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Abstract

Materials with a sparse, periodic lattice microstructure exhibit excellent mechanical perfor-
mance compared to their weight. Particularly, their engineered microstructure allows opti-
mised mechanical behaviour under dynamic loading conditions. For instance, the material’s
microstructure can be manipulated such that wave filters emerge so that only certain frequen-
cies can propagate through the material.

Various techniques can be used to model such materials with lattice microstructures. For
instance, a discrete model can be deployed whereby every strut of the lattice structure is mod-
elled as a beam element. However, a more efficient approach is to replace such a detailed
microscopic material model with an enriched continuum model for certain dynamic problems.
Compared to the classical continuum, the new model allows the microstructural effects to be
captured efficiently and effectively by equipping the continuum equations of elasticity with an
appropriate set of higher-order spatial derivatives; hence, a gradient elasticity formulation is
obtained.

In order to link the additional constitutive coefficients of gradient elasticity to the geomet-
ric and mechanical properties of the lattice, in this thesis we use continualisation techniques
whereby a representative volume element of a discrete square lattice model is translated into
a homogeneous continuum formulation. Taylor series expansions and Padé approximations
are usually required to ensure stability of the gradient elasticity model. The resulting contin-
uum formulation is equipped with a range of strain gradient and inertia gradient terms. The
dispersive properties of the model are then tested to check for the occurrence of wave filters.
Applications of the Ru-Aifantis theorem are considered in detail. Finally, implementabil-
ity with finite elements of the new continuum is examined. The research first reviews the
one-dimensional case and subsequently applies the procedure to two-dimensional lattices of
square, trapezium and hexagonal geometry arrangements.
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Chapter 1

Introduction

The aim of this research is to look for continuous models of microlattices to efficiently sim-
ulate the dispersion relations in micro-lattices, which have periodic structures. One of the
methods to construct homogeneous models is to add higher order gradient terms in the equa-
tions of motion. This is called the gradient theory. The thesis describes the procedure to derive
such gradient theories from physical discrete models with a variety of geometries. Three types
of two dimensional microlattices which we consider in the scope of this thesis are square,
trapezium and hexagonal lattices.

1.1 Wave propagation in microlattices

What are micro-lattices and what are their application?
Cellular solids are found in many natural and man-made structures from familiar cancel-

lous or trabecular bone, wood, cork and honeycomb of bees to a variety of structures such as
sandwich panels, cushioning foams, compact heat exchangers, heat resistant ceramic tiles of
space shuttles and artificial biological implants. It is well known that cellular materials can
extend the range of properties, static and dynamic responses, achievable by their solid coun-
terparts (Gibson and Ashby, 1999). Also, the nature of the material, the relative density, and
the underlying internal geometrical structure play a big role in improving the properties of
these microstructural materials. In the last decade, cellular materials have emerged as promis-
ing multifunctional material systems (Evans et al., 1999). The wave propagation behaviour of
such periodic materials show abilities to filter frequencies, a phenomenon known as pass and
stop bands (Brillouin, 1953; Kittel, 1962), and to direct waves spatially known as wave beam-
ing (Langley et al., 1997). In this research, we consider only the frequency filtering property
of microstructured materials as this wave propagation behaviour currently has many appli-
cations at the micro and nano-scales such as vibration control devices, photonic devices and
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energy absorption. The micro-lattices considered are comprised of many very small beams
with length ranging from nanometers to milimeters and the beam sizes can be engineered
by recent improved manufacturing methods such as 3D printers. Figure 1.1 presents typical
micro-lattices with a very low density that can have practical application in the aerospace
industry.

Fig. 1.1 The three dimensional micro-lattices that are created by HRL Laboratories, LLC

How to model wave propagation in microlattices and what is continualisation?
To model such materials with underlying microstructures, the most intuitive but the most

cost-ineffective approach is to use a discrete model which is built by connecting individual
members of a system, e.g. the discrete model of a micro-lattice material will have a system
of tiny beams connected together. Therefore, there are suggestions in the literature (see the
representative authors in Table 2.1) for using a continuous model instead, through the contin-
ualisation of a specific discrete representative volume element. Continualisation is a process
turning a discrete model into a continuum while capturing the essentials for a specific prob-
lem and reducing computational cost. The idea of generalised (enhanced) continuum theories
appeared as early as the 1800s, but it is also well-known through the efforts of the Cosserat
brothers (Cosserat and Cosserat, 1909). There are currently two main ways to enrich a con-
tinuum: adding more degrees of freedom (micropolar theory) or adding higher order of strain
gradients and this is one of the main topics in this thesis. For gradient elasticity, the continu-
alisation procedure from real physical beam models still requires in-depth investigations and
understanding. This thesis focuses on the establishment of a procedure to formulate gradi-
ent continua for the wave dispersion for different arrangements of two dimensional physical
beam models while comparing with popular models: the discrete models and the classical
continuum. The challenge of the thesis is to develop models that capture the behaviour of
micro-lattices in elasto-dynamics with the following properties:
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• Stability: the model is unconditionally stable in wave dispersion.
• Robustness: means that the continuum model has parameters that can be derived from

the physical models. Moreover, the dispersion behaviour of the new continuum should
outperform that of the popular classical continuum.

• Efficiency: easy implementation in commercial numerical methods such as finite ele-
ment models.

1.2 Scope of work

The thesis constructs enhanced continua using gradient elasticity theory for linear dynamic
analysis. More importantly, the application helps derive coefficients of the new C0 continu-
ity continuum 1 from the physical properties of the discrete models which, in this thesis, are
chosen for micro-beam materials. The case for square, trapezium and diamond two dimen-
sional trusses are implemented. The new continua are compared with the discrete and classical
models on their wave dispersion behaviours. Finally, further steps are taken to facilitate easy
and efficient implementation of the newly-derived gradient continuum into the finite element
method for real problems by making the continuum only require C0 continuity when discre-
tised.

Fig. 1.2 The square lattice

Fig. 1.3 The trapezium lattice

1.3 Outline

The thesis is structured as follows:
Chapter 2 mainly contains a literature review of different models for wave propagation

in microlattices. However, before that, simple wave propagation definitions, especially the
1A function f is said to be (differentiability) class Ck if the derivatives f ′, f ′′,..., f k exist and are continuous.

Hence, a function of class C0 means that it is continuous.
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Fig. 1.4 The hexagonal lattice

Bloch-Floquet theorem, are introduced. At the end of the chapter, goals and objectives of the
thesis are established together with the methodology that the thesis is based on. This serves to
illustrate, in the simplest possible way, the concepts developed

Chapter 3 reviews the one dimensional case and compares this with existing models. The
chapter includes a detailed derivation of chosen models following the methodology set out in
Chapter 2. Additionally, the application of Ru-Aifantis theory (see footnote1, page 14), which
helps the equations of motion of the continuum only require C0 continuity (see footnote 1,
page 3), is first presented in this chapter. This serves to illustrate, in the simplest possible way,
the concepts developed in later chapters.

Chapters 4, 5 and 6 contain the novel contribution of this thesis. The procedure of Chapter
3 is extended from one dimension to two dimensions in order of geometric complication: the
square, trapezium and hexagonal lattices. Chapter 4 also compares the derived models with
existing models in the literature. Chapters 5 and 6 detail the Ru-Aifantis theorem application
processes for the trapezium and hexagonal geometries. In each case, the order of the models
derived is summarised in Figure 1.5.

Chapter 7 compiles all the results presented in the previous chapters and presents some
discussion points. Conclusions and directions for further research on the topic are given in
Chapter ??.

Discrete model Continuum model

•Classical model

•Gradient model

•Etc. 

Space & time 

discretised 

continuum

Fig. 1.5 The derivation order of models for 1D and 2D cases



Chapter 2

Wave propagation in microlattices

This chapter first gives a quick introduction of the basis of wave propagation, especially
concepts of dispersion relations, in Section 2.1 and quickly reviews the basics of the Bloch-
Floquet theorem in Section 2.2. The Bloch theorem is not the main focus of the thesis because
it can only describe wave behaviours for one propagation angle each time; hence, the number
of efficient finite element applications that can use the Bloch theorem is limited. However, the
Bloch theorem provides quick analytical dispersion solutions for many cases; therefore, it is
worthwhile to mention it in detail for the one-dimensional case as a limited special model to
simulate dispersion of waves in periodic microstructures. In Section 2.2, there are applications
of the definitions mentioned in Section 2.1. This is followed by a literature review of different
models used in the simulation of wave propagation including the discrete models in Section
2.3 and different continuum models in Section 2.4. The next section formulates the goals
and objectives of the thesis and establishes a procedure for four main steps to derive an effi-
cient gradient continuum in Section 2.7. Lastly, a short introduction to three two-dimensional
geometries and their relations to the 1D case is given in Section 2.8.

2.1 Wave propagation

This section provides a basic introduction to wave propagation in a medium. The content of
this section can be found in any textbook, lecture notes or educational website about wave
propagation. A wave speed can be understood in many ways and has been defined in different
contexts; however, there are two most commmon concepts: phase speed and group speed. If
we think of the wave as a sum of many frequency components, the phase speed provides the
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speed at which the phase of any one component of the wave propagating in a medium:

vp =
ω

k
=

λ

T
, (2.1)

where vp is the phase speed [m/s], ω the angular frequency [rad/s], k the wavenumber [rad/m],
λ is the wavelength [m] and T is the time period of the wave [s].

Meanwhile, a wave would contains different frequency components; the group speed is
defined as the speed of a wave packet of a range of frequencies propagating through a medium:

vg =
∂ω(k)

∂k
, (2.2)

where vg is the group speed [m/s]. In almost all cases, a wave is mainly a movement of energy
through a medium; thus, the group speed can be considered as the speed at which the wave
energy travels through this medium.

The angular frequency ω cannot be chosen independently from the wavenumber k, but they
are related through the dispersion relationship. For one-dimensional waves, this dispersion
relation can be written as:

ω = Ω(k). (2.3)

Hence, the phase speed can be rewritten as:

vp =
Ω(k)

k
. (2.4)

In the special case where Ω(k) = ck where c is a constant and based on Equation (2.4),
we have vp = c which means the phase speed is independent of the wave number k and also
the group speed is equal to the phase speed. Such a case is said to be non-dispersive because
all frequencies travel at the same phase speed c and the wave shape travels undistorted at this
speed (Graff, 1975). Moreover, it also implies that all disturbances, including localised ones,
propagate without change of shape. Examples of non-dispersive waves are electro-magnetic
waves travelling in vacuum. However, in practice, there are many kinds of wave motion where
the phase speed vp varies with the wave number k non-linearly and the group speed is now
a range of different values. Experimentalists proved that most waves in a range of materials
are dispersive where components of the wave travels at different velocities (Erofeyev, 2003;
Jakata and Every, 2008). In this case, the envelope of the wave packet becomes distorted as
it travels. Popular examples of dispersive waves are surface waves on deep water, internal
gravity waves, sound and electromagnetic waves, etc. Henceforth, to study wave propagation,
it is important to find the dispersion relations Ω(k).

In this study, the wave propagation, especially the dispersion relations, of micro-beam ma-
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a

us us+1us-1

Fig. 2.1 A periodic structure with masses and springs

terials is observed using different modelling strategies. As explained above, the dispersion
relation include two groups: non-dispersive and dispersive waves. However, it is well-known
that wave propagation in inhomogeneous media contains dispersive waves - waves of differ-
ent wavenumbers travelling at different speeds – due to the intrinsic microstructural effects
(Mindlin, 1964). Moreover, the inhomegeneity of micro-beam materials is periodic; hence,
they are predicted to have stop-bands which are certain regions of frequencies where there are
no corresponding wavenumbers, which means only certain frequencies are allowed to travel
through the materials. It is the main aim of the thesis to derive continuum models which
display desirable dispersive behaviours.

2.2 Bloch-Floquet waves in periodic structures

It is useful to recall that the Bloch-Floquet theorem has limited applications for finite element
methods but it provides good analytical solutions for any one frequency at a time. This section
1 introduces the basics of the Bloch-theorem which was the back-bone for key papers (Phani
et al., 2006) and (Gonella and Ruzzene, 2008), and thus helps apply some of the important
properties of wave propagation in periodic structures.

Consider a lattice structure, consisting of particles of mass M, separated by a distance a,
and springs of stiffness C, as shown in Figure 2.1. Let us be the displacement of the particle
at x = s and t stands for time. Then the equations of motion take the form:

M
d2us

dt2 =C (us+1 +us−1 −2us) . (2.5)

Assume that the displacements of the masses are time harmonic motion, that is us =

Us(x)exp(−iωt) where Us is the magnitude, ω the angular frequency of the harmonic mo-
tion of the mass at x = s. The above equation can be rewritten as:

−Mω
2Us =C (Us+1 +Us−1 −2Us) . (2.6)

1More details on this section can be found in the book Asymtotic Models of Solids with Cracks and Small In-
clusions by A.B. Movchan, Department of Mathematics, University of Liverpool in LMS-EPSRC Short Instruc-
tional Courses on Advanced Methods in Linear and Nonlinear Elasticity, 28 July-1 August, which referenced
back to Kittel (1996).
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Fig. 2.2 Irreducible Brillouin zone for the lattice spring-mass problem

Solutions in the form of Bloch-Floquet waves for the above equation satisfy the following
relation:

us+n = useinaK, (2.7)

where K is the Bloch parameter (or wavenumber).

Hence, the equation of motion becomes

−ω
2MUs = 2CUs (cos(Ka)−1) . (2.8)

Assuming that Us is non-trivial, we deduce

ω
2Us =

C
M

Us (1− cos(Ka)) , (2.9)

and the non-negative roots have the form

ω =

√
4C
M

∣∣∣∣sin
(

Ka
2

)∣∣∣∣ . (2.10)

This is a periodic function with a period of 2π/a. The interval (−π/a,π/a) is known as
the irreducible Brillouin zone , and it represents the range of physically significant values of
the Block parameter K. Figure 2.2 shows the irreducible Brillouin zone where the horizontal
axis is the normalised wave number Ka and the vertical axis is the normalised frequency

ω

2
√

C/M
.
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From the conditions of Bloch-Floquet waves, we have

Us+1

Us
= eiKa. (2.11)

Let Kmax = π/a. In the continuum limit, as a → 0, we have Kmax → ∞.

At the boundaries K = ±π/a of the Brillouin zone, the solution Us represents a standing
wave

Us =Ue±isKmaxa =Ue±isπ =U(−1)s. (2.12)

A standing wave is set up through successive reflections back and forward.

2.2.1 Group velocity

Using the definition in Section 2.1, the group velocity in this case is given as:

vg =
∂ω

∂K
. (2.13)

Let’s observe how the group velocity changes in the irreducible Brillouin zone. Figure
2.2 shows a symmetry axis at Ka = 0; hence, we can take into consideration only half of the
irreducible Brillouin zone. First, considering the range K ∈ (0,π/a), the group velocity has a
value defined by the following equation:

vg =

√
C
M

acos(Ka/2) . (2.14)

At K = π/a, we have a group velocity vg = 0 which represents a standing wave.

In the long wave limit Ka ≪ 1, sin
(

Ka
2

)
≃ Ka

2
, the solution becomes:

ω(k) = 2

√
C
M
|sin

(
Ka
2

)
|=
√

C
M

a|K|. (2.15)

As 0 < Ka ≪ 1 then
∂ω

∂k
= vg = a

√
C
M
. (2.16)

Thus, the group velocity vg is independent of frequency in this limit.

The lattice structure can be modified to have different masses connected periodically to
one another and this will lead to a band gap phenomenon, where a certain range of frequencies
does not have corresponding wavenumbers.
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Fig. 2.3 Group velocity

After grasping some important concepts of wave propagation in microlattices, we will
review different models used in wave propagation simulation for microstructured materials in
the next section.

2.3 Discrete models for wave propagation in microlattice

It can be said that discrete models are the most intuitive solutions to build a simulation for
micro-structured materials and we will use them as the benchmarks to compare and evaluate
other models.

The spring-mass model was first derived by Born and von Karman (1912) but it was noted
that the model is not an appropriate one (Berezovski et al., 2012) in some cases. However,
the simple spring-mass model has been the main platform for developing different models.
For instance, the simplest model of lattice vibrations is a 1D mono-atomic infinite chain of
identical particles.

The spring-mass system has been developed from simple to more complicated forms with
more added degrees of freedom. Firstly, at the one-dimensional level, the spring-mass system
is constructed with axial springs connecting masses; the system has a typical equation Mü =

K (...+un) and this is the most common spring-mass model found in the literature. After that,
the two dimensional spring-mass model was equipped with axial, shear and rotational springs
(Suiker et al., 2001).

Going away from the spring-mass system, the beam models are built as a more practi-
cal discrete model to live applications such as the space grid-lattices, micro-beam materials.
Phani et al. (2006) established a framework of modelling the Bloch wave theorem for different



2.4 Continuum models for wave propagation in micro-lattice 11

lattice arrangements. Different beam theories are considered such as Euler, Timoshenko and
Rayleigh beam theories. Additionally, different mass schemes such as consistent and lumped
masses are compared. These discrete beam models are examined in the chapters discussing
about the square, trapezium and hexagonal lattices.

Simple and straightforward, the discrete models can provide accurate stress and strains of
individual microlattice beams. However, some specific problems, e.g. wave propagation or
fracture toughness, do not require such details to be computed. Also, for dynamic problems,
when the behaviour is investigated over a long period of time or when the time step is small,
inclusion of unnecessary data is not beneficial. Besides, some examples of materials with
microstructures are granular such ase geotechnical soil and rock layers, ballast material used
in ordinary raiway tracks (Selig and Waters, 1994; Suiker et al., 1999), crystal lattice struc-
tures, carbon graphite, microlattices which are new materials found to be mechanically energy
efficient and the microlattices can be artificially engineered, etc. Discrete models for the appli-
cations of the microstructures materials would mean setting up equations of motion for every
single grain or beam. That would require powerful computers to solve the equations and their
computational cost will be prohibitively large if a real life application of microlattices is to be
considered.

2.4 Continuum models for wave propagation in micro-lattice

With the limitations mentioned in the last paragraph of the last section, it has been suggested
in the literature to use continuum models instead of discrete models. The idea of generalised
(enhanced) continuum theories have appeared as early as the 1800s, but it is also well-known
by the efforts of the brothers Cosserat (Cosserat and Cosserat, 1909). A review on generalised
continuum mechanics can be found in (Altan and Aifantis, 1997). As said in Section 1.1,
continualisation is a process for turning a discrete model into a continuum while reducing
computational cost but still capturing the essentials for a specific problem. A wide variety of
continualisation techniques have been proposed to formulate continuum parameters of discrete
materials (Pasternak and Mühlhaus, 2005; Pasternak et al., 2006). Five large categories of
homogenisation methods arranged by Pasternak and Mühlhaus (2005) are listed as follows:

1. Averaging over volume element adopted in the theory of effective characteristics: Some
papers which used this methods are Hill (1963), Mori and Tanaka (1973), Christensen
(1979), Hashin (1988), Kachanov (1992), Nemat-Nasser and Hori (1993), Germanivich.

2. The homogenisation method is applied to materials with randomly varying elastic prop-
erties: based on averaging over realisations (ensemble averaging) (Khoroshun, 1978)
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3. A group of methods based on modelling of periodically regular microstructure: such as
periodical system of defects/inclusions, layers, regular granular packing, seen in Duffy
and Mindlin (1957), Deresiewicz (1958), Meguid and Kalamkarov (1994).

4. Homogenisation by integral transformations: demonstrated by (Kunin, 1982, 1983).
This is a special method of homogenisation applied to periodical structures only and it
is based on the trigonometrical interpolation.

5. Homogenisation by differential expansions: examples are Mühlhaus and Oka (1996),
Maugin (1999), Suiker et al. (2000, 2001), Lombardo and Askes (2012). The method
is based on expanding the field variables into a Taylor series once a strategy to relate
the discrete variables to continuum variables has been established. This method allows
for higher-order theory derivations if a way to identify correspondent derivatives of the
field variables in the Taylor expansions as higher-order terms can be found. This is also
the method that this thesis applies and it is described in Chapters 3, 4, 5 and 6.

With different micro-structure arrangements and choices of continualisation methods, we
can arrive at a wide variety of continuum in the literature. The classical continuum is the
simplest and easiest continuum to be formulated but it does not contain any material length-
scale. Therefore, classical continuum models often ignore the inhomogeneous effects at the
micro-level and do not take into account the size effect due to the micro-structural length; thus,
they produce incomplete or even misleading information about wave propagation behaviours
of microstructured materials.

There are currently two main ways to enrich a continuum through the continualisation pro-
cess: adding more degrees of freedom (micropolar theory) or adding a higher order of strain
gradients. There are also continuum models which comprise of both additional degrees of
freedom and strain gradients. There are a few ways to classify different formats of contin-
uum theories that manifest the microstructural effects, see Askes and Aifantis (2011). In this
section, we choose the most intuitive method to quickly understand the differences between
gradient continuum with others. Based on the nature of the added variables of the continuum
theories, they can be classified into three main categories:

• Standard continuum models: contain only translational degrees of freedom and ignore
all rotational degrees of freedom. These early models can be seen in the works of Duffy
and Mindlin (1957) and Deresiewicz (1958) for regular granular packing, which as-
sumed that these continua were built for homogeneous deformation fields. Later, contin-
uum theories with higher order gradients of strain were developed for non-homogeneous
deformations to take into account the microstructural lengthscale: the use of second or-
der gradients was proposed by (Chang and Gao, 1997, 1995), (Askes and Metrikine,
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2002) and (Lombardo and Askes, 2012), fourth order gradients by (Suiker et al., 2000).
All the standard models containing higher order gradients are named gradient enhanced
standard models which are the main focus of this thesis and will be discussed further
below.

• Non-standard continuum models: are constructed with additional degrees of freedom
such as microstructural rotation or spin. The most typical non-standard continuum
model is micro-polar theory which was first suggested by Cosserat and Cosserat (1909).
The reader can read about micro-polar continuum developed for granular media by
Mühlhaus and Vardoulakis (1987) and for beams by Askar and Cakmak (1968), Bazant
and Christensen (1972), etc. as displayed in Table 2.1. We will not go into detail for this
model later unless it appears in the context during the formulation of gradient enhanced
standard models.

• Higher-order non-standard continuum models: as the name suggested, are hybrids of
non-standard continuum models with high-order gradient terms. Representatives of this
class are Cosserat continuum with second strain gradient terms by Mühlhaus and Oka
(1996) and Suiker et al. (2000). Mindlin’s model (Mindlin, 1964) could also be cate-
gorised into this group.

Except for the gradient enhanced standard models, we will not go into further details of
other models as they are not the focus of the thesis.

2.5 Gradient elasticity theories

The key feature of gradient elasticity theories (models) is the introduction of higher order gra-
dients of the field variables accompanied by internal length scales (Metrikine, 2006; Metrikine
and Askes, 2002). Higher-order gradients have been incorporated into continuum formulation
to capture certain properties of the continuum. Different motivations for gradient-enhanced
theories can be found in (Aifantis, 1992; De Borst et al., 1997; Engelbrecht et al., 2005; Mil-
ton and Willis, 2007; Vardoulakis and Aifantis, 1994). Besides ranking the gradient contin-
uum according to their highest order gradients, they can also be divided into two main types
of higher-order gradient models: gradient elasticity and gradient plasticity (Aifantis, 1984,
1987) and then into smaller categories for linear and non-linear groups. It can be seen that
gradient continuum (Chang and Gao, 1995; Mühlhaus and Oka, 1996) are based on or can be
traced back to Mindlin’s equation, which includes a large variety of terms. The higher-order
gradients might also contain micro-inertia (Askes and Metrikine, 2002; Askes et al., 2007) for
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dynamic linear elasticity. Micro-inertia terms have been considered to be numerically stable
and suitable to solve boundary value problems (Fish and Chen, 2001; Rubin et al., 1995; Wang
and Sun, 2002).

Models developed by (Chang and Gao, 1997, 1995), (Askes and Metrikine, 2002), (Lom-
bardo and Askes, 2012) and (Suiker et al., 2000) resulted from the fifth homogenisation (con-
tinualisation) method (mentioned above) where different levels of truncation of the Taylor
series expansion are retained. Moreover, some models when first developed include the rota-
tional degrees of freedom which are then approximated into translational degrees of freedom.
For example, Lombardo and Askes (2012) first developed equations of motion which repre-
sented micropolar theory, then rewrote the rotational variable to replace it with translational
degrees of freedom. It is a well-known fact that high order strain gradients can cause disper-
sion instability which means no positive square of the frequency is corresponding to a cer-
tain wavenumber (Andrianov and Awrejcewicz, 2008; Andrianov et al., 2003; Chen and Fish,
2001; Collins, 1981; Pichugin et al., 2008; Rubin et al., 1995). The Padé approximants were
one of the easy methods used to make modifications to lead to stable gradient-enriched model,
as seen with the equation of the transverse vibrations of microstructured membranes (An-
drianov and Awrejcewicz, 2008; Lombardo and Askes, 2010). Unfortunately, Lombardo and
Askes (2012) noted that this approach does not always improve the model (Ostoja-Starzewski,
2002) in terms of stability. The Padé approximation shall be detailed in the next chapters for
each specific case. Another shortfall of the high order strain gradients that hinders the pop-
ularity of such theories in practical application is the limited number of robust numerical
implementations of gradient elasticity in the literature. An overview of different methods for
implementations can be found at (Askes and Aifantis, 2011). C0 continuity is the most de-
sirable discretisation scheme for the popular finite element method. To enable the use of C0

continuity (see footnote 1, page 3), the gradient continuum was modified by Aifantis (Aifantis,
1992) using a operator split to turn the fourth-order spatial continuum into two second-order
spatial equations 1. This procedure is chosen to be implemented in this thesis in Chapters
5 and 6. Further details on gradient elasticity, its application, classfication and comparison
can be found in (Andrianov et al., 2009; Askes and Aifantis, 2011; Ostoja-Starzewski, 2002;
Papargyri-Beskou et al., 2009).

1Ru-Aifantis theorem (Aifantis, 1992) utilises operator splits to rewrite second order strain gradients into
an equation containing first order strain gradients. By doing so, the functions does not need C1 continuity but
instead only C0 continuity for numerical implementations.
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2.6 Continuum derived from physical models

At the one dimensional level, papers have been presented by Kunin (1982), Fish et al. (2002)
and Metrikine and Askes (2002). Enhanced two-dimensional continua equipped by additional
degrees of freedom have been frequently developed from continualisation of real physical sys-
tems, for example, (C.B. Banks and Sokolowski, 1968) formed an analogy between the rect-
angular lattices to couple stress theory. For gradient elasticity, the continualisation procedure
from beam models still requires in-depth investigations and understanding. While mathemat-
ical models of the one and two dimensional case of the gradient theory using Ru-Aifantis
theory (Ru and Aifantis, 1993) are well formulated and tested in (Askes et al., 2007) and Ben-
nett and Askes (2008), a derivation of a gradient continuum from a two dimensional discrete
model has been studied recently (Lombardo and Askes, 2010, 2012). This research focuses
on the establishment of a procedure to formulate a gradient continuum for wave dispersion
problem of a 2D physical beam model of diffrent microlattices. The approach in this research
is a more general case of Lombardo and Askes (2012) and with more variety of geometries.

Table 2.1 summarises representative continuous models from different discrete models
under different theories:

The entries of Table 2.1 were chosen based on the continuous models originating from
a real physical model. The first seven papers use micropolar theory to approach localised
failure problems in beam models and the eighth is about wave propagation problems in spring
models. There are not many authors comparing the continuum they derived with discrete
models (Suiker et al., 2001): Kunin (1983) uses the comparison for a cubic lattice consisting
of masses that are connected by weightless rods and Suiker et al. (2001) does the comparison
for a hexagonal spring-mass system solving wave propagation problems.

2.7 Aim of thesis and methodology

From Section 2.3, 2.4 and 2.6, there are a few important aspects that motivate this thesis. There
are a number of continuum theories that take into account the underlying lengthscale of the
microstructural materials as being more theoretically efficient replacements than the discrete
model. Gradient elasticities modified by the Padé approximation and the Ru-Aifantis theorem
are potential candidates in many continuum theories to produce stable dispersion relations, and
only require C0 continuity discretisation schemes for numerical implementations. A function f
is said to be (differentiability) class Ck if the derivatives f ′, f ′′,..., f k exist and are continuous.
C0 continuity can be easily applied to most of the finite element method structural analysis
commercial software because of its simple shape functions. Therefore, a continuum which
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requires only C0 for discretisation can be considered to highly implementable.

When a continuum is discretised in space, the discretised continuum will display numerical
dispersion behaviour even if the original continuum does not behave dispersively because the
divided elements numerically does not propagate waves that has wavelength shorter than the
element size. Hence, the dispersion behaviour should be incorporated into the continuum
before the discretisation, which is the property that the classical continuum lacks.

More importantly, it is desirable to derive the gradient continuum from a physical system
to enable performance comparison between the discrete model and the continuum. A phys-
ical system is defined and used as the base to formulate the coefficients of the continuum.
Also, a robust method to build gradient continua from a wide variety of physical models is an
advantage.

There are many routes to arrive at different mathematical continua for a same physical
beam model. In the context of dynamic simulation, from the beginning, we identify a number
of properties that the gradient continuum should exhibit:

• Stability: A stable continuum always has a corresponding frequency to any wave num-
ber in dispersion analysis.

• Robustness: The parameters are derived from physical models; thus, the continuum
model will exhibit dispersion behaviours similar to the discrete model. In our case, we
focus on the wave propagation behaviour instead of the magnitude of stresses or strains.
Similar frequency bandwidths to the discrete model are an indicator of the robustness of
a continuum before being discretised in space 1 that we try to achieve.

• Implementability: it is preferred that the final equations of motion are simple and easy
to be implemented into Finite Element models. Specifically, we aim to use the C0 con-
tinuity of the interpolation functions.

The thesis focuses on micro-lattices which are artificial highly porous micro-structured
materials comprising many micro-beams with scales ranging from nano-meters to milimeters.
An electron beam three-dimensional printer facilitates an adaptable fabrication of such ma-
terials with a variety of geometries at different scales. Therefore, their micro-structures can
be engineered to optimise their mechanical behaviour such as wave filtering under dynamic
loading conditions. However, this requires efficient and effective techniques to simulate wave
propagation through such materials.

In this research, continuous models are derived using gradient theory enhanced with high-
order terms, similar to the ninth entry of Table 2.1. The chosen discrete models have beam

1In the finite element method, to be able to model a certain problem with a defined geometry and boundary
conditions, the object is often divided into appropriate smaller elements. Hence, the finite element method will
’break’ a continuum model into smaller elements in space using mathematical manipulations, this process is
called space discretisation.
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elements arranged in different topologies ranging from one to two dimensions. Provided that
a Taylor series expansion up to fourth order derivatives is considered, the homogenisation of
these discrete models leads to a number of equations of motion equal to the number of degrees
of freedom. If possible, the rotational degrees of freedom are approximated using translational
degrees of freedom to achieve a standard model which consists of only translational degrees
of freedom. This new set of equations is modified until it can achieve the expected dynamic
properties which are listed above.

The stated Padé approximation method used in Askes and Metrikine (2002); Askes et al.
(2007); Lombardo and Askes (2012) resembles a linear analysis and the same method is
utilised in this thesis. We will keep calling this method the Padé approximation which is
used to make a continuum stable in dispersion analysis, which means that for every wave
number there are corresponding frequencies. Similarly, the aspect of Ru-Aifantis theorem
where fourth order spatial derivatives is rewritten as a terms includes only second order spatial
derivatives used in Askes et al. (2007) is re-applied in this thesis . However, this thesis seeks
to widen the one-dimensional case established in Askes et al. (2007) to a more general case
and to higher dimensional geometries.

Fig. 2.4 Procedures to derive gradient continuum

We establish the 4-step procedure to derive a new gradient continuum (see Figure 2.4).
Firstly, a discrete model is defined with given physical properties. Taylor series and Padé
approximation are then used to continualise and stabilise the continuum. If the resulting
continuum requires a higher continuity for FEM implementation, a further step applying the
Ru-Aifanthis theorem (see footnote1, page 14) is carried out to arrive at the final continuum
formulation. We perform dispersion analysis for each model by substituting the plane wave
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equations into the continua to test the dispersion behaviour:

u =U exp [i(kxx+ kyy−ωt)]v =V exp [i(kxx+ kyy−ωt)] , (2.17)

where U ,V are the magnitude of the plane wave, kx and ky are the wave numbers in the x and

y directions, k =
√

kx
2 + ky

2 is the wave number, ω is the angular frequency and t is time.
Where possible, the models are tested with numerical examples.

We will apply the same procedure to the one dimensional case, two dimensional square,
trapezium and hexagonal lattices.

2.8 Different geometries studied in the thesis and the com-
putation methods used

Depending on the geometries, the procedure established in Figure 2.4 is modified to give the
continuum model according to the goals and objectives in Section 2.7.

Generally, the well documented one-dimensional model is suitable for demonstration of
the 4-step procedure but without the micro-rotation; the one dimensional case cannot manifest
the relation of different continuum as well as two dimensional lattices. The one dimensional
case can be considered as a benchmark and a test case as we develop other higher-dimensional
cases; hence, in the next chapter we will describe the one dimensional case in detail. Then,
the complication of cases gradually increases: the square lattice in Chapter 4, see Figure 1.2,
the trapezium lattice in Chapter 5, see Figure 1.3 and the hexagonal lattice in Chapter 6, see
Figure 1.4.

For the one-dimensional spring-mass model, the Hooke’s law is applied where the stress
and strain relationship in the spring is directly proportional. This spring-mass model is con-
tinualised using the Taylor series which has the form of Equation (3.5). The new continuum
is modified to be stable in dispersion analysis while containing the fourth-order spatial deriva-
tives. If the new continuum requires more than C0 continuity, the Ru-Aifantis theory is applied.
After this 4-step procedure, the continuum is discretised for finite element implementation. As
a standard engineering practice, the thesis will use the well-documented and popularly calcu-
lated mass and stiffness matrices of finite elements instead of re-calculating them again. For
the one-dimensional case, the consistent mass of a two-noded element can be calculated based
on page 339 of Hughes (2000). A lumped mass matrix is calculated by having its diagonal
elements equal to the row-sum of the corresponding rows. The consistent and lumped mass of
the two-noded element can be looked up for the complete forms in Rao (2011). These matrices
are displayed in Section 3.3.
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For the two-dimensional cases, the discrete models are models as two-dimensional beams.
The two popular beam theories, the Euler-Bernoulli and Timoshenko beam theory, are com-
pared in this thesis. The Euler-Bernoulli beam theory is very popular in the industry. Mean-
while, the Timoshenko beam theory, different from the Euler-Bernoulli beam theory, takes
into account the shear deformation and rotational inertia effects of a short beams. The calcu-
lated mass and stiffness matrices of the Euler-Bernoulli is very well-known and can be found
in Bauchau and Craig (2009). Meanwhile, the Timoshenko matrices is given in Appendix A.
The lumping techniques for mass matrices of the two-dimensional cases are the same row-sum
operation with the one-dimensional case. Similar to the one dimension case, other steps will
be applied to obtain a stable continuum requiring only C0 continuity.

Because wave propagation is a dynamic problem, the magnitude of the time step ∆t in
numerical simulation plays an important role especially when explicit time scheme is used,
see Equation (3.27). The time step ∆t in this case is limited by a critical time step which is
dictated by the speed wave and the element length. This thesis will consider how this critical
time step changes with the new continuum.



Chapter 3

Wave propagation in a one-dimensional
structure

It is necessary to first revise the literature and investigate the one dimensional case of the
gradient theory as it will be the guideline to understand and fine-tune the new continuum in
higher dimensions. This chapter uses a simple one-dimensional case to demonstrate the role
of gradient elasticity in continuum models.

For dispersion and wave propagation of granular media, Mühlhaus and Oka (1996) first
derived one-dimensional continuous models by using the energy functionals of the discrete
model, then, extended this to three-dimensional models; and, the continuum models contain-
ing strain gradient terms were compared with the discrete models. Mühlhaus and Oka (1996)
noted that the new continuum had "a combination of a Cosserat theory and a strain gradi-
ent theory". This was one of a few examples where the continuum was maintained with the
material parameters of a particular discrete model for wave propagation analysis.

Early detailed reports on one dimensional case of continuum models using gradient elas-
ticity for discrete spring-mass model can be found in (Metrikine and Askes, 2002) and (Askes
and Metrikine, 2002). The two papers laid a foundation for the one dimensional model in this
thesis. Metrikine and Askes (2002) discussed in detail the different continualisation meth-
ods. The standard method which this thesis uses replaces the discrete degree of freedom by a
continuous field variable which retains the micro-structural properties of the discrete model.
Metrikine and Askes (2002) analysed the dispersion of second-order and fourth-order models
and emphasised that "a continuum model should be able to describe full frequency range".
In this study, the stability and easy finite element implementation of the gradient continuum
model are prioritised, see Section 2.7; therefore, only unconditionally stable second-order
models (according to Metrikine and Askes (2002)) are considered further.

The following sections are arranged in the order: Section 3.1 defines a particular discrete
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system, Section 3.2 gives details of the generalised continuum and contains two main contin-
uum theories: Section 3.2.1 investigate the formation and wave propagation behaviours of the
classical continuum while Section 3.2.2 investigates those aspects of the gradient continuum.
Section 3.3 discusses the discretisation of both continua in space and time, and Section 3.4
concludes this chapter on one-dimensional models.

3.1 The one-dimensional discrete model

As introduced at the beginning of the chapter, this section depicts the chosen one dimen-
sional discrete model for the study. Figure 3.1 shows a specific spring mass system where its
micro-structural properties are used to derive a related continuum. The particles have mass M,
connected by springs of stiffness K and the distance between two connecting balls is l. The
particle dimension is insignificant at distance l and the particle deformation is infinitesimal in
this study. The particles can only move in the horizontal direction. If un describes the dis-

placement of a particle n and the mass density is defined by ρ =
M
Al

and E =
Kl
A

, a discrete
model can be derived as:

ρ ün =
E
l2 (un+1 −2un +un−1) . (3.1)

+

Fig. 3.1 Three successive particles in the one-dimensional discrete model

3.1.1 Dispersion analysis

The discrete displacement un has the harmonic plane wave equation un =U exp [i(kxn −ωt)]
where U is the wave magnitude, k is the wave number and ω is the frequency. Substituting
this into Equation (3.1), the dispersion relationship - the frequency ω with respect to the wave
number k- can be deduced from the following periodic relationship:

ω
2 = 4

E
ρl2 sin2

(
kl
2

)
. (3.2)

Hence, for all wavenumbers k, there is a frequency magnitude (maximum value) ωmax =

2
l

√
E
ρ

at wavenumber values k = π

2 + 2nπ where n ∈ N (see Figure 3.2). Physically, the
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discrete model only allows frequencies that are equal or lower than the ωmax to travel through
the structure. Besides, the initial definition of the discrete spring-mass system implies that
only waves with wavelengths larger than 2l or twice the inter-particle distance would be able
to propagate. Therefore, it can be said that this particular discrete model has an ability to filter
wave frequencies.

3.2 Generalised continuum of the one-dimensional model

This section investigates the generalised continuum based on the discrete model defined in
Section 3.1. A detailed and more general approach for this spring mass system with higher
order gradients can be found in (Metrikine and Askes, 2002) and (Askes and Metrikine, 2002).
A general round viewpoint of modeling waves in microstructured solids in one dimensional
setting can be found in (Berezovski et al., 2011). Using the standard continualisation method,
the study replaces the discrete displacement with the continuum displacement u(x, t) which is
a function of the spatial coordinate x and time t and has to satisfy:

u(x, t)≈ un (t) (3.3)

u(x+ l, t)≈ un+1 (t) . (3.4)

For simplicity, we replace u(x, t) = u,
∂u
∂x

(x, t) = u,x,
∂ 2u
∂x2 (x, t) = u,xx,

∂ 3u
∂x3 (x, t) = u,xxx,

∂ 4u
∂x4 (x, t) = u,xxxx and

∂ 2u(x, t)
∂ t2 = ü then substitute u(x± l, t) for components in Equation

(3.1) and a Taylor series is used to continualise the discrete model in Equation (3.1):

un±1 ≈ u(x± l, t) = u±u,xl +
u,xx

2
l2 ±

u,xxx

6
l3 +

u,xxxx

12
l4 ± ... (3.5)

Then, Equation (3.1) is as follows:

ρ ü =
E
l2




u−u,xl +
u,xx

2
l2 −

u,xxx

6
l3 +

u,xxxx

12
l4 − ...

+2u+

u+u,xl +
u,xx

2
l2 +

u,xxx

6
l3 +

u,xxxx

12
l4 + ...


 . (3.6)

The previous equation is shortened to be the new equation of motion of the continuum
from the Equation (3.1):

ρ ü = E
(

u,xx +
1

12
l2u,xxxx

)
+O(l4), (3.7)
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where O(l4) has the exact numerical form as
E

360
l4u,xxxxxx which can be ignored due to its

small magnitude compared to other terms in Equation (3.7). This equation belongs to the
second-order model classification in (Metrikine and Askes, 2002) and is called the elasticity
equation with a stiffness gradient term El2u,xxxx.

Dispersion analysis: Performing the same procedure as Section 3.1.1, the following rela-
tionship is gained:

ω
2 = k2l2 E

ρ

(
1− l2

12
k2
)
. (3.8)

It is easy to notice that when k >

√
12
l

, Equation (3.8) has imaginary frequencies. Thus,
the continuum described by Equation (3.7) is only conditionally stable in dispersion analysis.
Therefore, the next two sub-sections deal with two unconditionally stable continua which are
the classical continuum and the gradient continuum originated from Equation (3.7).

3.2.1 Classical continuum of the one dimensional model

The classical continuum is the simplified version of Equation (3.7), and its dispersion equation
can be written as:

ρ ü = Eu,xx (3.9)

ω
2
K =

E
ρ

k2. (3.10)

The dispersion behaviour of the classical continuum is shown in Figure 3.2. Equation
(3.10) implies that the classical frequency ωK has a linear relationship with respect to the
wavenumber k and does not take into account the microstructural length l; hence, the classical
continuum only displays a light dispersive behaviour and no frequency filtering ability.

It can be seen that after space discretisation in Section 3.3, the classical model appears to
have frequency filtering ability which is created numerically and not desired.

3.2.2 Gradient continuum of the one dimensional model

There are many different mathematical ways to derive gradient continua from the discrete
models. This section is divided into two parts: the first part presents the derivation procedure
and analyses the optimisation aspect of the chosen method; meanwhile, the second part applies
the so-called Ru-Aifantis theorem which is demonstrated in (Aifantis, 1992) to achieve a more
efficient continuum.
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Derivation procedure

The gradient continuum is based on Equation (3.7) which is thus modified using a Padé ap-
proximation to make the equation dynamically stable in the dispersion analysis. The following
derivation aims at optimising the dispersion analysis results closer to the discrete model. Let
S be a constant that determines how well the continuum fits to the discrete model:

+
ρ ü = E

(
u,xx +

1
12

l2u,xxxx

)

−Sρl2ü,xx =−SEl2u,xxxx

ρ ü−Sρl2ü,xx = Eu,xx +El2
(

1
12

−S
)

u,xxxx.

(3.11)

The term Sρl2ü,xx is called an inertia gradient or micro-inertia term; meanwhile, the term
El2 ( 1

12 −S
)

u,xxxx is a stiffness gradient term (Askes et al., 2011). Performing dispersion
analysis on the above newly formed equation, we have:

ω
2 = k2

(
12− l2 (1−12S)k2

12(1+Sl2k2)

)
. (3.12)

The condition for Equation (3.12) to be positive with all real values of the wave number
k is that S ≥ 1

12 . We note that when there are fourth order derivatives in the equation system,
to ensure the stability (real value of ω for all real value of k ), they should have the opposite
signs with the second order derivatives or their coefficients are significant small so that they
are negligible. As S increases, the difference in value of the frequency ω between the discrete
and continuum model increases. Hence, the optimum value of S is 1

12 and the optimal gradient
continuum has the equation of motion and its dispersion relationship as follows:

ρ ü− 1
12

ρl2ü,xx = Eu,xx (3.13)

ω
2 = k2 E

ρ

(
12

12+ l2k2

)
. (3.14)

Regarding Askes et al. (2007), we have written the one dimensional version of the equation
of motion with the additional inertia term accompanied by the material length scale parameter
l that is a representation of the underlying microstructure of the material. To compare the
discrete model with the classical continuum and the gradient continuum, we draw the graph
of Equation (3.10) and Equation (3.14) in Figure 3.2. Note that the discrete model is discrete
in space and continuous in time; meanwhile, the classical and gradient models are continuous
in both time and space.
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Fig. 3.2 Comparing the classical continuum and gradient continuum with the discrete model,
with all structural properties E, l , ρ equal to 1, S = 1/12

Considering Equation (3.14), when k → ∞, the frequency reaches a maximum value 12
l2 . It

can be thus said that this particular gradient continuum (when S = 1
12 ) has a frequency filtering

ability. Hence, S = 1
12 gives the optimal continuum and requires the simpliest implementation

because there is no stiffness gradient in the equation of motion and the mass gradient term can
be discretised with only C0 continuity.

On the other hand, when S > 1
12 , the continuum does not have the same filtering ability

but the dispersion behaves with a lower gradient than the classical continuum. This case is
discussed further in the next section to demonstrate how the Ru-Aifantis thoerem is applied.

Application of Ru-Aifantis theorem

If S > 1
12 , Equation (3.11) will retain the term u,xxxx, which requires C1 continuity for FEM

implementation:

ρ ü−Sρl2ü,xx = Eu,xx +

(
1

12
−S
)

El2u,xxxx. (3.15)

If we define an auxiliary variable α = µu− ν l2u,xx where µ and ν are constants to be
determined, and substitute it into Equation (3.15), we obtain:

ρ ü−Sρl2 µ ü− α̈

ν l2 = Eu,xx +

(
1

12
−S
)

El2 µu,xx −α,xx

ν l2 (3.16)

⇔ ρ
S
ν

α̈ +ρ

(
1− Sµ

ν

)
ü = E

(
1

12
−S
)

1
ν

α,xx +E
(

1+
(

1
12

−S
)

µ

ν

)
u,xx. (3.17)
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Equation (3.17) is paired with the rewritten form of the definition of the auxiliary variable
α:

C
(
−α̈ +µ ü−ν l2ü,xx

)
= 0, (3.18)

where C is a multiplier that can be determined such that Equations (3.17) and (3.18) can be
rewritten as to the following symmetric matrices after discretisation:

[
M1,1 M1,2

M2,1 M2,2

][
α̈

ü

]
=

[
K1,1 K1,2

K2,1 K2,2

][
α

u

]
, (3.19)

where M1,2 = M2,1 and K1,2 = K2,1 = 0 in this particular case. In particular, we can determine
the coefficients and multiplier so that the matrices are symmetric:

K1,2 = K2,1 = 0 ⇒
(

1+
(

1
12

−S
)

µ

ν

)
= 0 ⇒ ν =

(1−12S)
12

µ (3.20)

M1,2 = M2,1 ⇒ ρ

(
1− Sµ

ν

)
=−C ⇒C =−ρ

(
12Sµ

(1−12S)µ
−1
)

(3.21)

= ρ

(
1−24S
1−12S

)
. (3.22)

Finally, the Ru-Aifantis theorem-modified-system of equations of motion are:

ρ
S
ν

α̈ +ρ

(
1−24S
1−12S

)
ü = E

(
1

12
−S
)

1
ν

α,xx (3.23)

ρ

(
1−24S
1−12S

)
α̈ +

(
1−24S
1−12S

)(
12ν

1−12S

)
ü−ν l2ü,xx = 0. (3.24)

The above derivation helps demonstrate the implementation of the Ru-Aifantis theory. If
we substitute the value of S into Equation (3.12), the relationship of the frequency and wave
number can be plotted. We will not perform further dispersion analysis for Equation (3.23)
and (3.24) (for time and space discretisation), but the process will involve solving a sixth order
equation for the frequency ω .

3.3 Space and time discretisation of the continua

The dispersion analysis for the time-space discretisation continuum shall be carried out in a
similar approach to Askes and Metrikine (2002)). However, we use the lumped mass scheme
here. For a one dimensional two noded element with h is the length of the discretised element,
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its consistent mass matrix is conventionally stated as Rao (2011):

Mconsistent =
1
6

ρh

[
1 2
2 1

]
. (3.25)

To attain the lumped mass matrix, we perform the row-sum operation on the consistent
mass matrix in Equation (3.25):

1
2

ρh

[
1 0
0 1

]
. (3.26)

If the time integration follows the explicit central difference scheme, the relationship be-
tween acceleration and displacement is:

at
n = M−1 ( f −Kun

t )

at
n∆t2 = ut−∆t

n −2ut
n +ut+∆t

n ,
(3.27)

where at
n is the acceleration of point n at time t, ut

n is the displacement of point n at time t, M
is the mass of point n, f is the external force, K is the stiffness of spring connecting to point
n, ∆t is the time step increment.

Spatial discretisation uses the plane wave equation to determine the displacement of node
n at time t:

ut
n =U exp [i(knh−ωt)] , (3.28)

where h is the length of an element and n is the position of the node.

3.3.1 Classical continuum

Using the lumped mass in Equation (3.26), the space discretised matrix form of Equation (3.9)
for an element of length h is:

1
2

ρh

[
1 0
0 1

][
at

n

at
n+1

]
=

E
h

[
1 −1
−1 1

][
ut

n

ut
n+1

]
(3.29)
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And the global matrix has the form as in Equation (3.30).

ρh
2




1 0 0 · · · 0 0
2 0 · · · 0 0

2 · · · 0 0
. . . ...

...
sym 2 0

1







at
1

at
2

at
3

...
at

n−1

at
n




=
E
h




1 −1 0 · · · 0 0
2 −1 · · · 0 0

2 · · · 0 0
. . . ...

...
sym 2 −1

1







ut
1

ut
2

ut
3

...
ut

n−1

ut
n




.

(3.30)

Consider the jth equation of Equation (3.30), we have:

ρh
(
at

j
)
=

E
h

(
ut

j−1 −2ut
j +ut

j+1
)
. (3.31)

Substituting the time integration scheme Equation (3.27) and space discretisation Equation
3.26 into the above equation:

cos(ω∆t) = ∆t2 E
ρh2 (cos(kh)−1)+1. (3.32)

The graph for Equation (3.32) is shown in Figure 3.31 together with the discrete model
and discretised continuum models.

3.3.2 Gradient continuum

Similarly, we have the matrix equation for an element:

ρh
2

[
1 0
0 1

][
at

n

at
n+1

]
+

ρl2

12h

[
1 −1
−1 1

][
at

n

at
n+1

]
=

E
h

[
1 −1
−1 1

][
ut

n

ut
n+1

]
, (3.33)

1If we choose ∆t = ∆tcrit =
l
ce

where ce =

√
E
ρ

is the wave velocity, h = l, the curve for ω will be a straight

line.
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and the global matrix has the form as in Equation (3.34):

ρh
2




1 0 0 · · · 0 0
2 0 · · · 0 0

2 · · · 0 0
. . . ...

...
sym 2 0

1







at
1

at
2

at
3

...
at

n−1

at
n




+
ρl2

12h




1 −1 0 · · · 0 0
2 −1 · · · 0 0

2 · · · 0 0
. . . ...

...
sym 2 −1

1







at
1

at
2

at
3

...
at

n−1

at
n




=

E
h




1 −1 0 · · · 0 0
2 −1 · · · 0 0

2 · · · 0 0
. . . ...

...
sym 2 −1

1







ut
1

ut
2

ut
3

...
ut

n−1

ut
n




.

(3.34)

Consider the jth equation of the matrix in Equation (3.34)

ρhat
j +

1
12

ρ
l2

h

(
−at

j−1 +2at
j −at

j+1
)
+

E
h

(
−ut

j−1 +2ut
j −ut

j+1
)
= 0. (3.35)

Multiplying both sides of the equation with 12
h

l2ρ
and replacing

E
ρ

by ce
2, we have after

time and space discretisation:

cos(ω∆t) =
24

h2

l2∆t2 +
4−4cos(kh)

∆t2 +12
ce

2

l2 (2cos(kh)−2)

24
h2

l2∆t2 +
−4cos(kh)+4

∆t2

. (3.36)

If we choose the time step ∆t equal to
l
ce

, the value of the frequency can be determined

by the following equation

cos(ω∆t) =
24h2

l2 −20+20cos(kh)

24
h2

l2 −4cos(kh)+4
. (3.37)

The graph illustrating the relationships of ω against k for all three models (discrete, clas-
sical and discretised gradient continuum model) is plotted in Figure 3.3 where h = l.
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Fig. 3.3 Dispersion analysis of discretised continua in comparison with the discrete model of
the one dimensional case

3.4 Discussion and conclusions on the one-dimensional case

Considering both the classical and the gradient continuum derived in Section 3.2, they are
special cases of the equation of motion of Type I derived by Mindlin to introduce a general
theory of elasticity with microstructure (Mindlin, 1964):

ρ
(
üi −b1

2üi, j j −b2
2ü j,i j

)
= (λ +µ)u j,i j +µui, j j −2(a1 +a2 +a5)u j,i jkk −2(a3 +a4)ui, j jkk.

(3.38)
In the above equation, the parameters ai, i = 1,2,3,4,5 are related to strain gradients and the
parameters bi, i = 1,2,3,4,5 are related to inertia gradients; and, these parameters are depen-
dent on material properties. Hence, the described continualisation procedure of the discrete
model helps determine these material parameters for the continua.

Comparing the dispersive behaviours of the continua, the gradient curve proves to be more
efficient to capture the peak frequency propagated in the one dimensional structure than the
classical curve, see Figure 3.2.

For the discretised continua, because the relationships ω − k are cosine functions, see
Equation (3.32) and (3.37), the curves repeat periodically along the increment of the wave
number k, Figure 3.3. It is significant for the microstructural length l to be equal to numerical
length h to obtain the most similar behaviour of the frequency ω (the curves meet the hori-
zontal axis at the same position). At a time step close to the critical time step, the gradient
continuum proves to be more accurate (the difference with the discrete model is smaller).

We set up a following simple numerical example depicted in Figure 3.4 to compare the new
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f

Fig. 3.4 A one dimensional numerical problem for finite element model implementation.
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Fig. 3.5 Force of Heaviside function is depicted against time. The unit on the graph is for
demonstration purpose only.

gradient continuum with the discrete model. The whole system is in one-dimensional space
and the masses and springs can only display in the horizontal directions. A Heaviside force
which is shown in Figure 3.5 with respect to time is applied to the left hand side end of the
mass-spring chain and the right hand side end of the system is fixed. In this thesis, the popular
explicit time integration method is used to model the dynamical behaviour of the system in
Figure 3.4. There is a big disadvantage of the explicit scheme: it is conditionally stable when
the simulation time step is less or equal the critical time step (Askes et al., 2011). If the time
step is larger than the critical time step, which for the explicit scheme integration used in our

numerical method is determined by the Courant condition (Bathe (2006)): ∆tcrit ≤
2

ωmax
, the

displacements of finite element model grows very large and unrealistic.
Finite element implementation of the gradient continuum displays a similar average max-

imum amplitude of the wave propagation with the discrete model. This is the displacement of
the first node of a long string. The fluctuation of displacement of the gradient model in Figure
3.6 is because this time step is not the critical time step for this model.
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Fig. 3.6 Numerical behaviour of the 1D gradient model under Heaviside function.





Chapter 4

Wave propagation in the square lattice

The square lattice is considered to be the simplest two dimensional geometry in this study due
to its symmetry in both principal axes. Before studying other more complicated geometries,
this chapter investigates the square lattice in the following order: the discrete model in Section
4.1, classical and gradient models in Section 4.2, space and time discretised models in Section
4.3 and numerical examples in Section 4.4.

4.1 Discrete model of the square lattice

In this section, the square lattice is first introduced in the discrete form and dispersion analysis
corresponding to the defined model is presented.

4.1.1 Definition of the square lattice

The two dimensional square lattice is depicted in Figure 4.1 where beams of equal lengths are
connected to each other at a 90◦ angle. The representative volume element (RVE) is presented
as the part of the micro-lattice surrounded by the dashed red square in Figure 4.1. However,
the beam cannot be shortened by half to fit into the RVE because the shorter the beam is, the
smaller wavelength the beam would allow to travel through itself. Hence, the full beam length
l is used to model the equilibrium forces and moment about the red point and then divide
these forces by the area of the representative element as in Figure 4.1. In Figure 4.1, the node,
marked in red, is used as the central point for continualisation by Taylor series.

• For the square geometry, see Figure 4.1, the representative volume element (RVE) only
requires a single joint to ensure the symmetry for simple mathematical formulations.
This RVE of the microlattice is modelled as a rigid-joint network of four uniform beams
having cross section A, length l, material density ρ and Young’s modulus E.
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l

l
RVE

l

Fig. 4.1 The 2D square microlattice with the definition of a representative volume element in
a red dashed square with the length scale l and the details of the RVE square lattice

• Different beam theories can be used to model each individual beam, such as Euler-
Bernoulli, Timoshenko, Rayleigh beam theories, etc. In this study, the microlattices
have slender beams where β is the depth over length ratio, β ≤ 1

10 and the Euler-
Bernoulli beam theory is used to model the behaviour of the discrete microbeams. It
is acknowledged that Euler-Bernoulli beam theory exhibits anomalous behaviour in dy-
namics; however, these undesirable effects can be shown not to affect the subsequent
derivations shown below. In the main body of the thesis, only results from Euler-
Bernoulli beam theory are presented (Equation (4.2)), the results by Timoshenko beam
theory are displayed in Appendix B.1.

• Similarly, different mass matrices can be used to model each individual beam, such
as lumped mass (Equation (4.1)) or consistent mass matrices. In the main body of
the thesis, only results from a lumped mass scheme are presented; the results from
consistent mass matrices are displayed in Appendix B.1.

• For simplicity, the mass matrix of the beam element is lumped as in Equation (4.1). The
beam stiffness matrix used is the common two-dimensional stiffness matrix of Euler-
Bernoulli beam theory in Equation (4.2): Next, the global matrix is built for the RVE
system.

M(e) =
ρAl

2
diag

(
1,1,

δ

12l2 ,1,1,
δ

12l2

)
, (4.1)
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where δ is a constant which usually takes the value of 1.

K(e) =




A 0 0 −A 0 0
12Iz
L2

6Iz
L 0 −12Iz

L2
6Iz
L

4Iz 0 6Iz
L 2Iz

A 0 0
sym 12Iz

L2 −6Iz
L

4Iz




, (4.2)

where Iz =
d4

12 and d is the beam depth.

4.1.2 Dispersion analysis of the discrete model

0 1

2

3

4

Fig. 4.2 Finite element analysis on the discrete model. Node numbering of the discrete system
containing the RVE unit.

As explained in Section 4.1.1, the system of four beams on the right side of Figure 4.1 are
chosen to carry out the dispersion analysis. The five nodes are numbered anti-clockwise as in
Figure 4.2 and have coordinates (0,0), (1,0), (0,1), (−1,0) and (0,−1). In this section, un

and vn describes the horizontal and vertical displacements of node number n; θn stands for the
rotation, an, bn and cn for horizontal, vertical and rotational accelerations. With the mass ma-
trices M and stiffness matrices K defined in Equations (4.1) and (4.2) for each beam of length
l, the term Ma+Ku can be written where a and u are the column vectors for displacement
and acceleration for each beam. Because node number 0 is fully surrounded by four beams,
we can assume external forces and moment equilibrium about node 0 and write the following
three equations of motion:
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Eβ 2

l

(
β

2
(

2u0 −u2 −u4 −
1
2

lθ2 +
1
2

lθ4

)
+(2u0 −u1 −u3)

)
+2ρβ

2la0 = 0 (4.3)

Eβ 2

l

(
β

2
(

2v0 − v1 − v3 −
1
2

lθ3 +
1
2

lθ1

)
+(2v0 − v2 − v4)

)
+2ρβ

2lb0 = 0 (4.4)

Eβ 4

l2

(
l2
(

4θ0

3
+

θ1

6
+

θ2

6
+

θ3

6
+

θ4

6

)
+

l
2
(u2 −u4 + v3 − v1)

)
+

1
6

ρβ
2l3c0 = 0. (4.5)

The first two Equations (4.3) and (4.4) represent the forces acting on point 0 in the x and y
directions, while Equation (4.5) stands for the moment about point 0. The number of equations
of motion required to carried out the dispersion analysis is equal to the number of degrees of
freedom of all the nodes inside the representative volume element. However, the system might
not be stable and some manipulations are required to modify the system.

Comparing the first two Equations (4.3) and (4.4), the variables u and v are interchange-
able; that means when a force acting on point 0 at an angle of 45◦, the horizontal and vertical
displacement u and v will have the same value, or it can be said that the system is symmetrical
through the line at 45◦ to the horizontal. Within the two-dimensional cases, this property is
attributed only to the square lattice and should be maintained after the discrete model is con-
tinualised. Hence, this property is used later to evaluate the continuum model. On the other
hand, if the force acts on point 0 at an angle of 0◦ to the horizontal line, it is easier for the
structure to propagate the force in the horizontal direction than the perpendicular direction to
the force; hence, a larger portion of the wave travels in the horizontal direction (compression
wave) and components having lower energy (which normally have higher frequencies) strug-
gle to propagate through the vertical direction. This results in the compression wave having a
much higher frequency magnitude than the shear wave at this angle (0◦ to the horizontal line).

After obtaining the three equations of motion, dispersion analysis can be carried out by re-
placing the displacements by the harmonic plane wave equation with respect to the coordinates
(x,y) of the nodes:

un =Uexp [i(k cosγxn + k sinγyn −ωt)]

vn =V exp [i(k cosγxn + k sinγyn −ωt)]

θn =Wexp [i(k cosγxn + k sinγyn −ωt)] .

(4.6)

After these substitutions, the three equation of motions (Equations (4.3), (4.4) and (4.5))
transform into:
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E
l




β
2




2Uei(−ωt)−Uei(k sinγ−ωt)−Uei(−k sinγ−ωt)

−1
2

lWei(k sinγ−ωt)+
1
2

lWei(−k sinγ−ωt)




+
(

2Uei(−ωt)−Uei(k cosγ−ωt)−Uei(−k cosγ−ωt)
)




− i2ρlωUei(−ωt) = 0 (4.7)

E
l




β
2




2V ei(−ωt)−V ei(k cosγ−ωt)−V ei(−k cosγ−ωt)

−1
2

lWei(−k cosγ−ωt)+
1
2

lWei(k cosγ−ωt)




+
(

2V ei(−ωt)−V ei(k sinγ−ωt)−V ei(−k sinγ−ωt)
)




− i2ρlωV ei(−ωt) = 0 (4.8)

Eβ 2

l2




l2




4Wei(−ωt)

3
+

Wei(k cosγ−ωt)

6
+

Wei(k sinγ−ωt)

6

+
Wei(−k cosγ−ωt)

6
+

Wei(−k sinγ−ωt)

6




+
l
2

(
Uei(k sinγ−ωt)−Uei(−k sinγ−ωt)

+V ei(−k cosγ−ωt)−V ei(k cosγ−ωt)

)




− 1
6

iρl3
ωWei(−ωt) = 0. (4.9)

The system is then solved as an eigen-value problem where the variables are [U,V,W ]; if
E, l, ρ , β are predefined, the determinant of the system is a function of [ω,k,γ]. For non-
trivial solutions of the system comprised of the above three equations, the determinant has to
be zero. For each pair of [k,γ], there are three corresponding values of ω and all these values
are real for the discrete model of the square lattice.

Note: To simplify the system, the normalised frequency is defined as
ωl
ce

where ce =

√
E
ρ

and normalised wave number as kl.

The results of this section will be compared with other models in Section 4.2, in particular
Figure 4.4 for the propagation angle γ =

π

2
.

4.2 Generalised model of the square lattice

The process in this section is similar to the method found in (Lombardo and Askes (2012)),
however, with a more general input of the discrete model where the rotational variable is taken
into account.

As mentioned in Section 4.1.1, different mass schemes and different beam theories can be
deployed when constructing the discrete model. However, these different inputs only result in
different coefficients but do not produce extra terms. The main body of the thesis concentrates
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on the combination of the lumped mass and the Euler-Bernoulli beam theories. The other
combination with consistent mass and Timoshenko beam theory are explored in Appendix
B.1. The equations of motion after continualisation using lumped mass scheme and Euler-
beam theory, see Section 4.1.1, are:

2ρ ü = E
(
u,xx +β

2u,yy +β
2
θ,y
)
+

El2

12
(
u,xxxx +β

2u,yyyy +2β
2
θ,yyy

)
(4.10)

2ρ v̈ = E
(
v,yy +β

2v,xx −β
2
θ,x
)
+

El2

12
(
v,yyyy +β

2v,xxxx −2β
2
θ,xxx

)
(4.11)

δ

6Eβ 2 ρl2
θ̈ +2θ = v,x −u,y −

l2

6
(θ,xx +θ,yy − v,xxx +u,yyy) . (4.12)

Consider the three equations (4.10), (4.11) and (4.12):

• If we keep the derivatives up to second order and omit the rotational degree of freedom,
we have equations of classical elasticity theory.

• If we keep the derivatives up to second order, we have equations of micropolar elasticity
or Cosserat theory (Pavlov et al., 2006; Vasiliev et al., 2002, 2010). The basis and
developments of micropolar elasticity can be found in Eringen (1966); Eringen and
Kafadar (1976); Mindlin and Tiersten (1962); Nowacki (1970). The microrotational
degrees of freedom are often called Cosserat rotations giving tribute to the brothers
Cosserat and Cosserat (1909) who were the first to propose the theory.

• If we keep the derivatives up to fourth order, we have equations which mimic micromor-
phic elasticity (Eringen, 1967; Eringen and Kafadar, 1976) or the Mindlin continuum
(Mindlin, 1964).

Dispersion analysis for these equations uses the following plane wave relationships (similar to
the set of Equation (12) of Suiker et al. (2001) to obtain an eigen-value problem:

u(x,y, t) =Uexp [i(k cosγx+ k sinγy−ωt)]

v(x,y, t) =V exp [i(k cosγx+ k sinγy−ωt)]

θ(x,y, t) =Wexp [i(k cosγx+ k sinγy−ωt)] .

(4.13)

The determinant of the Eigen problem containing the frequency is a cubic function, which
has three distinctive real roots. However, these three roots are not positive with all wave
numbers, or it can be said that this system is unconditionally stable. The route to stabilise



4.2 Generalised model 41

this continuum is thought to be more difficult with three variables; hence, in this study, the
rotational variable θ is translated into other variables and thus can be eliminated from the
equations of motion to enable simpler stabilisation steps.

4.2.1 Reduced degree-of-freedom continuum

To simplify the problem and to eliminate Ai jk, firstly, the rotational degree of freedom θ is
rewritten in terms of u and v. The paper by Lombardo and Askes (2012), with a different set
of equations of motion, uses all three equations of motions to extract θ . In this thesis, we only
use Equation (4.12) to approximate θ . A detailed derivation is displayed in Appendix B.2:

θ =
ρl2

24Eβ 2 (ü,y − v̈,x)+
1
2
(v,x −u,y)−

l2

12
(−v,xxx + v,xyy +u,yyy −u,xxy) . (4.14)

Substituting this result into the Equations (4.10) and (4.11), we have new equations of
motion:

2ρ ü+
ρl2

24
(v̈,xy − ü,yy) =E

(
u,xx +

β 2

2
u,yy +

β 2

2
v,xy

)
+

Eβ 2l2

12

(
u,xxyy −u,yyyy +

u,xxxx

β 2 + v,xxxy

)
.

(4.15)

2ρ v̈+
ρl2

24
(ü,xy − v̈,xx) =E

(
v,yy +

β 2

2
v,xx +

β 2

2
u,xy

)
+

Eβ 2l2

12

(
v,xxyy − v,xxxx +

v,yyyy

β 2 +u,xyyy

)
.

(4.16)
The two new equations of motion produce unstable dispersion relationships when substituting
the terms with Equations 4.13, see Figure 4.3. Therefore, a further step is required to sta-
bilise the system using the Padé approximation. These two new equations are classified as the
gradient-enhanced continuum.

4.2.2 Classical continuum

Similar to the one-dimensional case, the equations of motion for the classical continuum con-
tains all the second order derivative terms in Equation (4.15) and (4.16):

2ρ ü =E
(

u,xx +
β 2

2
u,yy +

β 2

2
v,xy

)
(4.17)

2ρ v̈ =E
(

v,yy +
β 2

2
v,xx +

β 2

2
u,xy

)
. (4.18)
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Fig. 4.3 Dispersion analysis for the unstable continuum of Equations (4.15) and (4.16). The
lower curve presents the shear wave component and the higher curve presents the compression
wave component. The normalised wave number is kl and the normalised frequency is ωl

ce
.

Again, Equations 4.13 are used for dispersion analysis of these two new equations.

Figure 4.4 compares the dispersion behaviour of a classical continuum represented by
Equations (4.17) and (4.18) with the dispersion behaviour of other models.

4.2.3 Stabilised gradient continuum

The Padé approximation is mainly used during the stabilisation step. If we denote Equation
(4.15) as R and Equation (4.16) as Z , we shall calculate (ignoring all terms (O)(l4)):

R+aR,xx +bR,yy + cZ,xy (4.19)

Z +dZ,xx + eZ,yy + cR,xy, (4.20)

where a, b, c, d and e are the multipliers that are determined later so that the new expressions
(4.19) and (4.20) shall be stable in the dispersion analysis. For the square lattice, the x and y
directions are interchangeable, which leads to a = d and b = e . This arrangement is intended
to introduce variable coefficients of the terms that we need to eliminate. Other additions such
as f R,xy to Equation (4.19) are not included because they bring in even more unstable terms
into the system. If we choose a = e = − 1

12 , b = d = − 1
24 and c = 0, we have the following
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equations:

2ρ ü+
ρl2

24
(v̈,xy −3ü,yy −4ü,xx) = E

(
u,xx +

β 2

2
u,yy +

β 2

2
v,xy

)
+

+
El2

48
(
−5β

2u,yyyy +
(
2β

2 −2
)

u,xxyy +2β
2v,xxxy −β

2v,xyyy
) (4.21)

2ρ v̈+
ρl2

24
(ü,xy −3v̈,xx −4v̈,yy) = E

(
v,yy +

β 2

2
v,xx +

β 2

2
u,xy

)
+

+
El2

48
(
−5β

2v,xxxx +
(
2β

2 −2
)

v,xxyy +2β
2u,xyyy −β

2u,xxxy
)
.

(4.22)

Further considerations are taken to simplify the two Equations (4.21) and (4.22):

• For the terms of the forms X,ii j j where i, j = x,y: After differentiation, their coefficients
have

(
1−β 2) l2 (the largest numerical coefficient of all the fourth order spatial deriva-

tives) and cos2γsin2
γ which has an absolute maximum value of 0.25 when γ = π/4

• For the terms of the forms X,iii j where i, j = x,y: After differentiation, their coefficients
have β 2l2 and cos3γ sinγ or sin3

γ cosγ . These two trigonometry terms have an absolute
maximum value of 0.325 when γ = 0.5236 and γ = 1.0472.

• For the terms of the forms X,iiii where i = x,y : After differentiation, their coefficients
have β 2l2 and cos4γ or sin4

γ . These two trigonometry terms have an absolute maximum
value of 1 when γ = 0,π/2 .

• When performing stability analysis of the Equations (4.21) and (4.22) at the above crit-
ical values of γ , comparing with the discrete model, it was found that:

– TermsX,iii j have insignificant effects on the magnitude of frequencies.

– For the frequency magnitude the compression wave is hardly affected by other
terms other than X,iiii ;

– Meanwhile, the frequency magnitude of the shear wave, if including the terms
X,iiii , is overestimated as the wave number increases.

From these observation, it is reasonable and acceptable to ignore the terms X,i j j j and X,iii j

in Equation (4.21) and (4.22):

2ρ ü+
ρl2

24
(v̈,xy −3ü,yy −4ü,xx) = E

(
u,xx +

β 2

2
u,yy +

β 2

2
v,xy

)
+

El2

48
((

2β
2 −2

)
u,xxyy

) (4.23)
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Fig. 4.4 Dispersion analysis for the stabilised continuum in comparison with discrete model,
classical continuum and Lombardo’s continuum

2ρ v̈+
ρl2

24
(ü,xy −3v̈,xx −4v̈,yy) = E

(
v,yy +

β 2

2
v,xx +

β 2

2
u,xy

)
+

+
El2

48
((

2β
2 −2

)
v,xxyy

)
,

(4.24)

which provide the dispersion graph Figure 4.4.

The new continuum has a closer match to the discrete model, displaying a better wave filter
property compared to the other two continua, especially the classical continuum. It should be
noted that the discrete model is discretised in space; hence, its curves periodically meet the
horizontal axis. If we discretise the new continuum in space, we would also be able to have
its curves periodically meet the horizontal axis.

All the terms in Equations (4.23) and (4.24) are able to be discretised with only C0 con-
tinuity. Therefore, we can go straight to the FEM implementation step without using the
Ru-Aifantis theorem as in the trapezium case. Note that there are many ways to stabilise a
system. The system achieved above is only one of many possible stabilised continuum. We
choose this particular route because the final continuum is simple to use.
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4.3 Space and time discretisation for continua

As comparisons of the dispersion relations are made between discrete model with continuum
models, it is important to note that, different from the continuum, the discrete model is discre-
tised in space. Therefore, for better comparisons, the continuum are discretised first in space
and then in time. Section 4.3.1 explains the choice of discretisation scheme. The next section
reviews the discretisation procedure with dispersion analysis graphs. Finally, numerical ex-
amples are built in the final section to demonstrate the practical application of the continuum.

4.3.1 Discretisation schemes

For space discretisation and time discretisation, to get the best match with the discrete model
as seen in the one-dimensional case Section 3.4, the size of numerical discretised element size
shall be equal to the structural lengthscale. After discretisation, the dispersion curves have the
form of the arccos (or cos−1 ) function with respect to the wave number k. This is in agreement
with the 1D case.

It is well-known that the explicit scheme often overestimates while the implicit scheme
underestimates the numerical solutions, and lumped mass underestimates while consistent
mass overestimates the solutions. Therefore, when modelling, two common combinations are
the explicit scheme together with the lumped mass and the implicit scheme together with the
consistent mass. We shall use explicit scheme and the lumped mass to discretise the new
continuum in this research.

4.3.2 Shape functions and element matrices and central difference scheme

As mentioned before, Equations (4.23) and (4.24) only require C0 continuity for finite element
implementation even with the fourth order spatial derivatives X,ii j j. There are many ways to
stabilise the system; and if there are terms X,iiii existing, we can use Ru-Aifantis theorem to
reduce the continuity requirement to C0.

To spatially discretise the continuum, we use the trial functions:u ≈ Nu and v ≈ Nv where
N contains the linear shape functions. Equations (4.23) and (4.24) are discretised in the matrix
form, Ω is the element volume, ρ is the material density, E is the Young’s modulus, l is the
structural lengthscale:

[
Muu Muv

Muv Mvv

][
ü
v̈

]
+

[
Kuu Kuv

Kuv Kvv

][
u
v

]
=

[
fu

fv

]
, (4.25)
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where

Muu =
∫

Ω

NT 2ρNdV +
∫

Ω

NT
,y

1
8

ρl2N,ydV +
∫

Ω

NT
,x

1
6

ρl2N,xdV (4.26)

Mvv =
∫

Ω

NT 2ρNdV +
∫

Ω

NT
,x

1
8

ρl2N,xdV +
∫

Ω

NT
,y

1
6

ρl2N,ydV (4.27)

Muv =−
∫

Ω

NT
,y

1
24

ρl2N,xdV (4.28)

Kuu =
∫

Ω

NT
,xEN,xdV +

∫

Ω

NT
,y

β 2

2
EN,ydV −

∫

Ω

NT
,xy

(
β 2 −1

)
El2

24
N,xydV (4.29)

Kvv =
∫

Ω

NT
,yEN,ydV +

∫

Ω

NT
,x

β 2

2
EN,xdV −

∫

Ω

NT
,xy

(
β 2 −1

)
El2

24
N,xydV (4.30)

Kuv =
∫

Ω

NT
,x

β 2

2
EN,ydV . (4.31)

Note that the matrix system in Equation (4.25) is symmetric through the diagonal which is
a sign that the system has no energy losses. Next, the common explicit time scheme based on
central differences Hughes (2000), is applied:

üt
n∆t2 = ut−∆t

n −2ut
n +ut+∆t

n

v̈t
n∆t2 = vt−∆t

n −2vt
n + vt+∆t

n ,
(4.32)

where ut
n (xn,yn, t)=U exp [i(kxxn + kyyn −ωt)] and vt

n (xn,yn, t)=V exp [i(kxxn + kyyn −ωt)].

(a) The discrete model (b) The continuum model

Fig. 4.5 The location of the orange middle point A in the discrete model and the corresponding
continuum model

If we consider the dispersion analysis of a point A in Figure 4.5 for the new continuum
which is discretised in space and time, we can write the two equilibrium equations for the hor-
izontal and vertical directions, we can achieve Table 4.1 to compare with the discrete model.
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The discrete model has three frequencies corresponding to three degrees of freedom: com-
pression, shear and rotation frequencies.

4.4 Numerical example

The problem is set up as in Figure 4.6. A 2D beam with an underlying square microlattice
is set up as in Figure 4.6a and the similar arrangement in the discretised continuum form
is depicted in Figure 4.6b. The discretised element length of the continuum model is equal
to the microstructural lengthscale l. The discrete and continuum models are tested against
each other. The shape of the discrete model and the continuum model are all chosen such
that the continuum model would be able to simulate similar boundary conditions to those of
the discrete model. Forces of the Heaviside function over time, see Figure 3.5, are applied
to the left end of the structures. The right-hand side of each structure is fixed. The vertical
degrees of freedom of all nodes are fixed. Therefore, the problem is predicted to behave as the
one-dimensional case, see Figure 3.6.

(a) The discrete model

(b) The continuum model

Fig. 4.6 Depiction of numerical problems for the square lattice

With the problem defined as earlier, the models are input into a Matlab program to ob-
serve the displacement of the green points in Figure 4.6 over time. Figure 4.7 compares the
performances of the discrete model in Figure 4.7a and the continuum model in Figure 4.7b. It
is easy to see that during the first period (initial 30 seconds) when the wave first time travels
from the left hand side to the fixed right hand end of the structure, the amplitudes and the time
of both models are similar.
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(a) The discrete model

(b) The gradient continuum model

Fig. 4.7 Numerical results for the square lattice - The displacement of the light green point in
Figure 4.6b and Figure 4.6a, respectively, over time; the time step is 0.02
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Table 4.1 Square lattice - Comparison of the dispersion behaviour of the classical and gra-
dient model under different stages for γ = π/2. The normalised wave number is kl and the
normalised frequency is

ω

ce
. Every model has two curves which are depicted by the same

type line, for e.g. the in the Stage Continuum model, the classical model column, the discrete
model has two dash-dot curves, the lower curve represents the shear component and the higher
curve represents the compression component. The same is applied for other models.
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Table 4.2 Square lattice - Comparison of the dispersion behaviour of the classical and gra-
dient model under different stages for γ = π/4. The normalised wave number is kl and the
normalised frequency is

ω

ce
.



Chapter 5

Wave propagation in the trapezium lattice

The trapezium lattice has a more complicated geometry than the square lattice. It can be said
that the trapezium lattice is a more general case than the square lattice or that the square one
is a special case of the trapezium one. This chapter explores different models to simulate
wave propagation in trapezium lattices. The arrangement of this chapter is very similar to
the previous Chapter 4 with the following order: the discrete model in Section 5.1, classical
and gradient models in Section 5.2, space and time discretised models in Section 5.3 and
numerical examples in Section 5.4. However, because of the trapezium geometry which leads
to mathematical complications that cannot be ignored, Section 5.2 also treat the Ru-Aifantis
theorem in detail.

5.1 Discrete model of the trapezium lattice

In this section, the trapezium lattice is first introduced in the discrete form and dispersion
analysis corresponding to the defined model is presented.

5.1.1 Definition of the trapezium lattice

We choose the smaller opening angle between two beams as ϕ = 60◦ as in Figure 5.2.

• For the trapezium geometry, see Figure 5.1, the representative volume element (RVE)
only requires a single joint to ensure the symmetry for simple mathematical formula-
tions, see Figure 5.2. This RVE of the microlattice is modelled as a rigid-joint network
of four uniform beams having cross section A, length l, material density ρ and Young’s
modulus E.
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Fig. 5.1 The 2D discrete model of a trapezium
lattice

Fig. 5.2 Detailed diagram
of a RVE of the trapezium
lattice

• Different beam theories can be used in this step. In this paper, the microlattices have
slender beams where β is the depth over length ratio, β ≤ 1

10 and the Euler-Bernoulli
beam theory is used to model the behaviour of the discrete microbeams. It is acknowl-
edged that Euler-Bernoulli beam theory can exhibit anomalous behaviour in dynamics;
however, these undesirable effects can be shown not to effect the subsequent derivations
shown below.

• For simplicity, the mass matrix of the beam element is lumped as follows

M(e) =
ρAl

2
diag

(
1,1,

δ

12l2 ,1,1,
δ

12l2

)

where delta is a constant which usually takes the value of 1. The beam stiffness matrix
used is the common two-dimensional stiffness matrix of Euler-Bernoulli beam theory,
see Equation (4.2).

Next, the global matrix is built for the RVE system and the equilibrium is considered at
the midde node in the RVE (the red node in Figure 5.2).

5.1.2 Dispersion analysis

As explained in Section 4.1.1, the system of four beams on the right side of Figure 5.2 is
chosen to carry out the dispersion analysis. The five nodes are numbered anti-clockwise as

in Figure 5.3 and have coordinates as (0,0),

(√
3

2
,
L
2

)
,

(
−
√

3
2

,
L
2

)
,

(
−
√

3
2

,−L
2

)
and
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0

2

3 4

1

Fig. 5.3 Finite element analysis on the discrete model. Node numbering of the discrete system
containing the RVE unit.

(√
3

2
,−L

2

)
. In this section, un and vn describe the horizontal and vertical displacements of

node number n; θn stands for the rotation, an, bn and cn for horizontal, vertical and rotational
accelerations. With the mass matrices M and stiffness matrices K defined in Equations (4.1)
and (4.2) for each beam of length l, the term Ma+Ku can be written where a and u are the
column vectors for displacement and acceleration for each beam. Because the node number
0 is fully surrounded by four beams, we can assume equilibrium of node 0 and write the
following three equations of motion:
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(5.1)
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(5.2)
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√
3v1 +

√
3v3 +

√
3v2 −

√
3v4

)
β

4
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ρL3β 2δ

24
c0 = 0 (5.3)

These equations can be divided on both sides by a constant for simplification and easy
future manipulation. The first two Equations (5.1) and (5.2) represent the forces acting on
point 0 in the x and y directions, while Equation (5.3) stands for the moment about point 0.
However, the system might not be stable for dispersion analysis and some manipulations are
required to modify the system.

Comparing the first two Equations (5.1) and (5.2), different from the square lattice case,
the variables u and v are non-interchangeable because the trapezium does not have a symmetric
axis at 45◦ to the horizontal line. Hence, there is no angle of propagation that the horizontal
and vertical displacements u and v will have the same value. On the other hand, if the force
acts on point 0 at an angle of 60◦ to the horizontal line (perpendicular to the beam connecting
point 2 and 4 in Figure 5.3), it is easy for the structure to propagate the force energy in the 30◦

direction than the direction perpendicular to the force; hence, the frequency amplitude of the
shear component at this angle is much smaller to the one of the compression wave. We will
check whether this property is still maintained in the continuum form.

After obtaining the three equations of motion, dispersion analysis can be carried out by
replacing the displacements with the harmonic plane wave equations:

un =Uexp [i(k cosγxn + k sinγyn −ωt)]

vn =V exp [i(k cosγxn + k sinγyn −ωt)]

θn =Wexp [i(k cosγxn + k sinγyn −ωt)]

(5.4)

where un, vn and θn are the horizontal, vertical and rotational degrees of freedom of a node
numbered n, xn and yn are the horizontal and vertical coordinates of that node at time t.

Substituting the coordinates (x,y) of the nodes in the RVE of the trapezium to the plane
wave equations, we have:

u0 =U exp [i(−ωt)] (5.5)

u1−4 = u0 exp

[
i

(
±
√

3
2

k cosγ ± 1
2

k sinγ −ωt

)]
(5.6)
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v0 =V exp [i(−ωt)] (5.7)

v1−4 = v0 exp

[
i

(
±
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3
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k cosγ ± 1
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k sinγ −ωt

)]
(5.8)

θ0 =W exp [i(−ωt)] (5.9)

θ1−4 =W exp

[
i

(
±
√

3
2

k cosγ ± 1
2

k sinγ −ωt

)]
(5.10)

After these substitutions, the three equation of motions (Equations (5.1), (5.2) and (5.3))
transform into:
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The system is then solved as an eigen-value problem where the variables are [U,V,W ]; if
E, l, ρ , β are predefined, the determinant of the system is a function of [ω,k,γ]. For non-trivial
solutions for the system, the determinant has to be zero. For each pair of [k,γ], there are three
corresponding values of ω and all these values are real for the discrete model of the square
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lattice.

Note: To simplify the system, the normalised frequency is defined as
ωl
ce

where ce =

√
E
ρ

and the normalised wave number as kl.

The curves of Figure 4.4 show all values of the normalised frequency ω against the nor-
malised wave number k for the propagation angle γ = π

2 . The results of this section will be
compared with later models in Section 5.2, in particular Figures 5.5 and 5.6 for the different
propagation angles.

5.2 Generalised continuum

We use Taylor’s series expansion, to the fourth and third order for spatial variables and rota-
tional variables respectively, to continualise the trapezium unit lattice constructed from Euler-
Bernoulli beam theory and the lumped mass scheme. The approach is explained in detail
in (Lombardo and Askes (2012)). The equations of motion for a RVE in the x-direction,
y-direction and rotation in the plane x-y are written as:
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where u, v and θ are horizontal, vertical and rotational displacements of the middle node (red
node in Figure 5.2) respectively.

Dispersion analysis for these equations uses the following plane wave relationships to
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obtain an eigen-value problem:

u(x,y, t) =Uexp [i(k cosγx+ k sinγy−ωt)]

v(x,y, t) =V exp [i(k cosγx+ k sinγy−ωt)]

θ(x,y, t) =Wexp [i(k cosγx+ k sinγy−ωt)]

(5.17)

where we will substitute x = 0, y = 0 and t = 0.

5.2.1 Reduced degree-of-freedom continuum

In this step, the rotational degree of freedom will be eliminated for the following reasons:

• The route to stabilise the rotational degree of freedom is complicated. The difficulty lies
in the odd number of order of derivatives which are unstable.

• Translating the rotation into spatial displacements helps reduce the size of the global ma-
trix by a third in two dimensional cases. For three-dimensional microlattices, we would
be able to reduce the computation cost by half by eliminating the rotation variables.

Similarly we rewrite θ with respect to other linear variables as (see Section C.2 for full
derivation):
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This step allows us to eliminate θ and reduce the equations of motions (assume that β 2 ≪ 1
due to β ≤ 1

10 , l ≤ 1
10 because this is a microstructural material and δ = 1; hence, we can

ignore all terms O(β 2), O
(
β 2l2) and O

(
l4)):
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Dispersion analysis is carried out for the two new equations of motion by substituting the
terms with plane wave Equations (5.17) to achieve an eigen-value problem. Similar to the
square lattice case, the new two equations of motion produce an unstable dispersion relation-
ship which is shown in Figure 5.4.
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Fig. 5.4 Dispersion analysis for the unstable continuum of Equations (5.19) and (5.20). The
lower curve represents the shear component and the higher curve represents the compression
component.

Further modification is carried out in the next parts for stabilisation and easy implementa-
tion in finite element modelling.

5.2.2 Classical continuum

Similar to one-dimensional and the square lattice cases, the equations of motion for the clas-
sical continuum contains all the second order derivative terms in Equation (5.19) and (5.20):
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(5.21)

2ρ v̈ = E
(
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3
4

u,xy

)
(5.22)

Table 5.1 presenting the dispersion relation of the classical continuum is displayed in the
next section.

5.2.3 Stabilised gradient continuum

For stable dispersion behaviour, the rules of thumb are:
• That the coefficients of fourth order differential terms (of the form X,ii j jwhere i, j =

x,y, t) shall have opposite signs with the coefficients of second order differential terms
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(of the form X,ii where i, j = x,y, t). This is because the plane wave equations have
imaginary numbers.

• The differential terms of the form X,i j or X,iii j where i, j = x,y shall have smaller or
even negligible coefficients of the corresponding same order differential terms of the
forms X,ii or X,ii j j . The reason is that kx and ky are associated with cosγ and sinγ

where γ is the propagation angle of the wave. The sign of a (cosγ)2n+1(sinγ)2n+1 where
n = 0,1 is difficult to determine, but it can be a positive or a negative term. Hence, to
ensure stability, these terms must be formulated such that they are are much smaller than
the permanently stable terms, or made to disappear from the set.

Using the similar method in Section 4.2.3, if we denote Equation (5.19) as R and Equation
(5.20) as Z , we shall calculate (ignoring all terms (O)(l4)):

R+BR,xx +CR,yy +HZ,xy (5.23)

Z +FZ,xx +GZ,yy +HR,xy (5.24)

where B, C, F , G and H are the multipliers that are determined later so that the new expressions
(5.23) and (5.24) shall be stable in the dispersion analysis. The expressions (5.23) and (5.24)
in detailed forms are:

2ρ ü+
(

2Cρl2 − ρl2

96

)
ü,yy +

(
2Hρl2 +

ρl2

32

)
v̈,xy +2Bρl2ü,xx = E (· · ·)

El2
[(

9
128

+
9B
8

)
u,xxxx +

(
9

64
+

9C
8

+
3B
8

+
3H
4

)
u,xxyy +

(
1

128
+

3C
8

)
u,yyyy

]

+El2
[(

3
32

+
3B
4

+
3H
8

)
v,xxxy +

(
1

32
+

3C
4

+
H
8

)
v,xyyy

]

2ρ v̈+
(

2Fρl2 − 3ρl2

32

)
v̈,xx +

(
2Hρl2 +

ρl2

32

)
ü,xy +2Gρl2v̈,yy = E (· · ·)

+El2
[(

1
384

+
G
8

)
v,yyyy +

(
3

64
+

F
8
+

3G
8

+
H
4

)
v,xxyy +

(
3

128
+

3F
8

)
v,xxxx

]

+El2
[(

1
32

+
3G
4

+
3H
8

)
u,xyyy +

(
3
32

+
3F
4

+
9H
8

)
u,xxxy

]

To eliminate the terms Xxxxy and Xxyyy, the following set of relations is one possible route:

C =
−4H −1

24
B =

−4H −1
8

(5.25)

F =
−12H −1

8
G =

−12H −1
24

(5.26)
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From here, the stability of wave propagation of the above set of equations depends on
the arbitrary constant H. The proper range of H values changes as the angle γ of the trial
solutions (plane wave equations) changes. Other values of γ are also examined to ensure that
when H ≥ 0, the set of equations (5.2.3) and (5.2.3) is always stable regardless of the γ value.
If we have obtained a suitable value for H (see explanation in Appendix C.3), we have the
following stable set of equations:

2ρ ü−
(

3
32

+
H
3

)
ρl2ü,yy −

(
H +

1
4

)
ρl2ü,xx +

(
1

32
+2H

)
ρl2v̈,xy

=E
(

9
8

u,xx +
3
8

u,yy +
3
4

v,xy

)
+

El2
(
−
(

9
128

+
H
16

)
u,xxxx +

(
3

64
+

3
8

H
)

u,xxyy −
(

1
128

+
H
16

)
u,yyyy

)
(5.27)

2ρ v̈−
(

11
32

+3H
)

ρl2v̈,xx −
(

H +
1

12

)
ρl2v̈,yy +

(
2H +

1
32

)
ρl2ü,xy

=E
(

1
8

v,yy +
3
8

v,xx +
3
4

u,xy

)
+

+El2
(
−
(

1
384

+
H
16

)
v,yyyy −

(
3

128
+

9H
16

)
v,xxxx +

(
1

64
− H

8

)
v,xxyy

)

(5.28)

Figure 5.5a and Figure 5.5b compare different stabilised continua with the discrete model.
When γ = π/3, near k = 0, we can see that the longitudinal wave has a nearly zero slope.
This is because the direction of the wave hits the beams perpendicularly as demonstrated in
the right hand diagram in Figure 5.8. Similarly to the square lattice in the latter session, beams
that are perpendicular to the initial direction of wave propagation are not effective to transfer
the wave energy, and hence only a narrow frequency band are allowed to go through these
members. Generally, in these two figures, for the wave number region [0,π], the continuum
performs very close to the discrete model. Again, it is noted that the discrete model is already
discretised in space while the continuum is not.

Next, we will apply the Ru-Aifantis theorem to the fourth order space derivatives Xiiii

of the above set of Equations (5.27) and (5.28) so that we can use C0 continuity for a finite
element implement.
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Fig. 5.5 Dispersion analysis for the stabilised gradient continuum of the trapezium for different
propagation angles γ . The normalised wave number has the formula of kl, the normalised
frequency

ω

ce
. For each model, there are two curves, the lower curve represents the shear

component and the higher curve represents the compression component.

5.2.4 Ru-Aifantis theorem application

In this section, a symbolic derivation is presented first. After we obtain the symbolic equations
of motion, numeric values are substituted to demonstrate the symmetric dynamic system ready
for numerical spatial discretisations.

When using the Ru-Aifantis theory, each point will have four degrees of freedom, two
originals and two auxiliaries; hence the stiffness or mass matrix for one square element will
have the dimensions of 16x16. Both sides of Equations (5.27) and (5.28) are multiplied by
160 for easy presentation. The new system reads:

320ρ ü−
(

15+
160
3

H
)

ρl2ü,yy − (160H +40)ρl2ü,xx +(5+320H)ρl2v̈,xy =

E (180u,xx +60u,yy +120v,xy)

+El2
[
−
(

45
4
+10H

)
u,xxxx +

(
15
2
+60H

)
u,xxyy −

(
5
4
+10H

)
u,yyyy

]

(5.29)
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320ρ v̈− (55+480H)ρl2v̈,xx −
(

160H +
40
3

)
ρl2v̈,yy +(320H +5)ρl2ü,xy =

E (20v,yy +60v,xx +120u,xy)

+El2
[
−
(

5
12

+10H
)

v,yyyy −
(

15
4
+90H

)
v,xxxx +

(
5
2
−20H

)
v,xxyy

]

(5.30)
For Equations (5.29) and (5.30), u and v appear together in the equations. Similar to the

one dimensional case, to apply Ru-Aifantis theory for Equations (5.29) and (5.30), the two
new auxiliary displacements a and b are defined as following:

a = su−ml2u,xx −nl2u,yy (5.31)

b = ςv−µl2v,xx −ν l2v,yy (5.32)

where s,m,n,ς ,µ and ν are arbitrary coefficients whose values shall be determined later.
After eliminating the Xiiii terms in Equations (5.29) and (5.30), we want to finally achieve

this matrix system after FE discretisations:




M1,1 M1,2 M1,3 0
M2,1 M2,2 0 M2,4

M3,1 0 M3,3 0
0 M4,2 0 M4,4







ü
v̈
ä
b̈


−




K1,1 K1,2 K1,3 0
K2,1 K2,2 0 K2,4

K3,1 0 K3,3 0
0 K4,2 0 K4,4







u
v
a
b


=




fu

fv

0
0




(5.33)
with M1,2 = M2,1, M1,3 = M3,1, M2,4 = M4,2, K1,2 = K2,1, K1,3 = K3,1 and K2,4 = K4,2.

Note: Regarding the one-dimensional case, the auxiliary variables were placed before the
main variables in the acceleration and displacement column vectors. Meanwhile, for the two-
dimensional cases, the main variables are placed before because each equation of motion has
both main variables.

To construct such matrices, it is required to consider all four equations from which the ma-
trices are built together. It is obvious that the first and second equations built from the matrices
in Equation (5.33) are based on the two equations of motion (5.29) and (5.30). On the other
hand, the third and fourth equations are developed from the definition of a and b - Equations
(5.31) and (5.32). In detail, the third equation reads (M3,1ü+M3,3ä)− (K3,1u+K3,3a) = 0,
which can be fulfilled with M3,1ü+M3,3ä = 0 and K3,1u+K3,3a = 0. It is easier to satisfy
these two conditions using the definition of a and b - Equations (5.31) and (5.32).

Consider developing the first equation by the matrix from Equation (5.29), the terms hav-
ing fourth derivatives, u,xxxx and u,yyyy on the right hand side of equation (5.29) are replaced
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by the term K1,3a in the first equation of the matrix. Hence, K1,3a needs to contain the form
qa,xx + ra,yy which is equivalent to the main variables by using the definition of a in Equation
(5.31), where q and r are arbitrary coefficients whose values shall be determined later:

qa,xx = qsu,xx −qml2u,xxxx −qnl2u,xxyy

ra,yy = rsu,yy − rml2u,xxyy − rnl2u,yyyy

}
→

qm = SXXXX1 =
45
4
+10H

rn = SYYYY 1 =
5
4
+10H

(5.34)

where SXXXX1 is the coefficient of the term u,xxxx and SYYYY 1 is the coefficient of the term
u,yyyy in Equation (5.29).

The condition K1,3 = K3,1 to preserve the symmetry of the system means that K3,1u also
contains qu,xx+ru,yy. Moreover, the assumption that K3,1u+K3,3a= 0 from the third equation
of the matrix is based on Equation (5.31) leads to K3,1u=qu,xx + ru,yy −

p
l2 u and K3,3 =− p

sl2 a
where {p/q/r} has the same ratio as {s/m/n}. This discussion can be presented as following:





K3,1 = K1,3

K1,3a hasqaxx + ra,yy

K3,1u+K3,3a ∼
su−ml2u,xx −nl2u,yy −a

l2 = 0

⇒





K1,3a =
(
− p

l2 a+qa,xx + ra,yy

)

K3,1u =
(
− p

l2 u+qu,xx + ru,yy

)

∀
{

p
/

q
/

r
}
= {s/m/n}

Therefore, the following relationships are obtained:





m
s
=

q
p
→ m =

sq
p
→ qm = q2 s

p
=

45
4
+10H

n
s
=

q
p
→ n =

sr
p
→ rn = r2 s

p
=

5
4
+10H

(5.35)

And the constants have their values with respect to H:

s
p
= t;q =

√
1
t

(
45
4
+10H

)
;r =

√
1
t

(
5
4
+10H

)
;m =

√
t
(

45
4
+10H

)
;n =

√
t
(

5
4
+10H

)

(5.36)
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One can apply the same procedure to the auxiliary variable b:

ϖµ = ϖ
2 ς

π
=

15
42

−90H

ϑν = ϑ
2 ς

π
=

5
12

+10H





⇒





ϖ =

√
1
τ

(
15
4
−90H

)
; ϑ =

√
1
τ

(
5

12
+10H

)
;

ς

π
= τ;

µ =

√
τ

(
15
4
−90H

)
;ν =

√
τ

(
5

12
+10H

)

(5.37)

With a suitable value of H, the auxiliary variables can be rewritten with respect to t, τ , s
and ς from Equation (5.31) and (5.32) as:

a = su−

√
t
(

45
4
+10H

)
l2u,xx −

√
t
(

5
4
+10H

)
l2u,yy (5.38)

b = ςv−

√
τ

(
15
4
−90H

)
l2v,xx −

√
τ

(
5

12
+10H

)
l2v,yy (5.39)

However, for a clear presentation, the more symbolic set of Equations (5.31) and (5.32)
shall be displayed for the rest of the derivation. Further variations of Equations (5.31) and
(5.32) are:

u =
a
s
+

m
s

l2u,xx +
n
s

l2u,yy (5.40)

v =
b
ς
+

µ

ς
l2v,xx +

ν

ς
l2v,yy (5.41)

and

E
t

s
su−ml2u,xx −nl2u,yy −a

l2 =
E
t

s
(
− a

l2 + s
u
l2 −mu,xx −nu,yy

)
= 0 (5.42)

E
τ

ς
ςv−µl2v,xx −ν l2v,yy −b

l2 =
E
τ

ς

(
− b

l2 + ς
v
l2 −µv,xx −νv,yy

)
= 0 (5.43)

After defining the auxiliary variables in preparation of the Ru-Aifantis theorem applica-
tion, the left hand side of Equation (5.29) is modified by rewriting 320ρ ü using Equation
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(5.40) and introducing mρl2üxx and nρl2üyy into the equation:

LHS = 320ρ ü−
(

15+
160
3

H
)

ρl2ü,yy − (160H +40)ρl2ü,xx +(5+320H)ρl2v̈,xy

=
(
ρ ä+mρl2ü,xx +nρl2ü,yy

)
︸ ︷︷ ︸

320ρ ü

−mρl2ü,xx −nρl2ü,yy︸ ︷︷ ︸
new terms added

+

(
n︸︷︷︸

new

−15− 160
3

H

)
ρl2ü,yy

+

(
m︸︷︷︸

new

−160H −40

)
ρl2ü,xx +(5+320H)ρl2v̈,xy

= ρ ä−mρl2ü,xx −nρl2ü,yy +

(
2n−15− 160

3
H
)

ρl2ü,yy +(2m−160H −40)ρl2ü,xx

+(5+320H)ρl2v̈,xy

The terms −mρl2üxx and −nρl2üyy are then rewritten using Equation (5.40):

LHS = ρ ä−mρl2
(

1
s

ä,xx +
1
s

ml2ü,xxxx +
1
s

nl2ü,xxyy

)
−nρl2

(
1
s

ä,yy +
1
s

ml2ü,xxyy +
1
s

nl2ü,yyyy

)

+

(
2n−15− 160

3
H
)

ρl2ü,yy +(2m−160H −40)ρl2ü,xx +(5+320H)ρl2v̈,xy

(5.44)

It is acceptable to ignore all O
(
l4) terms because:

• The lengthscale l of each beam in microlattice materials is very small.
• Hence, the numerical coefficient of −O

(
l4üi jkl

)
terms are considerably much smaller

than O
(
l2ü,i j

)
.

Finally, the left hand side of Equation (5.29) (or Equation (5.44)) is approximated as:

LHS = ρl2
[
(2m−160H −40) ü,xx +

(
2n−15− 160

3
H
)

ü,yy

]

+(5+320H)ρl2v̈,xy +ρ

[
ä− 1

s
ml2ä,xx −

1
s

nl2ä,yy

] (5.45)

Next, the right hand side of Equation (5.29) is modified; the fourth order derivatives Xiiii
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are replaced by using Equation (5.40):

RHS = E (180u,xx +60u,yy +120v,xy)+El2
(

15
2
+60H

)
u,xxyy

−El2




(
45
4
+10H

)

︸ ︷︷ ︸
qm

u,xxxx +

(
5
4
+10H

)

︸ ︷︷ ︸
rn

u,yyyy




(5.46)

RHS = E (180u,xx +60u,yy +120v,xy)+

(
15
2
+60H

)
El2u,xxyy

+E
(
qa,xx −qsu,xx +qnl2u,xxyy

)
+E

(
ra,yy − rsu,yy + rml2u,xxyy

)

(5.47)

Equation (5.42) is then added to the right hand side:

RHS = E
[
180u,xx +60u,yy +120v,xy +qaxx + ra,yy −qsu,xx − rsu,yy +(qn+ rm) l2u,xxyy

]
+

(
15
2
+60H

)
l2u,xxyy +

E
t

s
(
− a

l2 + s
u
l2 −mu,xx −nu,yy

)

︸ ︷︷ ︸
=0

(5.48)

RHS = E




s2

t
u
l2 +

(
180−qs− sm

t

)
u,xx +

(
60− rs− sn

t

)
u,yy

+

(
qn+ rm+

15
2
+60H

)
l2u,xxyy




+E120v,xy +E
(

qa,xx + ra,yy −
sa
tl2

)
(5.49)

Similarly the same procedure is applied to both sides of Equation (5.30). First one consid-
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ers the left hand side of Equation (5.30):

LHS =320ρ v̈− (55+480H)ρl2v̈,xx −
(

160H +
40
3

)
v̈,yy +(320H +5)ρl2ü,xy (5.50)

=ρ
(
b̈+µl2v̈,xx +ν l2v̈,yy

)
−µρl2v̈,xx −νρl2v̈,yy +

(
ν −

(
160H +

40
3

))
ρl2v̈,,yy

(5.51)

+(µ − (55+480H))ρl2v̈,xx +(320H +5)ρl2ü,xy

=ρ b̈−µρl2 (b̈,xx +µl2v̈,xxxx +ν l2v̈,xxyy
)
−νρl2 (b̈,yy +µl2v̈,xxyy +ν l2v̈,yyyy

)
(5.52)

+

(
2ν −160H − 40

3

)
ρl2v̈,yy +(2µ −55−480H)ρl2v̈,xx +(320H +5)ρl2ü,xy

≈(320H +5)ρl2ü,xy +

(
2ν −160H − 40

3

)
ρl2v̈,yy +(2µ −55−480H)ρl2v̈,xx

+ρ
(
b̈−µl2b̈,xx −ν l2b̈,yy

)
(5.53)

Thus the right hand side of Equation (5.30) is modified in the following steps:

RHS =E (20v,yy +60v,xx +120u,xy)

+El2
(
−
(

5
12

+10H
)

v,yyyy −
(

15
4
+90H

)
v,xxxx +

(
5
2
−20H

)
v,xxyy

)

=E (20v,yy +60v,xx +120u,xy)+E
(

5
2
−20H

)
l2v,xxyy +E

(
ϖb,xx −ϖςv,xx +ϖν l2v,xxyy

)

+E
(
ϑb,yy −ϑςv,yy +ϑ µl2v,xxyy

)

(5.54)

RHS =E




20v,yy +60v,xx +120u,xy +ϖb,xx +ϑb,yy −ϖςv,xx −ϑςv,yy

+

(
ϖν +ϑ µ +

5
2
−20H

)
l2v,xxyy




+
E
τ

ς

(
− b

l2 + ς
v
l2 −µv,xx −νv,yy

)

=E
[

120u,xy +
ς2

τ

v
l2 +

(
60− ςϖ − ς µ

τ

)
v,xx +

(
20− ςϑ − ςν

τ

)
v,yy

]

+E
(

ϖν +ϑ µ +
5
2
−20H

)
l2v,xxyy +E

(
−ς

(
b

τl2

)
+ϖb,xx +ϑb,yy

)
(5.55)

Therefore, to be able to use the Ru-Aifantis theorem, Equations (5.29) and (5.30) are
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modified into:

ρl2
[
(2m−160H −40) ü,xx +

(
2n−15− 160

3
H
)

ü,yy

]

+(5+320H)ρl2v̈,xy +ρ

(
ä− m

s
l2ä,xx −

n
s

l2ä,yy

)

=E
[

s2 u
tl2 +

(
180−qs− sm

t

)
u,xx +

(
60− rs− sn

t

)
u,yy +

(
qn+ rm+

15
2
+60H

)
l2u,xxyy

]

+E120v,xy +E
[
qa,xx + ra,yy − s

a
tl2

]

(5.56)

(320H +5)ρl2ü,xy +

(
2ν −160H − 40

3

)
ρl2v̈,yy

+(2µ −55−480H)ρl2v̈,xx +ρ

(
b̈− µ

ς
l2b̈,xx −

ν

ς
l2b̈,yy

)

=E
[
120u,xy + ς

2 v
τl2 +

(
60− ςϖ − ς µ

τ

)
v,xx +

(
20− ςϑ − ςν

τ

)
v,yy

]

+E
(

ϖν +ϑ µ +
5
2
−20H

)
l2v,xxyy +E

[
−ς

(
b

τl2

)
+ϖb,xx +ϑb,yy

]

(5.57)

And the other two equations to form the symmetric matrices are as follows; note that two
sides of the equations below are identities of Equations (5.38) and (5.39):

ρ

[
ü− 1

s
ml2ü,xx −

1
s

nl2ü,yy

]
− 1

s
ρ ä =

E
t

[
−s

u
l2 +mu,xx +nu,yy

]
+

E
tl2 a (5.58)

ρ

[
v̈− 1

ς
µl2v̈,xx −

1
ς

υ l2v̈,yy

]
− ρ b̈

ς
=

E
τ

[
−ς

v
l2 +µv,xx +νv,yy

]
+

E
τl2 b (5.59)

The four equations (5.56), (5.57), (5.58) and (5.59) are the equations of motion of the
gradient continuum modified by Ru-Aifantis theorem.

If we choose a set of numeric values: s = 2, p = 10240
891 , q = 2

3 , r = 2
9 , m = 297

16 , n = 99
16 ,

ς = 2, π = 10240
891 , ϖ = 2

3 , ϑ = 2
9 , µ = 297

16 , ν = 99
16 and H = 10, we have the following equations

of motion:

ρl2
[
−39

8
ü,xx −

79
24

ü,yy

]
+9ρl2v̈,xy +ρ

(
ä− 297

5120
l2ä,xx −

99
5120

l2ä,yy

)

=E
[

3276800
891

u
l2 −

740
3

u,xx −
740

9
u,yy +

33
2

l2u,xxyy

]

+E120v,xy +E
[

2
3

a,xx +
2
9

a,yy −
10240
891

a
l2

]
(5.60)
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Fig. 5.6 Dispersion analysis for the gradient continuum with Ru-Aifantis theory compared
with original gradient continuum and discrete models at propagation angles of π/4 and π/3.
The normalised wave number has the formula of kl, the normalised frequency
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model, there are two curves, the lower curve represents the shear component and the higher
curve represents the compression component.
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In Figure 5.6, the gradient model has four curves for the four variables u, v, a and b.
The curves for the variables a and b are straight lines and their positions can be changed by
changing the values of the arbitrary constants in the application of the Ru-Aifantis theorem. It
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is preferred that the positions of the curves for these two auxiliary variables a and b are lower
than the maximum frequency of the compression curve because then the numerical critical
time step for this continuum depends only on the compression curve.

5.2.5 Summary of steps to implement the Ru-Aifantis theorem for the
gradient continuum

The above section explains in details the implementation of the Ru-Aifantis theorem to reduce
the continuity requirements when the continuum is applied to finite element models. This sec-
tion summaries simplifying steps to implement the Ru-Aifantis theorem on a stable gradient
continuum.

1. Step 1: From the equations of motion of the newly derived stable continuum (for e.g.
Equations (5.27) and (5.28)), we extract the coefficients of the two equations. If we
call the first equation of motion for equilibrium in x-direction (for e.g. Equation (5.27))
Eqn1 and the second equation of motion for equilibrium in y-direction (for e.g. Equa-
tion (5.28)) Eqn2, and the function to get the coefficient of a term x in an Equation X
as coe f f (X ,x), we can define the following variables from the coefficients of the two
equations as follows:

From Eqn1:

MT T 1 =
coe f f (Eqn1, ü)

ρ
; MYY 1 =

coe f f (Eqn1, ü,yy)

ρL2 (5.64)

MXX1 =
coe f f (Eqn1, ü,xx)

ρL2 ; MXY 1 =
coe f f (Eqn1, v̈,xy)

ρL2 (5.65)

SXX1 =
coe f f (Eqn1,u,xx)

E
; SYY 1 =

coe f f (Eqn1,u,yy)

E
(5.66)

SXY 1 =
coe f f (Eqn1,v,xy)

E
; SXXXX1 =

coe f f (Eqn1,u,xxxx)

EL2 (5.67)

SXXYY 1 =
coe f f (Eqn1,u,xxyy)

EL2 ; SYYYY 1 =
coe f f (Eqn1,u,yyyy)

EL2 (5.68)
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From Eqn2:

MT T 2 =
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ρ
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SXXYY 2 =
coe f f (Eqn2,v,xxyy)

EL2 ; SYYYY 2 =
coe f f (Eqn2,v,yyyy)

EL2 (5.73)

2. Step 2: Given the variables from Step 1, we can calculate the variables which help
facilitate the Ru-Aifantis theorem that are mentioned in Section 5.2.4. Note that t1, s1,
p1, q1, r1, m1, n1 in this section are similar to t, s, p, q, r, m, n in the Section 5.2.4, and
t2, s2, p2, q2, r2, m2, n2 are similar to τ , ς , π , ϖ , ϑ , µ , ν . But they are not the same
because the equations of motion used in this section has not been multiplied by a factor
of 160 for presentation purpose.

Firstly, we need to choose initial values for t1 which for simplication can be a common
factor of both SXXXX1 and SYYYY 1, t2 which can be a common factor of both SXXXX1 and
SYYYY 1 and trial values for s1 and s2. After we choose a value for t1 and s1, the other
variables can be calculated with respect to t1 and s1:

p1 =
s1

t1
; q1 =

√
SXXXX1

t1
; r1 =

√
SYYYY 1

t1
(5.74)
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√

t1SYYYY 1 (5.75)

After we choose a value for t2 and s2, the other variables can be calculated with respect
to t1 and s1:

p1 =
s2

t2
; q1 =

√
SXXXX2

t2
; r1 =

√
SYYYY 2

t2
(5.76)

m1 =
√

t2SXXXX2; n1 =
√

t2SYYYY 2 (5.77)

3. Step 3: We use the variables from step 1 and step 2 to rewrite the two original equa-
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tions of motion of the stable continuum (for e.g. (5.27) and (5.28)) into four following
equations:
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l2ä,xx −

(
MT T 1

s1

nyy1

s1

)
l2ä,yy
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After obtaining the four equations, dispersion analysis of the four equations should be
checked for different angles of propagation. The values of t1, t2, s1 and s2 can be re-chosen
and the three steps are iterated until the dispersion curves of the new continuum closely match
the dispersion curves of the discrete model. The above three steps can be programmed using
symbolic mathematic softwares to ease the procedure.



74 The trapezium lattice

5.3 Space and time discretisation

As comparisons of the dispersion relations are made between the discrete model with the
continuum models, it is important to note that, different from the continuum, the discrete
model is discretised in space. Therefore, for better comparisons, the continuum is discretised
first in space and then in time. Section 5.3.1 explains the choice of discretisation scheme and
briefs the discretisation procedure with tables compiling dispersion relation graphs. Finally,
numerical examples are built in the final section to demonstrate the practical application of the
continuum.

5.3.1 Discretisation schemes and the discretisation procedure

As seen in the one-dimensional case of Section 3.4 and the square lattice case of Section 4.3.1,
for space discretisation and time discretisation, to get the best match with the discrete model,
the size of the numerical discretised element must be taken equal to be the structural length-
scale l of the individual beam. Two common combinations for numerical implementations
are the explicit scheme together with the lumped mass and the implicit scheme together with
the consistent mass. We shall use an explicit scheme and the lumped mass to discretise the
new continuum in this thesis. As the Ru-Aifantis theorem is used in Section 5.2.4 to mod-
ify the equations of motion to require only C0 continuity, the set of Equations (5.50), (5.54),
(5.56) and (5.57) can easily use the similar trial functions and space discretisation procedure
to Section 4.3.2:

We discretise the equations of motion in space by using u ≈ Nu, v ≈ Nv, a ≈ Na and b ≈
Nb where N comprises the linear shape functions. Equations (4.23) and (4.24) are discretised
in the matrix form, Ω is the element volume, ρ is the material density, E is the Young’s
modulus, l is the structural lengthscale:




Muu Muv Mua 0
Muv Mvv 0 Mvb

Mua 0 Maa 0
0 Mvb 0 Mbb







ü
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+




Kuu Kuv Kua 0
Kuv Kvv 0 Kvb

Kua 0 Kaa 0
0 Kvb 0 Kbb
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v
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b
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fu

fv

0
0




(5.82)
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and from previous definitions, q =
m
t

, r =
n
t

, ϖ =
µ

τ
and ϑ =

ν

τ
.

Different from the square lattice, in this section, there are two element shapes chosen
for spatial discretisation of the trapezium lattice: the rectangular and the diamond element
shapes, see Figure 5.7. The dimensions of these shapes are chosen to best capture the smallest
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wavelength for dispersion relations. The rectangular element is the main FEM shape to be
analysed in Table 5.1 because of its versatility in real life applications. A comparison between
the two shapes are presented in Table 5.2 with different propagation angles.

Besides, the central difference time scheme is used and analysed at this stage.

√3 l
l √3
2

 

2
 ll

l√3
2

 l

2
 l

Fig. 5.7 From left to right: The original discrete model, the rectangular FEM shape and the
diamond FEM shape
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90°
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Fig. 5.8 Dispersion analysis for time and space (rectangle element) discretised gradient con-
tinuum

Table 5.2 implies that the diamond element of spatial discretisation captures the difficult
wave propagation angle easier than the rectangular element.

5.4 Numerical example

The problem is set up as in Figure 5.9. A 2D beam with underlying trapezium microlattice is
set up as in Figure 5.9a and the similar arrangement in discretised continuum form is depicted
in Figure 5.9b. The discretised element length of the continuum model is equal to the mi-
crostructural lengthscale l. The discrete and continuum models are tested against each other.
The shapes of the discrete model or the continuum model are all chosen such that the con-
tinuum model would be able to simulate similar boundary conditions to those of the discrete
model. Forces of the Heavyside function over time, see Figure 3.5, are applied to the left end
of the structures. The right-hand side of the structure is fixed. The vertical degrees of freedom
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of all nodes are fixed. Therefore, the problem is predicted to behave as the one-dimensional
case, see Figure 3.6.

(a) The discrete model

(b) The continuum model

Fig. 5.9 Depiction of numerical problems for the trapezium lattice

(a) The discrete model (b) The gradient continuum model

Fig. 5.10 Numerical results for the trapezium lattice- The amplitudes in both graphs depict the
horizontal displacement of the light green point in Figure 5.9a and Figure 5.9b, respectively,
over time; the time step is 0.05

It is obvious that there would be differences between the two numerical results because the
continuum model is limited in its ability to mimic the boundary conditions that are applied to
the discrete models. However, in Figure 5.11 plotting both models on the same graph shows
a good correspondence between the two models, where the time periods that the wave travels
from one end to the other end in the two models are similar. The changing front slopes of the
gradient continuum model indicates that there is dispersion.
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Fig. 5.11 Comparison of the discrete model and the gradient continuum model - Redraws of
Figures 5.10a and 5.10b on the same graph.
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Table 5.1 Trapezium lattice - Comparison the dispersion behaviours of the classical and gradi-
ent model under different stages for γ = π/6 using rectangular finite element and time step 1

10 .

The normalised wave number has the formula of kl, the normalised frequency
ω

ce
. For each

model, there are two curves, the lower curve represents the shear component and the higher
curve represents the compression component.
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Table 5.2 Trapezium lattice - Comparison of the dispersion behaviours of space-discretised
continuum using the rectangular and diagonal elements for different propagation angles γ .
The normalised wave number has the formula of kl, the normalised frequency

ω

ce
. For each

model, there are two curves, the lower curve represents the shear component and the higher
curve represents the compression component.



Chapter 6

Wave propagation in the hexagonal
lattices

The two-dimensional hexagonal lattice has a very practical application which is the graphite
sheet. Compared with the square and trapezium lattices, the hexagonal lattice has a much
more complicated geometry for deriving a gradient continuum. This chapter investigates the
hexagonal lattice in the following order: the discrete model in Section 6.1, classical and gra-
dient models in Section 6.2. There are no space and time discretised models in this section as
no satisfactory FEM hexagonal shape is found in the literature.

6.1 Discrete model of the hexagonal lattice

In this section, the hexagonal lattice is first introduced in the discrete form and then dispersion
analysis corresponding to the defined model is presented.

6.1.1 Definition of the hexagonal lattice

This section gives an overview definition of the hexagonal lattice in comparison with the
square and trapezium lattice:

• Different from the square lattice in Section 4.1.1 and the trapezium lattice in Section
5.1.1 which have only one joint in the RVE, the hexagonal lattice requires further con-
sideration of a representative volume element. The most simple RVE in the green area
of Figure 6.2 are only symmetrical through a vertical line yy, while the second RVE in
the yellow area of Figure 6.3 are symmetrical through both main axes but poses difficul-
ties in generating the continuum in later sections. At the end, the new so-called "RVE"
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Fig. 6.1 Detailed diagram of a RVE of the hexagonal lattice

y

y

Fig. 6.2 Detailed diagram of a RVE 1 of the hexagonal lattice

y

y

xx

Fig. 6.3 Detailed diagram of a RVE 2 of the hexagonal lattice
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Fig. 6.4 Detailed diagram of a RVE 3 of the hexagonal lattice

in the area of the orange dotted line, see Figure 6.4 was chosen as the optimal model to
observe the discrete behaviour and to generate continuum. For the hexagonal geometry,
see Figure 6.1, the chosen representative volume element (RVE) requires six joints to
ensure the symmetry for simple mathematical formulations, see Figure 6.4. This RVE
of the microlattice is modelled as a rigid-joint network of twelve uniform beams having
cross section A, length l, material density ρ and Young’s modulus E.

• For simplicity, the mass matrix of the beam element is lumped as follows

M(e) =
ρAl

2
diag

(
1,1,

1
12l2 ,1,1,

1
12l2

)

The beam stiffness matrix used is the common two-dimensional stiffness matrix of
Euler-Bernoulli beam theory.

6.1.2 Dispersion analysis

The system of twelve beams in Figure 6.4 are chosen to carry out the dispersion analysis. The
twelve nodes are numbered anti-clockwise as in Figure 6.5 and from the outer ring to the in-
ner ring and have coordinates (0,2l),

(
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2
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)
and

(√
3l

2
,

l
2

)
. In this section,

un and vn describes the horizontal and vertical displacements of node number n; θn stands
for the rotation, an, bn and cn for horizontal, vertical and rotational accelerations. With the
mass matrices M and stiffness matrices K defined in Equations (4.1) and (4.2) for each beam
of length l, the term Ma+Ku can be written where a and u are the column vectors for dis-
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Fig. 6.5 Finite element analysis on the discrete model. Node numbering of the discrete system
containing the RVE unit.

placement and acceleration for each beam. In this case, there are six inner nodes that we can
assume equilibrium about these nodes (7, 8, 9, 10, 11 and 12 in Figure 6.5) to achieve three
equations for each node: one for the x-direction, one for the y-direction and one for θ . The
problem is reduced to the following three large equations by summing all six equations in the
x-direction, six equations in the y-direction and six equations in θ :




β 4L2

4 (−2θ10 −θ5 +2θ1 +θ6 +θ12 +2θ7 −θ11 +θ8 −θ3 −θ9 +θ2 −2θ4)+
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3β 2ρL3

2 = 0
(6.1)
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√
3β 4L2

4 (θ9 +θ2 +θ8 +θ3 −θ12 −θ5 −θ11 −θ6)+


β 4L
4

(
−3v9 −3v11 −3v12 +3v2 −3v8 +3v3 +3v5 +3v6+√

3(−u8 +u5 −u6 +u12 +u2 −u3 +u9 −u11)

)
+

β 2L
4

(
−v9 − v11 − v12 − v8 + v2 + v3 + v5 + v6 +4v4 −4v10 +4v1 −4v7+√

3(u8 −u12 −u2 +u3 −u9 −u5 +u6 +u11)

)







E

3β 2ρL3

2 (−a7 −a8 −a9 −a10 −a11 −a12) = 0
(6.2)




β 4L3

6 (−θ4 −θ1 −8θ10 −8θ7 −θ5 −θ2 −8θ11 −8θ8 −θ6 −θ3 −8θ12 −8θ9)+

β 2L
4

( √
3(−v2 − v8 − v3 − v9 + v5 + v11 + v6 + v12)+

2u10 −2u7 +u5 −u2 +u11 −u8 −u6 +u3 −u12 +u9 −2u1 +2u4

)

E

β 2δρL5

8 (−c7 − c8 − c9 − c10 − c11 − c12) = 0.
(6.3)

After obtaining the three equations of motion, dispersion analysis can be carried out by
replacing the displacements with the harmonic plane wave equations (4.6) and substituting in
the coordinates (x,y) (mentioned at the beginning of the section) of twelve nodes in Figure
6.5. The substitution is carried out similarly to the square and trapezium lattice. The new
system consists of three equation of motions is not displayed here due to its lengthiness and it
is unnecessary.

The system is then solved as an eigen-value problem where the variables are [U,V,W ]; if
E, l, ρ , β are predefined, the determinant of the system is a function of [ω,k,γ]. For non-trivial
solutions for the system, the determinant has to be zero. For each pair of [k,γ], there are three
corresponding values of ω and all these values are real for the discrete model of the square
lattice.

The curves of Figure 6.6 shows all values of the normalised frequency ω against the nor-
malised wave number k for the propagation angle γ =

π

3
.

The Bloch theorem, which is briefly mentioned for the one-dimensional case in Section 2.2
and for a wide range of shapes can be found in Gonella and Ruzzene (2008) and Phani et al.
(2006), produces the same results as the discrete model derived above. However, the Bloch
theorem in this case performs numerically better than the discrete model; as the propagation
angles change, the Bloch theorem achieves more numerically stable cases. Hence, in later
sections, the dispersion relations of continuum shall be compared with those of discrete model
drawn by using the Bloch theorem.
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Fig. 6.6 Relationship between normalised frequency and normalised wave number for the
discrete 2D hexagonal lattice with γ = π/3
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Fig. 6.7 Relationship between normalised frequency and normalised wave number for the
discrete 2D hexagonal lattice with γ = π/3 using the Bloch theorem
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6.2 Generalised continuum

This section derives the continuum from the discrete hexagonal lattice. Similar to the square
and trapezium lattice, we use Taylor’s series expansion, to the fourth and third order for spatial
variables and rotational variables respectively, to continualise the discrete equation of motions
(6.1) and (6.2) and (6.3). The approach is explained in detail in (Lombardo and Askes (2012)).
The equations of motion for a RVE in the x-direction, y-direction and rotation in the plane x-y
after continualisation are written as:

384ρ ü+
416
35

ρl2
θ̈,y

E




−48
(
β

2 +3
)
(u,xx +u,yy)+96

(
β

2 −1
)

v,xy

−15l2 (
β

2 +3
)
(u,xxxx +2u,xxyy)−5l2 (

β
2 +11

)
u,yyyy

+20l2 (
β

2 −1
)
(3v,xxxy + v,xyyy)

−192β
2
θy −72β

2l2
θ,xxy −72β

2l2
θ,yyy




= 0
(6.4)

384ρ v̈− 416
35

ρl2
θ̈,x

E




−48
(
β

2 +3
)
(v,yy + v,xx)+96

(
β

2 −1
)

u,xy

−15l2 (
β

2 +3
)
(2v,xxyy + v,xxxx)−5l2 (

β
2 +11

)
v,yyyy

+20l2 (
β

2 −1
)
(u,xyyy +3u,xxxy)

+192β
2
θ,x+72β

2l2
θ,xyy +72β

2l2
θ,xxx




= 0
(6.5)

4ρl2δ

β 2 θ̈ +24E (2θ+u,y− v,x)

+El2 (16θ,xx +16θ,yy +9u,xxy −9v,xyy +9u,yyy −9v,xxx) = 0,
(6.6)

where u, v and θ are horizontal, vertical and rotational displacements of the middle node (node
(0,0) in Figure 6.5 respectively.

6.2.1 Reduced degree-of-freedom continuum

In this step, the rotational degree of freedom is also eliminated for the reasons that are listed
in Section 5.2.1.

Similarly, we rewrite θ with respect to other linear variables as (see Appendix C.2 for full
derivation):

θ =
ρl2

24β 2E
δ (ü,y− v̈,x)+

1
2
(v,x−u,y)+

l2

48
(v,xxx + v,xyy −u,xxy −u,yyy) . (6.7)
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Fig. 6.8 Unstable relationship between normalised frequency and normalised wave number
for the continuum of Equations (6.8) and (6.9) with γ = π/3

This step allows us to eliminate θ and reduce the equations of motions (assume that β 2 ≪ 1

due to β ≤ 1
10

and δ = 1; hence, we can ignore all terms O
(
β 2l2) and O

(
l4)). Substitute the

new expression for θ into the primary equations of motion, assume that β 2 ≈ 0 , δ = 1 and
ignore all terms Ol4 to get:

384ρ ü+8ρl2 (v̈,xy − ü,yy) = 48E (3u,xx +u,yy +2v,xy)+

+45El2 (u,xxxx +2u,xxyy)−5El2u,yyyy +20El2 (3v,xxxy + v,xyyy)
(6.8)

384ρ v̈+8ρl2 (ü,xy − v̈,xx) = 48E (3v,yy + v,xx +2u,xy)+

+15El2 (v,xxxx +2v,xxyy)+55El2v,yyyy +20El2 (u,xyyy +3u,xxxy) .
(6.9)

Similar to the square and trapezium cases, these two equations have unstable dispersion
relations, see Figure 6.8; therefore, further steps are taken to achieve stable dispersion rela-
tions.
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Fig. 6.9 Stable dispersion relationship between normalised frequency and normalised wave
number for the classical continuum of Equations (6.8) and (6.9) with γ = π/3. The normalised
wave number has the formula of kl, the normalised frequency

ω

ce
. For each model, there are

two curves, the lower curve represents the shear component and the higher curve represents
the compression component.

6.2.2 Classical continuum

Similar to previous cases, the equations of motion for classical continuum contains all the
second order derivative terms in Equation (6.8) and (6.9):

384ρ ü = 48E (3u,xx +u,yy +2v,xy) (6.10)

384ρ v̈ = 48E (3v,yy + v,xx +2u,xy) . (6.11)

The classical continuum has linear dispersion relations as seen in Figure 6.9.

6.2.3 Stabilised gradient continuum

Similar to the previous cases, a Padé approximation is used to stabilise the two Equations (6.8)
and (6.9). Using the similar method in Section 5.2.3, if we denote Equation (6.8) as R and
Equation (6.9) as Z , we shall calculate (ignoring all terms (O)(l4)):

R+BR,xx +CR,yy +HZ,xy (6.12)
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Z +FZ,xx +GZ,yy +HR,xy, (6.13)

where B, C, F , G and H are the multipliers that are determined later so that the new expressions
(6.12) and (6.13) shall be stable in the dispersion analysis. The expressions (6.12) and (6.13)
in detailed forms are:

384ρ ü− (384C−8)ρl2ü,yy −384Bρl2ü,xx +(8+384H)ρl2v̈,xy =

E
(
48
(
β

2 +3
)

u,xx +48
(
β

2 +1
)

u,yy +96v,xy
)

+El2




(
15β 2 +45+48

(
β 2 +3

)
B
)

u,xxxx

+
(
90−10β 2 +48

(
β 2 +3

)
C+48

(
β 2 +1

)
B+96H

)
u,xxyy

+
(
15β 2 +5+48

(
β 2 +1

)
C
)

u,yyyy




+El2 [(60−20β
2 +96B+48H

)
v,xxxy +

(
20+20β

2 +96C+96H
)

v,xyyy
]

(6.14)

384ρ v̈+ρl2 (384F −8) v̈,xx +ρl2 (384H +8) ü,xy +384Gρl2v̈,yy =

E
(
48
(
β

2 +3
)

v,yy +48
(
β

2 +1
)

v,xx +96u,xy
)

+El2




(
5β 2 +55+48

(
β 2 +3

)
G
)

v,yyyy

+
(
50β 2 +30+48

(
β 2 +3

)
F +48

(
β 2 +1

)
G+96H

)
v,xxyy

+
(
5β 2 +15+48

(
β 2 +1

)
F
)

v,xxxx




+El2 [(20+20β
2 +96G+48H

)
u,xyyy +

(
60−20β

2 +96F +144H
)

u,xxxy
]
.

(6.15)

Unlike the trapezium case, this time the terms having β 2 are kept to verify the significance of
keeping these terms.

If the arbitrary constants have the following values regarding to H, we would achieve the
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equation set (6.17) and (6.18):

C =
−48

(
β 2 +3

)
H −20

(
β 2 +1

)

96

B =
−48

(
β 2 +1

)
H −20

(
−β 2 +3

)

96

F =
−48

(
β 2 +3

)
H −20

(
−β 2 +3

)

96

G =
−48

(
β 2 +1

)
H −20

(
β 2 +1

)

96

(6.16)

384ρ ü−
(

14448
25

H +
444
5

)
ρl2ü,yy −384

(
101
200

H +
299
480

)
ρl2ü,xx +(8+384H)ρl2v̈,xy =

E
(

3612
25

u,xx +
1212

25
u,yy +96v,xy

)

+El2
((

−44849
1000

− 91203
1250

H
)

u,xxxx +

(
293
10

− 91203
625

H
)

u,xxyy −
(

5051
1000

+
91203
1250

H
)

u,yyyy

)

(6.17)

384ρ v̈+(384H +8)ρl2ü,xy −
(

14448
25

H +
1236

5

)
ρl2v̈,xx −384

(
101
200

H +
101
480

)
ρl2v̈,yy =

E
(

3612
25

v,yy +
1212
25

v,xx +96u,xy

)

+El2
(
−
(

91203
1250

H +
15149
1000

)
v,xxxx +

(
24649
1000

− 91203
1250

H
)

v,yyyy −
(

697
10

+
91203
625

H
)

v,xxyy

)
.

(6.18)
This system, if substituting H = 10 (similar to the trapezium case), under dispersion analysis
in Maple, yields the gradient curves in Figure 6.10.

If H = 1, the gradient compression component shows a more rigorously dispersive be-
haviour towards the discrete compression curve as in Figure 6.11.

6.2.4 Ru-Aifantis theorem application

Next, we will apply the Ru-Aifantis theorem to the fourth order space derivatives Xiiii of the
above set of Equations (6.17) and (6.18) so that we can use C0 continuity (see footnote 1, page
3) to implement the finite element method. The derivation here is very similar to the trapezium
case in Section 5.2.4 and it is described here in detail again to illustrate the versatility of the
Ru-Aifantis theorem to different geometries.
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Fig. 6.10 Relationship between normalised frequency and normalised wave number for the
new gradient continua– 2D hexagonal lattice with γ = π/3 and H = 1. The normalised wave
number has the formula of kl, the normalised frequency
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curves, the lower curve represents the shear component and the higher curve represents the
compression component.
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Fig. 6.11 Relationship between normalised frequency and normalised wave number for the
new gradient continua– 2D hexagonal lattice with γ = π/3 and H = 1. The normalised wave
number has the formula of kl, the normalised frequency
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curves, the lower curve represents the shear component and the higher curve represents the
compression component.
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For Equations (6.17) and (6.18), u and v appear together in the equations. Similar to the
one dimensional case and to the two dimensional trapezium lattice, to apply the Ru-Aifantis
theory to Equations (6.17) and (6.18), the two new auxiliary displacements a and b are defined
as following:

a = su−ml2u,xx −nl2u,yy (6.19)

b = ςv−µl2v,xx −ν l2v,yy (6.20)

where s,m,n,ς ,µ and ν are arbitrary coefficients whose values will be determined later. After
eliminating the Xiiii terms in Equations (6.17) and (6.18), we want to finally achieve this
matrix system after FE discretisation:




M1,1 M1,2 M1,3 0
M2,1 M2,2 0 M2,4

M3,1 0 M3,3 0
0 M4,2 0 M4,4







ü
v̈
ä
b̈


−




K1,1 K1,2 K1,3 0
K2,1 K2,2 0 K2,4

K3,1 0 K3,3 0
0 K4,2 0 K4,4







u
v
a
b


=




fu

fv

0
0


 ,

(6.21)
with M1,2 = M2,1, M1,3 = M3,1, M2,4 = M4,2, K1,2 = K2,1, K1,3 = K3,1 and K2,4 = K4,2.

To construct such matrices, it is required to consider all four equations from which the
matrices are built together. It is obvious that the first and second equations built from the
matrices in Equation (6.21) are based on the two Equations (6.17) and (6.18). On the other
hand, the third and fourth equations are developed from the definition of a and b - Equations
(6.19) and (6.20). In detail, the third equation reads (M3,1ü+M3,3ä)− (K3,1u+K3,3a) = 0,
which can be fulfilled with M3,1ü+M3,3ä = 0 and K3,1u+K3,3a = 0. It is easier to satisfy
these two conditions using the definition of a and b - Equations (6.19) and (6.20).

Consider developing the first equation of the matrix from Equation (6.17), the terms having
fourth derivatives, uxxxx and uyyyy on the right hand side of equation (6.17) are replaced by
the term K1,3a in the first equation of the matrix. Hence, K1,3a needs to contain the form
qa,xx+ra,yy which are equivalent to the main variables by using the definition of a in Equation
(6.19), where q and r are arbitrary coefficients whose values shall be determined later:

qa,xx = qsu,xx −qml2u,xxxx −qnl2u,xxyy

ra,yy = rsu,yy − rml2u,xxyy − rnl2u,yyyy

}
→

qm =
44849
1000

+
91203
1250

H

rn =
697
10

+
91203

625
H.

(6.22)

The condition K1,3 = K3,1 to preserve the symmetry of the system means that K3,1u also
contains qu,xx+ru,yy. Moreover, the assumption that K3,1u+K3,3a= 0 from the third equation
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of the matrix is based on Equation (6.19) leads to K3,1u=qu,xx + ru,yy −
p
l2 u and K3,3 =− p

sl2 a
where {p/q/r} has the same ratio as {s/m/n}. This discussion can be presented as follows:





K3,1 = K1,3

K1,3a has qa,xx + ra,yy

K3,1u+K3,3a ∼
su−ml2u,xx −nl2u,yy −a

l2 = 0

⇒





K1,3a =
(
− p

l2 a+qa,xx + ra,yy

)

K3,1u =
(
− p

l2 u+qu,xx + ru,yy

)

∀
{

p
/

q
/

r
}
= {s/m/n}

. Therefore, the following relationships are obtained:





m
s
=

q
p
→ m =

sq
p
→ qm = q2 s

p
=

44849
1000

+
91203
1250

H

n
s
=

q
p
→ n =

sr
p
→ rn = r2 s

p
=

697
10

+
91203
625

H
(6.23)

and the constants have their values in terms of H according to:

q =

√
1
t

(
44849
1000

+
91203
1250

H
)

;r =

√
1
t

(
697
10

+
91203

625
H
)

;
s
p
= t; (6.24)

m =

√
t
(

44849
1000

+
91203
1250

H
)

;n =

√
t
(

697
10

+
91203

625
H
)
. (6.25)

Applying the same procedure to the auxiliary variable b yields:

ϖµ = ϖ
2 ς

π
=

91203
1250

H +
15149
1000

ϑν = ϑ
2 ς

π
=

91203
1250

H − 24649
1000





⇒





ϖ =

√
1
τ

(
91203
1250

H +
15149
1000

)
;

ϑ =

√
1
τ

(
91203
1250

H − 24649
1000

)
;

ς

π
= τ;

µ =

√
τ

(
91203
1250

H +
15149
1000

)
;

ν =

√
τ

(
91203
1250

H − 24649
1000

)

(6.26)

With a suitable value of H, the auxiliary variables can be rewritten with respect to t, τ , s
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and ς from Equation (6.19) and (6.20) as:

a = su−

√
t
(

44849
1000

+
91203
1250

H
)

l2u,xx −

√
t
(

697
10

+
91203

625
H
)

l2u,yy (6.27)

b = ςv−

√
τ

(
91203
1250

H +
15149
1000

)
l2v,xx −

√
τ

(
91203
1250

H − 24649
1000

)
l2v,yy (6.28)

However, for a clear presentation, the more symbolic set of Equations (6.19) and (6.20) is
displayed for the rest of the derivation. Further variations of Equations (6.19) and (6.20) are:

u =
a
s
+

m
s

l2u,xx +
n
s

l2u,yy (6.29)

v =
b
ς
+

µ

ς
l2v,xx +

ν

ς
l2v,yy, (6.30)

and

sE
t

su−ml2u,xx −nl2u,yy −a
l2 =

sE
t

(
− a

l2 + s
u
l2 −mu,xx −nu,yy

)
= 0 (6.31)

ςE
τ

ςv−µl2v,xx −ν l2v,yy −b
l2 =

ςE
τ

(
− b

l2 + ς
v
l2 −µv,xx −νv,yy

)
= 0. (6.32)

After defining the auxiliary variables in preparation of the Ru-Aifantis theorem applica-
tion, the left hand side of Equation (6.17) is modified by rewriting 384ρ ü using Equation
(6.29) and introducing mρl2ü,xx and nρl2ü,yy into the equation:

LHS = 384ρ ü−
(

14448
25

H +
444
5

)
ρl2ü,yy −384

(
101
200

H +
299
480

)
ρl2ü,xx +(8+384H)ρl2v̈,xy

=
(
ρ ä+mρl2ü,xx +nρl2ü,yy

)
︸ ︷︷ ︸

384ρ ü

−mρl2ü,xx −nρl2ü,yy︸ ︷︷ ︸
new terms added

+

(
n︸︷︷︸

new

−14448
25

H − 444
5

)
ρl2ü,yy

+

(
m︸︷︷︸

new

−384
(

101
200

H +
299
480

))
ρl2ü,xx +(8+384H)ρl2v̈,xy

= ρ ä−mρl2ü,xx −nρl2ü,yy +

(
2n− 14448

25
H − 444

5

)
ρl2ü,yy

+

(
2m−384

(
101
200

H +
299
480

))
ρl2ü,xx +(8+384H)ρl2v̈,xy.
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The terms −mρl2ü,xx and −nρl2ü,yy are then rewritten using Equation (6.29):

LHS =−mρl2
(

1
s

ä,xx +
1
s

ml2ü,xxxx +
1
s

nl2ü,xxyy

)
−nρl2

(
1
s

ä,yy +
1
s

ml2ü,xxyy +
1
s

nl2ü,yyyy

)

+

(
2n− 14448

25
H − 444

5

)
ρl2ü,yy +

(
2m−384

(
101
200

H +
299
480

))
ρl2ü,xx

+(8+384H)ρl2v̈,xy.
(6.33)

It is acceptable to ignore all O
(
l4) terms because:

• The lengthscale l of the microlattice materials is very small.
• Hence, the numerical coefficient of −O

(
l4üi jkl

)
terms are considerably much smaller

than O
(
l2üi j

)
.

Finally, the left hand side of Equation (6.17) (or Equation (6.33)) is approximated as:

LHS =−ρl2
[(

2m−384
(

101
200

H +
299
480

))
ü,xx +

(
2n− 14448

25
H − 444

5

)
ü,yy

]

+(8+384H)ρl2v̈,xy +ρ

[
ä− 1

s
ml2ä,xx −

1
s

nl2ä,yy

]
.

(6.34)

Next, the right hand side of Equation (6.17) is modified; the fourth order derivatives Xiiii

are replaced by using Equation (6.29):

RHS =E
(

3612
25

u,xx +
1212
25

u,yy +96v,xy

)
+El2

(
293
10

− 91203
625

H
)

u,xxyy

−El2




(
44849
1000

+
91203
1250

)

︸ ︷︷ ︸
qm

u,xxxx +

(
5051
1000

+
91203
1250

H
)

︸ ︷︷ ︸
rn

u,yyyy




=E
(

3612
25

u,xx +
1212
25

u,yy +96v,xy

)
+

(
293
10

− 91203
625

H
)

El2u,xxyy

+E
(
qa,xx −qsu,xx +qnl2u,xxyy

)
+E

(
ra,yy − rsu,yy + rml2u,xxyy

)
.

(6.35)
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Equation (6.31) is then added to the right hand side:

RHS =E
[

3612
25

u,xx +
1212
25

u,yy +96v,xy +qa,xx + ra,yy −qsu,xx − rsu,yy +(qn+ rm) l2u,xxyy

]
+

E
(

293
10

− 91203
625
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Similarly the same procedure is applied to both sides of Equation (6.18). First consider
the left hand side of Equation (6.18):
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The right hand side of Equation (6.18) is modified in the following steps:
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Therefore, to be able to use the Ru-Aifantis theorem, Equations (6.17) and (6.18) are
modified into:
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And the other two equations to form the symmetric matrices are as follows; note that two sides
of the equations below are identities of Equations (6.27) and (6.28):
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Figures 6.12 and 6.13 display the dispersion relations of four new Equations 6.37, 6.38,
6.39 and 6.40 compared with ones of the discrete models. In these figures, the gradient model
has four curves for the four variables u, v, a and b. Similar to the trapezium lattice case,
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Fig. 6.13 Dispersion analysis for the gradient continuum with the Ru-Aifantis theorem at
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the curves for the variables a and b are straight lines and their positions can be changed by
changing the values of arbitrary constants in the application of the Ru-Aifantis theorem.

The discretisation schemes for this set of equation is similar to Equation 5.82. We will not
compare the discrete model with discretised continuum of the hexagonal lattice because no
simple and efficient hexagonal spatial scheme can be found. If we use a square element in this
case, it is predictable that there will be large discrepancies. Moreover, it is not the aim of this
thesis to focus on the discretisation scheme.





Chapter 7

Discussion

Based on the results given in previous chapters, this chapter evaluates and discusses the dis-
persion simulation of micro-lattice materials, especially the discrete, classical and gradient
models from one dimension case to different two-dimensional geometries. Through this dis-
cussion, advantages and disadvantages of the gradient continuum are collected and compiled.
Therefore, limitations can be drawn for the gradient continuum and improvement areas can
be defined for future research. The arrangement for this chapter is as follows: Section 7.1
revises and compares all the one-dimensional models, Section 7.2 compiles different aspects
of different models of the three two-dimensional lattices, and finally, Section 7.3 integrates all
discussion points.

7.1 The one-dimensional case

The one dimensional case is the foundation and benchmark to consider further higher-dimension
models. It is important to understand this case with the developments, correspondences and
differences between the discrete model, the classical model and the gradient model. Section
3.4 briefly draws some discussion and conclusion to compare with later chapters. This sec-
tion will add to Section 3.4 a more thorough and systematic observation through the different
stages of the 4-step procedure:

• The discrete model is described in Section 3.1 and defined in a particular way to demon-
strate how the 4-step procedure (see Section 2.7) is used to derive a continuum from a
specific discrete model. It was not chosen on the criterion of the best model to simulate
a realistic spring-mass model. Equation (3.2) describing the dispersion relation of the
discrete model is periodic and has a ceiling frequency for all values of the wave number
k, Ω(k) ≤ ωmax, see Figure 3.2. This property is known as the wave filtering ability
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of materials with underlying microstructures; no frequency higher than the maximum
frequency can propagate through the material.

• The classical model: We can consider the classical model, see Equation (3.9), as the
simplest form of the class of generalised continuum without taking into account the
effect of the microstructural length l. The dispersion equation has a linear form and the
dispersive property of the continuum is absent: the phase velocity is equal to the group
velocity. The straight solid line representing the classical model in Figure 3.2 shows
a large discrepancy with the discrete model curve for higher wavenumbers. By being
discretised in space and time, the classical curves were numerically turned to a periodic
function with respect to the wave number k in Figure 3.3. The newly achieved dispersion
behaviour of the discretised classical model is caused by numerical discretisation, not
by the physical nature of the continuum and is therefore not preferred.

• The gradient model: takes into account of the microstructural length l, see Equation
(3.11), and has various forms depending on the value of S when applied Padé approxi-
mation is applied:

– When S is 1
12 , Equation 3.13 has the same number of the order of spatial deriva-

tives on both sides which leads to the dispersion equation (Equation 3.14) having a

maximum value
E12
ρl2 as the wave number k tends to infinity. This means only fre-

quencies that are lower than this maximum value are allowed to travel through the
defined one dimensional material; when sketched against the wave number k, this
wave filtering behaviour is shown by having a horizontal asymptote. Compared to
the classical continuum, see Figure 3.2, the gradient continuum can represent the
discrete model better on the wave propagation properties.

– When S > 1
12 , the Ru-Aifantis theorem is deployed to reduce the continuity re-

quirement when implementing FEM method . The system now has an extra aux-
iliary variable, see Equation (3.23), increasing the number of degrees of freedom
which is a disadvantage that we have to accept to gain a more robust numerical
implementation.

When discretised, similar to the classical case, the gradient curve has the same first
Brillouin zone as the discrete model when the element length h = l, see Section 3.3;
and, the maximum frequency value of the gradient model is closer to the discrete value.
After all, the procedure produces a gradient model based on the physical properties of
the system (the microstructural length l) and closely captures the dispersive behaviour
of the discrete model.
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Fig. 7.1 Dispersion relations - Gradient continuum discretised with different element lengths
compared with the discrete model

It can be said that the continuum is equivalent to a discretised continuum where the element
lengths are infinite small. Figure 2 in Askes et al. (2008) presented the dispersion relations
with different discretisation lengths (sizes) but did not compare them with the discrete model.
Figure 7.1 demonstrates the effect of the discretisation length choice and compares those dis-
cretised continuum with the discrete model. The element length varies from h = 2l, h = 1.5l,
h = 0.5l and h = l which is the best fit. It can be seen that the range of the Brillouin zone is
inversely proportional to the element length: for e.g. in Figure 7.1, the continuum which was
discretised at h = 2l has the range of the Brillouin zone which is half the one of the discrete
model. This property of the discretised continuum is also valid for the two dimensional case.

7.2 The two-dimensional cases

Similar to the one dimensional case, the order of discussion in this section shall be the suc-
cessive transformation stages for each geometry. It is important to note that the shortest wave-
length that the beam model can mathematically transfer is half the shortest wavelength that
a spring model allows. Different mass schemes and different beam theories can be used for
continualisation and produce results which have the same terms but different coefficients of
the terms. We first compare the dispersion behaviour of the classical and gradient model with
the discrete model for all three geometries (square, trapezium and hexagonal arrangements)
before considering other factors.
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7.2.1 General comparison of the analytical form of stages

• Discrete model: The dispersion relations are periodic for both shear and compression
waves. This is due to the discrete model are already discretised in space. For the square
and trapezium lattices, it is straightforward to derive the discrete model; meanwhile, the
hexagonal lattice requires further manipulations to ensure the symmetry and reduce the
size of the problem. The Bloch model is a good replacement for the discrete model to
find the analytical dispersion relations. The discrete model used in this thesis is only
capable of capturing mechanical waves and rotation waves.

• Generalised continuum: The homogenisation (continualisation) process of the discrete
models produces sets of three equations representing generalised continuum. The new
continuum is often not stable if the Taylor series expansion is utilised up to the fourth
spatial order. At this stage, if we keep the high order gradients, we can classify them
as non-standard continuum with enhanced gradients or if we do not keep the high order
gradients, the continuum belongs to micro-polar theory. The rotational degrees of free-
dom are then eliminated by being approximated and replaced with translational degrees
of freedom; thus, the newly reduced-degree-of-freedom continuum is now classed as a
standard continuum with high order gradients.

• Classical continuum: The analytical forms have second order spatial gradients (first or-
der of strain gradient) and no rotation degrees of freedom. They also show a coupling
between two displacement variables. Therefore, the classical continuum can be consid-
ered as the standard continuum mentioned in Section 2.4 .The dispersion relations of
the classical continuum are linear and turned periodic after space discretisation. Linear
relationships are predictable because, similar to the one dimensional case, the maxi-
mum number of gradient order (combining micro-gradient and spatial gradient order)
are the same for both sides of equations, see Equations (4.17) and (4.18). The classical
dispersion graph can be said to be a tangent line to the discrete dispersion graph or the
classical continuum estimates an inaccurate upper bound dispersion relations.

• Gradient continuum: For the square lattice, we have the gradient model in Lombardo
and Askes (2012) to compare with the newly derived model. Figure 4.4 shows that the
gradients of the dispersion graphs of both gradient models change with regard to the
wavenumber k instead of being constant as the gradients of the classical continuum.
However, regarding the terms, the model in Lombardo and Askes (2012) (equations 14a
and 14b) is very similar to the one dimensional case with S = 1/12, see Equation (3.13),
in the view that there are no high strain gradients but inertia-gradients. Due to this
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propery, the dispersion curves have maximum frequency values (horizontal asymptotes)
and it is safe to say that the Lombardo and Askes (2012) model has an apparent wave
filtering effect. On the other hand, the square lattice model developed in this thesis, see
Equations (4.23) and (4.24), has a few more terms but most importantly the fourth order
spatial gradients (second order strain gradient), which results in a dispersion analysis
having a diagonal asymptote as k →. It can be seen that the newly derived equations
lose the opportunity to have a horizontal asymptote but they give better approximation
of dispersion relations in the first Brillouin zone to the discrete model than the classical
model and the model in Lombardo and Askes (2012). After space discretisation, like
the classical continuum, the dispersion relation of the discretised gradient continuum
turns periodic. Similarly, for the trapezium and diamond lattices, the slope (horizontal
or diagonal) of the asymptote when the wavenumber tends to infinity depends on how
the terms are selected. When the high order gradient terms Xiiii are kept, application
of the Ru-Aifantis theorem (see footnote1, page 14) is required to enable a robust C0

continuity numerical discretisation.

7.2.2 Different beam theories and mass schemes used during homogeni-
sation

Two mass schemes are investigated in this thesis: the lumped mass and consistent mass; and
two popular beam theories: Euler beam and Timoshenko beam theories. It is reported that the
consistent mass scheme and Euler beam often overestimate and the lumped mass and Timo-
shenko beam theory often underestimate the simulation results. Hence, two combinations are
chosen for the homogenisation processes: Euler beam theory together with lumped mass and
Timoshenko beam theory with consistent mass scheme. In all three lattices, both combinations
produce qualitatively similar equations with different coefficients for the terms.

7.2.3 Effects of the propagation angle

Different from the one dimensional case, the scalar wave number k becomes the magnitude
of a vector

−→
k = (k cosγ,k sinγ). For the two dimensional discrete models, expectedly, as the

propagation angles γ varies, the dynamically linear wave dispersion pattern (the frequency
of compression and shear component against the wave number k) repeats periodically for the
discrete model due to the geometric symmetry of the lattices, e.g. the dispersion graph is the
same for γ = 0 and γ = 2π or all angles γ = γ0 + n2π where n = 0,1,2,3... for all periodic
lattices. Moreover, there are special propagation angles γ that the dispersion graph would
exhibit special properties such as symmetric propagation (same frequency curves for shear
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and compression wave components) or when the wave number vector
−→
k is perpendicular to

the beams, the shear wave will disappear or its magnitude is significantly smaller than that
of the compression components. A desired continuum model will demonstrate isotropic and
anisotropic propagation behaviour similar to the discrete model when the forces are exerted at
those special angles.

(a) γ = π/4

g=90°

F

(b) γ = π/2

Fig. 7.2 The square lattice with different propagation angles γ of external waves

• Square lattice: the wave pattern repeats every π/4, symmetric propagation (same fre-
quency curve for shear and compression waves) is seen at angles (2n+ 1)π/4 where
n = 0,1,2,3..., the shear wave component disappears for γ = nπ/2. Two Figures 7.2a
and 7.2b sketch the two different specific angles at which the wave strikes the model.
This angle determines the wave number vector

−→
k . Table 4.1 and Table 4.2 display the

symmetry and asymmetry dispersion behaviour at the two special angles of the discrete,
classical and gradient models. The magnitudes of shear and compression components of
both classical and gradient models are distributed as predicted from the discrete model.

• Trapezium lattice: the wave pattern repeats every π . Let α ̸= π/4 be the opening angle
between two intersecting beams. There is no propagation angle where the shear and

compression components have the same frequency magnitude. When γ =

(
n+

1
2

)
π −

α

2
or γ = (n+1)π − α

2
, the shear wave component has very small magnitude, as ex-

pected, because the wave propagates perpendicular to the beam, see Figure 5.8 for
γ = π/3. Table 5.2 demonstrates the mentioned behaviour at π/3 where the shear wave
component of the gradient model starts with a small slope. As the wave number k in-
creases at these particular angles, the gradient model cannot capture the low magnitude
shear wave component accurately.

• Hexagonal lattice: for such a regular hexagon shape, the wave dispersion repeats every
π/6. Figures 6.12 and 6.13 depicts how the dispersion behaves at the two boundaries
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of the repetition region. There is no angle where the compression and shear wave have
the same frequency curves. When the shear wave magnitude is small, this effect causes
some numerical errors when dispersion analysis is carried out for discretised models
because of rounding errors.

7.2.4 Different element sizes and shapes for the finite element model

After deriving the gradient continuum, a discretisation scheme is applied where finite element
sizes and shapes are chosen to best estimate a given problem. If is preferred to have a com-
parable finite element mesh with the discrete model which allows applying similar boundary
conditions.

• Square lattice: if we choose the finite element length equal to the minimum length-scale
of the discrete beam model, we can accurately compare the frequency curves of the
classical continuum and the gradient continuum after discretisation. Table 4.1 shows
no difference between the space-only discretised and space-and-time discretised model.
If the finite element length is increased, the gradient continuum only closely captures
the dispersion behaviour at low range of wave number k. The gradient continuum in
Figure 7.3 has the finite element vertical and horizontal lengths twice the length-scale
of the discrete model and results in having the period range of wave number k twice
longer than the discrete model. This behaviour is very similar to the one-dimensional
case. However, the change in element size would not affect the dispersion curve if it
is calibrated with the direction of the wave propagation angles. Figure 7.4 displays the
dispersion relation of a space discretised gradient continuum using square elements with
vertical length hv = 2l and horizontal length hh = l when the propagation angle γ = π/2.
We can see even though the element size is larger this time, the Brillouin zone period for
the discretised continuum is the same as the one of the discrete model. We can also have
larger vertical lengths for the square element but still have the same dispersion curve for
the same propagation angle. This behaviour can help reduce the computation cost for
certain problems.

• Trapezium lattice: if the continuum can be discretised numerically stably by the chosen
discretisation scheme, there is no distinguishable difference between the space discre-
tised results and that of space and time discretisation. Table 5.2 shows that different
element shapes can affect how the continuum (after being disretised) behaves in disper-
sion. Even though the dispersion curves of both discrete model and continuum model
at the representative volume element level are closely matching, the application of same
boundary conditions on both models when there are more elements would be difficult.
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Fig. 7.3 The square lattice with the wave propagation angle of γ = π/2 and the square element
shape has vertical length hv = 2l and horizontal length hh = 2l. For each model, there are
two curves, the lower curve represents the shear component and the higher curve represents
the compression component, except the discrete model has an extra curve which does not
originate from the origin represents the rotational degree of freedom.

Fig. 7.4 The square lattice with the wave propagation angle of γ = π/2 and the square element
shape has vertical length hv = 2l and horizontal length hh = l. For each model, there are
two curves, the lower curve represents the shear component and the higher curve represents
the compression component, except the discrete model has an extra curve which does not
originate from the origin represents the rotational degree of freedom.
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The diamond finite element shape allows the application of boundary conditions and the
energy paths to the continuum model to be more similar to the discrete model.

In conclusions, the shape and size of discretisation elements play important roles to help
mimic the boundary conditions of the discrete model.

A closer look at the classical model after space discretisation, with lumped mass scheme
and the spatial scheme of Equations (4.23) and (4.24), shows that the shear waves have zero
frequency magnitudes with respect to all wave numbers. Especially, after space and time
discretisation, the shear waves reappear but at a very small magnitude. This may be caused
by the chosen time and spatial discretisation scheme. This result gives a message to be careful
when using the continuum model for problems where a single frequency force is exerted on
the model. Further investigations into this particular phenomenon could be considered in the
future.

7.3 Gradient continuum - Advantages and disadvantages

How closely can the gradient continuum match the discrete model?
It is understandable that the analytical forms of all continuum would not be able to produce

the periodic dispersion curves of the discrete model because the discrete model is already
discretised in space. However, any improvements on the stable continua to get closer matches
to the dispersion curves in the first Brillouin zone of the discrete models are preferred since
then the newly modified continua possess natural dispersion relations instead of numerical
dispersion. Continua enhanced by high order gradients give better dispersive behaviour than
the classical continua.

Once being discretised in space, the continuum models are closest to the discrete model
when the finite element length is equal to the discrete lengthscale in the one dimensional case
and similar element shape in the two dimensional cases. This implies that there is no benefit in
using smaller elements. The discretised gradient continua often give better estimations of the
maximum frequency than the discretised classical continua. Specific dispersion behaviours at
certain propagation angles for each lattice are preserved well by the gradient continuum.

Element shapes and lengths dictate how easy similar boundary conditions to the ones of
the discrete models are applied to the continuum model. For example, in the trapezium case,
the diamond element shape (on the right in Figure 5.7) distributes the mechanical waves more
accurately in Table 5.2 than the rectangle element shape (the middle in Figure 5.7) This may
be corrected by changing the chosen space and time discretisation schemes.

In some cases, it is difficult to apply the same boundary conditions to the discrete model
and the continuum. However, calibration of the element shape and size to a specific problem
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would improve the performance gradient continua.

When is it beneficial to use continua enhanced with high-order gradients?
Based on the results given in previous chapters and the discussion points, we list some

cases where it is beneficial to use the gradient continuum:

• When the rotational wave can be ignored, using the gradient continuum can reduce the
scale of problems significantly. Or, the rotation degrees of freedom can be ignored
initially then get approximated to appear in the system again.

• When using with larger FE elements than the length-scale, the gradient continuum is
only reliable for low wave number ranges (see Figure 7.3) or the first Brillouin zone.

• If mathematical manipulation of the discrete model to obtain a stable efficient gradient
continuum can be accomplished, the gradient continua should be used instead of the
classical continuum.

• If the discretisation element shape and size can be calibrated with the original arrange-
ment of the continuum and the propagation angles, gradient continua could save on
computational cost.
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Conclusion

The thesis introduces a four-step procedure to obtain a stable and efficient continuum en-
hanced with high-order gradients to simulate dynamically linear wave dispersion behaviours
from a pre-defined physical discrete model. The method is first demonstrated with the one-
dimensional spring-mass system. Then, it is applied to the square, trapezium and hexagonal
lattices which are the underlying structures of microstructural materials. The newly derived
continua must satisfy three requisite criteria: unconditional stability for dispersion relations
while displaying a better dispersive behaviour than the classical continuum, robustness with
parameters derived from the physical model and efficiency for easy numerical implementation
which require only C0 continuity for spatial discretisation. The research succeeds in deriving
a continuum model which has separate numerical length-scale h and physical length-scale l.

The newly derived continua were compared with the discrete models and classical models.
It has been shown that the gradient continua take into account of the inner length-scale of the
microstructural material; hence, they can analytically describe the dispersion behaviours better
than classical continuum. Moreover, the discretisation stage is also inspected using different
element shapes and sizes to observe the calibration possibility of the discretisation scheme to
certain problems.

8.1 Further research

During the time the thesis was carried out, there are a few areas of research that help under-
stand the gradient continuum further but have not been investigated in this thesis:

• Investigation on the analytical solutions of discretised continuum for the hexagonal lat-
tice. There is no effective space discretisation shape function for a hexagonal shape in
the literature at the moment. Moreover, a short test for which sizes for a square element
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to capture the periodic dispersion curve of the discrete model should be carried out.

• Investigation of the implementability of the gradient continuum with the boundary ele-
ment method.

• A new way to incorporating the rotational degrees of freedom with the high-order gra-
dients while still maintaining the stability of dispersion curve.

• Optimisation on the coefficients of the Padé approximation. In this thesis, the one di-
mensional case is optimised to have H = 1

12 ; meanwhile, the two dimensional cases are
much more mathematically complicated, for e.g. a rough estimation of the range for H
in the trapezium case is achieved but the best value for H to achieve the best fit can be
considered in future works.

• Three-dimensional microlattices: A better understanding for the one and two dimen-
sional cases opens the door to more practical three-dimensional microstructure.
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Appendix A

The Timoshenko beam theory

The Timoshenko beam theory (Timoshenko, 1953) has the following stiffness matrix:

KTimo =




EA
L

0 0 −EA
L

0 0

0
12EIz

L3 (1+Φ)

6EIz

L2 (1+Φ)
0 − 12EIz

L3 (1+Φ)

6EIz

L2 (1+Φ)

0
6EIz

L2 (1+Φ)

(4+Φ)EIz

L(1+Φ)
0 − 6EIz

L2 (1+Φ)

(2−Φ)EIz

L(1+Φ)

−EA
L

0 0
EA
L

0 0

0 − 12EIz

L3 (1+Φ)
− 6EIz

L2 (1+Φ)
0

12EIz

L3 (1+Φ)
− 6EIz

L2 (1+Φ)

0
6EIz

L2 (1+Φ)

(2−Φ)EIz

L(1+Φ)
0 − 6EIz

L2 (1+Φ)

(4+Φ)EIz

L(1+Φ)




(A.1)
where A is the beam cross-section area, E the elastic modulus, Iz is the second moment of area
for the beam cross-section, L the beam length, and

Φ =
12EIz

sAGL2 (A.2)

where s is the shear factor (or Timoshenko shear coefficient), G is the shear modulus.
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The consistent mass matrix of the Timoshenko beam theory is:

MTimo =




1
3

ρAL 0 0
1
6

ρAL 0 0

0
ρALm1

(1+Φ)2
ρALm2

(1+Φ)2 0
ρALm3

(1+Φ)2 − ρALm4

(1+Φ)2

0
ρALm2

(1+Φ)2
ρALm5

(1+Φ)2 0
ρALm4

(1+Φ)2 − ρALm6

(1+Φ)2

1
6

ρAL 0 0
1
3

ρAL 0 0

0
ρALm3

(1+Φ)2
ρALm4

(1+Φ)2 0
ρALm1

(1+Φ)2 − ρALm2

(1+Φ)2

0 − ρALm4

(1+Φ)2 − ρALm6

(1+Φ)2 0 − ρALm2

(1+Φ)2
ρALm5

(1+Φ)2




(A.3)

where ρ is the material density and

m1 =
13
35

+
1Φ

10
+

Φ2

3
(A.4)

m2 =

(
11

210
+

11Φ

120
+

Φ2

24

)
L (A.5)

m3 =
9

70
+

3Φ

10
+

Φ2

6
(A.6)

m4 =

(
13

420
+

3Φ

40
+

Φ2

24

)
L (A.7)

m5 =

(
1

105
+

Φ

60
+

Φ2

120

)
L2 (A.8)

m6 =

(
1

140
+

Φ

60
+

Φ2

120

)
L2 (A.9)

(A.10)

These two matrices are used in the continualisation processes in Appendices B.1, C.1 and
D.1.



Appendix B

Additional notes on the square lattices

B.1 Continualisation results of the Timoshenko beam the-
ory and consistent mass matrices

This section presents the results of the continualisation process using the Timoshenko beam
theories and consistent mass matrices in Appendix A. The following three equations have
similar format to the set of equations (4.10), (4.11) and (4.12).

2
(
1+3β

2)
ρ ü = E

((
1+3β

2)u,xx +β
2u,yy +β

2
θ,y
)

+
El2

12
((

1+3β
2)u,xxxx +β

2u,yyyy +2β
2
θ,yyy

) (B.1)

2
(
1+3β

2)
ρ v̈ = E

((
1+3β

2)v,yy +β
2v,xx −β

2
θ,x
)

+
El2

12
((

1+3β
2)v,yyyy +β

2v,xxxx −2β
2
θ,yyy

) (B.2)

δ

6Eβ 2

(
1+3β

2)
ρl2

θ̈ +2θ =

v,x−u,y−
l2

6

[(
1− 3

2
β

2
)
(θ,xx +θ,yy)− v,xxx +u,yyy

] (B.3)

B.2 Rephrasing the rotational degree of freedom

This section provides the derivation process to approximate and replace the rotational degree
of freedom with the translational degrees of freedom. The result of this section is used in
Section 4.2.1. Different from the method used in Lombardo and Askes (2012), we only use
Equation (4.12) to approximate θ . We take the derivatives d

d2tt , d
d2xx and d

d2yy of both sides of
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Equation (4.12) and rewrite them as follows:

2θ̈ = v̈,x − ü,y −
l2

6

(
θ̈,xx + θ̈,yy − v̈,xxx + ü,yyy −

δ
....
θ

Eβ 2 ρ

)
(B.4)

2θ,xx = v,xxx −u,xxy −
l2

6

(
θ,xxxx +θ,xxyy − v,xxxxx +u,xxyyy −

1
Eβ 2 ρθ̈,xx

)
(B.5)

2θ,yy = v,xyy −u,yyy −
l2

6

(
θ,xxyy +θ,yyyy − v,xxxyy +u,yyyyy −

δ

Eβ 2 ρθ̈,yy

)
(B.6)

The right hand sides of above equations are substituted into Equation (4.12) to replace θ̈ ,
θ,xx and θ,yy. Ignoring all O

(
l4) terms in the new equation of Equation (4.12), we can rewrite

the rotational displacement θ with respect to u and v as Equation (4.14).
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Additional notes on the trapezium lattices

C.1 Continualisation results of the Timoshenko beam the-
ory and consistent mass matrices

This section presents the results of the continualisation process using the Timoshenko beam
theories and consistent mass matrices in Appendix A. The following three equations have
similar format to the set of equations (5.14), (5.15) and (5.16).

6720
(
3β 2 +1

)
ρ ü+

E




−1260
(
10β 2 +3

)
(3u,xx +u,yy)−2520

(
2β 2 +1

)
v,xy

− l2

4

(
10β 2 +3
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(315(u,xxxx +2u,xxyy)+35u,yyyy)

−105l2 (2β 2 +1
)
(3v,xxxy + v,xyyy)

−1680β 2θy −630β 2l2θ,xxy −70β 2l2θ,yyy




= 0
(C.1)

6720
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3β 2 +1

)
v̈+

E




−1260
(
6β 2 +1

)
(v,yy +3v,xx)+−2520

(
2β 2 +1

)
u,xy

− l2

4

(
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[315(v,xxxx +2v,xxyy)+35v,yyyy]

−105l2 (2β 2 +1
)
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+5040β 2θ,y+630β 2l2θ,xyy +630β 2l2θ,xxx




= 0
(C.2)

16ρl2δ

β 2 θ̈ +E840
(
3β 2 +1

)
(4θ+u,y−3v,x)+

El2 (3β 2 +1
)[

70
(
−3β 2 +2

)
(3θ,xx +θ,yy)

]

+El2 (3β 2 +1
)
[315(u,xxy − v,xyy)+35(3u,yyy − v,xxx)] = 0

(C.3)
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C.2 Rephrasing the rotational degree of freedom

There are two ways to eliminate the rotational degree of freedom: the method used in (Lom-
bardo and Askes (2012)) and the following methods: For easy formulation and simple deriva-
tion, we ignore all terms related to l4 since l is at the microscale, l4 will have the numerical
value negligible compared to other terms. Differentiating both sides of Equation (5.16) twice
with respect to time:

θ̈ =
3
4

v̈,x−
1
4

ü,y−l2
(

ρ

12λ 2E
....
θ +

3
32

ü,xxy −
3

32
v̈,xyy +

1
96

ü,yyy −
3

32
v̈,xxx +

1
8

θ̈,xx +
1
24

θ̈,yy

)

︸ ︷︷ ︸
negligible

(C.4)
We can ignore the terms related to O

(
l2) in Equation (C.4) because when we substitute back

into Equation (5.16), these terms then incur terms of O(l4) . The same procedure is applied
when differentiating Equation (5.16) twice with respect to x and twice with respect to y, re-
spectively:

θ,xx =−1
4

u,xxy +
3
4

v,xxx (C.5)

θ,yy =−1
4

u,yyy +
3
4

v,xyy (C.6)

Substitute the three Equations (C.4), (C.5) and (C.6) into equation (5.16) and drop all O
(
l4)

terms, we can rewrite θ with respect to other linear variables as in Equation (5.18).

C.3 Find values of H for Padé approximation

During the stabilisation process using Padé approximation (see section 5.2.3), we have set up
some conditions for arbitrary constant relative to H, see Equations (5.25). However, to find
the suitable value ranges for H that ensure the dynamic stability for all propagation angles
and all positive wave numbers is a labourious and complicated task and would require the
aid of symbolic mathematic softwares. The quickest way is the "trial and error" method. In
this section, we describes the trial and error method and try to give the best details whenever
possible without writing out lengthy equations.
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First, we rewrite the two Equations (5.27) and (5.28).

2ρ ü−
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3
32
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H
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16
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(C.7)

2ρ v̈−
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11
32
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(
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(
1
8
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3
8
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3
4

u,xy

)
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+El2
(
−
(

1
384
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v,yyyy −
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3

128
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9H
16
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v,xxxx +

(
1

64
− H

8

)
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(C.8)

Substituting the plane wave equations (4.13) for u and v with x = 0, y = 0 and t = 0 as
we normally do for dispersion analysis, we obtain an eigen value problem for (U,V ). The
determinant K of the matrix is a biquadratic equation of the angular frequency ω:

K = A(H,cos(γ),k)ω4 +B(H,cos(γ),k)ω2 +C(H,cos(γ),k) (C.9)

where A, B and C are coefficients which are functions of (k,cosγ,H) where k is the wave
number, γ is the propagation angle. Note that cos(γ) varies in the range [−1,1].

To have non-trivia real solutions for ω , the coefficients in the equation of determinant K
must satisfy conditions:

• A ̸= 0

• Vieta theory (for quadratic equations) to have both positive roots: −B
A
> 0 and −C

A
> 0

To find the proper range of H that ensures stable dispersion analysis is out of the scope of
this thesis but would be beneficial to optimise the Padé approximants. However, it is easier
to check if a certain value of H is suitable for an extensive range of positive wave numbers
by substituting that value to K. With the aid of symbolic mathematical solvers, we can easily
obtain four analytical solutions ω for K = 0 and the four solutions (of which two equations
will give positive values )will be functions of wavenumber k and the propagation angle γ .
Hence, with the value of H chosen, we can plot the two positive solutions with respect to the
propagation angle γ varying from 0 to 2π and the wave number k from 1 to 100 covering the
first Brillouin zone. Figure C.1 display the plot for two positive solutions of ωs at H = 10 and
infers that the values of square of frequency ω increase as the wavenumber k increases and
are stable(positive) for a large range of wavenumbers. This agrees with the two-dimensional
graphs of dispersion analysis, in particular Figure 5.5.
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(a) The discrete model (b) The continuum model

Fig. C.1 Dispersion relations (frequency value ω) - Gradient continuum for all possible values
of the propagation angles γ and varying wavenumber k for H = 10
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Additional notes on the hexagonal lattices

D.1 Continualisation results of the Timoshenko beam the-
ory and consistent mass matrices

This section presents the results of the continualisation process using the Timoshenko beam
theories and consistent mass matrices in Appendix A. The following three equations have
similar format to the set of equations (6.4), (6.5) and (6.6).

13440
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ρ ü+

E
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(
6β 2 +1

)
v,xx −3360

(
2β 2 +1

)
u,xy

−525l2 (6β 2 +1
)
(v,xxxx +2v,xxyy)−175l2 (34β 2 +11

)
v,yyyy

−700l2 (2β 2 +1
)
(u,xyyy +3u,xxxy)

+6720β 2θ,y+2520β 2l2θ,xyy +2520β 2l2θ,xxx


= 0

(D.2)
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70
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(D.3)
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D.2 Rephrasing the rotational degree of freedom

This section provides the derivation process to approximate and replace the rotational degree
of freedom with the translational degrees of freedom. For easy formulation and simple deriva-
tion, we ignore all terms related to (l4) since l is at the microscale, (l4) will have the numerical
value negligible compared to other terms. Differentiating both sides of Equation (6.6) twice
with respect to time:

θ̈ =
3
4

v̈,x−
1
4

ü,y−l2
(

ρ

12λ 2E
....
θ +

3
32

ü,xxy −
3

32
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1
96
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3

32
v̈,xxx +

1
8

θ̈,xx +
1
24

θ̈,yy

)

︸ ︷︷ ︸
negligible

(D.4)
We can ignore the terms related to l2 in Equation (D.4) because when we substitute back
into Equation (6.6), these terms then incur terms of l4 . The same procedure is applied when
differentiating Equation (6.6) twice with respect to x and twice with respect to y, respectively:

θ,xx =−1
4

u,xxy +
3
4

v,xxx (D.5)

θ,yy =−1
4

u,yyy +
3
4

v,xyy (D.6)

Substitute the three Equations (D.4), (D.5) and (D.6) into equation (6.6) and drop all (l4)

terms, we can rewrite θ with respect to other linear variables as in Equation (6.6).
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