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Abstract 

Deterministic dynamical systems are usually examined in terms of individual point 

trajectories. However, there are some deterministic dynamical systems exhibiting 

complex and chaotic behaviour. In many practical situations it is impossible to 

measure the individual point trajectories generated by an unknown chaotic 

dynamical system, but the evolution of probability density functions generated by 

such a system can be observed. As an alternative to studying point trajectories, such 

systems can be characterised in terms of sequences of probability density functions. 

This thesis aims to develop new approaches for inferring models of one-

dimensional dynamical systems from observations of probability density functions 

and to derive new methodologies for designing control laws to manipulate the 

shape of invariant density function in a desired way. 

A novel matrix-based approach is proposed in the thesis to solve the generalised 

inverse Frobenius-Perron problem, that is, to recover an unknown chaotic map, 

based on temporal sequences of probability density function estimated from data 

generated by the underlying system. The aim is to identify a map that exhibits the 

same transient as well as the asymptotic dynamics as the underlying system that 

generated the data. The approach involves firstly identifying the Markov partition, 

then estimating the associated Frobenius-Perron matrix, and finally constructing the 

underlying piecewise linear semi-Markov map. The approach is subsequently 

extended to more general one-dimensional nonlinear systems. Compared with the 

previous solutions to the inverse Frobenius-Perron problem, this approach is able to 

uniquely construct the transformation over the identified partition. 

The method is applied to heterogeneous human embryonic stem cell populations for 

inferring its dynamical model that describes the dynamical evolution based on 

sequences of experimentally observed flow cytometric distributions of cell surface 

marker SSEA3. The model that delineates the transitions of SSEA3 expression over 

one-day interval, can predict the long term evolution of SSEA3 sorted cell fractions, 

particularly, how different cell fractions regenerate the invariant parent distribution, 

i 
 



and can be used to investigate the equilibrium points which are believed to 

correspond to functionally relevant substates, as well as their transitions. 

A new inverse problem is further studied for one-dimensional chaotic dynamical 

systems subjected to additive bounded random perturbations. The problem is to 

infer the unperturbed chaotic map based on observed temporal sequences of 

probability density functions estimated from perturbed data, and the density 

function of the perturbations. This is the so-called inverse Foias problem. The 

evolution of probability density functions of the states is formulated in terms of the 

Foias operator. An approximate matrix representation of Foias operator 

corresponding to the perturbed dynamical system, which establishes the 

relationship with Frobenius-Perron matrix associated with the unknown chaotic 

map, is derived.  

Inspired from the proposed approach for solving the generalised inverse Frobenius-

Perron problem, a novel two-step matrix-based method is developed to identify the 

Frobenius-Perron matrix which gives rise to the reconstruction of the unperturbed 

chaotic map. 

The asymptotic stability of the probability density functions of the one-dimensional 

dynamical systems subjected to additive random perturbations is proven for the first 

time. The new result establishes the existence as well as the uniqueness of invariant 

densities associated to such transformations.   

Finally, this thesis addresses the problem of controlling the invariant density 

function. Specifically, given a one-dimensional chaotic map, the purpose of 

controller design is to determine the optimal input density function so as to make 

the resulting invariant density function as close as possible to a desired distribution. 

The control algorithm is based on the relationship between the input density 

function and the invariant density function derived earlier on.  
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Chapter 1 

Introduction 

1.1 Research background and motivation 

1.1.1 Modelling of chaotic dynamical systems from 

probability density functions 

It is well known that even simple one-dimensional discrete time deterministic 

systems can exhibit complex and unpredictable random-like dynamical behaviour, 

the so-called chaos. In many practical situations, the underlying dynamical system 

is unknown, and the critical problem is to infer the mathematical description of the 

system from the observations. The mathematical model characterising the system 

dynamics can be used to predict the evolution of the dynamical behaviour, and 

analyse the system stability. Chaotic behaviour can be observed in many natural 

systems, and one-dimensional chaotic maps describes many real dynamical 

processes, encountered in engineering, biology, physics and economics (Ott 1993), 

which generate density of states. Examples include modelling particle formation in 

emulsion polymerization (Coen, Gilbert et al. 1998), papermaking systems (Wang, 

Baki et al. 2001) bursty packet traffic in communication (Mondragó C. 1999), 

networks (Rogers, Shorten et al. 2004), cellular uplink load in WCDMA systems 

(Wigren 2009). A major challenge is that of inferring the chaotic map which 

describes the evolution of the unknown chaotic system, solely based on 

experimental observations. 

Starting with seminal research of Farmer and Sidorovich (1987), Casadgli (1989), 

and Abarbanel et al (1989), the problem of inferring dynamical models of chaotic 
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Chapter 1 Literature Review 
 
systems directly from time series data has been addressed by many authors using 

neural networks (Principe, Rathie et al. 1992), polynomial (Aguirre & Billings 

1995a), or wavelet models (Billings & Coca 1999). 

In many practical applications, it is more convenient to observe experimentally the 

evolution of the probability density functions instead of individual point trajectories, 

generated by such systems. There are even many cases in which individual point 

trajectories are not allowed to be recorded but sequences of probability density 

functions are available (Lozowski, Lysetskiy et al. 2004, Altschuler & Wu 2010). 

As a consequence, the traditional perspective of studying the chaotic systems needs 

to be shifted. Such systems can be studied in terms of probability density functions 

they generate, rather than point trajectories.  

The problem of inferring the chaotic map given probability density functions 

observed from the unknown systems, known as inverse Frobenius-Perron Problem 

(IFPP), has been investigated by a number of researchers in the case when the only 

information available is the invariant density function associated with the unknown 

map over the past few years. Typical relevant research has been presented by 

Friedman & Boyarsky (1982), Ershov & Malinetskii (1988), Góra & Boyarsky 

(1993), Baranovsky & Daems (1995), Diakonos & Schmelcher (1996), Pingel, 

Schmelcher & Diakonos (1999), Diakonos, Pingel & Schmelcher (1999),   et al. In 

particular, a matrix approach (Ulam 1960, Góra & Boyarsky 1993, Rogers, Shorten 

et al. 2004, Rogers, Shorten et al. 2008a) to the inverse problem has been developed 

to reconstruct Markov transformation with prescribed invariant density function. 

It needs to be noted that all the existing methods are used to construct a map on the 

given condition that the invariant density is known. This leads to the limitation of 

these approaches that the solution to the inverse problem is not unique. Typically, 

there exist many transformations, exhibiting a wide variety of dynamical behavious, 

but which the same invariant density. Therefore, the reconstructed map does not 

necessarily exhibit the same dynamics as the underlying systems even though it 

preserves the required invariant density. Additional constraints and model validity 

tests have to be used to ensure that the reconstructed map captures the dynamical 

properties of the underlying system (Lyapunov exponents, fixed points etc.) and 
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predicts its evolution. This is of paramount importance in a many practical 

applications ranging from modelling and control of particulate processes (Coen, 

Gilbert et al. 1998, Crowley, Meadows et al. 2000), characterising the formation 

and evolution of the persistent spatial structures in chaotic fluid mixing (Pikovsky 

& Popovych 2003), characterising the chaotic behaviour of electrical circuits (Wyk 

& Ding 2002), chaotic signal processing (Götz, Abel et al. 1997, Isabelle & 

Wornell 1997), analysing and interpreting cellular heterogeneity (Altschuler & Wu 

2010, MacArthur & Lemischka 2013) and identification of molecular 

conformations (Schütte, Huisinga et al. 2001). 

Another noteworthy limitation of the existing matrix-based reconstruction 

algorithms is the assumption that a Markov partition is known. In general, no a 

priori information about the unknown map is available, so the partition 

identification problem has to be solved as part of the reconstruction method. In a 

whole, as for a specific unknown dynamical system, the uniqueness of identified 

transformation cannot be guaranteed with current available approaches, which 

implies that they cannot be used to predict the long-term evolution of dynamical 

behaviour and to analyse the complete stability of the dynamical systems.  

In view of the shortages stated above, this research will focus on utilising the 

temporal sequences of probability density functions to address the inverse 

Frobenius-Perron problem and further generalise the solution to nonlinear systems. 

Furthermore, practical systems are usually subjected to stochastic perturbations. It 

follows that, given the same initial density function, the perturbed and the noise-

free systems will generate different sequence of probability density functions 

compared with those of the noise-free system. To date the research in this area 

focused on the study of invariant measures of discrete-time systems with constantly 

or randomly applied stochastic perturbations (Lasota & Mackey 1994, Boyarsky & 

Góra 1997, Kuske & Papanicolaou 1998, Bollt, Góra et al. 2008, Islam & Góra 

2011). 

So, whilst the problem of modelling chaotic dynamical systems from noisy time 

series data has been widely studied (Billings, Jamaluddin et al. 1992, Brown, 
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Rulkov et al. 1994, Aguirre & Billings 1995a, Billings & Coca 1999, Coca & 

Billings 2001, Voss, Timmer et al. 2004, Zhiwei & Min 2007), the inverse 

Frobenius-Perron problem has only been studied for purely deterministic dynamical 

systems. For this reason, one of the objectives of this thesis is to address the more 

realistic inverse Foias problem for one-dimensional chaotic maps subjected to 

stochastic perturbations. 

1.1.2 Modelling the heterogeneity of human embryonic 

stem cell populations 

Stem cell research has become the frontier field of modern clinical medicine 

committed to treating neurodegenerative diseases and conditions such as diabetes, 

Parkinson's, Alzheimer's diseases and cancer. In many tissues, stem cells act as a 

class of repair system for a live body, having unlimited potential of dividing to 

replenish other cells.  

Embryonic stem cells (ESCs) are an unspecialised type of cells which are capable 

of differentiating to any type of cells with specialised functions such as neurons, 

retinal pigment cells, hepatic cells etc. At the same time, when grown in vitro, 

ESCs have the capability to divide indefinitely whilst maintaining pluripotency 

(self-renewal).  

Human embryonic stem cells are pluripotent stem cells derived from the inner cell 

mass of blastocysts that are embryos of 4 to 5 days old consisting of 50 to 150 cells. 

They can develop into the derivatives of the three primary germ layers: ectoderm, 

endoderm and mesoderm that involve a great number of over 200 cell types existing 

in adult body. 

It has been found that human embryonic stem cell (hESC) cultures are not 

homogeneous but are, instead composed of cells occupying inter-convertible 

substates (Chambers, Silva et al. 2007, Chang, Hemberg et al. 2008, Hayashi, 

Lopes et al. 2008a). These substates represent cells with distinct functions, which 

behave differently in response to same stimuli (Olariu, Coca et al. 2009).  Cells in 

these substates may be biased in their probability of adopting particular fates upon 
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differentiation, while interactions between cells in different sub-states may 

profoundly influence cell fate decisions during self-renewal and differentiation. 

Human embryonic stem cell lines have been used as the best tool to study the cell 

differentiation associated with the embryonic development (Andrews 1998). 

Changes in the expression of cell surface antigens SSEA3 can be used to 

characterise the heterogeneity of stem cell cultures.  

In this work, the NTERA2 cell line, a pluripotent human embryonal carcinoma cell 

line which exhibits biochemical and developmental properties similar to the cells of 

the early embryo, was used as a model for studying the heterogeneity of human 

embryonic stem cells. 

Specifically, the research was focused on applying the new methods for inferring 

the dynamical model based on observed sequences of density functions (i.e. solving 

the Inverse Frobenius-Perron Problem) to the problem of characterising the 

dynamic evolution of heterogeneous cell populations using sequences of flow 

cytometric distributions of cell surface markers. 

1.1.3 Controlling the invariant densities of dynamical 

systems 

Over the past few decades there has been a large number of research on control of 

chaotic dynamical systems (Shinbrot, Grebogi et al. 1992, Lai & Grebogi 1993, 

Góra & Boyarsky 1996, Góra & Boyarsky 1998, Bollt 2000a). In the early stage, 

the major strategy developed was aimed to stabilise periodic orbits by applying a 

local feedback control on the motion of a chaotic attractor to direct the individual 

trajectory to a desired periodic orbit. This was achieved by making small 

perturbations to the motion. Sensitive dependence to initial conditions of the 

chaotic systems requires the control to be applied to each individual trajectory to 

achieve overall regulation on the chaotic behaviour. Another disadvantage is that 

these methods will change the chaotic nature of the underlying system.  

The later proposed methodologies of controlling chaotic systems were focused on 

more global strategies (Góra & Boyarsky 1996, Góra & Boyarsky 1998, Bollt 
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2000b, Bollt 2000a, Góra & Boyarsky 2001, Rogers, Shorten et al. 2008a). 

Specifically, instead of controlling individual trajectories of attractors, the idea is to 

take advantage of the probabilistic description of the chaotic dynamics to control 

the invariant probability density function which represents the desired long term 

statistical behaviour. 

It can be clearly seen that, compared with the schemes of controlling individual 

orbits, controlling probability density function can avoid continuous local 

optimisation for each orbit but can cover all the individual orbits (Boyarsky & Góra 

1997). All the existing approaches of controlling probability density function of 

chaotic systems work by modifying the original transformation to achieve the 

desired invariant density function. The main limitation of these methods is that in 

practice the transformation which describes the evolution of the system cannot be 

modified arbitrarily to achieve the desired invariant density.  

Moreover, the existing methods for controlling invariant density function have not 

considered the effect of stochastic perturbations. Since all practical systems are 

subjected to stochastic perturbations it is important to devise control schemes that 

take into account the effect of such perturbations on the long term evolution of the 

system.  

Some other research in (Wang, Baki et al. 2001, Wang & Zhang 2001, Wang 2002, 

Forbes, Forbes et al. 2003b, Wang 2003, Forbes, Forbes et al. 2004)  presented 

ideas of controlling shape of probability density functions of stochastic nonlinear 

processes through selecting optimal deterministic control input. 

This thesis introduces alternative strategies of controlling the invariant density 

function of a chaotic dynamical system subjected to an additive input and stochastic 

noise. 

1.2 Research objectives and strategies 

The main aims of this thesis are to develop new methodologies for inferring chaotic 

maps based on sequences of probability density functions, to develop new strategies 

for controlling the invariant density functions of stochastically perturbed chaotic 
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maps and to apply the developed methods to characterise heterogeneous human 

embryonic stem cell population.  

The aims and objectives of this work can be summarised as following: 

• Modelling one-dimensional chaotic systems from sequences of probability 

density functions 

The aim is to develop new methods for solving the inverse Frobenius-Perron 

problem, that is, to infer an unknown chaotic map based on sequences of density 

functions estimated from data such that the resulting map exhibits the same 

transient as well as asymptotic dynamics as the underlying system that generated 

the data. The proposed methodology involves the identification of the Markov 

partition, estimation of the Frobenius-Perron matrix and the reconstruction of the 

underlying map that generated the data. 

• Modelling the dynamical evolution of heterogeneous human embryonic stem 

cell populations 

The aim is to apply the new methods for solving the inverse Frobenius-Perron 

problem to infer models that describe the evolution of subpopulations of NTERA2 

cells, stained for the SSEA3 cell surface marker, over a number of days. The 

inferred dynamical model can then be used to predict the evolution of stem cell 

populations and to determine the equilibrium points which correspond to potential 

cellular substates that could be subsequently tested. 

• Modelling of chaotic dynamical systems subjected to stochastic perturbations 

from sequences of probability density functions 

The aim is to develop new methods for inferring the chaotic maps based on 

sequences of probability density functions generated by the underlying system 

perturbed by additive stochastic perturbation. Two cases of bounded perturbed 

systems are to be studied: a chaotic system subjected to an additive bounded input; 

a chaotic system subjected to an additive random noise, given the probability 

density function of input or noise. The evolution of probability densities will be 
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formulated. A matrix based approach is proposed to recover an approximate 

Frobenius-Perron matrix associated with the chaotic map. 

• Control of invariant density functions for stochastic dynamical systems 

The aim is to derive new strategies for controlling the invariant density function of 

a chaotic map subjected to an additive bounded input and noise. The objective is to 

determine the input density function so as to make the invariant density function of 

the system as close as possible to a targeted distribution function. The control 

algorithm is derived based on the asymptotic stability of the system by exploiting 

the relationship between the invariant density function and the input density 

function. 

1.3 Overview of the thesis 

This thesis consists of eight chapters. Chapter 2 introduces the fundamental 

concepts of the Frobenius-Perron operator and Foias operator, and reviews on the 

modelling and control problems. Chapter 3 to 7 are dedicated to development of the 

new techniques of modelling and control, as well as the related application in stem 

cell biology. Finally in Chapter 8, results in previous chapters are briefly 

summarised and discussion on further studies is presented. A more detailed 

summary of Chapters 2-8 is as follows. 

Chapter 2 compares chaotic systems with stochastic systems, and introduces the 

Frobenius-Perron operator associated with a one-dimensional piecewise monotonic 

and expanding transformation, which describes the evolution of probability 

densities under the operation of the transformation. This chapter provides a 

comprehensive literature review concerning the inverse Frobenius-Perron problem 

and introduces the Foias operator with respect to stochastic dynamical systems. The 

literature review on the inverse Foias problem and on controlling the probability 

density functions is also presented. 

Chapter 3 introduces two special classes of piecewise monotonic transformation, 

namely Markov and semi-Markov transformations, the explicit derivation of the 

associated Frobenius-Perron operator and the invariant density functions for these 
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transformations. The generalised inverse Frobenius-Perron problem is presented in 

this chapter and a new methodology for solving it for piecewise-linear semi-

Markov transformations is proposed. The effectiveness of the proposed approach is 

demonstrated by numerical simulation examples of a noise-free system as well as in 

the presence of additive Gaussian white noise of different magnitudes. 

In Chapter 4, the developed approach to reconstructing piecewise linear semi-

Markov transformations from sequences of densities is extended to more general 

nonlinear maps. Numerical examples of noise-free as well as noise perturbed 

system are provided to demonstrate the performance of the proposed algorithms. 

Chapter 5 focuses on applying the developed modelling techniques to 

characterising the dynamic evolution of heterogeneous cell populations based on a 

sequence of flow cytometric distributions of cell surface markers. The reconstructed 

model is used to identify potential cellular substates and to characterize their 

stability properties. 

Chapter 6 introduces new approaches to modelling for one-dimensional dynamical 

systems subjected to additive random inputs or noise given their probability density 

functions. The Foias operator associated with the perturbed systems, which 

describes explicitly the evolution of the density functions, is derived explicitly. 

Chapter 7 introduces a new strategy for controlling the invariant densities of 

stochastic dynamical systems. The existence of invariant density functions is 

analysed first then, using the newly developed modelling methods, a model of the 

chaotic dynamical system subjected to an additive input and random noise is 

derived based on from sequences of probability density functions. The model, 

which relates the invariant density function to the input density function, is used as 

a basis for deriving the controller design algorithm. 

Chapter 8 summarises the main contributions of this thesis provides an overview of 

potential further work to be carried out.  
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1.4 Publications arising from the thesis 

Some publications arising from the thesis are as follows 

• X. Nie, D. Coca, A new approach to solving the inverse Frobenius-Perron 

problem, The 12th European Control Conference, Zurich, Switzerland, 17-19 

July 2013, 2916-2920. 

• X. Nie, D. Coca, Reconstruction of one-dimensional chaotic maps based on 

sequences of probability density functions, Nonlinear Dynamics, 2015, 80(3): 

1373-1390. DIO: 10.1007/s11071-015-1949-9. 

• X. Nie, D. Coca, Modelling of one-dimensional chaotic systems subjected to 

additive stochastic noise from sequences of probability density functions, to be 

submitted. 

• X. Nie, D. Coca, Modelling of one-dimensional stochastic chaotic systems from 

sequences of probability density functions, to be submitted. 

• X. Nie, D. Coca, Control of invariant density functions of stochastic chaotic 

systems, to be submitted.  
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Chapter 2 

Literature Review 

2.1 Introduction 

The chapter provides a review of the relevant research literature on the 

identification and control law design approaches presented in this thesis.  

This chapter is organised as follows:  Section 2.2 gives the definition of chaotic 

systems and the difference with stochastic systems. Section 2.3 introduces the 

Frobenius-Perron operator which plays an important role throughout the work, and 

gives the literature review of studies on inverse Frobenius-Perron problem. In 

Section 2.4 a new operator defined as Foias operator is introduced for the 

dynamical systems with stochastic perturbations, and the inverse Foias Problem is 

reviewed. The literature review of research on control of probability density 

function is provided in Section 2.5. The summary is presented in Section 2.6. 

2.2 Chaotic systems 

In contrast with stochastic systems in which future states are not determined from 

the previous ones, chaotic systems are deterministic. Chaotic systems are dynamcial 

systems that are highly sensitive to initial conditions. It means even small initial 

conditions can results in very diverging states, which makes long term predictions 

generally impossible. This phenomena is also called deterministic chaos. Although 

such displayed dynamical behaviour looks random, the future states of chaotic 

systems are fully determined by mathematical formulas and the initial conditions 

without stochastic perturbation involved, but not predictable due to the nature of 
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high sensitivity to initial conditions. Chaotic systems exist in many practical fields 

including biology (Gleick 2008), meterology (Lorenz 1995), chemistry (Srivastava, 

Srivastava et al. 2013), economics (Medio & Gallo 1995), mechanical devices 

(Holmes & Moon 1983), celestial mechanics (Laskar 1989, Laskar 1994), etc. 

Particularly, there are many systems that can be described by one-dimensional 

chaotic maps, for example, congestion control of communication networks (Rogers, 

Shorten et al. 2008a), olfactory systems (Lozowski, Lysetskiy et al. 2004), 

electrical circuits (van Wyk & Ding 2002), packet traffic (Mondragó C. 1999), etc.  

2.3 Inverse Frobenius-Perron problem 

2.3.1 The Frobenius-Perron operator 

Let ⊂= ],[ baI  be a bounded interval of the real line. Let IIS →:  be a one-

dimensional non-singular, piecewise monotonic transformation. It is assumed that 

the interval is partitioned as baaaa N =<<<= 10 , and that r
aa ii

S ∈
− ),( 1

 for 

Ni ,,2,1 = , 1≥r , where r  denotes the space of all r-times continuously 

differentiable real functions. If 1)( >′ xS  wherever the derivative exists, S is called 

expanding. An example of this class of transformations is illustrated in Figure 2.1. 

0a a= 1a 2a 3a 4a b=

1S

2S

3S

4S

b

A

x

 

Figure 2.1 An example of one-dimensional piecewise monotonic transformation. 
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Let },,,{ 21 θ
nnnn xxxX =  be a set of θ  states at time n. Through iterating the 

transformation with nX , a set of θ  new states can be yielded as  

},,,{ 1
2

1
1

11
θ
++++ = nnnn xxxX  , where )(1

i
n

i
n xSx =+  for θ≤≤ i1 . Let 1Lfn ∈  

denotes the probability density function of nX , then the probability of the points 

falling into an  arbitrary measurable set IA⊂  is given by 

 ∑∫
=

≅
θ
χ

θ 1
)(1)(

i

i
nAA n xdxxf , (2.1) 

where x is normalised Lebesgue measure (Boyarsky & Góra 1997) on I, )(xAχ  is 

the characteristic function for the set A, defined by 

 




∉
∈

=
. if,0
; if,1

)(
Ax
Ax

xAχ , (2.2) 

Likewise, the probability density function of set 1+nX  is denoted by 1+nf . It can be 

given that  

 ∑∫
=

++ ≅
θ
χ

θ 1
11 )(1)(

i

i
nAA n xdxdf . (2.3) 

Since S is non-singular, Axi
n ∈+1  if and only if )(1 ASxi

n
−∈ . Then the following 

relationship is held  

 )()(
)(1 1

i
nxS

i
nA xx −=+ χχ . (2.4) 

From (2.3) and (2.4), it can be obtained that  

 ∑∫
=

+ −≅
θ
χ

θ 1
)(1 )(1)( 1

i

i
nASA n xdxxf . (2.5) 

By contrasting (2.1) and (2.5), it can be seen that  

 ∫∫ −=+ )(1 1 )()(
AS nA n dxxfdxxf . (2.6) 

(2.6) reveals an integral equation relationship between 1+nf  and nf . If let 

],[ xaA =  , it can be wrote as 
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 ∫∫ −=+ ]),([1 1 )()(
xaS n

x

a n dxxfdxxf . (2.7) 

By differentiating both sides of (2.7) with respect to x, the following expression is 

obtained 

 ∫ −=+ ]),([1 1 )()(
xaS nn dxxf

dx
dxf , (2.8) 

To show the transforming of the density functions, an operator is defined by 

1+= nnS ffP , then (2.8) can be written in the following general form  

 ∫ −=
]),([1 )(

xaSS dxxf
dx
dfP . (2.9) 

The Frobenius-Perron operator is defined as follows (Lasota & Mackey 1994). 

Definition 2.1 If IIS →:  is a non-singular transformation, the unique operator 
11: LLPS →  defined by (2.9) is referred to as the Frobenius-Perron operator 

associated with S. 

Let )),(( 1 iii aaSB −=  denotes the image of each interval ),( 1 ii aa −  under 

transformation S. Let the inverse function for iB  be denoted by 
iBi S 1−=τ . 

Because S is piecewise on the intervals, )(1 AS −  is allowed to have multiple 

branches, and is made up of a union of disjointed intervals, written as 

 )()( 1
1

ii
k
i BAAS  τ=

− = . (2.10) 

By substituting (2.10) into (2.9) we obtain that 

 
.)(

)()()(

1
)(

)()( 1
1

∑ ∫

∫∫

=
=

==
=

−

k

i
BA

BAASS

ii

ii
k
i

dxxf
dx
d

dxxf
dx
ddxxf

dx
dxfP





τ

τ
 

(2.11) 

Thus from (2.10), (2.11) can to be written as 
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 ∑ ∫
=

−=
k

i
BASS

i
dxxf

dx
dxfP

1
)(1 )()(


, (2.12) 

After differentiating, since ],[ xaA = , and )),(( 1 iii aaSB −= , (2.12) becomes 

 ∑
=

−

−

−′
=

k

i
aaS

i

i
S x

xSS
xSfxfP ii

1
)),((1

1
)(

))((
))(()( 1χ , (2.13) 

where ),( 1 ii aai SS
−

= . This equation describes the Frobenius-Perron operator  

associated with the class of piecewise monotonic transformations.  

2.3.2 Solution to the inverse Frobenius-Perron problem 

The problem of inferring a point transformation given probability density functions 

observed from the dynamical system is referred to as the inverse Frobenius-Perron 

problem (IFPP). It is aimed to make use of the probability density functions 

observed from a dynamical system, rather than trajectories of individual points to 

recover the model of the system.  

The inverse problem for one-dimensional maps has been studied under the 

assumption that only the invariant density of the unknown dynamical system is 

known. Friedman and Boyarsky (1982) proposed a graph-theoretic approach to 

construct a piecewise linear transformations given an invariant density function 

belonging to a very restrictive class of piecewise constant density functions whose 

relative minima points are 0. Ershov and Malinetskii (1988) developed a numerical 

algorithm for constructing a one-dimensional unimodal transformation which has a 

given unique invariant density. Diakonos and Schmelcher (1996) considered the 

inverse problem for a class of symmetric maps that have invariant symmetric beta 

density functions given by  

 
γγ

γ γ

)1(

)1,
2
1(2

)(
0

12

xx

B
xf

−

−
=

−
∗ , (2.14) 
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15 
 



Chapter 2 Literature Review 
 

where γ  is an arbitrary real number smaller than unity, and 0B  is the beta function. 

For the given symmetry constraints they show that this problem has a unique 

solution. A generalization of this approach, which deals with a broader class of one-

dimensional continuous unimodal maps for which each branch of the map covers 

the complete interval and assumes that the invariant density belongs to a special 

class of two-parametric asymmetric beta density functions 

 1,,
)1,1(

)1()( −>
++

−
=∗ βα

βα

βα

B
xxxf , (2.15) 

where B is the beta function, was  proposed in (Pingel, Schmelcher et al. 1999). 

Huang presented approaches to constructing smooth chaotic transformation with 

closed form (Huang 2006, Huang 2009b) and multi-branches complete chaotic map 

(Huang 2009a), given invariant densities. (Boyarsky & Góra 2008) studied the 

problem of modelling for a dynamical system, of which the trajectories of 

probability density function are reversible. Potthast and Roland (Potthast 2012) 

investigated solving the Frobenius-Perron equation to derive the evolution law of 

nonlinear dynamical automata of Turing machines. Baranovsky and Daems (1995) 

investigated the problem of synthesizing one-dimensional piecewise linear Markov 

maps with a prescribed autocorrelation function, The desired invariant density was 

then obtained by performing a suitable coordinate transformation. They also 

considered the problem of reconstructing one-dimensional chaotic maps which have 

a given invariant density and their trajectories are characterised by a given 

autocorrelation function. An alternative stochastic optimization approach was 

proposed by (Diakonos, Pingel et al. 1999) to address the inverse problem for the 

class of smooth complete unimodal maps with given combined statistical involving 

the invariant density and autocorrelation function. Koga (1991) introduced an 

analytical approach to solving the IFPP for two specific types of one-dimensional 

symmetric maps by deriving the formula between the difference system and the 

invariant density of which an analytic form was given. 

Ulam (1960) hypothesised that the infinite-dimensional Frobenius-Perron operator 

can be approximated by a finite-dimensional Markov transformation defined over a 

uniform partition of the interval of interest. The conjecture was proven by Li (1976) 
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who also provided a rigorous numerical algorithm for constructing the finite-

dimensional operator when the one-dimensional transformation S is known. Góra 

and Boyarsky (1997) introduced a matrix method for constructing a 3-band 

transformation such that an arbitrary given piecewise constant density is invariant 

under the transformation. Provided a stochastic matrix M representing the 

Frobenius-Perron operator is known, let ℜ  be a uniform partition with N intervals, 

and the subinterval ),( )(
1

)()( i
k

i
k

i
k qqQ −= , Ni ,,1 = , )(,,1 ipk = , then  

 ))(1(1

1
,

)( abim
N

aq
kj

jj
ji

i
k −−++= ∑

=
, (2.16) 

where kj  denotes the column index of positive entry in the i-th row, thus, piecewise 

linear transformation on each subinterval can be expressed as 

 N
abjqx

m
xS ki

k
ji

Q
k

i
k

))(1()(1)( )(

,
)(

−−
+−= , (2.17) 

which demonstrates the relationship between the transformation and the Frobenius-

Perron matrix defined from the invariant density. 

Furthermore, a technique of constructing a piecewise linear Markov map that 

preserves a given invariant density and has the metric entropy close to observed one 

was presented in (Boyarsky & Góra 2002). A direct method for constructing 

discrete chaotic maps with arbitrary piecewise constant invariant densities and 

arbitrary mixing properties, using positive matrix theory, was introduced in (Rogers, 

Shorten et al. 2004), which was based on the theory of positive matrices. By 

choosing the parameters in the Perron eigenvector of the induced Ulam transition 

matrix, the dominate eigenvector representing the invariant density can be fully 

determined. The approach has been further exploited to synthesise dynamical 

systems with desired characteristics i.e. Lyapunov exponent and mixing properties 

that share the same invariant density, and to analyse and design the communication 

networks based on TCP-like congestion control mechanisms (Rogers, Shorten et al. 

2008a). An extension of this work to randomly switched chaotic maps is studied in 

(Rogers, Shorten et al. 2008b). It is also shown how the method can be extended to 

higher dimensions and how the approach can be used to encode images. In (Bollt 
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2000a) the inverse problem was treated for globally stabilising the target invariant 

density of a perturbed dynamical system. The open-loop IFPP was solved by 

finding a perturbation matrix based on the matrix approach given a stochastic 

matrix and invariant density. The inverse problem was reduced into a constrained 

optimisation problem that was solved in L2. In view of usefulness of the obtained 

solution, an L∞ algorithm based on linear programming was presented in (Bollt 

2000b) to solve the optimisation.  

In addition, the problem has been investigated in numerous practical applications. 

An optimisation approach to finding the elements of the Frobenius-Perron matrix, 

offering a way to characterize the patterns of activity in the olfactory bulb, based on 

the invariant density functions of interspike intervals, was also proposed in 

(Lozowski, Lysetskiy et al. 2004). Setti, Mazzini et al. (2002) investigated the 

Markov approach to constructing piecewise-affine Markov maps with application to 

two signal processing issues: generation of low-EMI timing signals and 

performance optimisation for DS-CDMA systems. The algorithms were generalised 

to the case of piecewise-affine Markov maps with infinite number of Markov 

intervals in (Rovatti, Mazzini et al. 2002). Mondragó C. (1999) considered the 

problem of modelling for packet traffic in computer networks by introducing the 

random wall map and taking advantage of the fact that the invariant density of this 

map could be easily approximated analytically. 

2.4 Inverse Foias problem 

2.4.1 Foias operator 

In this section, a more general dynamical system that involves random 

perturbations is considered and the derivation of the formula linking the probability 

density functions with the potential transformation is reviewed. 

The general form of the dynamical system with stochastic perturbations is 

represented as follows 
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 ,2,1,0for ),,(1 ==+ nxHx nnn ω , (2.18) 

where H is the transformation of the perturbed dynamical system, nx  is the state 

variable defined on Borel measurable ⊂I , nω  is the independent random 

variable, ⊂∈ ωω In . For every fixed ω , the function ),( nnxH ω  is continuous in 

x, and for every fixed x it is measurable in ω .  The probability density function of 

nω  is denoted by g. the random numbers 0x , ,,, 210 ωωω are independent with 

each other. 

Assume a bounded measurable function IIG →: . The mathematical expectation 

of )( 1+nxG  is given by  

 ∫ +++ =
I nnn dxxfxGxGE )()())(( 111 , (2.19) 

Let )(xfn  denote the probability density function of nx , thus )()( 11 ++ = nn xfxf . 

(2.19) can be expressed as  

 ∫ ++ =
I nn dxxfxGxGE )()())(( 11 . (2.20) 

By submitting (2.18) into the right side of (2.19), the expectation can be written as 

 .)()()),((

)),((())(( 1

ωωω

ω

ω
dxdgxfxHG

xHGExGE

I nI

nnn

∫ ∫=

=+
 (2.21) 

Let ),( ωxHy = , then )|(1 xyH −=ω . (2.21) can be written as 

 
.))|(()()(

))|((
1

))|(())|(()()())((

1
1

11
1

dxdyxyHgxfyG
xyHH

xyHdxdxyHgxfyGxGE

I nI

I nIn

∫ ∫

∫ ∫
−

−

−−
+

′
=

=

 (2.22) 

Equating (2.19) and (2.22), we can obtain the following formula 
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 dyyxHgyf
yxHH

xf nIn ))|(()(
))|((

1)( 1
11

−
−+ ∫ ′

= . (2.23) 

It follows that the Foias operator associated with the stochastic dynamical system is 

defined as follows 

Definition 2.2 if IIIH →× ω:  is a non-singular function, then the operator 

IIQH →:  defined by  

 dyyxHgyf
yxHH

xfQ nIn ))|(()(
))|((

1)( 1
1

−
−∫ ′

= , (2.24) 

is called the Foias operator  (Lasota & Mackey 1994) corresponding to the 

dynamical system described in (2.18). 

It can be seen from (2.24) that the Foias operator is a Markov operator (Boyarsky & 

Góra 1997). Given an initial density function ,0f  the evolution of probability 

densities can be denoted by 01 fQf n
Hn =+ . The invariant density of the stochastic 

dynamical system is defined as follows 

Definition 2.3 For a Foias operator HQ  with respect to the dynamical system 

(2.18), if ∗∗ = ffQH , the density ∗f  is called invariant or stationary density 

preserved by the dynamical system. 

The theorem below about the existence of a invariant density for a regular 

dynamical system was proved in (Lasota & Mackey 1994). 

Theorem 2.1 Let HQ  be the Foias operator corresponding to a regular dynamical 

system (2.18). Assume that there is a 1
0 Lf ∈  having the following property. For 

every 0>ε  there is a bounded set )(IB B∈  such that 

 ,2,1,0for ,1)()( 0 =−≥= nBfQBf n
Hn ε , (2.25) 

then HQ has an invariant density.  
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2.4.2 Solution to the inverse Foias problem 

Practical dynamical systems are usually subjected to random perturbations. 

Assuming that the probability density function of the perturbation is known, the 

problem of reconstructing the deterministic transformation based on a sequence of 

probability density functions generated by the stochastic dynamical system (2.18) is 

called inverse Foias problem. 

In the literature, there are only few solutions to the inverse Foias problem. Most 

research studies focus on the invariant measure of the stochastically perturbed 

dynamical systems. Kuske and Papanicolaou (1998) considered a chaotic 

dynamical system with small noise and developed a method to approximate the 

invariant density. Ostruszka & Życzkowski (2001) addressed the problem of 

approximating the spectrum and eigenvectors of the Frobenius-Perron operator 

associated with a discrete dynamical system with an additive, small amplitude 

stochastic perturbation. Islam and Góra (2011) also considered a dynamical system 

that is stochastically perturbed by an additive noise and employed Fourier 

approximation to obtain an approximation to the Frobenius-Perron operator. In 

(Bollt, Góra et al. 2008) an algorithm was introduced approximate the stochastic 

transition matrix of a finite size N to represent the Frobenius-Perron operator for a 

dynamical system with small additive noise.it was concluded that when the size 

the sequence of the invariant densities of the perturbed systems converges 

to the invariant density of the deterministic system. 

2.5 Controlling the invariant density function 

It is well-known that many practical deterministic systems are subjected to 

stochastic disturbances. Stochastic control has been widely studied for many years. 

The mean and variance of the systems’ outputs have been usually regarded as the 

control objectives (Åström 1970, Goodwin & Sin 1984, Åström & Wittenmark 

1989, Papoulis 1991, Lu & Skelton 1998, Iourtchenko 2000, Wojtkiewicz & 

Bergman 2001). This is generally applied to the systems that are subjected to 

Gaussian perturbations. But for the systems that are subjected to non-Gaussian 

∞→N
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perturbations, it becomes quite limited to continue targeting the two quantities as 

these do not characterise in full the probability density function associated with the 

systems’ outputs. The general objective of this class of control problems is to find 

the optimal input so as to attain a desired target output probability density function, 

or to make the shape of the output probability density function as close as possible 

to a given distribution.  

Over the past decades, a few control algorithms were developed to control the 

output probability density function of a dynamical system. Kárný (1996) proposed a 

randomised controller aimed to find the optimal probability density function 

generated by the controller by means of minimising the distance between closed-

loop probability density function and the desired distribution function. The distance 

is measured by Kullback-Leibler divergence. The closed-loop probability density 

function is calculated by directly multiplying the probability density function of the 

stochastic system and that of the controller. The solution was generalised and 

extended for stochastic state-space models by solving the fully probabilistic control 

design in (Kárný & Guy 2006).  

For general nonlinear stochastic systems, there is no easy way of analytic methods 

to formulate the mathematical relationships between the output probability density 

functions and the control inputs due to the nonlinearity of both the systems and 

densities. Wang (1999b, 1999c, 2000, 2001, 2002) introduced a B-spline function 

based model in which the output probability density functions can be expanded as a 

linear combination of the basis functions, thus by relating the control input to the 

weights, the system dynamics is converted into a formula linking the weights of 

output probability density function to the control input. As a result, based on this 

model, the controller is designed to select a deterministic input to make the output 

density function as close as possible to a targeted one. The algorithm was applied to 

the papermaking systems for controlling the density distribution of paper web 

(Wang, Baki et al. 2001), pseudo-ARMAX stochastic systems for bounded control 

of the output distribution in (Wang & Zhang 2001), general nonlinear dynamical 

systems subjected to non-Gaussian to control the conditional output probability 

density function (Wang 2003), and singular stochastic dynamical systems for 

shaping the output density function (Yue, Leprand et al. 2005). Based on the linear 
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B-spline model, pseudo PID controllers were developed for general non-Gaussian 

stochastic systems in (Guo & Wang 2003, Guo & Wang 2005b), moreover, there 

are some other new techniques proposed to extend the control strategy to Lyapunov 

based control algorithm (Wang, Kabore et al. 2001), control of output probability 

density function of NARMAX stochastic systems with non-Gaussian noise (Guo, 

Wang et al. 2008), a generalised PI control (Guo & Wang 2005a),  constrained PI 

tracking control  using two-step neural networks (Yang, Lei et al. 2009), predictive 

probability density function control for molecular weight distributions in industrial 

polymerisation processes (Yue, Zhang et al. 2004), multi-step predictive control 

(Wang, Zhang et al. 2005a), and iterative learning control (Wang, Zhang et al. 

2005b, Hong & Afshar 2006, Wang, Afshar et al. 2008). 

Crespo and Sun (2002, 2003) proposed a discontinuous nonlinear feedback law to 

achieve a target stationary probability density function of a one-dimensional 

stochastic continuous-time systems that is described by an Itô differential equation. 

But this noise involved in the equation is restricted to Gaussian noise. Pigeon, 

Perrier et al. (2011) considered a switching linear controller for shaping the output 

probability density function. Besides, a feedback control law using Gram-Charlier 

function to approximate the stationary probability density was developed for a first-

order and discrete-time nonlinear system with Gaussian noise in (Forbes, Guay et al. 

2002, Forbes, Forbes et al. 2003a, Forbes, Forbes et al. 2003b, Forbes, Forbes et al. 

2004, Forbes, Guay et al. 2004b, Forbes, Forbes et al. 2006). Moreover, in (Zhu & 

Zhu 2011), targeting a given stationary probability density function, a feedback 

control of multi-degree-of-freedom nonlinear stochastic systems was investigated, 

based on a technique of obtaining five classes of exact stationary solutions of 

dissipated multi-degree-of-freedom system. Another approach proposed by the 

same authors (2012) uses Fokker-Planck-Kolmogorov equation to target a given 

stationary probability density function of nonlinear systems subjected to Poisson 

white noise.  

Some researchers focused on the control of invariant density of chaotic dynamical 

systems without noise. For a given one-dimensional point transformation S which 

admits an absolutely continuous invariant density, Góra and Boyarsky (1996) 
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proposed a method of slightly modifying S to achieve a desired invariant density. 

The modified transformation is approximated by a piecewise linear and expanding 

transformation even though the original map is nonlinear or nonexpanding on the 

defined partition. Another analytic method was introduced in (Góra & Boyarsky 

1998) to attain a desired invariant density which is allowed to have 0 on some 

targeted partition. Bollt (2000a, 2000b) considered the control problem that, given a 

point transformation S which preserves an invariant density function ∗f , the aim is 

to construct a nearby transformation SS ∆+  whose invariant density is or close to 

be a desired one ff ∆+∗ . The optimisation algorithm for finding S∆  was 

improved in (Góra & Boyarsky 2001). In (Rogers, Shorten et al. 2008a), a synthesis 

approach based on the matrix method was developed for controlling the invariant 

densities of chaotic maps. 

2.6  Summary 

This chapter introduced the Frobenius-Perron operator, the main tool that is used to 

study the evolution of probability density functions under the action of a chaotic 

transformation, and the inverse Frobenius-Perron problem, moreover, provided an 

overview of the existing solutions, a major limitation of which is the fact that they 

cannot guarantee uniqueness of the estimated map. As a result the reconstructed 

map in general cannot predict the underlying dynamical behaviour. The extended 

inverse Foias problem which takes into account the effect of stochastic 

perturbations was discussed. 

Finally, the chapter introduced the problem of controlling the probability density 

function and provided an overview of the relevant literature. 

24 
 



Chapter 3 

Reconstruction of Piecewise Linear 

semi-Markov Maps from Sequences of 

Probability Density Functions 

3.1 Introduction 

One-dimensional deterministic maps can display chaotic behaviour. Chaotic maps, 

capable of generating density of states, can be used to model a multitude of chaotic 

processes encountered in engineering, biology, physics and economics (Ott 1993). 

Example applications include modelling particle formation in emulsion 

polymerization (Coen, Gilbert et al. 1998), papermaking systems (Wang, Baki et al. 

2001), synchronized communication networks (Rogers, Shorten et al. 2004), 

cellular uplink load in WCDMA systems (Wigren 2009), etc. 

Instead of studying the evolution of individual point trajectories, it is often more 

convenient to observe experimentally the evolution of the probability density 

functions generated by such systems. A major challenge is that of inferring the 

chaotic map which describes the evolution of the unknown chaotic system, solely 

based on experimental observations. While solutions exist for the case when 

observations of individual point trajectories are available, currently no method is 

available to uniquely recover the chaotic map given only sequences of density 

functions derived from experimental observations. As reviewed in the previous 

chapter, this problem known as the Inverse Frobenius-Perron Problem (IFPP), has 

been investigated by a number of researchers in the case when the only information 
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available is the invariant density function associated with the unknown map. 

Although all existing methods can be used to construct a map with a given invariant 

density, the uniqueness of the solution can be guaranteed only under very restrictive 

conditions. In other words, whilst the identified transformation may have the same 

invariant density, it will not exhibit the same dynamics as the underlying system of 

interest. In general, the reconstructed maps will not resemble the actual 

transformation that generated the data and therefore these maps cannot predict the 

dynamical properties of the underlying system (Lyapunov exponents, fixed points 

etc.) or predict its evolution, which is of paramount importance in many practical 

applications. Moreover, the matrix-based algorithms proposed so far assume that 

the Markov partition is known a priori but in practice this is rarely the case.  

This chapter proposes for the first time a systematic method for determining an 

unknown piecewise linear semi-Markov map given sequences of density functions 

estimated from data. In other words, the inverse problem studied in this work is that 

of determining the map that exhibits the same transient as well as asymptotic 

dynamics as the underlying system that generated the data. To avoid confusion, this 

is called the generalised inverse Frobenius-Perron problem (GIFPP).  

This chapter is organized as follows: Section 3.2 introduces some relevant 

preliminary fundamental theoretical concepts and results including the evolution of 

probability densities for point transformations and the existence of absolutely 

continuous invariant measure described in Section 3.2.1, a special class of 

piecewise monotonic transformation called Markov transformation and its some 

important properties in terms of invariant density introduced in Section 3.2.2, and a 

much more general class of piecewise linear transformations, semi-Markov 

transformation introduced in Section 3.2.3, where the matrix form of associated 

Frobenius-Perron equation, properties with respect to the invariant density are also 

presented. Formulation of the GIFPP was given in section 3.3. The new 

methodology for solving the GIFPP for piecewise-linear semi-Markov 

transformations is presented in Section 3.4. Numerical simulation examples of a 

noise-free system and the same system perturbed by an additive white Gaussian 

noise of different magnitudes are given in Section 3.5. Conclusions are presented in 

Section 3.6. 
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3.2 Preliminaries 

3.2.1 Evolution of probability densities 

The Frobenius-Perron operator associated with a transformation S maps an initial 

probability density function to its transformed probability density function by the 

action of S. Instead of studying the orbits of individual points of the dynamical 

systems, it allows us to take advantage of flow of densities to uncover the 

dynamical behaviour. The Frobenius-Perron operator SP  becomes a useful tool to 

study the evolution of probability densities. 

Let the initial density be denoted by 0f , then the evolution of the probability 

density functions can be represented by },,,,{ 2 fPfPfPf n
SSS  . SP  is a bounded 

linear operator on 1L  (Boyarsky & Góra 1997), thus it is a convenient way to study 

the asymptotic probabilistic behaviour of the dynamical systems with SP , and a 

mathematical relationship between the dynamics and the transformation S of  

underlying system can be revealed from the Frobenius-Perron equation. 

The existence of absolutely continuous invariant measure for some examples of 

transformations was found by (Ulam & von Neumann 1947), and a defined class of 

transformations was firstly proven by (Rényi 1957). The results were generalised 

by (Lasota & Yorke 1973) who proved, by means of the theory of bounded 

variation, that the Frobenius-Perron operator associated with the class of piecewise 

expanding transformations was contractive. It was further extended to be a general 

theorem for bounded intervals (Jabłoński, Góra et al. 1996). The following theorem 

proves the existence of an absolutely continuous invariant measure for a piecewise 

expanding transformation (Boyarsky & Góra 1997): 

Theorem 3.1 The transformation IIS →:  admits an absolutely continuous 

invariant measure whose density is of bounded variation, if S satisfies the following 

conditions: 
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i) S is piecewise expanding, i.e., there exists a partition Niiii aaR ,11 )},({ =−==ℜ  

of I such that 1∈
iRS , and 1)( >≥′ αxSi  for ),( 1 iix αα −∈ , Ni ,,1= ; 

ii)  
)(

1
xS ′

  is of bounded variation, where )(xS′  is the appropriate one-sided 

derivative at the endpoints of ℜ .  

The Frobenius-Perron operator for the non-singular transformation S is a Markov 

operator (Boyarsky & Góra 1997), which is defined as follows 

Definition 3.1 A linear operator 11: LLPS →  satisfying  

(a) 0≥nS fP  for 0≥nf , 1Lfn ∈ ;  

(b) 11 <LSP , and 11 LnLnS ffP = , for 0≥nf , 1Lfn ∈ ,  

is called a Markov operator. 

The strong constrictiveness of a Markov operator is defined as follows 

Definition 3.2 A Markov operator 11: LLPS →  is called strongly constrictive if 

there exists a compact set 1L⊂  such that for any

}1,0:{ 1
1 =≥∈=∈ LffLfDf , 0),(distlim =

∞→
fPn

n
, where =),(dist fPn

1inf
L

n
f fPf −∈ . 

The density of the invariant measure for the transformation can also be discussed 

from the perspective of spectral decomposition of the Frobenius-Perron operator 

associated with the transformation. If SP  is strongly constrictive, according to the 

spectral decomposition theorem (Boyarsky & Góra 1997), there exists a sequence 

of densities rff ,,1   and a sequence of bounded linear functionals rgg ,,1   such 

that 

 0)(lim
11
=








−∑

=∞→
L

r

i
ii

n
s

n
ffgfP , for any 1Lf ∈ . (3.1) 
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where n
SP  is the n-th iteration of P, the densities rff ,,1   have mutually disjoint 

supports ( 0=ji ff for ji ≠ ), and )(iiS ffP α= , where ri ,,1= , and 

)}(,),1({ rαα   is a permutation of the integers },,1{ r . 

Every constrictive Markov operator admits a stationary density (Lasota & Mackey 

1994). Let ∗f  denote the invariant density of the transformation S. From (3.1) it 

follows that, fPn
S  converges to an invariant density ∗f which satisfies ∗∗ = fPf S .  

The invariant measure on A is denoted by ∫ ∗=
A

dxxfA )()(µ , then 

∫∫ −
∗∗ ==

)(1 )()()(
ASA S dxxfdxxfPAµ , therefore, )())(( 1 AAS µµ =− . ∗f  is 

called the fixed point of the associated Frobenius-Perron operator SP . 

3.2.2 Markov transformation 

The focus of this research is on a special class of piecewise monotonic 

transformation that is defined as follows 

Definition 3.3 Let ],,,[ 21 NRRR =ℜ  be a partition of I into N intervals, and  

∅=)int()int( ji RR   if ji ≠ . A transformation IIS →:  is said to be Markov with 

respect to the partition R (or R-Markov) if S is monotonic on every interval iR  and 

)( iRS  is a connected union of intervals of R for Ni ,,2,1 = . The partition ℜ  is 

called a Markov partition with respect to S. 

If iS  on iR  is linear, S is referred to as a piecewise linear Markov transformation. 

The Frobenius-Perron operator associated with this class of transformations can be 

represented by a matrix that is of the form Njijim ≤≤= ,1, )(M , where  

 








 ⊂′

=

−

otherwise.,0

);( if,1

,

iji

ji

RSRS
m  (3.2) 
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Let F be the class of the functions that are piecewise constant on the partition ℜ . 

For a step function F∈)(xf ,  

 ∑
=

=
N

i
Ri xhxf i

1
)()( χ , (3.3) 

where )(xiRχ  is the indicator function defined as 

 




∉
∈

=
. if,0
; if,1

)(
i

i
R Rx

Rx
xiχ  (3.4) 

and ih  are the expansion coefficients. )(xf  can also be represented in the form of 

a row vector ],,[ 21
f

N
fff hhh ，=h . The relationship between the probability 

density functions and the matrix represented Frobenius-Perron operator can be 

derived as follows (Boyarsky & Góra 1997) 

 Mhh ffPS = , (3.5) 

where ],,[ 21
fP

N
fPfPfP SSSS hhh ，=h  is the vector form of density fPS . 

The following theorem with regard to the eigenvalue of maximum modulus is given 

in (Friedman & Boyarsky 1981) 

Theorem 3.2 Let IIS →:  be a piecewise linear Markov transformation, and M be 

the induced Frobenius-Perron matrix. Then M has 1 as the eigenvalue of maximum 

modulus. If M is also irreducible, then the algebraic and geometric multiplicity of 

the eigenvalue is also 1. 

This implies that there always exists a piecewise constant invariant density under S. 

The existence of invariant density for expanding transformation was further proven 

by (Boyarsky & Góra 1997), which is stated as follows 

Theorem 3.3 Let S be a piecewise linear Markov transformation, and the absolute 

value of the slope of S is greater than 1, then any S-invariant density function ∗f  is 

piecewise constant on the partition ℜ . 
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Thus, expanding piecewise linear Markov transformations have piecewise constant 

invariant densities. This theorem was further generalised for some case when the 

transformation cannot satisfy the expanding condition that 1>′iS . If the derivative 

after k iterations is greater than 1, )( ′kS  can be equivalently regarded as S′  , then  

the following theorem (Boyarsky & Góra 1997) can be obtained 

Theorem 3.4 Let S be a piecewise linear Markov transformation, as long as there 

exist some 1≥k  such that 1)()( >′ xS k , S admits an invariant density function 

which is piecewise constant on the partition ℜ . 

For a partition ℜ  comprised of N equal sized intervals NRRR ,,, 21  , Lebesgue 

measure on each interval iR  is denoted by .1)( NRi =λ  The definition of the 

stochastic matrix with respect to ℜ  representing the Frobenius-Perron operator can 

be simplified as 

 
( )i

ji
ji R

RSR
m

λ
λ ))(( 1

,

−∩
= , (3.6) 

which define the fraction of interval iR  which is mapped into interval jR by S.  

This matrix was applied to the so-called Ulam method  by (Ulam 1960) for 

approximating the Frobenius-Perron operator. Entry jim ,  denotes the transition 

probability of moving from interval iR  to interval jR . The stochastic matrix can be 

approximated using a set of finite individual orbits }{ kx in the following alternative 

way to (3.6) 

 
∑

∑ ⋅
≅

k
kR

k
kRkR

ji x

xSx
m

i

ji

)(

)))(()((

, χ

χχ
, (3.7) 

The resulting matrix M satisfies the following equality 
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 1
1

, =∑
=

N

j
jim , for Ni ,,2,1 = . (3.8) 

This means that the total sum of the transition probability of given states mapped 

from an interval to any other interval of ℜ  is 1. 

3.2.3 Semi-Markov transformation 

A richer class of piecewise linear transformations than piecewise linear Markov 

transformation is introduced in this section. For a given partition 

],,,[ 21 NRRR =ℜ , ∅=)int()int( ji RR   if ji ≠ , this class of transformations is 

called ℜ -semi-Markov transformation that is defined as follows 

Definition 3.4 A transformation IIS →:  is said to be semi-Markov with respect 

to the partition ℜ  (or ℜ -semi-Markov) if there exist disjoint subintervals )(i
jQ  so 

that )()(
1

i
j

ik
ji QR ==   for Ni ,,1= , )(i

jQS  is monotonic and ℜ∈)( )(i
jQS  where 

)(i
jQS  denotes the restriction of S to )(i

jQ , and )( )(i
jQS  denotes the image of )(i

jQ  

mapped by S. 

The restriction )(i
kQS is a homeomorphism from iR  to a union of intervals of ℜ  

 
)(

1

)(
)(

1
),( )(

ip

k

i
k

ip

k
kiri QSRI

==
== , (3.9) 

where ℜ∈= )( )(
),(

i
kkir QSR , ],[ )()(

1
)( i

k
i

k
i

k qqQ −= , Ni ,,1= , )(,,1 ipk =  and )(ip  

denotes the number of disjoint subintervals )(i
kQ  corresponding to iR . 

Piecewise linear semi-Markov transformations preserve the same important 

property with piecewise linear Markov transformation that the invariant density is 

piecewise constant on each interval of the defining partition (Boyarsky & Góra 

1997). 
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Theorem 3.5 if a transformation IIS →:  is piecewise linear semi-Markov with 

respect to a partition ℜ , and slope of )(i
jQS  is greater than 1, )(,,1 ikj = , 

Ni ,,1= , then any S-invariant density is constant on the intervals of ℜ . 

The Frobenius-Perron matrix associated with a piecewise linear semi-Markov 

transformation S, Njijim ≤≤= ,1, )(M  is defined by as follows (Boyarsky & Góra 

1997) 

 







ℜ∈=

′







=

−

otherwise.,0

;)( if, )(
1

,
)( j

i
kQji

RQSSm i
k  (3.10) 

Then the Frobenius-Perron equation can be converted into the following matrix 

form linking the probability density function f and Frobenius-Perron matrix 

 Mhh ffPS = , (3.11) 

where ],,,[ 21
f

N
fff hhh =h  and ],,,[ 21

fP
N

fPfPfP SSSS hhh =h  are the vector form 

of  density functions F∈f  and F∈fPS  respectively. 

Given an arbitrary density function f that is constant on the intervals of ℜ , there 

always exists a ℜ -semi-Markov transformation of which f is the invariant density. 

(Boyarsky & Góra 1997) utilised a special class of transformation called 3-band 

transformation to illustrate the construction of a piecewise linear transformation 

from any density and prove the existence of such a transformation. The generalised 

mathematic relationship between a given invariant density and the supposed 3-band 

transformation is further derived based on the results in (Boyarsky & Góra 1997) as 

follows 

Let S be a 3-band transformation on the partition },,{ 1 NRR =ℜ with Frobenius-

Perron matrix Njijim ≤≤= ,1, )(M , and F∈f  be an arbitrary density invariant 

density function of S. The following equations can be obtained from (3.11) 
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 fff hmhmh 11,221,11 =⋅+⋅ , (3.12) 

for i=1; and 

 f
iii

f
iii

f
iii

f
i hmhmhmh =⋅+⋅+⋅ ++−− ,11,,11 , (3.13) 

for 12 −≤≤ Ni ; and   

 f
NNN

f
NNN

f
N hmhmh =⋅+⋅ −− ,,11 , (3.14) 

for i=N. 

At the same time, the following equalities should hold 

 )()()( 12,121,11 RmRmR λλλ =⋅+⋅ , (3.15) 

for i=1; and 

 )()()()( 1,1,1,1 iiiiiiiiii RmRmRmR λλλλ =⋅+⋅+⋅ ++−− , (3.16) 

for 12 −≤≤ Ni ; and  

 )()()( ,1,1 NNNNNNN RmRmR λλλ =⋅+⋅ −− , (3.17) 

for i =N. 

Assuming that 0>f
ih , 0)( >iRλ , it can be obtained from (3.13) and (3.16) that 

 1,1
1

,,1
1 =⋅++⋅ +

+
−

−
iif

i

f
i

iiiif
i

f
i m

h
h

mm
h
h

, (3.18) 

and 

 1
)(
)(

)(
)(

1,
1

,1,
1 =⋅++⋅ +

+
−

−
ii

i

i
iiii

i

i m
R

Rmm
R

R
λ
λ

λ
λ . (3.19) 

It was proven by (Boyarsky & Góra 1997) that  

 f
iii

f
iii hmhm 1,11, −−− ⋅=⋅ . (3.20) 

Then it follows from (3.18) and (3.19) that 
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 1,
1

,1
1

)(
)(

+
+

+
+ ⋅=⋅ ii

i

i
iif

i

f
i m

R
Rm

h
h

λ
λ . (3.21) 

For 11 −≤≤ Ni , the entry iim ,1+  in the ith row is given by 

 1,
1

1
,1 )(

)(
+

+

+
+ ⋅

⋅
⋅

= iif
ii

f
ii

ii m
hR

hRm
λ
λ . (3.22) 

For 12 −≤≤ Ni The entry 1, +iim  in the ith row is obtained from (3.16) as follows 

 )(
)()()(

1

,1,1
1,

+

−−
+

⋅−⋅−
=

i

iiiiiii
ii R

mRmRR
m

λ
λλλ

. (3.23) 

For i =1,  

 
)(

)1()(

2

1,11
2,1 R

mR
m

λ
λ −⋅

= , (3.24) 

Consequently, it can be found out that, for a 3-band transformation with respect to a 

partition ℜ , if the elements on any band of the associated Frobenius-Perron matrix 

are known, the Frobenius-Perron matrix M can be uniquely determined. 

3.3 Problem Formulation 

Let B be a Borel σ-algebra of subsets in I, and μ denote the normalized Lebesgue 

measure on I. Let IIS →: be a measurable, non-singular transformation, that is, 

B∈− ))(( 1 ASµ  for any B∈A and 0))(( 1 =− ASµ for all B∈A  with 0)( =Aµ . If 

nx  is a random variable on I having the probability density function 

),,( µBD Ifn ∈ ,  }1,0:),,({ 1
1 =≥∈= ffILf µBD , such that 

 ∫=∈
A

nn dfAx µ}{Prob , (3.25) 

then 1+nx  given by 

 )(1 nn xSx =+ , (3.26) 
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is distributed according to the probability density function nSn fPf =+1  where 

)()(: 11 ILILPS →  is the Frobenius-Perron operator associated with the 

transformation S defined in Section 3.2.1. 

The inverse Frobenius-Perron problem is usually formulated as the problem of 

determining the point transformation S such that the dynamical system 

)(1 nn xSx =+  has a given invariant probability density function ∗f . In general, the 

problem does not have a unique solution. 

The generalised inverse problem addressed in this chapter, is that of inferring the 

point transformation which generated a sequence of density functions and has a 

given invariant density function. Specifically, let K
ji

j
ix ,

1,,0 }{ θ
=  and K

ji
j
ix ,

1,,1 }{ θ
=   be two 

sets of initial and final states observed in K separate experiments, where

)( ,0,1
j

i
j
i xSx = , θ,,1=i , Kj ,,1= , and IIS →: is an unknown, nonsingular 

point transformation. It is assumed that for practical reasons we cannot associate to 

an initial state j
ix ,0 the corresponding image j

ix ,1  but we can estimate the probability 

density functions jf0 and jf1 associated with the initial and final states, θ
1,0 }{ =i

j
ix and 

θ
1,1 }{ =i

j
ix  respectively. Moreover, let ∗f be the invariant density of the system. The 

inverse problem is to determine IIS →:  such that j
S

j fPf 01 = for Kj ,,1=  and 

∗∗ = fPf S . 

3.4 A solution to the GIFPP for piecewise 

linear semi-Markov transformations 

This section presents a method for solving the GIFPP for a class of piecewise 

monotonic and expanding semi-Markov transformations defined on the partition ℜ

called ℜ -semi-Markov. 

 ]},,(,],,(],,{[},,,{ 1211021 NNN ccccccRRR −==ℜ   (3.27) 
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is a partition of ],[ baI = , ac =0 , bcN = . 

Let S be an unknown piecewise-linear ℜ-semi-Markov transformation and 

KT
ititf
,

1,, }{ = be a sequence of probability density functions generated by the unknown 

map S, given a set of initial density functions Kiif ，1,0 }{ = . Assuming that the 

invariant density function ∗f  of the Frobenius-Perron operator associated to the 

unknown transformation S can be estimated based on observed data, the proposed 

identification approach can be summarised as follows: 

Step 1: Given the samples, construct a uniform partition C and an initial piecewise 

constant density estimate *
Cf  of the true invariant density ∗f  which maximises a 

penalised log-likelihood function. 

Step 2: Select a sub-partition )( jd lC  of C.  

Step 3: Estimate the matrix representation of the Frobenius-Perron operator over the 

partition )( jd lC   based on the observed sequences of densities generated by S.  

Step 4: Construct the piecewise linear map )(ˆ jlS corresponding to the matrix 

representation. 

Step 5: Compute the piecewise constant invariant density *
)( jldC

f  associated with the 

identified transformation )(ˆ jlS and evaluate performance criterion. 

Step 6: Repeat steps 2) to 5) to identify the partition and map which minimise the 

performance criterion. 

3.4.1 Identification of the Markov partition 

Let F∈*f  be the invariant density associated with a ℜ-semi-Markov 

transformation S. Let θ
1

*}{ =iix  be a finite number of independent observations of *f . 

The aim is to determine an orthogonal basis set N
iR xi 1)}({ =χ  such that 
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 ,)()(
1

* ∑
=

≈
N

i
Ri xhxf iχ , (3.28) 

where )(xiRχ  is the indicator function and ih  are the expansion coefficients given 

by 

 ∑
=⋅

=
θ
χ

λθ 1

* )(
)(

1

j
jR

i
i x

R
h i , (3.29) 

)( iRλ  denotes the length of the interval iR . 

We start by constructing a uniform partition Δ with intervals N ′  that maximises the 

following penalised log-likelihood function (Rozenholc, Mildenberger et al. 2010) 

 [ ]5.2

1
)(log1)log()()( NNDNDNpNL

N

i
ii ′+−′−












′=′−′ ∑

′

=
θθ , (3.30) 

where  θθ log1 ≤′≤ N , ∑
=

∆=
θ
χ

1

*)(
j

ji xD i
 and 

 




′=′−′−−
=′−

=∆
.,,2],)(,))(1((

;1],)(,[
NiNabiNabi

iNaba
i


  

The coefficients ih′  for the regular histogram are given by 

 ∑
=

∗
∆−

′
=′

θ
χ

θ 1
)(

)( j
ji x

ab
Nh i

, (3.31) 

Let },,{ 11 −′= NccC   be the strictly increasing sequence of cut points 

corresponding to the resulting uniform partition '
1}{ N

ii =∆=∆ . Let 1'
1}{ −
== N

jjlL , 

)()( 1 abhhNl jjj −′−′⋅′= +  and N
jjlL ′′
== 1}{ , 10 −′≤′′≤ NN , be the longest 

strictly increasing subsequence of L. 

The final Markov partition ℜ is determined by solving 
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 ,))()(()(min 2*
)(

*













−=ℜ ∫∈ I
lCC

Ll
dxxfxfJ

jdj
 (3.32) 

where },...,{)( )()(1 jj ldldjd cclC
ρ

= is a longest subsequence of C which, for the 

selected threshold Ll j ∈ , satisfies 1)(1 =jld if jll >1  and in general

1)()(1 +=+ jiji ldld  if jd ll i >+1 for 1,,1 −= ρi . In equation (3.32), *
)( jd lCf

denotes the piecewise constant invariant density associated with the transformation 

)(ˆ jlS  identified over the partition 

 
}],(...,,],(,],[{

)()(
2

21

)(
1

1 )()()()(
)(

  
jl

j

jl

jj

jl

j
j

R

ld

R

ldld

R

ld
l bcccca

ρ

ρ
=ℜ . 

(3.33) 

3.4.2 Identification of the Frobenius-Perron matrix 

Let ]},(,],,(],,{[},,,{ 121121 bccccaRRR NN −==ℜ   be a candidate Markov 

partition and KT
ititf
,

1,, }{ =  be the piecewise constant densities on ℜ, which are 

estimated from the samples.  

Let )(0 xf be an initial density function that is piecewise constant on the partition ℜ 

 ∑
=

=
N

i
Ri xwxf

i
1

,00 )()( χ , (3.34) 

where the coefficients satisfy ∑
=

=
N

i
ii Rw

1
,0 1)(λ . 

Let θ
1,00 }{ == jjxX  be the set of initial conditions obtained by sampling )(0 xf  and 

 θ
1, }{ == jjtt xX , (3.35) 

be the set of states obtained by applying t times the transformation S such that  

)( ,0, j
t

jt xSx =  for some 0,0 Xx j ∈ , θ,,1=j . 
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The density function associated with the states tX  is given by 

 ∑
=

=
N

i
Ritt xwxf i

1
, )()( χ , (3.36) 

where the coefficients ∑
=⋅

=
θ
χ

θλ 1
,, )(

)(
1

j
jtR

j
jt x

R
w

j
. Let ],...,[ ,1, Ntt

f wwt =w be 

the vector defining )(xft , Tt ,,0 =  where typically NT ≥ . In practice, the 

observed )(xft , Tt ,,0 = , are approximations of the true density functions, 

which are inferred from experimental observations.   

It follows that  

 MWW 01 = , (3.37) 

where 
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−−−− NTTT

N
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f

www

www
www

T ,12,11,1

,12,11,1

,02,01,0

0

1

1

0











w

w
w

W , (3.38) 

and  

 





















=





















=

NTTT

N
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f

f

f

www

www
www

T ,2,1,

,22,21,2

,12,11,1

1
2

1











w

w
w

W . (3.39) 

The matrix M is obtained as a solution to a constrained least-squares optimisation 

problem 

 F
m N

jiji

||||min 01
0}{ 1,,

MWW −
≥=

, 
(3.40) 

subject to 
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  NiRRm i

N

j
jji ,,1for ),()(

1
, ==∑

=
λλ , 

(3.41) 

where F|||| ⋅ denotes the Frobenius norm.  

The matrix 00 WW T=Φ has to be non-singular for the estimate to be unique.  

Proposition 3.1 Given a sequence of density functions Tff ,,0  generated by a 

transformation S(x), the matrix 00 WW T=Φ  is non-singular if )()( *
2 xfxfN ≠− . 

Proof. If )()( *
2 xfxfN =−  then )()( * xfxft =  for TNt ,,1−= , that is, the 

matrix 0W  has at most N-2 rows that are distinct from )(* xf .   

Using Cauchy-Binet formula, the determinant of Φ  can be written as 

 
∑









∈

=

N
T

S

TS
T

TS
T

][
][,,0][,,000 )det()det()det( WWWW , (3.42) 

where [T] denotes the set { }T,...,1 , 







N
T ][

 denotes the set of subsets of size N of [T] 

and ][,,0 TSW  is a NN ×  matrix whose rows are the rows of 0W at indices given in 

S. Since 0W has at most N–2 rows that are distinct from )(* xf , it follows that 

][,,0 TSW has at least two rows that are identical, hence 0)det( ][,,0 =TSW  for any 









∈

N
T

S
][

. Consequently, 0)det( 00 =WW T , which concludes the proof.  

Proposition 3.2 A ℜ -semi-Markov, piecewise linear and expanding transformation 

S can be uniquely identified given N linearly independent, piecewise constant 

densities F∈if0 and their images  F∈if1  under the transformation. 

Proof. Let 
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 ,,,1),()(
1

0
,0 Nixwxf

N

j
Rji

i
j

== ∑
=

χ  (3.43) 

Since N
i

if 10}{ = are linearly independent, N
ii 1

0}{ =w , ],,[ 0
,

0
1,

0
Niii ww =w  are also 

linearly independent. Moreover, given that S is a ℜ -semi-Markov, piecewise linear 

and expanding, we have 

 ,,,1),()(
1

1
,1 Nixwxf

N

j
Rji

i
j

== ∑
=

χ  (3.44) 

where N... iww iNiii ,,1   ,],,[ 01
,

1
1,

1 === Mww  . Alternatively, this can be written 

as 

 MWW 01 ′=′ , (3.45) 

where 
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W , (3.46) 

and 
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w

w
w

W . (3.47) 

Since 0W ′  is non-singular, the Frobenius-Perron matrix M is given by 

 1
1

0 WWM ′′= − . (3.48) 

The derivative of  )(i
kQS  is jim ,1 , the length of )(i

kQ  is given by 

 )()( ,
)(
1

)()(
jji

i
k

i
k

i
k RmqqQ λλ =−= − , (3.49) 
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which allows computing iteratively )(i
kq  for each interval iR  starting with 

1
)(

0 −= i
i cq . By assuming each branch 

iRS  is monotonically increasing, the 

piecewise linear semi-Markov mapping is given by 

 1
)(
1

,
)(1)()( −− +−= j

i
k

ji
Q cqx

m
xS i

k
, (3.50) 

for )(,,1 ipk = ,  j is the index of image jR  of ( )i
kQ , i.e. j

i
k RQS =)( )( , Ni ,,1= , 

Nj ,,1= , where 0, ≠jim . 

The map is constructed as depicted in Figure 3.1. 

In practice, we can choose the piecewise constant probability density functions 

)(
)(

1)(0 x
R

xf
jR

j

j χ
λ

= . These are sampled in order to generate N sets of initial 

conditions 

 ,...,NixX j
i

j
i 1    ,}{ 1,00 == =

θ , (3.51) 

that will be used in the experiments. For each set of initial conditions iX1  we 

measure a corresponding set of final states  

 ,...,NixX j
i

j
i 1    ,}{ 1,11 == =

θ , (3.52) 

where )( ,0,1
i

k
i

j xSx = for some ii
k Xx 0,0 ∈ . The density function if1  associated with 

the set iX1  of final states is given by  

 Nixvxf
N

j
Rji

i
j ,,1,)()(

1
1 == ∑

=
χ , (3.53) 

where ∑
=⋅

=
θ
χ

θλ 1
,1, )(

)(
1

k

i
kR

j
ji x

R
v j . 
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Figure 3.1 Construction of 1-D piecewise-linear semi-Markov transformation based on the 

Frobenius-Perron matrix. 

Remark. We only need to generate initial conditions for the densities that 

correspond to the finest uniform partition NN ′= . Coarser partitions are obtained 

by merging adjacent intervals, for example jR  and 1+jR , leading to the new 

partition },...,{ 11 −NRR .  It follows that the initial and final states corresponding to 

the merged interval jjj RRR ∪=  are given by 1
000
+∪= jjj XXX and  

1
111
+∪= jjj XXX  respectively. The initial and final densities corresponding to the 

merged interval are given by )(
)(

1)(0 x
R

xf
jR

J

j
χ

λ
= and 

)()(
)(2

1)(
1

1 1
,11 xx

R
xf

ii R

N

i k

j
kR

i

j
χχ

θλ

θ

∑∑
−

= =⋅
=  respectively. 

In general, initial density functions are not piecewise constant over the partition ℜ . 

Let )(1
QLf ℜ⊃∈ F , )(: 1

Q
N LP Q ℜ→ F  be the orthogonal projector operator and

QQ NN PIZ −= such that zp
NN fffZfPf QQ +=+=  where 
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,,...,{ )1(
1

)1(
1

p
Q QQ=ℜ }..., )(Np

NQ },...,{ 1 QNQQ= , )()(
1

i
k

ip
ki QR ==  , Ni ,,1 = , 

}{)( )(i
kQQ span χ=ℜF  and ∑

=
=

N

i
Q ipN

1
)( .  

Theorem 3.6 A ℜ -semi-Markov, piecewise linear and expanding transformation, 

where )()(
1

i
k

ip
ki QR ==  , i=1, .., N, can be uniquely identified given a set of initial 

densities QN
i

if 10}{ = , ∑
=

=
N

i
Q ipN

1
)( , and their images QN

i
if 11 }{ =  under the 

transformation, if QQ N
i

iN fP 10 }{ =  are linearly independent. 

Proof. The Frobenius-Perron operator associated with S is given by 

 ∑
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=
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i
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i
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(3.54) 

It follows that  
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(3.56) 

Then, 
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Hence, 
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(3.58) 

QNi ,,1= . 

Alternatively, (3.45) can be written as 

 QNMWW 01 ′′=′′ , (3.59) 

where  
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W , (3.61) 

Q
Q

N
jijiN m 1,,1

1
0 }{ =
− =′′′′= WWM  is the Frobenius-Perron matrix that corresponds to a 

unique piecewise linear and expanding transformation S given by 
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 1
)(
1

1)(,1)(
)(1)()( −−

++
+−= j

i
k

jsis
Q cqx

m
xS i

k
, (3.62) 

for )(,,1 ipk = , j is the index of image jR  of ( )i
kQ , i.e. j

i
k RQS =)( )( , Ni ,,1= , 

Nj ,,1= , s(1)=0 and )1()1()( −+−= ipisis  for i >1. 

To summarise, the full procedure of the approach is described as follows 

 

Figure 3.2 Flow chart of the proposed identification approach.  

3.5 Numerical example 

The applicability of the proposed algorithm is demonstrated using numerical 

simulation. Consider the following piecewise linear and expanding transformation 

]1,0[]1,0[: →S  

 jijiR xxS
i ,,)( βα += , (3.63) 

47 
 



Chapter 3 Reconstruction of Piecewise Linear semi-Markov Maps from Sequences of 
Probability Density Functions 
 
for 4,,1=i , 4,,1=j , defined on the partition 

],4.0,3.0(],3.0,0{[}{ 4
1 ==ℜ =iiR  ],8.0,4.0(  ]}1,8.0( , where 
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)( 4,1, jijiα , 

.
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033.125.000.3
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)( 4,1,



















−−−−
−−−

−−−−
−

=≤≤ jijiβ  

The graph of S is shown in Figure 3.3. 

 
Figure 3.3 Original piecewise linear transformation S. 

A set of initial states θ
1,00 }{ == jjxX , 3105×=θ , generated by sampling from a 

uniform probability density function [ ] )()( 1,00 xxf χ= , were iterated using S to 

generate a corresponding set of final states θ
1, }{ == jjTT xX  where 000,20=T . The 

data set TX  was used to determine the uniform partition Δ with N ′  intervals, 

  587log/1 =≤′≤ θθN , which maximizes the penalised log-likelihood function in 
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equation (3.30). In this example 10=′N , i.e. }9.0...,,1.0{=C  and the estimated 

invariant density )(* xfC  with respect to the 10-interval partition is shown in Figure 

3.4. 

 
Figure 3.4 The invariant density estimated over the initial uniform partition with 10N ′ = intervals. 

The sequence 9
1}{ == jjlL , |''|10 1 jjj hhl −= + is shown in Figure 3.5. 

 
Figure 3.5 A piecewise linear example: The L sequence. 
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In this example, }.64.15,62.14,96.7,24.1,86.0,70.0,30.0,26.0,08.0{}{ 9
1 == =jjlL   

In order to explicitly show the process of searching the final Markov partition, 

Figure 3.6 illustrates the formation of a Markov partition for 96.77 =l . 87 ll = . 

From Figure 3.5, it can be found that 9,7,6,5,2,1,7 =< jll j , therefore, the 

adjacent uniform intervals connected by the cut points }9,7,6,5,2,1,{ =jc j  at 

which 7ll j < , are merged, which results in the non-uniform partition shown in 

Figure 3.6. Specifically, intervals {[0, 0.1), [0.1, 0.2), [0.2, 0.3)} are merged into 

one interval [0, 0.3), and intervals {[0.4, 0.5), [0.5, 0.6), [0.6, 0.7) , [0.7, 0.8)} are 

merged into one interval [0.4, 0.8) , and intervals {[0.8, 0.9), [0.9, 1.0)} are merged 

into one interval [0.8, 1.0). Based on the new formed non-uniform candidate 

partition, sequences of probability density function are generated to identify the 

corresponding piecewise linear semi-Markov transformation, as described in 

Sectioin 4.2.2 and 4.2.3. Then the associated invariant density function *
)( 7lCd

f  is 

predicted and the loss function  

 












−=ℜ ∫∈ I
lCC

Ll
dxxfxfJ

jdj

2*
)(

* ))()(()(min , (3.64) 

corresponding to 7l  is calculated. 
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Figure 3.6 Chapter 3 numerical example: Formation of the final Markov partition corresponding to 

the obtained minimum loss function for 7l . The bold line is the invariant density histogram 
estimated over the final Markov partition; the dotted line is the invariant density histogram estimated 

over the initial uniform partition.  

Consequently, the minimum is obtained for 7l , as shown in Figure 3.7. 

 
Figure 3.7 Chapter 3 numerical example: The value of the cost function given in equation (3.32) for 

each threshold. 

This corresponds to the final Markov partition { }4321 ,,, RRRR=ℜ  where 

]3.0,0[1 =R , ]4.0,3.0(2 =R , ]8.0,4.0(3 =R  and ]1,8.0(4 =R . Figure 3.8 shows the 
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initial density functions used to generate the set of the initial conditions and the 

final density functions estimated from the corresponding final states for T=1. 

For the identified partition, the estimated Frobenius-Perron matrix is 

 


















=

1966.01995.04052.01345.0
7996.02988.07968.01363.0
1497.00482.03062.00673.0
4491.00753.05874.04044.0

M , (3.65) 

 

 

Figure 3.8 A piecewise linear example: The initial and final density functions )(0 xf i  and )(1 xf i

corresponding to the identified four-interval partition. 

The corresponding identified mapping Ŝ  is shown in Figure 3.9. 
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Figure 3.9 Chapter 3 numerical example: The identified transformation Ŝ  of the underlying system. 

The estimated coefficients of the identified piecewise linear semi-Markov 

transformation jijiR
xxS

i
,,

ˆˆ)(ˆ βα +=  are 



















=≤≤

09.501.547.243.7
25.134.326.133.7
68.677.2027.387.14
23.228.1370.147.2

)ˆ( 4,1, jijiα , 

.

09.402.477.195.5
034.125.094.2

67.189.675.046.4
33.099.109.00

)ˆ( 4,1,



















−−−−
−−−

−−−−
−

=≤≤ jijiβ  

To show the identification performance of the algorithms, the absolute percentage 

error is evaluated by  

 
)(

)(ˆ)(
100)(

xS

xSxS
xS

−
×=δ , (3.66) 

for }99.0...,,02.0,01.0{=∈ Xx . As shown in Figure 3.10 the relative error 

between the identified and original map is less than 2.5%. 
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Figure 3.10 Chapter 3 numerical example: Relative error between the original map S and the 

identified map Ŝ  evaluated for 99 uniformly spaced points. 

Furthermore, Figure 3.11 shows the true invariant density ∗f  associated with S 

superimposed on the invariant density ∗f̂  associated with the identified map Ŝ . 

The percentage root-mean-square error (PRE) is calculated by  

 %100
))((

))()(ˆ(
PRE

2

2

×

−

=
∫

∫
∗

∗∗

I

I

dxxf

dxxfxf
. (3.67) 

It follows that 1.48%=PRE . 
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Figure 3.11 Chapter 3 numerical example: The true invariant density (red dashed line) and the estimated 

invariant density (blue solid line) of the identified map. 

In practical situations, measurements are corrupted by noise. Given the process 

 nnn xSx ω+=+ )(1 , (3.68) 

where RRS →:  is a measurable transformation and }{ nω  is a sequence of 

independent random variables with density g, it can be shown (Lasota & Mackey 

1994) that the evolution of densities for this transformation is described by the 

Markov operator 11: LLP →   defined by 

 ∫ −=
R

dyySxgyfxfP ))(()()( , (3.69) 

Furthermore, if P is constrictive then P has a unique invariant density f* and the 

sequence }{ fP n is asymptotically stable for every Df ∈ (Lasota & Mackey 1994). 

To study how noise affects the performance of the developed algorithm the 

following process is considered 

 1) (mod    )(1 nnn xSx αω+=+ , (3.70) 
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where ]1,0[]1,0[: →S  is a measurable transformation that has a unique invariant 

density *f , }{ nω  is i.i.d. N (0,1) (the results apply for general density functions) 

and α  is a known noise level. This leads to an integral operator αP  which has a 

unique invariant density *
αf  (Lasota & Mackey 1994). It can be shown that

0lim
0

=−
→

PffPα
α

 for all Df ∈  and that, for 00 αα << , if *
0

lim α
α

f
→

 exists then the 

limit is *f . 

To evaluate the performance of the proposed algorithm in the presence of noise, the 

map for different values of α  is reconstructed and the mean absolute percentage 

error (MAPE) between S and Ŝ  is computed by 

 ∑
=

−
=

S

i i

ii

S xS
xSxSxS

δθ

δθ
δ

1 )(
)(ˆ)(100)( , (3.71) 

where }99.0,...,01.0{}{ 1 ==
S

iix δθ , 99=Sδθ . 

Table 3.1  Reconstruction errors for different noise levels – Example: a piecewise linear system 
example in Chapter 3. 

22 / xσσα α=  0 
(noise-free) 0.0335% 0.1588% 0.8819% 2.2234% 3.9414% 

MAPE (%) 0.43 1.08 1.34 8.52 33.35 37.74 

The results demonstrate that the algorithm is robust to noise i.e. the approximation 

error remains relatively small even for significant levels of noise which in practice 

would make it extremely difficult to reconstruct the map based on time series data 

(Aguirre & Billings 1995b, Aguirre & Billings 1995a). 

3.6 Conclusions 

There are some practical situations in which the individual point trajectories of a 

chaotic system cannot be measured directly, and the only information available is in 

the form of probability density functions. As a result, the problem of inferring the 
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mathematical model can be studied with sequences of probability density functions, 

instead of massive individual point orbits by means of traditional strategies of 

model identification.  

Previous research generally focused on the problem of deriving a potential 

transformation only based on the invariant density, which is the so-called classical 

inverse Frobenius-Perron problem. The shortcoming of the approach is that it 

cannot guarantee uniqueness of the solution. There are many transformations that 

share the same invariant density but exhibit distinct dynamical behaviour. The new 

methodology introduced in this chapter addresses this issue by using a temporal 

sequence of density functions generated by the underlying system, which allows the 

unique chaotic map can be recovered. The system identification approach involves 

determining the Markov partition by minimising the established cost function firstly, 

then recovering the Frobenius-Perron matrix, finally constructing the piecewise 

linear semi-Markov transformation on the Markov partition.  The effectiveness of 

the algorithms was demonstrated using numerical simulations for a noise-free 

system. Furthermore, small noise perturbed case was also studied to show the 

applicability of the method to practical systems. 
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Chapter 4 

A Solution to the Generalised Inverse 

Frobenius-Perron Problem for 

Continuous One-Dimensional Chaotic 

Maps 

4.1 Introduction 

The previous chapter introduced a matrix-based approach to the generalised inverse 

Frobenius-Perron problem (GIFPP) for a special class of one-dimensional bounded 

piecewise monotonic transformations known as piecewise linear semi-Markov 

transforms. These transformations can be regarded as a special type of nonlinear 

transformations constituted by finite linear branches on disjointed intervals. 

Nonetheless, in general most practical systems are nonlinear on each interval of 

domain, and even fractions of transformations are not homeomorphism, therefore, 

they are not Markov transformations. It is interesting to explore the strategy of 

reconstructing the nonlinear map with observed sequences of probability density 

functions yielded by the system.  

Since Frobenius-Perron matrix is non-negative, and positive entry is defined by 
1|)(| )(
−′i

kQS , for a known piecewise linear semi-Markov transformation S, there 

exists a unique corresponding Frobenius-Perron matrix M, but not vice versa. i.e. S 

is not the only transformation that possesses the Frobenius-Perron matrix M. 
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Therefore, given a Frobenius-Perron matrix, the monotonicity of the transformation 

iRS  is not determined as the slope could be positive or negative. The developed 

approach to GIFPP for piecewise linear semi-Markov transformations is devised 

under the assumption that each branch 
iRS  is monotonically increasing. But for 

continuous nonlinear transformations, it is imperative to determine the 

monotonicity of 
iRS  i.e. monotonically increasing or decreasing.  

This chapter extends the approach to reconstructing piecewise linear semi-Markov 

transformations from sequences of densities to more general nonlinear maps. Ulam 

(1960) conjectured that for one-dimensional systems the infinite-dimensional 

Frobenius-Perron operator can be approximated arbitrarily well by a finite-

dimensional Markov transformation defined over a uniform partition of the interval 

of interest. The conjecture was proven by Li (1976) who also provided a rigorous 

numerical algorithm for constructing the finite-dimensional operator when the one-

dimensional transformation S is known. The purpose in this chapter is to generalise 

the developed solution to GIFPP for continuous nonlinear systems, specifically, to 

construct from sequences of probability density functions a piecewise linear semi-

Markov transformation Ŝ  which approximates the original continuous nonlinear 

map S. 

In the following section, the methodology of deriving the map for continuous 

nonlinear systems is presented. In particular, it involves the algorithms of a two-

step optimisation calculation for obtaining the Frobenius-Perron matrix of the 

corresponding the approximate piecewise linear ℜ -semi-Markov transformations 

to the nonlinear map, and determining the monotonicity of the nonlinear map on 

each interval of ℜ . A numerical example is then given to illustrate the applicability 

of the algorithms. 

4.2 Methodology 

The main assumptions of the developed methodology are as follows 

60 
 



Chapter 4 A Solution to the Generalised Inverse Frobenius-Perron Problem for Continuous 
One-Dimensional Chaotic Maps 

a) The transformation IIS →:  is continuous, ],[ baI = ;  

b) The Frobenius-Perron operator 11: LLPS →  associated with the transformation 

S has a unique stationary density ∗f  which can be estimated based on the 

observed data; 

c) For ∞→n , ∗→ ffPn
S  for every D∈f  i.e. the sequence }{ n

SP  is 

asymptotically stable.  

Asymptotic stability of }{ n
SP  has been established for certain classes of piecewise 

2  maps. For example, the following theorem was proven in (Lasota & Mackey 

1994). 

Theorem 4.1 If ]1,0[]1,0[: →S  is a piecewise monotonic transformation 

satisfying the conditions: 

a) There is a partition 10 11 <<<< −Ncc   such that the restriction of S to an 

interval ),( 1 iii ccR −=  is a 2  function; 

b) );1,0()( =iRS  

c) 1|)('| >xS for ix c≠ ;  
d) There is a finite constant ψ  such that  

 ψ≤′′′− 2)]([)( xSxS , ,icx ≠ 1,,1 −= Ni  , (4.1) 

then }{ n
SP  is asymptotically stable. 

By using a change of variables, it is sometimes possible to extend the applicability 

of the above theorem to more general transformations, such as the logistic map 

(Lasota & Mackey 1994) , which does not satisfy the restrictive conditions on the 

derivatives of S. 

The procedures of the generalised solution are briefly stated as follows 

Step 1: Identify the optimal Markov partition ℜ  prepared for deriving the 

Frobenius-Perron matrix corresponding to the piecewise linear semi-Markov map 

close to the original continuous nonlinear map; 
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Step 2: Identify the Frobenius-Perron matrix M from the sequences of probability 

densities generated by S in the first stage. Then refine the resulting matrix by 

implementing a second optimisation in which the zero entries are specified.  

Step 3: determine the monotonicity (monotonically increasing or decreasing) of the 

constructed point transformation 
iR

Ŝ  on each interval of  ℜ . 

Step 4: Smooth the constructed piecewise linear map to make it more close to the 

potential continuous nonlinear map. 

4.2.1 Identification of the optimal Markov partition 

For a nonlinear transformation IIS →: , ],[ baI = , the invariant density D∈∗f  

is not piecewise constant. The Frobenius-Perron operator associated with S cannot 

be represented by a square matrix. By constructing a piecewise linear semi-Markov 

transformation Ŝ close the original continuous nonlinear map, the Frobenius-Perron 

equation can also be written in the following matrix form of equality. 

 SnnS ffP ˆˆ M= , (4.2) 

where SPˆ  is the Frobenius-Perron operator associated with Ŝ , and ŜM  is the 

Frobenius-Perron matrix induced by Ŝ . 

For the invariant density, it follows that  

 Sff ˆ
ˆˆ M∗∗ = . (4.3) 

where F∈∗f̂ denotes the piecewise constant density approximating ∗f . 

As a consequence, the approach used to determine the Markov partition for 

piecewise linear transformation in Section 3.3.1 of the previous chapter is also used 

here to determine the optimal Markov partition for the piecewise linear 

approximation of the unknown nonlinear map. 
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4.2.2 Identification of the Frobenius-Perron matrix 

For the Markov partition 

 ]},(,],,(],,{[},,,{ 121121 bccccaRRR NN −==ℜ  , (4.4) 

the Frobenius-Perron matrix can be tentatively identified using the approaches 

described in Section 3.3.2, and is denoted by Njijim ≤≤= ,1, )~(~M . 

Since S is continuous on I, ),(

)(

1
kir

ip

k
R

=
∪  is a connected union of intervals where 

ℜ∈= )( )(
),(

i
kkir QSR , Ni ,,1 = , )(,,1 ipk = . Here },...,1{),( Nkir ∈ are the column 

indices of non-zero entries on the i-th row of the Frobenius-Perron matrix which 

satisfy 

 1),()1,( +=+ kirkir , (4.5) 

for ,...,,1 Ni =  1)(,,1 −= ipk  . This implies that the positive entries are 

contiguous, and that the else entries on the i-th row should be 0, which can be 

expressed as 

 0, =jim , (4.6) 

for ,...,,1 Ni =  ),(,,,1 kirjNj ≠=  . 

In order to ensure the identified Frobenius-Perron matrix meets the above 

conditions, the first step is to determine the indices ),( kir  of the non-zero entries 

on each row. Let ),( mm kir  be the index of the entry of which  

 }~)(max{)}(max{)( ,
)(

1
)()(

rir
ip

k
i

k
i

k
mRQQ m ⋅== = λλλ . (4.7) 

It represents the longest subinterval within the interval iR  which can be interpreted 

as the predominant support of the transformation 
iR

Ŝ .  

Therefore,  
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 0),( ≠mm kirm , (4.8) 

Thus, )(
1)},({),( ip

k
mm kirkir =∈ , ))(,(),()1,( ipirkirir mm ≤≤ .  

),(
)(

1
kir

k

kk
R

ip

′′

′

′=′
∪  is the connected union of intervals involving 

),1( mm krR , where 

ℜ∈= ′′′ )(~ )(
),(

i
kkir QSR . Consequently, the indices of non-zero entries on the i-th row of 

the desired Frobenius-Perron matrix Njijim ≤≤= ,1, )(M  associated with the 

piecewise linear ℜ -semi-Markov transformation which is more closer to the 

nonlinear map can be determined by 

 ).,())(,(
),,()1,(

)(

1

ipkiripir
kirir

′′=

′′=
 (4.9) 

As a result, for the i-th row of matrix M   

 




=

′′≤≤′′>
.otherwise,0

);,(),(,0

,

)(1,

ji

ipji

m
kirjkirm

 (4.10) 

The final Frobenius-Perron matrix M  is obtained as a solution to the following 

constrained optimisation problem 

 F
m N

jiji
||||min 01

0}{ 1,,
MWW −

≥=

, 
(4.11) 

where 0W  and 1W  are the densities matrices produced in Section 3.3.2, 

subject to 

 )()( ),(

)(

1
),(, ikir

ip

k
kiri RRm λλ =∑

=
, (4.12) 

0, ≥jim  if )(,...,1),,( ipkkirj == , and 0, =jim  if )(,...,1),,( ipkkirj =≠ . 
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4.2.3 Reconstruction of the transformation from the 

Frobenius-Perron matrix 

The method for constructing a piecewise linear approximation )(ˆ xS  over the 

partition ℜ  is augmented to take into account the fact that the underlying 

transformation is continuous and that on each interval of the partition, 
iRS  is either 

monotonically increasing or decreasing. The entries of the positive Frobenius-

Perron matrix are used to calculate the absolute value of the slope of )(
ˆ

i
kQ

S  as 

jiQ
mS i

k
,1|ˆ| )( = . A simple algorithm was derived to decide if the slope of )(

ˆ
i

kQ
S  on 

the interval iR  is positive or negative. 

Let ],[ ))(,(1)1,( ipiriri ccI −=  for 1, ,i N=  , be the image of the interval iR  under the 

transformation Ŝ  which induce the identified Frobenius-Perron matrix M. 1)1,( −irc

is the starting point of )1,(irR  which is the image of the subinterval )(
1

iQ , and ac =0  

if 1)1,( =ir . ))(,( ipirc  is the end point of  ))(,( ipirR  which is the image of the 

subinterval )(
)(

i
ipQ . As before, )(

1)},({ ip
kkir =  denote the column indices corresponding 

to the non-zero entries in the i-th row of M. 

Let ],[
2
1

))(,(1)1,( ipiriri ccc −=  be the midpoint of the image iI . The sign )(iσ of 

)(
1})(ˆ{ )(
ip

kQ i
k

xS =′  is given by 

 






=−
>−
<−−

=

−

−

−

, if)1(
;0 if,1
;0 if,1

)(
1

1

1

ii

ii

ii

cci
cc
cc

i
σ

σ , (4.13) 

for Ni ,,2 =  and )2()1( σσ = . 

Given that the derivative of  )(i
kQS  is jim ,1 , the end point )(i

kq of subinterval )(i
kQ  

within iR  is given by 
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−=+

+=+

=

∑

∑

=
+−+−−

=
−

.1)( if),(

;1)( if,)(

1
)1)(,()1)(,(,1

1
),(),(,1

)(

iRmc

iRmc
q k

j
kipirkipirii

k

j
jirjirii

i
k

σλ

σλ
 (4.14) 

where 1)(,...,1 −= ipk  and  i
i

ip cq =)(
)( . 

The piecewise linear semi-Markov transformation for each subinterval )(i
jQ  is given 

by 

 










−=+−−−

+=+−−
=

−

−−

,1)( if,)(1

;1)( if,)(1

)(ˆ
)(
1

,

1
)(
1

,
)(

icqax
m

icqax
m

xS
j

i
k

ji

j
i

k
ji

Q i
j σ

σ
 (4.15) 

for ,,,1 Ni = ,,,1 Nj =  1)(,...,1 −= ipk , 0, ≠jim . 

The construction of the piecewise linear semi-Markov transformation )(ˆ xS  to 

approximate the original continuous nonlinear map )(xS  is depicted in Figure 4.1. 

4.2.4 Smoothing of the constructed piecewise linear semi-

Markov map 

Since the constructed map is piecewise on the identified Markov partition, in order 

to make it more close to the original map that is continuous on I, a smooth version 

of the estimated transformation can be obtained by fitting a polynomial smoothing 

spline. 

A set of initial states θ
1,00 }{ == jjxX  which are uniformly distributed on I were 

iterated one time using the constructed piecewise linear ℜ -semi-Markov 

transformation )(ˆ xS  to yield a corresponding new states  θ
1,10 }{ == jjxX . The new 

states can be regarded as noise-like data to smooth the piecewise map. The 

smoothing spline can be obtained as the solution of the following optimisation 

problem 

66 
 



Chapter 4 A Solution to the Generalised Inverse Frobenius-Perron Problem for Continuous 
One-Dimensional Chaotic Maps 

 






















−+− ∫∑

= Ij
jj dx

dx
SdxxS

2

2

2

1

2
,1,0 )1())((min γ

θ
γ θ

, (4.16) 

where γ  is the smoothing parameter. 

 
Figure 4.1 Construction of a piecewise linear semi-Markov transformation approximating the 

original continuous nonlinear map. 

4.3 Numerical simulations 

To demonstrate the use of the extended algorithm, the following quadratic (logistic) 

transformation without noise disturbance depicted in Figure 4.2 is considered. 

 )1(4)( xxxS −= , (4.17) 

It can be shown that }{ n
SP  associated with this transformation is asymptotically 

stable. 
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Figure 4.2 Original continuous nonlinear transformation S. 

A set of initial states θ
1,00 }{ == jjxX , 3105×=θ , generated by sampling from a 

uniform probability density function [ ] )()( 1,00 xxf χ= , were iterated using S to 

generate a corresponding set of final states θ
1, }{ == jjTT xX  where 000,30=T . The 

data set TX  was used to search for an uniform partition Δ with N ′  intervals, 

  587log/'1 =≤≤ θθN , which maximises the penalised log-likelihood function  

 [ ]5.2

1
)(log1)log()()( NNDNDNpNL

N

i
ii ′+−′−








′=′−′ ∑

′

=
θθ , (4.18) 

defined in Section 3.4.1. It is obtained that 145=′N  for this case. The estimated 

invariant density )(* xfC  with respect to the 145-interval partition is shown in Figure 

4.3.  
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Figure 4.3 Chapter 4 numerical example: Initial regular histogram based on a 145-interval uniform 

partition. 

In this example, the longest strictly monotone subsequence L  of 144
1}{ == jjlL ,

|''|145 1 jjj hhl −= +  has 52 elements and the minimisation of  

 












−=ℜ ∫∈ I
lCC

Ll
dxxfxfJ

jdj

2*
)(

* ))()(()(min , (4.19) 

is achieved for 1560.020 =l , as shown in Figure 4.4. 

This corresponds to a final Markov partition with 72 intervals. The invariant density 

on the irregular partition ℜ  with 72 intervals is shown in Figure 4.5. 

To identify the Frobenius-Perron matrix, 100 densities (see Appendix) were 

randomly sampled to generate 100 sets of initial states θ
1,00 }{ == j

i
j

i xX , i=1,...,100, 

3105×=θ . The initial states iX0  and their images iX1  under the transformation S 

were used to estimate the initial and final density functions on ℜ . Examples of 

initial and final densities are shown in Figure 4.6. 
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Figure 4.4 Chapter 4 numerical example: The cost function 

jlJ ,  j =1, …, 52. 

 
Figure 4.5 Chapter 4 numerical example: The invariant density estimated over the partition 

72
1}{ ==ℜ iiR . 

The constructed piecewise linear semi-Markov transformation with respect to the 

partition ℜ  is shown in Figure 4.7. 

The smoothed map, obtained by fitting a cubic spline (smoothing parameter: 0.999), 

is shown in Figure 4.8. 
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Figure 4.6 Chapter 4 numerical example: Examples of initial densities (red lines) and the 

corresponding densities after one iteration (blue lines): 

a1: 1
1,0f , 1

1,1f ; a2: 
8
1,0f , 8

1,1f ; a3: 
15

1,0f , 15
1,1f ; a4: 27

1,0f , 27
1,1f ; a5: 30

1,0f , 30
1,1f ;  

b1: 1
2,0f , 1

2,1f ; b2: 
7

2,0f , 7
2,1f ; b3: 

13
2,0f , 13

2,1f ; b4: 27
2,0f , 27

2,1f ; b5: 30
2,0f , 30

2,1f ;  

c1: 1
3,0f , 1

3,1f ; c2: 
7
3,0f , 7

3,1f ; c3: 
13

3,0f , 13
3,1f ; c4: 27

3,0f , 27
3,1f ; c5: 30

3,0f , 30
3,1f ;  

d1: 1
4,0f , 1

4,1f ; d2: 
3

4,0f , 3
4,1f ; d3: 

5
4,0f , 5

4,1f ; d4: 7
4,0f , 7

4,1f ; d5: 10
4,0f , 10

4,1f ;  

e1: 1
5,0f , 1

5,1f ; e2: 
3

5,0f , 3
5,1f ; e3: 

5
5,0f , 5

5,1f ; e4: 7
5,0f , 7

5,1f ; e5: 10
5,0f , 10

5,1f . 

The relative approximation error between the identified smooth map and the 

original map calculated in (3.66) is shown in Figure 4.9. It can be seen that for 97 

out of the 99 linearly spaced points }99.0...,,02.0,01.0{=∈ Xx  %5)( <xSδ . 
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Figure 4.7 Chapter 4 numerical example: Reconstructed piecewise linear semi-Markov map over the 
irregular partition ℜ . 

 

Figure 4.8 Chapter 4 numerical example: Identified smooth map. 

The estimated invariant density on ℜ , obtained by iterating the smoothed map 

20,000 times with the initial states 0X , and is shown in Figure 4.10, compared with 

the true invariant density. 
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π
. (4.20) 

 

Figure 4.9 Chapter 4 numerical example: Relative error between the original map S and the 

identified map S  evaluated for 99 uniformly spaced points. 

 

Figure 4.10 Chapter 4 numerical example: The true invariant density of the underlying system 

(dashed line) and the estimated invariant density of the identified map (solid line) on a uniform 

partition with 145-intervals. 
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To examine how noise affects the performance of the generalised solution for 

continuous one-dimensional chaotic maps, an additive random noise is applied to 

the logistic map as expressed as follows 

 )1(mod)1(41 nnnn xxx αω+−=+ , (4.21) 

where }{ nω  is i.i.d. N (0,1) (white Gaussian noise), and α  is a known noise level. 

A set of Gaussian noise θω 1}{ == iiΩ , 3105×=θ  , the noise maximum magnitude 

(i.e. )max( nωξ ≥ ) 501=ξ  and %0335.0=α  is taken for example in the first 

instance.  

The invariant density was obtained by iterating S for T times with the noise iω  

applied per iteration. Still using the penalised log-likelihood maximisation for 

searching the preliminary uniform partition, the resulting invariant density with 

respect to the uniform partition containing 67 intervals is shown in Figure 4.11. 

 

Figure 4.11 Chapter 4 numerical example: Initial regular histogram based on a 67-interval uniform 

partition. 

Figure 4.12 shows the results of the loss function (4.19) corresponding to il for 

66,,1 =i . It can be seen that the minimisation is found at 0304.039 =l which 
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corresponds to a Markov partition involving 31 non-uniform intervals, as shown in 

Figure 4.12.  

 

Figure 4.12 Chapter 4 numerical example: The cost function 
jlJ ,  j =1, …, 66. 

Figure 4.13 shows the estimated invariant density on the obtained Markov partition

ℜ . 

 
Figure 4.13 Chapter 4 numerical example: The invariant density estimated over the partition 

31}{ 1==ℜ iiR . 
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The 100 sets of initial states iX0 , i=1,...,100, generated in the noise-free case was 

used to yield the corresponding sets of images iX1  under the noisy system (4.21). 

The constructed piecewise linear ℜ -semi-Markov map is shown in Figure 4.14. 

 
Figure 4.14 Chapter 4 numerical example: Reconstructed piecewise linear semi-Markov map over 

the irregular partition R. 

The smoothed map obtained with the same smoothing parameter 0.999 is shown in 

Figure 4.15. 

 
Figure 4.15 Chapter 4 numerical example: Identified smooth map S . 
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Figure 4.16 shows the calculated relative error Sδ  on the 99 uniformly spaced 

points. It can be seen that %5<Sδ  for 96 points out of them. 

 
Figure 4.16 Chapter 4 numerical example:  Relative error between the original map S and the 

identified smooth map S  evaluated for 99 uniformly spaced points. 

In order to evaluate the performance of the developed algorithms for larger noise 

levels, Figure 4.17 and Figure 4.18 give the reconstructed maps and relative error 

for noise level %5431.0%,0978.0=α  ( 10.0,04.0=ξ ) respectively. 

 

Figure 4.17 Chapter 4 numerical example: (a) Constructed piecewise linear semi-Markov map for 

%0978.0=α  ( 04.0=ξ ); (b) The resulting smooth map from the piecewise linear semi-Markov 

map; (c) The relative error calculated on the 99 uniformly spaced points. 
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Figure 4.18 Chapter 4 numerical example: (a) Constructed piecewise linear semi-Markov map for 

%5431.0=α ( 10.0=ξ ); (b) The resulting smooth map from the piecewise linear semi-Markov 

map; (c) The relative error calculated on the 99 uniformly spaced points. 

Table 4.1 summarises the MAPE between the reconstructed map S  and the 

original map S for some various noise levels. 

Table 4.1 Reconstruction errors for different noise levels – Example: a continuous nonlinear system 
example in Chapter 4. 

α  0 
(noise-free) 0.0206% 0.0978% 0.5431% 1.3692% 2.4272% 

ξ  0 0.02 0.04 0.10 0.15 0.20 

MAPE (%) 0.61 1.59 2.10 4.424 79.60 84.84 

As it can be seen the approximation error remains relatively low (<5%) for levels 

%,0206.0=α %,0978.0  and %5431.0 ( noise samples with ,04.0,02.0=ξ and 0.10 

correspondingly) of noise that normally cause severe problems to reconstruction 

algorithms that use time series data.  

4.4 Conclusions 

This chapter proposed an extension to the solution to the generalised inverse 

Frobenius-Perron problem for piecewise linear semi-Markov transformations to 

more general one-dimensional smooth chaotic maps. The proposed method infers 

directly from data a piecewise linear semi-Markov map approximation of the 

original map, which can be subsequently smoothed. 
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As before, proposed method involves identifying the optimal Markov partition,ℜ   

estimating the Frobenius-Perron matrix and reconstructing the map. Additional 

algorithms were introduced to identify the non-zero entries Frobenius-Perron matrix 

and to determine the monotonicity over each interval of the partition. The last step 

smoothing the piecewise linear map further helps reducing the approximation error. 

Numerical simulations involving noise-free as well as noisy data were used to 

demonstrate the effectiveness of the developed method. 
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Chapter 5 

Characterising the Dynamical 

Evolution of Heterogeneous Human 

Embryonic Stem Cell Populations 

 

5.1 Introduction 

Human pluripotent stem cells cultured in vitro exist as heterogeneous mixture 

(Stewart, Bossé et al. 2006, Chambers, Silva et al. 2007, Chang, Hemberg et al. 

2008, Hayashi, Lopes et al. 2008a, Olariu, Coca et al. 2009, Tonge, Olariu et al. 

2010, Tonge, Shigeta et al. 2011). It has been proposed that the heterogeneity with 

human pluripotent stem cells reflects the existence of a number of functionally 

relevant, unstable substates that are interconvertible, each of which could be 

characterised by higher propensity to differentiate into particular somatic cell. In 

practice, heterogeneity of hESCs has been studied by measuring using flow 

cytometry the level of particular stem cell surface marker such as that of the 

Surface Specific Embryonic Antigen (SSEA3) which is used to identify pluripotent 

hESCs. One of the characteristics of heterogeneous stem cell cultures is that 

subpopulations sorted according to their level of SSEA3 expression, can regenerate 

the original parent population in about five – seven days after plating. The process 

by which the parent population is regenerated produces similar sequence of density 

functions in separate experiments, suggesting that it could reflect deterministic 

chaos rather than a purely stochastic process. In this context, the equilibrium 
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distribution of SSEA3 expression in a population could be seen as the invariant 

density function associated with the chaotic map. 

Here the aim was to apply the methods developed in previous chapters to infer a 

one-dimensional chaotic map to characterise the dynamical evolution of stem cell 

populations based on the experimentally observed probability distributions. The 

reconstructed model could be used to predict the long term evolution of different 

fractions, to determine equilibrium points and perform local and global stability 

analysis. 

This chapter is organised as follows. The biological background involving NTERA-

2 cell line, heterogeneity of the human embryonic stem cells, the cell surface 

marker SSEA3 used for isolating distinct subpopulations, the fluorescence activated 

cell sorting machine and the brief experimental process is firstly introduced in 

Section 5.1. The modelling algorithms are briefly described in Section 5.3. This is 

followed by the simulation results with experimental data shown in Section 5.4.  

5.2 Biological background 

This section will briefly introduce related knowledge of the background biological 

system and the experimental process conducted by the Centre for Stem Cell 

Biology at the University of Sheffield which is the data provider. 

5.2.1 Heterogeneity of hESCs 

Embryonic stem (ES) cell are used for analysis of multilineage differentiation 

within in vivo development. The formation of embryoid bodies can show the 

multilineage differentiation. The orbits of the cell differentiation can be affected by 

the body size. Thus, the differentiation can be changed by manipulating the size. 

hESC lines are morphologically and phenotypically heterogenecus. The starting 

populations of undifferentiated human ES cells are important, as they may affect 

the differentiation to or away from the desired phenotype. If they are heterogeneous, 

the differentiated derivatives may also be heterogeneous. Spontaneous 

differentiation of cells is a source of cell heterogeneity in ES cell cultures (Tonge, 
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Shigeta et al. 2011). hESCs in culture can be divided into different subsets that can 

interconvert. The cells are able to interconvert reversibly between different subsets 

that are functionally non-equivalent but having the capability of multilineage 

differentiation (Enver, Pera et al. 2009). For example, heterogeneity has been 

identified in mouse ES cultures for the expression of Nanog and Stella (Tonge, 

Shigeta et al. 2011). Mouse ES cell can switch reversibly between Nanog positive 

and negative states (Chambers, Silva et al. 2007). A dynamic equilibrium within the 

ES cultures is represented by the fluctuating levels of Stella expression (Hayashi, 

Lopes et al. 2008b). The different expression marks functionally distinct cells. It 

has been known that undifferentiated hESCs contain functionally distinct subsets. 

The regulatory genes associated with the pluripotent state are co-expressed with 

lineage specific transcription factors at early stage of stem cell differentiation 

(Laslett, Grimmond et al. 2007). 

5.2.2 NTERA-2 

The experimental data was generated using the NTERA-2 cell line which is a 

clonally derived, pluripotent human embryonal carcinoma cell line (Stevens 1966, 

Solter & Damjanov 1979, Andrews, Damjanov et al. 1984, Lee & Andrews 1986). 

It has many similar characteristics to hESCs, in particular, expresses the same 

markers of pluripotency as hESCs, including the SSEA3 marker (Pera, Cooper et al. 

1989, Draper, Pigott et al. 2002a, Walsh & Andrews 2003). The NTERA-2 cell line 

has been extensively used as a model of human neurogenesis. It can differentiate 

into neuronal, glial, and oligodendrocytic lineages in vitro (Fenderson, Andrews et 

al. 1987, Rendt, Erulkar et al. 1989, Pleasure & Lee 1993, Miyazono, Lee et al. 

1995, Bani-Yaghoub, Felker et al. 1999, Philips, Muir et al. 1999), in response to 

retinoic acid (Andrews 1984). The differentiated derivatives of the human 

embryonal carcinoma cell line contain cells with phenotypic properties of neurons. 

By manipulating the exposure to retinoic acid, the differentiation can be easily 

controlled. When NTERA-2 cells mature, the differentiation results in a relatively 

homogenous population of neurons with functionally appropriate properties. 

NTERA-2 cell line is a useful tool to explore the early development of human 

nervous system and identify the genes that are engaged in neurogenesis. 
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5.2.3 Cell surface antigen maker SSEA3 

Undifferentiated hESCs are highly unstable and tend to spontaneously differentiate 

under standard culture conditions. The differentiation is characterised by marked 

changes in gene expression (Ackerman, Knowles et al. 1994). In other words, the 

differentiation can be monitored by observing the changes in the expression of cell 

surface antigens, because the expression of cell surface antigen can be readily 

evaluated on single cell in complex differentiating populations, and the isolated 

single antigen can be used to analyse the properties and explore the further 

differentiation of the individual antigen. Functionally distinct subsets of 

undifferentiated hESCs can be studied by surface antigen markers such as SSEA3 

(Enver, Soneji et al. 2005).  

SSEA3 is a cell surface antigen that is rapidly down-regulated as hESCs 

differentiate to more mature cell types (Shevinsky, Knowles et al. 1982, Draper, 

Pigott et al. 2002b). It can be used to observe the changes from undifferentiated 

state to differentiated state of the cells. The NTERA2 pluripotent cell line is 

comprised of stem cells which have different expression levels of SSEA3 surface 

antigen. It has been reported that SSEA3 expression positively correlates with the 

probability of a NTERA2 cell to clonal expansion (Andrews 1984). It has been 

found that substates SSEA3positive and SSEA3negative that are divided from 

undifferentiated hESCs in culture have different expression of SSEA3. 

5.2.4 Fluorescence activated cell sorting  

Fluorescence activated cell sorting (FACS) is a flow cytometry approach that 

allows fractionating a population of live cells that are phenotypically different from 

each other into sub-populations based on fluorescent labelling. FACS enables fast 

and quantitative recording fluorescent signals of individual cells as well as 

physically isolating cells of particular interest. Figure 5.1 shows the diagram 

explaining FACS. The process begins injecting some samples containing cells into 

a flask, and the sample is then funnelled to generate a single cell line. When the 

cells flow down, they are scanned by a laser beam that is used to count the cells as 

well as measure the size of the cells. Each single cell enters a single droplet which 
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is then given electronic charge.  When the cells are in the area between the 

deflection plates, the cell will be attracted or repelled into corresponding plates. 

Then the sorted cell can be cultured. 

laser

detector

Deflection 
plate

Substate A Substate B Substate C

Unsorted 
population

 

Figure 5.1 Diagram of FACS machine. 

5.2.5 Experimental process 

Figure 5.2 shows the process of cell culturing experiments. The initial unsorted cell 

populations are prepared for sorting by the FACS machine into some different 

subpopulations which are isolated by the cell surface marker SSEA3. On the initial 

day, the sorted cell subpopulations are treated as the initial state for the following 

differentiation. On each sampling day, the flow cytometry distributions of markers 

are measured. This will generate the sequences of probability density functions of 

the SSEA3 },,,{ 321 iii fff , which will be used for modelling for the heterogeneous 

cell populations. 
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Initial unsorted 
cell populations

FACS machine

Fraction #1 Fraction #2 Fraction #3 Fraction #n
Initial day

0 0 0 0

Day 1

sorted cell populations

0 0 0 0

0 0 0 0

Day 2

0 0 0 0

Day 3

 

Figure 5.2 Diagram of the experimental process example. For each measured distribution, the 
horizontal axis represents the SSEA3-FITC (Fluorescein isothiocyanate) fluorescent intensity; the 

vertical axis represents the probability density. 

5.3 Modelling algorithms 

The aim is to reconstruct a piecewise linear semi-Markov transformation for the 

stem cell population, which characterises the dynamical evolution of the 

heterogeneous cell populations based on temporal sequences of probability density 

function generated from the cell culturing experiments. For each substate, starting 

from a distinct initial population, a sequence of probability density functions can be 

observed as listed in Table 5.1. 

Table 5.1 Observed sequences of probability density functions for each fraction. 

Fraction Density observations 

#1 Tffff 1
2

1
1

1
0

1 ,,,,   
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#2 Tffff 2
2

2
1
2

0
2 ,,,,   

#3 Tffff 3
2

3
1
3

0
3 ,,,,   

    

# NF  T
FFFF NNNN

ffff ,,,, 210   

It is assumed that a stationary distribution can be reached after T days of evolution 

from an initial unsorted population, whereby the invariant density ∗f associated to 

the unknown semi-Markov transformation is measured. 

The procedures of reconstructing the piecewise linear semi-Markov estimate are 

stated as follows: 

Step 1: An initial uniform partition Δ with N ′  equal intervals can be determined 

from the invariant density observed from an unsorted cell population unsortedF  on 

the sampling day T, by solving the maximisation of the following penalised log-

likelihood function  
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[ ]
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where θ is the number of unsortedF  samples θ
1}{ =

∗
jjx at sampling day T , 

∑
=

∆=
θ
χ

1

*)(
j

ji xD i
. 

Step 2: Select a non-uniform partition of which the cut points are included by that 

of the uniform partition Δ, over which the probability density functions of the 

observed experimental data are estimated.  

Step 3: Identify the Frobenius-Perron matrix estimate over the non-uniform 

partition based on the constructed density functions, using the proposed approach in 

Section 3.3.2. 

Step 4: Construct the piecewise linear map Ŝ  corresponding to the Frobenius-

Perron matrix representation. 
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Step 5: Compute the invariant density *
)( jd lCf  associated with the identified 

transformation Ŝ , and evaluate the performance criterion 

 








−=ℜ ∫∈
I

jldCCLjl
dxxfxfJ 2*

)(
* ))()(()(min . (5.2) 

Step 6: Repeat step 2 to 5 to identify the partition and piecewise linear semi-

Markov map which minimise the performance criterion, as introduced in Section 

3.4. 

5.4 Simulation results 

In the experiment, cells were separated by FACS into four subpopulations: SSEA3-

VE, SSEA3low, SSEA3MH, SSEA3H++. -ve, low, MH and H++ correspond to different 

sorted fractions based upon SSEA3 expression, where -ve (negative - no expression 

of SSEA3); low (lowly expressing SSEA3); MH (mid-high expression) and H++ 

(very high expression). The initial densities of the subpopulations of experimental 

data Batch #1 are designed as shown in Figure 5.3. The probability density 

functions are measured on logarithmic scale of SSEA3 FITC fluorescent intensity 

for 1-104. In order to compare the differentiation of each subpopulation, and to 

show the evolving shapes of the probability distribution, the probability density 

functions were normalised based on the maximum density values, e.g. 

 }max{
)()(
f

xfxf =′ . (5.3) 

where x denotes the logarithmic SSEA3 FITC fluorescent intensity. 

Apart from the four fractions used for separately observing the differentiation, three 

more populations were also cultured, which were UU (unstained for SSEA3 

and unsorted); SU (stained for SSEA3 and unsorted) and US (unstained for SSEA3, 

but run through the FACS machine). The observed distributions are shown in 

Figure 5.4. 

To sum up, the available probability density functions of Batch #1 experimentally 

observed are given in Table 5.2. 
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Figure 5.3 Initial probability distribution of the four subpopulations 

Table 5.2 List of probability density functions observed from experiment. 

 Sorted fractions Unsorted 
Date -ve low MH H++ UU SU US 

0 1
0f  2

0f  3
0f  4

0f     

1 1
1f  2

1f  3
1f  4

1f  5
1f  6

1f  7
1f  

2 1
2f  2

2f  3
2f  4

2f  5
2f  6

2f  7
2f  

3 1
3f  2

3f  3
3f  4

3f  5
3f  6

3f  7
3f  

4 1
4f  2

4f  3
4f  4

4f  5
4f  6

4f  7
4f  

5 1
5f  2

5f  3
5f  4

5f  5
5f  6

5f  7
5f  

5.4.1 Identification of Markov partition 

It is assumed that the density of US on Day 5 is the invariant density of the 

underlying dynamical system. It is given that  

 7
5ff =∗ , (5.4) 

The uniform partition Δ with N ′  equal sized intervals can be obtained by 

maximising the penalised log-likelihood function 

 [ ],)(log1)log()()( 5.2

1
NNDNDNpNL

N

i
ii ′+−′−








′=′−′ ∑

′

=
θθ  (5.5) 
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where 67983=θ  is the number of population of US on Day 5, 

6109log1 =≤′≤ θθN , ∑
=

∆=
θ
χ

1

* )(
j

ji xD
i

, and  
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It is obtained that the finest uniform partition contains 120=′N  intervals. The 

estimated invariant density function with respect to the regular partition is shown in 

Figure 5.5.  

From Table 5.2, it can be seen that 32 sets of density mapping are available for map 

reconstruction, which involve 7 sequences of density functions.  

The longest strictly monotone sequence is 119
1}{ == jjlL , )(30 1 jjj hhl ′−′= + . The 

final Markov partition ℜ is determined by minimising  

 








−=ℜ ∫∈
I

jldCCLjl
dxxfxfJ 2*

)(
* ))()(()(min , (5.6) 

N
jjlL ′′
== 1}{ , 310 ≤′′≤ N . 

It is found that 24
1}{ =jjl  correspond to partitions with 32≤N .  

24
1}{ == jjlL  

    ={0.8076, 0.8077, 0.8473, 0.8605, 0.8737, 0.8870, 0.9267, 0.9664, 0.9665, 

0.9929, 0.9930, 1.0326, 1.0458, 1.0988, 1.1650, 1.2577, 1.2709, 1.2710, 1.2974, 

1.3239, 1.3901, 1.3902, 1.4562, 1.6681}. 
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Figure 5.5 Invariant density function estimated on the initial uniform partition with 120=′N  

intervals (x axis: logarithmic SSEA3 FITC fluorescent intensity) 

Figure 5.6 shows the value of loss function (5.6). The minimum is obtained for 11l , 

which leads to the final Markov partition { }18
1==ℜ iiR . 

 

Figure 5.6 The value of the cost function corresponding to 24
1}{ =jjl . 

Figure 5.7 shows the invariant density function with respect to the identified 

Markov partition. 
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Figure 5.7 Invariant density function over the identified Markov partition { }18

1==ℜ iiR . (x axis: 
logarithmic SSEA3 FITC fluorescent intensity) 

5.4.2 Identification of the chaotic map 

Based on the identified Markov partition, the observed density functions are given 

by  

 ∑
=

=
18

1
, )()(

j
R

i
jt

i
t xwxf

j
χ , (5.7) 

where ℜ∈jR , ∑
=

=
i
t

j
k

i
ktRi

tj

i
jt x

R
w

θ
χ

θλ 1
,, )(

)(
1 , i

tθ  denotes the number of cell 

population associated with fraction i on day t, for 4,1=i , 5,,0 =t , and for 

7,5 =i , 5,,1=t . 

The Frobenius-Perron matrix associated with the piecewise linear semi-Markov 

transformation is obtained as a solution to the following constrained optimisation 

problem. 

 F
m jiji

||||min 01
0}{ 18

1,,

MWW −
≥=

, (5.8) 

where  
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jji λλ . (5.11) 

The Frobenius-Perron matrix is obtained as follows 

.

0000000008.071.076.068.041.031.018.009.014.00
03.00000000000006.010.007.003.000
06.0014.003.0009.000000000003.000
029.027.0008.00000000000000
00048.039.015.0000000000000
017.013.0007.029.033.001.00000000000
01.00000003.029.021.0000000000
0000000004.023.016.008.002.000000
08.034.047.062.067.083.088.063.032.018.011.009.001.002.00000
003.002.002.002.004.011.020.018.007.000000000
00000000017.033.011.0000000
0000000005.019.019.040.028.023.014.009.008.005.0
0000000000010.0000000
000000000018.003.0000000
00000000000029.022.047.020.022.00
0000000000000000014.0
0000000000031.048.043.00000
00000000000016.055.066.041.172.00
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By assuming the map is continous nonlinear, the monotonocity of each segment is 

determined from Section 4.2.3. Figure 5.8 shows the constructed piecewise linear 

semi-Markov map. Figure 5.9 shows the smooth map obtained by fitting a cubic 

spline (smoothing parameter: 0.999). The model describes the transitions of SSEA3 

cell-surface marker expression over one day intervals, and can be used to predict 

the long term evolution of SSEA3-sorted cell fractions. 

Predictions of SSEA3 probability density functions from day 2 to 5 based on the 

density funcitons on day 1 of Batch #1 are demonstrated in Figure 5.10. 
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Figure 5.8 Constructed piecewise linear semi-Markov map characterising the dynamics of cell 

population. 

 
Figure 5.9 Identified smooth map from the reconstructed piecewise linear semi-Markov 

transformation. 
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To quantitatively demonstrate the prediction performance using the training data 

Batch  #1, the Bhattacharyya distances (Aherne, Thacker et al. 1998) between the 

predicted and true densities, calculated by  

 ))(ˆ)(ln(
4

0
dxxfxfDB ∫−= , (5.12) 

where )(xf  is the true density function, and )(ˆ xf  is the predicted result, were 

given in Table 5.3. Bhattacharyya distance is a measure of divergence between two 

probability distributions. Lower BD  implies higher similarity of the compared 

density functions, particularly, 0=BD  when )(ˆ)( xfxf = . 

Table 5.3 The Bhattacharyya distances between the true density functions of training data Batch #1 
and the predicted results by the reconstructed model. 

 Day 2 Day 3 Day 4 Day 5 Mean 

-ve 0.0207 0.0157 0.0176 0.0138 0.0169 

Low 0.0464 0.0339 0.0210 0.0237 0.0312 

MH 0.0419 0.0264 0.0404 0.0180 0.0317 

H++ 0.0687 0.0563 0.0801 0.0302 0.0588 

UU 0.0141 0.0185 0.0319 0.0145 0.0197 

SU 0.0242 0.0168 0.0250 0.0166 0.0206 

US 0.0141 0.0168 0.0183 0.0215 0.0176 

Another group of experimental data Batch #2 was used to test the identified model. 

Figure 5.11 shows the prediction results for day 2 to 5 based on the distribution on 

day 1.  

Table 5.4 gives the calculated Bhattacharyya distances between the estimated 

densities and true densities of Batch #2. 
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The identified model reveals how different cell fractions evolve towards and 

reconstitute the invariant parent density as well as the presence of unstable 

equilibrium points, some of which become stable attractors in response to changes 

in culture conditions. 

Table 5.4 The Bhattacharyya distances between the true density functions of test data Batch #2 and 

the predicted results by the reconstructed model. 

 Day 2 Day 3 Day 4 Day 5 Mean 

-ve 0.0268 0.0208 0.0533 0.0132 0.0285 

Low 0.0155 0.0161 0.0210 0.0271 0.0225 

MH 0.0265 0.0257 0.0293 0.0378 0.0298 

H++ 0.0579 0.0673 0.0771 0.1126 0.0787 

UU 0.0720 0.0917 0.0474 0.0600 0.0678 

SU 0.0324 0.0271 0.0203 0.0240 0.0260 

US 0.0206 0.0537 0.0360 0.0478 0.0395 

Figure 5.12 depicts the bifurcation diagram of a one-parameter family associated 

with the identified chaotic map.  

 )(xSS αα = , (5.13) 

where the varying parameter ]1,0[∈α , )(xS  is the constructed dynamical map for 

the cell population. It is found that αS  has one equilibrium point when

425.00 <<α . As α  increases from 0.425, the attractor becomes period chaotic.  

For the first time, the identified model allows for deriving analytically several 

equilibrium points of the system that are believed to correspond to functionally 

relevant substates. Using cell mapping method (Hsu 1987) where I  was divided 
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into 3109×  equal cell, the equilibrium points of the model and the domain of 

attraction were calculated.  

 

Figure 5.12 Bifurcation diagram of a one-parameter family associated with the reconstructed map. 

 
Figure 5.13 Predicted state transitions (changes in fluorescent intensity) that give rise to the 

observed evolution of the distribution SSEA3 expression following re-plating. Coloured stars 
indicate predicted equilibrium points. 
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Figure 5.13 shows the predicted equilibrium points and the individual state 

transitions. The coloured stars represent the predicted equilibrium points. The 

identified states transfer from the domain of attraction to the corresponding unique 

equilibrium point. This reveals the changes in the fluorescent intensity that leads to 

the observed dynamical evolution of each fracation. 

5.5 Conclusions 

In this chapter, using the proposed approaches to solving the generalised inverse 

Frobenius-Perron problem, the dynamical model of the hESC populations has been 

developed based on the sequences of flow cytometric distributions of cell surface 

markers. The model describes the one-day period transitions of cells expressed by 

SSEA3 cell surface marker, and can be used to predict how different cell fractions 

regenerate the equilibrium SSEA3 distribution after isolation and re-culturing. The 

equilibrium points of the underlying chaotic system were derived to help 

understanding the corresponding functionally relevant substates. The model reveals 

unstable equilibrium points become stable attractors by changing cell culture 

conditions. The identified equilibrium points are now being validated 

experimentally by using FACS to isolate narrow cell fractions for each of the 

predicted equilibrium points, plating, monitoring and re-analysing cells in culture 

over a number of days. 
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Chapter 6 

Modelling of One-Dimensional 

Dynamical Systems Subjected to 

Additive Perturbations with Sequences 

of Probability Density Functions 

6.1 Introduction 

The preceding chapters study methodologies of reconstructing one-dimensional 

chaotic maps directly from sequences of probability density functions. In practice, 

physical systems are always subjected to additional perturbation (input or random 

noise). This chapter considers more rigorously the problem of inferring a one-

dimensional chaotic transformation perturbed by an additive perturbation from 

temporal sequences of probability density functions that are measured from the 

perturbation-corrupted data. To distinguish from the previous IFPP, this problem is 

referred to as inverse Foias problem. Specifically, two cases of perturbations are 

analysed respectively:  

a) A chaotic map IIS →: subjected to an additive input bounded in I. The input 

density function can be arbitrarily assigned on I.  

b) A chaotic map IIS →: subjected to an additive random noise spanning 

],[ εε− , 2b≤ε . The probability density function of noise is assumed to be 

known. 
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It is aimed to reveal the effects of two separate forms of perturbations that are 

usually encountered in practice. Case a) concerns a dynamical system involving an 

input variable on I, of which the nature of dynamics can be manipulated by 

choosing the input density function. Case b) treats the more realist noisy system 

compared with the noise-free system considered in the previous chapters, but for 

which the probability density function of the stochastic noise cannot be adjusted in 

general. Although many approaches have been presented for solving the IFPP, 

really few solutions to the inverse Foias problem has been proposed by far. 

This chapter is organised as follows: Section 6.2 introduces the method for 

identifying the model of a one-dimensional dynamical system subjected to an 

additive input. Section 6.3 presents algorithms of modelling for a one-dimensional 

dynamical systems subjected to an additive random noise. Numerical simulation 

examples for the two cases are given to demonstrate effectiveness of the developed 

algorithms. 

6.2 Modelling of a one-dimensional dynamical 

systems subjected to an additive input  

This section will study the problem of reconstructing a one-dimensional 

transformation with an additive input, for which the probability density function is 

assumed to be known, given sequences of probability density functions generated 

by the unknown system. 

6.2.1 Formulation of the evolution of probability densities 

In this section, the following one-dimensional, discrete-time and bounded chaotic 

dynamical system with an additive input is considered. 

 ,2,1,0),(mod)(1 =+=+ nbuxSx nnn , (6.1) 

where IIS →: , ],0[ bI = , is a measurable nonlinear and non-singular 

transformation; nx  is a random variable bounded in I, having probability density 
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function ),,( µBD Ifn ∈ , }{ nu  is i.i.d. input variable bounded in I having the 

probability density function D∈uf . 

Since 1+nx  is the sum of )( nxS  and input nu , the density function of 1+nx , 1+nf  is 

related with nf  and uf . In the first place the aim is to find out the relationship 

between 1+nf  and nf , uf  that reveals mathematically the propagation of densities 

functions from one sampling time n to the next time n+1. 

The system bounded on I can be rewritten in the following alternative form 

 




≤+<−+
≤+≤+

=+ ,2)(,)(
;)(0,)(

1 buxSbbuxS
buxSuxS

x
nnnn

nnnn
n , (6.2) 

or in a more compact way 

 ])([)( ]2,(1 nnbbnnn uxSbuxSx +⋅−+=+ χ , (6.3) 

By assuming that )( nxτ  is a measurable bounded function in terms of nx , the 

mathematical expectation of )( 1+nxτ  can be expressed as 

 ( ) ∫ ++ =
I nn dxxfxxE )()()( 11 ττ , (6.4) 

( ))( 1+nxE τ  can also be given in an alternative way in terms of nf  and uf . 
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(6.5) 
Let ))(()( ]2,( uxSuxSw bb +−+=′ χ , and xv =′ . It can be further obtained from 

(6.4) that  

 ( ) ∫ ∫ ′′′−′+′−′′′=+ I I Iunn wdvdwvSbvSwfvfwxE )))(()(()()()( 1 χττ . (6.6) 

From (6.4) and (6.6), by changing the variables, it can be seen that 
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 ∫ −+−=+ I Iunn dzxzSbzSxfzfxf )))(()(()()(1 χ , (6.7) 

This directly reflects the relationship connecting 1+nf  with nf  and uf , and 

formulates the transformation from the density of the states at sample time n into a 

new density at sample time 1+n . 

Assumptions are made as follows: 1) probability density functions K
j

jf 10 }{ = and 

K
j

jf 11 }{ =  can be estimated from the initial and final states K
ji

j
ix ,

1,,0 }{ θ
=  and K

ji
j
ix ,

1,,1 }{ θ
=  

which are observed in practical experiment but lose correspondence; 2) input 

density function uf  is known.  

6.2.2 The Foias operator 

Let 1+= nn ffQ  in (6.7), where DD→：Q  is referred to as the Foias operator 

corresponding to the perturbed dynamical system, which transforms one probability 

density function into another under the action of S and uf . Thus, (6.7) can be 

written as  

 ∫ −+−=
I Iunn dzxzSbzSxfzfxfQ )))(()(()()( χ , (6.8) 

It is supposed that for a specified value of nu , there exist 1N  intervals 11
1

)( }{ N
i

N
iI = on 

which IuxS nn ∈+)( , and 2N  intervals 22
1

)( }{ N
i

N
iI = on which IuxS nn ∉+)( , the 

corresponding partition of I  is given by baaa NN =<<<= + 21100  , then the 

right side of (6.8) can be decomposed as follows 
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(6.9) 

By replacing )(zS  by y , then )(1 ySz −= . It follows that 
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Then,  
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This can be further converted to 
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(6.12) 

It can be found that the right side can be related to the Frobenius-Perron operator 

corresponding to S because of the following equality 
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Therefore, it can be further obtained that 

 ∫ ⋅−+−=
I nSIun dyyfPxybyxfxfQ )())(()( χ . (6.14) 

This equation reveals that the Foias operator Q associated with the dynamical 

system with an additive input is able to be connected with the Frobenius-Perron 

operator corresponding to the noise-free map S. 
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It is assumed that S is a piecewise linear semi-Markov transformation on a N-

interval partition of I, },,,{ 21 NRRR =ℜ , for which ∅=)int()int( ji RR   if 

ji ≠ . The restriction 
iRS is a homeomorphism from iR  to a union of intervals of 

ℜ  

 
)(

1

)(
)(

1
),( )(

ip

k

i
k

ip

k
kir QSR

==
= , (6.15) 

where ℜ∈= )( )(
),(

i
kkir QSR , ],[ )()(

1
)( i

k
i

k
i

k qqQ −= , Ni ,,1= , )(,,1 ipk =  and )(ip  

denotes the number of disjoint subintervals )(i
kQ  corresponding to iR . 

Let ∑
=

=
N

i
Iin xwxf

i
1

)()( χ  and ∑
=

=
N

i
IinS xxfP i

1
)()( χυ . The Frobenius-Perron 

equation can be written as 

 )()()(
1 1

, xmwxfP
jI

N

j

N

i
jiinS χ∑ ∑

= =










= .  (6.16) 

where Njijim ≤≤= ,1, )(M . It can be simplified as follows 

 ∑
=

=
N

i
jiij mw

1
,υ , (6.17) 

for Nj ,,1= . 

By integrating both sides of (6.17) over the interval },,,{＝ 21 Pk RRRR ′′′ℜ′∈′   that 

is a regular partition of I into P equal sized intervals, it can be obtained that 

 ∫ ∫∫ ′′
⋅−+−=

kk R I nSIuR n dydxyfPxybyxfdxxfQ )())(()( χ . (6.18) 

Using rectangle method to approximate the integral, )(xfQ n  is given by 

 ∑
=

=
P

k
Ikn xvxfQ

k
1

)()( χ , (6.19) 

As a result, the coefficients of nfQ  can be given by  
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kR I nSIu
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R
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λ
, (6.20) 

where )( kR′λ  denotes Lebesgue measure on kR′ . Then, it can be written as follows 
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It is defined a matrix NjPkjkd ≤≤≤≤= 1;1, )(D  where 

 ∫ ∫′ −+−=
k jR R Iujk dydxxybyxf

b
Pd ))((, χ , (6.22) 

as a consequence, (6.8) can be converted into the following equation of matrix form 
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, (6.23) 

from which it can be found that an estimated matrix representation of the Foias 

operator can be obtained based on the Frobenius-Perron matrix associated with the 

transformation S.  

By submitting (6.17) into (6.23), it can be obtained that 

 Tff DMwv ⋅⋅= 01 , (6.24) 

where ],,[ 1
0

N
f ww =w , ],,[ 1

1
P

f vv =v . 

The Foias operator can be represented by an estimated matrix H as follows 

 TDMH ⋅= , (6.25) 
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6.2.3 Identification of the Frobenius-Perron matrix 

Provided the evolving probability density function at each sampling time T can be 

measured, two scenarios of identifying the Frobenius-Perron matrix are provided 

here. 

1. F-P matrix identification based on a set of initial probability density 

functions Nff 0
1
0 ,...,  and their images Nff 1

1
1 ,...,  under the transformation 

Given a partition ℜ  with N intervals, the Frobenius-Perron matrix associated with 

S can be identified given at least N distinct initial density functions N
i

if 10}{ =  and 

their images N
i

if 11 }{ = . Using the same way of constructing the initial conditions 

described in Chapter 3, piecewise constant densities if0  are constructed in the 

following way 

 Nixwxf
N

j
Iji

i
j

,,2,1);()(
1

,0 ∑
=

== χ , (6.26) 

where NbIw iji == )(1, λ  for ij = ; and 0, =jiw  for ij ≠ . N sets of initial 

conditions are generated by sampling each initial density function if0  

 N...ixX j
i

j
i ,,1    ,}{ 1,00 == =

θ , (6.27) 
and θ  random input values are generated by sampling the input density function  

 θ
1}{ == iiuU , (6.28) 

which will be used in the experiments. The corresponding set of final states 

observed at T=1 are measured as follows 

 ,...,NixX j
i

j
i 1    ,}{ 1,11 == =

θ , (6.29) 

where buxSx k
i

k
i

j mod)( ,0,1 += , for some ii
k Xx 0,0 ∈ , Uuk ∈ . The density 

function if1   associated with the set iX1  of final states is estimated on the P-interval 

uniform partition given by 
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 Nixvxf
P

j
Iji

i
j

,,1,)()(
1

1 ==∑
=

χ , (6.30) 

where the coefficients ∑
=

=
θ
χ

θ 1
,1, )(

k

i
kIji x

b
Pv

j
. 

In order to recover the Frobenius-Perron matrix, it can be seen from (6.23) and 

(6.24) that the first step is to determine )(0 xfP i
S   which correspond to )(0 xf i , for 

Ni ≤≤1 . Let ],,[ ,1,
0

Nii
fP ww

i
s =υ , ],,[ ,1,

1
Pii

f vv
i

=v . It follows that 

 TDYV ⋅= , (6.31) 

where 
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The matrix Y is obtained as a solution to a constrained optimisation problem 

 F
T

N
jiji

DYV ⋅−
≥= 0}{ 1,,

min
υ

, (6.34) 

subject to  

 1)(
1

, =∑
=

N

j
jji Rλυ , for Ni ,,1 = . (6.35) 

111 
 



Chapter 6 Modelling of One-Dimensional Dynamical Systems Subjected to Additive 
Perturbations with Sequences of Probability Density Functions 
 

Let ]＝,[ ,1,
0

Nii
f ww

i
=w  be the vectors describing if0 . From (6.17), the Frobenius-

Perron matrix can be obtained by  

 YWM 1−=S , (6.36) 

where 
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W , (6.37) 

For a continuous nonlinear map S, after obtaining a tentative estimated Frobenius-

Perron matrix, the same step as introduced in Section 4.2.2 for refining the 

estimation by specifying the contiguous non-zero entries in each row is needed to 

be taken here. Since non-zero entries in Y and M have identical indices, the 

optimisation is re-performed with the following constraints 

 N
ip

k
kiri =∑

=

)(

1
),(,υ , (6.38) 

for Ni ,,1= , and Nji ≤≤ ,0 υ  if )(,...,1),,( ipkkirj == , and 0, =jib  if 

)(,...,1),,( ipkkirj =≠ . 

The final estimated Frobenius-Perron matrix is then obtained by (6.36) with the 

new resulting Y. 

2. F-P matrix identification based on sequences of evolving probability 

density functions Tff ,,0   

Let )(0 xf  be an initial density function that is piecewise constant on the partition 

},,{ 1 NRR =ℜ .  

 ∑
=

=
N

i
Ri xwxf i

1
,00 )()( χ , (6.39) 
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where the coefficients satisfy ∑
=

=
N

i
ii Rw

1
,0 1)(λ . The initial density corresponds to 

the set of initial states θ
1,00 }{ == jjxX . The following sets of states θ

1, }{ == jjtt xX  at 

each sampling time t can be observed by applying t times the transformation with 

the input samples generated in (6.28), such that )(mod)( ,1, buxSx kktjt += −  for 

some initial point 0,0 Xx k ∈ , Uuk ∈ . θ,,1=j , θ,,1=k , Tt ,,1= . In 

practice, the correspondences between two continuous states may be not available, 

i.e. kjtjt uxSx +≠ − )( ,1,  )(mod b . 

The density function on ℜ′  associated with the states tX  is given by 

 ∑
=

′′=
P

i
Ritt xwxf i

1
, )()( χ , (6.40) 

where the coefficients ∑∑
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θθ
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θ
χ
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j
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j
jtR

i
it x

b
Px

R
w ii . 

Let ]...,,[ ,1, Ntt
f wwt =w  be the vector defining )(xft  Tt ,,0 =  where NT ≥ . 

Thus, the sequence of densities estimated on ℜ  and their images measured on ℜ′  

can be represented by 
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The first step of estimating )(0 xfP i
S  which are related with )(0 xfQ i  can be 

resolved by the following constrained optimisation 

 F
T

NN
jiji

DYW ⋅−
≤≤ =

1
}{0 1,,

min
υ

, (6.43) 

subject to 
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Y . (6.45) 

After obtaining )(0 xfP i
S , the Frobenius-Perron matrix corresponding to S is 

obtained as a solution to a constrained optimisation problem 

 F
m N

jiji
||||min 0

0}{ 1,,
MWY −

≥=

, 
(6.46) 

subject to 

 NiRRm i

N

j
jji ,,1for ),()(

1
, ==∑

=
λλ . (6.47) 

For continuous nonlinear map, by identifying the indices of the non-zero entries 

from the obtained M, the final Frobenius-Perron matrix can be recovered with the 

re-implemented optimisation as described in Section 4.2.2. 

6.2.4 Reconstruction of the underlying transformation 

Based on the derived Frobenius-Perron matrix, an approximate piecewise linear 

semi-Markov transformation can be constructed over ℜ  as introduced in Section 

4.2.3 and finally the smoothed map can be obtained for continuous transformation 

which was shown in Section 4.2.4. 
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6.2.5  Numerical example 

To demonstrate the applicability of the proposed algorithms, let us consider a 

numerical simulation example. The aim is to recover the logistic map on ]1,0[  

(4.17), shown in Figure 4.2. The probability density function of the input variable 

nu  is given by 

 











≤<
≤<
≤<

≤≤

=

,175.0,7208.1
;75.050.0,2776.0
;50.025.0,4880.0

;25.00,5136.1

)(

u
u
u

u

ufu  (6.48) 

shown in Figure 6.1. 

The number of intervals of a regular partition of I for the initial conditions is set to 

N =40. Then 40 constant density functions ),(0 xf i 40,,2,1 =i , compactly  

 

Figure 6.1 Probability density function of the input uf . 

supported on each interval iI  were constructed. To obtain the new densities ),(1 xf i  

3105×  initial states and a same number of inputs were randomly generated by 

sampling )(0 xf i  and the input density uf . The number of intervals of the regular 
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partition for )(1 xf i  is set to R=40. The approximate piecewise linear semi-Markov 

map constructed based on the estimated Frobenius-Perron matrix is depicted in 

Figure 6.2. The smoothed map, obtained by fitting a cubic spline (smoothing 

parameter: 0.999), is shown in Figure 6.3.  

To show the identification performance of the algorithms, the relative error between 

the identified and original maps is calculated for }99.0...,,02.0,01.0{=∈ Xx . As 

shown in Figure 6.4, the relative error is less than 5%. 

To evaluate the prediction performance of the identified model, two sets of initial 

conditions were generated by randomly sampling a uniform distribution )1,0(U  

and a Gaussian distribution )1.0,5.0( 2N . The new input density was set to a 

Gaussian density )035.0,28.0( 2N , shown in Figure 6.5, and sampled to generate 

the inputs values. The n-steps-ahead model predictions where 200,50,5,3,2,1=n , 

were used to estimate the predicted density functions which were compared with 

the density functions generated by the original model.  

 
Figure 6.2 Constructed piecewise linear semi-Markov transformation for the underlying system. 
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Figure 6.3 Identified smooth map. 

The predicted densities for 1, 2, 3, 5, 50, and 200 iterations are shown in Figure 6.6 

(uniform initial density) and Figure 6.7 (Gaussian initial density). 

 
Figure 6.4 Relative error between the original map and the identified map evaluated for 99 

uniformly spaced points. 
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Figure 6.5 The input Gaussian density function used for model validation ( 28.0=µ , 035.0=σ ). 

The root mean square error (RMSE) between the predicted densities and true 

densities calculated by 

 ∑
=

−=
R

i
ii vv

R 1

2)ˆ(1RMSE , (6.49) 

is shown in Table 6.1, from which it can be clearly seen that the reconstructed map 

has high precision for predicting the evolving probability densities of the 

considered system. 

Table 6.1 Root mean square error of the multiple steps predictions of densities with the identified 
model. 

Initial density 1 Step 2 Steps 3 Steps 5 Steps 50 Steps 200 Steps 

)1,0(U  0.0891 0.1037 0.1448 0.1038 0.1173 0.1134 

)1.0,5.0( 2N  0.1951 0.1839 0.1547 0.1341 0.1431 0.1283 
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Figure 6.6 Predicted densities (blue lines) and true densities (red lines) of 1, 2, 3, 5, 50, and 200 

steps from the initial uniform density )1,0(U . 

 
Figure 6.7 Predicted densities (blue lines) and true densities (red lines) of 1, 2, 3, 5, 50, and 200 

steps from the initial Gaussian density )1.0,5.0( 2N . 
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6.3 Modelling of a one-dimensional dynamical 

system subjected to an additive stochastic noise 

In Chapter 3 and Chapter 4, noise-free dynamical systems were studied. However, 

in all practical physical situations, systems under consideration are inevitably 

subjected to stochastic perturbations from external noise. Assuming the noise 

density function is known, this section rigorously examines reconstructing the one-

dimensional chaotic map perturbed by an additive random noise, given observed 

sequences of probability density functions. 

6.3.1  Formulation of the evolution of probability densities 

The following one-dimensional non-singular discrete-time dynamical system 

subjected to an additive small random noise is considered. 

 ,2,1,0),(mod)(1 =+=+ nbxSx nnn ω , (6.50) 

where the transformation IIS →: , ],0[ bI = , nx  is a random variable bounded in 

I, having probability density function ),,( µBD Ifn ∈ , }{ nω  is i.i.d. noise bounded 

in ],[ εε−  having the probability density function D∈g  and satisfying the 

following conditions: 

1) 20 b≤< ε ; 

2) 0)( =xg  for ε>|| x ; 

3) ∫− =
ε

ε
ω 1)( dxxn . 

In order to understand the evolution of probability densities, same with the previous 

section, it is essential to derive the mathematical relationship between the density 

function 1+nf  and nf , g. 

For an arbitrary Borel set IB ⊂ , the probability of 1+nx  falling into B can be given 

by 

120 
 



Chapter 6 Modelling of One-Dimensional Dynamical Systems Subjected to Additive 
Perturbations with Sequences of Probability Density Functions 

 ∫∫
+

+ =∈
bxS

nn dxdgxfBx
mod)(

1 )()(}{Prob
ω

ωω , (6.51) 

Let bxSy mod)( ω+= , it can be seen that the noisy system can be represented by 

 ))(())(()( )0,(],( ωχωχω εε +++−+= −+ xSbxSbxSy bb . (6.52) 

It follows that  

 ))(())(()( ],[],( xSybxSybxSy bbbb −−−+−= −−− εε χχω . (6.53) 

Then, (6.51) can be rewritten as 

 .)))(())(()(()(

}{Prob

],(],(

1

dydxxSybxSybxSygxf

Bx

B I bbbbn

n

∫ ∫ −−−+−=

∈

−−−

+

εε χχ
 (6.54) 

By changing the variables, it can be obtained that 

 ∫ −−−+−= −−−+ I bbbbnn dzzSxbzSxbzSxgzfxf )))(())(()(()()( ),[],(1 εε χχ . (6.55) 
 

This formula indicates the mathematical relationship between nf  and 1+nf  under 

the effect of the additive noise. 

6.3.2 The Foias operator 

Using the Foias operator defined in Section 6.2.2, the formula (6.55) can be 

expressed as 

 ∫ −−−+−= −−−I bbbbnn dzzSxbzSxbzSxgzfxfQ )))(())(()(()()( ),[],( εε χχ , (6.56) 

In order to expand the equation, it is supposed that for one single noise value nω , 

there exist 1N  intervals 11
1

)( }{ N
i

N
iI = on which ],()( εω +∈+ bbxS nn , 2N  intervals 

22
1

)( }{ N
i

N
iI = on which )0,[)( εω −∈+ nnxS , and 3N  intervals 33

1
)( }{ N

i
N

iI = on which 

],0[)( buxS nn ∈+ . These lead to a partition of I given by 

baaa NNN =<<<= ++ 321100  , thus the right side of (6.56) can be transformed in 

the following way 
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Let )(zSy = , then (6.57) can be written as 
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It follows that 
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(6.59) 

Let 321 NNNN ++= , },,,{}{}{}{ 211
)(

1
)(

1
)( 332211

N
N
i

N
i

N
i

N
i

N
i

N
i IIIIIII =∪∪= === . 

After merging the accumulations on the right side, it is obtained that 
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(6.60) 

By submitting the Frobenius-Perron operator SP associated with the transformation 

S into right side of (6.60), finally it is obtained that 

 .)())()(()( ),[],( dyyfPyxbyxbyxgxfQ nSI bbbb∫ −−−+−= −−− εε χχ  (6.61) 

This formula establishes the mathematical relationship between the Foias operator 

corresponding to the noisy dynamical system and the Frobenius-Perron operator 

corresponding to the noise-free chaotic map. 

The same assumption in Section 6.2 is made here that S is a piecewise linear semi-

Markov transformation on the partition of I, },,,{ 21 NRRR =ℜ . Using the same 

way of estimating nfQ  on a regular partition },,,{＝ 21 PRRR ′′′ℜ′  , nS fP  and nf  

both on ℜ , the resulting matrix is given by NjPkjkd ≤≤≤≤= 1;1, )(D ,where 

 ∫ ∫′ −−− −−−+−=
k jR R bbbbjk dydxyxbyxbyxg

b
Pd ))()(( ),[],(, εε χχ . (6.62) 

Consequently, the following equation can be obtained 

 Tff DMwv ⋅⋅= 01 , (6.63) 

where ],,[ 1
0

N
f ww =w , ],,[ 1

1
P

f vv =v , ∑
=

=
N

i
Iin xwxf

i
1

)()( χ , 

∑
=

=
P

k
Ikn xvxfQ

k
1

)()( χ . 

The Foias operator is represented by the estimated matrix H as follows 

 TDMH ⋅= . (6.64) 
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6.3.3 Model identification 

Based on the derived equality (6.63), the two experimentally designed scenarios 

described in Section 6.2.3 can be utilised to identify the Frobenius-Perron matrix M. 

A set of noise values  

 θω 1}{ == iiΩ , (6.65) 

is generated by sampling the given noise density function g. Finally, the map can be 

constructed in the same way as presented in Section 6.2.4. 

6.3.4 Numerical examples 

The following two numerical simulation examples are used to demonstrate the 

applicability of the derived algorithms,  

1. Example A: 

The piecewise linear chaotic transformation (3.39) which is subjected to an additive 

stochastic noise 

 )1(mod,)(1 nnn xSx ω+=+ , (6.66) 

is considered here. }{ nω  is white Gaussian noise of which 501=ξ . Given the 

partition of the underlying transformation { }4321 ,,, RRRR=ℜ  where ]3.0,0[1 =R , 

]4.0,3.0(2 =R , ]8.0,4.0(3 =R  and ]1,8.0(4 =R , a set of initial densities if0 , 

4,,1 =i   shown in Figure 6.8 is used to generate the set of initial conditions iX 0 , 

4,,1 =i , and the final density functions if1 , 4,,1 =i  shown in Figure 6.8 are 

estimated from the corresponding final states iX1 , 4,,1 =i  for T =1 over the 

uniform partition ℜ′  containing P equal intervals. P is set to be equal to N. 
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Figure 6.8 The initial and final density functions )(0 xf i  and )(1 xf i , and )(0 xfsP i  

The obtained matrix D is given as follows 

 


















=

7920.02000.000079.0
0100
04000.04000.02000.0

0080.0009921.0

D . (6.67) 

i
S fP 0 , 4,,1 =i  on ℜ  are obtained and figured in Figure 6.8. The estimated 

Frobenius-Perron matrix is 

 


















=

2039.01962.04056.01340.0
7907.03018.08164.01317.0
1533.00477.03033.00665.0
4674.00641.05988.04034.0

M . (6.68) 

The corresponding reconstructed map Ŝ  is shown in 
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Figure 6.9 The identified transformation Ŝ  of the underlying system. 

The estimated coefficients of the identified piecewise linear semi-Markov 

transformation jijiR
xxS

i
,,

ˆˆ)(ˆ βα +=  are 



















=≤≤

91.410.547.246.7
26.131.322.159.7
53.697.2030.304.15
14.261.1567.148.2

)ˆ( 4,1, jijiα , 

.

91.309.477.197.5
01.033.124.004.3
61.195.676.051.4

36.042.210.00

)ˆ( 4,1,



















−−−−
−−−−
−−−−

−

=≤≤ jijiβ  

The relative error for }99.0...,,02.0,01.0{=∈ Xx  is plotted in Figure 6.10. It can 
be seen that %5<Sδ  on each point x. 
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Figure 6.10 Relative error between the original map S and the identified map Ŝ  evaluated for 99 
uniformly spaced points. 

In order to more fully demonstrate the effectiveness of the developed 

methodologies for reconstructing the maps of noisy dynamical systems, Table 6.2 

shows the MAPE of identified maps for noise of varying magnitudes, compared 

with the MAPE using the algorithms for noise-free systems, given the partition of 

the underlying transformation. 

Table 6.2 Comparison of MAPE (%) of identified maps for additive noise of different magnitudes ξ 
using A: the algorithms developed in this section and B: the algorithms for noise-free systems 
presented in Chapter 3. 

ξ 0.02 0.04 0.10 0.15 0.20 0.40 0.50 

A 0.5020 0.3267 0.7154 1.6843 1.3168 3.1725 2.9188 

B 1.1422 1.4501 2.9156 4.6891 6.4222 9.8031 10.9585 

It can be clearly seen that while the partition ℜ of the underlying transformation is 

known, the MAPE of the identified map using the algorithms of this section is 

apparently lower than 5% for the selected noise levels, and that the accuracy of 

identified maps using the algorithms is strictly higher than the one by directly 

applying the developed approach for solving the GIFPP for noise-free systems. 
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2. Example B: 

To show the effectiveness of the developed algorithms for continuous nonlinear 

systems, the example of the logistic map with an additive random noise  

 )1(mod)1(41 nnnn xxx ω+−=+ , (6.69) 

is considered here. The noise is assumed to be white Gaussian noise with 501=ξ . 

A set of noise θω 1}{ == iiΩ , was generated by sampling from a Gaussian probability 

density function ))105(,0( 23−×N . The partition ℜ  is set to be uniform with 

40=N  intervals. 100 densities (see Appendix) were randomly sampled to generate 

100 sets of initial states θ
1,00 }{ == j

i
j

i xX , i=1,...,100, 3105×=θ . The initial densities 

were estimated from the initial states iX0  and their images θ
1,1 }{ == jji

i xX  , 

i=1,...,100 obtained by applying the noise per iteration for each set iX0  were used to 

estimate the initial density functions }{ )(
,0

ij
if  on ℜ  and the final density functions 

}{ )(
,1

ij
if  on ℜ′ . It was set that ℜ=ℜ′ , thus, NP = . Examples of initial densities 

)(
,0

ij
if , and the corresponding final densities )(

,1
ij

if , and )(
,0

ij
iPf  transformed from 

)(
,0

ij
if  under the undisturbed transformation S are shown in Figure 6.11. 
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Figure 6.11 Examples of initial densities (red lines) )(
,0

ij
if  and the corresponding densities after one 

iteration (blue lines) )(
,1

ij
if  and )(

,0
ij

iPf (black lines): 

a1: 1
1,0f , 1

1,1f , 1
1,0Pf ; a2: 

8
1,0f , 8

1,1f , 8
1,0Pf ; a3: 

15
1,0f , 15

1,1f , 15
1,0Pf ; a4: 27

1,0f , 27
1,1f , 27

1,0Pf ; a5: 30
1,0f , 30

1,1f , 30
1,0Pf ;  

b1: 1
2,0f , 1

2,1f , 1
2,0Pf ; b2:

7
2,0f , 7

2,1f , 7
2,0Pf ; b3: 13

2,0f , 13
2,1f , 13

2,0Pf ; b4: 27
2,0f , 27

2,1f , 27
2,0Pf ; b5: 30

2,0f , 30
2,1f , 30

2,0Pf ;  

c1: 1
3,0f , 1

3,1f , 1
3,0Pf ; c2:

7
3,0f , 7

3,1f , 7
3,0Pf ; c3: 13

3,0f , 13
3,1f , 13

3,0Pf ; c4: 27
3,0f , 27

3,1f , 27
3,0Pf ; c5: 30

3,0f , 30
3,1f , 30

3,0Pf ;  

d1: 1
4,0f , 1

4,1f , 1
4,0Pf ; d2:

3
4,0f , 3

4,1f , 3
4,0Pf ; d3: 5

4,0f , 5
4,1f , 5

4,0Pf ; d4: 7
4,0f , 7

4,1f , 7
4,0Pf ; d5: 10

4,0f , 10
4,1f , 10

4,0Pf ;  

e1: 1
5,0f , 1

5,1f , 1
5,0Pf ; e2: 

3
5,0f , 3

5,1f , 3
5,0Pf ; e3: 

5
5,0f , 5

5,1f , 5
5,0Pf ; e4: 7

5,0f , 7
5,1f , 7

5,0Pf ; e5: 10
5,0f , 10

5,1f , 10
5,0Pf . 

It is noticeable that )(
,0

ij
iPf  is close to )(

,1
ij

if  for the noise of the magnitude 501=ξ . 

The identified approximate piecewise linear semi-Markov map is shown in Figure 

6.12. 

 
Figure 6.12 Reconstructed piecewise linear semi-Markov map Ŝ over the uniform partition

40
1}{ ==ℜ iiR . 
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The smoothed map obtained with the smoothing parameter 0.999 is shown in 

Figure 6.13, and the relative error calculated on the uniformly spaces points is 

shown in Figure 6.14. 

 
Figure 6.13 Identified smooth map S  resulted from piecewise linear semi-Markov map in Figure 

6.12 with smoothing parameter 0.999. 

 
Figure 6.14 Relative error between the original map S and the identified smooth map S  in Figure 

6.13 evaluated for 99 uniformly spaced points. 

Table 6.3 lists the results of MAPE of between the identified map S  and the 

original map S for some different noise magnitudes ,20.0,10.0,04.0,02.0=ξ

50.0,40.0 . 
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Table 6.3 MAPE between the identified and original maps for 7 different noise magnitudes. 

ξ  0.02 0.04 0.10 0.15 0.20 0.40 0.50 

MAPE (%) 0.9282 0.9809 4.5791 3.1054 2.7850 4.6319 9.7981 

It can be clearly seen that satisfactory results have been obtained. Compared with 

the identification results in Section 4.3.2 where the modelling algorithm for noise-

free dynamical systems was directly applied to the same noisy system, the 

developed algorithm possesses clearly better performance in reconstructing the 

underlying map, which is exactly the desired objective of modelling for this class of 

stochastic dynamical systems. 

6.4 Conclusions 

The chapter introduced new methodologies of reconstructing the maps of one-

dimensional dynamical systems subjected to additive perturbations. The evolution 

of probability density functions was formulated. The approximate matrix 

representations of the Foias operator corresponding to the perturbed dynamical 

system was derived as well as the relationship between the Foias operator and the 

Frobenius-Perron matrix corresponding to the noise-free transformation. Assuming 

that the partition and probability density functions of perturbation are known, 

approaches for solving the inverse Foias problem for two cases of additive 

perturbations (input and noise) were presented. These provides solutions to inverse 

problems for practical dynamical systems, and modelling scheme used for 

designing control law of practical systems. Compared with the simulation results of 

applying the algorithms derived for noise-free dynamical systems to noisy 

dynamical systems, the proposed techniques have better performance in 

reconstructing the underlying transformations. 
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Chapter 7 

Control of Invariant Densities for 

Stochastic Dynamical Systems 

7.1 Introduction 

Over the past few years there has been a great deal of interest in control of 

probability density function for dynamical systems. The main purpose is to regulate 

the statistical long-term behaviour so that it can settle down to a desired stable 

dynamical behaviour described by probability distribution. The so far developed 

control algorithms can be generally classified to two groups: 1) the control of 

output probability density function of a stochastic dynamical system through 

selecting a deterministic optimal input; 2) the control of the invariant density 

function for a chaotic dynamical system by virtue of slightly modifying the 

underlying transformation. The first group focuses on how to generate a crisp 

control input to make the output density function close to the desired one. Some 

representative research has been presented from Wang (1999a, 1999c, 2001, 2001, 

2003, 2005a, 2008) and Forbes (2002, 2003a, 2003b, 2004a, 2004, 2004b, 2006). 

The second group looks into reconstructing a transformation by direct 

modifications (Góra and Boyarsky (1996, 1998, 2001)) or using a small 

perturbation to affect the original map to achieve a desired invariant density 

function (Bollt 2000a, Bollt 2000b). In this group, there are no assumption that the 

dynamical system is subjected to any perturbations.  
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In contrast to existing control strategies, the objective of controller design approach 

proposed in this work is to determine probability density function of the input in 

order to achieve a desired invariant density function for the perturbed chaotic map. 

In Section 7.2, the existence and uniqueness of the invariant densities of dynamical 

systems subjected to additive perturbations (inputs and noise) are proven. The 

algorithm of estimating the invariant density function over a uniform partition is 

developed. Section 7.3 studies a more complex stochastic dynamical system which 

involves a bounded input and a random noise term. The evolution of probability 

density functions is formulated for the first time and used to prove asymptotic 

stability. A new algorithm to estimation of the invariant density using the derived 

approximate matrix representation of Foias operator is introduced. A numerical 

example is given to show the effectiveness of the proposed algorithms. Section 7.4 

presents the control design algorithm for this class of stochastic dynamical system 

together with a simulated example that is used to demonstrate the applicability of 

the algorithm. Conclusions are presented in Section 7.5.  

7.2 Invariant densities of stochastic dynamical 

systems 

The existence of invariant densities of stochastic dynamical systems can be proven 

by analysing the asymptotic stability of }{ fQn . The associated invariant densities 

are derived using the approximate matrix representation of the Foias operator.  

7.2.1 Asymptotic stability of { Qn } 

To achieve the control of invariant densities of stochastic dynamical systems, the 

asymptotic stability of }{ fQn  of the following dynamical system with an additive 

input is firstly examined.  

 ,2,1,0),(mod)(1 =+=+ nbuxSx nnn , (7.1) 
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where IIS →: , ],0[ bI = , is a measurable nonlinear and non-singular 

transformation; nu  is the independent random input variable bounded on I having 

the probability density function ),,( µBD Ifu ∈ . D∈nfQ , )()(: 11 ILILQ →  is the 

Foias operator corresponding to the stochastic dynamical systems.  

The asymptotic stability of }{ fQn  is defined as follows (Lasota & Mackey 1994). 

Definition 7.1 Let 11: LLQ →  be a Markov operator. Then }{ nQ  is said to be 

asymptotically stable if there exists a unique D∈∗f  such that ∗∗ = ffQ  and  

 0lim =− ∗

∞→
ffQn

n
, (7.2) 

for every D∈f . 

It has been obtained that  

 ∫ −+−=
I Iunn dzxzSbzSxfzfxfQ )))(()(()()( χ . (7.3) 

The integration over I is  

 
∫ ∫
∫ ∫∫

−+−=

−+−=

I I Iun

I I nIuI n

dxdzxzSbzSxfzf

dxdzzfxzSbzSxfdxxfQ

)))(()(()(

)()))(()(()(

χ

χ
 (7.4) 

Since ∫ ∫ =
I I u dxdzzxf 1),( , 

 ∫∫ =
I nI n dzzfdxxfQ )()( , (7.5) 

and 0)( ≥xfQ n .  Q is therefore a Markov operator.  

The following theorem is proven in (Lasota & Mackey 1994). 

Theorem 7.1 Let IIIK →×:  be a stochastic kernel and P be the corresponding 

Markov operator. Assume that there is nonnegative 1<ζ  such that for every 

bounded IB ⊂  there is a 0)( >= Bϕϕ  for which 
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 ∫ ≤
E

dxyxK ζ),( , (7.6) 

for ϕµ <)(E , By∈ , BE ⊂ . Assume further there exists a Liapunov function 

IIV →:  such that  

 βα +≤ ∫∫
∞

0
)()()()( dxxfxVdxxfPxV

I
, (7.7) 

10 <≤α , 0≥β , holds. Then P is constrictive. Consequently, for every D∈f  the 

sequence }{ nP  is asymptotically periodic.  

The theorem of asymptotic stability for a constrictive Markov operator is provided 

in (Lasota & Mackey 1994). 

Theorem 7.2 Let P be a constrictive Markov operator. Assume there is a set IA ⊂  

of non-zero measure, 0)( >Aµ , with the property that for every D∈f there is an 

integer )(0 fn  such that 0)( >xfPn  for almost all Ax∈  and all )(0 fnn > . Then 

}{ nP  is asymptotically stable. 

A new theorem concerning the asymptotic periodicity of }{ nQ  is introduced and 

proven below. 

Theorem 7.3 For the Foias operator 11: LLQ →  defined by (7.3). If there exists a 

Liapunov function IIV →:  such that 

 βαχ +≤−+−∫ )()()))(()(( zVdxxVxzSbzSxf
I Iu , (7.8) 

10 <≤α , 0≥β , for all Iz∈ , then the Foias operator is constrictive, and for 

every D∈f , }{ nQ  is asymptotically stable. 

Proof. Since uf  is integrable, for every 0>ζ  there is a 0>ϕ  such that  

 ζ<∫ dxxf
A u )( , for ϕµ <)(A . (7.9) 

Then from,  
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,

.)(

)))(()((),(

))(()(

ζ

χ

χ

<

=

−+−=

∫
∫∫

−+−
dxxf

dxxzSbzSxfdxyxK

xzSbzSE u

E IuE

I
 (7.10) 

for ϕµχµ <=−+− )()))(()(( ExzSbzSE I . Thus (7.6) holds. 

Further,  

 ∫ ∫∫ −+−=
I I IunI n dxdzxzSbzSxfzfxVdxxfQxV )))(()(()()()()( χ , (7.11) 

Let )))(()((),( xzSbzSxfyxK Iu −+−= χ  that is a stochastic kernel. It is given in 

(Lasota & Mackey 1994) that  

 βα +≤∫ )()(),( xVdxxVyxK
I

. (7.12) 

From the assumption (7.8), it is given that   

 

.)()(

])([)(

)))(()(()()(

)))(()(()()()()(

βα

βα

χ

χ

+=

+≤

−+−=

−+−=

∫
∫
∫ ∫
∫ ∫∫

dzzfzV

dzzVzf

dxdzxzSbzSxfxVzf

dxdzxzSbzSxfzfxVdxxfQxV

nI

I n

I I Iun

I I IunI n

 

 

 

(7.13) 

Thus, the inequality (7.8) holds. As a consequence, Q is constrictive.  

Since 0>uf , 0)( >xfQ n . From theorem 7.2, the asymptotic stability of }{ nQ  is 

thus proven. 

Based on the above theorem, the new result of the asymptotic stability is derived as 

follows. 

Theorem 7.4 Let 11: LLQ →  be the Foias operator corresponding to the 

stochastic dynamical system (7.1), }{ nQ  is asymptotically stable. 

Proof. Let xxV =)( , then 
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 dxxxzSbzSxfdxxVxzSbzSxf
I IuI Iu ∫∫ −+−=−+− )))(()(()()))(()(( χχ . (7.14) 

By changing the variables with ))(()( xzSbzSxy I −+−= χ , then  
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(7.15) 

Since S maps I to I, the following inequality holds 

 bxxS +≤α)( , (7.16) 

where 10 <≤α . And  

 0))(()( ]2,( >+−= ∫ dyyxSbyyf bbI u χβ . (7.17) 

Thus, (7.8) is satisfied. It is proven that }{ nQ  is asymptotically stable. 

Since the invariant density of the stochastic dynamical system exists, the following 

new theorem regarding the uniqueness of an invariant density ∗f of Q can be 

proven in the similar way as for the theorem 10.5.2 given in (Lasota & Mackey 

1994). 

Theorem 7.5 Let 11: LLQ →  be the Foias operator corresponding to the 

stochastic dynamical system (7.1). If an invariant density ∗f for Q exists, then the 

∗f  is unique. 

Proof. Assume there exist two different invariant densities for Q, denoted by ∗
1f  

and ∗
2f . Let ∗∗ −=∆ 21 fff . Since ∗∗ = 11 ffQ , ∗∗ = 22 ffQ ,  
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(7.18) 

Then Q is a linear operator, ∗∗ ∆=∆ ffQ . Thus,  

 
11 LL

ffQ ∗∗ ∆=∆ . (7.19) 

It is defined that ))(,0max()( xfxf =+ , and ))(,0max()( xfxf −=− , thus 

)()()( xfxfxf −+ −=  (Lasota & Mackey 1994).  

 ∫ −+−∆=∆
+∗+∗

I Iu dzxzSbzSxfzfxfQ )))(()(()()( χ . (7.20) 

Since 0>uf , 0)( >∆
+∗ xfQ  for Ix∈ . Also, 0)( >∆

−∗ xfQ , for Ix∈ . Therefore,  
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(7.21) 

which contradicts the equality (7.19).  Thus, ∗
1f  and ∗

2f  should be identical.  The 

stochastic dynamical system preserves a unique invariant density. 

Similarly, by extending the above new derived results concerning the existence and 

uniqueness of invariant density of the dynamical system subjected to an additive 

input to the dynamical system subjected to an additive random noise, the following 

new theorem can be proven. 

Theorem 7.6 Let 11: LLQ →  be the Foias operator corresponding to the 

dynamical system subjective an additive random noise (6.50), }{ nQ  is 

asymptotically stable and the invariant density ∗f  for Q is unique. 
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Proof. Assume there exist two different invariant densities for Q, denoted by ∗
1f  

and ∗
2f . Let ∗∗ −=∆ 21 fff . Since ∗∗ = 11 ffQ , ∗∗ = 22 ffQ ,  
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(7.22) 

Then Q is a linear operator, ∗∗ ∆=∆ ffQ . Thus,  

 
11 LL

ffQ ∗∗ ∆=∆ . (7.23) 

It is still defined that ))(,0max()( xfxf =+ , and ))(,0max()( xfxf −=− , thus 

)()()( xfxfxf −+ −=  (Lasota & Mackey 1994).  
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(7.24) 

Since 0>uf , 0)( >∆
+∗ xfQ  for Ix∈ . Also, 0)( >∆

−∗ xfQ , for Ix∈ . From 

(7.21), it can be also obtained that  

 ,11 LL
ffQ ∗∗ ∆<∆  (7.25) 

which contradicts the equality (7.23). Thus, ∗
1f  and ∗

2f  should be identical.  Then 

the chaotic system subjected to an additive random noise preserves a unique 

invariant density. 

7.2.2 Approximation of the invariant density functions 

The invariant density functions of the stochastic dynamical systems can be 

approximated by assuming the partitions ℜ  and ℜ′  are uniform and identical. A 
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new important result concerning the eigenvalue of the matrix H representing the 

corresponding Foias operator Q is stated and proven as follows. 

Theorem 7.7 Let the transformation S in (7.1) be a piecewise linear semi-Markov 

transformation on a regular partition },,,{ 21 NRRR =ℜ  comprised of N equal 

sized intervals, and it is set that ℜ=ℜ′ , NP = . Then matrix H representing the 

corresponding Foias operator has 1 as the eigenvalue of maximum modulus and 

also has the unique eigenvalue of modulus 1.  

Proof. It has been shown in Section 6.2 that for the stochastic dynamical system the 

following equality holds 

 HffQ ⋅= , (7.26) 

where ],,,[ 21 Nfff =f  is a row vector, the matrix TDMH ⋅= is a square 

matrix, 
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Thus, it can be given that  
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The sum of the j-th row of H is given by  
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From (6.22), it can be seen that 
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Thus, (7.32) becomes 
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  (7.34) 

Since ℜ  is a uniform partition, 1
)(

)(

1

)(

1
, ==

∑
∑ =

= i

ip

k

i
kN

j
ji R

Q
m

λ
, then 1

1
, =∑

=

N

j
jih . Thus H is 

row stochastic. And H is a positive matrix, so it follows from the Frobenius-Perron 

Theorem that the matrix H has 1 as the eigenvalue of maximum modulus, and the 

algebraic and geometric multiplicities of the eigenvalue 1 is 1.  

Consequently, the equation Hff ∗∗ =  has a non-trivial solution, which is the left 

eigenvector associated with the eigenvalue 1. This is the invariant density function 

of the stochastic dynamical systems, estimated by a step function on the uniform 

partitionℜ . It further establishes the existence of the invariant density functions of 

the stochastic dynamical systems. 

Similarly, it can be concluded that the matrix H representing the Foias operator that 

is corresponding to the dynamical system subjected to an additive random noise  
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 ,2,1,0),(mod)(1 =+=+ nbxSx nnn ω , (7.35) 

where the transformation IIS →: , ],0[ bI = , nω  is the independent noise term 

bounded in ],[ εε− , preserves 1 as the only eigenvalue of the maximum modulus. 

The associated left eigenvector is the estimated invariant density function. 

7.2.3 Simulation example 

Recall the numerical example in Section 6.2.5. Let the Gaussian density shown in 

Figure 6.1 be the probability density function uf  of the input. A set of initial states 

θ
1,00 }{ == jjxX , 3105×=θ  generated by sampling from a uniform probability 

density function [ ] )()( 1,00 xxf χ=  were iterated with the input θ
1}{ == iiuU , 

3105×=θ   sampled from uf  and applied per iteration using the stochastic 

dynamical system (7.1) to generate a corresponding set of final states 
θ

1, }{ == jjTT xX  where 000,30=T . The probability density function Tf   estimated 

using the identified map and Tf̂   estimated using the original map on  40
1}{ ==ℜ iiR  

are shown in Figure 7.1. The estimated unique invariant density function is given 

by 

 ∑
=

∗ =
N

i

i
N

b

1

π
πf , 

(7.36) 

where ],,[ 1 Nππ =π  is the normalised left eigenvector of H  , and shown in 

Figure 7.1 to compare with Tf  and Tf̂ . 

144 
 



Chapter 7 Control of Invariant Densities for Stochastic Dynamical Systems 

 

Figure 7.1 Comparison of the resulting density functions after 3×104 iterations from a set of 5×103 
initial states uniformly distributed on [0 1] with the identified map and the original map,  and the 

estimated invariant density. 

7.3 Dynamical systems subjected to additive 

inputs and stochastic noise 

The system considered for controlling the invariant density function in this chapter 

is a more complex one-dimensional dynamical system subjected to an additive 

input and a stochastic noise, stated as follows. 

 ,2,1,0),(mod)(1 =++=+ nbuxSx nnnn ω , (7.37) 

where IIS →: , ],0[ bI = , is a measurable nonlinear and non-singular 

transformation; nx  is a random variable bounded in I, having probability density 

function ),,( µBD Ifn ∈ , nu  is the independent random input variable bounded in I 

having a manipulated probability density function D∈uf . The additive random 

noise }{ nω  bounded in ],[ εε−  is i.i.d. (independent and identically distributed) 

with the probability density function D∈g . 
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7.3.1 Formulation of the evolution of probability densities 

Since the system is bounded in I, assume a measurable function as 

 )(mod)(),( buxSuxG nnnn += , (7.38) 

which is bounded in I. thus (7.37) can be expressed as 

 ,2,1,0),(mod),(1 =+=+ nbuxGx nnnn ω , (7.39) 

Let ),(1 nnn uxGx =′ + , thus Ixn ∈′ +1 , then it is obtained from (6.14) that the 

probability density function of 1+′nx  is 

 ∫ ⋅′−+−′=′′+ I nSIun dyyfPxybyxfxf )())(()(1 χ . (7.40) 

where SP  is the Frobenius-Perron operator corresponding to S, Thus, (7.39) 

becomes 

 ,2,1,0,mod11 =+′= ++ nbxx nnn ω . (7.41) 

This can be viewed as a dynamical system only with an additive noise. For an 

arbitrary Borel set IB ⊂ , the probability of Bxn ∈+1  is given by 

 ∫∫
+′

++

+

′′′=∈
bx

nn
nn

dxdgxfBx
mod

11
1

)()(}{Prob
ω

ωω , (7.42) 

Let bxz n mod1 ω+′= + . Then (7.41) can be rewritten as 

 )()( 1)0,(1],(1 ωχωχω εε +′++′−+′= +−+++ nnbbn xbxbxz , (7.43) 

By substituting  

 )()( 1],[1],(1 +−+−−+ ′−−′−+′−= nbbnbbn xzbxzbxz εε χχω , (7.44) 

into (7.42), it is obtained that  

 .))()(()(

}{Prob

],(],(1

1

dzxdxzbxzbxzgxf

Bx

B I bbbbn

n

′′−−′−+′−′′=

∈

∫ ∫ −−−+

+

εε χχ
 (7.45) 
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By changing the variable, it is further obtained that 

 ∫ ′′−−′−+′−′′= −−−++ I bbbbnn xdxxbxxbxxgxfxf ))()(()()( ),[],(11 εε χχ . (7.46) 

By submitting (7.40) into (7.46),  
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As a result, the Foias operator corresponding to the system (7.37) is defined by 
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It is assumed that S is a piecewise linear semi-Markov transformation on the 

partition of I, },,,{ 21 NRRR =ℜ containing N intervals. The density function of 

1+nx , nfQ  is estimated on a regular partition },,,{＝ 21 PRRR ′′′ℜ′  . 

By integrating both sides of (7.48) over ℜ′∈′kR , it is given that  
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IinS xxfP i

1
)()( χυ , and ∑

=
=

P

k
Ikn xvxfQ

k
1

)()( χ  which is estimated with 

rectangle method with respect to ℜ′ . Then,  
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(7.50) 
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The matrix NjPkjkd ≤≤≤≤= 1;1, )(D  is defined by 
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Then, (7.50) can be converted into the following equation. 

 



























⋅



























=



























N

j

PNjPPP

kNjkkk

Nj

Nj

P

k

dddd

dddd

dddd
dddd

v

v

v
v

υ

υ

υ
υ




















2

1

21

21

222221

111211

2

1

. (7.52) 

By submitting (6.17) into (7.52), it can be obtained that  

 
,0

01

TfP

Tff

S Dυ

DMwv

⋅=

⋅⋅=
 

(7.53) 

where ],,[ 1
0

N
f ww =w , ],,[ 1

1
P

f vv =v , ],,[ 1
0

N
fPS υυ =υ . 

7.3.2 Invariant densities  

The result concerning the asymptotic stability of }{ fQn  of the stochastic dynamical 

systems (7.37) is stated as follows. 

Theorem 7.8 Let 11: LLQ →  be the Foias operator corresponding to the 

stochastic dynamical system (7.37). }{ nQ  is asymptotically stable and the invariant 

density ∗f  for Q is unique. 

Proof. The system (7.37) can be represented by (7.39). Since IIG →: , the 

original system can be viewed as a dynamical system with an additive noise.  From 

Theorem 7.6, it readily can be seen that the system admits a unique invariant 

density, and }{ nQ  is asymptotically stable. 
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Similarly, given a uniform partitionℜ , the Foias operator can be represented by a 

square matrix H. The result concerning the eigenvalue of the matrix H is stated as 

follows. 

Theorem 7.9 Let the transformation S in (7.37) be a piecewise linear semi-Markov 

transformation on a regular partition },,,{ 21 NRRR =ℜ , and ℜ=ℜ′ , NP = . 

Then matrix H representing the corresponding Foias operator has 1 as the 

eigenvalue of maximum modulus and also has the unique eigenvalue of modulus 1. 

Proof. In fact, (7.51) can be further expanded in the following way. 
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Then,  
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(7.55) 

where  

 ∫ ∫′ ′ −−− ′′−−′−+′−=
k iR R bbbbik dxxdxxbxxbxxg

b
Pd ))()(( ),[],(, εε

ω χχ , (7.56) 
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 ∫ ∫′ ′′−+−′=
i jR R Iu

u
ji xdydxybyxf

b
Pd ))((, χ . (7.57) 

They forms the following two matrices: 
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which is equivalent to the matrix D (6.62) while ℜ′=ℜ= ,PN  for the noisy 

system considered in Section 6.3; 
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D , (7.59) 

which is equivalent to the matrix D (6.22) for the dynamical system with an 

additive input considered in Section 6.2. 

From (7.55), it can be seen that  

 uDDD ⋅= ω , (7.60) 

Thereby, for a Frobenius-Perron matrix induced by the piecewise linear semi-

Markov transformation S, (7.53) can rewritten as 

 
.

)(

0

01

TTuf

Tuff

ω

ω

DDMw

DDMwv

⋅⋅⋅=

⋅⋅⋅=
 

(7.61) 

Thus, the Foias operator can be represented by the estimated matrix H as  

 TTu ωDDMH ⋅⋅= . (7.62) 

Alternatively, this can be obtained in the following way. Firstly only consider the 

dynamical systems with an additive input nnn uxSx +=+ )(1 , ),(mod b
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,2,1,0=n , which can be expressed as ),(1 nnn uxGx =+ , IIG →: . It has been 

obtained in (6.24) that  

 Tuff DMwv ⋅⋅= 01 . (7.63) 

From (6.25),  

 TuDMH ⋅= . (7.64) 

is a row stochastic matrix, which satisfies the definition of a Frobenius-Perron 

matrix. Thus, G can be regarded as a piecewise linear semi-Markov transformation 

corresponding to the Frobenius-Perron matrix HM =G . Therefore, (7.63) can be 

given by 

 G
ff Mwv ⋅= 01 . (7.65) 

Then, for a dynamical system with an additive noise nnnn uxGx ω+=+ ),(1 , ,mod b

,2,1,0=n , from (6.63) it is obtained that  

 T
G

ff ωDMwv ⋅⋅= 01 . (7.66) 

Submitting (7.64) into (7.66) gives rise to the result of (7.61). 

Then,  
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The sum of the j-th row of H is given by 
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From (7.33), it can be obtained that ∑
=

=
N

k
jkd
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From (7.33), ∑
=

=
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Hence, the matrix representation H is a row stochastic matrix, then it has 1 as the 

eigenvalue of maximum modulus, and also has the unique eigenvalue of modulus 1. 

Consequently, Theorem 7.9 is proved.  

The left eigenvector associated with the eigenvalue 1 of H is the invariant density 

function of the stochastic dynamical system (7.37) that is estimated with a step 

function on a regular partition.  

7.3.3 Model identification 

Given the probability density functions of the input nu  and the noise nω , uf  and g, 

and the partition ℜ on which the transformation is to be constructed, the matrix D 

can be obtained from (7.60). It is set that NP ≥ . The Frobenius-Perron matrix 

associated with the piecewise linear semi-Markov transformation Ŝ  is identified 

using the approaches described in Section 6.3.2. θ  random input values 

θ
1}{ == iiuU  and noise values θω 1}{ == iiΩ  are sampled from uf  and g, respectively. 

To generated the final densities, each input and noise value are applied per iteration 

to yield the final states by )(mod)( ,1, buxSx kkjtjt ω++= − , θ,,1=j , 

θ,,1=k , Tt ,,1= . 
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7.3.4 Numerical example 

To show the effectiveness of the developed modelling algorithms in this section, 

consider the logistic map with an additive input and an additive noise that is stated 

as follows. 

 ,2,1,0),1(mod)1(41 =++−=+ nuxxx nnnnn ω , (7.75) 

where ]1,0[=∈ Ixn , Iun ∈ , and ]2.0,2.0[−∈nω , the input density function is 

given by 
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where 30.01 =µ , 07.01 =σ , 60.02 =µ , 10.02 =σ , plotted in Figure 7.2; the noise 

density function shown in Figure 7.3 is step function given by  
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=

.20.012.0,5.2
;12.005.0,720
;05.010.0,34
;10.020.0,4

)(

ω
ω
ω
ω

ωg  (7.77) 

 

Figure 7.2 Probability density function of 
the input f u 

 

Figure 7.3 Probability density function of 
the noise f ω

The partition ℜ  is set to be a uniform partition containing 40=N  intervals. 

Partition ℜ′  is set to be same with ℜ , thus NP = . 40 constant density functions 
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),(0 xf i 40,,2,1 =i , compactly supported on each interval iI  were constructed. 

To obtain the new densities ),(1 xf i  3105×=θ  initial states, θ random inputs and θ 

random noise were generated by sampling )(0 xf i  , the given input density function 

uf  and the noise density function ωg  respectively. The Frobenius-Perron matrix 

recovered leads to the approximate piecewise linear semi-Markov transformation 

with respect to ℜ  that is shown in Figure 7.4. The smoothed map, obtained by 

fitting a cubic spline (smoothing parameter: 0.999), is shown in Figure 7.5.   

Using the same way in the preceding examples, the relative error between the 

identified smooth map and the original map is shown in Figure 7.6. It is obtained 

that %6692.0MAPE = . Starting at a set of initial states θ
1,00 }{ == jjxX , 3105×=θ  

uniformly distributed on I, the final states were arrived after 000,30=T  iterations. 

The obtained density function Tf  is shown in Figure 7.7, compared with the 

resulting density function after same iterations with the original map, and the 

calculated invariant density function from (7.36) and (7.62). 

 

Figure 7.4 Constructed piecewise linear 
semi-Markov transformation for the 
dynamical system subjected to an additive 
random input having the probability density 
function (7.76) and an additive random noise 
with the probability density function (7.77). 

 

Figure 7.5 Smooth map identified from the 
constructed semi-Markov transformation 
shown in Figure 7.4.
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Figure 7.6 Relative error between the 
original map and the identified map Figure 
7.5 evaluated for 99 uniformly spaced points. 

 

Figure 7.7 Comparison of the resulting 
density functions after 3×104 iterations from 
a set of 5×103 initial states uniformly 
distributed on [0 1] with the identified map 
Figure 7.5 (red line) and the original map 
(black dotted line),  and the estimated 
invariant density (blue line). 

It can be clearly seen that the estimated invariant density function of the identified 

map and the step function corresponding to the eigenvector associated with 

eigenvalue 1 of the matrix H are both very close to Tf . 

7.4 Controller design 

The above work lays the foundation for the design of control law. In this section, 

the controller design will be presented. 

7.4.1 Design algorithm 

The purpose of the controller design is to determine the probability density function 

of the input, )(xfu , so that the invariant density function of the stochastic dynamical 

system (7.38) is made as close as possible to a desired distribution function, which 

is defined on I. This can be achieved by minimising the following performance 

function 

 dxxfxfJ
I d

2
))()((∫ ∗∗ −= , (7.78) 
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where )(xf ∗  is the invariant density of the stochastic dynamical system, and 

)(xfd
∗  is the targeted distribution function. 

Figure 7.8 shows the block diagram of the control system where the stochastic 

dynamical system is controlled by the designed controller that provides the optimal 

input density function. 

 

Figure 7.8 The block diagram of the control system. 

The assumed measurable function G (7.38) can be also only related with S and the 

noise term nω , written as follows 

 )(mod)(),( bxSxG nnnn ωω += , (7.79) 

thus, (7.37) can be expressed as 

 ,2,1,0),(mod),(1 =+=+ nbuxGx nnnn ω . (7.80) 

Since G still maps I into itself, and is independent with nu , it can be shown that the 

matrix representing the Foias operator in (7.62) is equivalent to right side of the 

following equality 

 TuT
DDMH ⋅⋅= ω . (7.81) 

Let ],,,[ 21
∗∗∗=

∗
d
N

ddf vvvd v  be the vector form of the desired invariant density 

function on ℜ , then ∑
=

∗∗ =
N

i
R

d
id xvxf i

1
)()( χ . Thus, the ideal situation is to find an 

input density function uf  which can make the following equation satisfied 
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 Hvv ⋅=
∗∗
dd ff , (7.82) 

By substituting (7.81) into (7.82), it follows that  

 TuTff dd DDMvv ⋅⋅⋅=
∗∗

ω . (7.83) 

Since ℜ  is a uniform partition, from (7.57) and (7.59), it can be obtained that  
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where 12 −≤≤ Nj , 1+−≤≤ jNij , and 
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 (7.85) 

where 12 −≤≤ Nj , Nij ≤≤ . 

Moreover, it can be seen that  

 u
iN

u
i dd 1,2,1 +−= , (7.86) 

for Ni ≤≤2 . This implies that the matrix uD  contains N unique values, which are 

N
i

u
id 11, }{ = . Let u

ii d 1,=α  for Ni ,＝,1 = . Then the matrix uD  can be represented by 
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Let ],,,,,[ 21 Ni
Tf d ββββω =⋅⋅

∗

DMv . Then  
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By extracting the N unique values iα , it is further obtained that 
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(7.90) 

Thereby, the problem of minimising the performance function (7.78) is converted to 

the following constrained optimisation problem to solve for the unique values  iα  

in the first instance.  
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Let )(xfu  be approximated over the partition ℜ , represented by 

 ∑
=

=
N

i
Riu dxxxf

i
1

)()( χψ . (7.93) 

Given the obtained N
ii 1}{ =α , the coefficients },,,{ 32 Nψψψ  can be estimated by  

 b
N

N
b

dxdy
k

RR

k
k

k

ααψ =⋅=
∫∫
× 1

, 
(7.94) 

for Nk ,,3,2 = , and  

 b
N

dxdyN
b N

RR

N )2(

2
1

2
1

1
1

1

11

αααα
ψ −

=
−

⋅=

∫∫
×

. (7.95) 

As a consequence, )(xfu  estimated with the coefficients in (7.94) and (7.95) is the 

obtained probability density function of the control input that aims at attaining the 

targeted invariant density function )(xfd
∗ . 
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It has been proven that }{ nQ for the stochastic dynamical system is asymptotically 

stable. Given the input density function D∈uf  defined on I, the system has a 

unique invariant density function )(xf ∗ . In other words, ∗→ ffQn , as ∞→n . 

7.4.2 Numerical example 

To demonstrate the use of the proposed control algorithm, the following stochastic 

dynamical system is considered 

 ,2,1,0),1(mod)(1 =++=+ nuxSx nnnn ω , (7.96) 

where )1(4)( nnn xxxS −=  is the logistic map of which the approximate Frobenius-

Perron matrix has been identified in Section 6.3.4, ]02.0,02.0[−∈nω  is a Gaussian 

noise of which the density function is shown in Figure 7.9. The desired invariant 

density is shown in Figure 7.10. 

 

].13.0,12.0,11.0,11.0,21.0,35.0,62.0,02.1,56.1,84.1
,27.2,50.2,24.2,96.1,65.1,36.1,09.1,04.1,04.1,25.1

,52.1,71.1,78.1,78.1,72.1,54.1,37.1,19.1,93.0,75.0
,67.0,55.0,44.0,35.0,28.0,25.0,19.0,18.0,16.0,14.0[=

∗
dfv

 (7.97) 

ωD  for the given noise density function has been obtained, thus  

 

].239.8,061.4,133.3,703.2,459.2,272.2,099.2,891.1,678.1,456.1
,257.1,107.1,979.0,869.0,735.0,581.0,502.0,411.0,346.0,292.0
,246.0,204.0,182.0,162.0,137.0,123.0,107.0,091.0,086.0,086.0

,079.0,080.0,079.0,079.0,075.0,076.0,071.0,070.0,072.0,824.0[
],,,[ 21

=
Nβββ 

 (7.98) 
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Figure 7.9 Probability density function of the noise nω  of the stochastic dynamical system. 

 

Figure 7.10 The target density function. 

By solving the linear least-squares (7.91) problem, it is obtained that   

 

].0,0,0,006.0,0203.0,0424.0,0702.0,109.0,098.0,1202.0
,116.0,0534.0,0168.0,0,0,0,0,0,0339.0,0641.0

,0719.0,0644.0,0549.0,0415.0,0169.0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0[

],,,[ 21

=
Nααα 

 (7.99) 

 

162 
 



Chapter 7 Control of Invariant Densities for Stochastic Dynamical Systems 

Then the optimal input density function is obtained, as shown in Figure 7.11. 

 
Figure 7.11 Optimal density function of the input. 

 

].0,0,0,2419.0,8129.0,6977.1,8074.2,3607.4,9206.3,8088.4
,6390.4,1365.2,6713.0,0,0,0,0,0,3554.1,5648.2
,8757.2,5768.2,1956.2,6582.1,6769.0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0[
],,,[ 21

=
Nψψψ 

 (7.100) 

As a result, this leads to the responds of the invariant density function as shown in 

Figure 7.12. 

 
Figure 7.12 Comparison of the resulting invariant density function and the target density function. 
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7.5 Conclusions 

In this chapter, new theorems regarding the asymptotic stability of }{ fQn  for the 

dynamical systems subjected to additive inputs or random noise, and the uniqueness 

of the existing invariant densities have been proven. It has been proven that the 

invariant densities can be estimated from the left eigenvector associated with the 

eigenvalue 1 of matrix H representing the corresponding Foias operator. Based on 

the derivation of formulation of }{ fQn  for the two cases of perturbed chaotic 

systems (by an additive input or an additive noise), the evolution of probability 

density functions of a more extensive stochastic dynamical system that involves an 

additive input and a random input has been inferred mathematically. Also, the 

statistical stability of such systems has been proven, and the invariant density 

functions have been estimated with the approaximate matrix representation of the 

associated Foias operator. Identifying the model of such stochastic dynamical 

systems has been addressed based on the earlier developed modelling 

methodologies. 

The above work laid the theoretical foundation for addressing the control problem. 

A new control strategy has been developed which aims for controlling the shape of 

the invariant density function of the stochastic dynamical system so as to make it as 

close as possible to a given density function. To minimise the established 

performance function, connection between the input density function and the 

desired invariant density function is derived. The optimisation problem for 

determining the input density function can be formulated as a constrained least-

squares problem to solve for the vector that corresponds to the optimal input density 

function. A simulated example is used to illustrate the effectiveness of the proposed 

algorithm.  
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Chapter 8 

Conclusions and Future Work 

8.1 Contributions 

Chaotic dynamical systems can exhibit complex and random-like behaviour which 

is not predictable in general (Kellert & Sklar 1997). This phenomenon can be 

characterised by probability density function as an alternative to study individual 

point trajectories, particularly in some situations when probability density functions 

are more convenient to be measured than individual point trajectories. The main 

purpose of the thesis is that modelling for one-dimensional chaotic dynamical 

systems from sequences of probability density functions, and controlling the 

invariant density functions of such systems. The work of this thesis focused on the 

development of new methods and algorithms of reconstruction of one-dimensional 

chaotic maps from sequences of probability density functions. The methods were 

successfully applied to model the dynamical evolution of heterogeneous human 

embryonic stem cell populations. The reconstruction for dynamical systems 

subjected to additive perturbations from sequences of probability density functions 

and the design of control laws to achieve desired invariant density function were 

also considered. The main contributions are summarised as follows: 

• A novel approach to solving the generalised inverse Frobenius-Perron 

problem 

In Chapter 3 a novel matrix-based approach was proposed to solve the 

generalised inverse Frobenius-Perron problem and was extended to general 

nonlinear systems in Chapter 4. These addressed in a systematic manner the 
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problem of inferring one-dimensional chaotic maps based on sequences of 

probability density functions. Compared with previous solutions to solving the 

inverse Frobenius-Perron problem, it has been rigorously demonstrated that the 

proposed approach can uniquely identify the unknown transformation sufficient 

conditions, of which sufficient conditions have been derived. Specifically, the 

reconstructed maps can exhibit the same dynamics as the original systems and 

therefore can be used to predict the long term dynamical evolution, infer 

dynamical invariants and to control the dynamical behaviour of the underlying 

system of interest. The applicability of the proposed methodology and its 

performance for different levels of noise was demonstrated using numerical 

simulations involving a piecewise linear and expanding transformations as well 

as a continuous one-dimensional nonlinear transformation. 

• Modelling heterogeneous populations of human embryonic stem cell 

In Chapter 5 the developed solution to the GIFPP was successfully applied to 

infer the dynamical model that characterises the dynamical evolution of 

heterogeneous stem cell populations (pluripotent carcinoma cell line NTERA2), 

using densities generated experimentally by fluorescence-based flow cytometry. 

The model described the transition of SSEA3 cell surface marker expression 

over a single day interval. The reconstructed dynamical model enables us to 

characterise and compare rigorously the dynamics of different cell populations, 

predict the long term evolution of SSEA3-sorted cell fractions, as well as 

identify the particular stationary points which have biological relevance. 

• A novel approach to modelling chaotic dynamical systems subjected to 

additive perturbations from sequences of probability density functions 

In Chapter 6 a novel method of inferring models of one-dimensional chaotic 

dynamical systems with additive perturbations was proposed based on 

sequences of probability density functions measured from the perturbation-

corrupted data. Two forms of additive perturbations were analysed respectively: 

a chaotic map subjected to an additive input; a chaotic map subjected to an 

additive random noise, for which probability density function of the input and 
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noise were both assumed to be known. The evolution of probability densities 

was formulated, which gives rise to the description of Foias operator 

corresponding to the perturbed dynamical system. An approximate matrix 

representation of Foias operator was derived by assuming the chaotic map to be 

a piecewise linear semi-Markov transformation. In this way, the density 

evolution equation was transformed into a matrix equation that links two 

successive density functions and the Frobenius-Perron matrix associated with 

the transformation. The modelling problem was then reduced to an inverse 

problem to recover the Frobenius-Perron matrix based on the new developed 

two-step matrix-based method. Numerical examples were provided to 

demonstrate the effectiveness of the developed approaches to modelling for 

chaotic dynamical systems subjected to additive perturbation from density 

functions. 

• A new algorithm of controlling the invariant densities of chaotic dynamical 

systems subjected to additive stochastic perturbations 

In Chapter 7 the asymptotic stability of probability density functions, 

equivalently statistical stability, of chaotic dynamical systems subjected to 

additive stochastic perturbations was proven, which reveals the unique 

existence of invariant densities of such systems. Estimation of the 

corresponding invariant density functions was derived. For a stochastic 

dynamical system, given the additive input and random noise densities, the 

mathematical characterisation of the evolution of densities was inferred, 

resulting in the estimated matrix representing the Foias operator. Using the 

developed matrix-based approach, the chaotic maps of the perturbed underlying 

systems can be reconstructed from the probability density functions measured 

from the observed perturbation-corrupted data. Based on the derived 

mathematical relationship connecting the control input density function and the 

invariant density function, the control algorithm was designed for the objective 

of determining the control input density function to manipulate the invariant 

density function to be as close as possible to a desired one. A simulation 

example was given to illustrate the effectiveness of proposed control strategy.  

167 
 



Chapter 8 Conclusions and Future Work 
 

8.2 Future work 

As an alternative to the traditional data-based methodology of modelling and 

controlling dynamical systems with individual point orbits, the strategies developed 

in this thesis have mainly addressed the generalised inverse problem and the 

problem of designing control law for one-dimensional chaotic dynamical systems. 

Considering the complexity of real systems and potential application prospects of 

the achieved results, the following issues can be further investigated in the future 

research. 

• The methods presented in the thesis can be extended to higher-dimensional 

maps but this is not necessarily straightforward. As noted in (Bollt 2000a), for 

higher-dimensional systems the Ulam’s conjecture has been proven for some 

special cases (Boyarsky & Lou 1991, Ding & Zhou 1995, Froyland 1995, 

Froyland 1997). A possible solution would be to convert the N-dimensional 

problem to a 1-D problem, approximate the Frobenius-Perron operator by a 

stochastic matrix (Rogers, Shorten et al. 2008b) and then use Bollt’s approach 

(Bollt 2000a) to construct a piecewise linear transformation which approximates 

the original map. 

• The inverse problem for stochastic dynamical systems considered a typical form 

of additive perturbations. There are other forms of perturbation appearance in a 

multiplicative fashion, and a both additive and multiplicative way.  For these 

cases, the proposed algorithms provide a starting point to derive the 

mathematical description of the evolution of density functions and the matrix 

representation of the corresponding Foias operator. Using the matrix-based 

approach described in Chapter 6, the Frobenius-Perron matrix associated with 

the chaotic map can be identified. Therefore, the proposed method can be 

applied to solve the inverse problem for general stochastic dynamical systems. 

• In Chapter 5 there are five fractions divided by the FACS machine. Fractions of 

these cells expressing different levels of SSEA3 generate the whole population 

but at differing rates. The equilibrium points can be predicted from the 

reconstructed dynamical model. Further experiments can be conducted to 
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investigate the regeneration of the cells on the equilibrium points. The cell 

sorting can be refined from the predicted equilibrium points. Experimental 

results can be used to validate the stability of these fractions which need to take 

longer time to regenerate the parent distribution, and on the other hand, this 

provides a new way to demonstrate the validity of the model. 

• Based on the inferred dynamical model of heterogeneous stem cell populations, 

the developed control algorithm can be used to design the control strategy. The 

control objective is to optimise the cell culture conditions so as to manipulate 

the differentiation of the heterogeneous embryonic stem cells into desired cells 

that can be used in regenerative therapies.  
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Appendix: Initial states generation 

The 100 sets of initial states used in the example are obtained by sampling the 

following density functions. 
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