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Abstract

Cellular communication and the link between the extracellular and intracellu-

lar environments are in part mediated by signalling events from plasma mem-

brane proteins. Their tight regulation by a diverse array of post-translational

modifications (PTM) is essential to maintain the cellular integrity. Under-

standing these modifications would help with understanding cancer cell pro-

gression.

Dystroglycan is one of the plasma membrane proteins with both structural

and signalling properties, and is a core component of the dystrophin associ-

ated protein complex (DAPC). The nuclear localisation of dystroglycan and

some DAPC members suggests similar roles to those observed in the plasma

membrane. Dystroglycan is composed of an alpha and beta subunits that

are modified by different PTM. The altered glycosylation of alpha and the

phosphorylation of Y890 in beta, are triggering factors for the instability of

dystroglycan leading to the disruption of the DAP complex. In cancer studies,

it has recently been indicated that in addition to the above-mentioned PTM,

other signalling events such as additional phosphorylation sites and ubiqui-

tination, could mediate the rapid turnover of dystroglycan from the plasma

membrane and from the nucleus.

Here we show that beta-dystroglycan is susceptible to additional phospho-

rylation, and we were able to demonstrate its multiple ubiquitination. Further

experiments revealed that beta-dystroglycan is subject to intramembrane pro-
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teolytic events induced by increased cellular density and PDBu treatment.

Interestingly, we observed the translocation of beta- dystroglycan to the nu-

cleus due to high cell density growth. By enzymatic inhibition studies we

were able to identify gamma-secretase and furin as the enzymes responsible

for the shedding of beta-dystroglycan from both the plasma membrane and

nuclear envelope. Interestingly, we observed the preferential nuclear translo-

cation and degradation by the proteasome of the cytoplasmic fragment of

beta-dystroglycan. An interactome analysis by mass spectrometry techniques

revealed that beta-dystroglycan interacts with components of the ubiquitin-

proteasome system, the cell-cycle, and the nucleus.

This all together suggests that, the regulated intramembrane proteolysis

mediated by ubiquitination and phosphorylation PTM of beta-dystroglycan

triggers downstream nuclear signalling events. These findings provide more

ideas of the mechanisms implicated in the regulation of beta-dystroglycan and

importantly, of some nuclear processes wherein beta-dystroglycan is involved.

These insights may have further implications in the understanding of the pro-

gression of cancer and the development of useful therapies.
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1
Generalities

1.1 Introduction

Humans are able to develop their daily activities thanks to the concerted func-

tions of their organs and systems. Within each organ, the activity performed

by every single cell is pivotal for maintaining a healthy status in the human

body, the so called, homeostasis. Furthermore, cellular integrity is dictated

by the correct synthesis, processing and interaction of its bio-molecules into

a complex network of signalling pathways in space and time. Although cells

are provided with specialized mechanisms to cope with possible alterations of

these pathways, sometimes these alterations are not detected by cells, leading

to detrimental effects which result in serious outcomes such as cancer.

1.2 Cancer

Normal cells are able to perform different activities throughout their lifespan,

but are always restricted by certain biological boundaries. Generally, nor-

mal cells are able to reproduce themselves at the right place and time and,

once their normal activities are culminated, they programme their own death.

Healthy cells are also coordinated by other cells and stop growing once they

touch another cell.

Cancer cells, on the other hand, do not exhibit the same characteristics as
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those present in normal cells. The main definition of cancer is the uncontrolled

growth of the cells, and this growth leads to the formation of tumours. The

increase in the tumour size can have different consequences: the deprivation

of nutrients to normal adjacent cells, the invasion and alteration of normal

functions of adjacent or distant tissues (metastasis), or the damage of adjacent

tissues by interfering in their physical space. Cancers are named according to

the source where the original deregulated cell comes from and therefore, there

are as many cancers as cells type in the human body. Cancers are complex

diseases, as multiple factors can contribute to their development including

a person’s environment and genetic background. These factors are usually

strong enough to damage critical biomolecules, such as DNA, which in turn

disrupts the normal functions of the cells ((Blanpain, 2013; Boland, 2003;

Merlo, Pepper, Reid, & Maley, 2006) and http://www.cancer.gov, http://

www.cancerresearchuk.org, http://www.who.int/cancer/en/).

Cancer cells have inherent features that distinguish them from normal cells,

termed ”hallmarks”. Hanahan and Weinberg classified these ”hallmarks” into

6 groups, plus two ”emerging hallmarks”. The ”hallmarks” of cancer are:

sustained proliferative signalling, evasion of growth suppressors, resisting cell

death, replicative immortality, induction of angiogenesis, and activation of in-

vasion and metastasis. Deregulating cellular energetics and avoiding immune

destruction account for the emerging hallmarks, and genome instability and

mutation, as well as tumour-promoting inflammation are enabling character-

istics of cancer (Hanahan & Weinberg, 2011; Lazebnik, 2010). The acquisition

of these characteristics may be a gradual process, involving multiple steps.

However, in the end, all these characteristics may be present within malignant

cells (Hainaut & Plymoth, 2013).

The growth of normal cells is restricted by their own and extracellular sig-

nals. In the case of growth signals, cancer cells may develop two mechanisms

to sustain proliferation, one dependent and one independent of growth factors,

in addition to the disruption of factors that control the cell cycle. In malignant

cells the production of growth factors may act in an autocrine or paracrine way
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1.2. CANCER

to stimulate themselves or to stimulate neighbouring cells, or increase the con-

centration of growth factor receptors present at the cell membrane. Alterations

to the DNA, which lead to the constant activation of growth receptors and the

disruption of the mechanisms that decrease the signals of proliferation, account

for the mechanisms involved in sustaining proliferative signalling through the

growth factor independent mechanism (Hanahan & Weinberg, 2011).

Once cancerous cells have gained the ability to sustain proliferation, they

have to develop mechanisms in order to avoid growth suppressors. Al-

though there are many, retinoblastoma associated (RB) and TP53 are the two

canonical tumour suppressors. In cancer cells, as the RB and TP53 functions

are damaged, the cells are able to have a continued cell proliferation and to

escape apoptosis respectively. Additionally, cells are able to evade contact in-

hibition of growth and the antiproliferative effects of tumour growth factor β

(TGFβ) (Hanahan & Weinberg, 2011).

Apoptosis (programmed cell death) is one of the main characteristics

that differentiate normal cells from cancerous counterparts. In the case of

malignant cells, they develop mechanisms to bypass apoptotic events mediated

by TP53. Also, they are able to up-regulate or down-regulate the expression

of antiapoptotic or proapoptotic agents respectively. Autophagy and necrosis

are two mechanisms that can be advantageous to cancer cells. Autophagy

can provide metabolites to the fast growing cells, which require of a large

amount of nutrients, and necrosis, by releasing the cellular components to the

exterior, can have proinflammatory and tumour-promoting potentials (Fernald

& Kurokawa, 2013; Hanahan & Weinberg, 2011).

Whilst a normal cell is destined to programmed cell death upon completion

of its functions, a malignant cell has the potential of replicative immortal-

ity. This mechanism is sustained mainly by taking control of the enzyme

telomerase and up-regulating its functions. In this way, telomerases maintain

elongated telomeres, which in turn allow the cells to avoid senescence and

escape apoptosis (Hanahan & Weinberg, 2011).

The formation of new tumours requires a sustained supply of nutrients and
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also a way to dispose of metabolic waste. This is achieved by the formation

of new vessels (vasculogenesis) and the branching of the pre-existing

ones (sprouting), which remain active as the tumour grows and develops.

Additionally, pericytes and bone marrow-derived cells are important players

in tumour angiogenesis (Hanahan & Weinberg, 2011).

The progression of tumours into more malignant stages is in part achieved

by regional invasion and distant metastasis. The characteristic step into

this hallmark is the loss of cell-cell and cell-extracellular matrix contacts. Upon

the downregulation of cell adhesion proteins, among them E-cadherin, cancer-

ous cells are able to change their morphology and adhesive properties. This

series of events in turn leads to the up-regulation of adhesion proteins involved

in cell migration. The ”invasion-metastasis cascade” is a gradual event charac-

terised by regional invasion, intravasation into local blood and lymphatic ves-

sels, travelling through the lymphatic-haematic stream, exiting of cancerous

cells from vessels into new sites under colonisation (extravasation), formation

of micrometastasis and the colonisation of a new environment (growth of the

new tumour).

This cascade is regulated by a process called epithelial-mesenchymal tran-

sition (EMT). This mechanism is characterised by the loss of cell adhesions at

the adherens junctions with a consequent change in cellular morphology, syn-

thesis of enzymes in charge of degrading extracellular matrix, gain of mobility,

and the ability to evade apoptosis. EMT is commonly supported by neigh-

bour cells, such as macrophages, which are in charge of secreting enzymes

to help in the remodelling of the extracellular matrix. Once malignant cells

have colonised a new site, they can change their morphology to an epithelial-

like shape through a process called mesenchymal-epithelial transition (MET).

Following this, malignant cells will be required to adapt to the new environ-

mental conditions, ”or colonization” (Bogenrieder & Herlyn, 2003; Hanahan &

Weinberg, 2011; Lu, Weaver, & Werb, 2012; Yilmaz, Christofori, & Lehembre,

2007).

Additional hallmarks include the alteration of the energetic balance in or-
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der to support the continuing growth of the tumour, and escape of immune

system destruction, characteristics facilitated by two main mechanisms: the

alteration to the DNA (genomic instability) and tissue inflammation (Hanahan

& Weinberg, 2011).

1.3 Prostate cancer

The prostate is a small gland, part of the men’s reproductive system that

helps in the production of semen (http://www.cancer.org/index). Prostate

cancer is a very heterogeneous and complex disease, and is the second most

common malignancy in men. During the year 2012, approximately 1.1 million

male patients were diagnosed with prostate cancer around the world, which

represented 15% of all the cancers affecting men. In the same year, the 307,000

deaths attributed to prostate cancer, represented the 5th main cause of death

from cancer in men (http://globocan.iarc.fr/Default.aspx). According

to Cancer Research UK, older men have a higher probability of being diagnosed

with prostate cancer, with a median age of diagnosis above 70 years (http://

www.cancerresearchuk.org).

Prostate cancer tumours have particular characteristics. Prostate cancer

cells can be divided into two main groups, androgen dependent and androgen

independent, based on their capacity to respond to 5α-dihydrotestosterone.

Prostate tumours have a predilection to form metastases to skeletal bone,

lymph nodes, lung and liver. Prostate cancer cells express the antigen mark-

ers prostate specific antigen (PSA) and prostate-specific membrane antigen

(PSMA). Additionally, the interaction of the tumour with its microenviron-

ment seems to be of particular importance for the colonisation of new metastatic

sites (Morrissey & Vessella, 2007; Russell & Kingsley, 2003).

Hormone therapy, radical prostatectomy and radiation therapy are the first

choice therapies in prostate cancer. However, recurrence and resistance to-

wards hormone treatment, or invasion and metastasis are the main factors
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associated with the advanced stages of prostate cancer, and these factors usu-

ally subvert the previous therapies resulting in death (Balk & Knudsen, 2008;

Collins & Maitland, 2006; Morrissey & Vessella, 2007).

An understanding of the molecular mechanisms associated with the origin,

development and progression of prostate cancer is therefore required in order to

develop efficient therapies. The best way to explore the mechanisms associated

with prostate cancer progression is by using models that represent the human

body in order to mimic the same processes in prostate cancer progression.

Animal models represent a good option, however, the ethical issues and the

cost of their handling make them difficult models in the study of prostate

cancer and in the design of therapies (Sobel & Sadar, 2005).

Cell culture models have been developed to surpass this problem. The best

representative models of prostate cancer are the DU145, PC3 and LNCaP cell

lines. DU145 cells were derived from a central nervous system metastasis, are

not androgen responsive, do not express PSA and androgen receptor (AR) and

have a mutated p53. PC3 cells, were derived from a lumbar metastasis, have

a deletion in p53 and similar to DU145, are not androgen sensitive and do not

express PSA and AR (Russell & Kingsley, 2003; Sobel & Sadar, 2005).

LNCaP cells are a cell line that is androgen sensitive, expresses acid phos-

phatase, PSA and AR and have a silent mutation in p53. This metastatic

cell line was derived from a supraclavicular lymph node from a Caucasian

50-year-old male patient with prostatic adenocarcinoma and was first isolated

by Horoszewicz and colleagues (Horoszewicz et al., 1983; Russell & Kingsley,

2003; Sobel & Sadar, 2005).

Additional characteristics of this cell line include: an in vitro doubling time

of approximately 60 hours, an ability to develop tumours in athymic nude mice,

an ability to undergo functional differentiation, loose attachment to a substrate

unless poly-L-lysine is used, and once they reach high densities, they detach

forming clumps (Horoszewicz et al., 1983; Russell & Kingsley, 2003; Sobel &

Sadar, 2005).

The invasive potential of these cells suggests that some proteins involved in
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attaching them to the cell surface in order to restrict their uncontrolled growth

may be damaged. Integrins are good candidates, however, components of the

dystrophin associated protein complex (DAPC) also play an important role

as ”potential tumours suppressors” (Lu et al., 2012; Sgambato & Brancaccio,

2005).

1.4 The dystrophin associated protein com-

plex

The dystrophin associated protein complex (DAPC) is a group of proteins

associated with dystrophin (Ervasti, Ohlendieck, Kahl, Gaver, & Campbell,

1990; Ervasti & Campbell, 1991). DAPC components can be divided into ex-

tracellular, transmembrane and cytoplasmic proteins. The main components

are: dystrophin/utrophin, dystroglycan, sarcoglycans, sarcospan, syntrophins,

dystrobrevin, syncoilin, nNOS (Figure 1.1) (Allikian & McNally, 2007; Con-

stantin, 2014; Ehmsen, Poon, & Davies, 2002).

In striated muscle the DAPC confers protection to the sarcolemma during

muscle contraction and relaxation, and serves as a physical connection be-

tween the cytokeleton and the extracellular matrix (Petrof, Shrager, Stedman,

Kelly, & Sweeney, 1993), the lack of which leads to necrosis of the muscle fi-

bres (Ibraghimov-Beskrovnaya et al., 1992), a triggering molecular factor in the

pathogenesis of muscular dystrophy (Ervasti et al., 1990). Some of the proteins

within the DAPC have signalling properties and for this reason it is believed

that the DAPC also plays a role in signalling events. Importantly, some pro-

teins can harbour motifs such as SH2, SH3, WW, PDZ binding targets, which

are implicated in protein-protein interactions, conferring the DAPC with scaf-

folding properties (Constantin, 2014). Each component within the DAPC

has critical roles, as the alteration of any of these can lead to varying and

severe outcomes: some resulting in embryonic lethality, others, in muscular

dystrophy-like phenotypes (Ehmsen et al., 2002; Whitmore & Morgan, 2014).
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1.5. DYSTROGLYCAN

1.5 Dystroglycan

1.5.1 Biosynthesis and structure of dystroglycan

Although later confirmed to be the same proteins (Smalheiser & Kim, 1995),

dystroglycan was originally termed cranin (Smalheiser & Schwartz, 1987), and

was first isolated from neural cells, and described as a 120 kDa glycoprotein

with laminin binding properties (Douville, Harvey, & Carbonetto, 1988; Smal-

heiser & Schwartz, 1987; Gee et al., 1993).

Human dystroglycan (dystrophin associated glycoprotein) is encoded by

the DAG1 gene, and was mapped to band 21 of the short arms of chromosome

3 (locus 3p21.1-21.31) by using skeletal muscle cDNA. The DAG1 gene has two

exons separated by an intronic region (Ibraghimov-Beskrovnaya et al., 1993).

In mice, Dag1 is located on chromosome 9 (Górecki, Derry, & Barnard, 1994).

Pre-mRNA splicing of human DAG1 generates a transcript with the coding

sequence for an immature protein of 895 amino acids. The 97 kDa trans-

lated immature protein is further cleaved after amino acid 653 (Holt, Crosbie,

Venzke, & Campbell, 2000), to generate the 56 kDa core alpha- and 43 kDa

beta-subunits of dystroglycan. Although these subunits remain together on the

plasma membrane, they are not covalently attached. The primary structure of

mature dystroglycan, commencing on the extreme N-terminus, can be divided

in to three main sequences: 1) a hydrophobic fragment corresponding to a sig-

nal peptide; 2) alpha-dystroglycan, which harbours many amino acids prone to

post-translational modifications (PTM) such as N- and O-glycosylation; and

3) beta-dystroglycan, which has a potential residue that can be subject to

N-glycosylation, a transmembrane domain and a cytoplasmic fragment rich in

proline residues (Ibraghimov-Beskrovnaya et al., 1992) (Figure 1.2).

Depending on the tissue, mature alpha-dystroglycan is glycosylated to dif-

fering extents, leading to a variation in its size from approximately 120 kDa to

near 160 kDa (Ibraghimov-Beskrovnaya et al., 1992). Its structure consists of

N- and C-terminal globular domains separated by a central rod or mucin-like

domain (Brancaccio, Schulthess, Gesemann, & Engel, 1995, 1997). In com-
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Alpha/beta-dystroglycan precursor (97 kDa)  

1 29 654 895 750 776 316 486 

~30 kDa ~40 kDa (~120-200 kDa) ~41 kDa (~43 kDa) 

N MUCIN C N 

Alpha-dystroglycan Beta-dystroglycan 
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(a)

α 
β 
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Figure 1.2: Biosynthesis of dystroglycan. (a) The schematic shows the struc-
tural organization of human dystroglycan. Alpha-dystroglycan harbours many
potential sites for N-glycosylation (branches) and O-glycosylation (black cir-
cles), beta-dystroglycan on the other hand is glycosylated to a lesser extent.
The transmembrane domain (TM), nuclear localisation signal (NLS) and the
PPXY motif are shown. Lightnings represent the approximate location of the
proteolytic cleavages by furin, autolysis and MMP. The known sites for palmi-
toylation, ubiquitination and phosphorylation are shown in orange, green and
yellow circles respectively. Numbers in parentheses represent the molecular
weight of mature proteins. (b) The mature protein is embedded in the plasma
membrane with alpha-dystroglycan facing the extracellular environment.
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parison, beta-dystroglycan has an unfolded N-terminal domain, followed by

a transmembrane fragment and a highly disordered C-terminal cytoplasmic

domain (Akhavan, Crivelli, Singh, Lingappa, & Muschler, 2008; Boffi et al.,

2001; Di Stasio et al., 1999) (Figure 1.2a).

Human dystroglycan functions may be diverse as it is highly expressed in

skeletal and heart tissues, and to a lesser extent in brain, placenta, lung, liver,

kidney, pancreas tissues (Ibraghimov-Beskrovnaya et al., 1993).

Dystroglycan has a high degree of homology and is expressed amongst dif-

ferent species including human (Ibraghimov-Beskrovnaya et al., 1993), mouse

(Górecki et al., 1994), rabbit (Ibraghimov-Beskrovnaya et al., 1993, 1992), ze-

brafish (Parsons, Campos, Hirst, & Stemple, 2002), Drosophila (Deng et al.,

2003), dog (Leeb, Neumann, Deppe, Breen, & Brenig, 2000) and C. elegans

(Grisoni, Martin, Gieseler, Mariol, & Ségalat, 2002).

1.5.2 Dystroglycan, multiple signalling and protein-protein

interactions

Dystroglycan is on first inspection a passive protein whose function is to serve

as a bridge between the basal lamina and the dynamic cytoskeleton. However,

there are some internal characteristics within the structure of dystroglycan

that enable it to change from a static to a very dynamic status.

In the extracellular environment, alpha-dystroglycan is highly glycosylated.

This property allows its interaction with members of the extracellular matrix

such as laminin, agrin, neurexin, perlecan and pikachurin via LG domains

(Montanaro, Lindenbaum, & Carbonetto, 1999; Winder, 2001). The disruption

of this interaction, due to hypo-glycosylation, can lead to deleterious effects

such as muscular dystrophies.

Alpha-dystroglycan is also a receptor for Mycobacterium leprae (Rambukkana

et al., 1998) and Lassa fever and lymphocytic choromeningitis viruses (Cao et

al., 1998). Again, glycan groups on its surface are important for its interac-
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tion with the viruses (Kunz et al., 2005) (Figure 1.3). Importantly, a recent

hypothesis states that low levels of glycosylation on alpha-dystroglycan and

the proteolysis of beta-dystroglycan by MMPs could be a protective mecha-

nism against pathogenic infection (Emery, 2008; Sciandra et al., 2003). In this

regard, it should not be forgotten that alpha-dystroglycan is susceptible to a

proteolytic cleavage by furin (Singh et al., 2004). Then, it may be that all these

mechanisms, which affect the stability of dystroglycan, modulate the suscepti-

bility of cells to bacterial and viral infection. Furthermore, invasive processes

not only involve an interaction between dystroglycan and the pathogen, but

also downstream signalling events. Moraz and colleagues demonstrated that

the internalisation of Lassa virus triggered the phosphorylation of tyrosine

residues on beta-dystroglycan (other than Y892) and the disruption of the

interaction between dystroglycan and utrophin (Moraz et al., 2013).

From these examples, it is clear that the alteration of alpha-dystroglycan

can have consequences involving the beta subunit and other intracellular pro-

teins. Importantly, the same mechanism seems to be applicable to other situ-

ations, for example, in cancer.

Beta-dystroglycan is also a very enigmatic protein. This protein is particu-

larly promiscuous because it has been found interacting with different proteins

within different complexes. Additionally it is subject to a wide range of post-

translational modifications: it can be phosphorylated (Sotgia et al., 2001),

ubiquitinated (K. A. Lee et al., 2011), glycosylated (Ibraghimov-Beskrovnaya

et al., 1992), sumoylated (Steve J. Winder, personal communication), palmi-

toylated (Kang et al., 2008) and proteolytically cleaved (Yamada et al., 2001).

The cytoplasmic region has different motifs such as SH2, SH3 and WW (Fig-

ure 1.5). Furthermore, its localisation in compartments other than the plasma

membrane such as the nucleus and its expression in different cell types and

species, confer additional properties on beta-dystroglycan beyond those al-

ready known in skeletal muscle (Figure 1.4).

The extracellular domain of beta-dystroglycan mediates the interaction

with its partner alpha. This domain is also important because it is the site
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β 

α 

M. leprae 

Pe
rle

ca
n 

Dystroglycan 

Extracellular 
matrix 

Figure 1.3: Alpha-dystroglycan binding partners. Alpha-dystroglycan is an ex-
tracellular protein that interacts with components of the extracellular matrix
(laminin-2, agrin, neurexin, perlecan and pikachurin). It is also an impor-
tant receptor for mycobacterias and arenaviruses. Alpha-dystroglycan binds
through its carboxy terminus to the N-terminal side of beta-dystroglycan.
Laminin G-like (LG) domains in laminin are shown in yellow.

where MMP-2 and -9 perform a proteolytic cleavage resulting in the generation

of a 31 kDa transmembrane anchored fragment (Yamada et al., 2001).

The transmembrane domain, which could seem to be immune to any mod-

ifications, has been suggested as the site where gamma-secretase could further

cleave the 31 kDa fragment of beta-dystroglycan to generate another, smaller,

26 kDa fragment presumably in a regulated intramembrane proteolysis (RIP)
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PO4 

β 

Ub 

Ub 
Ub 

Ub 

SUMO 

Phosphorylation 
Sumoylation 

Palmitoylation 

Glycosylation 

MMP 
proteolysis 

TM 
proteolysis 

Figure 1.4: Beta-dystroglycan is subject to different PTM. Beta-dystroglycan
is glycosylated and cleaved by MMPs on its extracellular domain. In the TM
region, it is further cleaved and subject to palmitoylation. The cytoplasmic
fragment on the other hand is modified by ubiquitination, sumoylation and
phosphorylation.

manner (Hemming, Elias, Gygi, & Selkoe, 2008) (Figure 1.4).

The plasma membrane contains proteins with different topologies that de-

pending on their orientation are classified into two main groups, type-I and

type-II proteins. Type-I proteins display their N-terminus towards the extra-

cellular environment and their C-terminus faces the cytosol; type-II proteins,

on the other hand, have an opposite orientation. The cleavage of these proteins

for particular cellular purposes, such as turnover or signalling, is performed by

a process termed RIP. This mechanism is achieved within the hydrophobic

environment of the plasma membrane by three main families of proteases:
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metalloproteases, aspartyl proteases and serine proteases. Within each family

there are subgroups of proteases that have a specific affinity for type-I or type-

II substrates. Type-I proteins are cleaved by gamma-secretase and rhomboid,

whereas type-II proteins can be cleaved by S2P, SPP/SPPL and PARL (Kopan

& Ilagan, 2004; Lemberg, 2011).

The proteolysis performed by gamma-secretase, a GXGD-type aspartyl

protease, is usually initiated by the cleavage of proteins on their N-terminal

extracellular domain by extracellular proteases (e.g. MMP), which renders

truncated anchored plasma membrane proteins that are efficiently processed

by gamma-secretase. Gamma-secretase refers to a group of integral plasma

membrane proteins, and is composed of Nicastrin, presenilin, Aph-1 and Pen-

2. The mechanism starts with the recognition of the truncated cleaved protein

by Nicastrin. Following this, Aph-1 which functions as a central platform,

brings together Nicastrin, presenilin and Pen-2. In the core of this complex,

the proteolytic cleavage of the substrate is performed by presenilin. Given

the fact that the substrates for gamma-secretase are very diverse, there is still

not a consensus sequence where gamma-secretase exerts its proteolytic action.

RIP mediated by gamma-secretase has many biological implications, such as

in protein turnover and cellular signalling, the deregulation of which can lead

to disease, such as cancer and neurological problems (Kopan & Ilagan, 2004;

Lemberg, 2011; Selkoe & Wolfe, 2007; Steiner, Fluhrer, & Haass, 2008; Wak-

abayashi & De Strooper, 2008)

The primary sequence of the 26 kDa fragment of beta-dystroglycan is

flanked by a cysteine residue in its amino-terminus (C774) (http://www.ncbi

.nlm.nih.gov/protein/Q14118.2). A recent report, aimed to investigate

palmitoylated proteins in neurons, identified C774 below the transmembrane

domain as a potential site for palmitoylation (Kang et al., 2008). Palmitoyl

modification is usually associated with the retention of proteins in the plasma

membrane (Aicart-Ramos, Valero, & Rodriguez-Crespo, 2011). So far, no

more investigations have been carried out to investigate the role of this PTM

in beta-dystroglycan (Figure 1.4).

19

http://www.ncbi.nlm.nih.gov/protein/Q14118.2
http://www.ncbi.nlm.nih.gov/protein/Q14118.2


CHAPTER 1. GENERALITIES

Y
L
H
T
V
I
P
A
V
V
V
A
A
I
L
L
I
A
G
I
I
A
M
I
C
Y
R
K
K
R
K
G
K
LT

LE
DQ

AT
FI

K
K
GV

PI
IF

AD
EL

DD
SK

PP
PS

SS
MP

LI
LQ

EE
KA

P
L
P
P
P
E
Y
P
N
Q
S
V
P
E
T
T
P
L
N
Q
D
T
M
G
E
Y
T
P
L
RD

E
D
P
N
A
P
P
Y
Q
P
P
P
P
F
T
A
P
M
E
G
KG

SR
PK

NM
TP

YR
SP

PP
YV

PP
 

 
 
 
 
 
T
M
 
 

 
 
 
 
 
N
L
S
1
 

 
 
 
 
N
L
S
2
 

 
 

 
 

 
 
 
 
 
 
P
E
S
T
 

 
 

 
 
P
E
S
T
 

 YL
HT

VI
PA

VV
VA

AI
LL

IA
GI

IA
MI

CY
R
K
K
R
K
GK

LT
LE

DQ
AT

FI
KK

GV
PI

IF
AD

EL
DD

SK
PP

PS
SS

MP
LI

LQ
EE

KA
P
L
P
P
P
E
Y
P
N
Q
S
V
P
E
T
T
P
L
N
Q
D
T
M
G
E
Y
T
P
L
RD

E
D
P
N
A
P
P
Y
Q
P
P
P
P
F
T
A
P
M
E
G
KG

SR
PK

NM
TP

YR
SP

PP
YV

PP
 

 
 

 
  

 F
U
R
I
N
 

 YL
HT

VI
PA

VV
VA

AI
LL

IA
GI

IA
MI

C
YR

KK
RK

GK
LT

LE
DQ

AT
FI

KK
GV

PI
IF

AD
EL

DD
SK

PP
PS

SS
MP

LI
LQ

EE
KA

PL
PP

PE
YP

NQ
SV

PE
TT

PL
NQ

DT
MG

EY
TP

LR
DE

DP
NA

PP
YQ

PP
PP

FT
AP

ME
GK

GS
RP

KN
MT

PY
RS

PP
PY

VP
P 

 
 

  
P
A
L
M
I
T
O
Y
L
A
T
I
O
N
 

 
 

 
 

 
 

 
 

 
 

 
 

  
  

P
H
O
S
P
H
O
R
Y
L
A
T
I
O
N
 

 
 

 
YL

HT
VI

PA
VV

VA
AI

LL
IA

GI
IA

MI
CY

RK
KR

KG
KL

TL
ED

QA
TF

IK
KG

VP
II

FA
DE

LD
DS

KP
PP

SS
SM

PL
IL

QE
EK

AP
LP

PP
EY

P
N
Q
SV

PE
TT

PL
NQ

DT
MG

EY
T
P
L
RD

ED
PN

AP
PY

Q
P
P
PP

FT
AP

ME
GK

GS
RP

KN
MT

PY
RS

PP
PY

V
P
P
 

 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
S
H
2
 

 
 
 
 
S
H
2
 
 

 
S
H
2
 

 
 

 
S
H
2
 

 YL
HT

VI
PA

VV
VA

AI
LL

IA
GI

IA
MI

CY
RK

KR
KG

KL
TL

ED
QA

TF
IK

KG
VP

II
FA

DE
LD

DS
KP

PP
SS

SM
PL

IL
QE

EK
AP

LP
P
P
E
Y
PN

QS
VP

ET
TP

LN
QD

TM
GE

YT
PL

RD
ED

PN
AP

PY
QP

PP
PF

TA
PM

EG
KG

SR
PK

NM
TP

YR
SP

P
P
Y
VP

P 
 

 
 

 
 

 
 

 
 

 
 
 
 
W
W
 
I
  

 
 

 
 

 
 

 
 
 
 
W
W
 
I
 

 YL
HT

VI
PA

VV
VA

AI
LL

IA
GI

IA
MI

CY
RK

KR
KG

KL
TL

ED
QA

TF
IK

KG
VP

II
FA

DE
LD

DS
KP

PP
SS

SM
PL

IL
QE

EK
AP

LP
PP

EY
PN

QS
VP

E
T
T
P
L
NQ

DT
MG

E
Y
T
P
L
RD

ED
PN

AP
PY

QP
PP

PF
TA

PM
EG

KG
SR

PK
N
M
T
P
Y
RS

PP
PY

VP
P 

YL
HT

VI
PA

VV
VA

AI
LL

IA
GI

IA
MI

CY
RK

KR
KG

KL
TL

ED
QA

TF
IK

KG
VP

II
FA

DE
LD

DS
KP

PP
SS

SM
PL

IL
QE

EK
AP

LP
PP

EY
PN

QS
VP

ET
TP

LN
QD

TM
GE

YT
PL

RD
ED

PN
AP

PY
QP

PP
PF

TA
PM

EG
KG

SR
PK

NM
TP

Y
R
S
P
P
PY

VP
P 

 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
W
W
 
I
V
 

 
W
W
 
I
V
 
 

 
 

 
 
 
 
 
 
 
W
W
 
I
V
 

 
 YL

HT
VI

PA
VV

VA
AI

LL
IA

GI
IA

MI
CY

RK
KR

KG
KL

TL
ED

QA
TF

IK
KG

VP
II

FA
DE

LD
DS

KP
PP

SS
SM

PL
IL

QE
E
K
A
P
L
P
P
PE

YP
NQ

SV
PE

TT
PL

NQ
DT

MG
EY

TP
LR

D
E
D
P
N
A
P
PY

QP
PP

PF
TA

PM
EG

KG
SR

PK
NM

TP
YR

S
P
P
P
Y
V
P
P 

YL
HT

VI
PA

VV
VA

AI
LL

IA
GI

IA
MI

CY
RK

KR
KG

KL
TL

ED
QA

TF
IK

KG
VP

II
FA

DE
LD

DS
KP

PP
SS

SM
PL

IL
QE

EK
AP

L
P
P
P
E
Y
P
NQ

SV
PE

TT
PL

NQ
DT

MG
EY

TP
LR

DE
DP

N
A
P
P
Y
Q
P
PP

PF
TA

PM
EG

KG
SR

PK
NM

TP
YR

SP
PP

YV
PP

 
YL

HT
VI

PA
VV

VA
AI

LL
IA

GI
IA

MI
CY

RK
KR

KG
KL

TL
ED

QA
TF

IK
KG

VP
II

FA
DE

LD
DS

KP
PP

SS
SM

PL
IL

QE
EK

AP
LP

PP
EY

PN
QS

VP
ET

TP
LN

QD
TM

GE
YT

PL
RD

ED
PN

AP
P
Y
Q
P
P
P
P
FT

AP
ME

GK
GS

RP
KN

MT
PY

RS
PP

PY
VP

P 
 

 
 

 
 

 
 

 
 

 
 
S
H
3
 

 
 

 
 
 
 
 
 
 
S
H
3
 

 
 

 
 
 
 
 
 
S
H
3
 

  

F
ig

u
re

1.
5:

S
tr

u
ct

u
ra

l
or

ga
n
is

at
io

n
of

th
e

cy
to

p
la

sm
ic

re
gi

on
of

b
et

a-
d
y
st

ro
gl

y
ca

n
.

T
h
e

tr
an

sm
em

b
ra

n
e

d
om

ai
n

(T
M

),
n
u
cl

ea
r

lo
ca

li
sa

ti
on

si
gn

al
(N

L
S
)

an
d

P
E

S
T

m
ot

if
s

(P
ro

li
n
e

(P
),

gl
u
ta

m
ic

as
p
ar

ti
c

(E
),

S
er

in
e

(S
),

an
d

T
h
re

on
in

e
(T

)
m

ot
if

an
d

F
ig

u
re

6.
1)

ar
e

sh
ow

n
.

K
n
ow

n
re

si
d
u
es

su
b

je
ct

to
p
al

m
it

oy
la

ti
on

an
d

p
h
os

p
h
or

y
la

ti
on

ar
e

h
ig

h
li
gh

te
d

in
gr

ee
n

an
d

tu
rq

u
oi

se
.

In
te

ra
ct

io
n

m
ot

if
s

fo
r

S
H

2,
W

W
I,

W
W

IV
an

d
S
H

3
d
om

ai
n
s

ar
e

h
ig

h
li
gh

te
d

in
b
lu

e,
re

d
,

li
gh

t
re

d
an

d
m

ag
en

ta
.

M
ot

if
s

w
er

e
p
re

d
ic

te
d

u
si

n
g

th
e

E
L

M
re

so
u
rc

e
(h
t
t
p
:
/
/
e
l
m
.
e
u
.
o
r
g
).

20

http://elm.eu.org


1.5. DYSTROGLYCAN

After the C774 residue, there is a stretch of basic amino acids with some

known reported functions. Through this group of lysine and arginine residues,

beta-dystroglycan interacts with the cytoskeletal protein ezrin, a member of

the adaptor ERM (ezrin, radixin, moesin) group of proteins. The implications

of this interaction were related to the formation of microvilli and fillopodia-

like structures, due to the remodelling of the F-actin cytoskeleton (Spence,

Chen, et al., 2004). Additionally, it was observed that the activity of Cdc42

was required for the targeting of beta-dystroglycan-ezrin in complex with Dbl

to the plasma membrane, and the consequences were the same as the ones

described above (Figures 1.5 and 1.6) (Batchelor et al., 2007).

This group of amino acids seems to be a kind of ’hot spot’ within the

sequence of beta-dystroglycan. In addition to the previous interactions, it was

demonstrated that this domain functions as a nuclear localisation signal (NLS)

as it was required for the nuclear translocation of beta-dystroglycan (Lara-

Chacón et al., 2010; Oppizzi, Akhavan, Singh, Fata, & Muschler, 2008). Then,

this domain seems to have dual functions, as it is important for the formation

of beta-dystroglycan-ezrin complex, which in turn leads to the formation of

cellular protrusions, and also, it is important for the nuclear translocation of

this complex in an ezrin-dependent manner (Figures 1.5 and 1.6) (Vásquez-

Limeta et al., 2014).

An additional function of this domain in neuromuscular junctions was

demonstrated. It was observed that rapsyn functioned as a bridge between

the acethylcholine receptor and beta-dystroglycan, and again, the stretch of

basic amino acids in beta-dystroglycan was found mediating the interaction

(Apel, Roberds, Campbell, & Merlie, 1995; Cartaud, Coutant, Petrucci, &

Cartaud, 1998). This group of basic residues is also a point of convergence

for the ERK MAPK-dystroglycan-integrin signalling pathways. The interac-

tion between beta-dystroglycan and ERK is mediated by the same stretch of

basic amino acids that function as an NLS. Interestingly, the sequestering of

ERK and MAPK by beta-dystroglycan is performed in different compartments

within the cell (Figure 1.6) (Bao et al., 2009; Ferletta et al., 2003; Moore &
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Winder, 2010; Spence, Dhillon, James, & Winder, 2004).

The cytoplasmic region of beta-dystroglycan harbours other motifs that

could potentially mediate interactions with other proteins. It contains sites

for interactions with proteins containing PDZ, WW, SH2 and SH3 domains

(http://www.elm.eu.org) (Moore & Winder, 2010) (Figure 1.5).

A tyrosine (Y892 in humans) within the PPXY motif located in the very

carboxy terminus of beta-dystroglycan has gained special attention, because

(depending on its phosphorylated status) this tyrosine can interact with WW

or SH2 domains. An initial characterization showed that it is phosphorylated

by Src and that, upon phosphorylation, it was able to interact with c-Src,

Fyn, Csk, NCK and SHC SH2 domains (Sotgia et al., 2001). On the other

hand, the phosphorylation of Y892 prevents the interaction between the car-

boxy terminus of beta-dystroglycan and the WW domain in utrophin (James

et al., 2000) or dystrophin (Ilsley, Sudol, & Winder, 2001; Rentschler et al.,

1999). Importantly, the disruption of this interaction by phosphorylated ty-

rosine was reported to render an unstable beta-dystroglycan, which is sus-

ceptible to proteasomal degradation However, when prevented, components of

the DAPC were restored to the plasma membrane, and the dystrophic pheno-

type of the mdx mouse was improved (Miller et al., 2012). In a similar form

as with dystrophin/utrophin, caveolin-3 has been shown to bind to the non-

phosphorylated tyrosine within the PPXY motif; however, caveolin-3 competes

with dystrophin for this interaction (Figure 1.6) (Ilsley, Sudol, & Winder, 2002;

Sotgia et al., 2000).

Another motif, with the consensus sequence RXXXPXXP, is found in the

very carboxy terminus of beta-dystroglycan and overlaps with the PPXY men-

tioned previously (Moore & Winder, 2010) (Figure 1.5). This motif in beta-

dystroglycan was reported to be required for the interaction with the SH3

motif of the protein Grb2 (Cavaldesi et al., 1999; Russo et al., 2000; Yang et

al., 1995). An additional interaction mediated by this motif is that between

beta-dystroglycan and the third SH3 domain in vinexin in focal adhesions.

Vinculin was also found in the focal adhesion complex, however, the associ-
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ation with beta-dystroglycan was attributed to the interaction of vinculin to

the first and second SH3 motifs in vinexin (Thompson et al., 2010). It was

not conclusively demonstrated, but this motif may mediate the interaction of

beta-dystroglycan to the SH3 domain in the adaptor protein TKS5, in complex

with Src during the formation of podosomes (Figure 1.6) (Thompson et al.,

2008).

In Drosophila, the WW-domain binding motifs in beta-dystroglycan have

been suggested to have redundant functions towards their interaction to dys-

trophin (Yatsenko et al., 2009). However it has to be remembered that beta-

dystroglycan not only binds dystrophin, but several other proteins. Therefore,

whilst one WW-domain binding motif interacts with dystrophin, the other

may mediate an interaction with another protein (Figure 1.5).

Dystroglycan may be subject to ubiquitination (it has not been defined if

both subunits or only one subunit of dystroglycan is subject to ubiquitination),

however, the limited evidence regarding this PTM is introduced here.

As explained in this chapter, in muscular dystrophies and cancer diseases,

a reduction in the protein levels of beta-dystroglycan is frequently observed.

Of the different hypotheses explaining this reduction, ubiquitination within

the ubiquitin-proteasome system stands as the most plausible.

The evidence of a potential ubiquitination on dystroglycan comes from ex-

periments performed with the proteasome inhibitor MG-132. The local and

systemic treatment of mdx mice, a mouse model of Duchenne muscular dystro-

phy with MG-132 led to the restoration of components of the DAPC (alpha-

and beta-dystroglycan and alpha-sarcoglycan) to the plasma membrane. Im-

portantly, this restoration was able to improve the dystrophic phenotype of the

mdx mice (Bonuccelli et al., 2003). A similar approach using muscle explants

from patients with Becker and Duchenne muscular dystrophy showed compa-

rable results (Assereto et al., 2006). By employing the FDA-approved drug

velcade (also a proteasomal inhibitor), later experiments with the same objec-

tive demonstrated a restoration of the DAPC members to the plasma mem-

brane, further confirming the involvement of the ubiquitin proteasome system
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Figure 1.6: Binding partners of beta-dystroglycan. Beta-dystroglycan inter-
acts with multiple proteins through its stretch of basic amino acids and its
SH2, SH3 and WW protein binding domains. Other proteins were omitted,
however, they are further mentioned in the following chapters.

in their degradation (Bonuccelli et al., 2007; Gazzerro et al., 2010). This set of

results, although not showing the direct ubiquitination of beta-dystroglycan,

clearly suggest that beta-dystroglycan is subject to ubiquitination.

There are some research groups reporting ubiquitinated dystroglycan (K. A. Lee

et al., 2011; W. Kim et al., 2011). However, the significance of this PTM in the

turnover of dystroglycan is still unknown. Additionally, it is still not known

how this PTM regulates the interaction of dystroglycan with other proteins, or

what its potential implication is in muscular dystrophies and cancer. Sumoy-
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lation, a PTM with some homology to ubiquitination, is thought to modify

dystroglycan, however the data supporting this is limited (Steve J. Winder,

personal communication).

The combination of all the post-translational modifications, the motifs and

the disordered structure of the cytoplasmic fragment, make beta-dystroglycan

an enigmatic protein with still more roles to discover. In order to understand

how the alterations of dystroglycan can lead to disease, it is necessary first

fully understand its regulation in space and time. A major caveat of previous

research has been the focus on dystroglycan and its functions as isolated events

at the protein level. However, it has to be understood that there may be many

pools of dystroglycan within a cell that have different forms of PTMs at the

same time: whilst one form bridges the cytoskeleton to the plasma membrane,

the other regulates transcription, cell cycle progression, development or neural

transmission, as shown below (Bello et al., 2015; Bozzi, Morlacchi, Bigotti,

Sciandra, & Brancaccio, 2009; Moore & Winder, 2010; Winder, 2001).

1.5.3 Dystroglycan in human disease

Dystroglycan is indeed an enigmatic protein. It takes part in a multitude of

pathways due to its ability to interact with other proteins and to its flexibility

to adopt different post-translational modifications (Barresi & Campbell, 2006;

Winder, 2001). Its critical role is supported by the fact that alterations in its

synthesis, in its primary structure, and in its modifications lead to very dra-

matic effects in the organism, as first described by Williamson and colleagues.

In that study, in contrast to the heterozygous mice which had an apparently

normal phenotype, the ablation of the Dag1 gene led to peri-implantation

lethality, which were characterised by alteration of Reichert’s membrane and

in the localisation of laminin and collagen extracellular matrix components

(Williamson et al., 1997).

Dystroglycan was mapped to the short arms of human chromosome 3 in

a locus that spans the region 3p21.1-3p21.31. An early report suggested a
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potential role for dystroglycan as a tumour suppressor, because of its ability

to facilitate the communication between the surrounding extracellular matrix

and the cytoskeleton (Sgambato & Brancaccio, 2005). Interestingly, there are

reports indicating that the region 3p21.3 harbours many genes with tumour

suppressor properties (Hesson, Cooper, & Latif, 2007) and furthermore this

region seems to be susceptible to different chromosomal rearrangements in

epithelial tumours, such as breast, lung, cervical, ovarian and others (Angeloni,

2007; Ji, Minna, & Roth, 2005; Lerman & Minna, 2000). It is also reported

that the same locus is involved in Crohn’s disease (Morgan, Han, Lam, Fraser,

& Ferguson, 2010). These findings indicate a potential role of dystroglycan in

cancer and Crohn’s disease.

Over time, subsequent reports have further highlighted the detrimental ef-

fects of the alteration of dystroglycan at its genomic level, named primary

dystroglycanopathies; and that of the enzymes in charge of the glycosyla-

tion of alpha dystroglycan, termed secondary dystroglycanopathies (see sec-

tion 1.5.3.1). However, the role of dystroglycan seems not to be only limited to

dystroglycanopathies, as a new role in cancer has emerged, as described later

(see section 1.5.3.2).

1.5.3.1 Dystroglycan in muscular dystrophies

The disease field involving dystroglycan that is most studied is that concerning

the muscular dystrophies. As understanding the effects of dystroglycan’s alter-

ations in muscular diseases could provides us with clues about its alterations

in cancer and vice versa, the impact of beta-dystroglycan in the muscular

dystrophies will be briefly discussed.

Muscular dystrophies are a group of gradually progressive inherited dis-

eases. At the cellular level, some of the main characteristics of these diseases

are the alteration in proteins levels of members of the DAPC and their glyco-

sylases, proteins associated to the nuclear membrane, and others (Mercuri &

Muntoni, 2013).
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A few studies of primary dystroglycanopathies have shown how important

dystroglycan is. Following the description by Williamson about the severe

effects of dystroglycan loss (Williamson et al., 1997), another report relating

the deficiency of beta-dystroglycan to a mild form of muscular dystrophy phe-

notype, further highlighted the consequences of the alteration of dystroglycan

in humans (the other components of the DAPC were normal) (Salih et al.,

1996). Later, although not confirmed that the phenotype was due to DAG1’s

alteration, the heterozygous deletion of a locus comprising the DAG1 gene in a

young female, resulted in a phenotype that resembled that of Walker-Warbur

syndrome and muscle-eye-brain disease (Frost et al., 2010).

The breakthrough to the critical role of dystroglycan was provided by

Kevin Campbell’s group. His group described the first known primary dys-

troglycanopathy. This was caused by the mutation Thr192Met located in the

N-terminal side of alpha-dystroglycan. This mutation, which prevented the

O-glycosylation performed by LARGE, led to a reduction in the binding of

dystroglycan to laminin. Thus, the critical role of dystroglycan is highlighted

by the fact that a single mutation was able to cause limb-girdle muscular

dystrophy, despite the fact that alpha-dystroglycan has many potential O-

glycosylation sites, other than those described here (Hara et al., 2011).

Additional mutations in the DAG1 gene leading muscular dystrophy phe-

notypes have been identified (Dong et al., 2015; Geis et al., 2013) and recently,

the first mutation leading to a complete absence of dystroglycan has been re-

ported (Riemersma et al., 2015).

Compared to the mouse, the ablation of dystroglycan in zebrafish was

not lethal, although a dystrophic phenotype was observed (Parsons et al.,

2002). Interestingly, the mutation V567D in Patchytail fish was able to cause

a muscular dystrophy-like phenotype (Gupta et al., 2011).

Secondary dystroglycanopathies are characterised by defects in glycosyl-

transferases that attach sugar groups to alpha-dystroglycan, which in turn

prevent the interaction of alpha-dystroglycan with laminin, neurexin, agrin

and perlecan, leading to the disruption of the connection between cytoskeleton
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and the extracellular matrix (Michele & Campbell, 2003). There are different

genes (enzymes) whose disruption have been shown to affect dystroglycan’s gly-

cosylation: they include LARGE (like glycosyltransferase), FKTN (fukutin),

FKRP (fukutin related protein), POMGNT1 (protein-O-linked mannose beta

1,2-N-acetylglucosaminyltransferase), POMT2 (protein-omannosyltranferase 2),

POMT1 (protein-O-mannosyltransferase 1), DPM2 (dolichyl-phosphate man-

nosyltranferase polypeptide 2), DPM3 (dolichyl-phosphate mannosyltranferase

polypeptide 3), and many others which were recently reported by Jae and col-

leagues (Brown & Winder, 2012; Jae et al., 2013; Godfrey, Foley, Clement,

& Muntoni, 2011). The phenotypes associated with these alterations are di-

verse, but they usually involve the damage to the skeletal muscle, cardiac

problems, ocular problems and mental retardation. The differential combina-

tion of these defects leads to distinct forms of muscular dystrophies, such as

Fukuyama congenital muscular dystrophy (FCMD), muscle-eye-brain disease

(MEB), Walker-Warburg Syndrome (WWS) and limb girdle muscular dystro-

phy (LGMD) which can also be divided in various sub-types (Brown & Winder,

2012; Godfrey et al., 2011; Mercuri & Muntoni, 2013; Michele & Campbell,

2003).

Current research is aimed to gain a better understanding of dystroglycan

glycosylation. This PTM is so critical that there are numerous genetically

modified mouse models for many of the enzymes implicated in the glycosy-

lation of dystroglycan; in addition, other mouse models that are deficient for

constituent proteins of the DAPC other than dystroglycan have been gener-

ated (Whitmore & Morgan, 2014). Additional research aims to understand

the glycosylome of alpha-dystroglycan, which includes the way dystroglycan

is structurally modified, and additional players involved in its glycosylation

(Harrison et al., 2012; Jae et al., 2013; Nilsson, Larson, & Grahn, 2010; Stal-

naker et al., 2010, 2011)

Altogether, these findings demonstrate that dystroglycan is important and

that small changes in its primary structure or post-translational modifications

can lead to severe effects in humans. From the examples so far, the prevail-
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ing factor as a cause of disease is the hypo-glycosylation of alpha-dystroglycan.

Therefore, finding a way of producing normal, glycosylated alpha-dystroglycan

will be a breakthrough in muscular dystrophies. However, dystroglycan is a

protein not only expressed on the sarcolemma in skeletal muscle, but a protein

that is also expressed in nervous and epithelial tissues. In epithelial tissues,

dystroglycan maintains the cellular integrity and restricts the uncontrolled

growth of the cells by its interaction with components of the extracellular

matrix. This lead us to question, what do dystroglycan’s roles in cellular envi-

ronments other than those of skeletal muscle tell us about its role in disease?

1.5.3.2 Dystroglycan in cancer

In the previous section it was highlighted how important the role of dystro-

glycan is at the plasma membrane. In skeletal muscle, through its association

with other members of the DAPC, dystroglycan provides structural roles, and

functions as a kind of bridge, facilitating communication between the exterior

and interior environments of the cells. Interestingly, in epithelial cells these

same mechanisms seem to be governing dystroglycan and, importantly, the

disruption of those mechanisms are an important part in the development of

cancer (Sgambato & Brancaccio, 2005).

The cross-linked extracellular matrix, the basement membrane, surrounds

epithelial and endothelial tissues as a form of protection. The communication

of the cell with its extracellular environment is mediated by the interaction be-

tween components in the extracellular matrix, such as laminin, agrin, collagen,

perlecan and nidogens, and receptor proteins found on the plasma membrane of

the cells, which can include integrins, dystroglycan, sarcoglycan, the Lutheran

glycoprotein and sulfatides. This interaction is important in order to regu-

late the behaviour of the cell, and importantly, the disruption of the integrity

of the basement membrane favours the invasion and migration of metastatic

cells. Thus, a cell can be modulated from the outside, and vice versa, by

changing the activation of genes responsible for producing components of the

29



CHAPTER 1. GENERALITIES

extracellular matrix and the adhesion proteins that interact with it, the cell

can modulate its interaction with the surrounding tissue environment (Kelley,

Lohmer, Hagedorn, & Sherwood, 2014; Yurchenco, 2011).

In this regard, integrins are a group of proteins that confer adhesion to cells

during migration and invasion, as well as participating in signalling between the

interior and exterior environments. By adhering to the extracellular matrix,

integrins are able to trigger downstream signalling pathways involved in the

remodelling of the cytoskeleton which in turn lead to the formation of cellular

structures, like lamellipodia (outside-in signalling). The processes mediated

by integrins are important not only at the front of the cells but also at the

rear. Here, in order to migrate, the cell has to detach from the substrate, a

process that involves the degradation or internalization of integrins (Hood &

Cheresh, 2002). Hence, integrins can also respond to intracellular signals to

change their extracellular binding capabilities (inside-out signalling).

Dystroglycan, a topologically similar protein to the integrins, shares a sim-

ilar functionality. Glycosylated dystroglycan interacts with laminin (or other

components of the extracellular matrix) (Matsumura et al., 1997), which in

turn is able to trigger the assembly of the basement membrane (Yurchenco,

2011). In cancer, the interactions that dependend on the glycosylation state

of alpha-dystroglycan, are also implicated in cell migration and invasion. Bao

and colleagues observed that the formation of prostate tumours and metastasis

was dependent on the degree of glycosylation on alpha-dystroglycan; hyper-

glycosylation alpha-dystroglycan lead to the formation of small tumours and

fewer metastatic events compared with hypo-glycosylated alpha-dystroglycan.

They concluded that the glycosylation on alpha-dystroglycan mediated by

β3GnT1 allowed the interaction with laminin, in turn attenuating downstream

events of the integrin pathway such as the sequestering of ERK (Bao et al.,

2009).

Changes to the glycosylation of alpha-dystroglycan seem to be common

in the development of cancer, as a similar phenomenon was observed by an-

other group in metastatic prostate cancer. However, high rates of invasion
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and proliferation were only detected with reduced levels of LARGE2 (Esser et

al., 2013). This phenomenon of the interaction between glycosylated alpha-

dystroglycan and laminin in tumorigenicity is also reported for breast cancers

(Akhavan et al., 2012). Although the enzyme responsible for the altered gly-

cosylation of alpha-dystroglycan (which in turn leads to the interaction with

laminin) is not reported by the studies, it is clear that the altered glycosylation

of alpha-dsytroglycan is a triggering event in the development of malignancies

such as: oesophageal (Parberry-Clark, Bury, Cross, & Winder, 2011), prostate

(Shimojo et al., 2011), pediatric solid tumours (alveolar rhabdomyosarcoma,

embryonal rabdomyosarcoma, neuroblastoma and medulloblastoma) (Martin,

Glass, Dosunmu, & Martin, 2007), cervical and vulvar (Sgambato, Tarquini,

et al., 2006).

In addition, glycosylation appears to confer protection to alpha-dystroglycan

and the other members of the DAPC. In other words, not only alpha-dystroglycan

is affected by the absence of this PTM: beta-dystroglycan is affected as well.

Upon hypo-glycosylation of alpha-dystroglycan, beta-dystroglycan is suscepti-

ble to proteolysis by proteases found in the extracellular environment. Previous

studies have shown that the cleavage between residues His-715 and Leu-716

on the extracellular globular domain of beta-dystroglycan (Bozzi, Inzitari, et

al., 2009) by matrix metalloproteases-2 and -9, results in a 31 kDa plasma

membrane attached fragment (Jing et al., 2004; Michaluk et al., 2007; Shang,

Ethunandan, Górecki, & Brennan, 2008; Yamada et al., 2001; Zhong et al.,

2006).

Importantly, the presence of this fragment seems to be associated with dis-

ease. In the case of muscular dystrophies, the 31 kDa transmembrane fragment

was observed to be increased in sarcoglycanopathies and DMD (Matsumura et

al., 2005). In cancer, increases in the 31 kDa fragment were observed in squa-

mous cell carcinoma (Jing et al., 2004; Shang et al., 2008), breast (Losasso

et al., 2000), colon (Losasso et al., 2000), cervical (Losasso et al., 2000) and

prostate tumour cells (Losasso et al., 2000). Furthermore, this small 31 kDa

fragment was also observed in stroke and heart attack (Armstrong, Latham,
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& Ganote, 2003).

Additionally, and although the causes of the reduction were not determined,

full-length dystroglycan was found to be greatly decreased or absent at the

plasma membrane in most types of cancer studied including: breast (Cross et

al., 2008; Henry, Cohen, & Campbell, 2001; Muschler et al., 2002; Sgambato

et al., 2003), prostate (Henry et al., 2001; Sgambato et al., 2007), colon (Cross

et al., 2008; Sgambato et al., 2003), oesophageal (Cross et al., 2008; Parberry-

Clark et al., 2011) and transitional cell carcinomas of the urothelium (Cross

et al., 2008).

Therefore, it seems that the mechanism by which dystroglycan is reduced

from the plasma membrane starts with problems in the glycosylation of alpha-

dystroglycan. This in turn renders an exposed beta-dystroglycan that is sus-

ceptible to cleavage by matrix metalloproteases, which confers an advantage

in the mestastatic process of cancerous cells.

1.5.4 The nuclear translocation of beta-dystroglycan

The initial characterization of dystroglycan clearly established its important

role within the DAPC in order to confer stability to muscle fibres during con-

traction and relaxation. Throughout the years, further discoveries correlated

the alteration of dystroglycan as an important cause of muscular dystrophies.

More recently, research into dystroglycan has extended to cancer, where many

studies have correlated the reduced expression of dystroglycan with cancer

progression. Although it was not completely understood, the general idea was

that dystroglycan was the anchor of the cell to the extracellular matrix, pro-

viding integrity to the sarcolemma or, in the case of cancer, restricting the

uncontrolled growth of cells.

The puzzle became more complicated with the description by the Cisneros

group of the dystrophin variant Dp71 in the nucleus of cervical (HeLa), mus-

cle (C2C12), neuroblast (N1E-115) (González et al., 2000) and pheochromo-

cytoma (PC12) cells (Marquez et al., 2003). The initial observation of the
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co-localization between beta-dystroglycan and Dp71 prompted the question as

to whether other members of the DAPC were also present in the nucleus of

the cell. Later research performed by the same group revealed the localisation

of beta-dystroglycan and other members of the DAPC such as Dp71, sarco-

glycan, dystrobrevin, syntrophin and nNOS in the nucleus of cervical cancer

cells. It was then thought that the functions of the new nuclear complex were

related to scaffolding-related activities (Fuentes-Mera et al., 2006).

A further logic step was to determine the way that this complex, in partic-

ular beta-dystroglycan, was travelling to the nucleus.

The nuclear membrane is an important structure that divides the interior

of the cell into two spatial compartments, the nucleoplasm and the cytosol.

This compartmentalisation separates the machinery involved in the synthesis

of mRNA (transcription) in the nucleoplasm, from that involved in the pro-

duction of proteins (translation) in the cytosol. The communication between

both compartments is enabled by the presence of macromolecular structures

embedded in the nuclear membrane called nuclear pore complexes (NPC).

These complexes allow the regulated transport of proteins between the cytosol

and the nucleoplasm through a mechanism known as the nuclear import path-

way, and involves the protein to be transported (cargo) and adaptor proteins

(carriers) known as importins (karyopherins) or exportins (Kau, Way, & Silver,

2004; Stewart, 2007; Wente & Rout, 2010).

For proteins with a molecular weight (MW) below 40 kDa it is believed

that the mechanism of nuclear import through the NPC is by protein diffusion

and does not require carriers. On the other hand, proteins with a MW equal

or higher than 40 kDa require the presence of the importin system in order

to be translocated to the nucleus. Furthermore, high MW cargoes require

signals within their primary sequence in order to be recognised by the importin

system. These signals, known as nuclear localisation sequences (NLS), can

consist of a single stretch of basic amino acids composed of ∼ 4−5 amino acids

(monopartite), or two stretches separated by ∼ 10−12 amino acids (bipartite).

The NLS of SV40 large-T antigen and nucleophosmin are examples of mono
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and bipartite NLS respectively (Kau et al., 2004; Stewart, 2007; Wente &

Rout, 2010).

The mechanism starts in the cytosol with the formation of the cargo-carrier

complex. The formation of the importin-alpha-importin-beta dimer through

an importin-beta binding domain exposes a domain in importin-alpha, which

is able to recognise the NLS in the protein cargo. The complex is directed

to the NPC, where importin-beta mediates the interaction with nucleoporins

via phenylalanine-glycine-nucleoporin (FG-nucleoporin) repeats, and is then

translocated to the nucleoplasm. Once in the nucleus, high concentrations

of RanGTP disassemble the complex. The protein cargo is released, and

importin-alpha in complex with RanGTP, and importin-beta combined with

RanGTP, and nuclear export factor CAS are recycled back to the cytoplasm.

In the cytoplasm RanGAP helps in the disassembly of the complex, render-

ing importins free for another round of transport. High concentrations of

RanGDP in the cytoplasm or RanGTP in the nucleoplasm are maintained

by RanGAP (Ran GTPase activating protein) and RanGEF (Ran guanine

nucleotide-exchange factor) respectively (Figure 1.7) (Kau et al., 2004; Stew-

art, 2007; Wente & Rout, 2010).

The nuclear export of proteins is mediated by the counterparts transportin,

CRM1, exportin-5 and exportin-t and the sequences that mediate the recog-

nition of the protein cargo to the exportin complex are named nuclear export

signals (NES), which are a cluster of leucine-rich amino acids. In the clas-

sic nuclear export pathway, importin-beta complexed with RanGTP is trans-

ported back to the cytoplasm. Importin-alpha on the other hand, forms a

complex with RanGTP and CAS. Both complexes containing importin-alpha

and importin-beta are transported to the cytoplasm through the NPC. Once

in the cytoplasm by the action of RanGAP, both importins are released, leav-

ing them free for another round of transport. By a similar mechanism, cargo

proteins to be transported back to the cytoplasm are recognised by exportins

through their NES (Kau et al., 2004; Stewart, 2007; Wente & Rout, 2010).
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The import of proteins through the nuclear import pathway seems to be

the preferred mechanism by proteins with functions other than cytosolic roles,

as is the case of dystroglycan and other DAPC components.

Oppizzi and colleagues determined that, in breast carcinoma cell lines, the

nuclear translocation of beta-dystroglycan was mediated by the presence of

a bipartite NLS located after the sequence that encodes the transmembrane

domain. The interesting observation of a dynamic beta-dystroglycan in the

nucleoplasm directly questioned the previous static model proposed by the

Cisneros group (Fuentes-Mera et al., 2006; Oppizzi et al., 2008). Further

studies confirmed that, in addition to the transport mediated by a nuclear

localisation signal, beta-dystroglycan travels to the nucleus in an importin-

alpha/beta regulated pathway. In that study, it was suggested that Y892,

a tyrosine that has been implicated in other signalling processes, could be

influencing the transport of beta-dystroglycan to the nucleus (Lara-Chacón

et al., 2010). Parallel studies showed that the assembly of the DAPC com-

plex could be regulated by the differentiated status of myoblasts (González-

Ramı́rez, Morales-Lázaro, Tapia-Ramı́rez, Mornet, & Cisneros, 2008) and that

in pheochromocytoma cells, Dp71 was important for the assembly of the DAPC

in the nucleus (Villarreal-Silva, Suárez-Sánchez, Rodŕıguez-Muñoz, Mornet, &

Cisneros, 2010).

These previous studies clearly showed the presence of a new pool of DAPC

components in the nucleus of different cell lines. The debate about the static

(by its immersion in the nuclear membrane), or dynamic (by its unrestricted

movement in the nucleoplasm) functions of beta-dystroglycan persisted, but

new observations suggested that both hypothesis were plausible.

Two papers published almost simultaneously provided more important

clues. In muscle derived cells, the C2C12 cell line, in addition to its previ-

ously described association with lamin B, beta-dystroglycan was found asso-

ciated with nuclear organelles such as the nucleolus, splicing speckles, emerin

and cajal bodies. The interaction between beta-dystroglycan and these or-

ganelles (verified by immunoprecipitation, immunofluorescence and pull-down)
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was slightly altered by the downregulation of beta-dystroglycan compared to

the dramatic effect observed with lamin B. Additional alterations observed

were the miss-localisation of the centrosomes, which raised the hypothesis of

beta-dystroglycan and its possible involvement in the cell cycle (Mart́ınez-

Vieyra et al., 2013).

The second work took a step forward in providing clues to the activities

of beta-dystroglycan in the nucleus. In healthy prostate human tissue, there

was a strong expression of beta-dystroglycan on the basal side and baso-lateral

junctions of the epithelial cells. However, the intensity of the staining pattern

was greatly reduced in prostate carcinoma tissue. After cell fractionation the

nuclear distribution of beta-dystroglycan was confirmed. The most striking

result to emerge from that work was that the overexpression of the cytoplasmic

fragment of beta-dystroglycan had a preferential nuclear accumulation, which

in turn led to the expression of transcription factors such as ETV1, which the

authors confirmed by microarray analysis (Mathew et al., 2013).

From this set of results it appears that beta-dystroglycan is an impor-

tant player in the organisation of the nuclear architecture (Tadayoni, Rendon,

Soria-Jasso, & Cisneros, 2012), but is also an important modulator of other

nuclear processes, such as gene-transcription. The interplay between both

mechanisms is still not completely understood, nor the mechanisms triggering

the nuclear translocation of cytosolic beta-dystroglycan, although ezrin is im-

plicated (Vásquez-Limeta et al., 2014). Importantly, it is still not known what

the role of nuclear beta-dystroglycan is, nor how this enigmatic protein me-

diates those new nuclear events, despite it being clear that beta-dystroglycan

does not bind to the nuclear DNA (Bozzi, Morlacchi, et al., 2009; Brancaccio,

2012; Moore & Winder, 2010; Tadayoni et al., 2012).

1.5.5 Dystroglycan and the cell cycle

The conservation of life can be achieved by one simple, yet complex, process. It

consists of the division of a ’mother’ cell to give raise to two identical ’daughter’
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cells. This mechanism can be divided into two main phases, the interphase (a

kind of ”resting” phase) and mitosis (the process wherein one cell generates

two cells). These two phases are separated by two main intervals named ’gaps’,

G1 and G2.

The interphase, the phase of apparent resting, is instead a period of intense

activity in the cell. This phase can be sub-divided into G1-phase, S-phase

and G2-phase. During G1-phase, the phase that separates mitosis from the

S-phase, the cell senses the surrounding environment and, under favourable

conditions, the cells proceeds into S-phase. If the conditions are not favourable,

the cell enters into a phase of resting for an undefined time. In S-phase, the

cell is able to synthesize (S) two identical copies of DNA (replication). The cell

progress into G2 phase once replication has concluded. In this phase, the cell

verifies the proper replication of DNA and prepares all the material required

in order for the cell to enter into mitosis.

Mitosis comprises two important events during cell division, the segregation

of the nucleus (mitosis) and the segregation of the cytoplasm (cytokinesis).

Mitosis is divided into different stages, all of them characterised by specific

episodes during the separation of chromosomes: prophase, pro-metaphase,

metaphase, anaphase and telophase. Once the chromosomes are completely

separated, the cell specifies a site of division, the cleavage furrow, as a mark

that dictates the place where the cell has to be separated. This leads to the

constriction of the cell and the formation of the midbody, which functions until

the cells are completely separated (Alberts et al., 2008).

The evidence gathered so far indicates that beta-dystroglycan may be im-

plicated in the cell cycle at different stages: as a regulator, but also as a subject

of regulation.

The different events that are apparently regulated by beta-dystroglycan

are evident from by the following observations.

During the cytokinesis of REF52 and Swiss 3T3 fibroblasts, and cervical

HeLa cells, beta-dystroglycan is targeted to the cleavage furrow and midbody.

The possibility of the requirement of its cytoplasmic fragment was confirmed
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because a truncated form of beta-dystroglycan lacking this region was not

able to localise to these structures (Higginson, Thompson, & Winder, 2008).

This observation was further supported by a later report indicating that, in

pheochromocytoma cells (PC12), beta-dystroglycan (in association with Dp71)

was co-localised to the same structures and additionally, was observed to be

co-localised with the mitotic spindle. By decreasing Dp71 expression, the role

of Dp71 in organising this complex was established; furthermore, the authors

observed defects in the structure of the nuclear membrane (Villarreal-Silva,

Centeno-Cruz, Suárez-Sánchez, Garrido, & Cisneros, 2011). This last observa-

tion led the authors to hypothesize that beta-dystroglycan, together with lamin

B and Dp71, are able to organise the mitotic spindle poles during cell division

(Tadayoni et al., 2012). From these findings it is clear that beta-dystroglycan

modulates events in the final stages of mitosis.

Other characteristics that have been associated with beta-dystroglycan

within the cell cycle are abnormalities during the transition of the S- and

M-phases.

Following down-regulation of beta-dystroglycan it was reported that mam-

mary epithelial cells accumulated in the S-phase of the cell cycle (Sgambato,

Di Salvatore, et al., 2006). On the other hand, reduced levels of dystroglycan

have also been reported to cause a lag in a G2/M transition of fibroblats cells,

a phenomenon presumably attributable to reduced levels of ERK (Higginson

et al., 2008). A different study reported similar findings, but in the transition

of G0 to G1 (Villarreal-Silva et al., 2011). Although the results from the last

group can not be compared to the other papers cited above, because the tar-

geted reduced protein was Dp71, it points out the fact that the alteration of

the DAPC members may lead to alterations in the transition of the cell cycle.

Dystroglycan is subject to regulation throughout the cell cycle. In bovine

aortic entothelial cells (BAE) increased levels of beta-dystroglycan in S-phase

were associated with angiogenesis (Hosokawa, Ninomiya, Kitamura, Fujiwara,

& Masaki, 2002). Later on, in synchronised HC11 murine mammary epithe-

lial cells, dystroglycan mRNA levels were observed up-regulated during S-
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phase, a mechanism mirrored at protein level (Sgambato, Di Salvatore, et

al., 2006). Current research indicates that the observed up-regulation of beta-

dystroglycan during the S-phase of the cell cycle is extended to prostate LNCaP

cancer cells (Laura A. Jacobs, personal communication).

Finally, the role of dystroglycan (and that of the other DAPC members)

in cell survival is highlighted once more by the fact that reduced expression

has been linked to apoptosis (Higginson et al., 2008; Sgambato, Di Salvatore,

et al., 2006; Villarreal-Silva et al., 2011).

1.6 Project outline

The presence of dystroglycan at the plasma membrane is important to control

the unrestricted growth of cells. In different carcinomas the reduced expression

of beta-dystroglycan has been frequently observed (Cross et al., 2008; Henry et

al., 2001). Previous evidence indicates that proteolytic events (Mitchell et al.,

2013) and post-translational modifications (Miller et al., 2012) may be involved

in this reduction. Additionally, the nuclear localisation of beta-dystroglycan

and its association with nuclear organelles (Mart́ınez-Vieyra et al., 2013), as

well as the regulation of transcription factors (Mathew et al., 2013), indicate

that both mechanisms may be linked. However, the mechanisms behind these

events are still unknown.

The main motivations of this project are to understand: i) how post-

translational modifications, such as phosphorylation and ubiquitination, affect

the integrity of beta-dystroglycan; ii) the mechanisms that trigger the prote-

olysis of beta-dystroglycan from the plasma membrane and its downstream

consequences; and iii) possible functions of beta-dystroglycan in the nucleus

of LNCaP cells by means of its interaction with nuclear proteins.
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1.7 Hypothesis

In LNCaP cells, beta-dystroglycan is subject to the proteolytic cleavage by

gamma-secretase in a Regulated Intramembrane Proteolysis dependent manner

to release a 26 kDa cytoplasmic fragment which is transported to the nucleus

where it regulates nuclear functions.

1.8 Aims

1. To identify post-translational modifications on beta-dystroglycan regu-

lating its stability and function.

2. To identify the mechanisms and proteases involved in the generation of

the 26 kDa cytoplasmic fragment of beta-dystroglycan.

3. To perform a mass spectrometry analysis to identify candidate proteins

interacting with beta-dystroglycan that could explain its functions in:

the nucleus, the cell cycle, the ubiquitin proteasome system and others.

4. To perform mass spectrometry analysis to identify post-translational

modifications on beta-dystroglycan.
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2
Materials & methods

2.1 Materials and methods

The formulation of the solutions and the gels, the sequences of the primers,

the characteristics of the plasmids and the antibodies referred in the text are

fully described in the corresponding appendixes.

2.1.1 Bacterial techniques

2.1.1.1 Preparation of calcium competent Escherichia coli DH5α

A colony of fresh plated E. coli DH5α bacteria were used to inoculate 10 ml

of 2x YT medium (starting culture) (see Appendix A) and then incubated

at 37◦C overnight in a shaking incubator. Next day, 0.5 ml of the starting

culture was used to inoculate 100 ml of 2x YT medium and left at 37◦C in a

shaking incubator until the optical density at 600 nm was 0.6 (OD600=0.6),

as determined by use of a 7315 spectrophotomer (Jenway). Cellular growth

was stopped by incubating the bacterial culture on ice for 10 minutes followed

by centrifugation at 5000 x g for 10 minutes at 4◦C. The supernatant was

discarded and the pellet was resuspended in 50 ml of chilled sterile 100 mM

CaCl2 solution and then incubated on ice for 4 hours. Following a second

centrifugation at 5000 x g for 10 minutes at 4◦C, the supernatant was discarded

and the pellet was resuspended in 5 ml of 100 mM CaCl2. To prepare stocks
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of competent cells, the resuspended pellet was mixed with sterile glycerol to a

final concentration of 15% (v/v), and then frozen and stored at -80◦C.

2.1.1.2 Transformation of competent bacteria

Frozen bacteria were thawed on ice before mixing with the required amount

of DNA (usually 500 ng), and subsequent incubation on ice for 30 minutes.

Bacteria were transformed by heat shock at 42◦C for 2 minutes in a water bath.

Thereafter, 1 ml of pre-warmed 2x YT medium without antibiotic was added

and the culture was incubated at 37◦C for 30 minutes in a water bath. 200 µl

of this recovering culture were spread on to plates of 2x YT agar containing

the appropriate selective antibiotic. Plates were incubated overnight at 37◦C.

2.1.1.3 Bacterial protein induction

E. coli BL21(DE3) transformed with the plasmids pGST (GST) or pGST-

MD (MultiDsk) (M. D. Wilson, Saponaro, Leidl, & Svejstrup, 2012) and

grown on 2x YT agar with Ampicillin (100 µg/ml) were used to inoculate

600 ml LB medium with ampicillin (100 µg/ml). Inoculated medium was in-

cubated in a rotating incubator at 37◦C until it reached an optical density of

0.6 (OD600=0.6). Once the OD was reached, protein expression was induced

by the addition of Isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final

concentration of 1 mM. A good protein expression was obtained by incubating

the culture for a further 4 hours at 37◦C in a rotating incubator after induction

(Figure 2.1). Following this, bacteria were pelleted by centrifugation at 6000

x g for 15 minutes, the supernatant was discarded and the pellet was washed

once with PBS pH 7.4. The bacterial pellet was used immediately or stored

at −20◦C.
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Figure 2.1: Transformed bacteria with the plasmid pGST-MD were inoculated
in 2x YT medium and the expression of GST-MD was induced by the addition
of IPTG. Samples of the induced culture were taken at the various time points
shown and boiled with an equal volume of 2x Laemmli loading buffer, prior
to gel electrophoresis and electroblotting. (a) Western blot analysis with an
anti-GST antibody shows an increase in the amount of GST-MD protein (60
kDa) expressed over the time. (b) The membrane stained with Ponceau S red
staining solution reveals total proteins in samples.

2.1.1.4 GST and MultiDsk protein purification

GST and GST-MD were purified according to the method described by Wil-

son and colleagues (M. D. Wilson et al., 2012). An induced bacterial pellet,

produced as described above, was resuspended in 20 ml of STE buffer (Sodium

Chloride-Tris-EDTA) supplemented with lysozyme to a final concentration of

100 µg/ml and incubated on ice for 15 minutes. Dithiothreitol (DTT) and

sarcosyl (N-lauryl sarcosine) were added to the resuspended pellet to final

concentrations of 5 mM and 1.5% (v/v) respectively (DTT was added before

sarcosyl). Samples were mixed, gently sonicated and then centrifuged at 10000

x g for 5 minutes at 4◦C. After filtration through a 0.45 µm filter to get rid

of viscous material, the filtrate was combined with Triton X-100 to a final

concentration of 3% (v/v) followed by a 5 minute incubation on ice.

500 µl of pre-equilibrated glutathione agarose beads in STE buffer were

incubated with the filtrate for 4 hours at 4◦C on a tube roller. Following

incubation and by sequential centrifugation, the beads were washed with 50

ml of chilled wash buffer 1 (450 mM NaCl, 10% glycerol (v/v), 0.1 mM EDTA,

0.1% Triton X-100 (v/v), 2 mM DTT and protease inhibitors in PBS), followed
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by washing with 25 ml of buffer 2 (50 mM NaCl, 10% glycerol (v/v), 1 mM

2-mercaptoethanol, 0.2% Triton X-100 (v/v) in 50 mM potassium phosphate

buffer (40.1 mM K2HPO4, 9.9 mM KH2PO4, pH 7.4)). Following washing,

beads were equilibrated with PBS pH 7.4, and then resuspended in PBS pH

7.4 supplemented with 1 mM sodium azide. Resuspended beads were stored

at 4◦C (M. D. Wilson et al., 2012) (Figure 2.2).

2.1.2 Molecular biology techniques

2.1.2.1 Agarose gel electrophoresis

All agarose gels used in this project were prepared at a final concentration of

1% (w/v). Agarose was melted in 1x TAE buffer (Tris-acetate-EDTA) (see

Appendix A) and combined with ethidium bromide to a final concentration

of 0.5 µg/ml. The solidified gel was placed in a tank containing 1x TAE and

then DNA, which had been mixed with DNA loading buffer (see Appendix A),

was loaded into the gel. Samples were separated at a constant voltage of 140

V for 40 minutes. DNA was visualized using the UV source in the ChemiDoc

XRS+ system from Bio-Rad.

2.1.2.2 Small (miniprep) and large (maxiprep) scale DNA purifica-

tion and DNA concentration determination

Purification of DNA was performed according to manufacturer’s guidelines.

For small and large scale DNA purification, the Plasmid Mini Kit (Bioline)

and the QIAGEN Plasmid Maxi Kit were used respectively. DNA pellets were

resuspended in sterile 10 mM Tris-Cl pH 8.5. The concentration of the DNA

was determined by measuring the absorbance at 260 nm using a quartz 1 cm

path-length cuvette (Unico) in a 7315 spectrophotometer (Jenway). DNA was

stored at 4oC for immediate use or at -20◦C for long-term storage.
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Figure 2.2: Purification of GST and GST-MD proteins. Proteins were puri-
fied as described in materials and methods. An aliquot of the input, the flow
through, the washes and the beads was mixed with 2x sample loading buffer
and resolved by SDS PAGE. Gels were stained with Coomassie blue safe stain-
ing. Shown are the bands corresponding to GST( 25 kDa) (a) and GST-MD
( 60 kDa) (b) recombinant proteins.

2.1.2.3 Generation of a Flag tag in the primary sequence of mouse-

αβDgFlag by site directed mutagenesis

A Flag tag was introduced into the coding sequence of mouse αβDg (plasmid

pcDNA2-αβDg, see Appendix C) through a complementary pair of primers

(see Appendix B) designed to insert and to mutate the amino acids shown in
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Figure 3.6. The design of the primers and the protocol followed were performed

according to the instructions provided by the QuikChange XL Site-Directed

Mutagenesis Kit (Agilent Technologies). The primers were designed to incor-

porate the desired changes with minimal modifications in the primary structure

of the protein.

XL10-Gold Ultracompetent cells (Agilent technologies) were transformed

with mutated construct and then incubated with NZY+ broth as indicated in

the manufacturer’s protocol. Transformed bacteria were plated on 2x YT agar

with ampicillin (100 µg/ml) and then incubated at 37◦C for >16 hours.

Candidate transformed colonies were used for purification of DNA using

the Plasmid Mini Kit (Bioline). Purified DNA was characterized by DNA

sequencing (Source BioScience). Working stocks of DNA containing αβDgFlag

were prepared by maxi-prep.

2.1.2.4 Cloning of coding sequences of mouse-αβDgFlag (full) and

mouse-cβDgFlag (cyto) into the plasmid pcDNA3.1(+)

A pair of oligonucleotides containing the restriction sites for the enzymes EcoRI

(5’) and XhoI (3’) were used to amplify the coding sequence of full-length

mouse αβ-dystroglycan by PCR. For the cytoplasmic domain, which corre-

sponds to residues 773 to 892 of the full-length sequence, the forward primer

was designed to contain an additional methionine after the restriction site for

EcoRI and before the tyrosine 773 (the reverse primer was the same used in

the amplification of full dystroglycan) (see Appendix B). The PCR was carried

out using the 2x Phusion Master mix according to manufacturer’s guidelines

(New England Biolabs Inc) (Table 2.1).

The amplicons were verified by agarose gel electrophoresis. The plasmid

pcDNA3.1(+) and the amplicons from the full-length and cyto-βdystroglycan

PCRs were digested with the restrictions enzymes EcoRI-HF and XhoI in Eco-

RI buffer (New England Bio-labs) for 2 hours at 37◦C.
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Cycle step Temp (◦C) Time (s) Cycles

Initial denaturation 98 30 1

Denaturation 98 10 30

Annealing 60 30 30

Extension 72 75 30

Final extension 72 600 1

4 ∞

Table 2.1: PCR conditions

The digested products were characterized by agarose gel electrophoresis and

then purified from the agarose gel using the QIAquick gel extraction kit (QI-

AGEN). The purified digested amplicons were ligated into the pcDNA3.1(+)

vector using the Quick Ligation kit (New England Bio labs). Ligated DNA

was used for transformation. Candidate colonies were expanded in 2x YT with

ampicillin (100 µg/ml) and DNA purified by mini-prep. Correct ligation of the

construct was validated by sequencing.

2.1.2.5 Generation of the mutations Y890F and K806R in the pri-

mary sequence of mouse αβDgFlag by site directed muta-

genesis

The mutations Y890F and K806R were introduced into the coding sequence

of mouse αβDgFlag (see Appendix C) by PCR using the primers listed in

Appendix B following the instructions provided in the QuikChange Lightning

Site-Directed Mutagenesis kit (Agilent Technologies). Transformed candidate

bacteria were used for small scale DNA purification. Purified DNA was charac-

terized by DNA sequencing, and DNA carrying either of the desired mutations

was used to prepare working stocks by maxi-prep.
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2.1.3 Tissue culture techniques

2.1.3.1 Growth and passaging of LNCaP cells

LNCaP cells were maintained in RPMI medium (Gibco, Life technologies) [+]-

L-glutamine supplemented with 10% (v/v) Fetal Bovine Serum (Gibco, Life

technologies). Cells were incubated at 37◦C in an incubator with a 5% CO2

atmosphere (Galaxy S, Biohit). Before each experiment, cells were allowed to

grow for a minimum of 24 hours. For cell passaging, cells were dissociated using

1% (v/v) Trypsin-EDTA (Sigma) and reseeded at a final cell density according

to the requirements of each experiment. Growth medium was replaced with

fresh medium every 2 days.

2.1.3.2 Preparation of LNCaP cell stocks

LNCaP cells were grown in RMPI medium [+]-L-glutamine supplemented with

10% (v/v) of Fetal Bovine Serum and allowed to reach a high cell density in

large flasks (175 cm2). Following trypsinization, cells were pelleted at 600 x

g for 3 minutes and gently resuspended in freezing medium (RPMI medium,

20% DMSO, 20% FBS). Resuspended cells were aliquoted into cryovials and

stored in a container with isopropanol at -80◦C for 24 hours.

Long-term storage was carried out by storing the tubes in liquid nitrogen.

Cells were thawed by placing the vial in a water bath at 37◦C for 3 minutes

and then resuspended in complete warm medium. Medium was replaced after

the complete attachment of the cells to the flask in order to minimize exposure

to DMSO.

2.1.3.3 Cell counting using a Neubauer chamber

10 µl of trypsinized pelleted cells resuspended in RPMI medium (usually 10

ml) were mixed with 90 µl of Trypan Blue Solution 0.4% (Sigma, T8154). An

aliquot of 10 µl was used to load the Neubauer chamber. Cells were counted

50



2.1. MATERIALS AND METHODS

according to the manufacturer’s instructions. The total number of cells was

calculated according to the following formula:

Total cells = ( cell counted
4 (to average for one square)

) x (dilution factor used) x104(to

convert the volume into ml)

2.1.3.4 Transfection of LNCaP cells using the Neon Transfection

System

LNCaP cells were grown for a minimum of 48 hours before transfection. On

the day of transfection cells were trypsinized as described above, before resus-

pension in growth medium. Cells were pelleted by centrifugation at 600 x g

for 3 minutes at RT. The pellets were resuspended in growth medium and an

aliquot was used to determine the cellular density with a Neubauer chamber.

The number of cells was adapted to the conditions of each individual experi-

ment according to the table 2.2.

Tip 10 µl 100 µl
Scale 6 well scale 6 well scale 60 mm or 100 mm disch scale

Well number 1 well/6 well 6 well/6 well 1 well/6 well 6 well/6 well 60 mm dish 100 mm dish

Cell number 0.6 x 106 4 x 106 1.2 x 106 8 x 106 3.6 x 106 7.2 x 106

DNA 2.4 µg 16 µg 2.4 µg 16 µg 7.2 µg 14.4 µg
Solution R 12 µl 64 µl 120 µl 784 µl 120 µl 120 µl

Table 2.2: Transfection conditions

The required number of cells were centrifuged at 600 x g for 3 minutes at

RT and the pellets were resuspended in the recommended amount of Solution

R (Life technologies). Resuspended cells were combined with the appropriate

amount of DNA as shown on the table above and then loaded into an appro-

priate Neon Pipette Tip (Life technologies). The pipette was assembled into a

Neon Pipette Station containing 3 ml of solution E2 (Life technologies). The
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cells were microporated according to the conditions in the table 2.3.

Pulse voltage (v) Pulse width (ms) Pulse number Tip type

1200 20 2 10 µl

1200 20 2 100 µl

Table 2.3: Microporation conditions

Once microporated, the cells were seeded onto poly-L-lysine pre-coated

petri dishes containing pre-warmed growth medium. Cells were grown for a

minimum of 24 hours before starting further experiments.

2.1.3.5 Stimulation of LNCaP cells with phorbol 12,13-dibutyrate

(PDBu)

Cells were grown at a low cell density for 24 hours on petri dishes coated

with poly-L-Lysine in RPMI growth medium. PKC activation was induced

with RPMI medium containing PDBu [2.5 µM] (Sigma, prod. no. P1269) or

DMSO (control) and incubated for different times protected from the light.

After the specified times, cells were rinsed gently with cold 1x PBS.

2.1.3.6 Treatment of LNCaP cells with DAPT or Furin Inhibitor I

Confluent LNCaP cells were seeded on petri dishes coated with poly-L-lysine.

Cells were allowed to attach and to grow for a minimum of 24 hours before

starting treatment. The inhibition of gamma-secretase or furin activities, was

performed by treating the cells with DAPT (N-[N-(3,5-Difluorophenacetyl-L-

alanyl)]-S-phenylglycine t-Butyl Ester) (Calbiochem, cat. no. 565770) or Furin

Inhibitor I (Decanoyl-RVKR-CMK) (Calbiochem Millipore, prod. no. 344930)

respectively. DAPT or Furin Inhibitor I prepared in DMSO, were dissolved
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in complete RPMI medium and then added to the cells. The treatment, per-

formed at different concentrations as shown on the respective figures, was

performed for 24 hours for both compounds. Cells were treated with the same

volume of DMSO alone as a control.

2.1.3.7 Treatment of LNCaP cells with resveratrol

Non-confluent LNCaP cells (15000 cells/cm2) were seeded on petri dishes

coated with poly-L-lysine. Cells were grown for 24 hours and then treated

with resveratrol (Enzo Life Sciences, prod. no. BML-FR104) to a final con-

centration of 100 µM for different times in order to induce the activation of

NOTCH. For each time point, the same volume of DMSO was used for control

treatments.

2.1.3.8 Treatment of LNCaP cells with MG132

Confluent LNCaP cells were grown on petri dishes coated with poly-L-lysine for

24 hours. The proteasome activity inhibition was performed by replacing the

medium with full medium supplemented with MG132 [15 µM] (Calbiochem,

cat. no. 474790) and then incubated for 4 hours at 37◦C. The experiment was

also performed using different concentrations of MG132 or using one concen-

tration of MG132 for different times as shown in the respective figures. Cells

treated with the same volume of DMSO were used as a control.

2.1.3.9 Treatment of LNCaP cells with cycloheximide

LNCaP cells, either WT or transfected, were grown for 24 hours and then

treated with the protein synthesis inhibitor cycloheximide (Sigma, C7698) to

a final concentration of 100 µg/ml for different times. Cells were washed with

1x PBS before further analysis.
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2.1.3.10 Treatment of LNCaP cells with calyculin A and sodium

peroxovanadate

24 hours post-transfection, LNCaP cells were washed with pre-warmed RPMI

medium without serum and phenol red. The inhibition of serine and threonine

phosphatases was performed by treating the cells with calyculin (Cell Signaling

Technology, prod no. 9902), and of tyrosine phosphatases by treatment with

sodium peroxovanadate.

Calyculin (prepared in DMSO) was used at a final concentration of 0.1 µM

dissolved in RMPI medium without serum.

For peroxovanadate treatment, hydrogen peroxide and sodium orthovana-

date were dissolved in RPMI medium without serum to final concentrations of

2 mM and 1 mM respectively.

These treatments were performed alone or together, and DMSO was used

as the control. Following the addition of treatment, cells were incubated for 15

minutes at 37◦C. Afterwards, LNCaP cells were washed with 1x PBS before

further analysis (Ruff, Chen, & Cohen, 1997; Resjö, Oknianska, Zolnierowicz,

Manganiello, & Degerman, 1999).

2.1.4 Microscopy techniques

2.1.4.1 Immunofluorescence staining

Cells were seeded on glass 13 mm coverslips pre-coated with poly-L-Lysine.

After each individual experiment, cells were washed twice with 1x PBS. Cells

were immediately fixed using paraformaldehyde 3.7% (v/v) in PBS for 10

minutes at RT, washed once with 1x PBS, and then permeabilized using 0.1%

(v/v) Triton X-100 in PBS for 5 minutes at RT. Cells were gently washed

twice with cold PBS. To block non-specific binding, coverslips were inverted

on to blocking buffer (see Appendix A) on parafilm. Blocking was carried

out at room temperature for 10 minutes in a humidified chamber in the dark.

After blocking, cells were incubated with the required concentration of primary
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antibodies (see Appendix E), dissolved in blocking buffer for 2 hours in the

same way as in the blocking step. Gentle washing of the coverslips in PBS

reduced low affinity primary antibody binding. Coverslips were incubated with

fluorophore-labelled secondary antibodies, dissolved in blocking buffer, in a

similar manner to the primary antibodies (see Appendix E). Multiple washes of

coverslips in PBS reduced the excess of secondary antibody binding. Coverslips

were allowed to dry and mounted on to a glass slide using a preservative

antifade mounting medium (see Appendix A) and stored overnight at 4◦C in

the dark, prior to microscopy analysis (Fincham, James, Frame, & Winder,

2000).

2.1.4.2 Epifluorescence microscopy

Epifluorescent images were taken using a Leica DMIRE2 inverted fluorescence

microscope powered by a Leica CTRMIC controller. Images were taken using

a Leica HCX PL 63x immersion oil objective lens and a Leica DC350F CCD

camera and acquired using Leica QFluoro software.

2.1.4.3 DeltaVision microscopy

Widefield deconvolution microscopy was performed using a DeltaVision RT

system (Applied Precision, Issaquah, WA, USA).

Samples were analyzed with an Olympus 60x/1.40, PlanApo oil objective.

The excitation bandwidths were 340-380 nm, 480-500 nm, and 541-569 nm

for the blue, green and red channels, respectively. The emission filters had

bandwidths of 432-482 nm, 541-569 nm and 581-654 nm for the blue, green

and red channels respectively. Images were captured using a Photometrics

COOLSNAPHQ CCD camera. Image data was deconvolved using the Soft-

Worx constrained iterative deconvolution algorithm.
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2.1.5 Protein biochemistry techniques

2.1.5.1 Protein extraction from mammalian cells

Cells on petri dishes were washed twice with cold 1x PBS, followed by direct

cell lysis with 1x RIPA or mild cell lysis buffer supplemented with protease

and phosphatase inhibitors (see Appendix A) at 4◦C for 15 minutes. Cell

extracts were collected using a cell scraper, and then transferred to a micro-

centrifuge tube. Lysates were briefly sonicated to shear the DNA and clarified

by centrifugation at 18000 x g for 15 minutes at 4◦C to pellet cell debris. The

supernatant was then transferred into a new tube and stored at -20◦C.

2.1.5.2 Cell fractionation

Cells were washed twice with cold 1x PBS and then scraped in a minimum vol-

ume of cold hypotonic Buffer I (see Appendix A). Plasma membrane was then

further disrupted using a cold glass Dounce homogenizer. The homogenate was

spun down at 600 x g for 10 minutes at 4◦C. Pellet (nuclei) and supernatant

(non-nuclear) were retained for further purification. Nuclear contaminants

were removed from the non-nuclear fraction by centrifuging the supernatant

twice at 9300 x g for 10 minutes at 4◦C. The pellet was discarded and the final

supernatant was saved as the purified non-nuclear fraction.

The nuclear fraction was further purified by resuspending the nuclear pellet

in equal volumes of Buffers II and I (see Appendix A). This mixture was

carefully overlayed on an equal volume of a 1.8 M sucrose cushion and then

spun down at 30000 x g for 1 hour at 4◦C. The supernatant was discarded

and the pellet was recovered as the purified nuclear fraction. The pellet was

resuspended in a small amount of either RIPA or lysis buffer according to the

requirements of each particular experiment and clarified as in section 2.1.5.1.

Non-nuclear and nuclear fractions were stored at -20◦C (Mathew et al., 2013).
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2.1.5.3 Protein quantification using the Micro BCA Protein Assay

Kit

The concentration of protein in cell lysates was determined following the rec-

ommendations of the manufacturer (Thermo scientific, product no. 23235).

Briefly, proteins were diluted 1/125 using RIPA buffer to a final volume of 500

µl and then mixed with 500 µl of working reagent. The mixture was incubated

at 60◦C for 1 hour and then allowed to cool to RT. The absorbance of the

samples was determined at 562 nm against a blank composed of a mixture of

RIPA and working reagent. The total amount of protein was determined by

interpolating the absorbance of the samples against a standard curve (0-200

µg/ml) prepared using dilutions of BSA as a standard.

2.1.5.4 Immunoprecipitation with protein A

30 µl of 50% protein A slurry (Amintra, expedeon) were transferred to a 1.5 ml

tube and washed three times with cold RIPA buffer. To pre-clear the sample,

beads were combined with protein lysates and incubated at 4◦C on a tube

roller for 1 hour at 4◦C. Beads were pelleted by centrifugation at 15000 x g for

30 seconds at 4◦C.

A small aliquot of pre-cleared lysate was saved as the input sample. The

remaining pre-cleared lysate was divided in two. One half was combined with

the desired antibody according to the dilutions shown in Appendix E and the

other half was left without antibody (control). Samples were incubated on a

tube roller for 2 hours at 4◦C. Thereafter, samples with and without antibody

were incubated for an additional hour with 30 µl of pre-equilibrated protein A

on a tube roller at 4◦C followed by centrifugation at 15000 x g for 30 seconds.

The supernatant was kept on ice and the beads were washed three times with

cold RIPA buffer. A small aliquot of input, supernatants and beads were

combined with the respective amount of 2x Laemmli loading buffer and boiled

at 100◦C for 5 minutes.
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2.1.5.5 Immunoprecipitation of Flag tagged proteins with anti-Flag

M2-agarose affinity gel

The protocol followed was that provided by the manufacturer (Sigma, cat.

no. A2220). Flag M2 resin was thoroughly resuspended and transferred to

a clean tube. The resin was washed five times with 1x TBS buffer (20x gel

volume) at 7000 x g for 30 seconds. After removing the supernatant, the resin

was combined with the required amount of lysate (total lysates, cell fraction

lysates, etc.) and adjusted to a final volume of 1000 µl with lysis buffer.

Samples were left incubating on a tube roller at 4◦C for 2 hours to overnight.

After the incubation period, the resin was recovered by centrifugation at 7000

x g for 30 seconds, and the supernatant was removed by pipetting using a

narrow-end pipette tip. Beads were then washed 3 times with chilled 1x TBS.

Protein elution was performed by competition with 100 µl of the 3x Flag

peptide (Sigma, cat. no. F4799) to a final concentration 300 ng/µl. Samples

were incubated on a tube roller for 30 minutes to 1 hour at 4◦C and centrifuged

at 7000 x g for 30 seconds. The supernatant was transferred to a new tube for

immediate use or stored at -20◦C.

2.1.5.6 Ubiquitin enrichment from LNCaP whole cell lysates

The total lysates used for this experimental approach were obtained as de-

scribed in the section 2.1.5.1 using RIPA buffer supplemented with 10 mM

NEM. 500 µg of clarified extracts were then diluted with RIPA buffer (with-

out any Triton X-100) to a final concentration of 0.25% Triton X-100 and

incubated with 40 µl or agarose-GST or agarose-MD beads on a tube roller

at 4◦C for 3 hours. Supernatants and beads were collected by centrifugation

at 700 x g for 2 minutes. Beads were subjected to two washes with high salt

buffer (RIPA buffer 0% Triton X-100 supplemented with 500 mM potassium

acetate), two washes with low salt buffer (RIPA buffer 0% Triton X-100 plus

50 mM potassium acetate) and one wash with RIPA buffer 0% Triton X-100.

Beads were finally resuspended in an equal amount of 2x Laemmli loading
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buffer and boiled at 100◦C for 5 minutes (M. D. Wilson et al., 2012).

2.1.5.7 Sodium orthovanadate activation

In order to achieve a maximal inhibition of protein phosphotyrosyl-phosphatases,

sodium orthovanadate 200 mM was adjusted to pH 10.0 using 1 N NaOH or 1

N HCl. The solution was boiled until turned colorless. The pH was readjusted

and stabilized to 10, through different rounds of boiling-cooling (Gordon,

1991).

2.1.5.8 In vitro protein dephosphorylation assay using Calf Intesti-

nal Phosphatase (CIP)

Dephosphorylation of proteins was carried out by combining a volume of lysate

containing 40 µg of protein with 40 U of CIP and NEBuffer 3 (New England

Biolabs, prod. no. M0290S). The mixture was adjusted to the desired final

volume using distilled water. The mixture was incubated at 37◦C for 1 hour

and then stopped by the addition of an equal volume of 2x Laemmli loading

buffer.

2.1.5.9 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophore-

sis (SDS-PAGE) (single concentration and gradient gels)

Pre-clarified protein samples were mixed with the required amount of 5x

Laemmli loading buffer, boiled at 100◦C for 5 minutes and then cooled to

RT. Mini-gels (10 cm x 10 cm x 1 mm) were run using the BioRad mini-gel

system. Resolving gels were prepared at 7.5%, 10% or 12.5% concentration

and the stacking gels at 5% concentration (see Table D.1). Samples were sep-

arated at 150 volts while running in the stacking gel and resolved at 200 volts

while running in the resolving gel.
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For gradient gels, the concentrations of resolving and stacking gels are given

in Appendix D (Laemmli, 1970).

2.1.5.10 Tricine-SDS-PAGE discontinuous gels

The preparation of these gels was performed employing the setup used for

multiple gradient gels and the protocol described by Schägger and Von Jagow,

(1987) (Schägger & von Jagow, 1987).

For the preparation of resolving 11%T, 0.67% gels (see Table D.3), the

amounts of acrylamide and bisacrylamide were calculated using the following

formulas (http://www.carlroth.com/media/ en-com/usage/3039.pdf).

Va = (T x (100-C) x Vt)/4000*

Vb = (T x C x Vt)/200

Where:

Vt=Total volume of gel casting solution (ml)

T = Gel concentration in % = % acrylamide + % bisacrylamide

C = % crosslinking =(% bisacrylamide x 100)/T

Va = volume gel A (acrylamide) in ml

Vb = volume gel B (bisacrylamide) in ml

* The concentration of acrylamide was 40%, hence the factor 4000.

2.1.5.11 Electrotransfer

Proteins were electroblotted to polyvinylidene fluoride (PVDF) membranes

activated in methanol (Immobilon-PSQ, 0.2 µm, Merck Millipore) using a Mini

Trans-Blot electrophoretic transfer cell (Bio-Rad). After electrophoresis, the

gel, together with the fiber pads and the filter papers, was soaked in Towbin

buffer supplemented with 20% (v/v) methanol and 0.02% (w/v) SDS for 10
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minutes (see Appendix A). Following this, all components were assembled in

a gel sandwich as required by the Mini Trans Blot electrophoretic transfer

system. The chamber was filled with Towbin transfer buffer supplemented

with 20% methanol and 0.02% SDS. An even buffer temperature (generated

by the Bio-Ice cooling unit) and ion distribution were maintained by stirring

(Towbin, Staehelin, & Gordon, 1979).

2.1.5.12 Western blotting

After electroblotting of proteins to PVDF membranes, membranes were soaked

in TBST to eliminate the excess SDS. Membranes were then incubated with

blocking buffer (5% skimmed milk (w/v) in TBST) for 30 minutes at RT. The

membrane was then incubated overnight at 4◦C with the primary antibody

diluted in blocking buffer according to the required dilution of each specific

antibody (see Appendix E). The following day, membranes were washed three

times with TBST for 10 minutes each at RT in order to eliminate the excess

primary antibody. Following this, membranes were incubated with a secondary

antibody (see Appendix E) diluted in blocking buffer for 1 hour at RT. Anti-

bodies not bound to the membrane were reduced by washing the membrane

3x with TBST for 10 minutes each. The presence of specific proteins on the

membrane was revealed by the chemiluminescent signal generated by the mix-

ture and addition of equal volumes of ECL I and II solutions to the membrane

(see Appendix A) (Miller et al., 2012). Chemiluminescent signal was recorded

using a BioRad Chemidoc XRS+ system.

2.1.5.13 Membrane stripping

The removal of primary and secondary antibodies from PVDF membranes

was achieved by incubating the membranes with mild stripping buffer (see

Appendix A). Membranes were incubated at RT twice with mild stripping

buffer for 15 minutes, then twice with 1x PBS pH 7.4 for 15 minutes and,
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finally twice with TBST for 10 minutes. After blocking with milk 5% (w/v) in

TBST, membranes were ready for incubation with another desired antibody.

2.1.5.14 Coomassie blue safe staining of SDS-PAGE gels

After SDS electrophoresis, gels were rinsed briefly with distilled water. Coomassie

blue safe stain (see Appendix A) was poured on the gels and microwaved

for 10 seconds. Following incubation on a moving platform at RT for 1

hour, staining solution was discarded. Further washing of the gel with dis-

tilled water, usually overnight, removed non-specific staining and revealed

protein bands (http://www.labtimes.org/labtimes/issues/lt2008/lt06/

lt 2008 06 53 53.pdf). Gels were imaged in the ChemiDoc XRS+ using the

image Lab software (BioRad).

2.1.6 Imaging techniques

2.1.6.1 Western blot band quantification and data analysis

Chemiluminescent signal was imaged using the ChemiDoc XRS+ (BioRad)

and the quantification of band intensity was performed using image Lab soft-

ware (BioRad). Images with saturated pixels were not considered for quantifi-

cation. The values obtained from the bands were then exported and analyzed

with GraphPad Prism 6. In all the cases the mean calculated was the average

of a minimum of three independent experiments. The average and standard

error of the mean (SEM) were plotted and used to distinguish changes between

controls and treatments.

2.1.7 Proteomic techniques

Solutions were prepared using MilliQ water at 18.2MΩcm−1 and the chemi-

cals/solvents used were LC-MS grade.
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2.1.7.1 Reduction and alkylation of proteins

To reduce proteins, DTT (dithiothreitol) prepared fresh to a final concentra-

tion of 1mM was mixed with sample loading buffer. The mixture was incubated

at 70◦ for 10 minutes and then allowed to cool down before alkylation. The

sample was alkylated with fresh prepared IAA (iodoacetamide) to a final con-

centration of 2 mM. The mixture was further incubated for 30 minutes at room

temperature in the dark.

2.1.7.2 In gel protein di-methyl labeling

Gel slices were completely destained with 50% ACN (acetonitrile) and shrunk

with 100% ACN. The excess of ACN was eliminated by evaporation and the gel

slices were incubated with labeling solution (0.4% formaldehyde (v/v) (Sigma,

prod. no. F1635), 60 mM cyanoborohydrade (Aldrich, prod. no. 156159) in

0.25 M MES buffer pH 5.5 (prepared fresh)) in a thermomixer at RT for 30

minutes. The labeling solution was removed and the gel pieces were washed

5 times with 50% ACN/100 mM ammonium bicarbonate. The gel slices were

shrunk once more with 100% ACN before proceeding with tryptic digestion.

2.1.7.3 Brilliant blue G-colloidal staining compatible with mass

spectrometry

After SDS electrophoresis, gels were rinsed with Milli-Q water. Proteins were

fixed in a solution containing 40% methanol / 2% acetic acid (v/v) for 1 hour.

Following this, gels were stained for 2 hours with brilliant blue G-colloidal

according to the instructions provided by the company (Sigma, prod. no. B-

2025).

Gels were destained with 25% methanol for 2 hours and then left in Milli-Q

water until further processed.
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2.1.7.4 Tryptic digestion and peptide extraction from gel slices

All the solutions used for tryptic digestion were prepared fresh before use.

Excised gel slices were placed in Protein LoBind tubes (Eppendorf, cat.

no. 0030108116) and fully destained by the addition of 50% ACN /50 mM

ammonium bicarbonate pH 8.5 followed by incubation at RT for 30 minutes.

The liquid was removed by centrifugation at 600 x g ; this step was repeated

until gel slices were colorless (from hours to overnight). To secure the complete

destaining, the gel slices were incubated once more with 100% ACN for 15

minutes at RT. Once the liquid was discarded the gel slices were stored at 4◦C

until tryptic digestion.

Before digestion, Sequencing Grade Trypsin from bovine pancreas (Roche,

cat. no. 11418475001) was prepared as follows:

Stock solution: Trypsin was prepared at a concentration of 0.1 µg/µl using

0.1% TFA.

Working solution: Trypsin was prepared at a final concentration of 1 ng/µl

using 50 mM Ambic.

To perform digestion, dried gel slices were incubated with trypsin (working

solution) in a thermomixer (600 rpm) for 1 hour at 37◦C. Samples were then

left incubating at 25◦C overnight.

Next day, after centrifugation at 600 x g for 1 minute, the supernatants

were collected into a new tube SCT (supernatant collection tube). Further

extraction of peptides was performed by incubating the gel slices with 100%

ACN at 37◦C for 20 minutes followed by collection of supernatants as before.

Gel slices were further incubated with 0.5% formic acid at 37◦C for 20

minutes and then 100% ACN for the same time and temperature followed

by the collection of supernatants into SCT as stated before. After a further

repetition of this step, gel slices were incubated with 100% ACN at 37◦C for

15 minutes followed by the collection of supernatants into the SCT.

Extracted peptides were dried down using a SpeedVac concentrator and

then stored at 4◦C.

Before the analysis by LC-MS the peptides were resuspended in 0.5% formic
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acid at RT for 10 minutes with gentle shaking.

2.1.7.5 HPLC-Mass spectrometry settings

100% of resuspended peptides was injected, using a Dionex Ultimate 3000

uHPLC, onto a PepMap100 C18 2 cm x 75 µm I.D. trap column (ThermoFisher

Scientific) at 5µl/min in 0.1% formic acid, 2% acetonitrile and 45◦C in the

column oven and 6◦C in the autosampler. The sample was separated, over a

60-minute gradient of increasing acetonitrile from 2.4% up to 72%, in 0.1%

formic acid, using a 15 cm PepMap100 C18 analytical column (2 µm particle

size, 100 Åpore size 75 µm I.D.) (ThermoFisher Scientific) at 300 nl/min and

45◦C.

The mass spectrometer analyzer used was an ETD (electron transfer dis-

sociation) enabled ThermoFisher-Scientific Orbitrap Elite, equipped with a

Nanospray Flex Ion ESI source (ThermoFisher Scientific). Nanospray ioniza-

tion was carried out at 2.3 kV, with the ion transfer capillary at 250◦C, and

S-lens setting of 60%. MS1 spectra were acquired at a resolving power of

60,000 with an AGC (automatic gain control) target value of 1x106 ions by

the Orbitrap detector, with a range of 350-1850 m/z. Following MS1 anal-

ysis the top 15 most abundant precursors were selected for data dependant

activation (MS2 analysis) using CID (collision induced dissociation), with a 10

ms activation time, and an AGC setting of 10,000 ions in the dual cell linear

ion trap on normal scan rate resolution. Precursor ions of single charge were

rejected, and a 30 second dynamic exclusion window setting was used after a

single occurrence of an ion.

2.1.7.6 Data analysis

Data analysis from 4 biological replicates was performed using the MaxQuant

and Perseus v 1.4 databases. For protein identification, false discovery rates

(FDRs) at both the protein and peptide levels were set at 1% by decoy database
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searching. Proteins with 3 valid intensity values in the Flag-βDG immunopre-

cipitations were considered for quantification. Missing values for proteins with

2 or more missing values in the control IP were impute from a down shifted

normal distribution. The statistical analysis was then performed by t-testing

with correction for multiple hypothesis testing at two thresholds, 0.05 (5%

FDR) and 0.01 (1% FDR). A fold enrichment (S0) = 2 for both, non-nuclear

and nuclear fractions was included in the statistical analysis. Proteins required

a minimum of two peptides or above in order to be reported.
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3
Beta-dystroglycan protein modifications

3.1 Introduction

The human body can develop its activities thanks to the precise and coordi-

nated action of its organs and systems, which is dictated by the homeostatic

status of its cells. The vast collection of proteins within cells orchestrates most

of the cellular functions such as perception of the extracellular environment,

inter and intra cellular communication, cellular shape, internal organization,

structural integrity and several other functions.

The functional regulation of proteins, from integral membrane proteins

to metabolic enzymes and transcription factors, is achieved by an array of

post-translational modifications (PTM). The concerted regulation in space and

time of PTM such as acetylation, phosphorylation, glycosylation, sumoylation,

methylation, proteolysis, ubiquitination and others, dictate the functional ac-

tivity of the proteins. Under certain conditions, these PTM either individu-

ally or as combinatorial sequence of events, affect the stability, concentration,

conformational changes, interactions, cellular location and other functions, of

specific target proteins as shown in Figure 3.1 (Deribe, Pawson, & Dikic, 2010;

Filtz, Vogel, & Leid, 2014; Jensen, 2006).

Plasma membrane proteins have to be subject to dynamic and strict quality

control mechanisms through different post-translational modifications in order

to regulate a vast array of signalling pathways. Also, these mechanisms have

the function of detecting and removing proteins from this environment that

67



CHAPTER 3. BETA-DYSTROGLYCAN PROTEIN MODIFICATIONS

H2N COOH 

ACETYLATION!

PROTEIN 
CONFORMATIONAL 

CHANGE! PROTEIN 
STABILITY!

PROTEIN 
INTERACTIONS!

PROTEIN 
CELLULAR 

LOCALIZATION!

PROTEIN-DNA 
BINDING!

SU 

SU 
SU 

SU 

SU 

Ub#
Ub#

Ub#
Ub#

Me 

Ac 

PHOSPHORYLATION!

GLYCOSYLATION!

SUMOYLATION!

METHYLATION!

UBIQUITINATION!

PROTEOLYSIS!

PROTEIN 
REGULATORY 
ACTIVITY!

.PO4!

Figure 3.1: Protein post-translational modifications. Proteins are subject to a
vast array of modifications affecting key cellular functions.

otherwise could damage the cellular integrity (Babst, 2014). In these instances,

PTM functions as a form of quality control.

The dystrophin glycoprotein complex spans the plasma membrane provid-

ing structural integrity to muscle cells during processes of contraction and

relaxation. Also, due to its ability to interact with signalling molecules, this

complex is thought to be an important modulator of signalling events from the

extra to the intracellular environment (Constantin, 2014; Moore & Winder,

2012).

Dystroglycan, an important core protein within this complex, performs

both mechanical and signalling functions. By interacting with the laminin,

agrin, perlecan and neurexin extracellular matrix components, and cytoskele-

tal linker proteins (e.g., dystrophin/utrophin) in the intracellular environment,

dystroglycan provides a structural link, which is important for the adhesion

and communication of the cell with the surrounding environment and vice
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versa (Barresi & Campbell, 2006; Henry & Campbell, 1999; Sgambato & Bran-

caccio, 2005).

Besides its structural activities, dystroglycan is an important modulator

of a multitude of signalling events. The presence of a structurally disordered

cytoplasmic domain seems to confer an advantage to beta-dystroglycan for

its interaction with a great variety of signalling molecules in specific cellular

situations. Importantly, the phosphorylation of a tyrosine in its C-terminal

motif PPXY seems to be an important master switch modulating these protein

interactions (Bozzi, Morlacchi, et al., 2009; Moore & Winder, 2010).

Given the important and dynamic functions of this type I transmembrane

protein, its quality control, turnover and remodelling, all have to be under

tight control in order to avoid the impairment of the plasma membrane. Such

impairments are linked to severe outcomes, such as defects during develop-

ment, muscular dystrophies and cancer (Godfrey et al., 2011; Sgambato &

Brancaccio, 2005; Williamson et al., 1997).

Phosphorylation, glycosylation, proteolysis and ubiquitination, are the PTM

most commonly studied with beta-dystroglycan. Regarding phosphorylation,

it has been shown that the presence of a phosphate group on Y892 (of human

dystroglycan) is able to regulate the structural interaction of beta-dystroglycan

with dystrophin or utrophin, and the stability of the other associated proteins,

rendering beta-dystroglycan, presumably, susceptible to targeting for protea-

somal degradation (Ilsley et al., 2001; James et al., 2000; Miller et al., 2012;

Sotgia et al., 2001). Additionally, the same Y892, is thought to be a potential

regulator of signalling events by virtue of its proposed interaction with sig-

nalling molecules (Sotgia et al., 2001). Recently, it was hypothesized that in

addition to Y892, other phosphorylated tyrosines in beta-dystroglycan could

have potential roles in key cellular events, such as the processes of arenavirus

infection (Moraz et al., 2013). In addition to tyrosines, the cytoplasmic domain

of beta-dystroglycan is particularly rich in serine/threonine residues, which

may also be the target of phosphorylation.

Ubiquitination seems to be another PTM modulating key events on dystro-
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glycan. Indirect experimental evidence suggests that not only dystroglycan,

but also other members of the dystrophin associated protein complex (DAPC)

axis could be subject to ubiquitination. In laminin alpha2 chain deficient mice,

an up-regulation of components of the ubiquitin proteasome system was ob-

served (Carmignac, Quéré, & Durbeej, 2011). Similarly, an up-regulation

of the E3 ubiquitin ligases Atrogin-1/MAFbf and MuRF1, was observed in

cancer induced mdx mice (these ligases were subsequently reduced upon the

restoration of the dystrophin glycoprotein complex (DGC)) (Acharyya et al.,

2005). Furthermore, although not directly investigated here, the restoration

of components of the DAPC upon treatment with MG132 in dystrophic mice

models suggest their modification by ubiquitination in proteolytic mediated

events (Assereto et al., 2006; Bonuccelli et al., 2003; Kumamoto et al., 2000).

Together, these studies provide important evidence that phosphorylation

events on dystroglycan, as well as ubiquitination, regulate dystroglycan and

may regulate cellular processes as a result. The studies presented thus far

support the hypothesis of additional phosphorylation events carried out on

phosphorylatable amino acids other than Y890 and the modification of dys-

troglycan by ubiquitination.

In this chapter, the characterisation of the LNCaP cell line for the local-

isation of endogenous dystroglycan will be described. The characterisation

of the recombinant dystroglycan proteins used to study the phosphorylation-

ubiquitination post-translational modifications will also be presented. Addi-

tionally, it will be shown that dystroglycan is modified with phosphates and

ubiquitin groups.

3.2 Cellular distribution

Beta-dystroglycan is a ubiquitous protein expressed in all vertebrate cells and

tissues (http://www.genecards.org). Its expression, post-translational mod-

ifications such as glycosylation and proteolysis, effects in epithelial to mes-
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enchymal transition (a process linked to development and cancer progression),

migration and metastasis and its nuclear translocation have been characterized

using the LNCaP cell line, a widely used model of prostate cancer (Mathew et

al., 2013; Mitchell et al., 2013; Sgambato et al., 2007).
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Figure 3.2: Binding epitopes of Mandag2 and 1709 antibodies. The
schematic shows the residues 871-893 on the carboxy-terminus domain of beta-
dystroglycan. In (a), Mandag2 antibody detects the non-phosphorylated form
of the PXYVP epitope (amino acids highlighted in red), while 1709 antibody
(b) binds a phosphorylated tyrosine within the same epitope (residues high-
lighted in red).

A basic cellular characterisation for the localisation of dystroglycan in

LNCaP cells was carried out. Lysates of wild type LNCaP cells were collected

and either used directly or processed by biochemical fractionation. Lysates and

fractions were then analysed by western blot using antibodies raised against

non-phospho- and phospho-βDg, herein referred to as βDg and pβDg respec-

tively. Given the critical role of the phosphorylated tyrosine 892, it was im-

portant to differentiate the cellular distribution of βDg and pβDg. In or-

der to achieve this, it was decided to use the Mandag2 and pYβDG (1709)

antibodies. These antibodies were produced in the Morris and Winder labs

respectively (Helliwell, Nguyen, & Morris, 1994; Ilsley et al., 2001). The sub-

sequent characterisation by peptide spot assays showed that, Mandag2 binds
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the PxYVP epitope located in the C-terminus of βDg, while pYβDG binds a

phosphorylated tyrosine within the same epitope (James et al., 2000; Miller et

al., 2012) (Figure 3.2).

By using both antibodies, it was possible to detect the full-length 43 kDa

beta-dystroglycan (Full) in total lysates and in non-nuclear and nuclear frac-

tions. Additionally, in total lysates, other smaller species with sizes of 36

(herein referred to as 31) and 26 kDa were observed (Figure 3.3). Previ-

ous reports have pointed out that these species belong to the transmem-

brane anchored domain (TM) and to the cytoplasmic fragment (Cyto) of beta-

dystroglycan respectively (Mitchell et al., 2013; Yamada et al., 2001). Impor-

tantly, the cytoplasmic fragment was distributed between the non-nuclear and

nuclear fractions (Figure 3.3).
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Figure 3.3: Cellular distribution of beta-dystroglycan in LNCaP cells. LNCaP
WT cells were collected for total lysates or for biochemical fractionation. West-
ern blot analysis of the lysates using Mandag2 and pYβDG antibodies shows
the non-nuclear and nuclear localisation the 43 (Full) and 26 (Cyto) kDa forms
of non-phospho-(βDg) and phospho-beta-dystroglycan (pβDg). Lamin A/C
and alpha-tubulin are shown as the loading controls of the nuclear and non-
nuclear fractions respectively.

The results obtained from the biochemical fractionation were corroborated

by immunocytochemistry analysis through the use of organelle-specific protein
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markers such as lamin A/C and Fibrillarin, and alpha-tubulin and GAPDH, for

nuclear and non-nuclear fractions respectively. The presence and quantification

of these protein markers provided an idea about the purity of the cellular frac-

tions (Lodish et al., 2008). With Mandag2 the signal is distributed through-

out the cell. Filopodia structures were well stained in addition to the plasma

membrane and parts of the cytoplasm. Interestingly, βDg also had a nuclear

distribution along the nuclear envelope-like structure (white arrowhead) and

nucleoplasm. The signal around the nuclear envelope is not an experimental

artefact (the signal generated by secondary antibodies was observed to be at

very low levels in control immunofluorescences) as most of the cells analysed

in middle stack sections of confocal microscopy images showed a similar pat-

tern (Figure 3.4, left). The phosphorylated form of beta-dystroglycan had a

more cytoplasmic and nucleoplasmic distribution (it was also found distributed

along the nuclear envelope-like structure, white arrowhead). It is interesting

to note that pβDg is found surrounding the DNA of metaphase cells (white

arrow) (Figure 3.4, bottom right). The potential nuclear functions of beta-

dystroglycan, such as in the cell cycle or nuclear regulation, are discussed later

in this work.

Taken together, these results show that in LNCaP WT cells both βDg and

pβDg are distributed throughout non-nuclear and nuclear fractions as shown

by biochemical and immunocytochemistry analysis. Importantly, the nuclear

distribution of beta-dystroglycan supports use of the LNCaP cell line as a good

model to study the hypothesis that this protein has nuclear functions.
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3.3 A C-ter tag affects the phosphorylation of

Y890

The insertion of tags such as myc/his or GFP, in the C-terminus of beta-

dystroglycan could be a good strategy for its isolation, purification and locali-

sation, but on the other hand, these tags could affect the PTM of neighbouring

amino acids and the interaction of beta-dystroglycan with other proteins.

Dystroglycan is an important cell adhesion molecule subject to PTM such

as phosphorylation and tags that alter PTM may have a profound effect on nor-

mal processing. For example, the phosphorylation of Y890 in the C-terminal of

mouse beta-dystroglycan, has been reported to be an important PTM regulat-

ing both stability (Miller et al., 2012) and the interaction with other proteins

such as dystrophin/utrophin and other proteins containing SH2 domains (Ilsley

et al., 2001; James et al., 2000; Sotgia et al., 2001).

To verify if the presence of a myc/his tag in the C-terminus of mouse βDg

affects its phosphorylation (Figure 3.5a), lysates of LNCaP cells transfected

with a plasmid encoding αβDg-myc/his were subjected to immunoprecipita-

tion with an anti-myc antibody. Figure 3.5b shows that the pYβDG antibody

is able to detect phosphorylated beta-dystroglycan in the supernatant fraction

but not in the pellet fraction of the immunoprecipitation performed with the

anti-myc antibodies. The presence of an additional faint band in the pellet

fraction is suggestive of beta-dystroglycan being phosphorylated on an amino-

acid other than Y890. The immunoblot of the same lysates with anti-myc

antibodies shows that there was a strong enrichment of βDg immunoprecipi-

tating with anti-myc antibodies, but this was not subject to phosphorylation

as it was not detected by the pYβDG antibody (at least the band that belongs

to the 43 kDa βDg) (Figure 3.5b). Overall, through immunoprecipitation

assay, it has been shown that the insertion of a myc tag in the C-terminus

of beta-dystroglycan affects its phosphorylation, making it a non-suitable re-

combinant protein for downstream analysis, such as those dependent on the

phosphorylation of Y890.
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Figure 3.5: The myc/his tag inhibits the phosphorylation of Y890 in beta-
dystroglycan. (a) Schematic showing the structure of dystroglycan and the
position of the myc/his tag in its C-terminus. (b) LNCaP cells were trans-
fected with the plasmid pcDNA3.1(+)-αβDg-myc/his and allowed to grow for
24 hours. Cells were collected with RIPA buffer and subjected to immunopre-
cipitation with anti-myc antibodies. Input, eluates and pellets were resolved
by SDS-PAGE. Immunoblot analysis with antibodies anti-pβDg shows the ab-
sence of immuno-reactivity.

3.4 The transgenic LNCaP-αβDgFlag cell line

Having shown that the insertion of a tag in the C-terminus of βDg affects an

important PTM, such as the phosphorylation of Y890, we were prompted to

generate a new plasmid encoding full-length dystroglycan (alpha and beta)

with the insertion of tag in a position with minimum deleterious effects. Flag

tags are hydrophilic 8 amino acid peptides proven to be detected by high

specific antibodies such as M1, M2 and M5. Due to its hydrophilic nature,

this tag has a high probability of being located on the surface of the proteins,

allowing a better detection by antibodies and having a minimum effect in the

functionality of the protein (reviewed in (Einhauer & Jungbauer, 2001)). By

using the ELM server (http://elm.eu.org) which predicts functional sites in

proteins, a region near amino acid 800 was identified with minimal interactions.
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3.4. THE TRANSGENIC LNCAP-αβDGFLAG CELL LINE

Also, the alignment of the sequence of the Flag tag with the primary sequence

of βDg showed that there were some amino acids shared between the two

sequences, requiring minimal changes to generate the Flag tag (Figure 3.6a).

Taking into account these characteristics, the Flag tag was inserted around

residue 800, and downstream the proposed NLS of βDg (Lara-Chacón et al.,

2010) (Figure 3.6b).

 771icyrkkrkgk ltledqatfi kkgvpiifad elddskppps ssmplilqee !
   !

Original sequence !FADELD----DSKPPPS 
New sequence ! ! !FADELDYKDDDDKPPPS!

! ! ! ! ! !******    *.***** !
FLAG!

(a)

T
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L
S 
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ag

 

…773YRKKRKGKLTLEDQATFIKKGVPIIFADELDYKDDDDKPPPSSS… 

α-dystroglycan β-dystroglycan 

Y

(b)

Figure 3.6: Insertion of the Flag tag in the coding sequence of mouse αβDg.
(a) To generate the Flag tag in the primary sequence of mαβDgFlag, a pair
of oligonucleotides was designed to insert the residues YKDD (blue) and to
change the amino acid S to D (red) (see Appendix B). These changes were
made in order to avoid major changes in the structure of βDg while inserting
the whole sequence of Flag (underlined). Also, according to the Eukaryotic
Linear Motif resource (http://elm.eu.org), the area used to insert the Flag
tag is an area with no predicted interactions in βDg. (b) The schematic shows
the final position of some key elements in the primary sequence of mαβDgFlag
such as its TM domain, its NLS (green) and its Flag tag (red).

The generation of the Flag tag in mouse dystroglycan was confirmed by

DNA sequencing and then subjected to DNA purification for the characterisa-

tion of the recombinant protein by western blot. LNCaP cells were transiently
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transfected with the plasmid αβDgFlag, allowed to grow for 24 hours and then

collected for total lysates. The immunoblot analysis using anti-Flag M2 an-

tibodies shows the presence of a strong band of approximately 43 kDa in the

total lysates. Additionally, the antibody was able to detect bands above and

below the 43 kDa form (Figure 3.7).
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ag

 

IB: αTubulin 

Figure 3.7: Characterisation of the recombinant DgFlag. The plasmid
pcDNA3.1(+)-αβDgFlag was used for transient transfection of LNCaP cells.
Cells were collected for total lysates and subjected to immunoblot analysis
with antibodies anti-Flag. Western blot analysis of total lysates shows a band
of approximately 43 kDa and other bands in lysates of cells transfected. These
bands were absent in lysates of cells not transfected indicating a high specificity
of the antibody.

By immunoprecipitation it can be observed that, in addition to Flag anti-

bodies (Figure 3.8a), pYβDG and Mandag2 antibodies had immunoreactivity

with Flag-tagged βDg. There was a clear difference in the signal generated

by pYβDG (Figure 3.8b) and Mandag (Figure 3.8c) indicating that the most

abundant species of βDg is the phosphorylated form. Additionally, Flag an-

tibodies were able to immunoprecipitate species of βDg of high (HDGA and

HDGB) and low molecular weight (TM and Cyto). The origin of high molecu-

lar weight bands (HDGB) is due to, presumably, PTM such as ubiquitination

and phosphorylation (amongst others); and the band detected between 130-
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250 kDa (HDGA) could represent the propeptide of dystroglycan or perhaps,

oligomerization of beta-dystroglycan, all of them a matter of discussion in the

following sections.

By biochemical fractionation, there was a clear distribution of βDgFlag in

non-nuclear and nuclear fractions of LNCaP cells (Figure 3.13).

By immunofluorescence, the distribution of βDgFlag was throughout the

cell, presenting a clear signal on the plasma membrane, the cytoplasm and the

nucleus. The Flag antibodies clearly co-localized with pYβDG and Mandag2

antibodies. Transfected LNCaP cells had an increased number of longer filopodia-

like structures, microvilli and an increased number of branches compared with

the wild type cells, a similar phenotype to that previously observed in my-

oblast, fibroblat, HeLa and other cell types (Batchelor et al., 2007; Y. J. Chen

et al., 2003; Spence, Chen, et al., 2004; Thompson, 2007; Thompson et al.,

2008). Also, beta-dystroglycan was observed around the cell body, with ac-

cumulation at the leading edges of the new filopodia and growth cone-like

structures (Figure 3.9).

The branching and filopodia formation upon the overexpression of dys-

troglycan clearly resembled the observations previously reported by Eyer-

mann and colleagues, in differentiating oligodendroglia (Eyermann, Czaplinski,

& Colognato, 2012). Furthermore, some transfected LNCaP cells displayed

neuronal-like morphologies.

Taken together, the biochemical and immunocytochemical analysis show

that exogenous dystroglycan expressing the Flag tag has similar characteristics

to the endogenous counterpart, making it a better candidate for localisation

and interaction experiments than a carboxyl-terminal tag.
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Figure 3.8: Immunoprecipitation of the recombinant αβDgFlag. Total lysates
of LNCaP transfected with the plasmid αβDgFlag were used for a detailed
characterisation by immunoprecipitation. Immunoprecipitations were pre-
pared by combining the total lysates with anti-Flag M2 (raised in mouse)
(a and b), anti-rFlag (c) (raised in rabbit) antibodies or left without antibody.
Inputs, recovered supernatants after immunoprecipitation (SN) and the beads
(P) were resolved by SDS-PAGE. Lysates immunoprecipitated with antibodies
raised in mouse were used for immunoblotting with antibodies raised in rabbit
and vice versa in order to avoid the signal produced by the light and heavy
chains of the immunoglobulins. This immunoprecipitation permitted to con-
firm that αβDg with the Flag tag is recognized by antibodies against Flag and
against phospho- and non-phospho-βDg (1709 and Mandag2 respectively).
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3.5 Localisation of alpha-dystroglycan in LNCaP

cells

As pointed out in the previous section, the antibodies Flag, pYβDG and

Mandag2, were able to detect an additional band between 130 and 250 kDa.

So far, from previous studies and judging by electrophoretic mobility, one can

hypothesize that the slow migrating band belongs to the dystroglycan pro-

peptide. As reviewed by Barresi and Campbell in 2006, αDg can have a size

that ranges from 120-156 kDa, although the estimated size of the core protein

is approximately 70 kDa (Barresi & Campbell, 2006). It has been suggested

that the big changes in size are in part due to the tissue under study, although

other parameters such as glycosylation may also affect mobility.

In order to determine how the expression of alpha-dystroglycan in LNCaP

cells is and its possible relationship with the 130-250 kDa band, it was de-

cided to express exogenous αDg harbouring a myc/his tag (see appendix C.1).

LNCaP cells transfected with the plasmid αDg-myc/his were collected for total

lysates or cell fractionation.

Surprisingly, the band detected in whole cell lysates with anti-myc an-

tibodies, presumably alpha-dystroglycan, did not correspond in size to the

previously observed 130-250 kDa band (Figure 3.10).

The band of alpha-dystroglycan observed had a size of approximately 50

kDa with a smearing that extended far beyond the 70 kDa marker. More-

over, αDg had a non-nuclear and nuclear distribution. The smearing could be

indicative of some variable PTM such as glycosylation. These observations ob-

tained from at least three independent replicates and the fact that the nuclear

fractions were not contaminated with non-nuclear fractions give also a strong

support of a new pool of nuclear alpha-dystroglycan.

As will be discussed later, the lack of expression of enzymes in charge of

the glycosylation of αDg (like LARGE), could be a potential explanation of

the very reduced size of αDg in LNCaP cells. Interestingly, the identity of

the 130-250 kDa remains a mystery and more deep analysis will be required to
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Figure 3.10: Nuclear localisation of alpha-dystroglycan. LNCaP cells WT or
transfected with the plasmid αDg-myc/his were fractionated in non-nuclear
and nuclear fractions. Western blot analysis with anti-c-Myc and anti-his
(not shown) antibodies showed immunoreactivity in the non-nuclear and nu-
clear fraction of the cells transfected (shown is a representative image of three
independent experiments). Membranes were stripped and reprobed with anti-
calnexin (ER marker) and anti-fibrillarin (nuclear marker) antibodies as con-
trols of purity and protein loading.

discard the different running hypotheses. In conclusion, an alpha-dystroglycan-

like protein is expressed in non-nuclear and nuclear fractions of LNCaP cells

and based on the size, the band observed does not seem to correspond to the

previously seen 130-250 kDa band.

83



CHAPTER 3. BETA-DYSTROGLYCAN PROTEIN MODIFICATIONS

3.6 Phosphorylation and ubiquitination of dys-

troglycan

3.6.1 The transgenic LNCaP-Y890F and K806R cell lines

The residues Y890 and K806 in beta-dystroglycan have been shown to be

subject to phosphorylation and ubiquitination respectively (Miller et al., 2012;

K. A. Lee et al., 2011). In order to determine their effects in the stability

of dystroglycan, it was decided to engineer coding sequences of dystroglycan

carrying the mutations Y890F and K806R and transfect them into LNCaP

cells. The absence of the hydroxyl group in phenylalanine keeps a structural

similar amino acid to tyrosine and prevents the addition of phosphate groups,

rendering a protein with minimal structural changes; similarly, the blocked

amino group in arginine, prevents the additional modification with ubiquitin

groups (Figures 3.11).

Western blot analysis with anti-Flag antibodies of total lysates of LNCaP

cells WT or transfected with the parental or mutated plasmids, show that the

mutants had a similar expression to the unmodified exogenous dystroglycan.

It is interesting to note that the mutant K806R had a slightly faster migration

when compared to the mutant Y890F and parental exogenous dystroglycan

(Figure 3.12).

Turning now to the cellular distribution of exogenous αβDgFlag and its

mutants, LNCaP cells transfected with the 3 plasmids were subjected to cell

fractionation followed by immunoblot analysis. Both plasmids, Y890F and

K806R, had a similar distribution in the nucleus compared to the unmodified

αβDgFlag. Apparently, both mutations neither affect the synthesis nor their

nuclear translocation (Figures 3.13a and 3.13b).

By immunofluorescence, the staining of cells expressing the mutant Y890F

with Mandag2 was distributed along the plasma membrane and mostly ex-

cluded from the cytoplasm and nucleus (Figure 3.14, left, green). Interest-

ingly, the signal generated by Flag (red) was distributed all along the cell
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Figure 3.11: Generation of the mutants Y890F- and K806R-αβDgFlag. The
schematics show the amino acids that were changed to introduce the mutations
Y890F (a) and K806R (b) by site directed mutagenesis. After corroborating
the proper introduction of the mutations by DNA sequencing, the plasmids
were purified and used for transient transfection of LNCaP cells.

(Figure 3.14, left, red). It is worth noting that both antibodies, Flag and

Mandag2, showed a clear localisation all around the cells, but the signal gen-

erated by Mandag2 was excluded from the cytoplasm (Figure 3.14, left, merge).

Regarding the co-localisation between pYβDG and Flag antibodies, both

antibodies were distributed throughout the cell. The signal generated by

pYβDG was more cytoplasmic (Figure 3.14, right, red). Flag, on the other

hand, had a strong signal at the plasma membrane and in the cytoplasm (Fig-

ure 3.14, right, green). Both antibodies showed some co-localisation but the

85



CHAPTER 3. BETA-DYSTROGLYCAN PROTEIN MODIFICATIONS

35 

55 

W
T 

αβ
D

gF
la

g 

αβ
D

gF
la

g-
Y

89
0F

 

αβ
D

gF
la

g-
K

80
6R

 

IB: Flag M2 

IB: GAPDH 

Figure 3.12: Characterisation of the mutants Y890F- and K806R-αβDgFlag.
By western blot analysis, the anti-Flag M2 antibody is able to detect specific
bands in the lysates of the cells transfected with the plasmid αβDgFlag and
the ones harbouring the mutations Y890F and K806R. Lysates of LNCaP WT
were included as a control of specificity of the anti-Flag antibody. GAPDH is
shown as the loading control.
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Figure 3.13: Cellular distribution of the mutants Y890F- and K806R-
αβDgFlag in LNCaP cells. LNCaP cells WT or transfected with the plasmids
αβDgFlag, αβDgFlag-Y890F (a) and αβDgFlag-K806R (b) were collected for
total lysates or cell fractionation. The analysis by western blot with anti-Flag
antibodies shows that both mutants have a cytoplasmic and nuclear distribu-
tion. Lamin A/C, GAPDH and Calnexin are shown as the loading controls.

co-localized signals were restricted to some areas of strong signal on the plasma

membrane and was reduced towards more central areas near the nucleus (Fig-

ure 3.14, right, merge).

Turning now to the mutant K806R, it was observed that there was a good
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co-localisation between Mandag2 and Flag (raised in rabbit), and pYβDG and

Flag (raised in mouse) antibodies compared with the mutant Y890F. The dis-

tribution of the protein was all along the plasma membrane to the cytoplasm.

There were some areas of non co-localisation that could be explained by the

fact that some species that harbour the mutation K806R could be either sub-

ject to phosphorylation or left unmodified (Figure 3.15).

Overall, these results show that dystroglycan harbouring the mutations

Y890F and K806R is expressed in LNCaP cells. They are distributed from the

plasma membrane to the nucleus and apparently, these two modifications do

not interfere in their nuclear transport.

3.6.2 Beta-dystroglycan is extensively phosphorylated

Beta-dystroglycan is a transmembrane protein with many serine (S), threonine

(T) and tyrosine (Y) amino acids predicted to be phosphorylated. Due to its

critical localisation, Y890 (in mouse) is the amino acid that has been most

deeply studied. As mentioned before, its phosphorylated state (maintained by

Src) is critical for interactions with other proteins, and to keep the stability of

other dystrophin associated proteins on the plasma membrane. By site directed

mutagenesis and mass spectrometry analysis, other amino acids in addition to

the Y890 have been identified as potential residues subject to phosphorylation

(http://www.phosphosite.org/homeAction.do).

So far, in the experiments performed with WT or overexpressed dystro-

glycan, there were some bands appearing above the 43 kDa species. The

shift in the migration of the bands could be due to the presence of post-

translational modifications on dystroglycan such as phosphorylation, ubiqui-

tination or sumoylation. In 2000, James and colleagues observed that upon

treatment of HeLa cells with peroxovanadate, beta-dystroglycan had a retar-

dation in its electrophoretic migration. Immunoprecipitation analysis with

anti-p-tyrosine antibodies confirmed that the slow migrating band was due to

dystroglycan phosphorylation (James et al., 2000).
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In order to test the hypothesis that the slower migrating bands observed

on immunoblots during the course of this project, are due to phosphoryla-

tion, it was decided to inhibit the activity of serine, threonine and tyrosine

phosphatases in LNCaP cells. Sodium peroxovanadate (Ruff et al., 1997)

and calyculin (Resjö et al., 1999) have been shown to be potent inhibitors

of tyrosine, and serine/threonine phosphatases respectively. To determine the

effects of both compounds on the phosphorylated status of beta-dystroglycan,

LNCaP cells transfected with the plasmid αβDgFlag were treated with ca-

lyculin A, sodium peroxovanadate, a combination of both, or DMSO. Total

lysates resolved in a Tricine-SDS-PAGE gels (see section 2.1.5.10) followed by

western blot analysis with anti-Flag antibodies showed no apparent changes

in the electrophoretic migration in lysates of cells exposed to individual treat-

ments compared with the control (DMSO). However, the combination of both

treatments led to a dramatic increase in the abundance of the 26, 35, 43 kDa

forms of beta-dystroglycan and, most importantly, in slow migrating bands of

a higher molecular weight (HDGB) (Figure 3.16).

Blotting of the same lysates with antibodies anti-p-MAPK revealed the

protective effects against protein phosphatases provided by both inhibitors

(Figure 3.16, top figure on the right).

Another approach to test the phosphorylated status of proteins is by in vitro

analysis, such as dephosphorylation with Calf Intestinal Phosphatase (CIP),

which has the ability to remove phosphate groups from S, T and Y amino

acids. Changes in electrophoretic mobility upon treatment with CIP could

indicate the presence of phosphorylated amino acids. Therefore, lysates of cells

transfected with the plasmid αβDgFlag were treated with CIP. Additionally,

lysates of cells transfected with the αβDgFlag-Y890F mutant were included

in the analysis in order to highlight some changes not associated with the

phosphorylation of the Y890.

The transfection of the mutant αβDgFlag-Y890F in LNCaP cells followed

by immunoblot analysis with anti-Flag antibodies revealed two exciting re-

sults. First, the banding pattern of the mutant Y890F was not the same
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Figure 3.16: Calyculin and peroxovanadate lead to increased levels of phospho-
rylation of beta-dystroglycan. LNCaP transiently transfected with the plasmid
αβDgFlag were grown for 24 hours. Cells were then treated with DMSO, ca-
lyculin, peroxovanadate or a combination of calyculin/peroxovanadate for 15
minutes. Lysates were immunoblotted with anti-Flag antibodies. The treat-
ment of the cells with peroxovanadate and calyculin led to the appearance of
slower migrating bands (HDGB) when using a 11%T, 0.67% Tricine-SDS PAGE
gels. Membranes were incubated with an anti-p-MAPK antibody to show the
efficacy of calyculin and peroxovanadate treatments. Reprobed membranes
with anti-MAPK and anti-GAPDH are shown as the loading controls.

compared with the non-mutated form of exogenous beta-dystroglycan. There

was a slight delay in the migration of the Y890F mutant which was more evi-

dent in non-nuclear fractions of transfected cells (dashed line in Figure 3.17a).

This resembled a similar pattern in the mobility of the recombinant protein

beta-dystroglycan fused to an alkaline phosphatase tag harbouring the same

mutation (Sotgia et al., 2003). Second, the western blot analysis of total

lysates showed that some migrating bands above (-HDG) and below (-LDG)
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full-length beta-dystroglycan (43 kDa) were absent compared to the parental

protein αβDgFlag (Figure 3.17b).
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Figure 3.17: The mutation Y890F affects other PTM on beta-dystroglycan.
(a) Western blot analysis of non-nuclear fractions of cells transfected with the
plasmids αβDgFlag and αβDgFlag-Y890F reveals a retardation in the migra-
tion of the mutant Y890F compared with normal αβDgFlag (dashed line).
(b) The mutation Y890F affects other PTM on βDg. Lysates of LNCaP cells
transfected with the plasmids αβDgFlag and αβDgFlag-Y890F were subjected
to immunoblot analysis with antibodies anti-Flag. The introduction of the mu-
tation in Y890 abolished other PTM on beta-dystroglycan (-HDG and -LDG)

Following this, the treatment with CIP revealed interesting findings. Lysates

containing αβDgFlag had a multiple banding pattern above the main band of

βDg in the absence of CIP treatment. However, upon treatment with CIP,

there was a reduction in band intensity generated by anti-Flag antibody around

bands 100-130 (-HpDGa) and the signal was at very reduced levels on bands

near 60 kDa (-HpDGb). If we now turn to mutant Y890F, it is possible to

see that lysates not treated with CIP still lack some slower migrating bands

and the ones present were at a lower abundance (-HpDGa). When the same

lysates were subjected to treatment with CIP, the remnant doublet observed

at approximately 60 kDa (-HpDGb) was completely abolished (Figure 3.18a).
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The resolution of the same lysates in a 10%T, 3%C tricine-SDS-PAGE

system (see Table D.3), followed by immunoblotting with Mandag2 antibod-

ies gave unexpected outcomes. Lysates of cells transfected with the parental

plasmid αβDgFlag and left untreated, showed many slower migrating bands.

Some of those bands disappeared when the same lysates were subjected to

treatment with CIP. On the other hand, in lysates with mutant Y890F the

presence of bands above 43 kDa were considerably reduced under the two

conditions (HpDG in Figure 3.18b).

The disappearance of bands in lysates treated with CIP suggests the pres-

ence of additional phosphorylatable amino acids, and importantly, the phos-

phorylation of Y890 seems to be a triggering factor for additional post-translational

modifications in beta-dystroglycan. The use of anti-phosphotyrosine antibod-

ies in order to further show the presence of additional phosphorylatable amino

acids in beta-dystroglycan will be required.

3.6.3 Beta-dystroglycan is ubiquitinated

Immunoblotting of beta-dystroglycan, either endogenous or exogenous, with

the antibodies anti-pYβDG, Mandag2 or Flag, usually revealed some bands

of high molecular weight in addition to the unmodified 43 kDa species. The

experiments performed with the inhibitors of phosphatases calyculin A and

sodium peroxovanadate, and the treatment of total lysates with CIP, suggested

that the retardation in the migration of some bands was due to phosphoryla-

tion. These changes occurred mainly between the range of the 43 and 80 kDa,

which does not explain the presence of other bands usually observed above

80 kDa. The speed of their migration was suggestive of two important PTM,

ubiquitination or sumoylation.

Ubiquitination could be a potential candidate to explain the presence of

high molecular weight migrating bands. This dynamic PTM can control many

cellular processes depending on very specific situations. The classic pathway

is the labelling with ubiquitin groups of proteins targeted for degradation,
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Figure 3.18: Beta-dystroglycan is extensively phosphorylated. (a) Total lysates
of LNCaP transfected with the plasmid αβDgFlag or αβDgFlag-Y890F were
subject to dephosphorylation with CIP (+). The analysis by western blot using
anti-M2 Flag antibodies shows the absence of some slow migrating bands in
samples treated with CIP (-HpDGa and -HpDGb). GAPDH is shown as the
loading control. (b) The electrophoretic separation of the same samples using a
10%T, 3%C tricine-SDS PAGE gels gave a better resolution of phosphorylated
beta-dystroglycan (HpDG).

although other non-proteolytic activities have been attributed to ubiquiti-

nation, such as the modification of specific proteins for a better interaction

with other proteins or for protection against their degradation by the protea-

some (K. P. Bhat & Greer, 2011).

The inhibition of proteasome activity usually leads to an electrophoretic

retardation in the migration of proteins subject to ubiquitination. To probe

whether the bands above 80 kDa were ubiquitinated beta-dystroglycan, LNCaP

cells expressing exogenous αβDgFlag were subjected to treatment with MG132,

a proteasomal inhibitor. Total lysates obtained in the presence of N-ethylmaleimide
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(NEM), a deubiquitinase inhibitor, were then resolved by SDS-PAGE gradient

gels and western blotted with anti-Flag antibodies. When cells were treated

with DMSO and then lysed in the absence or presence of NEM, no significant

changes were observed in the migration of the bands above 43 kDa. How-

ever, treatment with MG132 still produced the bands between 55 and 70 kDa

(HuDGc), but reduced the density of the approximately 80 kDa band (HuDGb)

and led to the appearance of bands between the 90-120 kDa (HuDGa). The

band above 130 kDa was also altered. Upon treatment with MG132 this band

was reduced but present as a doublet (HuDGp) (Figure 3.19a).

It is well known that the concentration of acrylamide affects the good trans-

fer of proteins. The higher the concentration, the more difficult is to transfer

high molecular weight proteins. To determine if the reduced amount of the 130

kDa band was due to the generation of other slower migrating species above

200 kDa, the same lysates of Figure 3.19a, were resolved in a 11%T 0.67%C

Tricine-SDS-PAGE gel (see section 2.1.5.10). The most impressive result to

emerge from this second immunoblot analysis with anti-Flag antibodies is the

presence of other species of an even high molecular weight but only in the

presence of NEM (Figure 3.19b).

Taken together, these results support the hypothesis of beta-dystroglycan

being modified by ubiquitin groups. Although the high molecular weight

species of beta-dystroglycan were only present when cells were treated with

MG132, or collected in lysis buffer containing NEM, this does not completely

confirm that the shifts were due to ubiquitination.

The development of technologies for the isolation and protection of ubiq-

uitinated proteins has been of great advantage in the study of functional and

degradative processes in which ubiquitination is implicated. MultiDsk (MD),

a high affinity ubiquitin binding protein developed by Wilson and colleagues

in 2012, has been shown to be an important approach for the enrichment

and protection of mono- and poly-ubiquitinated proteins (M. D. Wilson et

al., 2012). This construct cloned into a GST expression vector consists of a

tandem of 5 repeats of the yeast Dsk2 ubiquitin binding domain flanked by
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Figure 3.19: Potential ubiquitination of beta-dystroglycan. (a) LNCaP cells
transiently transfected with the plasmid αβDgFlag were subjected to treat-
ment with MG132 for 4 hours. Cells lysed with RIPA buffer (supplemented
with NEM) were resolved by gradient SDS-PAGE gels (7.5-15%) and im-
munoblotted with primary antibodies anti-Flag. The treatment with MG132
leads to the appearance of slower migrating bands around 100 kDa (HuDGa).
(b) The loading of the same lysates in a 11%T 0.67%C Tricine SDS PAGE
gel, allowed a better resolution of bands migrating above 150 kDa. Lysates
of LNCaP WT were loaded as a control for specificity of Flag antibodies.
Stripped membranes were reprobed with anti-GAPDH antibody as a loading
control. The difference in the banding patter between the blots (a) and (b)
may be due to the different species of antibodies used.

two 6x His tags (Figure 3.20a). In order to determine the specificity of this

novel protein, LNCaP cells transfected with the plasmid αβDgFlag were lysed
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in the presence of NEM. Lysates were then incubated with agarose, agarose-

GST or agarose-MD beads. The separation of supernatant and pellets on a

SDS-PAGE gel followed by immunoblot analysis with anti-ubiquitin antibodies

showed that a great amount of ubiquitinated protein was recovered interacting

with MultiDsk (pellet). As no protein was observed in the pellet of agarose

or agarose-GST it can be concluded that MultiDsk is highly specific to bind

ubiquitinated proteins (Figures 3.20b and 3.20c).

Having corroborated the specificity of the resin, the next step was to de-

termine the profile of ubiquitinated beta-dystroglycan. For that, LNCaP cells

overexpressing αβDgFlag were treated with DMSO or MG132 and then lysed

in the presence of NEM. Untreated and treated lysates were incubated with

agarose-GST or MultiDsk, resolved by SDS-PAGE and immunoblotted using

anti-Flag antibodies.

As expected, many high molecular weight proteins in the range of 60-

300 kDa precipitated with MultiDsk and were absent in pellets of GST alone

(HuDG). Interestingly, the recovery of ubiquitinated proteins with MultiDsk

was the same for cells treated or not treated with MG132 indicating that

MultiDsk is sufficient to protect ubiquitinated substrates from degradation

(Figure 3.21b) (M. D. Wilson et al., 2012). Another interesting observation is

that the 55 and 60 kDa species, although present, were not precipitated with

the MultiDsk resin (HpDG). Despite the fact that this experiment suggests

that beta-dystroglycan is ubiquitinated, there is still the question of whether

βDg is being mono-ubiquitinated on multiple residues, modified in one critical

residue with a poly-ubiquitin chain, or a combination of both.

The next obvious question was to determine if beta-dystroglycan sub-

jected to ubiquitination was also subject to phosphorylation on Y890. As

stated before, pYβDG and Mandag2 are two antibodies that detect phospho-

rylated and non-phosphorylated tyrosines in a stretch of amino acids located

in the C-terminus of beta-dystroglycan respectively. The immunoblot anal-

ysis with these two antibodies detected the presence of two bands above 70

kDa (HuDG∗), suggesting that ubiquitination of beta-dystroglycan in LNCaP

97



CHAPTER 3. BETA-DYSTROGLYCAN PROTEIN MODIFICATIONS

Mono- or poly-UB protein 

GST 
6x 

HIS 
5xDsk2 
UBD 

6x 
HIS 

MultiDsk 

Ub 

Ub 

Ub 

Ub 

(a)

250 

100 

15 

25 

70 

35 

55 

130 

SN
 

In
pu

t 

Pe
lle

t 

SN
 

Pe
lle

t 

SN
 

Pe
lle

t 

Agarose 
beads GST MultiDsk 

IB
: U

bi
qu

iti
n 

(b)

250 

100 

15 

25 

70 

35 

55 

130 

SN
 

In
pu

t 

Pe
lle

t 

SN
 

Pe
lle

t 

SN
 

Pe
lle

t 

Agarose 
beads GST MultiDsk 

Po
nc

ea
uS

 st
ai

ni
ng

 

(c)

Figure 3.20: Purification of ubiquitinated proteins with MultiDsk affinity resin.
(a) Schematic structure of GST-MultiDsk (reproduced and modified with per-
mission of Jesper Q. Svejstrup.) (b) LNCaP cells were transfected with the
plasmid αβDgFlag and lysed with RIPA buffer supplemented with 10 mM
NEM. Lysates were incubated with agarose, agarose-GST or agarose-GST-
MD beads. After washing the beads as indicated in material and methods,
pulled down proteins were resolved by SDS PAGE. Western blot analysis with
an anti-ubiquitin antibody shows that most of the ubiquitinated proteins were
recovered in the MultiDsk pellet compared with the controls (agarose and
agarose-GST beads). (c) The membrane was stained with Ponceau S red
staining solution to show the equal loading of the recombinant proteins GST
and GST-MD.
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cells is not dependent of the phosphorylated tyrosine Y890 in its C-terminus

(Figures 3.21c and 3.21d).

To have a deeper insight into ubiquitinated dystroglycan, LNCaP cells

transfected with the plasmid αβDgFlag were used for imunocytochemical anal-

ysis. Co-immunostaining of the transfected cells with antibodies anti-Flag and

anti-ubiquitin shows some areas of clear co-localisation of ubiquitin and Flag

(Figure 3.22).

As shown in the section related to phosphorylation of βDg, the introduction

of the mutation Y890F led to a dramatic reduction of high molecular weight

migrating bands. Additionally, as stated in the introduction, the K806 seems

to be a critical residue in the ubiquitination for beta-dystroglycan. To deter-

mine if both mutants are affecting the generation of slow migrating species

in the range of 70-300 kDa, LNCaP cells transfected with the parental plas-

mid αβDgFlag and those harbouring the mutations Y890F and K806R were

treated with MG132 or DMSO. Lysates of cells treated with MG132 or left

untreated (DMSO) were obtained with RIPA buffer supplemented with NEM

or normal RIPA buffer respectively. As revealed by the anti-Flag antibodies

in Figure 3.23, the pattern of bands between the 70-300 kDa (HuDG) resem-

bled those generated by the parental plasmid (Figure 3.23). These all together

support the idea that the phosphorylation of Y890 in beta-dystroglycan does

not affect its ubiquitination. Additionally, the mutation K806R, although a

potential amino acid predicted to be modified by ubiquitin groups (K. A. Lee

et al., 2011), seems to not affect the overall pattern of higher molecular weight

bands of beta-dystroglycan.

Ubiquitination is a post-translational modification that can take place ei-

ther in the cytoplasm or in the nucleus. In an attempt to differentiate if

ubiquitination of beta-dystroglycan takes place in both, or is restricted to one

specific cellular compartment, LNCaP cells transiently expressing αβDgFlag

were treated with MG132. Cells were then collected for cell fractionation in the

presence of NEM for those under the treatment with MG132. The analysis of

non-nuclear and nuclear fractions with Flag, Mandag2, pYβDG and ubiquitin
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Figure 3.21: Beta-dystroglycan is multiply ubiquitinated. LNCaP cells trans-
fected with the plasmid αβDgFlag were treated with the proteasomal inhibitor
MG132(+) or DMSO (-). After 4 hours treatment, cells were lysed with RIPA
buffer supplemented with 10 mM NEM. Lysates were incubated with agarose-
GST (control) or agarose-GST-MD beads and resolved by gradient SDS-PAGE
gels (7.5-12.5%). (a) The schematic shows the molecular interactions of dys-
troglycan with MultiDsk and the Flag M2 Ab. (b) Immunoblot analysis using
an anti-Flag antibody shows the presence of slower electrophoretic migrat-
ing bands in the pellets of lysates incubated with the MultiDsk affinity resin
(HuDG). (c and d) The same lysates were immunoblotted on separate mem-
branes with antibodies anti-βDg (Mandag2) and anti-p-βDG (pYβDG) anti-
bodies.
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Figure 3.22: LNCaP cells transiently transfected with the plasmid αβDgFlag
were co-immunostained anti-Flag (red) and anti-ubiquitin (green) antibodies.
A middle stack section of deconvolved confocal microscopy images shows vari-
able co-localisation of ubiquitin and beta-dystroglycan in the cytoplasmic and
nuclear fractions of the cells. Nuclei were counterstained with DAPI. Scale bar
= 10 µm.

antibodies showed the classic banding pattern in the non-nuclear fraction of

cells under treatment with MG132. Contrary to the expected, the abundance

of ubiquitinated proteins in the nucleus was very low as was the amount of

overexpressed beta-dystroglycan (Figure 3.24).

The addition of ubiquitin groups to the proteins can target them for degra-

dation by the proteasome or other regulatory processes, as mentioned in the

introduction. As shown before, beta-dystroglycan is modified by phosphory-

lation and ubiquitination. In addition to this, it was already shown that the

mutation Y890F confers stability to beta-dystroglycan and other components

of the dystrophin associated protein complex (Miller et al., 2012). Regarding

the residue K806, there have been some mass spectrometry reports indicating

its potential ubiquitination (K. A. Lee et al., 2011), but there is not evi-

dence indicating how this potential ubiquitination affects the stability of beta-

dystroglycan. In order to have a better idea about the way in which these two

mutations, Y890F and K806R, affect the stability of beta-dystroglycan, cells

transiently transfected with the corresponding plasmids were treated with the
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Figure 3.23: The mutations Y890F and K806R have little effects in the slower
migrating bands of beta-dystroglycan. Transfected LNCaP cells with the plas-
mids αβDgFlag and the ones with the mutants Y890F and K806R were treated
with MG132 for 4 hours. Cells were washed with PBS before being collected
with RIPA buffer supplemented with NEM [20 mM]. Blotted lysates with an-
tibodies anti-Flag do not show big differences in the slow electrophoretic mi-
grating bands (HuDG). Stripped membrane was reprobed with anti-GAPDH
antibody to show the loading of the proteins.

protein synthesis inhibitor cycloheximide. After 24 h post-transfection, cells

were collected for total lysates or were left growing for 12 hours more in the

presence of cycloheximide and then collected for total lysates. Although it can

not be completely concluded and further analyses are required, at 12 hours

after stopping the synthesis of the proteins, the mutations Y890F and K806R

had not any apparent changes in the amount of protein indicating the same

ratio of degradation for both mutants (Figure 3.25).
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Figure 3.24: Differential ubiquitination of non-nuclear and nuclear beta-
dystroglycan. LNCaP cells were transfected with the plasmid αβDgFlag. Af-
ter 24 hours growth, cells were further treated with MG132 [15 µM] for 4
hours. Cells were collected with buffer I for cell fractionation supplemented
with NEM [10 mM]. Immunoblot analysis of both fractions shows the pres-
ence of the slower migrating bands in the non-nuclear fractions of cells treated
with MG132. Membranes were stripped and reprobed with anti-βDg and anti-
pβDg, anti-ubiquitin, anti-calnexin and anti-fibrillarin antibodies.

3.7 Discussion.

3.7.1 Distribution of dystroglycan in LNCaP cells

The cellular communication between the intracellular environment with neigh-

bouring cells or the surrounding extracellular matrix is enabled by the presence

of cell adhesion proteins immersed in the plasma membrane. The signal gener-

ated in the extracellular matrix is sensed by these plasma membrane proteins

which in turn transmit the signal into the cell taking advantage of adaptor

proteins found in the intracellular space (Alberts et al., 2008).

In addition to integrins, dystroglycan has been suggested to perform both

functions. The DG complex spans the plasma membrane of many different cell
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Figure 3.25: Comparison of the rate of degradation between the Flag-tagged
beta-dystroglycan and the mutants Y890F and K806R. LNCaP cells trans-
fected with the plasmid αβDgFlag, αβDgFlag-Y890F and αβDgFlag-K806R
were grown for 24 hours. Total lysates were obtained at 0 h (0 h) or after fur-
ther incubation with cycloheximide [100 µg/ml] for 12 hours (12 h). Shown are
the lysates of three independent experiments blotted with anti-Flag antibod-
ies. Bands intensities of the Flag signal were normalized to GAPDH (means
± SEM, n=3).

types and tissues, performing structural and signalling activities. In prostate

tissue, dystroglycan is expressed in the epithelium of basal and secretory cells

but is reduced in prostate adenocarcinoma (Henry et al., 2001; Mathew et

al., 2013; Sgambato et al., 2007). This prompted research to unravel the

mechanisms leading to the loss of dystroglycan in prostate cancer, using the

LNCaP cell line as a model system.

In this work, the biochemical fractionation and immunocytochemistry anal-

ysis of LNCaP cells showed the distribution of βDg and pβDg in the nucleus

of LNCaP cells, which is in agreement with previous observations in prostate

tissue and in LNCaP cells (Mathew et al., 2013). Additionally, immunofluores-

cence analysis showed a clear distribution of both forms of beta-dystroglycan
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all along the cellular body. It is also worth noting the fact that Mandag2

showed a signal around the nuclear periphery (green channel in Figure 3.4).

Although analysis of the co-localisation of beta-dystroglycan with members

of the nuclear envelope were not performed, the immunocytochemistry and

biochemical fractionation (Figures 3.3 and 3.4, on pages 72 and 74), are in

agreement with previous reports showing the presence of dystrophin and mem-

bers of the dystrophin associated protein complex, such as dystroglycan in

the nucleus of different cell lines and their association with nuclear compo-

nents (Fuentes-Mera et al., 2006; González et al., 2000; González-Ramı́rez et

al., 2008; Lara-Chacón et al., 2010; Marquez et al., 2003; Mart́ınez-Vieyra

et al., 2013; Mathew et al., 2013; Oppizzi et al., 2008; Vásquez-Limeta et

al., 2014; Villarreal-Silva et al., 2010). Further analyses are required to show

the specific location of dystroglycan within the nucleus, and in other cellular

compartments such as the Golgi apparatus or endoplasmic reticulum.

3.7.2 The myc/his tag affects the phosphorylation of

Y890 in beta-dystroglycan

The critical position in the plasma membrane, the localisation in the nucleus,

the diverse array of its interactions and multiple PTM, lead to the hypothesis

that there are other interactions and cellular events in which dystroglycan plays

a critical role that have not been unravelled. The integrity of the alpha subunit

is important for linkage with extracellular components. On the other hand, its

cytoplasmic domain regulates important cellular processes in the cytoplasm. In

this regard, a phosphorylated tyrosine in the very C-terminus of βDg appears

to be regulating a great variety of important protein interactions, such as

those with dystrophin/utrophin, in addition to regulating the activation of

other signalling pathways, as will be discussed later. Also, this region harbours

many putative protein binding motifs such as SH2 and SH3 domains, and WW

domain ligands and many additional phosphorylatable amino acids (Moore &

Winder, 2010), all of which are located downstream of its nuclear localisation
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signal. So, small modifications could be disadvantageous to the structure and

potential interactions of the C-terminus.

The immunoprecipitation of endogenous dystroglycan for the characterisa-

tion of additional unknown interacting proteins with the antibodies Mandag2

and pYβDG has the main disadvantage that these antibodies bind the PPPY

motif, the main interaction site for cytoskeletal proteins such as dystrophin/utrophin

among others. Therefore, an alternative strategy could be the insertion of tags

downstream the PPPY motif, however, the size and folding of such tags could

alter important cellular events such as PTM and protein interactions medi-

ated by this PPXY motif. Indeed, Figure 3.5b shows that the introduction

of a myc/his tag in the carboxy-terminus affected the phosphorylation of the

Y890 in mouse beta-dystroglycan.

3.7.3 The recombinant αβDgFlag

Beta-dystroglycan cannot easily be expressed in the absence of alpha-dystroglycan

due to the complicated co-translational modification, proteolysis and inser-

tion in the plasma membrane. Furthermore, the extracellular domain of beta-

dystroglycan is susceptible to cleavage by matrix metalloproteinases (Yamada

et al., 2001). Therefore, because insertion of a tag at the C-terminus of dystro-

glycan prevented phosphorylation, it was necessary to look for another region

in the cytoplasmic domain. An area around amino acid 800 was identified

as being away from most of the putative binding motifs and suitable for the

insertion of a Flag tag with minimum changes. The insertion of this Flag tag,

however, does overlap with the K806 reported by Lee and colleagues to be

subject to ubiquitination (K. A. Lee et al., 2011). Because of its hydrophilic

characteristics, this tag seems to be always structurally exposed, which is ad-

vantageous for its detection (Figure 3.6).

The characterisation of LNCaP cells transfected with the recombinant

αβDgFlag showed that the Flag tag did not interfere in the detection by

Mandag2 and pYβDG antibodies (Figure 3.8). Importantly, species other than
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the 43 kDa beta-dystroglycan were observed on western blots and the anal-

ysis by immunofluorescence clearly resembled the visual staining phenotype

observed with endogenous dystroglycan (Figure 3.9). Through cell fractiona-

tion, the nuclear distribution of recombinant beta-dystroglycan and associated

species was confirmed. Therefore, through western blot and immunofluores-

cence analyses, the cellular localisation of αβDgFlag resembles that of endoge-

nous dystroglycan. However, it will be important to keep in mind that the

solely insertion of Flag into the primary structure of dystroglycan may still

affect its function, folding and some protein interactions, even the fact that it

was inserted in a region with minimal interactions.

During the course of the characterisation of LNCaP WT cells and cells

transfected with exogenous αβDgFlag, a band between 130 and 250 kDa

was commonly observed on immunoblots of total lysates, non-nuclear, or nu-

clear fractions (Figures 3.7, 3.8). This band usually immunoreacted with the

Flag, Mandag2 and pYβDG antibodies and, intriguingly, was sometimes ob-

served as a doublet. From the original characterisation of the dystrophin as-

sociated protein complex, the sizes ascribed to alpha- and beta-dystroglycan

were 156- and 43-kDa respectively, although for core alpha dystroglycan it is

much lower (Ervasti & Campbell, 1991; Ibraghimov-Beskrovnaya et al., 1992).

Therefore, it was hypothesized that the band observed between 130-250 kDa

could correspond to alpha-dystroglycan with some modifications.

3.7.4 Nuclear alpha-dystroglycan

The transfection of LNCaP cells with a plasmid encoding alpha-dystroglycan

gave unexpected results. In total lysates, the protein detected by anti-myc

and anti-6xHis antibodies had a size in the range of 50-70 kDa. What is more,

it was surprising to find alpha-dystroglycan in the nucleus of LNCaP cells.

The results presented in Figure 3.10 clearly show that alpha-dystroglycan was

distributed in non-nuclear and nuclear fractions.

As mentioned above, one unanticipated finding was the low molecular
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weight of alpha-dystroglycan. In accordance with the present results, pre-

vious studies have demonstrated that defects in the glycosylation of alpha-

dystroglycan could be an explanation for its reduced size. Previous reports

demonstrated that LARGE was able to recognize and modify alpha-dystroglycan

but only when found in its functional form (alpha dystroglycan harbouring

its N-terminal, mucin-like and C-terminal domains) (Kanagawa et al., 2004).

Experiments performed in models of prostate cancer, such as the aggressive

metastatic LNCaP cell line, have found that, although alpha-dystroglycan is

expressed, its glycosylation is reduced. The defects in glycosylation were at-

tributed to the reduced expression of LARGE2 in this cell line and to its

concomitant reduction during prostate cancer progression (Esser et al., 2013).

This phenomenon was not restricted to prostate cancer as the same defect in

glycosylation was observed in cell lines derived from breast, lung and cervical

cancers, presumably attributed to the silencing of LARGE (de Bernabé et al.,

2009).

Thus, the defects in glycosylation could be an explanation for the reduced

size of alpha-dystroglycan indicating that the species detected in this work

corresponds to the core peptide. Another explanation for the reduced size of

the alpha-dystroglycan species observed in this work, is the fact that other

PTM, such as proteolysis could be affecting its integrity. In this regard, it has

been previously reported that alpha-dystroglycan is subject to the cleavage by

Furin on its N-terminal domain, liberating a ∼30kDa fragment (Kanagawa et

al., 2004; Singh et al., 2004).

Together, these data lead to conclusion and future hypothesis that alpha-

dystroglycan has a non-nuclear and nuclear distribution in LNCaP cells and

that the great variability in its size from its counterpart in muscle could be

attributed to the defects in glycosylation caused by the down-regulation of

LARGE2 and to the proteolytic action of Furin in LNCaP cells. In support

of this hypothesis, and although it was not clearly concluded, White and col-

leagues reported the nuclear localisation of alpha-dystroglycan in airway ep-

ithelial cells during wound repair using wheat germ agglutinin (WGA) (White,
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Wojcik, Gruenert, Sun, & Dorscheid, 2001).

All this evidence, however, still does not explain the origins of the 130-

250 kDa band. In 1996, Mummery and colleagues reported the presence of a

164 kDa and a 25 kDa species of beta-dystroglycan in post-synaptic density

fractions of an adult rat forebrain. The additional in vitro treatment with en-

doglycosidase F did not show changes in the electrophoretic migration of these

species of beta-dystroglycan (Mummery, Sessay, Lai, & Beesley, 1996). The

observed size could be in agreement with the bands observed here in this chap-

ter, however, in this thesis the treatment with PNGaseF did lead to a slight

reduction in the size of the 130-250 kDa species of beta-dystroglycan (possibly

because of the differential activities between endoglycosidase F and PNGaseF).

A similar high molecular species was observed in rat retina (Ueda, Gohdo, &

Ohno, 1998). Thus, if this band has immunoreactivity with antibodies used to

detect the 43 kDa species, one can hypothesize that beta-dystroglycan is sub-

ject to oligomerization. In this regard, through chemical cross-linking it was

shown that beta- and alpha-dystroglycan have the tendency of oligomerization

in tissues such as diaphragm, skeletal muscle and heart (Finn & Ohlendieck,

1998).

A later report, however, described that the similar band of approximately

160 kDa corresponded to the precursor peptide of dystroglycan (Holt et al.,

2000). This could be the explanation for the observed band in this thesis,

but the reduced size of alpha-dystroglycan plus the size of beta-dystroglycan

observed in these experiments do not match to the size of the high molecular

weight band observed in this chapter, leading to the previous hypothesis of dys-

troglycan being subject to oligomerization. In support of this, a recent study

reported big differences in the molarity of laminin:dystroglycan:dystrophin in

a ratio of 1:41:1 in skeletal muscle (Johnson et al., 2013). Although it was

concluded that the differences observed were due to the existence of complexes

of dystroglycan associating with different proteins, it could be tempting to

speculate that the big differences in the ratio observed are due to the forma-

tion of beta-dystroglycan multimers in the plasma membrane. This in some

109



CHAPTER 3. BETA-DYSTROGLYCAN PROTEIN MODIFICATIONS

way would help to explain the strong interaction with alpha-dystroglycan, as

it is well know that these two subunits have a non-covalent interaction. On

the other hand, the formation of multimers could help prevent the proteolysis

of beta-dystroglycan. It is worth noting that cell lysates were separated in a

reducing SDS-PAGE gel, which should be enough to disrupt the formation of

multimers, however it has been shown that the opposite effect may happen

as was observed for presenilins (De Strooper et al., 1997). Further evidence

will be required to support the formation of beta-dystroglycan multimers in

the plasma and nuclear membranes, and the significance of those hypothetical

oligomers in cellular homeostasis.

3.7.5 Ubiquitination and phosphorylation of dystrogly-

can

3.7.5.1 Generation of the mutants Y890F and K806R

Given the multiple functions ascribed to dystroglycan, one would expect it

to be subjected to tight regulation. From Figure 3.8 and other experiments

presented in this thesis, it can be seen that beta-dystroglycan usually presents

some slow migrating bands above the main 43 kDa form. Previous reports and

assumptions point towards dystroglycan modification by sumoylation, ubiqui-

tination and phosphorylation. These could be plausible hypotheses as the

sequence of dystroglycan, specially the cytoplasmic domain, is rich in amino

acids with a high probability of being modified by ubiquitination or phospho-

rylation. Growing evidence through mass spectrometry analysis confirm the

previous assumption. The high sensitivity of this technique has shown that the

N-terminal as well as the C-terminal domains in alpha- and beta-dystroglycan

respectively, are domains subject to a broad number of modifications (most of

these modifications were indirectly discovered in meta-analysis that were not

aimed at dystroglycan) ( http://www.phosphosite.org/homeAction.do).

Given the fact that Y890 is critical for protein interactions (Sotgia et al.,
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2001) and for the stability of dystroglycan at the plasma membrane (Miller

et al., 2012) it was decided to investigate the role of this phosphorylation

in the stability of dystroglycan. Also, a lysine at position 806, K806, was

identified at the peptide level as a substrate of the E3 ubiquitin ligase HDR1

by using quantitative proteomics (K. A. Lee et al., 2011). Thus, the role of

this ubiquitination in the integrity of dystroglycan was investigated.

By biochemical and cytochemical analysis of LNCaP cells, similar pheno-

types (expression and cellular distribution) of the mutants Y890F and K806R

to the parental protein were recognized (Figures 3.11 - 3.15). Slight differences

in the electrophoretic migration of the mutants compared to the parental pro-

tein were observed. The mutant K806R migrated a bit faster than the unmod-

ified protein, however, the mutant Y890F had a retardation in its migration

which will be discussed in the next section.

3.7.5.2 Dystroglycan is highly phosphorylated and ubiquitinated

The impact of phosphorylation on the regulation of beta-dystroglycan is highly

debated. This PTM modifies a number of important protein-protein interac-

tions (Ilsley et al., 2001; James et al., 2000; Sotgia et al., 2001), its protein

stability (Miller et al., 2012), its vesicular transport (Sotgia et al., 2003), its

virus permissibility (Moraz et al., 2013) or its adapter properties of the ERK-

MAPK cascade components (Spence, Dhillon, et al., 2004). Previous research

has focused the attention on tyrosine 890 located in the C-terminus of dystro-

glycan. This is based in the premise that the presence of pY890 is the main

factor leading to the disruption of its interaction with dystrophin/utrophin,

which in turn leads to the instability of the other members of the DGC lead-

ing to muscular dystrophy.

The experiments performed by Moraz and colleagues in 2013, clearly showed

the existence of unknown tyrosines other than Y890 that could be subject to

phosphorylation, which could be in agreement with our previous observations

in Figure 3.8 (Moraz et al., 2013). Here the presence of multiple slow migrating
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bands are indicative of dystroglycan being subject to either phosphorylation

or ubiquitination.

Indeed, the combined effect of calyculin and peroxovanadate led to an en-

richment of phosphorylated species of beta-dystroglycan, more interestingly,

the appearance of slow migrating bands was suggestive of beta-dystroglycan

being phosphorylated on multiple amino acids (Figure 3.16).

By immunoblot analysis the most abundant species detected were the

43 kDa species. The others were absent or at undetectable levels indicat-

ing that this mutation could be regulating other PTM like phosphorylation-

ubiquitination (bands above the 43 kDa dystroglycan) or proteolysis (bands

below the 43 kDa form) (Figure 3.17). Interestingly, the treatment with CIP

of the parental protein and the mutant Y890F (Figure 3.18) confirmed the

observations obtained with calyculin and peroxovanadate. A detailed map of

amino acids subject to phosphorylation on dystroglycan will be important to

determine the role of these amino acids in cellular processes such as the cell

cycle and protein interactions.

In spite of the changes attributed to phosphorylation, there are still some

questions about if all the observed bands above 43 kDa correspond to phos-

phorylated dystroglycan or other PTM such as ubiquitination. Interestingly,

the treatment with MG132 and/or NEM led to the generation of bands of high

molecular weight, particularly above 130 kDa. Through the use of a highly

specific ubiquitin-binding resin with protective properties (M. D. Wilson et

al., 2012), it was possible to see the presence of some slow migrating bands,

suggestive of dystroglycan being subject to ubiquitination. Interestingly, the

antibodies Mandag2 and pYβDG were able to detect some bands that were

precipitated with MultiDsk indicating that dystroglycan phosphorylated or

non-phosphorylated in tyrosine 890 is subject to ubiquitination (Figure 3.21).

The introduction of the mutations Y890F and K806R seems to have (if

any) little effects in the ubiquitination of dystroglycan (Figure 3.23) although

further characterisation with MultiDsk will be required. These small changes

are not surprising since there are amino acids other than K806 that could be
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modified by ubiquitination. Also, this does not discard the idea of K806 being

ubiquitinated, but supports the fact that once restricted to ubiquitination

other lysines are ubiquitinated instead.

The existence of the nuclear ubiquitin-proteasome system and the function-

ality to degrade substrates such as the transcription factor MyoD is very well

established (Floyd, Trausch-Azar, Reinstein, Ciechanover, & Schwartz, 2001;

Rockel, Stuhlmann, & von Mikecz, 2005; von Mikecz, 2006). So, the nuclear

degradation of dystroglycan is a feasible hypothesis that has to be probed

by combining inhibitors of the nuclear export/import together with MG132

and MultiDsk or by using isolated nuclei/cytoplasm cellular extracts. This

could support the idea that, once translocated to the nucleus, dystroglycan

exerts its structural/regulatory function before being degraded by the nuclear

ubiquitin-proteasome system.

The inhibition of protein synthesis confirmed that the mutations Y890F and

K806R are not enough to stop the ubiquitination and hence, the degradation

of dystroglycan. This indicates that there are other underlying mechanisms

playing an important role in the degradation of dystroglycan. Further research

will be required to show if in addition to degradation, ubiquitinated dystro-

glycan has other roles in protein interactions or cell signalling regulation. It

will also be important to have a complete map of the ubiquitinated amino

acids in order to determine the role of these modifications in the stability of

dystroglycan with therapy purposes.

The multiple ubiquitination of dystroglycan could be part of the explana-

tion of its reduced levels in muscular dystrophies and cancer, and the reason

by which its levels are restored following the inhibition of proteasomal ac-

tivity (Acharyya et al., 2005; Assereto et al., 2006; Bonuccelli et al., 2003,

2007; Kumamoto et al., 2000). It will be important to determine if previously

identified members of the ubiquitin-proteasome system in muscle, or their cor-

responding homologues in prostate cancer, are responsible for the multiple

ubiquitination observed in this work (Acharyya et al., 2005; Bodine et al.,

2001; Matsumoto et al., 2008). Additionally, it will be interesting to deter-
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mine if other mechanisms such as proteolysis are dependent on ubiquitinated

dystroglycan for its removal from the plasma membrane.

3.7.6 Summary

The results of the research presented in this chapter show that:

1. Alpha- and beta-dystroglycan are present in the nucleus of LNCaP cells.

2. The insertion of tags in the C-terminal of beta-dystroglycan affects the

phosphorylation of its Y890.

3. Beta-dystroglycan may be subject to oligomerization.

4. Beta-dystroglycan is multiply phosphorylated.

5. Beta-dystroglycan is multiply ubiquitinated.
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4
Regulated intramembrane proteolysis of

beta-dystroglycan

4.1 Introduction

Dystroglycan is a member of the Dystrophin Associated Protein Complex

(DAPC) (Ervasti & Campbell, 1991). It is a glycoprotein that mediates inter-

actions between cytoskeletal proteins and the extracellular matrix through

its alpha and beta subunits. These subunits are generated after a post-

translational cleavage of a 97 kDa precursor peptide derived from a 5.8 kb

mRNA transcript. The 56 kDa core alpha-dystroglycan polypeptide is sub-

ject to a high degree of O- and N-linked glycosylation, which is very variable

in different tissues, rendering a mature protein with a molecular weight up to

160 kDa. On the other hand, the transmembrane beta subunit of dystroglycan

has a more constant molecular mass of 43 kDa, and contrary to its counter-

part alpha, it is glycosylated to a much lesser extent, although it is subject to

other post-translational modifications as described in chapter 3 (Ibraghimov-

Beskrovnaya et al., 1992).

The high degree of glycosylation on alpha-dystroglycan is important for its

interaction with components of the basal lamina (Ervasti & Campbell, 1993;

Michele et al., 2002; Saito et al., 2005) and is believed to confer protection

against proteolytic activities of extracellular matrix proteases (Singh et al.,

2004), the alteration of which could lead to an uncontrolled growth, as observed

in cancer (Martin et al., 2007).
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In muscular dystrophies and in a myriad of cancers (among them prostate

cancer), the cellular levels of beta-dystroglycan are frequently observed to be

reduced (Cross et al., 2008; Henry et al., 2001; Losasso et al., 2000; Muschler et

al., 2002; Parberry-Clark et al., 2011; Sgambato et al., 2007). The reduction of

beta-dystroglycan in these pathologies is due to proteolytic events. In this re-

gard, a 31 kDa species separate from the 43 kDa full-length beta-dystroglycan

has been frequently described in both muscular dystrophies (Matsumura et

al., 2005) and cancer (Jing et al., 2004). This 31 kDa fragment is thought to

comprise the transmembrane and cytoplasmic fragments of beta-dystroglycan

(Losasso et al., 2000; Yamada et al., 2001), and is generated by the prote-

olytic action of matrix metalloproteases-2 and -9 (MMP-2 and MMP-9) in

the extracellular environment (Yamada et al., 2001; Zhong et al., 2006). This

cleavage is thought to be prevented by the glycosylation of alpha-dystroglycan,

and so enzymes that participate in the glycosylation process can be linked to

the degree of proteolysis. For example, in prostate cancer, the reduction in

the expression of LARGE2 could cause hypo-glycosylated alpha-dystroglycan,

leading to increased proteolysis of beta-dystroglycan, and the generation of

the 31 kDa fragment (Esser et al., 2013).

Work performed in the Winder lab has demonstrated the presence of an

additional cleavage product of beta-dystroglycan of approximately 26 kDa that

was generated when myoblasts cells were exposed to the PKC activator, PDBu

(Thompson, 2007). The same band was observed in studies of different human

carcinomas, including prostate cancer(Cross et al., 2008; Mathew et al., 2013;

Parberry-Clark et al., 2011). This lead us to hypothesize that MMPs have the

ability to cleave beta-dystroglycan on its extracellular domain, but generate a

fragment that is still anchored to the plasma membrane. This transmembrane

fragment (TM), when exposed to a second cleavage by an unknown protease,

releases a 26 kDa fragment to the cytoplasm to exert unknown cellular func-

tions.

Beta-dystroglycan is a type I protein embedded in the hydrophobic environ-

ment of the plasma and nuclear membranes, and these characteristics resem-
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ble other type I transmembrane proteins subject to regulated intramembrane

proteolysis (RIP). RIP is mediated by intracellular proteases, and for type

I membrane proteins like beta-dystroglycan, such as EpCAM, Notch, APP,

Neogenin, CD44, and others (De Strooper et al., 1998, 1999; Goldschneider,

Rama, Guix, & Mehlen, 2008; Lal & Caplan, 2011; H. J. Lee et al., 2002;

Maetzel et al., 2009), gamma-secretase is the responsible protease. Hence, one

could hypothesize that this enzyme also regulates RIP of beta-dystroglycan.

In this chapter the mechanisms triggering the cleavage of beta-dystroglycan

and leading to the generation of the 26 kDa cytoplasmic fragment will be in-

vestigated. Also, some mechanisms leading to the nuclear translocation of

beta-dystroglycan will be described. Additionally, an insight into the mecha-

nisms regulating the turnover of beta-dystroglycan will be assessed. All of this

is also in support of the hypothesis that, once beta-dystroglycan has performed

its structural/signalling processes on the plasma and nuclear membranes, it is

prone to RIP by gamma-secretase and then subjected to degradation by the

nuclear proteasome system (Figure 4.1).

4.2 Triggering factors

The proteolysis of plasma membrane proteins can have several underlying ef-

fects, such as the activation of dormant domains within a protein. These prote-

olytic events can also generate cytoplasmic domains that exert nuclear regula-

tory effects, as is the case of Notch, EpCAM, Neogenin and others (De Strooper

et al., 1998, 1999; Goldschneider et al., 2008; Lal & Caplan, 2011; H. J. Lee

et al., 2002; Maetzel et al., 2009). Stimulation with phorbol esters and in

vitro culturing of cells at a high density are two experimental techniques used

to trigger and study these regulatory events mediated by cleaved cytoplasmic

domains (Goldschneider et al., 2008; Lal & Caplan, 2011).
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Figure 4.1: Beta-dystroglycan is subject to different proteolytic events. Beta-
dystroglycan has been observed to be reduced in different pathologies includ-
ing muscular dystrophies and cancer. The current hypothesis points towards
proteolytic events mediated by proteases in the extracellular and intracellu-
lar environments capable of generating a 31 kDa transmembrane fragment.
However, the processes governing the generation of an additional 26 kDa cy-
toplasmic fragment and its biological relevance remain still to be investigated.

4.2.1 PDBu stimulates the proteolysis of beta-dystroglycan

Phorbol esters, such as phorbol-12-myristate-13-acetate (PMA) and phorbol-

12,13-dibutyrate (PDBu), are potent activators of the PKC pathway. In cel-

lular models, such as the human umbilical vein endothelial cells (HUVECs),

activated PKC stimulates Src, which in turn activates Cdc42, inducing the for-

mation of podosome-like structures (Tatin, Varon, Génot, & Moreau, 2006).

A similar process is observed in myoblasts where, following PDBu stimulation,

Src is able to phosphorylate dystroglycan, which in turn binds the adaptor pro-

tein Tks5 leading to the formation of podosomes-like structures (Thompson

et al., 2008). Podosomes are actin-rich cellular structures that degrade the
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surrounding extracellular matrix components through the activation of matrix

metalloproteinases such as MMP-2 (Murphy & Courtneidge, 2011; Tatin et

al., 2006).

Given the reported interactions of PKC, Src, MMP-2 and dystroglycan, the

activation of MMP-2 by PKC, and their recruitment to podosome-like struc-

tures upon PDBu stimulation, it was therefore decided to investigate the ef-

fects of PDBu in the proteolysis of beta-dystroglycan in LNCaP cells. Western

blot analysis of phosphorylated beta-dystroglycan showed an increase in the

amount of levels of phosphorylated cytoplasmic fragment (black arrowhead)

compared with the full-length protein (arrow) in cells exposed to PDBu treat-

ment. However, the levels of transmembrane fragment of beta-dystroglycan

did not appear to change over the course of the treatment (empty arrowhead)

(Figure 4.2). It is important to note that, cells were maintained at a low den-

sity for the PDBu experiments in order to differentiate the effects mediated by

PDBu from those mediated by a high cell confluency, as will be shown later.

PDBu has been shown to stimulate the formation of podosomes-like struc-

tures in myoblasts (Thompson et al., 2008) and in LNCaP cells (unpub-

lished Winder lab observations). To determine any possible changes pro-

duced by PDBu stimulation, including the potential nuclear translocation

of beta-dystroglycan, LNCaP cells transfected with the plasmid αβDgFlag

were treated with PBDu and then co-immunostained with pYβDG, Mandag2

and Flag antibodies. Interestingly, upon PDBu stimulation, there is a re-

localisation of beta-dystroglycan, both native and phosphorylated, to the peri-

nuclear area. Most of the signal was lost from the plasma membrane and cells

lost the classical fillopodial structures observed in cells over-expressing beta-

dystroglycan, and exhibited rounded and flat lamellipodia (Figure 4.3 and

4.4).

In order to have a better idea if the visual accumulation of beta-dystroglycan

observed around the nucleus represented increased levels in the nucleus, frac-

tionation of cells treated with PDBu or without PDBu was performed. Al-

though there was an evident increase in the amount of the 26 kDa cytoplas-
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Figure 4.2: PDBu stimulates the proteolysis of phospho-beta-dystroglycan.
(a) Wild type LNCaP cells seeded at a low confluency (40000 cells/cm2) were
grown for 24 hours. After the stated time, the medium was replaced with
medium supplemented with PDBu [2.5 µM] and further treated for different
times as shown above. Cells were collected with RIPA buffer and lysates
were subjected to immunoblot analysis with antibodies to p-beta-dystroglycan.
Beta-tubulin is shown as the loading control. There is a clear increase in the
amount of phosphorylated cytoplasmic fragment of beta-dystroglycan over the
time (black arrowhead). (b) The graph shows the ratio of the signal of the 26
kDa cytoplasmic fragment (black arrowhead) against the 43 kDa full-length
(arrow) beta-dystroglycan (means ± SEM, n=3, *p=<0.05).

mic fragment of beta-dystroglycan (CD) following PDBu stimulation in the

non-nuclear fraction, this increase was not observed in the nuclear fraction

(Figure 4.5).
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Overall, these results suggest that beta-dystroglycan is subject to prote-

olytic events downstream of PDBu stimulation with the consequent release of

a 26 kDa cytoplasmic fragment. These events decrease the amount of beta-

dystroglycan present at the plasma membrane and increase cytosolic, but not

nuclear, accumulation.
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Figure 4.5: PDBu stimulates the proteolysis of beta-dystroglycan but not its
nuclear translocation. LNCaP cells treated with PDBu [2.5 µM] for 2 hours
were fractionated in non-nuclear and nuclear fractions. Immunoblot analysis of
both fractions with antibodies anti-p-βDg and anti-βDg shows a clear increase
in the amount of the 26 kDa fragment in the non-nuclear compared to the
nuclear fraction. Membranes were reprobed with anti-Lamin A/C and anti-
αTubulin as controls of fraction and equal loading. The images shown are
representative images of three independent experiments.

4.2.2 Cellular density triggers the proteolysis and nu-

clear translocation of beta-dystroglycan

The partial loss of beta-dystroglycan from the basal and basolateral sides of

epithelial cells has been demonstrated in cases of high grade prostate cancer

(Mathew et al., 2013). Given the limitations of obtaining pure prostate tu-

mor tissue samples, a good in vitro assay to mimic tumour growth is growth

or culturing of cells at high densities. Through these assays, Mitchell and

colleagues were able to demonstrate the cell density-dependent proteolysis of

beta-dystroglycan (Mitchell et al., 2013).

In this regard, LNCaP cells were plated at different densities (20, 50, 80

and 110 x 106/cm2) representing the range from low to high cell density (Fig-

ure 4.6a) and then the total lysates were analysed by western blotting using

the antibodies Mandag2 and pYβDG. With successive increases in cell density

an increase in the amount of the cytoplasmic fragment of beta-dystroglycan
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(CD) was observed. Interestingly, the increase in the cellular density led to an

increase in the synthesis of full-length beta-dystroglycan (Full). Apparently,

non-phospho and phospho-beta-dystroglycan were subject to the same rate of

proteolytic events (Figure 4.6b).

After corroborating that cell density is a mechanism triggering the proteol-

ysis of beta-dystroglycan it was decided to investigate if changes in cell density

where linked to an alteration in the levels of proteolysed beta-dystroglycan in

the nucleus. LNCaP cells under the same conditions as those described above

(see Figure 4.6) were subjected to cell fractionation. Surprisingly, through cell

fractionation it was possible to differentiate mechanisms regulating the fate

of beta-dystroglycan. First, increases in the cell density led to an increase in

the proteolysis of beta-dystroglycan observed by the reduction of full-length

protein (FULL) and an increase of the 26 kDa fragment (CD) in the non-

nuclear fraction. Second, increasing the cellular density led to an increase in

the amount of full (FULL) and cytoplasmic (CD) forms of beta-dystroglycan

in the nucleus (Figure 4.7).

Together these results provide important insights into the proteolysis of

beta-dystroglycan: upon PDBu stimulation and in high cell density conditions,

beta-dystroglycan is cleaved generating a 26 kDa fragment. Both, the full-

length and cytoplasmic forms of beta-dystroglycan are translocated to the

nucleus when cells reach a high cell density, but not upon PDBu stimulation,

suggesting an overlap of both mechanisms in proteolysis but not in nuclear

transport. The next section, therefore, reports on the proteases involved in the

cleavage of beta-dystroglycan that generates the 26 kDa cytoplasmic fragment.

4.3 Dystroglycan-cleaving proteases

Beta-dystroglycan is a type I transmembrane protein. From previous reports it

is known that matrix-metalloproteases are able to exert a proteolytic cleavage

on the extracellular domain of beta-dystroglycan (Yamada et al., 2001). This
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Figure 4.6: Cell density dependent proteolysis of beta-dystroglycan. (a)
LNCaP cells were seeded at different densities (20, 50, 80, 111 x 106 cells/cm2

representing the ranges from low to high cell density) (bright field microscopy,
objective 10X, scale bar = 100 µm) and lysed after 48 hours growth. (b)
Lysates were immunoblotted with antibodies anti β-dystroglycan (Mandag2)
and anti p-β-dystroglycan (pYβDG) antibodies. The increase in the cell den-
sity leads to an increase in the proteolysis of beta-dystroglycan. Alpha-tubulin
is shown as the loading control.
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Figure 4.7: Full-length and cd-βDg are translocated to the nucleus in a cell
density dependent manner. LNCaP cells were seeded as in Figure 4.6. After
48 hours, cells were collected for cell fractionation. Non-nuclear and nuclear
fractions were incubated with primary antibodies Mandag2 and pYβDG. Rep-
resentative images of three independent experiments show the nuclear accu-
mulation of the 43 kDa and 26 kDa forms of non-phospho- and phospho-beta-
dystroglycan. Fibrillarin and alpha-tubulin are shown as the loading controls.

cleavage generates a 31 kDa fragment of beta-dystroglycan that is still an-

chored to the plasma membrane. So, there may be other proteases responsible

for additional cleavages and generation of the 26 kDa cytoplasmic fragment.

The plasma membrane is a hydrophobic environment wherein most cellular

enzymes have a restricted function, because of their main requirement for wa-

ter. Of the proteases known to exert proteolytic functions in hydrophobic

environments, gamma-secretase is the best candidate enzyme for the cleavage

of beta-dystroglycan and the generation of the cytoplasmic fragment.
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4.3.1 Gamma-secretase and furin

It was observed previously that at high LNCaP cell density the amount of the

26 kDa fragment of beta-dystroglycan increased. To replicate this, LNCaP

cells were plated at a high confluency. Following growth for a further 24

hours, cells were treated with DAPT (N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-

S-phenylglycine t-Butyl Ester), which has been shown to be an inhibitor of

gamma-secretase (Dovey et al., 2001). Cells that were treated with different

concentrations of DAPT (although not significant) showed a tendency to re-

duction in the ratio of cytoplasmic fragment to full-length beta-dystroglycan

compared with the control, however this reduction was not significant. Al-

though this was expected to be partnered with an increase in the levels of

the transmembrane fragment of beta-dystroglycan, this did not happen (Fig-

ure 4.8). It could be that, if increased, the transmembrane fragment is not

detected because it is subjected to a rapid turnover by mechanisms such as

the proteasomal activity, as will be shown later.

From experiments involving cell fractionation under high cell density con-

ditions, a large amount of cleaved beta-dystroglycan was observed and also

an increase in the amount of full and cytoplasmic forms of beta-dystroglycan

within the nucleus (Figure 4.7). To determine if the same effects observed in

whole cell lysates of cells treated with DAPT were also observed in nuclear

beta-dystroglycan it was decided to fractionate cells under DAPT treatment

and compare non-nuclear and nuclear beta-dystroglycan with untreated con-

trols. This time the reduction in the amount of the cytoplasmic fragment

(CD) was not very evident, however, an increase in the amount of the trans-

membrane (TM) fragment of beta-dystroglycan in cells under pharmacological

treatment in total cell lysates was observed (Figure 4.9). Although faint, the

same effect was observed in non-nuclear and nuclear fractions. The increase

in the amount of the transmembrane fragment of beta-dystroglycan was ac-

companied by an increase in the amount of the full-length form (FULL) in the

nucleus (Figure 4.9).

Beta-dystroglycan harbours a nuclear localisation signal immediately down-
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Figure 4.8: The generation of the 26 kDa fragment of beta-dystroglycan is
gamma-secretase dependent. (a) LNCaP WT were grown for 24 hours before
being treated with different concentrations of DAPT or DMSO (control) for
further 24 hours. Cells were washed with PBS and then lysed with RIPA buffer.
Lysates were immunoblotted with anti-p-βDg and anti-βDg antibodies. The
increase in the concentration of DAPT leads to a reduction in the amount
of the cytoplasmic fragment of beta-dystroglycan. Alpha-tubulin is shown as
the loading control. (b) The graphs show the normalization of the 26 kDa
fragment to the full-length 43 kDa beta-dystroglycan (means ± SEM, n=3).

stream of the transmembrane domain (see Figure 3.6b). This domain is a motif

rich in basic R and K amino acids. An in-depth analysis of this motif using the

Eukaryotic Linear Motif resource (http://elm.eu.org), highlighted its sus-

ceptibility to further proteolytic events mediated by furin. In order to exclude

the possibility of furin cleaving beta-dystroglycan, LNCaP cells were treated

with increasing concentrations of the peptidyl chloromethylketone, furin in-

hibitor I. Increasing concentrations of the inhibitor reduced the level of the

26 kDa fragment of beta-dystroglycan (Figure 4.10). Although there were re-

duced levels of the cytoplasmic fragment of beta-dystroglycan as a consequence

of the treatment with furin inhibitor I, additional experiments are required to

further show the role of furin in the cleavage of dystroglycan downstream its

transmembrane domain.

In summary, the experiments shown in this section provide evidence of
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Figure 4.9: Gamma-secretase has a potential role in the proteolysis of nuclear
beta-dystroglycan. LNCaP cells treated under the same conditions as for whole
cell lysates were collected for cell fractionation. Immunoblot analysis with anti-
p-βDg and anti-βDg of total lysates, non-nuclear and nuclear fractions show an
increase in the amount of the transmembrane fragment of beta-dystroglycan in
the cells treated. Membranes were stripped and reprobed with anti-GAPDH
and anti-Lamin A/C antibodies to show the loading controls for the non-
nuclear and nuclear fractions respectively.

gamma-secretase and furin as the enzymes involved in the generation of the

cytoplasmic fragment of beta-dystroglycan. Regulated intramembrane proteol-

ysis is a process that usually involves the generation of a cytoplasmic fragment

that is then translocated to the nucleus to exert regulatory functions. The

next section will therefore examine some of the cellular processes regulating

the fate of the cytoplasmic fragment of beta-dystroglycan.

4.4 Nuclear translocation of the cytoplasmic

fragment of beta-dystroglycan

4.4.1 The cdβDgFlag is degraded by the proteasome

From DAPT treatment experiments (Figure 4.8) a reduction in the levels of

the cytoplasmic fragment of beta-dystroglycan was observed, but there were
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Figure 4.10: Potential role of furin in the cleavage of beta-dystroglycan. (a)
LNCaP cells grown for 24 hours and then treated with Furin inhibitor I at
different concentrations. After 24 hours post-treatment, cells were lysed with
RIPA buffer and immunoblotted with antibodies anti-βDg and anti-p-βDg.
There is a reduction in the amount of the cytoplasmic fragment of beta-
dystroglycan upon the increase in the amount of furin inhibitor. Alpha-tubulin
is shown as the loading control. (b) The graphs show the normalization of the
26 kDa fragment against the 43 kDa form of phospho- and non-phospho-beta-
dystroglycan (means ± SEM, n=3, *p=<0.05).

not any apparent changes in the levels of the transmembrane fragment. This

was suggestive of other mechanisms involved in the rapid turnover of these

small fragments. From experiments with multiDsk it was observed that beta-

dystroglycan is subject to multiple ubiquitination events (see Figure 3.21),

indicating a possible involvement of the ubiquitin-proteasomal system.

Inhibition of proteasomal activity with MG132 allowed a great recovery of

the transmembrane (TM) and cytoplasmic fragment (CD) of beta-dystroglycan

compared with control treatments. Interestingly, the band usually observed be-

tween 130 and 250 kDa (HDG) was not detected on cells treated with MG132.

The loss was more prominent in immunoblots for non-phosphorylated beta-

dystroglycan compared to its phosphorylated counterpart (Figure 4.11).

131



CHAPTER 4. REGULATED INTRAMEMBRANE PROTEOLYSIS OF
BETA-DYSTROGLYCAN

This leads to the conclusion that, once beta-dystroglycan is subject to pro-

teolytic events mediated by gamma-secretase and furin, both the transmem-

brane and cytoplasmic fragments are rapidly degraded by the proteasome.
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Figure 4.11: Beta-dystroglycan is degraded by the proteasome. After 24 hours
growth, LNCaP cells were further treated with MG132 [15 µM] or DMSO (con-
trol) for 15, 18 and 21 hours. Cells were collected with RIPA buffer and im-
munoblotted with anti-βDg and anti-p-βDg antibodies. Treatment of LNCaP
cells with MG132 leads to a great recovery of the 31 and 26 kDa forms of
beta-dystroglycan compared with the control. The experiment was also per-
formed using different concentrations of MG132 (10, 20 and 30 µM) for 24
hours with the same effect observed with both antibodies (data not shown).
Alpha-tubulin is shown as the loading control.

4.4.2 The cdβDgFlag is translocated to the nucleus

If beta-dystroglycan is frequently reduced in cases of muscular dystrophies and

cancer then it means that the rate of proteolysis is very high, hence the amount

of the cytoplasmic fragment of beta-dystroglycan should be increased. In order

to have a better idea about some of the cellular events involved in this situa-

tion, it was decided to take advantage of the plasmid expressing recombinant

αβDgFlag and perform some modifications in order to over-express the amino

acids encoding the cytoplasmic portion of beta-dystroglycan only (cdβDgFlag)
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(Figure 4.12). Besides the Flag tag, it was decided not to introduce any other

tags in order to mimic similar conditions to those of the endogenous cleaved

cytoplasmic fragment.
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Figure 4.12: Generation of the plasmid pcDNA3.1(+)-cd4βDgFlag. In the
schematic is shown the coding sequence of the cytoplasmic fragment of mβDg
that was amplified by PCR from the plasmid pcDNA3.1(+)-αβDgFlag. The
forward primer was designed to introduce the starting codon methionine
(black) in the 5’ end before the codon of Y773 that marks the start of the cyto-
plasmic fragment of beta-dystroglycan (see material and methods). Following
the characterisation by sequencing, the plasmid was purified and transfected
in LNCaP cells.

The transfection of LNCaP cells with the plasmid encoding cdβDgFlag

followed by co-immunostaining with Mandag2, pyβDG and Flag antibod-

ies showed a clear co-localisation between phospho and non-phospho beta-

dystroglycan with Flag-tagged beta-dystroglycan. Importantly, the cytoplas-

mic fragment was distributed all along the cell but was more concentrated

in the nucleus (Figures 4.13a and 4.14a). Additionally, and although it was

not quantitatively determined, it was observed that the overexpression of the

cytoplasmic fragment of beta-dystroglycan had profound effects in different

cellular processes such as (Figures 4.13b and 4.14b):

1. Nucleoli were reduced in number and had an apparent increase in size

(may be due to a process of nucleolar fusion)
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2. There was an increased number of multinucleated cells.

3. There was an increased number of vesicle-like structures throughout the

cytoplasm.

4. Cells were increased in size.

5. There was an increased number of apoptotic-like cells.

All these observations were gathered by comparing the phenotype of trans-

fected cells with their neighbour untransfected counterparts. However more

in-depth analysis will be required to further show the implication of the cy-

toplasmic fragment of beta-dystroglycan in each one of the cellular processes

described above.

During the process of characterisation of this recombinant cytoplasmic frag-

ment it was not possible to see its expression by western blotting supporting

the idea of a rapid degradation by the proteasome. However, inhibition of

proteasomal activity, followed by immunoprecipitation with Flag M2 resin, al-

lowed a substantial recovery of this fragment (Figure 4.15). The detection of

a single band is suggestive of a mono-ubiquitinated cytoplasmic fragment and

has to be confirmed by other in-depth analysis such as mass spectrometry.

As stated before, full-length beta-dystroglycan co-localized with ubiquitin.

In this regard, it was decided to get a better idea about the ubiquitinated

status of cdβDgFlag. The immunostaining of cells expressing this fragment

revealed its co-localisation with ubiquitin and most importantly, most of the

co-localisation was concentrated in the nucleus (Figure 4.16).

The series of experiments shown in this section suggest that the cytoplasmic

fragment of beta-dystroglycan is ubiquitinated, translocated to the nucleus and

rapidly degraded by the proteasome. The over-expression of the cytoplasmic

fragment apparently affected some stages of cell division (abnormal nuclear

separation), increased the number of vesicle-like structures in the cell and the

number of apoptotic cells (author’s own observation) which will require further

in-depth analyses to fully understand.
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β-dystroglycan rFlag 

DAPI MERGE 
(a)

CD’ CD’ 

(b)

Figure 4.13: The cdβDgFlag has a preferential nuclear localisation. Trans-
fected LNCaP cells with the plasmid encoding the cytoplasmic fragment of
βDgFlag were co-immunostained with anti-βDg (green) and anti-rFlag (red)
antibodies. A middle stack section of deconvolved confocal microscopy images
shows that a high amount of the exogenous expressed cytoplasmic fragment of
βDg is concentrated in the nucleus in addition to some cellular abnormalities
(CD’). DAPI is used to counterstain the nucleus. Scale bar = 10 µM.
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Flag M2 p-β-dystroglycan 

DAPI MERGE 
(a)

CD’ CD’ 

(b)

Figure 4.14: The cdβDgFlag has a preferential nuclear localisation. Trans-
fected LNCaP cells with the plasmid encoding the cytoplasmic fragment of
βDgFlag were co-immunostained with anti-p-βDg (red) and anti-Flag M2
(green) antibodies. A middle stack section of deconvolved confocal microscopy
images shows that a high amount of the exogenous expressed cytoplasmic
fragment of βDg is concentrated in the nucleus in addition to some cellular
abnormalities (CD’). DAPI is used to counterstain the nucleus. Scale bar =
10 µM.
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Figure 4.15: The cdβDgFlag is degraded by the proteasome. LNCaP cells
were transfected with the cytoplasmic fragment of βDgFlag. 24 hours post-
transfection, cells were treated with the proteasomal inhibitor MG132 followed
by further immunoprecipitation with the Flag M2 resin. The signal specific
to the 26 kDa form of βDg was only detected in cells treated with MG132
followed by immunoprecipitation. Lysates of cells transfected with full-length
βDg were included as a reference of the electrophoretic mobility of the exoge-
nous cdβDgFlag. WT lysates helped to discriminate any possible non speci-
ficity of the antibody.
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4.4.3 Cleavage site for the generation of cdβDgFlag

The cleavage of beta-dystroglycan, followed by its degradation by the protea-

some is a potential pathway for the turnover of this type I transmembrane

protein. Importantly, in some muscular dystrophies and forms of cancer these

processes are up-regulated. This could be due to an abnormal activity of the

proteasome, an increased activity of gamma-secretase and furin, or due to other

additional factors, such as glycosylation or the abnormal activity of matrix-

metalloproteases. A clear consequence of these abnormal activities could be

the increased cleavage of plasma membrane proteins important for the restric-

tion of the abnormal growth of cancerous cells. Additionally, although the

cleavage site by MMP-9 has been suggested, there is no knowledge of the func-

tional consequences of the secreted extracellular domains of beta-dystroglycan

(Bozzi, Inzitari, et al., 2009).

To distinguish naturally generated cytoplasmic fragments from that origi-

nated by trypsin, lysates were subjected to dimethyl labelling. By using this

protocol, it is possible to add methyl groups to the free N-terminal sides of

proteins by the chemical action of formaldehyde and cyanoborohydride (Shen,

Hsu, & Chen, 2007). Therefore, an immunoprecipitation assay was performed

using Flag M2 resin from lysates of LNCaP cells transiently transfected with

the plasmid αβDgFlag. Immunoprecipitated material with the Flag M2 resin

was separated by SDS-PAGE and then stained with brilliant blue G colloidal

dye (Figure 4.17a). Bands corresponding to cytoplasmic fragment and full-

length beta-dystroglycan were excised and di-methyl labelled with formalde-

hyde/cyanoborohydrade or left without any chemical labelling (Figure 4.17b).

Following this, the peptides were digested with trypsin and then analysed by

tandem mass spectrometry. From this attempt there was a good coverage

of beta-dystroglycan (78%), but it was not possible to identify both the se-

quence corresponding to the extracellular or transmembrane cleavage products

of full-length beta-dystroglycan (Figures 4.17c and 4.18).
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Figure 4.18: Analysis of the cleavage site of beta-dystroglycan. Procedure as
in Figure 4.17. Shown are the peptides identified by mass spectrometry in the
eluate and bead fractions of the gel slices corresponding to the full-length and
cytoplasmic fragment of beta-dystroglycan subject to chemical labelling or left
without any treatment.
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4.5 The relationship Notch-dystroglycan

During the course of our cell density experiments an apparent increase in the

synthesis of beta-dystroglycan was observed. The higher the cell density, the

greater the protein levels of full-length beta-dystroglycan (see Figure 4.6).

This indicated that cell density could be stimulating the synthesis (or reduc-

ing degradation) of beta-dystroglycan through unknown signalling pathways.

First, it could be that beta-dystroglycan stimulates its own synthesis through

an auto-regulatory mechanism: subsequent increases in the proteolysis of beta-

dystroglycan then increases levels of cytoplasmic fragment, its nuclear translo-

cation and its association with nuclear co-factors in order to stimulate its own

synthesis. During the course of this project it was observed (in some ex-

periments) that the mutant alpha/beta-dystroglycan-Flag-Y890F, which had

reduced levels of the 26 kDa cytoplasmic fragment, had also a reduced ex-

pression of full-length beta-dystroglycan compared with wild type alpha/beta-

dystroglycan-Flag. This partly supports the hypothesis of beta-dystroglycan

auto-regulation, although further, in-depth analysis will be required to show

that the cytoplasmic fragment is involved in this auto-regulatory process, as

will be discussed later in this chapter.

Second, the increased number of cell contacts generated during high cel-

lular density could be increasing the activation and nuclear translocation of

unknown proteins which in turn stimulate the synthesis of beta-dystroglycan.

Notch is a protein that is subject to RIP and translocated to the nucleus upon

cell-cell contact (Kopan, 2012). In this regard, a previous study has shown the

interaction of the DAP complex in Drosophila with genes involved in Notch

signalling pathway (Kucherenko et al., 2008). More recently, Sirour and col-

leagues demonstrated that, during skin morphogenesis in Xenopus laevis, the

transcription of dystroglycan is stimulated upon Notch activation (Sirour et al.,

2011). Together, these data support the hypothesis of beta-dystroglycan being

subject to transcriptional regulation upon Notch activation during increased

cell density.
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In order to test this second hypothesis, LNCaP cells were subjected to

treatment with the Notch signalling pathway activator resveratrol (Pinchot

et al., 2011). The treatment with resveratrol revealed several interesting ob-

servations. First, the growth of LNCaP cells was restricted over a period of

72 and 96 hours. Second, cells left untreated confirmed previous findings ob-

served in cell density experiments: that increases in cell confluency led to an

up-regulation in beta-dystroglycan protein synthesis. Third, the up-regulation

of beta-dystroglycan protein synthesis, was observed at very reduced levels in

cells exposed to resveratrol although it is worth noting that even with the very

low number of cells at 72 and 96 hours treatment (Figures 4.19a and 4.20a),

the levels of full-length and 26 kDa cytoplasmic fragment of beta-dystroglycan

had a tendency to increase (Figures 4.19b and 4.20b) and (Figures 4.19c and

4.20c).

Whether dystroglycan protein synthesis is up-regulated as a consequence

of its own auto-regulation, or Notch activation, is something that clearly needs

further research. It will necessary to link the effects of the over-expression of

beta-dystroglycan observed in high cell density experiments, with physiological

and disease processes, such as in prostate cancer.

4.6 Discussion

4.6.1 Regulated intramembrane proteolysis of beta-dystroglycan

Regulated intramembrane proteolysis is a mechanism that allows the activation

of specific domains within a protein. The mechanism starts with the shedding

of the extracellular domain of transmembrane proteins stimulated by different

factors such as cell density, phorbol esters, calcium, ligand binding and other

unknown stimulants (Jung et al., 2003; Kopan & Ilagan, 2004; Lal & Caplan,

2011), followed by a second cleavage generated by gamma-secretase in the

transmembrane domain.

A small 26 kDa cytoplasmic fragment of beta-dystroglycan in addition to
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Figure 4.19: Investigating the role of the Notch pathway in the regulation
of the synthesis of beta-dystroglycan. (a) LNCaP cells were seeded at a low
density and growth for 24 hours before being treated with Resveratrol [100
µM] or the corresponding amount of DMSO for 0, 24, 48 and 72 hours. At
every time point, bright-field microscopy images were taken to show the rate of
growth of the cells treated against the cells control. (b) Cells collected at the
stated times were lysed and the lysates were immunoblotted with antibodies
anti-βDg and anti-p-βDg. (c) The band intensity of controls and treatments
was quantified and normalized against the loading control GAPDH (means ±
SEM, n = 3). The treatment with resveratrol seems to keep the levels of βDg
throughout the 72 hours treatment regardless of the low number of cells as
shown in the bright-field microscopy images.

the 43 and 31 kDa forms observed in this and other studies (Mathew et al.,

2013; Mitchell et al., 2013; Thompson, 2007), suggests that beta-dystroglycan

is subject to a second proteolytic cleavage by gamma-secretase. From the
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Figure 4.20: Investigating the role of the Notch pathway in the regulation of
the proteolysis of beta-dystroglycan. Experiments were performed as in Figure
4.19. In (c), The band intensity of 43 kDa full (FULL), 31 kDa transmembrane
(TM), 26 kDa cytoplasmic (CD) and additional 38 kDa (38 kDa) band were
quantified and the percentages of each band from two independent experiments
are shown. GAPDH is shown as the loading control. The treatment with
resveratrol seems to keep increased levels of FULL and CD of βDg throughout
the 96 hours treatment regardless of the low number of cells as shown in bright-
field microscopy images (scale bar = 100 µm, objective = 10 X).
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mechanisms stimulating the proteolysis of plasma membrane proteins, there

is evidence that PDBu and cell density are triggering factors for the initial

shedding of beta-dystroglycan to the extracellular environment.

The stimulation of LNCaP cells with the PKC activator PDBu, led to an

increase in the amount of the 26 kDa cytoplasmic fragment in a time dependent

manner, indicating that not only in myoblasts (Thompson, 2007) but also in

LNCaP cells, the proteolysis of beta-dystroglycan is stimulated by phorbol

esters such as PDBu.

Following phorbol ester stimulation, the cleaved cytoplasmic domains of

the p75 neurotrophin receptor and megalin are translocated to the nucleus to

perform transcriptional regulatory activities (Jung et al., 2003; Y. Li, Cong,

& Biemesderfer, 2008). Stimulation with PDBu increased the levels of the

cytoplasmic fragment of beta-dystroglycan in non-nuclear extracts, but not in

nuclear extracts as was observed with p75 neurotrophin receptor and megalin.

PDBu stimulation produced some phenotypic cellular changes in LNCaP cells

such as the formation of ruffles like structures and the re-localisation of beta-

dystroglycan to an area surrounding the nucleus. This indicates that, although

beta-dystroglycan is prone to proteolysis stimulated by PDBu, the transloca-

tion of its cytoplasmic fragment is not triggered by PDBu stimulation.

A previous report has shown that the nuclear translocation of beta-dystroglycan

is mediated by the activated F-actin binding protein ezrin in C2C12 muscle

derived cells (Vásquez-Limeta et al., 2014). As ezrin is a downstream target of

PKC after stimulation with phorbol esters (Ng et al., 2001), it was expected

to see increased levels of beta-dystroglycan (either full-length or cytoplasmic

fragment) in the nucleus, however this did not happen. As the cytoplasmic

fragment of beta-dystroglycan is a sequence that harbours multiple motifs in

charge of regulating its interaction with a multitude of proteins (Moore &

Winder, 2010), then it is not surprising that the stimulation with PDBu may

be promoting its cytoplasmic retention and not its nuclear translocation as

might be predicted. In this regard it has been shown that after phorbol es-

ter stimulation, the generated cytoplasmic domain of the ErbB4 receptor is
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translocated to the nucleus alone or associated with the transcriptional coacti-

vator YAP, but retained in the cytoplasm as a consequence of its interactions

with the tumour suppressor WWOX, associations mainly dictated by the in-

teraction of WW domains with SH2 motifs (Aqeilan et al., 2005). Thus, it

may be that the generated cytoplasmic fragment of beta-dystroglycan inter-

acts with proteins containing WW domains through its activated SH2 domains

or vice versa, blocking the nuclear translocation regulated by activated ezrin.

Further research will be required to determine the protein(s) and cellular con-

ditions modulating the nuclear transport of beta-dystroglycan (or its generated

transmembrane and cytoplasmic fragments).

The stimulation with PDBu leads to the shedding of the extracellular do-

main of beta-dystroglycan leaving a truncated form containing the transmem-

brane domain (Bozzi, Inzitari, et al., 2009; Yamada et al., 2001). It is possible

that this transmembrane fragment is anchored to the nuclear membrane, ex-

plaining the strong beta-dystroglycan signal observed around the nucleus. It

may be that after the stimulation with PDBu, cleaved beta-dystroglycan is re-

tained at the nuclear envelope in a similar way as the Heparin-binding EGF-like

growth factor (HB-EGF) (Hieda et al., 2008) where it exerts its nuclear activ-

ities. The detection of full-length and cytoplasmic forms of beta-dystroglycan

in the nucleus suggests that if the transmembrane fragment is present in the

nucleus it may be in a transitional state, because of its rapid conversion to the

26 kDa cytoplasmic fragment.

So, if PDBu treatment did not result in an apparent increase in the amount

of full and cytoplasmic forms of beta-dystroglycan being translocated to the

nucleus, what could be another potential mechanism triggering this event? As

mentioned above, cell density is another factor that may be able to trigger

the proteolysis of plasma membrane proteins and the nuclear translocation

of the generated cytoplasmic domains. The growth of LNCaP cells at dif-

ferent densities permitted us to corroborate that beta-dystroglycan is subject

to proteolysis in a cell density dependent manner, confirming previous results

obtained by Mitchell and colleagues (Mitchell et al., 2013). From cell frac-
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tionation assays the nuclear translocation of full-length and cytoplasmic forms

of beta-dystroglycan were observed in a cell density dependent manner. One

unanticipated finding was the up-regulation of the synthesis of full-length beta-

dystroglycan with increasing cell density, a finding that will be discussed later

in this section.

From previous reports it is known that cell density could be a triggering

factor for the proteolysis and nuclear translocation of activated cytoplasmic

domains, as is the case of some protein tyrosine phosphatases (Anders et al.,

2006). However the same process can have opposite effects, as has been re-

ported for alpha- adducin (C. L. Chen, Lin, Lai, & Chen, 2011). Increasing

cell density leads to an increase in the number of cell-cell contacts suggest-

ing that these are the triggering factor for the cleavage of beta-dystroglycan.

However, how these proteolytic events on beta-dystroglycan and its nuclear

translocation regulate tumour growth, invasiveness and metastasis, is a ques-

tion that has to be addressed in order to ascribe a biological role to nuclear

beta-dystroglycan under these cellular events.

Different evidence provided by different labs (Cisneros, Muschler and Winder),

and cell fractionation experiments performed in this thesis, confirm the nuclear

localisation of beta-dystroglycan. In the course of finding an explanation to

the nuclear function of beta-dystroglycan the question arose as to whether it

provides a structural role to the nuclear lamina, due to an association with

components of the nuclear matrix (Fuentes-Mera et al., 2006; Villarreal-Silva

et al., 2010), or whether it performs a more dynamic role through the modu-

lation of transcriptional regulatory activities (Mathew et al., 2013; Oppizzi et

al., 2008; Sgambato & Brancaccio, 2005). The structural role can be supported

by the fact that beta-dystroglycan has a transmembrane domain and its re-

ported association with components of the nuclear lamina (Mart́ınez-Vieyra

et al., 2013). On the other hand, the localisation of beta-dystroglycan in the

nucleoplasm, detached from the nuclear membrane could be another plausible

option as has been observed for some cell surface transmembrane receptors

(reviewed in (Carpenter & Liao, 2009)).
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From experiments performed in normal and human prostate cancer tissues,

and in normal and prostate cancer derived cell lines (Mathew et al., 2013) in

addition to experiments performed in this thesis, it is clear that not only the

43 kDa full-length beta-dystroglycan is present in the nucleus as reported by

the Cisneros and Muschler labs (Fuentes-Mera et al., 2006; Oppizzi et al.,

2008), but also its 31 kDa transmembrane and 26 kDa cytoplasmic fragments.

The presence of these three species of beta-dystroglycan in the nucleus could

then provide an alternative explanation to the static-dynamic nuclear beta-

dystroglycan based on the following analysis.

Oppizzi and colleagues supported the idea of a dynamic 43 kDa beta-

dystroglycan that was not restricted to the nuclear envelope based on im-

munostaining and fluorescence recovery after bleaching (FRAP) experiments.

Although these techniques showed the mobility of beta-dystroglycan, they

were not sensitive enough to show if the species detected corresponded to its

full-length or cytoplasmic forms. Additionally, the biochemical method em-

ployed for cell fractionation did not allow them to discriminate if the detected

full-length beta-dystroglycan had a nuclear membrane or nucleoplasmic origin

(Oppizzi et al., 2008). Then, it may be that the 43 kDa beta-dystroglycan

species detected corresponded to the nuclear matrix associated form, whereas

the highly dynamic form corresponded to its 26 kDa cytoplasmic species.

If this is the case, are both the 43 and 26 kDa forms of beta-dystroglycan

translocated from the cytoplasm to the nucleus? or is full-length beta-dystroglycan

translocated from the cytoplasm to the nuclear envelope, and then further pro-

cessed to generate its 26 kDa species?

Treatment of LNCaP cells with a gamma-secretase inhibitor reduced the

levels of the 26 kDa cytoplasmic fragment of beta-dystroglycan in total lysates

indicating that the plasma membrane 43 kDa beta-dystroglycan is subject to

proteolysis mediated by gamma-secretase. Although the fractionation of cells

exposed to the same treatment conditions did not show a reduction in the

amount of the 26 kDa cytoplasmic fragment, it did show an increase in the

amount of the 31 kDa transmembrane fragment of beta-dystroglycan in non-
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nuclear and nuclear fractions. This is suggestive of plasma and nuclear mem-

brane anchored beta-dystroglycan being subject to RIP mediated by gamma-

secretase in order to generate a 26 kDa cytoplasmic fragment. The regulation

of beta-dystroglycan by proteolysis mediated by gamma-secretase is a mecha-

nism that is present in different cellular models as similar results obtained in

this thesis have been reported by mass spectrometry in other cellular models

such as HEK and HeLa cells (Hemming et al., 2008).

These findings can be summarised as the following hypothesis: nuclear

membrane anchored full-length beta-dystroglycan is subject to a first cleavage

on its extracellular domain mediated by MMP-9; the remaining transmem-

brane fragment is then cleaved by a second proteolytic event performed by

gamma-secretase, all this in a similar way to its homologue in the plasma

membrane.

As mentioned in the introduction to this chapter, RIP is a process that has

been demonstrated for transmembrane proteins found on the plasma mem-

brane, though there is not much evidence of the same process happening for

nuclear lamin anchored proteins. If nuclear beta-dystroglycan is subject to

RIP, the same elements (or homologues) found on the plasma membrane have

to be present in this environment. In this regard, although not direct evidence

was gathered in this project, the following elements can be provided in support

of the RIP of nuclear beta-dystroglycan:

1. LARGE2, the enzyme responsible for glycosylation of alpha-dystroglycan

is not expressed in LNCaP cells. This renders a hypoglycosylated nuclear

alpha-dystroglycan susceptible to the cleavage by MMPs (see section 3.5

for more details).

2. In various studies, it has been shown that MMPs, among them MMP-2

and -9, are not only present in the extracellular matrix environment and

at the plasma membrane, but also in the nucleus of different cells. Im-

portantly, the nuclear expression of active MMP-9 was correlated with its

expression during the S-phase of the cell cycle (Zimowska, Swierczynska,
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& Ciemerych, 2013). This could explain the mechanism by which full-

length nuclear beta-dystroglycan is being cleaved with the consequent

generation of its transmembrane fragment.

3. Presenilin, the core catalytic subunit of the gamma-secretase complex

was reported to be associated with components of the nuclear lamina

(J. Li, Xu, Zhou, Ma, & Potter, 1997). However, there has not been

any complementary reports indicating if this catalytic subunit is func-

tional and, more importantly, if the other components of the complex

are present in this nuclear environment.

4. In Arabidopsis it has been shown that the transcription factor NTM1 is

subject to RIP in the nuclear membrane mediated by calpains, support-

ing the possibility of the same process happening in mammalian cells

(Y. S. Kim et al., 2006).

In-depth research will be required to show that the proteolysis mediated by

gamma-secretase is performed in the nuclear boundaries. The employment of

strategies such as presenilin-deficient cells or site-directed mutagenesis will be

useful to determine the site(s) in where gamma-secretase performs its catalytic

activity. Subsequently it would be possible to determine the biological rele-

vance of reduced small cytoplasmic fragments of beta-dystroglycan in cancer

and muscular dystrophies.

In an attempt to determine the site where gamma-secretase performs the

transmembrane shedding of beta-dystroglycan, mass spectrometry analysis

and dimethyl labelling were employed. However, the approach was not success-

ful because the sequence corresponding to the transmembrane domain was not

recovered. The sequences retrieved from the mass spectrometer corresponded

to the amino-terminus of beta-dystroglycan and the other corresponded to

most of its carboxyl terminal half. Interestingly, the sequence reported by the

mass spectrometer started on the amino acid lysine 778 (K778), a sequence

predicted by in silico analysis as potential furin cleavage site. The inhibition
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of the proteolytic activity of furin showed moderate, but consistently reduced

levels of the cytoplasmic fragment of beta-dystroglycan.

Additionally, these results need to be interpreted with caution because the

stretch of basic amino acids corresponding to the nuclear localisation signal

of beta-dystroglycan is susceptible to proteolysis by trypsin, the enzyme used

to digest the peptides before mass spectrometry analysis. Also, an analysis

in either furin-null or furin-deficient cells will be required to show the specific

involvement of furin in the cleavage of beta-dystroglycan.

If gamma-secretase cleaves beta-dystroglycan in its transmembrane do-

main, how is this domain still susceptible to an extra-cleavage performed by

furin a few amino acids downstream of the remnant transmembrane domain?

The answer could be a cysteine amino acid located at the interphase between

the transmembrane domain of beta-dystroglycan and its nuclear localisation

sequence. Palmitoylated cysteines are frequently located in the cytoplasmic

side of regions next to transmembrane domains or located inside the hydropho-

bic environment of the plasma membrane, usually surrounded by hydrophobic

and basic amino acids of transmembrane proteins (Aicart-Ramos et al., 2011).

A cysteine 772 located within the cytoplasmic fragment of beta-dystroglycan

has these characteristics. Indeed, by mass spectrometry analysis it was shown

that beta-dystroglycan is subject to palmitoylation in rat embryonic cortical

neurons. However, it was not completely reported if the cysteine in the bound-

aries of the plasma membrane facing the cytosol is the one subject to this PTM

(Kang et al., 2008). Further research is necessary to determine if the cysteine

immediately below the transmembrane domain of beta-dystroglycan is subject

to palmitoylation and facilitates the putative cleavage by furin.

Although the experiments performed in this thesis support the proteolysis

of beta-dystroglycan mediated by gamma-secretase and the nuclear localisa-

tion of its full and cytoplasmic forms, why did the Cisneros and Muschler

groups not detect this small 26 kDa fragment in the nucleus and also, why

did they observe a great variability in the levels of full-length nuclear beta-

dystroglycan? The answer may be that, although the three species are present
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in the nucleus, the 31 kDa transmembrane and 26 kDa cytoplasmic fragments

are subject to a rapid turnover in the nucleus as has been reported for other cy-

toplasmic domains, such as those generated from Notch, EpCAM, Neogenin,

APP, among others (Cupers, Orlans, Craessaerts, Annaert, & De Strooper,

2001; Goldschneider et al., 2008; Maetzel et al., 2009).

The first clue was provided by treating LNCaP cells with MG132. Cells

in which the proteasomal activity was inhibited had a substantial recovery of

the transmembrane and cytoplasmic fragments of beta-dystroglycan indicating

that they are subject to a rapid turnover mediated by the proteasome.

To better understand the effects of the cytoplasmic fragment and its cellular

localisation, it was decided to transfect LNCaP cells with the DNA coding se-

quence corresponding to the cytoplasmic fragment of beta-dystroglycan. After

many attempts, this cytoplasmic fragment was only recovered when cells were

treated with the proteasome inhibitor MG132 followed by further immunopre-

cipitation. The signal corresponding to this small cytoplasmic fragment was

broadly distributed in the cell, but mainly localised to the nucleus. Additional

analyses are required to show if the signal detected in the nucleus corresponds

to the entire or the degraded cytoplasmic fragment of beta-dystroglycan. Im-

portantly, cells overexpressing this small 26 kDa cytoplasmic fragment pre-

sented different phenotypic changes compared with the non-transfected cells,

such as an increase in size of the nucleolus, defects in cellular division (nuclear

division), and a susceptibility to apoptosis. However, these results require of

an in-depth analysis to further show the broad implications of the cytoplasmic

fragment of beta-dystroglycan in different cellular processes.

From the the results gathered by the treatment with MG132 it can be

suggested that, after the proteolytic events mediated by MMPs and gamma-

secretase either on the plasma or nuclear membranes, the cytoplasmic fragment

of beta-dystroglycan is rapidly translocated to the nucleus to exert unknown

regulatory functions before being degraded by the nuclear proteasome. The

degradation of proteins by the nuclear proteasome system has been well estab-

lished (Rockel et al., 2005; von Mikecz, 2006) and has been demonstrated for
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transcription factors such as MyoD (Floyd et al., 2001). Then, it is tempting

to speculate that the nucleus is a cellular compartment for the degradation

of beta-dystroglycan by the ubiquitin proteasome system. However more evi-

dence will be required to further support this hypothesis or to show that beta-

dystroglycan is degraded in other cellular compartments. This will be very

important in order to support other therapies aided in restoring the members

of DAPC in diseases where the proteolytic activity of the ubiquitin-proteasome

system has been shown to be altered.

The proteolysis regulated by gamma-secretase and the degradation medi-

ated by the ubiquitin-proteasome system, could potentially explain the high

variability of non-nuclear and nuclear full-length beta dystroglycan observed

in tumour tissues (Jing et al., 2004; Sgambato et al., 2007). In these instances,

the abnormal function of MMPs and the proteasome, and the presence of a

hypo-glycosylated beta-dystroglycan could be the main factors modulating the

stability of this important transmembrane protein.

The cytoplasmic fragment of beta-dystroglycan performs most of its inter-

actions with cytoplasmic proteins. Hence, the susceptibility of the full-length

protein to frequent proteolytic events mediated by MMPs in cases of muscu-

lar dystrophies and cancer could be translated into high levels of the cyto-

plasmic fragment being secreted into the cytoplasm (or nucleoplasm), leading

to the disruption of ”normal” interactions, or to the activation/inhibition of

signalling pathways involving the cytoplasmic fragment of beta-dystroglycan.

Such a scenario has been described where overexpression of a myristoyl-tagged

CDβDg construct induced the formation of filopodia at the cell membrane

due to recruitment of RhoGEF (Batchelor et al., 2007). Detailed analyses are

required to further investigate the consequences of the over-expression of this

small fragment.

Cell density regulates not only the proteolysis and nuclear translocation of

full and cytoplasmic species of beta-dystroglycan in LNCaP cells, but also the

synthesis of full-length protein. It may be that the synthesis of dystroglycan

could be subject to cis- or trans-regulation. In a cis-regulation scenario, the
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high levels of proteolytic activity during invasion and metastasis of cancer-

ous cells would lead to increased levels of the cytoplasmic fragment of beta-

dystroglycan, which would then translocate to the nucleus to regulate its own

transcription, a phenomenon similar to that observed for the protein tyrosine

phosphatase µ (Gebbink et al., 1995).

The overexpression of beta-dystroglycan may help restrict cell growth through

contact inhibition, but in cancerous cells, such as LNCaP cells, this overex-

pression may be counterbalanced by high levels of MMP activity (Brehmer,

Biesterfeld, & Jakse, 2003), which in turn down-regulate the inhibitory activ-

ity of beta-dystroglycan. Further experiments involving overexpression of the

cytoplasmic fragment of beta-dystroglycan will be required to test this new

hypothesis.

With regard to trans-regulation, Notch has been shown to interact with

dystroglycan in a drosophila model (Kucherenko et al., 2008) and also to reg-

ulate the synthesis of dystroglycan during skin morphogenesis (Sirour et al.,

2011). Then the hypothesis of Notch playing a role in the synthesis of beta-

dystroglycan as a trans-regulator during cell density experiments could be a

reasonable idea. The treatment of LNCaP cells with resveratrol, led to a subtle

up-regulation in the expression of beta-dystroglycan in spite of the low number

of cells. This may be indicative of NOTCH regulating the transcription and

synthesis of beta-dystroglycan, as has been suggested by Sirour and colleagues

(Sirour et al., 2011). Further, in-depth analysis will be required to show that

cell density is a triggering factor stimulating the activation of Notch, which

in turn regulates the transcription and synthesis of beta-dystroglycan. In this

model, up-regulated beta-dystroglycan is modulated on the plasma membrane

by the proteolytic action of MMPs and gamma-secretase, leading to the gener-

ation of a cytoplasmic fragment that is capable of regulating other transcrip-

tional processes. Importantly, future experiments will need to differentiate

if the overexpression of beta-dystroglycan is due to a post-transcriptional or

post-translational regulation.
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4.6.2 Summary

Through the evidence provided in this chapter it can be concluded that:

1. PDBu and cell density are triggering factors for the generation of the 26

kDa cytoplasmic fragment of beta-dystroglycan.

2. The cytoplasmic fragment of beta-dystroglycan is translocated to the

nucleus in a cell density dependent manner.

3. Beta-dystroglycan is subject to proteolysis mediated by gamma-secretase

and furin.

4. Beta-dystroglycan is transported to the nucleus for its degradation through

the ubiquitin proteasome system after performing structural and dy-

namic nuclear roles.

5. The synthesis of beta-dystroglycan may be regulated by Notch signalling

in response to cell-cell contacts.

156



5
Interactome of beta-dystroglycan

5.1 Introduction

The intricate network of proteins within a cell is indeed complex and exciting,

but the understanding of each one of these protein interactions is pivotal in or-

der to unravel the mechanisms that lead to disease. Cancer, the uncontrolled

growth of cells, is a clear example wherein most of the signalling pathways

are modified in favour of cell survival, invasion and metastasis, some of the

hallmarks of cancer (Hanahan & Weinberg, 2011). In this regard, by poten-

tiating cellular interactions with the extracellular matrix and restricting the

uncontrolled growth of cells, dystroglycan has been envisaged as a tumour

suppressor (Sgambato & Brancaccio, 2005). The role of dystroglycan seems to

not to be restricted to cellular interactions with the extracellular matrix, and

the following findings support this idea:

• Dystroglycan is ubiquitously expressed in different cellular compartments

like the plasma membrane, the cytosol, the nucleus; in a multitude of cells

of different systems such as the nervous system, the muscle, the breast,

the blood, the prostate, etc.

• Dystroglycan is able to form different complexes (Johnson et al., 2013).

• Dystroglycan is cleaved by gamma-secretase rendering a free fragment

with novel unknown functions.
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• Different amino acids in the cytoplasmic domain of beta-dystroglycan

may be susceptible to different PTMs, such as phosphorylation and ubiq-

uitination. Thus, depending on the triggering signal, different pathways

will be switched on, leading to specific cellular events.

• The cytoplasmic fragment of beta-dystroglycan is structurally, highly

disordered (Figure 5.1), granting a flexible region that can be shaped

according to the type of protein interaction required, possibly with an-

other protein harbouring a highly disordered domain as well, as has been

observed for the phosphatase and tensin homologue (PTEN) (Malaney,

Pathak, Xue, Uversky, & Davé, 2013).

Alpha Beta 

Figure 5.1: The cytoplasmic domain of beta-dystroglycan is highly disordered.
ELM (http://elm.eu.org) in silico analysis of dystroglycan shows that the
cytoplasmic domain of beta-dystroglycan (stripped square) is highly disordered
with no predicted elements of secondary structure.

The combination of all these characteristics of beta-dystroglycan highlights

once more ”the complexities of dystroglycan” (Winder, 2001). With the recent

discoveries of its nuclear localisation, we asked if there were other proteins

interacting with beta-dystroglycan that could explain its functionality beyond

the plasma membrane.

Genomic sequence analysis provides us with information about the coding

sequence of a protein. However, it does not tell us about other characteristics

at the protein level, such as PTMs, protein interactions and subcellular lo-

calisation. Therefore, mass spectrometry analysis is an important and highly

sensitive tool to investigate and to understand the multitude of protein in-

teractions and post-translational modifications under certain circumstances
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(Ahmad & Lamond, 2014; Choudhary & Mann, 2010).

Thus, the objective of this chapter is to determine, by mass spectrome-

try analysis, other unknown interacting proteins that could provide us with

clues about the regulation of beta-dystroglycan throughout the cell cycle, its

functions in the nucleus and its regulation by the ubiquitin-proteasome sys-

tem. Through the set of results presented here, the exquisite multitude of

proteins interacting with beta-dystroglycan and the most representative path-

ways wherein beta-dystroglycan is involved will be shown. Finally, through

evidence already provided by other research groups and the results gathered

from the mass spectrometry screen analysis, the potential roles that beta-

dystroglycan can perform far beyond of those of a simple plasma membrane

protein will be highlighted.

5.2 Preparative analysis

The detection of beta-dystroglycan in the nucleus of different cell lines raised

the question of its role in this highly regulated compartment. The results

obtained in chapter 4, suggest that beta-dystroglycan provides structural in-

tegrity to members of the nuclear envelope and is then subjected to proteolytic

events, which signal the start of other cellular events, such as a possible co-

transcriptional regulation followed by its degradation by the nuclear protea-

some.

If dystroglycan (beta or the combination of alpha and beta) is present

in the nucleus, it has to perform a function. The possibility of its nuclear

translocation solely for degradation is controverted by the great expenditure

of energy that the cell has to invest in order to translocate a protein that can

be easily degraded in the cytosol (Stewart, 2007). Thus, the main objective of

this chapter is to determine if, in addition to the already reported non-nuclear

and nuclear components, beta-dystroglycan interacts with proteins that could

give an insight about its nuclear function(s) and the way it is further processed.
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With this in mind, it was decided to perform fractionation of LNCaP cells

in to non-nuclear and nuclear fractions. Because of the relative small size of

the nucleus compared with that of the remaining cellular components together

(cytosol, mitochondria, endoplasmic reticulum, Golgi apparatus and others),

it was therefore required to concentrate this cellular organelle in order to en-

rich nuclear proteins that could be expressed at relatively low levels, and hence

present a low number of interactions with beta-dystroglycan. Consequently,

LNCaP cells transiently transfected with the plasmid αβDgFlag were sub-

jected to cell fractionation by using a sucrose gradient protocol (see appendix

A). The reliability of the protocol was tested by immunoblotting the cellular

fractions with non-nuclear and nuclear markers such as calnexin and GAPDH,

and lamin A/C respectively. Additionally, in order to highlight non-specific

signal generated by unspecific binding of Flag antibodies, the same fractions

of non-transfected cells were included.

In Figure 5.2, it can be observed that full-length 43 kDa beta-dystroglycan

was well distributed between both fractions and importantly, it was accom-

panied by the 130-250 kDa high molecular weight form, the 31 kDa trans-

membrane fragment and the 26 kDa cytoplasmic domain (described in chap-

ter 3). Using the conditions mentioned above, it was possible to determine

that the protocol used for cell fractionation rendered fractions with minimum

cross-contamination between non-nuclear and nuclear fractions and that the

antibody Flag M2 had a high level of specificity for Flag-tagged proteins such

as beta-dystroglycan (Figure 5.2).

Using these conditions, it was decided to perform mass spectrometry analy-

sis on non-nuclear and nuclear fractions of LNCaP cells transiently transfected

with the plasmid αβDgFlag. The fractions of 4 replicate experiments were

subjected to a second screening for cross contamination between non-nuclear

and nuclear fractions by using the non-nuclear (GAPDH and calnexin) and

nuclear (lamin A/C and fibrillarin) markers. The absence of cross contamina-

tion was indicative of fractions suitable for mass spectrometry analysis (Figure

5.3).
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Figure 5.2: Standardization of a protocol for cell fractionation of LNCaP cells.
LNCaP cells WT and transiently transfected with the plasmid αβDgFlag were
growth for 36 hours and then collected for total lysates or cell fractionation.
Samples were immunoblotted with antibodies anti-Flag. This characterization
permitted to evidence the expression of beta-dystroglycan (full length, trans-
membrane and cytoplasmic) in non-nuclear and nuclear fractions. Calnexin
and GAPDH, and Lamin A/C are included as markers and loading controls of
non-nuclear and nuclear fractions respectively.

Although the antibody Flag M2 can be highly specific for Flag-tagged pro-

teins, there is the possibility of some proteins binding non specifically with this

antibody. Moreover, a high number of proteins can interact non-specifically

with agarose beads, the support of the Flag M2 resin (Mellacheruvu et al.,

2013). Thus, similar fractions of LNCaP WT cells were included and pro-

cessed along with the fractions of transfected cells.

Both non-nuclear and nuclear fractions of LNCaP WT and transiently

transfected cells with the plasmid αβDgFlag from 4 biological replicates were

immunoprecipitated using the Flag M2 resin following the workflow described

in Figure 5.4, and the protocol described in the material and methods chap-

ter (see section 2.1.5.5). Thereafter, eluates after immunoprecipitation were

reduced and alkylated, and separated by SDS-PAGE. Subsequently, the gels
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Figure 5.3: Characterization of cellular fractions used for mass spectrometry
analysis. Before performing each immunoprecipitation step with the Flag M2
resin, non nuclear and nuclear fractions of LNCaP cells WT or transfected
with the plasmid αβDgFlag were characterized with the controls GAPDH and
Calnexin, and Lamin A/C and Fibrillarin, as markers of non nuclear and
nuclear fractions respectively. The absence of signal generated by non-nuclear
and nuclear markers in the opposite fractions is indicative that if present,
the cross contamination between cellular fractions is minimum. Shown is a
representative image of 4 independent replicates.

were stained with colloidal Brilliant Blue G followed by further destaining.

Destained gels of each corresponding sample were cut in 5 gel slices and then

subjected to tryptic digestion. Extracted peptides were subjected to tandem

mass spectrometry analysis according to the conditions described in the pro-

teomics techniques in material and methods chapter (see section 2.1.7) (Figure

5.4).
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Figure 5.4: Workflow of the interactome of beta-dystroglycan. The schematic
shows the strategy used for the identification of proteins interacting with beta-
dystroglycan. Briefly, non-nuclear and nuclear fractions of LNCaP cells trans-
fected with the plasmid αβDgFlag were immunoprecipitated with the Flag M2
resin. Non-specific binding proteins (unhappy faces cartoons) were eliminated
by washing the beads under mild conditions with TBS buffer (see appendix A).
Following this, beta-dystroglycan Flag and interacting proteins (happy faces
cartoons) were eluted from the beads using the 3X Flag peptide. Eluted pro-
teins were reduced, alkylated and separated by SDS-PAGE. Stained gel slices
with colloidal Brilliant Blue G were destained and then subjected to tryptic
digestion. Extracted peptides were analysed by tandem mass spectrometry to
identify proteins interacting with beta-dystroglycan and some possible PTM.
The same procedure was followed for cellular fractions of LNCaP WT which
were included as a control of non specific interactions with the Flag M2 resin.

5.3 Mass spectrometry results

The results retrieved from the mass spectrometry analysis revealed many pro-

teins, from both non-nuclear and nuclear fractions, that were identified as

interacting with Flag M2 resin alone (control) and with Flag tagged beta-

dystroglycan (see attached excel file: 1.Interactome beta-dystroglycan,
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”protein groups tab” and Figure 5.5). Overall, non-nuclear fractions had a

good protein enrichment in Flag IPs, in contrast to the nuclear fraction where

the enrichment was sub-optimal. Therefore, proteins significantly enriched in

both non-nuclear and nuclear fractions, and with a peptide count number above

2, were considered for interactome analysis (see section 2.1.7.6 in material and

methods chapter, attached excel file (1.Interactome beta-dystroglycan,

”NN stats and Nuclear stats tabs (proteins highlighted in red)”) and Figure

5.5).
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Figure 5.5: Normalisation of proteins detected by mass spectrometry analysis.
Volcano plot for proteins identified in control and Flag immunoprecipitations.
The x-axis is the log2 fold change value (IP Flag intensity / IP control intensity)
and the y-axis is the corresponding adjusted log P value. The vertical lines
represent protein enriched 2 fold changes for control (left side) and Flag (right
side) immunoprecipitations, and the horizontal line the P-value cut-off (0.05).
a) and c) represent non-normalised data from non-nuclear and nuclear fractions
respectively, and b) and c), the normalised counterparts.
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5.4 Interactome analysis

Proteins found enriched in Flag IP in both non-nuclear and nuclear fractions

are shown in Figure 5.6. Importantly, in both fractions there were proteins

found enriched in Flag IPs, but not in control IPs. However, some proteins

presented signal in only two replicate experiments and for this reason they were

not considered in the list of enriched proteins (Figure 5.7). An important result

to highlight is that beta-dystroglycan was highly enriched in both fractions.
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Gene names of proteins found in 2 replicate experiments in Flag IPs

Figure 5.7: Proteins found enriched in Flag IPs in 2 replicate experiments.
The list shows the gene names of proteins from non-nuclear and nuclear frac-
tions enriched in two Flag IPs only without any signal in control IPs (for
a detailed description of each protein, please refer to the attached excel file
1.Interactome beta-dystroglycan).
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The amount of non-nuclear proteins found enriched in Flag IPs was very

high but, contrary to the expected, this was not the case for nuclear proteins. A

first analysis performed on nuclear proteins using the GeneMANIA prediction

server for biological network integration (http://www.genemania.org) and

the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt http://bioinfo

.vanderbilt.edu/webgestalt/) revealed that a large proportion of the en-

riched proteins in Flag IPs were related to ribosomal-related processes (Figure

5.8). It may be that these proteins represent true interactions with flagged

beta-dystroglycan; however non-specific interactions may also be possible.
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Figure 5.8: Interactome analysis of nuclear proteins found enriched in Flag
IPs. A first interactome analysis using GeneMANIA shows that dystroglycan,
DAG1, does not have any physical reported interaction with the proteins found
in Flag IPs. Additionally, the clustering using the WebGestalt server, shows
a random distribution of the proteins in different pathways and none of the
pathways retrieved had a particular enrichment of two or more proteins.
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The conception of this thesis comes from the idea that, in addition to

its function in the plasma membrane, beta-dystroglycan has also a nuclear

function. In this regard the type of proteins typically found in the pulldown

from the nuclear fraction are not suitable for ascribing a nuclear role to beta-

dystroglycan. However, in non-nuclear IPs there were many candidate proteins

involved in an immense number of cellular pathways, including some critical

nuclear processes (Figure 5.6). Additionally, in both cellular fractions there

were proteins significantly enriched but with a peptide count number below

two (attached excel file (1.Interactome beta-dystroglycan, ”NN stats and

Nuclear stats tabs (proteins with a ”+” sign)”). Furthermore, other interesting

candidates in Flag IPs were identified; but they were found in only two replicate

experiments (Figure 5.7).

The purpose of this chapter is to find proteins interacting with beta-

dystroglycan that could provide us with clues in order to understand the sig-

nalling pathways wherein dystroglycan (alpha and beta) has been found to be

involved, such as those related to: its interaction with cytoskeletal and extra-

cellular matrix components, its cytoplasmic and nuclear transport, its nuclear

function, its degradation, its involvement in the cell cycle, cell division, and

other cellular processes. Therefore, when taking into account the identity of

proteins significantly enriched but with a low peptide count (attached excel

file (1.Interactome beta-dystroglycan, ”NN stats and Nuclear stats tabs

(proteins with a ”+” sign)”), proteins found in only two replicate Flag IPs

(Figure 5.7) and the purposes pursued in this chapter, it was decided to take

into account all these proteins and merge them with the highly enriched pro-

teins of both fractions (Figure 5.6). In this way, through the interaction with

intermediate proteins it is expected to find a possible relationship between

beta-dystroglycan and cellular processes, such as those related to the nucleus,

the cell cycle or the ubiquitin proteasome system.

It is important to emphasize that combining all these proteins could lead

to an increase in the background and the number of non-specific interactions,

thus caution has to be taken before assuming a direct interaction of beta-
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dystroglycan with any reported protein. Importantly, future analyses may be

required, such as the corresponding co- and reverse immunoprecipitations to

further prove the interactions described here.

The combination of all candidate proteins, as described above, resulted

in a total of approximately 721 proteins, which could include some back-

ground (attached file 3. Mixed proteins). Fortunately, a meta-data anal-

ysis investigating the identity of contaminant proteins interacting with the

Flag M2 immunoprecipitation system has been reported (Mellacheruvu et

al., 2013). Hence, all the 721 proteins were subjected to CRAPome analysis

(http://www.crapome.org). Proteins such as tubulins, histones and GAPDH

were the hits with the highest scores, in addition to others, indicating that they

are potential background (attached file 2. CRAPome mixed proteins).

Protein analysis using the WebGestalt database allowed the clustering of

proteins by their biological, cellular and molecular characteristics (Figure 5.10).

Overall, there was a good distribution of proteins along a great variety of cellu-

lar processes from vesicular transport, cancer signalling, cell cycle, DNA repli-

cation, actin cytoskeleton regulation to apoptosis and many other processes

(Figure 5.11). Dystroglycan is ubiquitously expressed, so it is not surprising

to find that it has broad cellular implications. Due to the focus of this thesis on

the nuclear function of beta-dystroglycan, the pathways described below will

be those related to nuclear functions, cell cycle and the ubiquitin-proteasome

system. However, proteins highly enriched in other pathways, will be discussed

in the last chapter of this thesis (Chapter 6).
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(a)

(b)

Figure 5.9: KEGG pathway protein enrichment. Proteins considered for inter-
actome analysis were subject to a KEGG pathway enrichment analysis. Pro-
teins were grouped by their a) biological and b) cellular functions. Proteins
have a vast distribution throughout different cellular processes.
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Figure 5.10: KEGG pathway protein enrichment. Proteins considered for
interactome analysis were subject to a KEGG pathway enrichment analysis.
Proteins were grouped by their molecular functions. Proteins have a vast
distribution throughout different cellular processes.
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In the following figures the pathways of proteins recovered by immunopre-

cipitation with Flag are shown. The sequence of these images is based on

mechanisms started on the plasma membrane (cellular interactions), the actin

cytoskeleton interactions, to the nuclear compartment, culminating in the in-

tegration of some cellular pathways that lead to the generation of cancer, all

of which are analysed, in the ”Discussion” section of this chapter.

Figure 5.12: Adherens junction. E-cadherin is the main component of cell-cell

adherens junctions (AJs) which are important for maintaining tissue architecture,

cell polarity, cell movement and proliferation. E-cadherin interacts with β-catenin

which in turn binds α-catenin; α-catenin is then able to recruit F-actin. Cad-

herin may act as a positive or negative regulator of β-catenin. Highlighted in

red are the proteins found immunoprecipitating with Flag (Cdc42, RhoA, α/β-

catenin, Cadherin, LAR, Rac and p120ctn) and in blue boxes are the already known

interacting proteins with dystroglycan (Fyn, Src, Yes, Actin and ERK). Source:

http://www.kegg.jp/dbget-bin/www bget?pathway+hsa04520.
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Figure 5.17: Alzheimer’s disease. Alzheimer’s disease (AD) is associated

with senile plaques and neurofibrillary tangles (NFTs). Amyloid-beta (Abeta),

a major component of senile plaques, is generated by from the amyloid precur-

sor protein by the consecutive cleavage of different enzymes including the gamma-

secretase complex. Highlighted in red are the proteins found immunoprecipitating

with Flag (SERCA, Calpain, PSEN, GAPD, ABAD, CX-I, -III and -V) . Source:

http://www.kegg.jp/dbget-bin/www bget?pathway+hsa05010.
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5.4. INTERACTOME ANALYSIS

Figure 5.25: Ubiquitin mediated proteolysis. Ubiquitination functions as a signal

for 26S proteasome dependent protein degradation and other signalling processes.

This PTM is carried out by a process of sequential steps performed by a E1 ubiq-

uitin activating enzyme, a E2 ubiquitin conjugating enzyme, and a E3 ubiquitin

ligase. E3 ubiquitin ligases are classified into four groups: HECT type, U-box type,

single RING-finger type, and multi-subunit RING-finger type. Highlighted in red

are the proteins found immunoprecipitating with Flag (UBLE1A, UBE3C, HERC1,

NEDD4, ARF-BP1, UBE4B, PRP19 and PIAS). Source: http://www.kegg.jp/

dbget-bin/www bget?pathway+hsa04120.
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5.5. POST-TRANSLATIONAL MODIFICATIONS OF
BETA-DYSTROGLYCAN DETECTED BY MASS SPECTROMETRY

5.5 Post-translational modifications of beta-

dystroglycan detected by mass spectrom-

etry

The interactome analysis performed with flagged beta-dystroglycan allowed a

recovery of a great variety of proteins. In addition to this analysis, samples

immunoprecipitated with flag were subjected to a further mass spectrometry

analysis in search of PTMs, such as phosphorylation and ubiquitination, that

could be present on beta-dystroglycan. Under these conditions it was pos-

sible to recover both, a phosphorylated threonine (T790 in human, T788 in

mouse) and a ubiquitinated lysine (K794 in human, K792 in mouse) in beta-

dystroglycan. Ubiquitinated lysine was found enriched in both fractions, while

phosphorylated threonine was found in nuclear fractions only. An in silico

analysis using the NetPhosK 1.0 server (http://www.cbs.dtu.dk/services/

NetPhosK/) revealed PKC as the putative kinase responsible for T788 phospho-

rylation (Figures 5.27 and 5.28, and attached files: PTM/Phosphorylation

and PTM/Ubiquitination).

5.6 Discussion.

The translation of dystroglycan generates a pro-peptide that is further pro-

cessed into the alpha- and beta-dystroglycan subunits. Although they are

encoded by the same gene, and remain anchored on the plasma membrane, it

seems that the critical functions are performed by alpha-dystroglycan, render-

ing the beta subunit with functions restricted to supporting its counterpart

alpha subunit. This is reflected in the content of the published literature to

date; most papers are focused on finding the mechanisms that leads to hypo-

glycosylated alpha-dystroglycan, a core feature of the ”dystroglycanopathies”.

This author’s opinion does not intend to dispute the important role of alpha-

dystroglycan, but to highlight the fact that beta-dystroglycan is also an impor-
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Figure 5.27: Phosphorylation site detected in mouse beta-dystroglycan by
mass spectrometry. A schematic of mouse beta-dystroglycan is shown. High-
lighted in orange is the relative position of threonine found to be phosphory-
lated by mass spectrometry. The orange cloud represents PKC phosphorylat-
ing T788. The NLS is highlighted in green and the Flag tag in red.
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Figure 5.28: Ubiquitination site detected in mouse beta-dystroglycan by mass
spectrometry. Ubiquitination site detected in mouse beta-dystroglycan by
mass spectrometry. A schematic of mouse beta-dystroglycan is shown. High-
lighted in purple is the relative position of lysine found to be ubiquitinated by
mass spectrometry. The NLS is highlighted in green and the Flag tag in red.
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tant player in the integrity of the dystroglycan complex and that its functions

are far beyond a passive protein. This is based on the set of pathways presented

above and the discussion below.

5.6.1 The multiple functions of beta-dystroglycan in the

plasma membrane and vesicular trafficking

The hydrophobic amino acids found in the transmembrane domain render beta-

dystroglycan with the capacity to be inserted in membranous environments.

This means that beta-dystroglycan is typically found in two contexts: 1) most

of the organelles surrounded by membranes, contain beta-dystroglycan and, 2)

every physiological process involving membranes will always implicate, to some

extent, beta-dystroglycan. These ideas are represented in pathways such as

those related to adherens junctions, focal adhesions, endocytosis, phagosomes,

etc. Although an exquisite topic of discussion, pathways in Figures 5.12-5.16

and F.1-F.5, will be further analysed in the discussion section to this thesis.

5.6.2 The Alzheimer’s disease and WNT pathways, the

missing link in the role of nuclear beta-dystroglycan?

Despite the relatively low peptide count, nicastrin, the adaptor subunit of

the gamma-secretase complex (Shah et al., 2005), was identified by mass spec-

trometry analysis as an interacting protein with Flag-tagged beta-dystroglycan

(NCSTN in Figure 5.17, ”not highlighted in red”). This subunit, together

with presenilin, APH1 and PEN2, is an essential component of the gamma-

secretase complex (Hansson et al., 2004). Gamma-secretase cleaves the amy-

loid precursor protein (APP) in Alzheimer’s disease, Notch, EpCAM, CD44

and a myriad of other substrates in order to release active cytoplasmic frag-

ments (De Strooper et al., 1998, 1999; Lammich et al., 2002; Maetzel et al.,

2009; Murakami et al., 2003). With the evidence gathered from previous

DAPT experiments performed in this thesis (section 4.3.1), and the finding of
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nicastrin interacting with beta-dystroglycan, further corroborates that beta-

dystroglycan is subject to regulated intramembrane proteolysis mediated by

gamma-secretase.

Liberated fragments by RIP are able to perform different biological func-

tions, such as transcriptional regulation (Kopan & Ilagan, 2004), before they

are subject to proteasomal degradation. From section 4.4.2, it was shown

that the cytoplasmic fragment of beta-dystroglycan has a predominantly nu-

clear localisation. Furthermore, Mathew and colleagues have shown that beta-

dystroglycan translocates to the nucleus in an androgen receptor (AR) depen-

dent manner, and that its cytoplasmic fragment is able to modulate the tran-

scription of several genes, including the ETV1 transcription factor (Mathew

et al., 2013). However, based on in silico analysis, motifs that allow a DNA

interaction have not been clearly identified, with the exception of the BindN

algorithm (http://bioinfo.ggc.org/bindn/) which clearly states that the

NLS in beta-dystroglycan could be a potential DNA binding motif. Nonethe-

less, no further evidence stands to support this assumption and is therefore

likely to be indirect.

If the cytoplasmic fragment of beta-dystroglycan accumulates in the nu-

cleus (either, translocated from the cytoplasm to the nucleus or generated in

the nucleus as a a consequence of the cleavage of nuclear full-length beta-

dystroglycan) to exert a nuclear (gene) regulation, what is then the mecha-

nism(s) by which this very dynamic fragment orchestrates this new function?

The transmembrane epithelial cell adhesion molecule (EpCAM) is suscep-

tible to RIP, which releases a cytoplasmic fragment that is able to form a

complex with beta-catenin and the four and a half LIM domains protein 2

(FHL2), regulating the expression of target genes such as c-myc (Maetzel et

al., 2009). From the interactome analysis, the two main proteins significantly

enriched were members of the WNT pathway, catenins (alpha and beta) and

cadherin-1 (Figures F.1, 5.12 and 5.18). Then the possibility of a signalling

mechanism similar to that observed in EpCAM could be plausible.

In high grade prostate cancer, E-cadherin protein levels have been found
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to be reduced or absent (Morton, Ewing, Nagafuchi, Tsukita, & Isaacs, 1993;

Umbas et al., 1992), a process that clearly mirrors the reduction of full-length

beta-dystroglycan in the same disease (Henry et al., 2001; Hetzl, Fávaro, Bil-

lis, Ferreira, & Cagnon, 2012; Losasso et al., 2000; Mathew et al., 2013).

Thus, the reduction of these two membrane receptors could cause the release

of anchored beta-catenin (Kypta & Waxman, 2012) and the increase in the

concentration of the cytoplasmic fragment of beta-dystroglycan, which in turn

are able to form a complex with FHL2. However, this does not explain the

concomitant translocation of beta-dystroglycan following androgen receptor

stimulation, nor the mechanism by which this dual translocation regulates the

gene expression of ETV1.

AR is able to interact with beta catenin and promote its nuclear translo-

cation (Mulholland, Cheng, Reid, Rennie, & Nelson, 2002; Truica, Byers, &

Gelmann, 2000). It has also been shown that, upon ligand stimulation, AR

binds the promoter region of ETV1, stimulating its gene expression (Cai et al.,

2007). It is therefore likely that such interactions exist among the cytoplasmic

fragment of beta-dystroglycan, beta-catenin and the androgen receptor. In this

scenario, beta-catenin associated with FHL2 (Wei et al., 2003) serves as a dock-

ing protein for the cytoplasmic fragment of beta-dystroglycan. Subsequently,

the cytoplasmic fragment enables, together with AR, the nuclear translocation

of beta-catenin. In the nucleus, by means of the AR, this complex is able to

bind to the TCF/LEF family of co-transcription factors (Behrens et al., 1996;

Molenaar et al., 1996), and then to the promoter region of ETV1. However,

experiments performed by Chesire and colleagues have shown that the AR

competes with the TCF co-transcription factor for its binding to beta-catenin

(Chesire & Isaacs, 2002). As a result, external signals may favour the forma-

tion of one or another complex. Hence, the interaction of beta-dystroglycan

with the complex containing AR and beta-catenin may modulate the interplay

between the two pathways (Kypta & Waxman, 2012). Along with the stim-

ulation of ETV1 transcription factor synthesis, this mechanism is a question

that clearly requires further research in order to understand the role of beta-
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dystroglycan in prostate cancer and other related cancers (Figures 5.23-5.24,

and (Cai et al., 2007)).

5.6.3 Beta-dystroglycan, a new player in DNA replica-

tion and the cell cycle?

The ability to interact with multiple proteins confers important roles on beta-

dystroglycan. From the interactome screening analysis, proteins associated

with DNA replication (Figure 5.19), the spliceosome (Figure 5.20), RNA trans-

port (Figure 5.21) and the cell cycle (Figure 5.22) were found immunoprecipi-

tating with Flag-tagged beta-dystroglycan.

A possible function of beta-dystroglycan in the cell cycle has been sug-

gested; however, the mechanisms behind this idea remain unknown. In this

regard, the knockdown of dystroglycan led to a delay in S-phase and to an

increase in the number of apoptotic cells in Swiss 3T3 cells (Higginson et al.,

2008) and HC11 mouse mammary epithelial cells (Sgambato, Di Salvatore, et

al., 2006). Importantly, increased protein levels of beta-dystroglycan during

the S-phase of the cell cycle have also been observed (Hosokawa et al., 2002;

Sgambato, Di Salvatore, et al., 2006).

Of the proteins involved in both DNA replication and the cell cycle, the

mini-chromosome maintenance complex (MCM) (MCM2, 4, 5 and 7) and

the structural maintenance of chromosome (Smc) (Smc1 and 3) proteins were

found to associate with Flag-tagged beta-dystroglycan.

The MCM DNA helicase complex, is a group of proteins implicated in DNA

replication. The proteins MCM2-7 are helicases able to interact with each other

and, together with other proteins, are recruited in a pre-replicative complex

to the initial stages of DNA synthesis, and persist throughout S-phase. The

components of this complex, which are assembled during the M-G1 transition

phase, are degraded once DNA replication is completed (Aladjem, 2007; Bell

& Dutta, 2002; Maiorano, Lutzmann, & Méchali, 2006).
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A previous report demonstrated the association of beta-dystroglycan with

components of different nuclear compartments; however, an association be-

tween beta-dystroglycan and active replication sites was not observed (Mart́ınez-

Vieyra et al., 2013). This is in opposition to the interaction of the MCM com-

plex with Flag-tagged beta-dystroglycan observed in the interactome analysis

reported in this thesis (Figure 5.19). A possible explanation for this difference

could be that beta-dystroglycan associates with the MCM complex during the

pre-replication and pre-initiation stages of DNA replication, and then leaves

this complex once S-phase proceeds (active DNA synthesis). In favour of this,

it has been suggested that during the early stages of S-phase DNA replica-

tion is organized in 5-20 foci, and then, as S-phase proceeds, these initiating

foci are dispersed in to hundreds of foci throughout the nucleus (Kennedy,

Barbie, Classon, Dyson, & Harlow, 2000), a phenotype that is similar to that

reported by Mart́ınez and colleagues (Mart́ınez-Vieyra et al., 2013). Focal

replication sites co-localize with nuclear lamin A/C structures at early stages

of DNA synthesis (Kennedy et al., 2000; Shumaker, Kuczmarski, & Goldman,

2003). Given the reported interaction of beta-dystroglycan with lamin A/C

(Mart́ınez-Vieyra et al., 2013), it will be interesting to investigate the presence

of this complex (replication foci, Lamin A/C and beta-dystroglycan) during

early stages of the S-phase of the cell cycle, as means to establish a role of

beta-dystroglycan in DNA replication. This would also explain other reported

observations:

1. The increased expression of beta-dystroglycan during the S-phase of the

cell cycle and,

2. The delay in the S-phase of cells when dystroglycan levels are reduced.

If increased levels of beta-dystroglycan are required in order to assemble

the pre-replication complex and its disruption can be a triggering factor to stop

progression into S-phase. Further research aimed to investigate the association

of beta-dystroglycan with the MCM complex and their involvement in early

stages of the S-phase will provide support to this hypothesis.

195



CHAPTER 5. INTERACTOME OF BETA-DYSTROGLYCAN

Another protein identified as interacting with Flag-tagged beta-dystroglycan

was the transcription factor STAT1. Because of its interaction with RNA poly-

merase II and STAT1, the MCM complex has been ascribed functions related

to transcription (Forsburg, 2004; Snyder, He, & Zhang, 2005). This further

supports a possible role of beta-dystroglycan in DNA replication and tran-

scription; however, the way in which beta-dystroglycan modulates these two

processes and the biological relevance remain unknown.

In light of these findings as a whole, it is clear then that if beta-dystroglycan

modulates nuclear processes, such as those related to DNA or RNA, it is

not through a direct interaction with nucleic acids, but through an indirect

association with adaptor proteins as mentioned above and discussed below.

Proteins involved with the spliceosome complex (Figure 5.20) and RNA

transport (Figure 5.21) were also immunoprecipitated with beta-dystroglycan.

The existence of these new interactions can be indirectly supported by a pre-

vious study reporting the association of beta-dystroglycan with nuclear bodies

such as the nucleolus, splicing speckles and Cajal bodies (Mart́ınez-Vieyra et

al., 2013).

Each one of these nuclear bodies is composed of different proteins and

develops different functions within the nucleus: the nucleolus, composed of

ribosome assembly factors, gives rise to the ribosome complex; the nuclear

speckles, a complex of pre-mRNA splicing factors, performs the storage and

recycling of splicing factors; and the Cajal bodies, of which the main compo-

nents are coilin and the SMN protein, allow the biogenesis, maturation and

recycling of small RNAs (Dundr & Misteli, 2010; Zimber, Nguyen, & Gespach,

2004).

This is really intriguing because the hypothesis stated in this thesis is that

beta-dystroglycan, as a co-transcription factor, regulates the transcription of

genes involved in cancer progression. However, the interaction with compo-

nents of the spliceosome suggests nuclear activities beyond gene transcription.

There may be different mechanisms by which beta-dystroglycan could be

coupled to the spliceosome machinery and subsequent events until the RNA is

196



5.6. DISCUSSION.

exported to the cytoplasm for its translation. Such mechanisms could involve:

1. Beta dystroglycan functions as a co-transcriptional factor.

2. Beta-dystroglycan modulates actin bridges, hence the positioning of nu-

clear bodies. The transcriptional activities of actin modulated by its

monomeric form are well known (Miralles, Posern, Zaromytidou, & Treis-

man, 2003). However, the possibility of a polymeric form of nuclear

actin (de Lanerolle & Serebryannyy, 2011; Pederson, 2008) has lead to

the suggestion of other actin-dependent regulation of gene and nuclear

body positioning (Dundr et al., 2007; Visa & Percipalle, 2010). In this

scenario, by means of its interaction with nuclear bodies, soluble beta-

dystroglycan recruits polymeric actin (Y. J. Chen et al., 2003), which in

turn position the DNA sequence to be transcribed.

3. Beta-dystroglycan acts as a scaffolding protein that modulates the trans-

port of nuclear bodies to the target DNA sequences ready to be tran-

scribed. In this regard, it has been shown that the internal nuclear

lamina is able to associate and regulate the positioning of the nuclear

bodies (Legartová et al., 2014; Shumaker et al., 2003). Additionally, it

is known that beta-dystroglycan and other components of the DAPC

associate with Lamin A/C, lamin B and Emerin (Fuentes-Mera et al.,

2006; Mart́ınez-Vieyra et al., 2013). Thus it is tempting to speculate

that beta-dystroglycan, together with the lamins, provides a framework

to modulate the location of nuclear bodies.

The idea of an association of beta-dystroglycan with the spliceosome ma-

chinery is indeed exciting; however, it has to be shown first that beta-dystroglycan

associates with this machinery before the theory can be tested.

Whatever the function of beta-dystroglycan is in the spliceosome complex,

if any, it seems that it has to remain anchored to the nascent RNA until it is

completely exported, as it is known that the spliceosome machinery is coupled

to the RNA export steps (Luo et al., 2001). It is interesting to highlight that
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beta-dystroglycan is able to interact with some components of the exportin

system such as CRM1 and exportin T. The presence of an NLS within the pri-

mary structure of beta-dystroglycan has been well documented (Lara-Chacón

et al., 2010; Oppizzi et al., 2008), yet, no DNA binding domains or an NES

have been reported so far. A quick in silico analysis confirms the lack of NES in

beta-dystroglycan; nonetheless, 4 leucines located in the second cadherin like-

domain of alpha-dystroglycan may have a potential role as a nuclear export

signal (http://www.cbs.dtu.dk/services/NetNES/). If this were true, then

it could imply that full dystroglycan (alpha and beta) is another mechanism

for the nuclear export of nascent RNA. Again, how this complex is assembled,

and its relevance within biological systems, is something that requires further

research.

It is hard to believe that a plasma membrane protein such as beta-dystroglycan

is able to perform such a multitude of functions. When first characterized

by Campbell and colleagues, it was thought that dystroglycan was only con-

fined to the plasma membrane for cell adhesion. However, the distribution of

beta-dystroglycan within a great variety of organelles, cell types and species,

suggests that there are more functions that await discovery.

Microscopy experiments performed by the Winder and Cisneros groups,

have shown that beta-dystroglycan is also localised to the cleavage furrow

and midbody during cytokinesis (Higginson et al., 2008; Villarreal-Silva et al.,

2011), and current research supports both observations. Importantly, recent

research findings support a role for beta-dystroglycan in the cell cycle before

the final stages of mitosis (note: the author did not perform any experiments to

support the following arguments; however, he was aware of the phenotype that

will be described below. Additionally, the following discussion will be based

on information and images kindly provided by Laura A. Jacobs in the Winder

lab). Also, although no further evidence has been gathered, there seems to be a

differential distribution between non-phospho and phospho-beta-dystroglycan

throughout the different stages of mitosis as described below.

During prophase phospho-beta-dystroglycan is homogeneously distributed
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throughout the cytosol. Then, there is a re-distribution to the edges of con-

densed chromosomes and, interestingly, a pool remains at the very centre of

condensed chromosomes. Later, in metaphase, phospho-beta-dystroglycan is

found surrounding the lined up chromosomes along the metaphase plate. The

most intriguing finding is that during anaphase, phospho-dystroglycan sur-

rounds the separating chromosomes. During telophase it still surrounds the

DNA, although the levels of protein are decreased. Finally, at the end of

telophase, it is again homogeneously distributed throughout the cytosol, but

a little amount remains associated to the midbody.

On the other hand, during prophase, non phospho-beta-dystroglycan is

strongly distributed on the plasma membrane and keeps the same association

during pro-metaphase, metaphase, anaphase and telophase. During metaphase

and anaphase, non phospho-beta-dystroglycan surrounds the aligned chromo-

somes; however, its levels are low compared to the phosphorylated counterpart.

By the time the cell starts dividing in telophase, normal beta-dystroglycan is

still strongly concentrated on the plasma membrane and a another pool starts

concentrating along the cleavage furrow. Finally, during cytokinesis, the lev-

els of normal beta-dystroglycan are reduced on the plasma membrane, but is

strongly concentrated in the midbody. From the observations above, it would

seem that beta-dystroglycan is not only present during late mitosis, but has

an important role during the condensation, alignment and separation of chro-

mosomes.

So far, we know that beta-dystroglycan is able to interact with F-actin

(Y. J. Chen et al., 2003), and, although not completely confirmed, is also

able to bind tubulin in human platelets (Cerecedo, Cisneros, Suárez-Sánchez,

Hernández-González, & Galván, 2008). Additionally, it has been reported that

dystrophin, a direct interacting protein with beta-dystroglycan, is also able to

organize microtubules (Prins et al., 2009). Furthermore, beta-dystroglycan is

able to interact with ezrin and modulate fillopodia formation (Batchelor et al.,

2007; Spence, Chen, et al., 2004).

F-actin is an important player during all the stages of mitosis: it is re-
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distributed and localised to the cell cortex and is maintained until cytokinesis

(Field & Lénárt, 2011; Kunda & Baum, 2009). Also, through its interaction

with actin-binding proteins and moesin, a member of the ERM (Ezrin, Radixin

and Moesin) family of actin binding proteins, F-actin is able to modulate cel-

lular events that drive the correct spindle position, facilitating correct chro-

mosome segregation (Fehon, McClatchey, & Bretscher, 2010; Field & Lénárt,

2011; Kunda & Baum, 2009).

Thus, with the role of F-actin and moesin proteins in mitosis, and the con-

firmed interaction between beta-dystroglycan and F-actin, or beta-dystroglycan

and ezrin, it is tempting to formulate a possible explanation for the phenotype

observed for beta-dystroglycan. During interphase, a pool of beta-dystroglycan

interacts with F-actin leading to a direct regulation of the cytoskeleton (Fig-

ure 5.15). Once the cell enters mitosis, beta-dystroglycan is still embedded

in the plasma membrane and displays a high affinity for activated ERM pro-

teins which in turn bind F-actin. This results in increased cell stiffness in

the rounded cell, which consequently controls the correct positioning of the

mitotic spindle. During the separation of the two daughter cells, beta dystro-

glycan is re-located to the midbody in cytokinesis. In support of this, Notch,

whose signalling pathway was believed to be activated after mitosis, has been

recently shown to display functions before cell division in neuronal precursor

cells (K. M. Bhat, 2014; Pinto-Teixeira & Desplan, 2014). Then, it is possible

that, in addition to its anchoring activities, beta-dystroglycan may also be

able to modulate signalling events for the proper onset and positioning of the

cleavage furrow through its co-transcriptional activities.

This hypothesis fits well with non-phospho-beta-dystroglycan, although the

scenario with its phosphorylated counterpart seems to be rather different.

From the mass spectrometry analysis, the structural maintenance of chro-

mosomes (SMC) proteins, Smc1 (significantly enriched) and Smc3 (found in

two replicate Flag immunoprecipitations), which are core components of the

cohesin complex, and NCAPD2 (found in two replicate Flag experiments), the

regulatory subunit of the condensin complex, were found in Flag immunopre-
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cipitations (Figure 5.22).

The structural maintenace of chromosome complex includes members of the

cohesin, condensin and Smc5/6 complexes. These complexes play important

roles in sister chromatids cohesion, chromosome condensation, DNA replica-

tion, DNA repair and transcription. Cohesin’s function, is to maintain the two

sisters chromatides together, once they are generated in S-phase, until they

are separated during anaphase. Apparently, the binding of these complexes to

DNA does not require DNA binding domains (Jeppsson, Kanno, Shirahige, &

Sjögren, 2014; Losada, 2014). The association of phospho-beta-dystroglycan

with cohesin and condensin complexes, and the phenotype above described,

suggests that beta-dystroglycan participates during the preparative stages of

chromosome condensation until they are completely separated in telophase.

Finally, as mentioned above, another plausible option could be the as-

sociation of phospho-beta-dystroglycan with microtubules. It may be that

phospho-beta-dystroglycan binds to microtubules through its interaction with

Smc1. This interaction may then provide a strong support to the suggested

interaction of Smc1 to the microtubules (Wong & Blobel, 2008).

These hypotheses fit well with the phenotype above described, however,

much work needs to be done in order to develop the protein interactions de-

scribed here, and importantly, the biological relevance of the participation of

beta-dystroglycan throughout the cell cycle.

5.6.4 The ubiquitin-proteasome system and beta-dystroglycan

Dystroglycan, a protein with a multitude of functions throughout its lifespan,

at some point has to be terminated. Whether it derives from the plasma

membrane, the cytosol, the nuclear membrane or the nucleoplasm, dystrogly-

can has to be subject to protein turnover by one or a combination of different

pathways in charge of protein destruction, such as endoplasmic reticulum asso-

ciated degradation (ERAD), lysosomes and the ubiquitin proteasome system

(Vellai & Takács-Vellai, 2010).
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Ubiquitination is a multi-step process initiated by an E1 enzyme that acti-

vates ubiquitin, followed by the conjugation of the ubiquitin group to a target

substrate by an E2 enzyme, and completed by the ligation of the ubiquitin

group to the substrate by an E3 ligase (Hochstrasser, 2009; Lecker, Goldberg,

& Mitch, 2006). Each group is composed of different enzymes, but particularly

E3, which dictates the specificity of the ubiquitin pathway, comprises approx-

imately 600 enzymes divided in to HECT type, U-box type and RING-finger

type ligases (Figure 5.25) (Metzger, Hristova, & Weissman, 2012; Rotin &

Kumar, 2009). This PTM can enhance or prevent protein interactions, modu-

lating cellular processes such as transcription, signal transduction, membrane-

protein trafficking, endocytosis, DNA repair, and proteasomal binding and

degradation (Haglund & Dikic, 2012; Hochstrasser, 2009; Lecker et al., 2006).

Given the multiple functions attributable to ubiquitination, the discussion

presented here will focus on the ubiquitin-proteasome pathway; however, this

does not imply that the ubiquitination of beta-dystroglycan is purely related

to degradation. There may be other pathways where the ubiquitination of

dystroglycan (alpha and beta) modulates its interaction with other proteins,

its role in the cell cycle, localisation or its nuclear function.

In previous chapters it was shown that beta-dystroglycan is ubiquitinated

(Figure 3.21) and subject to proteasomal regulation (Figure 3.19 and 4.11),

indicating its potential degradation by the ubiquitin proteasome system. From

the mass spectrometry analysis, SAE1, an E1 ubiquitin activating enzyme was

found to immunoprecipitate with Flag-tagged beta-dystroglycan; however, it

was found in only two replicate experiments. Additionally, NEDD4L (also

known as NEDD4-2) and ARF-BP1 (also known as HUWE1), members of the

HECT type E3 ligases, were highly enriched in Flag IPs. Although there were

other protein candidates, they were in the group of significantly enriched pro-

teins with a low peptide count (UBE3C, HERC1), or proteins that were found

in only two replicate experiments, interacting specifically with Flag-tagged

beta-dystroglycan (PIAS and UBE4B) (Figures 5.6, 5.7, 5.25). Furthermore,

other candidate proteins were components of the proteasome. The components
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enriched are mainly members of the 19S regulatory particle (lid and base) and

only one component of the core regulatory particle was found (Figure 5.26).

This all confirms that, in LNCaP cells, the ubiquitin proteasome system may

be a pathway in charge of the rapid turnover of beta-dystroglycan.

Dystroglycan (alpha and beta) contains a multitude of lysines in its primary

structure that have been predicted to be subject to ubiquitination (http://

www.phosphosite.org); however, regardless of the potential implication that

the ubiquitin proteasome system plays in Duchenne and Becker muscular dys-

trophies (Bonuccelli et al., 2007; Gazzerro et al., 2010; Winder, Lipscomb, An-

gela Parkin, & Juusola, 2011) and in cancer (Acharyya et al., 2005; Acharyya

& Guttridge, 2007), there are no published studies aimed at understanding

the role that ubiquitination and ubiquitin enzymes play in the stability of

dystroglycan.

The interaction of SAE1, an E1 ubiquitin activating enzyme, with Flag-

tagged beta-dystroglycan could be plausible as there are only two E1 enzymes

in charge of activating ubiquitin groups; however, more research will be re-

quired to confirm this finding.

The cytoplasmic fragment of beta-dystroglycan has at least two identifi-

able PY motifs (http://elm.eu.org), which could be the motifs interacting

with the WW domain in NEDD4L in a similar way to that reported for the

epithelial sodium channel (Staub et al., 1996). A recent study suggested that

a phosphorylated tyrosine located in a PY motif in the very carboxy-terminus

of beta-dystroglycan could be an important signal triggering its proteasomal

degradation (Miller et al., 2012), further supporting the interaction of beta-

dystroglycan with NEDD4L. However, Pirozzi and colleagues showed that the

phosphorylation of a tyrosine within the PY motif prevented its interaction

with the WW domain (Pirozzi et al., 1997) and later reported, although not in

the context of tyrosine, that the binding of NEDD4L to SMAD7 is not depen-

dent on the phosphorylation of the PY motif (Aragón et al., 2012) which is in

contrast to the interaction observed with SMAD3 (Gao et al., 2009). There-

fore, it will be important to determine to what extent the phosphorylation of
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Y890 in beta-dystroglycan modulates its putative interaction with NEDD4L

or HUWE1.

The identification of NEDD4L and ARF-BP1 as potential ubiquitin ligases

interacting with beta-dystroglycan leads the author to speculate that they are

responsible for the rapid turnover of beta-dystroglycan in cancers where its

expression has been shown to be reduced. In this regard, NEDD4L has been

ascribed functions such as endocytosis and sorting of transmembrane proteins,

whilst ARF-BP1 is associated with neuronal differentiation (by destabilizing

N-myc), and the regulation of p53 and Mcl-1 (Rotin & Kumar, 2009). More

research will be required in order to understand how these E3 ligases regulate

the internalisation, turnover or other cellular events of beta-dystroglycan.

Dystroglycan is a protein that is broadly present in different organelles

within the cell (plasma membrane, ER, nucleus), among different tissues (mus-

cle, prostate, brain, breast, etc.), and among different species. Therefore it

may be expected that more than one ubiquitin ligase targets dystroglycan for

degradation, as dictated by the organelle, cell type and the species. In this

regard, it was previously reported by Lee and colleagues that HRD1, a trans-

membrane RING E3 ubiquitin ligase resident in the endoplasmic reticulum,

the main function of which is to degrade misfolded or aberrant proteins (Bays,

Gardner, Seelig, Joazeiro, & Hampton, 2001), targets beta-dystroglycan for

ubiquitination (K. A. Lee et al., 2011). Another study provided evidence that

beta-dystroglycan is able to bind to WWP1 and WWP2 (Pirozzi et al., 1997),

and later, although not strictly linked, another study postulated WWP1 as

the causative ubiquitin ligase of muscular dystrophy in chickens (Matsumoto

et al., 2008). Furthermore, the ubiquitin ligases MAFbx and MuRF1 were

correlated to muscle atrophy (Bodine et al., 2001). This all indicates that the

ubiquitination of beta-dystroglycan may be mediated by different ubiquitin lig-

ases which may be determined by the cellular context; in the case of prostate

cancer ubiquitination is possibly mediated by HUWE1 and NEDD4L.

Further in-depth analysis will be required to show whether the ubiquitina-

tion of dystroglycan by NEDD4L and ARF-BP1 has a role in its stability; regu-
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lating in this way the amount of dystroglycan on the plasma membrane, which

in turn could lead to cancer progression (perhaps potentiating other related

processes such as those performed by MMPs). Additionally, having explained

the potential role of the co-transcriptional activity of the cytoplasmic frag-

ment of beta-dystroglycan, it will be required to investigate whether NEDD4L

and ARF-BP1 have a function regulating post-co-transcriptional events of this

fragment.

The mass spectrometry screening performed in this thesis identified K794

in human (K792 in mouse) as a lysine that could potentially be modified by

ubiquitination (Figure 5.28). The potential ubiquitination of this lysine was

already reported in large-scale mass spectrometry analyses aided to describe

ubiquitinated sites in murine tissues (Wagner et al., 2012) and the human

ubiquitinome (W. Kim et al., 2011). However, the role that this modified

lysine has in the different pathways wherein beta-dystroglycan is implicated,

and its relationship with the NEDD4L and ARF-BP1 ligases, is yet to be

determined.

The identification of phosphorylated T788 in beta-dystroglycan is intrigu-

ing. It may be that its presence modulates the interaction of beta-dystroglycan

with the importin complex, as it is located in the middle of the bi-partite NLS.

Additionally, it could be possible that this phosphorylated amino acid regulates

other PTMs, such as ubiquitination or sumoylation, as it is just three amino

acids away from the identified ubiquitinated lysine in this thesis. Furthermore,

its location near the plasma membrane could regulate the proteolytic events

mediated by Furin and gamma-secretase in beta-dystroglycan described earlier

in this thesis.

In the work presented in this thesis a Flag-tagged beta-dystroglycan im-

munoprecipitation strategy was used to identify possible interacting partners.

Interestingly, this strategy did not detect the common components of the

DAPC or non-muscle counterparts, such as utrophin, or the beta-syntrophins.

The following reasons, although not demonstrated, could explain why this was

the case.
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It could be that the DAPC members were at a low concentrations compared

with the immunoprecipitated proteins, so that they were masked by the most

abundant proteins. In this regard, utrophin, a dystrophin homologue and

core component of the DAPC in epithelial cells (Nguyen, Le, Blake, Davies,

& Morris, 1992), was found at low levels in the mass spectrometry approach.

Another possible explanation could be that, due to the conditions used in

the immunoprecipitation, other proteins presented a stronger interaction with

beta-dystroglycan than the typical DAPC members.

5.6.5 Summary

Through the results and analysis provided in this chapter it can be concluded

that:

1. Beta-dystroglycan may be implicated in RNA processing and transport.

2. Beta-dystroglycan may have roles during the S-phase of the cell cycle by

modulating DNA replication events.

3. Beta-dystroglycan may perform functional roles from the start of mitosis

until the completion of cytokinesis.

4. RIP in beta-dystroglycan may be mediated by the gamma-secretase com-

plex.

5. Beta-dystroglycan may have co-transcriptional properties in partnership

with components of the WNT pathway.

6. Beta-dystroglycan is phosphorylated on T788 and ubiquitinated on K792.

7. Beta-dystroglycan is subject to protein turnover by the ubiquitin-proteasome

system.
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6
Discussion, conclusions and future work

6.1 Discussion

Dystroglycan is a protein subject to several post-translational modifications.

These PTMs are important in order to regulate its interaction with other

proteins, to control its targeting to different cellular compartments and for its

degradation. Therefore, the combination of post-translational modifications

with the cellular distribution, confer dystroglycan with properties to regulate

different cellular processes.

The data described in this thesis further confirmed that beta-dystroglycan

is subject to extensive phosphorylation and ubiquitination. Importantly, it

was observed that other post-translational modifications, such as RIP, are also

involved in the functionality of beta-dystroglycan. Furthermore, a dystrogly-

can interactome analysis showed that it may be possible that the interactions

of beta-dystroglycan with other proteins extend far beyond those already re-

ported. The main goal in this interactome analysis was to identify co-factors

and other proteins that could provide clues about the role of beta-dystroglycan

in the nucleus of LNCaP cells. It was exciting to find that, in addition to

some potential nuclear candidates, there are other proteins that, together with

beta-dystroglycan, may be modulating cellular functions outside of the nu-

cleus. There is still a lot of work that needs to be done in order to understand

those potential interactions and the questions that they raise.

This project centred around triggering events on the plasma membrane
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that could provide us with a logic explanation for how beta-dystroglycan is

transported to the nucleus. For this reason, the project was divided into three

main sections:

• Post-translational modifications affecting the integrity of beta-dystroglycan.

• Mechanisms leading to the proteolysis and nuclear translocation of beta-

dystroglycan.

• Protein interactions that could explain the function(s) of beta-dystroglycan

in the nucleus.

6.1.1 Post-translational modifications of beta-dystroglycan

From data presented in chapter 3 it is clear that beta-dystroglycan may be

subject to extensive phosphorylation and ubiquitination. The accumulation of

the cytoplasmic fragment of beta-dystroglycan in the nucleus led us to initially

propose that it has nuclear functions followed, by its ubiquitination, and then

degradation by the nuclear proteasome. Ubiquitination is a post-translational

modification that can have two different outcomes. The first is as an additional

modification involved in cell cycle, trafficking and nuclear functions. The sec-

ond one is to flag proteins for degradation by the proteasome (Hochstrasser,

2009; Komander, 2009).

In the first case, this modification could regulate the possible transport

and interactions of beta-dystroglycan with other nuclear proteins. Addition-

ally, modification with ubiquitin groups could lead to conformational changes

in the highly disordered cytoplasmic fragment of beta-dystroglycan that could

cause its activation (see below for discussion) or inactivation. The modifica-

tions of beta-dystroglycan in the second scenario represent the final stage of

regulation of nuclear beta-dystroglycan. In this regard, once beta-dystroglycan

has exerted its functions (whatever they are), the cell does not invest any un-

necessary energy by transporting beta-dystroglycan back to the cytoplasm.
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Although both are plausible ideas, further research is required in order to

identify any other amino acids subject to ubiquitination, how this modifica-

tion affects the transport of beta-dystroglycan, and if beta-dystroglycan is

indeed degraded in the nucleus, or transported back to the cytoplasm.

The nuclear localisation signal of beta-dystroglycan is rich in lysine and

arginine amino acids and is strategically located within the sequence contained

in the cytoplasmic fragment. Interestingly, the lysine that is shown to be

subject to ubiquitination in this project is located in the second stretch of

amino acids that belong to the NLS. Thus, it will need to be determined if

other lysines within the NLS are modified by ubiquitination (mono or poly) and

to what extent this modification affects protein interactions, nuclear transport

and the degradation of beta-dystroglycan. This could have several implications

as it is also known that this particular motif mediates the interaction with the

ERM proteins, rapsyn and ERK, and members of the importin system (see

section 1.5.5).

The reason why these questions have to be answered comes from the idea

that proteins are regulated differentially depending on whether the modifi-

cation is mono- or poly-ubiquitination and what type of linkage is involved.

Poly-ubiquitinated proteins are usually targeted for proteasomal degradation,

whilst mono-ubiquitination serves to target proteins for nuclear transport. In

this regard, a similar mechanism has been observed in the enzyme cytidylyl-

transferase, the enzyme that catalyses the synthesis of the phospholipid phos-

phatidylcholine. Its transport mediated by the importin system is disrupted

by the masking of its nuclear localisation signal by mono-ubiquitination once

this enzyme is targeted for lysosomal degradation (B. B. Chen & Mallampalli,

2009).

Additionally, an interesting paper has shown that PTEN (Phosphatase

and TENsin homologue) is differentially regulated depending on the type of

ubiquitination on its structure. This phosphatase usually antagonises the ef-

fects of phosphatidylinositol-3-kinase (PI3K) by converting phosphatidylinosi-

tol 3,4,5 phosphate (PIP3) to phosphatidylinositol 4,5 phosphate (PIP2) on the
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plasma membrane. The subsequent reports of its nuclear localisation led to

important discoveries. It was observed that poly-ubiquitination by NEDD4L

(NEDD4-1) targeted PTEN to proteasomal degradation. However, the mono-

ubiquitination by the same enzyme favoured its nuclear localisation. Addition-

ally, it was suggested that PTEN may had been subject to further deubiqui-

tination to perform its nuclear functions that maintain chromosome integrity

(Baker, 2007; Trotman et al., 2007). The opposite regulation by the same PTM

has been reported for p53. Mono-ubiquitination of p53 exposes its nuclear ex-

port signal, allowing further modification with SUMO groups which in turn

enhance nuclear export. The addition of poly-ubiquitin groups retains p53

in the nucleus with its consequent proteasomal degradation (Carter, Bischof,

Dejean, & Vousden, 2007).

The cytoplasmic fragment of beta-dystroglycan has other motifs, which

combined with ubiquitination, could provide other mechanisms of regulation.

A closer view of the primary structure of dystroglycan revealed other inter-

esting regulatory elements within its primary structure. It has five PEST

motifs distributed throughout alpha- and beta-dystroglycans (2 in alpha and

3 in beta). These motifs have a low hydrophobicity index indicating that they

are exposed and may mediate protein-protein interactions (http://emboss

.bioinformatics.nl/cgi-bin/emboss/epestfind) (Figure 6.1). The PEST

motifs are short sequences of proline (P), aspartic acid (E), serine (S) and

threonine (T) residues. These motifs are usually surrounded by lysine (K),

arginine (R) or histidine (H) amino acids and are approximately 12 amino

acids long. An important characteristic of proteins that have these motifs is

that they are, apparently, rapidly and efficiently degraded by the proteasome.

It has also been suggested that the presence of additional modifications, such

as phosphorylation and changes in the overall conformation of the substrates,

increase the turnover of proteins targeted for proteasomal degradation(Garćıa-

Alai et al., 2006; Rechsteiner & Rogers, 1996).

The presence of these PEST motifs could be the point of convergence

between the extensive phosphorylation and ubiquitination present in beta-
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     1 MRMSVGLSLLLPLSGRTFLLLLSVVMAQSHWPSEPSEAVRDWENQLEASMHSVLSDLHEA 60!
                                                                !
    61 VPTVVGIPDGTAVVGRSFRVTIPTDLIASSGDIIKVSAAGKEALPSWLHWDSQSHTLEGL 120!
      !
   121 PLDTDKGVHYISVSATRLGANGSHIPQTSSVFSIEVYPEDHSELQSVRTASPDPGEVVSS 180!
      !
   181 ACAADEPVTVLTVILDADLTKMTPKQRIDLLHRMRSFSEVELHNMKLVPVVNNRLFDMSA 240!
      !
   241 FMAGPGNAKKVVENGALLSWKLGCSLNQNSVPDIHGVEAPAREGAMSAQLGYPVVGWHIA 300!
      !
   301 NKKPPLPKRVRRQIHATPTPVTAIGPPTTAIQEPPSRIVPTPTSPAIAPPTETMAPPVRD 360!
                      +++++++++++++++++++++!
!
   361 PVPGKPTVTIRTRGAIIQTPTLGPIQPTRVSEAGTTVPGQIRPTMTIPGYVEPTAVATPP 420!
        !
   421 TTTTKKPRVSTPKPATPSTDSTTTTTRRPTKKPRTPRPVPRVTTKVSITRLETASPPTRI 480!
                    +++++++++++++                                  !
!
   481 RTTTSGVPRGGEPNQRPELKNHIDRVDAWVGTYFEVKIPSDTFYDHEDTTTDKLKLTLKL 540!
!
   541 REQQLVGEKSWVQFNSNSQLMYGLPDSSHVGKHEYFMHATDKGGLSAVDAFEIHVHRRPQ 600!
!
   601 GDRAPARFKAKFVGDPALVLNDIHKKIALVKKLAFAFGDRNCSTITLQNITRGSIVVEWT 660!
       !
   661 NNTLPLEPCPKEQIAGLSRRIAEDDGKPRPAFSNALEPDFKATSITVTGSGSCRHLQFIP 720!
       !
   721 VVPPRRVPSEAPPTEVPDRDPEKSSEDDVYLHTVIPAVVVAAILLIAGIIAMICYRKKRK 780!
             ++++++++++++                                          !
!
   781 GKLTLEDQATFIKKGVPIIFADELDDSKPPPSSSMPLILQEEKAPLPPPEYPNQSVPETT 840!

! ! ++++++++++++++ ! ! ! ! !+++++++++++++++++!
!
   841 PLNQDTMGEYTPLRDEDPNAPPYQPPPPFTAPMEGKGSRPKNMTPYRSPPPYVPP 895!
       +++++++++++++ +++++++++++++++++++++                    !
!

A 

B 

E 

D 

C 

D 

F 

Figure 6.1: Dystroglycan has different potential PEST motifs. The PEST mo-
tifs are characterised by short stretches of proline (P), aspartic acid (E), serine
(S) and threonine (T) amino acids surrounded by basic residues. Alpha- (dark
green) and beta-dystroglycan (blue) have two (A and B) and three (C, D and
E) potential PEST motifs (red crosses) respectively. The motif identified by
Piggot is highlighted in pink crosses (F) (Piggott, 2014), and the amino acids
that belong to the cytoplasmic fragment of beta-dystroglycan are underlined.

dystroglycan. Apparently, the deletion of a PEST motif in human NANOG, a

gene that regulates pluripotency of embryonic stem cells, decreased its ubiq-

uitination and extended its half life (Ramakrishna et al., 2011). Furthermore,

the phosphorylation of two key serines within a PEST sequence in the vascular

endothelial growth factor receptor 2 is important in modulating its ubiquiti-
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nation and consequent degradation by the proteasome (Meyer et al., 2011).

Thus, these PEST motifs could correspond to the minimal sequences, the

definition of ”degrons” (Ravid & Hochstrasser, 2008), that are recognised by

the NEDD4L and HUWE1 E3 ligases in order to target beta-dystroglycan for

degradation. A speculative idea is that the hydrophilic PEST motifs mediate

the interaction of beta-dystroglycan with both ligases, which in turn are able

to ubiquitinate adjacent lysines.

Although the idea looks feasible, it seems that this putative interaction is

more complicated in reality. In agreement with this thesis, a previous report

showed that phosphorylated beta-dystroglycan was subjected to ubiquitina-

tion (Piggott, 2014). In vitro experiments aimed to identify the E3 ubiquitin

ligase responsible for this PTM suggested that the WW1 and WW2 domains of

NEDD4L interacted with the LEDQATFIKKGVPI peptide sequence of beta-

dystroglycan (see region F in Figure 6.1). However, further in vivo characteri-

sation by immunoprecipitation assays was not able to identify any interaction

between NEDD4L and beta-dystroglycan in H2K myoblasts (Piggott, 2014).

This is contrary to the mass spectrometry results obtained in chapter 5, where

NEDD4L was identified as one of the putative ubiquitin ligases interacting with

beta-dystroglycan. Because of the characteristics of the sequence previously

identified by Piggott, it can be argued that the interaction between NEDD4L

and beta-dystroglycan was not detected, because two internal lysines are part

of the second stretch of amino acids that conform the nuclear localisation sig-

nal in beta-dystroglycan. Thus, it can be speculated that the competitive

binding of these amino acids to the importin alpha/beta complex, avoided the

subsequent interaction with NEDD4L in the pull-down experiment.

Furthermore, a pull-down assay using the recombinant cytoplasmic frag-

ment of beta-dystroglycan in an importin free system, did not show any binding

to the WW1 and WW2 motifs of NEDD4L (Piggott, 2014), indicating that

the hypothesis of a possible competition with importins is not feasible. How-

ever it is also possible that despite the presence of WW interaction motif in

dystroglycan and four WW domains in NEDD4L, that NEDD4L does not in-
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teract with beta-dystroglycan via a WW domain interaction. As discussed in

chapter 5, it may be that the type of ligases implicated in the ubiquitination

of beta-dystroglycan depend on the cellular type. The interaction of NEDD4L

with beta-dystroglycan, detected by mass spectrometry analysis in this thesis,

has also been observed in other in vitro systems (Steve Winder personal com-

munication, and (Piggott, 2014)). Although the interaction between NEDD4L

and beta-dystroglycan still has to be confirmed in LNCaP cells, the evidence

above suggests a possible indirect interaction.

Investigating the possibility that NEDD4L and HUWE1 are the ubiqui-

tin ligases of beta-dystroglycan is important, because the activity of these

ligases could be modulated in order to prevent the pathological loss of beta-

dystroglycan from the plasma membrane in certain diseases. Previous studies

have used the inhibition of the proteasome as a strategy to restore components

of the DAPC to the plasma membrane. However, this strategy has been crit-

icized by the fact that the abolishing of the proteasome activity affects the

turnover of proteins that have to be normally degraded by this pathway: it is

not ”substrate specific”, or it fails to improve the dystrophic phenotype of the

mdx mice (Perkins & Davies, 2012; Selsby, Morris, Morris, & Sweeney, 2012).

Therefore, the option of inhibiting these E3 ubiquitin ligases would be a more

specific means of preventing the ubiquitination of beta-dystroglycan. In this

regard, it is interesting to note that in colorectal cancer the levels of NEDD4L

were found to be downregulated at the mRNA and protein levels (Tanksley,

Chen, & Coffey, 2013). In prostate cancer, on the other hand, there seemed

to be no definite correlation as two independent groups have found increased

(Hellwinkel et al., 2011) and also reduced (Hu, Xu, Fu, Yu, & Huang, 2009)

levels of NEDD4L.

More research is required in order to determine the way in which the above

E3 ubiquitin ligases and beta-dystroglycan interact, either by means of the

sequence identified by Piggott or the PEST motifs proposed here. Also, it will

be necessary to investigate the role of pY890 and the role of pT788 (which is

situated in the middle of the binding sequence identified by Piggott) in this
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interaction. These investigations will help develop our understanding of how

ubiquitination controls the stability of beta-dystroglycan.

6.1.2 Regulated intramembrane proteolysis of beta-dystroglycan

The results provided in this thesis add more evidence to the modification of

beta-dystroglycan by regulated intramembrane proteolysis that occurs by a

series of events initiated in the extracellular environment. By combining pre-

vious reports with the information gathered in this thesis, a general mechanism

of the events initiated on the plasma membrane leading to RIP can be pos-

tulated as follows. High cell density and PDBu stimulation are two potential

factors that may initiate downstream proteolytic events in beta-dystroglycan.

The apparent hypo-glycosylation of alpha-dystroglycan because of decreased

expression on LARGE2 and β3GnT1 (Bao et al., 2009; Esser et al., 2013) ren-

ders a ”naked” protein that is susceptible to a first cleavage by furin (Singh et

al., 2004). These events are followed by further proteolytic events by MMP-2

and -9 on the extracellular domain of beta-dystroglycan which in turn gen-

erate a membrane-anchored fragment (Yamada et al., 2001). The proteolytic

activities mediated by gamma-secretase within the plasma membrane produce

a smaller fragment that is still attached to this lipid bi-layer by the palmi-

toyl modification in a cysteine group immediately below the transmembrane

domain (Kang et al., 2008). The final cut at the interface of the plasma

membrane and NLS, carried out by furin, releases this small fragment into

the cytosol. The released cytoplasmic fragment is then transported to the

nucleus by passive diffusion (see section 1.5.4 and Figure 1.7), where it accu-

mulates and regulates gene transcription and is finally degraded by the nuclear

ubiquitin-proteasome system (Figure 6.2).

214



6.1. DISCUSSION

FU
R

IN
 

!
L

A
R

G
E

 

M
M

P 
-2

, -
9 

γ-
SE

C
R

E
TA

SE
 

FU
R

IN
 

βD
g 

26
 k

D
a 

43
 k

D
a 

31
 k

D
a 

37
 k

D
a 

15
0 

kD
a 

~200 kDa 

F
ig

u
re

6.
2:

R
eg

u
la

ti
on

of
d
y
st

ro
gl

y
ca

n
b
y

p
ro

te
ol

y
si

s.
D

y
st

ro
gl

y
ca

n
is

su
b

je
ct

to
d
iff

er
en

t
p
ro

te
ol

y
ti

c
ev

en
ts

.
A

t
th

e
ex

tr
ac

el
lu

la
r

m
at

ri
x
,

al
p
h
a-

an
d

b
et

a-
d
y
st

ro
gl

y
ca

n
ar

e
su

b
je

ct
to

p
ro

te
ol

y
si

s
m

ed
ia

te
d

fu
ri

n
an

d
M

M
P

-2
an

d
-9

re
sp

ec
ti

ve
ly

.
W

it
h
in

th
e

p
la

sm
a

m
em

b
ra

n
e,

ga
m

m
a-

se
cr

et
as

e
cl

ea
ve

s
a

31
k
D

a
fo

rm
of

b
et

a-
d
y
st

ro
gl

y
ca

n
fo

ll
ow

ed
b
y

an
ot

h
er

cl
ea

va
ge

b
y

fu
ri

n
in

th
e

ju
x
ta

m
em

b
ra

n
e

re
gi

on
.

S
h
ow

n
ar

e
th

e
ap

p
ro

x
im

at
e

M
W

of
th

e
ge

n
er

at
ed

p
ro

d
u
ct

s
b
y

th
e

p
ro

te
as

es
.

215



CHAPTER 6. DISCUSSION, CONCLUSIONS AND FUTURE WORK

The localisation in the nucleus of the same key players mediating the pro-

teolysis of beta-dystroglycan on the plasma membrane leads to the hypothesis

that the same mechanism could apply in the nucleus. RIP in the nuclear mem-

brane could explain some discrepancies between the pool of beta-dystroglycan

anchored to the nuclear membrane and the pool observed moving freely in the

nucleoplasm. In this model, full-length beta-dystroglycan is anchored to the

nuclear membrane and the released cytoplasmic fragments are free moving in

the nucleoplasm. The processing of beta-dystroglycan by RIP may also influ-

ence further processing by the nuclear ubiquitin proteasome system. Although

the PTMs and the potential nuclear functions of beta-dystroglycan were sep-

arated from the RIP mechanisms described in this thesis, all three of these

mechanisms have to be thought of as a continuous process.

There are different enzymes with the potential to cleave membrane-anchored

proteins: some cleave type II transmembrane proteins, others multi-pass pro-

teins (Lemberg, 2011; Wolfe & Kopan, 2004). However, if nuclear beta-

dystroglycan is subject to proteolysis, the question then arises of how this

process could be carried out. The possibility of a mechanism mediated by

nuclear gamma-secretase (J. Li et al., 1997) was previously discussed in this

thesis, but there is still the question of whether other enzymes could perform

the same function. In this regard, one of the critical steps in the processing

of prelamin A consists of its proteolytic cleavage by the seven transmembrane

zinc metalloprotease ZMPSTE24. This protease, which is located in the ER

and the inner nuclear membrane, helps with the maturation of lamin A, and is

implicated in the Hutchinson-Gilford Progeria Syndrome due to its inability to

cleave a mutant form of prelamin A (Davies, Fong, Yang, Coffinier, & Young,

2009).

The processing of prelamin A by ZMPSTE24 teaches us that there could

be a similar processing for beta-dystroglycan, as it has been demonstrated

that the nucleus is not exempt from proteolytic regulatory activities. In this

regard, after being transported to the nucleus and inserted in the plasma

membrane, beta-dystroglycan could be cleaved by gamma-secretase or similar

216



6.1. DISCUSSION

enzymes, such as ZMPSTE24 (Barrowman, Hamblet, George, & Michaelis,

2008; Barrowman, Hamblet, Kane, & Michaelis, 2012). Understanding the

way that beta-dystroglycan is processed within the nucleus could explain the

possible hypothesis of a liberated cytoplasmic fragment that is able to function

as a transcriptional co-factor. It remains to be determined if the purpose of this

cleavage is intended to initiate turnover of dystroglycan, if it has a significance

in cellular signalling, if it has functions and then it is immediately degraded

by the proteasome, or a combination of all three.

The answers to these questions are important because they could influence

the design of therapies aimed to prevent the cleavage of beta-dystroglycan.

Given the fact that beta-dystroglycan is reduced from the plasma membrane

in cancer and in muscular dystrophies via mechanisms that involve the pro-

teasome, PTM and gamma-secretase, a sensible therapeutic strategy could

be to inhibit the activity of gamma-secretase. However, like the proteasome,

gamma-secretase is not specific to beta-dystroglycan, and it inhibition will

inhibit other pathways as a consequence.

By analogy, it is known that the inhibition of the proteasome leads to the

restoration of the DAPC components to the plasma membrane. However, this

therapeutic strategy has been questioned by the fact that proteins have to be

subject to proteasomal degradation as part of normal cell function. There-

fore inhibiting proteasomal activity has off-target effects that are potentially

harmful, limiting its use as a therapy (Perkins & Davies, 2012).

The same rationale can be applied to the development of therapeutic strate-

gies that inhibit the activity of gamma-secretase in order to stop the cleavage

of plasma membrane proteins. Inhibiting gamma-secretase could stop the fur-

ther processing of beta-dystroglycan, but also of other proteins that have to be

cleared because of alterations in their sequences which are potentially harmful

to the cell (Selkoe & Wolfe, 2007). In this regard, the development of thera-

pies that are highly specific in preventing the processing of beta-dystroglycan

by gamma-secretase could be more useful. Although this could be a sensi-

ble strategy, in proteins subject to the same proteolytic events by gamma-
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secretase it has been observed that the use of such strategies can lead to

other unwanted effects, such as the stimulation of tumourigenesis, alteration

of stem cell signalling pathways, and effects associated with the inhibition of

the Notch signalling pathway (Purow, 2012). It has to be considered that the

proteolytic activation of beta-dystroglycan is merely a consequence of an up-

stream activation. As mentioned previously, it can be activated under normal

conditions or started by defective glycosylation of alpha-dystroglycan followed

by the proteolytic cleavages of furin, on alpha- and, subsequently, MMPs on

beta-dystroglycan (Figure 6.2). Again, further research is required to show

that this process is caused by an event initiated on alpha-dystroglycan and

that it is not an independent mechanism concerning beta-dystroglycan alone.

If the first scenario is true, then a therapy aimed to restore the glycosyla-

tion of alpha-dystroglycan could be enough to restore the components of the

DAPC to the plasma membrane. However, if gamma-secretase cleavage is an

independent mechanism, other strategies aimed at protecting the cleavage of

beta-dystroglycan within the plasma membrane will have to be developed.

So far, the discussion has been focused on the possible consequences of the

liberated cytoplasmic fragment of beta-dystroglycan. However, it should not

be forgotten that, upon cleavage, alpha- and beta-dystroglycan fragments are

released to the extracellular environment. A simple conclusion about these re-

leased fragments is that, they are degraded, but the consequences of generated

fragments seem to be far more complex than this.

Different research groups have focused their attention on the potential use

of released cleaved fragments as biomarkers in neurodegenerative diseases and

cancer. By measuring the concentrations of various secreted proteins in cere-

brospinal fluid (CSF), Yin and colleagues identified specific secreted proteins

that were increased in patients with Alzheimer’s and Parkinson diseases. One

of the proteins identified was alpha-dystroglycan, and even though the number

of patients under study was low, its use as a biomarker of neurodegenerative

diseases was suggested (Yin, Lee, Cho, & Suk, 2009). In addition to that

study, increased levels of the N-terminal domain of alpha-dystroglycan have
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also been observed in the CSF of patients with Lyme neuroborreliosis (Hesse et

al., 2011). The secretion of the N-terminal fragment of alpha-dystroglycan has

also been reported for various different cell lines (Saito, Saito-Arai, Nakamura,

Shimizu, & Matsumura, 2008; Saito et al., 2011).

The other scenario that has to be taken into account is the possibility

that the released fragments could be affecting adjacent interactions e.g. by

means of the formation of homophilic interactions or by affecting other cellular

processes. In this regard, it has been reported that the N-terminal domain

of alpha-dystroglycan retains its ability to interact with extracellular matrix

components, such as lamins, fibronectin and fibrinogen. Perhaps the most

interesting result reported by the authors was the fact that the N-terminal

domain was able to induce neurite extension in PC12 cells (Hall, Bozic, Michel,

& Hubbell, 2003).

Together, these results highlight the potential use of secreted cleaved frag-

ments of dystroglycan as biomarkers; however, large scale screening is still re-

quired to find a correlation between the concentration of extracellular secreted

cleaved dystroglycan in body fluids and the onset/progression of muscular dys-

trophies and cancer. Furthermore, if the cleavage of dystroglycan is a common

event in disease, it will be interesting to determine if there are additional cel-

lular events initiated by the liberation of the secreted fragments e.g. by the

formation of homophilic interactions.

6.1.3 The function of nuclear dystroglycan

The function of nuclear beta-dystroglycan is an emerging and exciting topic.

With its important function on the plasma membrane to protect the sar-

colemma from damage during muscle contraction and relaxation, or its role

in controlling and co-ordinating the growth of epithelial cells, it is hard to

believe that dystroglycan is also present in the nucleus of cells (either alone

or accompanied by alpha-dystroglycan) where it has a function within this

very controlled environment. In this thesis, evidence indicating that beta-
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dystroglycan may have different roles inside the nucleus was found. Some of

the information discussed below will be based on the findings gathered in this

project, but caution has to be taken as most of the putative functions and

interactions of beta-dystroglycan have to be further confirmed.

The localisation of beta-dystroglycan in the nucleus of different cell lines

and in human prostate cancer has been well documented. However, there are

no studies reporting the nuclear presence of its counterpart, alpha-dystroglycan.

This study is the first to show evidence that alpha-dystroglycan is also present

in the nucleus. There are several reasons why this observations seems counter-

intuitive. Alpha-dystroglycan is a secreted protein, it does not have a nuclear

localisation signal, and it does not have a transmembrane domain that could

direct its insertion into the nuclear membrane. Furthermore, a previous report

using an antibody directed against the glycan groups of alpha-dystroglycan

concluded that beta-dystroglycan was the only subunit present in the nucleus

(Oppizzi et al., 2008). Also, the only evidence presented thus far corresponds

to that of a biochemical cell fractionation of an over-expressed construct pre-

sented in this thesis (Chapter 3, Figure 3.10). Although attempts were made in

order to detect alpha-dystroglycan by immunofluorescence and western blot-

ting by using antibodies against core and glycosylated alpha-dystroglycan,

they were not successful. The idea of nuclear alpha-dystroglycan can not be

completely discarded and the following elements provide some insights into

how this protein could be transported to the nucleus and its potential roles.

The results shown in section 3.5 correspond to three independent experi-

ments, which, in part, could discard the possibility of an experimental artefact.

Also, it is thought that during the biosynthesis of dystroglycan, both alpha-

and beta-subunits remain non-covalently attached, suggesting that this inter-

action could provide a route for the transport of alpha-dystroglycan. Addi-

tionally, glycosylation has also been observed to modify the nucleocytoplasmic

transport of heat shock proteins-40 and -70 (Zachara et al., 2004), and to con-

fer the properties of a nuclear localisation signal as was observed with BSA

(Guinez, Morelle, Michalski, & Lefebvre, 2005; Rondanino, Bousser, Monsigny,

220



6.1. DISCUSSION

& Roche, 2003; Hart & West, 2009). Furthermore, phosphorylation modulates

the glycosylated status of proteins which in turn affects their nuclear transport

as has been observed with Tau proteins (Lefebvre et al., 2003). Interestingly,

the transport of some glycosylated proteins occurs in a cell cycle-dependent

manner (Rondanino et al., 2003) and apparently, this modification, enhances

the interaction between some transcription co-factors (Gewinner et al., 2004).

Given the extensive glycosylation of alpha-dystroglycan and the data from

the reports cited above, it can be hypothesized that alpha-dystroglycan trav-

els to the nucleus by means of its multiple glycan groups, which mediate un-

known nuclear regulations. However, this is contradicted by the fact that in

the data reported in this thesis, alpha-dystroglycan was apparently void of

glycosylation. Therefore, if alpha-dystroglycan is transported to the nucleus,

it has to occur via a novel, glycan-independent mechanism. In support of

this, Chuderland and colleagues identified a new motif that is able to translo-

cate cytoplasmic proteins to the nucleus in an importin-independent pathway.

This SPS/TPT (Ser-Pro-Ser / Thr-Pro-Thr or S/T-P-S/T) motif, upon phos-

phorylation and interaction with importin-7, was able to mediate the nuclear

transport of the extracellular signal-regulated kinase-2 (ERK-2), SMAD3 and

MEK1 (Chuderland, Konson, & Seger, 2008). Thus, in a speculative scenario,

hypo-glycosylated alpha-dystroglycan exposes its major TPT domains, which

are then phosphorylated, bound by importin-7 and transported to the nucleus.

Much research is required to fully characterise the nuclear localisation of alpha-

dystroglycan and the significance of this. Some elements have been provided

that suggest possible pathways to the nucleus and testing these, with the help

of newly developed antibodies (Fortunato et al., 2014; Humphrey et al., 2015),

will further support or discard the running hypothesis of a separate pool of

nuclear alpha-dystroglycan.

The information provided above, although limited for alpha-dystroglycan,

leads to the question of whether the N-glycosylation on the globular domain

of beta-dystroglycan could confer additional properties to this subunit, and it

may be by modulating its interaction with other proteins in the lumen of the
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nuclear envelope.

The nuclear lamina, in addition to the known components lamin-A/C,

lamin-B and emerin (a lamin-binding protein), is composed of proteins that are

part of the LINC complex (Linker of Nucleoskeleton and Cytoskeleton), which

connects the nucleoskeleton to the cytoskeleton (Crisp et al., 2006; Dechat,

Adam, Taimen, Shimi, & Goldman, 2010; Starr, 2011; K. L. Wilson & Berk,

2010). The main components of the LINC complex are SUN and KASH pro-

teins. SUN proteins are transmembrane proteins immersed in the inner nu-

clear membrane, with the N-terminal oriented towards the nucleoplasm and

the C-terminal facing the nuclear membrane lumen. On the other hand, KASH

proteins span the outer nuclear membrane, with the N-terminal facing towards

the cytosol and the C-terminus in the lumenal space of the nuclear membrane.

The localisation and the way these two proteins interact resemble a nuclear

bridge, able to transmit signals and forces between the nucleoskeleton, the

cytoskeleton and the extracellular matrix (Crisp et al., 2006; Hodzic, Yeater,

Bengtsson, Otto, & Stahl, 2004; Starr, 2011; Wang et al., 2012)

SUN proteins interact with chromatin-associated proteins, with compo-

nents of the nuclear lamina in the nucleoplasm, and with KASH proteins in

the nuclear membrane lumen. KASH proteins are able to interact with dif-

ferent cytosolic proteins, including actin filaments, microtubules, intermediate

filaments and others, and regulate different cellular process in a great variety

of organisms. The mutations of KASH proteins have been associated with

various diseases, such as Emery-Dreifuss muscular dystrophy, cancer (colorec-

tal, gastrointestinal, ovarian and breast), autism disorders, hearing problems,

mental disorders and others (Luxton & Starr, 2014; Starr, 2011; Turgay et al.,

2014).

The mass spectrometry analysis identified, SUN2, kinesin, dynein and

torsin A (component of the nuclear membrane lumen) as potential binding

partners of nuclear beta-dystroglycan. Incorporating these finding with the

model suggested by Tadayoni and colleagues (Tadayoni et al., 2012), it is pos-

sible to hypothesize that beta-dystroglycan is able to interact with SUN2 and
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KASH proteins, which in turn triggers the formation of other complexes in

the cytosol, depending on the cellular context. During the development of

this thesis and in support of the above hypothesis, SUN1 and emerin nuclear

proteins, were found interacting with dystroglycan (Cisneros and Winder labs,

Steve Winder personal communication) (Figure 6.3).

Further research is required to confirm the proposed interaction between

beta-dystroglycan, SUN and KASH, and its biological and clinical significance.

Perhaps this new association will help to explain the molecular basis for the

centralised nuclei usually observed in muscular dystrophies, and alterations in

the nuclear shape and positioning of the centrosomes which have been reported

in different cancers (Gundersen & Worman, 2013).

223



CHAPTER 6. DISCUSSION, CONCLUSIONS AND FUTURE WORK

O
N

M
 

IN
M

 
N

PC
 

N
uc

le
op

la
sm

 

C
yt

os
ol

 

C
yt

os
ke

le
to

n 

PN
S 

To
rs

in
A 

La
m

in
 

D
p7

1 

K
A

SH
 

SU
N

 

La
m

in
 B

 βD
g 

D
yn

ei
n 

D
N

A
 

Em
er

in
 

F
ig

u
re

6.
3:

B
et

a-
d
y
st

ro
gl

y
ca

n
an

d
th

e
L

IN
C

co
m

p
le

x
.

A
cu

rr
en

t
h
y
p

ot
h
es

is
fo

r
n
u
cl

ea
r

b
et

a-
d
y
st

ro
gl

y
ca

n
su

gg
es

ts
th

at
it

is
in

se
rt

ed
in

th
e

in
n
er

n
u
cl

ea
r

m
em

b
ra

n
e

w
it

h
it

s
N

-t
er

m
in

al
fa

ci
n
g

to
w

ar
d
s

th
e

p
er

in
u
cl

ea
r

sp
ac

e
(P

N
S
).

In
th

e
P

N
S
,

b
et

a-
d
y
st

ro
gl

y
ca

n
in

te
ra

ct
s

w
it

h
S
U

N
,

a
m

em
b

er
of

th
e

L
IN

C
co

m
p
le

x
,

to
rs

in
A

,
an

d
em

er
in

,
al

th
ou

gh
th

e
m

ec
h
an

is
m

s
m

ed
ia

ti
n
g

th
is

in
te

ra
ct

io
n

ar
e

st
il
l

u
n
k
n
ow

n
.

224



6.2. FUTURE PERSPECTIVES

6.2 Future perspectives

The broad distribution in cellular organelles of differing tissues and species,

confers multiple functions on dystroglycan: whether they are advantageous or

disadvantageous, is something that has to be determined. During the course

of this thesis there were many questions that arose and these require answers

in order to have a better understanding of the effects of phosphorylation-

ubiquitination, RIP and the nuclear localisation of dystroglycan, particularly

in diseases, such as cancer and muscular dystrophies, and other cellular pro-

cesses, namely development. Those questions are described in the previous

chapters, but the most relevant, are enumerated in the objectives below:

1. To fully characterise the localisation and functionality of alpha-dystroglycan

in the nucleus.

2. To determine the effects of the over-expression of the cytoplasmic domain

of beta-dystroglycan in heterologous systems. Does it inhibit or stimulate

tumour progression?

3. To determine the effects of the extracellular domain of beta-dystroglycan

on adjacent and distant cells.

4. To determine the function of beta-dystroglycan in mitosis.

5. To further confirm that NEDD4L and HUWE1 are the ligases implicated

in the ubiquitination of beta-dystroglycan.

6. To further characterise the interaction of beta-dystroglycan with mem-

bers of the LINC complex.

7. To characterise the cross-talk between Notch and dystroglycan signalling

pathways.

225



CHAPTER 6. DISCUSSION, CONCLUSIONS AND FUTURE WORK

6.3 Conclusions

This work highlights the possibility that beta-dystroglycan may be subject to

multiple phosphorylation and ubiquitination post-translational modifications.

It also provides new evidence about another post-translational modification

mediated by gamma-secretase, regulated intramembrane proteolysis, that is

responsible for the further processing of beta-dystroglycan. The triggering of

these three PTM (ubiquitination, phosphorylation and RIP) seems to be ini-

tiated by extracellular events affecting the glycosylation of alpha-dystroglycan

in disease. The signals initiating these PTM appear to converge on the nucleus,

where the cytoplasmic fragment of beta-dystroglycan initiates and regulates

downstream events (Figure 6.4).

Although this work has provided more information about the post-translational

modifications and interacting partners of beta-dystroglycan, the question still

remains: what is the function of nuclear beta-dystroglycan in prostate cancer

cells?

226



6.3. CONCLUSIONS

P"
U
b#

26
 k

D
a 

SU
M
O
"

N
uc

le
ar

 
re

gu
la

tio
n 

Pr
ot

ea
so

m
al

 
de

gr
ad

at
io

n 

γ-
se

cr
ea

ts
e 

Fu
rin

 

? 

?
Dystrophin 

αDg 

βDg 

cd
βD

g 

βc
tn

 
A

R
 

cd
βD

g 
ET

V1
 

Pl
as

m
a 

m
em

br
an

e 

N
uc

le
us

 

N
PC

 

F
ig

u
re

6.
4:

T
h
e

fu
n
ct

io
n

of
n
u
cl

ea
r

b
et

a-
d
y
st

ro
gl

y
ca

n
.

A
t

th
e

p
la

sm
a

m
em

b
ra

n
e

b
et

a-
d
y
st

ro
gl

y
ca

n
is

su
b

je
ct

to
p
ro

te
ol

y
ti

c
cl

ea
va

ge
b
y

d
iff

er
en

t
p
ro

te
as

es
.

A
26

k
D

a
cy

to
p
la

sm
ic

fr
ag

m
en

t
of

b
et

a-
d
y
st

ro
gl

y
ca

n
is

th
en

d
eg

ra
d
ed

b
y

th
e

p
ro

te
as

om
e

in
th

e
cy

to
p
la

sm
(o

ra
n
ge

ar
ro

w
s)

.
A

n
al

te
rn

at
iv

e
p
at

h
w

ay
(g

re
en

ar
ro

w
s)

sh
ow

s
th

at
cy

to
so

li
c

fu
ll
-l

en
gt

h
b

et
a-

d
y
st

ro
gl

y
ca

n
u
n
d
er

th
e

re
gu

la
ti

on
of

d
iff

er
en

t
P

T
M

is
tr

an
sp

or
te

d
to

th
e

n
u
cl

eu
s

to
p
ro

v
id

e
m

ec
h
an

ic
al

su
p
p

or
t

to
th

e
n
u
cl

ea
r

m
em

b
ra

n
e.

N
u
cl

ea
r

b
et

a-
d
y
st

ro
gl

y
ca

n
is

al
so

su
b

je
ct

to
p
ro

te
ol

y
si

s
w

h
ic

h
in

tu
rn

re
le

as
es

a
cy

to
p
la

sm
ic

fr
ag

m
en

t
w

it
h

p
ot

en
ti

al
n
u
cl

ea
r

re
gu

la
to

ry
ac

ti
v
it

y
b
y

m
ea

n
s

of
it

s
in

te
ra

ct
io

n
w

it
h

b
et

a-
ca

te
n
in

(β
ct

n
)

an
d

an
d
ro

ge
n

re
ce

p
to

r
(A

R
).

T
h
e

cy
to

p
la

sm
ic

fr
ag

m
en

t
of

b
et

a-
d
y
st

ro
gl

y
ca

n
is

fi
n
al

ly
d
eg

ra
d
ed

b
y

th
e

n
u
cl

ea
r

p
ro

te
as

om
e

(b
lu

e
ar

ro
w

s)
.

227



CHAPTER 6. DISCUSSION, CONCLUSIONS AND FUTURE WORK

228



Appendices

229





A
Recipes

231



APPENDIX A. RECIPES

B
u
ff

e
r

C
o
m

p
o
n
e
n
ts

N
o
te

s

A
cr

y
la

m
id

e-
b
is

ac
ry

la
m

id
e

m
ix

tu
re

49
.5

%
T

,
3%

C
48

%
(w

/v
)

A
cr

y
la

m
id

e
U

se
to

p
re

p
ar

e
T

ri
s-

T
ri

ci
n
e

ge
ls

.
1.

5%
(w

/v
)

B
is

ac
ry

la
m

id
e

A
cr

y
la

m
id

e-
b
is

ac
ry

la
m

id
e

m
ix

tu
re

49
.5

%
T

,
6%

C
46

.5
%

(w
/v

)
A

cr
y
la

m
id

e
U

se
to

p
re

p
ar

e
T

ri
s-

T
ri

ci
n
e

ge
ls

.
3.

0%
(w

/v
)

B
is

ac
ry

la
m

id
e

A
n
o
d
e

B
u
ff

er
0.

2
M

T
ri

s
A

d
ju

st
th

e
p
H

to
8.

9
w

it
h

H
C

l.
U

se
w

it
h

T
ri

s-
T

ri
ci

n
e

ge
ls

.

B
ac

te
ri

al
M

ed
iu

m
Y

T
(2

x
)

1%
(w

/v
)

Y
ea

st
ex

tr
ac

t
S
te

ri
li
ze

b
y

au
to

cl
av

in
g.

1.
6%

(w
/v

)
T

ry
p
to

n
e

0.
5%

(w
/v

)
N

aC
l

B
lo

ck
in

g
B

u
ff

er
(i

m
m

u
n
ofl

u
or

es
ce

n
ce

)
5%

(v
/v

)
F

B
S

P
re

p
ar

e
in

P
B

S
p
H

7.
4

3%
(v

/v
)

B
S
A

B
lo

ck
in

g
B

u
ff

er
(w

es
te

rn
b
lo

tt
in

g)
5%

(w
/v

)
S
k
im

m
ed

m
il
k

or
B

S
A

D
is

so
lv

e
sk

im
m

ed
m

il
k

or
B

S
A

in
T

B
S
T

.

B
u
ff

er
I

(c
el

l
fr

ac
ti

on
at

io
n
)

0.
32

M
S
u
cr

os
e

A
d
d

0.
5

m
M

P
M

S
F

fr
es

h
b

ef
or

e
u
si

n
g.

B
u
ff

er
ca

n
b

e
su

p
p
le

m
en

te
d

w
it

h
p
ro

te
as

es
an

d
p
h
os

p
h
at

as
es

in
h
ib

it
or

s
as

d
es

ir
ed

.
F

il
te

r
st

er
il
e.

10
m

M
T

ri
s-

H
C

l
p
H

8.
0

3
m

M
C

al
ci

u
m

ch
lo

ri
d
e

2
m

M
M

ag
n
es

iu
m

ac
et

at
e

0.
1

m
M

E
D

T
A

0.
5%

(v
/v

)
N

P
-4

0
1

m
M

D
T

T

B
u
ff

er
S
T

E
10

m
M

T
ri

s-
H

C
l

p
H

8.
0

A
d
d

p
ro

te
as

es
in

h
ib

it
or

s
fr

es
h

b
ef

or
e

u
si

n
g.

1
m

M
E

D
T

A
10

0
m

M
N

aC
l

T
ab

le
A

.1
:

R
ec

ip
es

232



B
u
ff

e
r

C
o
m

p
o
n
e
n
ts

N
o
te

s

B
u
ff

er
II

(c
el

l
fr

ac
ti

on
at

io
n
)

2
M

S
u
cr

os
e

A
d
d

0.
5

m
M

P
M

S
F

fr
es

h
b

ef
or

e
u
si

n
g.

B
u
ff

er
ca

n
b

e
su

p
p
le

m
en

te
d

w
it

h
p
ro

te
as

es
an

d
p
h
os

p
h
at

as
es

in
h
ib

it
or

s
as

d
es

ir
ed

.
F

il
te

r
st

er
il
e.

10
m

M
T

ri
s-

H
C

l
p
H

8.
0

5
m

M
M

ag
n
es

iu
m

ac
et

at
e

0.
1

m
M

E
D

T
A

1
m

m
D

T
T

C
at

h
o
d
e

B
u
ff

er
0.

1
M

T
ri

s
p
H

is
ar

ou
n
d

8.
25

,
n
o

co
rr

ec
ti

on
n
ee

d
ed

.
U

se
w

it
h

T
ri

s-
T

ri
ci

n
e

ge
ls

.
0.

1
M

T
ri

ci
n
e

0.
1%

(w
/v

)
S
D

S

C
o
om

as
si

e
S
af

e
S
ta

in
in

g
60

-8
0

m
g

C
o
om

as
si

e
b
ri

ll
ia

n
t

b
lu

e
G

-
25

0
S
to

re
so

lu
ti

on
p
ro

te
ct

ed
fr

om
th

e
li
gh

t.

3
m

l
C

on
ce

n
tr

at
ed

h
y
d
ro

cl
or

ic
ac

id

D
N

A
L

oa
d
in

g
B

u
ff

er
0.

25
%

(v
/v

)
B

ro
m

op
h
en

ol
b
lu

e
—

–
0.

25
%

(v
/v

)
X

y
le

n
e

cy
an

ol
F

F
30

%
(w

/v
)

G
ly

ce
ro

l

E
C

L
S
ol

u
ti

on
I

10
0

m
M

T
ri

s-
H

C
l

p
H

8.
5

S
to

re
at

4◦
C

p
ro

te
ct

ed
fr

om
th

e
li
gh

t.
25

m
M

L
u
m

in
ol

39
6
µ

M
p
-C

ou
m

ar
ic

ac
id

E
C

L
S
ol

u
ti

on
II

10
0

m
M

T
ri

s-
H

C
l

p
H

8.
5

S
to

re
at

4◦
C

p
ro

te
ct

ed
fr

om
th

e
li
gh

t.
0.

02
%

(v
/v

)
H

2
O

2

C
el

l
F

re
ez

in
g

M
ed

iu
m

20
%

(v
/v

)
F

B
S

P
re

p
ar

e
in

R
P

M
I-

16
40

m
ed

iu
m

.
10

%
(v

/v
)

D
M

S
O

L
ae

m
m

li
S
D

S
-P

A
G

E
G

el
B

u
ff

er
3

M
T

ri
s

A
d
ju

st
th

e
p
H

to
8.

45
w

it
h

H
C

l.
0.

3%
(w

/v
)

S
D

S

T
ab

le
A

.2
:

R
ec

ip
es

(c
on

ti
n
u
ed

)

233



APPENDIX A. RECIPES

B
u
ff

e
r

C
o
m

p
o
n
e
n
ts

N
o
te

s

L
ae

m
m

li
S
D

S
-P

A
G

E
L

oa
d
in

g
B

u
ff

er
(2

x
)

20
%

(v
/v

)
G

ly
ce

ro
l

C
on

ce
n
tr

at
io

n
s

ca
n

b
e

ad
ju

st
ed

to
p
re

p
ar

e
a

5x
co

n
ce

n
tr

at
ed

b
u
ff

er
.

10
0

m
M

T
ri

s-
H

C
l

p
H

6.
8

4%
(w

/v
)

S
D

S
0.

2%
(w

/v
)

B
ro

m
op

h
en

ol
b
lu

e
2%

(v
/v

)
2-

m
er

ca
p
to

et
h
an

ol

M
il
d

C
el

l
L

y
si

s
B

u
ff

er
50

m
M

T
ri

s-
H

C
l

p
H

7.
4

–
15

0
m

M
N

aC
l

1
m

M
E

D
T

A
1%

(w
/v

)
T

ri
to

n
X

-1
00

M
ou

n
ti

n
g

M
ed

iu
m

10
n
g/

m
l

D
A

P
I

D
is

so
lv

e
in

H
y
d
ro

m
ou

n
t.

S
to

re
at

4◦
C

p
ro

te
ct

ed
fr

om
th

e
li
gh

t.
2.

5%
(w

/v
)

D
ab

co

R
ad

io
Im

m
u
n
op

re
ci

p
it

at
io

n
A

ss
ay

B
u
ff

er
(R

IP
A

)

50
m

M
T

ri
s-

H
C

l
p
H

7.
5

S
to

re
at

R
T

p
ro

te
ct

ed
fr

om
th

e
li
gh

t
(J

am
es

et
al

.,
20

00
).

15
0

m
M

N
aC

l
1

m
M

E
G

T
A

1
m

M
E

D
T

A
1%

(v
/v

)
T

ri
to

n
X

-1
00

0.
5%

(w
/v

)
S
o
d
iu

m
d
eo

x
y
ch

ol
at

e
0.

1%
(w

/v
)

S
D

S
1

m
M

S
o
d
iu

m
or

th
ov

an
ad

at
e

10
0

n
M

C
al

y
cu

li
n

1
m

M
P

M
S
F

10
µ

M
T

P
C

K
10

µ
M

L
eu

p
ep

ti
n

1
µ

M
P

ep
st

at
in

10
µ

g/
m

l
A

p
ro

ti
n
in

1x
C

om
p
le

te
p
ro

te
as

e
in

h
ib

it
or

10
m

M
S
o
d
iu

m
fl
u
or

id
e

T
ab

le
A

.3
:

R
ec

ip
es

(c
on

ti
n
u
ed

)

234



B
u
ff

e
r

C
o
m

p
o
n
e
n
ts

N
o
te

s

M
il
d

S
tr

ip
p
in

g
B

u
ff

er
(1

L
)

15
g

G
ly

ci
n
e

A
d
ju

st
th

e
p
H

to
2.

2.
1

g
S
D

S
10

m
l

T
w

ee
n

20

P
h
os

p
h
at

e
B

u
ff

er
ed

S
al

in
e

(P
B

S
)

(1
0x

)

1.
37

M
N

aC
l

A
d
ju

st
th

e
p
H

to
7.

4
w

it
h

H
C

l.
0.

02
7

M
K

C
l

0.
1

M
N

a 2
H

P
O

4

0.
01

8
M

K
H

2
H

P
O

4

L
ae

m
m

li
S
D

S
-P

A
G

E
R

es
ol

v
in

g
B

u
ff

er
1.

5
M

T
ri

s-
H

C
l

p
H

8.
8

–
0.

4%
(w

/v
)

S
D

S
L

ae
m

m
li

S
D

S
R

u
n
n
in

g
B

u
ff

er
(1

0x
)

25
0

m
M

T
ri

s
–

1.
92

M
G

ly
ci

n
e

L
ae

m
m

li
S
ta

ck
in

g
B

u
ff

er
0.

5
M

T
ri

s-
H

C
l

p
H

6.
8

–
0.

4%
(w

/v
)

S
D

S
S
u
cr

os
e

(c
el

l
fr

ac
ti

on
at

io
n
)

1.
8

M
S
u
cr

os
e

F
il
te

r
st

er
il
e.

T
A

E
(1

x
)

40
m

M
T

ri
s-

A
ce

ta
te

–
1

m
M

E
D

T
A

T
ri

s
B

u
ff

er
ed

S
al

in
e

T
w

ee
n

(T
B

S
T

)
(1

x
)

50
m

M
T

ri
s-

H
C

l
p
H

7.
4

–
15

0
m

M
N

aC
l

0.
5%

(v
/v

)
T

w
ee

n
20

T
ow

b
in

T
ra

n
sf

er
B

u
ff

er

25
m

M
T

ri
s

b
as

e
T

h
e

re
su

lt
in

g
p
H

is
ap

p
ro

x
im

at
el

y
8.

3.
D

o
n
ot

ad
ju

st
th

e
p
H

(T
ow

b
in

et
al

.,
19

79
).

19
2

m
M

G
ly

ci
n
e

20
%

(v
/v

)
M

et
h
an

ol
0.

02
-0

.1
%

(w
/v

)
S
D

S
T

ri
s

B
u
ff

er
ed

S
al

in
e

(T
B

S
)

(1
x
)

50
m

M
T

ri
s-

H
C

l
p
H

7.
4

–
15

0
m

M
N

aC
l

T
ab

le
A

.4
:

R
ec

ip
es

(c
on

ti
n
u
ed

)

235



APPENDIX A. RECIPES

236



B
List of oligonucleotides

237



APPENDIX B. LIST OF OLIGONUCLEOTIDES

N
a
m

e
S

e
q
u

e
n

c
e

(5
’
→

3
’)

F
u

n
c
ti

o
n

B
D

G
F

L
A

G
F

W
D

T
C

T
T

T
G

C
G

G
A

T
G

A
G

C
T

G
G

A
T

T
A

T
A

A
A

G
A

T
G

A
T

G
A

C
-

G
A

T
A

A
G

C
C

C
C

C
G

C
C

C
T

C
T

In
se

rt
io

n
of

F
la

g
ta

g
in

th
e

p
ri

m
a
ry

se
q
u

en
ce

of
m

o
u

se
α
β

D
g

B
D

G
F

L
A

G
R

E
V

A
G

A
G

G
G

C
G

G
G

G
G

C
T

T
A

T
C

G
T

C
A

T
C

A
T

C
T

T
-

T
A

T
A

A
T

C
C

A
G

C
T

C
A

T
C

C
G

C
A

A
A

G
A

a
b

D
G

F
A

T
A

C
T

A
G

A
A

T
T

C
A

T
G

T
C

T
G

T
G

G
A

C
A

A
C

T
G

G
C

T
A

C
lo

n
in

g
of

th
e

m
o
u

se
α
β

D
g
F

la
g

D
N

A
se

q
u

en
ce

in
to

th
e

p
cD

N
A

3
.1

(+
)

ve
ct

o
r

a
b

D
G

R
C

T
A

T
T

A
C

T
C

G
A

G
T

T
A

A
G

G
G

G
G

A
A

C
A

T
A

C
G

G
A

G
G

IC
D

B
D

G
W

T
F

A
T

A
C

T
A

G
A

A
T

T
C

A
T

G
T

A
T

C
G

C
A

A
G

A
A

G
A

G
G

A
A

G
G

G
C

C
lo

n
in

g
of

th
e

cy
to

p
la

sm
ic

d
o
m

a
in

o
f
β

D
g
F

la
g

in
to

th
e

p
cD

N
A

3.
1
(+

)
ve

ct
o
r

a
b

D
G

R
C

T
A

T
T

A
C

T
C

G
A

G
T

T
A

A
G

G
G

G
G

A
A

C
A

T
A

C
G

G
A

G
G

IC
B

D
G

F
L

A
G

Y
8
9
0
F

F
C

G
A

T
C

A
C

C
C

C
C

T
C

C
G

T
T

T
G

T
T

C
C

C
C

C
T

T
A

A
M

u
ta

ti
o
n

of
Y

8
90

to
F

in
th

e
p

ri
m

a
ry

se
q
u

en
ce

of
α
β

D
gF

la
g

IC
B

D
G

F
L

A
G

Y
8
9
0
F

R
T

T
A

A
G

G
G

G
G

A
A

C
A

A
A

C
G

G
A

G
G

G
G

G
T

G
A

T
C

G

D
G

K
8
0
6
R

F
A

G
A

T
G

A
T

G
A

C
G

A
T

A
G

G
C

C
C

C
C

G
C

C
C

T
C

T
T

M
u

ta
ti

o
n

of
K

8
06

to
R

in
th

e
p

ri
m

a
ry

se
q
u

en
ce

of
α
β

D
g
F

la
g

D
G

K
8
0
6
R

R
A

A
G

A
G

G
G

C
G

G
G

G
G

C
C

T
A

T
C

G
T

C
A

T
C

A
T

C
T

b
G

H
R

p
ri

m
e
r

(s
o
u

rc
e

b
io

sc
ie

n
c
e
)

T
A

G
A

A
G

G
C

A
C

A
G

T
C

G
A

G
G

P
ri

m
er

u
se

d
to

se
q
u

en
ce

th
e

p
la

sm
id

p
cD

N
A

3
.1

(+
)

w
it

h
th

e
co

d
in

g
se

q
u

en
ce

s:
α
β

D
g
F

la
g

Y
89

0F
,

α
β

D
g
F

la
g

K
8
0
6
R

a
n

d
cd
β

D
gF

la
g

D
G

S
E

Q
(W

in
d

e
r

la
b

)
C

C
G

A
G

A
A

G
A

G
C

A
G

T
A

G
G

A
C

P
ri

m
er

u
se

d
to

se
q
u

en
ce

th
e

in
se

rt
io

n
o
f

F
la

g
ta

g
in

th
e

co
d

in
g

se
q
u

en
ce

o
f
β

D
g

T
7

p
ro

m
o
te

r
(F

)
(s

o
u

rc
e

b
io

sc
ie

n
c
e
)

T
A

A
T

A
C

G
A

C
T

C
A

C
T

A
T

A
G

G
G

P
ri

m
er

u
se

d
fo

r
se

q
u

en
ci

n
g

th
e

in
se

rt
io

n
o
f

th
e

co
d

in
g

se
q
u

en
ce

o
f
α
β

D
g
F

la
g

a
n

d
cd
β

D
g
F

la
g

in
to

th
e

p
la

sm
id

p
cD

N
A

3
.1

(+
)

T
ab

le
B

.1
:

L
is

t
of

ol
ig

on
u
cl

eo
ti

d
es

.

238



C
List of plasmids

Plasmid Features Antibiotic
resistance

Reference

pcDNA3.1-αDg-
myc/hisB

Encodes alpha-
dystroglycan with a
myc/his tag in its C-ter

Ampicillin Jane Hewitt,
University of
Nottingham
(unpublished).

pcDNA3.1(+)-
αβDg-myc/his

Encodes full length
αβDg with a myc/his
tag in its C-ter

Ampicillin Winder lab
(Thompson,
2007).

pcDNA2-αβDg Encodes full length
αβDg

Ampicillin Winder lab.

pcDNA2-
αβDgFlag

Encodes full length
αβDgFlag

Ampicillin This study.

pcDNA3.1(+)-
αβDgFlag

Encodes full length
αβDgFlag

Ampicillin This study.

pcDNA3.1(+)-
cdβDgFlag

Encodes cytoplasmic
domain of βDgFlag

Ampicillin This study.

pcDNA3.1(+)-
αβDgFlag-Y890F

Encodes full length
αβDgFlag with the
mutation Y890F

Ampicillin This study.

pcDNA3.1(+)-
αβDgFlag-
K806R

Encodes full length
αβDgFlag with the
mutation K806R

Ampicillin This study.

pGST-MD Encodes MultiDsk Ampicillin (M. D. Wilson et
al., 2012).

pKA417 Encodes GST Ampicillin Gift from K.R.
Ayscough.

Table C.1: List of plasmids
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D
Preparation of resolving and stacking gels

Separating gel (10 ml) Stacking gel (5 ml)

Concentration 7.5% 10% 12.5% 15% 5%

Acrylamide 2.5 3.35 4.15 5.0 0.8

Gel stock 3.75 3.75 3.75 3.75 0.625

Water 3.65 2.85 2.0 1.2 3.525

TEMED 5 µl 5 µl 5 µl 5 µl 15 µl

10% APS 100 µl 100 µl 100 µl 100 µl 50 µl

Table D.1: Volumes used to prepare Laemmli SDS-PAGE gels (Biorad appa-
ratus).
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APPENDIX F. INTERACTOME OF BETA-DYSTROGLYCAN
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Figure F.4: N-glycan biosynthesis. N-glycans or asparagine-linked glycans are

major constituents of glycoproteins in eukaryotes. N-glycans are covalently attached

to asparagine with the consensus sequence of Asn-X-Ser/Thr by an N-glycosidic

bond, GlcNAc b1- Asn. Highlighted in red are the proteins found immunoprecip-

itating with Flag (DPM1, OST and GANAB). http://www.kegg.jp/dbget-bin/

www bget?pathway+hsa00510.
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Garćıa-Alai, M. M., Gallo, M., Salame, M., Wetzler, D. E., McBride,
A. A., Paci, M., . . . de Prat-Gay, G. (2006). Molecular basis for
phosphorylation-dependent, PEST-mediated protein turnover. Struc-
ture, 14 (2), 309-19.

Gazzerro, E., Assereto, S., Bonetto, A., Sotgia, F., Scarf̀ı, S., Pistorio, A.,
. . . Minetti, C. (2010). Therapeutic potential of proteasome inhibition
in Duchenne and Becker muscular dystrophies. Am J Pathol , 176 (4),
1863-77.

Gebbink, M. F., Zondag, G. C., Koningstein, G. M., Feiken, E., Wubbolts,
R. W., & Moolenaar, W. H. (1995). Cell surface expression of receptor
protein tyrosine phosphatase RPTP mu is regulated by cell-cell contact.
J Cell Biol , 131 (1), 251-60.

Gee, S. H., Blacher, R. W., Douville, P. J., Provost, P. R., Yurchenco, P. D.,
& Carbonetto, S. (1993). Laminin-binding protein 120 from brain is

259



closely related to the dystrophin-associated glycoprotein, dystroglycan,
and binds with high affinity to the major heparin binding domain of
laminin. J Biol Chem, 268 (20), 14972-80.
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trinsic disorder in PTEN and its interactome confers structural plasticity
and functional versatility. Sci Rep, 3 , 2035.

Marquez, F. G., Cisneros, B., Garcia, F., Ceja, V., Velázquez, F., Depardón,
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Lázaro, S. L., Mondragón, M., Mondragón, R., . . . Cisneros, B. (2013).
A role for beta-dystroglycan in the organization and structure of the
nucleus in myoblasts. Biochim Biophys Acta, 1833 (3), 698-711.

Mathew, G., Mitchell, A., Down, J. M., Jacobs, L. A., Hamdy, F. C., Eaton, C.,
. . . Winder, S. J. (2013). Nuclear targeting of dystroglycan promotes the
expression of androgen regulated transcription factors in prostate cancer.
Sci Rep, 3 , 2792.

Matsumoto, H., Maruse, H., Inaba, Y., Yoshizawa, K., Sasazaki, S., Fujiwara,
A., . . . Mannen, H. (2008). The ubiquitin ligase gene (WWP1) is respon-
sible for the chicken muscular dystrophy. FEBS Lett , 582 (15), 2212-8.

Matsumura, K., Chiba, A., Yamada, H., Fukuta-Ohi, H., Fujita, S., Endo,
T., . . . Shimizu, T. (1997). A role of dystroglycan in schwannoma cell
adhesion to laminin. J Biol Chem, 272 (21), 13904-10.

Matsumura, K., Zhong, D., Saito, F., Arai, K., Adachi, K., Kawai, H., . . .
Shimizu, T. (2005). Proteolysis of beta-dystroglycan in muscular dis-
eases. Neuromuscul Disord , 15 (5), 336-41.

Mellacheruvu, D., Wright, Z., Couzens, A. L., Lambert, J. P., St-Denis, N. A.,
Li, T., . . . Nesvizhskii, A. I. (2013). The CRAPome: a contaminant
repository for affinity purification-mass spectrometry data. Nat Methods ,
10 (8), 730-6.

Mercuri, E., & Muntoni, F. (2013). Muscular dystrophies. Lancet , 381 (9869),
845-60.

Merlo, L. M., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as
an evolutionary and ecological process. Nat Rev Cancer , 6 (12), 924-35.

Metzger, M. B., Hristova, V. A., & Weissman, A. M. (2012). HECT and RING
finger families of E3 ubiquitin ligases at a glance. J Cell Sci , 125 (3),
531-7.

Meyer, R. D., Srinivasan, S., Singh, A. J., Mahoney, J. E., Gharahassanlou,
K. R., & Rahimi, N. (2011). PEST motif serine and tyrosine phospho-
rylation controls vascular endothelial growth factor receptor 2 stability
and downregulation. Mol Cell Biol , 31 (10), 2010-25.

Michaluk, P., Kolodziej, L., Mioduszewska, B., Wilczynski, G. M., Dzwonek,
J., Jaworski, J., . . . Kaczmarek, L. (2007). Beta-dystroglycan as a
target for MMP-9, in response to enhanced neuronal activity. J Biol
Chem, 282 (22), 16036-41.

Michele, D. E., Barresi, R., Kanagawa, M., Saito, F., Cohn, R. D., Satz,
J. S., . . . Campbell, K. P. (2002). Post-translational disruption of
dystroglycan-ligand interactions in congenital muscular dystrophies. Na-
ture, 418 (6896), 417-22.

Michele, D. E., & Campbell, K. P. (2003). Dystrophin-glycoprotein complex:
post-translational processing and dystroglycan function. J Biol Chem,
278 (18), 15457-60.

Miller, G., Moore, C. J., Terry, R., La Riviere, T., Mitchell, A., Piggott, R.,

266



References

. . . Winder, S. J. (2012). Preventing phosphorylation of dystroglycan
ameliorates the dystrophic phenotype in mdx mouse. Hum Mol Genet ,
21 (20), 4508-20.

Miralles, F., Posern, G., Zaromytidou, A. I., & Treisman, R. (2003). Actin
dynamics control SRF activity by regulation of its coactivator MAL.
Cell , 113 (3), 329-42.

Mitchell, A., Mathew, G., Jiang, T., Hamdy, F. C., Cross, S. S., Eaton, C., &
Winder, S. J. (2013). Dystroglycan function is a novel determinant of
tumor growth and behavior in prostate cancer. Prostate, 73 (4), 398-408.

Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J.,
Godsave, S., Korinek, V., . . . Clevers, H. (1996). XTcf-3 transcrip-
tion factor mediates beta-catenin-induced axis formation in Xenopus em-
bryos. Cell , 86 (3), 391-9.

Montanaro, F., Lindenbaum, M., & Carbonetto, S. (1999). alpha-Dystroglycan
is a laminin receptor involved in extracellular matrix assembly on my-
otubes and muscle cell viability. J Cell Biol , 145 (6), 1325-40.

Moore, C. J., & Winder, S. J. (2010). Dystroglycan versatility in cell adhesion:
a tale of multiple motifs. Cell Commun Signal , 8 , 3.

Moore, C. J., & Winder, S. J. (2012). The inside and out of dystroglycan
post-translational modification. Neuromuscul Disord , 22 (11), 959-65.

Moraz, M. L., Pythoud, C., Turk, R., Rothenberger, S., Pasquato, A., Camp-
bell, K. P., & Kunz, S. (2013). Cell entry of Lassa virus induces tyrosine
phosphorylation of dystroglycan. Cell Microbiol , 15 (5), 689-700.

Morgan, A. R., Han, D. Y., Lam, W. J., Fraser, A. G., & Ferguson, L. R.
(2010). Association analysis of 3p21 with Crohn’s disease in a New
Zealand population. Hum Immunol , 71 (6), 602-9.

Morrissey, C., & Vessella, R. L. (2007). The role of tumor microenvironment
in prostate cancer bone metastasis. J Cell Biochem, 101 (4), 873-86.

Morton, R. A., Ewing, C. M., Nagafuchi, A., Tsukita, S., & Isaacs, W. B.
(1993). Reduction of E-cadherin levels and deletion of the alpha-catenin
gene in human prostate cancer cells. Cancer Res , 53 (15), 3585-90.

Mulholland, D. J., Cheng, H., Reid, K., Rennie, P. S., & Nelson, C. C. (2002).
The androgen receptor can promote beta-catenin nuclear translocation
independently of adenomatous polyposis coli. J Biol Chem, 277 (20),
17933-43.

Mummery, R., Sessay, A., Lai, F. A., & Beesley, P. W. (1996). Beta-
dystroglycan: subcellular localisation in rat brain and detection of a
novel immunologically related, postsynaptic density-enriched protein. J
Neurochem, 66 (6), 2455-9.

Murakami, D., Okamoto, I., Nagano, O., Kawano, Y., Tomita, T., Iwatsubo,
T., . . . Saya, H. (2003). Presenilin-dependent gamma-secretase activity
mediates the intramembranous cleavage of CD44. Oncogene, 22 (10),
1511-6.

Murphy, D. A., & Courtneidge, S. A. (2011). The ’ins’ and ’outs’ of podosomes
and invadopodia: characteristics, formation and function. Nat Rev Mol
Cell Biol , 12 (7), 413-26.

267



Muschler, J., Levy, D., Boudreau, R., Henry, M., Campbell, K., & Bissell,
M. J. (2002). A role for dystroglycan in epithelial polarization: loss of
function in breast tumor cells. Cancer Res , 62 (23), 7102-9.

Ng, T., Parsons, M., Hughes, W. E., Monypenny, J., Zicha, D., Gautreau, A.,
. . . Parker, P. J. (2001). Ezrin is a downstream effector of trafficking
PKC-integrin complexes involved in the control of cell motility. EMBO
J , 20 (11), 2723-41.

Nguyen, T. M., Le, T. T., Blake, D. J., Davies, K. E., & Morris, G. E. (1992).
Utrophin, the autosomal homologue of dystrophin, is widely-expressed
and membrane-associated in cultured cell lines. FEBS Lett , 313 (1), 19-
22.

Nilsson, J., Larson, G., & Grahn, A. (2010). Characterization of site-specific
O-glycan structures within the mucin-like domain of alpha-dystroglycan
from human skeletal muscle. Glycobiology , 20 (9), 1160-9.

Oppizzi, M. L., Akhavan, A., Singh, M., Fata, J. E., & Muschler, J. L. (2008).
Nuclear translocation of beta-dystroglycan reveals a distinctive traffick-
ing pattern of autoproteolyzed mucins. Traffic, 9 (12), 2063-72.

Parberry-Clark, C., Bury, J. P., Cross, S. S., & Winder, S. J. (2011). Loss
of dystroglycan function in oesophageal cancer. Histopathology , 59 (2),
180-7.

Parsons, M. J., Campos, I., Hirst, E. M., & Stemple, D. L. (2002). Removal
of dystroglycan causes severe muscular dystrophy in zebrafish embryos.
Development , 129 (14), 3505-12.

Pederson, T. (2008). As functional nuclear actin comes into view, is it globular,
filamentous, or both? J Cell Biol , 180 (6), 1061-4.

Perkins, K. J., & Davies, K. E. (2012). Recent advances in duchenne muscular
dystrophy. Degener Neurol Neuromuscul Dis , 2 , 141-164.

Petrof, B. J., Shrager, J. B., Stedman, H. H., Kelly, A. M., & Sweeney, H. L.
(1993). Dystrophin protects the sarcolemma from stresses developed
during muscle contraction. Proc Natl Acad Sci U S A, 90 (8), 3710-4.

Piggott, R. (2014). The regulation of beta-dystroglycan internalization. Thesis.

Pinchot, S. N., Jaskula-Sztul, R., Ning, L., Peters, N. R., Cook, M. R., Kun-
nimalaiyaan, M., & Chen, H. (2011). Identification and validation of
Notch pathway activating compounds through a novel high-throughput
screening method. Cancer , 117 (7), 1386-98.

Pinto-Teixeira, F., & Desplan, C. (2014). Notch activity in neural progeni-
tors coordinates cytokinesis and asymmetric differentiation. Sci Signal ,
7 (348), pe26.

Pirozzi, G., McConnell, S. J., Uveges, A. J., Carter, J. M., Sparks, A. B., Kay,
B. K., & Fowlkes, D. M. (1997). Identification of novel human WW
domain-containing proteins by cloning of ligand targets. J Biol Chem,
272 (23), 14611-6.

Prins, K. W., Humston, J. L., Mehta, A., Tate, V., Ralston, E., & Ervasti,
J. M. (2009). Dystrophin is a microtubule-associated protein. J Cell
Biol , 186 (3), 363-9.

Purow, B. (2012). Notch inhibition as a promising new approach to cancer

268



References

therapy. Adv Exp Med Biol , 727 , 305-19.

Ramakrishna, S., Suresh, B., Lim, K. H., Cha, B. H., Lee, S. H., Kim, K. S.,
& Baek, K. H. (2011). PEST motif sequence regulating human NANOG
for proteasomal degradation. Stem Cells Dev , 20 (9), 1511-9.

Rambukkana, A., Yamada, H., Zanazzi, G., Mathus, T., Salzer, J. L.,
Yurchenco, P. D., . . . Fischetti, V. A. (1998). Role of alpha-
dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Sci-
ence, 282 (5396), 2076-9.

Ravid, T., & Hochstrasser, M. (2008). Diversity of degradation signals in the
ubiquitin-proteasome system. Nat Rev Mol Cell Biol , 9 (9), 679-90.

Rechsteiner, M., & Rogers, S. W. (1996). PEST sequences and regulation by
proteolysis. Trends Biochem Sci , 21 (7), 267-71.

Rentschler, S., Linn, H., Deininger, K., Bedford, M. T., Espanel, X., & Sudol,
M. (1999). The WW domain of dystrophin requires EF-hands region to
interact with beta-dystroglycan. Biol Chem, 380 (4), 431-42.
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