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Abstract

Computer systems are increasingly used in applications where the consequences of
failure vary from financial loss to loss of human life. As a result, significant research
has focused on the model-based analysis and verification of the compliance of business-
critical and security-critical computer systems with their requirements. Many of the
formalisms proposed by this research target the analysis of quality-of-service (QoS)
computer system properties such as reliability, performance and cost. However, the
effectiveness of such analysis or verification depends on the accuracy of the QoS models
they rely upon. Building accurate mathematical models for critical computer systems
is a great challenge. This is particularly true for systems used in applications affected
by frequent changes in workload, requirements and environment. In these scenarios,
QoS models become obsolete unless they are continually updated to reflect the evolving
behaviour of the analysed systems.

This thesis introduces new techniques for learning the parameters and the structure
of discrete-time Markov chains, a class of models that is widely used to establish key
reliability, performance and other QoS properties of real-world systems. The new
learning techniques use as input run-time observations of system events associated with
costs/rewards and transitions between the states of a model. When the model structure
is known, they continually update its state transition probabilities and costs/rewards
in line with the observed variations in the behaviour of the system. In scenarios when
the model structure is unknown, a Markov chain is synthesised from sequences of such
observations. The two categories of learning techniques underpin the operation of
a new toolset for the engineering of self-adaptive service-based systems, which was
developed as part of this research. The thesis introduces this software engineering
toolset, and demonstrates its effectiveness in a case study that involves the development
of a prototype telehealth service-based system capable of continual self-verification.
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Chapter 1

Introduction

1.1 Motivation

As software use increases in business-critical and safety-critical applications [28, 107], so
too does the adverse effect of unreliability or unpredictability in software [9, 57, 66, 169].
This may lead to failures that endanger human life, cause substantial economic loss or
trigger extensive environmental damage [58, 72, 78, 107, 171]. To address this concern,
significant research has focused on monitoring, modelling, analysing and verifying the
compliance of computer systems [28, 51, 54, 65, 154, 151, 113] and of their components
with functional and non-functional requirements [8, 101, 156, 158]. The formalisms
proposed by this research effort focus on the analysis of reliability and performance
quality-of-service (QoS) properties of computer systems. The definitions introduced
in [12, 142] are adopted for these concepts. Thus, by quality of service we mean the
operation cost of a web-service or probabilistic quality attribute of the service such as
availability, reliability, and reputation” [29].

Building accurate formal models of computer systems is a great challenge for two
reasons. First, the necessary knowledge may not be available until very late in the
lifecycle of the system [6, 15, 30, 51, 52, 138, 159]. Second, Business-critical and safety-
critical applications are increasingly being deployed in dynamic and unpredictable
environments [16, 35, 37, 108] in which they must learn to self-adapt to change in order
to achieve their objectives successfully. Therefore, it is important that software is both
adaptable and dependable in the presence of changing conditions that may occur in
the running environment [25, 29, 30, 66]. To this end, models should be developed
not only to enable practitioners to reason about requirements and to identify possible
conflicts in the system, but also to guide self-adaptation within the implemented system
[9, 15, 17, 30, 66, 169]. To use models for the latter purpose, they must be kept in sync
with the actual system behaviour at run-time, so that the necessary adaptations are
driven by the analysis of an accurate model [14, 16, 30, 46, 66].

Markovian models are increasingly used to model and analyse QoS properties of
technical systems [26, 29, 42, 66, 74, 75, 86, 113, 112]. The explanation for this trend is
twofold. Firstly, as stated above, the use of technical systems in safety-critical [136, 144]
and business-critical [81, 122] applications is on the rise, and so is the importance of
ensuring that these systems comply with strict performance and reliability requirements
[4, 28, 45, 153]. Secondly, the last decade has brought the advent of powerful software
tools that assist system developers in building Markovian models, and automate model
analysis. These tools are termed probabilistic model checkers. They take as input a
formal system description expressed in a high-level modelling language, and convert
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it into a Markovian chain that they then use to analyse user-specified QoS properties
[28, 43, 84]. Examples of such properties are the probability that a fault occurs within
a specified time period, and the expected response time of a web service under a given
workload. Widely used probabilistic model checkers include PRISM [96], MRMC [104]
and Ymer [162].

The types of Markovian models used to analyse the QoS properties of computer
systems include discrete-time Markov chains, which are frequently used in analysing
reliability-related QoS properties [30, 66], and continuous-time Markov chains, tradi-
tionally employed in analysing performance-related QoS properties such as response
time and throughput [15]. Furthermore, variants of these models augmented with
costs/rewards are increasingly used to express and analyse the costs associated with
different configurations of critical system [72, 110]. These parameters often vary during
the lifetime of a system, as a result of changes in system workload, environment1 and
internal state. In this research, we developed new techniques for learning the transition
probabilities, the costs/rewards, and the structure of (discrete-time) Markov chains
from run-time observations of the modelled systems.

Probabilistic model checking can be employed effectively at several stages in the life
cycle of a technical system [28, 70, 84]. During system design, the technique can be
used to analyse alternative solutions and identify those that satisfy the envisaged QoS
requirements without having to build and test potentially expensive system prototypes
[84]. For existing systems, probabilistic modelling and analysis can be used to verify
whether QoS requirements are achieved or remedial action is needed to ensure compliance
[43]. More recently, probabilistic model checking has been used to guide self-optimisation
in autonomic IT systems during their execution stage [28, 29, 34, 32]. One of the primary
focuses of this research has been to provide software practitioners with a set of tools
for the model-driven development of dependable and self-adaptable software. To this
end, the research presented in the thesis combines quantitative verification techniques
with model learning techniques. These techniques are used at runtime, to predict and
identify requirement violations, to plan the adaptation steps necessary to prevent or
recover from violations, and to obtain evidence that the reconfigured software complies
with its requirements [28].

Alternative techniques for analysing the QoS properties of technical systems include
simulation and testing [1, 21, 134, 147]. However, these techniques can only examine a
finite (and often small) number of scenarios that the system may operate in. As many
systems are associated with an extremely large number of scenarios, the results produced
by simulation and testing are approximate and cannot guarantee compliance with QoS
requirements. In contrast, probabilistic model checking performs an exhaustive analysis
of the considered QoS properties, producing precise results that guarantee or disprove
each analysed property irrefutably [96, 103, 111].

1.2 Contributions

The main hypothesis of this project has been that it is possible to use observations of
a running service-based system’s behaviour to continually update Markovian models
of the system, and to use these updated models (a) to verify the system’s compliance
with non-functional requirements at runtime; and (b) to dynamically reconfigure the
system in order to recover from violations of these requirements.

1In requirements engineering the environment is the part of the world in which a computer system is

operating[163]. For example, the Web Services are deployed in dynamic and unpredictable environment

of the Internet in a Service-Oriented Architecture.
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In this PhD project we have developed new techniques and software engineering
tools that address the major challenge of basing adaptation decisions in QoS engineering
on accurate models of the underlying systems. In particular, the project has developed
a set of rigorous approaches for the on-line learning of the parameters and structure of
(discrete-time) Markov chains used in the analysis of QoS properties of service-based
systems. The techniques take as the input runtime observations of events that are
associated with cost/rewards and transitions between states of the model.

These approaches and their advantages and novel characteristics are detailed in the
following list of the main contributions of the thesis:

1. A parameterised on-line learning method that infers the state transition probabil-
ities of a Markov model of a system from observations of the system behaviour,
and adjusts its parameters dynamically depending on the frequency of these
observations. This adaptive learning leads to a faster and more accurate inference
of the transition probabilities than that provided by existing methods. Rigorous
theoretical results link the parameters chosen dynamically by our learning method
to the expected error in the accuracy of the learnt state transition probabilities.
This allows the configuration of the adaptive learning method so that it yields
results within an acceptable expected error range.

2. A novel approach that uses a Kalman filter and a recursive weighted least-squares
filter to establish cost/reward structures for Markov chains. These structures are
associated with, and support the analysis of, performance-related QoS properties
of component-based systems whose instrumentation is not possible or not desirable
(e.g., embedded and real-time systems). The approach supports the identification
of under-performing components, and the dynamic reconfiguration of the modelled
systems.

3. A model learning technique for synthesising Markov chains with the desired degree
of accuracy for a class of observable black-box component-based systems 2. These
models are used in our continual runtime verification framework, to detect changes
in QoS models (e.g., to reflect component failures in running computer systems),
enabling new approaches to self-configuration, and detecting components that
leave or join the system at runtime.

4. A tool-supported framework for engineering service-based systems (SBSs) capable
of self-verifying their compliance with reliability requirements. The self-verifying
systems developed using this framework employ continual formal verification to
select the service combination that guarantees the realisation of their reliability
requirements with minimal cost. The underlying model is updated online to
reflect changes in the service reliability and in the frequency with which the SBS
operations are invoked. The continual verification, model updating and service
selection capabilities are fully automated, and are provided by a combination of
reusable and automatically generated software components. The development pro-
cess supported by the new framework resembles the traditional SBS development
process, so practitioners can use it with little learning effort.

5. Case studies that evaluate the the efficiency (i.e., time to detect underperforming
service(s)) and accuracy (i.e., ability to detect system violations). These case
studies will serve as exemplars for other researchers and practitioners to gain
insight into the engineering of self-adaptive service-based software systems.

2This is in contrast to a white-box (or a glass-box) system [140, 141], whose internal components

and component relationships are known.
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1.3 Overview

The remainder of the thesis is organised as follows. Chapter 2 introduces the key
concepts, notations and mathematical models underpinning the research carried out
by the PhD project. This includes the Markov chains whose parameters, cost/reward
structures, and model structures are learnt by the techniques introduced in the thesis,
the temporal logic used to specify the properties of these models, and the optimal filters
employed in the synthesis of cost/reward structures for Markov chains.

The next three chapters describe the research contributions of the thesis. Chapter 3
presents the online learning of QoS model parameters, introducing the new algorithms
for learning the state transition probabilities from runtime observations of the behaviour
of the modelled system; and use the optimal filters to establish unknown costs/rewards
of (discrete-time) Markov chains. These techniques are usable in scenarios where state
transition probabilities and response times of system components are prone to changing
dynamically. Chapter 4 focuses on the online learning of the structure of Markov chains,
and the use of this technique within the software engineering framework mentioned in
the next chapter. Chapter 5 presents an automated model-driven engineering framework
that exploits the theoretical results from Chapters 3 and 4, which is used to develop
service-based systems with learning-driven adaptation capabilities. Each of Chapter 3
to 5 begins with a review of related work.

Finally, Chapter 6 summarises the insights gained from the PhD project, its contri-
butions and their envisaged applications. Also in this chapter, we suggest a range of
areas for further research that can extend or build on the results of the PhD project.
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Chapter 2

Background

This chapter introduces the key concepts, notations and mathematical models underpin-
ning the research carried out as part of this PhD project and described in the rest of the
thesis. These include the quality-of-service models learnt by the techniques presented in
the thesis, the temporal logic used to specify properties of these models, and the Kalman
filter and recursive weighted least-square filter used to learn cost/reward structures
associated with such models.

2.1 Markovian models

Markovian models are state-transition systems comprising a finite set of states that
correspond to different configurations of a real system, and state transitions associated
with the transitions that are possible between these states. State transitions are typically
annotated with probabilities that reflect the probabilities with which the transition
occurs in the real system.

2.1.1 The Markov property

Markov models make the simplifying assumption that, given the current state of the
model, the next state is independent of past model states. In other words, the current
state of the modelled system encodes all the knowledge required to know the next
system state. Formally, a state-transition process is called a Markov process if [106]

P [Xn+1 = j|X0 = i0, ..., Xn = in] = P [Xn+1 = j|Xn = in], (2.1)

where the random variables X0, X1, . . . , Xn+1 represent the state of the process at time
step t = 0, 1, . . . , n + 1, and i0, ..., in and j represent states of the process. Because
the distribution of Xn+1 depends only on the current state Xn = in and not on the
whole history {X0 = i0, · · · , Xn = in}, this is referred to as the memorless property
of a Markov model, or simply the Markov property. As a consequence, the past
{X0, ..., Xn−1} and the future {Xn+1, ..., Xn+m} are conditionally independent given the
present Xn = in, i.e.,

P [X0 =i0, ..., Xn−1 = in−1, Xn+1 = in+1, ..., Xn+m = in+m|Xn = in] =

= P [X0 = i0, ..., Xn−1 = in−1|Xn = in]×
P [Xn+1 = in+1, ..., Xn+m = in+m|Xn = in]

(2.2)
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x0 x1 xn−1 xnx2 xn+1. . . . . .

Figure 2.1: Chain dependence in a Markov process (adapted from [106])

This does not imply that the past lacks information about the future state. On the
contrary, the past does affect the future through the present state, as illustrated in
Figure 2.1, which shows how the random variables X0, X1, . . . , Xn+1, ... are connected
by a chain of events.

2.1.2 Markov chains

The following formal definition is adapted from [13].

Definition 2.1. A (discrete-time) Markov Chain (MC) is a tuple

M = (S, s0,P, L), (2.3)

where

� S = {s0, s1, ..., sn−1} is a finite set of n ≥ 1 states;

� s0 ∈ S is the initial state;

� P : S×S → [0, 1] is the state transition matrix; element pij from P represents the
probability of transitioning to state sj from state si, 1 ≤ i, j ≤ n, and

∑n
j=1 pij = 1

for all states si ∈ S;

� L : S → 2AP is a labelling function which assigns a set of atomic propositions
from AP to each state in S.

The model M is said to be finite if S and AP are finite, and the size of M is
denoted by size(M) = |S|. The states s′ ∈ S for which P (s, s′) > 0 are the possible
successors of s. Therefore, the probability of moving from state s to a state belonging
to a subset of T ⊆ S, denoted P (s, T ) denote the probability of moving from s to some
state t ∈ T in a single step. This probability is given by

P (s, T ) =
∑

t∈T
P (s, t). (2.4)

Equation (2.4) can be expressed as a matrix (P (s, t))s,t∈S, where the row P (s, .) for
state s holds the probabilities of moving from s to its successors, while the column
P (., s) for state s includes the probabilities of entering state s from any other state.

Example 1. Consider a web service whose invocation can be affected by two types of

errors. Assume that the attempt to invoke the web service fails with probability 0.1 due

to connectivity problems, and the requests that reach the web service can further fail with

a probability of 0.25 due to problems with the web service implementation. If the web

service invocation fails, then the system continues to retry until a successful invocation
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Figure 2.2: Example of a Markov chain model

is completed. Figure 2.2 shows the Markov chain modelM for an invocation of this web

service, with states depicted as vertices and state transitions depicted as directed edges

that join pairs of states. The MC M has five states: S = {s0, s1, s2, s3, s4}, with the

initial state s0 corresponding to an invocation of the web service being initiated. State

s1 corresponds to a successful connection with the web service having been established,

and state s3 corresponds to the successful invocation of the service. Finally, state s2

corresponds to a failed connection or execution of the web service, and state s4 to a

retry being initiated.

The transition probability matrix P for this Markov model is given by:

P =




0 0.9 0.1 0 0

0 0 0.25 0.75 0

0 0 0 0 1.0

0 0 0 1.0 0

1.0 0 0 0 0




The atomic propositions used to label the states are taken from the set AP =

{initial , connected , fail , succ, retry}. The labelling function enables the association

of meaningful names to states of the MC:

L(s0) = {initial}, L(s1) = {connected}, L(s2) = {fail} , L(s3) = {succ} and

L(s4) = {retry}.

2.1.3 Extension of Markov chains with costs/rewards

To support the evaluation of a broader range of quantitative properties, MCs are
augmented with reward (or cost) information. This involves associating positive real-
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Figure 2.3: Example of a Markov chain with costs/rewards

valued quantities to the Markov model states and/or transitions. Semantically, these
quantities correspond to costs that we aim to minimise, or to rewards that we want
to maximise. However, the two are equivalent from a mathematical standpoint, as
formally defined below.

Definition 2.2. Given a MC M = (S, s0, P, L), a reward structure for M is a pair of

functions (ρ, ι), where:

� ρ : S → R≥0 is the state reward function (a vector);

� ι : S × S → R≥0 is the transition reward function (a matrix).

Example 2. Figure 2.3 depicts a cost-annotated MC model M = (S, s0, P, L) for the

simple web service invocation from Example 1, where ρ : S → R+ associates a cost

ρ(s2) = 1 to the “failed” state. For any other state s ∈ S \ {s2}, ρ(s) = 0, and ι is not

used.

2.2 Probabilistic computation tree logic

An execution of an MC M = (S, s0, P, L) is represented by a path. Formally, a path
π is a non-empty sequence of states s0, s1, s2...sn where si ∈ S and P (si, si+1) > 0, for
0 ≤ i ≤ n. A path can either be a finite or infinite. The ith state of a path π is denoted
by π(i), the length of a given π (number of transitions) is |π| and for a finite path πfin,
the last state is last(πfin). We say that a finite path πfin of length n is a prefix of the
infinite path πinf if πfin(i) = πinf (i) for 0 ≤ i < n.

In order to reason about the probabilistic behaviour of the MC, we need to determine
the probability that certain paths are taken. We capture non-functional QoS properties
relevant to the modelled system using formal specification languages such as probabilistic
computation tree logic (PCTL). The following definition, introduced in [13], define the
syntax of PCTL.
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Definition 2.3. Let AP be a set of atomic propositions and a ∈ AP , p ∈ [0, 1],

k ∈ N, r ∈ R and ./ ∈ {≥, >,<,≤}. Then a state-formula Φ and a path formula Ψ in

PCTL are defined by the following grammar:

Φ ::= true | a | Φ ∧ Φ | qΦ | P ./p (Ψ)

Ψ ::= XΦ | ΦUΦ | ΦU≤kΦ
(2.5)

PCTL distinguishes between state formulae Φ and path formulae Ψ that are inter-
preted over the states of an MC model M. The state formulae includes the standard
logical operators ∧ and ¬, which also allow the formulation of other usual logical opera-
tors, such as disjunction (∨) and implication (⇒), and false. The main extension of
the state formulae, compared to non-probabilistic logics such as CTL, is the replacement
of the traditional path quantifiers E and A with the probabilistic operator P. This
operator can be used to define upper and lower bounds on the probability of the system
evolution. As an example, the formula P≥p(Ψ) is true at a given state if the probability
of the future evolution of the system satisfying Ψ is at least p. The semantics of PCTL
is defined formally as follows.

Definition 2.4. Let M = (S, s0, P, L) be a MC. For any state s ∈ S, the satisfaction

relation |= is defined inductively by:

� s |= true for all s ∈ S

� s |= a⇔ a ∈ L(s)

� s |=¬ Φ⇔ s 6|= Φ

� s |= Φ ∧Ψ⇔ s |= Φ ∧ s |= Ψ

� s |= P./p[Ψ]⇔ ProbM(s,Ψ) ./ p

The path formulae that can be used with the probabilistic path operators are:

� the “next” formula XΦ, which holds if Φ is true in the next state of a path;

� the time bounded “until” formula Φ1U
≤kΦ2, which requires that Φ1 holds contin-

uously up to some time step x < k and Φ2 becomes true at time step x+ 1;

� the unbounded “until” formula Φ1UΦ2, whose semantics is identical to that of
the bounded “until”, but the time-step bound is set to infinity t =∞.

The standard PCTL operator “until” can be used to express additional properties
encountered in other formalisms, including “eventually” F , “always” G, and “weak
until” W. For example, the “eventually” formula P./p(FΦ) is semantically equivalent
to P./p(true UΦ).

Example 3. Below are some typical examples of PCTL formulae:

� P≥0.4[X delivered] — The probability that a message has been delivered after one

time-step is at least 0.4;
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� init → P≤0[F error] — from any initial configuration, the probability that the

system reaches an error state is 0;

� P≥0.9[¬down U served] — the probability the system does not go down until after

the request has been served is at least 0.9;

� P<0.1[¬done U≤10 fault] — the probability that a fault occurs before the protocol

finishes and within 10 time-steps is strictly less than 0.1.

To enable the verification of additional properties of MCs, PCTL is extended with
costs/rewards as defined below.

Definition 2.5. The cost/reward augmented PCTL state formulae are defined by the

grammar:

Φ ::= R./r[I
=k] | R./r[C

≤k] | R./r[FΦ] (2.6)

where ./∈ {<,≤,≥, >}, r ∈ R≥0, k ∈ N and Φ is a PCTL state formula.

The cost/reward operator R can be used to analyse the expected cost at time step
k (R./r[I

=k]), the expected cumulative cost up to time step k (R./r[C
≤k]), and the

expected cumulative cost to reach a future state that satisfies a property Φ (R./r[FΦ]).
Further details about the formal semantics of PCTL are available from [50, 93].

Example 4. For the Markov model and cost/reward structure from Example 2, the

PCTL formula R≤4[Fsucc] is true iff the expected number of failures before reaching

the success state does not exceed 4.

2.3 Probabilistic model checkers

PProbabilistic model checkers are formal verification software tools that assist software
developers in modelling and analysing systems that exhibit stochastic behaviour [109].
A probabilistic model checker takes as its input a probabilistic model and a property
specification. The former is expressed in a high-level modelling language (Figure 2.4),
and is then transformed into a Markovian chain that is used to analyse user-specified
quantitative properties. The latter is expressed in probabilistic temporal logics. In the
case of a DTMC, properties are expressed in probabilistic computational tree logic,
using probabilistic operators with additional features such as time bounds and costs.
Efficient model checking algorithms are then performed on the model by induction
over the syntax of the analysed property. These algorithms can produce two types
of outputs, either true/false to indicate whether the property holds given the current
model, or a numerical value, for example, the probability that the property holds or the
expected cost to reach a goal state. Widely used probabilistic model checkers include
PRISM [96], MRMC [104] and Ymer [162].
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1 dtmc

2

3 label "initial" = a=0;

4 label "connected" = a=1;

5 label "fail" = a=2;

6 label "succ" = a=3;

7 label "stop" = a=4;

8 label "retry" = a=5;

9

10 //rewards structure that associates costs to the failed invocation

11 rewards

12 (a=2) : 1.0;

13 endrewards

14

15 module workflow

16

17 a : [0..4] init 0;

18

19 [initial] (a=0) -> 0.9 : (a'=1) + 0.1 : (a'=2);

20 [connected] (a=1) -> 0.25 : (a'=2) + 0.75 : (a'=3);

21 [fail] (a=2) -> 1.0 : (a'=4);

22 [succ] (a=3) -> 1.0 : (a'=3);

23 [retry] (a=4) -> 1.0 : (a'=0);

24

25 endmodule

Figure 2.4: PRISM model for the Markov chain with costs/rewards in Example 2

2.4 The Kalman filter

The Kalman filter is a widely used algorithm for estimating the parameters of real-world
systems from indirect, inaccurate measurements affected by noise. The Kalman filter is
optimal in the sense it minimises the mean square error of the estimated parameters if
the noise is normally distributed. The filter has been successfully used in application
domains ranging from autonomous underwater navigation [67, 114, 119] and aerospace
[24, 3, 87] to electronics [126, 131] and trust-based models [161, 97]. In this section we
describe the Kalman filter used in a linear system to estimate the state x ∈ Rn of a
discrete-time process at time t, where this process has evolved from the prior state xt−1

according to the equation

xt = Axt−1 +But−1 + wk−1, (2.7)

where
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� xt is an n× 1 column vector that holds n ≥ 1 state parameters of the system;

� ut is an optional control input (l × 1) column vector;

� A is an n× n matrix that relates the state of the previous time step t− 1 to the
current time step t;

� B is an n× l matrix that relates the control input ut−1 to the current state xt;

� wt is the vector containing the state transition noise for each parameter in the
state vector. The process noise is assumed to have a mean of zero and a normal
distribution with covariance given by the covariance matrix Qt.

The Kalman filter recursively makes a prediction based on the current state of the
linear system, and corrects the prediction using actual measurements z ∈ Rm taken
from runtime observations, according to the measurement equation

zt = Hxt + vt, (2.8)

where

� zt is an m× 1 column vector containing the measurements;

� H is the m× n transformation matrix that maps the state vector parameters into
the measurement domain;

� vt is the m× 1 column vector containing measurement noise for each observation
in the measurement vector. Like the process noise, the measurement noise is
assumed to be zero-mean Gaussian white noise with covariance given by the
covariance matrix Rt.

2.4.1 Observability of system state

The accuracy of the prediction is determined by how close the system model (2.8)
is to the actual system (2.7), and the performance of the estimation is determined
by the prediction. Therefore, the performance of the Kalman filter is determined by
the system model. Furthermore, a system is deemed observable if from the model
the properties of the real system are observable, i.e., all the state parameters in xt
are linearly independent from the transformation matrix H. Observability can be
characterised by the rank of the matrix.

M =
[
HT ATHT · · · (AT )n−1HT

]
. (2.9)

The system (2.7) is observable if the rank (M) = n.

Example 5. Consider the following linear system:

xt =




1 0 0
0 0 0
0 1 1


xt−1 +




1
0
1


wt−1 (2.10)

zk =
[
0 0 1

]
xt (2.11)
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The observability matrix, according to (2.9), is

M =




0 0 0
0 1 1
1 1 1


 , rank of M = 2 (2.12)

The rank is less than the dimension of xt (i.e., 3), so the system is not observable.

2.4.2 Using the Kalman filter

Given a system described by the state equation (2.7), we start with an initial parameter
estimate x0 and with an n× n error covariance matrix P0 which is the measurement of
the estimated accuracy of the parameter x0 (these initial values are provided by system
expert), and recursively apply the sequence of steps described below.

1. Predict: The Kalman filter only takes estimated parameters from the previous time
step (t-1), so the first step is to predict the parameter xt and the error covariance
matrix Pt:

x̂t = Axt−1 + wt−1 (2.13)

P̂t = APt−1A
T +Q (2.14)

2. Update : The following calculations are carried out:

� From the current observation zt, we update the measurement residual (also
called the measurement innovation). The residual reflects the difference
between the predicted measurement, Hx̂t, and the actual measurement, zt:

et = zt −Hx̂t (2.15)

A residual of zero means that the two are synchronised.

� We then calculate the optimal Kalman gain as

Kt = P̂tH
T (HP̂tH

T +Rt)
−1 (2.16)

� Next, we update (a posterion) parameter estimate xt that is used in the next
iteration of the Kalman filter:

xt = x̂t +Ktet (2.17)

� Finally, we update (a posterion) estimate covariance Pt that will be used in
the next iteration:

Pt = P̂t −KtHP̂t (2.18)

Intuitively, if we are more confident in the measurement zt, then the error covariance
(R) can decrease to zero and the Kalman gain will weight the residual more heavily
than the prediction. In contrast, if more confidence is placed in the prediction, then
the prediction error covariance P̂t will decrease to zero and Kt will increase and weight
the prediction more heavily than the residual.
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Figure 2.5: Response time estimate of a third-party service using the Kalman filter

Example 6. Suppose we need to use the Kalman filter to estimate the execution time

of a third-party service, where the actual response time is different from that advertised

as the prior value x0. Furthermore, assume that the measured response time is constant

but subject to white noise due to network disruptions. To implement the Kalman filter,

we set the following values for A, H, Q, and R which compose the system model:

A = 1

H = 1

Q = 0

R = 5

(2.19)

Note that the error covariance matrix Q is zero because wk = 0. Because x is a scalar,

A and H are both 1, and thus the two equations for the system model are:

xt = xt−1

zt = xt + vt

(2.20)

Finally, the initial estimate are:

x0 = 600

P0 = 50

If the initial condition of the system is unknown, then it is best to set a large covariance.

Figure 2.5 shows the results for our example using a simulator of the third-party
service, with 500 measurements of the response time (RT) observed over 500 seconds of
simulated time. We used the Kalman filter to estimate the RT of the third-party service.
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As shown in this diagram, the measured RT is widely dispersed around the actual RT
value due to the measurement noise. On the other hand, the Kalman estimate quickly
converges to the actual value by the removal of the noise through the Kalman filter.
See Appendix A for the Matlab code for the Kalman filter function and Appendix B
for the corresponding test program.

2.5 Recursive weighted least-squares filter

The recursive weighted least-squares (RWLS) filter is an adaptive filter that is widely
used in applications such as beamforming [11, 60, 166], blind multi-user detection in
code-division multiple-access systems [47, 48] and system identification [2, 157, 167].
The RWLS filter uses a forgetting function λ that controls the way in which each
measurement is incorporated relative to other measurements. The choice should be such
that measurements that are relevant to current system properties are included. The
weighing function is referred to as the exponential weighting into the past (EWP) and
is described in [63]. It should be noted that a forgetting function λ is used to shape the
estimator’s memory. The filter is used in linear systems, to estimate the state xt ∈ Rn

of a discrete-time process at time t, where this process has evolved from the prior state
xt−1. While the Kalman filter requires a complete prior knowledge of the state-space
model (2.7) and its parameters, the RWLS filter does not require a dynamic model for
the time-varying parameters, and relies instead on the forgetting function λ.

The RWLS filter recursively makes a prediction on the current condition of the
model z ∈ Rm, and corrects the prediction using actual measurements taken from
runtime observations, according to the measurement equation

zt = Hxt + vt, (2.21)

where

� zt is an m× 1 column vector containing the measurements;

� H is an m× n transformation matrix that maps the state vector parameters into
the measurement domain;

� vt is an m×1 column vector containing measurement noise for each observation in
the measurement vector. Like the process noise, the measurement noise is assumed
to be zero-mean Gaussian white noise, with covariance given by a covariance
matrix R.

The RWLS filter varies the covariance matrix R over time with the forgetting factor λt.
The following steps describe the RWLS algorithm.

1. Predict: The RWLS filter uses only the estimated parameters from the previous
time step (t − 1), so the first step is to predict the parameter xt and the error
covariance matrix Pt

x̂t = xt−1, (2.22)

P̂t = Pt−1, (2.23)

2. Update: Using the current observations, the following calculations are carried
out:
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� Update the measurement residual

et = zt −Hx̂t. (2.24)

� Update the measurement prediction covariance matrix

St = HPtH
T + λtR. (2.25)

� Calculate the gain
Kt = P̂tH

TS−1
t . (2.26)

� Update the estimate xt that will be used in the next iteration

xt = x̂t +Ktet. (2.27)

� Update the error covariance estimate Pt that will be used in the next iteration

Pt =
1

λ
P̂t −KtStK

T
t . (2.28)

2.5.1 Using the recursive weighted least-squares filter

Example 7. Suppose we want to use the RWLS filter to estimate the response time of

a third-party service, where the actual response time is different from that advertised

as the prior value x0. Furthermore, the measured response time is constant but subject

to white noise due to network disruptions. To use the RWLS filter in this scenario, we

set the following values for the system parameters:

H = 1

R = 5

x0 = 600

P0 = 50

λ = 0.9

(2.29)

We used the same simulator of the third-party service as in Example 6, and collected
500 measurements of the response time (RT) of the simulated service, observed over 500
seconds of simulated time. Figure 2.6 shows the results obtained using the RWLS Filter
to estimate the RT of the third-party service. Like in Example 6, the measurement
is widely dispersed due to the measurement noise, yet the RWLS estimate converges
rapidly to the actual RT value. Note that although the behaviours of the Kalman filter
and RWLS filter for the simple system from this example are very similar, the two have
different advantages and limitations when used as part of the learning techniques we
introduce later in Chapter 3. See Appendix C for the Matlab code for the RWLS filter
function and Appendix D for the corresponding test program.
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Figure 2.6: Response time estimate of a third-party service using the RWLS filter
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Chapter 3

Online learning of Markov chain

parameters

This chapter introduces new techniques for learning the transition probabilities of
(discrete-time) Markov chain (MC) models and their costs/reward structures from
run-time observations of the systems modelled by this class of Markov chains. The
chapter begins with a critical analysis of existing techniques for learning parameters of
Markovian models used in quality-of-service (QoS) engineering. The analysis emphasises
the need for learning the parameters of these models when the modelled system changes
over time; and discusses the advantages and limitations of existing approaches that
address this need.

This review of related work is followed by the description of the new Bayesian-
style learning algorithms for estimating the state transition probabilities of MC. The
sensitivity of the new algorithms depends on two parameters, and we provide a detailed
analysis of the learning algorithms and of the roles and options for customising their
parameters. The final part of the chapter describes a new learning algorithm for
estimating the unknown costs/rewards of MC models associated with component-
based systems such as workflows and embedded systems. The technique is applicable
to systems that execute multiple sequences of operations such that the cumulative
costs/rewards associated with each sequence can be measured, but it is not possible to
measure the cost/reward for individual operations and/or transitions.

3.1 Related work

Significant research has focused on monitoring the performance and reliability properties
of technical systems [39, 64, 135, 139, 132, 133, 160], and on modelling and analysing
these properties formally [15, 155, 92]. The spread of evolving critical system in multiple
application domains [27, 59, 94, 148] has led to a growing need for combining techniques
from these two research areas in a runtime context, in order to achieve a continual
verification of the non-functional properties of these systems [28, 7, 79, 100].

The approaches presented in [18, 38, 52, 53, 88, 117, 121, 164, 165, 168, 118] rely
on the definition of simple aggregate QoS functions to derive the QoS properties of
a system from the properties of its components. Functions such as sum for response
time and throughput [18, 52, 53, 117, 121], product for reliability [88, 117, 121], max,
and average are easy to define and manage. However, due to dependencies between
different services or between services and resources, these aggregation functions could
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lead to quality estimation that represents optimistic (or pessimistic) bounds rather
than a realistic estimate. To address this limitation Esfahani et al. [68, 69] use fuzzy
mathematical methods to model the expected impact of an architectural alternative on
system’s properties. Fuzzy logic is suitable to support early architectural decisions, but
when rough estimates in the early stages give way to precise estimates in the later stages,
then it becomes unnecessary. Mosincat et al. [129, 130] carry out statistical hypothesis
testing using sample based monitoring from runtime observations. Metzger et al. [128]
discuss various prediction techniques to predict the QoS values, including time series
prediction models and online testing for SBS systems. However, these approaches do
not use the predicted values to learn and update system model parameters that enable
later run-time analysis.

In [19, 20] Bencomo et al. present a formal dynamic decision networks model for
soft goals (non-functional requirements) and revise the model when empirical evidence
becomes available from system deployment. They use a table of conditional probabilities
for satisfying the effect of the revision over the non-functional requirements. Letier
et al. [115] represent uncertainty in early requirements and architecture decisions as
a probability. They use Monte Carlo simulation to evaluate the point-based models
on many different possible parameter values. In contrast to these approaches, the
techniques presented in this chapter use point-based estimate to predict QoS parameters
of performance and reliability models. In addition, we analyse the updated models at
run-time using probabilistic model checker PRISM [96], to enable continuous verification.

The research addressing the challenges of continual verification has so far focused
primarily on reducing the overheads of runtime analysis of formal models [33, 71, 73, 76,
102]. Relatively little effort has been dedicated to ensuring that formal models being
verfied are updated in line with the changes in the analysed system. The work in [66]
represents an exception in this respect, as it proposes a simple Bayesian technique for
the online learning of the state transition probabilities of MC models. The technique
is applicable when the analysed system is operational, and its state transitions are
monitored. Suppose that, as a result of this monitoring, we observe Ni > 0 transitions
from state si to other states in S, for each 1 ≤ i ≤ n. Also, assume that the k-th
observation of a transition from state si to another state, 1 ≤ k ≤ Ni, is a transition to
state sjk , and let

xkij =

{
1 if j = jk,

0 otherwise.
(3.1)

Note that
∑n

j=1 x
k
ij = 1 since, for each observation k, the system will transition from

state si to precisely one state from S. Given this notation, the technique uses theoretical
results from [149] and the Bayes’ rule to derive the updating rule for estimating the
probability pij after the observation of the k-th transition from state si to another state
in S as

pkij =
c0
i

c0
i + k

p0
ij +

k

c0
i + k

∑k
l=1 x

l
ij

k
, (3.2)

for 1 ≤ k ≤ Ni. The smoothing parameter c0
i ≥ 1 quantifies the confidence in the

accuracy of the a priori estimates p0
ij, 1≤i, j≤n. For a description of the steps involved

in deriving this result the reader is referred to [66]. In addition, [28] presents the use of
the technique within a framework for dynamic QoS management and optimization in
service-based systems.

As shown in Sections 3.2.1-3.3, our enhanced techniques for learning the transition
probabilities of discrete-time Markov chains address a key limitation of the solution
in [66]. In particular, our adaptive learning is better suited for all scenarios in which
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Table 3.1: Approaches to learning model parameters in QoS engineering

Authors Model Param. Technique Analysed Domain

& citation type learnt QoS req.(s)

Ghezzi et al. MC transition Bayesian Reliability Service-based

2009 [66] prob. estimation systems

Ghezzi et al. QN service Bayesian Performance, Service

2009 [86] rates estimation Workload, providers

Resource

allocation

Calinescu et al. MC transition Bayesian Reliability, Service-based

2011 [28] prob. estimation Workload, systems

Resource

allocation

Zheng et al. QN service Kalman Performance Web app.

2005–2011 rates filter deployed in a

[83, 169, 170] data centre

Section 3.2.1 MC transition Bayesian with Reliability Service-based

prob. observation systems

ageing

Section 3.3 MC trans. Adaptive- Reliability Service-based

prob. parameter systems

Bayesian

Section 3.4 MC trans. Kalman filter Performance Telematics

rate blackbox

the learnt MC transition probabilities undergo multiple-changes1 over time, which is a
frequently encountered situation in real-world systems.

The approach introduced in [169, 170] uses Kalman filter estimators to update
the parameters of queueing-network (QN) performance models. The approach adapts
the Kalman filter estimator for performance model parameters, to track changes in
performance parameters of a web application deployed in a data centre. The tracking
filter is based on a layered queuing model of this system, with parameters representing
CPU demands and the user load intensity. In Section 3.4 we use the Kalman filter to
estimate the costs/reward structures of MC models, and thus to detect performance
degradation for individual components of a black-box component-based system. Our
approach complements the work in [83, 169, 170], as it monitors the analysed system from
a user perspective (i.e., as a black-box component-based system), while [83, 169, 170]
require that monitoring the behavior of individual system components is possible.
Table 3.1 summarises the characteristics of the techniques described above, and compares
them to the new techniques proposed in this chapter.

1Not one step change from p to p
′ 6= p at a point in time

32



3.2 Markov chain transition probability learning with

observation ageing

3.2.1 Description

The project has developed a new Bayesian derived technique for learning the state
transition probabilities of MCs based on observations of the modelled system. Unlike the
existing approaches, our technique weighs observations based on their age, to account
for the fact that older observations are less relevant than more recent ones.

The updating rule (3.2) was shown in [29, 66] to be effective in scenarios where the
actual probability pij differs from the a priori estimate p0

ij, but is a constant. However,
in many scenarios involving real-world systems, pij is prone to changing dynamically.

For such scenarios, rule (3.2) is slow to detect requirement violations or, as shown
later in Section 3.2.3.3, may even fail to detect them when they are short lived.

Our extended MC parameter learning technique overcomes this limitation by weight-
ing the k > 0 observations from the updating rule (3.2) based on their “age”. To achieve
this, the extended technique timestamps each observation xkij from eqs. (3.1) and (3.2)
with the time instant tk when the observation was made.2 We assume that the updating
rule (3.2) is applied as soon as the k-th observation is made, i.e., at time moment
tk. Therefore, when the updating rule is applied, the age of a generic observation l,
1 ≤ l ≤ k, is precisely

agel = tk − tl. (3.3)

To reflect the decreasing importance of observations as they become older in a dynamic
scenario, we associate a weight

wli = α−ageli =
1

αtk−tl
(3.4)

with each observation l, 1 ≤ l ≤ k, where α ≥ 1 represents the observation ageing
coefficient (Figure 3.1). As shown later in this section, the choice of a negative
exponential function as the ageing function is motivated by the ease with which it allows
the application of the new updating rule (i.e., with O(1) time and memory complexity,
cf. Section 3.2.2).

The extended updating rule is then obtained by multiplying each xlij term from (3.2)
by its associated weight (3.4):

pkij =
c0
i

c0
i + k

p0
ij +

k

c0
i + k

∑k
l=1w

l
ix
l
ij∑k

l=1w
l
i

, (3.5)

for 1 ≤ k ≤ Ni. Note that the denominator for the last part of this updating rule
was adjusted to

∑k
l=1wl in order to satisfy the invariant

∑n
j=1 p

k
ij = 1:

2Recording this additional information typically requires only a small extension to the monitoring

part of a system.
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Figure 3.1: The observation ageing function α−age, shown for α = 1.001

n∑

j=1

pkij =
c0
i

c0
i+k

n∑

j=1

p0
ij +

k

c0
i+k

n∑

j=1

∑k
l=1wlx

l
ij∑k

l=1 wl
=

=
c0
i

c0
i+k
× 1 +

k

c0
i+k

∑k
l=1

(
wl
∑n

j=1 x
l
ij

)

∑k
l=1 wl

=

=
c0
i

c0
i+k

+
k

c0
i+k

∑k
l=1(wl × 1)∑k

l=1wl
=

c0
i

c0
i+k

+
k

c0
i+k

= 1.

Finally, note that selecting an ageing coefficient α = 1 makes all weights wl = 1,
thus reducing the extended updating rule (3.5) to the base updating rule in (3.2). This
property represents another advantage of using the ageing function in Figure 3.1.

3.2.2 Analysis of the learning algorithm

The pseudocode for the algorithm is shown in Algorithm 1. In devising this pseudocode,
we used the notation fkij =

∑k
l=1wlx

l
ij and gkij =

∑k
l=1wl, and the observation that:

fkij =
k∑

l=1

wlx
l
ij =

k∑

l=1

xlij
αtk−tl

=
xkij

αtk−tk
+

k−1∑

l=1

xlij
αtk−tl

=

= xkij +
k−1∑

l=1

xlij
αtk−tk−1αtk−1−tl = xkij +

fk−1
ij

αtk−tk−1

and, following a similar proof,

gkij = 1 +
gk−1
ij

αtk−tk−1
.

As mentioned earlier, the choice of an exponential negative ageing function simplifies

the application of the updating rule (3.5). Thus, the first term (i.e.,
c0i

c0i+k
p0
ij) and the

multiplicative factor k
c0i+k

can both be calculated in constant, O(1) time. As a result,

the part
fkij
gkij

=
∑k
l=1 wlx

l
ij∑k

l=1 wl
from rule (3.5) can also be calculated in O(1) time, by using the

recursive definitions above for k ≥ 2, and f 1
ij = x1

ij and g1
ij = 1 for k = 1. Furthermore,
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Algorithm 1 Bayesian learning algorithm with observation ageing

1: k ← 0

2: function Update(xkij, t
k
ij)

3: k ← k + 1

4: if k = 1 then

5: fkij ← xkij

6: gkij ← 1

7: else

8: fkij ← fkij + xkij

9: gkij ← gkij + 1

10: end if

11: pkij = calculate new estimate using Equation (3.5)

12: return pkij

13: end function

calculating the right-hand side of (3.5) at step k does not require the technique to
maintain a record of all k observations (i.e., of xlij and tl for all 1≤l≤k). The only

observation-related values required to carry out the calculation at step k are tk−1, fk−1
ij ,

gk−1
ij , xkij and tk. Thus, the memory complexity of the learning algorithm is also O(1).

3.2.3 Case study

3.2.3.1 Bioinformatic Workflow

To illustrate the process of updating the QoS parameters of a MC model, we carried
out a case study in which the approach presented in Section 3.3.1 was applied to
a real-world bioinformatic workflow taken from the Taverna repository of scientific
workflows myExperiment 3 (Figure 3.2). Taverna [98] is a workflow engine widely
used by research communities from bioinformatics, astronomy and social sciences. The
workflow in Figure 3.2 has been used in studies of an autoimmune disease that represents
the most common cause of hyperthyroidism in young people and children (i.e., the
Graves disease). This workflow was chosen for our case study because it invokes 18
different web services running at four research centres in the UK and Japan; it is also
one of the most complex and most used workflows from the repository4.

3.2.3.2 DTMC Model

A fragment of the PRISM model for this workflow is shown in Figure 3.3, where p1 to
p18 represent a priori estimates of the probabilities that the 18 web service invocations
complete successfully, and a PRISM module is used to model each web service. An

3http://www.myexperiment.org
4It had a download count of 2484 when last checked in May 2015.
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Figure 3.2: Bioinformatics workflow taken from http://www.myexperiment.org/

workflows/28.html

additional module (Workflow) is used to model the workflow as a whole, thus enabling
the specification of a reliability QoS requirement such as “the workflow must complete
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dtmc

//This is a PRISM model of a Taverna workflow used in studies for Graves diesease.

//The workflow can be found at: http://www.myexpriment.org/workflows/28.html

//constants p1 to p18 represent (a priori estimates of) the probabilities that the 18

//web service invocations complete successfully, and a PRISM module is used to model each

//web service. An additional module "Workflow" is used to model the workflow as a whole.

const double p1=0.999;

...

const double p18=0.99; //calcMeltTemp

const int SUCC=1;

const int FAIL=2;

-----------------------------------------------------------------------------------------------

module SgetEC //Service 1

getEC : [0..2] init 0;

[] getEC=0 -> p1:(getEC’=SUCC) + (1-p1):(getEC’=FAIL);

endmodule

-----------------------------------------------------------------------------------------------

...

-----------------------------------------------------------------------------------------------

module ScalcMeltTemp //Service 18

calcMeltTemp : [0..2] init 0;

[] calcMeltTemp=0 -> p18:(calcMeltTemp’=SUCC)+(1-p18):(calcMeltTemp’=FAIL);

[] (calcMeltTemp=0)&(ebi_embl=FAIL) -> 1:(calcMeltTemp’=FAIL);

endmodule

-----------------------------------------------------------------------------------------------

module WorkFlow

wf : [0..2] init 0; // 0 - init; 1 - success; 2 - fail

[] (wf=0)&((ebi_uniprot=FAIL)| (calcMeltTemp=FAIL)| (ebi_medline2007=FAIL)

| (markPathwayByObjects=FAIL)| (DDBJBlastn=FAIL)| (getInterProIds=FAIL)|

(getDotFromViz=FAIL)) -> 1 : (wf’=FAIL);

[] (wf=0)&((ebi_uniprot=SUCC)&(calcMeltTemp=SUCC)&(ebi_medline2007=SUCC)

&(markPathwayByObjects=SUCC)&(DDBJBlastn=SUCC)&(getInterProIds=SUCC)

&(getDotFromViz=SUCC)) -> 1:(wf’=SUCC);

[] wf=SUCC -> 1:(wf’=SUCC);

[] wf=FAIL -> 1:(wf’=FAIL);

endmodule

-----------------------------------------------------------------------------------------------

Figure 3.3: A fragment of the PRISM model for the workflow in Figure 3.2.

successfully with a probability of at least 0.95” as the PCTL reachability property:

“init”⇒ P≥0.95[F wf = SUCC] (3.6)

The complete PRISM model of the workflow is available in Appendix A.

3.2.3.3 Experiments and results

The MC parameter learning algorithm in Section 3.2.1 was validated through the
simulation of a wide range of scenarios for the bioinformatics workflow from Figure 3.2.

37



Figure 3.4: PRISM analysis of the workflow compliance with requirement (3.6)

This section presents a subset of these scenarios that involve learning the probability
of a successful invocation of the web service ebi embl from the workflow, based on
an initial estimate and on observations obtained through monitoring the service. This
service was selected because its execution involves complex bioinformatics database
operations that expose its invocation to variations in performance and reliability.

Assuming that the probabilities of all other service invocations are fixed, the
probabilistic model checker PRISM was used to analyse the impact of changes in
the success probability of service ebi embl on the compliance of the workflow with
requirement (3.6). Figure 3.4 depicts the result of this analysis, showing that the
workflow satisfies the requirement if and only if service ebi embl has a probability of
success of at least pRequired = 0.991.

Figure 3.5 presents the experimental results for three scenarios involving dynamic
changes to the actual probability of success pActual for the simulated web service over
30,000s of simulated time. Each scenario corresponds to a different pActual change
pattern, and the experimental results were obtained through averaging the results of
100 Matlab simulations of each of the three patterns. The observation timestamps
tk, 1 ≤ k ≤ Ni, were selected from a Poisson distribution with a mean inter-arrival
time of 1/λ = 1s, and the observations xkij, 1 ≤ k ≤ Ni, were taken from a Bernoulli
distribution with parameter pActual. The smoothing parameter was fixed at c0

i = 50,
and the a priori probability was set to 0.991, i.e., the minimum probability for which
requirement (3.6) is satisfied. Simulations were carried out for a large number of
values of the ageing coefficient α, though, in the interest of readability, the diagrams in
Figure 3.5 show the results for only two of these values, i.e., α = 1 (which corresponds
to the base learning algorithm) and α = 1.001.

In each scenario from Figure 3.5, the probability of success for the simulated service
starts and ends at a value pActual = 0.991 that ensure compliance with requirement
(3.6). However, this probability drops to a value pActual = 0.99 that violates the
requirement during a time interval whose bounds a, a

′
, b and b

′
marked on each scenario

denote time intervals when the estimated probability of successful service invocation
does not sufficiently reflect the actual probability pActual. This leads to an erroneous
verification result of requirement (3.6). Thus, a and a

′
are the time intervals during

which the requirement violation is undetected for α = 1.001 and α = 1, respectively
(false negative); and b and b

′
represent time intervals during which the requirement is

satisfied but wrongly classified as violated for α = 1.001 and α = 1, respectively (false
positive).
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Figure 3.5: Experimental results contrasting the effectiveness of the observation-ageing

and base learning techniques in scenarios when the actual probability of success pActual

changes dynamically

Table 3.2: Quantitative analysis of the experiments in Scenarios 1–3

Scenario α = 1.001 α = 1

(SX) a [s] b [s] a′ [s] b′ [s]

S1 680 700 12990 3130

S2 699 1050 8694 2890

S3 840 430 – –

A comparison of the lengths of time intervals a and a
′
, and of b and b

′
summarised

in Table 3.2 shows that our learning method (which corresponds to α = 1.001) provides
a more precise estimation of pActual than the base Bayesian learning algorithm. In
particular, Scenario 3 shows that our method provides a good estimate even for a short
degradation in the probability of success for the simulated service; in contrast, the base
method is unable to detect this degradation.

Finally, the results from Scenarios 1 and 2 show that the effectiveness of our method
does not depend on the timing of the changes in the value of pActual. Thus, the time
intervals a for the two scenarios are of similar length, and so are the time intervals b. In
contrast, when the base method is used, the length of the time interval a

′
is much longer

for scenario 1, in which pActual had the same value (i.e., 0.992) for a longer period of
time and the length of b

′
is much longer in scenario 2, in which pActual maintained a

value of 0.99 for an extended period of time.
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Figure 3.6: Effect of different choices for the ageing coefficient α

3.2.4 A rule of thumb for choosing the ageing coefficient

The value of the ageing coefficient α determines the age range of the observations that
contribute effectively to the most significant d < 0 digits of the probability estimate pkij
in (3.5). If too few of the observations xlij, 1 ≤ l ≤ k, are within this age range, then
the probability estimate pkij will depend too heavily on the very recent past and will
oscillate as shown in Figure 3.6 for α = 1.01.

To avoid this undesirable effect, more of the observations xlij must contribute to the
d most significant digits of pkij, i.e., have a coefficient larger than 10−d in (3.5):

k

c0
i + k

wl∑k
l=1wl

≥ 10−d (3.7)

Assuming that the mean distance between successive observations is µ > 0, then,
for large values of k, k

c0i+k
≈ 1 and

∑k
l=1wl =

∑k
l=1

1
αtk−tl

≈ ∑k
l=1

1
α(k−l)µ = 1 +

1
αµ

+ 1
α2µ + · · · + 1

α(k−1)µ = (1 − 1
αkµ

)/(1 − 1
αµ

) ≈ 1/(1 − 1
αµ

) = αµ

αµ−1
, so (3.7) becomes

wl/
(

αµ

αµ−1

)
≈ αµ−1

α(k−l)µαµ
≥ 10−d. The observations that satisfy this inequality contribution

to the d most significant digits of the probability estimate pkij. To ensure that at
least m > 0 observations are taken into account, the inequality must be satisfied for
k − l = m (Figure 3.7). The following section describes a more rigorous approach that
uses Chebyshevs Inequality to select a suitable value for α dynamically, depending on
the frequency of the observations.
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Figure 3.7: Choosing the ageing coefficient: α values for which (αµ− 1)/α(m+1)µ ≥ 10−d

ensure that the m most recent observations contribute to the d most significant digits

of the probability estimate.

3.3 Adaptive Markov chain transition-probability

learning

3.3.1 Description

The transition-probability learning algorithm (3.4) and (3.5) depends on the choice of
the smoothing parameter c0

i and the ageing parameter αi. However, no combination
of values for these parameters is suitable for all scenarios. This section describes the
technique developed by the project to address this limitation, through extending the
learning algorithm in Section 3.2.1 with the ability to select suitable parameters c0

i and
αi at runtime. The dynamic selection of these parameters adapts the learning algorithm
to the frequency of the observations, and is based on the following theoretical results.

PROPOSITION 3.1. Let x1, x2, · · · , xk be an independent trials process with ex-

pected value E(xl)−µ and variance V (xl) = σ2, for l = 1, 2, · · · , k. Let w1, w2, · · · , wk >
0 be a set of weights, and Ak =

∑k
l=1 wlxl∑k
l=1 wl

be the weighted average of x1, x2, · · · , xk. Then

E(Ak) = µ and V (Ak) =

∑k
l=1(wl)

2

(∑k
l=1wl

)2σ
2

Proof. The expected value E(Ak) can be calculated as

E

(∑k
l=1wlxl∑k
l=1wl

)
=
E
(∑k

l=1 wlxl

)

∑k
l=1 wl

=

(since
k∑

l=1

wl is a constant, cf. Theorem 6.2 [89])
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=

∑k
l=1E(wlxl)∑k

l=1wl
=

(since w1x1, w2x1, · · · , wkxk are random variables with finite expected values, cf. Theo-

rem 6.2 [89])

=

∑k
l=1wlE(xl)∑k

l=1 wl
=

∑k
l=1 wlµ∑k
l=1wl

= µ

(since wl is a constant, cf. Theorem 6.2 [89])

In a similar way, the variance V (Ak) is given by

V (

∑k
l=1 wlxl∑k

l=1

wl) =
v
(∑k

l=1wlxl

)

(∑k
l=1 wl

)2

(since
k∑

l=1

wl is a constant, cf. Theorem 6.7 [89])

=

∑k
l=1 V (wlxl)(∑k

l=1wl

)2 =

(since w1x1, w2x1, · · · , wkxk are independent random variables with finite expected

values, cf. Theorem 6.8 [89])

COROLLARY 3.2. Consider again the independent trials process x1, x2, · · · , xk from

Proposition 3.1, and let ε > 0. Then

P

(∣∣∣∣∣

∑k
l=1 wlxl∑k
l=1wl

− µ
∣∣∣∣∣ ≥ ε

)
≤

∑k
l=1(wl)

2

(∑k
l=1wl

)2

ε2
σ2 (3.8)

Proof. The result is a direct application of Chebyshev’s Inequality (e.g., Theorem 8.1

[89]) to the discrete random variable Ak with the expected value and variance from

(??).

PROPOSITION 3.3. Consider the transition-probability learning algorithm (3.4)–

(3.5), and let ε > 0. Then

P

(∣∣∣∣∣

∑k
l=1w

l
ix
l
ij∑k

l=1w
l
i

− pij
∣∣∣∣∣ ≥ ε

)
≤

∑k
l=1(wl)

2

4
(∑k

l=1 wl

)2

ε2
, (3.9)

where pij represents the actual transition probability between states si and sj of the
model M.
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Proof. Since the actual transition probability between states si and sj is pij , x
l
ij ∈ {0, 1},

1 ≤ l ≤ k, are discrete random variables with (a) distribution function P (1) = pij and

P (0) = 1−pij ; (b) expected value µ = E(xlij = 1xpij +x(1−pij) = pij ; and (c) variance

σ2 = V (xlij = E
(
(xlij)

2
)
−
(
E(xlij)

)2
= (12xpij + 02x(1− pij)) − (pij)

2 = pij − (pij)
2.

The inequality (3.9) is now easy to obtain by replacing these µ and σ2 values in (3.8),

and noting that σ2 = pij − (pij)
2 ≤ 1

4
for all possible values of pij.

3.3.2 Dynamic selection of learning algorithm parameters

To take advantage of the results from Proposition 3.3, we consider a time interval
during which the mean distance between successive observations is t̄ > 0. Accordingly,

wli = α
−(tk−tl)
i ≈ α

−(k−l)t̄
i and, after straightforward algebraic manipulations,

∑k
l=1(wl)

2

(∑k
l=1 wl

)2 ≈
∑k

l=1 α
−2(k−l)t̄
i(∑k

l=1 α
−(k−l)t̄
i

)2 =
(αkt̄i + 1)(αt̄i − 1)

(αkt̄i − 1)(αt̄i + 1)
≈ αt̄i − 1

αt̄i + 1
,

if αkt̄ � 1. Replacing this result in (3.3) we obtain:

P

(∣∣∣∣∣

∑k
l=1 w

l
ix
l
ij∑k

l=1w
l
i

− pij
∣∣∣∣∣ ≥ ε

)
≤ 1

4ε2
αt̄i − 1

αt̄i + 1
, if αkt̄i � 1. (3.10)

Our adaptive transition-probability learning algorithm uses the result in (3.10) to
adjust the smoothing parameter c0

i and the ageing parameter αi from (3.4) and (3.5)
dynamically, based on the mean distance between recent observations t̄ as follows:

1. Given a small ε, we select αi such that the probability from (3.10) is below a
small value pmax, i.e.,

1

4ε2
αt̄i − 1

αt̄i + 1
≤ pmax =⇒ αi ≤

(
1 + 4ε2pmax
1− 4ε2pmax

)
. (3.11)

2. Having selected the αi, c
0
i is chosen such that α

c0t̄i
i � 1. Since the first term of

(3.5) dominates the calculation of pkij until the number of observations k is larger
than c0

i , this ensures that the k observations play a major role in the pkij estimate

only once αkt̄i � 1 as well. in practice, we use α
c0t̄i
i = 10, or

c0
i =

1

t̄log10α
(3.12)

3.3.3 Complexity analysis

Our adaptive learning method requires the calculation of the ageing parameter αi
from (3.11), smoothing parameter c0

i from (3.12), weights wli from (3.4) and probability
estimates pkij from 3.5) after each observation. As we show in Section 3.2.1, algebraic
manipulation can be used to rearrange (3.4)-(3.5) so that the last two calculations can be
performed in O(1) time and using constant, O(1) space. Calculating the mean distance
t̄ between recent observations - used to compute αi in (3.11) - requires the algorithm to
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Table 3.3: Learning methods compared in the evaluation experiments

Method Description

Method 1 basic Bayesian learning from Section 3.1, obtained by setting wli = 1

in (Section 3.2.1) for all 1≤ l≤k, and using the smoothing parameter

c0
i = 500.

Method 2 fixed-parameter, ageing-enabled learning algorithm from Section 3.2.1,

obtained by setting c0
i = 500 and α = 1.001 in (3.5)–(3.4).

Method 3 fixed-parameter, ageing-enabled learning algorithm from Section 3.2.1,

obtained by setting c0
i = 500 and α = 1.01 in (3.5)–(3.4).

Method 4 our new adaptive learning algorithm with smoothing parameter c0 and

ageing parameter α given by (3.11)–(3.12) for pmax = ε = 0.05.

store the timestamps of all observation. The number of such timestamps is proportional
to the frequency f of observations, so the space complexity of this calculation is O(f).
The actual calculation of t̄, however, can be carried out in O(1) time using a running
sum, and computing αi and c0

i also takes constant time. Accordingly, the overall space
complexity of the adaptive learning is O(f), and its time complexity is O(1).

3.3.4 Evaluation

To evaluate the effectiveness of the adaptive learning method, we carried out a broad
range of experiments in which we compared its results with those produced by existing
learning methods. The existing methods selected for this comparison were the Bayesian
learning method from Section 3.1, and the fixed-parameter, ageing-enabled learning
method from Section 3.2.1. The concrete methods compared in these experiments and
their parameters are summarised in Table 3.3.

Figures 3.8–3.11 depict the experimental results of four scenarios in which we
assessed the effectiveness of the adaptive learning method. The four scenarios involved
learning the probability p of tossing heads with a biased coin from observations of
coin tosses, when p changes over time between a “normal” value of p = 0.96 and a
lower value. The aim of these scenarios was to simulate a degradation in the reliability
with which a system component completed a given task within a predefined amount of
time, and to test the ability of the four learning methods to identify this degradation.
The four scenarios considered different types of reliability degradation—a longer (i.e.,
8000-second) and more significant (i.e., down to p = 0.87) one in Scenario 1, a shorter
(1200-second) and less significant (down to p = 0.9) one in Scenario 2. In Scenario 3 we
considered shorter (1200-second) reliability degradation (down to p = 0.9) in the first
half of the experiment and a longer (5400-second) in the latter half of the experiment,
and vice-versa in Scenario 4. Finally, learning each type of reliability degradation was
attempted for two different observation frequencies. Thus, observation “inter-arrival”
time was exponentially distributed, with a mean of 100ms (or a mean frequency of
10s−1) during the first half of the experiments, and a mean of 500ms (i.e., a mean
frequency of 2s−1) during the second half of the experiments. A qualitative analysis of
the experimental results in Figures 3.8–3.11 shows that the adaptive learning algorithm
(Method 4) outperforms the existing learning algorithms (Methods 1–3) as follows:

� At the beginning of the experiment, the pk estimate probability for the adaptive
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algorithm approaches p faster than for the basic algorithm in Method 1 and the
two combinations of fixed-parameter ageing-enabled algorithms in Methods 2–3.

� During the “high frequency” half of the experiments, the adaptive algorithm is
as good at detecting the decrease in the value of p as the “high α” algorithm in
Method 3 (but with a pk estimate that oscillates less around the actual p), and
far better than the “low α” algorithm in Method 2 and the basic algorithm in
Method 1;

� During the “low frequency” half of the experiments, the adaptive algorithm
produces estimates that are as accurate and as smooth as the “low α” algorithm
(Method 2), and much smoother than the “high α” algorithm (Method 3).

Although some of the estimates produced by the “high alpha” algorithm in Method 3
during the decrease in the value of p in the second half of the experiment are closer
to p than the estimates produced by the adaptive algorithm, this is achieved at the
expense of significant oscillation. Such oscillation is likely to trigger false alarms in
a real-world scenario. If this is not a problem, then the adaptive algorithm can be
configured to provide similar estimates by adjusting its confidence interval through
increasing ε and/or pmax.

For a quantitative evaluation of the effectiveness of our adaptive learning method,
consider a situation in which an alarm is triggered if the estimate probability pk

(representing the reliability of a system component, as explained above) drops below a
threshold value prequired = 0.95. This threshold value is shown as a dotted line in all
graphs in Figures 3.8–3.9. Assuming that the learning methods are used to detect such
violations of a reliability threshold, we measured the following three non-functional
properties of the learnt pk values from Scenarios 1 and 4:

� The time tdown elapsed between the drop in the value of p and the moment when
the estimate pk becomes smaller than prequired.

� The time tup elapsed between the moment when p regains its “normal” value
(i.e., p = 0.96) after a period of degraded reliability, and the moment when the
estimate pk becomes at least prequired.

� The number of false positives n+, i.e., instances when pk drops below prequired

although p has its normal value.

Table 3.4 shows the value of these properties, separately for the periods of high-
frequency and low-frequency observations from the experiments. These results indicate
that Method 1 is mostly suited for identifying only the first change in the probability p,
whereas the other methods yield pk probability estimates that follow the changes in p
with more or less accuracy. The adaptive learning algorithm (Method 4) detects the
changes in the value of p faster than Method 2 in the high-frequency observation area,
and, like this method, produces no false positives. In the low-frequency observation
area, the two methods are comparable, while Method 3 achieves slightly lower tdown
and tup but has the significant disadvantage of generating tens of false positives. As
mentioned before, if these false positives are deemed acceptable, then Method 4 can
achieve similar results by choosing larger pmax and ε values than those in Table 3.3.

The last set of experiments are carried out for the scenario illustrated in Figure 3.12.
In this scenario, we assume that p represents the probability that a system will perform
an operation or task over another (or over remaining idle), and we suppose that p
varies over a 10-hour time period (e.g., between 8am and 6pm during a working day)
as shown by the thick dashed line. Our experiments assessed to what extend the
estimate probability pk provided by each of the four learning remained with the interval

45



0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

Key:         p        p                                        k Method 1

tra
ns

itio
n

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

Key:         p        p                                        k Method 2

tra
ns

itio
n

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

Key:         p        p                                        k Method 3

tra
ns

itio
n

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

Key:         p        p                                        k Method 4

tra
ns

itio
n

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0
2
4
6
8

10

fre
qu

en
cy

 [s
   

]
-1

Figure 3.8: Experimental results—scenario 1

[p− ε, p+ ε] while the observation frequency was decreased linearly from 10s−1 to 2s−1.
The value ε = 0.05 was chosen, in order to match the value of ε used by the adaptive
learning algorithm (cf. Table 3.3). The typical experimental results in Figure 3.12
show that Method 1 cannot handle this degree of variability, while Method 2 yields pk

estimates within the desired interval around p most of the time. In contrast, Methods 3–
4 produce estimates that remain within this interval throughout the 10-hour simulated
time period. The main difference between these two methods is that Method 4 (the
adaptive learning algorithm) achieves this objective with much less oscillation around
the actual value p.

In order to measure the accuracy of the estimates quantitatively, we performed 100
experiments simular to those from Figure 3.10, for each of the four learning methods.
For each experiment, we measured the cumulated time toutside during which the estimate
probability pk resided outside the interval [p− ε, p+ ε]. Table 3.5 reports these times,
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Figure 3.9: Experimental results—scenario 2

averaged over the 100 experiments carried out for each learning method, confirming
that the adaptive learning methods outperforms the other three methods according to
this criterion.

3.4 Learning the costs/reward structures

of Markov chain models

3.4.1 Learning technique

This section introduces a technique for learning the costs/reward structures of MC
models associated with component-based systems such as workflows and embedded
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Figure 3.10: Experimental results—scenario 3

systems. The technique is applicable to systems that execute multiple sequences of
operations such that the cumulative costs/rewards associated with each sequence can
be measured, but it is not possible to measure the cost/reward for individual operations
and/or transitions. This is a scenario that is frequently encountered in systems that use
third-party components and in embedded systems. Using our technique to establish
the unknown costs/rewards of MC models of these systems enables:

1. the identification of under-performing components;

2. establishing QoS requirement compliance/violation;

3. predicting the system performance/cost for infrequent execution paths;

4. the dynamic reconfiguration of the system to overcome the impact of under-
performing overly costly components.

Formally, a system targeted by our technique comprises components that can perform
n > 1 operations and is modelled by a MC M = (S, s0,P , L), where:

� the i-th system operation, 1 ≤ i ≤ n, is associated with a state si ∈ S;

� the state si associated with operation i has a single outgoing transition, and an
unknown state cost/reward xi corresponding to a QoS parameter of operation i,
such as cost, energy usage or profit;

� the system has a finite set of frequently executed operation sequences that corre-
spond to m ≥ 1 known paths π1, π2, . . . , πm of M.
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Figure 3.11: Experimental results—scenario 4

The values x1, x2, . . . xn define a cost/reward structure ι : S → R+ over M =
(S, s0,P , L), where ι(si) = xi for 1 ≤ i ≤ n and ι(s) = 0 for s ∈ S \ {s1, s2, . . . , sn}. In
addition to the states associated with system operations, the state set S comprises:

(i) A “start” state s0 and an “end” state send such that πj = s0 . . . send for all
1 ≤ j ≤ m;

(ii) States corresponding to decision points in the workflow implemented by the
system. The states have two or more outgoing transitions to other states.

These elements of the class of MC models considered in this section are depicted in
Figure 3.13. In addition, we require that the decision state outgoing transitions ensure
that the MC graph is “structured” in the sense from structured programming [56]. In
other words, the MC graph is a sequence, a (probabilistic) selection or a (probabilistic)
loop of states or subgraphs with the same property. As demonstrated by structural
induction in Figure 3.14, this ensures that the cost/reward for any of the m operation
sequences is a linear combination of the n operation cost/reward values x1, x2, . . . , xn.
Note that this assumption does not constrain the types of component-based systems
that can be handled using the learning technique to be introduced in this section, since
according to the Böhm-Jacopini structured program theorem [22] any such system can
be represented using a structured model.

We assume that a system with the characteristics described above is continuously
monitored, and the observed values of the cumulative costs/rewards z1, z2, . . . , zm for
the m operation sequences are being recorded. Our technique uses this information and
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Table 3.4: Quantitative analysis of the experiments in Scenarios 1–2

Scenario high-frequency low-frequency

& Method observations observations

(Sx My) tdown [s] tup [s] n+ tdown [s] tup [s] n+

S1 M1 570 — 0 — — —

S1 M2 95 2110 0 76 2149 0

S1 M3 6 217 54 33 239 38

S1 M4 26 405 0 128 2100 0

S2 M1 150 — 0 — — —

S2 M2 162 1350 0 46 1156 0

S2 M3 2 195 65 0 113 134

S2 M4 13 303 0 131 1120 0

S3 M1 27 — 0 — — —

S3 M2 195 1851 0 268 1625 0

S3 M3 29 210 48 14 271 274

S3 M4 49 377 0 30 1410 0

S4 M1 — — — — — —

S4 M2 169 1290 0 180 2050 0

S4 M3 11 151 61 80 120 247

S4 M4 15 396 0 180 1470 0

Table 3.5: Cumulative times when the estimate probability pk is outside the interval

[p− ε, p+ ε], averaged over 100 36,000-second experiments

Method toutside [s]

Method 1 31390.64

Method 2 4791.11

Method 3 60.91

Method 4 15.17

one of the optimal filters described in the background Sections 2.4–2.5 to estimate the
unknown costs/rewards function ι. For this purpose, it starts by using the MC model and
the results in Figure 3.14 to derive an algebraic expression of the expected cumulative
cost/reward E(zj) for each path πj, 1 ≤ j ≤ m. Given the assumptions above, the
algebraic expressions for the m paths are linear combinations of the mean operation
cost/reward x1, x2, . . . , xn. Using the notation E(z) = [E(z1) E(z2) · · · E(zm)]T and
x = [x1 x2 · · · xn]T, we have

E(z) = Hx, (3.13)

where H is a m× n matrix with non-negative elements.
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Figure 3.12: Experimental results—scenario 5

In order to use the above result for estimating the values x1, x2, . . . , xn, the
observed cumulative cost/reward for the m operation sequences are averaged within
time windows of fixed duration T > 0. The value of T is chosen such that a large
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Figure 3.13: Elements of the Markov chain model.
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Figure 3.14: Structured Markov chain graph with cost/reward calculation.

number of observations of each operation sequence are made in each time window. Let
z1,t, z2,t, . . . , zm,t be the average cost/reward for the m operation sequences within time

window t, and zt = [z1,t z2,t · · · zm,t]T. Each zj,t, 1 ≤ j ≤ m, is the average of a large
number of observations, so according to the Central Limit Theorem [89] zj,t is normally
distributed with mean E(zj), and we have

zt = Hxt + vt, (3.14)

where vt is a normally distributed measurement noise with zero mean, and xt is an
n × 1 vector whose elements are the unknown cost/reward values for the n system
operations in time window t.

Assuming that rank H = n, the system

xt+1 = Inxt + wt

zt = Hxt + vt

(3.15)

where In is the n × n identity matrix is observable, since the observability matrix
M = [HT (AT)HT · · · (AT)n−1HT] from (2.9) reduces to M = [HT HT · · ·HT]
when A = In. Under this assumption, the above formulation of the relationship between
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Figure 3.15: Online learning of Markov chain costs/rewards.

the unknown operation cost/reward and the observed cumulative cost/reward for the
m operation sequences allows the application of the optimal filters in Sections 2.4–2.5.

Figure 3.15 depicts the application of the technique described in this section to a
black-box component-based system with n > 1 operations for which the cumulative
value of a QoS attribute can be observed for m sequences of operations. For a given
time window T the average cumulative cost/reward for the m operation sequences are
calculated, and an optimal filter is used to estimate the unknown cost/reward values
x1, x2, . . . , xn of the n operations. A MC model parameterised by these unknown values
is continually updated, and a model checker is used to verify that the system continues
to meet PCTL-expressed requirements associated with the considered QoS attribute.
The applications of the technique are multifold. First, it can be used to identify
under-performing components and components that violate the system requirements.
Second, it supports predicting the system behaviour for infrequent execution paths.
Finally, it can be used to trigger dynamic reconfiguration within self-adaptive systems,
to overcome the impact of under-performing components.

In the next section, we present the application of this technique for a case study,
and we examine the effectiveness of the Kalman filter and the recursive weighted least
square filter presented in Sections 2.4–2.5 respectively.

3.4.2 Case study

3.4.2.1 Description

We use a system from the telematics domain to illustrate the application of the learning
technique in this section, and to assess its efficiency (i.e., time to detect underperform-
ing components) and accuracy (i.e., ability to detect all/most violations in the QoS
requirements). Telematics Systems (TSs) are emerging automotive technologies that
use advanced communication and vehicle technologies to improve vehicle control and
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Figure 3.16: The three main V2X classification for automotive telematics systems

safety [40, 61, 62], to make vehicles more environment-friendly [5], and to enhance
driver experience [41, 91, 99, 152]. TSs can be classified into three groups based on their
communication range (Figure 3.16). In-vehicle (InV) TSs support the interaction be-
tween user portable devices (e.g., phones, tablets, etc.) and vehicle built-in infotainment
systems. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems allow
vehicles to communicate with each other and to roadside infrastructure, so that they can
share safety-critical information, e.g., to avoid hazards ahead. Finally, vehicle-to-service
provider (V2SP) systems allows the driver to access value-added services provided by
third party providers, such as location based services.

Figure 3.17 depicts the UML activity diagram for the workflow of a telematics
system adapted from [152], which we use in our case study. This system comprises
a combination of InV, V2SP and V2I components that provide information and/or
facilitate context-aware interactions between other components. The decision node
branches in Figure 3.17 are annotated with the probabilities that those branches are
being taken. Each execution of the workflow starts with one of the following four
operations:

� The weatherForecast operation retrieves the latest weather information by invoking
a remote service (V2SP).

� The trafficCondition operation retrieves the latest traffic news by invoking a
remote service (V2SP).

� The auxDiagnostic operation performs a test on the built-in infotainment system
(InV).

� The primaryDiagnostic operation carries out a built-in self-test to assess the state
of mechanical parts, i.e. test the anti-lock brakes (InV).
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Figure 3.17: UML activity diagram of the telematics system

The execution of one of these four operations is followed by running a sequence of
additional operations, as detailed in Figure 3.17. For example, the TS may first invoke
the weatherForecast operation, followed by the trafficCondition. If the normal flow of
traffic is disrupted and there are severe weather warnings, then the TS may invoke the
primaryDiagnostic operation to carry out checks on the mechanical components of the
vehicle. If the results from the diagnosis reveal that there is a fault in the component(s),
then the logProblem operation is invoked to register the problem, so that it could be
attended to when the vehicle is serviced next time. In addition to the primary diagnostic
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Figure 3.18: Markov chain model for the SBS workflow from Figure 3.17, with states

s4, sd3 and s5 duplicated to ensure that the model is “structured”.

operation, the TS may invoke the auxiliary (auxDiagnostic) diagnostic operation to
carry out checks on non-critical components, i.e., CD drivers, radio, etc.

We assume that the TS must satisfy the following QoS requirements:

R1: The expected workflow execution time is at most 320ms.

R2: The expected time of workflow executions that start with the a primaryDiagnostic
operation does not exceed 200ms.

R3: The expected time of workflow executions that start with a weatherForecast opera-
tion does not exceed 310ms.

R4: The expected execution time for workflow instances that start with the weather-
Forecast operation and include the logging operation do not exceed 480ms.

3.4.2.2 Formal model and requirements

The telematics system described above fits the assumptions from Section 3.4.1, so we
will use it to evaluate the learning technique presented in this section. Figure 3.18 shows
the MC model obtained for the TS workflow using the template from Figure 3.13, with
states s1 to s5 corresponding to the five operations of the system, and the cost/rewards
x1 to x5 their unknown execution times. The transition probabilities are taken from
the activity diagram.

We can now formalise the system requirements R1 − R4 from Section 3.4.2.1 as
PCTL formulae:

R1 : R≤320[F done],

R2 : R<=200[F done {primaryDiagnostic}],

R3 : R<=310[F done {weatherForecast}],

R4 : R=?[F trafficResult? {weatherForecast}]+
R=?[F primaryResult? {primaryDiagnostic}]+
R=?[F done {logProblem}] ≤ 480.

where R2–R4 use a PRISM extension of PCTL in which the state selector {φ} enforces
the evaluation of the property for a start state that satisfies φ.

We assume that we can measure the overall execution time of the m = 5 execution
paths (i.e., operation sequences) described below.
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Path π1 - The TS invokes the primaryDiagnostic service to carry out routine checks
on the essential components of the vehicle, to ensure that it is safe to drive. The
results from the primaryDiagnostic service reveal that one of the components has
a mechanical fault and in turn the logProblem service is invoked to register the
problem, so that it is attended to when the vehicle is serviced next time. The
expected execution time for this path is E(z1) = x4 + x5.

Path π2 - The auxDiagnostic service is invoked to carry out a routine check on all the
auxiliary components, which is followed by the invocation of the primaryDiagnostic
service. The results from the complete diagnosis service are normal and the total
expected response time to execute these operations in the TS workflow are
according to the MC in Figure 3.18. Accordingly, E(z2) = (1 + 0.02 + 0.022 +

. . .)x1 + x4 =
(

limk→∞
1−0.02k

1−0.02

)
x1 + x4 = 1

0.98
x1 + x4.

Path π3 - The weatherForecast service followed by the trafficCondition service are
invoked to retrieve the latest weather and road traffic news. The primaryDiagnostic
service is also invoked and the results are normal, i.e., E(z3) = x2 + x3 + x4.

Path π4 - The trafficCondition service is invoked to retrieve the latest road traffic
news, which is then followed by the primaryDiagnostic service. The results from
the primaryDiagnostic service are normal. Accordingly, the total expected time
to execute this sequence of operations is E(z4) = x3 + x4.

Path π5 - The weatherForecast service followed by the trafficCondition service are
invoked to retrieve the latest weather and road traffic news. The total expected
time for this path is E(z5) = x2 + x3.

An execution of the workflow corresponds to one of these five sequences of operations
with probability 0.006, 0.0202, 0.00198, 0.013068 and 0.048, respectively, as calculated
by multiplying the relevant transition probabilities along the five paths. These are
relatively high probabilities, meaning that each operation sequence will be observed
relatively often.

In addition to the five sequences of operations, we are interested in analysing the
following infrequently executed path that corresponds to requirement R4, and whose
probability of execution is only 0.00002.

Path π6 - The weatherForecast service is invoked, followed by an invocation of the
trafficCondition service. The trafficCondition service returns information pertain-
ing to hazardous traffic conditions that are causing disruptions ahead, so the TS
invokes the primaryDiagnostic service. The primaryDiagnostic service carries out
checks on all of the essential components, to ensure that the vehicle is safe to drive
under such conditions. The results from the primaryDiagnostic service reveals
that one of the components has a mechanical fault and in turn the logProblem
service is invoked to register the problem, to be attended to when the vehicle is
serviced next time. The expected execution time for this path is x2 + x3 + x4 + x5.

Our technique uses the estimated execution times of the individual operations
observed from the overall execution time of the frequently executed paths to establish
the system behaviour along this infrequent path. To this end, the observed execution
times of the m = 5 frequent operation sequences are averaged over time windows of
fixed duration T > 0. According to (3.14), the average observation vector for time
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window t, i.e., zt = [z1,t z2,t . . . z5,t]
T will satisfy

zt =




z1,t

z2,t

z3,t

z4,t

z5,t




=




0 0 0 1 1
1

0.98
0 0 1 0

0 1 1 1 0
0 0 1 1 0
0 1 1 0 0







x1,t

x2,t

x3,t

x4,t

x5,t




= Hxt + vt, (3.16)

where xt is the vector whose elements are the execution times of the n system
operations and vt represents the normally distributed measurement noise. In addition,
since rankH = 5, the system

xt+1 = I5xt + wt

zt = Hxt + vt

(3.17)

is observable, and we can use the optimal filters in Sections 2.4–2.5 to estimate the
unknown transition costs/rewards x1 to x5 of the MC from Figure 3.18. These estimates
can then be used to validate if the system meets its requirements R1 to R4.

3.4.3 Experiment setup and results

To evaluate the effectiveness of our learning technique, and to compare the optimal
filters from Sections 2.4–2.5, we implemented a Java simulator of the MC model from
Figure 3.18, and used it to run a wide range of experiments. In these experiments, the
operation execution times x1 to x5 were assumed normally distributed, with a mean
that changed according to different patterns of component failure and variation around
a “nominal” value for which requirements R1–R4 from Sections 3.4.2.1 and 3.4.2.2 were
satisfied. For each experiment, the standard deviation for the execution time of the
i-th operation was selected as one of sdi = 0.1xi, sdi = 0.2xi, . . . , sdi = 0.5xi.

All experiments used a normally distributed delay with a mean of 5s and a standard
deviation of 1s between successive executions of the TS workflow. Observations of the
execution times of the m = 5 operation sequences from Section 3.4.2.2 were averaged
across T = 600s and T = 1800s time windows, and the optimal filters were used to
estimate the execution times x1 to x5. For each experiment, we measured the following
attributes of the costs/rewards learning:

1. Learning time (LT), i.e., the time elapsed between the moment when there was
a change in the execution time xi of an operation, and the moment when the
learning produced an estimate within 10% of the new xi value;

2. False positives (FP) and false negatives (FN), i.e., the percentages of time for
which using the estimated x1 to x5 values to establish if requirements R1–R4 were
met produced false positives and false negatives.

The rest of the section presents and discusses these experimental results.

Optimal filter comparison We start with a typical experiment that illustrates the
effectiveness of the Kalman filter (KF) and the recursive weighted least square (RWLS)
filter for a scenario in which sdi = 0.3xi, 1 ≤ i ≤ 5. The results of this experiment
are shown in Figure 3.19, where the time intervals labelled a, b, etc. represent LTs
for the KF estimation, and the time intervals a′, b′, etc. are LTs for the RWLS filter
estimation. Note that for several changes in the execution time xi of the i-th operation,
estimates within 10% of the actual xi value (which we deem “accurate estimates”) were
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Figure 3.19: Kalman-filter versus RWLS-filter costs/rewards learning

not produced before the next change. This is the case for the time intervals marked a, a′;
e, e′; g, g′; and h, h′. For all the remaining changes, the Kalman filter was consistently
faster at producing accurate estimates than the RWLS filter. This was true both in
detecting degradations in the response time of an operation (e.g., for LTs c, c′, j, j′ and
l, l′) and reductions in response times (e.g., for LTs b, b′ and n, n′).

However, the Kalman filter estimates are characterised by a far more significant
oscillation around the actual xi values than the estimates produced by the RWLS filter,
as illustrated by the regions D, O and M from Figure 3.19. The oscillations in the KF
estimates are caused by the high values of the elements of the covariance matrix Q
from the error covariance equation (2.14) in Section 2.4.2. These values increase the
Kalman gain, to ensure the filter places sufficient confidence in the new observations.
Otherwise, i.e., if the Q matrix elements are smaller, the filter becomes numerically
unstable and the learning becomes slow. In contrast, the RWLS filter uses a forgetting
factor (or weighting factor) λ (cf. the error covariance equation (2.4.2) in Section 2.5)
that reduces the influence of the old observations, therefore reduces the error in the
state estimate and the learning is always smoother.

Analysis of the effect of variation in component execution times The next
two experiments illustrate the effectiveness of the KF and the RWLS filter for scenarios
in which the optimal filters were used to estimate the mean execution times xi 1 ≤ i ≤ 5
for multiple standard deviation values, sdi = {0.1xi, 0.2xi, 0.5xi}. The results of these
experiments are shown in Figures 3.20 and 3.21, where the time intervals labelled
1a, 1b etc. represent LTs for the estimations with standard deviation sdi = 0.1xi, the
time intervals labelled 2a, 2b etc. represent LTs for the estimations with standard
deviation sdi = 0.2xi, and the time intervals labelled 3a, 3b etc. represent LTs for the
estimations with standard deviation sdi = 0.5xi. Figure 3.20 depicts the results for
the KF estimation. The time intervals marked 1b, 2b, 3b and 1f, 2f, 3f show instances
when KF estimates within 10% of the actual xi mean value were not produced before
the next change. For all the remaining changes, the KF was mostly faster at detecting
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degradations in the response time of an operation with standard deviation sdi = 0.1xi
(e.g., for LTs 1c, 1i, 1k); and was in general faster at detecting reductions in the response
time of an operation with standard deviation sdi = 0.5xi (e.g., for LTs 3d, 3e).

Nevertheless, the areas labelled A,B,C, and D show that the KF estimate with
standard deviation sd = 0.5xi are characterised by significant oscillation around the
actual xi values than the estimates produced with standard deviation sdi = 0.1xi and
sdi = 0.2xi.

Figure 3.21 depicts the experimental results comparing the effectiveness of the
RWLS filter for multiple standard deviation values. Note that for several changes
in the mean execution time xi of the i−th operation, estimates within 10% of the
actual xi value were not produced before the next change. This is the case for the
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effectiveness of Kalman filter

time intervals marked 1b, 2b, 3b; 1d, 2d, 3d; 1g, 2g, 3g and 1l, 2l, 3l. For all the remaining
changes, mostly the RWLS filter was faster at producing accurate estimates with
standard deviation sd = 0.5xi. This was true both in detecting degradations in the
response time of an operation (e.g., for LTs 3j and 3o) and reduction in response time
(e.g., for LTs 3c; 3e; 3f ; 3i, 2i and 3m).

Like in the case of the KF estimates, the RWLS filter estimates with standard
deviation sd = 0.5xi are characterised by significant oscillation around the actual xi
value when the actual xi value is constant than the estimates produced with standard
deviation sd = 0.1xi and sd = 0.2xi, as illustrated by the region marked A from
Figure 3.21.

Analysis of the effect of the time window length Figures 3.22 and 3.23 depict
the experimental results for the KF and RWLS filter respectively, for scenarios with
time windows T1 = 600s and T2 = 1800s, with a fixed standard deviation sdi = 0.4xi,
1 ≤ i ≤ 5. The time intervals labelled a, b etc. represent LTs for the estimations
from time window T1, and the time intervals labelled a′, b′ etc. represent LTs for the
estimations from time window T2.

Note that for several changes in the mean execution time xi in Figure 3.22, estimates
within 10% of the actual xi value were not produced before the next change. This
is the case for the time intervals marked b, b′; d, d′; f, f ′; g, g′; i, i′ and m,m′. For the
remaining changes, in general the KF estimates in time window T1 were faster at
producing accurate estimates than the estimates from time window T2. This is true
both in detecting degradations in the response time of an operation (e.g., for LTs j and
m) and reductions in response times (e.g., for LTs c, k and n).

In general, the Kalman filter estimates in time window T1 are characterised by a far
more significant oscillation around the actual xi values than the estimates produced
by the KF filter in time window T2, as illustrated by the regions A, B and G from
Figure 3.22.

Figure 3.23 depicts the experimental results comparing the effectiveness of the RWLS
filter with the longer time windows. Note that for several changes in the execution
time xi of the i−th operation, estimates within 10% of the actual xi value were not
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Table 3.6: False positives and false negatives in the analysis of requirement R1

Requirement Negatives, i.e., Positives, i.e.,

R1 requirement met requirement violated

TN FP TP FN

sdi = 0.1xi K: 100% K: 0% K: 95% K: 5%

RWLS: 83% RWLS: 17% RWLS: 70% RWLS: 30%

sdi = 0.2xi K: 100% K: 0% K: 95% K: 5%

RWLS: 82% RWLS: 18% RWLS: 70% RWLS: 30%

sdi = 0.5xi K: 99% K: 1% K: 92% K: 8%

RWLS: 83% RWLS: 17% RWLS: 74% RWLS: 26%

produced before the next change. This is the case for the time intervals marked
b, b′; d, d′; f, f ′; g, g′; i, i′ and p, p′. For all the remaining changes, mostly the RWLS filter
estimates from time window T1 were faster in producing accurate estimates than the
estimates from the time window T2. This was true both in detecting degradations in
the response time of an operation (e.g., for LTs j, l, and o) and reduction in response
times (e.g., for LTs c,m and p).

However the RWLS filter estimates from time window T1 are characterised by
more sporadic oscillations around the actual xi values than the estimates produced
by the RWLS filter from time window T2, as illustrated by the region marked A from
Figure 3.23.

False negatives and false positives Tables 3.6–3.9 show the experimental results
for the analysis of the sensitivity of our learning technique (i.e., the percentage of false
positives detected) and its specificity (i.e., the percentage of false negatives detected).
To this end, we examined the ability of the learning technique to establish whether
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Table 3.7: False positives and false negatives in the analysis of requirement R2

Requirement Negatives, i.e., Positives, i.e.,

R2 requirement met requirement violated

TN FP TP FN

sdi = 0.1xi K: 100% K: 0% K: 87% K: 13%

RWLS: 94% RWLS: 6% RWLS: 66% RWLS: 34%

sdi = 0.2xi K: 100% K: 0% K: 86% K: 14%

RWLS: 95% RWLS: 5% RWLS: 54% RWLS: 46%

sdi = 0.5xi K: 100% K: 0% K: 70% K: 30%

RWLS: 97% RWLS: 3% RWLS: 45% RWLS: 55%

Table 3.8: False positives and false negatives in the analysis of requirement R3

Requirement Negatives, i.e., Positives, i.e.,

R3 requirement met requirement violated

TN FP TP FN

sdi = 0.1xi K: 100% K: 0% K: 73% K: 27%

RWLS: 99% RWLS: 1% RWLS: 20% RWLS: 80%

sdi = 0.2xi K: 100% K: 0% K: 74% K: 26%

RWLS: 99% RWLS: 1% RWLS: 12% RWLS: 88%

sdi = 0.5xi K: 99% K: 1% K: 74% K: 26%

RWLS: 98% RWLS: 2% RWLS: 21% RWLS: 79%

the four requirements R1 − R4 from Sections 3.4.2.1 and 3.4.2.2 were satisfied or
violated. The analysis for the false positives and the false negatives was averaged
over ten experiments for both filters and repeated for multiple values of the standard
deviation.

For all experiments and irrespective of the value of the standard deviation, the
KF learning led to lower FP and FN percentages than the RWLS learning, e.g., for
requirement R1 (shown in Table 3.6) only 5% FN for sd1 = 0.1x1 was obtained for
the KF, compared to 30% for the RWLS filter for the same standard deviation. In
general, the FP and FN percentages increased with the standard deviation, e.g., for
requirement R4 (Table 3.9) the FN increased from 5% for sd4 = 0.1x2 to 14% for
sd2 = 0.5x2 for the KF, and from 29% to 40% for the RWLS filter. This increase was
more pronounced for the RWLS filter across all requirements, e.g., with FN growing
from 34% for sd2 = 0.1x2 to 55% for sd2 = 0.5x2 for requirement R2 (see Table 3.7).
In contrast, the FP percentages increased very slightly with the standard deviation,
e.g., in Table 3.8 the FP for requirement R3 increased from 0% for sd3 = 0.1x3 to just
1% for sd3 = 0.5x3 for KF, and from 1% to only 2% for the RWLS filter.

All the experiments described so far suggest that the Kalman filter is better than
the RWLS filter in terms of both false positives and false negatives. However, there
are scenarios in which the slower but smoother learning provided by the RWLS filter is
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Table 3.9: False positives and false negatives in the analysis of requirement R4

Requirement Negatives, i.e., Positives, i.e.,

R4 requirement met requirement violated

TN FP TP FN

sdi = 0.1xi K: 100% K: 0% K: 95% K: 5%

RWLS: 81% RWLS: 19% RWLS: 71% RWLS: 29%

sdi = 0.2xi K: 100% K: 0% K: 92% K: 8%

RWLS: 81% RWLS: 19% RWLS: 57% RWLS: 43%

sdi = 0.5xi K: 100% K: 0% K: 86% K: 14%

RWLS: 80% RWLS: 20% RWLS: 60% RWLS: 40%

Table 3.10: False positives and false negatives for the experiment in Figure 3.24

Standard deviation True negatives False positives

sdi = 0.1xi K: 78% K: 22%

RWLS: 100% RWLS: 0%

sdi = 0.2xi K: 75% K: 25%

RWLS: 100% RWLS: 0%

sdi = 0.5xi K: 55% K: 45%

RWLS: 100% RWLS: 0%

preferable to the faster Kalman-filter learning. This is the case, for instance, when a
system operates close to the bounds specified in its requirements—a situation that is
likely to be common in practice, since using components that provide a lot of slack is
uneconomical. One such scenario is illustrated for our TS system in Figure 3.24, which
shows experimental results obtained for the analysis of the requirement

“The expected time of workflow executions that consist of an invocation of
the primaryDiagnostic service followed by an invocation of the logProblem
service must not exceed 160ms.”

when the execution times of the two services are close to bounds beyond which the
requirement is violated. Note that these workflow executions correspond to path π1

from Section 3.4.2.2, and that the expected execution time for this path is time(π1) =
x4 +x5 ≤ 160ms. Under these circumstances, the oscillations in the x4 and x5 estimates
produced by the Kalman filter introduce numerous false positives, whereas the RWLS
filter does not (Table 3.10). This limitation of using the Kalman filter with our learning
technique is made worse by increases in the standard deviation for the actual execution
times of the two services.

As shown in Figure 3.24, short-lived downgrades in service performance leading to
temporary requirement violations are not identified as such when the RWLS filter is
used. This is a limitation of RWLS that needs to be taken into account when choosing
between the two filters. If such short-lived downgrades in service performance are
unlikely (e.g., because services that experience problems become unavailable or are
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Figure 3.24: Scenario in which the RWLS filter is a better option

performing poorly for long periods of time before recovering) or are not of interest (e.g.,
because short periods of degraded operation are acceptable) then the RWLS filter is
the best option.

3.5 Summary

This chapter has presented several approaches to the online learning of Markovian model
parameters. These techniques are useful in scenarios where state transition probabilities
and response times of the modelled system and its components are prone to changing
dynamically.

First, we introduced a new algorithm for learning the state transition probabilities
from runtime observations of the behaviour of the modelled system. Our Bayesian
derived technique weighs observations based on their age, to account for the fact that
older observations are less relevant than more recent ones.

Second, the learning technique summarised above was enhanced by adjusting its
parameters dynamically depending on the frequency of the observations. This enhanced
adaptive learning technique leads to a faster and more accurate inference of the transition
probabilities than that provided by existing methods. Rigorous theoretical results link
the parameters chosen dynamically by our learning methods to the expected error in
the accuracy of the learnt state transition probabilities. This allows the configuration
of the adaptive learning method so that it yields results within an acceptable expected
error range.

Finally, a novel approach that uses optimal filters to establish the performance related
QoS properties for black-box component based systems was introduced. This approach
establishes the expected execution time of individual components and uses these values
to determine the expected durations of rare/exceptional tasks (too infrequent to be
measured, but highly critical), through the verification of costs/reward structures of
Markov chain models. However, this technique is only applicable in scenarios where
very large numbers of observations are made available and large number of paths in the
model can be observed.(What constitutes a sufficiently large number of observations is
quantified in Section 3.3.1 and 3.3.2)
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Chapter 4

Online learning of Markov chain

structure for service-based systems

4.1 Introduction

As complex embedded applications are increasingly used to build modern software,
so too is the need to build accurate models that can be formally verified to ensure
QoS compliance during operation. In the previous chapter we presented techniques
that update the parameters of Markovian models at runtime to synchronise the model
with the actual behavior of the implemented system. However, using these techniques
assumes that the structure of the model is known. When this assumption does not
hold, such as in the case of “black-box” software systems, the approaches presented
in the previous chapter cannot be applied. To address this limitation, we introduce a
new technique for learning a (discrete-time) Markov chain (MC) model of service-based
system (SBS) by making runtime observations.

4.2 Related work

Model learning techniques are being used in many applications to accurately construct
and later update model parameters for verification purposes. For example, in [44, 123,
137] automata learning techniques are used to extract behavioral models of software
systems. In [137] Raffelt et al. introduces a modular framework for automata learning
based on several variants of Angluin’s algorithm. This framework, called LearnLib,
was originally designed to systematically build finite state machine models of real-
world systems. More recently, LearnLib has become a platform for experimenting with
different learning algorithms, supporting the statistical analysis of their characteristics
in terms of the learning effort, run time and memory consumption.

Sen et al. [146] base their learning of system models on the Alergia algorithm that
is used in learning finite deterministic stochastic automata, a technique that is further
developed by Mao et al. [123]. Both [123] and [146] use independent finite samples
of the execution runs of the system to learn the system model, each starting at the
same initial state. While is possible only under laboratory conditions, it is unfeasible
when a system is deployed and operates in real world environment. Finally, Chen et al.
[44] investigates the learning of system models by passively observing a single, ongoing
execution of the system, i.e., from data that consists of a single, long observation

66



sequence, which may start at any point in the operation of the system.

On the other hand, Roshandel et al. [49, 140, 141] propose a framework for
component reliability estimation at the software architectural level. They use the states
in a behaviour model to correspond to states in the Hidden Markov model (HMM), such
that the dynamic behaviour model becomes observations of the HMM. A HMM solver
is used to leverage a set of synthesized or simulated training data and the Baum-Welch
algorithm is used to learn the unknown parameters of the HMM.

The inferred models produced by the approaches in [44, 49, 123, 137, 140, 141,
146] represent formal representations of a software system and are used as input for
probabilistic model checking tools that verify the system specifications at design time.
However, unlike the models produced by the approach introduced in this chapter, these
models (and thus the results of their verification) may easily become inaccurate when
the application is running in a dynamic environment.

In a related study, Ghezzi et al. in [85] extract a MC model based on the users’
interaction history of navigational behaviors given in the form of a log file for a Web
application. The Markov model is built incrementally by examining each entry of the
log file once. Our approach resembles the one in [85], as it constructs the underlying
system model based on observations taken from the running system, to drive progressive
maintenance and adaptation of the modelled system as it evolves. However, our approach
is set in the context of service-based systems (SBSs), and it automates the insertion of
success and fail states for each of the SBS operations.

In [44] Chen et al. delay the learning of the system model until a possible initial
“burn-in” phase has passed, such that the inference process starts with observation
sampled from a stationary distribution. In contrast, our approach starts learning the
model as soon as the system starts running.

Sun et al. in [150] record all user operations, and use an inference engine to infer a
user’s intention in a model transformation task. A transformation pattern is generated
from the inference, specifying the precondition of the transformation and the sequence
of operations needed to realize the transformation. In contrast, our learning technique
described in Section 4.3 uses a predefined MC model pattern and runtime observations
of systems events to generate new states in the model. When a SBS operation is invoked
for the first time, three new states are added to the MC and their associated labels. The
three states correspond to the invocation of the operation, to its successful completion,
and to its failure.

Last but not least, a unique characteristic of our approach is its use of a distance
function to compare the model versions learnt after every N observations of SBS
operations, where N � 1 is a parameter of the approach. When the distance between
two successive model versions compared in this way drops below an acceptable distance
ε > 0, the latest model is deemed “stable” enough for use in verification, and ultimately
to support adaptation decisions. By varying the acceptable distance parameter ε and the
number of observations N between successive checkpoints, we are able to provide insight
into the impact that they have on the ability to accurately analyse the compliance of
system with a range of requirements.

4.3 Learning technique

We now introduce the online algorithm for learning a MC model of an SBS work-
flow comprising m ≥ 1 operations executed by external services. We assume that
op1, op2, · · · , opm represent the (String-valued) names of the m SBS operations. The
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opi proxy wrapper(. . . ) {
Update(opi, “invoke”, N , ε)

try {
opi proxy(. . . )

Update(opi, “succ”, N , ε)

} catch {
Update(opi, “fail”,N , ε)

}
}

Figure 4.1: Using a service proxy wrapper to instrument workflows with model learning

capabilities

output of the algorithm is a MC M = (S, s0, P, L) over the atomic proposition set

AP = { “invoke”_op1, “succ”_op1, “fail”_op1,
“invoke”_op2, “succ”_op2, “fail”_op2,
. . . ,
“invoke”_opm, “succ”_opm, “fail”_opm,
START, STOP}.

Algorithm 2 shows the pseudocode for our learning technique. First, lines 1 to 5 initialise
the variables used by the algorithm as follows:

� the state set S initially contains a start state sSTART and a stop state sSTOP ;

� the labelling function L associates appropriate labels to sSTART and sSTOP ;

� the partial function1 transitions : S×S 7→ N that counts the transitions between
states ( i.e., for any s, s′ ∈ dom transitions, transitions(s, s′) represents the
number of observed transitions from state s to state s′) initially contains no
mapping;

� the current state crtState is initially null;

� the observation counter is initially zero;

� the learnt model is initially null.

The function Update in lines 7–24 is called before and after each invocation of one
of the m operations of the workflow, as well as at the start and end of the workflow
execution. Note that calling Update before and after operation executions can be
easily done by using wrappers around standard services proxies (Figure 4.1).

The arguments for this function are:

� the name op of the invoked operation, i.e., one of op1, op2, · · · , opm, “START” or
“STOP”;

1A partial function is denoted by 7→
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Algorithm 2 MC learning algorithm

1: S ← {sSTART , sSTOP }
2: L← {sSTART 7→ {“START”}, sSTOP 7→ {“STOP”}}
3: transitions← {}
4: crtState← null

5: counter ← 0

6: M← null

7: function Update(op, type, N , ε)

8: if type = “invoke′′ ∧ s“invoke”_op /∈ S then

9: S ← S ∪ {s“invoke′′_op, s“succ′′_op, s“fail_op}
10: L ← L ∪ {s“invoke′′_op 7→ {“invoke′′_op}, s“succ′′_op 7→ {“succ′′_op}, s“fail_op 7→
{“fail′′_op}}

11: end if

12: if crtState 6= null then

13: if (crtState, stype_op) ∈ dom transitions then

14: transitions(crtState, stype_op)++

15: else

16: transitions← transitions ∪ {(crtState, stype_op) 7→ 1}
17: end if

18: end if

19: crtState← stype_op

20: if ++counter mod N = 0 then

21: M← CheckModel(S, transitions, L,N, ε)

22: end if

23: returnM
24: end function

� the type of the Update invocation, i.e., one of “invoke” (used when Update is
called before the execution of the operation), “succ” or “fail” (used for Update
calls after the successful or failed execution of the operation, respectively), and “”
(used when Update is invoked for “START” or “STOP”);

� N � 1 and ε, two parameters of the learning algorithm whose roles are explained
below.

The function Update works as follows. First, the if statement in lines 8–11 checks if
Update was called for the first time for one of the m SBS operations, in which case
three new states are added to the state set S in line 9, and sets of labels are associated
with them in line 10. The three states correspond to the invocation of the operation, to
its successful completion, and to its failure.

Second, the if statement in lines 12–18 updates the transitions counters, except for
the first invocation of Update, when crtState is null. The update involves incrementing
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the counter of transitions between crtState and the state corresponding to the new
invocation of Update (i.e., stype_op) if such a counter exists, or the creation of this
counter with an initial value of 1, otherwise. The value of crtState is then updated in
line 19.

Finally, the if statement in lines 20–22 invokes the CheckModel function in
Algorithm 3 after every N calls to Update, in order to check whether the learnt model
is sufficiently stable to be used (in which case CheckModel returns the learnt model)
or not (in which case CheckModel returns null). The model (or the value ‘null’)
obtained from CheckModel is returned by Update in line 23.

The CheckModel function comprises two parts. The first part (lines 4–18)
calculates the relative frequency (i.e., the estimate probabilities) of the transitions
from each state s1 ∈ S to every state s2 ∈ S. To this end, the for loop in lines 6–10
counts the number of transitions from s1 to other states, and the for loop in lines
11–17 calculates the relative transition frequencies from s1 to other states, when such
transitions exist.

The second part of the function starts by calculating the “distance” between the
current version of the learnt model and the version from the previous invocation of
CheckModel (lines 19-25). This is done only if the model is not already deemed
learnt and the state sets corresponding to the current and previous model assembled
by the function are identical.2 The distance is calculated as the sum of the differences
between the current and the previous transition probability estimate associated with
each pair of states. If this distance, normalised through division by the number of
transitions observed, drops below ε, the model is deemed learnt (line 24), and is returned
in line 28. Otherwise, the function returns null (line 30). Finally, the current state set
and estimate transition probabilities are retained (in line 26) for use during the next
invocation of CheckModel.

4.4 Complexity analysis

To analyse the memory complexity of Algorithms 2—3, note that #S ≤ 3m + 2.
Accordingly, the domain of transition in Update and the relative frequency arrays p
and oldP in CheckModel have at most (3m+2)2 elements, so the memory complexity
of the technique is O(m2).

Checking set memberships in lines 8 and 13 of Update is at most linear in the size
of the two sets (i.e., S and dom transitions, so at most O(m). The for loops in lines
4–18 and 21–23 from CheckModel operate with each pair of states from S, i.e, with
at most (3m+ 2)2 pairs of states. Accordingly, the combined time complexity of one
invocation of the two algorithms is also O(m2).

4.5 Evaluation

4.5.1 Case study

We use a telehealth service-based system (SBS) originally introduced in [16] and also
used [28, 29, 66] to evaluate the efficiency (i.e., time to detect all the states and the
transitions between the states of the model of the system) and accuracy (i.e., ability to

2Since Update can add new states to S but cannot remove or modify existing states, checking that

the two sets have the same number of elements is sufficient.
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Algorithm 3 Transition probability calculator and model comparison algorithm

1: oldS ← {}, oldP ← null

2: learnt← false

3: function CheckModel(S,transitions,L,N ,ε)

4: for s1 ∈ S do

5: nTrans← 0

6: for s2 ∈ S do

7: if (s1, s2) ∈ dom transitions then

8: nTrans← nTrans+ transitions(s1, s2)

9: end if

10: end for

11: for s2 ∈ S do

12: if nTrans 6= 0 ∧ (s1, s2) ∈ dom transitions then

13: p(s1, s2)← transitions(s1, s2)/nTrans

14: else

15: p(s1, s2)← 0

16: end if

17: end for

18: end for

19: if ¬learnt ∧#S = #oldS then

20: dist← 0

21: for (s1, s2) ∈ S × S do

22: dist← dist + | p(s1, s2)− oldP (s1, s2) |
23: end for

24: learnt← dist/#(dom transactions < ε

25: end if

26: oldS ← S, oldP ← P

27: if learnt then

28: return (S, sSTART, p, L)

29: else

30: return null

31: end if

32: end function

detect all/most states and the transition probabilities between the states of the model)
of the learning algorithm from the previous section. In this SBS, the vital parameters
of a patient are periodically measured by a wearable device and analysed by third-party
medical services. The result of the analysis may trigger the invocation of an alarm
service (that determines, for instance, the dispatch of an ambulance), may lead to the
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Figure 4.2: UML activity diagram of the telehealth service-based system

invocation of a pharmacy service to deliver new medication to the patient, or may
confirm that the patient is fine. In addition, the patient can initiate an alarm by using
a panic button on the wearable device. The workflow of the telehealth SBS is shown
in Fig 4.2, and we will consider that it must comply with the following five reliability
requirements:

R1 The probability that one execution of the workflow ends in a alarm failure is at
most pR1 = 0.00001.

R2 The probability that one execution of the workflow ends in a service failure is at
most pR2 = 0.008.

R3 The cost of one execution of the workflow is at most RR3 = 2.5.

R4 The probability that the analysis service fails within 100 seconds is at most
pR4 = 0.002.

R5 The probability that an invocation of the analysis service is followed by an alarm
failure is at most pR5 = 0.0002.

Note that although we provided a full description of the system in the remainder of
this section we will assume that it consists of only three SBS operations.

4.5.2 Experiment setup

A Java implementation of the telehealth SBS workflow was integrated using a purpose-
built proxies that we implemented to ensure that the Update function in Algorithm 2
was called before and after each invocation of a service. The MC models were learnt for
multiple values of the acceptable distance parameter ε = {0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002, 0.0001}.
Each experiment was carried out until the model was deemed stable, and we report the
number of workflow iterations required for this. All experiments were run on a 2.66
GHz Intel Core 2 Duo Macbook Pro computer.
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The learnt models were analysed to verify the QoS requirements R1−R5 described
in Section 4.5.1. We used the probabilistic model checker PRISM for this purpose. The
probabilistic temporal logic formulae for requirements R1−R5 are:

R1 P =?[!(“STOP”)U(“failAlarm”)],

R2 P =?[!(“STOP”)U(“failAlarm”|“failDrug”|“failAnalysis”)],

R3 R =?[F“STOP”],

R4 P =?[trueU <= 100“failAnalysis”],

R5 filter(max, P =?[!“STOP”U”failAlarm”], “invokeAnalysis”).

Figure 4.3 depicts the parts of the Markov model learnt at several stages of the
learning process. First, Figure 4.3a illustrates the initial state of the model (i.e., before
the first invocation of Update). Next, Figure 4.3b shows the model components inferred
after one workflow iteration. This workflow iteration happened to be a successful
invocation of the analysis service that found the patient to be fine, so the states
failedAVP and successAVP were also created. There are no transitions associated with
the failedAVP state because in this single iteration the analysis service was invoked
successfully. Figure 4.3c illustrates the model inferred after five workflow iterations,
where 96% of the the analyseVitalParams service invocations were successful, 60%
of the analysis results confirmed that the patient was fine, and 40% required new
medication. Finally, Figure 4.3d illustrates the inferred model after ten workflow
iterations. In this scenario all the states of the Markov chain have been discovered,
and a structurally complete model has been inferred, although the state transition
probabilities are still very coarse estimates of the actual transition probabilities for the
system. For comparison, Figure 4.4 depicts the manually derived Markov model, which
of course is unknown in the scenarios where the learning technique is applied.

4.5.3 Results

This section presents the experimental results from the evaluation of our learning
technique and of the role of its two parameters, ε and N . The probabilistic model
checker PRISM is used to quantitatively establish the values of properties R1–R5 from
the previous section given “stable” models learnt using different range of ε and N
values. For comparison, we also analysed the manually derived model from Figure 4.4
to determine the actual values of R1–R5. This provided insight into how the two
parameters should be configured in order to obtain accurate estimates for the QoS
properties that requirements R1–R5 are based on.

Evaluation of the effect of ε on the accuracy of the learnt model The boxplots
in Figure 4.5 represent the range of values for Rn, 1 ≤ n ≤ 5, obtained through
analysing 20 Markov models learnt for each value of ε in the set {0.0001, 0.0002, 0.0005,
0.001, 0.002, 0.005, 0.01, 0.02, 0.05}, and for a fixed N = 50. These results show that the
estimate R1–R5 property values are distributed in the vicinity of their actual values
for all examined values of ε. However, the interquartile range for the estimate R1–R5
property values grows with larger ε values. Thus, for a small value of ε (approximately
for ε not exceeding 0.001), the learnt model is “closer” to the actual model, and can be
used to obtain accurate estimates of the properties of interest.

Obtaining more accurate models by using low values of ε comes at a cost. Table 4.1
shows, for each ε value used in our experiments, the average counter value from
Algorithm 2 when the model was deemed “stable”, averaged over the 20 experiments

73



a)

{START}

{STOP}

b)

{START}

{STOP}

1.0

{failAnalysis}
{invokeAnalysis}

1.
0

1.0 {succAnalysis}

c)

{invokeDrug} {failDrug}

{START}

{STOP}

0.6

{failAnalysis}

1.0

1.0

1.0

{invokeAnalysis}

0.9
6

1−0.96

1− 0.96

0.
96

1.0

0.4

1.0
{succAnalysis}

{succDrug}

d) 1−0.96
{failAlarm}{invokeAlarm}

{invokeDrug} {failDrug}

{START}

{STOP}

0.5

{failAnalysis}

1.0

1.0

1.0

{invokeAnalysis}

0.96

0.9
6

1−0.96

1−0.96

0.
96

0.2

0.8

0.125

0.375

1.0

1.0
1.0

{succAnalysis}

{succAlarm}

{succDrug}

Figure 4.3: Markov model learnt after: a) no workflow iterations; b) one workflow

iteration; c) five workflow iterations; and d) 10 workflow iterations.

carried out for each ε value. As expected intuitively, counter increases with decreasing
ε. This means that whilst the learnt model is closer to the actual value for a small
ε than for a larger ε, the time taken to reach a stable model is much longer, e.g., for
ε = 0.0005 the average counter value is 3280.8, compared to an average counter value
of 236.0 for the less accurate learnt model for ε = 0.02.

Evaluation of the effect of N on the accuracy of the learnt model The
boxplots in Figure 4.6 represent the range of values for Rn, 1 ≤ n ≤ 5, obtained through
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Figure 4.5: Analysis of R1−R5 with varying ε and N = 50

analysing 20 learnt models for each value of N in the set {15, 50, 100, 500}, with a fixed
ε = 0.0005. A comparison of the interquartile range of the box plots shows that the
interquartile range decreases as N grows, suggesting that for large values of N the
learnt model is closer to the actual model. However, this trend becomes less pronounced
beyond N = 100, as the model obtained for this value of N is already yielding very
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Table 4.1: Average counter value when the learnt model becomes “stable” for different

ε values

ε Average counter value

0.0001 11793.0

0.0002 6976.5

0.0005 3280.8

0.001 1875.9

0.002 1127.5

0.005 591.2

0.01 361.9

0.02 236.0

0.05 149.3

Table 4.2: Average counter when the learnt model becomes “stable” for different N

values

N Average counter value

15 1752.9

50 3280.8

100 4580.0

500 14665.0

accurate results for all properties R1–R5.
As before, obtaining a more accurate model (this time through using a larger N)

requires more observations to be made. The number of observations until the learnt
model is deemed “stable” increases rapidly with N , as shown in Table 4.2, which gives
the average counter values from Algorithm 2 for when the model is deemed stable. The
results summarised in Table 4.2 also show that by reducing the value of N from 50 to
15, the average counter value is reduced by over 45%. Furthermore, this reduction is
achieved without too significant an impact on the ability of the learnt model to produce
relatively accurate estimates of the analysed properties. This means that when selecting
a small ε value together with a small N , the waiting time to declare a reasonably
accurate model “stable” could potentially be almost halved. However, note that for very
small values of N (i.e., N ≤ 10 for this system) the number of observations between
adjacent checkpoints becomes very small and runs the risk of having the learnt model
declared “stable” too early—often before all states and state transitions are identified.

4.5.4 Further applications

We carried out additional experiments to ensure the approach is not specific to the
example SBS from the case study, and to increase our confidence that it is also useful
for other SBSs. We selected the following workflows, used by a number of projects in
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Figure 4.6: Analysis of properties R1–R5 with varying N and ε = 0.0005

this area:

1. TeleHealth—the healthcare case study described in Section 4.5.1, and previously
used in [16, 28, 29, 66];

2. Ecommerce—the e-commerce workflow obtained from [74];

3. TravelPlanner—the travel assistant workflow derived from the state-chart repre-
sentation presented in [164].

We repeated the experiments described in Section 4.5.3 for the additional two service-
based systems mentioned above. The numbers of requests (i.e., SBS workflow executions)
that need to be observed in order to learn a stable Markov model for different values of ε
(when the checking interval parameter is fixed, N = 45) is shown Figure 4.7. Somewhat
unexpectedly, this number did not increase with the number of states for this model.
At a closer examination, it turned out that the factor that influences the required
number of observations is the fraction of states with multiple outgoing transitions. This
is explained by the fact that states with a single transition will always have an exact
transition probability (i.e., 1.0) associated with this transition, so they will bring a
zero contribution to the distance dist calculated in lines 20–23 of Algorithm 3. The
percentages of states with multiple outgoing transitions for our three SBS workflows
are 15% for TeleHealth, 13% for Ecommerce and just 5% for TravelPlanner, and the
dependency between these percentages and the number of observations required to learn
the Markov model is shown in Figure 4.7 and in Table 4.3.

4.6 Summary

This chapter has introduced a new technique for learning the Markov model of a service-
based system from runtime observations of its service invocations and of the outcome of
these invocations. Our learning technique uses a distance function to compare the model
versions learnt after every N observations of SBS operations, and when the distance
between two successive model versions is below a predefined value ε, the latest model is
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Figure 4.7: Scalability results for three SBS-systems, Telehealth - 11 states, Ecommerce-
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Table 4.3: Counter value associated with ε for each workflow, when model becomes

stable with N = 45

Number of requests observed

to learn model

ε TeleHealth Ecommerce TravelPlanner

0.5 586 206 338

0.2 586 206 338

0.1 586 206 338

0.05 587 206 338

0.02 587 206 338

0.01 601 241 340

0.005 803 351 372

0.002 1330 657 537

0.001 2111 1150 757

5.0E-4 3394 1960 1089

2.0E-4 6418 3855 1868

1.0E-4 10922 6747 3019

5.0E-5 16443 12094 5011

2.0E-5 33445 25485 8360

1.0E-5 58119 43640 14347

deemed “stable” enough for use in verification, and ultimately to support adaptation
decisions. By varying the two parameters, N and ε, in experiments that learnt the
Markov model of a telehealth service-based system, we provided insight into the role of
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these parameters in the learning of models that support the accurate analysis of the
compliance of a system with a range of reliability and cost-related QoS requirements.
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Chapter 5

Model-driven QoS management for

service-based systems

An ever growing number of software applications are developed through the integration
of third-party services deployed on remote cloud data-centres and accessed over the
Internet. The application domains that adopted service-based systems (SBSs) as a
de facto standard range from e-commerce to online banking and e-government. The
approach reduces the time, cost and expertise required to develop software systems,
lowering the entry barrier for the providers of new applications.

There is, however, a limitation to these advantages: remote third-party services
tend to vary in reliability and performance over time. Even selecting the services
that implement critical business workflows from the most reputable providers is not
a guarantee that the resulting SBS will comply with its requirements at all times.
Addressing this limitation through replacing underperforming services with functionally
equivalent ones “on the fly” has preoccupied the research community for over a decade.
The numerous solutions proposed by the ensuing research range from approaches that
use intelligent control loops (e.g, [10, 29, 37, 127]) to approaches which emulate the
cooperative behaviour of biological systems (e.g., [77, 143]).

Although these approaches to developing self-adaptive SBSs were shown to be
effective in lab-based scenarios, none has yet been adopted in SBS engineering practice.
The COntinual VErification (COVE) SBS development framework introduced in this
chapter aims to reduce this gap between state-of-the-art research and the current state
of practice by integrating and exploiting key benefits of several software engineering
paradigms. Similar to other self-adaptive SBS frameworks (e.g., [29]), COVE selects
the service used to execute each operation of an SBS workflow at runtime, from a set of
services that provide the same functionality with different levels of reliability and at
different cost. However, COVE has a number of unique advantages over the existing
approaches to developing and operating self-adaptive SBSs:

1. COVE self-adaptive SBSs are self-verifying, i.e., they employ continual formal
verification to select the service combination that guarantees the realisation of the
SBS reliability requirements with minimal cost. This verification uses an embedded
version of the quantitative model checker PRISM to analyse a (discrete-time)
Markov chain model of the SBS workflow.

2. The Markov chain model used by COVE is updated online to reflect changes in
the service reliability and in the frequency with which the SBS operations are
invoked.
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3. The continual verification, model updating and service selection capabilities of
COVE are fully automated, and are provided by a combination of reusable and
automatically generated software components.

4. The tool-supported COVE development process resembles the traditional SBS
development process, except that: (a) the COVE proxy is synthesised from a
set of web service WSDL definitions instead of a single one; and (b)needs to
specify the functionally equivalent methods of the web services in a preliminary,
GUI-supported step of the generation process. These COVE features are intended
to ensure that practitioners can use the framework with little learning effort,
although additional studies are needed to confirm that this is the case.

The rest of this chapter is organised as follows. Related work is discussed in
Section 5.1. Section 5.2 introduces a telehealth service-based system that is used to
present the architecture of a COVE self-verifying SBS in Section 5.3, and to illustrate the
application of the COVE development approach in Section 5.4. Next, Section 5.5 presents
the continual verification process, and discusses options for dynamically switching
between equivalent services in service-based systems. Finally, the effectiveness of the
framework is evaluated in Secton 5.6.

5.1 Related work

The management and optimisation of SBS properties through dynamic service selection
has been the focus of significant research over the past decade. The solutions proposed by
this research include approaches that use intelligent control loops (e.g., [10, 37, 55, 127])
and approaches that emulate the cooperative behaviour of biological systems (e.g.,
[77, 143]). COVE belongs to the first category of approaches, so this section focuses on
comparing our work with results from this area, and in particular with solutions that
employ formal models that can represent SBSs accurately and in a realistic way.

The approaches proposed in [80, 124, 127, 145] use UML activity diagrams or
directed acyclic graphs to synthesise simple performance models based on queuing
networks [124, 127] or, like COVE, Markovian reliability models [80, 145]. These models
are then used to establish the quality-of-service (QoS) properties of the analysed SBS
systems. However, unlike these approaches, COVE also uses an adaptive learning
technique to update the initial model based on observations of the system behaviour.
The QoS-driven selection of services in self-adaptive service-based systems is addressed
in [10, 37, 164]. For example, in [55] Cortellessa et al. present a service selection method
based on the definition of a set of optimization models that are solved using Couenne
solver.1 The optimization models satisfy both costs and reliability constraints under the
hypothesis that repair and mitigation actions can be undertaken to maintain service’s
reliability over a given threshold.

However, all of the above approaches lack the adaptive learning capabilities of
COVE, and propose theoretical solutions that are hard to replicate in practical SBSs.
In particular, approaches such as [10, 37, 116, 164] involve the optimisation of the
service selection on a per request basis. These approaches require perfect knowledge
of the QoS capabilities of the available services, which renders them ineffective in the
scenarios targeted by COVE, where the characteristics of services need to be learnt
from observations of their behaviour.

1Couenne (Convex Over and Under ENvelopes for Nonlinear Estimation) is a branch&bound

algorithm that solves Mixed-Integer Nonlinear Programming (MINLP) problems (https://projects.coin-

or.org/Couenne)
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Figure 5.1: UML activity diagram of the telehealth SBS. Estimate a priori probabilities

are associated with the outgoing edges of decision nodes, and comments defining the

SBS requirements are associated with relevant nodes.

5.2 Telehealth service-based system

We will use the running example from Section 4.5.1 of the telehealth SBS taken from
[28, 29, 66]. The workflow of the telehealth SBS is shown in Figure 5.1, and we will
consider that it must comply with three reliability requirements:

R1: The probability that one execution of the workflow ends in a service failure is at
most pR1 = 0.8.

R2: The probability that an alarm failure occurs within N = 10 execution of the
workflow is at most pR2 = 0.05.

R3: The probability that an invocation of the analysis service is followed by an alarm
is at most pR3 = 0.0002.

5.3 Architecture of a self-verifying

service-based system

The architecture of a COVE self-adaptive SBS comprising n ≥ 1 operations performed
by remote third-party services resembles the implicit invocation style as defined by
Garlan and Shaw in [82], and is depicted in Figure 5.2. The n > 0 COVE service proxies
in this architecture interface the SBS workflow with sets of remote services such that the
i-th SBS operation can be carried out by mi ≥ 1 functionally equivalent services. The
runtime selection of the service for each SBS operation and, as in the case of traditional
web service proxies, the interactions with the selected services are handled automatically
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Figure 5.2: Architecture of a COVE self-verifying SBS

by the COVE proxies. When an instance of the i-th proxy is created, it is initialised with
a sequence of (promised) service level agreements (SLAs) slaij = (p0

ij, cij), 1 ≤ j ≤ mi,
where p0

ij ∈ [0, 1] and cij > 0 represent the provider-supplied probability of success and
the cost for an invocation of service sij, respectively.

The n proxies are also responsible for notifying a model updater about each service
invocation and its outcome. The COVE model updater starts from an initial Markov
chain (MC) model of the SBS workflow, and uses our adaptive online learning tech-
nique presented in Section 3.3 to adjust the model parameters in line with these proxy
notifications. The updated SBS model is then used by an autonomic manager that
controls the services selected by the n proxies, to ensure that the service combination
which satisfies the SBS requirements with minimal cost is selected at all times. Ac-
cordingly, the COVE proxies, model updater and autonomic manager implements a
monitor-analyse-plan-execute (MAPE) autonomic computing loop [105].
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Figure 5.3: Diagram of COVE proxy synthesis process

A key advantage of our COVE framework is that its model updater and autonomic
manager components are SBS-independent and therefore reusable across applications,
while the SBS-specific proxies are generated automatically using a COVE software
engineering tool described in Section 5.4.

5.4 Tool-supported framework for the engineering

of service-based systems

The tool-supported COVE development process comprises three stages, each of which
is described in detail in this section.

5.4.1 Stage 1: Proxy generation

In this stage, COVE service proxies are generated for the n SBS operations. For the
i-th operation, 1 ≤ i ≤ n, the developer first selects mi ≥ 1 functionally equivalent
services that implement the operation, but which may be associated with different
levels of reliability and different costs (COVE does not support services discovered
dynamically). Once the mi candidate services have been selected, the developer uses
the COVE proxy generator tool to produce a (Java package) proxy for the i-th SBS
operation. The functionality of the COVE proxy generator resembles that of standard
web service proxy generators such as WSDL2Java and wsdle2php, except that: (a) the
COVE proxy is synthesised from mi web service WSDL definitions instead of a single
one; and (b) the developer needs to specify the functionally equivalent methods of
the mi web services in a preliminary, GUI-supported step of the generation process.
Figure 5.3 illustrates the COVE proxy synthesis process, and Figure 5.4 depicts the
class diagram of the proxy generator and its associated auxiliary classes. The COVE
proxy is extensible and additional methods can be implemented, e.g., to apply the
optimal filter analysis from Section 3.4.

Example 8. Figure 5.5 depicts the generation of a COVE proxy for the sendAlarm

operation of the telehealth SBS from Figure 5.1. Two “concrete” services deployed on

Amazon EC2 virtual machines were selected as candidates for executing the “abstract”

SBS operation, which is mapped to the sendAlarm method of the first service and to

the sendAlarm2 method of the second service. In the general case, a single COVE

proxy could map each of several SBS operations to different methods belonging to a

subset of the concrete services it relies upon.
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Method
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+ MethodSLA(double, double)
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- c0 : double
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- service : Service [ ]

- slas : HashMap〈String, MethodSLA〉
- dynamically generated service specific fields

+ IPSupport (String, String)

+ dynamically generated service specific methods

+ setMethodSLA (String, MethodSLA) : void
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+ setServiceMethodPriorValue (int, double) : String
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Figure 5.4: Class diagram of COVE proxy generator

The “link” button can be used to
map the selected SBS operation
on the left to the selected method
of a concrete service on the right.

The “Generate Proxy” button produces
a JAR-packaged Java library contain-
ing the COVE proxy classes for the
sendAlarm SBS operation.

Figure 5.5: Proxy generation for the sendAlarm operation from Figure 5.1
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%-prefixed placeholders that are replaced with the actual
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Figure 5.6: Using the Markovian model and PCTL requirements generator. The activity

diagram a is used by the COVE tool in line b, to generate the .pm MC model file and

the .pctl PCTL property files in line c, the two artefacts are shown in areas d and e,

respectively.

5.4.2 Stage 2: Initial model construction and requirement for-

malisation

The second stage of the development process involves the construction of the initial
Markov model used to configure the COVE model updater, and the formalisation of the
SBS requirements used to configure the COVE autonomic manager. This development
stage is supported by a COVE model and requirements generator tool that takes as input
the XMI-encoded UML activity diagram of an SBS workflow, as shown in Figure 5.6
and produces:

� a cost-annotated Markov model M = (S, s0,P , L), ρ : S → R≥0 of the SBS,
expressed in the PRISM high-level modelling language and in the format required
by the COVE model updater; and

� the set of PCTL-encoded SBS requirements, in the format required by the COVE
autonomic manager.

The four components of the Markov modelM and the cost function ρ are synthesised
by the tool as described below:

S: A distinct state is included in S (a) for each node in the activity diagram; and (b) for
the failure of each of the n SBS operations. The initial state s0 ∈ S corresponds
to the start node in the diagram.
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Figure 5.7: Initial Markov model for the SBS workflow from Figure 5.1

P : Given two states sx, sy ∈ S, the state transition probability pxy is set as follows:

(a) if sx corresponds to the i-th SBS operation and sy corresponds to the failure
state for the operation, then pxy = 1− pi (where pi ∈ [0, 1] is the probability
of success for operation i, and represents a model parameter);

(b) otherwise if sx corresponds to the i-th SBS operation and sy corresponds to
the node that follows operation i in the activity diagram, then pxy = pi;

(c) otherwise, if sx, sy corresponds directly to connected nodes X and Y from the
UML activity diagram, then pxy = 1.0 if the node associated with sx is not
a decision node; if sx is a decision node, pxy = pX Y (where pX Y ∈ [0, 1]
is a model parameter initialised with the corresponding a priori probability
estimate from the activity diagram);

(d) otherwise, pxy = 0.

L: Each state that corresponds to a node X in the activity diagram is labelled {X},
and each state that corresponds to a failed operation X is labelled {FailedX}.

ρ: A cost cX is associated with each state that corresponds to an operation X from the
activity diagram (where cX > 0 is a model parameter), and all other states are
assigned zero cost.

Example 9. Figure 5.7 depicts the initial Markov model obtained by applying the

method described above to the telehealth SBS from our running example. The model

comprises a state for each node from the UML activity diagram in Figure 5.1, and a

“failure” state for each of the three SBS operations—the “failure” states are shaded in

Figure 5.7. To improve readability, the names of the three SBS operations and of the

other activity diagram nodes were abbreviated in the name of the state transition proba-

bilities that represent model parameters (i.e., SA-sendAlarm, AVP=analyseVitalParams,

87



CD=changeDrug, I=INITIAL, F=FINAL, req=request? and res=result?). Only the

non-zero costs cSA, cAV P and cCD are shown in the diagram, next to the states corre-

sponding to the three SBS operations.

The PCTL encoding of the SBS requirements is automated by the tool for require-
ments that can be represented using instances of the pattern

P ./ p; condition, outcome

that are associated with activity-diagram nodes as illustrated in Figure 5.1. The three
elements of this pattern represent the probability bound for the requirement (where
./∈ {<,≤,=,≥, >}), a boolean condition that holds in the scenarios in which the
requirement must be satisfied, and the outcome that the probability bound is associated
to, respectively. Note that this pattern can be used to describe only a subset of the
requirements that can be expressed in PCTL, i.e., the subset of requirements that
can be encoded as unbounded until PCTL formula from the Background Chapter 2.
Nevertheless, other tools exist that can automate the PCTL generation process for other
type of SBS requirements. The ProProST tool [90] that was used for the same purpose
in the related work from [29] is particularly suitable for this role. ProProST takes as
input a plain-English description of the requirements of a system that is expressed using
a constrained vocabulary, and generates PRISM PCTL formulae.

Example 10. The probabilistic temporal logic formula generated by the COVE tool

for requirements R1 −R3 from Section 5.2 are:

R1: P ≤0.08[!stop? U failedSendAlarm | failedChangeDrug |
failedAnalyseVitalParams ]

R2: P ≤0.05[true U failedSendAlarm]

R3: analyseVitalParams ⇒
P ≤0.0002 [!stop ?U failedSendAlarm]

where the atomic proposition from the PCTL formula are taken from the Markov model

depicted in Figure 5.7.

5.4.3 Stage 3: Service-based system construction

In this stage, the n COVE proxies are integrated with the code that implements the
SBS workflow, in a similar manner to standard web service proxies. Additionally,
an instance of the COVE model updater and an instance of the COVE autonomic
manager are created and initialised (through their constructor parameters) with the
initial Markov model and the array of PCTL requirements from the previous stage,
respectively. Standard development tools/integrated development environments can be
employed in this stage.

Example 11. The code in Figure 5.8 creates and initialises instances of these compo-

nents as follows:
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Figure 5.8: The initialisation of the proxies, model updater and autonomic manager

components of the telehealth self-verifying service-based system

� The COVE model updater class is instantiated in step 1, and initialised using the

(discrete-time) Markov chain model generated by the COVE tool in stage 2 of the

development process;

� The COVE proxy for the sendAlarm operation (generated automatically in stage 1

of the development process, see Figure 5.5) is then instantiated in step 2 from

Figure 5.8, and its parameters associated with the two concrete web services that

implement this SBS operation are initialised in substeps 2.1 and 2.2, respectively.

Steps 3 and 4 carry out similar initialisations for the other two SBS operations.

� The code in step 5 instantiates the COVE autonomic manager.

� Finally, the PCTL-encoded SBS requirements generated in the second stage of the

development process are organised into an array in step 6; in the current version

of COVE, this involves taking a copy of these properties from the .pctl file in

Figure 5.6.

Figure 5.9 illustrates the actual workflow code (in substep 7.1), and the periodical
invocation of the COVE autonomic manager (in substep 7.2).
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Figure 5.9: The implementation of the self-verifying telehealth SBS workflow

5.5 Dynamic service selection

5.5.1 Continual verification

The continual verification function of a COVE self-adaptive SBS is performed by
its autonomic manager component (Figure 5.2). The autonomic manager is invoked
periodically, and operates by verifying the latest version of the system model as follows.
First, the updated Markov model of the SBS workflow is obtained from the COVE
model updater. This model is parameterised by the success probabilities pi and costs
ci, 1 ≤ i ≤ n, of the n SBS operations. Accordingly, the autonomic manager obtains the
estimate success probabilities and costs of the services available for each operation from
the appropriate COVE proxy. The estimate success probabilities and costs associated
with every n-service combination that can execute the SBS operations are then used to
generate a fully specified instance of the SBS model. Next, these model instances are
verified using an embedded version of the PRISM model checker, to identify the service
combinations that satisfy all SBS requirements. (The scalability of the approach is
evaluated and discussed in Section 5.6.3.) Finally, a service combination that satisfies
the SBS requirements and has minimal cost is selected by the autonomic manager, and
the COVE proxies are configured to start using this combination. The decision taken
when no suitable service combination is available depends on the configuration of the
autonomic manager, the options being to select the lowest-cost service combination, or
to choose cease executing the workflow until the services recover or SBS requirements
are relaxed (e.g., by the system administrator).

Example 12. For illustration purposes, we used the standalone version of the prob-

abilistic model checker PRISM to reproduce the verification task carried out by the

COVE autonomic manager for the telehealth SBS from our running example. We

assume that the state transition probabilities for the SBS Markov model are those
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Figure 5.10: Experimental results for Example 12

from Figure 5.7, with the exception of the operation success probabilities p1, p2 and p3,

which represent model parameters. We then analysed the three PCTL requirements

from Example 9 for model instances associated with a range of (p1, p2, p3) combinations.

The results from the verification of the three requirements are shown in the three

diagrams from Figure 5.10. The shaded areas in each graph corresponds to (p1, p2, p3)

combinations that violate the SBS requirement associated with that graph. In con-

trast, (p1, p2, p3) combinations that appear outside the shaded area of each diagram

correspond to acceptable service combinations2. The acceptable service combination

with the lowest cost (or one of them, if several acceptable combinations have the lowest

cost) is eventually selected, e.g., (p1, p2, p3) = (0.95, 0.94, 0.93) in the scenario from

Figure 5.10.

5.5.2 Heuristics for switching between concrete services

In many applications that require the use of online learning techniques such as those
described in Sections 3.2.1 and 3.3, these techniques are employed not only to detect vio-
lations of QoS requirements, but also to recover from such violations. This recovery from
QoS violations typically involves reconfigurations of the adaptive system, e.g., through
the dynamic replacement of underperforming or failed components with alternative
components. These alternative components may be functionally equivalent but more
expensive to use, or may provide a limited version of the same functionality to allow for
a graceful degradation of the service provided by the system. In these circumstances, the
sudden configuration switching means that the observations for an SBS operation are
associated with a concrete service that is no longer in use. Accordingly, the calculation
of the transition probability from (3.5) needs to be restarted using a new prior value p0

ij

that corresponds to the newly selected service. Furthermore, the probability estimate pkij
learnt prior to the change and associated with a system component or configuration that
may be of interest again in the future needs to be updated using another mechanism
because observations of its behaviour are no longer available.

In this section, we present several heuristics for handling this scenario. These

2Note that the results from this exhaustive analysis can be used to derive the a Pareto optimal set

of (p1, p2, p3) combinations and the Pareto front for this system [172, 173].
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heuristics assume that the learning algorithm from Section 3.2.1 can be applied to
online learning of the reliability QoS property for a self-adaptive SBSs, where the
underlying services are dynamically selected at runtime (this framework is described
in more detail in Section 5.4). However at any point in time, the online estimation
technique from (3.5) is only applied to the selected service from a set of functionally
equivalent services, namely to the service that was used for the last execution of the
SBS operation. This section describes an extension to the technique to include the
inactive concrete services in the set as follows:

� A service never used by the SBS workflow is assumed to operate with its “adver-
tised” success probability p0.

� A service whose use was discontinued because a cheaper service that satisfies
the SBS requirements became available is assumed to return to its “advertised”
success probability p0.

� A service ”discontinued” after k > 0 invocations because it ceased to satisfy the
lower bound prequired success probability is dealt with using one of the techniques
summarised in Table 5.1 and described below.

First, the “cooling off” technique for handling underperforming services is suitable for
scenarios in which a service becomes unavailable suddenly. Our COVE proxy described
in Section 5.4.1, is configured to use this technique, so when a selected service’s success
probability pk from (3.5) drops below prequired, the proxy deselects the underperforming
service and replaces it with another service from the set of functionally equivalent
services. The service is reconsidered as (potentially) suitable after a fixed cooling-off
time tco > 0, which is a parameter of the technique.

Second, the “simple” technique is useful in scenarios in which a service is temporarily
overloaded, so its probability of success decreases below the threshold specified in the
operation SLA, but remains non-zero. When this technique is used for a service deemed
unsuitable after the k−th invocation because pk < prequired, the probability of successful
service invocation at time tk′ > tk is estimated as

pk
′
=

{
pk, if tk′<tk+tco
βtk′−(tk+tco)−1

βtk′−(tk+tco) p
0 + 1

βtk′−(tk+tco)p
k, otherwise

(5.1)

where β > 1 is a recovery parameter, and tco > 0 is a cooling-off time as before. As
a result, the time until the service is reconsidered depends on how much the service
reliability pk dropped below the required value pi. This advantage is shared by the
“hysteresis” technique, which uses the same approach to estimating p, but additionally
avoids frequent service changes by using a hysteresis parameter γ.

5.6 Implementation and evaluation

5.6.1 Implementation

We developed a prototype implementation of the COVE framework as an open-source
Java toolset. To ensure that the toolset remains accessible after the end of this PhD
project, we made it available from the project supervisor’s public webpage at http:

//www-users.cs.york.ac.uk/~raduc/COVE/. The core components of the COVE
toolset are:
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Table 5.1: Handling services that cease to be part of service combinations satisfying

system requirements.

Criteria for deciding that: Estimate for

Technique (a) service is no longer suitable discontinued service

(b) unsuitable service is again suitable

cooling off
(a) pk < pi

(b) tco time units elapsed since tk
not required

simple
(a) pk < pi

(b) pk
′ ≥ pi

see eq. (5.1)

hysteresis

(a) pk < (1− γ)pi

(b) pk
′
> (1 + γ)pi where

0<(1− γ)pi<pi<(1 + γ)pi<1

see eq. (5.1)

� The SBS-independent autonomic manager and model updater, which are provided
as a JAR library for inclusion in COVE-based self-adaptive SBSs. The autonomic
manager uses a PRISM quantitative verification library [111], and implements the
continual verification technique described in Section 5.5.1. The model updater
implements the adaptive learning algorithm presented in Section 3.3 in order
to maintain the state transition probabilities of the SBS model verified by the
autonomic manager in step with changes in the SBS workflow.

� The COVE proxy-generator tool, which is implemented as a Java Swing application
that employs open-source Apache Axis2 technology (http://axis.apache.org/
axis2/java/core) to generate the COVE proxies as described in Section 5.4.1.

� The COVE model generator and requirement formalisation tool, which is im-
plemented as a Java command-line application that takes as input SBS activity
diagram in the XMI format generated by the Eclipse-based Papyrus graphical
editing tool for UML 2 (http://www.eclipse.org/papyrus/).

The auxilliary COVE class supporting the runtime manipulation of discrete-time
Markov chain models, and the creation of an audit trail of autonomic manager verification
steps and decisions with log4j (http://logging.apache.org/log4j/) are bundled
together with the autonomic manager and model updater in the reusable COVE JAR.

5.6.2 Case study

We used the COVE toolset and the development process described in Section 5.4 to
implement a self-adaptive version of our telehealth SBS that used m1 = 2 sendAlarm

services, m2 = 2 changeDrug services, and m3 = 3 analyseVitalParams services.
These seven services were simulated using real Java web services deployed on Amazon
EC2 (http://aws.amazon.com/ec2/) “small instance” virtual machines. Individual
configuration files were used to specify the variation of the actual probability of successful
invocation for each web service, pij, 1 ≤ i ≤ 3, 1 ≤ j ≤ mi, over the duration of each
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Table 5.2: Service prior success probabilities and costs

service prior success probability (p0
i,j) cost (ci,j)

sendAlarm1 0.968 0.02

sendAlarm2 0.968 0.01

changeDrug1 0.96 0.3

changeDrug2 0.95 0.1

analyseVitalParams1 0.965 5.0

analyseVitalParams2 0.95 4.0

analyseVitalParams3 0.96 3.0
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Figure 5.11: Automated service selection for the telehealth service-based system; the

circular areas labelled ’A’, ’B’, etc. are analysed in Section 5.6.2

experiment. The a priori success probability p0
i,j and the costs ci,j for an invocation of

each of these services are shown in Table 5.2. A Java implementation of the telehealth
SBS workflow from Figure 5.1 was integrated with COVE proxies for its three operations,
and was run on a standard 2.66 GHz Intel Core 2 Duo Macbook Pro computer.

Figure 5.6.2 depicts a typical experiment in which the COVE autonomic manager
selects the service combinations for the telehealth SBS dynamically, over a 1.5-hour
wall clock time period. Low-cost combinations of services are preferred when their
combined probabilities of successful completion satisfies all SBS reliability requirements,
and are discarded in favour of high-cost service combinations when their joint reliability
violates one or more of these SBS requirements. These decisions are taken based on
the estimate probabilities of success pkij calculated by the COVE adaptive learning
algorithm (initialised with ε = pmax = 0.05), and on the continual verification of the
updated SBS model:

� At the beginning of the experiment, the lowest-cost service combination is selected
by the autonomic manager, as the high a priori success probabilities p0

i,j of
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all services make all service combinations seem suitable. This is the expected
behaviour, since a service whose provider-specified SLA does not satisfy the SBS
requirements should not be included in the system.

� When the autonomic manager learns that analyseVitalParams3 is underperforming
in the area labelled ’A’ in the diagram, it switches to using the higher-cost
analyseVitalParams2 service.

� While a higher-cost service is used for an SBS operation, the adaptive learning
algorithm “rebuilds trust” in the temporarily discarded lower cost service (area
labelled ’B’ in the diagram). This is due to the fact that the observations of
frequent failures from area ’A’ are associated weights that decrease over time, so
the estimate pk3,3 slowly approaches the prior value p0

3,3. The learning algorithm
was configured to assume that a service returned to its prior success probability
when the autonomic manager resumes using it, which explains why pk3,3 grows
suddenly to p0

3,3 when the analyseVitalParams3 is selected again in area B.

� In area C, a slight variation in the estimate success probability of the sendAlarm2

service triggers a potentially unnecessary transition to the more expensive service
sendAlarm1. Choosing strict intervals of confidence (i.e., smaller ε and/or pmax
parameters) for the COVE adaptive learning could reduce such “false positives”,
although eliminating them altogether is not possible (cf Proposition 3.3).

� In area D, the autonomic manager resumes using analyseVitalParams3, which has
now recovered.

� In area E, the autonomic manager learns that even the high-cost alarm service (i.e.,
sendAlarm2) is unreliable, to the extent that the SBS requirements are no longer
satisfied. Under the autonomic manager configuration used in the experiment, no
service was selected in this scenario, and an error message was generated instead
to alert the system administrator.

� In area F, the autonomic manager retries to use the alarm service that experienced
a low success rate first, learns that this service has not yet recovered.

� Area G shows that some services have little impact on the overall SBS compliance
with its requirements—as only requirement R1 depends on a successful completion
of the changeDrug SBS operation (and only marginally), a decrease in the reliability
of changeDrug2 does not determine the autonomic manager to abandon this
service.

� Nevertheless, the autonomic manager does switch to the more expensive changeDrug1

service in area H-H’, at a moment when changeDrug2 is actually more reliable
than it was in area G. The decision is motivated by the decrease in the reliability
of dataAnalysis3, which the autonomic manager compensates for by choosing a
slightly more expensive drug service (the cost difference between changeDrug2 and
changeDrug1 is only 0.2) instead of switching to a significantly more expensive
analysis service (moving away from analyseVitalParams3 would have amounted
to a cost increase of at least 1.0 for this operation.

� The strategy adopted in area H-H’ is unsuccessful, so the most expensive analysis
service is eventually selected in area I.

� Finally, in area J all service have recovered and operated close to their adver-
tised SLAs, so the autonomic manager returns to using the lowest-cost service
combination for the telehealth service-based system.
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p1

p2 = p3 = 0.94

pR1=0.08

A service combination with (p1, p2, p3) =
(0.875, 0.94, 0.94) complies with require-
ment R1 if prequest sendAlarm = 0.05, but
violates R1 if prequest sendAlarm ≥ 0.075.

Figure 5.12: The effect of changes in the probability of alarm requests

A key capability of COVE is its ability to learn not only changes in the reliability
of individual services, but also changes in the rates with which the SBS operations
are performed. To evaluate this functionality, we considered the effect of changes
in the probability prequest sendAlarm (abbreviated preq SA in Figure 5.7) that a request
handled by the telehealth SBS is a patient-initiated alarm. A temporary increase in
this probability may be caused, for instance, by a flu outbreak. Figure 5.12 depicts the
analysis of requirement R1 from our case study, for a range of service combinations and
for prequest sendAlarm values between 0.05 and 0.15. This analysis shows that even a small
change in the probability of alarm requests is sufficient to render unacceptable a service
combination that was previously compliant with requirement R1. This confirms the
importance of updating the SBS model in line with any fluctuations in the probabilities
with which the SBS operations are executed.

5.6.3 Applicability to larger systems

We evaluated the ability of our approach to handle a range of system sizes, by carrying
out a number of experiments that assessed the applicability and overheads of executing
the runtime analysis within the autonomic manager in multiple scenarios. We selected
the following workflows, used by a number of projects in this area:

1. the healthcare case study described in this report, and previously used in [28, 29,
66];

2. the e-commerce workflow obtained from [74];

3. the travel assistant workflow derived from the state-chart representation presented
in [164].

These workflows comprise invocations of three, four and five abstract operations,
respectively.
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Figure 5.13: Scalability results of the autonomic manager

For each of the workflows we devised a parameterised Markov chain, and we defined
four PCTL requirements, including one PCTL property to determine the expected
cost of a single invocation of the workflow. The size of the models ranged between
11 and 17 states. As we envisage that practical self-adaptive service-based systems
will rarely use more than two or three concrete services for each abstract operation,
we then ran experiments that considered between to and five concrete services for
each of the abstract operations. Due to space constraints, we do not include the
Markov models and properties for the e-commerce and travel assistant workflows in
the main body of this report. However, these Markov models and properties, and
detailed descriptions of each of the experiments are available from the project website
at http://www-users.cs.york.ac.uk/~raduc/COVE/ and in the Appendix F and G.

Each experiment measured the time taken to initialise the autonomic manager and
select the optimal concrete service configuration in the worst-case scenario whereby
all combinations of concrete services satisfied verifying the suitability of a service
combination as soon as it learns that the combination violates one of the requirements.
Figure 5.13 summarises the results of these experiments, averaged over multiple runs.
According to these results, up to three services per SBS operation can be analysed
within two seconds for each of the considered workflows, which confirms the feasibility of
the approach for typical SBSs of practical importance from the domains explored in our
experiments. Increasing this to four services for each SBS operation leads to verification
times of up to 5s, which is likely to be acceptable for many practical applications. This
is particularly true when large numbers of false positives and false negatives in the
associated learning process need to be avoided, so longer time is already needed to
identify the changes on which the autonomic manager must act.

The exponential growth in analysis time shown in Figure 5.13 limits the applicability
of the current COVE version to systems comprising small to medium numbers of
operations, and using small numbers of services (i.e., between 2 and 4 services) per SBS
operation. While the second constraint is, in our opinion, not significant, the former
implies that SBSs comprising large numbers of operations cannot yet benefit from this
approach. However, recent work by several research groups and ourselves has led to
significant advances in the use of incremental and compositional techniques to reduce
quantitative verification times, often by multiple orders of magnitude [33, 73, 102, 112].
We envisage that integrating these techniques into COVE will significantly enhance its
ability to support the development and operation of much larger service-based systems.

As always, the addition of monitors introduces overheads and may cause additional
problems due, for instance, to computational resources including CPU, memory, I/O,
and network bandwidth [125]. However, as described in Section 3.3.3, in our case
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the overheads are minimal since the overall space complexity of the adaptive learning
algorithm is O(f) (i.e., timestamps is proportional to the frequency f of observations),
and the time complexity of the learning algorithm is O(1). Then again, the other effects
cannot be ruled out. In particular, robustness, extensibility and manageability need to
be assessed for any use of our approach in a real-world system.

5.7 Summary

This chapter introduced our COntinual VErification (COVE) framework for the tool-
supported engineering of self-adaptive service-based systems. The architecture of
COVE self-adaptive service-based systems was presented using a case study from the
telehealth domain. Among the key components of this architecture are the COVE
service proxies that interface the service-based system (SBS) workflow with sets of
functionally equivalent remote services. The runtime selection of the service for each
SBS operation and, as in the case of traditional web service proxies, the interactions
with the selected services are handled automatically by the COVE proxies.

The COVE proxies are also responsible for observing all service invocations and
their outcome. These observations are used to keep up to data a Markov model of the
SBS workflow, starting from a developer-supplied initial version of this model. The
model updates are carried out using the adaptive online learning technique presented
in Chapter 3. Finally, the resulting up-to-date model is used by an autonomic manager
that controls the services selected by the COVE proxies, to ensure that the service
combination which satisfies the SBS requirements with minimal cost is selected at all
times.

The COVE framework, which we implemented as an open-source Java toolset, com-
prises SBS-independent components (i.e., the autonomic manager and model updater),
a COVE proxy generator tool and an initial model generator. Accordingly, the COVE
model updater and autonomic manager are reusable across applications, while the
SBS-specific COVE proxies and initial Markov model are generated automatically by
the proxy and model generators, respectively.
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Chapter 6

Conclusion and future work

This thesis introduced a suite of online techniques for learning and continually updating
the parameters and structure of Markov chains, a class of models used to establish key
reliability, performance and other QoS properties of real-world systems. The analysis
of the Markov models synthesised and kept up to date by our techniques enables the
accurate quantitative verification of these QoS properties as the analysed system evolves
over time. For adaptive systems, this enables dynamic reconfiguration actions which
ensure that QoS requirements continue to be met after environmental and internal
changes.

Our new learning techniques use as input runtime observations of system events
associated with the transitions between the states of a model, and with costs/rewards
associated with these states and transitions. When the model structure is known,
they continually update the state transition probabilities and costs/rewards in line
with the observed variations in the behaviour of the system. In scenarios when the
model structure is unknown, a Markov chain is synthesised from sequences of such
observations.

The two categories of learning techniques underpin the operation of a new toolset
for the engineering of self-adaptive service-based systems, which was developed as part
of this research. The thesis introduced this software engineering toolset, and showed its
effectiveness in a case study that involved the development of a prototype telehealth
service-based system capable of continual self-verification.

6.1 Summary of contributions

The main contributions of the thesis, their advantages and novel characteristics, and
the insights gained from pursuing the research to devise them are summarised below.

Firstly, we developed two online learning techniques that infer the state transition
probabilities of a Markov model from observations of the modelled system behaviour.
The former, Bayesian derived technique, weighs observations based on their age, to
account for the fact that older observations are less relevant than more recent ones.
The approach decreases the impact of old observations on the estimates, significantly
speeding up the detection of sudden changes in the actual transition probabilities
(e.g., due to failures of system components). This is particularly noticeable when such
changes occur after long periods of relatively constant behaviour. This first learning
technique calculates new transition probability estimates in O(1) time and using O(1)
memory, a key advantage for an online learning algorithm. However, the effectiveness
of this algorithm depends on the choice of its two parameters, the smoothing parameter
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c0
i and the ageing parameter αi, and no combination of values for these parameters

is suitable for all scenarios. To address this limitation, the latter learning technique
selects suitable values for these parameters at runtime, based on the frequency of the
observations. This adaptive learning leads to a faster and more accurate inference of
the transition probabilities than that provided by existing methods. Furthermore, we
introduced rigorous theoretical results that link the parameters chosen dynamically
to the expected error in the accuracy of the learnt state transition probabilities. This
allows the configuration of the adaptive learning method so that it yields results within
an acceptable expected error range.

Secondly, we introduced a new technique that uses the Kalman filter and the recursive
weighted least-square filter to establish cost/reward structures for Markov chains. These
structures are associated with, and support the analysis of, performance-related QoS
properties of component-based systems whose instrumentation is not possible or not
desirable (e.g., embedded and real-time systems). The approach works for systems that
can be continuously monitored as a black box, so that the values of the cumulative
costs/rewards for operation sequences can be observed. The technique can be used to
identify under-performing components, to predict the system behaviour for infrequent
execution paths, and to support reconfiguration decisions in self-adaptive systems. We
showed the application of this technique for a case study taken from the telematics
domain, evaluated its effectiveness, and compared the two optimal filters for a wide
range of experiments. These experiments provided empirical evidence that the Kalman
filter is a better choice than the recursive weighted least square filter in terms of both
false positives and false negatives. Using the latter filter led to slower but also to
“smoother” learning. This could be preferable for systems that operate close to the
bounds specified in their requirements, since in these circumstances the Kalman filter
generates numerous false positives.

Thirdly, we developed a technique for the synthesis of Markov chains with the
desired degree of accuracy for service-based systems. This new technique uses a distance
function to compare the model versions learnt after every N observations of system
events. When the distance between two successive model versions compared in this
way drops below an acceptable distance ε, the latest model is deemed “stable” enough
for use in verification, and ultimately to support adaptation decisions. By varying
the acceptable distance parameter ε and the number of observations N , we provided
insight into their impact on the ability to use the learnt model to accurately analyse
the compliance of a system with a range of requirements. In particular, our empirical
evidence showed that the accuracy of the learnt model increased when decreasing ε, at
the expense of a larger number of observations being required before the model could
be deemed stable. This trade-off between model accuracy and learning effort is also
influenced by N , with lower values of N speeding up the learning process. However,
caution needs to be exercised, since decreasing N too much leads to the synthesis of
models with incomplete states and/or transitions.

Fourthly, we introduced the COntinual VErification (COVE) service-based system
development framework that contributes towards narrowing the gap between state-of-
the-art research and the state of practice in the engineering of self-adaptive service-based
systems (SBSs). Similar to other self-adaptive SBS frameworks, COVE selects the
services used to execute each operation of an SBS workflow at runtime, from sets of
functionally equivalent services with different levels of reliability and cost. However,
COVE has a several advantages over the existing approaches to developing and operating
self-adaptive SBSs. Thus, the self-verifying systems developed using this framework
employ continual formal verification to select the service combination that guarantees
the realisation of their reliability requirements with minimal cost. The underlying model
is updated online to reflect changes in the service reliability and in the frequency with
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which the SBS operations are invoked. The continual verification, model updating and
service selection capabilities are fully automated, and are provided by a combination
of reusable and automatically generated software components. Last but not least, the
development process supported by COVE resembles the traditional SBS development
process, so practitioners can use it with little learning effort.

Finally, we used a range of case studies to evaluate the effectiveness of the new
model learning techniques and software tools developed by the project. We envisage
that these case studies will serve as exemplars for other researchers and practitioners,
helping them gain insight into the engineering of self-adaptive service-based software
systems.

6.2 Future work

There are multiple ways in which the research presented in this thesis can be refined
and extended. The most significant research directions requiring further investigation
are covered below.

Extension to other types of QoS models In this thesis we described techniques
for the online learning of discrete-time Markov chains. These Markov models are
widely used to analyse the QoS properties of computer systems. Other important types
of models that are used for this purpose include continuous-time Markov chain [13],
queueing networks [23], Petri nets [120] and stochastic process algebra [95]. Extending
the learning techniques introduced in the thesis to these additional modelling formalisms
represents an important area of future research.

Validation of online learning techniques in new domains The case studies
used to illustrate and evaluate the online learning techniques proposed in the thesis
came primarily from the domain of service-based systems. Another area of future
research would be to use our techniques in other application domains, such as the
Internet of Things (IoT). As self-organisation is a key system-level feature of IoT, the
complexity and dynamics that many IoT will be implemented in will likely require
continual adaptation that will necessarily have to rely on runtime analysis of accurate
system models.

Exploit less resource-intensive verification techniques Extending the applica-
bility of our continual verification framework COVE to larger service-based systems
requires its integration with recently emerged incremental and compositional verification
techniques [33, 73, 102, 112]. Achieving this integration represents an important area
of research work. A key target of this work is the incremental verification technique
which our group proposed in [33], which we deem particularly suitable for this purpose
due to its ability to produce system-level verification results by re-analysing only the
parts of the system that were affected by a change.

Add natural language support to the continual verification framework An-
other area of future work is to extend the COVE framework with a plugin that supports
the specification of service-based system requirements in a domain-specific natural
language, similar to ProProST [90]. Last but not least, future work is required to
extend COVE with the ability to handle additional categories of QoS requirements (e.g.,
performance and energy related), along the lines of the work from [29].
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Appendix A

Matlab implementation of the

Kalman filter

1 function [x1] = KalmanAlgorithm(z)

2 persistent A H Q R

3 persistent x P

4 persistent firstRun

5 if isempty(firstRun)

6 firstRun = 1;

7 A = 1;

8 H = 1;

9 R = 5;

10 Q = 0;

11 x = 600;

12 P = 50;

13 end

14 % 1. Prediction of the estimate

15 xp = A*x;

16 % 2. Prediction of the error covariance

17 Pp = A*P*A'+Q;

18 % 3. Calculate the Kalman gain

19 K = Pp*H'/(H*Pp*H' + R);

20 % 4. Calculate the new estimate

21 x = xp + K*(z - H*xp);

22 % 5. Calculate the error covariance

23 P = Pp - K*H*Pp;

24 % 6. Return the new estimated value

25 x1 = x(1);
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Appendix B

Test program for the Kalman filter

1 Xsaved = zeros(500, 1);

2 Msaved = zeros(500, 1);

3 Psaved = zeros(500,1);

4 Ksaved = zeros(500,1);

5 Zsaved = zeros(500, 1);

6 Xactual = zeros(500,1);

7 for j = 1:500

8 x = 740;

9 Xactual(j,:) = x;

10 z = x + 50*randn(1,1);

11 Msaved(j,:) = z;

12 [x1] = KalmanAlgorithm(z);

13 Xsaved(j,:) = x1;

14 end

15 t = 1:500;

16 Xactual(:,1);

17 Msaved (:,1);

18 Xsaved (:,1);

19 figure

20 hold on;

21 plot(t, Xactual(:,1),'r');

22 plot(t, Msaved(:,1), 'g');

23 plot(t, Xsaved(:,1), 'b');
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Appendix C

Matlab implementation of the

RWLS filter

1 function [x1] = RecursiveWeightedLeastSqAlgorithm(z)

2 % 1. Initialize the estimator

3 persistent H x P R

4 persistent firstRun

5 if isempty(firstRun)

6 firstRun = 1;

7 H = 1;

8 R = 5;

9 x = 600;

10 P = 50;

11 lambda = 0.98; % -- forgetting function

12 laminv = 1/lambda;

13 end

14 % 2.1 Obtain new measurement z k = H'x + v k;

15 z k = z;

16 % 2.2 Update sequentially

17 e = z k - H*x; % -- Update measurement residual

18 S = (H*P*H' + (lambda*R));% -- Update measurement prediction covariance matrix

19 K = P*H'*inv(S); % -- Calculate the gain

20 x = x + K*e; % -- Update estimate x

21 P = laminv*P - K*S*K'; % -- Update error covariance estimate

22 % 3. Return the new estimated value

23 x1 = x(1);
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Appendix D

Test program for the RWLS filter

1 Xsaved = zeros(500, 1);

2 Msaved = zeros(500, 1);

3 Psaved = zeros(500,1);

4 Ksaved = zeros(500,1);

5 Zsaved = zeros(500, 1);

6 Xactual = zeros(500,1);

7 for j = 1:500

8 x = 740;

9 Xactual(j,:) = x;

10 z = x + 50*randn(1,1);

11 Msaved(j,:) = z;

12 [x1] = RecursiveWeightedLeastSqAlgorithm(z);

13 Xsaved(j,:) = x1;

14 end

15 t = 1:500;

16 Xactual(:,1);

17 Msaved (:,1);

18 Xsaved (:,1);

19 figure

20 hold on;

21 plot(t, Xactual(:,1),'r');

22 plot(t, Msaved(:,1), 'g');

23 plot(t, Xsaved(:,1), 'b');
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Appendix E

PRISM model for Bioinformatics

workflow

1 dtmc

2 //This is a PRISM model of a Taverna workflow used in studies for

3 //Graves disease. The workflow can be found at:

4 //http://www.myexperiment.org/workflows/28.html

5 //constants p1 to p18 represent (a priori estimates of) the probabilities

6 //that the 18 web service invocations complete successfully, and a PRISM

7 //module is used to model each web service. An additional module "Workflow"

8 //is used to model the workflow as a whole.

9

10 const double p1=0.999;

11 const double p2=0.998;

12 const double p3=0.999;

13 const double p4=0.995;

14 const double p5=0.997;

15 const double p6=0.997;

16 const double p7=0.999;

17 const double p8=0.996;

18 const double p9=0.998;

19 const double p10=0.999;

20 const double p11=0.998;

21 const double p12=0.999;

22 const double p13=0.999;

23 const double p14=0.991; //The UniProt Knowledgebase is a

24 //central database of protein sequence

25

26 const double p15; //(EBI) maintains and distributes the EMBL
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27 //Nucleotide Sequence database

28

29 const double p16=0.991;//getMedlineIds

30

31 const double p17=0.991;//ebi medline2007, medline bibliographic database

32

33 const double p18=0.99;//calcMeltTemp

34 const int SUCC=1;

35 const int FAIL=2;

36 //------------------------------------------------------------------------

37

38 module WorkFlow

39 wf : [0..2] init 0; // 0 -init; 1 -success; 2 -fail

40

41 [] (wf=0)&(

42 (ebi uniprot=FAIL)

43 |(calcMeltTemp=FAIL)
44 |(ebi medline2007=FAIL)

45 |(markPathwayByObjects=FAIL)
46 |(DDBJBlastn=FAIL)
47 |(getInterProIds=FAIL)
48 |(getDotFromViz=FAIL)
49 ) -> 1:(wf'=FAIL);

50 [] (wf=0)&(

51 (ebi uniprot=SUCC)

52 &(calcMeltTemp=SUCC)

53 &(ebi medline2007=SUCC)

54 &(markPathwayByObjects=SUCC)

55 &(DDBJBlastn=SUCC)

56 &(getInterProIds=SUCC)

57 &(getDotFromViz=SUCC)

58 ) -> 1:(wf'=SUCC);

59 [] wf=SUCC -> 1:(wf'=SUCC);

60 [] wf=FAIL -> 1:(wf'=FAIL);

61 endmodule

62 //------------------------------------------------------------------------

63

64 module ScalcMeltTemp

65 //Service 18

66 calcMeltTemp : [0..2] init 0;

67 [] calcMeltTemp=0 -> p18:(calcMeltTemp'=SUCC)+(1-p18):(calcMeltTemp'=FAIL);

68 [] (calcMeltTemp=0)&(ebi embl=FAIL) -> 1:(calcMeltTemp'=FAIL);
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69 endmodule

70 //------------------------------------------------------------------------

71

72 module Sebi medline2007

73 //Service 17

74 ebi medline2007 : [0..2] init 0;

75 [] ebi medline2007=0 -> p17:(ebi medline2007'=SUCC)+

76 (1-p17):(ebi medline2007'=FAIL);

77 [] (ebi medline2007=0)&(getMedlineIds=FAIL) ->

78 1:(ebi medline2007'=FAIL);

79 endmodule

80 //------------------------------------------------------------------------

81

82 module SgetMedlineIds

83 //Service 16

84 getMedlineIds : [0..2] init 0;

85 [] getMedlineIds=0 -> p16:(getMedlineIds'=SUCC)+(1-p16):

86 (getMedlineIds'=FAIL);

87 [] (getMedlineIds=0) & (getEmblld=FAIL) -> 1:

88 (getMedlineIds'=FAIL);

89 endmodule

90 //------------------------------------------------------------------------

91

92 module Sebi embl

93 //Service 15

94 ebi embl : [0..2] init 0;

95 [] ebi embl=0 -> p15:(ebi embl'=SUCC)+(1-p15):(ebi embl'=FAIL);

96 [] (ebi embl=0) & (getEmblld=FAIL) -> 1:(ebi embl'=FAIL);

97 endmodule

98 //------------------------------------------------------------------------

99

100 module Sebi uniprot

101 //Service 14

102 ebi uniprot : [0..2] init 0;

103 [] ebi uniprot=0 -> p14:(ebi uniprot'=SUCC)+

104 (1-p14):(ebi uniprot'=FAIL);

105 [] (ebi uniprot=0)&(getSwissProtId=FAIL) ->

106 1:(ebi uniprot'=FAIL);

107 endmodule

108 //------------------------------------------------------------------------

109

110 module SgetEC
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111 //Service 1

112 getEC : [0..2] init 0;

113 [] getEC=0 -> p1:(getEC'=SUCC) + (1-p1):(getEC'=FAIL);

114 endmodule

115 //------------------------------------------------------------------------

116

117 module SgetEmblld

118 //Service 2

119 getEmblld : [0..2] init 0;

120 [] (getEmblld=0) -> p2:(getEmblld'=SUCC)+

121 (1-p2):(getEmblld'=FAIL);

122 endmodule

123 //------------------------------------------------------------------------

124

125 module SgetMolFuncGolds

126 getMolFuncGolds : [0..2] init 0;

127 //Service 3

128 [] (getMolFuncGolds=0) -> p3:(getMolFuncGolds'=SUCC) +

129 (1-p3):(getMolFuncGolds'=FAIL);

130 endmodule

131 //------------------------------------------------------------------------

132

133 module SgetSwissProtId

134 //Service 4

135 getSwissProtId : [0..2] init 0;

136 [] (getSwissProtId=0) -> p4:(getSwissProtId'=SUCC)+

137 (1-p4):(getSwissProtId'=FAIL);

138 endmodule

139 //------------------------------------------------------------------------

140

141 module SgetPathwaysByECNumbers

142 //Service 5

143 getPathwaysByECNumbers : [0..2] init 0;

144 [] (getPathwaysByECNumbers=0)&(getEC=SUCC) ->

145 p5:(getPathwaysByECNumbers'=SUCC)+

146 (1-p5):(getPathwaysByECNumbers'=FAIL);

147 [] (getPathwaysByECNumbers=0)&(getEC=FAIL) ->

148 1:(getPathwaysByECNumbers'=FAIL);

149 endmodule

150 //------------------------------------------------------------------------

151

152 module SmarkPathwayByObjects
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153 //Service 7

154 markPathwayByObjects : [0..2] init 0;

155 [] (markPathwayByObjects=0)&(getPathwaysByECNumbers=SUCC) ->

156 p7:(markPathwayByObjects'=SUCC)+ (1p7):(markPathwayByObjects'=FAIL);

157 [] (markPathwayByObjects=0)&(getPathwaysByECNumbers=FAIL) ->

158 1:(markPathwayByObjects'=FAIL);

159 endmodule

160 //------------------------------------------------------------------------

161

162 module SgetTargetSequence

163 //Service 8

164 getTargetSequence: [0..2] init 0;

165 [] (getTargetSequence=0) -> p8:(getTargetSequence'=SUCC)+

166 (1p8):(getTargetSequence'=FAIL);

167 endmodule

168 //------------------------------------------------------------------------

169

170 module SDDBJBlastn

171 //Service 11

172 DDBJBlastn : [0..2] init 0;

173 [] (DDBJBlastn=0)&(getTargetSequence=SUCC) ->

174 p11:(DDBJBlastn'=SUCC)+ (1p11):(DDBJBlastn'=FAIL);

175 [] (DDBJBlastn=0)&(getTargetSequence=FAIL) ->

176 1:(DDBJBlastn'=FAIL);

177 endmodule

178 //------------------------------------------------------------------------

179

180 module SgetInterProIds

181 //Service 9

182 getInterProIds: [0..2] init 0;

183 [] (getInterProIds=0) -> p9:(getInterProIds'=SUCC)+

184 (1-p9):(getInterProIds'=FAIL);

185 endmodule

186 //------------------------------------------------------------------------

187

188 module ScreateVizSession

189 //Service 6

190 createVizSession : [0..2] init 0;

191 [] (createVizSession=0) -> p6:(createVizSession'=SUCC)+

192 (1-p6):(createVizSession'=FAIL);

193 endmodule

194 //------------------------------------------------------------------------
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195

196 module SaddTermToViz

197 //Service 10

198 addTermToViz : [0..2] init 0;

199 [] (addTermToViz=0)&(getMolFuncGolds=SUCC)&(createVizSession=SUCC) ->

200 p10:(addTermToViz'=SUCC)+ (1p10):(addTermToViz'=FAIL);

201 [] (addTermToViz=0)&((getMolFuncGolds=FAIL)|(createVizSession=FAIL)) ->

202 1:(addTermToViz'=FAIL);

203 endmodule

204 //------------------------------------------------------------------------

205

206 module sgetDotFromViz

207 //Service 12

208 getDotFromViz : [0..2] init 0;

209 [] (getDotFromViz=0)&(createVizSession=SUCC) -> p12:(getDotFromViz'=SUCC)+

210 (1p12):(getDotFromViz'=FAIL);

211 [] (getDotFromViz=0)&(createVizSession=FAIL) -> 1:(getDotFromViz'=FAIL);

212 endmodule

213 //------------------------------------------------------------------------

214

215 module SdestroyVizSession //success in work flow does not

216 //depend on this service.

217 //Service 13

218 destroyVizSession : [0..2] init 0;

219 [] (destroyVizSession=0)&(createVizSession=SUCC) ->

220 p13:(destroyVizSession'=SUCC)+ (1p13):(destroyVizSession'=FAIL);

221 [] (destroyVizSession=0)&(createVizSession=FAIL) ->

222 1:(destroyVizSession'=FAIL);

223 endmodule
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Appendix F

E-commerce application domain

We tested the applicability of our approach from Chapter 5 on an e-commerce application
introduced in [74]. The workflow represents a system in which new or returning
customers log into an ecommerce application to purchase products. Once one or more
products have been selected the customer may choose to have their purchases shipped
by an express service or a normal service. The customer logs out and their session with
the application is terminated successfully.

The system comprises four abstract services:

1. Authentication Service, which provides the operation Auth.

2. Payment Service, which provides the operation Payment.

3. Normal Shipping Service, which provides the operation NrmShipping.

4. Express Shipping Service, which provides the operation ExpShipping.

Requirements The autonomic manager is used to maintain the following high-level
QoS requirements:

1. Probability of success shall be greater than 0.8.

2. Probability of a ExpShipping failure for a user recognized as a returning customer
shall be less than 0.035.

3. Probability of an authentication failure shall be less than 0.06.

We formalise these requirements in probabilistic computational tree logic:

1. P > 0.8[F (s = 16)].

2. filter(forall, P < 0.035[F (s = 13)], s = 1).

3. P < 0.06[Fs = 5].

The expected cost of a single invocation of the workflow is determined by the
PCTL formula ”R =?[F (s = 16)|(s = 15)|(s = 5)|(s = 13)|(s = 8)]”, relative to the
rewards structure associating a monetary value to each abstract operation named in
the ecommerce workflow, appropriate to the concrete services provided by the user of
COVE to the autonomic manager.
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Figure F.1: The parameterised discreat-time Markov chain—modelling the reliability of

the ecommerce application—taken from [79]
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Appendix G

Travel application domain

Our third case study is a travel assistant application whose workflow organises the
invocation of services relating to accommodation booking and vehicle rental, based on
the travel planner in [164]. Requests arriving to the workflow can either be invocations
to search for flights (90%) or search for tourist attractions at a specific destination
(10%), when accommodation arrangements have otherwise been made. The drive time
between the hotel and the attraction is calculated and either a car (70%) or bicycle
(30%) is hired based on the distance between locations.

The workflow comprises the following five services

1. Attraction information service, which provides the operation Attract.

2. Flight reservation and booking service, which provides the operation Flight.

3. Hotel reservation service, which provides the operation Hotel.

4. Bicycle rental service, which provides the operation Bike.

5. Car hire service, which provides the operation Car.

Requirements The autonomic manager is used to maintain the following high-level
QoS requirements:

1. More than 80% of users invoke the bike rental service.

2. Less than 25% of invocations end in failure.

3. More than 80% of people who search for attractions rent a bike.

Formulated as PCTL formulae:

1. P > 0.8[F (s = 11)].

2. P < 0.25[F (s = 4|s = 5|s = 7|s = 9|s = 12)].

3. filter(forall, P > 0.8[F (s = 11)], s = 2).

The expected cost of a single invocation of the workflow is determined by the PCTL
formula ”R =?[Fs = 13]”, relative to the rewards structure associating a monetary
value to each abstract operation named in the travel assistant workflow, appropriate to
the concrete services provided by the user of COVE to the autonomic manager.
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Figure G.1: The parameterised discreat-time Markov chain—modelling the reliability

of the travel assistant application
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[22] C. Böhm and G. Jacopini. Flow Diagrams, Turing Machines and Languages with
only Two Formation Rules. Communications of the ACM, 9(5):366–371, May
1966.

[23] G. Bolch, S. Greiner, H. De Meer, and K.S. Trivedi. Queueing Networks and
Markov Chains: Modeling and Performance Evaluation with Computer Science
Applications. John Wiley & Sons, 2006.

[24] A. Bry, A. Bachrach, and N. Roy. State Estimation for Aggressive Flight in GPS-
Denied Environments Using Onboard Sensing. In IEEE International Conference
on Robotics and Automation, pages 1–8, May 2012.

117



[25] R. Calinescu. Reconfigurable Service-Oriented Architecture for Autonomic Com-
puting. International Journal on Advances in Intelligent Systems, 2(1):38–57,
2009.

[26] R. Calinescu. Emerging Techniques for the Engineering of Self-Adaptive High-
Integrity Software. In Assurances for Self-Adaptive Systems, volume 7740, pages
297–310. Springer Berlin Heidelberg, 2013.

[27] R. Calinescu. Emerging Techniques for the Engineering of Self-Adaptive High-
Integrity Software. In Assurances for Self-Adaptive Systems, volume 7740, pages
297–310. Springer Berlin Heidelberg, 2013.

[28] R. Calinescu et al. Dynamic QoS Management and Optimization in Service-Based
Systems. IEEE Transactions on Software Engineering, 37(3):387 –409, May-Jun
2011.

[29] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tamburrelli.
Dynamic QoS Management and Optimization in Service-Based Systems. In IEEE
Transactions on Software Engineering, volume 37, pages 387–409, May 2011.

[30] R. Calinescu, K. Johnson, and Y. Rafiq. Using Observation Ageing to Improve
Markovian Model Learning in QoS Engineering. In Proceedings of the 2nd
ACM/SPEC International Conference on Performance Engineering, pages 505–
510, New York, NY, USA, 2011. ACM.

[31] R. Calinescu, K. Johnson, and Y. Rafiq. Developing Self-Verifying Service-Based
Systems. In 28th IEEE/ACM International Conference on Automated Software
Engineering, pages 734–737, 2013.

[32] R. Calinescu and S. Kikuchi. Formal Methods @ Runtime. In Foundations of
Computer Software. Modeling, Development, and Verification of Adaptive Systems,
volume 6662, pages 122–135. Springer Berlin Heidelberg, 2011.

[33] R. Calinescu, S. Kikuchi, and K. Johnson. Compositional Reverification of
Probabilistic Safety Properties for Large-Scale Complex IT Systems. In Large-
Scale Complex IT Systems. Development, Operation and Management, volume
7539, pages 303–329. Springer Berlin Heidelberg, 2012.

[34] R. Calinescu and M. Kwiatkowska. CADS*: Computer-Aided Development of
Self-* Systems. Fundamental Approaches to Software Engineering, 5503:421–424,
2009.

[35] R. Calinescu and Y. Rafiq. Using Intelligent Proxies to Develop Self-Adaptive
Service-Based Systems. In International Symposium on Theoretical Aspects of
Software Engineering, pages 131–134, Jul 2013.

[36] R. Calinescu, Y. Rafiq, K. Johnson, and M.E. Bakir. Adaptive Model Learning
for Continual Verification of Non-Functional Properties. In 5th ACM/SPEC
International Conference on Performance Engineering, 2014.

[37] G. Canfora, M.D. Penta, R. Esposito, and M.L. Villani. A Framework for QoS-
Aware Binding and Re-Binding of Composite Web Services. Journal of Systems
and Software, 81(10):1754 – 1769, 2008.

[38] L. Cao, J. Cao, and M. Li. Genetic Algorithm Utilized in Cost-Reduction Driven
Web Service Selection. In Computational Intelligence and Security, volume 3802,
pages 679–686. Springer Berlin Heidelberg, 2005.

118



[39] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. Lo Presti, and R. Mirandola.
Moses: A Framework for QoS Driven Runtime Adaptation of Service-Oriented
Systems. IEEE Transactions on Software Engineering, 38(5):1138–1159, 2012.

[40] I.X. Chen, Y.C. Wu, I.C. Liao, and Y.Y. Hsu. A High-Scalable Core Telem-
atics Platform Design for Intelligent Transport Systems. In 12th International
Conference on ITS Telecommunications, pages 412–417, Nov 2012.

[41] M.C. Chen, J.L. Chen, and T.W. Chang. Android/OSGi-Based Vehicular Network
Management System. Computer Communications, 34(2):169–183, 2011.

[42] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Automatic
Verification of Competitive Stochastic Systems. Formal Methods in System Design,
43(1):61–92, 2013.

[43] T. Chen, M. Kwiatkowska, D. Parker, and A. Simaitis. Verifying Team Formation
Protocols with Probabilistic Model Checking. In Computational Logic in Multi-
Agent Systems, volume 6814, pages 190–207. Springer Berlin Heidelberg, 2011.

[44] Y. Chen, H. Mao, M. Jaeger, T. Nielsen, K. Guldstrand Larsen, and B. Nielsen.
Learning Markov Models for Stationary System Behaviors. In NASA Formal
Methods, volume 7226, pages 216–230. Springer Berlin Heidelberg, 2012.

[45] B.C. Cheng, K. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. Mller, P. Pelliccione,
A. Perini, N. Qureshi, B. Rumpe, D. Schneider, F. Trollmann, and N. Villegas.
Using Models at Runtime to Address Assurance for Self-Adaptive Systems. In
Models@run.time, volume 8378, pages 101–136. Springer International Publishing,
2014.

[46] S.W. Cheng, V. Poladian, D. Garlan, and B. Schmerl. Improving Architecture-
Based Self-Adaptation Through Resource Prediction. Software Engineering for
Self-Adaptive Systems, 5525:71–88, 2009.

[47] S.J. Chern, M.K. Cheng, and P.S. Chao. Blind Capon-Like Adaptive ST-BC
MIMO-CDMA Receiver Based on Constant Modulus Criterion. Digital Signal
Processing, 23(6):1958 – 1966, 2013.

[48] S.J. Chern, W.C. Huang, and R.H.H. Yang. Adaptive Semi-Blind Channel
Estimation for ST-BC MIMO-CDMA Systems with Hybrid User Signature. In
International Symposium on Intelligent Signal Processing and Communications
Systems, pages 369–374, Nov 2013.

[49] L. Cheung, S. Banerjee, N. Medvidovic, L. Golubchik, and R. Roshandel. Estimat-
ing software component reliability by leveraging architectural models. Software
Engineering, International Conference on, 0:853–856, 2006.

[50] F. Ciesinski and M. Grer. On Probabilistic Computation Tree Logic. In Validation
of Stochastic Systems, volume 2925, pages 147–188. Springer Berlin Heidelberg,
2004.

[51] V. Cortellessa. Performance Antipatterns: State-of-Art and Future Perspectives.
In M. Balsamo, W.J. Knottenbelt, and A. Marin, editors, Computer Performance
Engineering, volume 8168 of Lecture Notes in Computer Science, pages 1–6.
Springer Berlin Heidelberg, 2013.

119



[52] V. Cortellessa, A. Di Marco, and C. Trubiani. Performance Antipatterns as
Logical Predicates. In 15th IEEE International Conference on Engineering of
Complex Computer Systems, pages 146–156, Mar 2010.

[53] V. Cortellessa, A. Di Marco, and C. Trubiani. An Approach for Modeling
and Detecting Software Performance Antipatterns Based on First-Order Logics.
Software & Systems Modeling, 13(1):391–432, 2014.

[54] V. Cortellessa, A.D. Marco, and P. Inverardi. Model-Based Software Performance
Analysis. Springer, 1st edition, 2011.

[55] V. Cortellessa, F. Marinelli, R. Mirandola, and P. Potena. Quantifying the
Influence of Failure Repair/Mitigation Costs on Service-Based Systems. In 24th
IEEE International Symposium on Software Reliability Engineering, pages 90–99,
Nov 2013.

[56] O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare. Structured Programming. Academic
Press Ltd., London, UK, 1972.

[57] R. de Lemos, H. Giese, H. Mller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl,
G. Tamura, N. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, R. Desmarais, S. Dustdar, et al. Software Engineering for
Self-Adaptive Systems: A Second Research Roadmap. In Software Engineering
for Self-Adaptive Systems II, volume 7475, pages 1–32. Springer Berlin Heidelberg,
2013.

[58] C. Delpierre, L. Cuzin, J. Fillaux, M. Alvarez, P. Massip, and T. Lang. A
Systematic Review of Computer-Based Patient Record Systems and Quality of
Care: More Randomized Clinical Trials or a Broader Approach? International
Journal for Quality in Health Care, 16(5):407–416, 2004.
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[149] C. Strelioff, J. Crutchfield, and A. Hübler. Inferring Markov Chains: Bayesian Es-
timation, Model Comparison, Entropy Rate, and Out-of-Class Modeling. Physical
Review E. Statistical, Nonlinear, and Soft Matter Physics, 76:011106, Jul 2007.

[150] Y. Sun, J. White, and J. Gray. Model transformation by demonstration. In
A. Schrr and B. Selic, editors, Model Driven Engineering Languages and Systems,
volume 5795 of Lecture Notes in Computer Science, pages 712–726. Springer
Berlin Heidelberg, 2009.

[151] G. Tamura, N. Villegas, H. Mller, J. Sousa, B. Becker, G. Karsai, S. Mankovskii,
M. Pezz, W. Schfer, L. Tahvildari, and K. Wong. Towards Practical Runtime
Verification and Validation of Self-Adaptive Software Systems. In R. de Lemos,
H. Giese, H.A. Mller, and M. Shaw, editors, Software Engineering for Self-Adaptive
Systems II, volume 7475 of Lecture Notes in Computer Science, pages 108–132.
Springer Berlin Heidelberg, 2013.

[152] M.H. Tran, A. Colman, and J. Han. Service-Based Development of Context-
Aware Automotive Telematics Systems. In 15th IEEE International Conference
on Engineering of Complex Computer Systems, pages 53–62, Mar 2010.

[153] M. Trapp and D. Schneider. Safety Assurance of Open Adaptive Systems A
Survey. In Models@run.time, volume 8378, pages 279–318. Springer International
Publishing, 2014.

[154] A. Vaccaro, M. Popov, D. Villacci, and V. Terzija. An Integrated Framework for
Smart Microgrids Modeling, Monitoring, Control, Communication, and Verifica-
tion. Proceedings of the IEEE, 99(1):119–132, Jan 2011.

[155] W.M. van der Aalst. The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers, 8(01):21–66, 1998.

[156] N.M. Villegas, H.A. Müller, G. Tamura, L. Duchien, and R. Casallas. A Framework
for Evaluating Quality-Driven Self-Adaptive Software Systems. In Proceedings
of the 6th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pages 80–89, New York, NY, USA, 2011. ACM.

[157] Z.C. Wang, W.X. Ren, and G.D. Chen. Time-Varying System Identification of
High Voltage Switches of a Power Substation with Slide-Window Least-Squares
Parameter Estimations. Smart Materials and Structures, 22(6):065023, 2013.

127



[158] D. Weyns, M.U. Iftikhar, D.G. de la Iglesia, and T. Ahmad. A Survey of Formal
Methods in Self-Adaptive Systems. In Proceedings of the 5th International C*
Conference on Computer Science and Software Engineering, pages 67–79, New
York, NY, USA, 2012. ACM.

[159] S.S. Yau and H.G. An. Adaptive Resource Allocation for Service-Based Systems.
Proceedings of the First Asia-Pacific Symposium on Internetware, pages 3:1–3:7,
2009.

[160] S.S. Yau and Y. Yin. QoS-Based Service Ranking and Selection for Service-Based
Systems. In IEEE International Conference on Services Computing, pages 56–63,
Jul 2011.

[161] B. Ye, M. Ghavami, A. Pervez, and M. Nekovee. An Automatic Trust Calculation
Based on the Improved Kalman Filter Detection Algorithm. In Trust Management
VII, volume 401, pages 208–222. Springer Berlin Heidelberg, 2013.

[162] H.S. Younes. Ymer: A statistical model checker. In K. Etessami and S.K.
Rajamani, editors, Computer Aided Verification, volume 3576 of Lecture Notes in
Computer Science, pages 429–433. Springer Berlin Heidelberg, 2005.

[163] P. Zave and M. Jackson. Four dark corners of requirements engineering. ACM
Trans. Softw. Eng. Methodol., 6(1):1–30, January 1997.

[164] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Duma, J. Kalagnanam, and H. Chang.
QoS-Aware Middleware for Web Services Composition. IEEE Transactions on
Software Engineering, 30(5):311–327, May 2004.

[165] C. Zhang, S. Su, and J. Chen. DiGA: Population Diversity Handling Genetic
Algorithm for QoS-Aware Web Services Selection. Computer Communications,
30(5):1082 – 1090, 2007.

[166] C. Zhao, W. Zhang, B. Li, Y. Liu, and Z. Li. An Efficient Hybrid Beamform-
ing for Uplink Transmissions of 60GHz Millimeter-Wave Communications. In
Communications, Signal Processing, and Systems, volume 202, pages 283–291.
Springer New York, 2012.

[167] W.X. Zhao and T. Zhou. Weighted Least Squares Based Recursive Parametric
Identification for the Submodels of a PWARX system. Automatica, 48(6):1190–
1196, 2012.

[168] X. Zhao, Z. Wen, and X. Li. QoS-Aware Web Service Selection with Negative
Selection Algorithm. Knowledge and Information Systems, 40(2):349–373, 2014.

[169] T. Zheng, M. Woodside, and M. Litoiu. Performance Model Estimation and
Tracking Using Optimal Filters. IEEE Transactions on Software Engineering,
34(3):391–406, May 2008.

[170] T. Zheng, J. Yang, M. Woodside, M. Litoiu, and G. Iszlai. Tracking Time-Varying
Parameters in Software Systems with Extended Kalman Filters. In Proceedings of
the 2005 Conference of the Centre for Advanced Studies on Collaborative Research,
pages 334–345. IBM Press, 2005.

[171] J. Zhou, Y. Lu, and K. Lundqvist. A TASM-Based Requirements Validation
Approach for Safety-Critical Embedded Systems. In L. George and T. Vardanega,
editors, Reliable Software Technologies Ada-Europe, volume 8454 of Lecture Notes
in Computer Science, pages 43–57. Springer International Publishing, 2014.

128



[172] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative
case study and the strength pareto approach. Evolutionary Computation, IEEE
Transactions on, 3(4):257–271, Nov 1999.

[173] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca. Perfor-
mance assessment of multiobjective optimizers: an analysis and review. Evolu-
tionary Computation, IEEE Transactions on, 7(2):117–132, April 2003.

129




	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	Introduction
	Motivation
	Contributions
	Overview

	Background
	Markovian models
	The Markov property
	Markov chains
	Extension of Markov chains with costs/rewards

	Probabilistic computation tree logic
	Probabilistic model checkers
	The Kalman filter
	Observability of system state
	Using the Kalman filter

	Recursive weighted least-squares filter
	Using the recursive weighted least-squares filter


	Online learning of Markov chain parameters 
	Related work
	Markov chain transition probability learning with observation ageing
	Description
	Analysis of the learning algorithm
	Case study
	Bioinformatic Workflow
	DTMC Model
	Experiments and results 

	A rule of thumb for choosing the ageing coefficient

	Adaptive Markov chain transition-probability learning
	Description
	Dynamic selection of learning algorithm parameters
	Complexity analysis
	Evaluation

	Learning the costs/reward structures of Markov chain models
	Learning technique
	Case study
	Description
	Formal model and requirements

	Experiment setup and results

	Summary

	Online learning of Markov chain structure for SBSs
	Introduction
	Related work
	Learning technique
	Complexity analysis
	Evaluation
	Case study
	Experiment setup
	Results
	Further applications

	Summary

	Model-driven QoS management for service-based systems
	Related work
	Telehealth service-based system
	Architecture of a self-verifying service-based system
	Tool-supported framework for the engineering of SBSs 
	Proxy generation
	Initial model construction and requirement formalisation
	Service-based system construction

	Dynamic service selection
	Continual verification
	Heuristics for switching between concrete services

	Implementation and evaluation
	Implementation
	Case study
	Applicability to larger systems

	Summary

	Conclusion and future work
	Summary of contributions
	Future work

	Appendix Matlab implementation of the Kalman filter
	Appendix Test program for the Kalman filter
	Appendix Matlab implementation of the RWLS filter
	Appendix Test program for the RWLS filter
	Appendix PRISM model for Bioinformatics workflow
	Appendix E-commerce application domain
	Appendix Travel application domain
	Bibliography

