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Abstract

Spatially localized, time-periodic structures, known as oscillons, are common in pattern-

forming systems, appearing in fluid mechanics, chemical reactions, optics and granular

media. This thesis examines the existence of oscillatory localized states in a PDE model

with single frequency time dependent forcing, introduced in [70] as phenomenological

model of the Faraday wave experiment. Firstly in the case where the prefered

wavenumber at onset is zero, we reduce the PDE model to the forced complex Ginzburg–

Landau equation in the limit of weak forcing and weak damping. This allows us to use

the known localized solutions found in [15]. We reduce the forced complex Ginzburg–

Landau equation to the Allen–Cahn equation near onset, obtaining an asymptotically

exact expression for localized solutions. In the strong forcing case, we get the Allen–Cahn

equation directly. Throughout, we use continuation techniques to compute numerical

solutions of the PDE model and the reduced amplitude equation. We do quantitative

comparison of localized solutions and bifurcation diagrams between the PDE model, the

forced complex Ginzburg–Landau equation, and the Allen–Cahn equation. The second

aspect in this work concerns the investigation of the existence of localized oscillons

that arise with non-zero preferred wavenumber. In the limit of weak damping, weak

detuning, weak forcing, small group velocity, and small amplitude, asymptotic reduction

of the model PDE to the coupled forced complex Ginzburg–Landau equations is done.

In the further limit of being very close to onset, we reduce the coupled forced complex

Ginzburg–Landau equations to the real Ginzburg–Landau equation. We have qualitative

prediction of finding exact localized solutions from the real Ginzburg–Landau equation

limited by computational constraints of domain size. Finally, we examine the existence

of localized oscillons in the PDE model with cubic–quintic nonlinearity in the strong

damping, strong forcing and large amplitude case. We find two snaking branches in the

bistability region between stable periodic patterns and the stable trivial state in one spatial

dimension in a manner similar to systems without time dependent forcing. We present

numerical examples of localized oscillatory spots and rings in two spatial dimensions.
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Chapter 1

Introduction

1.1 Patterns

Patterns appear throughout nature, including convection, animal coat markings,

fingerprints, ripples on flat sandy beaches and desert dunes. The observation of pattern

formation has attracted the attention of scientists for a long time, and has motivated

both theoretical and experimental research. When a control parameter of a homogeneous

system is increased above a critical value, spatially periodic structures can emerge. The

study of convection between two horizontal plates (Rayleigh–Bénard convection) is one

famous physical example of pattern formation [41], in which a container of fluid is heated

from below. As the heat is applied from underneath the container, the fluid expands at

the bottom and becomes less dense. Thus, the fluid rises through the colder fluid at the

upper boundary to be away from the heat source, it cools and becomes denser than the

fluid at the lower boundary, so that it sinks. As a consequence of this, the fluid falls

from the upper surface back down to the bottom. Repeated rising and sinking in different

locations causes the fluid to form spatial patterns. An important review of theoretical and

physical examples of pattern formation is the paper by Cross and Hohenberg [25], and

an introduction to common analytical methods that are used to study pattern formation

mathematically can be found in the book by Hoyle [41].
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Figure 1.1: Soliton-like structure on the surface of a ferrofluid generated by applying
magnetic field vertically. Figure is reprinted from [68], and the copyright (2005) is by the
American Physical Society.

Turing patterns are steady patterns that arise in reaction–diffusion systems, predicted in

Turing’s original paper [81]. Non-oscillatory Turing patterns appear through a linear

instability when there are two reacting and diffusing chemicals, with one diffusing much

faster than the other. Steady localized states near the Turing instability can exist if the

system has bistability [22, 85, 91]. This occurs when the Turing instability is subcritical,

and so a stable zero state, a small amplitude unstable pattern, and larger amplitude

stable pattern can all coexist. The localized solution consists of a patch of stable pattern

surrounded by the stable zero state [27, 52, 53], rather than having the periodic pattern

filling the whole domain.

An example of spatially localized states was observed on the surface of a ferrofluid [68]

(see Figure 1.1). This fluid is placed in a spatially homogeneous time-independent vertical
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Figure 1.2: A triad of oscillons in a in a vertically vibrated colloidal suspension by
O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and J. Fineberg, taken from [51],
Physical Review Letters, 1999.

magnetic field. The deformation in the surface of the fluid creates one or more stationary,

isolated peaks [68].

Spatially localized structures appear in many other pattern-forming systems driven by

external forcing. The formation of localized states has been of interest to the scientific

community for many years. Localized states have been found in many experiments, such

as in ferromagnetic fluids [68], in fluid surface wave experiments [4,50,76,89], chemical

reactions [47,49,65,84,87], colloidal suspensions [51], and granular media [10,54,83,92].

Examples of spatially localized structures have also been observed in theoretical studies,

for example in optics [19, 33, 79], and in mathematical neuroscience, where localized

bursts of activity might be related to short-term memory formation [48, 74], as well

as in models of granular media [16, 30], surface wave in fluids [59, 60] and chemical

reactions [84, 86].

Our interest in this thesis is to investigate specific types of localized structures, called
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oscillons. Much progress has been made on steady problems, where bistability between a

steady pattern and the zero state leads to steady localized patterns bounded by stationary

fronts between these two states [13, 26]. In contrast, oscillons, which are oscillating

localized structures in a stationary background, are relatively less well understood.

Oscillons have been found experimentally in fluid surface wave experiments [4, 50, 51,

76, 89], chemical reactions [65], and vibrated granular media problems [9, 54, 82, 83].

In the surface wave experiments, the fluid container is driven by vertical vibrations.

When these are strong enough, the surface of the system becomes unstable (the Faraday

instability) [32], and standing waves are found on the surface of the fluid. Oscillons have

been found when this primary bifurcation is subcritical [24], and these take the form of

alternating conical peaks and craters against a stationary background. Figure 1.2 shows

an example with three oscillons in a colloidal suspension.

A second striking example of oscillons was found in a vertically vibrated thin layer of

granular particles [83]. As with the surface wave experiments, oscillons take the shape of

alternating peaks and craters: Figure 1.3 shows spatially localized oscillons in a thin layer

of bronze beads.

The observation of oscillons in these experiments has motivated our theoretical

investigation into the existence of these states and their stability. In both of these

experiments, the forcing (vertical vibration) is time-periodic, and the oscillons themselves

vibrate with either the same frequency as the forcing (harmonic) or with half the frequency

of the forcing (subharmonic).

Previous studies to these parametrically forced problems have averaged over the fast

timescale of the forcing and have focused on PDE models where the localized solution

is effectively steady [3, 15, 24]. In a variety of pattern-forming systems, stable oscillons

arise in numerical simulations of these PDEs. Models like the Swift–Hohenberg equation

[24, 36], the forced complex Ginzburg–Landau equation [15, 21, 58, 61, 90], the forced

complex Ginzburg–Landau equation with a conservation law [28], and the nonlinear
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Figure 1.3: Localized oscillon in a vertically-vibrated layer of bronze beads (photo
courtesy of Paul Umbanhowar, Northwestern University).

Schrödinger equation [5, 59] are designed to capture the features of pattern-forming

systems in one-, two- and three- dimensions. In all these models, numerical study

revealed that the equations give a qualitative explanation of the observations of patterns

in experiments.

We will discuss first the existence of localized solutions with zero wavenumber at onset

(Chapter 2), because we know that in this case the amplitude equation is in the form of

the forced complex Ginzburg–Landau equation [21], which is given by

AT = (µ̃+ iν)A+ (1 + iκ)AXX − (1 + iρ)|A|2A+ ΓĀ, (1.1)

where A is a complex amplitude representing the oscillation in a continuous system

near a Hopf bifurcation point in one spatial dimension; and the real coefficients µ̃ is

the distance from the onset of the oscillatory instability, ν is the detuning between the

Hopf frequency and the driving frequency, κ represents the dispersion, ρ is the nonlinear
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frequency correction, and Γ is the forcing amplitude. We also know from [15] that the

forced complex Ginzburg–Landau equation has localized states. By carrying out all stages

of the calculation explicity, we are able to make a quantitative connection from start to

finish.

However, in the Faraday wave experiment, the preferred wavenumber at the onset of

pattern formation is non-zero [64, 77]. We consider this more complicated case in

Chapters 3 and 4, and derive the coupled forced complex Ginzburg–Landau equations:

∂A

∂T
= (ρ+ iν)A− 2(α + iβ)

∂2A

∂X2
+ vg

∂A

∂X
+ C

(
|A|2 + 2|B|2

)
A+ iΓB̄.

∂B

∂T
= (ρ+ iν)B − 2(α + iβ)

∂2B

∂X2
− vg

∂B

∂X
+ C

(
2|A|2 + |B|2

)
B + iΓĀ,

(1.2)

whereA andB represent the amplitudes of slowly varying left- and right-travelling waves;

and ρ, ν, α, β, vg and Γ are real parameters and measure the dissipation, detuning,

diffusion, dispersion, group velocity and forcing of the wave; C is a complex parameter.

Throughout this thesis we will seek localized oscillatory states in a PDE with explicit

time dependent parametric forcing that is based on the PDE in [70]. We will present this

PDE model in section 1.4. We find excellent agreement between oscillons in this PDE

and steady structures found in appropriate amplitude equations; this is the first complete

study of oscillatory localized solutions in a PDE with explicit time dependent forcing.

In the next sections we will discuss some basic theoretical approaches in order to study

localized states.

1.2 Theoretical approaches

A fundamental theoretical approach to studying pattern-forming problems is based on

describing the slow dynamics of a driven system as a phase transition or symmetry-

breaking bifurcation. The basic idea is to study the transition in stability of a trivial state



Chapter 1. Introduction 7

as a control parameter (in our study, F ) passes through its critical value, with the critical

value determined from a linear stability analysis. The analysis then lies in the study of

weakly nonlinear dynamics of the problem slightly beyond the instability point.

If we consider the linearized problem about the trivial state and examine the stability of

Fourier modes eσt+ikx where k is a wavenumber, the trivial state is linearly stable if the

real part of the growth rate σ is negative for all k. An instability corresponds to the real

part of σ (for some wavenumber) first passing through zero; we define the corresponding

F value as F = Fc. The critical wavenumber |k| = kc for which this determines whether

the bifurcation is finite-wavelength (kc > 0) or uniform (kc = 0). The amplitude of the

unstable modes will grow exponentially until nonlinear effects become important.

The theoretical analysis of pattern-forming systems can be often described by reducing the

governing equations to their amplitude equations (equations for the nonlinear evolution

of the amplitude of the unstable modes) by studying dynamics between different modes:

active modes, which are growing, and passive modes, which are decaying, or neutrally

stable modes, which are neither growing nor decaying. Amplitude equations have become

an important tool in the study of pattern formation problems. They have been successfully

applied to a wide range of physical systems. Amplitude equations are often studied

as general models for pattern formation phenomena as they are the simplest nontrivial

models that enjoy the correct properties. In large or infinite boxes, the amplitude equations

are known as envelope equations. In this case the behavior of the active modes is

modulated by the envelope over a slow timescale and a large spatial scale [62]. Often

the term amplitude equation is used to refer to both amplitude and envelope equations.

Fourier modes of the form ei(Ωt+kx), with real frequency Ω and wavenumber k, are

travelling waves, and move from place to place with constant speed, and transport energy.

Standing waves refer to waves that remain in a constant position. They can arise as a result

of interference between two waves travelling in opposite directions. When the amplitude

of the wave is modulated, the variation in the amplitude is called the envelope of the wave.
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Modulated waves can vary in space and time.

The behavior of a system near the bifurcation point with a slowly varying envelope was

studied by Newell and Whitehead [63] and Segel [75]. They investigated the formation of

stationary patterns in convection systems. Amplitude equations also appear in the work

of Ginzburg and Landau, though their study was in superconductivity [35].

In this thesis, we use weakly nonlinear analysis in order to derive the amplitude equations

of a particular PDE model. We will briefly talk about the procedure of this method in the

next section.

1.2.1 Weakly nonlinear analysis

The governing equations of motion in most pattern-formation systems are nonlinear

and can not be solved analytically. Weakly nonlinear analysis is a common approach

to analyzing such equations, dating back to the middle of the last century [56]. The

presentation of the method in this section follows [41,88]. We consider a nonlinear system

of the form

LU = fnon(U, x, t, F ), (1.3)

whereU(x, t) is a (vector-valued) complex function, L is a (matrix) linear operator (which

can include the forcing F and differentiation in time and space), and fnon is a function

that contains the nonlinear and forcing terms. We assume that F is the control parameter

of the system (1.3). Usually, the zero flat state loses stability at a critical value F = Fc,

and the critical eigenfunction can have zero or non-zero wavenumber and frequency.

Weakly nonlinear theory is a method that is used for studying the dynamics of a system

when F is close to the critical value Fc. Thus, the amplitude of the perturbations is just

large enough for the nonlinear terms to become relevant. In this case there are only a

few unstable modes. The purpose of using weakly nonlinear analysis is to get a set of

reduced amplitude equations that describes the motion of the governing equation, and
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which captures the nonlinear interaction between the few unstable modes.

However, using weakly nonlinear theory can be very tricky to approach. The difficulty

comes from the fact that there are a number of ways of constructing weakly nonlinear

equations, and also because the methodology and the result are not unique. However,

the key is to determine, ahead of time, the type of dynamics we aim for. Over time, it

gets easier to do the reduction by experience and practice. Additionally, the method will

determine whether a subcritical or supercritical bifurcation occurs. A small parameter is

introduced, using the distance above the bifurcation point |F − Fc| in a multiple scales

analysis. Therefore, we begin the analysis with the near-threshold condition F = Fc(1 +

ε2F2), where 0 < ε� 1.

In order to modulate the envelope of the wave eikcx, so that the amplitude of the governing

equation varies in slow time and slow space, we apply an appropriate multiple scales

analysis. Thus we introduce the temporal and spatial variables, T = εit and X = εjx, for

some integers i and j. We then expand the variable U(x, t) as series in powers of ε:

U =
∞∑

m=1

εmUm, (1.4)

where Um is O(1) complex functions for all m ∈ Z+.

We substitute (1.4) into (1.3), and then we solve the problems that occur at successive

orders of ε. The linear analysis appears at the lowest order of ε. As we mentioned before,

it takes some thought to get the scaling right (selecting correct values of i and j) until

eventually we end up with the required nonlinear amplitude equation.

At O(ε), the linear problem arises

LU1 = 0, (1.5)

which normally has a non-zero explicit solution that contains a combination of

components evolving over the fast scales of space x and time t, multiplied by the
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modulation of the amplitudes in slow space and time. At higher order of ε, we can

determine the evolution of these amplitudes. At a specific order (m) of ε, we get problems

of the following form

LUm = fmnon, (1.6)

where fmnon refers to the slow derivatives, forcing, and nonlinear terms at O(εm). We must

ensure that there are no resonant terms at the equation of Um, so that Um is bounded.

Another way to investigate this problem is to look at the adjoint linear operator of (1.5).

The adjoint linear operator L† is defined by

〈f(x, t), Lg(x, t)〉 = 〈L†f(x, t), g(x, t)〉, (1.7)

for all sufficiently smooth functions f and g, where 〈f(x, t), g(x, t)〉 is the inner product

given by

〈
f(x, t), g(x, t)

〉
=

1

Λψ

∫

Λ

∫

ψ

f̄(x, t)g(x, t)dtdx,

where f̄ is the complex conjugate of f , Λ is the spatial domain, and ψ is the temporal

domain. The procedure we must follow requires the imposition of solvability conditions,

applied through the Fredholm Alternative Theorem [46]. This theorem says that for a

bounded linear operator L with a problem of the form

Lu = f, and L†v = g (1.8)

for some continuous functions f and g, one of the following holds:

• either the inhomogeneous equations (1.8) have unique solutions u and v

respectively, and the corresponding homogeneous equations,

Lu = 0, and L†v = 0
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have only the trivial solutions u = 0 and v = 0.

• or the homogeneous equations

Lu = 0, and L†v = 0,

have the same number of linearly independent solutions. In this case,

inhomogeneous equations (1.8) have a solution if and only if f and g satisfy

〈v, f〉 = 0, and 〈g, u〉 = 0, (1.9)

for each u, v satisfying L†v = 0 and Lu = 0.

In our study in this thesis, the operator L contains differential operator and is hence

unbounded. However, we can make L bounded by choosing appropriate boundary

condition and restricting its domain to an appropriate function space [37]. We will not

consider these functional analytic details in this thesis.

As we explained above, equation (1.5) has a non-zero solution, so it is the second of these

alternatives that applies to weakly nonlinear theory. Therefore, if LUm = fmnon has a

solution, then

〈V, fmnon〉 = 〈V, LUm〉 = 〈L†V, Um〉 = 0, (1.10)

for any non-zero V that satisfies L†V = 0. This is often called the solvability condition,

and having imposed this condition, (1.6) can be solved for Um. It is equations of the form

(1.10) that lead to the amplitude equations.

We do not explicitly outline the weakly nonlinear method and derivation of the solvability

conditions for the parametrically forced PDE of interest here. We will give direct

derivation and application of solvability conditions in Chapter 2 and Chapter 3.
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1.3 Localized states in the Swift–Hohenberg equation

There have been many studies in recent years of the Swift–Hohenberg equation, which

is a model for pattern-forming features introduced by Swift and Hohenberg [78], in their

study of random thermal fluctuations in Boussinesq convection in the limit of an infinite

domain. Additionally, it is considered as a generic model of pattern formation:

∂tu = ru− (1 + ∂2
x)

2u+N(u; b), (1.11)

where u(x, t) is a real scalar variable that represents the pattern-forming activity, r and b

are real parameters, andN(u; b) refers to nonlinear terms. There are two common choices

of the nonlinear terms N(u; b) that produce the essential element of finding localized

states, bistability: the quadratic–cubic nonlinearity N23(u; b) = bu2 − u3 and the cubic–

quintic nonlinearity N35(u; b) = bu3 − u5. These nonlinear terms allow a subcritical

bifurcation of a small amplitude state and stability of a large amplitude state. Equations

such as the Swift–Hohenberg equation have the advantage that they are simple enough

to be studied analytically in detail, while having the same qualitative pattern formation

features that can be observed in experiments or more realistic systems. It is a variational

model in time and the steady form of the equation is conservative in space.

In the Swift–Hohenberg equation with N23, a common approach is to consider a fixed b

and to treat r as the primary bifurcation parameter [12]. The quadratic term allows small

amplitude destabilization, while the negative cubic term gives large amplitude stability.

The trivial state u(x, t) = 0 exists and is linearly stable for all values of bwhen the control

parameter r is negative. The trivial solution undergoes a pattern-forming instability when

it loses stability at r = 0, and Fourier modes eikx with wavenumber k close to one

become unstable for positive r. At r = 0, the secondary parameter b identifies the type

of criticality of the pattern-forming instability. The bifurcation diagram is supercritical if

b2 < 27
38

and subcritical if b2 > 27
38

. The Swift–Hohenberg equation with cubic–quintic

nonlinearity N35, has the same linear stability properties as the quadratic–cubic equation.
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The pattern-forming pitchfork bifurcation is subcritical when b is positive.

The Swift–Hohenberg equation in both cases of quadratic–cubic and cubic–quintic

nonlinearities has some important symmetries. In both cases, the model has translation

symmetry and is reversible, that it is equivariant under spatial reflections (x, u) →
(−x, u). The model with the N35 nonlinearity has in addition the symmetry (x, u) →
(x,−u).

Localization mechanisms were first introduced in one dimension by Pomeau in [66],

who showed that localized states require a bistability between the trivial and cellular

pattern states in a subcritical bifurcation to exist. The Swift–Hohenberg equation with

cubic–quintic nonlinearity was first studied by Sakaguchi and Brand in [71, 73], where

they showed that stable localized solutions with a large range of lengths can be found.

Sakaguchi and Brand did not discuss how the different branches of localized solutions

are connected. Much of the current understanding of localized states is due to work

by Burke and Knobloch [12–14]. Stationary localized states occur in the parameter

region where the trivial state is stable, and so bistability is an important ingredient for

the existence of localized states. In one space dimension, examples of localized states

in the Swift–Hohenberg model with N23 nonlinearity from [11] are presented in Figure

1.4. It was found that when the domain size increases, more turns appear in the snaking

curve [27]. Burke and Knobloch investigated spatially localized states in the Swift–

Hohenberg equation withN35 nonlinearity in one spatial dimension [14], which organized

in a characteristic of snakes-and-ladders structure.

Localized states also exist in the extended Swift–Hohenberg equation with more general

nonlinearity N(u; b) that include terms such as ux, uxx, and uxxx [11]. These terms can

destroy the variational structure of the Swift–Hohenberg equation; nonetheless, a snaking

bifurcation diagram can still be found.

In two dimensions, localized stationary axisymmetric solutions of the Swift–Hohenberg

equation were studied by Lloyd and Sandstede in [52], in which the existence of radial
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Figure 1. (a) Bifurcation diagram of stationary solutions to (1.1) at b = 1.8, plotted in terms of the norm
||u||L2 = (

∫
Ω

u2(x)dx)1/2. Shading indicates the snaking region. The snaking branches L0 and L1 include
even-symmetric localized states; the arrows indicate that on Ω = R the snaking continues indefinitely. The rung
branches which cross-link the snaking branches are also shown. The branch P of spatially periodic patterns
satisfies H = 0 and includes the Maxwell point M at which F = 0. The norm of solutions on P is rescaled
so that this branch can be displayed on the same scale as the branches of localized states. Solid/dashed curves
indicate stable/unstable solutions. (b) Profiles from several saddle-node bifurcations of the snaking branches;
profiles (i), (iii), and (v) are from L0, and profiles (ii), (iv), and (vi) are from L1.

and change stability at each saddle-node bifurcation; profiles from the segments of the snaking
branches that slant “up and to the right” on the bifurcation digram in Figure 1 are stable,
and those that slant “up and to the left” are unstable. All of the asymmetric profiles from
the rungs are unstable.

The variational and conservative properties of the Swift–Hohenberg equation help consid-
erably in understanding these localized states and the associated snaking bifurcation struc-
ture [7]. For example, the fact that the spatial dynamics associated with (1.1) is conservative
determines the wavelength (i.e., the spatial period) of the pattern within the localized states.
At fixed r, there typically exists an entire family of stationary, spatially periodic patterns
uP(x; k) parameterized by the wavenumber k. The particular pattern that is selected to ap-
pear within the localized state must lie in the level set H = 0. Figure 1 includes the branch
P of spatially periodic states defined by H = 0, and the pattern wavenumber k varies with
r along this branch to satisfy the H = 0 constraint. Careful measurement of the numeri-
cally computed localized states confirms that this branch of patterns correctly predicts the
wavenumber variation k(r) within the localized states, at least when the localized states are
sufficiently wide. The variational property of (1.1) is also useful in understanding the localized
states. The free energy F of the uniform-amplitude patterns varies along P. The so-called
Maxwell point M is the r value at which the pattern on P has the same free energy as the

Figure 1.4: Bifurcation diagram of the Swift–Hohenberg equation with the N23

nonlinearity from [11] at b = 1.8. The shaded region is where snaking occurs. L0 and L1

indicate the two snaking branches. P is the periodic spatial pattern curve, which includes
the Maxwell point M . The right panel (b) gives several localized solutions along the two
snaking branches. Solid line presents stable branches, and dashed line presents unstable
branches.

pulse, was demonstrated analytically near the pattern-forming instability of the trivial

state. Their numerical investigation found snaking diagrams in the subcritical region,

with localized radial structures of rings and spots.

However, in our research we study localized states in a non-variational PDE problem that

we present in the next section.

1.4 The PDE model

The aim of this study is to investigate localized solutions in a PDE with parametric

forcing, introduced by Rucklidge and Silber in [70] as a generic model of parametrically
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forced systems such as the Faraday wave experiment. This model is not the same as

the Faraday wave experiment, but it is invented in a way that the linear theory can be

reduced to the Mathieu equation as in the Faraday wave experiment. There is no derivation

between the PDE model and Faraday wave experiment. The model PDE is given by

Ut = (µ+ iω)U+(α+ iβ)Uxx+(γ+ iδ)Uxxxx+Q1U
2 +Q2|U |2 +C|U |2U+ i<(U)f(t),

(1.12)

where U(x, t) is a complex function, µ < 0 is the distance from onset of the oscillatory

instability, ω, α, β, γ, and δ are real parameters, and Q1, Q2, and C are complex

parameters. The forcing function f(t) is a real 2π periodic function in time.

In this model the dispersion relation can be readily controlled, and the nonlinear terms are

chosen to be simple in order that the weakly nonlinear theory and numerical solutions can

be computed easily. The model shares some important features with the Faraday wave

experiment but does not have a clear physical interpretation. The forcing term is chosen

to be iF cos(2t)<(U) in order to result the Mathieu equation. The frequency and the

growth rate depend on wavenumber. It has quadratic nonlinear terms, so it allows three-

wave interactions. Additionally, the PDE model has a Hamiltonian limit, as does the

fluid problem with low viscosity. The linearized problem reduces to the damped Mathieu

equation in the same way that hydrodynamic models of the Faraday instability reduce to

this equation in the inviscid limit [7] when viscusity is zero and the depth is infinety.

The model was introduced in order to understand how quasipatterns are stabilized in

the Faraday wave experiment. Here, we use the same model (with different choices of

parameters) to interpret the oscillons that are found in the Faraday wave experiment.

1.5 Structure of the thesis

This thesis contains five chapters, including this chapter. We begin our investigations

in Chapter 2 by considering the case where the wavenumber k is zero at onset. We
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start our analysis by this case because we know that localized states can be found.

Analytically, in the weak forcing, weak damping, weak detuning and small amplitude

limit, we do a reduction of the model PDE (1.12) to its amplitude equation, the forced

complex Ginzburg–Landau equation (1.1). Furthermore, we reduce the forced complex

Ginzburg–Landau equation to the Allen–Cahn equation near onset, which has exact sech

localized solutions. We also extend this analysis to the strong forcing case recovering the

Allen–Cahn equation directly from the model PDE without the intermediate step. We find

excellent agreement between numerical localized solutions of the model PDE, localized

solutions of the forced complex Ginzburg–Landau equation, and localized solutions of

the Allen–Cahn equation. This is the first time that a PDE with time dependent forcing

has been reduced to the Allen–Cahn equation, and its localized oscillatory solutions

quantitatively studied. In this chapter the preferred wavenumber is zero, so results are

directly relevant to localized patterns found in Turing systems.

In Chapter 3 we investigate the existence of localized oscillons with non-zero preferred

wavenumber. This chapter includes work that is more relevant to the Faraday wave

experiment, where the preferred wavenumber at onset is non-zero. The PDE model

(1.12) is reduced to the coupled forced complex Ginzburg–Landau equations (1.2) in

the limit of weak damping, weak detuning, weak forcing, small group velocity, and

small amplitude. We find localized structures in the coupled forced complex Ginzburg–

Landau equations numerically for the first time. Near onset, we reduce the coupled forced

complex Ginzburg–Landau equations (1.2) asymptotically to the real Ginzburg–Landau

equation, which also has exact sech localized solutions. We compare quantitatively the

localized solutions from the real Ginzburg–Landau equation with oscillons that we find

numerically in the PDE model.

In Chapter 4, we find examples of localized oscillons in the PDE model with cubic–

quintic nonlinearity in the strong damping, strong forcing and large amplitude case.

Numerical results we present in this chapter were found by time-stepping. In one spatial

dimension, we find evidence for two snaking localization curves. In two dimensions, we
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give examples of axisymmetric and non-axisymmetric oscillons.

We conclude and discuss future work in Chapter 5.
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Chapter 2

Localized patterns with zero

wavenumber

2.1 Introduction

The complex Ginzburg–Landau (CGL) equation is the normal form description of pattern

forming systems close to a Hopf bifurcation with preferred wavenumber zero [20].

Adding time dependent forcing to the original problem results in a forcing term in

the CGL equation, the form of which depends on the ratio between the Hopf and

driving frequencies. When the Hopf frequency is half the driving frequency (the usual

subharmonic parametric resonance), the resulting PDE is known as the forced complex

Ginzburg–Landau (FCGL) equation [15]:

AT = (µ̃+ iν)A+ (1 + iκ)AXX − (1 + iρ)|A|2A+ ΓĀ, (2.1)

where all parameters are real, and µ̃ is the distance from the onset of the oscillatory

instability, ν is the detuning between the Hopf frequency and the driving frequency, κ

represents the dispersion, ρ is the nonlinear frequency correction, and Γ is the forcing

amplitude. The complex amplitude, A(X,T ), represents the oscillation in a continuous

system near a Hopf bifurcation point in one spatial dimension. In the absence of forcing,
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Figure 2.1: Localized solutions of the FCGL equation (2.1) with µ̃ = −0.5, ρ = 2.5,
ν = 2, κ = −2, and Γ = 1.496; the bifurcation point is at Γ0 = 2.06, following [15].

the state A = 0 is stable, so µ̃ < 0. The amplitude of the response is |A|, and arg(A)

represents the phase difference between the response and the forcing.

The FCGL equation is a valid description of the full system in the limit of weak forcing,

weak damping, small amplitude oscillations and near resonance [21, 31]. This model is

known to produce localized solutions in 1D [15] and in 2D [61]. It should be noted that

these localized solutions have large spatial extent (in the limits mentioned above) and so

are different from the oscillons observed in fluid and granular experiments. In spite of

the cubic coefficient in (2.1) having negative real part, the initial bifurcation at Γ = Γ0 is

subcritical, the unstable branch turns around in a saddle-node bifurcation, and so there is a

non-zero stable solution (the flat state) close to Γ0. The localized solution is a homoclinic

connection from the zero state back to itself (Figure 2.1). Further from Γ0, there are fronts

(heteroclinic connections) between the zero and the flat state and back.

In this chapter we simplify the PDE (1.12) by removing quadratic terms, by taking

the parametric forcing to be cos(2t), where t is the fast time scale, by working in one

rather than two spatial dimensions, and by removing fourth-order spatial derivatives. The



Chapter 2. Localized patterns with zero wavenumber 20

resulting model PDE is:

Ut = (µ+ iω)U + (α + iβ)Uxx + C|U |2U + i<(U)F cos(2t), (2.2)

where the forcing amplitude F is real, and C is a complex parameter.

We first seek oscillon solutions of (2.2) by choosing parameter values where (2.2) can

be reduced to the FCGL equation (2.1). In particular, the preferred wavenumber will be

zero, and we will take F to be small, µ < 0 to be small, and ω will be close to 1. We will

also consider strong forcing and damping below. In the Faraday wave experiment the

k = 0 mode is neutral and cannot be excited, which means experimental oscillons can

only be seen with non-zero wavenumbers. This indicates a qualitative difference between

this choice of parameters for the PDE model and the Faraday wave experiment.

Here we study equation (2.2) in two ways. First, in Section 2.2 we reduce the model

PDE asymptotically to an amplitude equation of the form of the FCGL equation (2.1) by

introducing a multiple scales expansion. The numerically computed localized solutions

of the FCGL equation (e.g., Figure 2.1) will then be a guide to finding localized solutions

in the model PDE. Second, we solve the model PDE itself numerically using Fourier

spectral methods and Exponential Time Differencing (ETD2) [23]. We are able to

continue the localized solutions using AUTO [6], and we make quantitative comparisons

between localized solutions of the model PDE and the FCGL equation. In Sections 2.3

and 2.5 we will do reductions of the FCGL equation and the PDE to the Allen–Cahn

equation [1, 34] in the weak and strong damping cases respectively; the Allen–Cahn

equation has exact localized sech solutions. We give numerical results in Section 2.4 and

we conclude in Section 2.6. The results of this chapter appear in [2].
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Figure 2.2: The growth rate of equation (2.2) with µ = −0.005 and α = 1.

2.2 Derivation of the amplitude equation: weak damping

case

In this section we will take the weak forcing, weak damping, weak detuning and small

amplitude limit of the model PDE (2.2), and derive the FCGL equation (2.1). Before

taking any limits and in the absence of forcing, let us start by linearizing (2.2) about

U = 0, and consider solutions of the form U(x, t) = eσt+ikx, where σ is the complex

growth rate of a mode with wave number k. The growth rate σ is given by

σ = µ− αk2 + i(ω − βk2), (2.3)

where σ = σr + iσi. Figure 2.2 presents the real part of the growth rate σr. The forcing

F cos(2t) will drive a subharmonic response with frequency 1; by choosing α > 0 and ω

close to 1, we can arrange that a mode with k close to zero will have the largest growth

rate. With weak forcing we also need µ, which is negative, to be close to zero, otherwise
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all modes would be damped. In this case, we are close to the Hopf bifurcation that occurs

at µ = 0.

We now consider the linear theory of the forced model PDE:

Ut = (µ+ iω)U + (α + iβ)Uxx + iRe(U)F cos(2t), (2.4)

This can be transformed to a Mathieu-like equation [70]. The normal expectation would

be that cos(2t) would drive a subharmonic response at frequencies +1 and −1. However,

because ω is close to 1, the leading behavior of (2.4) is

∂

∂t
U = iU, or `1U =

(
∂

∂t
− i
)
U = 0.

The component of U at frequency −1 cancels at leading order, while the component at

frequency +1 dominates. Furthermore, since ω = 1 + ν with ν small, and since the

strongest response is at or close to wavenumber k where ω − βk2 = 1, modes with

wavenumber k = 0 will be preferred. Therefore, the leading solution is proportional to

eit, and so we will seek solutions of the form U(x, t) = Aeit, where A is a complex

constant. The argument of A relates to the phase difference between the driving force and

the response, and is not arbitrary. Later, we will allow A to depend on space and time.

A necessary condition for the existence of localized states is that the trivial states have at

least one spatial eigenvalue with positive real part and one with negative real part. Thus,

in Figure 2.3 we show the motion of the eigenvalues in the complex plane as F varies.

Figure 2.3 (a) shows the spatial eigenvalue structures of the trivial state that is determined

by linearizing the PDE model (2.2). When F < F0 there are four eigenvalues, two there

are approching zero as well as 12 others. As F continues to increase one of the pairs of

eigenvalues moves towards the origin and collides at zero when F = F0. The uniform flat

state A±uni bifurcates from the A = 0 state at F = F0, so that this collision corresponds

to the bifurcation. When F > F0 the zero eigenvalues spilt along the imaginary axis.
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Therefore, spatially localized states may exist everywhere in F < F0. Figure 2.3 (b)

presents the spatial eigenvalues of the non-trivial flat state. All these eigenvalues were

computed using AUTO. In fact, AUTO computes Floquet multipliers in space at each

value of F , and the spatial eigenvalues are then log
(Floquet multipliers

Lx

)
, where Lx is

the domain size.

To apply standard weakly nonlinear theory, we need the adjoint linear operator `†1. First

we define an inner product between two functions f(t) and g(t) by

〈
f(t), g(t)

〉
=

1

2π

∫ 2π

0

f̄(t)g(t)dt, (2.5)

where f̄ is the complex conjugate of f . With this inner product, the adjoint operator `†1,

defined by
〈
f, `1g

〉
=
〈
`†1f, g

〉
, is given by

`†1 = i− d

dt
.

The adjoint eigenfunction is then U † = eit. We take the inner product of (2.4) with this

adjoint eigenfunction:

0 =
〈
U †, `1U

〉
+
〈
U †, (µ+ iν)U + iRe(U)F cos(2t)

〉

= 0 +
1

2π

∫ 2π

0

(µ+ iν)Ue−it +
iF

4
(U + Ū)(eit + e−3it)dt.

We write U =
∑+∞

j=−∞ Uje
ijt, and Ū =

∑+∞
j=−∞ Ūje

−ijt, so

0 =
1

2π

∫ 2π

0

(µ+ iν)
+∞∑

j=−∞

Uje
i(j−1)t

+
iF

4

(
+∞∑

j=−∞

Uje
i(j+1)t + Uje

i(j−3)t + Ūje
i(−j+1)t + Ūje

i(−j−3)t

)
dt

= (µ+ iν)U1 +
iF

4

(
U−1 + U3 + Ū1 + Ū−3

)
.
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Figure 2.3: Temporal stability of (a) the zero and (b) the non-zero flat solutions as a
function of the forcing amplitude F . Solid (dotted) lines represent stable (unstable)
solutions in time. The insets represent the spatial eigenvalues in the complex plane, which
do not govern temporal stability.
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Since the frequency +1 component of U dominates at onset, as discussed above, we retain

only U1 and Ū1, which satisfy


µ+ iν iF

4

− iF
4

µ− iν




U1

Ū1


 =


0

0




This system has a non-zero solution when its determinant is zero; this gives the critical

forcing amplitude F0 = 4
√
µ2 + ν2. This equation also fixes the phase of U1.

To perform the weakly nonlinear calculation, we introduce a small parameter ε and make

the substitutions: ω = 1 + ε2ν, F −→ ε2F , µ −→ ε2µ, and expand the solution U in

powers of ε as

U = εU1 + ε2U2 + ε3U3 + ..., (2.6)

where U1, U2, U3, .... are O(1) complex functions.

At O(ε), we get `1U1 = ( ∂
∂t
− i)U1 = 0, which has solutions of the form

U1 = A(X,T )eit,

where the amplitude A is O(1), and X and T are slow space and time variables: T = ε2t,

and X = εx. At O(ε2), we have U2(x, t) = 0. At O(ε3), equation (2.2) is reduced to

`1U3 +
∂U1

∂T
= (µ+ iν)U1 + (α + iβ)

∂2U1

∂X2
+ C|U1|2U1 + iF cos(2t)Re(U1),

We take the inner product with U †1 , and use
〈
U †1 , `1U3

〉
= 0 to find the amplitude equation

for a long-scale modulation:

AT = (µ+ iν)A+ (α + iβ)AXX + C|A|2A+
iF

4
Ā. (2.7)

We can do a rescaling of the equation (2.7) in order to bring it to the standard FCGL form

by rotating A −→ Aei
π
4 , which removes the i in front of the Ā term but does not affect



Chapter 2. Localized patterns with zero wavenumber 26

any other term. With this, the amplitude equation of the model PDE reads

AT = (µ+ iν)A+ (α + iβ)AXX + C|A|2A+ ΓĀ, (2.8)

where Γ = F
4

. A similar calculation in two dimensions yields the same equation but with

AXX replaced by AXX + AY Y .

One can see that the amplitude equation (2.8) takes the form of the FCGL equation (2.1).

We are now in a position to use the results from [15], where they find localized solutions of

(2.1), to look for localized solutions of the model PDE (2.2). The stationary homogeneous

solutions of (2.8), which we call the flat states, can easily be computed. These satisfy:

0 = (µ+ iν)A+ C|A|2A+ ΓĀ.

To solve this steady problem we look for solutions of the form A = Reiφ, where R is real

and φ is the phase. Dividing by Reiφ results in:

0 = (µ+ iν) + CR2 + Γe−2iφ. (2.9)

We can then separate the real and imaginary parts and eliminate φ by using sin2 φ +

cos2 φ = 1 to get a fourth order polynomial:

(C2
r + C2

i )R4 + 2(µCr + νCi)R
2 − Γ2 + µ2 + ν2 = 0, (2.10)

where C = Cr + iCi. This can be solved for R2, from which φ can be determined using

(2.9).

Examination of the polynomial (2.10) shows that when the forcing amplitude Γ reaches

Γ0 =
√
µ2 + ν2, a subcritical bifurcation occurs provided that µCr+νCi < 0. A flat state

A−uni is created, which turns into the A+
uni state at Γd =

√
− (µCr+νCi)2

(C2
r+C2

i )
+ µ2 + ν2, when a

saddle-node bifurcation occurs. We will reduce (2.8) further in Section 2.3 by assuming
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we are close to onset, and finding explicit expressions for localized solutions.

2.3 Reduction to the Allen–Cahn equation: weak

damping case

The FCGL equation (2.8) can be reduced to the Allen–Cahn equation [15, Appendix A]

by setting Γ = Γ0 + ε21λ, where Γ0 =
√
µ2 + ν2 is the critical forcing amplitude, λ is the

bifurcation parameter, and ε1 is a new small parameter that controls the distance to onset.

We expand A in powers of ε1 as

A(X,T ) = ε1A1(X,T ) + ε21A2(X,T ) + ε31A3(X,T ) + ...,

where A1, A2, A3 are O(1) complex functions. We further scale ∂
∂T

to be O(ε21) and ∂
∂X

to be O(ε1).

At O(ε1) we get

0 = (µ+ iν)A1 +
√
µ2 + ν2Ā1,

which defines a linear operator


 µ+ iν

√
µ2 + ν2

√
µ2 + ν2 µ− iν




A1

Ā1


 =


0

0




The solution is A1 = B(X,T )eiφ1 , where B is real, and the phase φ1 is fixed by e−2iφ1 =

− µ+iν√
µ2+ν2

. This gives

φ1 = tan−1

(
µ+

√
µ2 − ν2

ν

)
,

At O(ε31), we have

BT e
iφ1 = (µ+ iν)A3 + (α + iβ)BXXe

iφ1 + CB3eiφ1 + λBe−iφ1 + Γ0Ā3. (2.11)
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We take the complex conjugate of (2.11) and multiply this by e−iφ1 , and then add (2.11)

multiplied by eiφ1 to eliminate A3. With this, equation (2.8) reduces to the Allen–Cahn

equation

BT =
−λ
√
µ2 + ν2

µ
B +

(αµ+ βν)

µ
BXX +

µCr + νCi
µ

B3. (2.12)

We can readily find localized solutions of (2.12) in terms of hyperbolic functions. This

leads to an approximate oscillon solution of (2.8) of the form

A =

√
2(Γ− Γ0)

√
µ2 + ν2

µCr + νCi
sech



√

(Γ− Γ0)
√
µ2 + ν2

(αµ+ βν)
X


 eiφ1 , (2.13)

provided Γ < Γ0, µ < 0, µCr + νCi < 0, and αµ + βν < 0. Note that in the PDE (2.2)

we have the assumption U1 = εAeit, therefore the spatially localized oscillon is given

approximately by

Uloc =

√
(F − F0)

√
µ2 + ν2

2(µCr + νCi)
sech



√

(F − F0)
√
µ2 + ν2

4(αµ+ βν)
x


 ei(t+φ1), (2.14)

again provided F < F0. We compare the approximate solution Uloc with a numerical

solution of the PDE below, as a dotted line in Figure 2.9(a).

2.4 Numerical results: weak damping case

In this section, we present numerical solutions of (2.1) (in the form written in (2.8)) and

(2.2), using the known [15] localized solutions of (2.1) to help find similar solutions of

(2.2), and comparing the bifurcation diagrams of the two cases.

We use both time-stepping methods and continuation on both PDEs. For time-stepping,

we use a pseudospectral method, using FFTs with up to 1280 Fourier modes, and the

exponential time differencing method ETD2 [23], which has the advantage of solving the

non-time dependent linear parts of the PDEs exactly. We treat the forcing term (ΓĀ and
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Figure 2.4: The truncated Fourier series in time of a localized solution of the PDE (2.2),
showing that eit, with frequency +1, is the most important mode, that frequencies −3,
−1, and +3 have similar importance, and that higher frequency modes have amplitudes
at least a factor of 100 smaller. The parameter values are µ = −0.005, α = 1, β = −2,
ν = 2, F = 0.0579, and C = −1− 2.5i.

Re(U) cos(2t)) with the nonlinear terms.

For continuation, we use AUTO [6] (see Appendix A), treating x as the time-like

independent variable, to find steady solutions of the FCGL (2.8). For the PDE (2.2),

we represent solutions with a truncated Fourier series in time with the frequencies −3,

−1, 1 and 3 (see Figure 2.4). The choice of these frequencies comes from the forcing

Re(eit) cos(2t) in the PDE, taking U = eit as the basic solution, as described above.

Following [15] we will take illustrative parameter values for the amplitude equation

(2.8): µ = −0.5, α = 1, β = −2, and C = −1− 2.5i, and solve the equation on domains

of size LX = 20π. For (2.2), we use ε = 0.1, which implies µ = −0.005, F = 0.04Γ,

ω = 1.02, Lx = 200π, and use the same α, β, and C. We show examples of localized

solutions in the FCGL equation and the PDE (2.2) in Figure 2.5, demonstrating the
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Figure 2.5: (a) Example of a localized solution to the FCGL equation (2.7) with µ =
−0.5, and F = 5.984. (b) Example of a localized solution to the PDE model (2.2) with
µ = −0.5ε2, and F = 5.984ε2, where ε = 0.1. In both models α = 1, β = −2, and
ν = 2, and C = −1− 2.5i. Note the factor of ε in the scalings of the two axes.

quantitative agreement as expected between the two.

In all bifurcation diagrams we present solutions in terms of their norms

N =

√
2

Lx

∫ Lx

0

|U |2 dx,

We computed (following [15]) the location of these stable localized solutions in the

(ν,Γ) parameter plane, shown in green in Figure 2.6. In this figure one can see that the

region of localized solutions starts where µCr + νCi = 0, when the primary bifurcation

changes from supercritical to subcritical [29, 45], and gets wider as ν increases. We also

show the bistability region of the amplitude equation between the primary (Γ0) and the

saddle-node (Γd) bifurcations.

Part of the difficulty of computing localized solutions in the PDE comes from finding
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Figure 2.6: The (ν,Γ)-parameter plane for FCGL equation (2.8), µ = −0.5, α = 1,
β = −2, and C = −1− 2.5i, recomputed following [15]. Stable localized solutions exist
in the shaded green region. The dashed red line is the primary pitchfork bifurcation at
Γ0 =

√
µ2 + ν2, and the solid black line is the saddle-node bifurcation at Γd.

parameter values where these are stable. In the FCGL equation with ν = 2, stable

localized solutions occur between Γ∗1 = 1.4272 and Γ∗2 = 1.5069. In the PDE with

parameter values as above, we therefore estimate that the stable localized solutions should

exist between F ∗1 = 0.04Γ∗1 = 0.0573 and F ∗2 = 0.0600. We found by time-stepping

a stable oscillatory spatially localized solution in the PDE model (2.2) at F = 0.058

and used this as a starting point for continuation with AUTO. We found stable localized

solutions between saddle-node bifurcations, at F ∗1 = 0.05688 and F ∗2 = 0.06001, which

compares well with the prediction from the FCGL equation. In addition, the bistability

region was determined by time-stepping to be between Fd = 0.04817 and F0 = 0.08165.

As ν is varied, the grey shaded region in Figure 2.7 shows the region where stable

localized solutions exist in the PDE.

As the branch of localized solutions is continued the central flat part gets wider as the

parameter Γ snakes back and forth (see Figure 2.8 and 2.9). This was first described as
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Figure 2.7: The (ν, F )-parameter plane of the PDE model (2.2) with µ = −0.005, α = 1,
β = −2, and C = −1 − 2.5i. Stable localized solutions exist in the shaded grey region.
The dashed black line is the primary pitchfork bifurcation and the dashed red line is the
saddle-node bifurcation at Fd.

homoclinic snaking by [44], and later described as collapsed snaking [58]. Figure 2.8

presents the snaking regions of the PDE model and the FCGL equation. In this figure we

rescale the PDE, so we can plot the bifurcation diagrams of the amplitude equation and

the PDE model in top of each other. The agreement is excellent. Examples of localized

solutions are given in Figure 2.9 (a)-(f) as we go along the localization curve. Our

comparison between results from the FCGL equation (2.8) in Figure 2.6 and results from

the model PDE (2.2) in Figure 2.7 shows excellent agreement.

Note the decaying spatial oscillations close to the flat state in Figure 2.9 (c)-(f): it is these

that provide the pinning necessary to have parameter intervals of localized solutions.

These parameter intervals become narrower as the localized flat state becomes wider (see

Figure 2.8) since the oscillations decay in space, in contrast with the localized solutions

found in the subcritical Swift–Hohenberg equation [13]. Figure 2.10 shows an example

of an oscillon in space and time for a period of 2π.
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Figure 2.8: The red curves correspond to bifurcation diagram of the PDE model and the
blue curves correspond to the FCGL equation. Solid (dashed) lines correspond to stable
(unstable) solutions. For the PDE we use F = 4ε2Γ. Parameters are otherwise as in
Figure 2.5. Example solutions at the points labeled (a)-(f) are in Figure 2.9. Bifurcation
point in the FCGL is Γ0 = 2.06, and in the PDE is Γ0 = 2.05.

In this study so far our calculations have been based on assuming weak damping and

weak forcing. Next, we study the PDE in the strong forcing case.

2.5 Reduction of the PDE to the Allen–Cahn equation:

strong damping case

In the strong damping, strong forcing case, the linear part of the PDE is not solved

approximately by U1 = eit. Rather, a Mathieu equation must be solved numerically to

get the eigenfunction [70]. In this case, weakly nonlinear calculations lead to the Allen–

Cahn equation directly, without the intermediate step of the FCGL equation (2.1) with its

ΓĀ forcing. The advantages of reducing the PDE to the Allen–Cahn equation are that

localized solutions in this equation are known analytically, and that demonstrates directly

the existence of localized solutions in the PDE model.
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Figure 2.9: Examples of solutions to (2.2) equation at t = 0 along the localized branch
with µ = −0.005, α = 1, β = −2, ν = 2, and C = −1 − 2.5i. Bistability region is
between F0 = 0.08165 and Fd = 0.048173, and localized oscillons branch is between
F1
∗ = 0.05688 and F2

∗ = 0.06001. (a) F = 0.07499. (b) F = 0.05699. (c)F = 0.06015.
(d) F = 0.05961. (e) F = 0.05976. (f) F = 0.05975. Dot lines represent the real (blue)
and imaginary (red) parts of Uloc.
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Figure 2.10: Example of oscillon in space and time for one period 2π with µ = −0.005,
α = 1, β = −2, ν = 2, F = 0.0579, and C = −1− 2.5i.

We write the solution as U = u + iv, where u(x, t) and v(x, t) are real functions. Thus,

equation (2.2) is written in terms of real and imaginary parts of U as

∂u

∂t
=

(
µ+ α

∂2

∂x2

)
u−

(
ω + β

∂2

∂x2

)
v + Cr(u

2 + v2)u− Ci(u2 + v2)v,

∂v

∂t
=

(
ω + β

∂2

∂x2

)
u+

(
µ+ α

∂2

∂x2

)
v + Cr(u

2 + v2)v + Ci(u
2 + v2)u+ f(t)u.

(2.15)

We begin our analysis by linearizing (2.15) about u = 0 and v = 0. We write the periodic

forcing function as f(t) = fc(t)(1 + ε21λ), where fc(t) = Fc cos(2t). Here, Fc is the

critical forcing amplitude, which must be determined numerically, and is where the trivial

solution loses stability. We seek a critical eigenfunction of the form

U = p1(t) + iq1(t), (2.16)

where p1(t) and q1(t) are real 2π-periodic functions. Note that in writing u + iv in

this form, we are taking the critical wavenumber to be zero. The analysis follows that

presented in [70], but in the current work the spatial scaling and the chosen solution are

different, again because the critical wavenumber is zero. Substituting into (2.15) at onset
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leads to [
∂

∂t
− µ

]
p1 = −ωq1,

[
∂

∂t
− µ

]
q1 = ωp1 + fc(t)p1,

(2.17)

which can be combined to give a damped Mathieu equation

[
d

dt
− µ

]2

p1 +
(
ω2 + fc(t)ω

)
p1 = 0,

or

p̈1 − 2µṗ1 +
(
µ2 + ω2 + fc(t)ω

)
p1 = Lp = 0, (2.18)

defining a linear operator

L =
∂2

∂t2
− 2µ

∂

∂t
+ (µ2 + ω2 + ωfc(t))

The critical forcing function fc(t) = Fc cos(2t) is determined by the condition that (2.18)

should have a non-zero solution p1(t), from which q1(t) is found by solving the top line

in (2.17). Using the inner product (2.5), we have the adjoint linear operator, given by

L† =
∂2

∂t2
+ 2µ

∂

∂t
+ (µ2 + ω2 + ωfc(t)).

The adjoint equation is L†p†1 = 0, where p†1 is the adjoint eigenfunction, which is

computed numerically. In order to reduce the model PDE (2.2) to the Allen–Cahn

equation, we expand solutions in powers of ε1 as

u = ε1u1 + ε21u2 + ε31u3 + ...,

v = ε1v1 + ε21v2 + ε31v3 + ...,
(2.19)

where ε1 � 1 and u1, u2, u3, ..., v1, v2, v3, ... are O(1) real functions. We introduce the

slow time variable T = ε21t and the slow space variable X = ε1x. Substituting equation

(2.19) into (2.15), the associated equations at each power of ε1 are as follows. At O(ε1),
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Figure 2.11: Examples of solutions to (2.2) in the strong damping limit with ε = 0.5,
F = 2.304, µ = −0.125, α = 1, β = −2, ν = 2, ω = 1 + νε2, and C = −1− 2.5i. The
bistability region is between F0 = 2.3083 and Fd = 1.2228. Dotted lines in (a) represent
the real (blue) and imaginary (red) parts of the analytic solution Uloc. The last panel is a
stable solution obtained by time-stepping the PDE (2.2) at F = 1.5, between (b) and (c).
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the linear argument above arises, and we have u1 + iv1 = B(X,T )(p1 + iq1), where

p1 + iq1 is the critical eigenfunction, normalized so that 〈p1 + iq1, p1 + iq1〉 = 1, and B

is a real function of X and T . Note that the phase of the response is determined by the

critical eigenfunction. At O(ε21), the linear problem arises, so there is no interesting terms

appear at this order of ε1. At O(ε31), the problem is written as

(
∂

∂t
− µ

)
u3 +

∂u1

∂T
= −ωv3 + α

∂2u1

∂X2
− β ∂

2v1

∂X2
+ Cr(u

2
1 + v2

1)u1 − Ci(u2
1 + v2

1)v1,

(
∂

∂t
− µ

)
v3 +

∂v1

∂T
= ωu3 + fc(t)u3 + λfc(t)u1 + α

∂2v1

∂X2
+ β

∂2u1

∂X2
+ Cr(u

2
1 + v2

1)v1

+ Ci(u
2
1 + v2

1)u1.

Eliminating v3, we find

Lu3 = −
(
∂

∂t
− µ

)
∂u1

∂T
+ ω

∂v1

∂T

+

(
∂

∂t
− µ

)(
α
∂2u1

∂X2
− β ∂

2v1

∂X2

)

− ω
(
α
∂2v1

∂X2
+ β

∂2u1

∂X2

)
− ωλfc(t)u1

− ω
(
Cr
(
u2

1 + v2
1

)
v1 + Ci

(
u2

1 + v2
1

)
u1

)

+

(
∂

∂t
− µ

)(
Cr
(
u2

1 + v2
1

)
u1 − Ci

(
u2

1 + v2
1

)
v1

)
.

(2.20)

We apply the solvability condition to equation (2.20) 〈p†1, Lu3〉 = 0. We substitute the

solution u1 = Bp1, and v1 = Bq1 into equation (2.20), and then we take the inner product

between p†1 and this equation. Note that we use
(
∂
∂t
− µ

)
p1 = −ωq1, so the equation can
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Figure 2.12: Bifurcation diagram of the PDE with strong forcing and strong damping
black lines represent the zero and flat states, and blue lines represent oscillons. The
parameters as in Figure 2.11. Example solution at the points labelled (a)-(d) are in Figure
2.11.

be then written as

〈
p†1, 2

(
∂

∂t
− µ

)
p1

〉
∂B

∂T
= −

〈
p†1, ωfc(t)p1

〉
λB

+

〈
p†1,

((
∂

∂t
− µ

)
(αp1 − βq1)− ω (αq1 + βp1)

)
∂2B

∂X2

〉

+

〈
p†1,−ω

(
Cr
(
p2

1 + q2
1

)
q1 + Ci

(
p2

1 + q2
1

)
p1

)

+

(
∂

∂t
− µ

)(
Cr
(
p2

1 + q2
1

)
p1 − Ci

(
p2

1 + q2
1

)
q1

)〉
B3,

(2.21)

We find coefficients of the above equation by computing the inner products numerically.

Therefore, the PDE is reduced to the Allen–Cahn equation as

BT = 1.5687λB + 11.1591BXX + 9.4717B3, (2.22)
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Figure 2.13: The truncated Fourier series in time of a localized solution of the PDE (2.2),
showing that even with strong forcing, the modes +1, +3, −1, and −3 dominate. The
parameter values are the same as in Figure 2.11.

for the parameter values in Figure 2.11 (a). Note that U = ε1U1, X = ε1x, and ε21λ =

F
F0
− 1, so that the spatially localized solution takes the form

Uloc =

√
−3.1374( F

F0
− 1)

9.4717
sech



√
−1.5687( F

F0
− 1)

11.1591
x


 (p1(t) + iq1(t)) . (2.23)

Thus, we have found approximate examples of localized solutions of the PDE, which are

qualitatively similar to those found in the weak damping case. Figure 2.11 (a) shows the

comparison between the numerical solution and Uloc. This solution is continued using

AUTO to compute a bifurcation diagram in Figure 2.12 and further example solutions

are shown in Figure 2.11 (b)-(d), again qualitatively similar to the weak damping case.

These solutions represent the truncated PDE with −3, −1, +1, +3 Fourier modes, which

continued to dominate the modes that have been discarded (see Figure 2.13). Figure 2.11

(e) is a time-stepping example of a stable localized solution of the PDE.
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2.6 Conclusion

In the present study we examine the possible existence of spatially localized structures in

the model PDE (2.2) with time dependent parametric forcing. Since bistability is known

to lead to the formation of localized solutions, we consider subcritical bifurcations from

the zero state. The localized solutions we find are time dependent, unlike most previous

work on this class of problems; they oscillate with half the frequency of the driving force.

In the weak damping, weak forcing limit, the solutions and bifurcations of the PDE are

accurately described by its amplitude equation, the forced complex Ginzburg-Landau

(FCGL) equation. Our work uses results in [15], where localized solutions are observed

in the FCGL equation in 1D. We reduce the FCGL equation to the Allen–Cahn equation

to find an asymptotically exact spatially localized solution of the PDE analytically, close

to onset.

By continuing the numerical solution of the PDE model (2.2) that we take from time-

stepping as an initial condition, we found the branch of localized states. The stability

of this branch was determined by time-stepping, and the region where stable localized

solutions occur was found. The saddle-node bifurcations on the snaking curve arise from

pinning associated with the decaying spatial oscillations on either edge of the flat state.

The numerical examples we give in this chapter indicate how localized solutions exist

in 1D, and show excellent agreement between the PDE model and the FCGL equation.

The agreement remains qualitatively good even with strong damping and strong forcing.

In the strong damping limit, we reduce the PDE directly to the Allen–Cahn equation

analytically, close to onset. By continuing the approximate solution, examples of stable

localized oscillons are observed numerically.

In the current work the preferred wavenumber is zero, so our results are directly relevant

to localized patterns found in Turing systems, such as those found in [80,86]. In contrast,

in the Faraday wave experiment, the preferred wavenumber is non-zero, and so this work

is not directly relevant to the oscillons that are observed there. Our interest next is to find
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and analyze spatially localized oscillons with non-zero wave number in the PDE model,

both in 1D and in 2D. This will indicate how localized solutions might be studied in

(for example) the Zhang–Viñals model [93], and how the weakly nonlinear calculations

of [77] might be extended to the oscillons observed in the Faraday wave experiment.
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Chapter 3

Localized patterns with non-zero

wavenumber

3.1 Introduction

In the Faraday wave experiment, the preferred wavenumber is away from zero as we

discused in Chapter 1. Consequently, in this chapter we will investigate the existence of

localized oscillons that arise with non-zero preferred wavenumber. Our aim is to find and

analyze spatially localized oscillons with non-zero wavenumber in the PDE model (1.12)

theoretically and numerically in 1D. The approach will be similar to that in Chapter 2,

though more complicated. Although we will work with a model PDE, our approach will

show how localized solutions might be studied in PDEs more directly connected to the

Faraday wave experiment, such as the Zhang–Viñals model [93] or the Navier–Stokes

equations [77], and how weakly nonlinear calculations from the Navier–Stokes equations

might be extended to the oscillons observed in the Faraday wave experiment.

We simplify the PDE as in Chapter 2 by removing quadratic terms, and by taking the

parametric forcing to be cos(2t), where t is the fast time scale. In contrast to Chapter

2, here we will retain the fourth-order spatial derivatives in the PDE model (1.12) with

parametric forcing. The extra term ((γ + iδ)Uxxxx) is needed because we require more
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control over the dispersion relation. The resulting model PDE is then

Ut = (µ+ iω)U + (α + iβ)Uxx + (γ + iδ)Uxxxx + C|U |2U + i<(U)F cos(2t), (3.1)

where U(x, t) is a complex function, µ < 0 is the distance from onset of the oscillatory

instability, ω, α, β, γ, δ and F are real parameters, and C is a complex parameter as

defined in Chapter 2.

In this case we can model waves with a slowly varying envelope in one spatial dimension

by looking at solutions of the form

U(x, t) = A(X,T )ei(t+x) +B(X,T )ei(t−x), (3.2)

where X and T are slow scales, and x and t are scaled so that the wave has critical

wavenumber kc = 1 and critical frequency Ωc = 1. In order to cover the symmetries of the

PDE model, we include both the left- and right-travelling waves but the time dependence

will be eit only, without e−it. In section 3.2.1, we explain in detail how the solution of

the linear operator, that we will define later, involves eit only. The +1 frequency will

dominate at leading order because of our choice of dispersion relation. Since the analysis

at this stage of our research study is complicated, we will consider the one-dimensional

case rather than having A and B depend on another long-scale Y , although we consider

two-dimensional patterns numerically in Chapter 4.

In this chapter we will do an asymptotic reduction of the model PDE (3.1) to the

coupled forced complex Ginzburg–Landau (coupled FCGL) equations in the limit of weak

damping, weak detuning, weak forcing, small group velocity, and small amplitude, and

we will study the properties of the coupled FCGL equations. Some numerical examples

of spatially localized oscillons in the coupled FCGL equations will be given. We will also

investigate the effect of changing the group velocity. Furthermore, we will reduce the

coupled FCGL equations to the real Ginzburg–Landau equation in a further limit of weak
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forcing and weak amplitude close to onset, which is known to have exact localized sech

solutions. Throughout, we will use weakly nonlinear theory by introducing a multiple

scale expansion to do the reduction to the amplitude equations as in Chapter 2. Finally,

we give numerical examples of oscillons in the PDE model.

3.2 Derivation of the coupled forced complex Ginzburg–

Landau (FCGL) equation

In this section we will study the PDE model (3.1) in the limit of weak damping, weak

detuning, weak forcing and small amplitude in order to derive its amplitude equation. In

addition, we will need to assume that the group velocity is small. We start with linearizing

(3.1) about zero, and as before we consider solutions of the form U(x, t) = eσt+ikx, where

σ is the complex growth rate of a mode with wavenumber k. Without taking any limits

and without considering the forcing, the growth rate is given by the following expression

σ = µ− αk2 + γk4 + i(ω − βk2 + δk4), (3.3)

where σ = σr + iσi, so σr gives the damping rate of modes with wavenumber k, and σi

gives the frequency of oscillation:

Ω(k) = σi = ω − βk2 + δk4.

We will also need the group velocity of the waves, defined by

vg =
dΩ(k)

dk
= −2βk + 4δk3.

We will choose parameters so that we are in a weak damping, weak detuning, and small

group velocity limit for modes with wavenumber k = 1. Specifically, in order to find

spatially localized oscillons and to do the reduction to the amplitude model, we will
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impose the following:

• All waves have to be damped, so that we need σr(k) < 0, for all k.

• The growth rate σr(±1) is close to zero.

• Waves with k ' ±1 are most weakly damped, so dσr
dk

= 0 at k = ±1

• Waves with k ' ±1 are driven subharmonically by cos(2t), so σi(±1) is close to 1.

Note that σi(±1) could be close to −1 but not both +1 and −1.

• The group velocity vg at k ' ±1 is small.

• The forcing F cos(2t) is weak.

To have all waves damped we choose µ < 0, α < 0, and γ < 0. Choosing α < 0 allows

a non-monotonic growth rate; and σr < 0 requires α > −2
√
µγ. We also need to make

the growth rate σr to be close to zero when k = kc = 1. Therefore, we introduce a new

parameter ρ, so we have

σr(k = 1) = µ− α + γ = ε2ρ,

where 0 < ε � 1 and ρ < 0. Figure 3.1 shows the real part of the growth rate where the

dissipation ρ can be determind at k = 1. It indicates that the damping rate is O(ε2). The

growth rate σr achieves a maximum when the wavenumber k is one, so that

dσr
dk

(k = 1) = −2α + 4γ = 0,

which gives the condition α = 2γ, and so µ = α
2

+ ε2ρ.

The frequency of the oscillation Ω(kc) is close to 1 at k = 1, so we can write

Ω(k = 1) = ω − β + δ = 1 + ε2ν,

where ν is the detuning. Figure 3.2 shows the dispersion relation Ω(k).
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Figure 3.1: The growth rate of equation (3.1) with µ = −0.255, α = −0.5, and γ =
−0.25. Here σr(k = 1) = ε2ρ = µ− α + γ = −0.005.

To scale the group velocity to be O(ε), we calculate the maximum of the frequency of the

oscillation at k = +1 or k = −1:

dσi
dk

= −2kβ + 4δk3 = εvg,

which for k = +1 gives δ = 2β+εvg
4

. The group velocity at k = −1 is −εvg.

To perform the weakly nonlinear theory, we assume that the forcing is weak, and so we

scale the forcing amplitude with ε as

F → ε2F, or F = 4ε2Γ.
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Figure 3.2: The dispersion relation σi(k) of the linear theory of (3.1) equation with ω =
1 + β − δ + ε2ν = 1.52, β = 1, and δ = 0.4995, ν = 2, and ε = 0.1.

We relate the parameters in the PDE model with the parameters in the amplitude equations

of the PDE model in a way that we can connect examples of localized oscillons in both

equations. In table 3.1 all PDE parameters are defined in terms of parameters that will

appear in the coupled FCGL equations.

3.2.1 Linear theory

With the parameters as in table 3.1, the linear theory of the PDE (3.1) at leading order is

given by

Ut =

(
α

2
+ i

(
β

2
+ 1

))
U + (α + iβ)Uxx +

(
α

2
+ i

β

2

)
Uxxxx, (3.4)
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The PDE model (3.1) The coupled FCGL (3.16)

µ, ω, α, β, γ, δ, and F ρ, ν, α, β, vg, and Γ

µ = α− γ + ε2ρ = α
2

+ ε2ρ ρ = µ−α+γ
ε2

γ = α
2

δ = 2β+εvg
4

vg = −2β+4δ
ε

ω = 1 + β
2
− εvg

4
+ ε2ν ν = ω−1−β+δ

ε2

F = 4ε2Γ Γ = F
4ε2

Table 3.1: Relationships between parameters of the PDE model and the coupled FCGL
equations. Note these relationships depend on the choice of ε. The parameters α and β
are the same in both models.

which defines a linear operator L as

LU =

[
− ∂

∂t
+

(
α

2
+ i

(
β

2
+ 1

))
+ (α + iβ)

∂2

∂x2
+

(
α

2
+ i

β

2

)
∂4

∂x4

]
U,

or we can write it as

LU =

(
− ∂

∂t
+ i

)
U +

(
α

2
+ i

β

2

)(
1 +

∂2

∂x2

)2

U.

Note that the term
(

1 + ∂2

∂x2

)2

is similar to a term that appears in the classic pattern-

forming PDE, the Swift-Hohenberg equation [78]. To find all solutions, we substitute

U = eσt+ikx into the above equation to get

−σ + i+

(
α

2
+ i

β

2

)(
1− k2

)2
= 0,

which becomes

σ = i+

(
α

2
+ i

β

2

)(
1− k2

)2
.
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We assume that our problem has periodic boundary conditions. The periodic boundary

condition implies that k ∈ R. Furthermore, we require σr = 0 since we are considering

neutral modes. The real and imaginary parts of this equation give

k = ±1 and σ = i.

Therefore, LU = 0 implies that neutral modes are a linear combinations of U(x, t) =

ei(t+x) and U(x, t) = ei(t−x).

3.2.2 Weakly nonlinear theory

In order to apply the standard weakly nonlinear theory, we need the adjoint linear operator

L†. Therefore, we define an inner product between two functions f(x, t) and g(x, t) by

〈
f(x, t), g(x, t)

〉
=

1

4π2

∫ 2π

0

∫ 2π

0

f̄(x, t)g(x, t) dt dx, (3.5)

where f̄ is the complex conjugate of f . We will do integration by parts since we have

periodic boundary conditions. The adjoint linear operator L† is defined with the above

inner product by

〈
f(x, t), Lg(x, t)

〉
=

1

4π2

∫ 2π

0

∫ 2π

0

f̄

(
−gt +

(
α

2
+ i

(
1 +

β

2

))
g

)
dt dx

+
1

4π2

∫ 2π

0

∫ 2π

0

f̄

(
(α + iβ)gxx +

(
α

2
+ i

β

2

)
gxxxx

)
dt dx,

=
1

4π2

∫ 2π

0

∫ 2π

0

(
f̄t +

(
α

2
+ i

(
1 +

β

2

))
f̄

)
g dt dx

+
1

4π2

∫ 2π

0

∫ 2π

0

(
(α + iβ)f̄xx +

(
α

2
+ i

β

2

)
f̄xxxx

)
g dt dx,

=
〈
L†f(x, t), g(x, t)

〉
,

(3.6)

and so

L†f =

(
∂

∂t
− i+

(
α

2
− iβ

2

)(
1 +

∂2

∂x2

)2
)
f.
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This adjoint linear operator changes the sign of ∂
∂t

term and takes the complex conjugate of

other terms of L. The adjoint eigenfunctions are given by solving L†f = 0; the solutions

are linear combinations of ei(t±x).

We expand U in powers of the small parameter ε as in Chapter 2:

U = εU1 + ε2U2 + ε3U3 + ..., (3.7)

where U1, U2, U3, ... are O(1) complex functions. Recall that

µ =
α

2
+ ε2ρ,

γ =
α

2
,

ω = 1 +
β

2
− εvg

4
+ ε2ν,

δ =
β

2
+
εvg
4
,

F = 4ε2Γ.

We will derive solutions U1, U2, U3, ..., at each order of ε.

At O(ε), the linear theory arises and the linear operator defined above acts on U1 as

LU1 = 0.

The solution U1 takes the form

U1 = A(X,T )ei(t+x) +B(X,T )ei(t−x), (3.8)

where the amplitudes A and B are functions of X and T , the long and slow scale

modulations of space and time variables:

T = ε2t, and X = εx.
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The multiple scale expansions below will determine the evolution equations for A(X,T )

and B(X,T ).

At second order in ε, we get LU2 = 0. Note that ∂2U1

∂x∂X
term cancels with ∂4U1

∂x3∂X
term. We

would have had a ∂4U1

∂x3∂X
as a forcing term at O(ε2) if we had not ensured that the group

velocity is O(ε).

At third order in ε, we get

∂U3

∂t
+
∂U1

∂T
=

(
α

2
+ i

(
1 +

β

2

))
U3 + (α + iβ)

∂2U3

∂x2

+

(
α

2
+ i

β

2

)
∂4U3

∂x4
+ (ρ+ iν)U1 + (α + iβ)

∂2U1

∂X2

+ 6

(
α

2
+ i

β

2

)
∂4U1

∂x2∂X2
+ ivg

∂4U1

∂x3∂X

+ 4iΓ cos(2t)Re(U1) + C|U1|2U1,

(3.9)

which becomes
∂U1

∂T
= LU3 + (ρ+ iν)U1 + (α + iβ)

∂2U1

∂X2

+ 6

(
α

2
+ i

β

2

)
∂4U1

∂x2∂X2
+ ivg

∂4U1

∂x3∂X

+ 4iΓ cos(2t)Re(U1) + C|U1|2U1.

(3.10)

The linear operator L is singular so we must apply a solvability condition: we take the

inner product between the adjoint eigenfunction ei(t+x) and equation (3.10), which gives

〈
ei(t+x),

∂U1

∂T

〉
=
〈
ei(t+x), LU3

〉
+ (ρ+ iν)

〈
ei(t+x), U1

〉
+ (α + iβ)

〈
ei(t+x),

∂2U1

∂X2

〉

+

〈
ei(t+x), 6

(
α

2
+ i

β

2

)
∂4U1

∂x2∂X2

〉
+ ivg

〈
ei(t+x),

∂4U1

∂x3∂X

〉

+ 4iΓ
〈
ei(t+x), cos(2t)Re(U1)

〉
+ C

〈
ei(t+x), |U1|2U1

〉
.

(3.11)
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We have

〈
ei(t+x), LU3

〉
=
〈
L†ei(t+x), U3

〉
= 0,

so U3 is removed, and equation (3.11) becomes an equation in U1:

〈
ei(t+x),

∂U1

∂T

〉
= (ρ+ iν)

〈
ei(t+x), U1

〉
+ (α + iβ)

〈
ei(t+x),

∂2U1

∂X2

〉

+

〈
ei(t+x), 6

(
α

2
+ i

β

2

)
∂4U1

∂x2∂X2

〉
+ ivg

〈
ei(t+x),

∂4U1

∂x3∂X

〉

+ 4iΓ
〈
ei(t+x), cos(2t)Re(U1)

〉
+ C

〈
ei(t+x), |U1|2U1

〉
.

(3.12)

Substituting the solution U1 leads to

〈
ei(t+x),

∂

∂T

(
Aei(t+x) +Bei(t−x)

)〉

= (ρ+ iν)
〈
ei(t+x),

(
Aei(t+x) +Bei(t−x)

)〉
+ (α + iβ)

〈
ei(t+x),

∂2

∂X2

(
Aei(t+x)

+Bei(t−x)
)
〉

+

〈
ei(t+x), 6

(
α

2
+ i

β

2

)
∂4

∂x2∂X2

(
Aei(t+x) +Bei(t−x)

)
〉

+ ivg

〈
ei(t+x),

∂4

∂x3∂X

(
Aei(t+x) +Bei(t−x)

)
〉

+ 4iΓ

〈
ei(t+x),

1

2
cos(2t)

(
Aei(x+t) +Bei(t−x) + Āe−i(t+x) + B̄e−i(t−x)

)
〉

+ C

〈
ei(t+x),

(
|A|2 + AB̄e2ix + ĀBe−2ix + |B|2

) (
Aei(t+x) +Bei(t−x)

)
〉
.

(3.13)

The left hand side of (3.13) is

〈
ei(t+x),

∂

∂T

(
Aeix +Be−ix

)
eit
〉

=
1

4π2

∫ 2π

0

∫ 2π

0

e−ix
∂

∂T

(
Aeix +Be−ix

)
dt dx

=
∂A

∂T
.

(3.14)
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We compute the right hand side of (3.13) in three parts. The first five lines are:

(
(ρ+ iν) + (α + iβ)

∂2

∂X2
− 6

(
α

2
+ i

β

2

)
∂2

∂X2

)〈
ei(t+x),

(
Aei(t+x) +Bei(t−x)

) 〉

+ ivg
〈
ei(t+x),

∂4

∂X∂x3

(
Aei(t+x) +Bei(t−x)

) 〉

=
1

4π2

∫ 2π

0

∫ 2π

0

e−ix
(

(ρ+ iν) + (α + iβ)
∂2

∂X2

− 6

(
α

2
+ i

β

2

)
∂2

∂X2
+ vg

∂

∂X

)
Aeixdt dx

=

(
(ρ+ iν)− 2(α + iβ)

∂2

∂X2
+ vg

∂

∂X

)
A.

The forcing term is:

4iΓ
〈
ei(t+x),

1

2
cos(2t)(Aei(t+x) +Bei(t−x) + Āe−i(t+x) + B̄e−i(t−x))

〉

=
4iΓ

16π2

∫ 2π

0

∫ 2π

0

e−i(t+x)
(
Ā(e−i(4t+2x) + e−2ix) + A(e2it + e−2it)

+B(ei(3t−x) + e−i(t+x)) + B̄(ei(t+x) + ei(−3t+x))
)
dt dx

= iΓB̄.

The nonlinear terms are:

C
〈
ei(t+x),

(
|A|2 + AB̄e2ix + ĀBe−2ix + |B|2

) (
Aei(t+x) +Bei(t−x)

) 〉

=
C

4π2

∫ 2π

0

∫ 2π

0

e−ix
(
|A|2 + AB̄e2ix + ĀBe−2ix + |B|2

) (
Aeix +Be−ix

)
dt dx

= C
(
|A|2 + 2|B|2

)
A.

(3.15)

The above equations result in the following equation for the amplitude A(X,T )

∂A

∂T
= (ρ+ iν)A− 2(α + iβ)

∂2A

∂X2
+ vg

∂A

∂X
+ C

(
|A|2 + 2|B|2

)
A+ iΓB̄.

By the symmetry A ↔ B, and X → −X , we get the equation for B. Therefore the
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amplitude equation is given by

∂A

∂T
= (ρ+ iν)A− 2(α + iβ)

∂2A

∂X2
+ vg

∂A

∂X
+ C

(
|A|2 + 2|B|2

)
A+ iΓB̄,

∂B

∂T
= (ρ+ iν)B − 2(α + iβ)

∂2B

∂X2
− vg

∂B

∂X
+ C

(
2|A|2 + |B|2

)
B + iΓĀ.

(3.16)

Thus the PDE model has been reduced to the coupled FCGL, in the weak damping, weak

detuning, small group velocity and small amplitude limit. We note that the −2α ∂2A
∂X2 term

makes the above equations look like it might be an ill-posed problem, but recall that

α < 0.

If the group velocity were zero, which means the condition β = 2δ is valid, the resulting

system becomes

∂A

∂T
= (ρ+ iν)A− 2(α + iβ)

∂2A

∂X2
+ C(|A|2 + 2|B|2)A+ iΓB̄.

∂B

∂T
= (ρ+ iν)B − 2(α + iβ)

∂2B

∂X2
+ C(2|A|2 + |B|2)B + iΓĀ.

(3.17)

These equations have solutions where A = B, representing two travelling waves sitting

exactly on top of each other. In equations (3.16) the group velocity terms have different

signs, which makes the envelopes travel in opposite directions. In the next section we

will represent briefly a study of a related problem to equations (3.16), where the group

velocity is O(1) and the domain size L takes a significant role.

3.3 The effect of scaling of the group velocity in the

coupled FCGL equations

In the derivation of the coupled FCGL equations in Section 3.2, we assumed that the group

velocity vg is O(ε); but in reality, vg is O(1). Our study reveals that the O(ε) assumption

on the group velocity is needed to make progress. Although, in this thesis we scale

the group velocity with O(ε), this could be avoided by following the approach in [57],
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which is a study of a related problem. In [57], Martel, Knobloch and Vega investigated

the possible solutions of a pair of parametrically driven weakly dissipative nonlinear

Schrödinger equations with nonlocal coupling. Their work was based on studying the

average of the coupled FCGL equations with the assumption that the group velocity is

O(1). They studied the following system

At = iβAxx + vgAx + (ρ+ iν)A+ iCi(|A|2 + κ|B|2)A+ ΓB̄,

Bt = iβBxx − vgBx + (ρ+ iν)B + iCi(|B|2 + κ|A|2)B + ΓĀ,
(3.18)

where the wave amplitudes A and B vary slowly in both space and time, and assumed

to be small. The real coefficients ρ < 0, ν, β, vg and Γ > 0 measure the decay rate,

detuning, dispersion, group velocity of the waves, and the amplitude of the parametric

forcing. The coefficients Ci ∈ R and κ represent the nonlinear self- and cross-interaction

terms, and they are assumed to satisfy Ci(1 + κ) 6= 0. With the choice α = 0, Cr = 0,

κ = 2, equations (3.16), and (3.18) are the same up to a change of phase.

It was assumed that dissipation, detuning and forcing amplitude are weak. The authors

used a multiple scales analysis based on the domain size L, with A and B representing

the amplitudes of slowly varying left- and right-travelling waves, as in (3.2). They used

left-travelling and right-travelling coordinates, with each wave seeing only the average of

the other. The resulting averaged equations are the nonlocal. These equations were valid

close to threshold of the primary parametric instability. The averaged equations are

Aτ = iβAηη + (ρ+ iν)A+ iCi(|A|2 + κ〈|B|2〉)A+ Γ〈B̄〉,

Bτ = iβBξξ + (ρ+ iν)B + iCi(|B|2 + κ〈|A|2〉)B + Γ〈Ā〉,
(3.19)

where η = x + t, ξ = x− t, and τ = t
L2 . The notation 〈...〉 refers to an average over the

spatial variable η or ξ.

Spatially uniform and non-uniform solutions with both simple and complex time-

dependence were found. The spatially uniform solutions are in the form of standing
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waves. The properties of the linear stability were studied in the averaged coupled

equations for the trivial and of nontrivial spatially uniform states. The authors looked

at the role of the domain size L, and the effect of distant side boundaries. They did not

study spatially localized solutions. The approach in [57] could allow us to lift the O(ε)

assumption on the group velocity vg in future work.

In the next section we will examine the properties of equations (3.16), where the group

velocity plays an important role in the dynamics of the equations.

3.4 Properties of the coupled FCGL equations

In our study we assume that the group velocity vg is small, of order ε, which means that

we can study the coupled FCGL equations without averaging. Recall that the coupled

FCGL equations are:

AT = (ρ+ iν)A− 2(α + iβ)AXX + vgAX + C(|A|2 + 2|B|2)A+ iΓB̄,

BT = (ρ+ iν)B − 2(α + iβ)BXX − vgBX + C(2|A|2 + |B|2)B + iΓĀ,
(3.20)

where ρ < 0, ν, α < 0, β, vg and Γ are real and measure the dissipation, detuning,

diffusion, dispersion, group velocity and forcing of the wave; C is the original complex

cubic coefficient from (3.1). In the absence of forcing, Γ = 0, all waves decay.

Following [41] we can identify the symmetries and how they affect the structure of (3.20):

(i) translation in x: since x→ x+ φ∗, we get

U(x+ φ∗, t) = A(X + εφ∗, T )ei(t+x+φ∗) +B(X + εφ∗, T )ei(t−x−φ
∗),

where A(X,T )→ A(X + εφ∗, T )eiφ
∗ , B(X,T )→ B(X + εφ∗, T )e−iφ

∗ . If we suppress

the change from X to X + εφ∗, then (3.20) is equivariant under

A→ Aeiφ
∗
, B → Be−iφ

∗
,
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where φ∗ is arbitrary.

(ii) reflection in x: since x→ −x, we write

U(−x, t) = A(−X,T )ei(t−x) +B(−X,T )ei(t+x).

Equation (3.20) is equivariant under A→ B, AX → −BX , and AXX → BXX .

Amplitude equations arising from a Hopf bifurcation usually have time t translation

symmetry, which manifests as equivariance under phase shifts of the amplitudes.

However, the underlying PDE is non-autonomous, and so rotating A and B by a common

phase is not a symmetry of (3.20). Indeed the cos(2t) term in (3.1) spoils the t translation

symmetry of the original problem. Equations (3.20) do have T translation symmetry, but

this is an artifact of the truncation at cubic order.

The equations (3.20) have solutions made up from travelling waves, standing waves, and

amplitude-modulated waves. Travelling waves move from place to place with constant

speed, and transport energy. Standing waves refer to waves that remain in a constant

position. They can arise as a result of interference between two waves traveling in

opposite directions, and the phase of a standing wave does not depend on position.

When the amplitude of the wave is modulated, the variation in the amplitude is called

the envelope of the wave. Modulated waves can vary with space and time.

The parametric forcing provides an interesting coupling between the two travelling waves

with amplitudes A and B. The coupling terms in the coupled FCGL equations make it

impossible to find pure travelling waves (i.e. A 6= 0, B = 0 is not a solution of (3.20)).

Solutions of (3.20) can haveA andB of unequal amplitude. A special class of solutions is

at small and equal amplitudes, with travelling waves combining to form standing waves.

Indeed, standing waves are typically seen in the Faraday wave experiment. The equations

also have spatially uniform and nonuniform solutions. In the next sections we will analyze

the zero and non-zero flat solutions of the coupled FCGL equations (3.20).
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3.4.1 The zero solution

Here we will study the zero state of the coupled FCGL equations, A = B = 0. The

stability of the zero state under small perturbations with complex growth rate s and

wavenumber q can be studied by examining the dispersion relation, which relates the

growth rate s ∈ C of a Fourier mode e±iqX with wavenumber q ∈ R, so that the

amplitudes A and B take the form

A = ÂesT+iqX , and B = B̂es̄T−iqX ,

where |Â| � 0 and |B̂| � 0 for Â, B̂ ∈ C. Substituting these solutions into equation

(3.20), linearizing and taking the complex conjugate of the second equation for B gives

(dropping hats):

sA = (ρ+ iν)A+ 2(α + iβ)q2A+ ivgqA+ iΓB̄.

sB̄ = (ρ− iν)B̄ + 2(α− iβ)q2B̄ − ivgqB̄ − iΓA.
(3.21)

Note that we chose B̂es̄T−iqX in order that the exponential term cancel. We can write

equations (3.21) as


ρ+ iν + 2(α + iβ)q2 + ivgq − s iΓ

−iΓ ρ− iν + 2(α− iβ)q2 − ivgq − s




A
B̄


 =


0

0


 .

There is a nontrivial solution only when the determinant of the above matrix is zero, so

(
s− (ρ+ iν)− 2(α + iβ)q2 − ivgq

) (
s− (ρ− iν)− 2(α− iβ)q2 + ivgq

)
= Γ2.

(3.22)

We are interested in locating the bifurcations at which zero solutions is neutrally stable,

so the real part of s is zero. We will show in addition that s must be real. This is not

easy to see directly from (3.22), so we consider first the case where q = 0, and s is pure
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imaginary, so s = isi.

The determinant in this case is

(isi − (ρ+ iν)) (isi − (ρ− iν))− Γ2 = 0.

The real and imaginary parts of the above equation give

Re: ρ2 + ν2 − s2
i = Γ2.

Im: 2siρ = 0 −→ si = 0 or ρ = 0.

Since ρ < 0, this gives si = 0, and

ρ2 + ν2 = Γ2.

Next, we consider q 6= 0 with s still purely imaginary; so equation (3.22) becomes

(
(ρ+ 2αq2) + i(ν + 2βq2 + vgq − si)

) (
(ρ+ 2αq2)− i(ν + 2βq2 + vgq + si

)
= Γ2.

The real and imaginary parts of the above equation are

Re: (ρ+ 2αq2)2 + 2vg(ν
2 + 2βq2)q + (vgq)

2 − s2
i = Γ2.

Im: 2si(ρ+ 2αq2) = 0 −→ si = 0, since (ρ+ 2αq2) 6= 0, with ρ < 0 and α < 0.

Therefore, we have a neutral stability condition (s = 0):

(ρ+ 2αq2)2 + (ν + 2βq2 + vgq)
2 = Γ2. (3.23)

Figure 3.3 shows solutions of this equation in the (q − Γ) plane. The stability of the zero

state changes when Γ = Γc, the minimum of the neutral stability curve, and the non-zero

flat state is created with q = qc. This corresponds to a uniform pattern in the PDE (3.1)

with wavenumber 1+ εq. The critical wavenumber qc can be computed by solving a cubic

equation in q at the minimum of the neutral stability curve (3.23), which is given by

2αq(2ρ+ 2αq2) + (ν + 2βq2 + vgq)(4βq + vg) = 0. (3.24)
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Figure 3.3: The linear theory of the zero state of the coupled FCGL equations (3.23) with
ρ = −0.5, ν = 2, α = −0.5, β = 1, and vg = −2. The blue line is the neutral stability
curve, so above this curve modes grow, while below it modes decay.

The wavenumber qc is positive if νvg < 0 and negative if νvg > 0.

3.4.2 Non-zero homogeneous solutions

We study the non-zero flat state, which represents a spatially uniform steady pattern in

A and B with wavenumber 0 (so U(x) has wavenumber 1). In section 3.4.3 below we

consider the case of patterns with wavenumber 1 + εq. With q = 0, the pattern satisfies

the following:

0 = (ρ+ iν)A+ C(|A|2 + 2|B|2)A+ iΓB̄.

0 = (ρ+ iν)B + C(2|A|2 + |B|2)B + iΓĀ.
(3.25)
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In order to solve this steady system we consider solutions of the form A = R0e
iφ1 and

B = R0e
iφ2 , where R0 is real, and φ1 and φ2 are different phases. We expect these equal

amplitude solutions because of the A ↔ B symmetry, but they are not necessarily the

only solutions that can be found.

Substituting the steady uniform solutions into equations (3.25) gives

0 = (ρ+ iν)R0e
iφ1 + 3CR3

0e
iφ1 + iΓR0e

−iφ2 .

0 = (ρ+ iν)R0e
iφ2 + 3CR3

0e
iφ2 + iΓR0e

−iφ1 .

In the above equations, R0 = 0 is a solution. For R0 6= 0, we divide the system by R0, so

we have

0 = (ρ+ iν)eiφ1 + 3CR2
0e
iφ1 + iΓe−iφ2 .

0 = (ρ+ iν)eiφ2 + 3CR2
0e
iφ2 + iΓe−iφ1 .

Dividing the first equation by eiφ1 and the second equation by eiφ2 results in the same

equation

0 = (ρ+ iν) + 3CR2
0 + iΓe−iΦ, (3.26)

where Φ = φ1 + φ2. This is similar to equation (2.9). Now we can separate the real and

imaginary parts as

0 = ρ+ 3CrR
2
0 + Γ sin Φ.

0 = ν + 3CiR
2
0 + Γ cos Φ,

(3.27)

where C = Cr + iCi.

Eliminating Φ by using the equality cos2 Φ + sin2 Φ = 1 gives the following polynomial

9(C2
r + C2

i )R4
0 + 6(ρCr + νCi)R

2
0 + ρ2 + ν2 − Γ2 = 0. (3.28)
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This equation can be solved for R2
0. Moreover, we can solve equation (3.27) for Φ, which

leads to

tan Φ =
ρ+ 3CrR

2
0

ν + 3CiR2
0

.

We compute the discriminant of (3.28) (a degree-2 polynomial in R2
0) in order to

determine a saddle-node bifurcation. The discriminant of (3.28) is given by

∆ = 36(ρCr + νCi)
2 − 36(ρ2 + ν2 − Γ2)(C2

r + C2
i ).

Studying the polynomial (3.28) shows that the critical forcing amplitude is
√
ρ2 + ν2,

and a subcritical bifurcation occurs if ρCr + νCi < 0. The non-zero flat states A−uni and

B−uni are created, which becomeA+
uni andB+

uni at a saddle-node bifurcation (∆ = 0) when

Γ = Γd, where

Γd =

√
ρ2 + ν2 − (ρCr + νCi)2

C2
r + C2

i

.

A supercritical bifurcation occurs when ρCr + νCi > 0.

3.4.3 Steady states with constant amplitude

Now we can look at steady uniform amplitude states of the form A = R0e
i(qX+φ1), and

B = R0e
i(−qX+φ2), whereR0 and q are real, and φ1 and φ2 are the phases. These represent

uniform patterns with wavenumber 1 + εq in U(x). We substitute these solutions into

equations (3.20)

0 = (ρ+ iν)R0e
i(qX+φ1) + 2(α + iβ)q2R0e

i(qX+φ1) + ivgqR0e
i(qX+φ1)

+ 3CR3
0e
i(qX+φ1) + iΓR0e

i(qX−φ2).

0 = (ρ+ iν)R0e
i(−qX+φ2) + 2(α + iβ)q2R0e

i(−qX+φ2) + ivgqR0e
i(−qX+φ2)

+ 3CR3
0e
i(−qX+φ2) + iΓR0e

−i(qX+φ1).
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In the above equations, R0 = 0 is a solution. For R0 6= 0, we divide the system by R0

as before and by ei(qX+φ1) (top equation) and ei(−qX+φ2) (bottom equation) to get a single

equation:

0 = (ρ+ iν) + 2(α + iβ)q2 + ivgq + 3CR2
0 + iΓe−iΦ,

where Φ = φ1 + φ2. The real and imaginary parts of the above equation are

Re: 0 = ρ+ 2αq2 + 3CrR
2
0 + Γ sin Φ.

Im: 0 = ν + 2βq2 + vgq + 3CiR
2
0 + Γ cos Φ.

(3.29)

We eliminate Φ once again by using the equality cos2 Φ+sin2 Φ = 1 to give the following

polynomial for R0:

0 = 9(C2
r + C2

i )R4
0 + 6

(
(ρ+ 2αq2)Cr + (ν + vgq + 2βq2)Ci

)
R2

0 + (ρ+ 2αq2)2

+ (ν + vgq + 2βq2)2 − Γ2.

(3.30)

This equation can be solved for R2
0. Solving equations (3.29) for Φ gives

tan Φ =
ρ+ 2αq2 + 3CrR

2
0

ν + vgq + 2βq2 + 3CiR2
0

.

The discriminant of (3.30), as a polynomial in R2
0, is given by

∆ = 36
(
(ρ+ 2αq2)Cr + (ν + vgq + 2βq2)Ci

)2 − 36
(
(ρ+ 2αq2)2 + (ν + vgq + 2βq2)2

− Γ2
)
(C2

r + C2
i ).

Examination of the polynomial (3.30) shows that when the forcing amplitude Γ reaches
√

(ρ+ 2αq2)2 + (ν + vgq + 2βq2)2, a subcritical bifurcation occurs provided that (ρ +

2αq2)Cr + (ν + vgq + 2βq2)Ci < 0. Spatially oscillatory states A−sp and B−sp are created,

which turns into the A+
sp and B+

sp states at a saddle-node (∆ = 0) bifurcation at Γ = Γd,
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Figure 3.4: The (ν − Γ) parameter plane of the coupled FCGL equations (3.23) with
ρ = −0.5, α = −0.5, β = 1, and vg = −1. The blue line is the the primary pitchfork
bifurcation at Γc, and the red line is the saddle-node bifurcation at Γd

with

Γd =

√
(ρ+ 2αq2)2 + (ν + vgq + 2βq2)2 − ((ρ+ 2αq2)Cr + (ν + vgq + 2βq2)Ci)

2

C2
r + C2

i

.

(3.31)

Putting q = 0 in the above expression recovers the results from section 3.4.2. Figure

3.4 shows equations (3.23) and (3.31) in the (ν − Γ) parameter plane of the coupled

FCGL equations for ν > 0. It also shows a close up of the intersection point, where

the primary bifurcation changes from supercritical to subcritical at (ρ + 2αq2)Cr + (ν +

vgq + 2βq2)Ci = 0 with ν = 0.284 (see Figure 3.5). Localized solutions can be found

in the bistability region between Γc and Γd. Our investigation reveals that for ν < 0 two

preferred wavenumbers can be detected. However, in this section we study the case when
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Figure 3.5: The point where the primary bifurcation of the coupled FCGL equations (3.23)
changes from supercritical to subcritical with ρ = −0.5, α = −0.5, β = 1, and vg = −1,
qc = 0.1.

ν > 0, and we leave the ν < 0 case for future work.

3.4.4 Localized solutions

Without further simplifications (see section 3.5) analytic expansions for localized

solutions of the coupled FCGL equations (3.20) are not possible. In this section we will

present some numerical examples of stable spatially localized oscillons in the coupled

FCGL equations found by using the time-stepping method. We use a pseudospectral

method as in Chapter 2 with 128 Fourier modes.

We will take the following parameter values ρ = −0.5, ν = 2, α = −0.5, β = 1, and

C = −1− 2.5i. We solve the coupled equations on a domain size LX = 20π. With group

velocity vg = 0, localized solutions have A and B the same, but otherwise A and B are

unequal.
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Figure 3.6 shows an example of a localized oscillon in the coupled FCGL equations with

vg = −0.2. As we increase the magnitude of the group velocity vg, so that vg = −0.75

(Figure 3.7), we can see that A and B start to move apart. Note that in Figure 3.6 and

Figure 3.7 we fixed Γ to be Γ = 1.462. Figure 3.8 presents localized oscillons with

vg = −1, with Γ = 1.4 and Γ = 1.438. Solutions of the coupled FCGL equations are

constant in time T as shown in Figure 3.9.

3.5 Reduction to the real Ginzburg–Landau equation

In this section we will reduce the coupled FCGL equations to the real Ginzburg–Landau

equation close to the subcritical bifurcation from the zero solution to the flat state. The

reduction from the coupled FCGL equations to the real Ginzburg–Landau equation was

done by Riecke [67], in the supercritical case. Therefore, we take the complex conjugate

of the second equation of (3.20), so the coupled FCGL equations become

∂A

∂T
= D1A+D2

∂2A

∂X2
+ vg

∂A

∂X
+ C(|A|2 + 2|B|2)A+ iΓB̄.

∂B̄

∂T
= D̄1B̄ + D̄2

∂B̄

∂X2
− vg

∂B̄

∂X
+ C̄(2|A|2 + |B|2)B̄ − iΓA,

(3.32)

For simplicity, we writeD1 = ρ+iν, andD2 = −2(α+iβ). In order to reduce the coupled

FCGL equation to the real Ginzburg–Landau equation, we apply weakly nonlinear theory

close to onset. The real Ginzburg–Landau equation has an exact sech solution, which can

be used as a starting point to find spatially localized solutions in the PDE model.

We begin the analysis by scaling the forcing Γ as

Γ→ Γc
(
1 + ε22Γ2

)
,

where 0 < ε2 � 1, and Γc is the critical forcing at critical wavenumber qc as shown in

Figure 3.3, Γ2 is the new bifurcation parameter. We expand the solution in powers of the
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Figure 3.6: Solutions to the coupled FCGL equations (3.20) with LX = 20π, ρ = −0.5,
ν = 2, α = −0.5, β = 1, vg = −0.2, Γ = 1.462, and C = −1 − 2.5i. For this choice
of parameters, Γc = 2.04, Γd = 1.21. See Figure 3.10 for solutions of the PDE (3.1) at
similar parameter values.
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Figure 3.7: Solutions to the coupled FCGL equations (3.20). All parameters are the same
as those in Figure 3.6 except the group velocity vg = −0.75.
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Figure 3.8: Examples of solutions to (3.20) with the same parameter values as in Figure
3.6, and vg = −1. The left column is at Γ = 1.4, whereas the right column is with
Γ = 1.438. We did not find stable oscillons where Γ < 1.4. The values of Γc and Γd are
Γc = 1.95 and Γd = 1.21.
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Figure 3.9: Example of solutions to (3.20) in space and time for one period of time T =
[0, 2π], which shows that the solutions are constant in time with Γ = 1.4. Other parameter
values are the same as in Figure 3.6. The left column represents the amplitude A, whereas
the right column represents the amplitude B.



Chapter 3. Localized patterns with non-zero wavenumber 72

new small parameter ε2 as follows


A
B̄


 =


ε2A1 + ε22A2 + ε32A3 + ...

ε2B̄1 + ε22B̄2 + ε32B̄3 + ...


 .

From section 3.4.1, the growth rate is real with frequency zero (locked to the forcing), so

∂

∂T
→ ε22

∂

∂T̃
,

and the preferred wavenumber qc 6= 0, so

∂

∂X
→ ∂

∂X
+ ε2

∂

∂X̃
.

where X̃ and T̃ are very long and slow scales.

At O(ε2), we have

0 = D1A1 +D2
∂2A1

∂X2
+ vg

∂A1

∂X
+ iΓcB̄1,

0 = D̄1B̄1 + D̄2
∂B̄1

∂X2
− vg

∂B̄1

∂X
− iΓcA1.

We can solve the above system by assuming that

A1 = Ã(X̃, T̃ )eiqcX , and B1 = B̃(X̃, T̃ )e−iqcX .

At this order of ε2 and by dropping tildes, the coupled FCGL equations become

0 = D1A−D2q
2
cA+ ivgqcA+ iΓcB̄,

0 = D̄1B̄ − D̄2q
2
c B̄ − ivgqcB̄ − iΓcA.

(3.33)

Or we can write the system as (see section 3.4.1)
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D1 + ivgqc −D2q

2
c iΓc

−iΓc D̄1 − ivgqc − D̄2q
2
c




A
B̄


 =


0

0


 .

Since the determinant is zero (same as before), we get

(
D1 + ivgqc −D2q

2
c

) (
D̄1 − ivgqc − D̄2q

2
c

)
− Γ2

c = 0. (3.34)

We separate the real and imaginary parts of this equation. The real part of (3.34) is given

by

|D1|2 + |D2|2q4
c − 2vgD2iq

3
c −

(
2 (D2iD1i +D2rD1r)− v2

g

)
q2
c + 2D1ivgqc − Γ2

c = 0,

where D1 = D1r + iD1i = ρ + iν and D2 = D2r + iD2i = −2(α + iβ). We can solve

this quartic equation in qc. The forcing Γ = Γc is the minimum at qc as shown in Figure

3.3. Recall that the wavenumber qc is positive if D1ivg < 0 and negative if D1ivg > 0, as

in section 3.4.1.

From the first equation of (3.33) we get

B̄ = −
(
D1 + ivgqc −D2q

2
c

iΓc

)
A, (3.35)

By applying (3.34) or equivalently applying (3.23) from section 3.4.1, we get

∣∣∣∣
D1 + ivgqc −D2q

2
c

iΓc

∣∣∣∣
2

=
(D1 + ivgqc −D2q

2
c )(D̄1 − ivgqc − D̄2q

2
c )

Γ2
c

= 1.

Therefore, we can write

B̄ = Aeiφ,



Chapter 3. Localized patterns with non-zero wavenumber 74

where φ is real, and

eiφ = −
(
D1 + ivgqc −D2q

2
c

iΓc

)
. (3.36)

At O(ε22), equations (3.32) become

0 = D1A2 +D2
∂2A2

∂X2
+ vg

∂A2

∂X
+ iΓcB̄2 + vg

∂A

∂X̃
eiqcX + 2iD2q

∂A

∂X̃
eiqcX .

0 = D̄1B̄2 + D̄2
∂2B̄2

∂X2
− vg

∂B̄2

∂X
− iΓcA2 − vg

∂B̄

∂X̃
eiqcX + 2iD̄2qc

∂B̄

∂X̃
eiqcX .

(3.37)

At this stage we might need to define a linear operator in order to impose the solvability

condition. We chose to do the weakly nonlinear theory here without studying the linear

operator, but by using a quicker method that we show next. We solve this system

effectively by setting

A2 → A2e
iqcX and B̄2 → B̄2e

iqcX ,

to focus attention on eiqcX component of (3.37), the only component to have an

inhomogeneous part, and for which the linear operator is singular. Substituting these

expressions for A2, B̄2, and B̄ into the above equations leads to the following


D1 + ivgqc −D2q

2
c iΓc

−iΓc D̄1 − ivgqc − D̄2q
2
c




A2

B̄2


+


 vg + 2iqcD2

(
−vg + 2iqcD̄2

)
eiφ


 ∂A

∂X̃
=


0

0


 ,

(3.38)

where eiφ = −
(
D1+ivgqc−D2q2c

iΓc

)
. We know that the determinant of the square matrix is

zero since it is a singular matrix. We write

0 = (D1 + ivgqc −D2q
2
c )A2 + iΓcB̄2 + (vg + 2iqcD2)

∂A

∂X̃
.

0 = (D̄1 − ivgqc − D̄2q
2
c )B̄2 − iΓcA2 −

(
(−vg + 2iqcD̄2)(D1 + ivgqc −D2q

2
c )

iΓc

)
∂A

∂X̃
.

(3.39)
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We multiply the first equation for A by iΓc and the second equation for B̄ by (D1+ivgqc−
D2q

2
c ), which is effectively the left eigenfunction of the matrix, and then add them. This

is similar to applying the solvability condition. Therefore, we end up with

(
iΓc(vg + 2iqcD2) +

(vg − 2iqcD̄2)(D1 + ivgqc −D2q
2
c )

2

iΓc

)
∂A

∂X̃
= 0. (3.40)

Since ∂A
∂X̃
6= 0, we need

−(vg + 2iqcD2)(D̄1 − ivgqc − D̄2q
2
c ) + (vg − 2iqcD̄2)(D1 + ivgqc −D2q

2
c ) = 0,

in order to make progress. This is the same as (3.24), which is equivalent to taking d
dq

of

the relationship (3.34), at the minimum qc, (see Figure 3.3).

Since the square matrix in (3.38) is singular, the determinant is zero and zero is an

eigenvalue. Thus, the left eigenvector of zero is


D̄1 − ivgqc − D̄2q

2
c

iΓc


.

From the top line of (3.39), we have

B̄2 = −
(

(vg + 2iqcD2)

iΓc

∂A

∂X̃
+

(D1 + ivgqc −D2q
2
c )

iΓc
A2

)
.

The solution is


A2

B̄2


 =


 A2

− (vg+2iqcD2)

iΓc
∂A
∂X̃
− (D1+ivgqc−D2q2c )

iΓc
A2


 .

Thus, we have A2 to be arbitrary at this order of ε. It is determined at higher order of ε

but since we are not going to higher order [69], we take

A2 = 0, and B̄2 = −(vg + 2iqcD2)

iΓc

∂A1

∂X̃
,
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or, restoring the eiqcX , we have at this order of ε2

A2 = 0, and B̄2 = −(vg + 2iqcD2)

iΓc

∂A

∂X̃
eiqcX .

At O(ε32) the problem has the following structure (with A2 = 0):

∂A1

∂T̃
= D1A3 +D2

∂2A3

∂X2
+ vg

∂A3

∂X
+ iΓcB̄3 +D2

∂2A1

∂X̃2
+ iΓcΓ2B̄1

+ C(|A1|2 + 2|B1|2)A1,

∂B̄1

∂T̃
= D̄1B̄3 + D̄2

∂2B̄3

∂X2
− vg

∂B̄3

∂X
− iΓcA3 + 2D̄2

∂2

∂X∂X̃
B̄2 − vg

∂B̄2

∂X̃

+ D̄2
∂2B̄1

∂X̃2
− iΓcΓ2A1 + C̄(2|A1|2 + |B1|2)B1.

(3.41)

We write A3 and B̄3 as Fourier modes with spatial dependence eiqcX :

A3 → A3e
iqcX and B̄3 → B̄3e

iqcX .

As at O(ε22), we multiply the first equation for A by iΓc and the second equation for B̄ by

(D1 + ivgqc −D2q
2
c ), and then add them. The coupled FCGL equations (3.41) become

iΓc
∂A1

∂T̃
+
(
D1 + ivgqc −D2q

2
c

) ∂B̄1

∂T̃
= iΓcD2

∂2A1

∂X̃2
− Γ2

cΓ2B̄1 + iΓcC
(
|A1|2 + 2|B1|2

)
A1

+ 2
(
D1 + ivgqc −D2q

2
c

)
D̄2

∂2

∂X∂X̃
B̄2

−
(
D1 + ivgqc −D2q

2
c

)(
vg
∂B̄2

∂X̃
− D̄2

∂2B̄1

∂X̃2

)

− iΓcΓ2

(
D1 + ivgqc −D2q

2
c

)
A1

+ C̄
(
D1 + ivgqc −D2q

2
c

) (
2|A1|2 + |B1|2

)
B1.

(3.42)

Substituting A1, B1, B2 into the above equation, dividing by the common factor of eiqcX ,
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and dropping tilde in A1 and B1 gives

(
iΓc −

(D1 + ivgqc −D2q
2
c )

2

iΓc

)
∂A

∂T̃
= −2iΓcΓ2

(
D1 + ivgqc −D2q

2
c

)
A

+

(
iΓcD2 −

D̄2 (D1 + ivgqc −D2q
2
c )

2

iΓc

)
∂2A

∂X̃2

−
(

2qcD̄2(D1 + ivgqc −D2q
2
c )(vg + 2iqcD2)

Γc

− vg(D1 + ivgqc −D2q
2
c )(vg + 2iqcD2)

iΓc

)
∂2A

∂X̃2

+ 3

(
iΓcC −

(D1 + ivgqc −D2q
2
c )

2C̄

iΓc

)
|A|2A.
(3.43)

Using D1 + ivgqc −D2q
2
c = −iΓceiφ, leads to

(
iΓc − iΓce2iφ

) ∂A
∂T̃

= −2Γ2
cΓ2e

iφA+
(
iΓcD2 − iΓcD̄2e

2iφ
) ∂2A

∂X̃2

+
(

2iqcD̄2(vg + 2iqcD2) + vg(vg + 2iqcD2)
) ∂2A

∂X̃2
eiφ

+ 3
(
iΓcC − iΓce2iφC̄

)
|A|2A.

Applying the relationships (3.34), and (3.36) to the parameter value in the left hand side

gives

−Γ2 − (D1 + ivgqc −D2q
2
c )

2

iΓc
=
−(D1 + ivgqc −D2q

2
c )(D̄1 +D1 − (D̄2 +D2)q2

c )

iΓc
.

Therefore, we multiply all terms in (3.43) by

−iΓc
(D1 + ivgqc −D2q2

c )(D̄1 +D1 − (D̄2 +D2)q2
c )
.
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Accordingly, equation (3.41) reduces to the real Ginzburg–Landau equation

∂A

∂T̃
=

1

D̄1 +D1 − (D̄2 +D2)q2
c

[
− 2Γ2

cΓ2A+
(

(D̄1 − ivgqc − D̄2q
2
c )D2

+ (D1 + ivgqc −D2q
2
c )D̄2 + 2ivgD̄2qc − 2ivgD2qc − 4|D2|2q2

c − v2
g

) ∂2A

∂X̃2

+ 3
(
(D̄1 − ivgqc − D̄2q

2
c )C + (D1 + ivgqc −D2q

2
c )C̄

)
|A|2A

]
.

We return values of D1 and D2, so the real Ginzburg–Landau equation becomes

∂A

∂T̃
=

1

2ρ+ 4αq2
c

[
− 2Γ2

cΓ2A− 4
(
ρα + νβ +

v2
g

4
+ 3vgβqc + 6(α2 + β2)q2

c

) ∂2A

∂X̃2

+ 6
(
ρ+ 2αq2

c

) (
Cr +

(ν + vgqc + 2βq2
c )Ci

(ρ+ 2αq2
c )

)
|A|2A

]
.

We calculate the parameters in the amplitude equation above to give the real Ginzburg–

Landau equation:

∂A

∂T̃
=
−Γ2

cΓ2

ρ+ 2αq2
c

A− 4ρα + 4νβ + v2
g + 12vgβqc + 24(α2 + β2)q2

c

2ρ+ 4αq2
c

∂2A

∂X̃2

+ 3
(
Cr +

ν + vgqc + 2βq2
c

ρ+ 2αq2
c

Ci

)
|A|2A.

(3.44)

Flat solutions of this equation are consistent with the simple constant solutions of equation

(3.30). The real Ginzburg–Landau equation is known to have steady sech solutions, so

we can find localized solutions of (3.41) in terms of hyperbolic functions. This leads to

an approximate oscillon solution of (3.41) of the form

A(X̃) =

√
2Γ2

cΓ2

h1

sech

(√
Γ2
cΓ2

h2

X̃

)
eiφ1 , (3.45)
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where φ1 is an arbitrary phase and

h1 = 3
(
(ρ+ 2αq2

c )Cr + (ν + vgqc + 2βq2
c )Ci

)
,

h2 = −2

(
ρα + νβ +

v2
g

4
+ vgβqc + 6(α2 + β2)q2

c

)
,

where Γ2, h1 and h2 must all have the same sign for the sech solution to exist. From the

linear theory we have B̄(X̃) = A(X̃)eiφ, which gives

B̄(X̃) =

√
2Γ2

cΓ2

h1

sech

(√
Γ2
cΓ2

h2

X̃

)
ei(φ1+φ), (3.46)

At leading order

A(X) = ε2A1(X) =

√
2Γc(Γ− Γc)

h1

sech



√

Γc(Γ− Γc)

h2

X


 ei(qcX+φ1), (3.47)

and

B(X) = ε2B1(X) =

√
2Γc(Γ− Γc)

h1

sech



√

Γc(Γ− Γc)

h2

X


 ei(qcX+φ1+φ), (3.48)

provided Γ < Γc, h1 < 0, and h2 < 0. Note that in the PDE (3.1) we have the assumption

U = εU1 = ε(A(X,T )eix +B(X,T )e−ix)eit,

which becomes

U =

√
2ε2Γc(Γ− Γc)

h1

sech



√
ε2Γc(Γ− Γc)

h2

x


 cos((1 + εqc)x+

φ

2
+ φ1)ei(t−

φ
2

).

Using table 3.1, we return all parameter values. Therefore the spatially localized oscillon
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is given approximately by

Uloc(x, t) = 2

√
Fc(F − Fc)

8h∗1
sech

(√
Fc(F − Fc)

16h∗2
x

)
cos((1 + εqc)x+

φ

2
+ φ1)ei(t−

φ
2

),

again provided F < Fc, and where

h∗1 = 3
(
(µ− α + γ + 2α(εqc)

2)Cr + (ω − β + δ − 1 + (−2β + 4δ)εqc + 2β(εqc)
2)Ci

)
,

h∗2 = −2
(
α(µ− α + γ) + β(ω − β + δ − 1) +

(−2β + 4δ)2

4
+ 3β(−2β + 4δ)εqc

+ 6(α2 + β2)(εqc)
2
)
,

where qc and Γc can be determined from (3.34), so that

Uloc(x, t) = 2

√
Fc(F − Fc)

8h∗1
sech

(√
Fc(F − Fc)

16h∗2
x

)
cos(kcx+

φ

2
+ φ1)ei(t−

φ
2

), (3.49)

where h∗1 and h∗2 become (since kc = 1 + εqc):

h∗1 = 3
(

(µ− α + γ + 2α(kc − 1)2)Cr + (ω − β + δ − 1 + (−2β + 4δ)(kc − 1)

+ 2β(kc − 1)2)Ci

)
,

h∗2 = −2
(
α(µ− α + γ) + β(ω − β + δ − 1) +

(−β + 2δ)2

+
3β(−2β + 4δ)(kc − 1)

+ 6(α2 + β2)(kc − 1)2
)
.

This solution Uloc gives an approximate solution of the model PDE (3.1) valid in the

limit of weak dissipation, weak detuning, weak forcing, small group velocity, and small

amplitude. In the next section we compare the approximate solution Uloc with a numerical

solution of the PDE model.
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Figure 3.10: Numerical simulation of stable localized oscillon to (3.1) found by time-
stepping, with ε = 0.1, µ = −0.255, α = −0.5, β = 1, γ = −0.25, δ = 0.4995, ν = 2,
ω = 1 + β − δ + ε2ν = 1.52, C = −1− 2.5i, and F = 0.0585. The top panel shows the
time evlution of the Fourier modes, where Û is the Fourier transform of U .

3.6 Numerical results

Similar to the methodology we used in Chapter 2, we present numerical simulations of

the PDE model (3.1) by continuation and time-stepping. For the time-stepping we use a

domain size of Lx = 60π and Nx = 1024 points. The localized solution that we used as

a starting point for continuation is plotted in Figure 3.10.

Using AUTO, we represent solutions by a truncated Fourier series in time with

frequencies −3, −1, 1 and 3. Note that the choice of these frequencies comes from
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Figure 3.11: Amplitudes of the different frequencies when expanding the solution of
Figure 3.10 in a Fourier series in time: frequency +1 is strongest, followed by frequencies
−3, −1 and +3, as expected.

the choice of parameters: the linearized PDE at wavenumber ±1 looks like ∂u
∂t

= iu, so

the strongest Fourier component of U looks like eit; then putting u = eit into the forcing

Re(eit) cos(2t) generates the frequencies −3, −1, 1 and 3, as described in Chapter 2. We

also checked numerically that the frequencies dominate (see Figure 3.11).

The bifurcation diagram of (3.1) as computed by AUTO is given in Figure 3.12. The

transition between the stable zero state to the unstable pattern occurs at the bifurcation

point Fc = 0.08205. The saddle-node point where unstable periodic patterns become

stable periodic patterns is Fd = 0.056. The bistability region where we look for the branch

of localized states is between Fc and Fd. The branch of localized patterns bifurcates

from the branch of periodic patterns at F ∗c = 0.07706, which is away from Fc because

of the finite domain. Stable localized patterns are located between F1 = 0.05695 and

F2 = 0.05987, but the snaking region is small.

Examples of localized solutions along the localization curve in Figure 3.12 are given in
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Figure 3.12: Bifurcation diagram of (3.1) in the weak damping regime with parameters
as in Figure 3.10. The bistability region is between Fc = 0.08205 and Fd = 0.056. The
bifurcation point F ∗c = 0.07706.

Figure 3.13 and 3.14 (a)-(e). Near the point F ∗c where the localized curve bifurcates,

the localized solutions look like the periodic patterns: small amplitude oscillations which

are not very localized (see Figure 3.13 (a)). As we go along the localization curve, the

amplitude increases and the unstable oscillons become more localized (Figure 3.13 (a)-

(c)). At F1 = 0.05695, the localized oscillons stabilize (Figure 3.14 (d)) and then they

lose stability again at F2 = 0.05987 (Figure 3.14 (e)). Beyond F ∗c , the localization curve

connects to the pattern branch close to the saddle-node point Fd without further snaking.

The right panel of Figure 3.14 shows a typical periodic pattern.

Figure 3.15 shows the approximate solutions from (3.49), which we derived in the

previous section, of the envelope equations for three different values of the forcing

amplitude, starting close to the bifurcation point F ∗c . We can compare the numerical

solutions of the model PDE in Figure 3.13 with the asymptotic solutions of the real
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Figure 3.13: Solutions (a)-(c) along the bifurcation diagram in Figure 3.12. The blue
curve represents the real part of U(x), and red curve represents the imaginary part of
U(x). At (a) F = 0.07569, (b) F = 0.07013, and at (c) F = 0.06486.
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Figure 3.14: Solutions to (3.1) along the bifurcation diagram 3.12, (d) is at F = 0.05695
and (e) is at F = 0.05987. Right panel shows an example of the pattern on the upper
branch.

Ginzburg–Landau equation in Figure 3.15. The difference between the two figures

is because in an infinite domain the localization curve bifurcates from the zero state

(F ∗c = Fc), while in a finite domain the bifurcation point is on the periodic branch

(F ∗c < Fc). Solutions on the localization curve close to this bifurcation point are like

spatially periodic solutions with small attenuation of the amplitude of the oscillations. As

we go away from the bifurcation point, the attenuation grows until it is comparable to the

amplitude of the periodic pattern and a clearly localized solution appears.

As we increase the domain size, the localization of the asymptotic solution becomes

clearer. In the next section we will discuss the effect of the domain size for finding

spatially periodic patterns in the model PDE (3.1).
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Figure 3.15: Asymptotic solutions (3.49) at the same parameter values as Figure 3.13 (a)-
(c). The blue curve represents the real part of U(x), and red curve represents imaginary
part of U(x). At (a) F = 0.07569, (b) F = 0.07013, and at (c) F = 0.06486.
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Figure 3.16: Asymptotic solution of (3.49) with the same parameter value as in Figure
3.10 at F = 0.07013. The size of the box increases (a) Lx = 30π, (b) Lx = 60π, (c)
Lx = 120π, and (d) Lx = 240π.

3.7 The effect of the domain size

The results we simulate numerically using time-stepping and continuation methods in the

previous section are in a domain with size Lx = 60π. In this section we give examples of

localized oscillons with bigger domain size.

In Figure 3.16 (a)-(d) we plot the asymptotic solution (3.49) at F = 0.07013 for different

domain sizes to show the effect of making the domain size large but still finite. Figure

3.17 (a) shows an example of a localized solution, which we found in the PDE (3.1) by
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Figure 3.17: Examples of localized solutions in the PDE (3.1) with same parameters as
in Figure 3.10, but different domain size. The forcing amplitude is F = 0.05856. The
domain size in (a) is Lx = 120π. and in (b) is Lx = 240π.

time-stepping, in a box of size Lx = 120π that is twice as big as the size of the domain in

Figure 3.13 and Figure 3.14. In Figure 3.17 (b) the domain size is Lx = 240π. The time

that we need to evaluate localized patterns increases as we make the domain size bigger.

Although dealing with bigger domain size is not easy, we were able to do continuation in

a domain with size Lx = 120π. Figure 3.18 shows that the localization curve bifurcates

at F ∗c = 0.080829. As expected, this point is closer to Fc = 0.08205 than when the

domain size was Lx = 60π. Examples of localized solutions along the localization curve

are given in the left panels of Figure 3.19 (a)-(c) and in Figure 3.20 (d) and (e). The right
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Figure 3.18: Bifurcation diagram of (3.1) in the weak damping limit in a domain size
Lx = 120π with ε = 0.1, µ = −0.255, α = −0.5, β = 1, γ = −0.25, δ = 0.4995, ν = 2,
ω = 1 +β− δ+ ε2ν, and C = −1− 2.5i. The bistability region is between Fc = 0.08246
and Fd = 0.056. The bifurcation point of the localization curve is F ∗c = 0.08027.

panels of Figure 3.19 (a)-(c) shows solutions of (3.49). The left and right panels of Figure

3.19 are at the same value of F .

We tried to make the domain size even bigger, but we did not manage to get a bifurcation

diagram for Lx = 240π using AUTO.

3.8 Discussion

The current discussion was about constructing the PDE model (3.1) for the formation of

localized states in the presence of forcing. Our aim was to show the existence of a branch

of localized solutions in the bistability region by applying weakly nonlinear theory. The
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Figure 3.19: The left panels are solutions (a)-(c) along the bifurcation diagram in Figure
3.18. The right panels are Asymptotic solution (3.49). These solutions are at (a) F =
0.07943, (b) F = 0.07720, and (c) F = 0.07389.
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Figure 3.20: Solutions (d) and (e) along the bifurcation diagram in Figure 3.18, at (d)
F = 0.05701, and at (e) F = 0.06014.
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Figure 3.21: The wavenumbers of localized solutions of the PDE model (3.1) with β =
−0.02, δ = 0.02, ω = 0.96, and vg = 0.4. Note that Ω(k) is close to 1 over a wide range
of k.
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Figure 3.22: The wavenumbers of localized solutions in the PDE (3.1) with ν = −1,
β = 1, δ = 0.4825, ω = 1 + β − δ + (ε2ν) = 1.5075, ε = 0.1. Note that Ω(k) = 1 is
close to 1 at two distinct wavenumbers.
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Figure 3.23: Localized solution in the PDE model (3.1) with two wavenumbers with
µ = −0.255, ν = −1, α = −0.5, β = 1, γ = −0.25, δ = 0.4825, F = 0.15, ε = 0.1,
ω = 1 + β − δ + (ε2ν), and vg = −0.7. Nx = 1280, Lx = 200π.
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Figure 3.24: Approximation to the wavenumbers of the solution in Figure 3.23 with the
same parameters.

existence of these solutions is subject to the scaling we applied in this chapter being

valid; in particular we assumed that the group velocity is small. However, with such

an assumption we have to be careful because waves with a wide range of wavenumbers

can be excited. Figure 3.21 shows the dispersion curve for a fairly small group velocity

(vg = 0.4); it is clear that many wavenumbers are close to resonant (Ω is close to 1). It is

also possible to get two wavenumbers being resonant; see Figure 3.22 for an example.

Localized solutions with two wavelengths have been observed in the PDE model (3.1).

An example is given in Figure 3.23. We found more examples, but this problem is beyond

this thesis. We will do more study in localized states with two wavenumbers in the future.

In order to avoid this problem, we might think of making the group velocity to beO(1) and

then reducing (3.1) to the averaged FCGL equation, rather than reducing it to the actual

FCGL model, as was done in [57]. The averaged FCGL equation then might be reduced to

the real Ginzburg–Landau equation, which could have sech solution. Therefore, spatially
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localized oscillons can be found in the PDE model (3.1) even for O(1) group velocity.

As we change the group velocity vg we found that the biggest magnitude of the group

velocity we can reach and still find localized oscillons is at vg = −0.75. If we want to

extend the group velocity more we need to reduce the forcing amplitude Γ and change β

(see for example Figure 3.8).

In this chapter, we found oscillons in the model PDE (3.1), which give an idea of how

oscillons might be studied in a model like the Zhang–Viñals model [93], and how the

weakly nonlinear calculations of [77] might be extended to the oscillons observed in the

Faraday wave experiment.
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Chapter 4

Localized oscillons in the

parametrically forced PDE model with

a cubic–quintic nonlinearity

4.1 Introduction

In Chapter 3, spatially localized oscillons were found in the form of many oscillations

of the periodic pattern underlying the envelope equation (see Figure 3.10). Our results

did not give a single-peak oscillon as seen in Figure 1.2, observed in the Faraday wave

experiment. We tried to find a single-peak oscillon in the PDE model (3.1), but we could

not find any examples as Figure 2.9, where the preferred wavenumber is zero.

In the large amplitude regime, we need to control the subcriticality of the PDE model to

make the oscillon sufficiently nonlinear that it will form a single-peak. The subcriticality

in Chapter 3 comes from the forcing term balancing the −|U |2U term. An alternative

way to control the subcriticality is to modify the PDE model (3.1) to include a quintic

nonlinear term. With a −|U |4U term, it is possible to make the cubic coefficients as big

(positive) as we want without losing the stable branch. An alternative way to control

the subciticality would be to reinstate the quadratic nonlinearity. However, it is easier to
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investigate the PDE model with cubic-quintic nonlinearity.

Localized solutions to the Swift–Hohenberg equation with cubic–quintic nonlinearity

were studied first by Sakaguchi and Brand in [71–73]. Sakaguchi and Brand studied

stationary stable localized solutions with a circular symmetry [72], in one and two

dimensions [73]. These solutions depended on the initial conditions as expected, but not

on the size of the domain. Burke and Knobloch in [13] investigated the Swift–Hohenberg

equation with a cubic–quintic nonlinearity in order to give more detailed description of

the resulting spatially localized solutions that were found in [71].

All previous work on cubic–quintic were done with autonomous PDEs. Here we are

interested in explicit time-dependent forcing. Therefore, our analysis is carried out by

altering the PDE model to include a quintic nonlinear term:

Ut = (µ+ iω)U + (α + iβ)∇2U + Cr|U |2U − |U |4U + i<(U)f(t), (4.1)

where Cr ∈ R and Cr > 0, and f(t) is a 2π periodic function. We will study localized

oscillons in this cubic–quintic PDE with strong damping, so we do not need the∇4U term,

and with values of parameters µ, ω, α, and β chosen so that the preferred wavenumber at

onset is non-zero. This equation has a U → −U symmetry.

In the strong damping, strong forcing case, the linear part of the cubic–quintic PDE is

reduced to the damped Mathieu equation, which has to be solved numerically to get the

eigenfunction as we discussed in Chapter 2. We present the linear theory in the next

section, and we present examples of spatially localized oscillons numerically in both one

and two dimensions in Section 4.3 and 4.4.

4.2 Linear Theory

This chapter is based on studying the linearized PDE (4.1) in the strong damping and

strong forcing case. The linear part of the PDE reduces to the damped Mathieu equation.
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As in Chapter 2, we write the solution as U = u + iv, where u(x, t) and v(x, t) are real

functions. Thus the PDE becomes

∂u

∂t
=

(
µ+ α

∂2

∂x2

)
u−

(
ω + β

∂2

∂x2

)
v + Cr(u

2 + v2)u− (u2 + v2)2u,

∂v

∂t
=

(
ω + β

∂2

∂x2

)
u+

(
µ+ α

∂2

∂x2

)
v + f(t)u+ Cr(u

2 + v2)v − (u2 + v2)2v.

(4.2)

We linearize the PDE problem about zero in order to reduce it to the damped Mathieu

equation for a periodic forcing function f(t) = F cos(2t). The critical forcing amplitude

Fc is the forcing at which the zero solution loses stability. Since in this case the critical

wavenumber is not zero, we seek solution of the form

U = eikx(p1(t) + iq1(t)), (4.3)

where p1(t) and q1(t) are 2π periodic functions. Note that this is different from the

analysis in Chapter 2, and it is the same as the analysis in [70, Appendix A]. Substituting

(4.3) into (4.2) leads to

[
∂

∂t
− (µ− αk2)

]
p1 = −(ω − βk2)q1,

[
∂

∂t
− (µ− αk2)

]
q1 = (ω − βk2)p1 + f(t)p1,

which can be combined to give a damped Mathieu equation

p̈+ γ̂ṗ+ (Ω2 + f(t)Ω̂)p = 0, (4.4)

where γ̂ = 2(−µ+ αk2), Ω̂ = ω − βk2, and Ω =
√

( γ̂
2
)2 + Ω̂2. Thus a linear operator is

defined as

L =
∂2

∂t2
+ γ̂

∂

∂t
+ (Ω2 + f(t)Ω̂), with Lp = 0.

As in Chapter 2 we solve the damped Mathieu equation (4.4) numerically to determine

the critical wavenumber kc, and the critical forcing amplitude Fc. The critical forcing
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Figure 4.1: Linear theory for one-frequency forcing, with damping coefficients µ = −0.5,
α = 0.5, and dispersion relation coefficients ω = 1

3
, and β = −2

3
. The left panel shows

the critical forcing amplitude Fc = 5.02736, at kc = 0.69113. The right panel presents
the Floquet multipliers at F = Fc, with a critical Floquet multiplier Fm = −1 at k = kc.

amplitude, where the transition between stable to unstable trivial state ocurrs, is given in

the left panel of Figure 4.1. It shows that minimizing this forcing amplitude over k with

µ = −0.5, α = 0.5, β = −2
3

, and ω = 1
3

yields the critical wavenumber kc = 0.69113

at Fc = 5.02736. The right panel of Figure 4.1 represents the Floquet multipliers at the

critical forcing amplitude as a function of wavenumbers k (see Appendix B and C.1). We

could apply weakly nonlinear theory to the PDE model (4.1) as in [70], but we are not

going to do that in this thesis.

4.3 Numerical results: one dimension

In this section we solve the cubic–quintic PDE (4.1) by time-stepping. We use a

pseudospectral method, and the exponential time differencing method ETD2 as in Chapter

2. We did continuation by using time-stepping to plot the stable periodic pattern curve
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Figure 4.2: Bifurcation diagram of the cubic–quintic PDE (4.1), with µ = −0.5 , α = 0.5,
β = −2

3
, ω = 1

3
, and Cr = 1. Blue and purple branches present even and odd localized

oscillons respectively. The right panel shows periodic patterns at F = 3.8.

and stable localization curves.

In one spatial dimension, we use a domain with size Lx = 20π
kc

= 91.0607, and FFTs with

up to 256 Fourier modes. Figure 4.2 shows the bifurcation diagram of (4.1) as computed

by time-stepping. The right panel of Figure 4.2 presents the periodic pattern, which we

use to do continuation to find the periodic patterns curve in the bifurcation diagram in the

left panel.

Generally speaking, localized states arise as a result of bistability between a zero flat state

and periodic patterns. The bistability region, as shown in the left panel of Figure 4.2, is

between the bifurcation point Fc = 5.021 and the saddle-node point Fd = 3.48.

In order to find oscillons of different widths, we choose initial conditions that are different
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combinations between the zero flat state at the edges and the periodic pattern in the

center. Which spatially localized oscillons is found depends on the initial conditions. It

is possible to detect them by setting a random initial condition, but this makes it difficult

to generate oscillons in a systematic fashion. As we change the initial condition, we

get different examples of spatially localized oscillons, which are shown in Figure 4.3

and 4.4. We continue each of these solutions, so we end up with a range of stable

localized branches. Therefore, the bifurcation diagram in Figure 4.2 shows the region of

localization in the bistability region. Since we use time-stepping to find spatially localized

oscillons, the localized branches that we found are only the stable branches. Thus, they are

not connected with unstable branches, which normally can be seen if we did continuation

by AUTO.

Following the solutions in Figure 4.3 (a)-(h) shows that they are even about x = Lx
2

, and so

are maximum or minimum at midpoint . Figure 4.4 (a)-(h) shows that the localized state is

always zero at x = Lx
2

. Therefore, we expect that there are two curves of stable localized

oscillons, which are similar to results found in the Swift–Hohenberg equation (see Figure

4.5, that is taken from [14]). In the Swift–Hohenberg equation, there have been many

studies where similar results were discussed, for instance in [12–14, 39, 40, 71, 73]. We

expect that branches in each of these curves be connected by unstable localized oscillons

to give two snaking curves (see Figure 4.6). In Figure 4.3, we use the U → −U symmetry

to present localized oscillons in such a way that their outer edges are all the same. As a

consequence of this choice, (a), (c), (e), and (g) have a local maximum at the centre, while

(b), (d), (f), and (h) have a local minimum. Similarly, we could use also the U → −U
symmetry in Figure 4.4 to make the outer edges the same but instead we have chosen to

have positive slope at the midpoint in all cases. All solutions were plotted at x = Lx
2π

.

These results confirm the universal picture arising from the Swift–Hohenberg equation,

even with parametric forcing. We expect that localized oscillons in Figure 4.3 to be

connected by a snaking branch of even solutions, and localized oscillons in Figure 4.4

to be connected by another snaking branch of odd solutions. Figure 4.6 shows sketches
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Figure 4.3: Examples of spatially periodic oscillons in the cubic–quintic PDE (4.1) along
the blue branches in Figure 4.2 with parameters as in Figure 4.2. All these spatially
localized oscillons arise at F = 3.8.
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Figure 4.4: Examples of spatially periodic oscillons in the cubic–quintic PDE (4.1) along
the purple branches in Figure 4.2 with parameters as in Figure 4.2. All these spatially
localized oscillons are at F = 3.8 except (a) at F = 3.85 .
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Fig. 3. (a) Bifurcation diagram showing the four branches of localized (ho-
moclinic) states near r = 0. The branch of uniform patterned solutions uP is
also shown. The lower panels show the homoclinic solutions on the (b) φ = 0,
(c) φ = π , (d) φ = π/2, and (e) φ = 3π/2 branches at r = −0.15. The dotted
lines in these panels show the leading order envelope computed in (13).

Fig. 4. (a) Bifurcation diagram showing the two homoclinic branches together
with the flat and patterned branches of Fig. 2. Away from the origin the ho-
moclinic branches are contained within the pinning region (shaded) between
rP 1 ≃ −0.7126 and rP 2 ≃ −0.6267. Thick lines indicate stable solutions. The
dashed vertical line marks the location of the Maxwell point rM1 between the
flat and patterned branches. (b) Closeup showing the ‘rungs’ connecting the
snaking branches. Labels mark the locations of the profiles shown in Fig. 5.

tude is small and the width of the sech envelope is large enough
to contain many wavelengths of the underlying pattern. Away
from the origin the amplitude grows and becomes comparable
to the amplitude of the patterned states (specifically, the stable

Fig. 5. Sample localized profiles as indicated in Fig. 4. (a), (f) lie on the φ = π/2
branch while (c), (d) lie on the φ = 0 branch. (b), (e) lie on the asymmetric
‘rungs’ at r = −0.66.

branch above the bifurcation at r3) and the width decreases until
it is comparable to Lc, the wavelength of the underlying pattern.
Beyond this point both the even and odd branches undergo a se-
ries of saddle-node bifurcations responsible for the terminology
homoclinic snaking. Each saddle-node bifurcation adds a pair
of oscillations to the profile uℓ(x), and the saddle-node bifurca-
tions asymptote exponentially rapidly to rP 1 and rP 2. At each
value of r within this range there exists an infinite number of so-
lutions, each of a different width. Higher up along each ‘snake’
the solutions uℓ(x) begin to look like a pattern of wavelength
Lc and uniform amplitude, truncated at either end by a station-
ary ‘front’ of width of order Lc connecting this state to u0. The
amplitude of this state is nearly identical to the upper branch
of the patterned solutions. These results suggest that within the
region rP 1 < r < rP 2 there exist heteroclinic connections be-
tween the flat and patterned states as well. Far up each branch
shown in Fig. 4, after many saddle-node bifurcations, the ho-
moclinic solutions uℓ(x) connecting the flat state u0 to itself
resemble two of these heteroclinic connections, from u0 up to
the patterned state and then from the patterned state back down
to u0. These (Pomeau) fronts are stationary even away from rM1
because of pinning by the underlying wavetrain [15]. Indeed
we may think of the region rP 1 < r < rP 2 as a Maxwell point
that has been broadened by pinning to the underlying patterned
state, a picture supported by the presence within this region of
the Maxwell point rM1 at which the u0 and patterned branches
have the same energy.

Fig. 4 also indicates the stability of the localized solutions
in time, a consideration that is absent from the general the-
ory of reversible systems. The eigenvalue problem (5) yields
the growth rate of infinitesimal perturbations of the homoclinic
solutions at each point along the branches, as well as the as-
sociated eigenfunctions ũ(x). The eigenfunctions that play a
critical role in what follows are localized around the base state
uℓ(x) and are therefore insensitive to the exact choice for L.
The results for the even (φ = 0,π) and odd (φ = π/2,3π/2)

branches are shown in Fig. 6. Near the origin the even branches
are unstable to even perturbations, while the odd branches are
unstable to both odd and even perturbations. Each zero crossing
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Figure 4.5: Bifurcation diagram and localized examples of the cubic–quintic Swift–
Hohenberg equation, reproduced from [14]. Bifurcation diagram showing the two
homoclinic branches. Thick lines indicate stable solutions.
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Figure 4.6: Localized branches from Figure 4.2 with the same parameter values. The thin
lines are sketches of the expected unstable branches.

of the expected unstable branches. It had been found numerically in [13, 14] that the two

snaking branches in the Swift–Hohenberg equation are connected by ladder branches.

Therefore, we expect to have ladder branches that connect the two localization curves in

the cubic–quintic PDE (4.1) model.

4.4 Numerical results: two dimensions

In two dimensions, we use a domain with size ofLx = Ly = 91.0607 andNx = Ny = 256

Fourier modes to find spatially localized spots in the cubic-quintic PDE model (4.1), also

by time-stepping. To find axisymmetric spots, we use axisymmetric initial conditions,

centred in the middle of the box. Axisymmetric solutions U(r) depend on the radial
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variable r =
√

(x− Lx
2

)2 + (y − Ly
2

)2. In the Swift–Hohenberg equation, localized

radial structures were studied by Lloyd and Sandstede [52], and also by McCalla and

Sandstede [55]. In this section we investigate the existence of localized spots, which

do not require bistability between the trivial state and a patterned state as in [52], and

localized rings.

We set the initial condition to be one spot in the centre, which is surrounded by more

rings, and then we set the rest of the domain to be zero. Specifically, we used in the time-

stepping a function in radial coordinate cos(kcr), multiplied by an amplitude. The initial

condition is given in Appendix C.2 as

U(r) =
0.65 cos(kcr)

1 + e0.5kc(r−n)
.

As we change n, we get different axisymmetric rings. The initial condition that is given

in the Appendix is related to solution (e) in Figure 4.7. In our study we give only a sample

of axisymmetric spots that can be found in the cubic–quintic PDE; more examples can be

found by changing the initial condition.

Figure 4.7 shows 6 examples of axisymmetric spots. We follow these solutions to find

the stable localization branches of the snaking curve. Figure 4.8 shows the bifurcation

diagram of axisymmetric spots (blue branches) and stripes (red branch). Figure 4.9

represents stripes at F = 3.8. The longest stable blue branch at the bottom of Figure

4.8 refers to the one spot oscillon in Figure 4.7 (a). As we mentioned above, more

examples of these type of spots can be found by changing the n in the initial condition.

Our investigation shows that an initial condition with more rings than Figure 4.7 (f) breaks

into stripes.

Next, we examine the existence of non-axisymmetric oscillons in the cubic–quintic PDE.

In this case the domain size is the same as in the axisymmetric case, but with fewer

Fourier modes Nx = Ny = 128. We used different initial condition in the time-stepping
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Figure 4.7: Solutions of the cubic–quintic PDE following the bifurcation diagram with
µ = −0.5, α = 0.5, β = −2/3, ω = 1/3, and Cr = 1.
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Figure 4.8: Bifurcation diagram of the cubic–quintic PDE in 2D spatial dimensions with
branches of axisymmetric and non-axisymmetric oscillons with parameters as in Figure
4.7.

to find these non-axisymmetric oscillons, (see Appendix C.2). Figure 4.10 shows three

examples of non-axisymmetric localized states. These solutions represents interaction

between oscillons as expected in experiments (see Figure 1.2 in Chapter 1). These

solutions include dipoles, triple, and chains of square polarity. Similar numerical results

of non-axisymmetric oscillons were observed in the cubic–quintic Swift–Hohenberg

equation [24]. As we continue these examples of oscillons, we find branches of stable

localization, shown in Figure 4.8. In two spatial dimensions, we made movies to show

the dynamic of axisymmetric and non-axisymmetric spots. Snapshots of axisymmetric

and non-axisymmetric oscillons at different times are given in Figure 4.11 and 4.12

respectively.
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Figure 4.9: Example of stripes at F = 3.8 with other parameters the same as in Figure
4.7.

4.5 Conclusion

In this Chapter, we studied the cubic–quintic PDE with parametric forcing (4.1)

numerically in one and two dimensions. In one spatial dimension, we found evidence for

two snaking localization curves. Our expectation is that these two curves are connected

by ladders as in the Swift–Hohenberg equation. The results we presented in this chapter

were found by time-stepping, so the localization branches that we found are only the

stable branches. It is complicated to do continuation by AUTO in the cubic–quintic PDE

(4.1), because of the quintic nonlinearity. However, it would be interesting to find the

stable and unstable branches in the bifurcation diagram. Also, by doing continuation

using AUTO, it would be possible to find ladder branches. This is work for the future.

In two dimensions, examples of localized solutions can be found by varying the initial

condition. We also expect to have more than one snaking curve for the axisymmetric

oscillons. Non-axisymmetric examples can also be found in this problem. The cubic–

quintic PDE is still an open problem for the future.

Analytically, we would expect weakly nonlinear calculations to lead to a cubic–quintic

Complex Ginzburg–Landau equation close to the transition from a supercritical to a
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subcritical bifurcation with non-zero wavenumber, if we scaled the cubic term to be small.

This was studied in the Swift–Hohenberg equation by Kozyreff and Chapman [17,45] and

by Dean, Matthews, Cox, and King [29] using exponential asymptotic. Weakly nonlinear

analysis will be included in our future work.



Chapter 4. Localized oscillons in the parametrically forced PDE model with a
cubic–quintic nonlinearity 110

Figure 4.10: Non-axisymmetric oscillons with parameters as in Figure 4.7.
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Figure 4.11: Sequence of snapshots of axisymmetric oscillons with parameters as in
Figure 4.7 at times t = 1

6
, 13

30
, 18

30
.
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Figure 4.12: Sequence of snapshots of non-axisymmetric oscillons with parameters as in
Figure 4.7 at times t = 0, 13

60
, 1

3
.
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Chapter 5

Conclusion: summary and discussion

This thesis describes the existence of spatially localized states in a periodically forced

system. The appearance of localized states is associated with the presence of bistability

between the trivial state and the non-trivial state in the system. The subcriticality of the

bifurcation diagram from the zero state is an essential element to find localized solutions.

The localized solutions that we find are time dependent, unlike most previous work on

this class of problems; they oscillate with half the frequency of the driving force. We

have used the technique of weakly nonlinear theory to reduce the PDE model (1.12) with

time dependent parametric forcing to its amplitude equations in order to find localized

states that are presented in Chapters 2 and 3. In Chapter 4, examples of localized

oscillons exhibited the typical snaking behavior that is familiar from the Swift–Hohenberg

equation.

In Chapter 2, in the weak damping and weak forcing limit, the solutions and bifurcations

of the PDE model (1.12) are accurately described by its amplitude equation, the FCGL

equation (1.1). Analytically, we reduce the FCGL equation near onset to the Allen–Cahn

equation (2.12) to find exact sech localized solution of the PDE. Numerically, we used

continuation in the PDE model (1.12) to detect the branch of localized states. The saddle-

node bifurcations on the snaking curve arise from pinning associated with the decaying

spatial oscillations on either edge of the flat state. Numerical results show excellent
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agreement between the PDE model and the FCGL equation. The agreement remains

qualitatively good even with strong damping and strong forcing.

In this chapter our results are directly relevant to localized patterns found in Turing

systems, such as those found in [80, 86]. These results are not directly relevant to the

oscillons observed in the Faraday wave experiment, where the preferred wavenumber is

non-zero. Therefore, in Chapter 3 we investigate spatially localized oscillons with non-

zero wavenumber in the PDE model (1.12). Our study might indicate how localized

solutions could be studied in (for example) the Zhang–Viñals model [93], and how the

weakly nonlinear calculations of [77] might be extended to study the oscillons observed

in the Faraday wave experiment. By using multiple scale analysis, and in the limit of

weak damping, weak detuning, weak forcing, small group velocity, and small amplitude,

we reduce the PDE model (1.12) to the coupled FCGL equations (1.2). We successfully

found (for the first time) numerical examples of spatially localized oscillons in the coupled

amplitude equations and in the PDE model at related parameter values.

The existence of localized solutions in the bistability region in the PDE model is subject to

the scaling that we applied in this chapter being valid. We assumed that the group velocity

is small, and with such an assumption we have to be careful not to get a wide range of

wavenumbers excited. In the case where this happens, we found localized solutions with

two wavelengths in the PDE model. These states resemble those found by Bentley [8] in

an extended Swift–Hohenberg model, and by Riecke [67] in the coupled FCGL equations

with small group velocity, in the supercritical case. We will study localized states with

two wavenumbers in the future.

The coupled FCGL equations are derived with the assumption that the group velocity is

small, of the same order as the amplitude of the solution, which is not true in reality. In

fact, the group velocity is O(1), but we consider the assumption that it is small in order to

make progress in our problem. We have discussed the averaging approach taken by [57]

in the O(1) group velocity case in Chapter 3.
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We also make further reduction of the coupled FCGL equations to the real Ginzburg–

Landau equation, which has exact sech localized solutions. Numerically, we compare

spatially localized oscillons in the model PDE with sech solutions of the real Ginzburg–

Landau equation. In the strong damping, strong forcing limit, we could directly reduce

the PDE model to the real Ginzburg–Landau equation (3.44) after solving the Mathieu

equation numerically to get the eigenfunction from the linear terms of the PDE, and doing

the weakly nonlinear theory numerically.

Numerically we studied in Chapter 4 the cubic–quintic PDE with parametric forcing (4.1)

in the strong damping and strong forcing case. In one spatial dimension, we found

evidence for two snaking localization curves, that are possibly connected by ladders as

in the Swift–Hohenberg equation. It would be interesting in future to find the stable and

unstable branches and ladders by doing continuation using AUTO. In two dimensions, we

found examples of localized solutions by varying the initial condition. Our expectation

is also to have more than one snaking curve for the axisymmetric oscillons. Examples

of non-axisymmetric solutions were found in this problem. Analytically, we would

expect weakly nonlinear calculations to lead to a cubic–quintic CGL equation close to the

transition from a supercritical to a subcritical bifurcation with non-zero wavenumber, if

we scaled the cubic term to be small. This was studied in the Swift–Hohenberg equation

by Kozyreff and Chapman [17, 45] and by Dean, Matthews, Cox, and King [29] using

exponential asymptotics. We will study weakly nonlinear analysis in our future work in

the cubic–quintic PDE model.



116

Bibliography

[1] S. M. ALLEN AND J.W. CAHN, A microscopic theory for antiphase boundary motion

and its application to antiphase domain coarsening, Acta. Metall, 27 (1978), pp.

1084-1095.

[2] A. S. ALNAHDI, J. NIESEN, A. M. RUCKLIDGE, AND T. WAGENKNECHT,

Localized patterns in periodically forced systems, SIAM J. Appl. Dyn. Syst.,13

(2014), pp. 1311-1327.

[3] I. S. ARANSON AND L. S. TISIMRING, Formation of periodic and localized patterns

in an oscillating granular layer, Phys. A, 249 (1998), pp. 103-110.

[4] H. ARBELL AND J. FINEBERG, Temporally harmonic oscillons in Newtonian fluids,

Phys. Rev. Lett., 85 (2000), pp. 756-759.

[5] D. ARMBRUSTER AND T.-C. JO, Pattern formation and parametric resonance.

In: Dynamics and bifurcation of patterns in dissipative systems, World Sci. Ser.

Nonlinear Sci. Ser. B Spec. Theme Issues Proc. World Sci. Publ., Hackensack, NJ,

(2004), pp. 158-173.

[6] AUTO, 1995-2010 Corporation on National Research Initiatives and 2001 Python

Software Foundation.

[7] T. B. BENJAMIN AND F. URSELL, The stability of the plane free surface of a liquid

in vertical periodic motion, Proc. R. Soc. Lond. A, 225 (1954), pp. 505-515.



BIBLIOGRAPHY 117

[8] D. C. BENTLEY, Localised solutions in the magnetorotational Taylor-Couette flow

with a quartic marginal stability curve, thesis, University of Leeds (2012).

[9] C. BIZON, M. SHATTUCK, J. SWIFT, W. MCCORMICK AND H. SWINNEY, Patterns

in 3d vertically oscillated granular layers: simulation and experiment, Phys. Rev.

Lett., 80 (1998), pp. 57-60.

[10] M. BORDBAR AND P. ZAMANKHAN, Dynamical states of bubbling in vertical

vibrated granular materials. Part II: Theoretical analysis and simulations, Commun.

Nonlinear Sci. Numer. Simul., 12 (2007), pp. 273-99.

[11] J. BURKE AND J. H. P. DAWES, Localized states in an extended Swift-Hohenberg

equation, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 261-284.

[12] J. BURKE AND E. KNOBLOCH, Localized states in the generalized Swift-

Hohenberg equation, Phys. Rev. E, 73 (2006), 056211.

[13] J. BURKE AND E. KNOBLOCH, Homoclinic snaking: structure and stability, Chaos,

17 (2007), 037102.

[14] J. BURKE AND E. KNOBLOCH, Snakes and ladders: Localized states in the Swift-

Hohenberg equation, Phys. Lett. A, 360 (2007), pp. 681-688.

[15] J. BURKE, A. YOCHELIS, AND E. KNOBLOCH, Classification of spatially localized

oscillations in periodically forced dissipative systems, SIAM J. Appl. Math., 7 (2008),

pp. 651-711.

[16] E. CERDA, F. MELO AND S. RICA, Model for subharmonic waves in granular

materials, Phys. Rev. Lett., 79 (1997), pp. 4570-4573.

[17] S. J. CHAPMAN AND G. KOZYREFF, Exponential asymptotics of localized patterns

and snaking bifurcation diagrams, Phys. D, 238 (2009), pp. 319-354.

[18] A. R CHAMPNEYS AND G. J LORD , Computation of homoclinic solutions to

periodic orbits in a reduced water-wave problem, Phys. D, 102 (1997), pp. 101-124.



BIBLIOGRAPHY 118

[19] C. CHONG, R. CARRETERO-GONZÁLEZ, B.A. MALOMED, AND P.G.
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Appendix A

Generating ordinary differential equations from the PDE

model and the FCGL equation in Fourier space

In this appendix we will derive the set of equations in Fourier space that we used to find

the bifurcation diagram (Figure 2.8) of the PDE model (2.2) for the zero wavenumber

case, and also for the non-zero wavenumber case. First, we will present the approximate

equations that represent the FCGL equation (2.1) as a set of ordinary differential equations

(ODEs).

A.1 Set of equations for the FCGL equation

AUTO treats localized solution as a periodic orbit, with Y(X) = Y(X + LX), so

effectively we have periodic boundary condition with fixed period LX . Often in pattern

formation problems, using AUTO is problematic because of (multiple) neutral modes

with zero eigenvalue. In this problem there is only one neutral mode correspond to spatial

translation, and this neutral mode can be treated by AUTO in the same way that it treats

the neutral time translation mode for periodic orbits in ordinary dynamical systems, and

so it poses no difficulties.

Here we write A as A = Y1 + iY3, where Y1 and Y3 are functions of x, and ∂A
∂X

= Y2 + iY4.
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The model is given as ∂Y
∂X

= F (Y), where Y = (Y1, Y2, Y3, Y4), and F (Y) is given by

F (1) = Y2

F (2) = (1/(1 + α2))(−α(µY3 + νY1 − (Y 2
1 + Y 2

3 )Y3 − β(Y 2
1 + Y 2

3 )Y1 − ΓY3)− (µY1 − νY3

− (Y 2
1 + Y 2

3 )Y1 + β(Y 2
1 + Y 2

3 )Y3 + ΓY1))

F (3) = Y4

F (4) = (1/(1 + α2))(α(µY1 − νY3 − (Y 2
1 + Y 2

3 )Y1 + β(Y 2
1 + Y 2

3 )Y3 + ΓY1)− (µY3 + νY1

− (Y 2
1 + Y 2

3 )Y3 − β(Y 2
1 + Y 2

3 )Y1 − ΓY3)) + λY4.

Homoclinic orbits are codimension-zero in this system because of the transversal in the

intersection of the stable and unstable manifolds of origin. The solution is approximated

by a periodic orbit of length LX , and LX � 1. To make this periodic orbit an isolated

solution of the spatial dynamical system, the system needs to be modified slightly, which

we do by adding a small term (λY4) to the last equation. This breaks the Hamiltonian

structure of the equation, thus allowing AUTO to continue the periodic orbit [18]. The

value of λ is set to zero initially, but AUTO is allowed to vary it in order to continue

the periodic orbit as a function of (e.g.) Γ. We monitored the value of λ and find that it

satisfies |λ| < 10−8, and is typically O(10−10).

A.2 Equations for the PDE model in Fourier space: zero

wavenumber case

We write solutions of the PDE model (2.2) with a truncated Fourier series in time with

the frequencies −3, −1, 1 and 3 as

U = (Y1 + iY3)e−3it + (Y5 + iY7)e−it + (Y9 + iY11)eit + (Y13 + iY15)e3it, (A.2.1)

where Y1, Y3, Y5, Y7, Y9, Y11, Y13, and Y15 are functions of x. The choice of these modes

is based on the choice of the forcing <(U) cos(2t). The dependent variables Y2, Y4, Y6,
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Y8, Y10, Y12, Y14 and Y16 are the first derivatives in x of Y1, Y3, Y5, Y7, Y9, Y11, Y13, and Y15

respectively. Here the problem is 16-dimensional since we have 8 complex variables in

(A.2.1) and the problem is second order in space (see (2.2)). As discussed in A.1, AUTO

treats the localized solution as a periodic orbit in space (with fixed period Lx), and the

representation in (A.2.1) forces U to be periodic in time. For a domain size (for example)

Lx = 200π, we use the order of 1000 grid points in AUTO (NTST = 1000,NCOL = 4).

We add a term (λY16) to the last equation to break the Hamiltonian structure.
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We used Maple to generate the following equations for AUTO to do continuation and to

find the bifurcation diagram:

F (1) = Y2

F (2) = (−0.4D1βY1 + 0.4D1αY3 − νε2βY1 + νε2αY3 − µβY3 − µαY1 + E(αY7

/0.2D1− αY11/0.2D1− βY5/0.2D1− βY9/0.2D1)/0.2D1)/(α2 + β2)

− (2CiβY1Y9
2 − 2CiαY3Y9

2 − CiβY7
2Y9 + CiβY5

2Y9 + 2CiβY1Y
2

15

− 2CiαY3Y15
2 + CiβY3

2Y1 − CiαY1
2Y3 + 2CiβY1Y11

2 − 2CiαY3

Y11
2 − CiαY7

2Y11 + CiαY5
2Y11 + 2CiβY1Y7

2 − 2CiαY3Y7
2 + 2CiβY1

Y5
2 − 2CiαY3Y5

2 + 2CiβY1Y13
2 − 2CiαY3Y13

2 − CiαY3
3 + 2CrαY1

Y9
2 + 2CrβY3Y9

2 − CrαY7
2Y9 + CrαY5

2Y9 + 2CrαY1Y15
2 + 2Crβ

Y3Y15
2 + CrβY1

2Y3 + CrαY3
2Y1 + 2CrαY1Y11

2 − 2CrαY7Y11Y13 + 2Ciβ

Y5Y7Y11 + CiβY1
3 + 2CrβY5Y7Y9 + 2CrαY5Y9Y13 + 2CrβY7Y9Y13 + 2Cr

βY7Y11Y15 + CrαY13− 2CiβY7Y11Y13 − 2CiαY5Y11Y13 − 2CiαY7Y9Y13 + 2

CiβY5Y9Y13 + 2CiαY5Y9Y15 + 2CiβY5Y11Y15 − 2CiαY7Y11Y15 + 2CiβY7

Y9Y15 + CrβY3
3 − 2CiαY5Y7Y9 + 2CrβY5Y11Y13 + 2CrαY7Y9Y15 + 2CrαY5

Y11Y15 − 2CrβY5Y9Y15 + 2CrαY5Y7Y11 + 2CrβY3Y11
2 − CrβY5

2Y11 + 2

CrαY1Y7
2 + 2CrβY3Y7

2 + 2CrαY1Y5
2 + 2CrβY3Y5

2 + 2CrαY1Y13
2

+ 2CrβY3Y13
2 + CrβY7

2Y11)/(α2 + β2)



Appendix A 129

F (3) = Y4

F (4) = (−0.4D1αY1 − 0.4D1βY3 − νε2αY1 − µαY3 − νε2βY3

+ µβY1 − E(αY5/0.2D1 + αY9/0.2D1 + βY7/0.2D1− βY11/0.2D1)/0.2D1)

/(α2 + β2)− (CrαY3
3 − CrβY1

3 + 2CiαY7Y9

Y15 − 2CrβY5Y7Y11 + 2CiαY1Y11
2 + CiβY3

3 + CiαY3
2Y1 + 2CrαY7Y11

Y15 − 2CrβY5Y9Y13 + 2CrαY7Y9Y13 + 2CrαY5Y11Y13 + 2CrβY7Y11Y13 − 2Cr

βY7Y9Y15 − 2CrαY5Y9Y15 − CiβY5
2Y11 + CiαY1

3 + 2CiβY3Y9
2 + 2Ciα

Y1Y9
2 + CiαY5

2Y9 − CiαY7
2Y9 + 2CiβY3Y15

2 + 2CiαY1Y15
2 + Ciβ

Y1
2Y3 + CiβY7

2Y11 + 2CiβY3Y11
2 + 2CiβY5Y7Y9 − 2CiβY5Y9Y15 + 2Ci

αY5Y11Y15 + 2CiαY5Y7Y11 + 2CiβY7Y9Y13 + 2CiαY5Y9Y13 + 2CiβY5

Y11Y13 − 2CiαY7Y11Y13 + 2CiβY3Y7
2 + 2CiαY1Y7

2 + 2CiβY3Y5
2 + 2Ci

αY1Y5
2 + 2CiβY3Y13

2 + 2CiαY1Y13
2 − 2CrβY5Y11Y15 − 2CrβY1Y9

2

+ 2CrαY3Y9
2 + CrβY7

2Y9 − CrβY5
2Y9 + 2CrαY3Y15

2 − 2CrβY1Y15
2

− CrβY1Y3
2 − 2CrβY1Y11

2 − CrαY5
2Y11 + CrαY7

2Y11 + 2CrαY3Y11
2

− 2CrβY1Y7
2 + 2CrαY3Y7

2 − 2CrβY1Y5
2 + 2CrαY3Y5

2 + CrαY1
2Y3

− 2CrβY1Y13
2 + 2CrαY3Y13

2 + 2CiβY7Y11Y15 + 2CrαY5Y7Y9)/(α2 + β2)
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F (5) = Y6

F (6) = (−0.2D1βY5 + 0.2D1αY7 − νε2βY5 − µβY7 + νε2αY7 − µαY5

+ E(−αY7/0.2D1 + αY11/0.2D1− βY5/0.2D1− βY9/0.2D1)/0.2D1 + E

(−αY15/0.2D1 + αY3/0.2D1− βY1/0.2D1− βY13/0.2D1)/0.2D1)/(α2 + β2)

− (−2CiαY3Y9Y13 − 2CrβY1Y7Y9 − 2CiβY3Y5Y11 + 2CiβY1Y7Y11 − 2Ciα

Y3Y7Y11 − 2CiαY3Y5Y9 − 2CiαY3Y11Y15 − 2CiαY1Y9Y15 + 2CiβY1Y11Y15

+ 2CiβY1Y9Y13 + 2CiαY1Y11Y13 − 2CiαY9Y11Y13 + 2CiαY1Y7Y9 + 2Ciβ

Y3Y7Y9 + 2CrαY9Y11Y15 + 2CrβY1Y9Y15 + 2CrαY1Y5Y9 − 2CrβY1Y11Y13

+ 2CrβY3Y9Y13 − 2CiβY3Y9Y15 + CiβY5
3 − CiαY7

3 − 2CrαY3Y9Y15 + 2

CrαY1Y7Y11 + 2CrαY3Y7Y9 + 2CrβY3Y5Y9 + 2CrβY3Y11Y15 + 2CrαY1Y11

Y15 − 2CrαY3Y5Y11 + 2CrβY9Y11Y13 + 2CrαY3Y11Y13 + 2CrαY1Y9Y13 + 2

CrβY3Y7Y11 + 2CrβY1Y5Y11 + 2CiβY9Y11Y15 + 2CiβY3Y11Y13 − 2CiαY1

Y5Y11 + CrαY5
3 + CrβY7

3 + 2CiβY5Y9
2 − 2CiαY7Y9

2 − CiβY11
2Y13 + 2

CiβY5Y13
2 − 2CiαY7Y13

2 + CiαY9
2Y15 − CiαY11

2Y15 + 2CiβY5Y15
2

− 2CiαY7Y15
2 + 2CiβY5Y11

2 − 2CiαY7Y11
2 + 2CiβY1

2Y5 + 2Ciβ

Y3
2Y5 − CiαY5

2Y7 − 2CiαY1
2Y7 − 2CiαY3

2Y7 + CiβY7
2Y5 + CiβY9

2

Y13 + 2CiβY1Y5Y9 + 2CrαY5Y9
2 + 2CrβY7Y9

2 + 2CrαY5Y13
2 − Crα

Y11
2Y13 + 2CrβY7Y13

2 − CrβY9
2Y15 + 2CrαY5Y15

2 + CrβY11
2Y15 + 2

CrβY7Y15
2 + 2CrαY5Y11

2 + 2CrβY7Y11
2 + 2CrαY1

2Y5 + CrαY7
2Y5

+ CrβY5
2Y7 + 2CrβY1

2Y7 + 2CrβY3
2Y7 + CrαY9

2Y13 + 2CrαY3
2

Y5)/(α2 + β2)
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F (7) = Y8

F (8) = (−0.2D1αY5 − 0.2D1βY7 − νε2αY5 + µβY5 − νε2βY7 − µαY7

− E(αY5/0.2D1 + αY9/0.2D1− βY7/0.2D1 + βY11/0.2D1)/0.2D1

− E(αY1/0.2D1 + αY13/0.2D1− βY15/0.2D1 + βY3/0.2D1)/0.2D1)/(α2 + β2)

− (−2CrβY1Y7Y11 + 2CiαY1
2Y5 − 2CrβY1Y5Y9 + 2CrαY3Y9Y13 + 2Crα

Y9Y11Y13 − 2CrβY3Y11Y13 − 2CrαY1Y11Y13 + 2CrαY1Y9Y15 + 2CrβY3Y9

Y15 − 2CrβY1Y11Y15 − 2CrβY9Y11Y15 + 2CrαY3Y11Y15 + 2CrαY3Y7Y11 + 2Cr

βY3Y5Y11 + 2CrαY1Y5Y11 − 2CrβY1Y9Y13 + CiαY5
3 + 2CiβY1Y9Y15 + Crα

Y7
3 − 2CiβY1Y7Y9 + 2CiαY1Y5Y9 + 2CiαY3Y7Y9 + 2CiβY3Y5Y9 + 2Ci

αY1Y9Y13 + 2CiβY3Y9Y13 + 2CiβY9Y11Y13 + 2CiαY3Y11Y13 − 2CiβY1

Y11Y13 − 2CiαY3Y9Y15 + 2CiαY1Y11Y15 + 2CiαY9Y11Y15 + 2CiβY3Y7Y11 + 2

CiβY1Y5Y11 − 2CiαY3Y5Y11 − 2CrαY1Y7Y9 − CrβY5
3 + CiβY7

3 + 2Ciβ

Y3Y11Y15 − 2CrβY3Y7Y9 + 2CiβY7Y11
2 + 2CiαY5Y11

2 + CiβY5
2Y7 + Ci

αY7
2Y5 + 2CiβY3

2Y7 + 2CiβY7Y9
2 + 2CiαY5Y9

2 − CiαY11
2Y13

+ CiαY9
2Y13 + 2CiαY5Y13

2 + 2CiβY7Y13
2 + CiβY11

2Y15 − CiβY9
2Y15

+ 2CiαY5Y15
2 + 2CiβY7Y15

2 + 2CiαY3
2Y5 + 2CiβY1

2Y7 + 2CrαY3

Y5Y9 + 2CrαY7Y11
2 − 2CrβY5Y11

2 + CrαY5
2Y7 + 2CrαY3

2Y7 + 2Crα

Y7Y9
2 − 2CrβY5Y9

2 − CrβY5Y7
2 + CrβY11

2Y13 + 2CrαY7Y13
2 − Crβ

Y9
2Y13 − 2CrβY5Y13

2 + CrαY11
2Y15 + 2CrαY7Y15

2 − CrαY9
2Y15 − 2Cr

βY5Y15
2 − 2CrβY1

2Y5 − 2CrβY3
2Y5 + 2CrαY1

2Y7 + 2CiαY1Y7Y11)/(α2 + β2)
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F (9) = Y10

F (10) = (−µαY9 − µβY11 + νε2αY11 − νε2βY9 + E(−αY3/0.2D1

+ αY15/0.2D1− βY1/0.2D1− βY13/0.2D1)/0.2D1 + E(αY7/0.2D1

− αY11/0.2D1− βY5/0.2D1− βY9/0.2D1)/0.2D1)/(α2 + β2)

− (2CrβY11Y13
2 + 2CrαY9Y13

2 + 2CrβY11Y15
2 + 2CrαY9Y15

2 + 2CrαY1
2Y9

+ 2CrαY3
2Y9 + 2CiβY7

2Y9 + 2CiβY5
2Y9 − 2CiαY7

2Y11 − 2CiαY5
2Y11

− CiβY1Y7
2 − CiαY3Y7

2 + CiβY1Y5
2 + CiαY3Y5

2 + CiβY9
3 − CiαY11

3

+ 2CrαY7
2Y9 + 2CrαY5

2Y9 + 2CrαY7Y11Y13 + 2CrβY5Y7Y1 + 2CrαY5Y7Y3

− 2CrβY1Y7Y13 + 2CrαY1Y5Y13 + 2CrβY3Y7Y15 + 2CrβY1Y5Y15 − 2CrαY3Y5Y15

+ 2CrαY1Y7Y15 − 2CiαY3Y7Y15 − 2CiαY5Y7Y1 + 2CiβY5Y7Y3 + 2CiβY3
2Y9

+ 2CiβY3Y7Y13 + 2CiαY1Y7Y13 + 2CiβY1Y5Y13 − 2CiαY3Y5Y13 + 2CiβY1

Y7Y15 − 2CiαY1Y5Y15 − 2CiβY3Y5Y15 + 2CrβY3Y5Y13 + 2CrαY5Y9Y13 + 2

CrβY7Y9Y13 + 2CrβY7Y11Y15 + 2CrαY3Y7Y13 + CrαY9
3 + 2CiβY7Y11Y13

+ 2CiαY5Y11Y13 − 2CiαY7Y9Y13 + 2CiβY5Y9Y13 − 2CiαY5Y9Y15 + 2Ciβ

Y5Y11Y15 − 2CiαY7Y11Y15 − 2CiβY7Y9Y15 − 2CiαY1
2Y11 + CiβY11

2Y9 − Ci
αY9

2Y11 − 2CiαY3
2Y11 − 2CiαY11Y13

2 + 2CiβY9Y13
2 − 2CiαY11Y15

2

+ 2CiβY9Y15
2 + 2CiβY1

2Y9 − 2CrβY5Y11Y13 − 2CrαY7Y9Y15 + 2Cr

αY5Y11Y15 + 2CrβY5Y9Y15 + 2CrβY5
2Y11 − CrαY1Y7

2 + CrβY3Y7
2 + Cr

αY1Y5
2 − CrβY3Y5

2 + 2CrβY1
2Y11 + CrβY9

2Y11 + CrαY11
2Y9 + 2Cr

βY3
2Y11 + 2CrβY7

2Y11 + CrβY11
3)/(α2 + β2)



Appendix A 133

F (11) = Y12

F (12) = (−νε2βY11 + µβY9 − µαY11 − νε2αY9 − E(αY1/0.2D1 + αY13/0.2D1

− βY3/0.2D1 + βY15/0.2D1)/0.2D1− E(αY5/0.2D1 + αY9/0.2D1

+ βY7/0.2D1− βY11/0.2D1)/0.2D1)/(α2 + β2)− (2CrαY1
2Y11 − CrβY9Y11

2

+ CrαY9
2Y11 + 2CrαY3

2Y11 + 2CrαY11Y13
2 − 2CrβY9Y13

2 − 2CrβY9Y15
2

+ 2CrαY11Y15
2 − 2CrβY1

2Y9 − 2CrβY3
2Y9 + CiαY9

3 + 2CiβY5Y7

Y1 − 2CiαY7Y9Y15 − 2CrβY3Y7Y13 − 2CrβY1Y5Y13 + 2CrαY3Y5Y13 − 2Crα

Y1Y7Y13 + 2CrαY1Y5Y15 + 2CrβY3Y5Y15 + 2CrαY5Y7Y1 − 2CrβY5Y7Y3

− 2CrβY1Y7Y15 + 2CrαY3Y7Y15 + CrαY11
3 + 2CiβY1

2Y11 + CiβY9
2Y11

+ CiαY9Y11
2 + 2CiβY3

2Y11 + 2CiβY11Y13
2 + 2CiβY11Y15

2 + 2CiαY9

Y15
2 + 2CiαY1

2Y9 + 2CiαY3
2Y9 + 2CiαY9Y13

2 + 2CiαY3Y7Y13 + 2Ci

αY1Y5Y13 + 2CiβY3Y5Y13 − 2CiβY1Y7Y13 + 2CiαY1Y7Y15 + 2CiβY3Y7

Y15 + 2CiβY1Y5Y15 − 2CiαY3Y5Y15 + 2CiαY5Y7Y3 + 2CrαY7Y11Y15

− 2CrβY5Y9Y13 + 2CrαY7Y9Y13 − 2CrαY5Y11Y13 − 2CrβY7Y11Y13

+ 2CrβY7Y9Y15 + 2CrαY5Y9Y15 + CiβY11
3 + 2CiβY5

2Y11 + 2CiαY5
2Y9

+ 2CiαY7
2Y9 + 2CiβY7

2Y11 + 2CiβY5Y9Y15 + 2CiαY5Y11Y15 + 2CiβY7Y9Y13

+ 2CiαY5Y9Y13 − 2CiβY5Y11Y13 + 2CiαY7Y11Y13 + CiβY3Y7
2 − CiαY1Y7

2

− CiβY3Y5
2 + CiαY1Y5

2 − 2CrβY5Y11Y15 − CrβY9
3 − 2CrβY7

2Y9

− 2CrβY5
2Y9 + 2CrαY5

2Y11 + 2CrαY7
2Y11 + CrβY1Y7

2 + CrαY3Y7
2

− CrβY1Y5
2 − CrαY3Y5

2 + 2CiβY7Y11Y15)/(α2 + β2)



Appendix A 134

F (13) = Y14

F (14) = (0.2D1βY13 − 0.2D1αY15 + νε2αY15 − µαY13 − νε2βY13 − µβ

Y15 + E(−αY7/0.2D1 + αY11/0.2D1− βY5/0.2D1− βY9/0.2D1)/0.2D1)

/(α2 + β2)− (2CrβY7
2Y15 + CrβY13

2Y15 + Cr

αY15
2Y13 + 2CrβY1

2Y15 + 2CrβY5
2Y15 + 2CrβY3

2Y15 + 2CrαY7
2Y13

+ 2CrαY1
2Y13 + 2CrαY5

2Y13 + 2CrαY3
2Y13 + 2CrβY1Y7Y9 + 2Ciβ

Y3Y5Y11 − 2CiβY1Y7Y11 − 2CiαY3Y7Y11 + 2CiαY3Y5Y9 − 2CiαY1Y7Y9 + 2

CiβY3Y7Y9 + 2CrαY1Y5Y9 − CiαY15
3 + CiβY13

3 + 2CrβY9Y11Y5 − 2Ci

αY7
2Y15 − CiαY13

2Y15 − 2CiαY1
2Y15 − 2CiαY5

2Y15 − 2CiαY3
2Y15

+ CiβY15
2Y13 + 2CiβY1

2Y13 + 2CiβY5
2Y13 + 2CiβY3

2Y13 + 2CiβY7
2Y13

+ 2CiβY9Y11Y7 − 2CiαY9Y11Y5 + CrβY15
3 − 2CrαY1Y7Y11 + 2Crα

Y3Y7Y9 − 2CrβY3Y5Y9 + 2CrαY3Y5Y11 + 2CrβY3Y7Y11 + 2CrβY1Y5Y11

− 2CiαY1Y5Y11 + CiβY5Y9
2 + CiαY7Y9

2 + 2CiβY11
2Y13 − 2CiαY9

2Y15

− 2CiαY11
2Y15 − CiβY5Y11

2 − CiαY7Y11
2 + 2CiβY9

2Y13 + 2CiβY1Y5

Y9 + CrαY5Y9
2 − CrβY7Y9

2 + 2CrαY11
2Y13 + 2CrβY9

2Y15 + 2CrβY11

2Y15 − CrαY5Y11
2 + CrβY7Y11

2 + 2CrαY9
2Y13 + CrαY13

3 + 2CrαY9

Y11Y7)/(α2 + β2)
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F (15) = Y16

F (16) = (0.2D1αY13 + 0.2D1βY15 − νε2αY13 − µαY15 − νε2βY15

+ µβY13 − E(αY5/0.2D1 + αY9/0.2D1− βY7/0.2D1

+ βY11/0.2D1)/0.2D1)/(α2 + β2)− (CiβY15
3 − 2CrβY7

2Y13 − 2Cr

βY1
2Y13 − 2CrβY5

2Y13 − 2CrβY3
2Y13 + 2CrαY7

2Y15 − CrβY13Y15
2

+ CrαY13
2Y15 + 2CrαY1

2Y15 + 2CrαY5
2Y15 + 2CrαY3

2Y15 + 2CrβY1

Y7Y11 − 2CrβY1Y5Y9 + 2CrαY3Y7Y11 − 2CrβY3Y5Y11 + 2CrαY1Y5Y11 + 2Ci

βY5
2Y15 + 2CiβY3

2Y15 + CiαY13
3 + 2CiβY9Y11Y5 − CrβY13

3 + 2Crα

Y9Y11Y5 − 2CrβY9Y11Y7 + 2CiαY9Y11Y7 + 2CiβY1
2Y15 + 2CiβY1Y7Y9

+ 2CiαY1Y5Y9 + 2CiαY3Y7Y9 − 2CiβY3Y5Y9 + 2CiβY3Y7Y11 + 2CiβY1

Y5Y11 + 2CiαY3Y5Y11 + 2CiαY7
2Y13 + 2CiαY1

2Y13 + 2CiαY5
2Y13 + 2

CiαY3
2Y13 + 2CiβY7

2Y15 + CiβY13
2Y15 + CiαY13Y15

2 + 2CrαY1Y7Y9

− 2CrβY3Y7Y9 + CiβY7Y11
2 − CiαY5Y11

2 − CiβY7Y9
2 + CiαY5Y9

2 + 2

CiαY11
2Y13 + 2CiαY9

2Y13 + 2CiβY11
2Y15 + 2CiβY9

2Y15

+ CrαY15
3 − 2CrαY3Y5Y9 + CrαY7Y11

2 + CrβY5

Y11
2 − CrαY7Y9

2 − CrβY5Y9
2 − 2CrβY11

2Y13 − 2CrβY9
2Y13 + 2Crα

Y11
2Y15 + 2CrαY9

2Y15 − 2CiαY1Y7Y11)/(α2 + β2) + λY16

A.3 Equations of the PDE model generated by Maple in Fourier

space: non-zero wavenumber case

We write solutions of the PDE model (1.12) with a truncated Fourier series in time with

the frequencies −3, −1, 1 and 3. We expand U in Fourier space as

U = (Y1 + iY5)e−3it + (Y9 + iY13)e−it + (Y17 + iY21)eit + (Y25 + iY29)e3it.
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Here, with four derivatives in space, we need Y2 = ∂Y1
∂x

, Y3 = ∂2Y1
∂x2

, Y4 = ∂3Y1
∂x3

and so

on. We also add a term (λY32) to the last equation to break the Hamiltonian structure as

before. The equations are

F (1) = Y 2

F (2) = Y 3

F (3) = Y 4

F (4) = (−0.3D1δY 1 + 0.3D1ρY 5 − µρY 1 + ωρY 5 − ωδY 1 − µδY 5 − αρY 3 − αδY 7

+ βρY 7 − βδY 3 + E(ρY 13/0.2D1− ρY 21/0.2D1− δY 9/0.2D1− δY 17/0.2D1)

/0.2D1)/(ρ2 + δ2)− (2CiδY 1Y
2
17 − 2CiρY 5Y

2
17 − CiδY 2

13Y 17 + CiδY
2
9Y 17

+ 2CiδY 1Y 29
2 − 2CiρY 5Y

2
29 + CiδY

2
5Y 1 − CiρY 2

1Y 5 + 2CiδY 1Y
2
21 − 2CiρY 5

Y 2
21 − CiρY 2

13Y 21 + CiρY
2
9Y 21 + 2CiδY 1Y

2
13 − 2CiρY 5Y

2
13 + 2CiδY 1

Y 2
9 − 2CiρY 5Y

2
9 + 2CiδY 1Y

2
25 − 2CiρY 5Y

2
25 − CiρY 3

5 + 2CrρY 1

Y 2
17 + 2CrδY 5Y

2
17 − CrρY 2

13Y 17 + CrρY
2
9Y 17 + 2CrρY 1Y

2
29 + 2Crδ

Y 5Y
2
29 + CrδY

2
1Y 5 + CrρY

2
5Y 1 + 2CrρY 1Y

2
21 − 2CrρY 13Y 21Y 25 + 2Ciδ

Y 9Y 13Y 21 + CiδY
3
1 + 2CrδY 9Y 13Y 17 + 2CrρY 9Y 17Y 25 + 2CrδY 13Y 17Y 25 + 2Cr

δY 13Y 21Y 29 + CrρY
3
1 − 2CiδY 13Y 21Y 25 − 2CiρY 9Y 21Y 25 − 2CiρY 13Y 17Y 25 + 2

CiδY 9Y 17Y 25 + 2CiρY 9Y 17Y 29 + 2CiδY 9Y 21Y 29 − 2CiρY 13Y 21Y 29 + 2CiδY 13

Y 17Y 29 + CrδY
3
5 − 2CiρY 9Y 13Y 17 + 2CrδY 9Y 21Y 25 + 2CrρY 13Y 17Y 29 + 2CrρY 9

Y 21Y 29 − 2CrδY 9Y 17Y 29 + 2CrρY 9Y 13Y 21 + 2CrδY 5Y
2
21 − CrδY 2

9Y 21 + 2

CrρY 1Y
2
13 + 2CrδY 5Y

2
13 + 2CrρY 1Y

2
9 + 2CrδY 5Y

2
9 + 2CrρY 1Y 25

2

+ 2CrδY 5Y
2
25 + CrδY

2
13Y 21)/(ρ2 + δ2)
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F (5) = Y 6

F (6) = Y 7

F (7) = Y 8

F (8) = (−0.3D1ρY 1 − 0.3D1δY 5 + µδY 1 − µρY 5 − ωρY 1 − ωδY 5 − αρ

Y 7 + αδY 3 − βρY 3 − βδY 7 − E(ρY 9/0.2D1 + ρY 17/0.2D1 + δ

Y 13/0.2D1− δY 21/0.2D1)/0.2D1)/(ρ2 + δ2)− (CrρY
3
5 − CrδY 3

1 + 2CiρY 13Y 17

Y 29 − 2CrδY 9Y 13Y 21 + 2CiρY 1Y
2
21 + CiδY

3
5 + CiρY

2
5Y 1 + 2CrρY 13Y 21

Y 29 − 2CrδY 9Y 17Y 25 + 2CrρY 13Y 17Y 25 + 2CrρY 9Y 21Y 25 + 2CrδY 13Y 21Y 25 − 2Cr

δY 13Y 17Y 29 − 2CrρY 9Y 17Y 29 − CiδY 2
9Y 21 + CiρY

3
1 + 2CiδY 5Y

2
17 + 2Ciρ

Y 1Y
2
17 + CiρY

2
9Y 17 − CiρY 2

13Y 17 + 2CiδY 5Y
2
29 + 2CiρY 1Y

2
29 + Ciδ

Y 2
1Y 5 + CiδY

2
13Y 21 + 2CiδY 5Y

2
21 + 2CiδY 9Y 13Y 17 − 2CiδY 9Y 17Y 29 + 2Ci

Y 13Y 17Y 25 + 2CiρY 9Y 17Y 25 + 2CiδY 9Y 21Y 25 − 2CiρY 13Y 21Y 25 + 2CiδY 5Y
2
13

+ 2CiρY 1Y
2
13 + 2CiδY 5Y

2
9 + 2CiρY 1Y

2
9 + 2CiδY 5Y

2
25 + 2CiρY 1

Y 2
25 − 2CrδY 9Y 21Y 29 − 2CrδY 1Y

2
17 + 2CrρY 5Y

2
17 + CrδY

2
13Y 17 − CrδY 2

9

Y 17 + 2CrρY 5Y
2
29 − 2CrδY 1Y 29

2 − CrδY 1Y
2
5 − 2CrδY 1Y

2
21 − Crρ

Y 2
9Y 21 + CrρY

2
13Y 21 + 2CrρY 5Y 21

2 − 2CrδY 1Y
2
13 + 2CrρY 5Y

2
13 − 2Cr

δY 1Y
2
9 + 2CrρY 5Y

2
9 + CrρY

2
1Y 5 − 2CrδY 1Y

2
25 + 2CrρY 5Y

2
25

+ 2CiδY 13Y 21Y 29 + 2CrρY 9Y 13Y 17)/(ρ2 + δ2)
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F (9) = Y 10

F (10) = Y 11

F (11) = Y 12

F (12) = (−δY 9 + ρY 13 − ωδY 9 − µδY 13 − µρY 9 + ωρY 13 − αρY 11

− αδY 15 + βρY 15 − βδY 11 + E(−ρY 13/0.2D1 + ρY 21/0.2D1− δY 9

/0.2D1− δY 17/0.2D1)/0.2D1 + E(−ρY 29/0.2D1 + ρY 5/0.2D1− δY 1/0.2D1

− δY 25/0.2D1)/0.2D1)/(ρ2 + δ2)− (−2CiρY 5Y 17Y 25 − 2CrδY 1Y 13Y 17 − 2

CiδY 5Y 9Y 21 + 2CiδY 1Y 13Y 21 − 2CiρY 5Y 13Y 21 − 2CiρY 5Y 9Y 17 − 2CiρY 5Y 21

Y 29 − 2CiρY 1Y 17Y 29 + 2CiδY 1Y 21Y 29 + 2CiδY 1Y 17Y 25 + 2CiρY 1Y 21Y 25 − 2

CiρY 17Y 21Y 25 + 2CiρY 1Y 13Y 17 + 2CiδY 5Y 13Y 17 + 2CrρY 17Y 21Y 29 + 2CrδY 1Y 17

Y 29 + 2CrρY 1Y 9Y 17 − 2CrδY 1Y 21Y 25 + 2CrδY 5Y 17Y 25 − 2CiδY 5Y 17Y 29 + Ciδ

Y 3
9 − CiρY 3

13 − 2CrρY 5Y 17Y 29 + 2CrρY 1Y 13Y 21 + 2CrρY 5Y 13Y 17 + 2Crδ

Y 5Y 9Y 17 + 2CrδY 5Y 21Y 29 + 2CrρY 1Y 21Y 29 − 2CrρY 5Y 9Y 21 + 2CrδY 17Y 21Y 25

+ 2CrρY 5Y 21Y 25 + 2CrρY 1Y 17Y 25 + 2CrδY 5Y 13Y 21 + 2CrδY 1Y 9Y 21 + 2Ciδ

Y 17Y 21Y 29 + 2CiδY 5Y 21Y 25 − 2CiρY 1Y 9Y 21 + CrρY
3
9 + CrδY

3
13 + 2CiδY 9

Y 2
17 − 2CiρY 13Y

2
17 − CiδY 2

21Y 25 + 2CiδY 9Y
2
25 − 2CiρY 13Y

2
25 + Ciρ

Y 2
17Y 29 − CiρY 2

21Y 29 + 2CiδY 9Y
2
29 − 2CiρY 13Y

2
29 + 2CiδY 9Y

2
21 − 2

CiρY 13Y
2
21 + 2CiδY

2
1Y 9 + 2CiδY

2
5Y 9 − CiρY 2

9Y 13 − 2CiρY
2
1Y 13

− 2CiρY
2
5Y 13 + CiδY

2
13Y 9 + CiδY

2
17Y 25 + 2CiδY 1Y 9Y 17 + 2CrρY 9Y

2
17

+ 2CrδY 13Y
2
17 + 2CrρY 9Y

2
25 − CrρY 2

21Y 25 + 2CrδY 13Y
2
25 − CrδY 2

17

Y 29 + 2CrρY 9Y
2
29 + CrδY

2
21Y 29 + 2CrδY 13Y

2
29 + 2CrρY 9Y

2
21 + 2Crδ

Y 13Y
2
21 + 2CrρY

2
1Y 9 + CrρY

2
13Y 9 + CrδY

2
9Y 13 + 2CrδY

2
1Y 13 + 2Crδ

Y 2
5Y 13 + CrρY

2
17Y 25 + 2CrρY

2
5Y 9)/(ρ2 + δ2)
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F (13) = Y 14

F (14) = Y 15

F (15) = Y 16

F (16) = (−ρY 9 − δY 13 − ωρY 9 − µρY 13 + µδY 9 − ωδY 13 − αρY 15

+ αδY 11 − βρY 11 − βδY 15 − E(ρY 9/0.2D1 + ρY 17/0.2D1− δY 13

/0.2D1 + δY 21/0.2D1)/0.2D1− E(ρY 1/0.2D1 + ρY 25/0.2D1− δY 29/0.2D1

+ δY 5/0.2D1)/0.2D1)/(ρ2 + δ2)− (−2CrδY 1Y 13Y 21 + 2CiρY
2
1Y 9 − 2

CrδY 1Y 9Y 17 + 2CrρY 5Y 17Y 25 + 2CrρY 17Y 21Y 25 − 2CrδY 5Y 21Y 25 − 2CrρY 1

Y 21Y 25 + 2CrρY 1Y 17Y 29 + 2CrδY 5Y 17Y 29 − 2CrδY 1Y 21Y 29 − 2CrδY 17Y 21Y 29

+ 2CrρY 5Y 21Y 29 + 2CrρY 5Y 13Y 21 + 2CrδY 5Y 9Y 21 + 2CrρY 1Y 9Y 21 − 2CrδY 1

Y 17Y 25 + CiρY
3
9 + 2CiδY 1Y 17Y 29 + CrρY

3
13 − 2CiδY 1Y 13Y 17 + 2CiρY 1Y 9Y 17

+ 2CiρY 5Y 13Y 17 + 2CiδY 5Y 9Y 17 + 2CiρY 1Y 17Y 25 + 2CiδY 5Y 17Y 25 + 2Ciδ

Y 17Y 21Y 25 + 2CiρY 5Y 21Y 25 − 2CiδY 1Y 21Y 25 − 2CiρY 5Y 17Y 29 + 2CiρY 1Y 21Y 29

+ 2CiρY 17Y 21Y 29 + 2CiδY 5Y 13Y 21 + 2CiδY 1Y 9Y 21 − 2CiρY 5Y 9Y 21 − 2Crρ

Y 1Y 13Y 17 − CrδY 3
9 + CiδY

3
13 + 2CiδY 5Y 21Y 29 − 2CrδY 5Y 13Y 17 + 2CiδY 13

Y 2
21 + 2CiρY 9Y

2
21 + CiδY

2
9Y 13 + CiρY

2
13Y 9 + 2CiδY

2
5Y 13 + 2CiδY 13

Y 2
17 + 2CiρY 9Y

2
17 − CiρY 2

21Y 25 + CiρY
2
17Y 25 + 2CiρY 9Y

2
25 + 2Ciδ

Y 13Y
2
25 + CiδY

2
21Y 29 − CiδY 2

17Y 29 + 2CiρY 9Y
2
29 + 2CiδY 13Y

2
29 + 2Ci

ρY 2
5Y 9 + 2CiδY

2
1Y 13 + 2CrρY 5Y 9Y 17 + 2CrρY 13Y

2
21 − 2CrδY 9Y

2
21

+ CrρY
2
9Y 13 + 2CrρY

2
5Y 13 + 2CrρY 13Y

2
17 − 2CrδY 9Y

2
17 − CrδY 9Y

2
13

+ CrδY
2
21Y 25 + 2CrρY 13Y

2
25 − CrδY 2

17Y 25 − 2CrδY 9Y
2
25 + CrρY

2
21

Y 29 + 2CrρY 13Y
2
29 − CrρY 2

17Y 29 − 2CrδY 9Y
2
29 − 2CrδY

2
1Y 9 − 2CrδY 5

2Y 9

+ 2CrρY
2
1Y 13 + 2CiρY 1Y 13Y 21)/(ρ2 + δ2)
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F (17) = Y 18

F (18) = Y 19

F (19) = Y 20

F (20) = (δY 17 − γY 21 − µδY 21 − ωδY 17 + ωγY 21 − µγY 17 − αγY 19

− αδY 23 + βγY 23 − βδY 19 + E(−γY 5/0.2D1 + γY 29/0.2D1− δY 1

/0.2D1− δY 25/0.2D1)/0.2D1 + E(γY 13/0.2D1− γY 21/0.2D1− δY 9/0.2D1

− δY 17/0.2D1)/0.2D1)/(γ2 + δ2)− (2CrδY 21Y
2
25 + 2CrγY 17Y

2
25

+ 2CrδY 21Y
2
29 + 2CrγY 17Y

2
29 + 2CrγY

2
1Y 17 + 2CrγY

2
5Y 17 + 2CiδY 13

2Y 17

+ 2CiδY
2
9Y 17 − 2CiγY

2
13Y 21 − 2CiγY

2
9Y 21 − CiδY 1Y

2
13 − CiγY 5

Y 2
13 + CiδY 1Y

2
9 + CiγY 5Y

2
9 + CiδY

3
17 − CiγY 3

21 + 2CrγY
2
13Y 17 + 2Cr

γY 2
9Y 17 + 2CrγY 13Y 21Y 25 + 2CrδY 9Y 13Y 1 + 2CrγY 9Y 13Y 5 − 2CrδY 1Y 13

Y 25 + 2CrγY 1Y 9Y 25 + 2CrδY 5Y 13Y 29 + 2CrδY 1Y 9Y 29 − 2CrγY 5Y 9Y 29 + 2Cr

γY 1Y 13Y 29 − 2CiγY 5Y 13Y 29 − 2CiγY 9Y 13Y 1 + 2CiδY 9Y 13Y 5 + 2CiδY
2
5Y 17

+ 2CiδY 5Y 13Y 25 + 2CiγY 1Y 13Y 25 + 2CiδY 1Y 9Y 25 − 2CiγY 5Y 9Y 25 + 2CiδY 1

Y 13Y 29 − 2CiγY 1Y 9Y 29 − 2CiδY 5Y 9Y 29 + 2CrδY 5Y 9Y 25 + 2CrγY 9Y 17Y 25 + 2

CrδY 13Y 17Y 25 + 2CrδY 13Y 21Y 29 + 2CrγY 5Y 13Y 25 + CrγY
3
17 + 2CiδY 13Y 21Y 25

+ 2CiγY 9Y 21Y 25 − 2CiγY 13Y 17Y 25 + 2CiδY 9Y 17Y 25 − 2CiγY 9Y 17Y 29 + 2Ciδ

Y 9Y 21Y 29 − 2CiγY 13Y 21Y 29 − 2CiδY 13Y 17Y 29 − 2CiγY
2
1Y 21 + CiδY

2
21Y 17 − Ci

γY 2
17Y 21 − 2CiγY

2
5Y 21 − 2CiγY 21Y

2
25 + 2CiδY 17Y

2
25 − 2CiγY 21Y

2
29

+ 2CiδY 17Y
2
29 + 2CiδY

2
1Y 17 − 2CrδY 9Y 21Y 25 − 2CrγY 13Y 17Y 29 + 2Cr

γY 9Y 21Y 29 + 2CrδY 9Y 17Y 29 + 2CrδY
2
9Y 21 − CrγY 1Y

2
13 + CrδY 5Y

2
13 + Cr

γY 1Y
2
9 − CrδY 5Y

2
9 + 2CrδY

2
1Y 21 + CrδY

2
17Y 21 + CrγY

2
21Y 17 + 2Cr

δY 2
5Y 21 + 2CrδY

2
13Y 21 + CrδY

3
21)/(γ2 + δ2)
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F (21) = Y 22

F (22) = Y 23

F (23) = Y 24

F (24) = (γY 17 + δY 21 − ωδY 21 − µγY 21 + µδY 17 − ωγY 17 − αγY 23

+ αδY 19 − βγY 19 − βδY 23 − E(γY 1/0.2D1 + γY 25/0.2D1− δY 5

/0.2D1 + δY 29/0.2D1)/0.2D1− E(γY 9/0.2D1 + γY 17/0.2D1 + δY 13/0.2D1

− δY 21/0.2D1)/0.2D1)/(γ2 + δ2)− (2CrγY 12Y 21 − CrδY 17Y 212 + Crγ

Y 172Y 21 + 2CrγY 52Y 21 + 2CrγY 21Y 252− 2CrδY 17Y 252− 2CrδY 17Y 292

+ 2CrγY 21Y 292− 2CrδY 12Y 17 − 2CrδY 52Y 17 + CiγY 173 + 2CiδY 9Y 13

Y 1 − 2CiγY 13Y 17Y 29 − 2CrδY 5Y 13Y 25 − 2CrδY 1Y 9Y 25 + 2CrγY 5Y 9Y 25 − 2Crγ

Y 1Y 13Y 25 + 2CrγY 1Y 9Y 29 + 2CrδY 5Y 9Y 29 + 2CrγY 9Y 13Y 1 − 2CrδY 9Y 13Y 5

− 2CrδY 1Y 13Y 29 + 2CrγY 5Y 13Y 29 + CrγY 213 + 2CiδY 12Y 21 + CiδY 172Y 21

+ CiγY 17Y 212 + 2CiδY 52Y 21 + 2CiδY 21Y 252 + 2CiδY 21Y 292 + 2CiγY 17

Y 292 + 2CiγY 12Y 17 + 2CiγY 52Y 17 + 2CiγY 17Y 252 + 2CiγY 5Y 13Y 25 + 2Ci

γY 1Y 9Y 25 + 2CiδY 5Y 9Y 25 − 2CiδY 1Y 13Y 25 + 2CiγY 1Y 13Y 29 + 2CiδY 5Y 13

Y 29 + 2CiδY 1Y 9Y 29 − 2CiγY 5Y 9Y 29 + 2CiγY 9Y 13Y 5 + 2CrγY 13Y 21Y 29 − 2Crδ

Y 9Y 17Y 25 + 2CrγY 13Y 17Y 25 − 2CrγY 9Y 21Y 25 − 2CrδY 13Y 21Y 25 + 2CrδY 13Y 17Y 29

+ 2CrγY 9Y 17Y 29 + CiδY
3
21 + 2CiδY

2
9Y 21 + 2CiγY

2
9Y 17 + 2CiγY

2
13

Y 17 + 2CiδY
2
13Y 21 + 2CiδY 9Y 17Y 29 + 2CiγY 9Y 21Y 29 + 2CiδY 13Y 17Y 25 + 2Ci

γY 9Y 17Y 25 − 2CiδY 9Y 21Y 25 + 2CiγY 13Y 21Y 25 + CiδY 5Y
2
13 − CiγY 1Y

2
13 − Ci

δY 5Y
2
9 + CiγY 1Y

2
9 − 2CrδY 9Y 21Y 29 − CrδY 3

17 − 2CrδY
2
13Y 17 − 2Crδ

Y 2
9Y 17 + 2CrγY

2
9Y 21 + 2CrγY

2
13Y 21 + CrδY 1Y

2
13 + CrγY 5Y

2
13 − Crδ

Y 1Y
2
9 − CrγY 5Y

2
9 + 2CiδY 13Y 21Y 29)/(γ2 + δ2)
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F (25) = Y 26

F (26) = Y 27

F (27) = Y 28

F (28) = (0.3D1δY 25 − 0.3D1γY 29 − µγY 25 − ωδY 25 − µδY 29 + ωγY 29

− αγY 27 − αδY 31 + βγY 31 − βδY 27 + E(−γY 13/0.2D1 + γY 21

/0.2D1− δY 9/0.2D1− δY 17/0.2D1)/0.2D1)/(γ2 + δ2)

− (2CrδY
2
13Y 29 + CrδY

2
25Y 29 + CrγY

2
29Y 25 + 2CrδY

2
1Y 29 + 2CrδY

2
9Y 29

+ 2CrδY
2
5Y 29 + 2CrγY

2
13Y 25 + 2CrγY

2
1Y 25 + 2CrγY

2
9Y 25 + 2CrγY

2
5Y 25

+ 2CrδY 1Y 13Y 17 + 2CiδY 5Y 9Y 21 − 2CiδY 1Y 13Y 21 − 2CiγY 5Y 13

Y 21 + 2CiγY 5Y 9Y 17 − 2CiγY 1Y 13Y 17 + 2CiδY 5Y 13Y 17 + 2CrγY 1Y 9Y 17

− CiγY 29
3 + CiδY

3
25 + 2CrδY 17Y 21Y 9 − 2CiγY

2
13Y 29 − CiγY 2

25Y 29 − 2CiγY
2
1

Y 29 − 2CiγY
2
9Y 29 − 2CiγY

2
5Y 29 + CiδY

2
29Y 25 + 2CiδY

2
1Y 25 + 2Ci

δY 2
9Y 25 + 2CiδY

2
5Y 25 + 2CiδY 13

2Y 25 + 2CiδY 17Y 21Y 13 − 2CiγY 17Y 21Y 9

+ CrδY
3
29 − 2CrγY 1Y 13Y 21 + 2CrγY 5Y 13Y 17 − 2CrδY 5Y 9Y 17 + 2CrγY 5Y 9

Y 21 + 2CrδY 5Y 13Y 21 + 2CrδY 1Y 9Y 21 − 2CiγY 1Y 9Y 21 + CiδY 9Y
2
17 + CiγY 13

Y 2
17 + 2CiδY

2
21Y 25 − 2CiγY

2
17Y 29 − 2CiγY

2
21Y 29 − CiδY 9Y

2
21 − Ciγ

Y 13Y
2
21 + 2CiδY

2
17Y 25 + 2CiδY 1Y 9Y 17 + CrγY 9Y

2
17 − CrδY 13Y

2
17 + 2Crγ

Y 2
21Y 25 + 2CrδY

2
17Y 29 + 2CrδY 21

2Y 29 − CrγY 9Y
2
21 + CrδY 13Y

2
21 + 2

CrγY
2
17Y 25 + CrγY

3
25 + 2CrγY 17Y 21Y 13)/(γ2 + δ2)
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F (29) = Y 30

F (30) = Y 31

F (31) = Y 32

F (32) = (0.3D1γY 25 + 0.3D1δY 29 − µγY 29 − ωγY 25 − ωδY 29 + µδY 25

− αγY 31 + αδY 27 − βγY 27 − βδY 31 − E(γY 9/0.2D1 + γY 17

/0.2D1− δY 13/0.2D1 + δY 21/0.2D1)/0.2D1)/(γ2 + δ2)

− (CiδY
3
29 − 2CrδY

2
13Y 25 − 2CrδY

2
1Y 25 − 2CrδY

2
9Y 25 − 2CrδY

2
5

Y 25 + 2CrγY
2
13Y 29 − CrδY 25Y

2
29 + CrγY

2
25Y 29 + 2CrγY

2
1Y 29 + 2Crγ

Y 2
9Y 29 + 2CrγY

2
5Y 29 + 2CrδY 1Y 13Y 21 − 2CrδY 1Y 9Y 17 + 2CrγY 5Y 13Y 21

− 2CrδY 5Y 9Y 21 + 2CrγY 1Y 9Y 21 + 2CiδY
2
9Y 29 + 2CiδY

2
5Y 29 + CiγY

3
25

+ 2CiδY 17Y 21Y 9 − CrδY 3
25 + 2CrγY 17Y 21Y 9 − 2CrδY 17Y 21Y 13 + 2CiγY 17Y 21

Y 13 + 2CiδY
2
1Y 29 + 2CiδY 1Y 13Y 17 + 2CiγY 1Y 9Y 17 + 2CiγY 5Y 13Y 17 − 2Ci

δY 5Y 9Y 17 + 2CiδY 5Y 13Y 21 + 2CiδY 1Y 9Y 21 + 2CiγY 5Y 9Y 21 + 2CiγY
2
13Y 25

+ 2CiγY
2
1Y 25 + 2CiγY

2
9Y 25 + 2CiγY

2
5Y 25 + 2CiδY

2
13Y 29 + CiδY 25

2Y 29 + CiγY 25Y
2
29 + 2CrγY 1Y 13Y 17 − 2CrδY 5Y 13Y 17 + CiδY 13Y

2
21 − CiγY 9

Y 2
21 − CiδY 13Y

2
17 + CiγY 9Y

2
17 + 2CiγY

2
21Y 25 + 2CiγY

2
17Y 25 + 2Ciδ

Y 2
21Y 29 + 2CiδY

2
17Y 29 + CrγY

3
29 − 2CrγY 5Y 9Y 17 + CrγY 13Y

2
21 + CrδY 9

Y 2
21 − CrγY 13Y

2
17 − CrδY 9Y

2
17 − 2CrδY

2
21Y 25 − 2CrδY

2
17Y 25 + 2Crγ

Y 2
21Y 29 + 2CrγY

2
17Y 29 − 2CiγY 1Y 13Y 21)/(γ2 + δ2) + λY 32
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Floquet multiplier theorem

Consider an n-dimensional first-order system as

~̇x = A(t)~x (B.2)

where A is an n× n matrix function with minimal period T , which satisfies

A(t+ T ) = A(t), −∞ < t <∞,

for the smallest positive T . The Floquet multiplier theorem [42] stats that the system has

at least one non-trivial solution. Under some conditions, solutions of (B.2) take the form

~x(t) = Σn
i=1cie

µit~pi(t) (B.3)

where ci are constants that depend on initial conditions, ~pi(t) are vector-valued functions

with period T , and µi are called characteristic numbers or Floquet multipliers of (B.2).

The Floquet exponents are related to µi by the relationship

ρi = eµiT .

The zero equilibrium is stable if all Floquet multipliers have magnitude less than 1, or

if all Floquet exponents have negative real parts. The zero equilibrium is unstable if any
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Floquet exponent has a positive real part or, equivalently a Floquet multiplier has modulus

greater than one [43]. More information can be found in [38, 42].



146

Appendix C

Matlab programs

C.0 Mathieu equation

1 f u n c t i o n z d o t = ode1 ( t , p , F , k , n ) ;

2 f =F∗ cos ( n∗ t ) ;

3 % s t r o n g damping k=0 case

4 %mu=−0.125; b e t a =−2; omega =1 .5 ; a lpha =1; gamma=0; d e l t a =0;

5 %s t r o n g damping k =0.6911 case .

6 mu=− .5; beta =−2/3; omega = 1 / 3 ; a l p h a = . 5 ; gamma=0; d e l t a =0;

7 %weak damping case k=1

8 % mu=−.255; b e t a =1; a lpha =−1/2; gamma=−1/4; d e l t a =0 .495;

9 % rho =−0.5;

10 % e p s i l o n = s q r t ( ( mu−a lpha+gamma ) / rho ) ;

11 % nu =2;

12 % w=b e t a +1+( e p s i l o n ˆ2 ∗nu ) ;

13 Om hat = omega−beta ∗k . ˆ 2 + d e l t a ∗k . ˆ 4 ;

14 Ga = 2∗(−mu+ a l p h a ∗k .ˆ2−gamma∗k . ˆ 4 ) ;

15 Om = s q r t ( ( Ga . ˆ 2 / 4 ) + Om hat . ˆ 2 ) ;

16 z d o t = [ p ( 2 ) ;−Ga∗p ( 2 )−(Omˆ2 + Om hat∗ f ) ∗p ( 1 ) ] ;
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C.1 Floquet multipliers

Eigenvalue of Mathieu equation with F = Fc and vary the wavenumber k.

1 F = 5 . 0 2 7 3 6 ;

2 n =2;

3 E1 = [ ] ; E2 = [ ] ;

4 f o r k = 0 : 0 . 0 1 : 3

5 t s p a n = [0 2∗ pi / n ] ; p0 = [ 1 ; 0 ] ; t = [0 2∗ pi / n ] ;

6 o p t i o n s = o d e s e t ( ’ r e l t o l ’ ,1 e−10) ;

7 [ t , p ] = ode45 (@( t , p ) me ( t , p , F , k , n ) , t s p a n , p0 , o p t i o n s ) ;

8 v = p ( : , 1 ) ; w = p ( : , 2 ) ;

9 a=v ( end ) ;

10 c=w( end ) ;

11 p0 = [ 0 ; 1 ] ;

12 [ t , p ] = ode45 (@( t , p ) me ( t , p , F , k , n ) , t s p a n , p0 , o p t i o n s ) ;

13 v = p ( : , 1 ) ; w = p ( : , 2 ) ;

14 b=v ( end ) ;

15 d=w( end ) ;

16 A=[ a b ; c d ] ;

17 e= e i g (A) ;

18 E1 =[ E1 ; e ( 1 ) ] ;

19 E2 =[ E2 ; e ( 2 ) ] ;

20 end

21 k = 0 : 0 . 0 1 : 3 ;

22 f i g u r e ( 1 ) ;

23 p l o t ( k , E1 , k , E2 , ’ LineWidth ’ , 1 . 5 ) ;

24 x l a b e l ( ’ k ’ ) , y l a b e l ( ’ e−v a l u e s ’ ) ;

25 s e t ( gca , ’ f o n t s i z e ’ , 1 4 )

26 y l a b e l ( ’ F l o q u e t m u l t i p l i e r s ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ ,
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27 ’ F o n t S i z e ’ , 1 8 )

28 x l a b e l ( ’ $\ boldmath {k}$ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ F o n t S i z e ’

, 1 8 )

C.2 Cubic–quintic PDE model in 2D

The cubic-quintic PDE model in 2D

1 kc = 0 . 6 9 1 1 ;

2 F = 3 . 9 8 ;

3 Nx =128 ; Lx =(2∗ pi / kc ) ∗10 ;

4 Ny = 128 ; Ly =(2∗ pi / kc ) ∗10 ;

5 x =( Lx / Nx ) ∗ ( 0 : Nx−1) ’ ;

6 y =( Ly / Ny ) ∗ ( 0 : Ny−1) ’ ;

7 [ xx , yy ]= meshgrid ( x , y ) ;

8 mu=−0.5; beta =−2/3; nu =0; a l p h a = 0 . 5 ; gamma=0; d e l t a =0;

9 omega = 1 / 3 ;

10 C=1;

11 N i t s t w i c p e r =120;% t h e number o f p o i n t s i n two p e r i o d

12 h = 4∗ pi / N i t s t w i c p e r ;

13 n u m b e r t w i c p e r =20;

14 tmax =4∗ pi ∗ n u m b e r t w i c p e r ;

15 nmax= n u m b e r t w i c p e r ∗ N i t s t w i c p e r ;

16 n p l t = N i t s t w i c p e r ∗ f l o o r ( n u m b e r t w i c p e r / 1 0 ) ;

17

18 %I n i t i a l c o n d i t i o n o f a x i s y m m e t r i c o s c i l l o n

19 r = s q r t ( ( xx−Lx / 2 ) . ˆ 2 + ( yy−Ly / 2 ) . ˆ 2 ) ;

20 u = 0 .65∗ cos ( kc∗ r ) . / ( 1 + exp ( 0 . 5 ∗ kc ∗ ( r −27) ) ) ;

21 u=u +1 .0 e−6∗(2∗ rand ( Nx , Ny )−1) ;
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22 %I n i t i a l c o n d i t i o n s s h o u l d be even i n r i f U xx i s t o be

f i n i t e .

23 %T h i s i n i t i a l c o n d i t i o n i s n o t q u i t e even b u t i t g i v e s

r i n g s

24 % I n i t i a l c o n d i t i o n o f n o n a x i s y m m e t r i c ( example 1 )

25 r = s q r t ( xx . ˆ 2 + yy . ˆ 2 ) ;

26 u = 1 . 9∗ r . ∗ sech ( r / 4 ) .∗ b e s s e l j ( 1 , r ) ;

27 u=u +1 .0 e−6∗(2∗ rand ( Nx , Ny )−1) ;

28 u= c i r c s h i f t ( u , [ Nx / 2 , Ny / 2 ] ) ;

29 u h a t = f f t 2 ( u ) ;

30 u d a t a = u h a t ; t d a t a = 0 ; u d a t a 1 = u h a t ( 1 1 ) ;

31 % s e t wavenumbers

32 kx = [ 0 : Nx/2−1 Nx / 2 −Nx/2+1:−1] ’∗2∗ pi / Lx ;

33 ky = [ 0 : Ny/2−1 Ny / 2 −Ny/2+1:−1] ’∗2∗ pi / Ly ;

34 [ kkx , kky ]= meshgrid ( kx , ky ) ;

35 k1=kx . ∗ kx ;

36 k2=ky . ∗ ky ;

37 % l i n e a r p a r t

38 c = (mu+1 i ∗omega ) − ( a l p h a +(1 i ∗beta ) ) ∗ ( kkx . ˆ 2 + kky . ˆ 2 )

39 + (gamma+(1 i ∗ d e l t a ) ) ∗ ( kkx . ˆ 4 + kky . ˆ 4 ) ;

40 E = exp ( h∗c ) ;

41 e t d =(E−1) . / c ;

42 e t d 2 a = ( E . ∗ ( 1 + 1 . / c / h ) − 1 . / c / h − 2 ) . / c ;

43 e t d 2 b = ( E .∗ ( −1 . / c / h ) + 1 . / c / h + 1 ) . / c ;

44

45 u = i f f t 2 ( u h a t ) ;

46 t = 0 ;

47 f =F∗ cos (2∗ t ) ;

48 n l o l d = f f t 2 ( Q1∗u . ˆ 2 + Q2∗abs ( u ) . ˆ 2 +C∗u . ∗ abs ( u ) . ˆ 2
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49 −u . ∗ abs ( u ) . ˆ 4 + f .∗1 i ∗ r e a l ( u ) ) ;

50 n l d a t a = [ ] ;

51 % s t a r t t h e main loop n i s s t e p No .

52 f o r n = 1 : round ( nmax )

53 u =( i f f t 2 ( u h a t ) ) ;

54 t = ( n−1) ∗ h ;

55 f = F∗ cos (2∗ t ) ;

56 n l = f f t 2 ( Q1∗u . ˆ 2 + Q2∗abs ( u ) . ˆ 2 +C∗u . ∗ abs ( u ) . ˆ 2

57 −u .∗ abs ( u ) . ˆ 4 + f .∗1 i ∗ r e a l ( u ) ) ;

58 u h a t = E . ∗ u h a t + n l . ∗ e t d 2 a + n l o l d . ∗ e t d 2 b ; % ETD2

59 n l o l d = n l ;

60 %u h a t= E .∗ u h a t + n l . ∗ e t d ; % ETD1

61 i f mod ( n−1, n p l t ) ==0

62 u = i f f t 2 ( u h a t ) ;

63 u d a t a = [ uda ta , u h a t ] ;

64 u d a t a 1 =[ uda ta1 , u h a t ( 1 1 ) ] ;

65 n l d a t a =[ n l d a t a , n l o l d ] ;

66 t d a t a = [ t d a t a , t ] ;

67 umax=max ( max ( u ) ) ;

68 f i g u r e ( 1 ) ;

69 s u r f ( xx , yy , r e a l ( u ) ) ; view ([−90 9 0 ] ) ;

70 shading i n t e r p ; a x i s e q u a l ; a x i s t i g h t ; drawnow ;

71 c o l o r b a r

72 end

73 end

74 u l a s t 2 r = i f f t 2 ( u h a t ) ;

75 u h a t ;


