on mass spectrometer and 

hence the inventions of different kinds of support machines. Different mass 

analysers vary in features, including the m/z range that can be covered, the mass 

accuracy, and the achievable resolution. An effective spectrometer will provide a 

detailed surface characterisation in order to not only identify the temporal and 

spatial patterns, but also verify the desired changes have been made. These factors 

require the ability to obtain the distribution, structure and chemical compounds of 

the surface species (Belu, Graham, & Castner, 2003).  

A ToF-SIMS determines the masses of secondary ions by recording their flight time 

(Choi et al., 2003). It utilises a pulsed ion beam to obtain secondary ions, which are 

then forced into the ToF analyser by a fixed high voltage (Sodhi, 2004). The 

extracted secondary ions are subsequently accelerated into the field-free drift tube, 

and a detector is placed at the finishing point of the flight path in order to monitor 

the pulses of these secondary ions. To ensure constant ion energy, ToF-SIMS 

typically incorporates a number of techniques to manage the differences in the 

initial condition and the energy dispersion of the extracted secondary ions. One ToF 

analyser working schematic is shown in Figure 2.1. 
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Figure 2.1 ToF-SIMS working procedure schematic diagram. Two secondary ions are accelerated to fly 

via the field free drift to reach the detector. The light (white) one approaches the detector earlier 

than the heavy (red) one. 

 

Given the same amount of energy provided during this process, the only difference 

between secondary ions’ flight time is the velocity, which is primarily determined by 

their masses (Belu, Graham, & Castner, 2003). This relationship is shown as follows: 

The velocity of secondary ions in a constant energy state can be simply expressed 

as: 

velocity = √
2×energy

mass
                  (2.1) 

There is a positive relationship between flight-time and the mass of ion, as it can be 

demonstrated with a simple algebraic rearrangement:  

Flight  time =
drift  length

velocity
= drift length × √

mass

2×energy
        (2.2) 

Thus a set of flight times will give a set of mass values that can be plotted as mass 

spectrum. 

A major strength of time-of-flight mass spectrometer is parallel detection of ions, 

which means that it is possible to capture all the secondary ions of different masses 

and generate a complete mass spectrum (Boxer, Kraft, & Weber, 2009). Whereas, 

many other mass spectrometers, such as quadrupole analyser and magnetic sector 
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analyser, are subject to a restricted mass range and lower mass transmission (Reed 

& Vickerman, 1993). In other words, the mass spectra produced by these mass 

spectrometers only represent the ions within a given mass range. Thus, parallel ion 

detection allows ToF-SIMS to handle secondary ions of high masses and have a 

relatively high sensitivity. Beside excellent sensitivity and high mass range, 

ToF-SIMS also benefits from high mass and spatial resolution (Belu, Graham, & 

Castner, 2003). This has made ToF-SIMS a promising instrument for biological 

analysis applications. 

One typical ToF-SIMS mass spectrum may contain hundreds of peaks. The relative 

intensities of many of these peaks are interrelated since they come from the same 

surface species. In addition, even for the simplest single component samples, 

changes in the surface chemistry can affect the relative intensities of the peaks for a 

given sample system.  

A typical ToF-SIMS dataset is illustrated in Figure 2.2 as a microscopic image cube of 

a sample surface along its mass spectrum (m/z). An image can be created for each 

mass with the loadings of the corresponding mass scores in every pixel. In our case, 

the replicate mixture dataset contains several 128 × 128 image stacks along the 

mass spectrum up to m/z = 100. 

 

 

Figure 2.2 visualisation of the ToF-SIMS dataset. One ToF-SIMS image of 128×128×100.  
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In the remainder of this chapter, we will outline several traditional multivariate 

techniques which are capable of identifying and extracting the useful information 

from large dataset, and hence reconstructing a data matrix with lower dimension.  

 

2.3 Multivariate Analysis Techniques 

The three-way array data in Figure 2.2 is made of mass spectra throughout the 

sample surface, in which multivariate analysis (MVA) methods are useful to provide 

insight to the identification of unknown number and types of the chemicals. This 

requires feature detection and extraction ability. Two types of defining and learning 

analysis methods are commonly used: supervised learning and unsupervised 

learning. 

Supervised learning is probably the most straightforward analysis method that aims 

to seek for one satisfactory model with a set of given inputs and outputs. In our 

thesis, there is no prior information available, therefore an unsupervised learning 

would be more appropriate. In unsupervised learning, analysis typically involves 

detecting patterns and categorising objects purely based on the statistical 

characteristics.  

While supervised learning model is utilised with sets of known inputs and outputs, 

no examples are given to the model in the unsupervised learning. Instead, patterns 

are derived directly from the given data, which is the case in our project. Moreover, 

it is possible to find the hidden structure from the unknown data using 

unsupervised learning. 

Two popular method widely used in unsupervised learning are clustering and 

factorisation. Clustering is the grouping procedure which classifies similar 

components according to specific measurements. It is a main task of exploratory 

data mining as well as a common technique for statistical data analysis. By contrast, 

http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_analysis
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factorisation is one “blind” feature identification technique offering dimensionality 

reduction benefit, it involves many different approaches, such as principle 

component analysis (PCA), independent component analysis (ICA), non-negative 

matrix factorisation (NMF), etc. All of these algorithms seek to extract and explain 

the key patterns of the data. 

 

2.4 Clustering Analysis 

Clustering is a statistical procedure for identifying object groups with similar 

patterns. It became well-known due to its application in psychology for personal 

trait classification (Cattell, 1943). The objective of clustering analysis is to split a set 

of objects into distinct groups (classes, clumps, and clusters) based on a chosen 

criterion (Jain, Murty, & Flynn, 1999).  

The process of clustering is similar to classification, as they all deal with finding the 

relationship inside the dataset. However, a pre-training step for defining the groups’ 

characters is usually needed for a classifier, it would then learn from the different 

data group with the ability to classify. This process is a supervised learning as we 

mentioned previously. Whereas, clustering an unsupervised learning in which the 

grouping procedure is solely driven by the similarity within the data. It is therefore 

important to determine how to define the similarity.  

Methodology 

There are two classes of clustering method, one is called distance-based clustering 

which uses the distance between each objects as the similarity criterion; another 

clustering approach is called conceptual clustering which uses the concept in 

common to all objects as criterion (Jain, Murty, & Flynn, 1999; Michalski & Stepp, 

1983). The latter one is much more complicated than the former kind, because the 

objects are organised according to certain ‘descriptive concept’, which is different 
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from the simple similarity measure. 

Various mathematical methods are now widely implemented in the clustering 

algorithm, among which, Hierarchical method, Partitioning method, Density-based 

method, Grid-based method, Model-based method are five popular ones. The first 

two methods are based on the statistic distance of objects. Hierarchical clustering, 

for instance, is based on the union or the division of the dataset (Johnson, 1967). 

The procedure can be obtained in two ways: divisive and agglomerative, the 

principle can be shown as the graph below: 

 

 

Figure 2.3 Hierarchical clustering procedure tree. Divisive clustering sets all the objects into one 

cluster at the beginning and splits them into different clusters step by step while agglomerative 

approach involves the reverse procedure. 

 

 

Agglomerative procedure is based on the union between the two “nearest” clusters 

regarding to the distance, whereas, the divisive algorithm is based on the division of 

each cluster (Jain, Murty, & Flynn, 1999). Because divisive clustering is a global 

method, in order to gain a global view, it requires other algorithms besides itself, 

leading to larger amount of computation, which is not practical in many cases.  
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Distance measure 

Distance is the most important factor in many clustering algorithms, as it is one 

widely approved way to define similarity.  

For a mapping d: U × U →/R 

It is called a distance function if, for any x, y ∈ U :d(x, y) ≥ 0 ; d(x, x) = 0 ; 

d(x, y) = d(y, x). This distance function is also a metric if: d(x, y) = 0 then x = y; 

And, 

d(x, y) ≤ d(x, z) + d(z, y)                                          (2.3) 

The best known distance measurement between two points in a plane, which is the 

Euclidean metric defined by: 

d2(x, y) = ‖x − y‖2 = √(x − y)T(x − y)                              (2.4) 

The Euclidean metric can be generalised in two ways. The first method is a popular 

measure called Minkowski metric, which is given by: 

d2(x, y) = ‖x − y‖p = √(x − y)p                                    (2.5) 

It should be noted that the Euclidean distance is a special case when p = 2, while 

the Manhattan distance is another special case when p = 1. 

The second method of generalisation is obtained by defining: 

dB(x, y) = ‖x − y‖B = √(x − y)TB(x − y)                             (2.6) 

This equation is related to the famous Mahalanobis distance, however this concept 

is beyond the scope of our experiment and the Euclidean distance is preferred. 

Scaling normalisation 

Before the clustering analysis is performed, the relative scaling should be firstly 

considered, actually, scaling should be considered before many other algorithms. 
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The importance of the scaling can be illustrated in the following charts: 

 

 

Figure 2.4 illustration of scaling problem. Two kinds of different classification choices can be made 

due to the different scale measurements. 

  

Figure 2.4 shows a simple example of scaling problem for a 2-dimensional case, in 

which the axes have the same magnitude but with different scaling, resulting in 

different visualising positions of the four points, as well as different clusters 

definitions. In order to solve the problem, normalisation is typically required.  

In this thesis, we use a normalisation method described by: 

x′ =
1

s
(x − x̅)                                                    (2.7) 

Where x′ is the normalised new variables, x̅ is the mean value of the elements in 

x, and s is the standard deviation of the vector x. 

Agglomerative algorithm 

Let nk = m, where nk is the number of clusters in different clustering level, and 

m is the number of the objects, or cases need to cluster at the beginning. 

Therefore there are m clusters containing one object each. 

The computation of the distance between clusters can be confusing since the 
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distance between different clusters is not the same as the difference between 

different objects. This can be demonstrated in the following ways (Jain, Murty, & 

Flynn, 1999): 

1. Single linkage clustering: the distance between two clusters equals to the 

shortest distance between the elements of each cluster.  

2. Complete linkage clustering: the distance between two clusters is the 

longest distance between the elements of each cluster. 

3. Average/weighted average linkage clustering: the distance between two 

clusters is considered as the (weighted) average of the distances between 

every element of each cluster. 

4. Centroid/weighted centroid linkage clustering: the distance between two 

clusters is the distance between the (weighted) centres of each cluster. 

5. Ward linkage clustering: the distance is defined in terms of the error sum 

of squares, ESS.  

After the distance computation, a merging step would take place. At each iteration, 

the two clusters with the shortest distance are merged into one cluster. The 

iterative process would continue until the ideal cluster number is achieved. For 

example, if you want k clusters, simply cut off the procedure at the (k − 1)th 

iteration. The whole processing can be drawn as a linkage tree: 

 



Spatial Mass Spectral Data Analysis Using Factor and Correlation Models 

 20      
 

 

Figure 2.5Linkage tree of one hierarchical clustering. The 8 objects merge into one cluster at the end 

of the tree. 

 

The horizontal axis in Figure 2.5 represents the labels of the clusters, the vertical 

axis stands for the distance level at every merging step. It can be seen in Figure 2.3, 

hierarchical clustering is considered as a bottom-up method and a divisive 

clustering would be considered as a top-down method, where one (or more) cluster 

is split into two clusters at every distance level.  

 

Merging Algorithm 

Merging steps 

Arrange the m objects into a new order that results in a contiguous sequence.  

Choose any object to be the first one in the sequence s(1), the first gap (gap is 

the distance between clusters) is denoted as G(1) = ∞. 

Select the nearest object as s(2), and the gap between s(1) and s(2) is 

G(2) = d(s(1), s(2)). 

From the rest objects, choose the one which is closest to one of s(1), s(2) as 

s(3). Generalised, choose the s(k) as the closest element to any one of the 

ready-reordered sequence s(1), s(2),… , s(k − 1) and the gap is the distance 
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between the two elements, G(k). 

Begin with the disjoint m clusters, and find the gap, which is the maximum of the 

all gaps (except G(1)), as Gmax, if the entire gaps before Gmax are different, 

then, merge the elements that has the minimum gap with the related element 

before into one clusters, there will be one cluster less. 

Delete the rows and columns of the two merged objects, and add new row and 

column represent the new cluster s(m + 1) , update the previous data 

sequence. 

If all the objects are in one cluster, then the clustering should stop, otherwise, go 

back to the first step, loop again. 

 

Table 2.1 Merging Algorithm 

 

The computational demand of hierarchical clustering is considerably large though 

the calculation method is simple, especially the distance matrix. In addition, the 

algorithm only checks the local distribution at each merging step without checking 

the global distribution, therefore there is no way to change or revise what has been 

done. However, hierarchical clustering analysis remains a popular and easily 

understood method for distinguishing different groups within the data. 

 

2.5 Principal Component Analysis (PCA) 

Principal components analysis is claimed to be one of the most valuable 

contributions from applied linear algebra. It has been used widely in various fields 

due to its simplicity and outstanding applicability. The aim of PCA is to find the most 

meaningful basis to reconstruct a complex dataset based on a multi-dimensional 

orthogonal linear transformation (Hotelling, 1933). It assumes that the variables 

with the greatest variance are capable of explaining most part of the significant 

variations in the data (Abdi & Williams, 2010). 

In general, the variables in a raw dataset are commonly inter-correlated, leading to 
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unreliable data mining and complicated computation. PCA intends to find the linear 

combination of the original variables (the principal components) by studying the 

covariance between the variables. It involves rotation of the covariance matrix into 

orthogonal factors where variables are no longer spatially correlated (Pearson, 

1901). 

Our ToF-SIMS dataset in this thesis are two spectral data points which are close to 

each other on the surface. Due to the inter-correlated nature of the dataset, there 

might be a large number of superfluous and pleonastic variables, which result in 

redundant computation and hamper the interpretation of the data. In this case, 

PCA may be used to remove the correlation in the data while retain the most 

representative information.  

Methodology 

The standard PCA algorithm is given by: 

D =  VX                    (2.8) 

Where D denotes scores matrix of principal components, V  and X  denote 

loadings matrix and the original matrix respectively. PCA can be performed using 

two approaches: eigenvalue decomposition (EVD) and singular vector 

decomposition (SVD). 

1. EVD approach involves the calculation of eigenvalues and eigenvectors in which 

the eigenvalues refer to the degree of importance of the principal components 

and the eigenvectors are essentially the principal components. The raw data set 

is decomposed using EVD into several different ‘subsets’ with different 

importance indexes, and the first several important ‘subsets’ are selected as the 

principal components, which are believed to contain the most significant 

properties of the original dataset. One obvious pitfall of EVD approach is that it 

can only be applied to square matrix, which rarely occurs in reality. The formula 

of EVD is shown as follows: 
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Let X  be a n × n  matrix with N  linearly independent eigenvectors, 

qi(i = 1, , n) then we can decompose X as follows: 

X = EΛE−1                     (2.9) 

Where E is the eigen square matrix made of the  X’s eigenvectors of  qi and Λ 

is the diagonal matrix. The diagonal elements are the corresponding 

eigenvalues to the eigenvectors. 

2. The general principle and formula of SVD are similar to EVD with a more 

generalised matrix size. 

A m × n matrix X can be decomposed in the form of: 

Xm×n = Um×m × Σm×n × Vn×n
T                 (2.10) 

Where U is an m × m orthogonal matrix, Σ is a m × n diagonal matrix with 

non-negative real numbers on the diagonal, and the n × n orthogonal matrix 

VT denotes the transpose of V. This factorisation is called a singular value 

decomposition of X. 

The relationship between singular value σ and eigenvalue λ can be illustrated 

by: 

(WTX)vi = λivi                   (2.11) 

σi = √λi, ui=
1

σi
Xvi                 (2.12) 

Where vi  denotes the right singular vectors while ui  is the left singular 

vectors. The entries of the diagonal matrix Σ  are always listed in a descending 

order for the sake of calculation. In most cases, the first few singular values 

(principal components) may account for more than 90% of the entries in the 

data. Therefore the original dataset can be approximated using a far less 

number of variables, r, without losing the main information of the original 

dataset.  

http://en.wikipedia.org/wiki/Linearly_independent
http://en.wikipedia.org/wiki/Diagonal_matrix
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Unitary_matrix
http://en.wikipedia.org/wiki/Diagonal_matrix
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Xm×n ≈ Um×rΣr×rVr×n
T                    (2.13) 

One drawback of SVD can be illustrated in one O (N^3) calculation, which means 

that with the expansion of the matrix size, the computation will be complicated 

by three times, especially with a large number of r.  

With the two approaches outlined above, PCA is able to obtain several largest 

eigenvalues or singular values, which are believed to contain the most significant 

characteristics of the data, and use them as the transformation matrix. 

Ur×m
T Xm×n ≈ Σr×rVr×n

T                                          (2.14) 

This formula can be generalised to one transformation with the rotation matrix T: 

X̃r×n = Tr×mXm×n                                       (2.15) 

PCA has been widely used as a dimensionality reduction technique in ToF-SIMS data 

analysis (Henderson, Fletcher, & Vickerman, 2009). However, Chang (1983) found 

that the large eigenvalues do not always represent the characteristics of the data; in 

particular, PCA might not be able to identify the linear combination if all the 

variables in the data that have the same variance.  

 

2.6 Maximum Autocorrelation Factors (MAF) 

Maximum autocorrelation factor (MAF) involves a transformation procedure which 

takes into consideration of the autocorrelation between neighbouring observations 

(Larsen, 2002). It was firstly proposed by Switzer and Green in 1984 as an 

alternative transformation method to PCA. In fact, MAF and PCA are mathematically 

similar if the covariance matrix is linearly related to the identity matrix (Switzer & 

Ingebritsen, 1986; Gallagher et al., 2014). 

 

MAF is different from PCA in the way that, instead of the covariance criterion, it 
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employs spatial autocorrelation as the criterion to decorrelate the data. The 

intuition has been widely accepted due to its sound assumption that noise tends to 

have a smaller spatial autocorrelation relative to significant components (Storvik, 

1993). If noise components in the dataset have larger variance relative to the 

interesting components, PCA would lead to poor and unreliable representation, as 

it is unable to recognise whether the linear combination is attributed to the 

interesting components or noise (Keenan & Smentkowski, 2011). This means that 

MAF would outperform PCA when the interesting components have lower variance 

and higher autocorrelation than noise, vice versa (Larsen, 2002).  

Methodology 

MAF was developed on the basis of PCA. In order to account for autocorrelation 

between neighbouring observations, MAF employs a shifted matrix that is found by 

taking the difference between the original data matrix and a spatially shifted 

duplicate of itself (Tyler, Rayal, & Castner, 2007). The original dataset X can be 

decomposed by regular PCA method in Equation (2.3), where the matrix V is 

obtained by an eigenvector rotation of the MAF factor. In order to differentiate from 

PCA, the MAF transformation can be described by the following linear 

combinations: 

S =  ATX                   (2.16) 

Where the MAF factor A is obtained by 

A = U2
TΛ−

1

2U1                     (2.17) 

U1 denotes the eigenvectors while Λ denotes the eigenvalues of the matrix B, 

where B  is the covariance matrix of the original dataset W , which can be 

specified by the equation below: 

U1BU1
T = Λ                   (2.18) 

U2 is the eigenvectors from the EVD of the shifted matrix, which can be derived 
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from the equation below: 

U2X( )U2
T = U2(

1

2
([ΓW( )]T + [ΓY( )]))U2

T                (2.19) 

In this equation, ΓY is the spatial correlation, which is defined by Equation (2.20): 

Γ( ) = Cov{Xk, Xk+ }                  (2.20) 

With the property given by: 

ΓT( ) =  Γ(− )                   (2.21) 

Where k denotes the spatial position while   is one spatial movement. The matrix 

derived via the MAF method transforms the variance-covariance matrix to the 

identity matrix and the shifted matrix for spatial shift of   to a diagonal matrix. 

MAF produces uncorrelated variables with largest autocorrelations using joint 

diagonalisation of asymmetric covariance matrices.  

 

2.7 Independent Components Analysis (ICA) 

Independent Component Analysis (ICA) is also a widely applied tool for identifying 

components from mixtures and it has been presented in some particular spectral 

data analyses for the use of identifying the unknown components in the mixture as 

well as in estimating their concentrations without prior knowledge (Chen & Wang, 

2000; Bayliss et al., 1998). ICA was firstly introduced by Herault and Jutten (1986) to 

address so called “blind source separation” problem based on the assumption that 

signals originated from different sources in a mixture are mutually independent in 

distribution (Comon, 1994). ICA is generally considered as an extension of PCA since 

it also transforms the data into uncorrelated factors. However, ICA employs a more 

rigorous criterion since statistical independence always leads to uncorrelation, 

while the converse does not necessarily hold (Hyvärinen & Oja, 2000). In addition, 

there is no order associated with the components extracted by ICA, whereas PCA 
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assumes that the first principal component has the largest explanatory power to 

the variation of the data (Langlois, Chartier, & Gosselin, 2010).  

There are two major approaches for ICA algorithms, arising from different 

interpretation of the statistical independence (Haykin, 2009). InfoMax and 

Maximum Likelihood estimation are algorithms for ICA developed on the basis of 

information theory which minimises the Shannon mutual information of pairs of 

variables (Amari, Cichocki, & Yang, 1996; Bell & Sejnowski, 1995; Pham, Garrat, & 

Jutten, 1992). By contrast, FastICA is an approach based on the intuition that 

mutually independent distribution can be properly measured by the deviation from 

normal distribution (non-Gaussianity) (Hyvärinen & Oja, 2000). Therefore, a 

fundamental limitation of ICA is that the independent components must be 

non-Gaussian for ICA to be applicable. 

Methodology 

ICA transform seeks linear combinations that minimise the statistical independence 

between variables. InfoMax is the approach rooted in the minimisation of mutual 

information, which utilises entropy as a primary measure of the uncertainty.  

InfoMax 

Entropy can be considered as the degree of information that the observations of 

variables provide. Larger entropy is typically related to more random and 

unpredictable variables (Hyvärinen & Oja, 2000). Conversely, lower entropy means 

that we have more information about a given system. Entropy can be considered as 

a measure of non-Gaussianity since a Gaussian variable typically has the greatest 

entropy among all variables for a given variance. This means that Guassian variables 

have more “random” distributions. For a discrete random variable X, entropy H is 

defined as: 

H (X)  =  − ∑ P(x)logP(x)𝑥               (2.22) 

H (Y)  =  − ∑ P(y)logP(y)𝑦               (2.23) 
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H (X, Y)  =  − ∑ P(x, y)logP(x, y)𝑥,𝑦             (2.24) 

Where P(x) is the probability that X is in the state x. Differential entropy is the 

case when the ordinary concept of entropy is generalised for continuous random 

variables. The differential entropy H of a random variable x with density f (x) 

can be described by: 

H(x)  =  − ∫ f (x) log f (x)dx                                          (2.25) 

The mutual information I  between m  (scalar) random variables, xi , i =

 1. . . m can be defined as follows: 

I(x1, x2, . . . , x𝑚)  = ∑ H(x𝑖) − H(x)m
i=1                               (2.26) 

The mutual information can be interpreted as the Kullback-Leibler divergence 

between the joint density f (x) of random variables (Amari, Cichocki, & Yang, 

1996). Therefore, mutual information is a proper measure of independence 

between random variables as it is non-negative in nature and equal to zero when 

the variables are statistically independent. By minimising the mutual information, 

we are able to identify the most statistically independent components. The 

methods based on mutual information minimisation are preferable in a changing 

environment (Langlois, Chartier, & Gosselin, 2010). 

 

FastICA 

Another approach to measure statistical independence also involves the concept of 

non-Gaussianity, where negentropy is used a quantitative measure of 

non-Gaussianity of random variables. Negentropy is a measure of the deviation 

from normality, which indicates the degree of statistical independence of variables. 

Negentropy is defined by: 

J(x)  =  H(xGaussian) − H(x)                                     (2.27) 

Where xGaussian is a Gaussian random variable with the same covariance matrix as 
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that of a non-Gaussian variable, x, and H(x) denotes the entropy. Similar to the 

concept of entropy, negentropy is always positive, but equal to zero only when the 

variable has a Gaussian distribution.  

However, the computation of negentropy is complicated and approximation 

approaches are used. One effective approximation approach is called FastICA, which 

can be described by: 

N(V) = E(∅(V)) − E(∅(U))
2
                                      (2.28) 

Where V is a non-Gaussian random variable, U is a Gaussian random variable and 

∅(∙) denotes a non-quadratic function. A pre-processing process is required so that 

all variables are standardised. FastICA offers a computationally inexpensive way to 

extract independent components with non-Guassian or sub-Guassian distribution 

(Hyvärinen & Oja, 2000). 

 

2.8 Multivariate Curve Resolution (MCR) 

One typical criticism of PCA and other traditional algorithms is that the components 

extracted are essentially mathematical factors, which may or may not result in 

meaningful interpretation (Lachenmeier & Kessler, 2008). By contrast, Multivariate 

Curve Resolution (MCR) is a methodology that not only provides statistically 

significant results, but also offers practical importance to ToF-SIMS data analysis, 

especially for chemical and biological data (Wentzell et al., 2006; de Juan, Jaumot, & 

Tauler, 2014). It is capable of extracting the single properties of the chemical 

compounds of mixtures (the pure component spectra) and the concentration 

profiles with incomplete or even no knowledge of the components (de Juan & 

Tauler, 2006). This means that MCR can be used to process complex dataset or 

identify unknown chemical compounds.  

MCR algorithms can be either non-iterative or iterative. Currently, iterative 
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approaches have gained great popularity due to the ability to process multiset data 

structures and incorporate known information into the iterative process as 

constraints (de Juan, Jaumot, & Tauler, 2014). One of the most commonly used 

iterative MCR algorithms is MCR-ALS which uses alternating least squares (ALS) to 

solve the optimisation problem at each iteration. We will provide more detailed 

description of one novel MCR-ALS in Chapter 4.  

Although the advantage of MCR is particularly attractive to biological applications, it 

might produce multiple solutions for the dataset due to intensity and rotational 

ambiguity (de Juan, Jaumot, & Tauler, 2014). Intensity ambiguity is derived from the 

indeterminate magnitude of the concentration profiles and pure spectra, leading to 

different interpretation of identical statistical results (Wise & Kowalski, 1995). 

However, it is normally easy to be detected and can be mitigated by normalising the 

concentration profiles or spectra produced, or incorporating known information 

into the approximation (Tauler, Kowalski, & Fleming, 1993; de Juan, Jaumot, & 

Tauler, 2014). Analysts are generally more concerned about rotational ambiguity, 

which is resulted from multiplying or dividing the components by a rotated matrix. 

Rotational ambiguity can be suppressed by incorporating constraints into the 

algorithm (Lachenmeier & Kessler, 2008). Common constraints include 

non-negativity, unimodality, closure, and stoichiometry, among which 

non-negativity constraint has been used most widely to offer realistic and 

meaningful results (Tyler, 2006).  

Methodology 

MCR was initially devised as a tool to study a single second-order data matrix that 

follows a bilinear structure. It involves a transformation procedure that decomposes 

the original data matrix into the product of two matrices where each matrix 

corresponds to an order of the original matrix (Tauler, Kowalski, & Fleming, 1993). 

The application of MCR has now been extended to multi-dimensional data analysis 

and more complex systems. However, this requires that the original dataset can be 
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fairly described by a bilinear model. The bilinear model in MCR is described by: 

 X = CST                      (2.29) 

Where X denotes the original dataset that we need to decompose, ST is the pure 

spectra basis, and C is weighted matrix that indicates the contribution of each 

basis (concentration profiles). It should be noted that the chemical meaning of the 

two matrices can be altered to fit the nature of the original dataset. In real world, 

the original dataset X is always replaced by an estimation matrix X̂ with error 

term E. This can be illustrated as: 

X =  X̂  +  E =  CST  +  E                    (2.30) 

However, the decomposition of X̂  can be unreliable without additional 

information about the concentration profiles. Because of the dynamics of MCR 

optimisation, various combinations of pure component spectra ( ST ) and 

concentration profiles (C) with the similar appearance but different magnitudes 

may have the identical approximation of the raw data. This is so called intensity 

ambiguity which can be shown by an example: 

X̂ = (Cr) (ST 1

r
) + E =  CST  +  E                  (2.31) 

Where r is a constant number. In addition, if an arbitrary transformation matrix, P, 

is used in the optimisation problem, multiple possible combinations of C and ST 

are available to represent the original dataset. This problem is referred to rotational 

ambiguity and can be shown by: 

X̂  = (CP)(P−1ST)  =  CST                   (2.32) 

The MCR algorithms can be realised by several popular methods, including: 

1. Evolving Factor Analysis (EFA) 

EFA studies the evolving process of the single values on submatrices that are 

gradually introduced into the analysis. Therefore, any appearance of a new 
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compound is attributed to the identification of a significant component. EFA can 

be performed in both top down and bottom up directions of the dataset, where 

forward EFA and backward EFA investigate the appearance and the 

disappearance of significant components, respectively (Maeder & Neuhold, 

2007).  

2. Window/Subwindow Factor Analysis (WFA/SFA) 

WFA is a chemometric tool developed based on EFA with ability to identify the 

concentration profiles of chemical species by studying the evolutionary process 

such as chromatography (Malinowski, 1992). It analyses the dataset using 

“window”, which a region along the evolutionary axis where each component 

lies in. The window size for WFA is important since small window size can lead 

to indeterminate solutions and large window size may cause the inclusion of 

new components (Maeder & Neuhold, 2007). In addition, WFA is particularly 

vulnerable to the noise in the dataset, and a number of improved methods have 

been developed to address the problem (Chen et al., 2009). 

3. Iterative Target Transformation Factor Analysis (ITTFA) 

ITTFA is a method that involves an iterative process to approximate composition 

profiles and pure component spectra. It is an extended Target Transformation 

Factor Analysis (TTFA) algorithm, which attempts to identify the components 

with real chemical meaning (Maeder & Neuhold, 2007). ITTFA generally requires 

PCA as an initialisation step to provide insight into the number of components 

and hence the initial estimated concentration profile. A target testing is used to 

examine whether the projected target and initial target are the same. The 

resulting data matrix is subsequently reconstructed using the components 

accepted as a result of target testing. However, the effectiveness of ITTFA is 

largely affected by the initial target employed (Zhu, Cheng, & Zhao, 2002).  

4. Simple-to-use Self-modelling Mixture Analysis (SIMPLISMA) 
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SIMPLISMA was developed by Willem Windig based on a pure variable 

approach which resolves spectral mixture data in a user-friendly and time saving 

manner (Windig & Guilment, 1991). It assumes that there is a so-called pure 

variable that is significantly contributed by sole one of the pure components in 

the dataset (Windig et al., 2002). A pure variable can be identified by examining 

the purity value of variables, which is the ratio of the standard deviation to the 

mean. The pure variable approach is based on the thought that the intensity at 

a pure variable can be used as an estimate of a concentration profile when 

Beer’s law is complied with (Windig & Stephenson, 1992). Therefore, the 

component spectra can be resolved through least-squares regression using the 

intensity, given that every component in the dataset has minimum of one pure 

variable. In the situation where the spectral data have many highly overlapping 

pure components, the pure variable approach based on second derivative 

spectra can be used to improve resolution of overlapped components (Windig 

et al., 2002). SIMPLISMA has an advantage of fast resolution since no iterative 

improvement process is required. Moreover, its interactive process enables the 

user to refine options at every step. However, the pure variables selected by 

SIMPLISMA are based on relative purity measure and may not necessarily be 

the true pure variables (Windig & Stephenson, 1992).  

 

2.9 Summary 

In this chapter we have reviewed several traditional unsupervised MVA techniques, 

which are able to decompose the raw dataset into key components and hence 

reconstruct the original data with less redundancy. In particular, clustering analysis 

is devised to categorise variables from a large dataset into distinct subsets. PCA, 

MAF, and ICA all aim to produce uncorrelated components but using different 

criteria, namely variance, autocorrelation, and statistical independence. MCR, on 
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the other hand, attempts to provide the extracted components with chemical or 

physical meaning. All of these MVA techniques could possibly offer the benefit of 

information extraction to ToF-SIMS data analysis. In fact, the combination of PCA 

and ToF-SIMS has already been used in many metabolic profiling researches such 

as the biological molecules in cancer systems (Kotze et al., 2013). However, these 

MVA methods are also subject to a number of limitations specific to each of them, 

which may not be compatible to the ToF-SIMS applications in the context of 

metabolic profiling. In next chapter, we will take PCA as a particular example to 

demonstrate the application of traditional method to our ToF-SIMS data analysis.  
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Chapter 3  

Principal Component Analysis 

3.1 Introduction 

ToF-SIMS data are complex even for a simple sample surface, within which the 

identity and distribution of different species needs to be extracted. Examples are 

sample composition, molecular orientation, surface order, chemical bonding and 

sample purity (Graham et al., 2006). The extraction of such information from the 

ToF-SIMS data is a challenging task. Feature extraction and dimension reduction 

techniques are of great importance as they can significantly simplify the analysis of 

complex ToF-SIMS datasets. The application of multivariate analysis techniques has 

opened new door for the exploration of ToF-SIMS data. In the previous chapter we 

have mentioned that several MVA techniques can provide promising results in 

reducing the complexity of ToF-SIMS data analysis. The most popular MVA 
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technique used in this area is perhaps PCA due to its simplicity and easy 

implementation. The goal of PCA is to extract important information from data and 

transform this information using a set of orthogonal variables called principal 

components. In this chapter we will highlight the application of PCA in the analysis 

of ToF-SIMS dataset. The advantages and limitations of PCA are also discussed by 

the end of implementation. 

 

3.2 Data Description 

As mentioned in Chapter 1, a typical ToF-SIMS spectrum is represented by one 

three-way dataset, which essentially is the sum of all those secondary ions, 

including the fragment ions that make the spectrum complex and difficult to 

interpret. In reality, processing ToF-SIMS spectrum by MVA would require analysing 

many samples that are simply unavailable. 

In this work, data contains measurements of three metabolites, tyrosine (T), 

phenylalanine (P) and citric acid (C). The chemically pure metabolites were spotted 

on hexamethyldisilazane (HMDS) and coated silicon wafers. The dataset were 

exported from the SIMS V instrument (ION-ToF Inc., Germany). Five ToF-SIMS 

experimental samples were obtained, which contain three individual pure species (T, 

P and C) and two mixed species (TC and TPC). For each sample, three replicate 

datasets are available. Each one of those datasets includes images of 128 × 128 

pixels with the spectra up to 200 Da, while only 100 m/z intensities were 

considered in the analysis of all samples. This is based on the consideration of the 

computational cost, and all the deprotonated metabolites ions are included. 

Discriminatory features are first extracted from the estimated scores and loadings 

by applying the algorithm to the three pure species. Subsequently, the extracted 

information is used to perform peak assignment in the spectra of TC and TPC 

mixtures. This way discriminatory information can then be summarised into major 
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peaks, which in turn would have the ability to identify the corresponding species. In 

order to assess the performance of the algorithm, the extracted spectral 

information is also utilised in analysing the replicate measurements of each dataset. 

Figure 3.1 shows the total ion images for each dataset.  
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Figure 3.1 Total ion images. Total ion images for three measurements of the pure species (C, P, and T) 

and the mixtures (TC and TPC).  
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Figure 3.2 Mass spectral data. For each sample dataset, one mass spectral plot can be created at 

every pixel point.  

 

 

3.3 Principal Component Analysis  

We have already outlined the general theory of PCA in Section 2.5, here we look 

into its methodology in greater details. PCA attempts to find the linear combination 

through orthogonal transformation procedure which decorrelates original variables 

into a number of principal components (Hotelling, 1933). The main principle of the 

algorithm is presented as follows: 
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Suppose the original data matrix X of a dimension m × n, with xi(i = 1,2,3…m) 

as the row vectors: 

X =

[
 
 
 
x1
x2

x3

…
xm]

 
 
 

                                               (3.1) 

PCA performs transformation by investigating the covariance matrix of the original 

data, Cx, defined by the following expression: 

Cx =
1

n−1
XXT                                                    (3.2) 

Where Cx is a square symmetric m × m matrix. The elements of Cx represent 

the degree of variations among the vectors, which is called correlation. The 

off-diagonal elements are the covariance of pairs of vectors while the diagonal 

elements are the variances of vectors themselves. The covariance of the original 

variables is used to evaluate the level of redundancy or noise in the dataset. Large 

values can be interpreted as unsound, since the variables tend to be highly 

interrelated. 

The transformation procedure of PCA intends to reduce the covariance of variables 

to a minimum level that is ideally equal to zero. This means that the original 

covariance matrix Cx must be somehow transformed into a new covariance matrix 

Cy, of which off-diagonal entries are all zeros. The transformation procedure used 

by PCA is to find the linear combinations of the original data matrix X, such that 

Y = PX. Then P can be substituted into the matrix Cy:  

Cy =
1

n − 1
YYT 

      =
1

n − 1
(PX)(XP)T 

      =
1

n − 1
PXXTPT 

      =
1

n − 1
P(XXT)PT 

                                           (3.3) 

Now we can define a m × m symmetric matrix, A, such that A = XXT. Equation 
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(3.3) can hence be rewritten in terms of A: 

Cy =
1

n−1
PAPT                                                   (3.4) 

Therefore, for every symmetric matrix, there is a diagonal matrix Cy which is 

comprised of the set of all eigenvalues of Cx along its main diagonal and zeros 

elsewhere. The two matrices as defined by the following relationship: 

A = EDET                                                      (3.5) 

Where D is the eigenvalue matrix and E is the eigenvectors. Choosing a matrix P 

that is defined by: 

P = ET                                                         (3.6) 

And substituting into Equation (3.4) gives:  

Cy =
1

n − 1
PAPT 

      =
1

n − 1
P(EDET)PT 

      =
1

n − 1
P(PTDP)PT 

      =
1

n − 1
(PPT)D(PPT) 

      =
1

n−1
D                      (3.7) 

As shown above, this results into a new diagonal covariance matrix of all 

eigenvalues of the original covariance matrix, which eliminates the linear 

correlation amongst new variables and therefore the redundant information. 

However, some additional steps are still required as the diagonal elements of the 

covariance matrix still represent the variances of each variable in the data. 

Therefore the next step is to transform the matrix such that these variations 

become more apparent. This essentially means maximising each variance element. 

PCA selects the variable with the largest variance in Y along with normalised 

direction in the m-dimensional space P as the first principal component, which is 

presumed having the greatest explanatory power to the data. This process is 

repeated until all the directions have been selected once, and subsequently, the 

vectors in matrix P are ordered in a descending manner from the first principal 
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component to the m𝑡ℎ principal component. 

 

3.4 Random Sampling 

Although PCA has been widely approved as an effective method to reduce the 

dimensionality of data, it requires huge amount of computational resources, 

especially when the original dataset is substantially large. Our experiments with a 

128 × 128 × 1000 dataset in the past research using a 64-bit processor computer 

with 4GB memory could not provide enough resources for the implementation, not 

to mention the long execution time. This problem is managed by using simple 

random sampling, which is a basic equal probability of selection method (EPSEM) 

where each statistical unit of the sample has an equal chance of being selected 

(Peters & Eachus, 1995). Because the statistical units are randomly selected in a 

sample, the information provided can be interpreted as an unbiased estimator of 

the data and used in the application of PCA with much lower computation required.  

A simple random sampling can be performed either with replacement or without 

replacement (Antal & Tillé, 2011). However, random sampling without replacement 

is generally preferred since sampling the same object more than once would 

provide no further information (Lohr, 2009). In our thesis, a random sampling 

without replacement is implemented via MATLAB to ensure representative and 

unbiased sampling results, which can then be used in the generalisation back to the 

population (Wong, 1999). 

 

3.5 Poisson Scaling 

Data scaling is essential for the effectiveness of MVA in ToF-SIMS data analysis, 

since the noise in ToF-SIMS data is not uniform as assumed in many conventional 
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MVA applications (Keenan, Kotula, 2004). In fact, the noise in many ToF-SIMS data 

by its nature follows a Poisson distribution, where the variance of the data is fairly 

close to the mean of the data (Henderson, 2013). Consequently, the standard 

deviation of the data is roughly equal to the square root of the mean. This means 

that for Poisson-distributed data, the results of MVA could be largely affected by 

the high intensity and low mass peaks due to higher mean and variance (Lee et al., 

2009). Therefore, ToF-SIMS data is generally pre-processed using Poisson Scaling, 

which accounts for the Poisson noise distribution by dividing each peak by the 

square root of the peak intensity and by the square root of the mean (Tyler, Rayal, 

& Castner, 2007; Henderson, 2013). This can be described by: 

X̃ = G−
1

2XH−
1

2                                                    (3.8) 

Where the scaled data matrix X̃ is obtained by dividing the original data X by two 

scaling matrices G and H, which are the diagonal matrices with the row means 

and column means of X along the diagonal, respectively. The objective of Poisson 

scaling is to normalise the non-uniform noise with Poisson distribution, and 

therefore, the variation in the data purely reflects the chemical concentration and 

discriminatory pattern (Smentkowski, Ostrowski, & Keenan, 2009; Henderson, 

2013). 

 

 

3.6 Application Results 

In this section we demonstrate how those previously mentioned MVA algorithms 

can be applied to ToF-SIMS dataset by using PCA as an illustrative example. The 

implementation was carried out through the MATLAB using SVD approach. It is 

important to note that PCA algorithm is a 2-dimensional method (as well as other 
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algorithms discussed in this thesis), while our ToF-SIMS dataset is three dimensional, 

which is 128 × 128 × 100. However, according to the prior knowledge about the 

ToF-SIMS images, the first 2 dimensions only reflect the original positions of 

different components. Since we attempt to find the principal components that are 

able to represent the original images without ‘redundancy’, the position of each 

component is not a major concern because it can be reflected back to the raw 

image after the analysis. In this case, the original dataset was firstly reshaped into 

2-dimensional dataset by combining the first 2 dimensions, which results in a 

dataset of dimension of 16384 × 100. Another issue we need to raise is that 

although only 100 m/z points are provided in the dataset, the results are still 

presented throughout 200 m/z axis by mapping the points to the actual locations. 

The same procedure will be utilised before the implementation of other algorithms 

in this thesis. Poisson scaling procedure also needs to be performed before PCA, the 

reason is that the PCA is one scaling-dependent algorithm, and the topography of 

the dataset along with a non-uniform exposure and differential extraction of the 

secondary ions might cause unclear principal components segregation and 

incorrect selection. 

Figure 3.2 shows the cumulative percentage of representation provided by the first 

20 principal components for the each of the five samples. The three different colour 

plots in each image represent the three replicated datasets for each species. There 

are several approaches to select a proper number of PCs for the PCA application, 

the most popular ones are (Valle et al., 1999): 

1. Akaike information criterion: it provides a measurement of the quality for each 

model of the dataset by the estimation of the information lost (Akaike,1998). 

2. Minimum description length: it gives a good hypothesis of the data by finding a 

best compression of the original dataset (Grünwald, 2007). 

3. Imbedded error function: it is a function of error eigenvalues and can identify 

the error between models (Brereton, 1992). 
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We will also provide one model selection method in the latter chapter to solve this 

problem, so here in order to reduce the computational cost, we use 90% 

approximation as the target which is commonly used in the PCA implementation of 

spectral data. It is clearly shown that for the three pure species, at least 3 principal 

components (PCs) are required to be able to provide 90% approximation of the raw 

data, which is the lowest acceptable degree of data representation. In particular, for 

the single component T and P, it is strongly recommended that 4 or 5 PCs are 

needed for an informative approximation (Figure 3.2 (T) and Figure 3.2 (P)). This 

result is different from the expectation based on the data dynamics, since there is 

only one component in the dataset of T and P species. The possible explanation is 

that there might be several fragment ions and noise during the ion flying process, 

the noise are mostly the measurement errors of the ToF-SIMS instrument resulted 

from the vibration and the support system. The existence of fragment ions and 

noise significantly hinders the detection of the metabolites signals. It also appears 

that one PC is sufficient to represent 90% of the data for TC mixture while TC 

mixture in fact contains two components (T and C) (Figure 3.2 (TC)). The reason is 

unable to be identified at this point, it might be due to the similarity (similar range 

of identical peak location and similar fragmentations appearance) between T and C 

species. This should be interpreted later with the loadings result. Among all the 

analysis results, only the result from the three component mixture is exactly correct 

as 3 PCs are required for a reliable representation (Figure 3.2 (TPC)). These results 

can be considered as reference indicators for the later analyses when choosing the 

number of chemicals prior to the commencement of the algorithm. 
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  (TC) 

 

 (TPC) 

Figure 3.3 PCA scree plot. The normalised scree plots for individual components C, T, P, TC and TPC 

mixtures for three replicates are shown. Each of three replicate samples is plotted in three different 

colours. Only the first twenty principal components are presented. In each plot dashed lines show  

90% cumulative variability, indicating the number of factors required to approximate at least 90% 

characteristics of the original samples. 

 

The information derived from the scree plot in Figure 3.2 can be used to evaluate 

the performance of PCA by applying to three replicate samples of component C. for 

a better illustration, three PCs, two PCs and one PC are used to approximate sample 

C1, C2 and C3 respectively. Figure 3.3 illustrates the scores and loading plots of the 

chosen PCs from C1, C2 and C3 replicate samples. The score images seem very 

promising for each implementation, while the loadings spectral images plotted 

alongside are rather unsatisfactory with many negative coefficients that are more 

difficult to interpret in reality. However, it can still provide information of the 
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original data by transforming the normalised data back to the original one. It is 

widely used in the applicable research for its simplicity (Biesinger et al., 2002). The 

Y axis in the loading plots in Figure 3.4 is the signal intensity value of each ions 

showing at each locations through the m/z axis. The value range is different due to 

different instrument, which can be calculated by Equation (2.1). In this thesis the 

value range is from 0 ~ 1 by dividing the real value with the largest intensity and 

map the loading into the same axis scales from 0 to 1.  
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(C2) 

 

(C3) 

Figure 3.4 Scores and loading plots produced using PCA for C1, C2 and C3 samples. Score images are 

presented on the left showing the spatial information of each PC and loadings are presented on the 

right indicating the intensity of PCs.  

 

The significant peaks appeared in each PC for three replicate samples are organised 

in Table 3.1. Intuitively, one specific chemical should have a particular peak location 

region; therefore three pure samples should contain the same significant peak 

41.01 

87.02 

26.01 

136.93 

41.01 
56.98 

87.02 

104.94 
191.02 
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location as they are all derived from the same pure species. The comparison of the 

significant peak locations of the three replicate samples indicates that, components 

can be identified with peaks at m/z = 41.01, m/z = 56.98 and m/z = 87.02 while 

other spectral locations are most likely due to the chemical fragments and noise. 

This result is reasonably acceptable as all the identical significant peaks are derived 

from the first PC without negative values. This can also be identified in Figure 3.3. 

The corresponding spectra images from the original dataset at each significant peak 

are illustrated in the Figure 3.4. From these figures the corresponding scores images 

of peaks at m/z = 26.01, m/z = 136.93 and m/z = 183.01, it can be seen that they all 

have noisy structures, therefore, these peaks do not have discriminatory 

information and can be considered noise in the system. 

 

Replicate Sample Significant Peak Location (m/z) 

C1 26.01, 41.01, 56.98, 87.02, 183.01 

C2 26.01, 41.01, 56.98, 87.02, 136.93 

C3 41.01, 56.98, 87.02, 104.94,191.02 

 

Table 3.1 Significant peaks identified from PC loadings for C1, C2 and C3 pure species samples. The 

peak locations are displayed in an ascending order.  

 

 

 

 
 

  

 

m/z = 26.01 m/z = 41.01 m/z = 56.98 

m/z = 87.02 m/z =183.01 
(A) C1 Total Ion Images 
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Figure 3.5 Corresponding Score images at each significant peak from the original data for C1, C2 and 

C3 species samples. (A-C) are the total ion images of C1, C2 and C3 samples. The corresponding 

scores images at significant peaks are also shown.  

 

From the result above, it can be summarised that, the first PC in each case only 

disturbed by a small amount of negative values which is useful for the following 

interpreting work, however, it also can be seen that species C is fragmented highly 

through the spectrometry process, which leads to the comparing low intensity on 

the identical peak location m/z = 191.02 (Figure 3.5) and increase the difficulties for 

the following research. From the spatial aspect, peaks at m/z = 41.01, m/z = 56.98 

and m/z = 87.02 are in the area most similar to the identical peak m/z = 191.02, and 

those three are highly recommended as the fragmentations from species C during 

the spectrometry ion flying process. 

m/z = 26.01 m/z = 41.01 m/z = 56.98 

m/z = 87.02 m/z = 136.93 (B) C2 Total Ion Images 

m/z = 41.01 m/z = 56.98 m/z = 87.02 

m/z = 191.02 
(C) C3 Total Ion Images 

m/z = 104.94 
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Figure 3.6 Species C1 score image for peak at m/z = 191.02 

 

Similarly, the significant peaks of T1 and P1 samples can be identified using PCA 

with the chosen PC number m = 1 as we have the prior information that they are 

both pure species samples. The score images and loading plots for T1 and P1 are 

shown in Figure 3.6 with the significant peaks and the corresponding score images 

illustrated in Table 3.2. 

 

  (T1) 

 

 (P1) 

Figure 3.7 Scores and loading plots produced using PCA for T1 and P1 species samples.  

 

71.01 26.01 180.06 121.02 
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Pure Sample Significant Peak Location (m/z) 

T1 

 

26.01  71.01  121.02  180.06

 

P1 

 

26.01  164.05  

 

Table 3.2 Significant peaks identified from PC loadings produced using PCA for pure T1 and P1 samples. 

The locations are presented in an ascending order. Total ion images and corresponding score images 

are given alongside.  

 

After applying PCA to the three pure species, the significant peaks are separately 

summarised in Table 3.3. This information is in turn used to identify individual 

component by reviewing the peaks specifically attributed to it. 

component Peak location value (m/z) 

C 56.98, 87.02, 191.02 

T 73.01, 180.06 

P 164.05 

 

Table 3.3 Identified m/z values for peak assignment. All of the peaks can be used to identify specific 

individual chemical compounds while the numbers in red are the given ground truth for each 

chemicals. They can be used as references for the later identification of different species throughout 

this thesis. 

As we discussed previously, the result of PCA performed on TC mixture suggests 

that only one PC is sufficient for representing 90% information of the original 

dataset. However, according to the dynamics of the dataset, we know that TC 

mixture is a mixed species that consists of two components. Under this 

circumstance, two PCs are used in order to test the ability of the PCA algorithm 
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given “correct” number of PCs is consistent with the number of chemicals in the 

mixture. Figure 3.6 represents the scores and loading plots for the two PCs of TC1 

sample. For the first PC (shown in the upper row in Figure 3.7), a significant peak at 

m/z = 191.02 can be attributed to component C when analysing the results on 

replicate samples for component C. However, the peaks at m/z = 71.01 and m/z = 

180.06 can be identified as chemical T as they match the results in Table 3.3. 

Similarly, peak at m/z = 87.02 is referred to component C. By contrast, only one 

noise peak at m/z = 26.01 can be found for the second PC as illustrated in the lower 

row in Figure 3.7. This means, interestingly, that both component T and C can be 

identified solely using the first PC, which is in agreement with the result obtained 

from the scree plots where only one PC is needed to reasonably approximate TC 

mixture. This result shows that the important peaks can be identified, however, the 

distribution of elements cannot be separated. The information of the two PCs 

generated is summarised in Table 3.4. 

 

Figure 3.8 Scores images and loading plots produced using PCA for TC1 species sample. First PC and 

second PC are shown in the upper and lower row, respectively.   

 

26.01 
71.01 87.02 

180.06 

191.02 

157.12 
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Mixture Sample 

TC1 

Significant Peaks 

corresponding to 

Chemical T 

Significant Peaks 

corresponding to 

Chemical P 

Significant Peaks 

corresponding to 

Chemical C 

Uncertain Peaks 

Component 1 71.01 

180.06 

N/A 87.02 

191.02 

26.01 

Component 2 N/A N/A N/A 26.01 

157.12 

Corresponding 

Score Images 

 

 

 

 

 

 

 

 

Table 3.4 Significant peaks identified from PC loadings produced using PCA for TC1 mixture samples.  

 

From the scree plot of TPC1, three PCs are required to capture the information 

from the original dataset which corresponds to the correct number of chemicals in 

the mixture. The result of PCA performing on TPC1 mixture is presented in Figure 

3.8, showing the scores images and the loadings for each of the three PCs. It can be 

seen from the first PC there exist two significant peaks at m/z = 167.024 and m/z = 

181.06, which are differentiating peaks of the chemical P and chemical T 

respectively. These two peaks can be recognised as chemical P and chemical T 

respectively using the information in Table 3.3. Furthermore, there are also two 

large peaks appeared at m/z = 191.02 and m/z = 87.02 in the loadings image of the 

first PC, which can be derived from chemical C. For the second PC (shown in the 

middle row in Figure 3.8), there is one interesting peak at m/z = 100.02 close to the 

noise peak at m/z = 26.01. However, we are unable to identify the peak as there is 

no prior knowledge in relation to chemicals located at that region. As it can be seen 

in the bottom row in Figure 3.8, one peak at m/z = 87.02 is referred to pure species 

C for the third PC. The corresponding score images are given in Table 3.5.  

The results of PCA application suggests that component C can be identified and 

distinguished from other chemicals in the third PC while component T and P are still 
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mixed. This is similar to the problem encountered in result of the TC mixture. It 

should be noted that there is also a strong peak at m/z = 100.019 which only 

appears in PC2. This could be due to the fragment ion of the process. The 

performance of PCA on TPC mixture suggests that the detection of different species 

and segmentation is partly accomplished since still mixed up peaks in one PC.  

 

Figure 3.9 Score images and Loading plots produced using PCA for TPC1 mixture samples.  

 

 

26.01 
71.01 87.02 

164.05 

180.06 
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Mixture Sample 

TPC1 

Significant Peaks 

corresponding to 

Chemical T 

Significant Peaks 

corresponding to 

Chemical P 

Significant Peaks 

corresponding to 

Chemical C 

Uncertain 

Peaks 

Component 1 71.01, 

180.06 

164.05 87.02 

191.02 

26.01 

Component 2 N/A N/A N/A 26.01, 

100.02 

Component 3 N/A N/A 87.02 

191.02 

N/A 

Corresponding 

Score Images 

 

 

   

 

 

Table 3.5 Significant peaks identified from PC loadings produced using PCA for TPC1 mixture species 

samples. The peak locations are displayed in an ascending order.  

 

As we mentioned in Section 3.4, random sampling can be used prior to the 

implementation of PCA in order to reduce the computational demand. The original 

dataset is randomly sampled, where all spectra at each pixel point have the same 

probability to be selected into a number of subsamples. These randomly selected 

spectra constitute a subset of the original dataset with significantly lower data 

points which therefore reduces the computational complexity of the algorithm. 
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Figure 3.10 Sampled datasets from the original dataset. Sample size of 4096, 1024, 256, and 64 

(shown as the black points in the images) have been randomly selected from the original dataset, 

from upper left to bottom right.  

 

To examine the performance of the algorithm, we randomly sample our replicate 

dataset for TPC1 mixture with 4 sets of experiments where each set randomly 

selects 50 trials of samples with the sample sizes of 4,096, 1,024, 256 and 64. The 

first order error can be considered as a way of comparing the reliability of each 

sample result. The ‘error’ of the calculated PCs ranges from 0.004 to 0.4 with 

sample size changing from 4,096 to 64. The ‘error’ of the experiment with a sample 

size of 64 is about 100 times larger than that with a sample size of 4,096. This is 

intuitive as the PCA results become more reliable when size of sample increases. 
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Figure 3.11 Difference ratio between original dataset and different random dataset. Errors between 

the results of original dataset and sampled dataset for PC1 (blue curve), PC2 (red curve) and PC3 

(green curve) are given separately. 

 

The loading plots in Figure 3.11 represent one out of the 50 trials from each sample 

number experiment. Similar to previous implementation, component T, P and C can 

be found in all the first PCs for the four different sample sizes with significant peaks 

at m/z = 181.06, m/z = 164.05 and m/z = 191.02 respectively. Component C also 

can be identified in all the third PCs with the significant peak at m/z = 87.02, which 

also appear in the first PCs but with low intensity. The second PCs all contain one 

noise peak and one uncertain peak. Therefore, the results of the application of PCA 

to these sampled datasets are approximately the same as the results for the original 

dataset, but with significant time saving and lower computational demand. This 

suggests that random sampling can be an effective pre-processing technique for 

PCA application when the dataset is large and complex.  

PC1 
PC2 
PC3 
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 (256 samples)                      (64 samples) 
Figure 3.12 Loading plots produced using PCA for TPC1 sampled datasets. Three PCs are ordered in 

descending order according to the degree of importance. 

 

In order to get a better visualisation, we simply average all the results of the 50 

trials from the sample with largest sample size (4,096) and use the three average 

PCs as the new projections. The projections are in turn used to generate scores for 

the original data. The results in Figure 3.12 illustrate that the spatial score images 

are roughly the same with similar PCs. Therefore, the combination of PCA and 

random sampling offers a relatively simple way to achieve proper solutions. 
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Figure 3.13 Scores images and loading plots produced using PCA with random sampling of a sample 

size of 4096 for TPC1 mixture. Score images are presented on the top while loadings for each of 

three PCs are shown below.  

 

3.7 Conclusion 

PCA has been used extensively in various research fields for its simplicity and easy 

implementation, it is a multi-dimension orthogonal linear transformation based on 

the statistic characteristics. It attempts to compute the most meaningful basis to 

re-express a complex dataset. 

The variables in a “natural” dataset are always linearly interdependent to some high 

PC 1 PC 2 PC 3 
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degree, reducing the precision and reliability of the data-mining methods. Highly 

dependent variables will also make the data collection and the subsequent analysis 

computation more complicated. However, exploring the data and the related 

covariance matrices enables the use of some ‘principal components’, a linear 

combination of the original variables for dimensionality reduction without losing 

the main information in the dataset. 

In this chapter we demonstrated that PCA can be used for information extraction 

from complex ToF-SIMS datasets generated from mixture of metabolites using a 

lower number of variables. The random sampling technique was also combined 

with PCA in order to increase the efficiency of the algorithm. One disadvantage of 

PCA analysis is the presence of negative values in the computed mass spectra. This 

is also the case when MAF and MCR methods are used. This can hamper the 

interpretation of the results since the resulting estimates will be biased even if only 

small negative peaks exist in the spectra . This is because they do not represent a 

practically feasible solution. Therefore feasible solutions should be computed 

through algorithms which incorporate the non-negativity constraint. Such 

algorithms may reveal hidden information in a more clear and interpretable way. 

Also, PCA is very sensitive to the pre-processing prior to the analysis and the 

information with low intensity maybe lost. 
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Chapter 4  

Non-negative Matrix Factorisation 

4.1 Introduction 

Processing large ToF-SIMS data has created strong demands for dimensionality 

reduction and noise removal techniques. In this thesis, our primary focus is on the 

development of novel algorithms with an appropriate transformation method, 

which can process ToF-SIMS data in an effective manner while being able to be 

utilised for metabolic profiling analysis in the real world application. The methods 

that we have discussed in the previous chapter all have one common drawback: 

negative values may appear during the transformation procedure. For most 

multivariate techniques, the original data matrix is supposed to be decomposed 

into a low rank form, meaning that it is likely to end up with negative components. 

However, negative components have no physical explanation in reality, and hence, 
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affect the interpretability of the results. By imposing non-negativity constraint, the 

transformation process is organised to be purely additive and the original 

non-negative structure of the data is maintained. 

In this chapter we will introduce the Non-negative Matrix Factorisation (NMF) 

technique, which can lower the dimensions of the data while provide meaningful 

results. In addition, it is also capable of producing a sparse representation of the 

data (Hoyer, 2004). By incorporating NMF with some other extending constraints, 

the algorithm is capable of ensuring a better visualised and efficient solution and 

providing an improved convergence property. The results of the application of NMF 

algorithm to the replicate samples of our ToF-SIMS dataset will be provided at the 

end of this chapter. 

 

4.2 Non-Negative Matrix Factorisation Model 

The basic idea of non-negative matrix factorisation was initially introduced by 

Paatero and Tapper in 1994 when they proposed an algorithm within alternating 

non-negative least squares framework. This algorithm was originally referred as 

“positive matrix factorisation” by Paatero and Tapper (1994) and did not receive 

much attention from the research society. The concept of NMF was popularised by 

Lee and Seung in 1999, when they proposed a well-known multiplicative updating 

algorithm for NMF in their seminal paper (Berry et al., 2007). Compared to 

Paatero’s method, their algorithm has better performance and is relatively easier to 

implement (Kim & Park, 2008).  

NMF is devised in a way that no negative entries are allowed in the transformation 

procedure. It is capable of extracting significant features from the data in the form 

of basis vectors, which in turn, are combined to produce representative patterns. 

In NMF, the original non-negative data matrix X of a dimension n × m can be 
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reconstructed by the product of two data matrices W and H. This can be described 

by: 

X =  WH + E                    (4.1) 

Where m × r matrix W consists of r pure spectral basis vectors, wi , as its 

columns and H is a r × n matrix. Matrix E is the residual matrix unexplained by 

WH. In order to ensure WH is the compression of X, the value of r should satisfy 

(n + m)r < n × m . Then each vector xi  in the original data matrix can be 

rearranged to the same basis vector wi with the corresponding loading vectors hi. 

Therefore, the loading vector hi can indicate how strongly each basis vector wi 

occurs in relation to the original vector xi.  

Because NMF algorithm intends to find a smaller number of basis which can 

represent the raw data in a meaningful way, the ambiguity elements E can be 

removed from the transformation procedure, resulting in a linear approximation of 

the original data. This can be described by: 

X ≈ WH                      (4.2) 

This linear representation is an approximation of the original non-negative data 

matrix X. PCA to some extent can also be considered as a matrix factorisation with 

no constraints on the negative entries in matrix W and H (Hoyer, 2004). By 

comparison, NMF involves a reduced rank approximation formed by non-negative 

factors. This means that the data matrix X  is explained by non-subtractive 

combinations only, which maintain the non-negative structure of the data and 

produce a combined representation (Berry et al., 2007).   

The aim of NMF is to find the best choices of the two non-negative matrices W 

and H that collectively approximate matrix X, by optimising the minimisation 

function of the reconstruction error between X and WH (Hoyer, 2004). Paatero 

and Tapper (1994) solved this problem by implementing non-negativity constrained 

alternating least squares algorithm for NMF, whereas Lee and Seung (2001) 
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developed a multiplicative updating algorithm which has already been regarded as 

the standard NMF algorithm.  

The minimisation function can not be convex in both W and H, but only one at a 

time. This means that there is no global optimal solution for NMF and only local 

optima can possibly be guaranteed. Researchers typically choose the most 

appropriate local minimum by comparing the local minima generated from different 

initialisations (Albright et al., 2006). This could be problematic for large dataset such 

as ToF-SIMS data that we used in this thesis. In addition, the standard NMF 

algorithm suffers from lack of convergence, because the point that satisfies 

convergence condition could be a stationary point which does not necessarily result 

in a local minimum (Berry et al., 2007).  

Iterative process is generally used in NMF algorithms and it requires a starting point 

to initialise the algorithm. At each iteration of the NMF algorithm, the new value of 

W or H is obtained by updating the current value based on certain functions. An 

effective initialisation is thus particularly important as it can facilitate the 

convergence and reduce the processing time.  

 

4.3 Methodology 

NMF has gained great popularity due to its property of guaranteed non-negativity, 

and the emergence of different variations of the general NMF formula (see 

Equation (4.2)). For example, by multiplying both sides of the equation by a 

diagonal weighted matrix, the feature redundancy in matrix W can be reduced 

(Guillamet, Bressan, & Vitria, 2001). 

The basic NMF model outlined in Equation (4.1) is originally stated as a 

minimisation problem described by the Euclidean Distance between X and WH: 

J(W,H) =  
1

2
‖Xm×n − Wm×rHr×n‖F

2  subject to W,H ≥  0             (4.3) 



Spatial Mass Spectral Data Analysis Using Factor and Correlation Models 

 68      
 

Where the product of WH is the matrix factorisation of data matrix X and r is an 

integer representing the rank of the approximation, given that r < min (m, n).  

Several NMF algorithms have been developed to resolve this minimisation problem, 

including three broad and possibly overlapping methods: multiplicative update 

algorithms, gradient descent algorithms, and ANLS algorithms (Berry et al., 2007). 

 

4.3.1 Multiplicative Update Algorithms 

In the standard NMF algorithm by Lee and Seung (2001), the values of W and H 

are derived from updating their present values by multiplying a coefficient value, 

which depends on the approximation function. In most cases, the optimisation 

function is defined as the Kullback-Leibler divergence (Polani, 2013), which can be 

expressed by: 

JKL(X|WH) = ∑ ∑ (xijlog
xij

∑ wikhkjk
− xkj + ∑ wikhkjk )ji          (4.4) 

NMF can hence be transformed into the optimisation problem given by: 

minW,H JKL(X|WH) Subject to W,H ≥ 0,∑ uij = 1, ⋁ j                 (4.5)                        

The iteration rule can then be described by: 

H = H
(WTX)

(WTWH)
                     (4.6) 

W = W
(XHT)

(WHHT)
                    (4.7) 

Updating the iteration until the optimisation function in Equation (4.5) is minimised. 

The optimisation function can also be stated as the Euclidean distance between X 

and WH as defined in Equation (4.3), which is the standard to measure the 

similarity between two matrices (Hoyer, 2004). An alternative cost function rooted 

on the Csiszar’s φ-divergence is proposed by Cichocki, Zdunek, and Amari (2006) to 

solve the problem. 
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It is important to note the optimisation procedure of multiplicative update 

algorithms only results in a stationary point, which may not lead to convergence of 

W and H to a local optimum (Berry et al., 2007). In addition, the convergence 

procedure of multiplicative update algorithms is considerably slow (Kim, Sra, & 

Dhillon, 2007). Lin (2007) suggested an optimisation method with bound constraint 

based on projected gradient technique in attempt to facilitate the convergence of 

multiplicative update rules. 

 

4.3.2 Gradient Descent Algorithms 

Gradient descent based algorithms also involves updating the value of H and W 

using step wise parameters. In fact, Lee and Seung’s multiplicative update algorithm 

can be regarded as a type of gradient descent method (Chu et al., 2004; Lee & 

Seung, 2001). The update rules are similar to those in Equation (4.6) and (4.7): 

H = H − sH
∂J

∂H
                     (4.8) 

W = W − sW
∂J

∂W
                        (4.9) 

Where sH and sW are the step size parameters. In gradient descent algorithms, 

non-negativity constraint is simply imposed by setting all negative values in W and 

H to zero after each update (Hoyer, 2004).  

Although gradient descent based algorithms are easy to implement, just like 

multiplicative update algorithm, they are subject to slow convergence (Berry et al., 

2007). Moreover, the application to large dataset can be problematic since gradient 

descent methods are particularly sensitive to the step size selections (Lee & Seung, 

2001). In addition, gradient based methods experiences the phenomenon called 

zigzagging or jamming, resulting from the convergence to a non-optimal point 

(Bertsekas, 1982). Kim, Sra, and Dhillon (2007) proposed a modified Newton-type 
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method based on nonnegative least squares that uses a non-diagonal gradient 

scaling scheme to address the problems associated with gradient descent based 

methods. 

 

4.3.3 Alternating Least Squares Algorithms 

Alternating least squares (ALS) was firstly applied to NMF problems by Paatero and 

Tapper in 1994. By fixing either W or H, the optimisation problem in Equation 

(4.3) can be solved using least squares technique in an alternating manner. In 

particular, ALS algorithms are generally more flexible with the ability to incorporate 

constraints into the iterative process. However, the original algorithm proposed by 

Paatero and Tapper was extremely slow as it was not properly fitted into NMF 

problems (Kim & Park, 2008). A simple and effective ALS algorithm that originally 

called Alternating Constrained Least Squares (ACLS) solves unconstrained least 

squares and sets all the negative entries in matrix W or H to zero at each 

iteration step in attempt to speed up the calculation (Albright et al., 2006):  

Initial W as one random dense matrix; 

For i =  i: k (k is the iteration step number) 

Solve H from equation WTX =  WTWH    

Multiplying both sides of Equation (4.2) by WT and setting all negative 

entries in H to 0 

Solve W from equation HXT =  HHTWT   

Transporting Equation (4.2) and multiplying both sides by WT, then setting 

all negative entries in H to 0 

End 
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Table 4.1 Alternating Least Squares Algorithm for NMF 

 

Although this ALS algorithm offers a fast implementation, it is an inexact method 

that suffers from lack of convergence (Kim, Sra, & Dhillon, 2007). Compared to the 

exact ALS algorithms, such as the one used by Paatero and Tapper, ACLS might 

result in larger approximation errors. Albright et al. (2006) also proposed an 

advanced algorithm called Alternating Hoyer-Constrained Least Squares (AHCLS) 

which provides better sparsity than ACLS, however, the convergence to a local 

minimum is still not guaranteed. Several improvements on alternating 

non-negativity constrained least squares have been provided to alleviate the 

convergence problem (Kim, Sra, & Dhillon, 2007; Kim & Park, 2008). 

 

4.4 Applicable Constraints  

Owing to the flexibility of NMF, many researchers strive to introduce additional 

constraints into the algorithm in order to incorporate prior information or other 

preferred properties. The cost function of NMF is usually extended to include a 

penalty term which compensates for uncertainties in original data matrix X (Berry 

et al., 2007). This relationship is given by: 

J(W,H) = ‖X − WH‖F
2 + (α, β)C(W,H)                              (4.10) 

Where C is the penalty term that accounts for the constraints and α is the 

regularisation parameters that accounts for the compromise between the 

estimation error and the required constraints. By setting the regularisation 

parameter α and β to an appropriate value which is normally very small, the 

extended optimisation function can be restricted from increasing. The iteration rule 

is also extended by using partial derivatives of C(W) and C(H) with respect to 

W and H respectively. 
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Smoothness constraints 

One simple smoothness constraint is based on the Tikhonov regularisation (Pauca, 

Piper, & Plemmons, 2006). It can be written in terms of the penalty term: 

C(W) = ‖LW‖F
2                                                 (4.11) 

Where L  is the regularisation operator, such as Laplacian operator. The 

smoothness constraint is used to generalise the noise-contaminated results. It can 

be applied to matrix H in the similar manner. 

Another widely used smoothness constraint is imposed by introducing the Toeplitz 

matrix T (Chen & Cichocki, 2005). The penalty term can thus be described by: 

C(W) =
1

n
‖(I − T)W‖F

2                                           (4.12) 

Where n denotes the observation number of the original data matrix X.  

 

Sparsity constraints 

One typical problem associated with Paatero and Tapper’s ALS algorithm is that 

there is no sparsity restriction (Albright et al., 2006). Therefore, it is important to 

impose sparsity constraint to the solutions. There are several ways to derive the 

measure of sparsity, for instance the Hoyer’s measure of data X can be expressed 

by: 

S(M) =
√n−‖X‖1 ‖X‖2⁄

√n−1
                                             (4.13) 

This matrix can be directly used as the penalty term in form of squaring the 

sparseness S. In this thesis, we apply a sparsity constrained NMF to our ToF-SIMS 

replicate samples where the results are provided in Section 4.5. 

 

4.5 Application Results 

In this section, we provide the results of the application of NMF to our replicate 



Spatial Mass Spectral Data Analysis Using Factor and Correlation Models 

 73      
 

mixture samples. In order to facilitate the computation procedure, the pure 

component basis number is set according to the prior knowledge we gained from 

PCA application in Chapter 3. From our results of the implementation of PCA, P and 

C species all had three principal components even they were pure components. TPC 

mixture also required three principal components to represent 90% of the original 

dataset. It is important to note that only one principal component was required for 

TC mixture, which was insufficient as two pure species were contained in the 

mixture. Therefore, by incorporating the results of PCA application and the known 

information about the structure of mixtures, basis number r = 3 was selected for 

all the NMF applications in this case. Moreover, we used the first 3 principal 

components from PCA as the initial estimates for W  and H  in each 

implementation.  

 

The loadings and scores images produced by NMF are depicted in Figure 4.1. In 

Figure 4.1 (T), it can be seen that there are salient peaks at m/z = 71.01, 121.02, 

and 180.06, m/z = 136.93 and 183.02, and m/z = 41.01 and 71.01 within the three 

spectral basis for the sample T respectively. Significant peaks for sample C and P, 

can be found at m/z = 41.01, 87.02, 58.01, and 136.93, and m/z =71.01, 136.93, 

164.05 and 181.05 separately (Figure 4.1(C) and Figure 4.1(P)). It should be noted 

that a remarkable peak at m/z = 136.93 appears in the scores images for all three 

samples (T, C and P). This could possibly be due to the noise in the original ToF-SIMS 

dataset. In addition, the peak at m/z = 71.01 is present in both sample T and P, 

which may cause separation problem when the algorithm is applied to TPC mixture.  
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 (P) 

Figure 4.1 Three sets of loadings and scores images from NMF application for each pure 

component (T, C, and P) samples respectively. Scores images and loading plots are given for 

each species. 

 

The NMF factorisation performance is demonstrated by the Frobenius norm errors 

between X and WH in Figure 4.2. The Frobenius norm errors can be defined by: 

D =  
‖X−WH‖F

√nm
                                                   (4.14) 

It is noticeable from Figure 4.2 that the residual is relatively stable after about 1000 

iterations. In addition, when the prior knowledge is provided, for example, during 

one of the experiments the initial parameters are not randomly chosen but set to 

the result from other experiment (such as PCA), the Frobenius norm errors are 

stable even for a small iteration number. Therefore, the iteration number i = 1000 

is recommended as the time cost is also one of the important concerns especially 
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71.01 
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when the original data is considerably large.  

 

Figure 4.2 Convergence of the algorithm with different factors and number of iteration. This diagram 

shows the Frobenius norm errors between the original data X and the product of the factorisation 

matrices WH with respect to the changes of different factor numbers and number of iteration, 

which indicate the rate of convergence in NMF algorithm. 

 

Figure 4.3 shows the results of NMF application to the mixture sample TC. The first 

panel in Figure 4.3 represents the first spectral basis within the sample TC. It can be 

seen that there are two intensive peaks at m/z = 71.01 and 180.06, which can be 

attributed to the spectrometer noise and component T respectively based on the 

discriminatory information obtained from Figure 4.1(T). Similarly, for the second 

spectral basis, two remarkable peaks at m/z = 87.02 and 191.02 should refer to 

component C with the known information. It should be noted that one distinct peak 

at m/z = 153.02 appears in the third scores images, which can be caused by the 

fragments of one component. It could also be due to the principal number r being 

greater than the actual number of components. Overall, the NMF algorithm is 

found useful in identifying components in the two component mixture.  

r = 3 
r = 2 
r = 1 
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(Factorisation Basis 1 for TC mixture) 

 

 (Factorisation Basis 2 for TC mixture) 

Figure 4.3 Scores images and loading plots from factorisation of TC1 mixture samples using NMF, two 

factors are utilised. 
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Figure 4.4 The Frobenius norm errors of the algorithm. This diagram shows the convergence of the 

NMF algorithm for the mixture TC and TPC respectively.  

 

Figure 4.4 illustrated the approximating performance of the factorisation matrices 

in NMF application to the TC and TPC samples. The Frobenius norm errors are also 

stabilised when the number of iteration exceeds 1000, hence i = 1000 is chosen 

as the iteration number for the case in TC and TPC. 

 

The results of NMF algorithm for replicate TPC mixture sample is shown in Figure 

4.5. The first spectral basis has three significant peaks at m/z = 71.01, 164.05 and 

180.06, which are inconclusive that whether they are attributed to component T or 

P, as a common peak is found at m/z = 71.01 and each of them has a discriminatory 

peak at m/z = 164.05 and 180.06 respectively. The highly intensive peak at the 

same location may affect the performance of NMF algorithm since there is no 

available knowledge about the fragmentations and the uncertainty of the dataset 

cannot guarantee the complete picture the NMF algorithm would present. In the 

second panel in Figure 4.5, the peaks at m/z = 87.02 and m/z = 191.02 refer to 

chemical compound C as these two peaks are specific reference for C in PCA. The 

only peak in the third score image is the noise peak at m/z = 136.93 as discussed 

previously. It is identified as the third spectral basis because component T and P are 
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mixed into one spectral basis, while this noise peak appears in all the three 

components with a considerably high intensity.  

 

(Factorisation Basis 1 for TPC mixture) 

 

 (Factorisation Basis 2 for TPC mixture) 
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 (Factorisation Basis 3 for TPC mixture) 

Figure 4.5 Scores images and loading plots produced using NMF for TPC1 mixture samples. Three 

spectral factors are given on the bottom of each pannel.  

 

The rest of this section shows the results of sparsity-constrained NMF applying to 

the TPC mixture samples when the basis number r is set to 3. This implementation 

aims at finding the solutions of W  and H  with desired sparseness. The 

regularised cost function is used in this implementation imposes constraints on 

both W and H (Pauca, Piper, & Plemmons, 2006): 

min{‖X − WH‖F
2 + α‖W‖F

2 + β‖H‖F
2}, subject to W,H ≥ 0              (4.15) 

Where α ≥ 0 is the parameter to supress the smoothness of W while β ≥ 0 is 

the regularisation parameter accounts for the trade-off between the approximation 

accuracy and the sparseness (Berry et al., 2007). In order to do so, the parameter α 

is set to the maximum number of X while parameter β can be chosen from 0 to 1; 

the sparseness can be adjusted using Equation (4.13) by substituting X with the 

iteration result H which can be derived from Equation (4.15) for each β. The 

sparseness of H can be simplified as: 

136.93 
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S(M) =
√n−1/β

√n−1
                                                  

(4.13)The sparseness becomes more intense when β is larger, thisalso can be 

validate from Figure 4.6 that the score images are sparser with a larger β and the 

sparseness is helpful in detecting the specific regions of individual chemical. The 

results can be compared with the previous results in Figure 4.5 that, because of the 

inclusion of the dynamics of the mixtures and the spatial problem (this can be seen 

from the loading images in both experiments, the component T and P are still close 

to each other), NMF with sparsity constraint is still not effective enough to 

distinguish nearby components with similarity. 

 

 (β = 0.5) 

 
 (β = 1) 

Figure 4.6 Scores images and loading plots produced using sparsity constraint NMF for TPC1 mixture 

samples. Different regularising parameters were chosen for each experiment.  
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4.6 Conclusion 

NMF algorithm is a low rank approximate factorisation method which has been 

extensively used in researches as a dimensionality reduction and segmentation 

technique. Compared with PCA, it uses a non-subtraction method to avoid the 

negative loadings, this unbiased algorithm makes the result more reasonable and 

interpretable for further study. In particular, NMF offers an incomparable feature in 

terms of retaining non-negativity in the results, and hence, providing physically 

meaningful interpretation. However, NMF is subject to the limitation that multiple 

solutions are available due to the removal of ambiguity element. In our thesis, the 

result may vary with each experiment for a set of randomly selected initial values; in 

several trials, it also shows that even with the same random initial, the result may 

be different from each other to some degree, which may also lead to a poor 

convergence. In order to address the problem, we set the initial value to the PCA 

result from the previous chapter; this initialisation method provides not only a 

non-multiple result but also a fast convergence compared with other approaches. 

Sparsity-constrained NMF is also provided to overcome this problem with improved 

convergence process, however due to large amount of similar fragments and noise 

in the dataset, the application is not effective in distinguishing different 

components (Pauca, Piper, & Plemmons, 2006). Above all, it is still subject to a 

number of limitations: 

 The convergence is only guaranteed to a fixed point which may be a local 

minimum or saddle point. 

 The convergence rate depends on the quality of the initialisation. 

 It requires repeated experiments to choose regulation parameters 

 A large number of iterations can complicate the computation, leading to a 

time-consuming estimation procedure. 
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Chapter 5  

Non-negative Matrix Factorisation 

under the Bayesian Framework 

5.1 Introduction 

Uncertainties arising from a number of different sources will influence the results 

obtained from any data analysis method: non-deductible noise occurs in the data 

collection procedure; correlated variables may result in an overlapping and 

ambiguous factors. Therefore it is very important to apply a factorisation analysis, 

which reduces the inexactness of the raw data as well as represents the underlying 

system with greater accuracy. NMF, one of the simpler methods for factor analysis 

of non-negative data, is used to accomplish the goal of reducing the number of 

variables and detecting relationships among the variables. It provides meaningful 
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and physically interpretable solutions in many applications, and is considered as an 

advanced alternative tool compared with PCA and ICA.  

The interpretation of NMF as a low rank matrix approximation is sufficient for the 

derivation of an inference algorithm, yet this view arguably does not provide the 

complete picture. The NMF needs to be extended to account for the uncertainties 

and correlations that exist in the data as well as to robustly identify the number of 

underlying factors. In this chapter, we describe NMF from a statistical perspective. 

This view will pave the way for developing extensions that facilitate more realistic 

and flexible modelling as well as for more sophisticated inference, such as Bayesian 

model selection. By incorporating NMF into Bayesian framework (B-NMF), the 

algorithm is capable of ensuring a unique solution for NMF algorithm and providing 

an improved convergence rate. The results of the application of B-NMF algorithm to 

the replicate samples of our ToF-SIMS dataset will be provided at the end of this 

chapter. 

 

5.2 Bayesian Non-Negative Matrix Factorisation 

NMF approach as stated in the previous chapter is an approximation of the original 

non-negative matrix X with the product of two non-negative factorising matrices 

W  and H , where W  is the template or sources and H  is the expansion 

coefficients. The algorithm is a process of estimating W and H while minimising 

the fitting error between raw data X and WH. This can be expressed as: 

X =  WH + E                                                    (5.1) 

Where E is the fitting error and J is the cost function as below. 

(W,H)  =  arg min J(X│W,H), s. t W, H ≥ 0         (5.2) 

Where J = 0 when X = WH, and the minimisation can be iteratively solved by 
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using the multiplicative update rules illustrated in Section 4.3.1. The typical cost 

functions that should be used in NMF depend on the choice of distance measures, 

such as squared Euclidean divergence, generalised Kullback-Leibler (KL) divergence 

and the Itakura-Saito divergence (Févotte & Cemgil, 2009,). These measures have 

been mentioned in the previous chapter and are always nonnegative and convex for 

each factor in NMF. 

Under appropriate assumptions on the distribution of the original data and factors, 

this algorithm can be considered as estimating the non-negative factorising 

matrices W and H through using their maximum likelihood estimates (Schmidt, 

Winther, & Hansen, 2009). The distance measures in J can be seen as a result of 

the error E having Gaussian, Poisson, and Gamma error statistics respectively. 

Therefore, the selection of cost functions is essentially affected by the fitting error, 

which can be managed by incorporating Bayesian techniques (Févotte & Cemgil, 

2009,).  

 

5.3 Methodology 

5.3.1 The Statistical Perspective 

As we discussed previously, the residual matrix E  in Equation (5.1) can be 

eliminated as the approximation ambiguity. However, this may lead to infinite 

solutions for the optimisation. This problem can be addressed by introducing prior 

densities to the iterative process (Schmidt, Winther, & Hansen, 2009). In the 

Bayesian framework, matrix E can be represented in terms of a likelihood function 

and the parameters can be expressed in terms of prior densities (Schachtner et al., 

2014). By incorporating NMF into the Bayesian framework (B-NMF), prior 

knowledge about density can be introduced into the factorisation, leading to 

reliable results and improved convergence. 



Spatial Mass Spectral Data Analysis Using Factor and Correlation Models 

 86      
 

In order to allow efficient inference in the method, a convenient parametric form is 

preferred for the prior densities. Bayesian NMF employs the normal likelihood and 

exponential priors during the Gibbs sampling procedure for their pervasiveness 

(Schmidt, Winther, & Hansen, 2009). The reconstructed error matrix E is assumed 

to be distributed as a Gaussian, which can be described by: 

p(X|W,H, σ2) = ∏ Ni,j (Xi,j; (WH)i,j, σ
2) = ∏

exp (−
1

2
(Xi,j−(WH)i,j)

2)

√2πσi,j       (5.3) 

Where Gaussian density is given by: 

 N(x; μ, σ2) =
1

√2πσ
e
−

(x−μ)2

2σ2                                          (5.4) 

Additionally, W  and H  are assumed as independently and exponentially 

distributed with scales a and b. The priors can be defined by: 

p(W) = ∏ Expi,n (Wi,n; ai,j)               (5.5) 

p(H) = ∏ Expi,n (Hi,n; bi,j)                (5.6) 

Where Exp(x; β) = βe(−βx)u(x) is the exponential density with the unit step 

function u(x) which guarantees the non-negativity as u(x) = 0 when x < 0. 

Then the inverse gamma density is selected as the prior for the noise variance, with 

the shape parameter k and scale parameter θ: 

p(σ2) = G−1(σ2, k, θ) =
θ1

Γ(k)
(σ2)−k−1e

−
θ

σ2                  (5.7) 

The posterior can be derived from the product of the residual likelihood in Equation 

(5.3) and the priors of W and H and noise variance obtained from Equations 

(5.5-5.7). The estimation of the factors W  and H  can be obtained during 

maximisation of the posterior. 
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5.3.2 Factor and Loadings Estimation 

The estimations of the posterior probability density for both factors are required for 

the factorisation. The Markov chain Monte-Carlo (MCMC) sampling method is used 

to estimate the marginal density of the factors, one of which is Gibbs sampling 

(Smith & Roberts, 1993). MCMC is a broad set of computational algorithms based 

on the Markov chain convergence theorem; it is widely used in machine learning to 

solve the integration and optimisation problem (Andrieu et al., 2003). The 

optimisation can be gained by sampling from a constructed Markov chain with a 

desired equilibrium distribution. The set of steady chain samples is then used as the 

optimised distribution. Gibbs sampling is one efficient MCMC method to 

approximate the marginal density of the variables by obtaining the samples from 

the specified multivariate distribution (Bishop, 2006). It is applicable when the 

direct sampling is difficult and it is very adaptable under the Bayesian framework. 

Gibbs sampling generates a sequence of samples correlated with nearby samples, 

the sequence of samples can be drawn from the conditional posterior densities of 

the model parameters, and then the sequence converges to one sample from the 

joint posterior. The conditional densities of W and H can be considered as the 

Rectified Normal density (Harva & Kaban, 2006). This is given by: 

R(x) = Φ(−
μ

σ
) δ(x) +

1

√2πσ2
exp (−

(x−μ)2

2σ2
)U(x)             (5.8) 

Where Φ  is the cumulative distribution function of the standard normal 

distribution, while U is the unit step function in Equation (5.8). δ is the Dirac 

delta function given by:  

δ(x) = 0 when x ≠ 0, and δ(x) = +∞ when x = 0             (5.9) 

This rectified Gaussian distribution truncates all the negative entries via the unit 

step function. Hence the conditional probability of W and H is defined by: 

p(Wi,j|x,Wexcept(i,j), H, σ2) = ∏ Ri,j (Wi,j; μi,j, σ
2
i,j, wi,j)           (5.10) 
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p(Hi,j|x, Hexcept(i,j),W, σ2) = ∏ Ri,j (Hi,j; μi,j, σ
2
i,j, hi,j)      (5.11) 

 

Where the conditional probability of the noise variance σ2 is still set with the 

Inverse-Gamma density p(σ2|X,W,H) = G−1(σ2, kσ2 , θσ2). Based on the given 

information, the sampling process is illustrated in the table below: 

 

Sampling Process 

 Iteration 

a) For each element in W, draw a sample using rectified Gaussian 

b) Draw a sample from the inverse-Gamma density for σ2 

c) For each element in H, draw a sample using a rectified Gaussian 

Save the sample of W and H 

 

Table 5.1 Gibbs Sampling Procedure 

 

5.3.3 Model Order Selection 

Generally, Bayesian probability theory incorporates the prior knowledge to the 

factorisation problem in order to reduce the uncertainty of the model, hence not 

only the optimal factorisation parameters but also the factorisation model can be 

derived (Knuth, 2005). For an unknown dataset, the determination of the model (in 

NMF, this refers to the number of the factors) is problematic as it cannot be 

selected directly based on the dataset itself. Normally, NMF is combined with PCA 

to solve this problem, whereas, under the Bayesian framework, model selection can 

be performed to determine the number of factors. Model selection requires 

evaluation of the marginal likelihood P(X|M), which involves an intractable integral 

over the posterior of the factors W and loadings H. Once the marginal likelihoods 

for different models are obtained, Bayes factors can be computed to compare and 
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select the more favoured model. The Bayes factor computation is given in Equation 

(5.12) where models M0 and M1 are compared. 

bf =
p(X|M0)

p(X|M1)
                          (5.12) 

The factor indicates the comparison ratio between marginalised likelihood of data 

X under two different models (Sinharay & Stern, 2004). Each of the models is 

associated with specific hypotheses, where p(X|M) is the marginal density under 

model M. The Bayes factor can also be extended into another form of both 

posterior and prior odds as below (Kass & Raftery, 1995): 

bf =
p(𝑀0|x)p(𝑀1)

p(𝑀1|x)p(𝑀0)
                         (5.13) 

The marginal likelihood of model M can be defined by (Bos, 2002): 

p(X|𝑀) = ∫p(X|θ,𝑀)p(θ|𝑀)dθ                            (5.14) 

As the integral cannot be calculated analytically in practice, there are several 

alternative methods available for estimating the Bayes factor, including annealed 

importance sampling, bridge sampling, path sampling, and Chib's method, all of 

which can be used with the NMF algorithm (Diciccio et al., 1997; Meng & Wong, 

1996; Chib,1995). Among those advanced methods, Chib’s method is the most 

appropriate choice as it is easily combined it with Gibbs sampling and the 

computational cost is much lower compared to others. 

Chib’s method only uses the posterior sample draws to estimate the marginal 

likelihood, which suggests estimating the posterior density by: 

p(X|𝑀) =
p(X|𝑀,θ)p(θ|𝑀)

p(θ|X,𝑀)
                                           (5.15) 

The likelihood and prior in the numerator can easily be solved, and the 

denominator can be estimated from Gibbs sampling output. One efficient way of 

this is by blocking the parameters in which all θ parameters are partitioned into k 

blocks, with the dominator rewritten as a product of the k terms and the marginal 

likelihood can be approximated by k runs during Gibbs sampling (Chib & Jeliazkov, 



Spatial Mass Spectral Data Analysis Using Factor and Correlation Models 

 90      
 

2001). 

 

 

5.3.4  B-NMF Iterative Algorithm 

The B-NMF algorithm is given in Table 5.2 as an iterative procedure. The parameters 

W and H in the NMF model can be derived from Gibbs sampling through being 

set equally to the conditionals at each iteration. In addition, the columns of W and 

the rows of H can be used as the blocks for the Gibbs sampling (Schmidt, Winther, 

& Hansen, 2009). The iterative process stops until the convergence to the maximum 

of joint posterior density obtained.  

 

B-NMF Algorithm 

Iteration 

For i = 1: r 

Set W:,i to the conditional mode while set negative quantities to zero 

End 

Updating σ2 

For i = 1: r 

Set H:,i to the conditional mode while set negative quantities to zero 

End 

Save the output of W and H 

 

Table 5.2 B-NMF Algorithm 

 

5.4 Application Results 

In this section, we demonstrate the application of Bayesian NMF on our ToF-SIMS 
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replicate samples. In order to facilitate the computation procedure, the factor 

number can be chosen via Chib’s method, by computing the marginal likelihood for 

the data given factor number (Chib & Albert, 1997). This can be compared to the 

results with the prior knowledge gained from the PCA application in Chapter 3. 

Gibbs sampling generates 1000 samples in each block, which is found to be 

sufficient from several trials. In Figure 5.1, the first model with only one factor has a 

high potential to represent the original data. The result is more robust than PCA, 

since Chib’s method employs posteriors that are more promising in finding better 

solutions. 

 

Figure 5.1 NMF model order selection using Chib’s method. The plots represent the marginal 

likelihood for individual component of the three pure chemical samples, T, P, and C. Only the models 

within 5 factors are presented. 

T 

P 

C 
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Figure 5.2 NMF model order selection using Chib’s method. The plots represent the marginal 

likelihood for individual component of the two mixtures samples, TC and TPC. Only the models 

within 5 factors are presented. 

 

Figure 5.2 provides a direct illustration of the factor number chosen using Chib’s 

method for the mixed species sample TC and TPC. It shows that one factor model 

seems more appropriate for the two species mixture TC and two factor model is 

preferred for the three species mixture TPC. This result is similar to the results of 

PCA implementation, which suggest that one PC and three PCs should be chosen 

for reasonable representation of TC and TPC respectively. This could possibly be due 

to that the intensity of the identical location peak for species C is considerably low 

relative to other species and is dominated by other fragmental peaks. 

From our results of the implementation of Chib’s method, T, P and C species all 

require one factor to represent the dataset, which is the correct number for the 

factorisation. However, one factor and two factors are insufficient to represent the 

original dataset of TC mixture and TPC mixture, as we know that two and three 

mixed species are contained in the mixture, respectively. By using the results of 

Chib’s method, factor number r is selected to be 1 for three single chemical 

samples and r = 1 and 2 are selected for the two and three mixed species 

TPC 

TC 
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sample respectively during the application of B-NMF. Furthermore, by incorporating 

the known information about the structure of mixtures, r = 2 and 3 are also 

implemented for the two mixtures for the purpose of comparison. The number of 

iteration is set to 100 as the experiments showed that B-NMF algorithm offers fairly 

fast convergence rate (Figure 5.3).  

 

 

Figure 5.3 Convergence rate of B-NMF algorithm for the TPC mixture The B-NMF algorithm converges 

fairly fast since the cost function is stabilised after only 50 iterations. 
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 (C) 

 

 (P) 

Figure 5.4 Scores images and loading plots produced using B-NMF for T1, C1 and P1 species samples. 

Scores images are on the left showing the spatial information of each factor while loading plots are 

on the right indicating the factors.  

 

The loadings and scores images produced by B-NMF are depicted in Figure 5.4. In 

Figure 5.4 (T), it can be seen that there are salient peaks at m/z = 26.01, 71.01, 

121.02 and 180.06. Significant peaks for species C can be found at m/z = 26.01, 
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41.01, 87.02, 111.02, 136.93 and 191.02 (Figure 5.4(C)). Large peaks for component 

P appear at m/z = 26.01, 71.01, 136.93 and 164.05 (Figure 5.4(P)). It should be 

noted that several peaks exist in more than one species. For example, a peak at m/z 

=26.01 appears in all three species, significant peak at m/z = 71.01 appears in both 

component T and C, and peak at m/z = 136.93 exists in both component C and P. All 

these specious peaks can be concluded as noise and fragments of the species from 

the spectrometry process. In addition, identical peaks for T and C are relatively 

close to each other, such as peak at m/z = 180.06 and 191.02 respectively. This also 

increases the difficulty in separating the two species. In addition, it can be seen in 

Figure 5.4 that identical signals for each metabolite are dominant, but the 

fragments of each species also have high intensities, which might be the cause for 

the separation problem. 

A result for setting the factor number to 3 is also given below to provide some 

supporting evidences of the correctness of the Chib’s method. It can be seen that, 

for species T with 3 factors, the three basis are split from a single factor derived 

above with different intensities (Figure 5.5 (T)). They are highly correlated with each 

other as evidenced by peaks appearing in all factors at the same m/z locations. For 

species C and P, it can be seen that the peak at m/z=136.93 has been separated 

from others. However, this cannot provide any further information and is likely to 

be noise or fragments during the spectrometry process. Therefore, a factor number 

r = 1 is an appropriate choice for this factorisation.  
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 (P) 

Figure 5.5 Scores images and loadings plots produced using B-NMF for T1, C1 and P1 species samples 

with additional factor numbers. Scores images are on the left showing the spatial information of each 

factor while loadings are on the right indicating the basis.  
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 (Three Factors Model) 

Figure 5.6 Scores images and loadings plots produced using B-NMF for TC1 mixed species samples 

with Models of 1, 2 and 3 factor numbers. Scores images are on the left showing the spatial 

information of each factor while loadings are on the right indicating the factors.  

 

The results of applying B-NMF method to TC mixture sample are shown in Figure 

5.6, where the three panels represent the results for different chosen factor 

numbers. It can be seen that the results of the three models are relatively similar, 

with slight differences with respect to the first factor basis. Despite of the peaks at 

m/z = 26.01 and 71.02, which have already been hypothesised as spectrometry 

process noise, intensive peak at m/z = 180.06 can be attributed to component T 

based on the discriminatory information we obtained from Figure 5.4(T). Spectra 

with peaks at m/z = 87.02 and 191.02 can be identified as species C as observed in 

Figure 5.4(C). Although Chib’s method suggests that there is only one factor for TC 

mixture when the true number of factors ought to be two, we also provide two 

factors model and three factors model results for comparison purpose. A peak at 

m/z = 157.02 in factor 2 has been separated from factor 1 of the single factor 
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model, this could be due to the fragment from species C in both two factors and 

three factors models. The third factor in the three factors model has spectra with 

low intensities and is highly correlated with the first basis, which suggests that the 

basis number r is greater than the actual number of components. Overall, the 

B-NMF algorithm is found useful in identifying components in a two component 

mixture although the determination of the number of factors needs further 

improvement.  
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 (Three Factors model) 

Figure 5.7 Scores and loadings images produced using B-NMF for TPC mixed species samples with 

Models of 2 and 3 factor numbers. Scores images are on the left showing the spatial information of 

each factor while loadings are on the right indicating the factors.  

 

The results of the of B-NMF algorithm for TPC mixture sample are depicted in 

Figure 5.7. When the model factor number r =  2, the first spectral basis has five 

significant peaks at m/z = 71.01, 87.02, 164.05, 180.06 and 191.02. These peaks are 

combinations of components T, P or C rather than a single component, because 

from the prior ground truth, each of them has a discriminatory peak at m/z = 

180.06, 164.05 and 191.02 respectively. B-NMF may incorrectly recognise these 

three components as one since all of them have the same highly intensive noise 

peak during the data collection and also the factor number may be sufficient to 

explain the data but insufficient to relate to the ground truth. Moreover, high 

spatial correlation in the raw data is a serious challenge for species discrimination 
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and spatial separation.  

The ion images from the raw data corresponding to the m/z values of T, C and P are 

presented in Figure 5.8. It can be seen that high values for each species are all 

concentrated around an annular region, with especially T and P being almost the 

same shape, making the spatial separation more challenging. In the third panel of 

the three factors model in Figure 5.7, the peaks at m/z = 87.02 and 191.02 can be 

identified as species C. Therefore, with a correct factor number, species C can be 

successfully identified as separate from T and P, while T and P appear more mixed 

with high spatial correlation. 

 

Figure 5.8 Spatial location for each species in TPC1 mixture sample. The three images implies the 

spatial location for each species in the mixture, T (m/z = 180.06), C (m/z = 191.02) and P (m/z = 

164.06) are shown from left to right.  
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 (sample size of 4096) 

Figure 5.9 Scores images and loading plots produced using B-NMF combined random sampling 

method for TPC mixed species sample. Several sample number have been chosen with the range 

from 85% to 90% reduction of the raw data. Scores images are on the left showing the spatial 

information of each factor while loadings are on the right indicating the factors.  

 

Although the convergence can be achieved in a small number of iterations, the 

B-NMF algorithm still suffers from high computational demand, about 30~50 

minutes for one trial with a far smaller data size of 128 × 128 × 100. In order to 

improve the efficiency, random sampling can be applied to reduce the data size, 

before the application of the B-NMF algorithm, similar to that presented in Chapter 

3. Figure 5.9 indicate that, with a correct factor number r = 3, the B-NMF 

implementation with 1024 samples from the original datasets is still able to obtain 

the similar features as the original case. But the factorisation begins to perform 

poorly while the sample number reduces, which can be given by the high correlated 

loadings from the 256 samples factorisation. Several trials on the same dataset 

show that a high percentage reduction of the observations does not affect the 
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B-NMF algorithm results in this case while improving the efficiency with high speed 

(Figure 5.9). 

5.5 Conclusion 

The B-NMF algorithm provides an opportunity to use probability concepts in richly 

structured data analysis problems where uncertainties are prevalent. It takes the 

ambiguity into consideration by estimating the maximum likelihood of the 

parameters which is more advanced than the classical NMF method. The algorithm 

is computed using MCMC methodology and the resulting samples can also be used 

directly in model order selection. Order selection offers the possibility to identify 

the unknown number of factors, an important issue to be addressed in this 

ToF-SIMS data analysis for metabolic profiling. The result is more credible to the 

ground truth compared with PCA scree plot. For large datasets, the high 

computational cost can be resolved by combining B-NMF with a random sampling 

method. With this combination, both high computational efficiency and fast 

convergence can be achieved. The B-NMF method chosen here can be applied to 

many practical problems in bioinformatics. However, it does not take into account 

any spatial correlation that may exist in the dataset, which may possibly limit its 

performance as seen in this chapter. 
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Chapter 6  

Alternating Non-negative Least 

Squares 

6.1 Introduction 

As we discussed in the previous chapter, NMF offers advantages over traditional 

multivariate techniques, such as PCA, MAF, and MCR; since the non-negativity is 

maintained in the results. One simplest method for imposing non-negativity 

constraint is to overwrite the ordinary (unconstrained) least squares procedure by 

setting all negative elements in the solution to zero (Berry et al., 2007). However, 

convergence to optimal minimum is not guaranteed in this method. 

An optimised MCR approach, namely multivariate curve resolution alternating least 

squares (MCR-ALS), is capable of ensuring the non-negativity by imposing 
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constraints on the iterative process, while offering the potential to estimate spectra 

of pure compounds (Keenan & Kotula, 2005; Wang et al., 2003). MCR-ALS typically 

requires an initial estimate of either the pure component spectra or the 

concentration profiles as a starting point for the iterative computation (Tyler, 2006). 

The initial estimate can be obtained from other algorithms such as PCA and MAF or 

known information about the data. In addition, many traditional algorithms that 

based on alternating non-negativity constrained least squares (ANLS), including the 

earliest NMF method proposed by Paatero and Tapper, appear to be 

computationally burdensome when applying to large multi-dimensional datasets 

(Kim & Park, 2008). However, the performance of ANLS can be significantly 

improved using fast combinatorial non-negativity constrained least squares 

(FC-NNLS) algorithm, which is designed specifically for multiway data analysis (Van 

Benthem & Keenan, 2004). 

One major problem of applying MCR-ALS algorithm to large ToF-SIMS datasets is 

that the computation is largely complicated by the high resolution of the output 

images. As the complexity of scores and loadings estimation is closely related to the 

number of image pixels in the ToF-SIMS data, higher image resolution of the sample 

surface would result in greater computational demand and uncertainty. It is 

therefore of great importance that the number of pixels in TOF-SIMS images is 

decoupled from the number of unknowns required to be estimated. Another 

problem for scores and loadings estimation is that ordinary MCR methods do not 

account for the spatial dependency over the sample surface (Aram et al., 2014). In 

cases where the spatial distributions of the sample surface are continuous in nature, 

the characteristics of chemical species at close regions on the surface are relatively 

more inter-correlated than those at remote regions. Thus, the spatial correlation 

needs to be taken into consideration in the estimation of scores and loadings. 

The framework we proposed in this chapter is MCR that incorporates alternating 

least squares (ALS) using a basis function decomposition approach. This MCR-ALS 
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approach involves a spatially continuous representation of ToF-SIMS images which 

describes the spatial correlation across the observed surface. Moreover, by taking 

advantage of basis function decomposition method, the computational complexity 

of the estimation procedure can be less affected by the resolution of ToF-SIMS 

images. In particular, the estimation of individual pixel value is simplified into a set 

of weights, which subsequently scales the basis functions and leads to considerably 

lower spatial dimensions. The speed of the ALS algorithm and the reliability of the 

estimates are improved as a result of less number of unknown factors.  

In this chapter, we will firstly outline the MCR method used in ToF-SIMS data 

analysis. Within the ANLS framework, a model reduction technique that employs a 

weighted sum of continuous basis functions is used to approximate scores images. 

The guidelines for basis functions configuration will also be provided. At the end of 

this chapter we will present the results of the estimation of scores and loadings for 

ToF-SIMS data analysis using our proposed algorithm. The work in this chapter was 

conducted involving other researchers in the group. My contribution is in 

developing the algorithm of the new method and leading the analysis of the dataset 

in the thesis. The work has been published in the paper (Aram, Shen, Pugh, 

Vaidyanathan and Kadirkamanathan, 2014). 

 

6.2 Algorithm 

6.2.1 Model  

As we mentioned in Chapter 2, MCR is a second-order matrix decomposition 

method which transforms the original data matrix into the product of two smaller 

data matrices. Our ToF-SIMS dataset can be described as a bilinear model in a way 

that the spatial and spectral information form a two-way data matrix in the model, 

i.e. spatial matrix and spectral matrix correspond to each one of the two orders of 
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our ToF-SIMS data matrix. The spatial (scores) data matrix provides information 

about the distribution of the chemical species and spectral (loadings) data matrix 

describes the identity of them on the sample surface. The spatial-spectral ToF-SIMS 

data matrix, as described by the MCR bilinear model, is shown as: 

Y(f, s) = W(s)BT(f) + E(f, s)               (6.1) 

Where f is the mass-to-charge ratio and s is the spatial location in the two 

dimensional physical surface. There is a transpose operator denoted by superscript 

T. Each ToF-SIMS image of dimension l by l′pixels is rearranged into a p × v data 

matrix, Y(∙) , where p = l × l′ . W(∙)  (p × m ) is the scores matrix and B(∙) 

(v × m) is the loadings matrix containing m spectral basis vectors. The p × v 

residuals matrix, E(∙), is the error terms that are not explained by the scores and 

loadings estimation. 

At any particular peak, a sum of weighted loadings can be used to represent every 

element of Y at a given spatial region where the weights are scores at that region. 

This relationship is given by:  

Y(f, s) = ∑ wi(s)
m
i=1 bi(f) + E(f, s)               (6.2) 

Where wi denotes the ith weight at the corresponding region and bi denotes the 

spectral basis vectors. 

Here we demonstrate how the proposed algorithm is used to compute the scores 

estimation W(∙)  and the loadings estimations B(∙)  in Equation (6.1). The 

estimation procedure involves a two-step iterative procedure, which in essence is 

two sequentially performed non-negativity constrained least squares subject to 

convergence criterion. It is important to note that prior knowledge of the chemical 

rank or the number of spectral basis vectors is required as a starting point of 

iterations for MCR-ALS algorithm.  

A successful estimation of the scores and loadings matrices should also involve 

identifying the correct chemical rank. We determine the chemical rank in the 
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algorithm by using the number of principal components as a guide, which is 

obtained from PCA and the scree test criterion. The effects of measurement noise 

in the identification of the chemical rank of the system can be mitigated by 

implementing more sophisticated techniques, such as smoothing methods and 

subspace comparisons (Jiang, Liang & Ozaki, 2004). 

 

6.2.2 ALS algorithm 

A solution to the MCR model described in Equation (6.1) can be obtained by 

optimising the following minimisation function: 

J(W,B) = ‖Y − WBT‖F
2                (6.3) 

ALS algorithm is often used to handle this optimisation problem (Paatero & Tapper, 

1994). At the start of the iterative procedure, an initial estimate of scores is used to 

compute estimate of the loadings by minimising J(B|W) in Equation (6.3). The 

resulting loadings estimates are then used to update scores estimates i.e. J(B|W), 

which are in turn used in the next iteration. In addition, non-negativity constraint is 

applied to ALS algorithm in order to provide meaningful and interpretable solutions. 

The minimisation function in Equation (6.3) is specified by: 

J(W,B) = ‖Y − WBT‖F
2    s. t.  W, B > 0         (6.4) 

This is the Frobenius norm of the approximation where all the entries of W and B 

matrices are constrained to be non-negative. The non-negativity constrained least 

squares problem can be facilitated using FC-NNLS algorithm along with ALS (Van 

Benthem & Keenan, 2004).  

We adopt stopping criteria through monitoring the Frobenius norms of the 

successive estimates of scores matrices (W) in Equation (6.4): 

‖W‖F
(k)

− ‖W‖F
(k−1)

< 𝜌                           (6.5) 
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Where 𝜌 is a threshold value, and ‖W‖F is given by:  

‖W‖F = √∑ |ωi,j|
2

i,j = √tr(WTW)                 (6.6) 

 

6.2.3 Model Decomposition 

The spatially continuous nature of the species distribution on the sample surface 

can hamper the estimation procedure. This problem can be addressed by applying a 

decomposition method which reconstructs scores images in form of continuous 

basis functions (Aram et al., 2014). The reason for utilising continuous basis 

functions is that the spatially continuous locations can contain information about 

the spatial correlation, leading to more appropriate estimations. The basis 

decomposition method is given by: 

wi(sp) ≈ ∑ αjiϕj(sp)
n
j=1          (6.7) 

Where ϕ(s) are known basis functions, αji are unknown weights, and n is the 

number of basis functions employed in the decomposition. The basis functions we 

used are 2 dimensional Gaussian basis functions given by: 

ϕ(s) = exp(−
(s−μϕ)T(s−μϕ)

σϕ
2 )               (6.8) 

Where σϕ denotes the width of basis functions and μϕ denotes the centre of 

basis functions. As we will demonstrate later, spatial frequency analysis is used to 

determine the width and the location of the basis functions in Equation (6.8).  

A continuous approximation can be obtained by substituting Equation (6.7) into 

Equation (6.2):  

Y(fv, sp) = ∑ [∑ αjiϕj(sp)
n
j=1 ]bi(fv) + E(fv, sp)

m
i=1          (6.9) 

This approximation takes the spatial correlation into account by means of the sum 
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of weighted Gaussian basis functions. We can hence represent Equation (6.9) in a 

matrix form: 

Y = ΦABT + E                                  (6.10) 

Where A is a n × m matrix describing unknown weights and Φ is a constant 

p × n matrix given by: 

Φ =

[
 
 
 
 
ϕ1(s1) ϕ2(s1) ϕ3(s1)  ϕn(s1)

ϕ1(s2) ϕ2(s2) ϕ3(s2)  ϕn(s2)
ϕ1(s3)

⋮
ϕ1(sp)

ϕ2(s3)
⋮

ϕ2(sp)

ϕ3(s3)
⋱

ϕ3(sp)

 
⋮
 

ϕn(s3)
⋮

ϕn(sp)]
 
 
 
 

p×n

         (6.11) 

This representation allows more efficient implementation of ALS algorithm. In 

general, the applicability of ALS algorithm to large datasets is limited due to the 

direct link between the complexity of the scores estimation step in the optimisation 

problem in Equation (6.4) and the images resolution of ToF-SIMS data. We facilitate 

the scores estimation step by splitting the scores matrix in Equation (6.10) into an 

unknown weight matrix An×m and a constant matrix Φp×n. These two matrices 

are approximated using basis functions. This means that instead of estimating the 

scores matrix directly, we only need to estimate a matrix of weights with much 

lower dimension. The estimation of loadings matrix can be simplified in the same 

manner. Therefore, the implementation of basis function decomposition not only 

improves the convergence property of the algorithm but also reduces the 

uncertainty in the scores and loadings estimates.  

Given the basis function representation, the cost function for the estimation of 

loadings matrix, B, is specified by:  

J(A, B) = ‖Ỹ − ABT‖
F

2
           s. t.         B > 0             (6.12) 

Where 

Ỹ = Φ†Y,                  (6.13) 
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Φ† = (Φ†Φ)−1ΦT                                (6.14) 

Where A is constant. The cost function for the estimation of the weight matrix, A, 

is given by: 

J(A, B) = ‖ỸT − BAT‖
F

2
         s. t.       A > 0           (6.15) 

Where B is constant. The matrix Ỹ can be obtained before the algorithm is 

launched. Here the Frobenius norms of the successive estimates of matrix A can 

be observed to stop the algorithm as shown in Equation (6.5).  

It is important to note that basis decomposition method might lead to smoother 

estimates of scores images and unclear representation of sharp boundaries and 

details (Aram et al., 2014). This problem can be solved by introducing an additional 

step to the estimation algorithm, which involves applying the final estimate of 

matrix B, generated from the iterative process in Equations (6.12) and (6.15), to a 

single run of FC-NNLS algorithm in order to optimise the following minimisation 

function: 

J(W,B) = ‖Y − WBT‖F
2         subject to      W > 0                      (6.16) 

Where B is constant. This arrangement can result in detailed estimates of the 

scores images.  

The complete estimation procedure is presented in the algorithm below. The 

minimisation of Equations (6.12), (6.15) and (6.16) can be implemented using a fast 

combinatorial non-negativity constrained least squares (FC-NNLS) provided by Van 

Benthem and Keenan (2004). Note the overwriting initialisation in Step 2 of the 

algorithm will not be required as it is already included in FC-NNLS (Gallagher et al, 

2004). The complete algorithm is shown in following table: 
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The ANLS algorithm procedure 

1. Decomposition: 

-determine number of factors m by using PCA, 

-define basis function centres u using Equation (6.17), 

-define basis function widths σϕ using Equation (6.18), 

-construct Ỹ using Equations (6.11), (6.13) and (6.14), 

2. Initialisation: 

-initialise the weight matrix A0 as a random dense matrix, 

-obtain initialisation solution, A0 and B0, using the overwriting method, 

3. Scores and loadings estimation: 

-define stopping condition threshold ρ, 

-set k = 1, while ‖Ak − Ak−1‖F > ρ, 

-update the loadings, Bk−1, using FC-NNLS and Equation (6.12), 

-update the weight matrix, Ak, using FC-NNLS and Equation (6.15), 

-set k = k + 1,  

end while  

6. Estimation of high resolution scores matrices: 

-calculate W from Equation (6.16) using FC-NNLS and the final estimate of B.  

 

Table 6.1 ANLS Algorithm Procedure 
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6.3 Spatial Frequency Analysis 

The basis functions used in the model reduction procedure can be viewed as 

low-pass filters and limit the spatial bandwidth of the reconstructed scores images 

to a certain value. The width, σϕ, and spacing, Δϕ, of these basis functions can be 

obtained by setting a preferred degree of smoothness in the scores images. 

Therefore, the spatial cut-off frequency of the reconstructed scores images, νc, is 

essentially a design choice. The interested spatial region is divided by △ϕ intervals 

to provide the number of basis functions. The chosen cut-off frequency determines 

the spacing between basis functions such that Shannon's sampling theorem is 

satisfied: 

△ϕ≤
1

2ρνc
                    (6.17) 

Where ρ ∈ ℝ ≥ 1 is an oversampling parameter (Sanner & Slotine, 1992). The 

spatial cut-off frequency also regulates the width of the basis functions. For an 

attenuation of 3 dB at  νc, the width of basis functions can be described by 

(Freestone et al., 2011): 

σϕ =
1

πνc
√

In2

2
                                    (6.18) 

Where νc can be set to a high value in order to capture high spatial frequency 

variations in the scores estimates. However, as the reciprocal role of νc shown in 

Equations (6.17) and (6.18), a large number of basis functions with narrow widths 

can be caused by a high cut-off frequency. This complicates the estimation 

procedure as it needs to estimate more weights that are associated with the 

number of basis functions. Thus, there is a trade-off between the accuracy and the 

computational demands of the estimation procedure. 

Taking the dataset used in this work for instance, the decomposition of 128 ×
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128 × 100 ToF-SIMS data with 4 × 4 equally spaced grids of basis functions can 

be performed as shown in Figure 6.1.  

 

 

Figure 6.1 Example of a basis decomposition. A 128 pixels by 128 pixels ToF-SIMS image decomposed 

by a 4×4 grid of basis functions. The basis functions (shown by green circles) are scaled by the 

weight matrix, A. The centre of each basis function is shown by a yellow dot. The image is mapped 

onto -1 to 1 with arbitrary units.  

 

The green grids are Gaussian basis functions scaled by the weight matrix A in 

Equation (6.10) to decompose the observed surface. The yellow dot indicates the 

centre of each basis function. The image is mapped onto [-1 to 1] with arbitrary 

units, the estimation of 16384 × 100 parameters is reduced to the estimation of 

16 × 100 parameters in this particular example.  

 

6.4 Application Results 

The proposed algorithm was applied to our ToF-SIMS datasets containing three 

pure species (T, P and C) and two mixed species (TC and TPC). Each one of those 

datasets includes images of 128 × 128 pixels with the spectra up to 100 Da. 
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Significant features were firstly identified from the estimated scores and loadings by 

applying the proposed algorithm to pure species. Subsequently, peak assignment in 

the resolved spectra of TC and TPC mixtures was performed using the extracted 

information. Three major peaks were found using the extracted spectral 

information in order to describe different datasets. We then assessed the 

performance of our algorithm by analysing the replicate measurements of each 

dataset. 

The spatial aspects of the model can be considered arbitrary as ToF-SIMS images 

were mapped in both x and y directions. The desired cut-off frequency of the 

reconstructed images was set to  νc = 0.84 ; we also set the oversampling 

parameter of   ρ = 2 after considering the slow roll-off in the frequency response 

of Gaussian basis functions. These values were then applied to Equations (6.17) and 

(6.18), which provided the distance between the centres of adjacent basis functions 

△ϕ= 0.3 and the width of basis functions σϕ = 0.22, leading to a grid of 9 × 9 

equally spaced basis functions in the spatial domain of interest. Under this 

arrangement, we were able to reduce the number of unknown parameters from 

m × 16384 to m × 81.  

In the pre-processing stage, we employed Poisson-scaling and normalising to the 

total ion counts for the chemical rank analysis and the estimation of scores and 

loadings, respectively. The initial guess of the chemical rank for each Poisson-scaled 

dataset was derived from PCA and the scree test. PCA was performed for all the five 

datasets in Chapter 3. Although the suggested rank of TC mixture was one in the 

PCA analysis, m = 3 was set for all pure species and mixtures since all the other 

species have three principal components. The estimation of loadings and the 

corresponding scores images involved applying the algorithm to normalised 

ToF-SIMS datasets. 

Figure 6.2 shows the results of scores and loadings estimation for T, C and P 

components. The scores images show the m/z values for dominant peaks, following 
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by figures that represent the corresponding ion images in ToF-SIMS dataset. Large 

peaks for the first three factors of component T are found at m/z = 136.93, 183.02, 

71.01, 121.02, and 180.06, as shown in Figure 6.2(T). Significant peaks for the first 

three factors of component C and P are illustrated in Figure 6.2(C) and Figure 6.2(P) 

respectively. The component C has peaks at m/z = 136.93, 27.98, 87.02, 111.02, 

and 191.02, while peaks at m/z = 164.05, 176.04, 71.01, and 136.93 refer to 

component P. It should be noted that all the three pure species contain peak at m/z 

= 136.93. This common peak can be viewed as noise in the system due to lack of 

discriminatory information. In fact, noisy structures do appear in the corresponding 

scores images. One possible explanation is that we decomposed the data using 

higher number factors than required. 
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 (C) 

 

(P) 

Figure 6.2 Three sets of loading plots and scores images from ANLS algorithm for each pure 

component (T, C, and P) samples respectively. Loadings are presented in top panels indicating the 

intensity of spectral basis while score images are presented on the bottom showing the spatial 

information of each basis.  

 

Figure 6.3 represents the result of the estimation of scores and loadings for TC 

mixture and the corresponding scores images for each component is illustrated 

down below. Again, the common peak at m/z = 136.93 is present, which is 

attributed to the existence of the noise in the system. It is clear that there are two 

significant peaks at m/z = 87.02 and 191.02 for the first factor in Figure 6.3, we may 

conclude that it refers to the component C by comparing the peaks in Figure 6.2(C). 

Similarly, the peaks at m/z = 71.01 and 180.06 for the second factor of TC mixture 

can be attributed to component T. In addition, an intensive peak is found at m/z = 

136.93 through the third factor, it could possibly be due to the noise from the data 

collection process of ToF-SIMS. In this case, our algorithm performed reasonably 

well and was found to be effective in separating the distribution of the two pure 

species (T and C). 
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Figure 6.3 Three sets of loading plots and scores images using ANLS for TC mixture. Loadings are 

presented in the top panels indicating the intensity of spectral basis while score images are 

presented on the bottom showing the spatial information of each basis. 

 

Figure 6.4 illustrates the results of the scores and loadings estimation for TPC 

mixture. As shown in the first loading estimates, the algorithm is capable of 

identifying the separate distribution of component T with peaks at m/z = 71.01 and 

m/z = 180.06 in this particular case. P species can be identified in the second graph 

with one significant peak at m/z = 164.05. Furthermore, peaks at m/z = 41.01, 

87.02 and 191.02 in Figure 6.3 suggest that we can identify and segregate 

component C from the mixture. Despite of the correct number of chemical factors 

deployed, noise characteristics still exist in the third factor of TPC mixture, which 

can be identified clearly in the last column graphs of Figure 6.3. This is due to the 

fragments in the separation of the three pure species.  
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Figure 6.4 Three sets of loading plots and scores images using ANLS for TPC mixture. Loadings are 

presented in the top panels indicating the intensity of spectral basis while score images are 

presented on the bottom showing the spatial information of each basis. 
 

The important spectral information required for peak assignment can then be 

summarised. The results of our application of the proposed algorithm suggest that 

peaks at m/z = 180.06, 164.05 and 191.02 are essential for identifying component T, 

P and C respectively, which is in full accordance with the ground truth. Note that 

the strong peak at m/z = 121.02 for component T and at m/z = 111.02 for 

component C are attributed to fragments or adducts in the process as they are not 

present in the analysis of TC and TPC mixtures. In addition, although the peak at 

m/z = 191.02 for component C in Figure 6.2(C) also appears in scores image of TC 

and TPC mixtures, the fragment peak of species C at m/z = 87.02 is more significant 

with greater magnitude.  

Similar analysis on replicate measurements of the five species was performed using 

the extracted spectral information. In particular, m = 1, 2 and 3 was set for pure 

replicate measurements, TC replicate measurements and TPC replicate 

measurements respectively. The results of the analysis are summarised below 

which confirm the capability of our proposed algorithm in identifying different 

species. We tested the algorithm for a maximum number of 200 iterations, the 

change in the weights matrix Frobenius norm was reduced to lower than 10-5 after 

as much as 20 iterations. Compare with other multivariate techniques we 
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implemented previously in Chapter 2 and Chapter 3, it is evident that this ANLS 

algorithm can separate discriminatory components with significantly better 

execution time.  

Figure 6.5 represents the results of each individual pure component with factor 

number m = 1. Component T, C and P can be recognised easily with their 

identifiable peaks from left to right respectively. With m = 2 applying to the 

replicate TC mixture, we can conclude that the mixture is made of component T 

and C with peaks at m/z = 71.01 and 180.06, and at m/z = 27.98, 87.02, 111.02, and 

191.02 (Figure 6.6). For the replicate measurements of TPC mixture, m = 3 was set 

and pure component T, P and C could be identified with the loading images in 

Figure 6.5. It should be noted that there is one remarkable peak in the second 

scores image of Figure 6.5, this might be due to that both component T and P have 

the same peaks at m/z = 71.01, where the algorithm is incapable of separating the 

two identical location peaks. Another possible reason is that this peak could be 

resulted from the fragments or adducts in the estimation process. However, the 

purposed algorithm performs well in detecting and separating the distribution of 

the three pure species (T, P and C). 
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Figure 6.5 loading plots and scores images using ANLS for single species T, P and C replicate samples 

with one basis.  
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 (TC3) 

Figure 6.6 Two sets of loading plots and scores images using ANLS for replicate TC mixture samples 

with two basis.  
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 (TPC3) 

Figure 6.7 Two sets of loading plots and scores images using ANLS for replicate TPC mixture samples.  
 

6.5 Conclusion 

Our proposed algorithm for ToF-SIMS data analysis is an MCR method built on the 

NMF framework. This novel algorithm provides great potential to be used as an 

efficient tool in processing ToF-SIMS data from metabolite samples. One of the key 

features of our proposed algorithm is that it incorporates spatially continuous 

representation of ToF-SIMS dataset by employing a set of continuous basis 

functions to reconstruct the scores images. This leads to a simplified estimation 

procedure where only a set of weights are required to approximate the scores 

images, significantly reducing the spatial dimensions (Aram et al., 2014). Therefore, 

the algorithm maintains the advantages of ordinary MCR-ALS algorithm, such as 

identification of pure component spectra and the ability to incorporate known 

information into the estimation procedure while offering non-negative solutions 

with reduced computational demand. Furthermore, compared with PCA, the 

factors in the ANLS are not required to be orthogonal, the calculated solutions 

resemble the ToF-SIMS data and contribution of chemical components in an 

effective manner which makes the results more interpretable. 
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However, it should be noted that, instead of depending on the image resolution, 

the computational complexity is now related to the spatial frequency of the 

approximated scores images. This means that by lowering the spatial bandwidth of 

the reconstructed images, the computation complexity of the estimation procedure 

can be reduced at the cost of the accuracy. 
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Chapter 7  

Conclusion and Future Work 

ToF-SIMS is an advanced chemical analysis platform that is largely new to metabolic 

profiling (Armitage et al., 2013). Although it is a powerful and information rich tool 

with high resolution compared to conventional MS, the substantially large and 

complex output data already becomes a major obstacle to its utility and 

applicability (Graham, Wagner, & Castner, 2006; Tyler, Rayal, & Castner, 2007). This 

emphasises the importance of more efficient multivariate algorithms for analysis of 

such data. The aim of this thesis was to develop and validate novel multivariate 

analysis techniques for processing ToF-SIMS data extracted from metabolite 

samples.  

In this thesis, we discussed five unsupervised multivariate analysis methods, all of 

which are capable of decomposing the original complex ToF-SIMS dataset into 

smaller and simpler matrices while the main features of the data are retained. The 

traditional multivariate analysis methods, due to their limitations, can be ineffective 

in processing large and complex ToF-SIMS datasets. In particular, PCA is frequently 

used with ToF-SIMS to identify chemical compounds in metabolite samples 
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(Henderson, Fletcher, & Vickerman, 2009; Kotze et al., 2013). Our application of 

PCA by SVD to ToF-SIMS data extracted from metabolite samples also showed poor 

performance. Other well-known algorithms, namely, Clustering, MAF, ICA and MCR, 

were also outlined in the thesis. 

The application of PCA to three pure species (T, P, and C) showed that, although 

they are single components, at least three principal components are required to 

represent 90% of the original datasets in each individual case. The TPC mixture also 

had three principal components in the result. It is important to note that only one 

principal component was required for the TC mixture, which was not appropriate as 

based on the ground truth of our data, with two mixed species contained in the 

actual mixture. The scores images of the five species also suggested that negative 

values are present in the results. Despite the limited performance of the PCA, it is 

still useful for providing some insights into the identification of chemical 

compounds in the sense that the principal components obtained can be combined 

with the prior knowledge of the data to offer a better initialisation for other 

algorithms. 

PCA can be compared to NMF algorithm, which is a reduced rank approximate 

factorisation maintaining non-negative structure of the data matrix. The major 

contribution of this method is that it provides a more realistic interpretation of the 

data. The combination of PCA and known information about the structure of 

species was used as the starting point for NMF. With enough iterations, NMF is able 

to extract the factor with identical peaks for each single species. However, the 

application of the algorithm with mixture samples are not sufficiently satisfactory 

since the chemical components T, P and C do not manifest as individual factors, in 

other words, each factor has a spectral pattern that consists of two or more species. 

The reason may be due to the underlying uncertainties that largely exist in the data. 

In this thesis, we also introduced NMF with other auxiliary constraints. With sparsity 

constraint, the NMF results can be more powerful in detecting the intensity peaks 
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as well as the spatial regions for one specific factor.  

One of the drawbacks of NMF algorithms is that the iterative procedure leads to 

considerable computational complexity and hence obstructs convergence. 

Therefore, instead of using the PCA or the ground truth of the dataset, we used the 

NMF algorithm under the Bayesian framework, which can address the problem of 

multiple solutions in NMF while also improving the convergence process. Our 

application of the algorithm to the ToF-SIMS dataset suggested that it was 

reasonably effective in identifying components in a two component mixture (TC). 

However, the B-NMF is unable to identify species which may be attributed to not 

exploiting the spatial correlation in the data. In particular, components T and P were 

incorrectly classified into one single factor by the B-NMF algorithm in our results of 

the TPC mixture. In addition, the score images of the TPC mixture confirmed that 

these two components are spatially close to each other. As a result, the overlapping 

part that was represented by the common peaks of component T and P is difficult 

to distinguish by the B-NMF, leading to an inconclusive identification. Therefore, the 

B-NMF might not be an ideal method for processing ToF-SIMS data in metabolic 

profiling analysis, where the species distribution in metabolite samples are 

continuous in nature. 

In this thesis, we proposed an optimised MCR method built on the ANLS procedure. 

This novel algorithm provides good potential to be used as an efficient tool in the 

processing of ToF-SIMS data from metabolite samples. One of the key features of 

the proposed algorithm is that it incorporates spatially continuous representation of 

ToF-SIMS dataset by employing a set of continuous basis functions to reconstruct 

the scores images. This leads to simplified estimation procedure where only a set of 

weights are required to approximate the scores images, significantly reducing the 

spatial dimension. Therefore, the algorithm maintains the advantages of ordinary 

MCR-ALS algorithm, such as the identification of pure component spectra and the 

ability to incorporate known information into the estimation procedure, while 



Spatial Mass Spectral Data Analysis Using Factor and Correlation Models 

 130      
 

offering non-negative solutions with reduced computational demand. This 

algorithm also requires an initial estimate, which was obtained from the PCA, 

B-NMF and the ground truth for our specific case. The application of ANLS to our 

ToF-SIMS dataset suggested that this algorithm is fairly efficient in identifying and 

separating all the pure components from both TC and TPC mixtures. Furthermore, it 

is evident that the proposed ANLS variant can separate discriminatory components 

with a considerable computational speed over the other multivariate techniques 

analysed in this work. However, it should be noted that, instead of depending on 

the image resolution, the computational complexity is now related to the spatial 

frequency of the approximated scores images. This means that by lowering the 

spatial bandwidth of the reconstructed images, the computational complexity of 

the estimation procedure can be reduced at the cost of the accuracy. 

From the investigation in the previous chapters, comparison can be made by the 

four different multivariate analysis techniques used on the same metabolic profiling 

datasets from ToF-SIMS. One conclusion is that all the algorithms can complete 

unsupervised feature detection and extraction to varying degrees. In the case of the 

TPC sample where the correct profile number is three, all of the above algorithms 

when set to identify three factors had different limitations in the results that 

ensued. The comparison showed that the ANSL outperforms other studied 

algorithms.  

It is important to note that our metabolite samples only contained five species with 

three pure components. In realistic cases, metabolites information may be more 

varied and can substantially affect the effectiveness of the algorithms. There are 

libraries of MS data for different metabolites that can help mitigate the 

identification problem. The nature of the dataset used in the thesis did not require 

the imposition of additional conditions and assumed little prior knowledge. 

However, the inclusion of libraries of metabolites and their spectral patterns are 

likely to substantially improve the effectiveness of the algorithms. Therefore, in 
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order to complete such a challenge, the available library of ToF-SIMS data must 

somehow be integrated. Though the present peptide library is limited, as still there 

are many peptides with unknown ToF-SIMS patterns, factorisation methods should 

be developed to detect those peptides in the metabolites that have known spectral 

patterns in the library in addition to identifying unknown peptides. One of the other 

attributes of the spectral patterns is the fact that the abundance as measured by 

the height of the spectral peaks includes quantities of metabolites that can be a 

distraction to the identification process. A classification approach in which 

prioritisation is given to the location of the important spectral peaks is worth 

investigating, so that sensitivities to absolute differences in the spectral patterns do 

not skew the performance of metabolic profiling. To summarise, more advanced 

analysis methods for the ToF-SIMS data are required to disentangle the complex 

and high dimensional spatial data meaningfully, to achieve sufficiently accurate 

metabolic profiling. The promise of ToF-SIMS process crucially depends on this. 
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