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ABSTRACT 

 

This thesis investigates the electromagnetic performance of novel stator wound field (WF) 

machines and switched flux permanent magnet (SFPM) machines for high performance and 

low-cost applications. The analyses are validated by finite element (FE) calculations and 

experiments. 

 

The SFPM machine exhibits the advantages of high torque density, robust rotor structure and 

easy thermal management. Among all SFPM machines, the sandwiched SFPM machine 

shows relatively high torque density. In this thesis, the torque density of the sandwiched 

SFPM machine is improved further by employing V-shaped magnets. Additionally, the usage 

of PMs in the V-shaped sandwiched SFPM machine is reduced. Thus, compared with the 

conventional SFPM machines, the PM material usage efficiency of this machine is much 

higher. 

 

In cost sensitive applications, the material price of SFPM machine using rare-earth PMs is 

high. Thus, DC coils can replace high-cost rare-earth PMs in stator-PM machines to 

significantly reduce the material cost. In this thesis, several new stator-WF machine 

topologies derived from existing stator-PM machines are proposed. The investigations of the 

stator-WF machines are mainly focused on a WF switched flux (WFSF) machine and a non-

overlapping stator-WF synchronous (NSWFS) machine. It is found that the proposed WFSF 

machine shows lower material cost, higher torque density and better material usage efficiency 

compared with the conventional WFSF machine. The proposed NSWFS machine employing 

non-overlapping winding and salient-pole rotor exhibits higher torque density and lower 

torque ripple than the segmented rotor NSWFS machine. 

 

Compared with three-phase stator-WF machines, the single-phase stator-WF machine has 

simpler control circuit, and consequently, even lower cost can be achieved. Some novel 

single-phase stator-WF machines are proposed in this thesis. Compared with the conventional 

single-phase stator-WF machines, these machines have the merits of lower material costs, 

better material usage efficiencies and lower iron losses. 
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NOMECLATURE 
 

Bm Amplitude of flux density (T) 

Dri Rotor inner diameter (mm) 

Dro Rotor outer diameter (mm) 

Dsf Shaft diameter (mm) 

Dsi Stator inner diameter (mm) 

Dso Stator outer diameter (mm) 

f Operation frequency (Hz) 

h Slot depth (mm) 

Ia RMS phase current (A) 

Id d-axis current (A) 

If Field current (A) 

Iq q-axis current (A) 

JPM Eddy current density of permanent magnet (A/mm2) 

kpf Winding packing factor (effective copper area/slot area) 

kw Winding factor 

ke Excessive loss coefficient 

kh Hysteresis loss coefficient 

kc Eddy-current loss coefficient 

L Machine axial length (mm) 

Lend Phase end-winding length (mm) 

n Harmonic order 

Na Number of turns per phase 

Nat Total number of turns per armature coil 

Nft Total number of turns per field coil 

p Pole number of a machine 

PCu Copper loss (W) 

Piron Iron loss (W) 

PPM Permanent magnet loss (W) 

Ra Phase resistance (Ω) 

Rat Total armature winding resistance (Ω) 

Rft Total field winding resistance (Ω) 
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Rr Rotor outer radius (Ω) 

Rs Stator inner radius (Ω) 

S Area of one stator slot (mm2) 

Sa Phase slot area (mm2) 

T Electromagnetic torque (Nm) 

Tr Torque ripple (%) 

Tmax Maximum torque (Nm) 

Tmin Minimum torque (Nm) 

Tavg Average torque (Nm) 

Ua Phase terminal voltage (V) 

Ud d-axis voltage (V) 

Uq q-axis voltage (V) 

Wpm PM thickness (mm) 

Ws Slot width (mm) 

Wsd Sandwiching pole thickness (mm) 

Wt Tooth width (mm) 

Wy Yoke thickness (mm) 

ρCu Electrical resistivity of copper (Ω∙mm) 

ρPM Electrical resistivity of permanent magnet (Ω∙mm) 

Ψd d-axis flux-linkage (Wb) 

Ψpm PM excited flux-linkage (Wb) 

Ψq q-axis flux-linkage (Wb) 

𝜑𝑐 Current angle (o) 

ω Electrical angular velocity (Rad/s) 
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CHAPTER I. GENERAL INTRODUCTION 
 

Permanent magnet (PM) machines are of high torque density and high efficiency, and now 

widely used in automotive, aerospace and wind power applications etc. However, since >80% 

rare-earth magnet raw materials are in China, there is a major concern on its resources and 

prices, as well as its availability. Hence, it is important to investigate novel machine 

topologies using less/no rare-earth permanent magnet materials. 

With the development over a hundred years, numerous of electrical machine topologies 

have been proposed and investigated. Among them, brushless PM machine has the 

advantages of high torque density, higher efficiency and high power factor. Moreover, this 

type of machine shows long service life and high reliability without brushes/slip rings. 

However, since PMs are mounted on the rotors, the thermal capability and rotor integrity of 

conventional rotor-PM machines are relatively poor. Therefore, if the machine is applied for 

high-speed appliance such as a compressor, protecting sleeve of high strength has to be 

employed. This may lead to the increase in material and manufacture costs. Moreover, poor 

thermal capability will limit the maximum output power of the conventional PM machine. 

To overcome these drawbacks, several types of stator-PM machines have been proposed. 

In general, there are three categories of machines having permanent magnets on stator, 

namely, doubly-salient PM (DSPM) machine, flux-reversal PM (FRPM) machine and 

switched flux PM (SFPM) machine [ZHU11]. All of these machines employ salient-pole 

stators and rotors. It is notable that their windings are all non-overlapping and concentrated. 
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Fig. 1.1. Topology of a DSPM machine 

 

The PMs of a DSPM machine are mounted in the stator back-iron [SAR94] [LIA95], as 

shown in Fig. 1.1. Besides the advantages of easy thermal management and robust rotor 

structure, this machine also shows relatively low PM usage compared with other stator-PM 

machines. However, 3-phase back-EMFs of this machine are unbalanced, non-sinusoidal, and 

asymmetric. Moreover, its flux-linkage is unipolar. In general, a bipolar flux linkage can 

result in better utilisation of the magnetic circuit. For a unipolar flux linkage machine, in 

order to achieve similar performance to the bipolar flux linkage machine, the peak value 

needs to be very high and consequently the magnetic saturation of a unipolar machine is 

likely to be severer than that of a bipolar machine. This means the torque capability of the 

unipolar machine is limited. These disadvantages will result in high torque ripple and low 

torque density in a DSPM machine. 
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Fig. 1.2. Topology of a FRPM machine 

 

The PMs of a FRPM machine are mounted on the surface of stator teeth [DEO97] 

[WAN99], as shown in Fig. 1.2. This machine exhibits relatively high torque density due to 

its bipolar flux-linkage. Compared with the DSPM machine, this machine shows lower torque 

ripple due to symmetrical and balanced 3-phase back-EMFs. However, the disadvantages of 

this machine are obvious, such as potential irreversible demagnetisation and large radial 

magnetic force on PMs. 
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Fig. 1.3. Topology of a SFPM machine 

 

The PMs of a SFPM machine are sandwiched in the stator teeth, as shown in Fig. 1.3. 

Compared with the DSPM and FRPM machines, this machine shows the advantages of 

higher torque density and lower torque ripple. The SFPM machines will be reviewed in 

following sections. 

 

1.1.Switched flux permanent magnet machine 

 

The operation principle of SFPM machines, i.e., switched flux principle, was firstly 

introduced in 1955 [RAU55]. Fig. 1.4 shows the topology of the first stator-PM machine 

which was proposed as a single-phase power generator in [RAU55]. Due to the limitation of 

the PM material in 1950s, this machine can hardly meet the requirements in practical 

applications. 
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Fig. 1.4. Topology of the first SFPM machine [RAU55]. 

 

With the development of the rare-earth magnet material, power device and control theory, 

many SFPM machines are proposed and investigated within last 30 years. Based on different 

stator lamination profiles, three-phase radial-field rotary SFPM machines can be classified as: 

 

 Conventional SFPM machine [HOA97], Fig. 1.3, Fig. 1.5; 

 Multi-PM sandwiched SFPM machines [FEI06][LU11], Fig. 1.6; 

 Multi-tooth SFPM machine [ZHU08][CHE08], Fig. 1.7; 

 E-core SFPM machine [CHE11], Fig. 1.8; 

 C-core SFPM machine [CHE11b], Fig. 1.9; 

 Segmented rotor SFPM machine [ZUL12], Fig. 1.10. 
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Fig. 1.5. Topology of alternate poles wound SFPM machine. 

 

 

Fig. 1.6. Topology of multi-PM sandwiched SFPM machine. 
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Fig. 1.7. Topology of multi-tooth SFPM machine. 

 

 

Fig. 1.8. Topology of E-core SFPM machine. 
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Fig. 1.9. Topology of C-core SFPM machine. 

 

 

Fig. 1.10. Topology of segmented rotor SFPM machine. 
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Although in segmented rotor SFPM machine, PMs are not sandwiched in stator teeth, this 

machine can be classified as a SFPM machine according to its operation principle. Compared 

with the conventional SFPM machine having all and alternate poles wound, the multi-tooth, 

E-core and C-core SFPM machines shows less PM usages and higher torque densities under 

low electric loadings [ZHU11]. The sandwiched SFPM machine also shows higher torque 

density than the conventional SFPM machine [ZHO13]. The torque density can be increased 

and PM usage can be reduced in sandwiched SFPM machine by employing improved PM 

placement, and this will be carried out in this thesis. 

The competitiveness of rare-earth SFPM machine is limited in cost sensitive applications 

in terms of material cost. By replacing rare-earth PMs with ferrite PMs, the material cost of 

SFPM machine can be significantly reduced. However, the performances, such as torque 

density and demagnetization withstand capability, of the SFPM machine employing ferrite 

PMs are worse than the SFPM machine employing rare-earth PMs [FAS14]. 

High cost rare-earth magnets in SFPM machines can always be replaced by DC coils, 

resulting in wound field switched flux (WFSF) machines. Compared with the PM machines, 

this machine shows the merits of low material cost and no demagnetization of PMs. In 

following section, stator wound field machines will be reviewed. 

 

1.2.Stator wound field machines 

 

Wound field (WF) machines are emerged in various applications, such as domestic 

application [POL99], [POL03], [POL03b], [POL06], electric vehicles [ROS06], [FRI10], 

[SUL11], [POL06b], aerospace applications [GRI12], [LUO09], [LIU12], wind turbine 

generators [RIB07], [POL06], [LI08], [QU13], and high temperature superconducting 

applications, [SCH08], [LUO09], [QU13], [HWA14]. Therefore, many investigations on WF 

machines have been carried out [BAS11], [BAS12], [MI09], [DOR11], [TRA12], [YAM11], 

[GAU12], [GAU13]. 

Basically, rotary WF machines can be classified as rotor-WF machines and stator-WF 

machines. No brushes/slip rings are required in the stator-WF machines. Thus, the rotor 

robustness and reliability of stator-WF machine have potential to be better and the 

maintenance cost has potential to be lower compared with the rotor-WF machines. Moreover, 

since all excitation sources are mounted on the stator in a stator-WF machine, better thermal 

capacity and higher power density can be achieved compared with the rotor-WF machines. 
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In a conventional SFPM machine, DC coils having lamination steel cores in the middle of 

them can replace PMs, as shown in Fig. 1.11 (b). Obviously, the DC field conductors at the 

outer stator will not produce the main flux. Therefore, these conductors can be removed to 

enlarge the slots having DC field conductors at the inner stator and result in a typical WFSF 

machine, as shown in Fig. 1.11 (c). 

 

(a) 

 

 

(b) 

  
 

  

 

(c) 

Fig. 1.11. Topologies of conventional SFPM machine and WFSF machines. (a) 

Conventional 12-slot/10-pole SFPM machine. (b) 12-slot/10-pole WFSF machine (for clarity, 

armature windings are not shown). (c) 24-slot/10-pole WFSF machine (Field coil pitch=2 

slot-pitches, armature coil pitch=2 slot-pitches). 
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Based on aforementioned PM replacing principle of the conventional SFPM machine, 

many WFSF machine topologies can be derived from existing SFPM machines. 

A WFSF machine with DC field and AC armature windings having 1 and 3 slot-pitches, 

respectively, is derived from a sandwiched SFPM machine, as shown in Fig. 1.12. Compared 

with aforementioned 24-slot/10-pole WFSF machine, this machine shows higher torque 

density and shorter end-winding [ZHO14] [ZHO14b], and will be investigated in this thesis. 

 

 

(a) 

 

 

(b) 

Fig. 1.12. Topologies of machines. (a) Sandwiched SFPM machine. (b) WFSF machine 

(Field coil pitch=1 slot-pitch, armature coil pitch=3 slot-pitches). 

 

Based on different armature winding arrangements, there exist two types of E-core SFPM 

machines. In the typical E-core SFPM machine, armature coils are wound on the stator teeth 

having PMs, as shown in Fig. 1.13 (a). For the E-core SFPM machine type II, armature coils 

are wound on the stator teeth without PMs, as shown in Fig. 1.14 (a). When the DC coils 

replace the PMs in these two types of SFPM machines, two WFSF machines having the same 

field coil pitch of 3 slot-pitches and the different armature coil pitches of 2 and 1 slot-

pitches/pitch are obtained, as shown in Fig. 1.13 (b) and Fig. 1.14 (b), respectively. 

The WFSF machine having armature/field windings of 2/3 coil-pitches has long end-

windings, and this can be a huge disadvantage in cost-sensitive applications due to the 

increased copper usage. Similar to the E-core SFPM machine type II, the torque density in 

the WFSF machine having armature/field windings of 1/3 coil-pitch/pitches is low due to the 

saturation and flux leakage in the stator. Therefore, two WFSF machines shown in Fig. 1.13 

(b) and Fig. 1.14 (b) will not be investigated systematically in this thesis. 
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(a) 

 

 

(b) 

Fig. 1.13. Topologies of machines. (a) E-core SFPM machine (Type I). (b) WFSF machine 

(Field coil pitch=3 slot-pitches, armature coil pitch=2 slot-pitches). 

 

 

(a) 

 

 

(b) 

Fig. 1.14. Topologies of machines. (a) E-core SFPM machine (Type II). (b) WFSF machine 

(Field coil pitch=3 slot-pitches, armature coil pitch=1 slot-pitch). 

 

Unlike the sandwiched SFPM and E-core SFPM machines, the segmented rotor WFSF 

machine was proposed ahead of the segmented rotor SFPM machine [ZUL10] [ZUL12]. 

However, the segmented rotor WFSF machine, as shown in Fig. 1.15 (b), can still be 

regarded as a machine derived from the segmented rotor SFPM machine. As can be seen, the 

segmented rotor WFSF machine employs short-pitched field and armature coils. This can be 

an advantage in the cost-sensitive applications. In this thesis, segmented rotor WFSF 

machines will be investigated. 
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(a) 

 

 

(b) 

Fig. 1.15. Topologies of machines. (a) Segmented rotor SFPM machine. (b) WFSF machine 

(Field coil pitch=1 slot-pitch, armature coil pitch=1 slot-pitch). 

 

Similar to the SFPM machines, the DC coils can replace the PMs in other stator-PM 

machines. As shown in Fig. 1.16, a stator-WF machine having armature/field windings of 1/3 

coil-pitch/pitches can be derived from the conventional short-pitched DSPM machine. This 

stator-WF machine is mainly used in generator applications [CHE08b] [ZHA12]. Full-

pitched DSPM machine is proposed as a single-phase generator [ZHA09] [ZHA11]. 

Correspondingly, three-phase stator-WF machine employing full-pitched field and armature 

coils can be derived by replacing PMs with DC coils, as shown in Fig. 1.17 (b). However, the 

full-pitched stator-WF machine shows significantly increased end-winding length and will 

not be investigated systematically in this thesis. 

 

(a) 

 

 

(b) 

Fig. 1.16. Topologies of machines. (a) short-pitched DSPM machine. (b) Stator-WF machine 

(Field coil pitch=3 slot-pitches, armature coil pitch=1 slot-pitch). 
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(a) 

 

 

(b) 

Fig. 1.17. Topologies of machines. (a) full-pitched DSPM machine. (b) Stator-WF machine 

(Field coil pitch=3 slot-pitches, armature coil pitch=3 slot-pitches). 

 

The price of copper is much higher than the other materials in a stator-WF machine. 

Therefore, short-pitched stator-WF machines are competitive in cost-sensitive applications 

due to low copper usage. Besides of the segmented rotor WFSF machine, variable flux 

reluctance (VFR) machine is also a stator-WF machine employing short-pitched field and 

armature coils [FUK12] [LIU13], as shown in Fig. 1.18 (a). Compared with the segmented 

rotor WFSF machine, VFR machine shows higher torque density and lower torque ripple. 

However, the over-lapping windings of this machine lead to reduced slot filling factor and 

complicated winding configuration. Moreover, the manufacture cost is high if segmented 

stator is employed in this machine. In order to overcome these disadvantages, a non-

overlapping stator-WF synchronous machine will be investigated in this thesis, as shown in 

Fig. 1.18 (b). 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

 

(d) 

Fig. 1.18. Topologies of machines. (a) Stator-WF machine (Field coil pitch=1 slot-pitch, 

armature coil pitch=1 slot-pitch, overlapping). (b) Stator-WF machine (Field coil pitch=1 

slot-pitch, armature coil pitch=1 slot-pitch, non-overlapping). (c) Synchronous machine with 

PMs in stator yoke. (d) Synchronous machine having PMs in stator poles. 

 

Obviously, PMs can also replace the DC coils in machines. As can be seen in Fig. 1.18 (c) 

and (d), by replacing the DC coils with PMs in aforementioned two short-pitched stator-WF 

synchronous machines, two novel synchronous machines having PMs in stator yoke and pole 

were proposed in [WU14] and [SHI14], respectively. 

In Table 1.1, all three-phase stator-WF machines mentioned in this section are organized 

in the matrix by the coil pitches of armature and field windings. To easily differentiate the 
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machines, these stator-WF machines are named after their field and armature winding pitches 

(for instance, the stator-WF machine with 3/2-field/armature coil pitches will be named and 

organized as F3A2 machine). 

As can be seen in Table 1.1, an F1A2 machine is introduced by filling the empty cells in 

the matrix. However, if the polarities of two armature coils in one phase are the same, 

essentially, this machine can be regarded as a F1A1 machine. Meanwhile, if the polarities of 

two armature coils in one phase are not the same, the main flux-linkages will be cancelled in 

coils, and this will lead to poor performance. Thus, the investigation of this machine will not 

be carried out in this thesis. At this moment, for the “F2” stator-WF machines, only F2A2 

machine is feasible. For the F2A1 and F2A3 machines, it is hard to find out the topologies 

with reasonable winding arrangements. 

A possible method to discover new topologies of stator-WF and stator-PM machines is 

summarized in this thesis based on above contents, as shown in Fig. 1.19. Overall, for the 

machines having excitation sources on the stators, new machine topologies can be obtained 

by replacing the PMs and DC coils with each other. 
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Table 1.1.  Matrix of stator-WF machines 

 

 

 
 

 

F1A1 F2A1 F3A1 

   
F1A2 F2A2 F3A2 

 

 

 
F1A3 F2A3 F3A3 
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Fig. 1.19. A possible method to discover new topologies of stator-WF and stator-PM 

machines. 

 

In cost-sensitive applications, the single-phase stator-WF machines have larger advantage 

in terms of the power device costs compared with the multi-phase stator-WF machines. A 

single-phase 8-slot/4-pole WFSF machine has been successfully commercialized for more 

than 10 years [POL03], as shown in Fig. 1.20. Compared with an induction machine, this 

machine exhibits higher efficiency and power factor. However, the performance of this 

machine can be improved further. In this thesis, single-phase WFSF machines employing 

“F1A3” or “F2A2” stator topologies are compared. It is found that the F1A3 WFSF machine 

shows reduced end-winding length and iron loss compared with the F2A2 WFSF machine of 

the same size and slot/pole combination. 

 

Stator-PM 
machine

•Replace PMs by 
DC coils

New Stator-
WF machine

•1. Classify into 
matrix

•2. Filling the 
blanks of the 
matrix

New Stator-
WF machine

•Replace DC coils 
by PMs 

New stator-
PM/hybrid 
machine
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Fig. 1.20. Topologies of a single-phase F2A2 WFSF machine. 

 

It is worth noticing that in a stator-PM/WF machine of which coil flux-linkage is bipolar, 

the coil has the positive or negative maximum flux-linkage when the D-axis aligns with the 

coil, as shown in Fig. 1.21. Meanwhile, for the stator-PM/WF machine having unipolar coil 

flux-linkage, the coil has the maximum or minimum flux-linkage when the D-axis aligns with 

the coil, as shown in Fig. 1.22. 

 

 

Fig. 1.21. Open-circuit field distributions and typical flux-linkage waveform of single 

bipolar coil in a F1A3 stator-WF machine. 
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Fig. 1.22. Open-circuit field distributions and typical flux-linkage waveform of single 

unipolar coil in a F1A1 stator-WF machine. 

 

In this thesis, the split ratio of machine is defined as the ratio of rotor outer diameter to 

stator outer diameter. The packing factor of machine is defined as effective copper area/slot 

area. 

 

1.3.Scope of research and contributions of the thesis 

 

The topologies of the machines with excitation sources on the stators have been reviewed 

in Chapter I. Particular attentions have been paid to the stator-WF machines. In this thesis, 

some novel stator-WF machine topologies have been obtained by replacing the PMs with DC 

coils in the stator-PM machines. In addition, based on the field and armature coil pitches, the 

radial-field rotary stator-WF machines have been classified in a matrix. The following 

chapters are summarized below: 

 

Chapter II: 

 

A sandwiched SFPM machine using V-shaped magnets is proposed in this chapter, 

compared with the conventional SFPM and the conventional sandwiched SFPM machine. 
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This machine shows less magnet usage and higher torque density under the same current 

density. 

Further, 2-step rotor skewing is employed in the sandwiched SFPM machine using V-

shaped magnets to reduce the torque ripple. 

 

Chapter III: 

 

An F1A3-5-pole WFSF machine is proposed in this chapter. Compared with the 

conventional F2A2-5-pole WFSF machine and the segmented rotor F1A1-8-pole WFSF 

machine, this machine shows higher torque density under the same copper loss. 

Additionally, it is found that halving the numbers of stator slots and rotor poles can be an 

effective method to increase the torque densities for the WFSF machines. 

 

Chapter IV: 

 

Unequal slots can be employed in segmented rotor F1A1, conventional F2A2 and F1A3 

WFSF machines to increase the torque densities. Compared with the SFPM machine using 

low-cost ferrite PMs, the WFSF machines employing unequal slots show higher material 

usage efficiencies (average torque/material usage) and higher torque densities when the 

electric loading is high. 

Toyota Prius 2010 interior permanent magnet (IPM) machine is a successfully 

commercialized machine. The torque density of a WFSF machine of the same size can reach 

to ~80% as much as that of this IPM machine under the same current density. Besides it is 

found that the material usage efficiencies of the WFSF machines are much higher than that of 

the Prius IPM machine. 

 

Chapter V: 

 

Based on the topology and operation principle of the F2A2-4 pole single-phase WFSF 

machine, an F2A2-6 pole single-phase WFSF machine is proposed in this chapter. This 

machine shows similar torque density but better material usage efficiency compared with the 

F2A2-4 pole machine under the same copper loss. 
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An F1A3-6 pole machine is proposed in this chapter as well. This single-phase WFSF 

machine, which can share the same stator topology with the F2A2-6 pole machine, has 

shorter end-windings and smaller iron loss than the F2A2-6 pole machine. 

The slot number and pole number of F1A3-6 pole machine can be halved and result in a 

F1A3-3 pole machine. Compared with the F2A2-4 pole machine, this machine shows 

significantly reduced iron loss. 

 

Chapter VI: 

 

The segmented rotor in the non-overlapping segmented rotor F1A1 machine is not easy for 

fabrication. Therefore, a non-overlapping F1A1 stator-WF machine employing salient-pole 

rotor is proposed in this chapter. The slot/pole combinations of this machine are investigated 

as well. It is found that the salient-pole rotor F1A1 machine can achieve much higher torque 

density and much lower torque ripple than the segmented rotor F1A1 machine. 

 

Chapter VII: 

 

This chapter contains the general conclusions of this thesis as well as the potential future 

work. 

 

Appendix A: 

 

It contains the testing and calculation methods of torque, and the calculation methods of 

iron loss and torque speed curve. 

 

Appendix B: 

 

It contains some performances of the aforementioned F3A1 stator-WF machine. 

 

Appendix C: 

It lists the photos and mechanical drawings of all prototypes. 
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Fig. 1.23. Hierarchy of radial-field rotary machine topologies. 

 

1.4. Major Contributions of Thesis 

 

The major contributions of this thesis are highlighted as follows. 

 

(a) Improved machine topology of sandwiched SFPM machine. 

 

(b) Novel three-phase WFSF machine topologies. 

 

(c) Novel low-cost single-phase WFSF machine topologies. 

 

(d) Novel three-phase non-overlapping stator-WF machine topologies. 
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CHAPTER II. TORQUE DENSITY AND MAGNET USAGE 

EFFICIENCY ENHANCEMENT OF SANDWICHED 

SWITCHED FLUX PERMANENT MAGNET MACHINES 

USING V-SHAPED MAGNETS 
 

A novel sandwiched switched flux permanent magnet (SSFPM) machine using V-shaped 

magnets for maximizing output torque and improving magnet usage efficiency is proposed in 

this chapter. The operation principle of conventional 6/10-stator/rotor-pole SSFPM machine 

is firstly described. Such SSFPM machine and a novel one with V-shaped magnets are 

optimized and then compared with the conventional 12/10-stator/rotor-pole switched flux 

permanent magnet (SFPM) machine by two-dimensional (2-D) finite element analysis (FEA). 

It is found that the SSFPM machine with V-shaped magnets exhibits higher torque density 

and higher magnet usage efficiency under the constraint of the same copper loss. In addition, 

the influence of step-skew angle on the torque ripple suppression is investigated in the 

SSFPM machine with V-shaped magnets. The FEA predicted back-EMF, cogging torque, 

torque-current characteristic are validated by experiments on the prototype machines. 

 

2.1.Introduction 

 

The SFPM machines have gained wide application from aerospace to automobile 

industries since they offer several key advantages, such as simple and robust rotor, short end-

winding, high torque density, high efficiency, excellent flux-weakening capability, etc. 

Various SFPM machine topologies have been emerged since its operation principle was 

firstly introduced [RAU55], [ZHU10], and [ZHU11]. 

One of the typical SFPM machine topologies which are often investigated is the 12/10-

stator/rotor-pole SFPM machine where one permanent magnet (PM) piece is located in each 

stator pole, as shown in Fig. 2.1. However, the torque density is still limited due to reduced 

space for windings. Therefore, a SSFPM machine, in which two PM pieces are sandwiched in 

one stator pole, is proposed and the electromagnetic performance is investigated by FEA 

[FEI06], as shown in Fig. 2.2. A single-phase hybrid switched flux machine with sandwiched 

magnets is investigated by FEA and experiment [LU11]. 

A novel SSFPM machine with V-shaped magnets will be investigated in this chapter. 

Compared with the conventional SSFPM machine, the average torque is increased since the 
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slot area is increased, whilst the PM volume can be reduced due to flux-concentrating, 

resulting in high magnet usage efficiency. Moreover, the influence of step-skew angle on the 

torque ripple suppression is investigated in the V-shaped magnet SSFPM machine with 2-step 

skew rotor. The FEA predicted back-EMF, cogging torque, torque-current characteristic are 

validated by experiments on the prototype machines. 

 

Fig. 2.1.  Conventional 12/10-stator/rotor-pole SFPM machine. 

 

  
(a) (b) 

Fig. 2.2.  Conventional SSFPM machine. (a) Cross-section. (b) 3D model. 
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(a) (b) 

Fig. 2.3.  V-shaped magnets SSFPM machine. (a) Cross-section. (b) 3D model. 

 

Before further investigations, it is worthwhile to compare the aforementioned three 10-

rotor-pole machines with E-core and C-core SFPM machines, which are known as high 

torque density SFPM machines, as shown in Fig. 2.4 and Fig. 2.5, respectively. According to 

the investigations in [CHE11] and [CHE11b], the 11-rotor-pole E-core machine and the 13-

rotor-pole C-core machine exhibit the highest torque densities among the 6-stator-pole E-core 

and C-core SFPM machines, respectively. Therefore, a 6/11-stator/rotor-pole E-core SFPM, a 

6/13-stator/rotor-pole C-core SFPM and aforementioned three 10-rotor-pole machines have 

been optimized to achieve the maximum average output torque under the constraint of the 

same copper loss (33.33W) before the comparison (for the these five machines, stator outer 

radius=45mm, axial length=25mm, air-gap length=0.5mm). 

The average torque-copper loss curves of these machines are shown in Fig. 2.6. As can be 

seen, the torques of the E-core and C-core SFPM machines are smaller compared with two 

SSFPM machines. Additionally, unbalanced magnetic forces will be detected in the E-core 

and C-core SFPM machines due to odd-number-pole rotors. Thus, two SSFPM machines and 

the conventional 12/10-stator/rotor-pole SFPM will be compared and investigated in 

following parts. 

It is worth mentioning that the comparison of these machines based on the constraint of 

the same copper loss may not be comprehensive enough. For instance, each slot of the 6-slot 

C-core machine is much larger than those of the other investigated machines. This means 

even under the same copper loss and slot filling factor, the thermal condition at the centre of 

the coil in C-core machine can be much severer than those of the other machines. 
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Fig. 2.4.  Topology of 6/11-stator/rotor-pole E-core SFPM machine. 

 

 

Fig. 2.5.  Topology of 6/13-stator/rotor-pole C-core SFPM machine. 
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Fig. 2.6.  Comparison of average torque-copper loss curves. 

 

2.2.Machine topology and operation principle 

 

The conventional SSFPM machine as shown in Fig. 2.2 has 12 circumferentially opposite 

magnetized PMs and 6 U-shaped laminated segments on its stator. The lamination segment 

sandwiched between two PMs in a stator tooth is defined as “sandwiching pole”. Its operation 

principle is similar to that of a conventional SFPM machine, as shown in Fig. 2.7 (a) and (b). 

It can be seen from Fig. 2.7 (a) when the rotor pole aligns with a sandwiching pole, the flux-

linkage in coil A1 move from stator side to rotor side, while in Fig. 2.7 (b), when the rotor 

pole aligns with a stator tooth, the direction of flux-linkage is reversed. The periodical 

variation of flux-linkage with rotor position will induce back-EMF in the coils. However, as 

shown in Fig. 2.8 (b), the flux density of a conventional SSFPM machine in some parts of 

sandwiching poles are far below the saturation knee-point of steel B-H curve (steel grade: 

M330-35A), which means the material has not be used efficiently. Therefore, the V-shaped 

magnet SSFPM machine, Fig. 2.8 (c), is proposed to shrink low flux density part in 

lamination and consequently increase the slot area. The position of two PM pieces in one 

stator pole close to the rotor is the same as the conventional one, but the PM position at outer 

stator is moved closer, resulting in V-shaped PM structure. Additionally, due to the waste of 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 5 10 15 20 25 30 35 40

A
v
e
r
a

g
e
 t

o
r
q

u
e
 (

N
m

)

Copper loss (W)

12/10
E-core
C-core
SSFPM
V-shaped



 
 

36 

material in conventional design, the thickness of a PM piece at outer stator can be reduced 

without sacrificing the average torque. 

 

 

(a) 

 

(b) 

Fig. 2.7.  Operation principle of SSFPM machines. 
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(a) (b) (c) 

 

Fig. 2.8.  Open-circuit flux density. (a) 12/10 SFPM machine. (b) Conventional SSFPM. (c) 

V-shaped SSFPM. 

2.3.Parameter optimization 

 

For comparison, all the stator and rotor parameters in the conventional 12/10-stator/rotor-

pole SFPM machine, the conventional SSFPM machine and SSFPM machine with V-shaped 

magnets have been optimized to achieve the maximum average output torque under the 

constraint of same copper loss (33.33W). When the end-winding is ignored, the copper loss 

𝑃𝐶𝑢 of a conventional SFPM machine can be expressed as: 

𝑃𝐶𝑢 = 3𝐼𝑎
2𝑅𝑎 =

6𝐼𝑎
2𝑁𝑎

2𝜌𝐶𝑢𝐿

𝑆𝑎𝑘𝑝𝑓
      (2.1) 

where 𝐼𝑎 is the RMS phase current, 𝑅𝑎 is the phase resistance, 𝑁𝑎 is the number of turns per 

phase, 𝜌𝐶𝑢 is the electrical resistivity of copper, 𝐿 is the axial length, 𝑆𝑎 is the phase slot area, 

𝑘𝑝𝑓 is the winding packing factor. 

The optimized parameters of the investigated machines are given in Table 2.1. It can be 

seen that the slot area of the V-shaped SSFPM machine has been increased by >15% 

compared with the conventional SSFPM machine. Hence, the phase current can be increased 

for the same copper loss according to (2.1). On the other hand, the magnet usage of a V-
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shaped SSFPM machine is reduced by 4%, compared with that of the conventional one. It is 

worth noticing that although the copper slot area is increased in V-shaped machine, the 

packing factor is not increased. The reason for this is that the corner of a slot is sharper than 

that of the conventional SSFPM machine, and consequently, the slot area is not effectively 

utilized. 

 

Table 2.1.  Main parameters of machines 

Items 12/10 SSFPM 
V-shaped 

SSFPM 

Rated speed (rpm) 400 400 400 

Stator outer radius (mm) 45 45 45 

Axial length (mm) 25 25 25 

Split ratio 0.6 0.55 0.55 

Stator slot number 12 6 6 

Rotor pole number 10 10 10 

Air-gap length (mm) 0.5 0.5 0.5 

Sandwiching pole arc (degree) -- 12.5 12.5 

Stator pole arc (degree) 7.5 10 10 

Stator slot arc (degree) 7.5 12.5 12.5 

Rotor pole arc (degree) 12 12 12 

Total stator slot area (mm2) 1361 1356 1560 

Number of turns per coil 18 36 36 

Packing factor 0.5 0.5 0.5 

Magnet material NdFeB NdFeB NdFeB 

Remanence of PMs (T) 1.2 1.2 1.2 

Total magnet volume (mm3) 18870 19440 18660 

Rated phase current (A) 16.7 16.6 19.1 

 

2.4.Comparison with conventional switched flux permanent magnet  

 

The performance of aforementioned three optimized SFPM machines are compared in this 

section. It should be noticed that the end effects are ignored in 2-D FEA. 

 

2.4.1. Flux distribution 

 

Fig. 2.9 shows the open-circuit flux distributions of three SFPM machines when the d-axis 

is aligned with phase A. It can be seen that from Fig. 2.9 (b) and (c), in V-shaped machine, 

not only the low flux density parts in sandwiching pole is shrunken, but also the flux leakage 

at outer stator is reduced, compared with the conventional one. Therefore, even the PM 

volume in V-shaped SSFPM machine is reduced, its air-gap flux density (radial and 
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tangential components) for both SSFPM machines remain the same, as shown in Fig. 2.10, 

which has the potential to maintain the same phase back-EMFs. 

 

   

(a) (b) (c) 

Fig. 2.9.  Open-circuit field distributions. (a) 12/10 SFPM machine. (b) Conventional SSFPM. 

(c) V-shaped SSFPM. 

 

 

(a) 
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(b) 

Fig. 2.10.  Comparison of air-gap field distributions. (a) Radial component. (b) Tangential 

component. 

 

2.4.2. Back-EMF 

 

The variation of back-EMF with rotor position and harmonics in those three SFPM 

machines are compared in Fig. 2.11. As can be seen, the back-EMFs in SSFPM machines 

have been significantly improved compared with the conventional 12/10 machine. The back-

EMF of V-shaped SSFPM is slightly reduced compared with the conventional SSFPM 

machine due to the reduced PM volume. The 12/10 machine has sinusoidal back-EMF, which 

makes it suitable for brushless AC (BLAC) operation. However, the back-EMFs in SSFPM 

machines are slightly asymmetric due to the asymmetry in the magnetic circuit and even 

order EMF harmonics exhibits. For one rotor pole in a SSFPM machine, two magnets are 

connected to the magnetic circuit at the rotor position shown in Fig. 2.7 (a). On the other 

hand, only one magnet is connected to the magnetic circuit at the rotor position shown in Fig. 

2.7 (b). 
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(a) 

 

(b) 

Fig. 2.11.  Comparison of back-EMF, 400rpm. (a) Waveforms. (b) Harmonics. 

 

2.4.3. Cogging torque 

 

In terms of cogging torque waveforms, the peak to peak values of the SSFPM machines 

are large and the frequencies are halved compared with that of the 12/10 machine. The reason 

for this is that the stator pole number of a SSFPM machine is halved and this leads to half of 

the least common multiple between stator and rotor pole numbers [BIA02], Fig. 2.12. 
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Fig. 2.12.  Cogging torque in SFPM machines. 

 

2.4.4. Torque Characteristics 

 

Fig. 2.13 shows the variations of torque with current angle when current density is fixed to 

10.6A/mm2 (for the conventional SSFPM machine, copper loss = 33.33W). The current 

density in this thesis is defined as the current (unit: A) per unit effective copper area (unit: 

mm2). The current angle between the d-axis and the current vector can be expressed as: 

𝜑𝑐 = tan−1 𝐼𝑑

𝐼𝑞
      (2.2) 

where Id and Iq are the d- and q-axis currents, respectively. 

It can be seen form this figure that the maximum torque of the V-shaped machine is the 

highest one among all the investigated machines mainly due to the significant increase of slot 

area, as shown in Table 2.1. In addition, the maximum torque is achieved when the current 

angle is almost equal to 0. Therefore, the reluctance torque is negligible and the d-axis 

current of each phase will be set to 0 in further analysis. Under such a current density, the air-

cooled systems can be employed to improve the reliability of those machines. 

Fig. 2.14 shows the torque waveforms when the current densities are fixed to 10.6A/mm2. 

The average torque of the 12/10 machine, the conventional and V-shaped SSFPM machines 

are 2.82Nm, 3.48Nm and 3.96Nm, respectively. Therefore, the ratio of torque to PM volume 

of those machines are 1.49×10-4 Nm/mm3, 1.79×10-4 Nm/mm3 and 2.12×10-4 Nm/mm3, 

respectively. This means the V-shaped machine has much better magnet usage efficiency 
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than others. However, due to the high even order harmonics in back-EMF waveform and the 

large peak to peak cogging torque, the torque ripple is large in a SSFPM machine, compared 

with that in a 12/10 machine. Therefore, the rotor skewing is employed to reduce the torque 

ripple in a V-shaped machine. It is worth mentioning that the torque ripples of the 12/10 

machine, the conventional and V-shaped SSFPM machines are 17.6%, 57.1%, and 56.7%, 

respectively. The torque ripple is given by: 

𝑇𝑟 =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑇𝑎𝑣𝑔
× 100%    (2.3) 

where Tmax, Tmin, and Tavg are the maximum torque, the minimum torque, and the average 

torque of one electric cycle, respectively. 

 

 

Fig. 2.13.  Torque-current angle curve of V-shaped machine, current density = 10.6A/mm2. 
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Fig. 2.14.  Torque waveforms, current density = 10.6A/mm2, Id = 0. 

 

2.5.Rotor skewing 

 

The rotor skewing can be employed in SFPM machines to reduce the torque ripple and 

EMF harmonics. Unlike the continuous rotor skewing that was investigated in [FEI06], the 

rotor with two-stepped skewing is employed for the V-shaped SSFPM machine to ease 

manufacture, as shown in Fig. 2.15. It is worth noting that the selection of the rotor step-

skewing angle is not decided by the optimization of cogging torque and back-EMF, as 

described in [FEI06], but is aimed to reduce the torque ripple to minimum in this chapter. For 

2-D FEA, the electromagnetic torque of a two-step skewed machine can be regarded as the 

sum of the torques of two half axial-length machines having corresponding positive/negative 

angles. For instance, the two torque waveforms from two 12.5mm axial-length SFPM 

machines having initial rotor positions of positive and negative 3.5 mechanical degrees 

(under the same current density/current angle) can be added together to obtain the torque 

waveform of a SFPM machine of 25mm axial length employing a rotor with 7-degree two-

stepped skewing. Obviously, this is a simple method but with the limitation of ignoring the 

interaction between the rotor parts and end-effects. 

When the current densities are fixed to 10.6A/mm2, the 7-degree rotor step-skewed V-

shaped machine has the smallest torque ripple, as shown in Fig. 2.16, although according to 

[FEI12], 3-degree two-stepped rotor skewing is appropriate for torque ripple suppression in 

the 12/10 machines. Compared with this machine, the 7-degree rotor step-skewed V-shaped 
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one has a 20.3% enhancement in the average torque, but only a 4.6% increase in the torque 

ripple, as shown in Fig. 2.17. 

 

  

(a) (b) 

Fig. 2.15.  Schematics of rotors. (a) Unskewed rotor. (b) Rotor with 7-degree two-stepped 

skewing. 

 

Fig. 2.16.  Variation of average torque and torque ripple with rotor skewing angle of V-

shaped machine, current density = 10.6A/mm2. 
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Fig. 2.17.  Comparison of average torque and torque ripple, current density = 10.6A/mm2. 

 

2.6.Experimental validations 

 

A stator and two different rotors of V-shaped machine have been prototyped and tested to 

validate the FEA, as shown in Fig. 2.18. Load tests are carried out under forced air-cooling. It 

can be noticed for Fig. 2.19 (a) that the measured cogging torque waveforms are slightly 

different from the prediction due to the mechanical tolerance. To ease manufacture, the sharp 

corners and arcs of PMs in the original design have been eliminated and result in a reduction 

of total PM volume. For this reason and also due to the ignoring of end-effects [ZHU05], the 

peak to peak values of measured EMF waveforms are smaller than those from 2-D FEAs, as 

shown in Fig. 2.19 (b). In Fig. 2.19 (c) each point represents the maximum positive torque 

corresponding to different current value. Due to the reduced PM volume and end effects, the 

measured results are lower than the prediction. But overall, good agreement has been 

achieved. It should be noticed that the cogging torques and the maximum positive torques are 

measured based on the method shown in Appendix A. Although there is no relative 

displacement between the bearings and the rotor during the measurement, the static friction 

between them may lead to inaccuracy of the measuring results. Forced air-cooling in this 

measuring system may also lead to inaccuracy due to the disturbance on the scale. 

Fortunately, forced air-cooling is not necessary at low electric loadings, and the disturbance 
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from the forced air-cooling on the measured results are negligible when the electric loading is 

high. 

 

 

(a) 

 

(b) 

Fig. 2.18.  Prototypes of V-shaped SSFPM machine. (a) Stator. (b) Rotor without skewing 

and the rotor with 7o two-stepped skewing. 
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(a) 

 

(b) 

 

(c) 

Fig. 2.19.  Comparison of predicted and measured results. (a) Cogging torque. (b) Back-EMF 

waveforms, 400rpm. (c) Maximum torque-current characteristics. 
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2.7.Summary 

 

A novel SSFPM machine with V-shaped magnets has been investigated in this chapter. 

According to the 2-D FEA, compared with the conventional SSFPM machine under the same 

copper loss, the average torque is increased by 13.8% since the slot area is increased by 15%. 

Meanwhile, the PM volume is reduced by 4% due to flux-focusing, resulting in an 18.5% 

increase of the magnet usage efficiency. Moreover, two-stepped rotor skewing is easily 

employed to reduce the torque ripple from 57.0% to 12.6% in the V-shaped machine. The 

FEA predicted cogging torque, back-EMF, torque-current curve are validated by experiments 

on the prototype machines. 
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CHAPTER III. THREE-PHASE WOUND FIELD 

SWITCHED FLUX MACHINES HAVING VARIOUS 

ARMATURE AND FIELD COIL PITCHES 
 

A three-phase wound field switched flux (WFSF) machine derived from the sandwiched 

SFPM machine mentioned in the last chapter is proposed in this chapter. It is found that this 

machine has much higher average torque compared with the conventional 12-slot/8-pole 

machine with segmented rotor and 12-slot/5-pole WFSF machine under the constraint of 

same copper loss. All of those machines have been optimized to achieve the maximum torque 

for comparison. The performance, including back-EMF, cogging torque, and static torque, of 

four machines are analysed and compared by two-dimensional (2-D) finite element analysis 

(FEA) and validated by experiments on the prototype machines. 

 

3.1.Introduction 

 

The quest for low-cost high-performance machines has never ceased. Since the switched 

flux (SF) principle was firstly introduced in 1955, numerous SF machine topologies have 

emerged and been investigated [RAU55], [HOA97], [ZHU10], [ZHU11], [OWE10], 

[CHE10], [FEI12b], [OJE12], [THO12], and [ZUL12]. The switched flux permanent magnet 

(SFPM) machine, which is designed for high-performance applications, has two prominent 

advantages: simple temperature management and robust rotor structure, as the stator contains 

all excitation sources. Due to the increase in permanent magnet (PM) cost, the demand for 

PM-usage-reduced or non-PM machines has risen sharply. For SFPM machine, PMs can 

always be replaced by field windings, and some wound field switched flux (WFSF) machines 

have been proposed for low-cost applications [ZUL10], [POL99], [POL03], [POL03b], 

[POL06], [POL06b], [CHE10], [SUL11], [SUL12], [WAN12], and [GAU12]. The WFSF 

machine also possesses other merits such as high power density and easy flux weakening 

operation. However, compared with SFPM machine, the WFSF machine shows much lower 

torque density and this demerit restricts the popularization of existing WFSF machines. For 

this reason, it is desirable to increase the torque density of existing WFSF machines or seek 

new WFSF topologies for high torque density applications. 

A 12-slot/8-pole segmented rotor WFSF machine was proposed in [ZUL10], as shown in 

Fig. 3.1. Both DC field and AC armature windings are concentrated windings and this is 
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advantageous to ease manufacture. However, as described in [ZUL10], this machine suffers 

from low torque density due to its special structure. A single-phase WFSF, whose DC field 

and AC armature windings are both fully pitched, was proposed and investigated in [POL99], 

[POL03], [POL03b], and [POL06]. This machine shows higher efficiency than a series 

universal machine of similar size [POL03]. Based on the operation principle of this single-

phase WFSF machine, a three-phase 24-slot/10-pole WFSF machine has been studied in 

[CHE10], [SUL11], [SUL12], [WAN12], and [GAU12]. Its torque density can be over 60% 

as much as that of an interior PM machine used for electric vehicle applications [SUL11]. For 

further improvement in the torque density of a 24-slot/10-pole WFSF machine, a machine, 

whose number of slots and poles are both halved, is used in the comparison in this chapter, i.e. 

12-slot/5-pole WFSF machine, as shown in Fig. 3.2. 7-pole rotor can be also equipped in this 

machine, and it is found that the 12-slot/7-pole machine shows higher torque density and 

lower torque ripple than the 12-slot/5-pole machine when the copper loss is fixed. As shown 

in Fig. 3.3, a WFSF machine having 1 slot-pitch DC field windings and 3 slot-pitch AC 

armature windings is firstly proposed in this chapter. This 9-slot/5-pole machine also shows 

higher torque density than the 12-slot/5-pole machine when the copper loss is fixed. The FEA 

predicted back-EMFs, cogging torques, static torques of the 12-slot/5-pole, 12-slot/7-pole, 

and 9-slot/5-pole WFSF machines are validated by experiments. 

 

 
 

(a) (b) 

Fig. 3.1.  12-slot/8-pole machine. (a) Cross-section. (b) 3D model. 
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(a) (b) 

Fig. 3.2.  12-slot/5-pole machine. (a) Cross-section. (b) 3D model. 

 

 
 

(a) (b) 

Fig. 3.3.  9-slot/5-pole machine. (a) Cross-section. (b) 3D model. 

 

3.2.Stator and rotor pole combination 

 

Among 12-stator-slot segmented rotor machines having different rotor pole numbers, the 

8-pole-rotor one can produce the highest average torque and lowest torque ripple [ZUL10]. It 

can be seen from Fig. 3.1 that the 12-slot/8-pole machine is equipped with a salient-pole 
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stator and segmented rotor. Its DC field windings and AC armature windings have the same 

short coil pitch of 1 slot. Correspondingly, 6 field and 6 armature coils are arranged on the 

stator alternately. For the machine shown in Fig. 3.2, both 5- and 7-rotor-pole machines have 

the largest winding factor (0.866) among the feasible rotor pole numbers. It can be seen that 

this machine is equipped with a salient-pole stator and rotor. The coil pitches of field and 

armature windings are both 2 slots. Accordingly, there are 6 armature coils and 6 (or 3, for 

consequent pole windings) field coils on the stator. In terms of the proposed 9-stator-slot 

machine, any rotor pole number from 1 to 10 can be employed except 3, 6 and 9. When the 

copper loss is fixed at 60 W, the average torques and torque ripples of 4-, 5- and 7-pole-rotor 

machines are compared in Table 3.1. Although 4-pole-rotor and 5-pole-rotor machines have 

the same winding factor, the 5-pole-rotor one shows acceptable performance due to its 

operation principle. As shown in Fig. 3.3, salient-pole stator and rotor are employed in the 9-

slot/5-pole machine. 3 short pitched field coils having 1 slot-pitch and 3 long pitched field 

coils having 3 slot-pitches are arranged on the stator. 

 

Table 3.1.  Torque comparison of 9-stator-slot machines 

Items 9-slot/4-pole 9-slot/5-pole 9-slot/7-pole 

Average torque (Nm) 1.21 1.43 0.54 

Torque ripple (%) 31 22 127 

 

When the RMS current densities of all slots are 10 A/mm2, the flux distribution of 

aforementioned 12-slot/5-pole and 24-slot/10-pole machines are shown in Fig. 3.4 (a) and (b) 

respectively. Compared with the 12-slot/5-pole machine, the conventional 24-slot/10-pole 

machine shows significantly increased flux leakage (Note: The number of divisions of flux 

lines is the same in Fig. 3.4.), and consequently, a 30.9% decrease of the average torque, 

when the current density is 20 A/mm2, as shown in Fig. 3.5. For the proposed 9-slot/5-pole 

machine, the number of stator slots, rotor pole and coils can be doubled, thus an 18-slot/10-

pole machine has the same operation principle. Compared with the 9-slot/5-pole machine, the 

18-slot/10-pole machine also shows increased flux leakage, as shown in Fig. 3.4 (c) and (d), 

and consequently, a 20.7% decrease of the average torque, when the current density is 20 

A/mm2, as shown in Fig. 3.5. With respect to torque density, two 5-pole machines will be 

chosen for further comparison and investigation. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 3.4.  Flux distributions, both field and armature slot current density =10 A/mm2. (a) 12-

slot/5-pole. (b) 24-slot/10-pole. (c) 9-slot/5-pole. (d) 18-slot/10-pole. 
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Fig. 3.5.  Comparison of torque-current density curves. 

 

3.3.Operation principle 

 

 

(a) 

 

(b) 

Fig. 3.6.  Operation principle of 9-slot/5-pole machine. (a) Rotor pole aligned with stator field 

winding pole. (b) Rotor pole unaligned with stator field winding pole. 
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Fig. 3.6 (a) and (b) show the principle of operation of the proposed 9-slot/5-pole machine. 

When the rotor pole aligns with the centre of a field coil, the flux-linkage in coil A1 goes 

from the stator side to the rotor side, as shown in Fig. 3.6 (a). When the rotor pole aligns with 

the centre of another field coil, the direction of flux-linkage in coil A1 is reversed, as shown 

in Fig. 3.6 (b). The periodic variation of flux-linkage with rotor position will induce back-

EMF in the coils. 

 

3.4.Parameter optimization 

 

For comparison, all the stator and rotor parameters in the aforementioned machines have 

been optimized. Similar to the SFPM machines, the rotor pole width, stator pole width, stator 

slot opening and stator back-iron thickness are initially set to be the same in each machine 

before optimization [HOA97], [ZHU10], and [ZHU11]. With respect to torque density, the 

optimization objective is to achieve the maximum average torque under the constraint of the 

same copper loss. It is worth mentioning that the average torque of each machine is obtained 

from one electrical cycle. The individually optimized parameters of four WFSF machines 

under different copper losses are shown in Table 3.2 (for the 12-slot/8-pole machine, the 

width of stator pole and the depth of the rotor segment are also optimized). The “Optimetrics-

parametric” function of Ansoft Maxwell (Version 15.0) has been employed during the 

optimization. The sequence of the optimized parameters follows the first column in this table 

(from top to bottom). The winding resistance changes with the split ratio, the ratio of field to 

armature slot current density, and stator parameters. These have been taken into consideration 

during the optimization. The iron losses are neglected, and this means the optimized 

parameters may be not suitable for the machines operated at high speeds. Although the fixed 

copper loss is the constraint during the optimization, the thermal conditions of the machines 

can be different due to the different topologies and parameters, which is a limitation of this 

optimization. Nevertheless, for the maximum torque capability at low speed, the iron loss is 

negligible while the copper loss is dominant. 

As can be seen from Table 3.2, according to the optimized ratio of field to armature 

current, the maximum average torque will be achieved when the ratio of field to armature slot 

current density is approximately 1 for all the WFSF machines under different copper losses. 
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In a WFSF machine the reluctance torque is not the major component of the output torque 

[ZHO14a]. The electromagnetic torque of a WFSF machine can be expressed as: 

 

T =
3

2
𝑝𝛹𝑓𝐼𝑞     (3.1) 

 

where p is the rotor pole number of a machine, Ψf is the wound field excited flux-linkage in 

the WFSF machine. Iq is the q-axis current. With respect of (3.1), theoretically, the maximum 

torque can be achieved when Iq = If, due to the fact that Ψf is proportional to If. 

 

Table 3.2.  Optimization variables of machines 

Items 
12-slot/8-pole 12-slot/5-pole 12-slot/7-pole 9-slot/5-pole 

30W 60W 120W 30W 60W 120W 30W 60W 120W 30W 60W 120W 

Split ratio 0.54 0.58 0.63 0.55 0.62 0.65 0.55 0.6 0.65 0.54 0.55 0.58 

Ratio of field to 

armature slot 

current density 

1 1 0.95 0.9 0.9 0.9 1 1.05 1.05 0.9 0.9 0.9 

Stator pole arc 

(degree) 
25 23 23 16 15 14 15 15 15 18 19 19 

Stator back-

iron thickness 

(mm) 

3.2 4 4.5 3.5 4.1 4.5 3.6 4.3 4.7 5.5 6.1 6.7 

Rotor 

pole/segment 

arc (degree) 

39 40 40 19 17 17 19 17 17 28 26 26 

 

Since the machines are designed for low-power applications, the optimized parameters for 

30 W copper losses will be employed in further investigations. The copper loss PCu of a 

WFSF machine can be expressed as: 

 

𝑃𝐶𝑢 = 𝐼𝑎
2𝑅𝑎𝑡 + 𝐼𝑓

2𝑅𝑓𝑡    (3.2) 

 

where 𝐼𝑎 is the RMS armature current, 𝑅𝑎𝑡 is the total armature winding resistance,  𝐼𝑓 is the 

field current, 𝑅𝑓𝑡 is the total field winding resistance. The end-winding resistance changes 

with the stator parameters during the optimization and this has been taken into consideration 

in the optimization. 

The total armature winding resistance Rat1 of a 12-slot/8-, 5- or 7-pole WFSF machine is 

given in (3.3) and their field winding resistances Rft1 is given in (3.4). The armature winding 

resistance Rat2 and field winding resistance Rft2 of a 9-slot/5-pole machine are given in (3.5) 

and (3.6), respectively. 
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𝑅𝑎𝑡1 =
2𝑁𝑎𝑡1

2 𝜌𝐶𝑢(12𝐿1+𝐿𝑒𝑛𝑑_𝑎1)

𝑆1𝑘𝑝𝑓1
    (3.3) 

 

𝑅𝑓𝑡1 =
2𝑁𝑓𝑡1

2 𝜌𝐶𝑢(12𝐿1+𝐿𝑒𝑛𝑑_𝑓1)

𝑆1𝑘𝑝𝑓1
    (3.4) 

 

𝑅𝑎𝑡2 =
2𝑁𝑎𝑡2

2 𝜌𝐶𝑢(6𝐿2+𝐿𝑒𝑛𝑑_𝑎2)

𝑆2𝑘𝑝𝑓2
    (3.5) 

 

𝑅𝑓𝑡2 =
𝑁𝑓𝑡2

2 𝜌𝐶𝑢(6𝐿2+𝐿𝑒𝑛𝑑_𝑓2)

𝑆2𝑘𝑝𝑓2
     (3.6) 

 

where Nat and Nft are the total number of turns per armature coil and field coil, respectively. 

ρCu is the electrical resistivity of copper, L is the machine depth, Lend_a and Lend_f  are the total 

armature and field end-winding length, respectively, S is the area of one stator slot, kpf is the 

winding packing factor. 

Fig. 3.7 shows the idealized disposition of the coil-sides of four WFSF machines. To 

simplify the calculation, it can be assumed that the end-turns are semi-circular [ZHU00]. 

 

 

(a) 

 

(b) 
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(c) 

Fig. 3.7.  Idealized coils dispositions. (a) 12-slot/8-pole. (b) 12-slot/5- and 7-pole. (c) 9-

slot/5-pole. 

 

Then, the total armature and field end-winding lengths, Lend_a1 and Lend_f1, of a 12-slot/8-

pole WFSF machine can be expressed as: 

 

𝐿𝑒𝑛𝑑_𝑎1 = 𝐿𝑒𝑛𝑑_𝑓1 = 6𝜋(𝑊𝑠 2⁄ + 𝑊𝑡)    (3.7) 

 

where Ws is the stator slot width, Wt is the stator tooth width. 

The total armature and field end-winding lengths, Lend_a2 and Lend_f2, of a 12-slot/5 or 7-

pole WFSF machine can be expressed as: 

 

𝐿𝑒𝑛𝑑_𝑎2 = 𝐿𝑒𝑛𝑑_𝑓2 = 6𝜋(3𝑊𝑠 2⁄ + 2𝑊𝑡)    (3.8) 

 

The total armature and field end-winding lengths, Lend_a3 and Lend_f3, of a 9-slot/5-pole 

WFSF machine can be expressed as (3.9) and (3.10), respectively. 

 

𝐿𝑒𝑛𝑑_𝑎3 = 3𝜋(5 𝑊𝑠 2⁄ + 3𝑊𝑡)    (3.9) 

 

𝐿𝑒𝑛𝑑_𝑓3 = 3π(𝑊𝑠 + 𝑊𝑡)     (3.10) 

 

The optimized parameters of 12-slot/8-pole, 12-slot/5-pole, 12-slot/7-pole and 9-slot/5-

pole WFSF machines are given in Table 3.3. It can be noticed that the stator parameters of 

12-slot/5-pole and 12-slot/7-pole machines are nearly the same which means in actual 

fabrication, the common stator can be employed. 
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Table 3.3.  Main parameters of machines 

Items 12slot/8pole 12slot/5pole 12slot/7pole 9slot/5pole 

Rated speed (r/min) 400 400 400 400 

Stator outer radius (mm) 45 45 45 45 

Axial length (mm) 25 25 25 25 

Split ratio 0.54 0.55 0.55 0.54 

Stator slot number 12 12 12 9 

Rotor pole number 8 5 7 5 

Air-gap length (mm) 0.5 0.5 0.5 0.5 

Stator pole arc (degree) 25 16 15 18 

Rotor pole/segment arc (degree) 39 19 19 28 

Total armature slot area (mm2) 1205 1016 1050 647 

Total field slot area (mm2) 1205 1016 1050 1294 

Total number of turns of armature 

windings 
72 72 72 72 

Total number of turns of field 

windings 
72 72 72 72 

Packing factor (effective copper 

area/slot area) 
0.4 0.4 0.4 0.4 

Copper usages (g) 396 479 500 421 

 

In order to share the same stator lamination between 12-slot/5-pole and 12-slot/7-pole for 

the prototypes and also for easy operation, the ratio of field and armature current can be 

adjusted by changing the field and armature currents directly rather than by changing the field 

and armature slot areas. The highest average torque of a 12-slot/8-pole machine is achieved 

when the armature slot current density is equal to the field slot current density, as shown in 

Table 3.2. Both 12-slot/5-pole and 9-slot/5-pole machines have the largest average torque 

when the field slot current density is 0.9 times as the armature slot current density. For the 

12-slot/7-pole machine, this ratio is 1.05. 

 

3.5.Stability of field currents 

 

Fig. 3.8 shows the field currents of four optimized WFSF machines under various 

sinusoidal armature currents when the rotor speed is 400 r/min. It can be seen that the FEA 

predicted field current ripples of WFSF machines are no more than 3.1%. Overall, the field 

current in WFSF machine shows good stability under voltage source. Since the fluctuations in 

the field current are negligible, constant field currents are engaged in further analysis. 
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(a) (b) 

  

(c) (d) 

Fig. 3.8.  Field current waveforms under 12 V terminal voltage and different armature 

current, 400 r/min. (a) 12-slot/8-pole. (b) 12-slot/5-pole. (c) 12-slot/7-pole. (d) 9-slot/5-pole. 

 

When the rotor speed increases to 4000 r/min, the field currents of all WFSF machines 

show large current ripples, as shown in Fig. 3.9. In order to maintain the constant field 

current, current close-loop control has to be engaged. This means that operating the WFSF 

machines at high rotor speed may lead to a significantly increase in the cost since current 

sensors and more power devices are required. 

  

(a) (b) 
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(c) (d) 

Fig. 3.9.  Field current waveforms under 12 V terminal voltage and different armature 

current, 4000 r/min. (a) 12-slot/8-pole. (b) 12-slot/5-pole. (c) 12-slot/7-pole. (d) 9-slot/5-pole. 

3.6.Comparison of machines 

 

The performance of above mentioned 12-slot/8-pole, 12-slot/5-pole, 12-slot/7-pole and 9-

slot/5-pole machines are compared in this section. 

 

3.6.1. Open-circuit field distribution 

 

When the coil A1 has the maximum flux-linkage and DC field current is 30 A, the open-

circuit field distributions of four WFSF machines are shown in Fig. 3.10. It can be seen from 

the figure that compared with 12-slot/5-pole or 12-slot/7-pole machine, the proposed 9-slot/5-

pole machine shows smaller flux leakage. Consequently, its back-EMF has the potential to be 

high. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 3.10.  Flux distributions with field excitation only, maximum flux-linkage with coil A1 

(field current=30 A). (a) 12-slot/8-pole. (b) 12-slot/5-pole. (c) 12-slot/7-pole. (d) 9-slot/5-

pole. 
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3.6.2. Back-EMF 

 

Fig. 3.11 illustrates the 2-D FEA predicted back-EMF of four WFSF machines with 

various DC field currents and different rotor positions at a fixed rotor speed (400 r/min). As 

can be seen, all of those machines have nearly sinusoidal back-EMF waveforms, which make 

them suitable for Brushless AC (BLAC) operation. Fig. 3.12 compares the back-EMF 

waveform harmonics of four WFSF machines with 30 A field current at 400 r/min. As 

predicted before, the proposed 9-slot/5-pole shows higher fundamental harmonic than other 

machines. For this reason, the average torque of a 9-slot/5-pole machine is expected to be 

higher. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 3.11.  Armature phase back-EMF waveforms at various field excitations, 400 r/min. (a) 

12-slot/8-pole. (b) 12-slot/5-pole. (c) 12-slot/7-pole. (d) 9-slot/5-pole. 
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Fig. 3.12.  Comparison of back-EMF harmonics, field current=30 A, 400 r/min. 

 

3.6.3. Torque characteristics 

 

In order to achieve the maximum average torque, it is necessary to determine the current 

angle of four WFSF machines before any further comparisons and investigations. As can be 

seen from Fig. 3.13, for three WFSF machines having normal salient-pole rotors, the 

maximum average torques are achieved when the current angles are about 10 electrical 

degrees due to the slight saliency effects caused by the differences between d- and q- axis 

magnetic paths. Meanwhile, for 12-slot/8-pole segmented rotor machine, the maximum 

average torque is achieved when the current angle is almost 0, since its saliency effect is 

negligible due to the special topology. It is worth noticing that this comparison is made under 

the same copper loss (30 W), and the ratio of field to armature slot current density of each 

machine follows the previous investigation shown in Table 3.3. In further comparison, 

current angle will be taken into consideration to achieve the maximum average torque. 

The average torques of four WFSF machines at various field excitations and armature 

currents are shown in Fig. 3.14. The 12-slot/8-pole segmented rotor machine shows the 

lowest average torque due to its lowest fundamental back-EMF component. Meanwhile, the 

proposed 9-slot/5-pole machine shows much higher average torque than the 12-slot/5-pole 

machine under the same field and armature current as expected before, but lower average 

torque than the 12-slot/7-pole machine in the high field and armature current region since its 

stator is easily saturated. It is worth mentioning that the 9-slot/5-pole machine has the highest 

average torque when the electrical loading is low. 



 
 

69 

 

 

Fig. 3.13.  Comparison of torque-current angle curves, copper loss=30 W, BLAC operation. 

 

 

(a) 
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(b) 

 

(c) 
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(d) 

Fig. 3.14.  Torque-current curves for different armature currents with different field current, 

BLAC operation. (a) 12-slot/8-pole. (b) 12-slot/5-pole. (c) 12-slot/7-pole. (d) 9-slot/5-pole. 

 

Fig. 3.15 shows the torque waveforms of four WFSF machines when the armature currents 

are 0 A and the field currents are 30 A. Obviously, those curves represent the cogging torques 

in those machines. The least common multiple between stator and rotor pole number of the 

12-slot/8-pole or 9-slot/5-pole machine is much smaller than that of 12-slot/5- or 7-pole 

machine. Therefore, as can be seen from the figure, the peak to peak cogging torques of the 

12-slot/8-pole and 9-slot/5-pole machines are higher than that of the 12-slot/5-pole and 12-

slot/7-pole machines, and their cogging torque frequencies are smaller [ZHU07]. Although 

none of four WFSF machines has very high harmonic components, the torque ripples in 12-

slot/8-pole and 9-slot/5-pole machines are likely to be high due to their high peak to peak 

cogging torques. 
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Fig. 3.15.  Comparison of cogging torques, field current=30 A. 

 

Fig. 3.16 shows the torque waveforms of four WFSF machines when their copper losses 

are fixed to 30 W. The ratio of field to armature slot density of each machine follows the 

previous optimization for maximum average torque shown in Table 3.2. The average torque 

of 12-slot/8-pole machine, 12-slot/5-pole machine, 12-slot/7-pole machine and 9-slot/5-pole 

machine are 0.25 Nm, 0.68 Nm, 0.84 Nm and 0.84 Nm, respectively. As predicted before, 12-

slot/8-pole and 9-slot/5-pole machines show high torque ripples which are 33% and 20%. 

Meanwhile, the torque ripples in 12-slot/5-pole and 12-slot/7-pole machines are only 11% 

and 6%. The comparison of torque-copper loss curves of four WFSF machines is shown in 

Fig. 3.17. When the machines are optimized under the copper loss constraint of 30 W, the 9-

slot/5-pole machine shows similar average torque compared with the 12-slot/7-pole machine, 

but larger average torque compared with the 12-slot/5-pole machine, as shown in Fig. 3.17 

(a). In order to compare the WFSF machines under higher average torque, the machines have 

been re-optimized under the copper loss constraint of 120 W, as can be seen from Fig. 3.17 

(b), the 9-slot/5-pole and 12-slot/7-pole machines still show higher average torques than that 

of the 12-slot/5-pole machine. However, the 9-slot/5-pole machine shows lower average 

torque compared with the 12-slot/7-pole machine under higher electric loading, since the 

stator poles with field coils in the 9-slot/5-pole machine can be more saturated when the flux 

goes from the stator side to the rotor side. 
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Fig. 3.16.  Torque waveforms, copper loss=30W, BLAC operation. 

 

 

(a) 
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(b) 

Fig. 3.17.  Comparison of torque-copper loss curves, BLAC operation. (a) Machines are 

optimized when the copper loss=30 W. (b) Machines are optimized when the copper 

loss=120 W. 

 

3.6.4. Copper Usage 

 

In WFSF machines, the copper is much more expensive than other materials. Therefore, 

the copper usage is an important factor affecting the total cost. As can be seen from Table 3.3, 

the 12-slot/8-pole machine shows the smallest copper usage due to its short-pitched coils. 

Unlike the 12-slot/5- or 7-pole machine, whose coils are all fully-pitched, 2/3 of stator slots 

in the 9-slot/5-pole machine contain short-pitched coils. Therefore, the copper usage of the 9-

slot/5-pole machine is much less than that of the 12-slot/5- or 7-pole machine. 

The copper usage efficiencies (ratio of average torque to copper usage) of four WFSF 

machines are compared in Fig. 3.18. As can be seen, the 9-slot/5-pole machine shows much 

larger copper usage efficiency than other WFSF machines. 
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Fig. 3.18.  Comparison of copper usage efficiencies with different copper loss, BLAC 

operation. 

3.6.5. Unbalanced magnetic force 

 

Unbalanced magnetic force (UMF) results from the odd pole number rotor, odd slot 

number stator, or even odd number field/armature coils. UMF may compromise the bearing 

life and result in excessive acoustic noise and vibration due to the rippled force imposed on 

the rotor and bearing [ZHU07b]. Fig. 3.19 shows the UMFs of the WFSF machines. No UMF 

is detected in the 12-slot/8-pole machine due to its symmetric topology. During an electric 

cycle, 6 UMF ripples exist in two 12-slot machines having 6 field/armature coils. In terms of 

the 9-slot machine having 3 field/armature coils, 3 UMF ripples are existed in one electric 

cycle. For the 9-slot machine, the UMF is larger and changes more rapidly than the other 

machines, which may lead to increased vibration. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 3.19.  Comparison of UMFs, copper loss=30 W, BLAC operation. (a) 12-slot/8-pole. (b) 

12-slot/5-pole. (c) 12-slot/7-pole. (d) 9-slot/5-pole. 

 

3.6.6. Summary and Prospect 

 

The 12-slot/7-pole WFSF machine shows the highest average torque among 

aforementioned four WFSF machines. However, as mentioned before, the 9-slot/5-pole 
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machine has the best copper usage efficiency among four WFSF machines. Furthermore, the 

difference of the average torques between 9-slot/5-pole and 12-slot/7-pole machines is not 

large, and the average torque of the 9-slot/5-pole machine is slightly higher than that of the 

12-slot/7-pole machine under low copper loss. 

Ferrite magnets can be used in the SFPM machine to reduce the material cost. This 

machine also has a simple and robust rotor structure and shows low material cost like WFSF 

machines. However, the stator of the SFPM machine is segmented, which has to be 

assembled carefully, and this may lead to an increase in manufacturing costs. The switched 

reluctance machine (SRM) can be a superior option in low-cost applications due to its low 

material cost and robust structure. Nevertheless, it suffers from some defects, such as high 

torque ripple, vibration and acoustic noise. The induction motor (IM), which has mature 

manufacturing techniques and is relatively low-cost, has the largest share in most motor 

applications. However, for a typical IM, all coils are overlapping and long pitched and its 

rotor copper loss is relatively large. Hence, compared with other machines having relatively 

short axial length, the average torque of an IM is likely to be lower under the same copper 

loss. 

When the machines are operating at high rotor speed, the iron losses are no longer 

negligible. Besides, as mentioned before, for the WFSF machines, if low-cost voltage sources 

are equipped in the field winding circuits, very high field current ripples are detected at high 

rotor speed. Therefore, the foregoing comparison and analysis based on relatively low rotor 

speed may not be valid any more. In order to operate the WFSF machine at high rotor speed, 

the field current is needed to be regulated by means of converter. 

 

3.7.Experimental validation 

 

In order to validate the FEA predictions, the aforementioned 12-slot/5-pole, 12-slot/7-pole 

and 9-slot/5-pole machines have been prototyped, as shown in Fig. 3.20. It can be noticed 

that the 12-slot/5-pole and 12-slot/7-pole machines share the same stator. The experimental 

validation of the WFSF machines is restricted to static performance and the dynamic 

performance needs to be done in the future. The back-EMFs, cogging torques, and static 

torques of those machines have been measured in this section. Since the FEA has shown that 

the field current in the WFSF machine has a good stability with sinusoidal armature current at 

low rotor speed. The field currents were excited from a DC power supply in the experiment. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 3.20.  Prototypes of WFSF machines. (a) Common stator of 12-slot/5- and 7-pole 

machines. (b) Stator of 9-slot/5-pole machine. (c) Rotors of 12-slot/5-pole and 7-pole 

machines. (d) Rotor of 9-slot/5-pole machine. 

 

Under two different DC field excitations (10 A and 20 A), the predicted and measured 

armature back-EMF waveforms of three WFSF machines are shown in Fig. 3.21. Overall, 

there is good agreement between predicted and measured results except that the measured 

back-EMF peak value is slightly smaller than the predicted value. Such differences can be 

observed at different field excitations and ignoring the end-effects is mainly responsible for 

this [ZHU07]. 

 



 
 

81 

 

(a) 

 

(b) 
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(c) 

Fig. 3.21.  Back-EMF waveforms, 400 r/min. (a) 12-slot/5-pole. (b) 12-slot/7-pole. (c) 9-

slot/5-pole. 

 

When the armature current is 0 A, the cogging torque waveforms under different field 

currents are measured and have been compared with the FEA predictions. As can be seen in 

Fig. 3.22, when the field current is 20 A, the predicted cogging torques of 12-slot/5-pole and 

12-slot/7-pole machines are negligible. However, the measured peak-to-peak cogging torques 

are higher than those of FEA predictions in these machines due to assembly and mechanical 

tolerances. For the 9-slot/5-pole machine, a good agreement between measured and predicted 

cogging torque waveforms has been achieved. 
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(a) 

 

(b) 
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(c) 

Fig. 3.22.  Cogging torque, field current=20 A. (a) 12-slot/5-pole. (b) 12-slot/7-pole. (c) 9-

slot/5-pole. 

 

The static torque waveforms with various field current and armature current of one phase 

(other two phases are open-circuit) are shown in Fig. 3.23. It can be seen that, under the same 

field and armature currents, the 9-slot/5-pole machine shows the highest peak-to-peak torque. 

The measured results show generally good agreement with the predicted results. 

 

 

(a) 
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(b) 

 

(c) 

Fig. 3.23.  Static torque waveforms with various field current and armature current. (a) 12-

slot/5-pole. (b) 12-slot/7-pole. (c) 9-slot/5-pole. 

 

3.8.Summary 

 

Three types of low-cost wound field switched flux machines with DC field and AC 

armature windings having the same coil-pitch of 1 slot (12-slot/8-pole machine), 2 slots (12-
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slot/5-pole machine and 12-slot/7-pole machine) and having different coil-pitches of 1 and 3 

slots (9-slot/5-pole machine), respectively, are compared in this chapter. 

It is found that halving the number of stator slots and rotor poles can be an effective 

method to increase the torque density for the WFSF machines having the same coil-pitch of 2 

slots and having different coil-pitches of 1 slot-pitch and 3 slot-pitches. According to the 2-D 

FEA, the proposed 9-slot/5-pole machine shows a higher torque density than the conventional 

12-slot/8-pole segmented rotor machine and 12-slot/5-pole machine. For the 12-slot/5-pole 

machine, its rotor can be replaced by a 7-pole rotor, and it is found that the 12-slot/7-pole 

machine has even higher torque density and lower torque ripple than the 12-slot/5-pole 

machine. 
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CHAPTER IV. COMPARISON OF THREE-PHASE WOUND 

FIELD SWITCHED FLUX MACHINES AND SWITCHED 

FLUX PERMANENT MAGNET MACHINES 
 

Three types of wound field switched flux (WFSF) machines, namely, a 24-slot/14-pole 

WFSF machine, a 12-slot/8-pole segmented rotor WFSF machine and an 18-slot/10-pole 

WFSF machine, are compared in terms of torque density, with Toyota Prius 2010 interior 

permanent magnet (IPM) machine as well as the conventional switched flux PM machine in 

this chapter. According to two-dimensional (2-D) finite element analysis (FEA), it is found 

that the torque density of a WFSF machine can be increased further by employing unequal 

slots, and it can achieve ~80% as much as that of the IPM machine under the same current 

density. The material costs and efficiency maps of machines are also compared in this chapter. 

 

4.1.Introduction 

 

Rare-earth permanent magnet (PM) excited machines are widely employed for numerous 

applications due to high efficiency and torque density. However, the price of rare-earth PMs 

is high, and there exists a tendency to reduce/avoid the usage of PMs in the cost-sensitive 

applications, such as electric vehicle (EV), hybrid EV (HEV) and domestic appliances. 

Switched flux permanent magnet (SFPM) machine, whose principle was firstly introduced in 

1955 [RAU55], shows the merits of high torque density, simple temperature management and 

robust rotor structure [HOA97], [ZHU10], and [ZHU11]. Fig. 4.1 (a) and (b) show the typical 

topologies of SFPM machines. In order to reduce the material cost of SFPM machines, low-

cost ferrite magnets may be used in a SFPM machine. 

PMs can be replaced by field windings in SFPM machines. Wound field switched flux 

(WFSF) machine, which is developed from SFPM machine, can be a superior choice in cost-

sensitive applications. This PM-free machine inherits most advantages of SFPM machine, 

besides, its flux weakening capability can be better than that of the PM machines due to its 

adjustable field current. Some WFSF machine topologies have emerged since 1999 [ZHU11], 

[POL99], [POL06], [POL06b], [CHE06], [ZUL10], [SUL11], [SUL12], [TAN13], [GAU13], 

[ZHO14], and [ZHO14a]. The DC field and AC armature windings of a conventional WFSF 

machine are fully pitched, as shown in Fig. 4.1 (d). This machine suffers from some 

disadvantages, such as relatively long end-windings, large copper usage, high iron loss and 
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low efficiency [ZHU11], [POL99], [POL06], [CHE06], and [ZHO14a]. Segmented rotor 

WFSF machine, whose DC field and AC armature windings are both short pitched, has very 

short end-windings, and consequently, much less copper usage, Fig. 4.1 (e). However, the 

torque density of this machine is much lower than the conventional WFSF machine [ZUL10], 

[ZHO14b]. Fig. 4.1 (f) shows an improved 18-slot/10-pole WFSF machine. As can be seen, 

2/3 of its slots contain short pitched coils, and this means that the end-winding of the 18-

slot/10-pole WFSF machine is much shorter than that of the conventional WFSF machine. 

The aforementioned WFSF machines can be differentiated by and named after their field coil 

pitches, armature coil pitches and rotor pole number. Therefore, the 18-slot/10-pole WFSF 

machine, whose field winding pitch, armature winding pitch and rotor pole number are 1, 3 

and 10, respectively, can be designated as “F1A3-10 pole”. In this chapter, it is found that the 

torque density can be increased by employing unequal slots in WFSF machines. 

Toyota Prius 2010 IPM machine, which has been successfully commercialized, shows 

good performance in many aspects and has been widely investigated. Therefore, this machine 

can be an excellent benchmark for comparison. However, as mentioned before, the material 

cost of this machine is high due the usage of rear-earth PMs. The material costs of 

aforementioned three WFSF machines, the Prius IPM machine and the SFPM machines have 

been compared in this chapter. The F1A3-10 pole machine shows the highest material usage 

efficiency (average torque/material usage) among those machines at relatively high current 

density. The efficiency maps of WFSF machines are investigated and compared in this 

chapter as well. 

 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Fig. 4.1.  Cross-sections of (a) 12-slot/10-pole SFPM machine. (b) 12-slot/14-pole SFPM 

machine.  (c) Toyota Prius IPM machine. (d) Conventional WFSF machine. (e) Segmented 

rotor WFSF machine. (f) 18-slot/10-pole WFSF machine. 

 

4.2.Design of WFSF machines 

 

All the stator and rotor parameters in aforementioned WFSF machines have been globally 

optimized for comparison by Ansoft Maxwell (Version 16.0). The genetic algorithm, as a 

common method for the global optimization of machine, is employed to avoid inaccuracy due 

to the interactions between parameters during the individual optimization. 
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It has been reported that the WFSF machine suffers from relatively low torque density due 

to high saturation in the stator [CHE10]. Therefore, the only aim of the optimization is to 

achieve the maximum average torque under the same current density (26.8A/mm2) with the 

Toyota Prius IPM machine. 

For the F2A2-24-stator-slot WFSF machine, the 14-rotor-pole one shows the highest 

average torque and relatively low torque ripple [CHE10]. Therefore, the F2A2-14 pole 

machine will be chosen for further comparison. F1A1-8 pole machine shows the highest 

average torque and lowest torque ripple among all feasible rotor-pole numbers [ZUL10]. It 

has been reported that this machine shows similar torque density with the switched reluctance 

machine of the same size. 

For the F1A3-18-stator-slot machine, which is firstly proposed in this chapter, 8-rotor-pole 

and 10-rotor-pole machines have the largest winding factor (0.866) among the feasible rotor 

pole numbers. As can be seen from Fig. 4.2, these two machines show much higher average 

torque than the F1A1 machine. Among other feasible rotor pole numbers, the 11-rotor-pole 

machine also shows higher average torque than the F1A1 machine. Besides, the F1A3-11 

pole machine shows much lower torque ripple than that of the F1A1-8 pole machine when 

the current density is 26.8A/mm2, Fig. 4.2 (b). The low torque ripple of the F1A3-11 pole 

machine is benefited from its low cogging torque since its least common multiple between 

stator and rotor pole number is very large [ZHU00]. With respect to torque density, F1A3-10 

pole machine is chosen in further investigations. 

 

(a) 
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(b) 

Fig. 4.2.  Comparison of torque in F1A3 machines. (a) Average torque-current density curves. 

(b) Average torque and torque ripple, current density= 26.8A/mm2. 

 

4.2.1. Influence of air-gap length 

 

In order to increase the air-gap flux density, the PM free machines usually need shorter 

air-gap lengths than the PM machines. For aforementioned F2A2-14 pole, F1A1-8 pole and 

F1A3-10 pole WFSF machines the air-gap lengths were 0.73mm which is the same with 

Prius IPM machine. When the air-gap is 0.3mm, these WFSF machines are re-optimized to 

achieve the highest average torque under the current density of 26.8A/mm2. As can been seen 

from Fig. 4.3 that by reducing the air-gap lengths from 0.73mm to 0.3mm, the increases in 

the average torque of WFSF machines are less than 10% when the current density is higher 

than 20A/mm2. The explanation is that the machines are saturated under high current density 

and reducing the air-gap length will not significantly increase the air-gap flux density in 

WFSF machines. Moreover, reducing the air-gap length will increase the machine 

manufacturing costs. For this reason, 0.73mm air-gap is selected during the comparison of 

WFSF machines. 
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Fig. 4.3.  Comparison of average torque with various current densities and air-gap lengths. 

 

4.2.2. Unequal slot 

 

In [ZHO14a], equal slot/tooth/back-iron is employed in each WFSF machine. However, as 

can be seen from Fig. 4.4 (a) and (b), for the F2A2-14 pole machine, the top part of a stator 

tooth is less saturated than the bottom part of a stator tooth. In terms of the F1A3-10 pole 

machine, the flux density differences exist in both stator teeth and stator back-irons, Fig. 4.4 

(e) and (f). Therefore, the average torques of these machines have the potential to be 

increased by employing unequal slot and unequal stator tooth/back-iron to reduce the 

saturation. For the F1A1-8 pole machine, the flux densities in most part of a stator tooth are 

similar, Fig. 4.4 (c) and (d). 
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(a) (b) 

  

(c) (d) 
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(e) (f) 

Fig. 4.4.  Flux densities of WFSF machines, current density=26.8A/mm2. (a) F2A2-14 pole, 0 

elec. degree. (b) F2A2-14 pole, 90 elec. degrees. (c) F1A1-8 pole, 0 elec. degree. (d) F1A1-8 

pole, 90 elec. degrees. (e) F1A3-10 pole, 0 elec. degree. (f) F1A3-10 pole, 90 elec. degrees. 

 

Fig. 4.5 shows the optimized stator parameters of aforementioned three WFSF machines. 

In order to achieve the maximum average torque when the current density is 26.8A/mm2, all 

the stator and rotor parameters have been globally optimized, and the optimized parameter 

are shown in Table 4.1. As can be seen, for the unequal slot F2A2-14 pole machine, the stator 

tooth width at the bottom is larger than that at the top. Hence, the saturation at the stator tooth 

bottom becomes less severe. Since the stator back-iron of the field slot is less saturation, the 

optimized stator back-iron thickness of the field slot is smaller than that of the armature slot. 

Further, it can be seen that the ratio of the field slot area to the armature slot area is 1.09, 

which is similar to the conclusion in [ZHO14a] that for the F2A2 machine having equal slot 

the ratio of the field to armature current density is 1.1. As mentioned before, the flux density 

in the tooth of the F1A1-8 pole machine is similar; the widths of the stator tooth at the top 

and at the bottom are similar. In terms of the F1A3-10 pole machine, the flux in the stator 

tooth having field winding is almost as twice as that in the stator tooth having armature 

winding. Therefore, according to the optimization, the stator tooth having field winding is 

wider than the stator tooth having armature winding (the width of the stator tooth having 

armature winding, W4=13.4mm). For the stator tooth having field winding, the width at the 

bottom is wider than that at the top. According to the special operation principle of the F1A3 
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machine [ZHO14a], the back-iron of the field slot contains the flux produced by a whole slot 

(half coil of the field winding); meanwhile, the back-iron of the armature slot contains the 

flux produced by only half slot (half coil of one phase) during the operation. For this reason, 

the global optimization result shows that the back-iron of the field slot is wider than the back-

iron of the armature slot. 

  

(a) (b) 

 

 (c) 

Fig. 4.5.  Stator parameters of WFSF machines. (a) F2A2. (b) F1A1. (c) F1A3. 
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Table 4.1.  Main parameters of machines 

Items IPM 

SFPM 

12s/10p 

B=1.2T 

SFPM 

12s/14p 

B=1.2T 

SFPM 

12s/10p 

B=0.4T 

SFPM 

12s/14p 

B=0.4T 

WFSF 

F2A2-14 

pole 

WFSF 

F1A1-8 

pole 

WFSF 

F1A3-10 

pole 

Stator outer radius (mm) 132 132 132 132 132 132 132 132 
Axial length (mm) 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 

Air-gap length (mm) 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 

Split ratio 0.61 0.69 0.71 0.70 0.73 0.72 0.59 0.67 
Stator tooth width at the top, W1 (mm) 7.3 11.6 11.1 11.2 11.2 11.5 21.2 18.6 

Stator tooth width at the bottom, W2 

(mm) 
7.3 11.6 11.1 11.2 11.2 16.9 18.2 24.8 

Stator back-iron thickness of field slot, 

L1 (mm) 
-- -- -- -- -- 8.6 20 12.2 

Stator back-iron thickness of armature 
slot, L2 (mm) 

20.2 10.2 9.1 11.2 9.8 9 20 8.6 

Rotor pole arc (degree) -- 11.6 8.8 8.5 7.7 8.5 36.5 12.5 

Stator slot number 48 12 12 12 12 24 12 18 
Total armature slot area (mm2) 7156.8 6999.1 7118.9 5773.0 5368.3 4549.0 5928.7 4870.8 

Total field slot area (mm2) -- -- -- -- -- 4960.8 5928.7 6943.2 

Total number of turns of armature 
windings 

528 528 528 432 408 336 444 372 

Total number of turns of field windings -- -- -- -- -- 372 444 528 

Packing factor (effective copper 
area/slot area) 

0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 

Magnet material NdFeB NdFeB NdFeB Ferrite Ferrite -- -- -- 
Number of PM pieces 16 12 12 12 12 -- -- -- 

PM thickness (mm) 7.2 13.1 13.7 15.9 16.9 -- -- -- 

PM length (mm) 17.9 40.3 37.6 39.0 35.0 -- -- -- 

 

Fig. 4.6 compares the average torque-current density curves of the aforementioned three 

WFSF machine with or without unequal slot. As can be seen, by using unequal slot, the 

average torques of the F2A2, the F1A1 and the F1A3 WFSF machine are increased by 10.3%, 

2.5% and 9.9%, respectively, when the current density=26.8A/mm2. With respect to the 

maximum average torque, these unequal slot machines are chosen for further investigation. 

 

Fig. 4.6.  Comparison of average torque-current density curves. 
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Based on the same stator outer radius and air-gap length of Prius IPM machine, the 12-

slot/10-pole and 12-slot/14-pole SFPM machines using rare-earth and ferrite magnets are 

globally optimized to achieve the maximum average torque when the current density is 

26.8A/mm2. The optimized parameters of machines are shown in Table 4.1. The numbers of 

turns of armature and field windings of all machines have been determined to ensure that the 

armature and field currents are approximately 167Arms when the current densities are 

26.8A/mm2. 

 

4.3. Comparison of electromagnetic performance of alternate machines 

 

The performances of alternate machines in Table 4.1 are compared in this section. The 

end-windings have been taken into consideration during the material usage calculations. 

Fig. 4.7 compares the average torques of all PM machines in Table 4.1. Among these 

machines, the SFPM machine using rare-earth magnets shows the highest average torque. 

Based on the purchase prices of materials in late 2013, the material usages and costs of PM 

machines are compared in Table 4.2. As can be seen, the usage of NdFeB magnets in SFPM 

machine is much larger than that in Prius IPM machine, and the NdFeB magnets SFPM 

machine seems hard to be popular in cost-sensitive applications due to its high material cost. 

NdFeB magnets can be replaced by cheap ferrite magnets in SFPM machines. According to 

[FAS14], the cheap ferrite magnets are more suitable for the SFPM machine than the IPM 

machine and the surface-mounted permanent magnet (SPM) machine due to the best 

demagnetization behaviour. It can be seen from Fig. 4.7 that there is a significant average 

torque decrease in SFPM machine after equipped with ferrite magnets. Between two SFPM 

machines using ferrite magnets, the 12-slot/14-pole one will be chosen in further comparison 

in term of the torque density. 
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Fig. 4.7.  Comparison of average torque with various current densities in PM machines, 

BLAC operation. 

 

Table 4.2.  Comparison of material costs 

 IPM 

SFPM 

12s/14p 

B=1.2T 

SFPM 

12s/14p 

B=0.4T 

WFSF 

24s/14p 

WFSF 

12s/8p 

WFSF 

18s/10p 

Copper usage (kg) 4.93 2.98 2.27 5.55 3.34 4.98 

Copper cost (£) 34.5 20.9 15.9 38.9 23.4 34.9 

Lamination usage (kg) 15.99 12.40 12.31 14.06 10.96 13.21 

Lamination cost (£) 32.0 24.8 24.6 28.1 21.9 26.4 

PM usage (kg) 0.77 2.31 1.80 -- -- -- 

PM cost (£) 77.0 231.0 14.4 -- -- -- 

Total cost (£) 143.5 276.7 54.9 67.0 45.3 61.3 

 

Fig. 4.8 compares the air-gap flux densities of machines. As can be seen, when the field 

current density is 26.8A/mm2, the air-gap flux density peak to peak values of WFSF 

machines are higher than that of the PM machines. 
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(a) 

 

(b) 

Fig. 4.8.  Comparison of air-gap flux distributions. (a) WFSF machines, field current 

density=26.8A/mm2. (b) PM machines. 

 

The back-EMF waveforms at a fixed rotor speed (1000rpm) of the 12-slot/14-pole ferrite 

magnet SFPM machine, Prius IPM machine and three WFSF machines are compared in Fig. 

4.9. As can be seen, all of these machines have nearly sinusoidal back-EMF waveforms, 

which make them suitable for brushless AC (BLAC) operation. F2A2-14 pole and F1A3-10 

pole machines have the highest back-EMF fundamental components. For this reason, the 

average torques of F2A2 and F1A3 machines are expected to be higher. 
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(a) 

 

(b) 

Fig. 4.9.  Armature phase back-EMF waveforms, 1000rpm, for WFSF machines, field slot 

current density= 26.8A/mm2. (a) Waveforms. (b) Harmonics. 

 

By avoiding the usage of rare-earth magnets, the ferrite magnet SFPM machine and the 

WFSF machine show much lower material costs than the rare-earth PM machines, Table 4.2. 

Fig. 4.10 is the comparison of average torques of these relatively low-cost machines. As can 

the seen, the F2A2-14 pole and the F1A3-10 pole WFSF machines show higher average 
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torques than the 12-slot/14-pole ferrite magnet SFPM machine when the current densities are 

over 10A/mm2. When the current density is 25A/mm2, the average torque of the F1A1-8 pole 

WFSF machine is similar to that of the SFPM machine. In a SFPM machine or a WFSF 

machine the electromagnetic torque is the major component of the output torque [ZHU11], 

[ZHO14a]. The electromagnetic torque of a SFPM machine or a WFSF machine can be 

expressed as: 

 

T =
3

2
𝑝𝛹𝑝𝑚𝐼𝑞     (4.1) 

 

where p is the pole number of a machine, Ψpm is the PM excited flux-linkage in the SFPM 

machine or the wound field excited flux-linkage in the WFSF machine. Iq is the q-axis current. 

 

 

Fig. 4.10.  Comparison of average torque with various current densities, BLAC operation. 

 

In the SFPM machine, only Iq increases with the increase of current density. Meanwhile, 

in the WFSF machine, not only Iq but Ψ increases with the increase of current density. 

Moreover, at high current density, the armature reaction is strong in the ferrite magnet SFPM 

machine. Therefore, as can be seen from Fig. 4.10, unlike the SFPM machine, the average 

torque of a WFSF machine is still incremental over torque density when the current density is 

high. When the current density is 26.8A/mm2, the average torques of the F2A2-14 pole 

machine, the F1A1-8 pole machine and the F1A3-10 pole machine can be 80%, 52% and 78% 

as much as that of the IPM machine, respectively, as shown in Fig. 4.11. The torque ripples 
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of the IPM machine, the SFPM machine and the F2A2-14 pole machine are all around 10%. 

The torque ripples in the F1A1-8 pole machine and the F1A3-10 pole machine are 55% and 

44%, respectively, which are relatively high. Fortunately, the easily implemented two-

stepped rotor skewing can introduce a specified shift to reduce the torque ripple significantly. 

This will be investigated in the future. 

 

 

Fig. 4.11.  Comparison of torque waveforms, current density= 26.8A/mm2, BLAC operation. 

 

Among three WFSF machines, the F1A1-8 pole machine shows the lowest copper and 

silicon steel usages due to its shortest end-winding and segmented rotor lamination, as shown 

in Table 4.2. Since 2/3 stator slots of the F1A3-10 pole machine contain short pitched coils, 

its copper usage is lower than the F2A2-14 pole machine whose coils are all fully pitched. 

Due to the factor that the ferrite magnet is cheap, the material cost of ferrite magnet SFPM 

machine, whose coils are all short pitched, is even lower than some WFSF machines. 

The material usage efficiencies (average torque/material cost) of the IPM machine, the 12-

slot/14-pole ferrite/NdFeB magnet SFPM machine and three WFSF machines are compared 

in Fig. 4.12. For the 12-slot/14-pole NdFeB magnet SFPM machine, its highest material cost 

results in the lowest material usage efficiency. All WFSF and ferrite magnet SFPM machines 

show much better material usage efficiencies than the IPM machine. When the current 

density is high, all WFSF machines show better material usage efficiencies than the SFPM 

machines. 
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Overall, the WFSF machine is competitive in cost-sensitive applications due to its 

relatively high torque density, low material cost and high material usage efficiency. 

 

 

Fig. 4.12.  Comparison of material usage efficiencies with various current densities. 

 

Although this chapter mainly focuses on the torque density of machines engaged in cost-

sensitive applications. The efficiency, which is a widely concerned performance for wound 

field machines, of WFSF machine should be taken into consideration to ensure a fair 

comparison. 

The efficiency maps of aforementioned three WFSF machines under fully loaded field 

current (167Arms, approximately 26.8A/mm2 current density) and half loaded field current 

(84Arms, approximately 13.4A/mm2 current density) are compared in Fig. 4.13 (a)-(f). It is 

worth mentioning that the mechanical losses of the machines are neglected, and the copper 

losses and iron losses of the machines under different d- and q-axis currents have been taken 

into the consideration during the calculations. The iron losses of these machines will be 

compared with other machines in Chapter VII. Overall, the F1A3-10 pole machine shows the 

highest efficiency among three WFSF machines. It can be seen that for each WFSF machine, 

the high efficiency region will move to low rotor speed and low output torque area with the 

reduction of field current. The reason is that the copper loss is dominated in the total loss 

when a WFSF machine is operated at low rotor speed, and high field current will not 

contribute to a significant increase of output torque at low output torque area. Therefore, in 

order to increase the operation efficiency under different rotor speed, the control of the field 
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current in a WFSF machine is needed to match the specific armature current and current 

angle. It can also be seen from the comparison that, under the same limitations of armature 

current and armature DC bus voltage, the maximum output torque of a WFSF machine will 

be lower with the decrease of field current. This means that the maximum field current is 

needed during the flux weakening region in terms of output power. The efficiency maps of 

the WFSF machines shown in this thesis have a limitation that the field currents are fixed in 

both constant torque and field weakening regions, which means for each case the optimal 

efficiency and torque-speed characteristic may not be achieved with the limited total current. 

Ideally, the amplitudes and the split ratio of field to armature currents needs to be controlled 

during the operation. However, this will result in increased price and reduced reliability due 

to the introduction of extra power devices for field windings, which can be a demerit of 

WFSF machine. 

The efficiency map of the Prius IPM machine is shown in Fig. 4.13 (g). Compared with 

the PM machines such as Prius IPM machine, the output powers and efficiencies of three 

WFSF machines are relatively low. Relatively high loss in the WFSF machine may lead to 

severe thermal condition, and the machines may not survive thermally. This means the 

candidate WFSF machine may not be feasible to EV/HEV applications without temperature 

controlling system. Therefore, increasing the output torque and reducing the losses in the 

WFSF machine will be the priority for future work. 

 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 

Fig. 4.13. Efficiency maps of machines, armature current limitation=167Arms, armature DC 

bus voltage =650V. (a) F2A2-14 pole, Field current=167A. (b) F1A1-8 pole, Field 

current=167A. (c) F1A3-10 pole, Field current=167A. (d) F2A2-14 pole, Field current=84A. 

(e) F1A1-8 pole, Field current=84A. (f) F1A3-10 pole, Field current=84A. (g) Prius IPM. 
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4.4.Summary 

 

Three types of wound field switched flux machines with DC field and AC armature 

windings having the same coil-pitches of 1 slot-pitch or 2 slot-pitches and having different 

coil-pitches of 1 slot-pitch and 3 slot-pitches, respectively, are compared with the switched 

flux permanent magnet machines using ferrite magnets as well as the Toyota Prius 2010 

interior permanent magnet machine of the same size in this chapter. 

According to two-dimensional finite element analysis, the torque density of the improved 

F1A3-10 pole WFSF machine with unequal slots is 78% as much as that of the IPM machine, 

when the current density is 26.8A/mm2. This machine also shows much higher material usage 

efficiency than the IPM machine and the SFPM machine. 

The efficiency maps of WFSF machines have been plotted in this chapter. It is found that 

reduce the field current in the WFSF machine will decrease the maximum output power 

during the operation but will increase the efficiency when the machine operated at low speed. 

As mentioned before, the main focus of this comparison is torque density, which means 

other performances including flux weakening capability has not been taken into consideration 

during the optimization. The torque-speed curves of the WFSF machines will be investigated 

in depth for future work. 
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CHAPTER V. SINGLE-PHASE WOUND FIELD 

SWITCHED FLUX MACHINES 
 

This chapter presents a comparative study of two types of low-cost single-phase wound 

field switched flux machines with DC field and AC armature windings having the same coil-

pitch of 2 slot-pitches and having different coil-pitches of 1 and 3 slot-pitches, respectively. 

Both can share the same stator lamination but the later can have shorter end-windings and 

lower iron loss for the 12-slot/6-pole configuration. The performance, including back-EMF, 

cogging torque, and static torque, of both machines are analysed and compared by two-

dimensional (2-D) finite element analysis (FEA) and validated by experiments on the 

prototype machines. 

 

5.1.Introduction 

 

Since the switched flux (SF) principle was firstly introduced in 1955, various SF machine 

topologies have been proposed and investigated [RAU55], [HOA97], [ZHU10], and 

[ZHU11]. The SF machine possesses two major advantages: simple rotor structure and easy 

temperature rise management, since all excitation sources are on the stator. Recently, the 

research on the SF machines is dominated by using permanent magnet (PM) for primary 

excitation, because of its relatively high torque density and high efficiency. However, the 

price of rare earth material is high, it is desirable to reduce the usage of magnets or even 

replace magnets with field windings. For this reason some wound field switched flux (WFSF) 

machines are proposed for low-cost applications [POL99], [CHE10], [ZUL10], [POL03], 

[POL03b], [POL06], [SUL11], [SUL12], [WAN12], and [GAU12]. The working temperature 

of WFSF machines will not be limited by the maximum working temperature of PMs, and 

potential irreversible demagnetization of PMs no longer exists. Consequently, the power 

density of WFSF machine can be higher. Moreover, due to the variable flux wound field 

excitation, the flux weakening operation at high speed of WFSF machine is much easier than 

PM machines. No brushes/slip rings are required in WFSF machine, thus the service life and 

reliability of WFSF machine have the potential to be better than that of machines having rotor 

DC field windings. 

A single-phase WFSF machine was proposed in [RAU55] and extensively investigated 

[POL03], [POL03b], and [POL06] by Pollock, as shown in Fig. 5.1, it has eight stator slots 
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and four rotor poles. Both armature and field windings are fully pitched and hence the end-

winding is long. In this chapter, a 12-slot/6-pole machine is firstly investigated. This machine 

shares the same operating principle as Pollock’s machine in which DC field and AC armature 

windings have the same coil-pitch of 2 slot-pitches. As will be shown in this chapter, when 

the axial length and stator outer diameter are 25mm and 90mm, respectively, the foregoing 

mentioned two machines show similar average torque when the copper loss is fixed, but the 

12-slot/6-pole machine has much shorter end-windings, and consequently, much better 

copper usage efficiency. The field winding and armature winding of 12-slot/6-pole machine 

can be rearranged to make the DC field and AC armature windings have different coil-pitches 

of 1 slot-pitch and 3 slot-pitches, respectively. It is found that this winding-rearranged 

machine has even shorter end-windings. Like the single-phase PM machine introduced in 

[CHE06], the asymmetric rotor is employed in this proposed machine to enable it to self-start. 

The number of slots and poles of proposed 12-slot/6-pole machine can be halved, resulting in 

a 6-slot/3-pole machine. FEA analysis shows that this machine has significantly reduced iron-

loss compared with other WFSF machines when their copper losses and rotor speeds are 

fixed. The FEA predicted back-EMF, cogging torque, torque-current characteristic are 

validated by experiments on two 12-slot/6-pole prototype machines. 

 

 
 

(a) (b) 

Fig. 5.1  Conventional 8-slot/4-pole WFSF machine (F2A2-4 pole). (a) Cross-section. (b) 3D 

model. 
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5.2.Topologies of machines 

 

  

(a) (b) 

Fig. 5.2  12-slot/6-pole WFSF machine (F2A2-6 pole). (a) Cross-section. (b) 3D model. 

 

It can be seen from Fig. 5.2 that the 12-slot/6-pole machine that is derived from the 

conventional 8-slot/4-pole machine is equipped with salient-pole stator and rotor. DC field 

and AC armature windings have the same coil-pitch of 2 slot-pitches. Correspondingly, 6 

armature coils and 6 field coils (or 3 armature coils and 3 field coils when consequent pole 

windings are employed) are fully pitched. The winding-rearranged 12-slot/6-pole machine, as 

shown in Fig. 5.3, employs the similar stator and rotor laminations. 4 short pitched field coils 

having 1 slot-pitch but only 4 (or 2, for consequent pole windings) long pitched field coils 

having 3 slot-pitches are disposed on the stator, which means its end-windings have the 

potential to be short. Fig. 5.4 shows the topology of a 6-slot/3-pole machine derived from the 

winding-rearranged 12-slot/6-pole machine. 

In order to easily differentiate the foregoing mentioned machines, four WFSF machines 

will be named after their field and armature winding pitches and rotor pole numbers. For 

instance, the field winding pitch, armature winding pitch and rotor pole number of the 

winding-rearranged 12-slot/6-pole machine are 1, 3, and 6, respectively. Thus, this machine 

will be designated as “F1A3-6 pole”. 
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(a) (b) 

Fig. 5.3  Winding rearranged 12-slot/6-pole WFSF machine (F1A3-6 pole). (a) Cross-section. 

(b) 3D model. 

 

 

 

(a) (b) 

Fig. 5.4  6-slot/3-pole WFSF machine (F1A3-3 pole). (a) Cross-section. (b) 3D model. 

 

5.3.Operation principle 

 

The operation principle of F2A2-4 pole machine has been introduced in [POL03b], and as 

mentioned above, the F2A2-6 pole machine shares the same operation principle and therefore 
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will not be described here. In terms of the F1A3 machines, its operation principle is similar to 

that of F2A2-4 pole machine, as shown in Fig. 5.5. It can be seen from Fig. 5.5 (a) when the 

rotor pole aligns with the centre of a field coil (and also the centre of armature coil), the flux-

linkage in coil A1 is maximum, while in Fig. 5.5 (c), when the rotor slot aligns with the 

centre of the field coil (and also the centre of armature coil), the flux-linkage in coil A1 is 

also maximum but the direction is reversed, i.e. negative maximum. When the rotor pole is 

approximately aligned with either one of the stator slots which accommodate the field coils, 

the flux-linkage in coil A1 is zero, Fig. 5.5 (b) and (d). The periodical variation of bipolar 

flux-linkage with rotor position will induce back-EMF in the coils, which interacts with the 

applied armature current will produce the electromagnetic torque. 

 

 

Fig. 5.5  Field distributions (armature current=0A, field current=10A) and typical flux-

linkage waveform of single coil in F1A3-6 pole WFSF machine. 
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5.4.Comparison with low-cost machines 

 

Switched flux permanent magnet (SFPM) machine using ferrite magnets could also be a 

choice in low-cost applications, Fig. 5.6 (a). The average torque-current density curves of the 

machines shown in Fig. 5.1 and Fig. 5.6 (a) are compared in Fig. 5.7. It can be seen that, 

F2A2-4 pole machine shows much higher average torque than SFPM-4-pole machine when 

the current density is larger than 8 A/mm2. For this reason, WFSF machine is more suitable 

for low-cost high-torque required applications. The manufacturing cost of SFPM machine can 

be higher than WFSF machine since its stator is segmented and needs to be assembled 

carefully. 

Switched reluctance (SR) machines are widely used in low-cost applications due to their 

low material costs. Fig. 5.6 (b) shows the topology of a conventional single-phase 4-rotor-

pole SR machine. Under brushless DC (BLDC) operation, the winding of a single-phase SR 

machine can only be energized for half of the cycle (unipolar excitation). Therefore, the 4-

rotor-pole SR machine will show a lower average torque compared with the F2A2-4 pole 

machine working under the same RMS current density, as shown in Fig. 5.7. 

 

 

(a) 
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(b) 

Fig. 5.6  Cross-section of two low-cost machines (a) Single-phase 4-rotor-pole SFPM 

machine. (b) Single-phase 4-rotor-pole SR machine. 

 

As shown in Fig. 5.7, the average torques of foregoing mentioned SFPM machine, WFSF 

machine and SR machine at the current density of 20A/mm2 will be 1.96Nm, 2.77Nm and 

2.42Nm, respectively, which correspond to 30.49W, 76.60W and 66.32W copper losses of 

those machines, respectively. As can be seen from Fig. 5.8, the efficiency of the WFSF 

machine is similar to that of SR machine. It is worth mentioning that at 1000rpm, the FEA 

predicted iron losses of those machines are all less than 3W. 
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Fig. 5.7  Comparison of average torque with different stator slot current density, BLDC 

operation. 

 

 

Fig. 5.8  Comparison of efficiency with different rotor speed, current density= 20A/mm2, 

BLDC operation. 

 

The KVA ratings and power factors of foregoing mentioned three machines reaching the 

maximum average torque at the current density=20A/mm2, are shown in Table 5.1, of which 
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the total number of turns of armature windings is 180. It is obvious that the F2A2-4 pole 

WFSF machine shows much higher power factor and lower KVA rating than the SR machine. 

 

Table 5.1 Comparison of machines 

 SFPM F2A2 SR 

Total number of turns of armature windings 180 180 180 

Total number of turns of field windings -- 180 -- 

Armature current (A) 22.32 24.67 54.89 

Terminal voltage (V) 13.03 17.27 8.70 

KVA rating (VA) 290.8 426.1 477.6 

Copper loss (W) 30.49 76.60 66.32 

Iron loss (W) 2.99 1.88 1.34 

Output power (W) 205.59 282.74 253.59 

Input power (W) 239.1 361.2 321.3 

Power factor 0.82 0.85 0.68 

(Current density=20A/mm2, rotor speed=1000rpm) 

 

5.5.Stator and rotor pole combination 

 

Any rotor pole number from 1 to 11 can be employed except 4 and 8 for the F1A3 

machine having 12 slots. It can be seen from Table 5.2 that the 2-, 6-, and 10-pole-rotor 

machines have the unity winding factor, and among them the 6-rotor-pole one has the largest 

main flux according to its operation principle. For this reason, the F1A3-6 pole machine 

appears to give the best performance. Likewise, the 3-pole rotor can be the most appropriate 

for F1A3 6-slot machine. It can be seen from Fig. 5.9 that, the 3-rotor-pole machine shows 

the highest peak torque among F1A3-6 stator-slot machines. Meanwhile, for F1A3-12-stator-

slot machines, 6-rotor-pole machine shows the highest peak torque. 
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(a) 

 

(b) 

Fig. 5.9  Comparison of peak torque with different rotor pole numbers in F1A3 machines, 

armature current= field current= 10A. (a) 6-stator-slot. (b) 12-stator-slot. 
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Table 5.2 Winding Factors of Different Rotor Pole Number in F1A3-12-Slot Machine 

Rotor pole number 
Distribution 

factor 
Pitch factor Winding factor 

4n 
4 0 0 0 

8 0 0 0 

4n+1 

1 0.707 0.707 0.5 

5 0.707 0.707 0.5 

9 0.707 0.707 0.5 

4n+2 

2 1 1 1 

6 1 1 1 

10 1 1 1 

4n+3 

3 0.707 0.707 0.5 

7 0.707 0.707 0.5 

11 0.707 0.707 0.5 

where n is an integer number. 

 

5.6.Parameter optimization 

 

For comparison, all the stator and rotor parameters in the foregoing mentioned WFSF 

machines have been optimized to achieve the maximum average output torque under the 

constraint of same copper loss (60W). It is worth mentioning that, the rotor pole width, stator 

pole width, stator slot opening and stator back-iron thickness are initially set to be the same in 

each machine before optimization, which is usually employed in the 3-phase switched flux 

permanent magnet machines [HOA97], [ZHU10], and [ZHU11]. The copper loss PCu of a 

single-phase WFSF machine can be expressed as: 

 

PCu = Ia
2Rat + If

2Rft     (5.1) 

 

where 𝐼𝑎 is the RMS armature current, 𝑅𝑎𝑡 is the total armature winding resistance,  𝐼𝑓 is the 

field current, 𝑅𝑓𝑡 is the total field winding resistance. The end-windings have been taken into 

consideration during the optimization. The optimized parameters of the investigated 

machines are given in Table 5.3. It can be seen that for the machine having less stator slot 

number, after optimization, larger stator pole width, stator back-iron thickness and rotor pole 
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width are achieved, since more flux has to pass through the stator pole, stator back-iron and 

rotor pole. According to optimization, F1A3-6 pole machine shows larger stator pole width 

and stator back-iron thickness than those of F2A2-6 pole machine. It is because the stator 

poles with field coils in F1A3 machine can be more saturated when the flux goes from the 

stator side to the rotor side. With the purpose of reducing the flux leakage between the stator 

poles with field coils (this stator pole contains the flux produced by two field slots in F1A3 

machines) and its neighbouring stator poles, the rotor pole width in F1A3-6 pole machine is 

smaller than that of F2A2-6 pole machine. The stator parameters of two 6-pole machines 

(F2A2-6 pole and F1A3-6 pole) are nearly the same, which means in actual fabrication, the 

common stator may be employed for different applications by changing the winding 

arrangements only. 

 

Table 5.3 Main parameters of machines 

Items 
F2A2-4 

pole 

F2A2-6 

pole 

F1A3-6 

pole 

F1A3-3 

pole 

Rated speed (rpm) 1000 1000 1000 1000 

Stator outer radius (mm) 45 45 45 45 

Axial length (mm) 25 25 25 25 

Split ratio 0.5 0.55 0.55 0.55 

Stator slot number 8 12 12 6 

Rotor pole number 4 6 6 3 

Air-gap length (mm) 0.5 0.5 0.5 0.5 

Stator pole arc (degree) 21 14 15 23 

Rotor pole arc (degree) 31 23 20 35 

Stator back-iron thickness (mm) 5 3.5 4 7 

Total armature slot area (mm2) 1110.2 1014.9 676.6 586.5 

Total field slot area (mm2) 1110.2 1014.9 1353.2 1173.0 

Total number of turns of armature windings 180 180 180 180 

Total number of turns of field windings 180 180 180 180 

Packing factor (effective copper area/slot 

area) 
0.4 0.4 0.4 0.4 
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In order to share the stator lamination structure between F2A2-6 pole machine and F1A3-6 

pole machine, all slots are of the same area in the stator. For this reason, the ratio of field and 

armature current can be adjusted by changing the field and armature currents directly. It can 

be seen from Fig. 5.10 that, for the F2A2 machines, the highest average torque is achieved 

when the armature slot current density is equal to the field slot current density. Meanwhile, 

for the F1A3 machines, the highest average torque is achieved when the field slot current 

density is 0.9 times as the armature slot current density. Since all optimal ratios of field to 

armature current density are approximately 1, the field windings and armature windings can 

be connected in series in power-electronic controllers to reduce the cost. 

 

 

Fig. 5.10  Comparison of ratio of field to armature slot current density with different copper 

loss, BLDC operation. 

 

The end-windings cannot be ignored in short axial length applications. When the copper 

loss is fixed to 60W and the cross-section of each machine remains the same, the variation of 

average torque with axial length is shown in Fig. 5.11. Obviously, the longer the axial length 

of a machine is, the smaller the end-windings will influence the machine performance. Since 

the copper loss is fixed, the increase of average torque of each machine will not be 

proportional to the increase of axial length. Instead, the electric loading will be decreased 

with the increase of axial length. Consequently, the growth rate of average torque will be 

decreased with the increase of axial length. It can be seen from Fig. 5.11 that, when the axial 

length of F2A2 machines is less than 25mm, the 4-pole and the 6-pole machines have similar 
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average torque, however, the 4-pole machine shows higher average torque when the axial 

length is long. Similarly, the F1A3-3 pole machine exhibits higher average torque than F1A3-

6 pole machine when the axial length is longer than 60mm. This can be explained as follows. 

When the end-winding is ignored, compared with the machine having more slots and poles, 

the same type of machine having less slots and poles has larger main flux under the same 

field current, and consequently, larger average torque under the same armature current. 

 

 

Fig. 5.11  Comparison of torque variation with different axial length, BLDC operation, 

copper loss=60W. 

 

It is worth mentioning that although the envelop sizes of the compared four machines are 

the same, the difference of the thermal dissipation performance will lead to different thermal 

condition of this machines even under the constraint of the same copper loss. Obviously, for 

the F1A3-3 pole and F2A2-4 pole machines, relatively large slot areas result in severe 

thermal condition at the centre parts of the coils. For F2A2-6 pole and F1A3-6 pole machines, 

their thermal dissipation performances have potential to be better than the F1A3-3 pole and 

F2A2-4 pole machines due to reduced slot areas. Although two 6-pole machines have the 

same stator slot number, their thermal dissipation performances may not be the same due to 

the different slot areas based on the optimization. Even the common stator is employed for 

these two machines, the difference between the optimal ratios of the field currents to the 

armature currents will result in the different thermal dissipation performances. Obviously, 

comparison of the machines under the same copper loss has some limitations when the effect 
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of thermal dissipation is accounted. Therefore, the machines can be compared under the 

constraint of the same maximum operating temperature in view of thermal condition in 

further investigations. 

In low-cost applications, the copper usage is a key factor affecting the total cost of a 

wound field motor since copper is much more expensive than other materials in a wound 

field motor. When the axial length is 25mm, the copper usage of four WFSF machine is 

shown in Table 5.4. As predicted before, the F2A2-6 pole machine has smaller copper usage 

than the 4-pole one and the F1A3-6 pole machine has even smaller usage than the F2A2-6 

pole machine. 

 

Table 5.4 Comparison of copper usage 

 
F2A2-4 

pole 

F2A2-6 

pole 

F1A3-6 

pole 

F1A3-3 

pole 

Field winding volume (mm3) 25850.7 21496.0 24772.9 26671.7 

Armature winding volume 

(mm3) 
25850.7 21496.0 15958.8 20097.7 

Total winding volume (mm3) 51701.5 42991.9 40731.8 46769.4 

 

When the copper loss is fixed to 60W and the cross-section of each machine remains the 

same, the variation of copper usage efficiency (average torque/total copper usage) with axial 

length is shown in Fig. 5.12. In this figure, the variation of average torque with axial length 

follows the same trend shown Fig. 5.11. The copper usage of effective length increases 

proportional to the axial length, and the total copper usage is the sum of the copper usages of 

effective length and end-winding. Similar to Fig. 5.11, the shorter the axial length of a 

machine is, the larger proportion of the end-windings in the total copper usage will be. 

As can be seen, when the axial length is shorter than 25mm, both the F1A3-6 pole and the 

F2A2-6 pole machines show better copper usage than the conventional F2A2-4 pole machine 

due to their significantly reduced end-windings. This means for short axial length and low-

cost applications, the F1A3-6 pole and the F2A2-6 pole machines are more competitive. 
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Fig. 5.12  Comparison of copper usage efficiency with different axial length, BLDC 

operation, copper loss=60W. 

 

5.7.Drive circuit for machines 

 

As mentioned before, since all optimal ratios of field to armature current density in WFSF 

machines are approximately 1, the field winding and armature winding can be connected in 

series. One possible topology of motor drive circuit, which is developed from [POL06], is 

shown in Fig. 5.13 (a). For F1A3 machines, in order to ensure the current densities in each 

slot are the same, the armature windings are connected in two parallel strands. 

When the rotor speed is 1000rpm, the armature and field current waveforms of four 

optimized WFSF machines under 36V terminal voltages are shown in Fig. 5.14. The 

waveforms are achieved from Ansoft Maxwell. Fig. 5.13 (b) shows a drive circuit associated 

with 2-D FEA during the simulation. The armature and field current waveforms are obtained 

from the ampere meters marked on this figure. 

As can be seen, the armature current waveforms are very close to ideal 180° square current 

waveforms. Ignoring the fluctuations caused by the reverse of armature current, the field 

current shows good stability. It is worth mentioning that the output torque of WFSF machine 

is tiny during the reverse of armature current, which means the fluctuations in field current 

will not influence the output torque dramatically. Therefore, in order to compare four WFSF 

machines under the same electric loadings, ideal brushless DC (BLDC) operation and 

constant field current are engaged in further analysis. 



 
 

125 

 

 

(a) 

 

(b) 

Fig. 5.13  Drive circuit for WFSF machines. (a) Topology of the drive circuit. (b) One drive 

circuit associated with 2-D FEA. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 5.14  Armature current waveforms under 36V terminal voltages, 1000rpm. (a) F2A2-4 

pole. (b) F2A2-6 pole. (c) F1A3-6 pole. (d) F1A3-3 pole. 

 

5.8.Comparison of machines 

 

The performance of foregoing mentioned four optimized single-phase WFSF machines are 

compared in this section. It should be noticed that the end-windings have been taken into 

consideration in the copper loss calculation, but the end effects are ignored in 2-D FEA. 
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5.8.1. Open-circuit field distribution 

 

Fig. 5.15 shows the open-circuit field distributions of four WFSF machines when the coil 

A1 has the maximum flux-linkage. It can be seen that for both F2A2 and F1A3 machines, the 

flux linking coil A1 varies from a positive maximum to negative maximum as the rotor 

rotates by half of a rotor tooth-pitch. 

 

 

(a) 
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(b) 

 

(c) 



 
 

130 

 

(d) 

Fig. 5.15  Flux distributions with field excitation only, maximum flux-linkage with coil A1 

(field current=6A). (a) F2A2-4 pole. (b) F2A2-6 pole. (c) F1A3-6 pole. (d) F1A3-3 pole. 

 

5.8.2. Back-EMF 

 

Fig. 5.16 is the 2-D FEA predicted back-EMFs of four WFSF machines with various field 

currents and different rotor positions at a fixed rotor speed (1000rpm). For the amplitude of 

back-EMF waveforms under the same rotor speed, the F2A2-6 pole machine is similar to the 

F1A3-6 pole one, Fig. 5.16 (b) and (c). It can also be seen that for F2A2 machines, the 4-pole 

machine has larger EMF peak to peak value than the 6-pole one under the same field current. 

The reason for this is that smaller slot number leads to larger stator pitch and results in less 

flux leakage, and consequently, larger main flux and larger back-EMF. Similarly, the back-

EMF amplitude of F1A3-3 pole machine is larger than that of F1A3-6 pole one. Since all of 

machines are designed for low-cost applications, BLDC operation, i.e. 180 electric degrees 

rectangular current waveform, is employed in each machine to reduce the cost in power 

devices. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 5.16  Armature back-EMF waveforms at various field excitations, 1000rpm. (a) F2A2-4 

pole. (b) F2A2-6 pole. (c) F1A3-6 pole. (d) F1A3-3 pole. 

 

5.8.3. Torque Characteristics 

 

When the field currents are fixed to 6A, the static torques of four WFSF machines with 

various armature currents are shown in Fig. 5.17. When the armature currents are 0A, the 

curves in the figure represent the cogging torques in those machines. In spite of the fact that 
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the F1A3-3 pole machine has the highest peak torque compared with other WFSF machines 

under the same armature current, the flat-tops of its torque waveforms are much narrower 

than those of the others. This may lead to a significant reduction in the average torque. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 5.17  Torque-rotor position curves for different armature currents with a 6A field current. 

(a) F2A2-4 pole. (b) F2A2-6 pole. (c) F1A3-6 pole. (d) F1A3-3 pole. 

 

Fig. 5.18 shows the average torque of four WFSF machines for a range of armature and 

field currents (4A-10A). It can be seen, compared with F2A2 machines, the average torques 

of F1A3 machines at higher currents are lower since their stators are easily saturated. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 5.18  Torque-current curves for different armature currents with different field current, 

BLDC operation. (a) F2A2-4 pole. (b) F2A2-6 pole. (c) F1A3-6 pole. (d) F1A3-3 pole. 

 

The comparison of four WFSF machines with various copper losses is shown in Fig. 5.19. 

Due to its relatively longer end-windings, the F1A3-3 pole machine has the lowest average 

torque compared with other machines under the same copper loss. It can also be seen that the 

average torque of two F2A2 machines are similar and higher than that of the F1A3 machines. 
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Fig. 5.19  Comparison of torque-copper loss curves, BLDC operation. 

 

According to above investigation, it can be noticed that compared with the F2A2 

machines, the F1A3 machines have relatively lower average torque but higher peak torque. 

 

5.8.4. Iron loss 

 

When the rotor speed is the same, the WFSF machine having more rotor poles shows 

higher frequency and shorter cycle time of flux density variation, consequently, larger iron 

loss in the lamination [PAN08]. Fig. 5.20 compares the total iron loss of four WFSF 

machines when the armature current and the field current are fixed. It can be seen that the 

F1A3-3 pole machine has smallest iron loss among those machines. Compared between two 

6-pole machines, the F1A3-6 pole machine has a significantly reduced iron loss. This is 

benefited from the unchanged flux directions in the stator poles with field coils in F1A3 

machines. 
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Fig. 5.20  Comparison of stator and rotor iron losses, BLDC operation, armature 

current=field current=15A. 

 

5.9.Starting torque of machines 

 

The self-starting capability of aforementioned WFSF machines is not taken into 

consideration. In this section, the self-starting capability of two 6-pole machines will be 

investigated. 

Unlike the rotor with tips that are employed in the conventional F2A2-4 pole machine, the 

chamfered rotor can be employed in both the F2A2-6 pole and F1A3-6 pole machines to 

enable machines to avoid the null point in torque waveforms. In order to use the same rotor 

for these two machines, the rotor pole arc, chamfer angle and chamfer depth are optimized 

and the optimized topology is shown in Fig. 5.21. It can be seen from Fig. 5.22 that by 

employing this chamfered rotor, two investigated 6-pole machines have achieved 

unidirectional torque. For the F2A2-6 pole and F1A3-6 pole machines, their minimum 

torques are about 12% (0.15Nm) and 15% (0.18Nm) of their peak torques, respectively. 
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Fig. 5.21  Asymmetric rotor, with pole-arc=24o, and chamfer angle/depth= 12o/1.2mm. 

 

 

(a) 
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(b) 

Fig. 5.22  Static torque-rotor position characteristics with asymmetric rotor, field 

current=10A. (a) F2A2-6 pole. (b) F1A3-6 pole. 

 

5.10. Experimental validation 

 

For the validation of the FEA predictions, the stators of foregoing mentioned two 6-pole 

machines (F2A2-6 pole machine and F1A3-6 pole machine) and a common rotor have been 

prototyped, Fig. 5.23. It is worth mentioning that the laminations of two stators are exactly 

the same, and this means that both the time and cost of prototype manufacture can be saved. 
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(a) 

 

(b) 
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(c) 

Fig. 5.23  Prototypes of WFSF machines. (a) stator of F2A2-6 pole machine, (b) stator of 

F1A3-6 pole machine, (c) common 6-pole rotor. 

 

The screenshots of measured armature back-EMFs of two 6-pole machines are shown in 

Fig. 5.24. In two machines, the field currents (I-f) maintained 5A and were excited from a DC 

power supply. 

 

(a) 
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(b) 

Fig. 5.24  Experimental back-EMF waveforms, field current= 5A. (a) F2A2-6 pole machine, 

358.2rpm. (b) F1A3-6 pole machine, 356.6rpm. 

 

The predicted and measured armature back-EMF waveforms of two 6-pole machines at 

two different field excitations (4A and 6A) are compared in Fig. 5.25. For both machines, 

there is good agreement between predicted and measured results except that the measured 

back-EMF peak value is slightly smaller than the predicted value. Such differences can be 

observed at different field excitations and ignoring the end-effects is mainly responsible for 

this [ZHU07]. 

 

 

(a) 
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(b) 

Fig. 5.25  Back-EMF waveforms, 1000rpm. (a) F2A2-6 pole machine, (b) F1A3-6 pole 

machine. 

 

When the armature current (I-a) is 0A, the cogging torque waveforms under different field 

currents are measured and have been compared with the FEA predictions. Fig. 5.26 (a) and 

Fig. 5.26 (b) show the cogging torque waveforms of F2A2-6 pole machine and F1A3-6 pole 

machine, respectively. Due to the mechanical tolerance which usually increases the cogging 

torque, there is a slight difference between measured and FEA predicted cogging torque 

waveforms. But overall, good agreement has been achieved. 

The static torque waveforms with various field currents and armature currents (4A and 6A) 

of F2A2-6 pole machine and F1A3-6 pole machine are shown in Fig. 5.26 (c) and Fig. 5.26 

(d), respectively. It can be seen that under the same armature current, the F1A3-6 pole 

machine shows slightly higher peak to peak torque than the F2A2-6 pole machine. It should 

be noticed that when the armature currents and field currents of both machines are 6A, the 

field slot current density and armature slot current density of the F2A2-6 pole machine are all 

5.3A/mm2 (copper loss=19.6W). For the F1A3-6 pole machine, the field slot current density 

and armature slot current density are 4A/mm2 and 8A/mm2, respectively (copper loss=24.7W). 

The measured results show generally good agreement with the predicted results. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 5.26  Cogging torque and static torque waveforms with various field current and 

armature current. (a) cogging torque, F2A2-6 pole machine, (b) cogging torque, F1A3-6 pole 

machine, (c) static torque, F2A2-6 pole machine, (d) static torque, F1A3-6 pole machine. 

 

5.11. Summary 

 

Two types of low-cost single-phase wound field switched flux machines with DC field and 

AC armature windings having the same coil-pitch of 2 slot-pitches and having different coil-
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pitches of 1 slot-pitch and 3 slot-pitches, respectively, are compared in this chapter. The 

back-EMF, cogging torque, static torque with different field and armature currents of two 6-

pole machines have been validated by experiments on the prototype machines. 

Compared with the F2A2-4 pole WFSF machine, the F2A2-6 pole WFSF machine shows 

the similar average torque when the copper loss is fixed but shorter end-windings, and 

consequently, better copper usage efficiency for applications requiring short axial length. 

The F1A3-6 pole machine can share the same stator topology with F2A2-6 pole machine 

and has even shorter end-windings and smaller iron loss. 

The slot number and pole number of F1A3-6 pole machine can be halved and result in a 

F1A3-3 pole machine. Compared with the F2A2-4 pole machine, this machine shows 

significantly reduced iron loss. 

  



 
 

148 

CHAPTER VI. NON-OVERLAPPING STATOR WOUND 

FIELD SYNCHRONOUS MACHINES 
 

Three-phase non-overlapping stator wound field synchronous (NSWFS) machines having 

salient-pole rotors are systematically investigated in this chapter. The influence of stator slot 

and rotor pole number combinations of the NSWFS machines is investigated based on the 

optimised designs. According to two-dimensional (2-D) finite element analysis (FEA), it is 

found that the NSWFS machine exhibits higher torque density and lower torque ripple than 

the non-overlapping segmented rotor NSWFS (SNSWFS) machine. Additionally, the 

influences of unequal slot and step-skew angle on the torque density enhancement and torque 

ripple suppression are investigated in the NSWFS machines, respectively. The FEA predicted 

back-EMF, cogging torque, and static torque of NSWFS machines are validated by 

experiments on the prototype machines. 

 

6.1.Introduction 

 

Although rare-earth permanent magnet (PM) machines exhibit high torque density and 

high efficiency, the high price of rare-earth PMs may prevent them to be applied to some cost 

sensitive applications, such as domestic appliances. How to reduce/avoid the usage of PMs in 

the electrical machines without tremendous sacrifice of electromagnetic performance 

becomes a research hotspot recently. The stator wound field synchronous (SWFS) machines, 

which are PM-free, show the advantages of easy thermal management and simple rotor 

structure without employing the brushes/slip rings as in the conventional rotor wound field 

synchronous machines. Consequently, high torque density and high rotor speed may be 

achieved. Recently, most investigations on the SWFS machines focus on the wound field 

switched flux (WFSF) machines and variable flux reluctance (VFR) machines [POL99], 

[POL06], [CHE10b], [ZUL10], [SUL11], [SUL12], [TAN13], [GAU13], [ZHO14], 

[ZHO14b], [KHA14], [FUK12], and [LIU13]. The WFSF machines are based on switched 

flux principle which was firstly proposed in 1955 [RAU55]. Meanwhile, the VFR machines 

have been developed from a split-coil switched reluctance machine proposed in 1988 

[PUL88]. 

In 1999, a single-phase WFSF machine with field and armature coil pitches of 2 slot-

pitches is proposed for low-cost applications [POL99]. This machine shows higher efficiency 
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than an induction machine [POL06]. Further, the three-phase version of this machine has 

been proposed and widely investigated [CHE10b], [ZUL10], [SUL11], [SUL12], [TAN13], 

and [GAU13], as shown in Fig. 6.1. It is found that this machine can achieve higher material 

usage efficiency (torque/material cost) than a switched flux PM machine. However, the 

torque density of this machine is relatively low and limited by magnetic saturation. Therefore, 

in order to increase the torque density, a WFSF machine with field and armature coil pitches 

of 1 slot-pitch and 3 slot-pitches respectively has been proposed [ZHO14], [ZHO14b], as 

shown in Fig. 6.2. Compared with the switched reluctance machine, this machine exhibits 

higher torque density and higher power factor. Nevertheless, the aforementioned WFSF 

machines are all overlapping winding machines, which may lead to longer end-windings, 

larger axial machine length, increased copper usage and manufacturing cost. 

The VFR machines exhibit relatively short end-windings with concentrated windings 

[FUK12], [LIU13], as shown in Fig. 6.3. However, the non-overlapping armature and field 

windings of this machine are wound on the same stator poles, which results in reduced slot 

areas for the armature winding and thus increased copper loss and reduced efficiency. 

The segmented rotor WFSF machine, which is designated as a segmented rotor non-

overlapping stator wound field synchronous (SNSWFS) machine, shows the advantages of 

easy manufacture and short end-windings since alternate armature and field coils are wound 

separately on the stator teeth, as shown in Fig. 6.4. However, the segmented rotor cannot be 

easily fabricated, whilst the torque density of this machine topology is low due to the special 

rotor structure since rotor segments restrict the flux paths in this machine and these segments 

are highly saturated during the loaded operation [ZUL10]. In order to increase the torque 

density of the SNSWFS machine, a conventional salient-pole rotor may be employed. In 

[KHA14], the segmented rotor is replaced by the salient-pole rotor in this machine topology 

having 24/10, 24/14, 24/16, 24/20 and 24/22 stator slot/rotor pole combinations, but there is 

no obvious torque increase due to inappropriate polarities of field excitations (the polarities 

of adjacent field coils are of opposite direction), Fig. 6.5. 

In this chapter, novel non-overlapping stator wound field synchronous (NSWSF) machines 

employing salient-pole rotors, as shown in Fig. 6.6, will be systematically investigated. As 

can be seen, unlike the SNSWFS machine, the polarities of the field coils in this machine are 

all of the same direction. The stator slot and rotor pole number combinations of the NSWFS 

machine are investigated in this chapter. It is found by the two-dimensional (2-D) finite 

element analysis (FEA) that this machine topology shows much higher torque density than 
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the SNSWFS machine and also that in [KHA14], whilst small torque ripple can be achieved 

by selecting the appropriate stator slot/rotor pole number combinations. 

In this chapter, the 6-slot NSWFS machines will be investigated firstly, followed by a 

comparison with an optimized SNSWFS machine. Then, the comparisons will be made 

between 12-slot NSWFS machines having different poles. Finally, easy manufactured 2-step 

skewing rotors will be employed in the 12-slot NSWFS machines to reduce the torque ripples. 

The back-EMFs, cogging torques, and static torques of the 6- and 12-slot NSWFS machines 

predicted by FEA will be validated by experiments. 

 

Fig. 6.1.  Cross-section of 3-phase WFSF machine field coil=armature coil=2 slot-pitches, 

12-slot/7-pole. 

 

Fig. 6.2.  Cross-section of 3-phase WFSF machine, field coil=1 slot-pitch, armature coil=3 

slot-pitches, 9-slot/5-pole. 
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Fig. 6.3.  Cross-section of 3-phase VFR machine, 6-slot/7-pole. 

 

 

Fig. 6.4.  Cross-section of 3-phase SNSWFS machine with segmented rotor, 12-slot/8-pole. 
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Fig. 6.5.  Cross-section of 3-phase NSWFS-AP machine, 12-slot/5-pole. 

 

 

Fig. 6.6.  Cross-section of proposed 3-phase NSWFS machine, 12-slot/11-pole. 

 

A comparison is made between the torque capabilities of machine topology which has 

alternate field coil polarities (NSWFS-AP) as shown in Fig. 6.5 and the proposed NSWFS in 

which all field coils have the same polarities, shown in Fig. 6.6. According to the 

investigation in [KHA14], the 12-slot/5-pole NSWFS-AP machine should have the highest 

torque density among the 12-slot NSWFS machine-AP machines. Thus, the comparison will 

be made between a 12-slot/5-pole NSWFS-AP machine and a proposed 12-slot/11-pole 

NSWFS machine of the same size (stator outer radius=45mm, axial length=25mm, air-gap 
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length=0.5mm). These two machines have been optimized to achieve the maximum average 

torques under the constraint of 60W copper loss. As can been seen in Fig. 6.7, the torque 

density of the NSWFS-AP machine is much lower than that of the proposed NSWFS machine. 

The reason is that inappropriate polarities of field excitations in the NSWFS-AP machine 

lead to much higher flux leakage than that of the proposed NSWFS machine, as shown in Fig. 

6.8. Moreover, the 6-slot topologies are invalid to the NSWFS-AP machines. Therefore, more 

benefits will be obtained by employing field coils with identical polarities in the NSWFS 

machine with salient-pole rotor. The investigations in this chapter are focused on the 

proposed NSWFS machines. 

 

 

Fig. 6.7.  Comparison of average torque-copper loss curves of the proposed NSWFS and 

NSWFS-AP machines. 
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(a) 

 

(b) 

Fig. 6.8.  Flux distributions, field current=20A, armature current=0A. (a) Proposed 

NSWFS machine. (b) NSWFS-AP machine. 

 

6.2.Topologies and winding configurations of NSWFS machines 

 

As can be seen in Fig. 6.9, 3 field coils and 3 armature coils are disposed alternately on the 

stator in a 6-slot NSWFS machine. Any rotor pole number except 3, 6, and 9 are feasible to 

the 6-slot NSWFS machine. Both field coils and armature coils are alternatively tooth-wound 

and non-overlapping. The winding factors of machines are shown in Table I. As can be seen, 
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the 5- and 7-pole machines show the largest winding factors among 6-slot machines. In the 6-

slot NSWFS machine, the phase winding, which is consisted by one coil, has unipolar flux-

linkage. However, as will be shown later, it is expected that the 12-slot NSWFS machine, 

whose phase winding is consisted of two coils, may achieve bipolar flux-linkage. For the 12-

slot NSWFS machine, any rotor pole number except 3, 6, 9 and 12 can be employed. The 

winding factors of machines are shown in Table 6.1. As can be seen, the 11- and 13-pole 

machines show the largest winding factor among 12-slot machines. 

 

 

Fig. 6.9.  Cross-section of proposed 3-phase NSWFS machine, 6-slot/7-pole. 

 

Table 6.1.  Winding factors of NSWFS machines 

Stator slot/rotor pole 

number 

Distribution factor Pitch factor Winding factor 

6-slot/4-pole 1 0.5 0.5 

6-slot/5-pole 1 0.866 0.866 

6-slot/7-pole 1 0.866 0.866 

6-slot/8-pole 1 0.5 0.5 

12-slot/10-pole 1 0.866 0.866 

12-slot/11-pole 1 0.966 0.966 

12-slot/13-pole 1 0.966 0.966 

12-slot/14-pole 1 0.866 0.866 
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The armature winding polarities of the 6-slot NSWFS machine are defined in Fig. 6.10. As 

can be seen in Fig. 6.11, the winding configurations and coil EMF vectors of the 6-slot/4- and 

7-pole machines are the same. Meanwhile, the 6-slot/5- and 8-pole machines have the same 

winding configurations and coil EMF phasors. 

 

 

Fig. 6.10.  Polarity of armature windings, 6-slot NSWFS machine. 

 

 

(a) 
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(b) 

Fig. 6.11.  Winding configurations and coil EMF phasors of 6-slot NSWFS machines. (a) 

4- and 7-pole. (b) 5- and 8-pole. 

 

The armature winding polarities of the 12-slot NSWFS machine are defined in Fig. 6.12. 

The winding configurations and coil EMF phasors of 12-slot/10-, 11-, 13- and 14-pole 

machines are shown in Fig. 6.13. 

 

 

Fig. 6.12.  Polarity of armature windings, 12-slot NSWFS machine. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 6.13.  Winding configurations and coil EMF phasors of 12-slot NSWFS machines. (a) 

10-pole. (b) 11-pole. (c) 13-pole. (d) 14-pole. 

 

Fig. 6.14 shows the operation principle of 6-slot NSWFS machine. As shown in Fig. 6.14 

(a), when the rotor slot aligns with the centre of the armature coil, the flux-linkage in coil A is 

minimum, while in Fig. 6.14 (c), when the rotor pole aligns with the centre of the armature 
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coil, the flux-linkage in coil A is maximum. The periodical variation of unipolar flux-linkage 

with rotor position will induce back-EMF in the coils. 

 

 

Fig. 6.14.  Operation principle of 6-slot NSWFS machine. (a) 0 elec. degree. (b) 90 elec. 

degrees. (c) 180 elec. degrees. (d) 270 elec. degrees. 

 

In the 12-slot NSWFS machine, two coils consist a phase winding. For the machines 

having even-number-pole rotors, the flux-linkages in the coils and windings are both unipolar, 

and they have the same operation principles as the 6-slot machines, as shown in Fig. 6.15 (a). 

Meanwhile, for the machines having odd-number-pole rotors, the flux-linkages in the coils 

are unipolar but the flux-linkages in the windings are bipolar, as shown in Fig. 6.15 (b). 
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(a) 

 

(b) 

Fig. 6.15.  Flux-linkage of 12-slot NSWFS machines. (a) 10-pole. (b) 11-pole. 

 

The operation principle of 12-slot NSWFS machine having odd-number-pole rotor is 

shown in Fig. 6.16. As can be seen in Fig. 6.16 (a), when the rotor pole aligns with the centre 

of coil A1 (rotor slot aligns with the centre of coil A2), the unipolar flux-linkages in coils A1 

and A2 are maximum and minimum, respectively. Meanwhile, as shown in Fig. 6.16 (b), 

when the rotor pole aligns with the centre of coil A2 (rotor slot aligns with the centre of coil 

A1), the unipolar flux-linkages in coils A1 and A2 are minimum and maximum, respectively. 

The unipolar flux-linkages in both coils result in bipolar flux-linkages in the phase winding. 
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The back-EMF will be induced by periodical variation of bipolar flux-linkage with rotor 

position. 

 

 

Fig. 6.16.  Operation principle of 12-slot NSWFS machine having odd-number-pole rotor. 

(a) 180 elec. degrees. (b) 360 elec. degrees. 

 

In this chapter, the 6-slot NSWFS machines will be investigated first and then the 12-slot 

machines will be compared in order to avoid the complication of comparison. In order to 

compare the performances of 6-slot machines fairly, the machines having different rotor pole 

numbers have been globally optimized using ANSYS Maxwell to achieve the maximum 

average torque under the constraint of 60W copper loss. It is worth mentioning that for 

simplicity the end-windings are not taken into consideration during the optimization. The 

optimized parameters are shown in Table 6.2. Under the same objective and constraint, a 

SNSWFS machine of the same air-gap length, stack length and outer stator diameter with the 

6-slot NSWFS machines have also been globally optimized. The optimized parameters are 

also shown in Table 6.2. It is worth mentioning that the percentages of field winding areas of 
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these machines have been optimized when the copper loss is 60W, as shown in Fig. 6.17 (a). 

Fig. 6.17 (b) shows the optimized percentages of field winding areas of the 6-slot/7-pole 

machine under different copper losses. As can be seen, the optimized percentage of this 

machine is close to 50% when the electric loading is low, and this means that the saturation 

of the machine leads the shift of the optimal field winding percentage in the slots. 

 

Table 6.2.  Main parameters of machines 

Items 
NSWFS,  

4-pole 

NSWFS,  

5-pole 

NSWFS,  

7-pole 

NSWFS,  

8-pole 
SNSWFS 

Stator slot number 6 6 6 6 12 

Rotor pole number 4 5 7 8 8 

Rated speed (rpm) 400 400 400 400 400 

Stator outer radius (mm) 45 45 45 45 45 

Axial length (mm) 25 25 25 25 25 

Air-gap length (mm) 0.5 0.5 0.5 0.5 0.5 

Split ratio 0.52 0.53 0.56 0.57 0.6 

Stator tooth width (mm) 12.4 11.1 9.4 9.1 6.2 

Stator back-iron thickness (mm) 7.0 6.1 5.4 5.2 4.5 

Rotor pole width (mm) 12.7 10.9 8.8 7.6 40deg 

Percentage of field winding area in 

slot 
55% 57% 59% 59% 50% 

Total stator slot area (mm2) 1652.2 1909.1 2066.5 2081.0 1804.3 

Total number of turns of armature 

windings 
180 180 180 180 180 

Total number of turns of field 

windings 
180 180 180 180 180 

Packing factor (effective copper 

area/slot area) 
0.4 0.4 0.4 0.4 0.4 
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(a) 

 

(b) 

Fig. 6.17. Comparison of percentages of DC coils in slots, BLAC operation. (a) 6-slot 

NSWFS machines. (b) 6-slot/7-pole NSWFS machines. 

 

6.3.Comparison of 6-slot NSWFS machines 

 

6.3.1. Open-Circuit Field Distribution 

 

Fig. 6.18 shows the flux distributions of the optimized 6-slot NSWFS machines. The field 

and armature currents are 30A and 0A, respectively. 
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When the field current is 30A, the radial air-gap flux densities of the NSWFS machines 

and the SNSWFS machine are shown in Fig. 6.19. As can be seen, the peak-to-peak values of 

the flux densities in four NSWFS machines are similar to each other but larger than that of 

the SNSWFS machine. As mentioned before, the reason is that the rotor segments restrict the 

flux paths in the SNSWFS machine. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Fig. 6.18.  Open-circuit flux distributions of 6-slot NSWFS machines, field current=30A. 

(a) 4-pole. (b) 5-pole. (c) 7-pole. (d) 8-pole. (e) SNSWFS 

 

 

Fig. 6.19.  Comparison of radial air-gap flux density distributions of 6-slot NSWFS 

machines having different number of rotor poles, field current=30A. 

 

6.3.2. Open-Circuit Flux-Linkage and Back-EMF 

 

When the field current is 30A, the open-circuit flux-linkage waveforms and harmonics of 

the 6-slot NSWFS machines are shown in Fig. 6.20. 
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(a) 

 

(b) 

Fig. 6.20.  Comparison of phase flux-linkages of machines. (a) Waveforms. (b) Harmonics. 

 

When the field current is 30A, the back-EMF waveforms and harmonics of the NSWFS 

machines and the SNSWFS machine at 400rpm are shown in Fig. 6.21. As can be seen, the 7-

pole NSWFS machine shows the highest fundamental amplitude. Therefore, the torque of this 

machine has potential to be high. The 4-pole NSWFS machine shows relatively high 

harmonic amplitudes and the low-cost brushless DC (BLDC) operation may be considered. 

However, in terms of other machines, the back-EMFs are more close to sinusoidal waveforms, 
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which make them suitable for brushless AC (BLAC) operation. Therefore, for fair 

comparison, BLAC operation is adopted in further comparison. For the SNSWFS machine, 

its back-EMF fundamental amplitude is relatively small, but the harmonics are lower than the 

6-slot NSWFS machines. Therefore, the SNSWFS machine is expected to have lower torque 

density but lower torque ripple than those of the NSWFS machine. 

 

 

(a) 

 

(b) 

Fig. 6.21.  Comparison of phase back-EMFs of 6-slot NSWFS machines having different 

number of rotor poles, 400rpm, field current=30A. (a) Waveforms. (b) Harmonics. 
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6.3.3. Torque Characteristics 

 

When the field and armature currents are 30A and 0A, respectively, the cogging torque 

waveforms and harmonics of four NSWFS machines and the SNSWFS machine are 

compared in Fig. 6.22. As can be seen, all of the cogging torque peak-to-peak values are 

smaller than 0.23Nm. However, the torque ripples of the 6-slot NSWFS machines are not 

expected to be low since the harmonics in the back-EMFs are relatively high. As can be seen 

from Fig. 6.22 (b), during one electric cycle, the 3rd cogging harmonic amplitude is higher 

than the other orders in the SNSWFS machine, 4- and 8-pole NSWFS machines. Meanwhile, 

for the 5- and 7-pole NSWFS machines, the amplitude of the 6th cogging harmonics is the 

highest. It is worth noticing that the cogging torque orders are based on one electric cycle to 

allow for comparison between the machines having different pole numbers. 
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(b) 

Fig. 6.22.  Comparison of cogging torques of 6-slot NSWFS machines having different 

number of rotor poles, field current=30A. (a) Waveforms. (b) Harmonics. 

 

Fig. 6.23 shows the torque waveforms of the NSWFS machines and the SNSWFS machine 

when the armature and field currents are both 30A under brushless AC (BLAC) operation. As 

can be seen, the torque ripples of the 4-, 5-, 7- and 8-pole machines are 79%, 56%, 55% and 

46%, respectively. Meanwhile, the torque ripple in the SNSWFS machine is 35%. 

 

 

Fig. 6.23.  Comparison of torque waveforms, field current=armature current=30A, BLAC 

operation. 
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Fig. 6.24 is the comparison of the average torque-copper loss curves. It is worth 

mentioning that the percentages of the field winding areas in slots of these machines follow 

the optimized results shown in Table 6.2. As can be seen, the 7-pole and 8-pole machines 

show the highest average torque when the copper loss is low. However, the 8-pole NSWFS 

machine is easily saturated, and the 5-pole and 7-pole machines have higher average torque 

than other machine under high electric loadings. Overall, all NSWFS machines show higher 

torque density than an optimized SNSWFS machine at low electric loadings. When the 

copper loss is 60W, the average torque of the 7-pole machine is 72% higher than that of the 

SNSWFS machine. 

 

 

Fig. 6.24.  Comparison of average torque-copper loss curves of 6 slot NSWFS machines 

having different number of rotor poles, BLAC operation. 
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aforementioned four 6-slot machines with unequal teeth have been globally optimized again 

to achieve the maximum average torque under the constraint of 60W copper loss. The 
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optimized and original parameters is not significant. Fig. 6.25 compares the average torque-

copper loss curves of the NSWFS machine with equal and unequal teeth. For all machines, 

the torques are increased by less than 3%. This means that there is no significant torque 

increases by employing unequal teeth for the NSWFS machine. Therefore, equal teeth 

NSWFS machines will be chosen for further investigations. 

 

Table 6.3.  Dimensions of machines with unequal teeth 

Items 4-pole 5-pole 7-pole 8-pole 

Split ratio 0.52 0.52 0.58 0.59 

Width of stator tooth having armature 

coil, W1 (mm) 
13.2 11.2 8.8 8.2 

Width of stator tooth having field coil, 

W2 (mm) 
11.6 11.0 10.1 14.0 

Stator back-iron thickness (mm) 7.2 6.1 5.2 5.5 

Rotor pole width (mm) 12.9 10.9 8.9 7.8 

Percentage of field winding area in slot 56% 58% 58% 59% 

Total stator slot area (mm2) 1686.5 1947.0 1917.8 1656.7 

 

 

Fig. 6.25.  Comparison of average torque-copper loss curves of NSWFS machines with 

equal and unequal teeth in 6-slot NSWFS machines having different number of rotor poles. 
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6.4.Comparison of 12-slot NSWFS machines 

 

Based on the investigation in the previous section, it is found that compared with the 

SNSWFS machine of the same size, the 6-slot NSWFS machines have larger average torques 

but also much larger torque ripples. In this section, 12-slot NSWFS machines will be 

investigated and compared. It is found that by employing the rotor having specific pole 

numbers will lead to small torque ripple. As can be seen in Fig. 6.6, the two coils of a phase 

winding are disposed on the stator every 180 mechanical degrees in a 12-slot NSWFS 

machine. Similar to the 6-slot machines, the optimal percentages of field winding areas in the 

slots are compared in Fig. 6.26. 

 

Table 6.4.  Main parameters of 12-slot NSWFS machines 

Items 10-pole 11-pole 13-pole 14-pole 

Stator slot number 12 12 12 12 

Rotor pole number 10 11 13 14 

Rated speed (rpm) 400 400 400 400 

Stator outer radius (mm) 45 45 45 45 

Axial length (mm) 25 25 25 25 

Air-gap length (mm) 0.5 0.5 0.5 0.5 

Split ratio 0.57 0.58 0.6 0.62 

Stator tooth width (mm) 6.2 5.6 5.3 5.2 

Stator back-iron thickness (mm) 3.4 2.9 2.6 2.4 

Rotor pole width (mm) 5.8 5.5 4.5 4.1 

Percentage of field winding area in slot 54% 55% 56% 58% 

Total stator slot area (mm2) 2146.4 2309.3 2328.2 2280.6 

Total number of turns of armature windings 180 180 180 180 

Total number of turns of field windings 180 180 180 180 

Packing factor (effective copper area/slot 

area) 
0.4 0.4 0.4 0.4 
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(a) 

 

(b) 

Fig. 6.26.  Comparison of percentages of DC coils in slots, BLAC operation. (a) 12-slot 

NSWFS machines. (b) 12-slot/11-pole NSWFS machines. 

 

6.4.1. Open-Circuit Field Distribution 
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time, as shown in Fig. 6.27 (a) and (d). Meanwhile, as shown in Fig. 6.27 (b) and (c), for the 

machines having odd-number-pole rotors, namely 11- and 13-pole rotors, when one coil of a 

phase has the largest flux-linkage, the other coil in this phase has the smallest flux-linkage. 

Therefore, the phase flux-linkage can be bipolar. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 6.27.  Flux distribution of 12-slot NSWFS machine, field current =30A. (a) 10-pole. 

(b) 11-pole. (c) 13-pole. (d) 14-pole. 

 

6.4.2. Open-Circuit Flux-Linkage and Back-EMF 

 

When the field current is 30A, the open-circuit flux-linkage waveforms and harmonics of 

the 12-slot NSWFS machines are shown in Fig. 6.28. 
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(a) 

 

(b) 

Fig. 6.28.  Comparison of phase flux-linkages of machines. (a) Waveforms. (b) Harmonics. 
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are even close to zero. Consequently, the torque ripples of the 12-slot/11- and 13-pole 

NSWFS machines are likely to be low. 

 

 

(a) 

 

(b) 

Fig. 6.29.  Comparison of phase back-EMFs of 12-slot NSWFS machines having different 

number of rotor poles, 400rpm, field current =30A. (a) Waveforms. (b) Harmonics. 
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difference between two coils results in the offset of even order harmonics in the phase back-

EMF. Therefore, it can be expected that the torque ripples of the odd-number-rotor NSWFS 

machines are smaller than those of the even-number-rotor NSWFS machines. 

 

 

(a) 

 

(b) 

Fig. 6.30.  Coil back-EMFs of the 11- and 13-pole NSWFS machine, 400rpm, field current 

=30A. (a) Waveforms. (b) Harmonics. 
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6.4.3. Torque Characteristics 

 

When the field current is 30A and the armature current is 0A, the cogging torque 

waveforms and harmonics of the 12-slot NSWFS machines are shown in Fig. 6.31. As can be 

seen, the cogging torque peak-to-peak values of the 12-slot/11- and 13-pole machines are 

much smaller than the other machines since the least common multiples between stator slot 

and rotor pole numbers of these two machines are much higher than other machines. 

Therefore, the torque ripples of the 11- and 13-pole machines should be the lowest among all 

12-slot NSWFS machines due to the lowest harmonic amplitudes and cogging torque peak-

to-peak values. For the 10- and 14-pole machines, amplitudes of the 6th and the 12th cogging 

harmonics are high during one electric cycle, as shown in Fig. 6.31 (b), and in following 

investigation, rotor skewing will be employed to reduce the torque ripples. 

 

 

(a) 

-40

-30

-20

-10

0

10

20

30

40

0 60 120 180 240 300 360

C
o

g
g

in
g
 t

o
r
q

u
e
 (

m
N

m
)

Rotor position (elec. degree)

10-pole 11-pole
13-pole 14-pole



 
 

182 

 

(b) 

Fig. 6.31.  Comparison of cogging torques of 12-slot NSWFS machines having different 

number of rotor poles, field current=30A. (a) Waveforms. (b) Harmonics. 

 

Fig. 6.32 shows the torque waveforms of the 12-slot NSWFS machines when the field and 

armature currents are both 30A. And their average torques and torque ripples are compared in 

Fig. 6.33. As predicted before, the 11- and 13-pole machines show the lowest torque ripple, 

which are 3.8% and 2.5%, respectively. Meanwhile, high torque ripples are presented in the 

other machines. The torque ripples in the 10- and 14-pole machines are 57.6% and 56.0%, 

respectively. 

 

Fig. 6.32.  Comparison of torque waveforms, field current density=armature current 

density=30A, BLAC operation. 
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Fig. 6.33.  Comparison of average torque and torque ripple, field current density=armature 

current density=30A, BLAC operation. 

 

High torque ripples in 12-slot/10- and 14-pole machines can be reduced by employing 

two-step-skewing rotor, as shown in Fig. 6.34. 

 

 

Fig. 6.34.  Rotor with two-step skewing. 
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skewing angle is 7 degrees, the torque ripple can be decreased to 18% with the average 

torque decreased by 38%, Fig. 6.36. 

 

 

Fig. 6.35.  Variation of average torque and torque ripple with rotor skewing angle of 12-

slot/10-pole NSWFS machine, copper loss=60W. 

 

 

Fig. 6.36.  Variation of average torque and torque ripple with rotor skewing angle of 12-

slot/14-pole NSWFS machine, copper loss=60W. 
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optimized results shown in Table 6.2 and Table 6.4. As can be seen, among all 12-slot 

machines, the 11-pole machine shows the highest average torque. All NSWFS machines 

show higher average torque than the SNSWFS machine when the copper loss is less than 

100W. Compared with the 6-slot/7-pole NSWFS machine, which has the highest average 

torque among 6-slot machines, the average torques of the 12-slot machines are relatively low. 

 

 

Fig. 6.37.  Comparison of average torque-copper loss curves, BLAC operation. 
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shown in Fig. 6.38 when the electric loadings are the same, the NSWFS machine having 

more stator slots and rotor poles shows increased flux leakage (Note: The number of 
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(a) 

 

(b) 

Fig. 6.38.  Flux distributions, field current=armature current=30A. (a) 12-slot/14-pole. (b) 

6-slot/7-pole. 
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When the copper loss is 60W, the torque ripple of the 6-slot/7-pole NSWFS machine is 

42.9%, which is 31.4% higher than that of the SNSWFS machine, as can be seen in Fig. 6.39. 

For the 12-slot/11-pole machine, its average torque is 15.2% higher than the SNSWFS 

machines and its torque ripple is only 3.5%, which is just 10.8% and 8.2% as high as those of 

the SNSWFS machine and the 6-slot/7-pole NSWFS machine, respectively. The 12-slot/13-

pole machine has even smaller torque ripple which is only 3.3%. 

 

 

Fig. 6.39.  Comparison of average torques and torque ripples of machines, copper 

loss=60W, BLAC operation. 
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(c) 

 

(d) 

Fig. 6.40.  Comparison of UMFs, Field current = Armature current = 30A, BLAC 

operation. (a) 6-slot/4-pole. (b) 6-slot/5-pole. (c) 6-slot/7-pole. (d) 6-slot/8-pole. 
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(a) 
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(c) 

 

(d) 

Fig. 6.41.  Comparison of UMFs, Field current = Armature current = 30A, BLAC 

operation. (a) 12-slot/10-pole. (b) 12-slot/11-pole. (c) 12-slot/13-pole. (d) 12-slot/14-pole. 

 

6.5.Experimental validation 
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It is worth mentioning that only one 6-slot common stator and one 12-slot common stator 

were built for the sake of reducing the cost. The dimensions of two stators are based on the 6-

slot/7-pole and the 12-slot/11-pole machines, respectively, since these two machines show 

the best performances. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 6.42.  Prototypes of NSWFS machines. (a) Common stator of 6-slot machines. (b) 

Common stator of 12-slot machines. (c) Rotors of 6-slot machines. (d) Rotors of 12-slot 

machines. 

 

When the field current is 20A (current density is ~10A/mm2), the predicted and measured 

back-EMF waveforms of NSWFS machines are compared in Fig. 6.43. As can be seen, good 

agreements between predicted and measured results are achieved. It is worth noticing that the 

measured back-EMF is slightly smaller than the predicted back-EMF due to ignoring of end-

effects. 
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(c) 

 

(d) 

Fig. 6.43.  Back-EMF waveforms, 400 r/min. (a) 6-slot/4- and 5-pole. (b) 6-slot/7- and 8-

pole. (c) 12-slot/10- and 11-pole. (d) 12-slot/13- and 14-pole. 
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(c) 

 

(d) 

Fig. 6.44.  Cogging torque waveforms, field current=20 A. (a) 6-slot/4- and 5-pole. (b) 6-

slot/7- and 8-pole. (c) 12-slot/10- and 11-pole. (d) 12-slot/13- and 14-pole. 

 

Fig. 6.45 compares the predicted and measured torques of NSWFS machines with 

different q-axis currents when the field currents are 20A. It can be seen that the measured 

torques are slightly smaller than the predicted torques due to end-effects. Overall, good 

agreements are achieved. 
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(a) 

 

(b) 

Fig. 6.45.  Torque-current curves, field current=20 A. (a) 6-slot. (b) 12-slot. 

 

6.6.Summary 

 

Three-phase non-overlapping stator wound field synchronous machines employing salient-

pole rotors have been investigated in this chapter. The influence of stator slot and rotor pole 

number combinations of the NSWFS machines is investigated based on the optimised designs. 

The electromagnetic performances, including back-EMF, cogging torque, and static torque, 
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of NSWFS machines are analysed and compared by 2-D FEA and validated by experiments 

on the prototype machines. 

It is found that under the same copper loss, the torque density of the 6-slot/7-pole non-

overlapping stator wound field synchronous machine can be 72% higher than that of an 

optimized segmented rotor non-overlapping stator wound field synchronous machine. For the 

12-slot non-overlapping stator wound field synchronous machines, the 12-slot/11- and 13-

pole machines show higher torque densities and much lower torque ripples than an optimized 

segmented rotor non-overlapping stator wound field synchronous machine under the same 

copper loss. 
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CHAPTER VII. GENERAL CONCLUSIONS 
 

7.1.Conclusions 

 

Several new topologies of stator-WF machines have been proposed and investigated in 

this thesis. The comparisons have been made between various stator-WF machines. Besides, 

the topology of a sandwiched SFPM machine, which can be regarded as the origin of a 

proposed stator-WF machine, has been improved. Most investigations on these novel 

machines have been examined by experiments. They are summarized as follows. 

 

7.1.1. Sandwiched SFPM machine using V-shaped magnets 

 

The sandwiched SFPM machine, which shows high torque density among all radial-field 

SFPM machine, can be enhanced further by employing V-shaped magnets. Additionally, the 

magnet usage is also reduced in this improved machine. Essentially, employing V-shaped 

magnets allows the sandwiched SFPM to enlarge the slot area by reducing the stator 

lamination area and magnet thickness without sacrificing the performance. 

It is found that the optimal skewing angle for the lowest torque ripple is different from the 

optimal skewing angle for the lowest cogging torque/amplitude of EMF harmonic in the V-

shaped sandwiched SFPM machine. The explanation of this is that the asymmetry in the 

magnetic circuits caused by saturation result in the phase shift of on-load cogging torque. 

 

7.1.2. Three-phase stator-WF machines 

 

Most investigations on the three-phase WFSF machines were focused on the conventional 

F2A2 WFSF and segmented rotor F1A1 WFSF machines. In this thesis, a novel three-phase 

F1A3 WFSF machine has been proposed. Compared with the segmented rotor F1A1 WFSF 

machine, this machine exhibits much higher torque density since the flux paths will not be 

restricted by rotor segments. Moreover, compared with conventional F2A2 WFSF machine, 

this machine shows higher torque density and better copper usage efficiency due to its 

relatively short end-windings. 

According to the investigation, it is found that employing unequal slots will lead to the 

torque density enhancements in WFSF machines since the bottoms of the stator tooth are 

usually more saturated. When the electric loading is high, the torque density of a WFSF 
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machine is not sensitive to the air-gap length, since shorter air-gap length will not lead to 

significant increase of air-gap flux density. 

The efficiency maps of some WFSF machines have been plotted in this thesis. It is found 

that when the WFSF machine operated at low speed and low loading region, reducing the 

field current will increase the machine efficiency since the copper loss is dominated at this 

region. 

Compared with the SFPM machines using low-cost ferrite magnets, WFSF machines 

exhibit higher torque densities under higher electric loading. Moreover, compared with the 

SFPM and IPM machines using rare-earth magnets, the WFSF machines show much higher 

material usage efficiencies. 

To increase the torque density and reduce the difficulty of manufacture, the salient-pole 

rotor has replaced the segmented rotor in the segmented rotor F1A1 WFSF machine and 

results in a non-overlapping stator-WF synchronous machine. By selecting appropriate 

slot/pole combination, the salient-pole machine can achieve higher torque density and lower 

torque ripple than the segmented rotor machine. 

It is also found that halving the slot and pole numbers of the stator-WF machines will 

reduce the flux leakages and consequently increase the torque densities of the machines. 

 

7.1.3. General comparison of three-phase machines 

 

With respect to high torque density and low torque ripple, five stator-WF machines 

(12s/8p segmented rotor F1A1, 12s/11p salient-pole rotor F1A1, 24s/14p F2A2, 18s/10p 

F1A3, 12s/8p F3A1) and two ferrite magnet SFPM machines (12s/10p SFPM, 6s/10p v-

shaped magnets sandwiched SFPM machine) investigated in this thesis are chosen and 

compared with Toyota Prius IPM 2010 machine of the same size (stator outer 

diameter=264mm, axial length=50.8mm, air-gap length=0.73mm, packing factor=0.47, all 

armature and field currents are the same under the same current density), as shown in Fig. 7.1. 

All stator-WF and SFPM machines have been optimized to achieve the maximum average 

torque when the current density is 26.8A/mm2. The optimized parameters are shown in Table 

7.1. 
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(a) (b) (c) 

   

(d) (e) (f) 

  

 

(g) (h)  

Fig. 7.1.  Topologies of machines. (a) Segmented rotor F1A1-8 pole. (b) F1A1-11 pole. (c) 

F2A2-14 pole. (d) F1A3-10 pole. (e) F3A1-8 pole. (f) SFPM, 12s/10p, ferrite magnets. (g) V-

shaped magnet sandwiched SFPM, 6s/10p, ferrite magnets. (h) Toyota Prius IPM. 
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Table 7.1. Main parameters of machines 

Items 

WFSF 

F1A1-8 

pole 

NSWFS 

F1A1-11 

pole 

WFSF 

F2A2-14 

pole 

WFSF 

F1A3-10 

pole 

F3A1-8 
pole 

V-
shaped 

SSFPM 

6s/10p 
B=0.4T 

SFPM 

12s/14p 

B=0.4T 

IPM 

Stator slot number 12 12 24 18 12 6 12 48 

Rotor pole number 8 11 14 10 8 10 14 8 

Stator outer radius (mm) 132 132 132 132 132 132 132 132 
Axial length (mm) 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8 

Air-gap length (mm) 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 

Split ratio 0.59 0.70 0.72 0.67 0.61 0.67 0.73 0.61 
Stator tooth width at the top, W1 (mm) 21.2 21.1 11.5 18.6 19.8 15.1 11.2 7.3 

Stator tooth width at the bottom, W2 

(mm) 
18.2 21.1 16.9 24.8 19.8 15.1 11.2 7.3 

Stator back-iron thickness of field slot, L1 

(mm) 
20 11 8.6 12.2 18 -- -- -- 

Stator back-iron thickness of armature 
slot, L2 (mm) 

20 11 9 8.6 18 15 9.8 20.2 

Rotor pole arc (degree) 36.5 12 8.5 12.5 18 12.7 7.7 -- 

Total armature slot area (mm2) 5928.7 5772.0 4549.0 4870.8 4152.2 5809.3 5368.3 7156.8 
Total field slot area (mm2) 5928.7 5772.0 4960.8 6943.2 3744.6 -- -- -- 

Total number of turns of armature 

windings 
444 432 336 372 312 444 408 528 

Total number of turns of field windings 444 432 372 528 280 -- -- -- 

Packing factor (effective copper area/slot 
area) 

0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 

Magnet material -- -- -- -- -- Ferrite Ferrite NdFeB 

Number of PM pieces -- -- -- -- -- 12 12 16 
PM thickness (mm) -- -- -- -- -- 13.3 16.9 7.2 

PM length (mm) -- -- -- -- -- 42.1 35.0 17.9 

 

A. Torque waveforms and torque ripples 

 

When the current density is 26.8A/mm2, the torque waveforms of machines are shown in 

Fig. 7.2. As can be seen in Fig. 7.3, F1A1-11 pole and F2A2-14 pole machines show the 

lowest torque ripples among these machines. 

 

Fig. 7.2.  Comparison of torque waveforms, current density=26.8A/mm2, BLAC operation. 
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Fig. 7.3.  Comparison of average torque and torque ripple, current density=26.8A/mm2, 

BLAC operation. 

 

B. Torque-current density curves and material usage efficiency 

 

Fig. 7.4 and Fig. 7.5 compare the average torques and material usage efficiencies (based 

on the purchase prices of materials in late 2013) under different current densities. Stator-WF 

machines show higher average torques than the SFPM machine under high electric loading. 

As can be seen in Fig. 7.5, all stator-WF machines show the similar material usage efficiency 

since the torque densities of short-pitched machines are low. Sandwiched SFPM machine can 

achieve very high material usage efficiency, and this is benefited from its low material cost 

and high torque density. 

Overall, the stator-WF machines, of which sums of field and armature winding pitches are 

even integers, exhibit good torque capabilities. Among these stator-WF machines, the torque 

capabilities of non-overlapping stator-WF machines are smaller than other stator-WF 

machines. 
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Fig. 7.4.  Comparison of average torque-current density curves. 

 

 

Fig. 7.5.  Comparison of material usage efficiency. 

 

C. Iron losses, efficiency maps and power factors 

 

The iron losses, efficiency maps and power factors of machines are compared in Fig. 7.6, 

Fig. 7.7, and Fig. 7.8, respectively. In terms of the stator-WF machines, the machines having 

1 slot-pitch field windings (F1 machines) exhibit much lower iron losses than the F2A2 

machine. In Fig. 7.7, the efficiency maps of machines are compared. As can be seen, the 

SFPM machines have much larger high-efficiency areas than the stator-WF machines due to 
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no field winding copper losses. It is worth noticing that the F3A1-8 pole machine will 

produce negative average torque under some negative d- and positive q-axis currents, and the 

efficiency map of this machine is not plotted. 

The power factor of machines is given by cos 𝜑, where 𝜑 is the angle between current and 

voltage vectors. The d- and q-axis voltages are given by (7.1) and (7.2), respectively. 

 

𝑈𝑑 = −𝜔𝛹𝑞 + 𝑅𝑎𝐼𝑑    (7.1) 

 

𝑈𝑞 = 𝜔𝛹𝑑 + 𝑅𝑎𝐼𝑞     (7.2) 

 

where 𝑈𝑑 and 𝑈𝑞 are the d- and q- axis voltages, 𝜔 is the electrical angular velocity, 𝛹𝑑 and 

𝛹𝑞 are the d- and q-axis flux-linkages, 𝑅𝑎 is the phase resistance, 𝐼𝑑 and 𝐼𝑞 are the d- and q-

axis currents. 

As shown in Fig. 7.8, the power factors of all stator-WF and SFPM machines are 

relatively low. In future, the power factor will be taken into consideration during the machine 

optimization. 

 

 

Fig. 7.6.  Comparison of iron losses, current density=26.8A/mm2, BLAC operation. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

  

(g)   

Fig. 7.7.  Comparison of efficiency maps, for stator-WF machines, field current = 167A. (a) 

Segmented rotor, F1A1-8 pole. (b) F1A1-11 pole. (c) F2A2-14 pole. (d) F1A3-10 pole. (e) 

SFPM, 12s/14p. (f) SSFPM, 6s/10p. (g) IPM. 

 

 

Fig. 7.8.  Comparison of power factors, current density=26.8A/mm2, 1000 rpm. 
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7.1.4. Single-phase WFSF machines 

 

Based on the topology and operation principle of the successfully commercialized F2A2-4 

pole single-phase WFSF machine, a F2A2-6 pole single-phase WFSF machine has been 

proposed in this thesis. Compared with the F2A2-4 pole machine under the same copper loss, 

this machine shows similar torque density but shorter end-windings. Thus, better copper 

usage efficiency has been achieved. 

A F1A3-6 pole machine has been proposed as well. This single-phase WFSF machine, 

which can share the same stator lamination topology with F2A2-6 pole machine, has even 

shorter end-windings and smaller iron loss compared with the F2A2-6 pole machine. The slot 

number and pole number of F1A3-6 pole machine can be halved and result in a F1A3-3 pole 

machine. Compared with the F2A2-4 pole machine, this machine shows significantly reduced 

iron loss. 

It is also found in this thesis that compared with a single-phase switched reluctance 

machine of the same size, a single-phase WFSF machine exhibit similar efficiency but higher 

torque density and power factor under the same current density. 

 

7.2.Future work 

 

Following the research work in this thesis, future research includes: 

 

(a) Investigations of the F2A1 stator-WF, F1A3 and F2A3 WFSF machines. 

 

(b) Development of drive circuit topologies of WFSF machines for cost-sensitive 

applications. 

 

(c) Improvement of efficiencies and power factors of WFSF machines. 

 

(d) New topologies of hybrid excited stator-PM machines. 
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APPENDIX A.  CALCULATION AND TESTING METHODS 
 

A.1. Cogging torque and static torque testing methods 

 

A method described in [ZHU09] was utilized to measure cogging torque and static torque 

in this thesis, as shown in Fig. A.1. The stator of tested machine was held on a lathe jaws, 

meanwhile, the rotor shaft was attached to a balanced beam whose one end was rested on the 

tray of a digital weight gauge. In order to ensure that the measured torque was unidirectional, 

a pre-load weight was added to the measured end of balanced beam. The torque acting on the 

rotor was measured by rotating the stator. 

 

 

Fig. A.1.  Experiment rig of measuring cogging torque and static torque [ZHU09] 

 

A.2. Torque and iron loss calculation methods 

 

All torque and iron loss in this thesis are calculated by Ansoft Maxwell. Based on the 

manufacturer-provided loss curves (steel grade: M330-35A), the eddy-current loss coefficient 

(kc), the hysteresis loss coefficient (kh), and the excessive loss coefficient (ke) are derived as 

0.0600, 152.618, and 13.6627, respectively. The iron-core loss is expressed as: 
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𝑃𝑖𝑟𝑜𝑛 = 𝑘𝑐(𝑓𝐵𝑚)2 + 𝑘ℎ𝑓𝐵𝑚
2 + 𝑘𝑒(𝑓𝐵𝑚)1.5   (A.1) 

 

where f is the operation frequency in an element, and 𝐵𝑚 is the amplitude of the flux density 

in an element. 

 

A.3. Torque-speed curve and efficiency map calculation methods 

 

The influence of cross-coupling on the electromagnetic torque has been taken in to the 

consideration during the torque-speed curve calculation in this thesis. The electromagnetic 

torque is given by [QI09]: 

𝑇 =
3

2
𝑝[𝛹𝑝𝑚(𝐼𝑞)𝐼𝑞 + (𝐿𝑑(𝐼𝑑, 𝐼𝑞) − 𝐿𝑞(𝐼𝑑, 𝐼𝑞))𝐼𝑑𝐼𝑞]  (A.2) 

where 

 

𝛹𝑝𝑚(𝐼𝑞) = 𝛹𝑑(𝐼𝑑 = 0, 𝐼𝑞)     (A.3) 

𝐿𝑑(𝐼𝑑 , 𝐼𝑞) =
𝛹𝑑(𝐼𝑑,𝐼𝑞)−𝛹𝑝𝑚(𝐼𝑞)

𝐼𝑑
    (A.4) 

𝐿𝑞(𝐼𝑑 , 𝐼𝑞) =
𝛹𝑞(𝐼𝑑,𝐼𝑞)

𝐼𝑞
     (A.5) 

 

The terminal voltage 𝑈𝑎 can be calculated from: 

 

𝑈𝑎 = √(𝜔𝛹𝑞(𝐼𝑑, 𝐼𝑞) − 𝑅𝑎𝐼𝑑)2 + (𝜔𝛹𝑑(𝐼𝑑 , 𝐼𝑞) − 𝑅𝑎𝐼𝑞)2  (A.6) 

 

In terms of the efficiency map calculations in this thesis, the mechanical losses of the 

machines are neglected, and the copper losses (includes end-windings) and iron losses of the 

machines under different d- and q-axis currents have been taken into the consideration during 

the calculations. For PM machines, the PM losses (𝑃𝑃𝑀 ) under different d- and q-axis 

currents have also been taken in the consideration, and can be expressed as [ISH05]: 

 

𝑃𝑃𝑀 = ∫  
 

𝑉𝑜𝑙
𝜌𝑃𝑀𝐽𝑃𝑀

2  𝑑𝑉𝑜𝑙     (A.7) 

 

where 𝜌𝑃𝑀 and 𝐽𝑃𝑀
  are the resistivity and eddy current density of PMs, respectively. 
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APPENDIX B.  PERFORMANCES OF F3A1 MACHINE 
 

A F3A1 stator-WF machine has been introduced and compared with other machines in 

Chapter VII, as shown in Fig. B.1. Obviously, it is more appropriate to have unequal-slot 

stator for this machine since some stator slots contain both field and armature windings 

(named as field slots) and some slots contain armature windings only (named as armature 

slots). Therefore, in this thesis, the investigated F3A1 machine employs a popular 12-slot 

stator configuration, which has been introduced by [CHE08], [ZHA12], and [YU13]. As can 

be seen in Fig. B.1, the angle between two teeth of a field slot is 90 degrees allowing for 

increased field slot area. According to [CHE08], the 8-pole machine shows the best 

performance among three-phase 12-slot F3A1 stator-WF machines. Hence, 12-slot/8-pole 

F3A1 stator-WF is chosen for investigation and comparison in this thesis. As mentioned 

before, this machine has been optimized to achieve the maximum average torque when the 

current density is 26.8A/mm2. In a field slot, the armature winding area is equal to that of an 

armature slot area. Meanwhile, the remaining area in this slot is field winding area. It is worth 

mentioning that the numbers of turns of field and armature coils have been determined to 

ensure that the armature and field currents are approximately 167Arms when the current 

densities are 26.8A/mm2. The main parameters of this machine have been shown in Table 7.1. 

 

 

Fig. B.1.  Topology of 12-slot/8-pole F3A1 stator-WF machine. 
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The performances, including torque waveform, torque ripple, average torque-current 

density curve, material usage efficiency, iron loss, and power factor, of the 12-slot/8-pole 

F3A1 stator-WF machine have been investigated and compared with other machines in 

Chapter VII. Other performances of this machine will be shown as follows. 

 

B.1. Open-Circuit Field Distribution 

 

When the field current (I_f) is 167A and the armature current (I_a) is 0A, the flux 

distributions of the F3A1 machine are shown in Fig. B.2. As can be seen in Fig. B.2 (a), when 

the rotor pole is aligned with coil A1, the coil A1 has the maximum flux-linkage. Meanwhile, 

when the rotor slot is aligned with coil A1, the coil A1 has the minimum flux-linkage, as 

shown in Fig. B.2 (b). Obviously, the flux path of phase A is different from the other two 

phases, and this will lead to unbalanced three-phase flux-linkages due to magnetic saturation 

and flux leakage. 

 

  

(a) (b) 

Fig. B.2.  Open-circuit flux distributions of F3A1 machine, field current=167A. (a) 0 elec. 

deg. (b) 180 elec. deg. 

 

B.2. Open-Circuit Flux-Linkage and Back-EMF 

 

When the field current is 84A/167A, the three-phase flux-linkages and back-EMFs of 

F3A1 machine are shown in Fig. B.3 and B.4, respectively. As mentioned before, the 
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waveforms and harmonics of flux-linkages in phase A are different from other two phases 

due to different flux paths, Fig. B.3. As can be seen, the phase flux-linkage of this machine is 

unipolar, and higher field current leads to larger flux-linkage bias. The phase back-EMFs are 

also unbalanced. As can be seen in Fig. B.4, the back-EMF waveforms are not sinusoidal and 

the harmonics are relatively high. Hence, the F3A1 machine will exhibit significant torque 

ripple for BLAC operation. 

 

  

(a) (b) 

Fig. B.3.  Phase flux-linkages of F3A1 machine. (a) Waveforms. (b) Harmonics. 

  

(a) (b) 

Fig. B.4. Phase back-EMFs of F3A1 machine, 1000 rpm. (a) Waveforms. (b) Harmonics. 

 

B.3. Torque Characteristics 

 

When the armature current is 0A, the cogging torque waveforms of the F3A1 machine 

under different field currents are compared in Fig. B.5 (a). The average torque-current angle 

curves of this machine are shown in Fig. B.5 (b). As can be seen, the maximum torque is 

achieved when the current angle is almost equal to 0. Therefore, the d-axis current can be set 

to 0 in further analysis. Fig. B.5 (c) shows its torque-current curves. Under the fixed field 
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current, over high armature current will not result in high average torque in the F3A1 

machine due to severe magnetic saturation.  

 

  

(a) (b) 

 

 

(c)  

Fig. B.5.  Torque characteristics. (a) Cogging torques. (b) Torque-current angle curves, 

BLAC operation. (c) Torque-current curves, BLAC operation, Id=0A. 
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APPENDIX C.  MECHANICAL DRAWINGS OF ANALYSED 

MACHINES 
(Removed)  
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