
Disc actuators for turbulent drag reduction

Daniel J. Wise

A Thesis submitted for the degree of Doctor of Philosophy

Department of Mechanical Engineering

University of Sheffield

June 2015



CONTENTS

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Passive techniques . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Active techniques . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Numerical procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Numerical solver, geometry and scaling . . . . . . . . . . . . . . . . 20

2.2 Flow decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Definition of performance quantities . . . . . . . . . . . . . . . . . 23

2.3.1 Turbulent drag reduction . . . . . . . . . . . . . . . . . . . 23

2.3.2 Power spent . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Net power saved . . . . . . . . . . . . . . . . . . . . . . . . 24

3. Oscillating discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Flow definition and modelling of actuators . . . . . . . . . . . . . . 26

3.1.1 Numerical parameters . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Disc annular gap . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Laminar flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



ii Contents

3.2.1 Laminar flow over an infinite oscillating disc . . . . . . . . . 31

3.2.2 Laminar power spent . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Laminar regenerative braking effect . . . . . . . . . . . . . 35

3.3 Turbulent flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Dependence of drag reduction on D, W , T . . . . . . . . . 37

3.3.3 The Fukagata-Iwamoto-Kasagi identity . . . . . . . . . . . 40

3.3.4 Disc flow visualizations and statistics . . . . . . . . . . . . . 41

3.3.5 Power spent . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.6 A discussion on drag reduction physics and scaling . . . . . 47

3.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4. Arrangements of disc actuators . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Introduction of disc layouts . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Effect of annular gap on performance quantities . . . . . . . . . . . 58

4.3 Influence of layout and coverage on performance quantities . . . . 61

4.3.1 Drag reduction . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Power spent . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 The Fukagata-Iwamoto-Kasagi identity . . . . . . . . . . . . . . . . 66

4.5 Flow visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Radial streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5. Modifications to control strategy . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Half-disc actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Annular actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Spectral truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Freely-rotating discs . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6. Summary and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Contents iii

Appendix 91

A. The channelflow code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.1 Nonlinear terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 Time-stepping algorithm . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3 Kleiser-Schumann algorithm . . . . . . . . . . . . . . . . . . . . . . 96

A.4 Parallel scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B. Resolution checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

C. Table of data for arrangements of disc actuators . . . . . . . . . . . . . 103

D. Derivation of equation of motion for freely-rotating discs . . . . . . . . . 104



LIST OF FIGURES

1.1 Leonardo da Vinci’s portrayal of the swirling motions due to tur-

bulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Schematic of the canonical channel flow geometry, as defined by

Pope (2000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 A summary of the structures found by Robinson (1991) in his

numerical simulations of wall-bounded turbulence. Left: schematic

of vortical structures found in different boundary layer regions.

Right: Model of the relationship between the quasi-streamwise

vortices found near the wall, and the hairpin vortices found in the

outer region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Schematic showing the ways in which flow control techniques are

classified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Left: Magnification of shark skin showing the aligned protrusions.

Right: Cross section of the triangular riblet geometry showing the

spacing, s, between consecutive riblets. The groove cross-sectional

area is indicated by the grey shading. . . . . . . . . . . . . . . . . 9

1.6 Plot of drag reduction as a function of the disc parameters, as

obtained by Ricco & Hahn (2013). The size of the grey circles is

proportional to the amount of drag reduction, and the boxed values

indicate the net power savings. The shaded region indicates the

parameter combinations which resulted in drag increase. . . . . . . 18



List of Figures v

2.1 Schematic of the channel geometry. . . . . . . . . . . . . . . . . . . 21

3.1 Schematic of the flow domain showing the location and sense of

rotation of the discs when W̃=W . . . . . . . . . . . . . . . . . . . 27

3.2 Schematic of disc and annular gap flow. . . . . . . . . . . . . . . . 29

3.3 Velocity profiles within the annular gap over a half period of the os-

cillation, computed through (3.4). Left: D=7.1, W=0.51, T=130,

Nw=2.03. Right: D=7.1, W=0.51, T=13, Nw=6.42. . . . . . . . . 31

3.4 Left: Wall-normal profiles of F ′ and G at different oscillation

phases for γ=1 (thick lines) and γ=0 (thin lines). The latter is

given by (3.13) and coincides with the classical Stokes layer solu-

tion. Right: Numerically computed values of G(γ) (solid lines) and

asymptotic solutions, (3.12) for γ� 1 (dashed line in main plot),

and (3.15) for γ�1 (dashed line in inset). . . . . . . . . . . . . . . 33

3.5 Left: Space-averaged streamwise wall-shear stress vs. time for cases

at D=3.38. The disc forcing is initiated at t+=770. Only a fraction

of the total integration time is shown. The space-averaging oper-

ator here does not include time averaging. Right: Ensemble- and

space-averaged streamwise wall-shear stress vs. τ+ for D+=554,

W+=9.9, T+=833 (dashed line). The disc velocity is shown by

the solid line. The phase φ is given in the figure. . . . . . . . . . . 38

3.6 Plots ofR(T,W )(%) for different D. The circle size is proportional

to the drag reduction value. The hyperbolae are constant-γ lines. . 39

3.7 Plots of R(T+,W+)(%). Scaling is performed using u∗τ from the

native case. The dark grey circles indicate RH13’s data and the

boxed values denote positive Pnet values. . . . . . . . . . . . . . . . 40



vi List of Figures

3.8 Disc-flow visualizations of q+(x, y, z)=
√
u+2
d + w+2

d =2.1 at phases

φ=0, π/4, π/2, and 3π/4. The disc tip velocity at each phase is

shown in figure 3.5 (right). In this figure and in figures 3.9, 3.10,

3.11, and 3.13, D+=552, W+=13.2, T+=411. . . . . . . . . . . . . 42

3.9 Contour plot of u+
d (x, y, z) as a function of phase in the x−z plane

at y+=0, y+=4, y+=8 and y+=27 (from left to right). . . . . . . . 43

3.10 Contour plot of phase-averaged streamwise wall friction, 2〈∂u+/∂y+|0〉/U+2
b .

The skin-friction coefficient is Cf=6.79 · 10−3. . . . . . . . . . . . . 44

3.11 Left: Isosurfaces of 〈u+
d v

+
d 〉 observed from the y−z plane at x+=0,

x+=160, x+=320 (from left to right). The plot shows only 〈u+
d v

+
d 〉

for ud, vd<0 as within the contour range the contributions from

other combinations of ud and vd are negligible. Right: Wall-normal

profiles of the u+
d,rms (solid lines) and û+
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NOMENCLATURE

C The coverage C is defined as the percentage of the channel wall which is

in motion.

δ Penetration depth of disc boundary layer, refer to §3.3.6 for details. [m]

δe Ekman layer thickness, used to scale the wall-normal coordinate of the

oscillating disc boundary layer in the limit γ � 1. [m]

δs Stokes layer thickness, this is the thickness of the oscillating-wall boundary

layer. Refer to §3.3.6 for further details. [m]

E Drag reduction per unit actuated area, given by E=R/C.

η Wall-normal coordinate of the laminar disc boundary layer (defined in

§3.2).

γ Ratio between the oscillation period and the period of rotation of the disc

at constant maximum disc-tip velocity.

κ Fluid friction constant, used within equation (5.3).

λx Wavelength of wall-forcing. This is a controlling parameter in the imposi-

tion of both the streamwise-varying wall-normal transpiration of Quadrio

et al. (2007) and the spanwise standing-wave forcing of Viotti et al. (2009).

[m]

Ff Friction torque coming from the fluid contained within the housing of the

freely-rotating discs. This is approximated by the laminar von Kármán



Nomenclature xiii

solution. [Nm]

Fm Torque coming from mechanical friction of the bearing used to mount the

freely-rotating discs. This frictional torque is estimated as a proportion

of the total torque acting on the discs. [Nm]

L Characteristic lengthscale of flow control technique. [m]

Nx Total number of modes simulated along streamwise direction.

Nz Total number of modes simulated along spanwise direction.

T Characteristic timescale of flow control technique. [m]

T Total torque acting on the freely-rotating discs. This is comprised of the

turbulent fluid torque, and the mechanical and fluid friction torques. [Nm]

Tt Turbulent torque acting on the freely-rotating discs. This is the integral

of the azimuthal shear stress over the disc surface. [Nm]

Wl Localized laminar power spent.[W]

Wt Localized turbulent power spent. [W]

µ Dynamic viscosity of the fluid. [kgm−1s−1]

ν Kinematic viscosity of the fluid. [m2s−1]

Ω Disc angular velocity [s−1]

Π Streamwise pressure gradient.

Pnet Net power saved. This is the difference between the power saved due to

the disc forcing and the power spent, i.e. Pnet=R-Psp,t. [W]

Psp,t Power spent to enforce the discs motion, defined in §2.3.2. [W]



xiv Nomenclature

Px Power spent to drive the fluid in the streamwise direction, defined in §2.3.2.

[W]

R Drag reduction, defined as the percentage change of the skin-friction co-

efficient with respect to the stationary wall value.

Rd Contribution to drag reduction from attenuation of the turbulent Reynolds

stresses.

Rt Contribution to drag reduction from additional time-averaged disc Reynolds

stresses.

ρ Density of the fluid. [kgm−3]

Rp Poiseuille Reynolds number, defined as Rp=U
∗
ph
∗/ν∗.

Sx Normalized spacing between discs in the streamwise direction.

Sz Normalized spacing between discs in the spanwise direction.

τ Window time of disc oscillation. This is used in the ensemble average of

the oscillating disc flow. [s]

τθ Component of wall-shear stress acting in the azimuthal direction. [Nm−2]

τt Total shear stress, this is the sum of the viscous stresses arising from the

mean flow and the Reynolds stresses. [Nm−2]

τw Wall-shear stress. [Nm−2]

θ Azimuthal coordinate.

A Maximum transpiration amplitude. This and λx are the free parameters

for the imposition of steady streamwise-varying wall-normal transpiration.

a Ratio beween internal and external radii of annular actuators.



Nomenclature xv

b Spanwise dimension of channel geometry. [m]

c Width of annular region surrounding each disc. [m]

Cθ Scaling factor of drag reduction due to angle of wall motion. This is used

within §4.3 to predict the drag reduction engendered by the discs.

Cf Skin-friction coefficient, defined as Cf=2τ∗w/
(
ρ∗U∗2b

)
.

Cw Scaling factor of drag reduction due to waveform. This is used within §4.3

to predict the drag reduction engendered by the discs.

D Disc diameter. [m]

D0 Total diameter of disc and annular gap. [m]

Ep Strong scaling efficiency of the parallel code on p processing elements.

F Axial disc boundary-layer velocity component, used in the laminar solu-

tion to the oscillating disc flow.

F ′ Radial disc boundary-layer velocity component, used in the laminar solu-

tion to the oscillating disc flow.

G Azimuthal disc boundary-layer velocity component, used in the laminar

solution to the oscillating disc flow.

Ge Enveloping function of disc boundary layer, refer to §3.3.6 for details.

h Channel half-height. [m]

I Moment of inertia of the freely-rotating discs, given by I∗=m∗D∗2/8.

[kgm2]

k Proportion of modes being forced in the homogeneous directions.

l Streamwise dimension of channel geometry. [m]



xvi Nomenclature

Ls Slip length for superhydrophobic surfaces, defined within §5.4. [m]

Lx Dimension of the channel in streamwise direction. [m]

Ly Dimension of the channel in wall-normal direction. [m]

Lz Dimension of the channel in spanwise direction. [m]

N Number of oscillation periods of the disc motion.

Nw Womersley number, used to determine the flow profile within the annular

disc housing.

Nx Number of discs within computational domain in streamwise direction.

Ny Number of grid points in the wall-normal direction.

Nz Number of discs within computational domain in spanwise direction.

R General Reynolds number. This is defined as R=U∗L∗/ν∗ where L∗ and

U∗ are characteristic length and velocity scales of the flow.

r Radial coordinate. [m]

r1 Radius of disc. [m]

r2 Radius of disc and housing. [m]

Rτ Friction Reynolds number, defined as Rτ=u∗τh
∗/ν∗.

Re Eddy Reynolds number, this is the Reynolds number based on the eddy

length and velocity scales.

Sp Speed-up of the parallel code on p processing elements.

T Disc oscillation period. [s]

t Temporal coordinate. [s]



Nomenclature xvii

uτ Friction velocity, defined as u∗τ=
√
τ∗w/ρ∗. [ms−1]

uθ Tangential velocity. [ms−1]

Ub Bulk velocity, defined as Ub=
∫ 1

0 um(y)dy. [ms−1]

Up Centreline velocity of laminar Poiseuille flow. [ms−1]

ur Radial velocity. [ms−1]

us Effective wall-velocity for superhydrophobic surfaces, defined within §5.4.

[ms−1]

uy Velocity component in the axial direction. [ms−1]

W Disc tip velocity. [ms−1]

We Envelope of the Stokes layer velocity profile, for further details refer to

§3.3.6.

Wth Threshold wall-velocity below which Stokes-layer oscillations have little

effect on the outer flow, refer to §3.3.6 for details. [ms−1].

x Streamwise spatial coordinate. [m]

xd Displacement between disc centres in the streamwise direction. [m]

y Wall-normal spatial coordinate. [m]

yd Penetration depth of Stokes layer, refer to §3.3.6 for details. [m]

z Spanwise spatial coordinate. [m]

zd Displacement between disc centres in the spanwise direction. [m]

u Velocity vector. [ms−1]

ud Disc flow within channel. [ms−1]



xviii Nomenclature

um Mean flow within channel. [ms−1]

ut Turbulent flow within channel. [ms−1]

x Position vector. [m]
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ABSTRACT

The change in a turbulent channel flow subjected to the motion of flush-mounted

disc actuators has been studied by means of direct numerical simulations. The

Reynolds number is Rτ=180, based on the friction velocity of the stationary-wall

case and the half-channel height. Variations to the original disc actuators of Ricco

& Hahn (2013) are investigated, with the aim of improving their performance.

This includes oscillating discs, annular and half-disc actuators, and freely-rotating

discs. A maximum drag reduction of 26% arises from the half-disc actuators,

while the maximum net power saving of 6% results from the oscillating discs.

Through use of the Fukagata-Iwamoto-Kasagi identity it has been possible

to show that the wall-friction reduction due to the disc actuators is due to two

distinguished effects. One effect is linked to the direct shearing action of the

near-wall oscillating-disc boundary layer on the wall turbulence, which causes

the attenuation of the turbulent Reynolds stresses. The other effect is due to

the additional disc-flow Reynolds stresses produced by the streamwise-elongated

structures which form between discs and modulate slowly in time. The drag re-

duction due to turbulent Reynolds stress attenuation depends on the penetration

thickness of the disc-flow boundary layer, while the contribution to drag reduc-

tion from the elongated structures scales linearly with a simple function of the

maximum tip velocity and oscillation period.

Through investigation of different wall arrangements of disc actuators it is

found that the layout ot the discs has a complex and unexpected effect on the flow.

For low disc-tip velocities, the drag reduction scales linearly with the percentage
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of the actuated area, whereas for higher disc-tip velocity the drag reduction can be

larger than the prediction found through the linear scaling with actuated area.

This increased drag reduction is caused by the viscous boundary layer which

develops over the portions of stationary wall due to the radial flow produced by

the discs. For the highest disc-tip velocity the drag reduction even increases by

halving the number of discs, causing a gain in the performance of the actuators

whilst reducing the complexity of their implementation.



1. INTRODUCTION

1.1 Turbulence

Incompressible flow is governed by the Navier-Stokes and continuity equations,

written as

Du∗

Dt∗
= − 1

ρ∗
∇∗p∗ + ν∗∇∗2u∗, and (1.1)

∇∗ · u∗ = 0, (1.2)

respectively. Here and throughout u∗ and p∗ are the velocity and pressure fields;

ρ∗ and ν∗ are the density and kinematic viscosity of the fluid; t∗ is the temporal

coordinate; ∇∗, ∇∗2 and∇∗· are the gradient, Laplacian and divergence operators

in Cartesian coordinates; and the ∗ superscript denotes a dimensional quantity.

The term on the left of equation (1.1) is the convective or material derivative of

the fluid particle, it represents the time rate of change of the velocity of a fluid

particle as it moves along its trajectory. The terms to the right of equation (1.1)

are the pressure gradient and viscous forces, respectively.

By taking characteristic length and velocity scales of a particular flow, termed

L∗ and U∗ respectively, the variables can be made dimensionless as follows:

u =
u∗

U∗
, t =

t∗U∗

L∗
, x =

x∗

L∗
, and p =

p∗

ρ∗U∗2
.

Equations (1.1) and (1.2) thus become

Du

Dt
= −∇p+

1

R
∇2u, and (1.3)

∇ · u = 0, (1.4)
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where R=U∗L∗/ν∗ is a dimensionless parameter. The benefits of scaling the

equations in this way may not be immediately apparent, however the implica-

tions are huge. The concept of dynamic similarity allows an infinite number of

flows of the same geometry to be compared, so long as the value of R is con-

stant. Although the parameters U∗, L∗ and ν∗ may be different for two different

scenarios, as long as the ratio U∗L∗/ν∗ is constant then so is the ratio between

the viscous and inertial forces. The parameter R was first determined by Stokes

(1851), yet the later experiments of Reynolds (1883) led to it being henceforth

termed the Reynolds number.

Reynolds varied R through changes in the geometrical and fluid properties of

a pipe flow, observing the effects on the characteristics of a dye path introduced at

the centreline. Reynolds observed three distinct behaviours of the flow (Reynolds,

1883). For values of R below a lower critical value, “the elements of the fluid

follow one another along lines of motion which lead in the most direct manner

to their destination”. For larger R, above an upper critical value, the elements

of the fluid “eddy about in sinuous paths the most indirect possible” (Reynolds,

1883). It was also noted that between these two critical values of R there is a

regime in which the fluid motion can resemble either one of the two behaviours.

Reynolds (1883) noted that this was due to the level of background disturbance

within the experiments. Although in this seminal paper the word turbulence was

never used, Reynolds was documenting the transition from laminar to turbulent

flow.

The study of turbulence has its beginnings with Leonardo da Vinci in the

15th century who described the motion of swirling water behind an obstacle as

turbolenza (Favaro, 1918). Within his sketch of the phenomenon - shown in figure

1.1 - he managed to capture what he observed to be two distinct motions within

the fluid, one “due to the principle current, the other to the random and reverse
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motion”. This behaviour was later captured mathematically by Reynolds (1895),

who proposed a time-averaging procedure to decompose the flow into its mean and

fluctuating components. Such treatment is now termed Reynolds decomposition.

Using Reynolds decomposition the instantaneous velocity field u is separated into

its mean and fluctuating parts as u=u+u′, where u is the time-averaged mean

flow and u′ is the turbulent fluctuating component (Reynolds, 1895).

Fluid flow is in fact naturally turbulent, occurring across a wide range of scales

throughout the universe. From the air flow through the human respiratory system

to the convection which creates magnetic fields in planetary bodies, turbulence

is ubiquitous and its understanding is one of the most important challenges in

physics. An often quoted definition for turbulence is that of G. I. Taylor, first

attributed to him by von Kármán (1937), which reads:

an irregular motion which in general makes its appearance in fluids,

gaseous or liquid, when they flow past solid surfaces.

The significant feature here is the word ‘irregular’; it stipulates that there cannot

exist a function through which the turbulent motions can be described at each

temporal and spatial location. There are of course further criteria a flow must

satisfy to be considered turbulent, however Taylor’s definition is a useful starting

point.

The concept of an energy cascade in turbulence was first put forward by

Richardson (1921). His proposition was that a turbulent flow could be considered

to be comprised of motions occuring at different typical length and timescales.

The term ‘eddy’ was used to describe these motions, and although the word lacks a

precise definition it can be thought to mean a swirling movement occuring within

a coherent volume in the flow. It was Richardson’s belief that the largest eddies

- usually determined by the largest dimension of the flow - contain most of the

energy, and that through their destruction energy is transferred to smaller eddies.
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Fig. 1.1: Leonardo da Vinci’s portrayal of the swirling motions due to turbulence.

This process then repeats itself, causing the creation of smaller and smaller scales

of motion. The lower bound of scales for this cascade is determined by the

Reynolds number of the flow. By defining an eddy Reynolds number Re based

on the eddy velocity and lengthscales, it can be shown that the smallest scales

of the flow exist when Re=O(1). At this point viscosity is no longer negligible

when compared to the inertial forces. The viscous forces then act to dissipate

the energy from the smallest scales of motion into heat.

The simulations presented within the current work take place in the canonical

channel geometry, therefore a brief desription of this flow is provided. Flow

through a rectangular duct of length l∗, width b∗ and height h∗ is considered, as

shown in figure 2.1. The channel has both length and width much larger than

its height, i.e. l∗/h∗�1, b∗/h∗�1; therefore the wall-effects from the sides of

the channel are not considered and the flow is statistically one-dimensional. The

fluid has a mean velocity component only in the streamwise (x∗) direction. The

velocity components u∗, v∗, and w∗ refer to the flow in the streamwise (x∗), wall-

normal (y∗) and spanwise (z∗) directions, respectively. The flow is characterized

by the Reynolds number Rp=U
∗
ph
∗/ν∗, where U∗p is the mean velocity at the

channel centreline (i.e. at y∗=h∗).

Given the assumptions in the previous paragraph and averaging the channel
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b∗

2h∗

l∗

Mean flow

y∗

z∗

x∗

Fig. 1.2: Schematic of the canonical channel flow geometry, as defined by Pope (2000).

flow in time, the streamwise Navier-Stokes equation reduces to

∂p

∂x
=

∂

∂y

(
1

Rp

∂u

∂y
− u′v′

)
. (1.5)

The term within the parentheses in equation (1.5) is the total shear stress τt. The

total shear stress is thus the sum of the viscous stresses term arising from the

mean flow, and the turbulent contribution u′v′ known as the Reynolds stresses.

For channel flows the Reynolds stresses are negative, and as shown by (1.5)

they therefore contribute positively to the total shear stress. By reducing the

magnitude of the Reynolds stresses a reduction in the total shear stress can thus

be achieved.

In wall-bounded turbulent flows it is known that there are certain coher-

ent patterns within the flow that often appear at unpredictable positions and

times. Although these patterns differ in their finer detail, the recognition and

understanding of the most common of these coherent patterns is the subject of

intense research. A review of this subject can be found in Robinson (1991), and

a summary of the structures found in his numerical simulations of wall-bounded

turbulence is shown in figure 1.3. Such repeating patterns in the flow are termed

coherent structures and are loosely defined as spatial or temporal regions within

which one or more component of the velocity field exhibits correlation with itself

or with another component (Robinson, 1991). Amongst other things the identi-

fication of these structures can lead to further understanding into how they may
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be detected, modified, or destroyed.

Fig. 1.3: A summary of the structures found by Robinson (1991) in his numerical simula-

tions of wall-bounded turbulence. Left: schematic of vortical structures found in

different boundary layer regions. Right: Model of the relationship between the

quasi-streamwise vortices found near the wall, and the hairpin vortices found

in the outer region.

1.2 Flow control

Flow control is the discipline which focuses on altering the characteristics of a

flow field favourably. The beginnings of flow control are found almost 400,000

years ago with the invention of streamlined spears in the lower paleolithic era by

primitive man, the evolution of fin-stabilised arrows and boomerangs following

soon after. The experiments of Prandtl (1904) marked the end of the empirical

development of flow control technology, diverting the subject from trial-and-error

towards experimental analysis and logical design. The modern science of flow

control can have its aims in delaying, suppressing or enhancing turbulence, with

final goals being drag reduction, increased lift or increased mixing.

Drag is the resistance to relative motion of a fluid over a solid. The viscous

effects result in a force on the surface of the solid, opposite to the direction
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of motion. This force is comprised of the surface integrals of both the shear

stress and pressure, labelled the skin-friction and pressure drags, respectively.

Skin-friction drag and its reduction will be further expanded on in the following

paragraphs. Skin-friction drag is the main contribution to energy loss in industrial

applications in which wall-bounded flows occur, and its reduction is of major

interest from both economic and ecological perspectives. Focussing firstly on the

global airline industry, it has been calculated that the total fuel bill for commercial

airlines rose from US$43 billion in 2003 to US$176 billion in 2011, with this

trend expected to continue in coming years (Bisignani, 2011). If we estimate

that viscous or skin-friction drag accounts for a minimum of 50% of the total

drag present during the subsonic operation of a conventional aircraft (Schrauf,

2006), it can be shown that a reduction of only 10% in viscous drag equates

to an industry wide saving of approximately US$8.8 billion. Another major

beneficiary from the reduction of viscous drag is the oil industry. Kennedy (1993)

reports the total pumping costs of 46 major US companies for calendar years 1988

and 1989 to be approximately US$376 million, equivalent to 17% of their total

operational expenditure. As the majority of the cost of oil transportation in pipes

is associated with overcoming the drag at the wall boundary (Keefe, 1998), any

reduction in this drag results in significant savings in the operational costs of the

industry.

A schematic of the way in which flow control techniques can be classified

is shown in figure 1.4. The first division in methods is between those that are

either active or passive. Active methods require an external energy input, while

passive methods manipulate the flow field without a supply of energy. Amongst

active methods there exists a further division between those techniques which

operate under either closed- or open-loop control (Gad-el Hak, 2000). Closed-

loop control requires sensors to measure the flow properties, thus allowing the
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Flow control

Active

Open-loop Closed-loop

Feedforward Feedback

Passive

Fig. 1.4: Schematic showing the ways in which flow control techniques are classified.

control input to be adjusted according to a prescribed algorithm. Open-loop

control is instead predetermined and does not respond to changes in the flow.

As such it does not require sensors. Although numerical investigations of closed-

loop flow control utilizing linear control theory have promised high drag reduction

and significant net power savings (computed by taking into account the energetic

cost of control), the experimental verification of these computational efforts poses

enormous challenges. These relate to the very small spatial and temporal scales

typically required to achieve such energetic performances. A short review of some

of the more prominent control strategies is given in the following paragraphs.

1.2.1 Passive techniques

Shark skin is covered in placoid scales, a characteristic of cartilaginous fishes.

These scales, shown in figure 1.5 (left), resemble tooth-like protrusions from the

surface and are also referred to as dermal denticles. The scales were found by

Bechert et al. (1985) to be aligned parallel to the direction of motion of the

shark, and to possess constant separation between consecutive peaks (Walsh &

Lindemann, 1984). The protrusions are also observed to maintain this spacing

as the shark grows, with additional scales being grown. Wall-grooves aligned in

the streamwise direction - otherwise known as riblets - attempt to mimic the
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effects of dermal denticles. In channel flow experiments with Reynolds number

Rb=3400, such grooves produce drag reductions of up to 12% (Sasamori et al.,

2014). The initial boundary layer experiments of Walsh (1982) found that riblets

possessing a V-shape with a sharp peak and either a sharp or curved valley

produced the largest value of drag reduction. Further studies have confirmed

that drag reduction increases linearly with the spacing, s, between riblets up

to an optimum value, dependent on the cross-sectional shape of the riblets. A

region of drag increase is then observed Bechert et al. (1997). Due to a marked

dependence on their cross-sectional shape, riblet spacing is not a suitable scaling

parameter for whether drag reduction will occur. Instead Garćıa-Mayoral &

Jiménez (2011) proposed another lengthscale determined by the square root of

the groove cross-sectional area which accurately predicts an optimal lengthscale

independent of the riblet geometry.

s

Fig. 1.5: Left: Magnification of shark skin showing the aligned protrusions. Right: Cross

section of the triangular riblet geometry showing the spacing, s, between consec-

utive riblets. The groove cross-sectional area is indicated by the grey shading.

Bechert et al. (1986) showed that riblets reduce the spanwise velocity fluctu-

ations in the near wall region, causing a reduction in the turbulent momentum

transfer and also in the shear stress (Bechert et al., 1986; Bechert & Bertenwerfer,

1989). This reduction in the spanwise velocity fluctuations was also observed in

the direct numerical simulations (DNS) of Choi et al. (1993), and more recently
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by Goldstein et al. (1995). The experimental work of Hooshmand et al. (1983) -

on the optimum V-groove shape described by Walsh - found that the skin-friction

coefficient on the riblet surface was simultaneously increased at the peaks and

decreased at the troughs by values of 10% and 40% respectively. This agrees with

the more recent findings of Choi et al. (1993) that only a certain proportion of

the riblets is exposed to the high shear stresses caused by the downward flow mo-

tions induced by the streamwise vortices. The drag-increase riblet configurations

expose a large part of the wetted surface to the wallward high-speed flow mo-

tions, whereas these sweeps only impinge on the riblet tips in the drag reduction

cases. Concerning industrial applications, as 50% of the drag experienced by an

aircraft is associated with skin-friction then a 6% overall energy saving is possible

assuming the maximum experimental values are achieved. Riblets are one of the

few flow control techniques to have been flight tested. By covering approximately

70% of the surface of a commercial Airbus A320, an estimated value of 2% drag

reduction was achieved based on fuel usage (Szodruch, 1991). This therefore

shows a deviation from the experimentally and numerically approximated values

of drag reduction. As in general the experimental and numerical campaign into

riblet drag reduction is focused on geometrically simple surfaces, a reduction in

performance is expected when riblets are applied to more complex surfaces. Ad-

ditionally surface modifications such as riblets which rely on intricacies at very

small scales are susceptible to both wear and the build-up of dirt. Further de-

tails of the flight testing of riblets, including discussion on their susceptibility to

maintainence and longevity issues is given in Robert (1992).

1.2.2 Active techniques

Although there exist a wide variety of active techniques for skin-friction drag

reduction, it is wall-normal transpiration and in-plane wall forcing that will be



1.2. Flow control 11

reviewed in the following pages.

Wall-normal transpiration

An active closed-loop technique for turbulence control based on the detection and

suppression of near-wall turbulent structures was proposed by Choi et al. (1994)

and investigated through DNS at Poiseuille Reyolds number, Rp=4200. Oppo-

sition control is applied in the form of a wall-normal velocity, resembling either

suction or blowing. The applied velocity is equal in magnitude and opposite in

direction to the detected wall-normal velocity at a predetermined displacement

from the wall. Therefore when the wall-normal velocity component at the sen-

sor location is detected to be in the direction of the wall (a sweep), a blowing

boundary condition is imposed. Equivalently, when a positive wall-normal veloc-

ity is detected at the same location (an ejection), a suction boundary condition is

prescribed. Skin-friction reductions of up to 25% have been numerically realized

for this technique at an optimal sensory plane located at y+=10, however either

drag increase or lower values of drag reduction occur for other locations. The

+ superscript here denotes scaling with viscous quantities, i.e. with kinematic

viscosity ν∗ and friction velocity u∗τ=
√
τ∗w/ρ∗ where τ∗w is the wall-shear stress.

When the boundary conditions are imposed only for a detected magnitude of

the velocity greater than a threshold, drag reduction is still observed (Choi et al.,

1994). The latter reaches 10% when the threshold value is equivalent to twice the

root-mean-square value of the wall-normal turbulent fluctuations. Despite these

promising values of drag reduction it must be noted that for such a technique to

be applied efficiently, the entire wetted surface should be capable of actuation.

This has an associated weight and complexity penalty which must be considered

when comparing various drag reduction and flow control techniques. Additionally,

the experimental verification of computationally simple methods poses enormous
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challenges. These, in general, are associated with the very small spatial and

temporal scales required to achieve the drag reductions observed through simula-

tions. Progress is being made to mimic opposition control techniques such as this

with the fabrication of novel MEMS-based flow sensors and actuators (Kasagi

et al., 2009). However according to the estimates of Wilkinson (1990) the current

production cost of such systems for use on a commercial aircraft would however

render their application prohibitively expensive.

A simpler open-loop implementation of wall-normal transpiration by Quadrio

et al. (2007) consists of the application of steady streamwise-varying transpiration

to a turbulent channel flow with Rp=3300. Quadrio et al. (2007) imposed bound-

ary conditions of the form v+=A+ cos(2πx+/λ+
x ) to the channel walls, where A+

is the maximum transpiration amplitude and λ+
x is the streamwise wavelength of

the applied forcing. A parametric investigation yielded a maximum of 13% drag

reduction for A+=4.7 and λ+
x =226.

Further DNS on wall-normal transpiration was conducted by Min et al. (2006)

who applied travelling-wave transpiration boundary conditions to the walls of a

turbulent channel flow at Rp=2000. It was found that for the optimal parameter

combination of an upstream travelling wave, sublaminar skin-friction drag was

achieved. However Luchini (2008) suggested that the sublaminar drag observed

by Min et al. (2006) was instead a pumping effect whereby the transpiration was

actively pushing the fluid rather than causing any modification to the turbulent

dynamics. Luchini (2008) showed that in the absence of a pressure gradient the

transpiration caused a net streamwise flow in the channel, thereby validating his

argument. Hœpffner & Fukagata (2009) have more formally defined the difference

between methods which create pumping or cause drag reduction, based on the

creation of a streamwise mean flow in the absence of a pressure gradient.

Despite the extensive use of zero mass flux synthetic jet actuators for separa-
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tion control (e.g. Amitay & Glezer, 2006; Zhang & Zhong, 2010), there exists little

experimental work on their application to skin-friction drag reduction. Recent

studies do however show that when applied to a turbulent boundary layer, the

wall-normal oscillatory flow produced by these actuators is capable of reducing

the turbulent intensity and creating drag reduction (Spinosa et al., 2015).

Spanwise wall forcing

It was first discovered experimentally by Bradshaw & Pontikos (1985) that the

application of a spanwise pressure gradient to an initially two dimensional bound-

ary layer suppresses the near-wall transfer of momentum and turbulent energy,

thereby reducing the turbulent wall shear stress. However, soon after it was

recognized that a continuous spanwise pressure gradient only results in tempo-

rary drag reduction (Driver & Hebbar, 1987; Moin et al., 1990). After an initial

three-dimensional transient period a new steady regime is reached. The turbu-

lent quantities then return to an altered two-dimensional state with any drag

reduction being lost.

Following this, the DNS of Jung et al. (1992) and the experimental campaign

by Laadhari et al. (1994) showed that sustained drag reduction could be created

through the implementation of wall-oscillations of the form W=Wm sin(2πt/T ),

where Wm is the maximum amplitude of the oscillations and T is the period. It

was these initial works that promoted a rich vein of work into drag reduction via

spanwise wall forcing. Jung et al. (1992) showed that at skin-friction Reynolds

number Rτ=200, the wall oscillations suppress the frequency and intensity of

near-wall turbulent bursts, also resulting in sustained wall-friction reductions of

approximately 45%.

Baron & Quadrio (1996) computed the actual power savings achieved through

the wall oscillations, given by subtracting the power needed to enforce the wall-
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motion from the total drag reduction. Although higher oscillation amplitudes

result in larger values of drag reduction, a net power saving was shown to only be

obtainable for the lower amplitude investigated (approximately equal to a third

of the magnitude of the wall oscillations imposed by Jung et al. (1992)). Fur-

ther experimental investigations were performed by Choi & Graham (1998) who

imposed circumferential oscillations on a section of pipe flow at R=23,333 and

36,300 (based on the pipe diameter and bulk velocity). Drag reductions of 25%

were observed for oscillation periods in the range 50≤T+≤100. As the later DNS

of Quadrio & Sibilla (2000) at Rp=4900 showed that drag reductions of 40% were

possible for the pipe flow geometry, it was suggested that the differences in drag

reduction were instead due to the increased Reynolds number. Possible power

savings of 7% were computed for this pipe-flow study, occurring only for lower

wall velocities. In their parametric study, Quadrio & Ricco (2004) found that at

Rτ=200 the maximum drag reduction of 45% occurs for the parameter combina-

tion W+
m=27, T+=100. They discovered the existence of an optimal oscillation

period which occurs in the range 100≤T+≤125 for each forcing amplitude. The

drag reduction also increases with W+
m approaching an asymptotic value depen-

dent on the oscillation period.

Berger et al. (2000) exploited the Lorentz force to create an oscillating-wall

profile in the near-wall region of a turbulent channel flow. The flow of the conduc-

tive working fluid was forced by a cross-stream large-scale velocity shear induced

by a surface-mounted system of electrodes and magnets. In results comparable

with those from direct oscillation of the channel walls, drag reductions of approx-

imately 40% were found for Rτ=100. In an analysis of the power budget for this

method Berger et al. calculated that the power spent to oscillate the flow was

O(103) greater than any power savings caused by the suppression of turbuence.

Nevertheless, works such as this which propose new actuation strategies to take
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advantage of the drag reduction capabilities of the oscillating-wall mechanism can

be considered to be major advancements.

It was found by Choi et al. (2002) that the space-averaged turbulent span-

wise flow created by the oscillating wall agrees closely with the laminar solution

to the Stokes second problem for oscillation periods smaller or comparable with

the optimum one. This led to the use of a scaling parameter for the drag reduc-

tion. Quadrio & Ricco (2004) found a linear relation between this parameter - a

measure of the penetration depth and acceleration of the Stokes layer - and the

drag reduction. This relation was noted to be valid only for T+≤150. Quadrio

& Ricco (2004) were also the first to explain the existence of the optimal period

by comparing it with the characteristic Lagrangian survival time of the near-wall

turbulent structures.

More recently, Ricco et al. (2012) endowed the scaling parameter with a more

direct physical meaning, showing it to be proportional to the maximum stream-

wise vorticity created by the Stokes layer at constant maximum velocity. Ricco

et al. (2012) considered the turbulent enstrophy equation rather than the trans-

port equation for the turbulent energy dissipation, observing how the oscillating

wall affects the individual terms in the equation. They were able to identify the

vorticity production term as being the most dominant near the wall. The raise

in vorticity production is balanced by an increase in the turbulent dissipation in

the same region. By studying the transient evolution from the start-up of the

wall motion, Ricco et al. (2012) showed that the turbulent kinetic energy and the

skin-friction coefficient decrease because of a short-time transient increase of tur-

bulent enstrophy. This is the latest effort aimed at elucidating the drag reduction

mechanism, after research works based on the disruption of the near-wall coher-

ent structures (Baron & Quadrio, 1996), the cyclic inclination of the low-speed

streaks (Bandyopadhyay, 2006), the weakening of the low-speed streaks (Di Cicca



16 1. Introduction

et al., 2002; Iuso et al., 2003), and simplified models of the turbulence-producing

cycle (Dhanak & Si, 1999; Moarref & Jovanovic, 2012; Duque-Daza et al., 2012).

Viotti et al. (2009) converted the unsteady oscillating-wall forcing to a steady

streamwise-dependent spanwise motion of the wall in the formW=Wm cos (2πx/λx).

Via DNS they found an optimal forcing wavelength of approximately λ+
opt=1250,

which is related to Topt, the optimum oscillating-wall period, through Uw, the

near-wall convection velocity, as λopt=UwTopt. Skote (2013) employed Viotti et

al.’s forcing to alter a free-stream turbulent boundary layer and found good agree-

ment between the analytic solution to the spatial Stokes layer flow and the time-

averaged spanwise flow. Skote (2013) also showed that the damping of the tur-

bulent Reynolds stresses depends on the penetration depth of the spatial Stokes

layer.

The oscillating-wall and steady-wave techniques were generalized by Quadrio

et al. (2009) who considered wall turbulence forced by wall waves of spanwise

velocity of the form W=Wm cos [2π(x/λx − t/T )]. A maximum drag reduction of

47% and a maximum net energy saving of 26% were computed for Rτ=200. For

wall waves travelling at a phase speed comparable with the near-wall turbulent

convection velocity, drag increase was also found.

Despite the widespread interest in turbulent drag reduction by active wall

forcing, the implementation of these techniques in industrial settings appears to

be an insurmountable challenge. Progress is nonetheless being made to improve

this scenario. Prominent amongst recent efforts is the experimental work by

Gouder et al. (2013) on in-plane forcing of wall turbulence through a flexible wall

made of electroactive polymers. The main reasons which render the technological

applications of active techniques an involved engineering task are i) the extremely

small typical time scale of the wall forcing (the optimal period for the oscillating-

wall technique translates to a frequency of 15,000Hz in commercial aircraft flight
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conditions), and ii) the requirement of large portion of the surface to be in uniform

motion. Therefore, drag reduction methods which operate on a large time scale

and rely on finite-size wall actuation are preferable in view of future applications.

Surface mounted discs

By applying a control scheme to the three velocity components in the near-wall

region, Keefe (1995) achieved drag reduction of 35%. Minimal actuation was

required in the wall-normal direction to obtain the drag reduction, leading to

experimental work on the same control scheme applied only in the stream- and

spanwise directions. Identical drag reduction occured with this restriction, and

Keefe put forward a novel actuation strategy exploiting this. In the patent for

the strategy Keefe proposed an array of discs mounted flush to the surface of

a flat plate, which also houses shear stress sensors to provide feedback (Keefe,

1997). In both Keefe’s patent and published work on this device, no control al-

gorithm is provided and no results are shown. Despite the promising outlook on

the applicability of this technique and the prediction of the optimal disc diam-

eter and rotation frequency (80 − 90µm and 72kHz respectively), Keefe did not

further investigate his idea and in the following 15 years neither experimental nor

numerical studies on this flow appeared.

Ricco & Hahn (2013) (denoted by RH13 hereafter) showed revived interest in

this flow and investigated an open-loop variant of Keefe’s technique whereby the

discs rotate with a pre-determined constant angular velocity. RH13 performed

a numerical parametric investigation at Rτ=180 on D, the disc diameter, and

W , the disc tip velocity, shown in figure 1.6. This yielded maximum values

for drag reduction and net power saved of 23% and 10%, respectively. RH13

also showed that drag increase occurs for small diameter and rotational periods,

that the disc-flow boundary layer must be thicker than a threshold to obtain
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drag reduction, and that the power spent to activate the discs can be calculated

accurately through the von Kármán laminar viscous pump solution (Panton,

1995) under specified conditions. The Fukagata-Iwamoto-Kasagi (FIK) identity

(Fukagata et al., 2002), a simple relationship between the skin-friction coefficient

and the Reynolds stress distribution, was modified for the disc flow to show

that the near-wall streamwise-elongated jets appearing between discs provide a

favourable contribution to drag reduction. Promisingly, the optimal spatial and

temporal scales were L+=O(1000) and T +=O(500). This is a significant result

when these scales are compared with those of other localized actuation strategies,

such as the feedback control based on wall transpiration (Yoshino et al., 2008),

which are thought to operate optimally at spatio-temporal scales L+=O(30) and

T +=O(100). It is the hope that the results of RH13 will therefore offer fertile

ground for new avenues of future research on active turbulent drag reduction.
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Fig. 1.6: Plot of drag reduction as a function of the disc parameters, as obtained by Ricco

& Hahn (2013). The size of the grey circles is proportional to the amount of drag

reduction, and the boxed values indicate the net power savings. The shaded

region indicates the parameter combinations which resulted in drag increase.

The work of RH13 confirms that the disc actuators can influence the flow
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field favourably, resulting in drag reduction. However the mechanism by which

this drag reduction occurs is as yet unknown. Although it is evident that the

streamwise-elongated structures contribute favourably to drag reduction, the

magnitude of this contribution has not been quantified. Further understand-

ing of how the discs engender flow within the channel can lead to improvements

in their design, and a possible reduction in the complexity of the actuation strat-

egy. The aims of this project are to make use of direct numerical simulations to

a) improve on current understanding as to how the disc actuators create drag re-

duction, b) use this understanding to propose modifications to the disc actuators

in order to enhance their drag reduction capabilities, and c) make the industrial

implementation of the disc actuators a more obtainable goal.



2. NUMERICAL PROCEDURES

2.1 Numerical solver, geometry and scaling

A pressure-driven, incompressible, turbulent channel flow at constant mass flow

rate is investigated through DNS. The infinite, parallel flat walls of the channel

are separated by L∗y=2h∗ where the symbol ∗ denotes a dimensional quantity.

A schematic of the geometry is shown in figure 2.1. The streamwise pressure

gradient is indicated by Π∗. L∗x and L∗z are the dimensions of the computational

domain in the streamwise (x∗) and spanwise (z∗) directions. Nodes along y are

clustered according to y(i)=cos [iπ/(Ny − 1)], where 0≤i<Ny, and Ny=129 is

the number of grid points in the wall-normal direction. The values for ∆ymin

and ∆ymax are 0.0003 and 0.025, respectively. All simulations are performed at

a Poiseuille Reynolds number of Rp=U
∗
ph
∗/ν∗=4200, where ν∗ is the kinematic

viscosity of the fluid and U∗p is the centreline velocity of the laminar Poiseuille

flow at the same mass flow rate. The equivalent friction Reynolds number for the

uncontrolled stationary-wall case is Rτ=u∗τh
∗/ν∗=180, where u∗τ=

√
τ∗w/ρ∗ is the

friction velocity, τ∗w is the space- and time-averaged wall-shear stress, and ρ∗ is

the density of the fluid.

An open-source code called channelflow is utilized to solve the Navier-Stokes

equations (Gibson, 2006). The code uses Fourier series expansions along the sta-

tistically homogeneous x∗ and z∗ directions, and Chebyshev polynomials along

the wall-normal direction y∗. A third-order semi-implicit backward differention

scheme is used to advance the equations in time. The time step is changed
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Fig. 2.1: Schematic of the channel geometry.

adaptively between ∆t+min=0.008 and ∆t+max=0.08. This reduces the compu-

tational cost by maximizing the CFL number within the range 0.2<CFL<0.4,

where CFL=[|u′| /(∆x,∆y,∆z)min]max ∆tprev, u′ is the instantaneous velocity

field and ∆tprev is the previous time step. The nonlinear terms are treated ex-

plicitly and the linear terms implicitly. The discretized equations are solved using

the Kleiser-Schumann algorithm (Kleiser & Schumann, 1980), outlined in Canuto

et al. (1988). Dealiasing is carried out by setting the upper third of the modes

in the x and z directions to zero. The code has been benchmarked against exist-

ing data in literature for fixed (e.g. Kim et al., 1987), and oscillating-wall (e.g.

Quadrio & Ricco, 2003) conditions. Details of these checks can be found in RH13.

The code has been modified to allow time-dependent disc motion. Validation of

the disc boundary conditions has also been done by implementing the discs in

other open-source numerical codes, resulting in comparable values of drag reduc-

tion and power spent. The code has been parallelized using OpenMP within the

scope of this work and simulations have been carried out on the N8 HPC Polaris

cluster. Post-processing has been performed on the Iceberg cluster at the Uni-

versity of Sheffield. A detailed description of the code, including results on the

parallel scalability is found in Appendix A. Resolution sensitivity checks have

been performed, details of which are found in Appendix B.
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Lengths are scaled with h∗ and velocities are scaled with U∗p . The time is

scaled by h∗/U∗p and the pressure by ρ∗U∗2p . Quantities non-dimensionalized

using these outer units are not marked by any symbol. The superscript + will

henceforth indicate scaling by viscous units, i.e. with ν∗ and u∗τ . Unless otherwise

stated native viscous scaling is used, a terminology first defined by Trujillo et al.

(1997). This is based on u∗τ from the case under investigation.

2.2 Flow decomposition

The averaging operators used to decompose the flow are defined in the following.

The space- and time-ensemble average is defined as

f(x, y, z, τ) =
1

NxNzN

Nx−1∑

nx=0

Nz−1∑

nz=0

N−1∑

nt=0

f(x̃+ 2nxD, y, z̃ + nzD,ntT + τ), (2.1)

where 2Nx and Nz are the number of discs within the computational domain

along x̃ and z̃, respectively. For the oscillating disc case τ is the window time

of the disc oscillation, and N is the number of oscillation periods. This average

is used to condense the computational domain into the minimal repeating unit,

and is used to present phased averaged information on the disc flow.

The time average and the spatial average along the homogeneous directions

are defined respectively as

〈f〉(x, y, z) =
1

T

∫ T

0
f(x, y, z, τ)dτ, f̂(y) =

1

LxLz

∫ Lx

0

∫ Lz

0
〈f〉(x, y, z)dzdx.

(2.2)

The time and spatial averages are used to present wall-normal profiles of the

disc-flow, and are used in the weighted overage of the Reynolds stresses for input

to the Fukagata-Iwamoto-Kasagi identity. A global variable is defined as

[f ]g =

∫ 1

0
f̂(y)dy.

The size of all statistical samples is doubled by averaging over the two halves of

the channel, taking into account the existing symmetries. The channel flow field
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is expressed by the sum

u(x, y, z, t) = um(y) + ud(x, y, z, τ) + ut(x, y, z, t), (2.3)

where um(y) = {um, 0, 0} = û is the mean flow, ud(x, y, z, τ) = {ud, vd, wd} =

u− um is the disc flow, and ut is the fluctuating turbulent component.

2.3 Definition of performance quantities

This section introduces the main quantities used to describe the disc flow, i.e.

the turbulent drag reduction, the power spent to activate the discs against the

viscous resistance of the fluid, and the net power saved, which is their algebraic

sum.

2.3.1 Turbulent drag reduction

The skin-friction coefficient Cf is first defined as Cf=2τ∗w/
(
ρ∗U∗2b

)
, where U∗b =

[u∗]g/h∗ is the bulk velocity. The latter is constant because the simulations are

performed under conditions of constant mass flow rate. The drag reduction R is

defined as the percentage change of the skin-friction coefficient with respect to

the stationary wall value (Quadrio & Ricco, 2004):

R(%) = 100
Cf,s − Cf
Cf,s

, (2.4)

where the subscript s refers to the stationary wall case, and Cf is averaged over

the channel walls. Using τ∗w=µ∗u∗′m(0), where µ∗ is dynamic viscosity and the

prime denotes differentiation with respect to y, (2.4) becomes R(%) = 100 ·
(
1− u′m(0)/u′m,s(0)

)
.

2.3.2 Power spent

As the disc flow is an active drag reduction technique, power is supplied to the

system to move the discs against the viscous resistance of the fluid. To calculate
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the power spent, we first consider the instantaneous energy equation, given by

(1-108) in Hinze (1975) and replicated here as

∂

∂t∗
u∗iu

∗
i

2
= − ∂

∂x∗j
u∗j

(
p∗

ρ∗
+
u∗iu

∗
i

2

)
+ν∗

∂

∂x∗j
u∗i

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
−ν∗

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
∂u∗i
∂x∗j

,

(2.5)

where i, j are the indices indicating the spatial coordinates x̃, y, z̃ and the corre-

sponding velocity components (Einstein summation of repeated indices is used).

The volume-average of the second term on the right-hand side is the work done

by the viscous stresses per unit time,

P∗sp,t =
ν∗

L∗xL∗yL∗z

∫ L∗
x

0

∫ L∗
y

0

∫ L∗
z

0

∂

∂x∗i

[
u∗j

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)]
dz̃∗dy∗dx̃∗. (2.6)

By substituting (2.3) into (2.6) and by use of (2.1) and (2.2), one finds

P∗sp,t =
ν∗

h∗


 ̂
u∗d
∂u∗d
∂y∗

∣∣∣∣∣
y∗=0

+
̂
w∗d
∂w∗d
∂y∗

∣∣∣∣∣
y∗=0


 . (2.7)

The power spent (2.7) is to be expressed as a percentage of the power employed to

drive the fluid in the streamwise direction, P∗x. First, by volume-, ensemble- and

time-averaging the first term on the right-hand side of (1-108) in Hinze (1975),

one obtains

P∗x =
U∗b Π∗

ρ∗
, (2.8)

By dividing (2.7) by (2.8), the percentage power employed to oscillate the discs

with respect to the power spent to drive the fluid along the streamwise direction

is then obtained,

Psp,t(%) =
100Rp
R2
τUb


 ̂
ud
∂ud
∂y

∣∣∣∣∣
y=0

+
̂
wd
∂wd
∂y

∣∣∣∣∣
y=0


 , (2.9)

where Rτ is the stationary-wall reference value.

2.3.3 Net power saved

The net power saved, Pnet, the difference between the power saved due to the

disc forcing (which coincides with R for constant mass flow rate conditions) and
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the power spent Psp,t, is defined as

Pnet(%) = R(%)− Psp,t(%). (2.10)



3. OSCILLATING DISCS

3.1 Flow definition and modelling of actuators

3.1.1 Numerical parameters

For this investigation the channel walls are covered by flush-mounted rigid discs,

shown schematically in figure 3.1. The discs have diameter D and oscillate in

time with disc tip velocity

W̃ = W cos

(
2πt

T

)
. (3.1)

Neighbouring discs in the streamwise direction have opposing sense of rotation,

whilst neighbouring discs in the spanwise direction have the same sense of rota-

tion. A parametric study was undertaken on D, W and T , with the parameter

range selected in order to focus on the portion of D, W parameter space stud-

ied by RH13 which leads to high drag reduction. The region of drag increase

found by RH13 was not considered. For disc diameters D=1.78, 3.38, a com-

putational box size of dimensions Lx=6.8π and Lz=2.26π was utilized, where

Lx and Lz are the box lengths along the streamwise and spanwise directions,

respectively. For D=5.07, Lx=6.8π and Lz=3.4π, and for D=6.76, Lx=9.05π

and Lz=2.26π. The dimensions of the computational box are larger than those

used in literature for similar values of Reynolds number (i.e. Kim et al. (1987)

(Lx,Lz)=(4π,2π), Quadrio & Ricco (2003) (Lx,Lz)=(21,4.2)). It should be noted

that the streamwise dimension of the box in the current study is significantly

larger than that of Kim et al. (1987). This is to account for the elongation of
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Fig. 3.1: Schematic of the flow domain showing the location and sense of rotation of the

discs when W̃=W .

the near-wall turbulent structures that occurs under drag-reducing conditions

(Orlandi & Fatica, 1997). A further check to determine whether Lx and Lz are

large enough to incorporate the large-scale structures is to observe whether the

two-point correlation coefficient Rii=〈ui(x, t)ui(x′, t)〉 falls to zero in the stream-

wise and spanwise directions. Although this check has not been done within the

present work, the data of Tsukahara et al. (2005) for an uncontrolled channel flow

at Rτ=80 suggests that the channel dimensions are sufficiently large. The grid

sizes were ∆x+=10, ∆z+=5 in all cases, and the time step was within the range

0.008≤∆t+≤0.08 (scaled in reference viscous units). The initial transient period

during which the flow adjusts to the new oscillating-disc regime was discarded

following the procedure outlined in Quadrio & Ricco (2004). Flow fields were

saved over an integer number of periods at intervals of T/8. After the transient

was discarded, the total integration time was t+=6000 for T+=100, t+=7500 for

T+=250, 500, and t+=15000 for T+=1000.
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3.1.2 Disc annular gap

To simulate the disc flow as realistically as possible, a thin annular region of

width c was considered around each disc, as shown in figure 3.2. As explained in

RH13, there are two reasons for this choice. The clearance flow between each disc

and the stationary portion of the wall is simulated to mimic as closely as possible

an experimental disc flow set up where such gap would inevitably be present.

Secondly, the velocity profile between the disc tip and stationary wall does not

present discontinuities. This serves to suppress strongly the Gibbs-type artificial

oscillations that would occur if the velocity were not continuous. Ideally, the gap

flow would be more realistically simulated by treating the turbulent channel flow

and gap flow as coupled systems, but this lies outside the scope of the present

study.

As a first approximation, the gap velocity profile is assumed to be symmetric

about the disc axis and to change linearly from a maximum velocity at the disc

tip to zero at the outer edge of the gap. The tangential velocity uθ in this region

is a function only of r, the radial displacement from the centre of the disc, and

time, t. The disc velocity profile is

uθ(r, t) =





2Wr cos(2πt/T )/D, r ≤ r1,

W (c− r +D/2) cos(2πt/T )/c, r1 ≤ r ≤ r2,

where r1=D/2 and r2=D/2+c. As a more advanced approximation, the clearance

flow is modelled as a thin layer of fluid confined between concentric cylinders.

Similarly to the laminar flow between moving flat plates, the flow contained within

this annular gap is described by the Womersley number, Nw=c∗
√

2π/(ν∗T ∗)

(Pozrikidis, 2009). When Nw�1, the linear velocity profile accurately describes

the flow. However, for Nw=O(1) the oscillating flow surrounding each disc is

confined to a boundary layer which is attached to the oscillating disc and is

much thinner than c. The bulk of the annular gap is quasi-stationary. In our
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Fig. 3.2: Schematic of disc and annular gap flow.

simulations the minimum Nw=0.51 occurs for the case with the thinnest gap and

the largest oscillation period, i.e. for D=1.78, T=130. The maximum Nw=6.42

occurs for D=7.1, T=13. Therefore, it is a sensible choice to simulate the gap via

the oscillating layer as Nw attains finite values. Following the analysis of Carmi

& Tustaniwskyj (1981), the uθ(r, t) velocity profile in the gap is described by the

azimuthal momentum equation,

∂uθ
∂t

=
1

Rp

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r
− uθ
r2

)
. (3.2)

Assuming a solution to (3.2) of the form uθ=R
[
ůθ(r)e

i2πt̂/T
]
, where R denotes

the real part and t̂ is the rescaled time, t̂=t/Rp, the following ordinary differential

equation of the Bessel type is obtained

ů′′θ +
ů′θ
r
−
(

2πi

T
+

1

r2

)
ůθ = 0, (3.3)

where the prime denotes differentiation with respect to r. Equation (3.3) is

subject to ůθ(r1)=W , ůθ(r2)=0. The velocity in the annular gap is

uθ(r, t̂) = W · R
[ K(ξr2)I(ξr)− I(ξr2)K(ξr)

I(ξr1)K(ξr2)− I(ξr2)K(ξr1)
ei2πt̂/T

]
, (3.4)

where I(·) and K(·) are the first-order modified hyperbolic Bessel functions

(Abramowitz & Stegun, 1964) and ξ=
√
i2π/T . Velocity profiles are shown in

figure 3.3. The Bessel layer was included in the code by reading in a map of
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the complex wall velocity at t=0. To advance in time the components within

this map were multiplied by e2πit̂/T and the real components were extracted. As

the boundary conditions are implemented in spectral space, it was necessary to

Fourier transform the time-updated map of the velocity components at each time

step, before passing the Fourier components as boundary conditions.

The difference between the values of drag reduction and power spent against

the viscous forces computed by use of the two annular-gap models for c=0, 0.02D,

and 0.05D were within the uncertainty range estimated via numerical resolution

checks based on variation of the mesh sizes, time step advancement, and size of

the computational box (refer to Appendix B for details). For this reason and

because of the higher computational cost caused by the Bessel profile due to the

additional spectral transformations, the linear velocity profile model was used.

In order to choose the appropriate gap size for the simulations, the dimensional

gap values were examined for typical experimental scenarios, presented in table

6 of RH13 for the steady disc flow case. The largest tested gap size of c=0.05D

was implemented as it corresponds to a value that would be achievable in the

laboratory conditions detailed in this table.

3.2 Laminar flow

For other active turbulent drag reduction techniques the analytical solutions for

the corresponding laminar flows induced by wall motion have proven useful for

accurately estimating important averaged turbulent quantities, such as the wall

spanwise shear (Choi et al., 2002), the power spent for the wall forcing (Ricco

& Quadrio, 2008), and the thickness of the generalized Stokes layer generated

by the wall waves (Skote, 2011). The laminar solution has also been employed

to determine a scaling parameter which relates uniquely to drag reduction under

specified wall forcing conditions (Quadrio & Ricco, 2004; Cimarelli et al., 2013).
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Fig. 3.3: Velocity profiles within the annular gap over a half period of the oscillation,

computed through (3.4). Left: D=7.1, W=0.51, T=130, Nw=2.03. Right:

D=7.1, W=0.51, T=13, Nw=6.42.

Through the laminar solution of the flow induced by a steadily rotating infinite

disc, RH13 obtained an estimate of the time-averaged power spent to move the

discs, which showed very good agreement with the power spent computed via

DNS.

Inspired by previous works, the laminar flow above an infinite oscillating disc

is therefore computed to calculate the power spent to activate the disc and to

identify areas over the disc surface where the fluid performs work onto the discs,

thus aiding the rotation. This is a form of the regenerative braking effect, studied

by RH13 for steady disc rotation. These estimates are then compared with the

turbulent quantities in §3.3.5.

3.2.1 Laminar flow over an infinite oscillating disc

The laminar oscillating-disc flow was studied for the first time by Rosenblat (1959)

(refer to figure 3.2 for the flow geometry). The velocity components are

{u∗r , u∗θ} =
2r∗W ∗

D∗
{
F ′
(
η, t̆
)
, G
(
η, t̆
)}
, u∗y = −4W ∗

D∗

√
ν∗T ∗

π
F
(
η, t̆
)
, (3.5)
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where the prime denotes differentiation with respect to η=y∗
√
π/(ν∗T ∗), the

scaled wall-normal coordinate, t̆=2πt∗/T ∗ is the scaled time, and u∗r , u
∗
θ and

u∗y are the radial, azimuthal, and axial velocity components, respectively. The

following boundary conditions are satisfied

y∗ = 0 : u∗r = 0, u∗θ = (2r∗W ∗/D∗) cos t̆, u∗y = 0, p∗ = 0.

y∗ →∞ : u∗r = 0, u∗θ = 0.

Expressions (3.5) are substituted into the cylindrical Navier-Stokes equations to

obtain the equations of motion for F ′ and G under the boundary layer approxi-

mation,

Ḟ ′ =
1

2
F ′′′ + γ(G2 + 2FF ′′ − F ′2),

Ġ =
1

2
G′′ + 2γ(FG′ − F ′G),

(3.6)

with boundary conditions

η = 0 : F = F ′ = 0, G = cos t̆,

η →∞ : F ′ = G = 0,
(3.7)

where the dot denotes differentiation with respect to t̆ and γ=T ∗W ∗/(πD∗). The

latter parameter represents the ratio between the oscillation period T ∗ and the

period of rotation πD∗/W ∗ which would occur if the disc rotated steadily with

tip velocity W ∗. The value γ=π is relevant because it denotes the special case

of maximum disc tip displacement equal to the circumference of the disc, i.e.

each point at the disc tip covers a distance equal to πD∗ during a half period of

oscillation.

The system (3.6)-(3.7) was discretized using a first-order finite difference

scheme for t̆ and a second-order central finite difference scheme for η. The

equations were first solved in time by starting from null initial profiles. The

boundary condition for G was altered as G
(
0, t̆
)
=1− e−t̆ until G was sufficiently

close to unity. The system was then integrated with the boundary condition
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Fig. 3.4: Left: Wall-normal profiles of F ′ and G at different oscillation phases for γ=1

(thick lines) and γ=0 (thin lines). The latter is given by (3.13) and coincides

with the classical Stokes layer solution. Right: Numerically computed values

of G(γ) (solid lines) and asymptotic solutions, (3.12) for γ� 1 (dashed line in

main plot), and (3.15) for γ�1 (dashed line in inset).

G
(
0, t̆
)
=cos t̆. Figure 3.4 (left) shows the wall-normal profiles of F ′ and G at

different oscillation phases.

3.2.2 Laminar power spent

The laminar power spent P∗sp,l is calculated using (2.6), where only ud is retained

in the laminar case as there is no mean streamwise flow above the disc and

the turbulent fluctuations are null (um=ut=0). Substituting ud=uθ cos θ and

wd=uθ sin θ into (2.6), using (3.5) and averaging over θ, r, and time leads to

P∗sp,l = −π
3/2G(γ)W ∗2

D∗20

√
ν∗

T ∗

(
D∗2

8
+
c∗D∗

3
+
c∗2

6

)
, (3.8)

where

G(γ) =
1

2π

∫ 2π

0
G
(
0, t̆
)
G′
(
0, t̆
)

dt̆ (3.9)
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is shown in figure 3.4 (right). To express P∗sp,l as percentage of the power spent to

drive the fluid along the streamwise direction, (3.8) is divided by (2.8) to obtain

Psp,l(%) = −100(πRp)
3/2G(γ)W 2

UbR2
τD

2
0

√
T

(
D2

8
+
cD

3
+
c2

6

)
. (3.10)

Asymptotic limit for γ � 1: the Stokes-layer regime

To obtain an analytical approximation to G for γ�1, the expanded form of G in

powers of γ can be used,

Gγ�1(η, t̆, γ) = G0(η, t̆) + γ2G2(η, t̆) +O(γ3), (3.11)

where G0 and G2 are given in equations (17) and (45) of Rosenblat (1959). Upon

differentiation of (3.11) with respect to η, the asymptotic form of G(γ) is

Gγ�1(γ) =
1

2π

∫ 2π

0
G0(0, t̆)

[
G′0(0, t̆) + γ2G′2(0, t̆)

]
dt̆ = −1

2
+
γ2

160

(
15
√

2− 26
)

+O(γ3),

(3.12)

which is shown in figure 3.4 (right). The asymptotic solution predicts the numer-

ical solution well for γ<2.

In the limit γ�1, Rosenblat (1959) obtained a first-order solution

u∗θ =
2r∗W ∗

D∗
e−
√
π/(ν∗T ∗)y∗ cos

(
2πt∗

T ∗
−
√

π

ν∗T ∗
y∗
)

, (3.13)

which is in the same form as the classical Stokes solution (Batchelor, 1967).

Substituting (3.13) into (2.6), the first-order approximation is found, P∗sp,l =

0.25W ∗
√
πν∗/T ∗, which is expressed as percentage of (2.8) to obtain

Psp,l,γ�1(%) =
50(πRp)

3/2W 2

UbR2
τD

2
0

√
T

(
D2

8
+
cD

3
+
c2

6

)
.

This is also found directly from (3.10) by setting G(0)=−0.5.

Asymptotic limit for γ � 1: the quasi-steady regime

As suggested by Benney (1964), in the limit γ�1 it is more appropriate to rescale

the wall-normal coordinate by the Ekman layer thickness δ∗e=
√
ν∗D∗/(2W ∗).
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The rescaled equations (2.19) and (2.20) of Benney (1964) were then solved using

the same numerical method described in §3.2.1. The von Kármán equations

describing the flow over a steadily rotating disc are recovered in the limit γ→∞.

The asymptotic limit of G for γ�1 is found by first rescaling G′(0, t̆) in (3.9)

through δ∗e and by noting that the time modulation of the disc motion enters the

problem only parametrically,

G′γ�1(0, t̆) =
√

2γGs cos t̆, (3.14)

where Gs=−0.61592 (Rogers & Lance, 1960). By substituting (3.14) into (3.9)

and by use of (3.7), one finds

Gγ�1(γ) = Gs

√
γ

2
. (3.15)

As shown in figure 3.4 (right, inset), the asymptotic expression (3.15) matches

the numerical values well. By substituting (3.15) into (3.10), the asymptotic form

of the power spent is obtained

Psp,l,γ�1(%) =
−100πGsR

3/2
p W 5/2

UbR2
τD

2
0

√
2D

(
D2

8
+
cD

3
+
c2

6

)
.

By coincidence, the power spent when γ=0, i.e. (3.2.2), is half of the oscillating-

wall case at the same W ∗ and T ∗ (Ricco & Quadrio, 2008), and the power spent

when γ � 1, i.e. (3.2.2), is half of the steady-rotation case at the sameW ∗ andD∗

(RH13). The oscillating-disc power spent is expected to be smaller than in these

two cases, but for different reasons. The oscillating-wall case requires more power

because the motion involves the entire wall surface, while the steady-rotation case

consumes more power because the motion is uniform in time.

3.2.3 Laminar regenerative braking effect

The laminar phase- and time-averaged power spent Wl to oscillate the discs be-

neath a uniform streamwise flow is computed by following RH13. As the purpose
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of this analysis is to obtain a simple estimate of the turbulent case, the stream-

wise shear flow is superimposed on the Rosenblat flow without considering their

nonlinear interaction. A rigorous study of this flow would be the extension of the

work by Wang (1989) with oscillatory wall boundary conditions. Starting from

(2.6), using (2.3), and setting ut=0, one finds

Wl(x, 0, z, t̆) =
1

Rp

[
ud(x, 0, z, t̆)

(
u′m(0) +

∂ud
∂y

∣∣∣∣
y=0

)
+ wd(x, 0, z, t̆)

∂wd
∂y

∣∣∣∣
y=0

]
.

(3.16)

Using (3.5), (3.16) becomes

Wl(r, t̆) =
2rWG(0, t̆, γ)

DRp

(
u′m(0) cos θ +

2Wr

D

√
πRp
T

G′(0, t̆, γ)

)
.

By rearranging to obtain an inequality in r, the region where the streamwise flow

exerts work on the disc (regenerative braking effect) is found,

r < −u
′
m(0)D cos θ

2WG′(0, t̆, γ)

√
T

πRp
. (3.17)

In §3.3.5, the region of regenerative braking effect is computed for the turbulent

case and compared with the laminar prediction (3.17).

3.3 Turbulent flow

The turbulent flow results are presented in this section. Sections §3.3.1, §3.3.2,

§3.3.3, §3.3.6 focus on the drag reduction, section §3.3.4 presents disc flow visu-

alization and statistics, and section §3.3.5 describes the power spent to move the

discs and the comparison with the laminar prediction, studied in §3.2.2.

3.3.1 Time evolution

The temporal evolution of the space-averaged wall-shear stress is displayed in

figure 3.5 (left). The transient time occurring between the start-up of the disc

forcing and the fully established disc-altered regime increases withR. This agrees
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with the oscillating wall and RH13, but the duration of the transient for the discs

is shorter than for the oscillating wall case. The time modulation of the wall-

shear stress is notable for the high R cases, with the amplitude of the signal

increasing with T . The significant time modulation and the shorter transient

compared with the oscillating wall technique could be due to the discs forcing

the wall turbulence in the streamwise direction. The streamwise wall-shear stress

is therefore affected directly whereas in the oscillating-wall case the streamwise

shear flow is modified indirectly as the motion is along the spanwise direction

only.

The space- and phase-averaged wall-shear stress modulation, shown by the

dashed line in figure 3.5 (right), has a period equal to half of the wall velocity.

This is expected because of symmetry of the unsteady forcing with respect to

the streamwise direction. The wall-shear stress reaches its minimum value ap-

proximately T/8 after the disc velocity is maximum, i.e. at φ=5π/8, 13π/8. The

wall-shear stress peaks approximately T/8 after the disc velocity is null, i.e. at

φ=π/8, 9π/8.

3.3.2 Dependence of drag reduction on D, W , T

Figure 3.6 depicts maps of R(T,W )(%) for disc sizes D=1.78, 3.38, 5.07, and

6.76. The γ values are shown as hyperbolae in these planes. For cases with γ>π,

the maximum displacement is larger than the disc circumference. Figure 3.7

shows the same drag-reduction data, scaled in viscous units. The boxed values

represent the net power saved Pnet(%) defined in (2.10). Only positive Pnet values

are shown and the bold boxes highlight the maximum Pnet values.

For D=1.78 and 3.38 and fixed W , drag reduction increases up to an optimum

T beyond which it decays. This optimum T depends on D, and increases with the

disc diameter. For D=1.78, 3.38 the optimal periods are in the ranges T+=200-
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Fig. 3.5: Left: Space-averaged streamwise wall-shear stress vs. time for cases at D=3.38.

The disc forcing is initiated at t+=770. Only a fraction of the total integration

time is shown. The space-averaging operator here does not include time averag-

ing. Right: Ensemble- and space-averaged streamwise wall-shear stress vs. τ+

for D+=554, W+=9.9, T+=833 (dashed line). The disc velocity is shown by

the solid line. The phase φ is given in the figure.

400 and T+=400-800, respectively. For D=5.07 and 6.76 the optimal period is

not computed and therefore R increases monotonically with T for fixed W and

D. Cases with larger T are not investigated due to the increased simulation time

required for the averaging procedure.

For D=1.78 and fixed T , drag reduction increases up to an optimum wall ve-

locity of approximately W=0.26 (W+=6), above which drag reduction decreases.

This behaviour also occurs in the steady-disc case studied by RH13. The optimal

W are not found for larger D as the drag reduction increases monotonically with

W for fixed D and T .

For T � 1, the wall forcing is quasi-steady and it is therefore worth comparing

the R value with the ones obtained by steady disc rotation, computed by RH13.

RH13’s values are however not expected to be recovered in this limit. A primary

reason for this is that the power spent in the oscillating-disc case is smaller than

in the steady rotation case, as verified in §3.3.5 (in §3.2.2, it is predicted to be
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half of the steady case by use of the laminar solution when the oscillation period

is large). RH13’s values are displayed in figure 3.7 by the dark grey circles on

the right-hand side of each map. In most of the cases where the optimal T+

is detected, i.e. for W+>3, D=1.78, and for W+>9, D=3.38 and 5.07, our R

values may reach larger values than RH13’s for the same W+. For D=6.76, all

our computed R are lower than RH13’s.

Figure 3.7 also shows that a positive Pnet occurs only for W+≤9. This con-

firms the finding by RH13 for steady rotation and is expected because the power

spent grows rapidly as W grows, as also suggested by the laminar result in (3.10).

The largest positive Pnet in the parameter range is 6 ± 1%, and is obtained for

D+=855, W+=6.4, T+=880, and D+=568, W+=6.4, T+=874.
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Fig. 3.6: Plots of R(T,W )(%) for different D. The circle size is proportional to the drag

reduction value. The hyperbolae are constant-γ lines.
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Fig. 3.7: Plots of R(T+,W+)(%). Scaling is performed using u∗τ from the native case.

The dark grey circles indicate RH13’s data and the boxed values denote positive

Pnet values.

3.3.3 The Fukagata-Iwamoto-Kasagi identity

The Fukagata-Iwamoto-Kasagi (FIK) identity relates the skin-friction coefficient

of a wall-bounded flow to the Reynolds stresses (Fukagata et al., 2002). It is

extended here to take into account the oscillating-disc flow effects (the reader

should refer to Appendix A of RH13 for a slightly more detailed derivation for

the steady disc flow case). By non-dimensionalizing the streamwise momentum

equation into outer units, decomposing the velocity field as discussed in §2.2 and

averaging in time, along the homogeneous x and z directions, and over both
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halves of the channel, the following is obtained

ΠRep =
(
u′m − ûdvd − ûtvt

)′
,

where the prime indicates differentiation with respect to y. By following the

same procedure outlined in Fukagata et al. (2002) and noting that the Reynolds

stresses term ûtvt in equation (1) in Fukagata et al. (2002) is replaced with the

sum ûtvt + ûdvd, the relationship between Cf and the Reynolds stresses for the

disc flow case can be written as

Cf =
6

UbRep
− 6

U2
b

[(1− y) (ûtvt + ûdvd)]g , (3.18)

which is in the same form of the steady case by RH13. The drag reduction com-

puted through the Reynolds stresses via (3.18) isR=16.9% forD=3.38, W+=13.2

and T+=411, which agrees with R=17.1%, calculated via the wall shear-stress.

Using (3.18), it is also possible to separate the total drag reduction into the

change of the turbulent Reynolds stresses ûtvt−〈ût,svt,s〉 and the contribution of

the time averaged disc Reynolds stresses ûdvd, i.e. R(%)=Rt(%) +Rd(%) where

Rt(%) = 100
Rp
[
(1− y)

(
ûtvt − 〈ût,svt,s〉

)]
g

Ub −Rp
[
(1− y) 〈ût,svt,s〉

]
g

, (3.19)

Rd(%) = 100
Rp [(1− y) ûdvd]g

Ub −Rp
[
(1− y) 〈ût,svt,s〉

]
g

. (3.20)

The subscript s again refers to the stationary wall case. This decomposition is

used in section §3.3.6 to study the drag reduction physics.

3.3.4 Disc flow visualizations and statistics

The disc flow for D+=552, W+=13.2 and T+=411 (R=17%) is visualized at

different phases in figure 3.8. Isosurfaces of q+=
√
u+2
d + w+2

d =2.1 are displayed.

Similarly to the steady case by RH13, streamwise-elongated tubular structures

appear between discs, which extend vertically up to almost one quarter of the
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(a) φ = 0 (b) φ = π/4

(c) φ = π/2 (d) φ = 3π/4

Fig. 3.8: Disc-flow visualizations of q+(x, y, z)=
√
u+2
d + w+2

d =2.1 at phases φ=0, π/4,

π/2, and 3π/4. The disc tip velocity at each phase is shown in figure 3.5 (right).

In this figure and in figures 3.9, 3.10, 3.11, and 3.13, D+=552, W+=13.2,

T+=411.

channel height. They occur where there is high tangential shear, i.e. where

the disc tips are next to each other and rotate in opposite directions, but also

over sections of stationary wall. They persist almost undisturbed across the

entire period of oscillation, their intensity and shape being only weakly modulated

in time. The thin circular patterns on top of the discs instead show a strong

modulation in time. This is expected as the patterns are directly related to the

disc wall motion. Although at φ=0 the disc velocity is null, the circular patterns

are still observed as the rotational motion has diffused upward from the wall by

viscous effects. Instantaneous isosurfaces of low-speed streaks in the proximity

of the wall (not shown) reveal that the intensity of these structures is weakened

significantly, similarly to the steady disc-flow case.



3.3. Turbulent flow 43

x+

(a) φ = 0

z
+

(b) φ = π/4

(c) φ = π/2

(d) φ = 3π/4

-12 -8 -4 0 4 8 12

0 552 11040 552 11040 552 11040 552 11040

552
0

552
0

552
0

552

Fig. 3.9: Contour plot of u+d (x, y, z) as a function of phase in the x − z plane at y+=0,

y+=4, y+=8 and y+=27 (from left to right).

Contour plots of ud in x− z planes are shown in figure 3.9. The first column

on the left shows the contour at the wall. At y+=4 and y+=8, the disc outlines

can still be observed, the clarity decreasing with the increased distance from the

wall. At these heights the contour lines are no longer straight, but show a wavy

modulation. The circular patters created by the disc motion are displaced in the

streamwise direction by the mean flow. The magnitude of the shift increases with

distance from the wall and at y+=8 it is about 100ν∗/u∗τ . At y+=27 the disc

outlines are no longer visible and the structures occurring between discs in figure

3.8 here appear as streamwise-parallel bands of ud which do not modulate in

time and are slower than the mean flow. They also appear at higher wall-normal

locations up to the channel half-plane, with their width increasing with height.

The contour plots in figure 3.10 show the ensemble- and time-averaged wall-

shear stress. At phases φ=0 and π, when the angular velocity of the discs is zero,

the wall-shear stress is almost uniform over the disc surface. During the other

phases of the cycle, the lines of constant stress are inclined with respect to the

streamwise direction and the maximum values are found near the disc tip. The
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Fig. 3.10: Contour plot of phase-averaged streamwise wall friction, 2 〈∂u+/∂y+|0〉/U+2
b .

The skin-friction coefficient is Cf=6.79 · 10−3.

lines show a maximum inclination of about 45◦ at phases φ=3π/4, 7π/4, when

the deceleration of the discs is maximum.

Figure 3.11 (left) shows contours of the time-averaged 〈udvd〉 observed from

the y-z plane at different streamwise locations. These contours overlap with the

elongated structures in figures 3.8 and 3.9, which are therefore recognized as

primarily responsible for these additional Reynolds stresses. It is clear that the

structures are only slowly varying along the streamwise direction. The flow over

the disc surface does not contribute to 〈udvd〉 because, although ud is significant,

vd is negligible. Only the contribution to 〈udvd〉 from both negative ud and vd

is included in figure 3.11 (left) as ud and vd with other combinations of signs

only negligibly add to the total stress. The structures are therefore jets oriented

toward the wall and backward with respect to the mean flow.

Figure 3.11 (right) shows the time modulation of the root-mean-square (r.m.s.)

of the disc streamwise velocity component, defined as ud,rms(y, τ)=

√
û2
d, and of

the Reynolds stresses û+
d v

+
d (where here the spatial average ·̂ does not include

the time average as in (2.2)). Four profiles are shown for each quantity, for
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Fig. 3.11: Left: Isosurfaces of 〈u+d v+d 〉 observed from the y − z plane at x+=0, x+=160,

x+=320 (from left to right). The plot shows only 〈u+d v+d 〉 for ud, vd<0 as

within the contour range the contributions from other combinations of ud and

vd are negligible. Right: Wall-normal profiles of the u+d,rms (solid lines) and

û+d v
+
d (dashed lines). Profiles are shown for phases from the first half of the

disc oscillation.

phases from the first half period of the oscillation. Data from the second half

are not shown as the profiles coincide at opposite oscillation phases. The disc

flow penetrates into the channel up to y+ ≈ 15. When the disc tip velocity is

close to its maximum, the profiles of ud,rms and wd,rms (the latter not shown)

decay from their wall value and follow each other closely up to y+ ≈ 10. At

higher locations, the magnitude of u+
d,rms is larger than that of the wall-normal

and spanwise velocity profiles.

In the bulk of the channel, for y+>50, the profiles modulate only slightly in

time. This therefore further confirms that the intense temporal modulation of

the disc flow is confined in the viscous sublayer and buffer region. u+
d,rms decays

to ≈0.7 as the channel centreline is approached. As expected, the Reynolds

stresses û+
d v

+
d show a slow time modulation and are always positive, proving that

the streamwise-elongated structures favourably contribute to the drag reduction

through Rd in (3.20). Neither u+
d,rms nor û+

d v
+
d modulate in time for y+>120.
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3.3.5 Power spent

Comparison with laminar power spent

Figure 3.12 (left) shows the comparison between the power spent Psp,t to im-

pose the disc motion, computed via (2.9) with DNS data, and the laminar power

spent, calculated via (3.10). The values match satisfactorily for low Psp,t, and

the disagreement grows for larger Psp,t. This is due to the larger values of W ,

which intensify the nonlinear interactions between the disc flow and the stream-

wise turbulent mean flow, and promote the interference between neighbouring

discs. As the laminar calculations are performed by not accounting for the disc

interference through the assumption of infinite disc size and by neglecting the

streamwise mean flow, the agreement is expected to worsen for large W . Figure

3.12 (left) also shows that the power spent for cases with positive Pnet is pre-

dicted more accurately by the laminar solution than for cases with negative Pnet,

a result also found by RH13.

Figure 3.12 (right) presents the same data of the right plot, with the symbols

coloured according to T . The agreement is best for the largest oscillation periods,

T=130, and it worsens as T decreases. The trend for T=130 closely resembles

the one of the steadily rotating discs by RH13, which is consistent with the wall

forcing becoming quasi-steady at large periods. For T=130, the highest value of

Psp,t=37%, occurring for D=1.78, W=0.51, differs from Psp,l by 17%, while a

disagreement of 15% is found by RH13 for the same Psp,l value.

Turbulent regenerative braking effect

For the majority of oscillation cycle, power is spent by the discs to overcome

the frictional resistance of the fluid. However, for part of the oscillation, work is

performed by the fluid on the disc. This is a form of the regenerative breaking

effect which also occurs for the case of uniform spanwise wall oscillations. Contour
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Fig. 3.12: Left: Psp,t(%), computed through DNS via (2.9), vs. Psp,l(%), computed

through (3.10), the power spent by an infinite disc oscillating beneath a still

fluid. Data are coloured according to Pnet. Right: Psp,t(%) vs. Psp,l(%), with

symbols grouped according to T .

plots of the localized power spent Wt, defined as

Wt(x, z, τ)(%) =
100Rp
R2
τUb

(
ud
∂ud
∂y

∣∣∣∣
y=0

+ wd
∂wd
∂y

∣∣∣∣
y=0

)
, (3.21)

are shown in figure 3.13 for φ=π/4, 3π/4. The white regions over the disc surface

correspond to the regenerative braking effect, whereWt≥0, i.e. the fluid performs

work on the discs. The dashed lines represent the regions ofWl(r, τ)>0, predicted

through the laminar solution by (3.17). Although the regenerative braking ar-

eas computed via DNS are slightly shifted upstream when compared with those

predicted through the laminar solution, the overall agreement is very good and

better than in RH13’s case.

3.3.6 A discussion on drag reduction physics and scaling

The results in the preceding sections prove that the oscillating discs effectively

modify the flow in two distinct ways, which are discussed in the following and

illustrated in figure 3.14.

• Role of disc boundary layer
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Fig. 3.13: Spatial variation of Wt, computed via (3.21), for φ=π/4 (left) and φ=3π/4

(right). The white areas over the disc surfaces for whichWt>0 denote locations

where the fluid is performing work onto the disc. The areas of regenerative

braking predicted by the laminar solution, i.e. whereWl>0 and (3.17) applies,

are enclosed by the dashed lines.

θ

ur, uy

Structures between discs:

Rd ∝
∫ 1

0 (1− y)〈udvd〉dy

Degrading θ-effect (Zhou & Ball 2008):

Radial-flow spanwise forcing

Oscillating-wall mechanism, uθ

(Ricco et al. 2012):

Radial-flow streamwise forcing

Rt ∝
∫ 1

0 (1− y)
[
ûtvt − 〈ût,svt,s〉

]
dy

Mean flow

1

Fig. 3.14: Schematic of the two mechanisms responsible for drag reduction induced by

oscillating discs. One mechanism is linked to the attenuation of the turbulent

Reynolds stresses and is quantified by Rt in (3.19). The degrading effect of

the oscillation angle θ (Zhou & Ball, 2008) is represented by the shading. The

second mechanism is due to the structures between discs and is quantified by

Rd in (3.20). The radial streaming induced by the Rosenblat pump is denoted

by the open arrows.

The circular pattern which forms over a disc as a direct consequence of

the disc rotation (shown in figure 3.8) is a thin region of high-shear flow.
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The laminar analysis suggests that this oscillatory boundary layer resembles

the oscillating-wall Stokes layer (of thickness δ∗s=
√
ν∗T ∗) at high frequency

(refer to §3.2.2 when γ� 1), and the Ekman layer of the von Kármán vis-

cous pump (of thickness δ∗e=
√
ν∗D∗/(2W ∗)) at high periods (refer to §3.2.2

when γ�1). It is therefore reasonable to expect that the wall turbulence

over the disc surface is modified similarly to the oscillating-wall case at

high frequency and to the steady-rotation case studied by RH13 at high

periods. The parameter γ, written as γ=(2/π) (δ∗s/δ
∗
e)

2, can be interpreted

as the threshold that distinguishes these two limiting regimes. The thinner

boundary layer between these two limits dictates the way the turbulence

is altered. When γ=O(1), an intermediate oscillating-disc forcing regime

is identified, for which viscous effects diffuse from the wall due to both

unsteady oscillatory effects and to large-scale rotational motion.

When γ�1, the drag-reduction mechanism is analogous to the one advanced

by Ricco et al. (2012) for the oscillating-wall flow, namely that the near-wall

periodic shear acts to increase the turbulent enstrophy and to attenuate the

Reynolds stresses. Important differences from the oscillating-wall case are

i) the wallward motion of high-speed fluid, entrained by the disc oscillation

from the interior of the channel, ii) the radial-flow effects due to centrifugal

forces, which are proportional to the nonlinear term F ′2 (refer to (3.6) for

the laminar case) and produce additional spanwise forcing in planes per-

pendicular to the streamwise direction, iii) the radial dependence of the

forcing amplitude, and iv) the degrading effect on drag reduction due to

wall oscillations which are not spanwise oriented. The latter effect was first

documented by Zhou & Ball (2008), who proved that spanwise wall oscilla-

tions produce the largest drag reduction, while streamwise wall oscillations

lead to approximately a third of the spanwise-oscillation value. The shad-



50 3. Oscillating discs

ing on the disc surface in figure 3.14 illustrates the effectiveness of the wall

oscillations at different orientation angles.

• Role of quasi-steady inter-disc structures

The second contribution is from the tubular interdisc structures, which are

streamwise-elongated and quasi-steady as they persist throughout the disc

oscillation. They are primarily synthetic jets, an indirect byproduct of the

disc rotation (as in RH13) or disc oscillation. As discussed in §3.3.4, these

jets are directed wallward and backward with respect to the mean flow um.

The time-averaged flow between discs is therefore retarded with respect

to the mean flow. Further insight into the generation of these structures

could lead to other actuation methods leading to a similar drag reduction

benefit. Although the structures appear directly above the regions of high

shear created by neighbouring discs in the spanwise direction, they are

largely unaffected by the time-modulation of the shear. These structures

could be a product of the interaction between the radial streaming flows of

neighbouring discs, which have a non-zero mean (refer to figure 3.4 (left)).

The FIK identity is useful because the role of disc boundary layer on drag re-

duction is distilled into Rt, which sums up the decrease of turbulent Reynolds

stresses, while the role of the structures is given by Rd, which is solely due to the

additional disc-flow Reynolds stresses. Rt and Rd quantify mathematically the

two drag-reduction effects.

It has been shown that drag reduction scales linearly with the penetration

depth of the laminar layer for different spanwise wall forcing conditions, such as

spatially uniform spanwise oscillation, travelling and steady wall waves (Ricco

et al., 2012; Cimarelli et al., 2013). An analogous scaling is obtained in the

following. The definition of the oscillating-wall penetration depth advanced by

Choi et al. (2002) is modified to account for the viscous diffusion effects induced
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by the disc oscillation. Choi et al. (2002)’s definition is employed because it takes

into account the influence of the wall forcing amplitude, which was not necessary

in Quadrio & Ricco (2011) because the wave amplitude was constant. Following

the discussion on the role of the disc boundary layer on drag reduction, the crucial

point is that only Rt, i.e. the portion of drag reduction related to the attenuation

of the turbulent Reynolds stresses, is scaled with the penetration thickness. The

scaling is carried out for the case with the largest diameter, D=6.76, for which

the infinite-disc laminar flow solution best represents the disc boundary layer flow

because of the limited interference between discs.

From the envelope of the Stokes layer velocity profile engendered by an oscil-

lating wall

W+
e = W+

m exp
(
−
√
π/T+y+

)
,

Choi et al. (2002) defined the penetration depth as

y+
d =

√
T+/π ln

(
W+
m/W

+
th

)
,

where W+
m is the maximum wall velocity and W+

th is a threshold value below

which the induced spanwise oscillations have little effect on the channel flow. For

the oscillating disc case, the enveloping function for the laminar azimuthal disc

velocity, W+
e =W+Ge(η, γ), where

Ge(η, γ) = max
t̆
G(η, t̆, γ),

plays a role analogous to the exponential envelope for the classical Stokes layer.

Defining the inverse of Ge, L=G−1
e , the penetration depth of the oscillating-disc

layer is obtained as

δ+ =
√
T+/π L

(
W+/W+

th

)
. (3.22)

Note that in the limit of γ → 0 one finds

lim
γ→0

L
(
W+/W+

th

)
= ln

(
W+/W+

th

)
.
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The Stokes layer penetration depth is therefore obtained as a special case. In

figure 3.15 (left), the drag-reduction contributor Rt shows a satisfactory linear

scaling with the penetration depth, computed via (3.22) with W+
th=2.25.

In order to find a scaling for Rd, the portion of drag reduction only due to the

inter-disc structures, the FIK identity and the laminar solution discussed in §3.2

are employed. From (3.20), it is evident thatRd is proportional to ûdvd. Through

the definitions of the laminar velocity components (3.5), ud∼W and vd∼W
√
T .

It then follows that a reasonable estimate could be udvd∼W 2
√
T at the edge of

the discs where the structures appear. It is then logical to look for a scaling of Rd

in the form WmTn. An excellent linear fit for the drag reduction data is found

for (m,n)=(2, 0.3), as shown in figure 3.15 (right). Outer-unit scaling for W and

T applies, which means that the structures are not influenced by the change in

u∗τ . The exponent of W is as predicted by the laminar solution. The deviation

of the coefficient n from that predicted by the laminar analysis (i.e. n=0.5) can

be accounted for by the factors which are not taken into account in the laminar

analysis, such as the disc-flow interaction with the streamwise turbulent flow and

between neighbouring discs.

3.4 Outlook

In line with the analysis by RH13 for the steady disc-flow technique, it is in-

structive to render the scaled oscillating disc forcing parameters dimensional to

guide laboratory experiments and to estimate the characteristic length and time

scales of the wall forcing for flows of technological relevance. Table 3.1 displays

estimated data for three flows of industrial interest and two flows of experimental

interest with the optimal parameters D=6.76, W=0.39, and T=130, which lead

toR=16% and Pnet=5.5%. This table may be compared with the analogous table

6 in RH13 for the steady rotation case, although it should be noted that f∗ indi-
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Fig. 3.15: Left: Rt, the contribution to drag reduction due to turbulent Reynolds stress

attenuation, vs. δ+, the penetration depth, defined in (3.22). Right: Rd,

the contribution to drag reduction due to the disc-flow Reynolds stresses, vs.

W 2T 0.3. The diameter is D=6.76. White circles: W+=3, light grey: W+=6,

black: W+=9.

cates the oscillation frequency in the present case (f∗=2π/T ∗) and the rotational

frequency in RH13’s case (f∗=ω∗/2π, where ω∗ is the angular velocity).

Experimental realization of the disc-flow technique is possible with D∗=4 −

8 cm, W ∗=0.2 m/s in a water channel and 4.6 m/s in a wind tunnel. The fre-

quencies are f∗=0.37 Hz and 16 Hz, respectively. The dimensional parameters in

flight are D∗=5.8 mm, W ∗=70.7 m/s, and f∗=1752 Hz. Commercially available

electromagnetic motors (D∗=2 mm, f∗=O(103) Hz), adapted for oscillatory mo-

tion, would guarantee these time and length scales of forcing (Kuang-Chen Liu

et al., 2010). The optimal frequency in flight is approximately half of the opti-

mal one for steady rotation: f∗=1752 Hz for the oscillating discs compared to

f∗=3718 Hz for the steady rotating discs.

Figure 3.16 shows characteristic time and length scales of the oscillating-disc

technique and of other drag reduction methods. The typical length scale of the

oscillating-disc technique is larger than that of the steadily rotating discs and the

standing wave forcing, whilst being two orders of magnitude greater than both
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riblets and the feedback control systems studied by Yoshino et al. (2008). The

typical time scale of the oscillating disc flow is one order of magnitude larger

than that of the oscillating wall forcing. It is also worth pointing out that these

are optimal values for the tested parameter range and that our results in §3.3.2

hint at the possibility to obtain comparable drag-reduction values for even larger

oscillation periods and diameters, which are denoted by the dashed lines in figure

3.16.

This discussion is closed by mentioning another advantage of the oscillating-

disc flow when compared to the steady-disc flow by RH13. As shown in figure 3.6

(d), it is possible to achieve R=13% with γ=π/8, T=12, W=0.51, i.e. the disc

tip undertakes a maximum displacement of only 1/8 of the disc circumference.

Therefore, for this case the disc-flow technique could be realized in a laboratory

by use of a thin elastic seal between the disc and the stationary wall. This design

would eliminate any clearance around the discs, which would not be possible for

the case of steady rotation.
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Parameter Flight (BL) Ship (BL) Train (BL) WT (BL) WC (CF)

U∗ (m/s) 225 10 83 11.6 0.4

ν∗ · 106 (m2/s) 35.3 1.5 15.7 15.7 1.1

x∗ (m) 1.5 1.5 1.8 1.0 -

h∗ (mm) 22 22 27 25 10

u∗τ (m/s) 7.9 0.4 2.9 0.5 0.02

Reτ 4970 4970 4970 800 180

Cf · 103 2.4 2.4 2.4 3.8 8.1

D∗ (mm) 5.7 5.6 6.9 39.6 70.9

W ∗ (m/s) 70.7 3.1 26.1 4.6 0.2

T ∗ (ms) 0.6 12.5 1.9 61 2700

f∗ (Hz) 1752 80 536 16 0.4

Tab. 3.1: Dimensional quantities for the optimum Pnet case for three flows of industrial

and two of experimental interest (D=6.76, W=0.39 and T=130). In the head-

ings (BL) indicates a turbulent boundary layer with no pressure gradient, and

(CF) indicates a pressure-driven channel flow. WT and WC stand for wind

tunnel and water channel respectively. For headings marked BL, U∗ repre-

sents the free-stream mean velocity, x∗ is the downstream location and h∗ the

boundary layer thickness; whilst for the CF case U∗ represents the bulk velocity

and h∗ the channel half-height. The relations used: h∗=0.37x∗(x∗U∗/ν∗)−0.2

and Cf=0.37 [log10(x∗U∗/ν∗)]−2.584 for BL; Cf=0.0336R−0.273τ for CF are from

Pope (2000).
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Fig. 3.16: Characteristic optimal time and length scales, T +, L+, for a range of drag re-

duction methods are shown for comparison with the oscillating disc technique.

From left to right the time scales are given as follows: time between successive

flow field measurements (Kang & Choi, 2000), period of transverse travelling

wave forcing (Du et al., 2002), period of spanwise wall oscillations (Quadrio &

Ricco, 2004), period of rotation of steady disc forcing (Ricco & Hahn, 2013),

and period of disc oscillation. From left to right the length scales are given as

follows: maximum displacement of wall-normal wall motions (Kang & Choi,

2000), spacing of sensors for feedback control of wall deformation (Yoshino

et al., 2008), riblet spacing (Walsh, 1990), maximum displacement of tem-

porally oscillating wall (Quadrio & Ricco, 2004), wavelength of streamwise-

sinusoidal wall transpiration (Quadrio et al., 2007), wavelength of standing

wave forcing (Viotti et al., 2009), wavelength of transverse travelling wave

forcing (Du et al., 2002), diameter of steady discs (Ricco & Hahn, 2013), and

diameter of oscillating discs.



4. ARRANGEMENTS OF DISC ACTUATORS

In this chapter the effect of wall arrangement on steadily rotating discs is inves-

tigated. As the disc motion is now steady, the averaging procedure is different

and so is reviewed here. The time average is defined as

f(x, y, z) =
1

tf − ti

∫ tf

ti

f(x, y, z, t)dt,

where ti and tf denote the start and finish of the averaging time, respectively.

Finally, the spatial average along the homogeneous directions is defined as

f̂(y) =
1

LxLz

∫ Lx

0

∫ Lz

0
〈f〉(x, y, z)dzdx.

4.1 Introduction of disc layouts

The discs are located on both walls, have diameter D and rotate steadily with

an angular velocity Ω. The disc-tip velocity is W=ΩD/2. In RH13 the discs

are arranged in a square packing scheme, with discs which are adjacent in the

streamwise direction spinning in opposite directions and discs along the spanwise

direction rotating in the same direction. This configuration was chosen to re-

semble the standing wave studied by Viotti et al. (2009), and will henceforth be

referred to as case 0. The layout for case 0 and the modified disc arrangements

investigated herein are presented in Fig. 4.1. The coverage C is defined as the

percentage of the wall surface which is in motion. For each arrangement, a cov-

erage Cn is defined, with the subscript n referring to the layouts as numbered in

Fig. 4.1. For the reference case studied by RH13 (case 0), C0=78%. For case 5, the
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arrangement is not the hexagonal lattice that gives maximum coverage for pack-

ing of equal circles (i.e. C=91%). As the channel domain must be rectangular, it

is not possible to configure the discs in this manner whilst maintaining an integer

number of discs. The layout shown at the bottom right of Fig. 4.1 is instead

simulated. The coverage for this arrangement is C5=84% and an integer number

of discs is enforced. The spanwise length of the domain for case 5 is Lz=2.11π

for D=3.38 and Lz=3.17π for D=5.02, due to the hexagonal disc arrangement.

As stated in §3, the dimensions of the periodic box are larger than those used in

current literature at similar Reynolds number (e.g. Kim et al., 1987; Quadrio &

Ricco, 2003). The increased streamwise extent of the channel compared with Kim

et al. (1987) is to allow for the elongation of the near-wall turbulent structures

that occurs under drag-reduced conditions (Orlandi & Fatica, 1997).

The disc diameters and velocities studied are D=3.38 and 5.02, and W=0.13,

0.26, 0.39, and 0.52. These forcing parameters are the ones that guarantee a high

drag reduction of about 20% in the configuration studied by RH13. The term

column is used to indicate disc alignment along the streamwise direction and the

term row is used to denote disc alignment along the spanwise direction.

4.2 Effect of annular gap on performance quantities

Again as in RH13 and the previous chapter, a small annular region of thickness c

is simulated around each disc. The wall velocity in this region decays linearly from

the maximum at the disc tip to zero at the stationary wall and is independent

from the azimuthal direction. The azimuthal velocity uθ varies with the radial

coordinate r as follows:

uθ(r) =





2Wr/D, r ≤ D/2,

W (c− r +D/2)/c, D/2 ≤ r ≤ D/2 + c.
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Case 3 - ◦ - C3=39%

Case 4 - � - C4=39%

Case 0 - � - C0=78%

Case 2 - △ - C2=39%

Case 1 - ▽ - C1=19.5%

Case 5 - ⊲ - C5=84%

Sx=2

Sz=1

Fig. 4.1: Disc layouts in the wall x-z plane.

This serves to mimic an experimental scenario where a gap would inevitably be

present. As shown by RH13, the Gibbs phenomenon at the disc edges is also

almost entirely suppressed. It would be significant if the gap were not simulated

because of the velocity discontinuity at the boundary between the disc tip and

stationary wall. The effect of gap size on the performance quantities for D0=3.56

and W=0.39 is shown in Fig. 4.2, where D0=D+2c is the outer diameter of the

circle occupied by the disc and the annular gap. Although the Gibbs phenomenon

does occur for c=0, it does not influence the computation of drag reduction as

the effect is limited to the disc edge. The drag reduction decreases by about

1% as c increases from 0 to 0.08D0. It then decreases more rapidly and, by

c=0.12D0, R is 70% of the value obtained without the annular gap. The power

spent decreases almost linearly and more rapidly than R as the gap size increases.

The averaged wall-shear stress therefore responds primarily to the large scales of
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Fig. 4.2: Drag reduction R and power spent Psp,t vs. c/D0 for D0=3.56 and W=0.39.

the disc forcing, while the power spent shows a more marked dependence on the

precise distribution of wall actuation. More evidence of this emerges in §5.3 where

the dependence of these quantities on the spectral representation of wall forcing

is investigated. The gap size in the following cases is c=0.06D0, which would

most closely resemble the clearance in a water channel or in a wind tunnel set

up.

The drag reduction computed in RH13 for D=3.38, W=0.39, and c/D0=0.05

isR=19.5%, which is larger than the corresponding value estimated from the data

in Fig. 4.2, R=18.5%. This discrepancy is larger than the uncertainty range of the

numerical calculations. The difference between the Cf in the actuated-wall case in

RH13 (Cf=6.64·10−3) and the Cf computed here for c/D0=0.06 (Cf=6.68·10−3)

leads to only a 0.4% difference in R if the stationary-wall Cf computed by RH13

is used as reference case (Cf=8.25·10−3). More accurate resolution checks on the

stationary-wall Cf lead to Cf=8.19·10−3, which explains the 1% difference in R.
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4.3 Influence of layout and coverage on performance quantities

4.3.1 Drag reduction

The drag reduction R is shown in Figs. 4.3 and 4.4 as a function of the coverage

C for D=3.38 and different W . The numerical values are found in Appendix C.

The different symbols denote the different arrangements and the different colours

indicate different W . The solid lines in Fig. 4.3 represent the drag reduction

predicted through R=(C/C0)R0, i.e. via straight lines passing through the ori-

gin and the R0 values by RH13. These are not interpolating lines of the drag

reduction data. R values falling on these lines obey linear scaling with coverage.

For cases with W=0.13, shown by the white symbols, R scales linearly with C.

This implies that the drag reduction is only produced by the shearing effect of

the flow over the disc surface. The hexagonal arrangement (case 5), which gives

the maximum wall coverage C5=84%, also follows the linear scaling with C. The

scaling starts to deteriorate for some of the cases with W=0.26 and 0.39 (light

and dark grey symbols), and is completely lost for W=0.52 (bold white symbols).

A different physical mechanism must be responsible for drag reduction for the

cases which do not follow the linear scaling with coverage. Except for case 5 and

W=0.39, in all the cases that do not fall on the straight lines, R is larger than

the corresponding value predicted by the coverage scaling. The drag reduction

for case 0 and W=0.52 (R=11.9%) is lower than the one given by cases 3 and 4

for the same W and D (R=15.5%) despite the removal of half of the discs.

For cases with C1=19.5%, in which the surface is covered by a fourth of the

number of discs used by RH13, the additional drag reduction with respect to

coverage increases monotonically with W . Although cases 2, 3, and 4 all have

the same coverage, C=39%, the drag reduction values differ for the same W and

D because they have different disc arrangements. Case 2, for which discs are
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aligned in one column (upward facing triangles), obeys coverage scaling up to

W=0.39. Case 3, for which discs aligned along every other row (circles), and

case 4, which has a checkerboard disc arrangement (diamonds), instead lose this

scaling for W ≥0.26. At the same W , the R values of cases 2 and 3 only differ

by small amounts, which are within the uncertainty range for all the W tested.

For 0.26≤W≤0.39, it follows that the additional drag reduction with respect to

the value predicted by the linear scaling with coverage occurs when a portion of

stationary wall of the streamwise extent of one diameter is present between discs.

The spanwise space between discs does not have an effect because case 3 (discs

next to each other along z) and case 4 (spanwise space at either side of discs)

lead to the same drag reduction.

The case of hexagonal arrangement, C5=84%, presents drag reduction values

which are shifted below the coverage line for W=0.39. This is consistent with the

upward shift of cases which present a streamwise region of stationary wall. In the

hexagonal arrangement the streamwise spacing between discs is instead reduced

and therefore drag reduction deteriorates with respect to the coverage line.

The drag reduction given by case 2 (discs aligned in one column) loses the

linear scaling only at W=0.52, even though no streamwise spacing is present. An

upward shift with respect to the coverage line also occurs for case 5 at W=0.52.

Similarly to the upward shift of case 2 at the same W , this is not due to the

streamwise fixed-wall space as in cases 1, 3, and 4 because discs are closely packed

along the streamwise direction. It is neither due to the spanwise space of fixed

wall at the side of each disc because the additional drag reduction is the same

in cases 2 and 5, although case 2 displays more spanwise space than case 5. The

drag reduction at W=0.52 being higher than the value predicted by the linear

scaling with coverage remains unexplained at this point.

By defining a new quantity, E=R/C, the coverage gain of the disc actuators
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Fig. 4.3: Drag reduction vs. coverage for D=3.38. In the legend, the symbols are num-

bered according to the layouts in Fig. 4.1 and are coloured according to W .

is given as the drag reduction induced per actuated area. For cases in which

E>E0, where E0=R0/C0 is the coverage gain for case 0, larger drag reduction

occurs compared to case 0 for the same number of discs. Fig. 4.4 presents E/E0

as a function of C. In this scaling, it emerges that the gain is null at W=0.13,

independent of C when W=0.26 for cases that do not follow coverage, and at its

maximum at low coverage and high W .
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Fig. 4.4: Drag reduction gain E/E0 vs. coverage for D=3.38. Symbols are as in Fig. 4.1

and coloured according to the legends shown in Fig. 4.3.
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For the cases examined heretofore, the displacement between adjacent stream-

wise and spanwise disc centres has been either D0 or 2D0. More arrangements of

discs can be studied by defining the spacings Sx=xd/D0 and Sz=zd/D0, where

xd and zd are the distances between neighbouring disc centres in the x and z

directions, respectively. Sx and Sz are shown graphically in case 3 in Fig. 4.1.

Fig. 4.5 (left) shows R for different Sx and Sz with disc parameters D=3.38,

W=0.52. An optimum spacing is found for (Sx,Sz)=(1.5,1) resulting in R=17%.

For comparison the RH13 value (case 0) is R=12% for the same disc parameters.
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Fig. 4.5: Top: Map of R(Sx,Sz)(%) for D=3.38, W=0.52. Bottom: Comparison of drag

reduction data from the DNS with those given from rescaling of Viotti et al.

(2009).

As R scales with coverage at low W , a prediction of the drag reduction en-

gendered by the discs is attempted, starting from the data computed in Viotti

et al. (2009) (page 10) for the standing-wave case. As noted by RH13, the wall

forcing created along the disc centres is similar to a triangular wave of wave-

length λx=2D0 and amplitude W . The drag reduction given by the discs can

be predicted as Rpred=Cw · Cθ · C · Rsw, where Cw is the scaling factor due to

waveform, Cθ models the effect of the orientation of wall forcing, C accounts for
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the wall coverage, and Rsw is the drag reduction in the standing-wave case by

Viotti et al. (2009) for λx=2D0. The factors are approximated as follows.

Waveform It is known that temporal and spatial forcing can be largely treated

as analogous to one another (Quadrio et al., 2009). The temporal non-

sinusoidal spanwise wall-forcing investigated by Cimarelli et al. (2013) can

thus be used to gauge the influence of the spatially non-sinusoidal spanwise

wall-forcing of the discs. Waveform j on page 4 of Cimarelli et al. (2013)

closely resembles the triangular wave spanwise forcing of the discs, which

results in Cw=85%.

Streamwise forcing The streamwise forcing which is present in the disc technique

does not occur in the standing-wave case studied by Viotti et al. (2009).

The effect of wall oscillations at an angle θ with respect to the mean flow has

been studied by Zhou & Ball (2008). While pure spanwise oscillations pro-

duce the maximum drag reduction, the response to streamwise oscillations

reduces to a third. The influence of wall-forcing orientation is accounted

for by Cθ=75%, estimated by averaging Zhou & Ball’s data over the angle

of wall forcing.

Coverage This is quantified by the coverage value Cn for each case, given in

Fig. 4.1.

The table in Fig. 4.5 (right) shows the R values for three sample layouts and disc

parameter combinations. The prediction Rpred of the numerically computed R

is excellent for the cases tested.

4.3.2 Power spent

The effect of coverage is now studied on the power spent, shown as a function

of C in Fig. 4.6. The numerical values are found in Appendix C. For all W the
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linear scaling of power spent with coverage is excellent and much more robust

than for drag reduction, shown in Fig. 4.3. The power spent therefore does not

depend on the disc arrangements for fixed C. This follows from the power spent

being solely related to the wall motion and largely independent of the dynamics

of turbulence within the channel. The solid lines represent the laminar prediction

to the power spent Psp,l, calculated from the solution to the flow induced by an

infinite disc rotating beneath a quiescent fluid (Batchelor, 1967). An amended

and improved version of the formula in RH13, which now takes into account the

effect of the gap flow, is used. This reads

Psp,l(%) = 100
C
C0

πGkR
3/2
p W 5/2

UbR2
τD

2
0

√
2

D

(
D2

8
+
cD

3
+
c2

6

)
, (4.1)

where Gk=−0.61592 is given in Schlichting (1979), and Rp and Rτ are the

Poiseuille and friction Reynolds numbers respectively, defined in Sec. 3.1. Equa-

tion (4.1) predicts Psp,t well, with the turbulent Psp,t being always slightly larger

than the laminar Psp,l.

4.4 The Fukagata-Iwamoto-Kasagi identity

In this section, the FIK identity (Fukagata et al., 2002) is used to further un-

derstand the mechanism of drag reduction for the disc arrangements studied in

§4.3. This identity quantifies the effect of the laminar flow and of the Reynolds

stresses to the skin-friction coefficient. RH13 and Wise & Ricco (2014) (hence-

forth referred to as WR14) showed that through this identity it is possible to

distinguish two separate contributions to drag reduction, which arise from (a)

the modification in the turbulent Reynolds stresses relative to the uncontrolled

case, and from (b) the Reynolds stresses ûdvd, related to the structures appearing

between discs and described in RH13 on page 13 and in WR14 on pages 557-558.

The drag reduction is written as R=Rt+Rd, where Rt synthesizes effect (a) and
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Fig. 4.6: Power spent vs. coverage for D=3.38. The different symbols correspond to

the different layouts as indicated in Fig. 4.1 and are coloured according W , as

shown in the legend of Fig. 4.3. The solid lines represent the prediction of power

spent by the laminar solution given by (4.1). The dashed lines are found by

rescaling the RH13 Psp,t values with respect to coverage, i.e. they connect the

origin and the RH13 values (square symbols).

Rd is related to (b). Their expressions are:

Rt(%) = 100
Rp
[
(1− y)

(
ûtvt − 〈ût,svt,s〉

)]
g

Ub −Rp
[
(1− y) 〈ût,svt,s〉

]
g

,

Rd(%) = 100
Rp [(1− y) ûdvd]g

Ub −Rp
[
(1− y) 〈ût,svt,s〉

]
g

.

Fig. 4.7 shows Rt and Rd (light and dark grey respectively) for each layout

and different W for D=3.38. For case 0 the contribution from Rt increases from

7% at W=0.13 to 13% at W=0.26 and 0.39. It decays to 6% for W=0.52. In the

oscillating case studied by WR14, Rt scales linearly with the disc boundary layer

thickness δ, defined in RH13 and WR14 as a measure of the viscous diffusion from

the disc surface. Using data from RH13, Rt also scales linearly with δ for steady

rotation. Furthermore, Rt scales with coverage for W=0.13 for all layouts. The

contribution to the overall drag reduction from Rd is negligible for cases 1 and

2 at all W , for which there is no spanwise interaction between the discs, and for

all cases at W=0.13. The impact of the interdisc structures on drag reduction,
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contribution from the modification of the turbulent Reynolds stresses (light

grey), and Rd is the contribution from the interdisc structures (dark grey).

Cases boxed by the solid line obey linear scaling with C, while cases boxed by

the dashed line are influenced by the interdisc structures. Case 0 is not boxed

because it is the reference case against which the other cases are compared.

synthesized by Rd, becomes important for cases 3 and 4, whose Rt and Rd values

are the same for the same W .

The cases for which Rd attains a finite value are boxed by the dashed line.

Spanwise interaction between the discs must therefore be important for the for-

mation of these structures, although at this stage it is still not clear why cases 3

and 4 have the same Rt and Rd values despite the shift of columns. For the cases

boxed by the solid line, coverage scaling applies and structures do not appear,

although in RH13 for W=0.26 and 0.39 the structures do contribute to the overall

drag reduction.

4.5 Flow visualizations

The contribution of Rd in cases 3 and 4 is proved to be important through the use

of the FIK identity. Therefore, we resort to flow visualizations to display the inter-

disc structures that are responsible forRd. Isosurfaces of q=
√
u2
d + v2

d + w2
d=0.08

are shown in Fig. 4.8 for cases 3 and 4, the white arrows indicating the direction
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of disc rotation. In both cases the disc boundary layers are clearly visible. The

plots show the presence of the tubular structures first shown in RH13, elongated

in the streamwise direction and situated between adjacent discs in the spanwise

direction. For cases 1 and 2, the structures are instead not evident for similar val-

ues of q. The only instances where the structures are clearly visible occurs when

there is spanwise interaction between the discs. This happens only for W≥ 0.26

and for cases 0, 3, and 4, where the distance between the nearest disc centres is

smaller than or equal to
√

2D0.

A contour of udvd for case 3 at y+=14 is shown in Fig. 4.9, indicating the disc

side where the structure is created. The contour for case 4 is nearly identical.

Differently from the experimental study by Klewicki & Hill (2003) of the laminar

flow over a finite rotating surface patch, structures are not visible over both sides

of the disc. They do however propagate downstream parallel to the mean flow

as the structures observed by Klewicki & Hill. Fig. 4.9 shows that in all cases

where there is a contribution from Rd, the structures originate from the disc side

where the wall forcing is along the upstream direction. When only one disc is

included in the domain, the structures do not appear. Therefore the structures

are created: i) when there is sufficient spanwise interaction between discs, i.e.

W ≥ 0.26 and the distance between disc centres located in adjacent columns is

smaller than or equal to
√

2D0, and ii) at the disc sides where the wall streamwise

motion is in the opposite direction to the mean flow.

4.6 Radial streaming

The FIK identity and flow visualizations of the structures have been useful to shed

further light on the formation of the interdisc structures, but have not helped to

explain the extra drag reduction effect with respect to coverage, discussed in §4.3.

To gain more insight, since streamwise fixed-wall space is a common feature of
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Fig. 4.9: Contour of udvd at y+=14 for D=3.38, W=0.52, and case 3.

the cases which present the additional drag reduction, the flow between discs is

studied. The streamwise development of R along the disc centreline in case 3 is

shown in Fig. 4.10 by the solid line. The drag reduction is non-zero at the disc

centre and asymmetric about this point. A local peak of maximum drag reduction

of 95% occurs in the upstream disc region and intense drag increase appears in

the downstream disc region. Between discs there is a region of aboutR=20% that

is responsible for the additional drag reduction with respect to coverage. This

region must be created through the interaction between the mean flow and the

disc flow because the net disc-flow wall-shear stress would be null if um=0, i.e. if

the streamwise pressure gradient were absent, owing to the disc-flow symmetry.

By use of the laminar solution, the skin-friction coefficient is predicted as

follows:

Cf,l(x) =
2

U2
bRp

[
u′m(0) + Fk

(
2W

D

)3/2

R1/2
p x

]
, (4.2)

where Fk=0.51 is given in Schlichting (1979). This prediction is not rigorous as
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Fig. 4.10: Streamwise development of R along the disc centreline for case 3 for W=0.52.

The thick line indicates the profile for the flow over the disc surface and the

dashed line represents the drag reduction predicted by the laminar solution

(4.2).

the interaction between the mean and disc flow is not considered and end effects

are neglected. Despite this, as shown in Fig. 4.10, the gradient of R with respect

to x is well predicted on the disc surface, although the drag reduction computed

via the laminar solution is higher than 100% due to flow reversal as the disc

edge is not modelled. The DNS trend of R is shifted along x by about 45ν∗/u∗τ

relatively to the laminar prediction. This is consistent with the streamwise shift

in the disc flow of about 100ν∗/u∗τ observed at y+=8 in the oscillating-disc case

by WR14. This shift must be due to the interaction between the mean and disc

flows, which is not considered in the laminar analysis.

To further investigate the flow above the fixed-wall region between discs, the

downstream development of ud along the centreline of the discs, shown in Fig. 4.11

(left), is studied. The profiles are separated by 40ν∗/u∗τ and those on the disc

surface are indicated by the grey bars. From the beginning of the domain and

up to about the disc centre, the disc creates a radial flow along the negative

x direction which retards the streamwise flow, thereby causing drag reduction.

From the centre of the disc and up to the downstream disc tip, the radial flow
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enhances the streamwise flow, resulting in drag increase. The radial flow is most

energetic near the disc tips and this is represented by the peaks of drag reduction

and drag increase in Fig. 4.10. The streamwise shift in the disc flow is also evident

in Fig. 4.11 (left), shown by the switch from negative to positive ud occurring

between points C and D at a distance of about 80ν∗/u∗τ downstream of the disc

centre.

The disc flow persists further in the upstream direction than it does down-

stream, which explains the region of drag reduction above the fixed wall in

Fig. 4.10. The disc flow upstream of a disc persists for 480ν∗/u∗τ from the up-

stream disc tip (point B), whereas the disc flow along the positive x direction

vanishes within a distance of only 120ν∗/u∗τ downstream of the disc tip (point

D). In Fig. 4.11 (left) the peak of the ud profile varies above the disc, whereas

in the laminar solution this location is invariant. The difference must be ac-

counted for by the interaction of the disc flow with the mean streamwise flow.

Immediately off the disc surface the peak y-location of the disc flow increases

by ∆y=0.015. As the wallward flow above the disc caused by the von Kármán

pumping effect does not occur above the fixed wall, the radial flow is allowed to

diffuse further into the channel.

Fig. 4.11 (right) presents the radial flow ur as a function of y for two locations

on the disc surface. A graphical definition of ur is provided in Fig. 4.11 (inset).

The thick solid line is the radial flow above the disc at x=2.72, z=1.36, displaced

by r=1.04 from the disc centre. The dashed line is the laminar prediction for the

disc flow at the same r. It is evident that at the same location the laminar and

turbulent flow profiles do not coincide. The thin solid line indicates the turbulent

disc flow at a location 100ν∗/u∗τ downstream of the laminar prediction (x=3.27,

z=1.36). At this location the turbulent and laminar profiles are almost identical

for y<0.05, confirming the downstream shift of the disc flow.
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5.1 Half-disc actuators

As evidenced in §4.6 by Fig. 4.10 the radial flow induced by the downstream half of

the discs causes drag increase. To eliminate this effect, a half-disc configuration is

studied, whereby the downstream disc half is covered and the wall-velocity is zero.

The half-disc actuators are investigated for D=3.38,5.07 and W=0.13,0.26,0.39.

The drag reduction data for the half-disc simulations (subscript h) are presented

in the table in Fig. 5.1 (right) with the corresponding data for case 0 (subscript

0). As shown in Fig. 5.1 (left), the negative effect of the downstream radial flow

is eliminated by covering this portion of the disc. The azimuthal flow, which

contributes favourably to drag reduction, is also removed. As expected, the

prediction of the laminar solution (dashed lines) is worse than in the full-disc

case.

For both disc diameters and W=0.26, the drag reduction decreases when the

downstream disc half is covered. This is because for low W the negative effect

of the radial flow is less important than the benefit of the azimuthal forcing. For

W>0.26 the drag reduction increases when the downstream disc half is covered

and a maximum Rh=25.6% is computed. For high W the removal of the down-

stream disc section and the associated radial flow therefore outweighs the loss of

beneficial effects induced by the azimuthal flow.

Although the increased drag reduction from this configuration is an interest-

ing result, our model contains many simplifications. In an experimental set up a
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step would occur between the covered and uncovered halves of the disc, resulting

in recirculation regions. Neither this nor any interaction between the mean flow

and the disc housing is considered. A novel flow-control device has been real-

ized experimentally by Koch & Kozulovic (2013) who performed boundary layer

experiments on a disc set up with one spanwise half covered. Differently from

our actuators this is a passive method as the disc motion is driven by the mean

flow and there is no external power input. As the uncovered disc half rotates,

the velocity difference between the mean flow and the wall decreases, thereby

reducing the wall-shear stress while drawing energy from the mean flow.

A discussion must be included on the categorization of flow control methods as

either drag reduction or pumping Hœpffner & Fukagata (2009). For the original

disc actuators, studied by RH13 (case 0 in Fig. 4.1), although a mean flow is

induced by the discs in the absence of streamwise pressure gradient, this mean

flow is null when averaged along the streamwise direction. Therefore RH13’s

disc-flow control method can be categorized as drag reduction. For the half-

disc technique, a net upstream mean flow is instead created in the absence of

streamwise pressure gradient as an indirect response to the wall forcing, whose

average in either the spanwise or streamwise direction is null. The half-disc

method can thus be classified as indirect pumping. Direct pumping would instead

occur if the reduction of wall friction were induced by a body force or a wall

velocity distribution which are not zero when averaged along the streamwise

direction.

5.2 Annular actuators

The laminar solution provides further direction for improvement of the disc-flow

technique. The wallward flow produced by the von Kármán pump, which is

uniform over the disc surface in planes parallel to the wall, can be expected to
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Fig. 5.1: Left: Streamwise development of R along the half-disc centreline for D=3.38,

W=0.52. The thick line indicates the profiles for the flow over the actuated

half disc surface. The dashed line indicates the drag reduction predicted from

the laminar solution (4.2). Inset: Schematic of a half-disc actuator. Right:

Performance data for half-disc simulations.

direct the streamwise flow towards the wall, causing a detrimental effect to drag

reduction. Furthermore, the azimuthal forcing near the disc centre is of low

velocity and, as shown in §4.2, the large-scale forcing appears to be important

for drag reduction. Therefore, annular actuators are studied, with the intent of

attenuating the wallward flow and eliminating the low velocity motion near the

disc centre, which is thought to have a marginal contribution to drag reduction.

The ratio of the internal and external radii, a=ri/R, is varied from 0 to 1, and

the drag reduction and power spent are shown as functions of a in Fig. 5.2. A

schematic of the actuators is shown in Fig. 5.2 (inset).

The drag reduction remains approximately constant at R=19% for a<0.375.
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Fig. 5.2: Performance quantities vs. annulus ratio, a=ri/R, for D=3.38 and W=0.39.

Left: Drag reduction, R. Right: Power spent, Psp,t. Inset: Schematic of an

annular actuator.

An optimum of R=20% is reached at a=0.6, beyond which the drag reduction

decreases. This confirms the prediction that the flow induced near the disc centre

has an overall negative effect on drag reduction. Beyond the optimum a=0.6 the

removal of the central part of the disc causes a sharp decrease in R to a null value

for a=1.

The power spent, shown in Fig. 5.2 (right), instead shows a slow monotonic

decrease as a increases, up to a=0.75. Beyond a=0.75 there is a rapid decay

in Psp,t as more of the disc centre is removed. This can be explained as a vast

proportion of the disc energy is contained in the outer region, i.e. where the

wall velocity is high. The removal of the inner part of the disc thus does not

largely affect the power spent, as it is the region of low wall-velocity that is being

eliminated. For the tip-velocity investigated, the use of annular actuators does

not lead to net power savings.

5.3 Spectral truncation

The investigation of annular actuators confirms that the large scale forcing is

important for drag reduction. The spectral representation of the boundary con-
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ditions is therefore examined to elucidate the effects of large and small scale

forcing. By truncating the number of Fourier modes that describe the disc mo-

tion, it is possible to force only a specified range of scales. The proportion of

modes forced in the homogeneous directions is given by k(%)=100kf,i/Ni, where

kf,i is the maximum forced wavenumber, Ni is the total number of modes, and

the i subscript denotes the streamwise or spanwise direction. The truncation of

modes is symmetrical in each direction, and so k=100kx/Nx=100kz/Nz. The

drag reduction and power spent are plotted as functions of k in Fig. 5.3 (left). As

the number of forced modes increases, both R and Psp,t asymptotically approach

the values given when all of the modes are included. The drag reduction reaches

the asymptotic value only when k=8%, while Psp,t reaches the asymptote when

k=47%. The contour plots of azimuthal wall velocity for these truncations are

shown in Fig. 5.3 (insets). Fig. 5.3 (right) displays the energy contained within

the streamwise modes. A large proportion of the energy is contained within the

low wavenumber modes. The energy of the wall streamwise velocity has a peak

value at kx=2, then drops monotonically with kx up to about kx = 50, at which

it attains small values comprised between 10−5 and 10−6. The energy of the

wall spanwise velocity has peaks of amplitude decreasing continuously by more

than one order of magnitude and occurring at kx=2, 14 and 82. These peaks are

separated by minima at kx=6 and 54 of magnitude 10−2 and 10−5, respectively.

The results in Fig. 5.3 (left) bear analogy with the effects of gap size and

annular actuators on the performance quantities, presented in §4.2 and 5.2, re-

spectively. In all cases it is evident that the large scale forcing is most responsible

for the drag reduction, shown by the lack of significant change in R when high-

wavenumber modes are eliminated from the disc spectral representation, the gap

size is increased, or the central part of the disc is removed. This is significant

as it means that low-order models, which only capture prescribed features of the
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Fig. 5.3: Left: Effect of spectral truncation on performance quantities. R and Psp,t vs.

k, the proportion of modes synthesizing the wall boundary conditions. Inset:

Contours of q=
√
u2d + w2

d at y=0 for the circled cases for k=47% (left) and

k=8% (right). Right: Energy of streamwise and spanwise forcing, measured by

u2d and w2
d, vs. the streamwise wavenumber kx.

turbulence dynamics, might be sufficient for computing accurate values of drag

reduction. The boundary conditions have also been modified to only force ei-

ther the spanwise or streamwise wall velocity. Drag increase occurred in both

cases. This shows that a fully nonlinear mechanism must be responsible for drag

reduction.

5.4 Freely-rotating discs

In this section unactuated discs are positioned on the channel walls. The discs

rotate freely according to the torques which act upon them. Therefore the an-

gular velocity of each disc is proportional to the turbulent shear on its surface.

There is an analogy here to superhydrophobic surfaces. For such surfaces a slip

velocity us is defined, related to the shear at the wall through a slip-length Ls.

A spatial representation for wall-velocity is thus given by us,i=Ls,i ∂ui/∂y|wall
where us,i and Ls,i are the wall-velocity and the slip length in the i-th directions,
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respectively.

Passive discs have been experimentally investigated by Koch & Kozulovic

(2013). In this work an unactuated wall-mounted disc is contained within a

housing which allows one spanwise half of the disc to be exposed to the flow.

The uncovered half of the disc is driven by the mean flow, causing the disc to

rotate. This thereby reduces the velocity difference between the mean flow and

the wall, over the unconvered half of the disc. This in turn reduces the wall-shear

stress. A separate passive control method is herein investigated whereby discs

rotate independently, driven by the distribution of the turbulent shear stress.

Discs of mass m∗ and diameter D∗ are flush-mounted on the channel walls in

a square-packing array as in chapter 3, and allowed to rotate independently of

one other. Each disc moves according to the angular equation of motion

I∗θ̈∗ = ΣT ∗, (5.1)

where I∗=m∗D∗2/8 is the moment of inertia of the disc, θ̈∗ is its angular acceler-

ation, and ΣT ∗ is the sum of torques acting upon the disc. In order to accurately

describe the disc motion the following torques are considered: a) the fluid torque

Tt coming from the turbulent wall-shear stress acting on the disc surface, b) the

friction opposing the disc motion coming from the fluid contained within the disc

housing Ff , and c) the mechanical friction Fm present in such a bearing as would

be used to mount the device. Although Tt can be computed from the DNS, Ff

and Ft must be modelled. Equation (5.1) can thus be written as

Tt −Ff −Fm = Iθ̈, (5.2)

where a schematic of the disc and torques acting upon it is presented in figure 5.4.

The turbulent torque T ∗t is computed directly from the flow field for each disc

according to

T ∗t =
1

µ∗

∫ D∗/2

0

∫ 2π

0
r∗2τ∗θ dθdr∗,
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Fig. 5.4: Schematic of the torques acting on each disc

where τ∗θ=∂u∗θ/∂y
∗|wall, and the coordinate system is the same as that shown

in figure 3.2. The frictional torque arising from the fluid contained within the

disc housing is estimated using the laminar von Kármán solution, outlined in

Schlichting (1979). This model implies that the gap which would inevitably

occur between the disc and the housing beneath is sufficiently thin for the laminar

assumption to be valid. The torque on a disc rotating beneath a quiescent fluid

is given by Schlichting (1979) as

F∗f =
ν∗1/2Gkπρ∗D∗4

∣∣∣θ̇∗
∣∣∣
3/2

32
.

Finally the mechanical friction F∗m within the disc bearing is estimated. Only

rolling friction is considered. As such the friction is modelled as a fixed propor-

tion of the external torques acting on the disc. This proportion is constant and

independent of angular velocity. A proportional constant of f=0.0015 is chosen,

where F∗m=−f(T ∗t −F∗f ). This is equivalent to the upper bound for rolling friction

in ball bearings (Brändlein et al., 1999). A detailed derivation of the equation of

motion for the freely-rotating discs is presented in Appendix D. Scaled in outer

units the equation of motion for the discs is

Iθ̈ = (1− f)

[
1

Rp

∫ D∗/2

0

∫ 2π

0
r2∂uθ
∂y

dθdr − κ |θ|3/2
]

, (5.3)

where I=aπD4b/32, and κ=sgn(θ)GkπD
4/(32R

1/2
p ). The sgn(θ) term is intro-

duced here to ensure that the fluid friction is always acting to retard the disc
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motion.

The DNS code was modified extensively to implement the freely-rotating disc

boundary conditions. A brief description of the algorithm to update the disc

velocities is presented herein. Each time the flow field is advanced in time the

turbulent torque Tt acting on each disc is calculated for the present time step,

i.e. step n. The predicted angular velocities of the discs at the next time step

are then calculated explicitly according to

θ̇n+1 = θ̇n +
(1− f)∆t

I

(
Tt,n − κ

∣∣∣θ̇n
∣∣∣
3/2
)

,

where the subscripts n and n+ 1 refer to the current and proceeding time steps,

respectively. The map of the wall-velocity components is computed from the

disc angular velocities, before being Fourier transformed and passed as boundary

conditions. The angular velocities at step n+ 1 are then iteratively updated as

θ̇n+1 = θ̇n +
(1− f)∆t

I

(
Tt,n+1 − κ

∣∣∣θ̇n+1

∣∣∣
3/2
)

,

where Tt,n+1 is the turbulent torque on each disc computed from the updated

velocity field. This continues until the value for Tt,n+1 converges, at which point

the code progresses to the next time step.

Within this investigation a disc diameter of D=3.38 has been considered. The

dimensions of the computational box dimensions are smaller than in the preceed-

ing sections (Lx=2.26π, Lz=1.13π), while the grid resolution remains the same.

This therefore means that a total of 4 discs are present within the computational

domain, 2 on each channel wall. As the simulations are computationally costly

due to the feedback needed to implement the boundary conditions, only two val-

ues of I have been investigated. Simulations have also been performed where the

corrector step in the time-advancement of the disc-velocities is not enforced, i.e.

a first-order explicit scheme. κ is dependent on D only and is identical in both

cases. After discarding the initial transient period that occurs upon the introduc-
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tion of the freely-rotating disc boundary conditions, the total integration time in

both cases was t+=6000.

It is necessary to first of all estimate dimensionless values of I that could be

achievable in an experimental scenario. The experimental water channel param-

eters shown in table 3.1, are thus used for these calculations. Based on the values

of u∗τ , ρ∗ and ν∗ in this table, carbon fibre discs with D∗=35mm, and b∗=0.5mm

result in a dimensionless moment of inertia of I+=2·1011. Simulations of freely-

rotating discs with this value of I+ result in no disc motion. Results are instead

presented for I+=2·106, which corresponds to a dimensional thickness b∗=5µm.

It is noted that the manufacture of such discs would be a formidable challenge.
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Fig. 5.5: Space-averaged streamwise wall-shear stress vs. time for D=3.38, I+=2·106

(dashed line). The wall-shear stress for the fixed-wall case is shown for compar-

ison, and denoted by the solid line. The freely rotating disc boundary conditions

are applied at t+=770. Only a fraction of the total integration time is shown.

The space-averaging operator here does not include time averaging.

The temporal evolution of the space-averaged wall-shear stress is displayed in

figure 5.5. The freely-rotating disc boundary conditions are applied at t+=770,

and only a fraction of the total integration time is shown. The implementation

of the freely rotating disc boundary conditions results in zero net drag reduction.

As shown in figure 5.6 the maximum disc-tip velocity achieved is approximately

W+=0.2, hence the lack of drag reduction is unsurprising.



84 5. Modifications to control strategy
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Fig. 5.6: Disc-tip velocity vs. time for D=3.38, I+=2·106. Data for only two discs are

shown.

A final arrangement has been investigated whereby freely-rotating disc bound-

ary conditions are initiated after a period of steady rotation. Steadily rotating

discs with diameter D=3.38, and tip-velocity W=0.52 (W+=12) are applied to

a fully-turbulent channel flow until a drag reduction regime of approximately

R=12% is obtained. At this stage the active disc rotation is terminated and

the discs obey the equation of motion (5.3). The temporal development of the

wall-shear stress is displayed in figure 5.7. The steady rotation boundary condi-

tions are applied at t+=770, and terminated at t+=1540, this period is denoted

by the shaded box in figure 5.7. For t+>1540 no further energy is supplied to

the discs to enforce their rotation. Once the active disc motion is stopped the

wall-shear stress increases, returning to the fixed-wall value by approximately

t+=1900. The disc-tip velocity vs. time for the same arrangement is presented in

figure 5.8. Once the active disc rotation is stopped at t+=1540 the discs rapidly

decelerate, reaching W+=0 by t+=1570.
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Fig. 5.7: Space-averaged streamwise wall-shear stress vs. time for D=3.38, I+=2·106

(dashed line). Active disc rotation is enforced for 770<t+<1540. For t+≥1540

the discs rotate according to equation 5.3. The wall-shear stress for the fixed-

wall case is shown for comparison, and denoted by the solid line. Only a fraction

of the total integration time is shown. The space-averaging operator here does

not include time averaging.
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Fig. 5.8: Disc-tip velocity vs. time for D=3.38, I+=2·106. Data for only two discs are

shown to improve legibility.



6. SUMMARY AND FUTURE WORK

In this thesis the response of a turbulent channel flow to disc actuators has been

investigated. In the first part of the thesis a novel oscillating-disc actuation strat-

egy has been studied. This is followed by work on the effects of the arrangement

of the actuators, and finally on modifications to the actuators to improve the

resultant drag reduction. In all cases direct numerical simulations (DNS) have

been performed at Rτ=180, based on the friction velocity of the stationary-wall

reference case. The code utilized has been the subject of extensive grid resolution

tests, and estimated uncertainty values for the performance quantities have been

given where appropriate.

For the oscillating disc actuators it has been found that reductions of up to

20% in the wall-shear stress, and net power savings of 5.5% can be achieved. The

optimal parameters for drag reduction (D+=1089, W+=13.4, T+=801), and for

power savings (D+=855, W+=6.4, T+=880), have been determined from a para-

metric study. The dimensional values of the optimal parameters are presented for

three flows of industrial interest, showing increased spatio-temporal forcing scales

when compared to similar techniques. This therefore represents a step towards

the implementation of the discs in relevant scenarios. Due to computational con-

straints the parameter range investigated has not been exhaustive. Further study

is required, especially at larger values of D, to fully optimize this technique.

Through an extension of the Fukagata-Iwamoto-Kasagi (FIK) identity (Fuk-

agata et al., 2002) the total drag reduction has been separated into contributions

from the modification to the turbulent Reynolds stresses, and from the time-
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averaged disc Reynolds stresses. This has proved useful in identifying scalings

for the two mechanisms thought to be responsible for the drag reduction. Flow

visualizations have been effectively used to show that tubular structures pre-

sented between discs in the spanwise direction are wholly responsible for the disc

Reynolds stresses.

The Rosenblat solution to the laminar flow above an oscillating disc has been

useful as a predictor for the power spent enforcing the disc motion. Excellent

agreement has been shown between the predicted laminar values and the values

computed by the DNS. The laminar solution has also proven useful in predicting

regions both in time and space where the power spent by the discs is positive.

This means that in these regions energy transfer is from the fluid to the discs, a

form of the regenerative braking effect. As alluded to previously, scalings for the

drag reduction mechanisms have been found through the extended FIK identity.

The first of these mechanisms is related to the shearing effect of the disc boundary

layer, for which the drag reduction scales with the penetration depth of the layer.

The second is related to the disc-flow Reynolds stresses, and in this case the drag

reduction scales linearly with a simple function of the disc parameters. These

scalings show an improved understanding of the control technique. Specifically

it allows for the a priori estimation of drag reduction given a combination of disc

parameters.

The second part of the thesis focusses on various layouts of the steadily-

rotating disc actuators first studied by Ricco & Hahn (2013) (RH13). The layouts

have been studied both with regards to the percentage of actuated wall in each

case, and to the spacing between actuators in the homogeneous directions. It has

been found that for low disc-tip velocities the drag reduction scales well with the

percentage actuated area. However for higher tip velocities this scaling is lost.

In some cases a reduction in the coverage, and therefore in the number of discs
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on the channel walls, causes an increase in drag reduction. The reduction in the

number of actuators can thus be considered a reduction in the complexity of the

technique. As this also coincides an increase in performance, it therefore means

that a further step has taken towards implementation of the control strategy. The

increase in drag reduction coincides with increased spacing between actuators in

the streamwise direction. A radial streaming effect created by the disc motion

is responsible for the increase, a result found through comparison of the turbu-

lent disc flow with the laminar von Kármán solution. The FIK identity used in

collusion with flow visualizations has allowed criteria to be determined for the

creation of the tubular structures present both in both RH13 and in Chapter 3.

It has been found that the structures are created only when there is sufficient

interaction between discs in the spanwise direction.

In the final part of the thesis modifications to the disc actuators are presented

and discussed. These include novel half-disc and annular actuators, as well as a

passive implementation of the disc drag reduction mechanism. Maximum drag

reduction of 26% is observed for the half-disc actuators. These improvements

to the strategy have been made following comparison of the induced flow with

the laminar solution. The half-disc configuration eliminates the streamwise body

forcing that was being created by the original disc actuators, an element of the

control strategy that was causing local drag increase. The annular actuators

retain the annular forcing created by the disc, and thus also retain the mechanism

for drag reduction caused by the shearing effect of the disc boundary layer. The

improvement comes from the removal of the central part of the disc for which

the wall-velocity is lower. This also removes the induced wallward flow, thereby

increasing the drag reduction. Finally a passive-disc drag reduction strategy

where the discs are left to rotate dependent on the turbulent shear-stress results

in zero net drag reduction.
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The thesis is here concluded with a note on the proposed direction of research

in the disc flow-control method. This strategy must be investigated at higher

Reynolds number before it can be considered plausible for industrial application.

As the optimal forcing parameters may change with Reynolds number, as may the

maximum attainable values of drag reduction and power savings themselves, fur-

ther study into the Reynolds number effect is of paramount importance. Finally,

the results on the passive actuators represent another area which would benefit

from further research. It is recognized that the modelling of the freely-rotating

discs may require further consideration. The code used within the present study

is however not suitable for this study, as it would surely be computationally very

heavy.



90 6. Summary and future work



APPENDIX





A. THE CHANNELFLOW CODE

The code implemented in this work, found at channelflow.org is an open-source

C++ direct numerical simulator for the fluid flow between two infinite, periodic,

rectangular, parallel plates. The code replicates an incompressible wall-bounded

flow contained within Θ ≡ LxT × [0, 2] × LzT, where T is the periodic unit

interval. In this domain the flow is governed by the incompressible Navier-Stokes

equations, given in equations (1.1) and (1.2).

The computational domain created within Θ has Nx, Ny and Nz gridpoints

in the x, y and z directions respectively. In physical space these gridpoints are

be given by

xn =
nLx
Nx

, n = 0, 1, 2, ..., Nx − 1,

zn =
nLz
Nz

, n = 0, 1, 2, ..., Nz − 1.

The velocity and pressure variables are represented in spectral as well as physi-

cal space, and channelflow makes use of the Fastest Fourier Transform in the

West (FFTW) libraries to perform these conversions. By transforming the vari-

ables from physical to spectral space differentiation in the x and z directions is

simplified.

The code uses Chebyshev discretisation in the y direction to obtain greater

refinement in the region immediately adjacent to the walls. This refinement is

created according to

yn =
b+ a

2
+
b− a

2
cos

(
nπ

Ny − 1

)
, n = 0, 1, 2, ..., Ny − 1,
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where yn is the location of the n-th coordinate, and a and b are the locations of

the channel walls (a=−b=−1).

A.1 Nonlinear terms

Channelflow implements any of the convection, divergence, skew-symmetric or

rotational forms of the nonlinear term, detailed in table A.1. Of these forms -

Convection form: u · ∇u

Divergence form: ∇ · (uu)

Skew-symmetric form: 1
2u · ∇u + 1

2∇ · (uu)

Rotational form: (∇× u)× u + 1
2∇(u · u)

Tab. A.1: Forms of the nonlinear term which are implemented within the channelflow

code.

all of which are identical in continuous mathematics (assuming ∇ · u=0) - the

rotational form is the least expensive computationally and is thus chosen for

the current work. The rotational form is less accurate than the skew-symmetric

form (Zang, 1991), particularly in the near-wall region. The use of Chebyshev

discretisation in the wall-normal direction limits this error (Horiuti, 1987), as

does the use of dealiased transforms.

The code does not carry out the computation on the rotational form as

described by equation (1.1). Instead, the nonlinear term is expanded using

Reynolds’ decomposition, after which the rotational form is applied to the tur-

bulent convective term only. When the rotational form is in use the equation to

be solved at each time step is thus

∂ut
∂t

+∇
[
p+

1

2
ut · ut

]
=

1

Rp
∇2ut−(∇×ut)×ut+um

∂ut
∂x

+vt
∂um
∂y

+
1

Rp
∇2um−Πx.

(A.1)
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In order to make the time-stepping algorithm more compact to present, the

following definitions are used following the convention of (Gibson, 2006). The

nonlinear term, N(u), is defined as

N(u) , (∇× ut)× ut + up
∂ut

∂x
+ vt

∂up

∂y
,

the modified pressure, q, is

q , p+
1

2
ut · ut,

the linear term, Lu, is

Lu , 1

Rp
∇2ut,

and the constant term C is

C , 1

Rp

∂2um
∂y2

−Πx.

Using these definitions, (A.1) is now written as:

∂ut

∂t
+∇q = Lu−N(u) + C. (A.2)

Time advancement within the code is carried out in Fourier space, and so

the continuous Fourier transform must be applied to equation (A.2). Using the

Fourier transformed ∇, ∇2 and L operators, given in Gibson (2006), we obtain

∂û

∂t
+ ∇̂q̂ = L̂û− N̂ + Ĉ,

where the wavenumber subscripts are omitted for convenience.

A.2 Time-stepping algorithm

Channelflow can implement any of seven time-stepping algorithms. Of these the

3rd order semi-implicit backward differentiation method (SBDF3) is the default.

This is due to its stability, and as it results in pressure and velocity fields of the

same order accuracy. In this scheme the linear term L(u) is treated implicitly
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and the nonlinear term N(u) explicitly. Specifically the SBDF3 method uses a 3rd

order backward Euler scheme for Lu and an explicit Adams-Bashford method for

N(u). In order to illustrate the method it can be applied to equation (A.2) as

follows:

11ûn+1 − 18ûn + 9ûn−1 − 2ûn−2

6∆t
+ ∇̂q̂ = L̂ûn+1 − 3N̂n + 3N̂n−1 − N̂n−2 + Ĉ.

After rearranging, this takes the form of a Helmholtz equation

L̂ûn+1 − λûn+1 = Ŝ, (A.3)

where λ=11/(6∆t) and Ŝ is the source term containing terms at time step n or

previous. This is then solved in Fourier space.

A.3 Kleiser-Schumann algorithm

To describe the Kleiser-Schumann algorithm it is necessary to expand the linear

operator L̂, and to discretise the modified pressure q̂ in the source term, from

equation (A.3) this obtains

νû′′n+1 − λûn+1 − ∇̂q̂n+1 = Ŝ, (A.4)

where the prime denotes differentiation with respect to y, and λ is redefined as

λ , 11

6∆t
+ 4π2

(
k2
x

L2
x

+
k2
z

L2
z

)
.

At each timestep it is thus necessary to solve (A.4) for each Fourier mode combi-

nation. Completing the system of equations we also have the Fourier transformed

continuity equation and the boundary conditions

∇̂ · û = 0, (A.5)

ûkx,kz = ûw, (A.6)

where ûw is the velocity vector at the wall. Equations (A.4)-(A.6) are referred

to as the tau equations by Gibson (2006) and consist of a set of three coupled
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differential equations with four unknowns. The algorithm, first presented by

Kleiser & Schumann (1980) decomposes the tau equations into independent one-

dimensional Helmholtz equations which are then easily solved. Using the method

described by Canuto et al. (1988) we first obtain the Poisson equation for pressure

through the differentiation and summation of the momentum equations, and

simplification through the continuity equation. In Fourier space this equation is

written as

q̂′′ − (k2
x + k2

z)q̂ = ∇̂ · Ŝ, (A.7)

and has boundary conditions

∇̂ · ûkx,kz(±1) = 0, i.e., v̂′kx,kz(±1) = 0.

Taking only the y component of (A.4), and the Poisson pressure equation (A.7),

a system of equations for v̂ and q̂ can be isolated. If the derivative with respect

to y is now expressed as D, these equations can be put into matrix form as

L



p̂

v̂


 = f̂ v̂(±1) = v̂′(±1) = 0, (A.8)

where L and f̂ are given by

L =



D2 − (k2

x + k2
z) 0

−1
ρ νD2 − λ


 , f̂ =



∇̂ · Ŝ

−Ŝ1


 .

Equation (A.8) is described by Kleiser & Schumann (1980) as the A-problem and

is not easily solved due to the appearance of q̂ in the equation for v̂, whilst the

boundary conditions also contain v̂.

To solve the A-problem, Kleiser & Schumann (1980) formed the related B-

problem, consisting of two scalar, uncoupled Helmholtz equations. The solution

to the A-problem can then be expressed as a linear combination to three separate
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solutions to the B-problem.

L



q̂

v̂


 = f̂ q̂(±1) = q̂b±, v̂(±1) = 0.

The separation of the A-problem into the three individual solutions to the B-

problem is done by decomposing the pressure field into those solved for: (1) zero

pressure boundary conditions at either wall (v̂p, p̂p), (2) unit pressure boundary

conditions at the upper wall (v̂+, p̂+) and (3) unit pressure boundary conditions

at the lower wall (v̂−, p̂−)



q̂

v̂


 =



q̂p

v̂p


+ δ+



q̂+

v̂+


+ δ−



q̂−

v̂−


 .

The relation between the A-problem and the linear combination of the B-

problems is then expressed as follows

L



q̂

v̂


 = L



q̂p

v̂p


+ δ+L



q̂+

v̂+


+ δ−L



q̂−

v̂−


 ,

where δ+ and δ− are constants operating on solutions of the latter two versions

of the B-problem.

As described above the first B-problem to be solved is for zero pressure bound-

ary conditions at either wall, the problem given by

L



q̂p

v̂p


 = f̂ q̂p(±1) = v̂p(±1) = 0.

The second B-problem then posed is that with unit pressure boundary con-

ditions at y=+1 (the upper wall), the solutions to this one are given by (p̂+,v̂+)

and the problem is written as

L



q̂+

v̂+


 = 0 q̂+(+1) = 1, q̂+(−1) = v̂+(±1) = 0.
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Finally, the third B-problem to be solved is that with unit pressure boundary

conditions at y = −1 (the lower wall), the solutions given by (p̂−, v̂−) and the

problem is written as

L



q̂−

v̂−


 = 0 q̂−(−1) = 1, q̂−(+1) = v̂−(±1) = 0.

The boundary contions for the A-problem can be written in the form termed

by Kleiser & Schumann (1980) the influence-matrix equation



v̂′+(+1) v̂′−(+1)

v̂′+(−1) v̂′−(−1)






δ+

δ−


 = −



v̂p(+1)

v̂p(−1)


 .

It is noted that by solving this influence-matrix equation for δ± the correct bound-

ary conditions to the B-problem are given, the solution to which also satisfies the

original A-problem.

The derivation of the Poisson pressure equation (A.7) from the time-discretised

Helmholtz equation (A.3) is performed assuming the ability to perform continu-

ous differentiation in the y direction. However had this derivation been carried

out with the additional terms created from discretisation, the solution would need

to be corrected to remove any associated error. Kleiser & Schumann (1980) out-

line a tau correction step in their algorithm which channelflow is able to perform,

however this is not necessary for sufficiently large Ny (Canuto et al., 1988).

A.4 Parallel scalability

The strong scaling of the parallel version of the channel code is shown in figure A.1

(left). For this test the problem to be solved remains constant (i.e. the number

of grid points in the simulation remains constant), and the number of processing

elements is varied. The test case was a stationary wall simulation with 128 nodes

in the x and z directions, and 129 nodes in y. The speed-up Sp, is defined as
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Sp=T0/Tp, where T0 is the time taken for the simulation to run in serial, and Tp

is the time taken to run the simulation on p processors. The maximum speed-

up was obtained for 32 processors. Limitations associated with the computer

cluster have meant it was not possible to use more than 32 processors for shared-

memory parallelisation. The strong scaling efficiency of the parallel code, given by

Ep=T0/(pTp) is plotted in figure A.1 (right). Given these results, a compromise

was then sought between speed-up, efficiency, and queue-time on the cluster. All

simulations in the present work have been performed using 16 CPUs.
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Fig. A.1: Left: Speed-up, Sp vs. p, the number of processing elements. Right: Strong

scaling efficiency, Ep vs. p.



B. RESOLUTION CHECKS

Resolution checks have been performed on the maximum Pnet and maximum

R cases in section §3.3.2 for D=3.38 to observe uncertainty in the performance

quantities due to the effect of the discretisation parameters. The results are

presented in tables B.2 and B.1. From table B.2 the maximum drag reduction

value for D=3.38 is given as R=17±0.5%. From table B.1 the maximum Pnet is

given as Pnet=6±1.0%. Although not included in the tables, the drag reduction

computed using the FIK identity is within 3% for all cases listed below. It is

expected that there is larger uncertainty in the oscillating disc simulations than

in the steady disc rotation cases. This is due to the unsteady nature of the

forcing.
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Lx Lz ∆x+ ∆z+ Nx Ny Nz R(%) −Psp,t(%) Pnet(%)

6.79 2.26 10 5 334 129 222 17.1 26.4 -9.3

6.79 2.26 11.5 5.75 334 129 222 17.2 22.9 -5.1

4.59 2.26 11.5 5.75 222 129 222 17.8 22.9 -5.1

6.79 2.26 8 5.75 480 129 222 17.4 23.2 -5.5

6.79 2.26 11.5 4 334 129 320 17.6 27.1 -9.3

6.79 2.26 11.5 5.75 334 161 222 17.9 25.5 -7.7

4.59 3.4 11.5 5.75 222 129 334 17.8 25.7 -7.9

6.79 1.13 11.5 5.75 334 257 112 17.7 23.1 -5.4

6.79 2.26 8 4 320 129 320 18.0 27 -9.0

Tab. B.1: The effects of discretisation parameters on calculated values from the maxi-

mum R case for D=3.38. The period of the time average is constant for each

case, tf − ti=1690. The disc parameters are D=3.38, W=0.51 and T=65.

Lx Lz ∆x+ ∆z+ Nx Ny Nz R(%) −Psp,t(%) Pnet(%)

6.79 2.26 10 5 384 129 256 11.8 5.8 6.0

6.79 2.26 11.5 5.75 334 129 222 11.6 5.2 6.4

4.59 2.26 11.5 5.75 222 129 222 12.0 5.3 6.7

6.79 2.26 8 5.75 480 129 222 12.1 5.7 6.4

6.79 2.26 11.5 4 334 129 320 12.4 5.4 7.0

6.79 2.26 11.5 5.75 334 161 222 12.1 5.8 6.4

4.59 3.4 11.5 5.75 222 129 334 11.7 5.3 6.3

6.79 1.13 11.5 5.75 334 257 112 11.7 5.8 5.9

6.79 2.26 8 4 320 129 320 12.1 6.0 6.1

Tab. B.2: The effects of discretisation parameters on calculated values from the maxi-

mum Pnet case for D=3.38. The period of the time average is constant for each

case, tf − ti=1690. The disc parameters are D=3.38, W=0.26 and T=130.



C. TABLE OF DATA FOR ARRANGEMENTS OF DISC ACTUATORS

The data for R and Psp,t for Chapter 4 are given in Table C.1.

Case W R(%) −Psp,t(%)

�

0 0.13 7.2 2.4

0 0.26 16.2 9.8

0 0.39 18.3 22.7

0 0.52 11.9 42.5

O

1 0.13 1.7 0.6

1 0.26 5.1 2.5

1 0.39 7.4 5.8

1 0.52 8.5 10.9

M

2 0.13 3.5 1.2

2 0.26 8.2 5.0

2 0.39 9.4 11.4

2 0.52 8 21.4

Case W R(%) −Psp,t(%)

◦
3 0.13 3.6 1.2

3 0.26 10.3 5.0

3 0.39 14.0 11.6

3 0.52 15.5 21.7

�

4 0.13 3.6 1.2

4 0.26 10.3 5.0

4 0.39 14.0 11.6

4 0.52 15.5 21.6

B

5 0.13 8.0 2.7

5 0.26 17.0 9.7

5 0.39 18.5 24.7

5 0.52 14.8 46.4

Tab. C.1: Performance data for different forcing conditions and layouts.



D. DERIVATION OF EQUATION OF MOTION FOR

FREELY-ROTATING DISCS

Herein is detailed the derivation of the non-dimensional equations of motion for

the freely-rotating discs. This begins from equation (5.1),

I∗θ̈∗ = ΣT ∗,

where I∗=m∗D∗2/8 is the moment of inertia of the disc, θ̈∗ is its angular accel-

eration, and ΣT ∗ is the sum of torques acting upon it.

The mass m∗ of the disc is equal to the product of its volume and density,

i.e. m∗=ρ∗dV
∗, where ρ∗d is the density of the disc material, V ∗=πD∗2b∗/4 is its

volume, and b∗ is its thickness. Writing ρ∗d as a multiple of the fluid density ρ∗

(i.e. ρ∗d=aρ
∗), the moment of inertia of the disc is given by

I∗ =
aπD∗4b∗ρ∗

32

The turbulent torque T ∗t is then equivalent to the integral of τ∗θ r over the disc

surface, where τ∗θ=µ∗ ∂u∗θ/∂y
∗|wall is the azimuthal shear stress on the disc. T ∗t

is therefore

T ∗t =

∫ D∗/2

0

∫ 2π

0
µ∗r∗2

∂u∗θ
∂y∗

∣∣∣∣
wall

dθ∗dr.

The fluid friction torque F∗f is modelled by the laminar von Kármán rotating disc

solution. The torque on the wetted surface of a disc rotating beneath a quiescent

fluid is given in Schlichting (1979) as

F∗f =
ν∗1/2Gkπρ∗D∗4

∣∣∣θ̇∗
∣∣∣
3/2

32
.
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Modelling the mechanical friction F∗m as a constant proportional loss of the other

torques acting on the disc, i.e. as F∗m=−f(T ∗t − F∗f ), the dimensional equation

of motion for the disc is obtained

aπD∗4b∗

32
θ̈∗ = (1− f)

[
ν∗
∫ D∗/2

0

∫ 2π

0
r∗2

∂uθ∗

∂y∗
dθ∗dr∗

−sgn(θ∗)
ν∗1/2Gkπρ∗D∗4

∣∣∣θ̇∗
∣∣∣
3/2

32


 .

The sgn(θ∗) term is introduced here to ensure that the fluid friction always acts

in the opposite direction to the disc motion. Non-dimensionalization into outer

units yields

Iθ̈ = (1− f)

[
1

Rp

∫ D/2

0

∫ 2π

0
r2∂uθ
∂y

dθdr − κ |θ|3/2
]

,

where I=aπD4b/32, and κ=sgn(θ)GkπD
4/(32R

1/2
p ).
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