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Abstract

Networks-On-Chip (NoC) is seen as a solution for addressing the limi-

tation of the current bus-based communication in embedded systems.

Some of these systems are designed for executing hard real-time ser-

vices. In such systems, the services have to deliver output within

strict timing constraints since the lateness in output delivery could

cause severe consequences to human life. Task mapping is a crucial

step for integrating an application and a hardware platform during

system design. Existing schedulability analyses are available to eval-

uate the hard real-time performance of task mapping, but exploring

the vast number of task mappings at the early design stage can be

challenging due to several issues. These issues are caused by the in-

fluence of other design parameters on the hard real-time performance

produced by task mapping, the existence of conflicting design objec-

tives with the hard real-time system constraints, the restriction of

the current hard real-time evaluation functions for searching alterna-

tive task mappings and the enormous evaluation of population-based

search heuristics in the current task mapping techniques. This the-

sis proposes several design space exploration techniques to address

these issues. The first technique is proposed for addressing the prob-

lem of optimising multiple design parameters while keeping all tasks

and messages in the system fully schedulable. The second technique

addresses the conflicting objectives problem using a multi-objective

optimisation approach. The third technique yields a new metric that

is useful for improving task mappings with unschedulable tasks and

messages. Finally, the last technique is a new mapping algorithm for

constructing a feasible task mapping rather than have to evaluate a

population of task mappings to achieve the same objective.
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Chapter 1

Introduction

1.1 Overview

Modern embedded systems have advanced rapidly in recent decades, influencing

every aspect of our daily life including communication, transportation and man-

ufacturing. The systems are becoming more complex due to the demand from

market forces for increasingly sophisticated features. One of the key technologies

that drives the designs of such systems is System-on-Chip (SoC) [1], whereby

some or all functionalities of a complete system can be integrated into single

chips. This technology is recognised from the integration of several computa-

tion and data processing elements such as Intellectual Properties (IP blocks): a

reusable pre-designed electronic blocks of logic circuits. Different IP blocks in the

system are designed to perform specific functions and may require specific data,

or to compute data that are required by other IP blocks. An on-chip communi-

cation infrastructure is therefore needed to support the delivery of data between

IP blocks in the system.

Conventional SoC designs [2, 3] rely on Point-to-Point (P2P), for example

MPEG2 Encoder [4] or bus communication such as the Philips Nexperia Digital

Video Platform, as the network infrastructure that connects multiple IP blocks

in the system. Generally, P2P communication supports data exchange between

IP blocks through dedicated channels, whereas bus communication introduces a

single or multiple channels that are shared between IP blocks. With bus com-

3



1. Overview

Figure 1.1: High-level NoC architecture

munication, an IP sends data at a time to one or more receiving IP blocks, and

the others wait until the bus is free. However, each of them has its own disad-

vantages as the number of IP blocks increases to support complex functionalities.

For example, P2P communication suffers from the underutilisation of wires when

the connected IP blocks are idle and the increasing number of wires makes the

problem even worse [5]. Bus communication has non-scalable architecture [2] and

a network bottleneck could happen from congestion as more IP blocks are added

to the same bus and share its bandwidth.

Some attempts have been made to provide an efficient and standardised com-

munication infrastructure for connecting multiple computing resources on SoC.

A new network paradigm with better scalability known as Networks-on-Chip

(NoC) [6] has been proposed to overcome the scalability problems of P2P and

bus communication architectures. Inspired by the success of computer networks

(for example, local and wide area networks), NoC designs inherit some of the

characteristics from the networks as shown in the high-level view of a typical

NoC architecture in Figure 1.1. This is an example of a 3x3 Mesh NoC, which

comprises three types of network component: router, physical link and network

interface.

4



1. Real-Time Services

The details of each component are described in Chapter 2.1; this current

paragraph gives only an overview of how the network operates. As can be seen

in Figure 1.1, a total of nine IP blocks are connected indirectly to the physical

links by routers. IP blocks have different forms, for example a Central Process-

ing Unit (CPU), peripheral devices or memory controllers, which are responsible

for processing and storing computational data. Network interfaces, which glue

together the IP blocks and the routers, provide communication services to the

IP blocks through the encapsulation of the network’s low-level functions. Con-

nection to the network allows communication to happen between the IP blocks

and enabling them to send and receive data in the form of messages : the flows

of data in the network. In the architecture of a NoC, routers are responsible

for the transmission of messages, such as by determining the message routes and

how the messages travel through them. Physical links, which connect the routers,

channel the messages from a source to a destination. Although the number of

links increases to support more IP blocks, the links’ bandwidth is shared among

messages. For example, when congestion occurs, the blocked messages can be

re-routed through other routes or some messages can be redirected to idle links.

With such routing mechanisms, links can be utilised more efficiently, and at the

same time NoCs provide the provision of parallel communication.

1.1.1 Real-Time Service

NoC architecture such as that shown in Figure 1.1 connects multiple IP cores

and may enable different services to run concurrently in the system. Among

these services there exists a type in which its correctness is determined not only

by its output but also by the time at which the output is available [7]. Any

lateness of the service is intolerable because severe consequences to human life

could result. For example, brakes will not be activated in time or actuators will

use stale data. This service is known as a hard real-time service and it is common

in automotive control and safety-critical systems [8].

The main characteristic of the service comes from the requirement to produce

its output within strict timing constraints. Its correctness relies on whether the

tasks and messages which run in the system to deliver the service can respond

5



1. Task Mapping Process

within the set timing constraints in any scenario. A timing constraint can be

defined as the latest point in time (or a deadline) at which a task must execute

or a message must arrive to produce the output. Before the computational data

is processed by the IP cores, several messages may be received and sent between

more than one task to transfer the data. Messages are sent from a sender to a

recipient and the time interval of the transmission is called the network latency.

The execution time of a task to compute and process the data summed with

the latency yields the end-to-end response time of the task. From the difference

between the response time upper bound of a task and its deadline, the task is

schedulable if its deadline is not missed, otherwise it is unschedulable. In fact,

the execution of a task depends on the arrival of data, and thus a reliable data

exchange between IP cores is an integral part in the delivery of the service.

For a hard real-time system, the predictability of tasks’ and messages’ be-

haviours is a fundamental requirement. In the NoC platform, computation and

communication resources are shared between tasks and messages, and the access

to the resources must be controlled to ensure their behaviours are predictable.

One way to control their access to the resources, a priority pre-emptive scheduling

policy is usually employed. With this policy, each task and message is assigned

with a priority level. Based on the priority levels of all tasks and messages, the or-

der of access to the shared resources can be controlled by pre-empting some tasks

and messages, especially those with low priority levels. This pre-emptive policy,

however, causes interference to low-priority tasks and messages, consequently de-

laying their end-to-end response time. In the worst-case scenario, when delays

can become enormous due to the pre-emption, their deadlines could be missed.

If this situation occurs, the system is deemed unschedulable.

1.1.2 Task Mapping Process

Task mapping has been identified as a critical part of embedded system design

[9]. At the system level, it is a necessary design step prior to the evaluation of

a complete system. As depicted in Figure 1.2, the mapping process integrates

an application and a hardware architecture to create a complete system, which

is then followed by a performance analysis. Based on the feedback from the
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Figure 1.2: Task mapping process

performance analysis, appropriate modifications can be made to the application,

to the hardware architecture or to the task mapping itself. Several iterations

of the same process maybe needed before the system performance meets the

specified design objectives. Once designs with the right performance are found,

those designs are further refined at the low-level design.

A hard real-time application model contains a set of tasks and the task map-

ping process could allocate them differently on the NoC platform (see Figure 1.1).

As shown in Figure 1.3, each IP or processing core can have one or more tasks

to execute depending on how the task mapping process allocates the tasks. The

end-to-end response time of the tasks could be affected depending on their loca-

tions and the interference experienced by them in the shared resources. If some

computation or communication resources have more tasks or messages to execute,

the low-priority tasks and messages will receive high interference from their high

priority counterparts. Figure 1.3a shows a possible task mapping output from the

mapping process. In this example, tasks T1, T2, and T5 each send a message to

its respective recipient at different processing cores. Message F1 originating from

task T1 travels on the same link as message F2. The latter message also shares the

same link with message F5 sent by task T5. Assuming that the priority order of

7
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(a) Before (b) After

Figure 1.3: Interference before and after changing task mapping

these tasks is T1 > T2 > T5, and the messages follow the same order as the trans-

mitting tasks, then message F5 will receive interference directly from message

F2. At the same time, message F2 receives interference from message F1. This

further delays the response time of message F5 because it has to wait for message

F2 to completely arrive at its destination and to release the link. Based on the

same application and NoC platform, a new task mapping is created as depicted in

Figure 1.3b. Based on the new task mapping, it is possible to avoid interference

between messages by mapping these tasks at different locations. This is a simple

example of how different task mappings could impose varying influences on the

schedulability of tasks and messages in the system.

One of the requirements of a hard real-time system is that a task or a message

is deemed schedulable when its deadline is not missed in any scenario. Fully

schedulable tasks and messages make the system predictable, and thus a task

mapping that meets the objective of creating a fully schedulable system is most

desirable. The mapping process could produce many task mappings and might

use the number of schedulable tasks and messages by which to assess them. Figure

1.4 shows how each task mapping points to different areas in the graph based on

the metric.
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Figure 1.4: Different task mappings produce various performances

1.2 Motivation and Goal

Different task mappings produce varying performances as shown in Figure 1.4. It

becomes a necessity to evaluate as many task mappings as possible to increase the

probability of finding the best selection of designs for further refinement at the low

level of abstraction. However, the number of task mappings grows exponentially

with the size of the task set and the size of platform (that is, the number of IP

cores). Within a limited time frame, exhaustive searching is prohibitive [10] and

it is unlikely a schedulable task mapping will be found by arbitrarily mapping

the tasks on the platform.

For hard real-time systems, the end-to-end response time of all tasks, which

includes the latency of the sent messages, must not exceed the timing constraints

of the systems. In order to ensure the systems are predictable, a priority pre-

emptive scheduling policy is used to schedule tasks and messages in a way that

gives high-priority tasks and messages guaranteed access to the computation and

communication resources. However, if task mapping is inefficient, the interference

suffered by low-priority tasks and messages can become enormous, affecting their

end-to-end response times. For achieving a fully schedulable system, it is desir-

able to find a task mapping that allows all tasks and messages meet their deadline.

How to lessen the interference suffered by low priority tasks and messages while

9



1. Motivation and Goal

enabling the high-priority tasks and messages to have guaranteed access to the

resources is the key issue. It has been reported in [11] that a schedulable task

mapping cannot be found when the platform contains limited computation and

communication resources. Some researchers [12] have focused on priority schedul-

ing but did not address the task mapping problem, and thus limited the ways in

which task mapping can be optimised with their approaches. Others considered

both task mapping and priority scheduling but their approaches were limited to

systems with bus communication [13, 14, 15].

In practice, conflicting design objectives normally exist, and any change to the

task mapping must consider all the objectives to reflect the true performance.

NoC architecture is highly configurable but in a small silicon area its designs

are constrained in some aspects such as power consumption [16]. In addition, for

NoC-based embedded systems with hard real-time requirements, meeting the tim-

ing constraints of the requirements is essential since any lateness in the response

times might cause one or more tasks miss their deadline. However, changing

the task mapping solely to achieve low power consumption hides the impacts on

the real-time performance and vice versa. For example, allocating tasks near to

each other reduces the power dissipated by NoC, but can increase the contention

for the network resources and this might lead to enormous delays exceeding the

deadlines. Conversely, if those tasks are mapped far from each other, this might

further increase power consumption due to the involvement of many network

components (such as routers and links) for transmitting the messages. Therefore,

the goal is to find a schedulable task mapping for the system while considering

the other objective at the same time. The issue here is how to achieve a good

trade-off between more than one conflicting objectives. Although multiple ob-

jectives in searching for task mapping have been considered before, one of these

approaches caused enormous evaluation time [17] and others [18, 19, 20] did not

address finding a task mapping for the hard real-time systems. A few have pro-

posed finding task mapping for this kind of system, but the techniques lacked

insight into power consumption[11, 21].

In the analysis of hard real-time systems, a quantitative schedulability metric

such as the total number of unschedulable tasks and messages is a convenient

fitness value for evaluating the feasibility of task mapping. A task mapping is
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assumed as unschedulable if the metric yields one or more unschedulable tasks

and messages, otherwise it is assumed as schedulable. Applying this metric in

task mapping optimisation helps minimising the number of unschedulable tasks

and messages and converging to a fully schedulable task mapping. However,

if a schedulable task mapping cannot be found by the optimisation algorithm,

no further information can be applied by the algorithm to facilitate the search

of the schedulable task mapping with a given platform. It has been reported

that in some cases finding the feasible task mapping was unsuccessful[11, 21]

with the existing schedulability metric. Therefore, it is useful if this metric can

be improved to provide additional information for the algorithm to search for

the schedulable task mapping from the design space. The key issue is how the

schedulability metric can be improved to make the unschedulable task mapping

schedulable.

The search-based optimisation approach such as genetic algorithms has the

potential to explore and evaluate many task mappings in a single run to identify

the best of them. However, the number of evaluation that has to be performed

increases with the size of population used during optimisation. Depending on the

runtime complexity of the evaluation function, the optimisation might take a sig-

nificant amount of time to find a schedulable task mapping. Instead of depending

on a large population to find a schedulable task mapping, an alternative algo-

rithm that consume less optimisation runtime but could find a task mapping that

is nearly as good as the genetic algorithms is desirable. One of the advantages

in the reduction of optimisation runtime is that it could help system designers

to reduce the amount of time to explore the design space. However, whether

the new algorithm is capable to find a schedulable task mapping as good as the

genetic algorithm in less time than the latter algorithm is the key issue.

The previous studies are discussed fully later in the thesis, but all these issues

contributed to motivating our research works. This thesis addresses the issues,

with the main goal is to find a feasible task mapping that can make a NoC based

hard real-time system schedulable. The following proposition determined the

central focus of the research works.

A schedulable task mapping can be found for NoC-based hard real-time

embedded system
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1.3 Summary of Contributions

The thesis proposition set out above will be achieved by a series of research works

as follows:

1. A simultaneous optimisation approach, involving task mapping and prior-

ity assignment, is proposed to overcome the problem of meeting the timing

constraints of low-priority tasks and messages due to the high interference

experienced by them. The notion of changing the priority to reduce the

interference of low-priority tasks and messages enables the approach to ef-

fectively find the feasible task mapping for the system better than the pre-

vious optimisation approaches that rely on the static priority pre-emptive

scheduling policy and random priority assignment. In addition, the pro-

posed approach facilitates the optimisation algorithm to converge faster

than the previous optimisation algorithms.

2. Finding a task mapping in the presence of more than one conflicting objec-

tive requires consideration of the trade-off between the objectives. Single-

objective optimisation is ineffective for the purpose since it focuses solely on

one objective but ignores the others, causing the impact of the latter objec-

tives to be hidden from the system design. Aggregating all objectives into

one objective will work if conflicts do not exist between the objectives, but

forcing this approach on the conflicting objectives will introduce bias to the

solutions. A multi-objective optimisation algorithm is used to address the

schedulability and NoC power dissipation optimisation problems. It finds a

schedulable task mapping as effectively as the single-objective optimisation

algorithm, but with lower power dissipation than the task mapping of the

latter algorithm.

3. A quantitative schedulability metric, such as the total number of unschedu-

lable tasks and messages, can be used to evaluate the feasibility of task

mapping. However, this metric has a limitation when the system becomes

unschedulable based on a given task mapping because it does not provide

further information that can be used to improve the task mapping. To

overcome this problem, a new fitness function is proposed to produce a
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new metric called the breakdown frequency as the fitness value of every task

mapping. The breakdown frequency is the minimal frequency that could

make all tasks and messages schedulable in the system without changing

the task mapping. With the new fitness function, the optimisation algo-

rithm has the means to improve an unschedulable task mapping to make

it schedulable. Another benefit of using the approach as part of the opti-

misation algorithm is that it enables further minimisation of the system’s

operating frequency as the optimisation progresses over time.

4. A GA-based optimisation algorithm is a good means of finding schedulable

task mappings. It depends on the population size to provide diversity which

is essential for exploring many solutions at the same time in the population.

However, its benefit comes at the expense of increased evaluation time.

As an alternative to the optimisation algorithm, a constructive mapping

algorithm is proposed to construct a task mapping rather than to explore

many task mappings simultaneously. Based on particular attributes such

as the utilisation of task and message, task schedulability and the number

of outgoing messages, the proposed algorithm could provide a schedulable

task mapping nearly as effective as the previous algorithm, but with reduced

evaluation time.

1.4 Thesis Outline

The remaining six chapters of this thesis are organised in the following structure.

Chapter 2 reviews the latest techniques related to the early design space explo-

ration of NoC-based hard real-time systems to provide the historical background

to the research undertaken in this thesis. It includes the main branches of the

subject, mainly on the exploration and evaluation aspects. Sections explaining

the NoC and task mapping are also included in the chapter. The first technical

chapter (Chapter 3) introduces the proposed design space exploration technique

that addresses the problem of optimising multiple design parameters. Chapter 4

proposes a technique that addresses the optimisation problem of task mapping

based on multiple objectives. Schedulability is a crucial requirement that must
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be met by the system, however, the exploration technique that depends on the

schedulability metric is ineffective to address the problem when schedulable task

mappings cannot be found. This problem is addressed by a new fitness function

in Chapter 5. The final technical chapter, Chapter 6, proposes a constructive

mapping algorithm as the alternative to the GA-based optimisation algorithms.

With this proposed algorithm, the search for task mapping does not rely on a pool

of task mappings and thus the process of finding the schedulable task mapping(s)

is speeded up. All the contributions of the preceding chapters are concluded in

Chapter 7, and the possible direction of potential future works in this field is

suggested.
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Chapter 2

Hard Real-Time NoC Design

Space Exploration

Task mapping exploration for hard real-time systems based on NoC is the central

topic of this thesis. This chapter reviews the state-of-the-art works related to the

topic as the background to the research works presented in this thesis. The survey

is divided into several sections. In section 2.1, an overview of the NoC architecture

is provided to introduce different network components and policies such as router,

network interface, link, routing protocol and flow control mechanism. Then, in

section 2.2 we review existing works related to task mapping and some of the

design parameters that could affect the schedulability of task mapping. Design

space exploration is facilitated by two main components, the search component

and the evaluation component. The search component is reviewed in section 2.3

and it includes several heuristics used to explore task mapping, Pareto-optimal

concept for finding a trade-off between multiple objectives and a relation between

search and decision making. The evaluation component is reviewed in section

2.4 and it includes different types of evaluation techniques that can be used to

evaluate task mapping. In the same section, some of the schedulability analyses

for evaluating the schedulability of tasks and messages are also reviewed. All

reviews in the sections are conducted in respect of NoC-based hard real-time

systems.
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2.1 Networks-On-Chip

Networks-on-Chip is currently viewed as a potential solution for providing high

performance on-chip communication with better scalability for systems with in-

tensive parallel communication requirements [6]. It has many configurable pa-

rameters that can be tailored according to application requirements, offering a

variety of possible implementations through different configurations. In order

to understand the parameters of NoC, this section discusses the basic building

blocks of a generic NoC architecture.

Figure 2.1: An example of task mapping and message routing in a 3x3 Mesh NoC

Generally, a NoC contains three types of network building blocks [22]: routers,

physical links and Network Interfaces (NIs). Routers are responsible for forward-

ing packets from a source to a destination node along the specified routing path,

which is determined by a network routing protocol. Routers’ input and output

ports are connected by links. A link is a physical entity containing a set of wires.

Flow control and arbitration policies provide packet management to regulate how

links are shared by the contending network packets. Typically, every router is

connected to an Intellectual Property (IP) block (such as a processing element,
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a memory or a peripheral device) and each IP has a different communication

protocol from the others. IP blocks require NIs to synchronise communication

with routers so that data transmission through shared communication resources

is possible. Figure 2.1 shows message routing paths in typical high-level view of

a 3x3 mesh NoC structure.

2.1.1 Link

A link is a physical interconnection between two routers, or between a router and

a core. It contains one or more physical or logical channels [23]. A flit [24] is

a basic transfer unit at link level. Several flits may be forwarded through the

channels in multiple cycles because of the physical channel width constraint, that

is, a flit-by-flit transmission between routers.

Flit transmission is controlled by a flow control (or synchronisation protocol)

by sending request/acknowledge signals between a sender and a receiver to reg-

ulate the transfer of flits. This synchronisation mechanism is essential to ensure

the successful transfer of flits, for example by first checking the buffer space at

the receiver side prior to any flit transfers. The synchronisation protocol can be

implemented by dedicated wires, mixed-time FIFO (First In First Out) [25] in a

multi-clock domain or as asynchronous circuit techniques [26].

2.1.2 Network Interface

A network interface provides high level communication services to the IP blocks

by encapsulating the low-level network functions provided by NoCs. By having

this layer, IP blocks with different communication protocols are able to integrate

seamlessly with the NoC infrastructure. High-level encapsulation of low-level

network functions facilitates less interdependence between the IP blocks and NoC,

and also helps to ease the reuse of abundant IP blocks available to chip designers.

Communication services provided by the NI involve a point-to-point com-

munication between cores and routers. In this type of communication, a traffic

encapsulation service provides the packetisation and de-packetisation of packets.

At the destination node, newly arrived packets are converted into signals that can

be understood by the core’s communication protocol. Conversely, signals from
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cores must be converted into network packets before routers can forward data

throughout the network. In addition to this service, other services [23] such as

global addressing, data and buffer managements are also offered by the NI.

As depicted in Figure 2.2 a generic network interface is composed of two

parts [23]: the front end and the back end. The front end may be implemented

by adhering to a socket protocol and several socket protocols exist, such as the

commonly used Open Core Protocol (OCP) [27] or other standards such as Vir-

tual Component Interface (VCI) [28] and Device Transaction Level (DTL) [29].

The OCP offers several properties including specific socket implementation to

facilitate design reuse, as well as emphasising on how to simplify the system

verification and test. One OCP compliant NI implementation was proposed by

Bjerregaard [30], and Radulescu [31] implemented NI for AEthereal NoC based

on the transaction-based protocol to allow backward compatibility to the existing

communication protocols.

Figure 2.2: NoC network interface

2.1.3 Routers

A NoC’s router is composed of several connection components [5, 32, 33] as de-

picted in Figure 2.3. Among these components are communication ports, includ-

ing a local port connected to a core and a number of input and output ports
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connected to routers. The input and output ports are connected respectively to

a single incoming physical link and a single outgoing physical link.

Figure 2.3: NoC router structure

Control logic inside the router is performed by four components: the Routing

Computation (RC) unit, the Virtual Channel Arbitration (VA) unit, the Switch

Allocation (SA) unit and the Crossbar unit. A packet contains several flits and

these components operate at flit level. The routing of a packet is performed

based on the destination address which is saved inside its header flit. Based

on the information in the header flit, the RC unit directs the header flit to the

appropriate output port.

Typically, NoC routers without virtual channels have a single buffer in every

port. For some routers with virtual channels [34, 35, 36], each port is associated

with multiple buffers. When incoming packets request access to the VCs of an

input port, the VA unit checks their header flits and arbitrates between the

packets to select which packets are assigned to the input VCs. The VCs from all

input ports request access to the crossbar unit, and the component that decides

the winner amongst the VCs is the SA unit. The SA unit arbitrates all the VCs

because more than one VC may request access to the same output port. It also

configures the crossbar unit appropriately by connecting the selected VC to the
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output port. Unlike RC and VA which both perform the logic operations on the

header flit, the SA unit performs its operation on every flit. For

In NoC, buffers may be distributed either at the input or the output ports,

or at both sides at the same time [37, 38, 39]. Input port buffers provide storage

and enable queuing for arriving flits before reaching the crossbar, reducing the

probability of packet loss due to insufficient bandwidth in the router. Normally

implemented as a FIFO queue, input queuing may cause head-of-line blocking

in routers. This phenomenon occurs due to the FIFO characteristic that only

allows packets to proceed on a first-come-first-served basis. If two input ports at

the same time contend for the same output port, the unselected input port will

contain the current flits in the input buffer, blocking the rest of the flits along

the path from arriving at the input port.

One of the solutions for overcoming this problem is to by distribute buffers

between the crossbar and the output ports, creating output queuing instead of in-

put. A group of outgoing flits from the crossbar to the output ports is stored in the

output buffers while waiting for a transmission to the next router. Although the

input ports can continuously receive flits, when contention occurs in the network

the routing path of flits will be blocked, thus preventing the routers from pro-

gressing the flits forward. If the capacity of the output buffers is saturated at the

receiving router, the outgoing flits may be discarded or lost during transmission.

Retransmission of flits could cause communication overheads as well as increasing

the amount of traffic in the network. By receiving acknowledgement on the buffer

status from the receiving router prior to the flits’ transmission, a reliability check

is established to prevent the flits from being lost during transmission. On the

other hand, input and output queuing inherits all the advantages mentioned pre-

viously. Network performance may become better due to the bandwidth increase

in the router but at the expense of increased complexity. Increasing the number

of buffers may have other drawbacks as well, such as excessive power consumption

and high implementation cost.

Furthermore, the transmission of flits from routers is controlled by network

policies such as a routing protocol and flow control. A routing protocol provides

the routing paths for flits and a flow control manages the transmission timing of

flits. Both network operations work in relation to each other to ensure smooth
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data transmission between the routers. The routing operation is responsible

for connecting an input port to its corresponding output port to establish a

communication path as computed by the routing algorithm (based on routing

table look-up or source routing). On the other hand, the flow control mechanism

provides appropriate timing for forwarding data between routers, that is, the

synchronisation of data transfer between routers after the establishment of the

communication path.

2.1.3.1 Routing Protocol

The basic function of a routing algorithm is to select the appropriate path for each

packet upon arrival at one of the input ports by deciding which output port the

packet will be forwarded to. The selection of a routing path is based on the routing

information carried by the packet header. According to the taxonomy presented

in [24], routing algorithms can be classified based on their characteristics. The

two main categories which divide those algorithms are deterministic routing and

adaptive routing.

In a network with deterministic routing, a packet is routed according to a

pre-determined routing path between the sender and receiver. The routing path

is computed prior to the packet transmission from the source router and remains

static for the whole duration until the packet arrives at the destination router,

hence the name static routing. Among the routing schemes that follow determin-

istic routing are source routing and XY routing. A source-routing scheme relies

on the source node to provide a routing path for the packet prior to its trans-

mission, which is then stored in the packet header. Intermediate routers use the

routing information to reserve a path for the packet until it arrives at the destina-

tion router. In the XY routing scheme, a packet is forwarded along the row until

it reaches an intermediate router where the destination node is perpendicular to

it, then it is forwarded along the column until it arrives at the destination node.

XY routing may refer to a routing table in order to determine the routing path.

The NoC implementation proposed by Kavaldjiev [35] uses source routing, and

NoCs which implement the XY routing algorithm include Dally [34], QNoC [40]

and Hermes [36].
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Adaptive routing determines routing paths for packets according to the traffic

condition or link status, for example to avoid congested areas or perhaps faulty

nodes in the network. The flexibility of this kind of routing algorithm allows

packets to be routed through alternative paths when one of these events occurs.

2.1.3.2 Flow Control

Flow control is responsible for defining how data is transferred along a routing

path [41]. A specific flow control mechanism exists at every layer of a network and

operates on different type of datagram. For example, the message flow control

synchronises fixed-length packet transmission at the network layer, whilst the

physical channel flow control manages synchronisation of flits at the bits level.

A packet can be further split into several chunks called flits and a flit consists

of several phits. Every flit is a fixed-length data transmitted over a physical link

and the flits of a packet require several cycles before completely reaching the

destination. A phit represents the number of bits transmitted in parallel over

the physical wires of a link in a single cycle. In contrary to phits, which are true

physical entities, packets and flits are considered as logical in representation.

The way a packet is forwarded varies depending on the forwarding strategy in

the flow control policy. Most of the forwarding strategies utilise limited buffers

at the input and output ports. This includes common forwarding strategies such

as store-and-forward [24], virtual cut-through [42] and wormhole switching [43].

In wormhole switching, a packet is sent from a router to another router flit-

by-flit. With this scheme, routers forward the next flits without waiting for the

full packet to arrive. A header flit of a packet contains the necessary routing

information to select the packet’s routing path. Once the routing path has been

established, subsequent flits follow the header flit along the same routing path. A

flit is forwarded as soon as sufficient space becomes available at the next router,

otherwise it remains in the current router’s buffer. When the flit header is blocked

due to congestion, subsequent flits are stalled along the routing path resembling

a worm, which explains its name.

NoCs implementing wormhole switching require a smaller size of buffers in

the input and output ports than virtual-cut-through and store-and-forward poli-
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cies, as the transmission is made on a flit-by-flit basis. This avoids having to

accumulate all the segments to build a complete packet before initiating trans-

mission, which keeps end-to-end latency low because flits are transmitted as soon

as the buffer at the next router becomes available. Several NoCs [36, 40, 44] have

employed the wormhole switching technique. In Hermes NoC [44], the NoC was

implemented with a wormhole switching technique combined with four types of

routing algorithms including a deterministic XY routing and three partially adap-

tive routings including west first, north last and negative first. Kavaldjiev [35]

implemented a wormhole switching technique with a source routing algorithm.

The same implementation was also applied by AEthereal [45] to support Best

Effort (BE) type packets.

The virtual-cut-through is similar to wormhole switching in terms of the for-

warding mechanism, but operates at the packet level. With this technique, a

packet can be forwarded to the next router as soon as sufficient buffer space

is available. In other words, it does not necessarily have to wait for the entire

packet to arrive at the current router before it starts forwarding it. However,

larger buffer size is required than for wormhole switching because it must be able

to accommodate the entire packet when the next router is not ready to accept

due to insufficient buffer capacity. In addition, a packet may have to wait longer

due to the time needed to free sufficient buffer capacity before the next router

is ready to accept. If a packet is blocked when congestion occurs in the routing

path, it stalls inside the current router but does not block the path as it does in

wormhole switching.

Based on the store-and-forward policy, a packet must be in complete form

before it can be forwarded to the next router. Similar to virtual-cut-through, the

packet stalls in the current router if sufficient buffer space is not available in the

next router. In terms of end-to-end latency, this forwarding strategy causes lower

performance of the NoC than the previous forwarding strategies discussed above.

An example of a NoC that employed a store-and-forward policy was introduced

by Kumar [33].
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2.1.3.3 Virtual Channels

The flit-by-flit transmission mechanism reduces end-to-end latency but several

drawbacks such as low link utilisation and deadlock [46] are likely to occur in a

NoC implementing wormhole switching policy. One way to alleviate this problem

is to apply Virtual Channels (VCs) [34], whereby a single physical link is multi-

plexed into separate logical channels to allow access for other packets to proceed

even when congestion is blocking the preceding packet in the same path.

Generally, an input port (or output port) is associated with a buffer that

becomes a temporary storage for a packet until the next router has adequate

space to receive it. When the next router is ready to receive, the input port is

matched with the corresponding output port by configuring the switch crossbar

accordingly. If two packets arrive at the same time at different input port but

compete for the same output port, an arbitration unit must decide which packet

will gain access to the physical channel. If the packets originated from BE traffic,

fair distribution of resource can be achieved by allocating a similar amount of

usage time for each packet. For Guaranteed Traffic (GT), some traffic flows can

be guaranteed access on shared resources by assigning priority levels to packets,

that is, higher-priority packets can pre-empt lower priority packets to gain access

to the physical channels.

Indeed, buffers and physical channels are two important network resources

which are not only shared but also concurred among packets. Although a NoC

architecture with a single queue in input or output port is simple and less complex

in implementation, when a large number of packets are competing for the same

resources at the same time, its bandwidth is reduced considerably and the network

will experience maximum throughput quickly. When this happens, head-of-line

blocking can occur and the valuable network resources will be blocked for a long

duration by a packet which prohibits other packets en route from utilising it. This

phenomenon can be more clearly understood by referring to Figure 2.4. In this

figure, each router node has five output ports (north, east, south, west and local)

and each port is associated with a buffer. Packet X is transmitted from router 2

to router 3 but cannot proceed to router 5 due to a blockage. However, the flow

of packet X is still alive in the physical channel between router 2 and router 3.
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Some flits of packet X are stored in buffer at the port south of router 3 and the

rest are stored in buffer at the port east of router 2 until the blockage is cleared.

At the same time, router 1 is ready to transmit packet Y but it is blocked by

packet X from using the same physical channel. During this time, the physical

channel between router 3 and router 4 remains idle because it cannot be utilised

by packet Y due to the blockage by packet X. As a consequence, the blockage

creates low throughput at the output ports and consequently causes inefficient

utilisation of the physical channel bandwidth.

Figure 2.4: Head-of-line blocking

Achieving higher network throughput and efficient utilisation of physical chan-

nel bandwidth is difficult when network resources are tightly coupled with sin-

gle buffer designs in ports. The percentage of network throughput that can be

achieved is between 20%-50% of overall network capacity [47]. Dally proposed

a concept called virtual channels [34], which decouple the network resources by

associating the input port with more than one shallow depth buffer as substi-

tutes for a single deep-length buffer implementation. Figure 2.5 shows a NoC

with each router assigned with two virtual channels at each input port. With

the same situation as shown in Figure 2.4, packet Y arrives at routers 2, 3 and

4 without being blocked by packet X, even though both packets share the same

physical channel. In Figure 2.5, the physical channel utilisation is better than in
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the single queue implementation (see Figure 2.4) due to the existence of different

buffers to store packet X and packet Y separately. Therefore, when packet X is

blocked at a port south of router 3, the same physical channel can be re-assigned

to packet Y to allow it to proceed to the next router. The decoupling of packets’

queuing through virtual channels increases the throughput and maximises the

utilisation of physical channels.

Figure 2.5: Head-of-line blocking avoidance with Virtual Channels

Virtual Channel (VC) flow control requires that a physical channel is split

into multiple virtual channels and that each virtual channel has its own associ-

ated buffer queue. Figure 2.6 shows a simple FIFO buffer structure of a virtual

channel. A specified number of k-flit FIFO buffers are contained within an input

port of a NoC router and each FIFO buffer corresponds to a VC. In a conventional

NoC router, the number of VCs per input port is fixed. With the VC technique,

if a packet which is currently using the physical channel is blocked by congestion

in its path, other packets in the other virtual channels will compete for the phys-

ical channel and the chosen packet will bypass the blocked packet. Some NoC

implementations such as ANoC [48] consists of fixed priority arbitration scheme

which can be implemented using a VC technique. With this scheme, each VC

is assigned a priority level to accommodate packets with the same priority level.

A request coming from a packet with priority level i is served by no other VCs
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except a VC with the same priority level. A direct one-to-one relation between

a packet and its corresponding VC based on the same priority level enables a

virtual path for the packet by reserving a series of VCs along the packet route.

Figure 2.6: Virtual Channels

2.1.4 Summary

NoC contains several network components such as routers, link and NI. It also

depends on routing policies and flow control to deliver messages. In this sec-

tion, these components, policies and control mechanisms were explained to give

a snapshot on how NoC works.

2.2 Task Mapping

Task mapping can be explored by changing the allocation of tasks on the multi-

processor platform, producing different types of mapping with varying perfor-

mances. However, task mapping is a NP-hard problem [49]; its time complexity

expands with the number of tasks and cores and hence it is impossible to find the

optimal solution in polynomial time unless the right decision is made every time

a task is mapped onto a core. Search heuristics such as Genetic Algorithm (GA)

is well-known to address this kind of problems although it cannot be guaranteed

that the best solution it finds is optimal. GA working principles are based on nat-
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ural selection of a population. A group of individuals in a population are evolved

to create better individuals that represents useful solutions or task mappings.

Individuals are evolved by GA through manipulation of each individual chromo-

some through several evolution steps. Chromosome is a string of information in

which task mapping can be easily encoded to create different task mappings.

A few researchers have proposed several approaches to find the mapping of IP

blocks or cores onto the NoC architecture based on single-objective optimisation

such as the minimisation of system delay or total communication energy. Lei et

al. [50] proposed a two-step optimisation approach using multiple GAs to map

IP blocks onto a NoC architecture. The objective was to improve the system

performance by minimising system delay, which is defined as the summation of

all tasks’ execution times and communication delays. The aim of the first step

is to search for the appropriate type of IP for each task, whilst the second step

is aimed to find the best mapping of IP blocks on a NoC platform. In Lei et

al.’s evaluation model, a communication delay is estimated based on the average

distance in number of hops between any two nodes. Murali et al. [51] addressed

the problem of mapping processing cores onto the NoC architecture by taking

into consideration the bandwidth constraints of the links. By finding a mapping

that could reduce the total communication cost, the desired message transfers

can be supported by the links. In order to achieve this, the minimisation of

the communication cost was performed by splitting traffics across multiple paths

between source and destination. The total communication cost is the cumulative

product of bandwidth requirement and the hop distance of all traffic flows. Hu et

al. [52] presented a mapping approach based on a Branch-and-Bound algorithm

for mapping IP blocks/cores onto a NoC architecture. Their main objective was to

minimise the total communication energy while ensuring that all communication

flows have enough bandwidth to travel through the communication paths. With

their proposed algorithm, the search for the best mapping with the least energy

is performed alternately between branching and bounding steps. In the former

step, creating new nodes (mappings) follows the form of a search tree, in which a

node is branched out from its parent node. The decision whether to create a new

node depends on the energy cost (must be less than that currently found) and the

conditions (which includes meeting the bandwidth limits) that must be met by the
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current node. Further expansion of a node is stopped if any of these requirements

is not met. A similarity between these approaches is the dependence on the

hop distance to calculate the communication delay and bandwidth requirement.

However, this ignores the fact that communication delay can also be influenced

by the contention between the traffic flows. Furthermore, in single-objective

optimisation, the exploration of task mapping is directed towards achieving a

single objective, consequently task mappings become inefficient due to lack of

performance in other aspects.

Some researchers [17] have focused on multi-objective optimisation of task

mapping, with other parameters assumed to be fixed. Ascia et al. [17] used

a search-based heuristic called SPEA2 [53] to explore IP mapping, based on the

minimisation of delay and the average power consumption. Using a cycle-accurate

simulation technique, evaluation was performed on each mapping using various

dynamic behaviours from synthesised traffics and a real application. Although

task mappings produced by this heuristic are better than random mappings, the

use of simulation as an evaluation technique in design space exploration has a few

drawbacks. The time cost of detailed simulation is very high to evaluate every

mapping, since every simulated application has a number of simulations which

have to be performed in order to gain representative performance results [54]. If a

detailed simulation model is used to achieve a precise measurement, the amount

of time escalates even further to propagate events from each of the components

in the model during simulation. SPEA2, like any GA, depends on the size of the

population to explore the design space and with a larger population, the diversity

of the task mappings is high, hence providing many alternative task mappings to

explore. The high time cost of the evaluation technique can be a factor that could

prevent the idea of using a larger population. Resorting to a smaller population,

however, has its own pitfall, because it leads to early convergence due to reduced

diversity in the population. Early convergence too has its own consequence: either

the feasible solutions may be hard to find, or the feasible solutions may probably

not be the best solutions found so far. The preparation of a detailed simulation

model and its verification that follows afterwards must also be taken into account

since system designers are normally given tight schedules to choose good designs.

Similar to [17], other researchers have proposed another multi-objective op-
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timisation [18], but using a different type of GA called NSGA [55]. According

to the thermal model [52], heat dissipated by an IP can be transferred to other

nearby IP blocks if they are positioned closer to each other, causing a rise in tem-

perature at that concentrated spot. Increasing the average hop distance could

dissipate heat further from the spot and create a good thermal balance, but con-

versely it means increasing the communication delay between them. Based on

this notion, they proposed an approach to find task mappings with good trade-offs

between the IP thermal balances and hop distance. Different kinds of mapping

exist to address the communication synthesis problem as well as the computa-

tional synthesis problem. The two-step optimisation approach proposed by Jena

[19] applied a GA known as NSGA-II [56] to explore solutions for both problems

based on multiple objectives. The purpose of the first step is to find the feasi-

ble mapping of tasks onto IP blocks in a way that minimises the computation

power consumption and the total cost of resources. Following the first step is

the second step that maps IP blocks on a NoC platform based on multiple objec-

tives: the minimisation of the number of switches and the maximisation of link

bandwidth. A similar energy model to [18] was applied, but modified to include

the computational power consumption for the first step’s optimisation. Nedjah

et al. [20] addressed the same synthesis problems as [19] but used more than two

optimisation objectives. Two different GAs were applied in their approach, the

NSGA-II [56] and micro-GA [57], to explore mappings in terms of power, area

and execution time. Unlike previous approaches that relied on the hop distance

to calculate the communication delay, contention in shared communication chan-

nels was considered when calculating the total execution time of computation and

communication. Contention was modelled as a time penalty imposed on every flit

that would be transmitted when the contention occurs in shared communication

channels. The time penalty was a product between the number of flits and the

time required to transmit a flit through a communication channel, however it

was rendered less accurate by assuming that each flit has an equivalent amount

of delay since some flits would be more delayed due to pre-emption.

None of the approaches reviewed above, either facilitated by simulation or

using an analytical method as the evaluation technique, are suitable for address-

ing the optimisation problem of mapping a hard real-time application onto a
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NoC-based platform. For this type of systems, the feasibility of task mapping

is determined by how many tasks and messages are schedulable. This requires

rigorous analysis not only of the response time of tasks but also of the latency of

messages. However, applying the number of hops [18, 50, 52] when calculating

the communication delays is insufficient as it lacks any insight into the amount of

interference that some of the messages may experience when contention occurs,

whilst the use of the time penalty [20] does not calculate accurately how long

some messages have suffered from delays.

Some researchers applied well-known techniques in machine learning to ad-

dress the application mapping problems on NoC-based platforms. Sepulveda [58]

based her technique on artificial immune algorithm to find mapping for several

applications running on the same SoC, which meets multiple objectives of power

and average latency minimisation. Other mapping technique was based on Ant

Colony Optimisation (ACO) as proposed by Wang in his work [59]. His approach

was aimed at minimising the NoC link bandwidth, so that an efficient NoC design

with a low link operating frequency and small link width can be achieved. In both

approaches, the researchers did not consider hard real-time application as what

the Benyamina conducted in his work [60]. Although Particle Swarm Optimisa-

tion (PSO) used in Benyamina’s approach [60] is a good optimisation technique

for finding a task mapping with minimised execution time and energy consump-

tion under specific hardware constraints, the evaluation model that they used

yields pessimistic results due to the lack of necessary analysis on the worst-case

execution time of task.

In a hard real-time system, meeting the deadline of every task and message in

any scenario is necessary. One or more unschedulable tasks or messages that fail

to meet their deadlines have undesirable effects which reduce the predictability

of the system. Since task mapping could affect the response time of tasks and

the latency of messages, a few researchers [11, 21, 61] have proposed GA-based

mapping approaches for this type of system. For evaluating the schedulability of

task mappings, real-time analyses were applied to all tasks and messages. The

task mapping approach proposed by [11] focuses on single-objective optimisa-

tion, which minimises the number of unschedulable messages to find the task

mapping. However, evaluation of the schedulability of tasks was omitted from

31



2. Task Mapping

their approach. It is therefore not known how many tasks can be schedulable

with the found task mappings. Excluding the schedulability of tasks from the

evaluation and focusing only on the timing constraints of all messages is insuffi-

cient and most likely makes the system prone to failure using the task mapping.

In fact, message transmissions are initiated following task computations, hence

delays on the tasks side significantly affect the response time of messages.

Similarly, Gan et al. [61] covered the computation aspect of the system in the

evaluation model of their multi-objective optimisation approach with the schedu-

lability analysis of tasks, but excluded the schedulability analysis of messages.

At the early design phase, some application requirements can be uncertain and

new functionalities may be added during the design to meet the market demands.

Taking these aspects into account, Gan et al. [61] proposed a mapping approach

to find a task mapping for hard real-time applications by looking into the un-

certainties in the worst-case execution time and future tasks that represent new

functionalities. Their aims were to find a mapping with a high probability of a

task set being schedulable and a high flexibility of accommodating future tasks.

In order to achieve these aims, the optimisation approach was applied to maximise

the robustness of the task mapping and the flexibility at the same time. How-

ever, excluding the schedulability analysis of messages from the evaluation model

hinders the system’s overall schedulability, since uncertainties in the worst-case

execution time, although they influence the response time of tasks, also affect

message transmission.

Realising the importance of both computation and communication in assessing

the overall schedulability of the system, Racu et al. [21] presented an approach for

task mapping, which includes schedulability analyses of both tasks and messages.

Using a single objective, mainly to minimise the number of unschedulable tasks

and messages, they showed that it is possible to find a feasible task mapping

using a heuristic such as GA. In reality, however, designing a system is usually

constrained by limited resources and energy consumption, so system designers

are obliged to meet multiple objectives.

Design parameters in a NoC-based hard real-time embedded system, if cor-

rectly configured, can achieve the desired system performance as defined by the

design objectives. However, considering all design parameters is a complex prob-
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lem and exploration can easily become intractable [10]. A slight change on the

configuration might produce a different instance of the system with varying per-

formance. Different types of design parameter exist, and in the following subsec-

tions previous works related to specific parameters used in this study are reviewed

with respect to task mapping for hard real-time embedded systems.

2.2.1 Priority Assignment

In section 2.2, previous works [11, 21, 61] related to the task mapping of hard real-

time tasks with fixed priorities were reviewed. Those researchers proposed several

approaches for mapping this kind of task, whose priorities are assigned according

to a priority assignment policy [62], or by random assignment. With a good

heuristic such as GA, they have shown that by changing the task mapping itself

to meet the single objective [11], it is possible to find a feasible task mapping.

However, in some cases where a feasible task mapping cannot be found, the

algorithm converged below 100% schedulability towards the end of optimisation,

as shown in Figure 2.7.

Figure 2.7: Optimisation algorithm converged below 100% schedulability

The result is a manifestation of the restriction imposed on the design space

exploration of a system which focuses only on task mapping. This restriction
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renders the algorithm inapplicable for effectively finding a feasible task mapping

in those cases. In this kind of system, shared resource usage is controlled among

tasks and messages according to a priority assignment policy. High-priority tasks

and messages are given access to the resources by pre-empting their low-priority

counterparts. This has its side effect in that any low-priority task or message

that fails to meet the deadline as a consequence of prolonged delays will easily

become unschedulable. The importance of both steps in the multi-processor real-

time scheduling of hard real-time systems is highlighted in [63], which divided

the multi-processor scheduling into two types of problem: the allocation of tasks

and the assignment of priority levels.

Multi-processor scheduling algorithms have been developed in an attempt to

solve these problems and can be categorised into two different types of scheduling:

partitioning scheduling and global scheduling. In the partitioning approach, the

multi-processor scheduling problem is addressed as a set of single processors that

are independent from the others. Every processor is viewed as having a separate

priority-ordered queue in which a set of tasks is allocated. A task may require

one or more job execution towards its completion. Once a set of tasks has been

allocated in a processor, all jobs coming from the tasks must be executed only on

the corresponding processor, that is inter-processor job migration is prohibited.

In the global approach, the multi-processor system has a single priority-ordered

queue for storing all eligible tasks. The global scheduler then selects tasks based

on their priority so that the highest-priority one has the highest chance of be-

ing executed first in the available processors. Job migration is allowed in this

approach.

For both the partitioning and the global approaches, tasks are scheduled in an

order given by a priority assignment policy for determining the sequence of job

execution in several processors. The priority assignment policies can be grouped

either as static or dynamic. A static (fixed) priority assignment policy assigns a

unique priority level for each task; therefore all jobs associated with the task have

the same priority. The Rate-Monotonic (RM) approach [64] is an example of this

type of scheduling policy. In spite of having static priorities, a dynamic priority

assignment policy assigns the jobs of a task with different priorities all the time

during execution, for example Earliest Deadline First (EDF) [64], or with the
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priority of each job able to change at any time, for example Least Laxity First

(LLF) [65]. These priority assignment policies enforce pre-emptive scheduling to

ensure the predictability of the system.

The interference suffered by the pre-empted tasks is related to the way prior-

ities are assigned to them. For example, with the RM priority assignment policy

[62], priorities are assigned to tasks according to their minimum inter-arrival in-

terval or period. Whilst this is optimal for a single processor system [64] in that

it can provide a schedulable ordering whenever such an ordering exists, it lim-

its the NoC-based multi-processor system from becoming fully schedulable. The

complexity is much greater in such a system, and contention is likely to occur

anywhere in shared computation and communication resources. Therefore, the

execution of tasks in one processor can directly or indirectly affect the response

time of other tasks in different processors as well as the messages transmitted

throughout the NoC. A task with the longest period which shares resources with

those that have shorter period suffers the most interference.

Similarly, messages can be assigned with priorities in the same way as tasks.

Based on RM, Mutka et al. [66] proposed a priority assignment approach to

address the priority assignment problem for messages. Due to the non-optimality

of the approach, Shi et al. [12] proposed an approach based on the Branch-

and-Bound search algorithm to find a feasible priority ordering for making a set

of traffic flows schedulable. Since the focus is on the schedulability of traffic

flows, they excluded the priority ordering for a set of mapped tasks. This is

insufficient, considering that the message transmissions of low-priority tasks are

prone to delays caused by a lengthy pre-emption from high-priority tasks on the

same processor. Therefore, the applicability of that approach is limited to the

schedulability of traffic flows. As far as the overall schedulability of the system is

concerned, a priority assignment approach should take into account the end-to-

end response time tasks. Racu et al. [21] considered the end-to-end response time

schedulability analysis as the underlying evaluation of their approach. However,

they addressed a different kind of problem, which was to find a suitable setting

for the single-objective optimisation algorithm. Improving the schedulability of

the system by relaxing the restriction on the design space exploration through

priority assignment and task mapping was not the aim of their work.
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2.2.2 Operating Frequency

State-of-the-art approaches to hard real-time task mapping use the number of

unschedulable tasks as the metric to evaluate the fitness of every mapping [11, 21].

Figure 2.8 shows the outcome of the approaches when using GA to optimise task

mapping.

Figure 2.8: Schedulability convergences of the optimisation algorithm

Axis x represents each point of time (or can be shown as the number of

generations) the best task mapping was found by the algorithm while axis y

represents the level of schedulability in percentage achieved by the task mapping

at each point of time. Line a is an example of a successful convergence to a

fully schedulable task mapping. This result is similar to the experimental work

presented in [11, 21], showing that the GA could converge to a fully schedulable

task mapping using the metric. However, the same authors also reported results

similar as shown by line b. Line b shows that in some cases the algorithm failed to

converge to a fully schedulable task mapping with the same metric. The heuristic

depends on the stochastic nature of its characteristic to perform the exploration

on the design space, so it requires a useful metric to direct its search towards the

optimisation objective. Without a metric that could give an additional insight
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into the availability of feasible task mapping, it is hard for the heuristic to improve

its search in the direction desired by the system designers.

An abundance of real-time analyses [67] has been developed to support the

schedulability evaluation of hard real-time systems. The quantitative metrics

used in [11, 21] are based on this type of analysis. In these analyses, particular

worst-case timing attributes such as the worst-case execution time of each task is

assumed to be known in advance, which is possible by using a specific technique

such as that proposed in [68]. Under an operating system frequency (or nominal

frequency), the worst-case execution time of each task running on its own without

any interference from other tasks is determinable. So, it is safe to assume that

the evaluation of each task to yield the metric for a given task mapping is valid

at that frequency. Based on this concept, single-objective task mapping opti-

misation can be performed to minimise the metric [11, 21]. Another study [61]

considered multiple objectives such as maximising the robustness and flexibility

of task mappings to increase the probability of a task set being schedulable and

also to accommodate future scenarios.

Those works were primarily aimed at finding feasible task mappings for hard

real-time systems, but they lacked further work on optimisation involving fre-

quency scaling. One of the purposes of frequency scaling is to find a minimum

frequency at which a task set can be executed with power efficiency in place. For

hard real-time embedded systems, changing the frequency has significant effects

on the response time of tasks, affecting the ability of those tasks to meet their

deadline. Some researchers have proposed single-processor frequency scaling for

real-time tasks; [69] and [70] presented an approach that keeps the corresponding

frequency constant at runtime, whilst [71] proposed finding multiple speeds for

a single processor. Although not many works have been published on frequency-

aware task mapping optimisation for NoC-based hard real-time embedded sys-

tems, Shin et al. [72] utilised the GA algorithm to assign the lowest operating

speed to links by reducing slack time. In that approach, the communication

load on each link was used to determine the worst-case communication delays.

However, in priority pre-emptive hard real-time systems, it is insufficient to con-

sider just communication loads due to the extra delays caused by pre-emption by

high-priority messages, which was not considered in their model. This limits the
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application of the approach for minimising frequency for this type of system.

2.2.3 Summary

Many researchers have proposed different techniques to optimise task mapping.

In this section, we reviewed the suitability of the techniques for optimising task

mapping intended for NoC-based hard real-time systems. Most of the techniques,

especially those that were targeted for finding task mappings in average case,

are not suitable for addressing the hard real-time task mapping optimisation

problems. Finding task mappings for this kind of systems require analysis of

every task and message to determine their schedulability in the systems. Other

design parameters which can influence the fitness of task mapping such as priority

assignment and operating frequency were also reviewed.

2.3 Early Design Space Exploration

A NoC-based hard real-time embedded system contains numerous design parame-

ters which can be configured to meet specific design objectives. Finding a feasible

configuration that meets those objectives, however, is a challenging task due to

the vast design space that embodies many potential configurations. The design

space expands to even larger multi-dimensional space as more parameters are

involved in the design. Consider task mapping and priority assignment as an

example: the number of task mappings that can be explored from n tasks and

m number of cores is mn, while the number of ways priority assignment can be

changed is n!. Combining both parameters together yields a larger design space

than exploring them separately; the total number of permutations the parame-

ters can be explored becomes mn× n!. Therefore, pinpointing the exact location

of a feasible configuration becomes harder because any configuration from the

vast design space has a potential to become feasible. Since the exact location is

not easily determined, exploring as many potential configurations as possible be-

comes a necessity until the desired configuration is found, or the search algorithm

reaches its maximum search limit.

At the low-level abstraction of design, exploring as many configurations as
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possible is prohibitive due to the complexity arising from high amount of detail

in the system architecture. This imposes several constraints on system designers

for deciding suitable design choices early in the design stage and for producing

the first prototype quickly under a tight design schedule. The impracticality

of exploring many possible configurations urges system designers to shift the

paradigm from low-level to system-level abstraction. At the system-level of ab-

straction, separation between functionalities and the architecture of the system

reduces complexity, simplifies verification and at same time allows more alterna-

tive designs to be explored [73]. The exploration step at this stage henceforward

is called early design space exploration.

Early design space exploration is often applied to deal with high-level synthesis

problems [10] such as resources allocation (for example, task mapping) and for

the scheduling of operations under a variety of constraints. Task mapping is a

necessary design step for assessing the performance and the cost of the whole

system against the allocated resources. In the task mapping process as depicted

in Figure 1.2, decoupled models of application and architecture are integrated

according to the Y-chart approach [74]. Decoupling eases the refinement of each

model, but through the complete model (mapped architecture) the analysis of

each task’s and message’s response time can become possible, as far as the hard

real-time embedded system is concerned.

In fact, task mapping is one of the main problems alongside priority assign-

ment in the multi-processor scheduling of hard real-time systems [67]. Both

problems have such a high impact on the system’s schedulability that scheduling

algorithms were developed to address them. Normally, bin-packing algorithms

are applied to address the problem since allocating tasks to multi-processors is

analogous to bin-packing problems [67]. The bin-packing algorithms’ common

working principle is deterministic, filling a set of elements into one or more con-

tainers according to specified rules and hence producing fewer alternatives of task

mapping. On the other hand, DSE techniques could explore as many task map-

pings as possible to address the multi-processor scheduling problem, providing

more design options for system designers.

The success of a DSE technique depends on its ability to efficiently explore

either in the problem space or in the objective space, or in both at the same
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time [10]. In the problem space, a system designer uses a search algorithm to

explore design parameters. As depicted in Figure 2.9, the dimension and size of

the problem space is defined by the intersection of the axes which represent the

parameters. The specification of parameters is part of the problem description,

for example in the context of finding task mapping the size of a platform is given

by the number of cores that it contains and is represented as a series of integer

indexes.

Figure 2.9: Design space exploration perspectives

On the other hand, the exploration of parameter values is guided by one or

more objectives that exist in the objective space and objectives are often defined

to optimise the system in terms of cost, power or speed, or all three at the same

time. With a single objective, exploration is restrained in one direction towards

the objective. The exploration becomes harder and more complicated with mul-

tiple objectives because it must now be restrained towards multiple directions,

in other words, the exploration of fulfilling one objective should also support the

fulfilment of the other objectives. Very often design objectives conflict with each

other, making simultaneous optimisation of multiple objectives complicated and

hardly realisable [75].

Exploration in the objective space is facilitated by one or more fitness values

of every configuration found by the algorithm in the problem space. Given a
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group of fitness values of each configuration, its whereabouts can be located in

the objective space. The algorithm utilises these values to compare and then

selects the configurations that are closest to the objectives. Fitness values of a

newly-found configuration are yielded by one or more fitness function. To help

choose the best configurations, these values need to be as accurate as possible, or

within acceptable estimations. At the higher level of abstraction, based on coarse-

grained models, fitness estimation is used to achieve fast evaluation. As a result,

this leads to a slight deviation from the accurate plotting point, as shown by the

blue region of the circle surrounding point y in Figure 2.9. As long as the radius of

the circle is within the acceptable range from the true point, the search algorithm

will be less affected by the influence of the deviation. Otherwise, the location of

every configuration will be easily misrepresented in the objective space, causing

false comparisons and leading to unfair selections. An efficient fitness function

will facilitate the selection of the best configurations by allowing the algorithm

to evaluate as many as alternative configurations as it can. Nevertheless, a good

fitness function will provide a necessary metric to give an insight on the quality

of each configuration.

2.3.1 SW/HW Co-design Limitation

In the traditional SW/HW co-design [76] top-down approach, a complete spec-

ification that specifies the functionalities and the details of implementation is

required. Therefore, during the design of system architecture, both the func-

tional and the non-functional requirements of the system are taken into consid-

eration. At this stage, system designers decide which parts of the architecture

will become the software or hardware blocks. The development and refinement

of each block can be performed separately, followed by an integration to create

a complete design for evaluation as a whole system. For a successful integra-

tion, interfaces must be well-defined during the decomposition of the two blocks.

Without well-defined interfaces, the integration will be hard to achieve due to the

incompatibility between the two blocks.

With this approach, each block has a tendency to rely closely on the others,

which might increase the development time significantly [76, 77]. For example,
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during the refinement process, software engineers must wait for the hardware to

execute the source codes. Software implementation can also be affected by the

complexity of hardware details when design flaws exist on the hardware side,

causing a software problem that requires more debugging time. Furthermore,

hardware description is still based on a Hardware Description Language (HDL),

for example VHSIC Hardware Description Language (VHDL) or Verilog, to rep-

resent hardware models. Evaluation of these models can be executed through

simulation techniques with cycle-accurate precision. However, highly complex

implementation details take a long time to evaluate, hence reducing the ability

to explore wide areas in the design space.

Design methodology has recently shifted above the RTL level to achieve a

better understanding of the system. This high level of abstraction is known as

system level or Electronic System Level (ESL) [78] design. System level design is

still in its infancy and a definition that gives an appropriate meaning of it is yet

to be derived, but the closest interpretation is that given by Bailey [78]:

“The utilisation of appropriate abstractions in order to increase com-

prehension about a system, and to enhance the probability of a success-

ful implementation of functionality in a cost-effective manner, while

meeting necessary constraints”.

At system level, complex system architecture can be modelled by reducing

some degree of detail. One way to accomplish this is by focusing first on the

behaviour (functionality) of the system rather than how it is implemented at

accurate timing [79]. Since the model will be simplified, appropriate evaluation

techniques can evaluate it faster through estimation. This will lead to successful

implementation, as vast exploration can be performed to give system designers a

pool of choices to select from at the early stage of design. It is more cost-effective

to know which choice works best at the early stage, since further refinement can

now be performed based on the best choices made by system designers.

2.3.2 Pareto-optimal Concept

In a single objective optimisation problem, selecting the best solution is a mat-

ter of determining which solution is at the front of an ordered list of solutions.
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Depending on the optimisation objective, it can be a solution with the greatest

minimum or maximum fitness value. As far as a single objective is concerned,

deducing the best solution is relatively easy as all the potential solutions can be

fully ordered in the solution space.

Unlike single-objective optimisation, determining the best solution in a multi-

objective optimisation is harder because the algorithm used to explore the design

space has to meet different objectives at the same time. Furthermore, the objec-

tives have a tendency to be in conflicting directions, complicating the process of

selecting the optimal solution for the problem in hand. Due to these conflicting

objectives, a solution may have a good fitness in one objective but be worse in

other objectives, thus trying to produce an optimal solution that meets all the

objectives is too hard to achieve. Instead of trying to search for the optimal so-

lutions by trying to become excellent in all objectives, the search algorithm seek

a set of solutions that have good trade-offs between the objectives. In this way,

the difficulty of determining the preferred solution can be reduced and system

designers have multiple choices to decide which solution best meets the require-

ment of the system. If the algorithm is effective, achieving a solution with a good

trade-off between the objectives is possible and definitely more efficient than some

random-picked solutions.

Figure 2.10: Pareto-optimal set
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A set of solutions with superiority above the others in the solution space is

a dominant set. According to the Pareto concept of optimality [80], this set

is known as the Pareto-optimal set. To be in this set, a solution must not be

dominated by other solutions, that is, the solution must be better at least in one

objective and not least in other objectives compared with its counterparts. The

number of solutions is not limited to one; any solution that meets the criterion is

a possible member of this set. All the solutions in this set are equal, in the sense

that none can be considered better than the others, because their trade-offs are

incomparable. Based on Pareto’s concept, using the example shown in Figure

2.10 the explicit definitions of dominance and optimal solution are described as

follows:

Definition 1(Pareto criterion for dominance): The Pareto criterion for a

solution to become dominant in respect to the others is that the solution

must be at least good in one objective but without becoming worse in other

objectives. For example, given two solutions X and Y in the solution space,

X dominates Y because the former provides better performance and lower

cost than the latter.

Definition 2 (Pareto-optimal solution): A solution is known as the Pareto-

optimal solution if Definition 1 is met when further improvement stops. All

solutions in the solution space that meet Definition 2 are contained within

a non-dominated set (also known as a Pareto-optimal set) as illustrated by

the blue line in Figure 2.10. The non-dominated solutions are incomparable

with each other. For example, neither solution A nor solution B dominates

the other; A offers better performance but B has lower cost, although the

latter has lower performance than the former.

2.3.3 Search and Decision Making

In multi-objective optimisation problems, the complexity is aggravated by

conflicting objectives. If conflict does not exist, each objective can then be in-
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dividually targeted by the optimisation algorithm. By aggregating all objectives

into a single objective, each solution will be treated similarly to a single-objective

optimisation problem, by which they can be fully-ordered and the optimal solu-

tion will be easily decided. However, this is not always realistic as in the real world

conflicting objectives commonly occur. For example, performance and power are

often conflicting; high performance consumes more energy, but releases a lot of

heat and dissipates more power too. The device may have less operating time

and its lifetime might also be reduced.

Conflict between objectives prevents optimising the solutions towards each

objective simultaneously, that is, meeting all the objectives at the same time.

Instead, solutions are produced with different trade-offs between all the objec-

tives, which subsequently raises a problem in the multi-objective decision-making.

Input from decision makers is necessary to rank solutions and decide which solu-

tion is the most appropriate for the optimisation problem. Furthermore, trying

to satisfy all the decision makers places them in a difficult situation as each of

them might have different preferences over the objectives and therefore different

orderings of the solutions.

Search and multi-criteria decision-making are related to each other. For ex-

ample, search before making a decision allows the elimination of all dominated

solutions and facilitates the selection of the non-dominated set. On the other

hand, decision-making can also be made prior to a search by multiplying the

objectives with different weights according to the order favoured by the decision

makers. This early decision-making is suitable in a situation where the targeted

market highly favours a particular criterion over the others. The importance of

considering both aspects in multi-objective optimisation was described by Horn

[81] in his three-category ordering for search and multi-criteria decision-making.

1. Making multi-criteria decisions before search

This ordering is the most common approach to handling multi-objective op-

timisation. Generally, it involves the aggregation of multiple objectives into

a single objective. Based on the objective, total solutions can be fully or-

dered and the solution that has a fitness value nearest to the objective is the

preferred one. A few classic methods as used in [55] for implementing this
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kind of ordering are objective weighting and distance-to-target functions.

The objective weighting method is a linear combination of multiple objec-

tive functions into one objective function such as:

U(A) = w0b0 + w1b1 + w2b2 . . . wk−1bk−1

Each objective is given a weight or constant coefficient so it reflects the

preferences of the designer on specific objectives. If all the objectives are

given wi = 1, an overall objective function is formulated with less conflict

between objectives.

In the distance-target method, a target vector is selected as an ideal solution

for each objective and each obtained solution is measured according to how

far it is from this target. Based on this notion, the aggregation of all the

objectives into a single objective can be defined as:

Up(A,B) = (
k−1∑
i=0

|ai − bi|p)
1
p p ≥ 1

This single objective function is determined by two main factors; the se-

lection of the target vector and the actual formula used for the metric

(distance). The target vector must be carefully selected for each objective

before the metric can be calculated. Arbitrary selection must be avoided

as it might lead to a non-optimal solution. The actual formula too can af-

fect the relation between solution points and their orderings. For example,

p=1 derives a linear relation while p=2 adds non-linearity to the relation.

Nevertheless, in both types of ordering, a decision maker must decide those

related factors (such as weight, target vector) accurately before deriving the

objective function.

2. Search before making multi-criteria decisions

Search prior to multi-criteria decision-making has been proposed as a method

to overcome the simplistic nature of multi-objective aggregation. Based on

the Pareto-optimality concept, a decision maker has clear definitions of the

criterion of a dominant solution and the non-dominated set of solutions.
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The author refers interested readers to subsection 2.3.2 for a detailed ex-

planation of this concept. Based on this concept, results from exploration in

the problem space are interpolated in the solution space, which is embodied

by multiple objectives. Figure 2.10 is an example of a solution space from

which non-dominated solutions (a Pareto-optimal set) are determined based

on their trade-offs between objectives. The objectives are defined according

to the system requirements and do not require any weighting assignment be-

forehand. Previous work [17] applied this type of search and multi-criteria

decision making to find task mapping for a NoC-based system.

3. Integrate both search and multi-criteria decision making

In this category, both search and multi-criteria decision-making are inte-

grated into a hybrid approach. Essentially, this involves a preliminary step

of searching the possible trade-off points. At this step, a multi-criteria de-

cision is made to limit the search space by selecting a trade-off point as a

focused target for searching the solutions. Then, subsequently finding the

solutions is based on the target as a reference point to direct the explo-

ration. Fonsesca et al. [82] implemented a hybrid approach by applying

MOGA [83] in the preliminary step to find the target trade-off point as well

as in the subsequent search to find the solutions.

Multi-objective aggregation methods limits the number of solution to one in

a single search. Furthermore, it is extremely sensitive to the accuracy of infor-

mation that formulates it. A decision maker must have prior in-depth knowledge

of all objectives to be able to determine the weight factor; in order to correctly

reflect the degree of conflicts between those objectives. In case information is not

available or is uncertain, the fixation on each factor will be based on a hunch,

which could lead to an inaccurate estimation of each solution’s appropriateness.

On the other hand, search before making multi-criteria decisions through the

single large population search to find the non-dominated set offers greater po-

tential for implicitly parallel search than multiple independent searches of the

former category. It would seem that non-dominated search is superior than the

aggregative search, but in case when the actual non-dominated set is difficult

to find, since the aggregative search concentrates in one direction in the search
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space, it might find one solution that is desired. Combination of both search and

multi-criteria decision making inherits both advantages and disadvantages of the

former two categories. It depends on a trade-off point as the focused target to

limit the search space, but the reference point is not guaranteed to be the best

direction for conducting the subsequent searches, unless the decision makers have

prior knowledge of the direction.

2.3.4 Search Heuristics

In the real world, conflicting objectives are normally unavoidable, for example

a system that is highly optimised for speed might consume more power and

therefore cause higher heat dissipation. The algorithms commonly applied in

combinatorial optimisation, such as Simulated Annealing (SA) [84], Tabu Search

(TB) [85, 86] and Branch-and-Bound (BB) [87], could be used for the multi-

objective optimisation problem if objectives are aggregated into a single crite-

rion [81]. However, the aggregation of multiple objectives into a single-objective

function imposes biases towards particular objectives. In fact, with conflicting

objectives, a single best solution is rare in the solution space, since several in-

comparable solutions with a variety of trade-offs exist. For this reason, search

heuristics that only depend on one search agent such as SA are rarely used in

multi-objective optimisation. Since SA lacks the ability to provide simultaneous

exploration of many solutions at the same time in one iteration cycle and only

one best solution is produced at the end of every execution, the algorithm will be

unlikely to produce solutions with different trade-offs unless multiple executions

are performed. The Pareto-optimal set can be determined once a pool of solutions

has been generated after completing many executions.

It is important to understand that in Pareto’s concept of optimality, the search

algorithm to be used is not explicitly specified. GA has the ability to provide

unbiased search in partially-ordered spaces [81] and is able to optimise the solu-

tions in the presence of conflicting objectives. The concept of GA was proposed

between 1960 and 1970 by Holland [88] and his associates. This concept adopted

the idea from evolutionary theory which explains how species evolve in nature.

During species evolution, strong species have better opportunities to pass on their
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genes to create a new generation and weak species are faced with extinction. In

the long period of time through several generations, strong species with good

genes become dominant in the population. Multi-objective GAs [53, 56, 89] that

could facilitate improvement of the members of the Pareto-optimal set are highly

applicable in multi-objective optimisation.

In terms of efficiency in determining the Pareto-optimal set, GA is better than

SA [90] because what can be produced by several executions of SA can be accom-

plished by one iteration cycle of a GA’s execution. This is due to GA’s ability

to generate a large population of solutions to conduct simultaneous searches in

the design space. Empirical comparison in [91] has shown that for multi-objective

optimisation problems, SA had a tendency to find solutions in the Pareto-optimal

set compared with GA when the size of the problem was small. However, when

the size of the problem became larger, GA outperformed SA. As reported in [92],

even for single-objective optimisation, GA was able to find approximately the

same solutions in the Pareto-optimal set as were found by the SA and the Branch-

and-Bound heuristic. Multi-objective GAs have many variations and among them

the state-of-the-art GAs for multi-objective optimisation problem are NSGA-II

[56], SPEA2 [53] and PAES [89]. Systematic comparison between multi-objective

algorithms was conducted by Zitzler in his empirical study [93].

Although, GA has the ability to find multiple non-dominated solutions by

searching different regions in the search space, it suffers from one main disad-

vantage due to the lack of information in determining the optimality of the best

solution which it finds. Thus, it is hard to know when to stop searching. GA

uses the number of generations to perform iterative operations and it stops at the

specified number of generations. Furthermore, the concept of evolution underly-

ing GA’s main operations requires a population with a number of individuals in it

to produce a better population than the previous generations. As a consequence,

the algorithm consumes a large proportion of its execution time evaluating every

individual in the population.
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2.3.5 Summary

In this section, different aspects related to the search component of design space

exploration were reviewed. This includes Pareto-optimal concept used in multi-

objective optimisation to find good trade-offs between conflicting objectives, search

and decision making criteria, and several search heuristics used in single and

multi-objective optimisation.

2.4 Evaluation Techniques

Optimisation requires at least one fitness function to provide the necessary metric

for evaluating prospects from the problem space, which have the potential to

become the preferred solutions for the optimisation problem in hand. Based on

the metric, the value of every prospect in the objective space can be determined,

facilitating the selection of the best solutions that meet or come near to meeting

the specified objectives. The two types of evaluation techniques in DSE; high-level

simulation and analytical methods are explained in the following sections.

2.4.1 Simulation Techniques

The simulation technique is a popular and widely used tool for evaluating the

performance of embedded systems at design stage. According to the standard

definition by the IEEE [94], a simulation is

“A model that behaves or operates like a given system when provided

with a set of controlled inputs”.

From this definition, a given system may refer to a real thing that has its own

behaviours. A behaviour represents how the specific execution paths are carried

out in the system and a simulation relies on an execution model to represent

the behaviour of interest. Therefore, different models are required to simulate

different types of behaviour. Given the right controlled inputs or stimulus [95],

these models might execute hopefully as the intended typical working modes.

However, if the stimulus is not correctly defined, the simulation’s results may
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lead to wrong interpretation of the system performance. A simulation can be

used for various objectives with different type of stimulus, for example, system

designers can use the simulation technique to observe the characteristics of the

system under normal or highly dynamic effects.

Highly complex embedded systems such as a flight control system are difficult

to evaluate through a simulation due to the high complexity of its behaviours.

This complexity is more manageable if a different simulation is used to represent

a subset of behaviours in the system. In other words, the execution model of a

simulator is defined according to a subset of the system which contains that part

of the components which executes the functionality under investigation. For this

purpose, a wide variety of Models of Computation (MoC) [96] has been developed

to provide a thorough understanding of the whole performance of the system. A

model of computation defines the underlying behaviour of how the components

in the system work and their interaction with each other. By assuming that the

system is constrained to a MoC, the required computation and communication

resources can be efficiently evaluated and optimised during design. For example,

an untimed MoC such as Synchronous Data Flow Graphs (SDF) [97] contains

a set of processes that can be constructed according to an order but with the

absence of timing properties. This type of MoC can be applied for the modelling

and analysis of the data path and finding the optimal buffer sizes. A detailed

discussion of different types of MoC can be found in [96] and the comparison

between the features of several MoCs is discussed in [98].

Simulation techniques are widely used to support performance evaluation at

mixed level of abstraction in funnel design [10]. As a system passes through the

refinement process from high level to low level of abstraction, different simulation

types are used to evaluate the system performance at each layer. However, the

common pitfall in the simulation technique is the trade-off between simulation

time and execution details [54]. This classic problem is very well known and

has attracted attention from the research community [99, 100]. When the design

process shifts to low level towards the implementation stage, the accuracy of

performance evaluation is improved by adding implementation details. However,

the execution of the simulation will takes longer to complete. A long execution

time in simulation is not effective for early exploration in the design space at
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the high level of abstraction and therefore the application of low-level simulation

is not desirable. On the other hand, reducing the implementation detail can

decrease the time taken for the simulation but at a cost of low accuracy in the

results. At the high level of abstraction, simulators with coarse-grained execution

models providing faster evaluation with acceptable accuracy are desirable. These

simulators can provide early insight on many design alternatives that are difficult

to find at the late design stage. In the following subsections, the system level

simulation techniques above Registers Transfer Level (RTL) for evaluating NoC’s

performance will be discussed.

2.4.2 Instruction Set Simulator

An Instruction Set Simulator (ISS) is a software tool which mimics a program

running on the target hardware architecture, for example a processor. This tool

is able to read the processor instructions and simulate their execution as closely

as possible to the target machine. It provides virtual prototyping capability

as a testing platform for software designed for the targeted processor that may

not be available during the early stage of design. ISS simulation results provide

information such as timing information (for example, the clock cycle that is useful

for validating the software response time) and the internal values of the processor

(for example, registers and memory for examining the execution of instructions).

However, ISS suffers from overheads in terms of instruction decoding, functional

operation and instruction scheduling. Several works [101, 102, 103] have suggested

ways to improve ISS simulation time to cater for the increasing complexity of the

architecture and the pressure time to market. A commonly used ISS tool such

as SimpleScalar [104] supports Instruction Set Architectures (ISA) such as the

ARM and PowerPC.

ISS is one of the main components in hardware/software co-simulation [105]

and it plays an important role in the development of heterogeneous platforms such

as MPSoC. Early integration [106, 107, 108, 109] of ISS with a SystemC simula-

tion model facilitated validation of overall system-level performance of MPSoC.

In those works [106, 107] SimpleScalar ISS was integrated into the MPSoC model

with bus-based communication. Both use the same approach which utilises the
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GNU-Debugger-Interface for the communication between the ISS and the Sys-

temC simulation model. Wieferink et al. [108] proposed ISS integration with

the NoC simulation framework. Their work was an extension of previous work

proposed by [110] whose developed NoC simulation framework based on the TLM

concept and implementation was carried out with the SystemC library to measure

the network latency and the throughput performance of NoC. This integration

makes ISS as a good substitute for abstract processor modules to further evaluate

the various impacts which the processor components have on NoC, for example

various traffic patterns caused by instruction caches in the processor. In this ap-

proach, ISS is generated by modelling the customised processor with LISA [111],

an Architecture Description Language (ADL) which can describe the processor

architecture itself and also automatically generate software development tools

(such as compiler and linker) as well as HDL description. In [109], SimpleScalar

ISS was used similar to [106, 107] but integration with the SystemC simulation

model was implemented with shared memory and Memory Mapped IO (MMIO).

This approach offered greater improvement than [108] by enabling the usage of

different routing algorithms.

ISS-based simulation is useful if the final application software is available and

the target architecture is customisable. Development tools such as compiler and

linker specific to the processor are also required to generate object code from the

application in order to develop the ISS simulation model. Even if these tools

are available, the application may requires recompilation to generate new object

code after bug fixing. This can be prohibitive for early design space exploration if

significant amounts of time and modelling efforts are required to design a working

ISS simulation model instead of exploring alternative solutions.

NoC itself has many parameters which might have various impacts on the per-

formance of MPSoC. Integration with ISS is relevant to investigate more deeply

the further impact of the processor components on the NoC architecture when

preceded by early exploration of various alternative solutions of NoC at the sys-

tem level. This exploration can be performed through the separation of concerns

whereby network performance is measured in the absence of high computation

details and even without the presence of low-level communication signals. Possi-

ble alternatives can be explored more quickly, which provides the ability to reveal
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many potential solutions for NoC. This type of simulation is called abstract per-

formance simulation [10].

2.4.3 Abstract Performance Simulation

Enabling faster simulation execution with reasonable accuracy of results is one

of the reasons why abstract performance simulation was developed to evaluate

systems at the high level of abstraction. In the context of communication, the

Transaction-Level Modelling (TLM) [79] concept offers system designers a way to

realise this type of simulation. Through this concept, low-level on-chip communi-

cation operations are abstracted using high-level read/write function calls. This

is relevant at the early design stage since low-level communication operations are

unnecessary and often not available. Several benefits can be reaped from this

concept not only in terms of fast simulation speed but also the ease of program-

ming, which allows quick development of simulation models as well as reducing

modelling efforts significantly. Many previous works [110, 112, 113] utilised this

concept in SystemC or Java to implement this type of simulation.

Kogel et al. [110] proposed TLM based network simulation for systems on-chip

with complex and heterogeneous communication schemes such as point-to-point,

bus and crossbar. The simulator supports cycle-accurate network performance

evaluation and timed simulation is implemented by annotating execution delays

to the network infrastructure. The simulation speed is further improved by in-

creasing data abstraction to Abstract Data Type (ADT) level. ADT is a data

granularity representation of the sets of functionally associated data. The exe-

cutable model on which the simulation runs consists of a NoC channel, master

module(s), slave modules and network engines. Various types of interconnect can

be plugged in to the NoC channel as network engine modules. During a simula-

tion run, the master module initiates transactions by calling the communication

services of the NoC channel. Several processes in the NoC channel are responsible

for the processing and delivery of the received transactions to the destination.

Both throughput and average latency are popular metrics widely used for NoC

performance analysis. Area is another important metric for MPSoC not only for

achieving a sleek and portable design for small devices, but also for reducing
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the amount of power needed, which can be gained by minimising the number of

gates. Pestana et al. [112] proposed a simulation technique for providing analysis

in terms of throughput, average latency and area which allowed investigation of

the impact of the cost-performance trade-off of a NoC design. As in [110], the

simulator was developed with SystemC based on the TLM principles. The XML

files used in the simulation framework allowed the parameterisation of several

NoC parameters such as the topology, mapping and connection. The application

was modelled with several traffic generators connected to the NI as the master

modules in order to generate synthetic workload for simulating temporal and

spatial traffic distributions. The analysis of NoC’s area assumed that the total

area was comprised of only the router and the NI, and wire was assumed to have

zero-cost.

The design of NoC architecture may vary according to different configurations

of parameters such as topology, routing algorithm, flow control and virtual chan-

nels. Various schemes of NoC architecture creating different levels of complexity

emerged from the combination of these parameters. One of these schemes com-

bined an XY routing, a Mesh topology and wormhole switching as the widely

adopted a NoC architecture. An example of a NoC implementation which adopts

this scheme is HERMES [36]. Based on this implementation model, a TLM-based

simulation technique was proposed by [113]. The applied executable model un-

derlying this simulation contains several cores which are connected to a single

channel. At any time, cores can be either a sender or a receiver of packets. For

every packet header received by the channel, a transaction is created and kept

alive until it has arrived at the target core. The total latency represents the trans-

action lifetime of the transmitted packet, which is calculated by also considering

the concurrence of several flows competing for the same network resource, hence

improving the accuracy of the performance value. In addition, the simulation

benefits in terms of reduced execution time from the underlying algorithm. The

algorithm was developed based on wait-for-event, that is, the system is simulated

only when events occur, for example the arrival of a new packet, and not as fre-

quently as every clock cycle. However, when the number of hops exceeds the total

count of flits, the simulation result may become too pessimistic. In other words,

the next packet can transmit only when the previous packet occupying the route
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has completely arrived at the target destination. This excludes the true wormhole

switching implementation whereby flits of a flow undergo ‘shrinking’ and ‘grow-

ing’ phases. The analysis may compute a latency figure that is too pessimistic,

as the consequence of the situation not happening in reality is considered.

A TLM-based simulation in SystemC is not the only the way to develop

abstract performance simulation. In [114], the author proposed a Java-based

cycle-accurate simulation approach which operates at flit-level. The approach

was based on the assumption that the NoC infrastructure is comprised of two

main components: the switch and the link. Switch implementation was based

on a pipeline model which consists of three stages which are input buffering,

routing/arbitration and output buffering. In each operation, flits queuing inside

the communication queues and flit transmission through the output ports as well

as the link both have a cost associated with them. By annotating performance

cost to the IP model and NoC infrastructure, end-to-end average network perfor-

mance can be calculated upon the arrival of flits at the input port of destination

IP. However, in the simulation model, flit transmissions work on the first-come-

first-served basis, and complex interactions such as interference between flows

are lacking in the model. In systems in which such interference exists due to a

pre-emptive scheduling policy, the use of shared resources is prioritised to provide

particular traffic flows with guaranteed accesses to shared resources regardless of

the arrival sequences of those flows. Furthermore, full propagation of the data

stream through all stages in the pipeline can lead to unnecessary increases in

latency as not all flows must perform all the stages, that is, higher priority flows

are not pre-empted and immediately after a full path has been assigned flits can

be transmitted instantaneously from the output port. The lack of support in the

modelling of contention between flows makes this kind of systems too optimistic,

and thus limits its use for systems with guaranteed services.

The author in [115] proposed a high-level simulator implementation similar

to [114]. This simulator accepts a NoC configuration as input which contains

network-related information such as topology, connected modules, modules’ type

and their logical position in NoC. Modules can be defined as routers, interfaces or

links with correspondence cost unit such as delay, power consumption and area.

Network-related behaviour is modelled by the packet injection rate configuration
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of processors. Then, performance metrics are calculated by summation of cost

when packets traverse the network. However, the accuracy of the average per-

formance results depend on the stability of the average value defined for each

module.

As proposed in [116], faster simulation time can be achieved by reducing the

details of the architectural and behavioural aspects yet within the acceptable

range of accuracy to maintain its usefulness. In this simulation model, routers

were implemented to avoid sending flit-by-flit data transmission, by using a pay-

load abstraction technique to send data between consumers and producers. The

payload abstraction technique only requires packet modelling in two structures:

the header and the trailer. During packet transmission, data payload is included

inside the header whereas the trailer only contains information such as evaluation

parameters. Therefore, the transmissions along the hops only involve the releas-

ing and receiving of headers and trailers only; flit-by-flit transmission is omitted.

Based on wormhole packet switching, the trailer follows the header along the

reserved transmission path for the packet. The release timing of the trailer is

calculated from an analytical method that relies on the header release time and

the trailer is released as soon as the calculated release time of the trailer arrives.

However, in wormhole packet switching, a flow can be blocked by other flows

with higher priorities and due to this the release time of the flow’s header can

be delayed significantly. Despite a gain in faster simulation time, the model of

computation used by the simulator is susceptible to blocking scenarios, causing

inaccurate evaluation results due to the long delay of a header’s release. This is

because the distance between a header and its trailer becomes closer when such

scenarios occur, which is less reflective of the real wormhole packet switching

NoCs.

The abstract performance simulation technique is suitable for estimating the

average performance of NoC-based systems and its accuracy relies on specific

features such as the stability of the approximated costs defined in the NoC in-

frastructures [110], the network operations [114] or the payload abstraction [116].

However, the difficulty in producing traffic patterns that trigger the worst-case

scenario of NoC-based hard real-time systems imposes a limitation on the use of

the technique as a performance evaluation tool. In this case, analytical methods
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are usually preferred as the evaluation approach since the worst-case scenario

must be considered to calculate the upper-bound performance for analysing the

schedulability of the systems.

2.4.4 Analytical Methods

In general, analytical methods are derived from constrained models by assum-

ing that particular conditions are true but relaxing or disregarding others. In

these idealised conditions, the complexity of the details can be managed prop-

erly, simplifying the derivation of evaluation models or formulas for evaluation

purposes. Many analytical methods for NoC are targeted for evaluating average

cases, utilising frequently-used performance metrics such as the average latency

of packets, network throughput or bandwidth. It is a common approach to use

simplified assumptions such as the number of hops to derive the performance met-

rics [50, 51], although other conditions may also add further delays to the latency

such as the concurrence between traffic flows on the same network resources. For

example, between two flows with different priority levels, the low-priority flow

is pre-empted according to a priority pre-emptive arbitration policy to give the

high-priority flow guaranteed access to the shared resources. As a result, the low-

priority flow normally suffers enormous delays which affect its overall response

time to meet the deadline. Based on the hop count, the evaluation model may

be less complex to apply easily in optimisation, but it suffers from simplistic

assumptions which might affect the accuracy of the evaluation.

Other analytical methods take into consideration other aspects of the network

conditions, such as queuing delays in NoC routers [117]. The router model is sim-

ple; it contains four input port channels each with a buffer and a crossbar switch

interconnects them together. Packets arriving at a channel are stored in the

channel’s buffer and processed on first-come-first-served basis. The router model

depends on the Poisson process to compute the occurrence of the packet header

arrival (not including the packet body) within a specific time length. This pro-

cess requires an average arrival rate of header flits at the channels for computing

random header arrival events following exponential distribution. Based on this

router model, the average number of packets at each buffer can be calculated,
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supporting thorough performance analysis including average buffer utilisation,

overall average packet latency and network throughput. Incoming packets are

easily delayed by the existing packets in the buffer as well as by other packets

in other buffers which arrived before the incoming packets, hence the approach

is suitable for average cases when a low or medium traffic condition is present.

However, the accuracy of the average packet latency decreases when the net-

work throughput reaches saturation point due to the degradation of the Poisson

process.

Using average metrics based on the number of hops such as average packet

latency and network throughput is insufficient to evaluate the schedulability of the

systems in any scenario. Instead, the worst-case upper bounds of task response

time and message network latency are needed for this purpose. In hard real-time

analyses, one of the ways to analyse the schedulability of systems is by comparison

between the upper bounds and the deadlines of task and messages; in this way

the percentage of tasks and messages that are schedulable is determinable.

2.4.5 Real-Time Analysis

Hard real-time system requirements dictate that stringent timing constraints

must be met for delivering guaranteed services. Average case evaluation tech-

niques yielding commonly-used performance metrics are inadequate for validating

the timing constraints of the systems. Metrics of this kind, although useful for

best-effort systems, are inapplicable when the schedulability of every task and

message is concerned and must be analysed to ensure that the requirements are

met. The upper bounds of the response times of each task and message are needed

for an accurate evaluation of the systems; hence evaluation techniques based on

real-time analysis are more suitable for this purpose.

In hard real-time multi-processor systems with priority pre-emptive schedul-

ing, two main problems exist: task allocation and priority assignment. The avail-

ability of the well-known scheduling techniques and analyses of single processors

is an advantage for multi-processor scheduling which follows the partitioning ap-

proach. In partitioned multi-processor scheduling, each core is assumed to have

its own queue to schedule tasks in that core, hence task or job migration between
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cores can be avoided. The RM scheduling algorithm has been proved by Liu and

Layland [64] to be the optimal priority assignment policy for synchronous peri-

odic and sporadic task sets running on a single processor, with every task having

its period equivalent to the deadline. For similar task sets but with a deadline

less than or equal to the period, Deadline Monotonic (DM) [118] becomes the

optimal priority assignment policy in a single processor. However, RM and DM

optimality fails for a task set when the deadline of each task exceeds its period

[119]. If such an assignment that can schedule all tasks with an arbitrary deadline

exists, the priority assignment algorithm proposed by [120] is known to be able

to find it.

Task allocation problem in multi-processor scheduling is known to be NP-

hard [49] because tasks can be allocated to processors in a number of ways and

the number can grow exponentially depending on the size of task set and the

number of processors. Given the total number of tasks is T and the number of

processors is P , the total number of ways task allocation can be performed is

P T . Consider an example of a 2D-Mesh NoC in which has 16 processors and

a task set with 33 tasks, the number of ways those tasks can be allocated to

the processors is 5.44x1039. Therefore, it is challenging to find a feasible task

mapping in polynomial time through an exhaustive search.

Early works on partitioned multi-processor scheduling with fixed-priority task

sets considered RM to be the priority assignment [121, 122], whilst task allocation

is performed using bin-packing algorithms such as First Fit (FF), Best Fit (BF)

or Worst Fit (WF). This is because task allocation problem is synonym with

a bin-packing problem: allocating tasks to a processor until it reaches its full

utilisation is similar with stacking items into a bin until it is full. Others used

search heuristics such as Simulated Annealing [49] and Branch-and-Bound [123] to

allocate tasks onto processors. Hereafter, a fixed-priority task set with a deadline

equal to period is known as an implicit-deadline task set.

Several tests associated with partitioned multi-processor scheduling for implicit-

deadline task sets have been used to validate the improvement made by those

algorithms. A classic schedulability metric known as the approximation ratio

computes a ratio between the number of processors required to schedule a task

set with a given scheduling algorithm and the number of processors required by
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the optimal scheduling algorithm. The lower the approximation ratio of an al-

gorithm, the better it is than the existing algorithms. For example, the Rate

Monotonic Matching (RMM) algorithm [124] with a 3/2 ratio is better than the

previous best approximation ratio of 7/4 of the Rate Monotonic General Task

(RMGT) algorithm [125]. However, the applicability of this metric as a schedu-

lability test is severely limited for several reasons. First, because finding the

minimum number of processors in the optimal case is an NP-hard problem and

obviously it becomes harder with a growing number of ways the task set can be

allocated as the number of processors is increased to accommodate the larger

size of task set. Second, the approximation ratio test only holds if the number

of processors in the optimal case grows towards infinity. Third, the utilisation

bound of the algorithms tends to become too pessimistic [126].

Utilisation bounds are metrics for addressing the difficulty confronted by

partitioned multi-processor scheduling algorithms when scheduling an implicit-

deadline task set with large utilisation. The worst-case utilisation bound of a

scheduling algorithm is defined as the minimum utilisation of a task set that is

just schedulable according to the scheduling algorithm. Any utilisation that a

task set has, as long as it is below or equivalent to the bound will be schedulable.

The importance of utilisation bounds for scheduling algorithms has seen a variety

of utilisation functions proposed since [127], for example targeting specific types

of task allocated to the same processor [125] or targeting scheduling algorithms

that are based on bin-packing heuristics such as BF, FF or WF [128, 129]. An

utilisation bound of a scheduling algorithm provides a simple sufficient test to de-

termine whether a task set is schedulable under the scheduling of the algorithm.

It is sufficient to imply that the task set cannot be unschedulable depending on

the scheduling algorithm if its utilisation is below or equivalent to the utilisa-

tion bound. Conversely, the task set may have utilisation above the utilisation

bound, but it is not necessarily unschedulable according to the other scheduling

algorithms. Therefore, it is categorised as a sufficient but not necessary test.

As an alternative to approximation ratio and utilisation bounds, a metric

based on the number of tasks that are deemed schedulable provides a comparative

measure for determining the effectiveness of scheduling algorithms. Typically, this

number is compared with the total number of tasks in the task set. Ideally, an
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unbiased task set generation algorithm is desirable to generate the task sets.

In multi-processor systems, dependency between tasks demands a reliable net-

work to communicate data. Similar to processors, a network is a shared resource

and contention between messages will typically occur. Consequently, message

transmissions will experience network delays when the network bandwidth grad-

ually becomes saturated. The effects appear as a severe increase in message

latency, as well as in the response time of the dependent tasks. In partitioned

multi-processor scheduling algorithms, the communication aspect is excluded to

reduce the complexity of the analysis. The importance of addressing the inter-

dependent relationship between real-time tasks and messages caused Tindel et

al. [130] to propose an ‘holistic’ schedulability analysis, which included inte-

grated scheduling of both processor and communication under the assumption

that messages are not pre-emptive processes executed on a Time Division Mul-

tiple Access (TDMA) supported bus. The holistic approach [130] was derived

from the classic scheduling theory of distributed systems, enabling end-to-end

response time analysis of multi-processor system. However, the complexity of the

analysis grows proportionally with the system size and the number of dependen-

cies between components. In different works, researchers have considered other

communication protocols to bound communication delays in their schedulabil-

ity analyses, such as the Time-Triggered Protocol (TTP) [131], Asynchronous

Transfer Mode (ATM) [132] and the Controller Area Network (CAN) protocol

[133]. This provides a variety of analyses to choose which suits the specific type

of bus communication protocol. NoC has a different network infrastructure from

bus, for example routing algorithm, flow control mechanism, switch crossbar and

others, hence those schedulability analyses may not be suitable for hard real-time

multi-processor systems that use NoC as the communication network.

End-to-end timing analysis based on the schedulability analysis technique

known as SymTA/s [134] adopted the compositional method as the underlying

approach. The difference between the compositional method and holistic analysis

is that the former approach is well structured with respect to the architecture,

which improves the understanding of the complex dependencies in the system.

Based on the event stream models that describe the possible I/O timing of tasks

in IP components, an output event stream of one component becomes the input
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event stream of the other component, enabling the individual timing of compo-

nents to be calculated. After this, component-wise local analysis can be performed

from the existing schedulability analysis techniques using the properties of the

event streams such as period or jitter. However, this technique is intended for

systems which use a bus communication and the communication paradigm in a

bus is vastly different from NoC, which contains various configurable parameters

such as topology, routing and packet arbitration control, hence the approach is

less suitable for NoC performance analysis.

Meeting the timing constraints of communication is crucial to the reliabil-

ity of NoC-based hard real-time systems. With interdependent tasks, non-delay

execution on processors is half of the timing constraints that must be met; the

rest is relying on NoC to deliver the messages without delays. Several works

have suggested providing schedulability analyses to bound the network latency of

packets in NoC. Shi et al. analysis [135] targeted priority pre-emptive wormhole

switching in the NoC architecture. The notion used in this analysis is similar

to an analogy of tasks running on shared processors, but with tasks replaced by

traffic flows running on NoC’s shared routing paths. Arbitration control of the

system is regulated by the priority pre-emptive policy, creating interference that

affects the latency of particular flows, especially those with lower priorities. To

provide tight upper-bound latency, timing characteristics such as release jitter

is also considered in the analysis. The analysis is still an early work for hard

real-time NoC; hence it is constrained by specific assumptions in its ability to

ease the complexity of the NoC model. For example, the complete routing path

allocated to a traffic flow is blocked for the whole duration until all of its flits

have arrived at the destination. In the real concept of wormhole switching NoC,

a flow undergoes shrinking and expanding phases, hence part of the links in the

routing path will be unblocked as soon as the previous flits have been transmitted

to allow other flows to utilise them. As a result, the upper bound latency yielded

by the analysis may be a little pessimistic due to the longer blocking time of the

previous flows. Nevertheless, the analysis provides an opportunity to explore the

design space of NoC from the corner-case point of view and is a good starting

point for providing total schedulability analysis of the systems. Recently, the

analysis has been applied as a fitness function to find mapping solutions [11].
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Several extensions to this work have been proposed to include upper-bounds

for buffers [136] and end-to-end response time of tasks [137, 138]. The analysis in

[136] provides tight bounds, but they assume that buffers are arbitrarily large to

avoid the back-pressure problem (that is, when a virtual channel has the highest

priority over a link, but has no credits because the buffer down the line is full),

hence it may lead to high area and energy dissipation due to large buffers. To

avoid the assumption, the schedulability analysis proposed by Indrusiak [138]

took the previous work [135] as the foundation to create end-to-end response time

analysis for tasks in NoC-interconnected multi-processor hard real-time systems.

2.4.6 Summary

Evaluation techniques are one of the main components in early design space ex-

ploration. During task mapping exploration, task mappings must be evaluated

to determine their feasibility for the system in design. Exploring as many as task

mappings during early design space exploration requires efficient evaluation tech-

niques, without such techniques significant amount of time will be consumed to

evaluate many solutions. In this section, different types of evaluation techniques

and their suitability for evaluating the fitness of task mapping were reviewed.

Real-time analysis is a suitable approach for analysing the schedulability of tasks

and messages for a given task mapping compared with simulation techniques or

analytical methods that yield average metrics.

2.5 Summary

This chapter reviews previous research works related to NoC, task mapping, de-

sign space exploration and evaluation techniques. The scope of the review focuses

on task mapping exploration of hard real-time systems with NoC as the intercon-

nection. From the previous works, state-of-the-art techniques lack the support

to find task mapping for this kind of systems. Most of the techniques rely on

average metrics such as average latency and bandwidth constraints to optimise

task mapping in average case. This kind of metrics is not sufficient to analyse

the schedulability of every task and message in worst case. Some researchers
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have performed task mapping for NoC-based hard real-time systems but only

consider single-objective optimisation and messages schedulability. This moti-

vates the proposal of new techniques to address different aspects of task mapping

optimisation problems. In the next chapter, a new technique is introduced to

address the interference experienced by low-priority tasks and messages in find-

ing schedulable task mapping for NoC-based hard real-time systems with priority

pre-emptive scheduling.
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Task Mapping and Priority

Assignment Optimisation

At system level design, task mapping is a process of combining an application

and a platform together to create a complete system. It determines the allocation

of tasks on the processing cores of the platform. Furthermore, it also affects how

messages are routed over the NoC employing static routing policy. In a hard

real-time system based on NoC, applying a fixed priority pre-emptive scheduling

policy is one way to resolve contention between tasks and messages, making their

behaviour more predictable for analysis. This scheduling policy enables pre-

emption on certain tasks and messages based on the priority levels assigned to

them. As the result, the response times of low-priority tasks and messages are

delayed to allow access for their high-priority counterparts.

Given a task mapping, one or more tasks may be allocated to the same core,

and if these tasks need to communicate with the other task at a different core, the

outgoing messages are routed through the same links between the cores. With this

task mapping, low-priority tasks and messages may experience high interference,

which delays their response times. Substantial delays in the response time leads

to missed deadlines in the system, and the result of this is potentially severe

consequences to human life. To address this problem, this chapter introduces an

approach that allows simultaneous optimisation of both task mapping and priority

assignment. The main idea is to explore a priority assignment which could lessen
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the interference of low-priority tasks and messages of a given task mapping while

guaranteeing access to shared resources for their high-priority counterparts.

In this chapter, section 3.2 explains the system model. This is followed by

section 3.3 which explains the schedulability analysis used for evaluating every

task and message. The algorithm used for the optimisation process is described

in section 3.4. Section 3.8 discusses the results of the experiment and this chapter

concludes with a summary of the proposed approach in section 3.9.

3.1 Interference on Low-Priority Messages

One possible reason why a NoC-based hard real-time embedded system with

a fixed priority pre-emptive policy is unschedulable is the overwhelming delays

which cause the response times of tasks and messages to exceed their deadlines.

Every task mapping allocates tasks differently on a platform. Sometimes, several

high-priority tasks are mapped on the same computing resource and this creates

high interference which low priority tasks cannot accept. Again, messages that

are sent by the latter tasks may experience the same interference from the high-

priority messages, since both type of messages share the same links near the

resource. The response times of the tasks and messages will be easily affected by

the interference; in a worst-case scenario their deadlines could be missed.

The following example illustrates how a given task mapping (see Figure 3.1)

failed to make all tasks schedulable in a system that employed a fixed prior-

ity scheduling policy such as Rate Monotonic (RM) scheduling [62]. With RM

scheduling, tasks are assigned with priorities according to their period. Based on

the properties shown in Table 3.1, assuming the priority ordering is τ1 > τ2 > τ3,

task τ3 with the longest period receives the lowest priority among the tasks. In

this example, it is assumed that the same ordering applies to the messages as well.

Since each task is separately allocated to a different core, the latency of messages

has more direct influence on the end-to-end response time of tasks. Based on

the task mapping in Figure 3.1, message F3 receives interference directly from

message F2. Since message F2 blocks the link it shares with message F3 while

waiting for message F1 to completely arrive at its destination, message F1 is said

to have indirect interference on message F3.
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Table 3.1: Task and message properties

Task WCET1 Message Basic latency2 Period (deadline)3

τ1 1 F1 1 3.2
τ2 1.25 F2 1.15 3.5
τ3 1.50 F3 1.25 3.8
τ4 1 - - 3.0

Figure 3.1: Task mapping of a NoC based multicore system

(a) τ4 > τ1 > τ2 > τ3 (b) τ4 > τ2 > τ1 > τ3

Figure 3.2: Task i response time (ri) and its message latency (Ri) with two
different priority orderings

1Worst-case execution time of task.
2Maximum latency of a message travelling via a route on its own.
3Assume deadline equivalent to the period of task.
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If the scheduling policy [62] is referred to as optimal, a scheduling that makes

all the tasks in the system schedulable will always be found whenever such a

scheduling exists. However, as shown by the example in Figure 3.2a, the resulting

priority assignment makes the system unschedulable, for example, task τ3 has

failed to meet its deadline. If a different priority ordering is used such as τ2 > τ1 >

τ3 on the same task mapping, not a single task misses its deadline, as depicted

in Figure 3.2b. By changing the priority ordering, the amount of interference

received by low-priority tasks can be reduced and at the same time high priority

tasks are allowed to have access to the resources. From the illustration discussed

above, it can be understood that the restriction imposed by the fixed priority

pre-emptive scheduling policy limits the potential of the task mapping to become

feasible for the system.

3.2 System Model

In the design methodology based on Y-chart [74] shown in Figure 1.2, the map-

ping step combines separated aspects of design [73] between a set of application

functions and a hardware architecture. The application functions impose specific

computation and communication loads on the system, which can be described in

an application model as design-time characteristics. For the hardware architec-

ture, its characteristics are described in a hardware model.

The application comprises a set of n hard real-time tasks Γ = {τ1, τ2, τ3, ..., τn}.
It is assumed that a task is periodically (or sporadically) activated and indepen-

dent of other tasks. With this assumption, a task may send a message to other

task, but the execution of the receiving task is not dependent on the arrival of the

message. We assume that the end-to-end deadline of a task is equivalent to its

period. In detail, the deadline is the timing requirement for the task to complete

its execution and for sending a message if the task has a connection with other

task on a different core.

For analysing the end-to-end response time of a task, its Worst-Case Execution

Time (WCET) ci [68] must be determined in advance. Applying techniques such

as path analysis and profiling can determine the WCET of every task, but the

specifics are beyond the scope of this current study. It is therefore assumed that

69



3. System Model

the quantitative analysis of this property has been completed and is available

prior to the task mapping step. The operating frequency of processor producing

the WCET is known as the nominal frequency.

A task may be shared with other tasks in a single core depending on a given

task mapping which allocates the tasks on the hardware platform. The execution

of the tasks on the core can be scheduled in a predictable way according to a

fixed priority pre-emptive scheduling policy[139]. This kind of policies rely on

the priority level of each task to distinguish between the tasks which one should

be executed first and which one should be pre-empted if these tasks shared the

same resources. The priority assignment can be performed statically with either

a random assignment or according to specific policy such as the RM priority

assignment [62]. This tuple lists the properties related to task i.

τi = {ci, ti, pi, di}

ci worst-case execution time of task i

ti period of task i

pi priority level of task i

di end-to-end deadline of task i

Two tasks, each is allocated at a different core, communicate with each other

by exchanging messages. For meeting the hard real-time requirements, the deliv-

ery of a message must be completed before or at the end-to-end deadline of the

source task. It is assumed that the message Msgi is transferred as soon as the

execution of the source task is complete. Based on this assumption, the message

is only released after the data that needs to be delivered is available in a complete

form and not half way during the execution of source task. Therefore, we ignore

the overhead of NI for processing the data as the processing cores are directly

connected to the routers. In reality, however, a message can be sent as soon as

data is available for transmission and the processing performed by NI may also

delay the end-to-end response time. As a result of these simplification, our system

model is considered as pessimistic.

Before transmission, every message is packetised, producing one or several

packets depending on the size of its payload. A series of packets sent over the
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NoC from a source to a destination creates traffic flows. A message with a large

number of packets requires more than one traffic flow to complete data transfer.

A traffic flow is released periodically (or sporadically) and independent of other

flows; it is transmitted subsequently after the arrival of the preceding traffic flow

at the destination. Several traffic flows from different sources share the same

communication resources (such as routers and links) if a part of or all their

routes are similar. In order to prioritise the traffic flows in shared communication

resources, we assume that the priority level of the corresponding traffic flow is

inherited from the sending task. The maximum packet size for each message is

assumed has been determined before mapping.

Each traffic flow has basic latency [135]: the latency of a flow when no other

interference exists on its path between the source and destination. For most

NoCs, basic latency can be deterministically found and it is a function of the

number of hops, the number of flits of the packet, the time needed for a flit to

traverse a link and the time needed for a router to route and arbitrate packet

headers. Each flow’s basic latency is measured based on the nominal operating

frequency at which the NoC is operated.

All the related properties for each flow i can be summarised in the following

tuple.

Msgi = {Soi, Dei, Pi, Li, Ci}

Soi source task

Dei destination task

Pi priority level of message i

Li maximum packet size of message i

Ci basic latency of message i

The platform is modelled to represent a 2D Mesh architecture of an on-chip

multicore system, which uses a NoC as the interconnection. Although, our eval-

uation model does not restrict the use of other types of topology, the 2D Mesh

topology is chosen as our platform model because it is a typical topology used to
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model a NoC platform due to its simplicity. Therefore, it helps reducing the com-

plexity of the hardware platform when the NoC is implemented with the static

routing policy such as X-Y routing.

It is assumed that the platform is homogeneous and contains a number of

processing cores. As in most multicore systems, tasks share the same computation

resources, and hence a processing core could have one or more tasks run on it.

Based on partitioned scheduling of multi-processor [63], each processor is assumed

as having its own run queue rather than a single global queue [67]. This enforces

each task to run only on a single processor, avoiding additional communication

loads as the result of resuming a task’s job from one processor to another. Since

a task is independent and runs only on a processor, it can only be delayed by the

other tasks on the same processor.

The NoC contains different types of components and the interested reader is

directed to section 2.1 for a more detailed explanation. Likewise tasks, messages

share the same communication resources, that is, a NoC’s link is used to route

several packets from different routers. Links between nodes are bidirectional and

contain uniform bandwidth. It is assumed that each traffic flow has an exclusive

virtual channel assigned to it at each port of a router. Therefore, the number of

virtual channels at each port must be sufficient to support all priority levels, so

that blocking due to unavailable virtual channels does not happen.

Following a deterministic routing scheme (for example, XY routing), the

NoC’s routers enforce static routes between sources and destinations for forward-

ing packets. Packets are forwarded between routers based on wormhole packet

switching, which requires a packet to be split into smaller communication data

called flits. The transmission of a packet flits begins with the header flit which

is then followed by the payload, one after another until all flits have been trans-

mitted. The priority pre-emptive arbitration unit arbitrates the access of flows

on shared links in accordance with their priority levels. At any time, if several

packets contending for a link, only the highest priority packet among them will

be forwarded through the link if the buffer in the downstream router is enough

to accommodate the packet’s flit.
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3.3 End-to-end Response Time Analysis

The main metric that we used for evaluating the schedulability of hard real-time

system is the number of unschedulable tasks and messages. This metric can be

calculated by comparing the response time upper bound of each task and message

with their deadlines. Since the 1960s many RTAs have been proposed, providing

an abundance of techniques for analysing the schedulability of hard real-time

systems. For our proposed approaches, the analysis of the end-to-end response

time upper bound of task, in which includes the worst case response time of task

and the worst-case latency of message, is needed to calculate the metric as the

fitness of task mapping. For this purpose, an extension is proposed based on the

previous works [135, 140]. The end-to-end response time upper bound is defined

as the time since the task is released until the last packet that it sends arrives at

the receiving task in a worst-case scenario. It is assumed that a task is schedulable

if its response time upper bound does not exceed its deadline.

The proposed analysis uses the timing properties listed in both tuples in sec-

tion 3.2. Before the end-to-end response time analysis is derived, the related

variables for the analysis are described in further details as follows:

• ci : The worst-case execution time required by task τi on each of its releases.

It is the maximum time that the task can take to finish execution when

running on its own over a processing core.

• ti : The minimum inter-arrival interval between two consecutive releases of

the task τi , hereafter called the period of the task.

• di : The deadline requirement of task τi to complete its execution since a

release of the task.

• hp(i) : The set of high-priority tasks that share a computing resource with

task τi and could pre-empt it.

• ri : The worst-case response time of task τi calculated since a release of the

task.
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• Ci : The basic latency required by traffic flow Fi on each of its releases. It

is the time taken by the flow to arrive when no other interference exists on

its path between the source and destination.

• Ti : The minimum inter-arrival interval of flow Fi, hereafter called the

period of the flow, is the time between two consecutive releases of packet i.

• Qi : The deadline requirement of flow Fi to complete its transmission since

a release of the flow.

• SD
i : The set in which contains the high-priority traffic flows that share

one or more links with the observed flow Fi and could pre-empt it, causing

direct interference to the flow.

• JR
j : The release jitter of the observed flow Fi is the maximum time the

flow can wait for release after arrival.

• J I
j : The interference jitter of the observed flow Fi is the indirect interference

experienced by the flow, as the result from the direct interference imposed

by the high-priority flows on flow Fj, where Fj ∈ SD
i .

• Ri : The worst-case latency of the observed flow Fi calculated since the

release of the flow.

The hard real-time system based on NoC applies priority pre-emptive schedul-

ing, and hence high-priority tasks are given guaranteed access to the shared com-

puting resources over their low-priority counterparts. However, pre-emptive ac-

tions create interference and add delays to the response time of tasks with low

priority levels. The interference may contribute largely to the end-to-end response

time delays, and this factor is taken into account in the proposed analysis.

First, we analyse the worst-case response time of a task in a single processor.

From the classic schedulability analysis [140], equation (3.1) calculates the worst-

case response time (ri) of task i. If for each task i of a task set, ri ≤ di, then the

task set is deemed schedulable on the processor, where ri and di are the response

time and deadline of task i respectively. The first term of this equation refers

to the worst-case execution time (ci) of task i. The second term refers to the
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maximum interference experienced by task i, which is coming from high-priority

tasks in the interference set (hp(i)), that is, tasks which share the same resource

as task i.

rn+1
i = ci +

∑
∀Taskj∈hp(i)

⌈
rni
tj

⌉
cj (3.1)

Similar to tasks, in a hard real-time embedded NoC, traffic flows are assigned

with fixed priorities and packets which belong to a traffic flow inherit the same

priority as the flow. Priority pre-emptive scheduling imposes direct and indirect

interference on some packets [135], especially those with low priority levels, as

the result of providing the high-priority flows with guaranteed access to links.

The definition of direct interference is rather straightforward; it is the inter-

ference imposed by a traffic flow with higher priority than the other flow with

lower priority, and together they share at least one physical link. From Figure

3.3, two flows Fi and Fj is in a direct competing relationship if both flows meet

the condition Pi > Pj and has at least one common physical link. For Fj, a direct

interference set SD
j is defined as the group of high priority flows that meet these

conditions, SD
j = {Fi}. In the example in Figure 3.1, traffic flows F1, F2, F3 meet

the condition P1 > P2 > P3. Traffic flows F2 and F3 are in a direct competing

relationship but flow F1 is excluded since it does not share a link with flow F1,

thus SD
3 = {F2}.

Figure 3.3: Direct and indirect relationship in a NoC based multicore system
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From Figure 3.3, although the flows Fj and Fx do not share links together,

the indirect interference emerges from an indirect competing relationship between

them. In this relationship, the flow Fx imposes an indirect interference on the

flow Fj. For this relationship to establish, the intervening flow Fi must exist

between the two flows and shares links with them, and the three flows meet the

condition Px > Pi > Pj. For flow Fi, an indirect interference set SI
j is defined

as the group of traffic-flows that imposes indirect interference on it. Based on

the same example in Figure 3.1, the traffic flows F1 and F3 are in an indirect

competing relationship, and the flow F1 imposes an indirect interference on the

flow F3. Therefore, the indirect interference set for the flow F3 is SI
3 = {F1}.

The basic latency C can be calculated with equation 3.2, where H is the

number of hops, V is the time needed for a flit to traverse a link, B is the time

needed for a router to route a flit and arbitrate packet headers and L is the packet

size in number of flits.

C = H × V + L×B (3.2)

With these conditions, a tighter bound on the worst-case latency (Ri) of a flow

in equation (3.3) is provided as proposed in [135]. The first term of equation (3.3)

is the observed flow’s basic latency, and the second term refers to the maximum

latency caused by the direct and indirect interference of the high-priority flows in

the interference set (SD
i ). Given a set of traffic flows in which each has a period

T , packets are transmitted consecutively after each minimum interval. This set

is deemed schedulable if for each flow i in this set, Ri ≤ Qi, where Qi is the

deadline of flow i.

Rn+1
i = Ci +

∑
∀Flowj∈SD

i

⌈
Rn

i + JR
j + J I

j

Tj

⌉
Cj (3.3)

We extend the real-time analysis in [140] and [135] to support the end-to-end

response time analysis of tasks. The analysis could help to determine whether

task and flow sets are schedulable in the system with a given task mapping. We

define the end-to-end response time of a task as the time taken from its release

until the last packet it sends is received by the receiving task. In order to extend
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these equations, the following assumptions are considered:

• The release of a traffic flow occurs only after the sending task has finished

its execution

• The overhead of NI is assumed as very low and hence negligible.

In real-time analysis only the maximum response time of a task is concerned

and if the task is able to meet its deadline with the maximum execution time

in a worst-case scenario, then the task is deemed schedulable in any scenario.

Therefore, the minimum execution time of the task is assumed as null in our

model. As shown in Figure 3.4, a task i is deemed schedulable if ri ≤ di. From

the same figure, consider the maximum deviation of a flow i from its release

period (denoted as JR
i ), the delay of the flow to reach its destination is JR

i +Ri.

Based on the assumptions listed above, a packet is not transmitted as soon as

it is generated but it is hold until the sending task finishes its execution. Since

the overhead of NI is assumed as negligible, then it is immediate that the release

jitter of the flow can be deduced as the worst-case response time (JR
i = ri) of its

sending task. Consider the release jitter of flow i, the flow is deemed schedulable

if JR
i +Ri ≤ di or after substitution ri +Ri ≤ di.

Figure 3.4: Time window of task and message

From equation (3.3), J I
j is referred to as the interference jitter of flow i and it is

caused by the indirect interference as a result of pre-emption by the high-priority

flows which shared the same path as flow j but not as the observed flow i. It is

defined as the maximum deviation between two successive packet release and can

be yielded from calculating the difference between its maximum and minimum
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value. For example, consider a situation where no higher priority packet is sent

in a period, and hence the minimum start transmission time of the high-priority

packet becomes zero, then the upper bound of interference jitter for the traffic

flow i is J I
j ≤ Rj − Cj. Therefore:

Rn+1
i = Ci +

∑
∀Flowj∈SD

i

⌈
Rn

i + rj + J I
j

Tj

⌉
Cj (3.4)

The worst-case response time of a task and the worst-case latency of a flow can

be calculated by equations (3.1) and (3.4) respectively. To reduce the complexity

of the analysis, we assume the deadline of a task to be equivalent to its period,

that is, d = t, and that a traffic flow shares the same deadline as its sending

task, hence Q = t. By validating the end-to-end response time of a task against

its deadline, the schedulability of the task can be determined. A task which is

allocated to a core is schedulable if it meets its deadline. However, packets sent

by the task to another task at a different core may not necessarily be schedulable

if they fail to meet the deadline of their sending task (for example, due to the

interference from other packets sharing the same path or to the delay in execution

of the task itself). Given that Uti and Ufi are the numbers of unschedulable tasks

and flows respectively, the following comparisons determine whether a task set

and its respective packet flows are schedulable in the system.

Taski : if ri > di ⇒ Uti = 1 (3.5)

Flowi : if ri +Ri > di ⇒ Ufi = 1 (3.6)

The metric representing the schedulability of the system is the total number

of unschedulable tasks and flows. If S = 0, the system is deemed to be fully

schedulable.

S =
k∑

i=1

Uti +
l∑

i=1

Ufi (3.7)
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3.4 Optimisation Process

In general, the proposed optimisation approach uses GA as the optimisation

algorithm to explore task mappings and selects the best that meet or are close to

the optimisation objectives. It relies on the fitness function (see equation 3.7) to

evaluate the schedulability of every task mapping. The valuable feedback of the

function is used to further optimise the task mappings.

GA was selected as the optimisation algorithm in our approach because of its

well-known performance in addressing optimisation problems. Based on evolu-

tionary principles, the algorithm produces a group of individuals and improves

them over several evolution cycles (or generations) to create a better population.

This improvement is a manifestation of an evolutionary process that manipulates

individual chromosomes. The chromosome is a repository in every living being

and contains information about an individual, and some of this information is

passed through generations. The thread-like structure of the chromosome used

by GA provides a practical repository to represent multiple design parameters.

With these characteristics, GA becomes an effective optimisation algorithm for

exploring multiple parameters simultaneously.

As shown in Figure 3.5, first the optimisation algorithm creates several in-

dividuals in a parent population and over generations it evolves them with sup-

port from its operators. During this process, other populations such as offspring

and combined populations are created as temporary populations, which later are

merged into the parent population. The algorithm can run continuously until it

reaches its maximum generation, or the algorithm can be allowed to run until the

optimisation objective is met. The maximum generation is also referred to as the

termination condition of the algorithm.

In each generation, the parent population undergoes several steps performed

by a set of GA operators: the selection, crossover and mutation operators. As

depicted in Figure 3.6, the selection operator selects two individuals from the pop-

ulation to become parents for producing new offspring. The selection of parents

is based on the binary tournament procedure that selects two random individuals

and compares them according to their fitness values. An individual with better

fitness value is the winner and then becomes a parent. The same procedure is
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Figure 3.5: Single objective optimisation process

repeated again to choose its mate.

In a mating process (or crossover), genes from both parents are exchanged to

produce new offspring. The number of genes that are exchanged is decided by

the crossover point (the red line) drawn across both chromosomes of the parents

as displayed in Figure 3.7. Only genes on the right side of the crossover point are

exchanged, whereas the genes on the left side remain the same. However, only

some parents are involved in the mating process; the others will be passed on to

the offspring population as themselves. In the former situation, the offspring are

passed to the offspring population. This probability is decided by the crossover

rate of the mating process.

After crossover, a proportion of genes in an offspring’s chromosome closely re-

sembles its parents’ genes. If all individuals in the offspring population resemble

their parents, the population will have less diversity between individuals. Diver-

sity is a catalyst to widen the exploration in the design space; hence diversification

of individuals is an important step to avoid early convergence. Gene mutation

is one way to increase the population diversity. The mutation is conducted on

selected genes and the number of genes that will be mutated is determined by a
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Figure 3.6: Binary tournament selection

Figure 3.7: Single-point crossover
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mutation rate. This rate must be carefully chosen, otherwise it will bring other

side effects to the algorithm’s performance. Setting a mutation rate to a high

value will have more mutated genes but it eliminates the inherited genes from

parents. Any good characteristic from parents will vanish and offspring will be-

come completely different individuals from their parents. As a consequence, the

search of the task mapping will be diverted to unpromising directions away from

the intended direction that leads to the objective. Figure 3.8 shows an example

of gene mutation; given a mutation rate of 0.01, each gene’s mutation value (a

random number between 0 and 1) is compared with the rate. Any gene with a

mutation value less than the rate will be mutated by replacing the existing value

in the gene with a new value, for example, for task mapping the new value is one

of the core indexes.

Figure 3.8: Mutation

3.5 Task Mapping and Priority Assignment

Configuration

In a priority pre-emptive hard real-time system based on NoC, every task and

flow is assigned with a priority level to determine the order of precedence for ac-

cessing the computing and communication resources. Priority assignment of a set

of tasks and flows could be based on a priority pre-emptive scheduling or a ran-

dom assignment. In a single processor platform, the rate monotonic scheduling

policy is optimal [64], because if the priority scheduling that can make the system
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schedulable exists, it can always be found by the policy. However, this is not al-

ways the case in a multi-processor system since tasks can be mapped anywhere in

the platform and the strict assignment policy that bounds the scheduling of tasks

does not provide low-priority tasks with any option to avoid interference from

high-priority tasks. The impact of this inflexibility causes delays to the end-to-

end response time of low-priority tasks leading to them becoming unschedulable.

The simultaneous optimisation of task mapping and priority assignment is pro-

posed to insert flexibility into the scheduling of tasks in a way that the low-priority

tasks can become schedulable.

The optimisation process combines task mapping and priority assignment as a

configuration for the system. The information within each configuration specifies

the location of tasks in the platform and the priority level of each task. A chromo-

some is a thread-like structure used by GA and represents an individual within

a population. In order to use GA as the optimisation algorithm, the informa-

tion within the configuration must be encoded in the chromosome. A successful

encoding of information depends on how the chromosome is structured to make

every configuration as an individual in the population. This will allow the GA

operators to simultaneously configure both task mapping and priority assignment

by evolving the individuals.

A chromosome is built upon a set of small units called genes and each gene

represents a variable of specific type (such as integer or binary). As Figure 3.9

shows, a chromosome can be segregated to form several groups of genes with the

same type, allowing different design parameters to be structured into the same

chromosome. In Figure 3.9, the chromosome is divided into two parts. The first

part (green) represents information on task mapping and the other half (orange)

represents the priority assignment of all tasks. Decoding the chromosome will

reveal a configuration on how to map all tasks onto processing cores and how to

assign priorities to the mapped tasks.

The first half of the chromosome (green) contains a group of genes for encoding

a task mapping. This group represents a set of tasks to be mapped on the system.

A task accommodates a gene and it is defined as an integer variable to store a

processing core index, onto which the task will be mapped in the system. In a

multi-processor system, several tasks can share a processing core; hence the same
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Figure 3.9: Task mapping and priority assignment chromosome structure

index (of a processing core) can appear multiple times at different genes. For

example, task τ1 (1st gene) and task τ3 (3rd gene) are mapped onto the same

processing core with index 5. Figure 3.10 shows the task mapping on a 3x3

platform after decoding the chromosome.

Figure 3.10: Corresponding task mapping after decoding chromosome

Priority assignment refers to the information encoded in the rest of the chro-

mosome: the group of genes shown in orange. Similar to the former group, this

group represents the same set of tasks and the genes are defined as integer vari-

ables. It is commonly assumed that the priority of every task is unique in a fixed

priority pre-emptive scheduling policy, in other words, the same priority cannot

be assigned to more than one task. This is to ensure predictable execution of

tasks in shared resources and further explanation can be referred from section

3.2. Therefore, every gene in the group is configured in a way that gives every
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task a unique priority. In order to configure in this way, every task is given a

priority in turn. A separate priority set is created and the value of every gene

actually refers to the turn of the task in getting a priority from the priority set. A

benefit from this priority encoding is to reduce the complexity of having to avoid

the same priority being assigned twice by the algorithm’s operators if priority

levels are defined directly in the chromosome.

Figure 3.11: Corresponding priority assignment after decoding chromosome

The priority set is a sequence of integer numbers and sorted in a descending

order (from high to low priority). Since every task will receive a different priority

level, the size of the priority set is equivalent to the number of tasks. It is worth

noting that this is a design choice; a system designer can choose a different order

sequence, for example, by sorting in ascending order. A task receives its priority

from the priority set in turn. For example, task τ3 has value one, which means it

gets the first turn, hence task τ3 receives the highest priority over the rest of the

tasks. Subsequently, task τ1 with value two gets second turn, and so on, followed

by the rest of the tasks. In a case where different tasks get the same value, the

order of precedence is decided from the left side of the chromosome. For example,

task τ2 and τ4 share the same value (three), hence task τ2 receives priority first,
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followed by task τ4, that is, the priority of task τ2 is higher than that of task τ4.

The priority level of each task after decoding the chromosome is shown in Figure

3.11.

3.6 Schedulability Objective

A hard real-time embedded system is deemed schedulable if the response time of

all the tasks and messages in the system finishes before their deadlines. Meeting

this requirement is crucial for the system, and hence configuring the values of

the design parameters must align with the objective. The objective is minimising

the number of unschedulable tasks and flows in the system. If the schedulability

metric is equal to zero, then it can be assumed that the configuration has achieved

the specified objective. The objective function is derived as equation (3.8), where

S is the number of unschedulable tasks and flows and can be calculated with

equation (3.7).

Obj1 = min(S) (3.8)

3.7 RTA Integration with GA Framework

Generally, GAs are meta-heuristics and can be adapted to become optimisation

algorithms for addressing different kinds of optimisation problem. The basic

working principles of GAs are based on the notion of genetic evolution. During

evolution, several steps occur which change the chromosomes of organisms into

becoming better or worse. These steps including the mating of parents, the mu-

tation of individual chromosomes and the selection of the best individuals from

a population; all of these are performed by several GA operators. The imple-

mentation of these operators may vary, depending on the chromosome structure.

Nonetheless, optimisation objectives are the deciding factor for the selection of

fitness functions and the design of chromosomes, making each GA distinct from

the others.
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A software developer can develop a GA in several ways. Starting from scratch

is possible, but requires more time to implement and test the algorithm. Existing

GA templates have already been implemented in several GA frameworks. The

adoption of a framework could facilitate faster development of our proposed op-

timisation techniques. Among the well-known GA frameworks are jMetal [141],

ECJ [142] and JGAP [143]. Each of these has specific features, but jMetal is

aimed at multi-objective optimisation. However, it can easily be adapted for sin-

gle objective optimisation, which is used to address the optimisation problems in

the following chapters.

The jMetal framework provides a set of classes based on object-oriented prin-

ciples which can be easily adapted for creating either an extension or a wholly new

optimisation algorithm. These classes represent the basic building blocks of a GA

such as the parent classes for genetic operators and the optimisation problems. By

taking advantage of the classes using code-reusing principles, the implementation

of new classes of the proposed optimisation algorithms is seamless. Once these

classes are fully implemented within the framework, the optimisation process can

take advantage of other features such as the function which compares perfor-

mance between multiple algorithms or the function which filters Pareto-optimal

solutions. The integration of the framework with the design space exploration

environment is not a straightforward process. A customisation has been made in

the framework to integrate with the system model.

Our proposed optimisation algorithm is known as SCGA and this algorithm

was created by implementing the chromosome structure (see Figure 3.9) in GA

and integrating the schedulability fitness function which consists of the end-to-

end response time analysis (section 3.3). The algorithm was configured according

to the optimisation objective explained in section 3.6.

3.8 Evaluation

3.8.1 Test Benches

A test bench defines a set of tasks and messages of an application. For studying

the performance of the proposed approach a test bench based on the realistic
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application called Autonomous Vehicle Application (AVA) (see Appendix A) was

used in the evaluation. AVA contains 33 tasks for processing data from various

sensors and 38 traffic flows to traverse input data from sensors and output data

to different actuators in the autonomous vehicle system. Due to the certain re-

strictions imposed on our evaluation model, multiple dependencies between tasks

were not supported and thus AVA has been simplified to ensure compatibility

with the evaluation model.

In addition, a group of synthetic test benches with a larger number of tasks

and messages than the AVA were generated for further evaluating the proposed

approach. By increasing the number of tasks and messages, the amount of in-

terference between them is likely to escalate. This will allow us to investigate

how much interference can be reduced by the proposed approach compared with

the baselines. In this evaluation, we increased the number of tasks and messages

based on the platforms size (that is, the size of task and flow set for the 10x10

platform is larger than for the 5x5 platform).

A random number of tasks between a given range, was chosen and the same

way was applied for generating flows. The previous study [11] used a synthetic

application containing 50 tasks and 50 messages to map hard real-time tasks onto

a 4x4 and 5x5 NoC platforms. In this experiment, we added a larger platform

(10x10) besides the 4x4 and 5x5 platforms and we increased the number of test

benches by varying the utilisation levels to provide better insights on the per-

formance of the proposed approach. To provide a wider set of evaluations than

[11], multiple range of minimum and maximum number tasks and messages were

considered according to the size of platforms as shown in Table 3.2.

Table 3.2: The number of tasks and messages for generating synthetic test benches

Range Minimum Maximum platform
1 40 50 4x4
2 50 60 5x5
3 100 110 10x10

Then, random pairs between source and destination tasks were created. Each

task was characterised with a worst case execution time c, a period t and a

priority level p, while each flow is characterised with a basic latency C, a packet
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size L and a priority level P . Priorities are assigned to tasks according to the

Rate Monotonic priority assignment policy [62] (referred to as RM) or random

assignment (referred to as RAN). A flow is given the same priority level as the

source task. Given a range between a maximum and a minimum values, a random

period t is generated according to the uniform distribution. Based on function

(6.1), c can be calculated with a given utilisation of the task. For flows, the packet

size (in the number of flits) is chosen between the range [3, 28000] according to

the uniform probability distribution. The period of a flow is equivalent to the

period of the source task. With the assumptions of a flit travel through a link

in one cycle and a router takes one cycle to arbitrate packet headers and route a

flit, the basic latency C can be calculated from equation 3.2.

The design space of task mapping grows exponentially with the number of

tasks and cores, as explained in 2.4.5. An algorithm that is capable of addressing

this NP-hard problem in polynomial time as yet is not exist. Exploring many

task mappings using GA requires a significant number of individuals for ensuring

the diversity of the population is maintained to produce good task mappings.

However, this increases the number of evaluation because every task mapping

must be evaluated for selection process, consequently delaying the runtime of

the task mapping optimisation process. Furthermore, not only the number of

evaluation is increased, every task and message in the test bench must also be

analysed for each task mapping. To cover as many as task mappings for every

test bench (with different size of task and message sets and hence utilisation) in

many runs is challenging given the limited time of this study.

A balance between the number of GA runs and the number of results that we

intended to achieve to prove the hypothesis must be found for this experiment.

Our target was to focus on the range of utilisation at which the improvement of the

proposed approach can be shown, starting from where it can find a schedulable

task mapping until it becomes unschedulable. From the results published in

[11], a fully schedulable task mapping on the 5x5 platform can be found for

the synthetic test bench with 60% core utilisation. The reported results are

based on the number of unschedulable messages as the metric for determining

the schedulability of the task mapping, but it provides us a clue to select the

starting point of which utilisation level to choose. For this purpose, we selected a
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level of utilisation from 45% percent, and then gradually increased it to investigate

the improvement. The chosen percentage is lower than 60% because we took into

account not only the schedulability of messages but also tasks, which is not taken

into account in [11].

The test benches were numbered consecutively proportional to their utilisation

levels, for example, TB1 has a lower utilisation level than TB5. These test benches

can be divided into two groups as listed in Table 3.3. Each test bench in the first

group consists of a set of tasks with a range of utilisation between 46% and

73% of 5x5 core utilisation, and a set of messages with less than 1% of 5x5 link

utilisation4. In the second group each test bench contains a set of tasks with a

range of utilisation between 46% and 55% of 10x10 core utilisation, and a set

of messages with less than 1% utilisation of 10x10 link utilisation4. Synthetic

test benches generation based on these settings provided us with a harder set of

application than the realistic application AVA to measure how much improvement

that the proposed approach can introduce.

Table 3.3: Synthetic test benches for 4x4, 5x5 and 10x10 platforms

Group Test Task No. of No. of Mapping
benches utilisation5 tasks messages platform

1 TB1 - TB20 0.46 ≤ util ≤ 0.73 54 54 4x4, 5x5
2 TB21 - TB30 0.46 ≤ util ≤ 0.55 104 104 10x10

In this experimental work, we investigated the performance of the proposed

approach with varied task utilisation, but message utilisation was constant. This

allowed us to closely observe the impact of changing the task mapping and pri-

ority on sets of task with different task utilisation levels. Furthermore, this way

also allowed us to keep the number of tests relevant as the GA-based optimisation

algorithms (SCGA and baselines) consumes an amount of time to perform opti-

misation until the maximum generation. In fact, the increase in the number of

tasks and messages also adds to the duration of optimisation due to the number

of interference which needs to be calculated for analysing the schedulability of

4Total links on a 5x5 platform is 130 and 10x10 platform is 560.
5Assuming each core can support 100% utilisation, total utilisation of 5x5 and 10x10 are

2500% and 10000% respectively.
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the system.

3.8.2 Baselines

Several baselines were selected and compared with SCGA. One of the baselines

was GA, which only configures task mapping and depends on either RM or RAN

to assign a priority to each task and message in the test benches, hereafter are

known as GA(RM) and GA(RAN). SCGA and GA were based on the same

optimisation process (see Figure 3.5) to meet a common objective, which is finding

a fully schedulable task mapping for NoC-based hard real-time systems.

SCGA and GA were configured with the same settings [144] to perform evalua-

tion under the same condition. The researchers [144] have performed a parametric

analysis for multi-objective GA based on the selection of settings published ear-

lier in [21]. Based on the analysis, we chose the best GA settings as displayed in

Table 3.4 for the purpose of evaluation.

Table 3.4: A set of GA settings used in evaluation

Population Crossover rate Mutation rate Generation
100 0.5 0.01 500

One of the differences between the algorithms is the way a solution is encoded

in their chromosomes. As previously mentioned, the GA relied on RM or RAN

for priority assignment, hence its chromosome only contains information on task

mapping similar to the first half of SCGA’s chromosome (see Figure 3.9). On

other hand, SCGA’s chromosome was configured as explained in section 3.5.

Previous work [12] addressing the priority assignment problem in the NoC-

based system was based on a Branch-and-Bound (BB) heuristic to find a suitable

priority assignment for a set of traffic flows. In order to compare SCGA with

that approach, the same technique was developed but we modified it to include

the function for assigning priorities to a set of tasks. This is because BB only

configures priority assignments based on a given task mapping, and hence we

used a random task mapping as its input.

In addition to the above baselines, a Nearest Neighbour (NN) and a set of bin-

packing mapping heuristics such as First Fit (FF) and Best Fit (BF) were also
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used as baselines for SCGA. NN allocates a set of tasks onto a platform by first

allocating a task at a random processing core and then repeatedly allocates the

remaining tasks to the nearest processing core until all tasks have been allocated.

Based on the utilisation of each task, FF allocates a task to the first processing

core that fits the task, that is, the full utilisation of the core is not exceeded. BF

also refers to the utilisation of each task similar to FF, but allocates a task to

the processing core that has the least utilisation.

3.8.3 Results

An experiment was performed for the purpose of studying the effects of the pro-

posed approach to improving the schedulability of the system. The hypothesis of

this experimental work states that SCGA is better than the baselines in finding

the schedulable task mapping for the system. Before discussing the results fur-

ther, it is worth mentioning that Figures 3.12, 3.13 and 3.13 shows the results

based on a single GA run per test bench. This experiment was conducted after

we took into consideration the time overhead in running the GA multiple times

for the same test bench. In every run, the GA must evaluate each task and traffic

flow for every task mapping produced until it terminates. Consider an example

with 33 tasks and 38 flows, and the GA is configured with 100 populations for

running until 500 generations in every run. The total number of evaluations is

approximated around 3,550,000 evaluations (= 100 populations 500 generations

(33 tasks + (38) flows)). Furthermore, the number of evaluation increases for

large size of task and flow sets and since statistical evidence require a significant

set of samples, running the GA multiple times for the same test bench under

limited time and resources is impractical.

The best schedulable task mappings found by each of the baselines (GA(RAN),

GA(RM) and BB) and SCGA in the populations at the end of optimisation, are

shown respectively in Figures 3.12a and 3.12b for both the 4x4 and 5x5 plat-

forms. From the results shown in Figure 3.12a, SCGA has outperformed GA

and BB with its fully schedulable task mappings from TB1 until TB5. From

TB6 onwards, none of the algorithms has succeeded in finding a fully schedulable

task mapping, although the schedulability percentage of SCGA is higher than
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(a) 4x4 platform (b) 5x5 platform

Figure 3.12: Schedulability of the best task mapping found by SCGA, GA and
BB for every test bench mapped onto 4x4 and 5x5 platforms

the baselines. GA(RM) and GA(RAN) have failed to find any schedulable task

mapping for all the test benches. Similar to them, none of the task mappings

that were given to BB can become fully schedulable.

Once again, SCGA performed better than GA(RM), GA(RAN) and BB on

the 5x5 platform. As shown in Figure 3.12b, all SCGA’s task mappings from TB5

until TB17 are schedulable. Although a performance drop is seen from TB18,

it still maintained a higher schedulability than any of the baselines. GA(RM)

showed a similar performance to SCGA, but its performance fell below 100% from

TB15 onwards. Both GA(RAN) and BB were unable to find any schedulable task

mapping for all the test benches on the 5x5 platform, except for TB11 for which

BB found a fully schedulable task mapping. Nevertheless, SCGA outperformed

all the baselines on the 4x4 and 5x5 platforms by enabling the task mapping

to become fully schedulable by changing the priority assignment of tasks. For

some test benches on which a fully schedulable task mapping was hard to find,

SCGA still maintained its performance by producing task mappings with better

schedulability than the baselines.

SCGA, GA(RM) and GA(RAN) each took a particular amount of progress to

find the first schedulable task mapping during optimisation. Figure 3.13 shows

a comparison between the algorithms based on the number of generations to
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(a) 4x4 platform (b) 5x5 platform

Figure 3.13: Optimisation progress taken by SCGA and GA to find the first
schedulable task mapping for each test bench on 4x4 and 5x5 platforms

produce the first schedulable task mapping for every test bench. It is worth

noting that at the maximum generation (500), a schedulable task mapping may

or may not have been found. Figure 3.12a shows that GA(RM) and GA(RAN)

were unable to produce a schedulable task mapping for all the test benches on the

4x4 platform. Both algorithms continued up to a particular level of schedulability

but failed to achieve a fully schedulable task mapping before the optimisation

ended at 500 generations6. This is the reason both algorithms are plotted with

the maximum generations for all the test benches in Figure 3.13a. Meanwhile,

SCGA converged better than GA by taking fewer than 100 generations to find

a schedulable task mapping for all the test benches except from TB6 to TB10,

when it could not find any schedulable task mapping. SCGA performed similarly

on a 5x5 platform, as shown in Figure 3.13b; it took fewer generations to produce

a schedulable task mapping than GA(RM) and GA(RAN) from TB5 until TB17.

From the results, SCGA not only found fully schedulable task mappings for the

test benches but also it found them in a lower number of generations than the

baselines.

It is worth noting that with the same test bench, finding a schedulable task

6Approximately 300 seconds. This duration can become longer for mapping a large task
set onto a small platform due to the increase in the volume of interference.
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(a) Schedulability (b) Optimisation progress

Figure 3.14: Based on a 10x10 platform; (a) schedulability of the best task map-
ping, (b) optimisation progress to discover the first schedulable task mapping.

mapping on a smaller platform was harder than on the larger platform. Increasing

the size of platform provides more resources to which tasks can be allocated

and reduces the contention between them. For example, SCGA required fewer

generations to find a schedulable task mapping for TB5 on the 5x5 platform as

compared with the 4x4 platform.

So far, SCGA has shown good performance for mapping a set of test benches

onto smaller platforms such as 4x4 and 5x5. A set of different test benches

(TB21-TB30), with larger utilisation than the synthetic test benches in group 1,

were used for a larger platform (10x10). As depicted in Figure 3.14a, SCGA and

GA(RM) each found a fully schedulable task mapping from TB21 until TB26.

Nonetheless, in Figure 3.14b, SCGA showed better convergence than GA(RM)

and GA(RAN). This performance is consistent with the previous mapping on the

smaller platforms. Although none of the algorithms was able to find any schedu-

lable task mapping from TB27 onwards, once again SCGA’s task mapping was

better in schedulability compared with GA(RM) and GA(RAN). Furthermore,

GA(RAN) was unable to find any schedulable task mapping and BB failed to

find any priority assignment that could make the task mapping schedulable for

all the test benches on the 10x10 platform.

We have so far discussed, the feasibility of SCGA in improving the task map-
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Figure 3.15: Schedulability convergence of SCGA and baselines when mapping
AVA onto a 4x4 platform

ping and priority assignment based on a set of synthetic applications. To further

demonstrate the feasibility of SCGA, we studied the convergence of it when map-

ping a realistic test bench (AVA) onto the 4x4 platform. As depicted in Figure

3.15, SCGA, GA(RM) and GA(RAN) successfully converged to a schedulable

task mapping. Although all of them found the task mapping, it can also be

seen from Figure 3.15 that SCGA’s convergence rate was faster than that of its

counterparts. SCGA took less than 30 generations to converge, compared with

GA(RM) and GA(RAN) which took more than 100 generations. One generation

after the beginning of optimisation (at first generation), SCGA produced a task

mapping with almost 75% schedulability. Afterwards, SCGA gradually improved

the task mapping at every generation and finally it converged to a schedulable

task mapping, whereas its counterparts still struggled to achieve a task mapping

with schedulability between 85% and 90%. In another study, several mapping

heuristics such as NN, FF and BF were used to map the same application and

platform. The comparison of the heuristics and SCGA is depicted in Figure 3.16,

which shows that these heuristics failed to find any schedulable task mapping,

in contrast with SCGA which successfully found a schedulable task mapping. A

reason why the NN and the bin-packing heuristics failed to achieve a fully schedu-

lable task mapping are due to their fixed way of mapping the test bench. As a
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consequence, these heuristics produced no alternative task mappings and the lack

of changes causes less opportunity for low priority tasks and messages to evade

interference from their high priority counterparts.

Figure 3.16: Schedulability of task mappings found by SCGA and bin-packing
heuristics when mapping AVA onto a 4x4 platform

Based on the consistent performance shown by SCGA in all the case studies,

it can be inferred that an optimisation algorithm integrated with our proposed

approach could perform better than the baselines. Better schedulability and

faster convergence are some of improvements made by allowing the algorithm to

simultaneously configure task mapping and priority assignment. In spite of the

additional dimension over the existing task mapping configuration, SCGA was

still able to find the schedulable task mapping and converged faster than the

baselines. The convergence was measured in number of generations the GA took

to find the first schedulable task mapping and SCGA was able to find the task

mapping in fewer generations than the baselines. Although some of the baselines

were able to find a schedulable task mapping as SCGA, the faster convergence

of SCGA is a significant improvement over the baselines. The results presented

in this section suggest that our experimental hypothesis is valid for the chosen

benchmarks. Based on these results, SCGA can be introduced as an efficient

exploration tool to find the feasible task mapping that could make the NoC-based

hard real-time system schedulable.
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3.9 Summary

A task mapping is not feasible for a hard real-time embedded system if it leads

to the system becoming unschedulable because of the interference suffered by

low-priority tasks. Reducing the interference is possible by changing the prior-

ity assignment of the mapped tasks to lessen the effects of pre-emption when

sharing the same resources. Based on this notion, we proposed an approach

which simultaneously configured task mapping and priority assignment to find a

possible configuration that can make the system fully schedulable. Finding the

configuration considers the overall schedulability of every task and message by

taking into account the end-to-end response time of all mapped tasks. The re-

sults from experiments based on different types of test benches mapped onto small

and large platforms, we have shown that the proposed approach was able to find

better configurations than the baselines. In addition, simultaneous configuration

of task mapping and priority also improved the convergence of the optimisation

algorithm in fewer generations than the baselines.
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Chapter 4

Multi-objective Task Mapping

Optimisation

Task mapping determines where tasks shall be allocated on a platform. It influ-

ences the performance of a system and its power dissipation at the same time.

The conflicting nature of the objectives requires an optimisation technique to

consider the trade-off between the two attributes. However, without appropriate

fitness functions to facilitate the optimisation technique, finding a task mapping

with a good trade-off between the real-time performance and power dissipation of

a NoC-based hard real-time system is challenging. In order to address this prob-

lem, this chapter introduces a multi-objective optimisation technique for finding

task mappings based on multiple objectives.

This chapter is organised as follows. Section 4.2 introduces the proposed

multi-objective optimisation algorithm. The power macromodel for calculating

NoC power dissipation is explained in section 4.4. Task mapping representation

in the GA chromosome is described in section 4.5 and the objectives that guide

the optimisation process are explained in section 4.6. A discussion of the results

obtained from the evaluation of the proposed approach is included in section 4.7.

Finally, a summary concludes the contribution of this chapter in section 4.8.
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4.1 Conflicting Optimisation Objectives

A system dissipates an amount of power to produce specific performances. The

two attributes are normally conflicting with each other: faster performance re-

quires more power than slower performance. It is possible to reduce NoC power

dissipation by mapping communicating tasks closer to each other and hence re-

ducing the number of routers and links to deliver messages over the NoC. With

this approach tasks are concentrated in the same area, but their end-to-end re-

sponse times can be affected from contention in the area. For a hard real-time

system, the end-to-end response time of each task must not exceed its deadline

including in the worst scenario, otherwise the system will become unschedulable.

State-of-the-art techniques [11, 21] are based on single-objective optimisation to

find a schedulable task mapping. However, such techniques focus solely on the

hard real-time performance and lack any insight into NoC power dissipation.

Since power dissipation was not considered during optimisation, how much NoC

power dissipation involves in the message deliveries was unknown; the NoC might

not be efficient in power dissipation.

On the other hand, some energy-aware task mapping approaches [18, 19, 20]

have been proposed for addressing the multi-objective optimisation problems of

NoC. Mostly targeted for average cases, the approaches estimate average energy

dissipation based on the number of hops packets take to arrive at their desti-

nations. Although sufficient for best-effort systems, those approaches lack the

calculation for the end-to-end response time upper bound of each task, which is

required for evaluating the schedulability of the tasks in a worst case scenario.

In the scenario, maximum interference will be likely to happen from contention

between tasks or between traffic flows, delaying their end-to-end response times.

Since the analysis of schedulability is excluded from the optimisation process,

searching for a schedulable and low power task mapping is challenging using

these approaches.

Therefore, finding a task mapping for the NoC-based hard real-time embed-

ded systems must take into account the real-time performance alongside other

objectives such as minimising power dissipation. Focusing solely on one objec-

tive will only bring good in one aspect, but at the disadvantages of the other
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objectives. Without a proper multi-objective optimisation technique, a conflict

between hard real-time performance and power is difficult to resolve and the task

mapping will not be optimised accordingly to meet the requirements.

4.2 Multi-Objective Optimisation Algorithm

A multi-objective optimisation algorithm (MOGA) is proposed to find task map-

pings with good trade-offs between the conflicting objectives: the minimisation

of total unschedulable tasks and flows, and the minimisation of NoC power dis-

sipation. In order to achieve this goal, the algorithm evaluates the schedulability

of the system and calculates NoC power dissipation as the fitness values of ev-

ery task mapping, and then selects the best task mappings based on the fitness

values.

It is worth noting that the proposed algorithm originated from a GA, which

is a meta-heuristic that can be adapted to address task mapping optimisation

problems. A new instance of the meta-heuristic can be implemented by inte-

grating relevant fitness functions to evaluate task mappings, by formatting its

chromosome structure to represent a task mapping or by introducing new op-

erators to manipulate the chromosomes. An example of such meta-heuristics is

NSGA-II [56]. In addition to its configurable properties, it was chosen as the pro-

posed approach because it provides a non-dominated sorting, which is essential

for selecting task mappings based on the trade-off between objectives. With its

configurable properties and the non-dominated sorting, it is amenable to prob-

lems with multiple objectives, as well as its well-known reputation for solving

multi-objective optimisation problems.

As shown in Figure 4.1, MOGA starts with a parent population initially popu-

lated by randomly created individuals. Every individual in the population repre-

sents a task mapping. The evolution of the population over generations produces

better individuals through three steps: crossover, mutation and selection. More

than one fitness value can be assigned to each individual to facilitate individual

ranking and selection of the best individuals for the offspring population. Once

the offspring population is completed, it replaces its parent population. Repeti-

tion of this process over time gradually improves the quality of the individuals
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to become better than their predecessors. The evolution steps are similar to

the single objective optimisation algorithm; interested readers are referred to the

previous chapter, section 3.4 for detailed explanation of the process.

Figure 4.1: Multi-objective optimisation process

The main difference between the single and multi-objective optimisation al-

gorithms is at the final stage of the optimisation, where the latter algorithm’s

non-dominated sorting plays an important role. A fully ordered list for selecting

the best task mapping is less effective to be applied within MOGA due to the

existence of conflicting objectives. Instead, the selection of individuals is made

based on the Pareto-optimal concept, which is implemented as the non-dominated

sorting in the algorithm. With this concept, task mappings that exist in the non-

dominated set are regarded as having the best trade-offs in the population. Figure

4.1 shows how individuals from parent and offspring populations are combined

to select individuals with the best trade-offs between objectives.

Normally, the number of members in the set is less than the total number of

individuals in the population. Therefore, one non-dominated set is not sufficient

and more individuals are needed to fill a population. Different levels of non-
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Figure 4.2: Non-domination levels of a population

dominated sets as shown in Figure 4.2 are created to fill an offspring population

with the best individuals in the current generation. The first non-dominated

set with level 1 is the best non-dominated set, in which its individuals are not

dominated by others in the population. Several non-dominated sets after level

1 are created until the offspring population is filled with individuals from these

sets. Once the offspring population is filled with the best individuals, it becomes

a new parent population to be evolved in the next generation.

4.3 Schedulability Analysis

NoCs are generally scalable and flexible, but analysing their performance guaran-

tees and power dissipation in optimisation is a complex task. For addressing the

task mapping optimisation problem, both metrics are needed to determine the

trade-off between the objectives. In Chapter 3 an end-to-end real-time analysis

was introduced as the fitness function for evaluating the performance guarantees

of the system. The schedulability metric that MOGA uses is similar to that ap-

plied by the single-objective optimisation algorithm, so equation 3.7 can be reused

to calculate the number of schedulable tasks and flows, as one of the fitness values

of every task mapping found by MOGA. Interested readers are referred to section

3.3 for details of the fitness function.
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4.4 Power Estimation Macromodel

From the results discussed in chapter 3, the task mapping optimisation process

has successfully found a feasible task mapping for the NoC-based hard real-time

system. Although all tasks and messages are schedulable with the task mapping,

it is unknown how much power is dissipated by NoC. This is due to the selection

of task mapping made by the GA is solely based on the schedulability metric.

Since the GA lacks the function to estimate how much power will be dissipated

by NoC, it is difficult to imply the fitness of every task mapping in terms of power

dissipation. As a consequence, the schedulable task mapping can be found but

it may not be good in power dissipation. This condition could lead to selection

of inefficient task mapping. In the optimisation process, the minimisation of the

number of unschedulable tasks and messages can be shown as a convergence to a

fully schedulable task mapping. If the objective function for minimising the power

dissipation is not supported, the graph may show inconsistent power dissipation

of the task mapping, as shown in Figure 4.3.

Figure 4.3: Inconsistent power dissipation

A NoC dissipates power when messages traverse through it. According to the

general power model proposed by [145], each NoC network component (router,

link and NI) dissipates power when transmitting a packet along a route as shown
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in Figure 4.4. The rationale behind the chosen power model as part of our ap-

proach is because their NoC model has similarities with our NoC model. For

example, both NoC take advantage from the pipeline feature of wormhole switch-

ing to traverse all flits between routers.

Figure 4.4: General model of the power macromodel

Given that f is the flit size7 of a packet and h is the hop count8 of the

packet’s route, the number of routers through which the packet travels is h + 1

and the total flit size of a packet including its header is f + 1. The value for f

varies depending on the size of bits used in the application model. We assume the

application model is based on 16 or 32 bits. Given that Pr is the power dissipated

by a router to transmit a flit (assume that the power dissipated by a router to

transmit a header flit and data flit is the same), the amount of power dissipated

by the routers can be defined as

Prouter = (h+ 1)(f + 1)Pr.

Before packets are ready to be transmitted over the NoC, a payload coming

from an IP core is packetised first into several packets in the NI of the sending

router. Upon arrival, the packets are depacketised by the NI of the receiving

router before the payload is forwarded to the destination IP core. Different pro-

tocols and mechanisms used in the NI affects its power dissipation. For this power

model we assume that the NI has minimum buffering and supports OCP 2 and

AHB protocols [146]. Assuming the power dissipated by an NI to process a flit

is Pn and since a packet is processed twice by these NIs, the amount of power

7The number of flits in a packet.
8A hop is the distance between two directly connected routers in a NoC.
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dissipated by both NIs is

Pni = 2(f + 1)Pn.

A packet traverses through a number of links, which is equivalent to the hop

count (h) between the source and destination. The power dissipated by a link

can be affected by its size. For our power model, we assume the size of the link is

32 bits. Given the power dissipated by a link to transmit a flit is Pl, the amount

of power dissipated by all links can be expressed as

Plink = h(f + 1)Pl.

Then, the summation of power dissipated by all the network components is

defined as

Pm = Prouter + Pni + Plink.

After substitution

Pm = (h+ 1)(f + 1)Pr + 2(f + 1)Pn + h(f + 1)Pl. (4.1)

4.5 Task Mapping Configuration

Generally, to find feasible task mappings with the multi-objective optimisation

algorithm, the individuals of the population are evolved in a way that improves

the trade-off between the schedulability and power dissipation objectives. For this

purpose, the multi-objective optimisation algorithm requires a uniform solution

representation to encode every task mapping as an individual. The values in a

chromosome define an individual and all individuals in the population share the

same chromosome structure comprising a group of genes.

An individual’s chromosome used in the proposed approach of this chapter

only represents a task mapping. The chromosome contains information related

to a task mapping and it is similar with the first part of chromosome used in

section 3.5. However, it does not include the second part of the chromosome

(priority assignment). This is due to our main focus to address the task mapping

optimisation problem of conflicting objectives. Figure 4.5 is included to show one
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possible way to encode the task mapping.

Every gene in the chromosome represents a task (such as τ1 or τ2) of the

application to be mapped on the multicore platform. The length of the chromo-

some in terms of the number of genes is equivalent to the total number of tasks

(n). Each task is mapped only once onto a core, but each core can be shared by

multiple tasks. Every core is defined as an index from 0 to k − 1, where k is the

total number of cores in the platform. Then, it is straightforward that each gene

contains an index of a processing core onto which the task that it represents will

be mapped. For example, task τ3 will be mapped onto the processing core with

index 9. A core can be shared by multiple tasks, for example the processing core

with index 2 appears twice, in the genes that represent task τ1 and task τ2.

Figure 4.5: Task mapping chromosome structure

4.6 Schedulability and Power Objectives

The focus of the proposed multi-objective optimisation technique is to address

the optimisation problem of finding task mappings when multiple objectives exist.

These objectives are

• First objective (Obj1) : minimising the number of unschedulable tasks

and flows

• Second objective (Obj2) : minimising NoC power dissipation

Since the first objective of the multi-objective optimisation algorithm is similar

to the schedulability objective discussed in section 3.6, the same objective function
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in equation (3.8) can be applied. Further details of the function are explained in

section 3.6.

Obj1 = min(S)

The second objective is the minimisation of NoC power dissipation, for trans-

mitting packets over its network components. The equation of the second ob-

jective is shown in equation (4.2), where Pm is the estimation of total power

dissipated by each component of NoC when transmitting packet m. This metric

is calculated using equation (4.1).

Obj2 = min(
l∑

m=1

Pm) (4.2)

The proposed optimisation process does not take into account the energy

dissipated by the execution of tasks in each individual core, as that metric does

not contribute to the ranking of alternative mappings in terms of the overall

energy dissipation of the system (that is, in communication all cores will dissipate

roughly the same amount of energy to execute a particular task). This situation

would be of course different if our optimisation were to also include thermal

balance as one of its objectives, but this is left as future work.

4.7 Evaluation

4.7.1 Test benches and Baselines

The main purpose of this evaluation is to compare between a single-objective

and a multi-objective optimisation approaches. To provide a fair comparison, we

selected similar test benches used to evaluate the previous single-objective opti-

misation algorithm [11] for mapping hard real-time task sets on NoC platforms.

The first test bench is the Autonomous Vehicle Application (see Appendix A).

The second test bench is the Synthetic Application (SAP). SAP consists of 50

real-time tasks and 50 real-time messages and has shorter task and message inter-

arrival intervals (periods), so that it becomes more intense in communication than

AVA and harder for the optimisation algorithm to map onto the platforms. Both
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test benches were mapped onto the 4x4 and 5x5 2D-mesh NoC platforms to find a

schedulable mapping, which were similar with the platforms used in the previous

work [11].

A set of mapping algorithms including the Single Objective Genetic Algorithm

(SOGA) proposed in [11], a random mapper and a Nearest Neighbour (NN)

mapper were used as baselines. NN mapper is similar as the baseline (NN) used

in the experimental work of section 3.8.2. The random mapper randomly allocates

tasks onto the two platforms.

Equation 4.1 calculates the NoC power dissipation by assuming the values

for Prouter, Plink and Pni are given. For this experiment work, we selected the

values of these parameters based on the results published in [145]. The power

dissipated by a router is 8% higher than that dissipated by an NI and the power

dissipation ratio between a router and a link is equal to one. These values were

captured from the power analysis based on a 5x5 NoC with 32-bit router and

4-flit input FIFO buffers, and an NI with minimum buffering and supports the

OCP 2 and AHB protocols. The NoC was designed in Verilog HDL at the RTL

level, synthesised with Synopsys Design Compiler and mapped onto an UMC 65

nm technology.

4.7.2 Results

The hypothesis for this experiment states that the mapping solutions found by

MOGA will be as good as or better than the solutions produced by SOGA in

meeting hard real-time timing constraints, and always better in power dissipation.

It is expected that the latter part of the hypothesis would be easy to demonstrate

because SOGA does not optimise power dissipation. The challenging part is to

show how MOGA can quickly converge towards fully schedulable solutions, which

is not straightforward as it also has to keep many low-power task mappings within

the population at every generation. Following the evidence that supports the

experimental hypothesis, another experimental study was carried out with the

aim of showing that GA-based task mapping optimisation can produce mappings

that are far better than the random and NN mappers.

Figures 4.6 and 4.7 shows the convergences of the best task mapping found by
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(a) AVA, 4x4 (b) AVA, 5x5

Figure 4.6: Task mapping convergence over generations between MOGA and
SOGA using AVA mapped onto 4x4 and 5x5 platforms

(a) SAP, 4x4 (b) SAP, 5x5

Figure 4.7: Task mapping convergence over generations between MOGA and
SOGA using SAP mapped onto 4x4 and 5x5 platforms
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SOGA and MOGA over generations when mapping AVA and SAP each onto 4x4

and 5x5 platforms. The test benches were mapped onto the platforms to show

the improvement in both metrics: the schedulability of the system given as the

total number of unschedulable tasks and flows, and NoC energy dissipation. Two

vertical axes shown on each graph plot the number of unschedulable tasks and

flows (on the left axis, labelled UTF ) and the total NoC energy dissipation (on

the right axis, labelled POW ) respectively. The latter metric is normalised by

the power dissipated by a single flit over a single hop. To show the improvement

in both metrics over generations, the horizontal axes of the graphs represents the

scale between first and last generation.

In order to plot the graphs, the best task mapping must be chosen from among

the solutions of the population. For single-objective optimisation, task mappings

can be fully ordered, hence the best task mapping is evident. For example, the

best task mapping is a task mapping with zero or the fewest unschedulable tasks

and flows. The best task mapping is then evaluated in terms of power dissipation

to gain its second fitness value. In multi-objective optimisation, selection was

done differently because a single best solution may not exist. In a non-dominated

set, normally more than one solution exists and all members of that set can be

considered as best solutions. Therefore, a task mapping with zero or the lowest

number of unschedulable tasks and flows among them was selected. If more than

one task mapping in the set has the same fitness value, a task mapping with the

lowest power dissipation is preferred.

Both optimisation algorithms, MOGA (labelled TwoObjOPT ) and SOGA (la-

belled SingleObjOpt), converged to a fully schedulable system for AVA on both

4x4 and 5x5 platforms. As shown in Figures 4.6a and 4.6b, in fewer than 50

generations both algorithms were able to find a task mapping that could produce

a schedulable system. In terms of convergence rate, SOGA converged faster than

MOGA on the 4x4 platform, but contrarily on the 5x5 platform, in that MOGA

converged slightly faster than SOGA. In terms of power dissipation, SOGA’s per-

formance was inconsistent. Although some reductions were observed, the trend

was not maintained in the long run. Its inconsistent performance is depicted in

both graphs for all the platforms where AVA was mapped. Conversely, MOGA

obtained mappings which met all real-time constraints and at the same time
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consistently improved the total power dissipation, better than SOGA.

In chapter 3, a comparison between our proposed approach (SCGA) and the

GA(RAN) was conducted, and both algorithms optimised task mapping based

on the single objective. From the results shown in Figure 3.15, we implied that

the former algorithm has better convergence than the latter algorithm based on

the mapping of AVA test bench onto the 4x4 platform. With the same test

bench and platform, in this chapter, the convergence of a single-objective GA

(SOGA) and another proposed approach known as MOGA, which is based on

multi-objective optimisation, was compared and the results is shown in Figure

4.6. It is interesting to analyse the performance of MOGA and SCGA because the

latter approach is based on the single-objective optimisation but performed better

than the single-objective GA baseline, although it manipulated another parameter

(priority assignment) in its chromosome for improving the schedulability of the

task mapping. One similarity in the comparisons are the GA that we used as

the baseline: GA(RAN) and SOGA performed a single-objective optimisation

and optimised task mapping. Based on the similar baselines, we analysed the

performance of SCGA and MOGA based on the results depicted in both figures.

From Figure 4.6, MOGA converged after SOGA has found a schedulable task

mapping but SCGA outperformed GA(RAN) as shown in Figure 3.15. Therefore,

we imply that SCGA has better optimisation runtime (in number of convergence)

than MOGA based on the mapping of AVA onto the 4x4 platform.

On the other hand, MOGA showed better performance than SOGA when

mapping SAP onto 4x4 and 5x5 platforms, outperforming the latter algorithm in

terms of power dissipation. It is worth noting that SAP was synthetically created

with specific timing constraints, which makes it harder to find a schedulable

mapping on a 4x4 platform. This is the reason behind the unsuccessful mapping

by both algorithms to achieve a schedulable system with SAP on the 4x4 platform.

In spite of this result, MOGA was still able to reduce the power dissipation in NoC

below what was achieved by SOGA, as shown in Figure 4.7a. Both algorithms

produced improved performances when mapping SAP onto the 5x5 platform.

Although, MOGA and SOGA converged to a schedulable system with their best

task mapping in fewer than 100 generations, the latter algorithm showed a faster

convergence than MOGA. For all cases including SAP mapped onto the 5x5
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platform, as depicted in Figure 4.7b, MOGA’s performance in terms of power

dissipation was better than that of SOGA. Based on the chosen benchmarks,

our experimental hypothesis has been validated by the MOGA’s performances,

which produced schedulable task mappings similar to those produced by SOGA,

but always better in power dissipation.

(a) AVA, 4x4 (b) SAP, 5x5

Figure 4.8: Non-dominated sets at certain generations (1, 100 and 500), using
AVA with a 4x4 platform and SAP with a 5x5 platform

The plot in Figure 4.8 shows the level 1 non-dominated set selected at specific

generation (1, 100 and 500) for both MOGA and SOGA. To enable the compari-

son, task mappings found by SOGA were filtered in a similar way to that applied

by MOGA to find the non-dominated solutions. This is possible once the power

dissipation fitness value is yielded for every task mapping before the offspring

population becomes the new parent population in the next generation. With

both fitness values, the Pareto-optimal concept can be applied to the population

for determining the first level of the non-dominated set.

The non-dominated sets produced by MOGA dominate all the sets produced

by SOGA. As shown in Figures 4.8a and 4.8b, at 100 and 500 generations MOGA

has improved the trade-off of its task mappings by minimising both metrics lower

than the SOGA’s task mappings. In addition, MOGA showed better convergence

towards the optimal region of the solution space (the lower-left corner), where

fully schedulable low-power solutions were found. A schedulable mapping (that
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is, touching the vertical axis) was found at 100 and 500 generations, but again

the mappings found by MOGA had much lower power dissipation. As shown in

the plots, there is a significant difference in power dissipation, which highlights

how much quality improvement can be made when both objectives are taken into

account.

MOGA has several parameters that can be configured to achieve specific per-

formances. An additional experiment was conducted in order to show the influ-

ence of the parameters. This was achieved by careful parametric analysis, which

included the ranges shown in Table 4.1. MOGA was executed with each config-

uration to perform mapping on 4x4 and 5x5 platforms using AVA and SAP test

benches.

Table 4.1: List of GA parameter values used in parametric analysis

GA Parameters Values
Population Size 100
Crossover Rate 0.5, 0.8
Mutation Rate 0.01, 0.001

Max Generations 500

(a) AVA, 4x4 (b) SAP, 5x5

Figure 4.9: Non-dominated sets produced with different GA configurations at
first and last generations

114



4. Summary

The results are plotted in Figures 4.9a and 4.9b, in which the configurations

are compared against each other using the level 1 non-dominated set at first and

last generations. For both test benches, MOGA performed better when configured

with 0.5 crossover rate, 0.01 mutation rate, 100 population size and allowed to run

for 500 generations. Furthermore, MOGA was configured with the best setting

and was compared with SOGA and other baselines (NN and random mappers)

in both metrics. Figure 4.10 shows the outstanding performance of MOGA in

finding a fully schedulable task mapping with lower power dissipation than all

the baselines, which validates once again our experimental hypothesis.

Figure 4.10: Overall comparison against several baselines

4.8 Summary

The main contribution of this chapter is a multi-objective optimisation technique

which could find a schedulable task mapping whilst minimising the energy dissi-

pation of a NoC-based hard real-time embedded system. This was achieved by

the integration of analytical fitness functions into the algorithm, which consisted

of an energy macromodel to estimate the energy dissipated by NoC and an ex-

tended end-to-end schedulability analysis that can validate the schedulability of

any task or traffic flow in the system. The algorithm is feasible for the early design
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space exploration; it is able to explore many task mappings in the existence of

more than one conflicting objectives. We have illustrated its feasibility with two

case studies and we have shown that the algorithm could find better trade-offs

between both objectives than the single-objective GA and some baselines.
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Chapter 5

Breakdown Frequency Metric for

Task Mapping Evaluation

In the previous chapters, the proposed single and multi-objective optimisation

techniques have produced schedulable task mappings based on the end-to-end re-

sponse time analysis. From this analysis, the numbers of unschedulable tasks and

messages are calculated as a fitness value of every task mapping. This is a con-

venient metric that facilitates the optimisation techniques to find task mappings

which keep all tasks and flows schedulable. However, it has also been reported

that in some cases those task mappings cannot be found and the system would

never become fully schedulable. The metric only suggests that if all tasks and

messages are schedulable then the task mapping is feasible for the system, oth-

erwise it is not. This limits the ability of the optimisation techniques due to the

limited information that the metric can provide to facilitate exploration of alter-

native task mappings. As the result, system designers may have limited choice

of task mappings and this could lead to designs that have unnecessary increases

in complexity and cost. A fitness function is proposed to overcome this prob-

lem, one which allows the optimisation algorithm to explore task mappings more

effectively.

In this chapter, section 5.2 explains the proposed fitness function. The optimi-

sation algorithm and its objective are described in section 5.3. Then, section 5.4

discusses the evaluation results and finally section 5.5 summarises the proposed
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technique.

5.1 Limitation of the Schedulability Metric

The schedulability of a hard real-time system could be determined by applying

a Real-Time Analysis (RTA) to analyse the response time. With this analysis,

a task’s end-to-end response time upper bound can be calculated and validated

against its deadline. A schedulability metric based on the number of unschedu-

lable tasks and messages can then be yielded and used as a convenient metric

for determining the schedulability of every task mapping. The analysis serves as

the underlying evaluation mechanism that facilitates task mapping optimisation

algorithms to find a schedulable task mapping. A well-known optimisation algo-

rithm such as GA made it possible to optimise several task mappings at the same

time. At the early optimisation process, task mappings are unschedulable, but as

shown in Figure 2.8 (see line a) further optimisation improves the task mappings

to become fully schedulable.

Although, the function may seem to be useful in bringing the algorithm to a

successful convergence, it has also been reported that in some cases finding the

feasible task mapping was unsuccessful [11, 21]. This could possibly occur if some

of the shared resources are exhausted by a large number of tasks and flows to the

extent that enormous interference results because of the inefficient task mapping.

As a result, the plot in Figure 2.8 would show a line (see line b) that never touches

the 100% schedulability level. The current schedulability fitness function provides

a metric which limits the potential of a task mapping optimisation algorithm to

explore alternative task mappings. This may hinder system designers’ insight

on other task mappings, which could be better than previous task mappings.

Limited choice of task mappings may lead system designers to redesign the system

based on the understanding that the current platform is unable to achieve a fully

schedulable system. For example, the number of cores can be increased to support

hard real-time tasks and messages. The system may be easily schedulable, but

at the expense of increased complexity, area and cost.

Furthermore, in order to use the schedulability fitness function it is assumed

that the WCET of every task is known in advance, which is determinable at the
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nominal operating frequency using several well-known techniques such as [68]. It

is sufficient with the fitness function to evaluate the schedulability of the system

if the designer’s concern is about finding feasible task mappings for the system

running at that frequency only. In terms of reducing energy dissipation, it is al-

ways beneficial to create a system with lower operating frequency. Unfortunately,

with the current fitness function the potential of finding the task mappings that

could make the system schedulable is limited. Certainly, increasing the operating

frequency will make the system schedulable, but without a guarantee that the

frequency values are minimal.

5.2 Breakdown Frequency Scaling

A task is deemed unschedulable if its deadline is missed, as depicted in Figure

5.1. This could happen when, for example, a task has to wait for the execution

of higher priority tasks, messages have to travel a long path over the NoC, or

they are delayed by congestion. It may be possible to improve this condition by

increasing the operating frequency (f ′) to speed up the execution time of the task

and the transmission time of its messages. Consequently, the end-to-end response

time of the task is reduced, enabling it to meet its deadline as shown in Figure

5.2.

Figure 5.1: Response time (ri) of task i and latency (Ri) of messages at the
nominal frequency (f)

Initially, this seems like an unacceptable trade-off, since increasing the oper-

ating frequency could lead to high power consumption. Therefore, in this chapter

a new fitness function is proposed with the aim to find the minimal frequency
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Figure 5.2: Response time (ri) of task i and latency (Ri) of messages at the
increased frequency f ′

that makes the system schedulable. The minimal frequency is referred to as the

breakdown frequency and can be applied as a property for every task mapping for

facilitating the search for the schedulable task mappings. For example, the plot in

Figure 5.3 shows the breakdown frequency of the best task mapping found by the

optimisation process at each point in time (normalised to the nominal frequency

of the system). During the early optimisation process, the breakdown frequency

of the task mapping is likely to be much higher than the nominal frequency, but

nonetheless with its breakdown frequency the system becomes schedulable (un-

less there are starving tasks or messages, or the breakdown frequency is higher

than what the system can achieve). The optimisation process then tries to min-

imise the breakdown frequency so that the system can become schedulable at a

lower operating frequency. The point where the plotted curve touches the hor-

izontal line (f = 1) is equivalent to the point where the plotted line a touches

the 100% schedulability in Figure 2.8, that is, the optimisation has found a fully

schedulable mapping at the nominal frequency. From that point onwards, the

proposed fitness function allows the optimisation process to improve the map-

ping, lower its breakdown frequency even further and at the same time maintains

the schedulability.

The breakdown frequency is defined as the minimal frequency value at which

every task and flow executes on the system without missing its deadline. This

value represents a group of frequencies: one each for the processors and the NoC.

In other words, the processors and the NoC could run at different frequencies,

but we let the search algorithm to scale both frequencies at the same time with
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Figure 5.3: Advantages of using the breakdown frequency for improving task
mappings

the same multiplicative factor. We assume that the execution of tasks and flows

scales linearly with the breakdown frequency and with this assumption we ignore

the effects of memory latency and bandwidth on the processor performance [147].

The breakdown frequency is a frequency bound permitted in the system for

tasks and flows to run without missing their deadlines. Below this frequency,

some of the tasks and flows will become unschedulable in the system. On the

other hand, as mentioned in section 3.2, the worst-case execution time of a task

set and the basic latency of flows are calculated under the nominal frequency.

The breakdown frequency value could be lower, higher or equal to the nominal

frequency depending on how it scales. If the breakdown frequency is higher than

the nominal frequency, tasks and flows will perform faster than the execution

at the nominal frequency. If some of the tasks or flows in the system cannot be

schedulable at the nominal frequency, the system could make them schedulable by

running at the breakdown frequency. Conversely, the system will benefit from low

operating frequency if the breakdown frequency is below the nominal frequency.

Although, the tasks and flows execute slower than at the nominal frequency, all

tasks and flows are guaranteed to be schedulable at the breakdown frequency.

Similar to the schedulability metric (see equation 3.7), the breakdown fre-
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quency can be applied as a metric for every task mapping found during optimi-

sation. With this metric, a search-based optimisation algorithm will be able to

determine which task mapping has the potential to produce a schedulable sys-

tem with the minimal operating frequency. Usually the algorithm searches for a

group of task mappings, and needs to choose only the best task mapping from

the group. With the breakdown frequency as one of task mapping properties, the

algorithm can sequentially rank the task mappings from low to high frequency.

Then, the selection of the best task mapping is by choosing the one that meets

or comes nearest to the optimisation objective. As the optimisation progresses

over time, the task mappings will be improved, further lowering the breakdown

frequency.

It is worth noting that it is still useful for the optimisation algorithm to

determine the breakdown frequency of a given mapping even if that frequency

is infeasible for the processors or the NoC. During optimisation it facilitates the

algorithm in the task mapping selection process. In practice it helps designers to

choose the operating frequencies for the processors and the NoC, as long as the

breakdown frequency is lower than at least one of the feasible frequencies.

Taking a task mapping as input, two main steps relate to each other in finding

the breakdown frequency that will become one of its properties. These steps are

frequency scaling and schedulability analysis. Frequency scaling plays the role of

choosing a candidate frequency value from a given range of settings: a finite set

of possible frequency settings defined for the system. Following the choice of the

frequency on the system, an analysis that serves as the second step determines

the schedulability of all tasks and flows. A fitness function hereafter known as the

Breakdown Frequency Fitness Function (BFF) integrates both steps to calculate

the breakdown frequency.

Specifically, the function’s frequency-scaling step gradually scales a finite set

of frequencies until no further frequency setting is available for evaluation. The

selection of frequencies is defined between a minimum and a maximum frequency

setting, which is normally used in embedded systems. It is assumed that the

selected setting represents a set of frequencies of the processing cores and NoC.

The frequency range can be expanded or decreased accordingly prior to the op-

timisation, but remains fixed for the duration of the whole optimisation. It is
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worth noting that the function does not limit the choices of scaling algorithms,

hence any suitable algorithm capable of exploring the frequency set can also be

applied.

A binary search algorithm was chosen as the scaling algorithm in this work not

only due to its simple implementation, but also because it can halve the number

of items to check in the finding of the breakdown frequency. This reduces the

number of frequency settings to test before the breakdown frequency is found.

The frequency range is sorted in an ascending array and the scaling algorithm

starts selecting a frequency from the middle index of the array. If the selected

frequency does not make all the mapped tasks and flows schedulable then it

selects a new frequency from the sub-array on the right of the middle element

(increase). If they are schedulable, then it selects from the sub-array on the left

of the middle element (decrease). The scope of selection from the array is reduced

by shifting to the left or right sub-array. When no more scaling can be performed,

that is, the selection of the middle index returns null, the function will return the

breakdown frequency for the task mapping.

The breakdown frequency (F ′) is defined as a property (fitness) of a given task

mapping. For every task mapping, BFF calculates the breakdown frequency of

a given task mapping according to the process flow shown in Figure 5.4. A task

mapping defined as x becomes the input parameter of the function. Equation 5.1

yields the breakdown frequency as the fitness value of the task mapping.

F ′ = f(x) (5.1)

Schedulability evaluation of all tasks and flows, based on the method described

in subsection 3.3, is a repeating process performed for every selected frequency

applied to the system. The output is the number of unschedulable tasks and flows,

which indicates how schedulable the system is under the selected frequency. This

metric is useful when determining the breakdown frequency of the task mapping.

For example, if the number of unschedulable tasks and flows is zero, this indicates

that the system is schedulable and the algorithm will reduce the frequency further.

Otherwise, it will increase the frequency. If the algorithm has no further frequency

setting to evaluate, then the lowest frequency that makes the system schedulable
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Figure 5.4: Process flow of the breakdown frequency fitness function
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is returned as the breakdown frequency for the task mapping. In a case where

the breakdown frequency cannot be found (for example, because it needs a larger

setting than the available values in the frequency range), the task mapping will

be tagged to indicate that the breakdown frequency is not available from within

the specified frequency settings. Interested readers are referred to Appendix B

for the pseudo-code of the breakdown frequency fitness function.

5.3 Optimisation Objective and Solution

The optimisation process is similar to the process described in section 3.4 ex-

cept that the fitness function, the optimisation objective and the metric used to

evaluate each task mapping are different. Therefore, in this section only the dif-

ferences are explained in detail. Readers are referred to section 3.4 for a detailed

explanation of every step in the optimisation process.

The breakdown frequency fitness function does not limit the configuration of

other design parameters, but in the proposed approach only the task mapping

is considered as input. This reduces the complexity at the function side while

allowing close observation of the impact on the task mapping improvement made

by the proposed approach.

Using GA as the optimisation algorithm produces a population containing

several individuals. Evolution of these individuals happens in a number of gen-

erations. As before, the maximum number of generations is the termination

condition of the algorithm, that is, the improvement of the population stops at

this point.

As shown in Figure 3.5, individuals are refined by a set of operators over

several generations. Each operator has a specific role in the process, identical

to the evolution of living organisms in the real world. A uniform chromosome

structure as depicted in Figure 4.5 is a working unit for all the operators. With

the chromosome structure, representation of all individuals as task mapping is

described in a similar way. As in nature, a chromosome is built upon a set of

small units called genes. Each gene represents a task and contains a processing

core index (given as an integer number) to which a task should be allocated in

the system. Decoding the chromosome reveals an instruction on how to map all
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tasks onto the processing cores of the system. Interested readers are referred to

section 4.5 for further details of the structure of a chromosome.

In general, the optimisation algorithm explores the design space of the system

by selecting the best task mappings that have fitness values which match with the

optimisation objective, or at least come near to it. The optimisation objective is

to minimise the breakdown frequency of the system. As shown in equation 5.2, F ′

is the breakdown frequency of a given task mapping, therefore the optimisation

objective is given by

Obj1 = min(F ′) (5.2)

5.4 Evaluation

5.4.1 Test benches and Baselines

In this experiment work we selected ten test benches including one realistic and

several synthetic applications to study the feasibility of the proposed approach

in addressing the task mapping optimisation problem. The realistic test bench

used for this experiment was AVA (see Appendix A), and the interested readers

are referred to section 3.8.1 for further explanation on the test bench. The rest

of the test benches were synthetically created and numbered from TB-1 to TB-9

according to an increasing order of task set utilisations. Various utilisation levels

were achieved by varying the number of tasks and flows, and the execution time of

tasks. Specifically, TB-1 consisted of a task set with 625% utilisation, followed by

TB-2 (724%), TB-3 (975%), TB-4 (1125%), TB-5 (1875%), TB-6 (3850%), TB-7

(5500%), TB-8 (6500%) and TB-9 (7500%). For TB-1 to TB-5, each contained

a set of messages with 1075% communication utilisation, whilst TB-6 to TB-9

were 8488% each. Every task had a unique priority and a flow inherited the same

priority as its sending task. The test benches were mapped onto three different

sizes of platform, 4x4, 5x5 and 10x10 mesh NoCs.

The runtime of the proposed approach was expected to be longer than the

baselines due to the iterative evaluation for finding the breakdown frequency.

Based on the approach, every task mapping in a GA population must be assigned
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with a breakdown frequency fitness but depending on the size of population the

overall runtime of the optimisation process might take a significant amount of

time to complete. In order to keep the runtime of the optimisation reasonable,

only certain synthetic test benches with specific workloads were selected for the

evaluation purpose. The selection of workloads for these test benches (from TB-

1 until TB-9) were based on the performance shown by the GA used in the

previous chapters, that is in difficulty of finding a schedulable task mapping in

a 4x4, 5x5 and 10x10. The main reason is to observe how much improvement

the proposed approach can provide under these workloads. Take an example of

TB-4 test bench with total task utilisation of 1125%, which takes around 70%

of a 4x4 platform, it was difficult to find a schedulable task mapping with the

previous GA-based optimisation algorithm. We were interested to see how much

the proposed approach could improve the task mapping with the same test bench.

In order to show the improvement achieved by the proposed fitness function,

the Schedulability Fitness Function (SCF) from previous work [11] was imple-

mented to yield the schedulability metric as the property of a task mapping. An

optimisation algorithm that depends on SCF as the fitness function optimises

task mapping in a way that reduces the number of unschedulable tasks and flows

at the nominal frequency. The comparison between both optimisation algorithms

determines which of the two fitness functions provides a more useful fitness value

for task mappings: BFF which finds the breakdown frequency for a task map-

ping to become schedulable or SCF which calculates the number of unschedulable

tasks and flows at the nominal frequency.

It should be noted that the difference between the two fitness functions can

be described in terms of the fitness value yielded by each of them as follows:

• The Breakdown Frequency Fitness Function (BFF) yields the breakdown

frequency as the property of a task mapping;

• The Schedulability Fitness Function (SCF) yields the number of unschedu-

lable tasks and flows as the property of a task mapping.

The optimisation algorithm used for this experiment is based on the same

single-objective GA baseline used in section 3.8.2. GA is a meta-heuristic and,

127



5. Evaluation

based on the fitness functions, two different instances of the algorithm were cre-

ated, referred to hereafter as GA-BFF and GA-SCF. The main difference between

GA-SCF and GA-BFF is their optimisation objectives, although both have the

same main aim of producing a schedulable task mapping for the system. The

objective of each algorithm is derived from the metric of its fitness function. For

example, the objective of GA-SCF is to minimise the total number of unschedula-

ble tasks and flows, whilst the objective of GA-BFF is to minimise the breakdown

frequency of the system. GA’s basic operations are based on evolutionary prin-

ciples such as the crossover of parents’ chromosomes and the mutation of genes

to create diversity between individuals. GA’s operations demand a good setting

to perform efficiently. The same GA settings as shown in Table 3.4 were used to

configure both GAs.

5.4.2 Results

The purpose of this experiment was to demonstrate the feasibility of BFF as

a fitness function for task mapping optimisation. With the fitness function, the

optimisation algorithm will find the breakdown frequency of a given task mapping

which makes all tasks and flows fully schedulable. The experimental hypothesis

states that GA-BFF is better in finding the schedulable task mapping than GA-

SCF.

On a 4x4 platform, as depicted in Figure 5.5a, both GA-BFF and GA-SCF

could find a schedulable task mapping for AVA at the nominal frequency. Al-

though both algorithms successfully converged to 100% schedulability between

10 and 100 generations, GA-SCF’s performance was faster than that of GA-BFF.

The faster convergence shown by GA-SCF could be from the direct minimisation

of the real-time quantitative metric, which is the number of unschedulable tasks

and flows. Therefore, optimising task mappings at the nominal frequency is rather

straightforward. On the other hand, GA-BFF has a different optimisation objec-

tive from GA-SCF, which is to improve task mappings based on the minimisation

of breakdown frequency. At the beginning of optimisation, the breakdown fre-

quency is usually higher than the nominal frequency. To reach the nominal level,

GA-BFF has to scale the breakdown frequency and at the same time maintain
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(a) Schedulability (b) Breakdown frequency

Figure 5.5: Based on the mapping of AVA onto a 4x4 platform in a single run; (a)
the schedulability convergence of GA-BFF and GA-SCF at the nominal frequency,
(b) the breakdown frequency convergence of GA-BFF

the schedulability of tasks mappings in many iterations. Nonetheless, both are

comparably good at finding the feasible task mapping at the nominal frequency

and are able to converge in fewer than 100 generations. Moreover, Figure 5.5b

shows the GA-BFF convergence below the nominal level, which is a significant

improvement over GA-SCF, which could find the schedulable task mapping only

at the nominal level (see Figure 5.5a).

GA-BFF could find a schedulable task mapping if a breakdown frequency

exists. Furthermore, it facilitates the optimisation process to find the schedu-

lable task mapping at the nominal frequency early during the optimisation, as

indicated by point ’K’ on the graph depicted in Figure 5.6. This graph shows

the cumulative time difference between GA-BFF and GA-SCF to complete task

mapping optimisation in 500 generations. It is worth noting that the point ’K’

was the time taken by GA-BFF to find a schedulable task mapping at the nom-

inal frequency. The time taken was between 1000 sec and 1500 sec, above the

GA-SCF’ time (less than 1000 sec), but the difference between the two times was

less significant. However, the time overhead of the optimisation increased as the

GA-BFF continued frequency scaling for each task mapping. This is due to the
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Figure 5.6: Cumulative evaluation time between GA-BFF and GA-SCF and point
’K’ indicates the time when GA-BFF found the schedulable task mapping at the
nominal frequency, based on AVA and a 4x4 platform

iterative evaluation process of all tasks and messages during frequency scaling

until the breakdown frequency of the task mapping can be found (if it exists).

This evaluation is necessary for each selected frequency value to determine if it

could make all tasks and messages in the system schedulable. As shown in Figure

5.6, GA-BFF consumed more time than GA-SCF and the difference of cumulative

time to complete 500 generations between the two GAs is significant. However,

the rest of the time beyond point ’K’ was spent reducing the operating frequency

further below the nominal level, which is an improvement over GA-SCF.

In spite of the time overhead, GA-BFF improved task mappings by finding

their breakdown frequency to make all tasks and flows schedulable. By mapping

six test benches (TB-1 to TB-6) onto 4x4 and 5x5 platforms, the lowest breakdown

frequency of a given task mapping was recorded at each point in time (from the

1st to the 500th generation). The improvement is shown in Figure 5.7a and Figure

5.7b: in each of the graphs a horizontal black line (y = 1) is drawn to represent the

nominal frequency level. As shown in Figure 5.7a, GA-BFF has successfully found

the breakdown frequency for at least one task mapping in every generation. In

other words, it found the schedulable task mapping even during the early stage

of optimisation and the algorithm maintained its schedulability and gradually
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(a) 4x4 platform (b) 5x5 platform

Figure 5.7: Breakdown frequency convergence of GA-BFF based on the mapping
of synthetic test benches onto 4x4 and 5x5 platforms in a single run respectively

scaled down the breakdown frequency towards the nominal level.

Furthermore, when the platform size was increased to 5x5 and the same test

benches were mapped, GA-BFF successfully converged below the nominal fre-

quency as depicted in Figure 5.7b, except for TB-5 and TB-6. With a larger

platform, it was easier for GA-SCF to find the schedulable task mappings, but its

task mappings limited the schedulability of the system to the nominal frequency

only. GA-BFF offers more advantages with the breakdown frequency; all tasks

and flows of all the test benches could become schedulable while at the same

time allowing the system to execute below the nominal frequency. Similar to

the 4x4 platform at the beginning of optimisation, the breakdown frequency was

higher than the nominal level, but as the optimisation progressed, the algorithm

converged to the nominal level and subsequently fell below it. Although TB-5

and TB-6 had higher utilisation than the other test benches, a schedulable task

mapping could still be found by GA-BFF using the breakdown frequency. This

improvement shows that by using BFF as the fitness function, GA-BFF could

serve as an alternative optimisation algorithm in a case where GA-SCF has failed

to find any schedulable task mapping at the nominal frequency.

In some cases, such as when a task set with large utilisation exists, mapping
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(a) GA-SCF (b) GA-BFF

Figure 5.8: Based on two synthetic applications and a 4x4 platform; (a) GA-SCF
schedulability convergence, (b) GA-BFF breakdown frequency convergence

(a) GA-SCF (b) GA-BFF

Figure 5.9: Based on two synthetic applications and a 5x5 platform; (a) GA-SCF
schedulability convergence, (b) GA-BFF breakdown frequency convergence

132



5. Evaluation

it to smaller platforms using GA-SCF makes the system hardly schedulable. As

an example, this can be shown using two synthetic test benches (TB-4 and TB-

6), with each mapped onto a 4x4 or 5x5 platform respectively. The results in

Figure 5.8a and Figure 5.9a show how many tasks and flows were schedulable

with GA-SCF. In Figure 5.8a, GA-SCF mapped the TB-4 task set with less than

80% schedulability and the TB-6 task set with less than 35% at the nominal

frequency. For a hard real-time system, achieving 100% schedulable tasks and

flows is essential to ensure that the predictability of the system is maintained, but

in this case GA-SCF’s task mappings are considered infeasible for the system. On

the other hand, GA-BFF provides a better way of improving the task mapping

optimisation process through the minimisation of the breakdown frequency. If

the breakdown frequency can be found, GA-BFF will be able to maintain the

schedulability of the task mapping at the same time as gradually reducing the

frequency as the optimisation progresses to the last generation. The plot depicted

in Figure 5.8b shows how GA-BFF converged; although above the nominal level,

its task mapping at each point in time is feasible for the system.

It should be noted that a 5x5 platform provides a larger number of processing

elements than a 4x4 platform, reducing the number of shares in a single processor

and at the same time increasing the probability of a low-priority task evading in-

terference. As the result, GA-SCF successfully converged to 100% schedulability

for the TB-4 test bench as depicted in Figure 5.9a. With a larger platform, the

mapping was less difficult for GA-SCF, but its task mappings were only usable at

the nominal frequency. In fact, GA-SCF failed to find any feasible task mapping

for TB-6. GA-BFF addressed this optimisation problem by finding the break-

down frequency to improve the task mappings and make them feasible for the

system. As shown in Figure 5.9b, the algorithm converged below the nominal

level for TB-4 and slightly above the level for TB-6.

GA-BFF’s performance is consistent when mapping a group of test benches

(TB-7, TB-8 and TB-9) with high utilisation onto a 10x10 platform. The results

depicted in Figure 5.10a show that GA-SCF failed to find any schedulable task

mapping for the system, even on a platform with a greater number of processing

elements than on 4x4 and 5x5 platforms. Conversely, GA-BFF showed better

performance, outperforming GA-SCF, as depicted in Figure 5.10b. Based on the
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(a) GA-SCF (b) GA-BFF

Figure 5.10: Based on synthetic test benches and a 10x10 platform; (a) GA-SCF
schedulability convergence, (b) GA-BFF breakdown frequency convergence

breakdown frequency, the system can become schedulable with the given task

mapping, even though the frequency is above the nominal level. The results

presented in this section suggest that GA-BFF is better in finding schedulable

task mappings than GA-SCF for the given test benches, and this validates the

experimental hypothesis stated earlier in this chapter.

5.5 Summary

Infeasible task mappings from an optimisation process can be improved if the

breakdown frequency that makes all tasks and messages schedulable is found.

Scaling the frequency with the intention of finding the frequency, however, is not

a simple matter due to the fact that different task mappings introduce various

interference patterns, affecting the response time of each task and message. With-

out an appropriate frequency-scaling technique suitable for hard real-time task

mapping optimisation, merely lowering the frequency will only increase the exe-

cution time of tasks and the latency of messages. This may delay the end-to-end

response time and consequently shift the system into becoming unschedulable.

Conversely, increasing the frequency could easily make the system schedulable,
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but only, at the expense of higher energy dissipation. The minimal frequency at

which the system could become schedulable is essential for the system to avoid

unnecessary any increment of the operating frequency. For this purpose, a new

fitness function based on the notion of breakdown frequency is proposed to ad-

dress the task mapping optimisation problem. The breakdown frequency can be

used as a new metric for hard real-time task mapping optimisation to search for

the schedulable task mappings. If the breakdown frequency can be found for a

given task mapping, the system will definitely be schedulable at the early stage

of optimisation. This will save exploration time and help early design decisions,

especially if the optimisation algorithm successfully converges below the nominal

frequency at the early stage of optimisation. Conversely, if a feasible task map-

ping cannot be found at the nominal frequency, the task mapping can be improved

by applying the breakdown frequency to make all tasks and messages schedula-

ble. The minimal frequency is further reduced as the optimisation progresses,

providing a potential for reducing power consumption. Although task mapping

optimisation could reap the benefits offered by the new approach, the process of

finding the breakdown frequency is still an iterative operation. Every time a new

frequency is applied, all tasks and messages need to be evaluated to determine

their schedulability, and this increases the run-time of the optimisation.
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Chapter 6

Constructive Algorithm for

Mapping Hard Real-Time Tasks

From the results presented in the previous chapters, GA-based optimisation al-

gorithms have been proven to be efficient techniques for finding a schedulable

task mapping for a NoC-based hard real-time system. The algorithm’s adaptive

feature enables the simultaneous configuration of multiple design parameters and

the integration of several fitness functions for addressing multi-objective optimi-

sation problems. Devising different exploration strategies is an effective way of

addressing the optimisation problems in the designs of such systems. However,

GA’s characteristic which gives the advantage of exploring a large design space de-

pends on the size of the population. A large population provides better diversity

among individuals. It helps the search for a schedulable task mapping to become

more effective, but in return increases the number of evaluations that need to be

performed during optimisation. As a result, the algorithm needs significant time

to find the schedulable task mapping. In this chapter, a new constructive map-

ping algorithm is presented to find the task mapping. Unlike GA which depends

on a large number of individuals to search for the task mapping, it constructs a

task mapping based on specific design properties. This approach avoids evaluat-

ing many solutions in a single run, and thus reduces the amount of time needed

to find the task mapping.

This chapter is organised as follows: section 6.1 explains the motivation of
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the proposed approach and section 6.2 describes in detail how the constructive

algorithm performs task mapping. Section 6.3 discusses some of the results from

the experimental work. Finally, section 6.4 summarises the proposed approach.

6.1 Motivation

In the previous chapters (Chapters 3, 4 and 5) GA-based optimisation algorithms

have been used to address the single and multi-objective optimisation problems

in finding a fully schedulable task mapping for the hard real-time embedded sys-

tem based on NoC. The algorithms rely on the end-to-end schedulability analysis

to evaluate the schedulability of all tasks and messages in the system. The re-

sults depicted in Figure 4.6a are one example of how the algorithms found fully

schedulable task mappings with low power dissipation from the design space of

the system.

The evolution of individual genetics has been the underlying notion that sup-

ports the implementation of the evolution process in the algorithms; enabling the

exploration of task mapping in a similar way to the evolution of a population. In

order to enable exploration in a wide area of the design space, the algorithms rely

on the diversity of individuals in the population. A large population increases the

diversity, but at the expense of long optimisation run-time since the algorithm has

to evaluate a large number of individuals. Conversely, the population becomes

less diverse with a decreased population size and the tendency of converging to

the unschedulable task mapping is high.

To support the evaluation of a large number of solutions, a fitness function

that requires less computation time to yield a single fitness value is desirable.

Without this kind of fitness function, the optimisation run-time of the algorithm

will easily escalate. However, creating a fitness function that requires less time

complexity is not a simple matter as the sizes of task and message set also af-

fect the evaluation time. For example, to validate the system as deemed to be

schedulable requires that every task and message is explicitly analysed by the

function and thus the number of iterations increases with the number of tasks

and messages. The time complexity of the function is exacerbated by the amount

of direct and indirect interference that must also be calculated to yield the worst-
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case end-to-end response time. If the same analysis is applied together with other

equations to calculate a different metric, it will further increase the evaluation

time of the fitness function. Figure 5.6 shows how much difference there was in the

times of two different fitness functions which depended on the same schedulability

analysis when they were used within the same optimisation algorithm.

6.2 Constructive Task Mapping Algorithm

This section introduces the Constructive Mapping Algorithm (CoA) by giving an

insight on how it constructs a task mapping for the NoC-based hard real-time

system. Based on the listing shown in Figure 6.1, the flow of the algorithm can

be divided in three main steps as follows:

• First step : mapping a set of tasks to containers

• Second step : mapping containers onto NoC platform

• Third step : evaluate schedulability of all tasks and messages

Before introducing all the steps, it is worth explaining what a container means

in this section. We assume a container as a virtual processor and has a total size

equivalent to a fully utilised processor. It can contain one or more items depend-

ing on the size of the items. A task consumes a portion of processor computation

time, similar as an item filling a space of a container. Therefore, stacking items

into containers in a sense analogous to mapping tasks onto processors. By rep-

resenting processors as containers gives a degree of freedom for task allocation

and also for rearranging containers after the allocation. For example, based on

the processor utilisation, the current task with the highest utilisation level is allo-

cated to the container with the least utilisation level. Then, all the containers are

rearranged in ascending order to determine the new container with the least util-

isation level. In addition, by doing this also allows the analysis of schedulability

for all tasks prior of mapping the containers onto the NoC platform.

In the first step, the tasks of a given task set are mapped onto a set of

containers. A container is selected for a task based on the container utilisation
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1: procedure SchedulabilityTest(Application application, P latform platform)
2: Integer Ut = 0
3: Integer Uf = 0
4: for each taski in application do
5: if PassSchedulabilityTest(taski, platform)! = true then Ut = Ut+ 1
6: end if
7: end for
8: for each msgi in application do
9: if PassSchedulabilityTest(msgi, platform)! = true then Uf = Uf + 1

10: end if
11: end for
12: return Ut+ Uf
13: end procedure
14: procedure MappingToContainer(Application application, P latform platform)
15: ArrayList taskList = CreateTaskList(application)
16: ArrayList containerList = CreateContainer(platform)
17: SortTaskUsingUtilisation(taskList)
18: for each taski in taskList do
19: AllocateLeastUtilisedContainer(taski, containerList)
20: SortContainer(containerList)
21: end for
22: return containerList
23: end procedure
24: procedure MappingToPlatform(ArrayList containerList, P latform platform)
25: SortContainerUsingOutgoingMessages(containerList)
26: for each containeri in containerList do
27: AllocateLongestEuclideanDistanceNode(containeri, platform)
28: end for
29: return platform
30: end procedure

Figure 6.1: Constructive mapping algorithm pseudo code
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and the schedulability of all the tasks, including the one that will be mapped and

the existing tasks in the container. In order to do this, the utilisation of each task

must be calculated before mapping. If the task interconnects with other tasks,

the utilisation of message on a link is required. Once the two values available

for each task and its corresponding message, the summation of both values yield

the total utilisation of the task. Based on this attribute, the task set can be

sorted in descending order, with the top in the set is a task with the highest

total utilisation. Our intention is to select a task from the highest to the lowest

utilisation. This way a task that has a high computation and communication

volume is allocated first to a container. If tasks with low utilisation are allocated

first, then the containers will have less space by the time the turn of tasks with

high utilisation arrives.

A selected task from the ordered set is allocated to a container with the least

utilisation. One of the reasons is to give it a high chance of allocation to the

container, that is, if the utilisation of the selected container is already high then

the container probably cannot accommodate the task, especially if the task has

high utilisation. Another reason why tasks are allocated this way is to avoid so

many tasks allocated to one container, otherwise, it is likely that tasks which

are already in the container will experience high interference. For example, a

container may have high utilisation because it is packed with a lot of tasks and

these tasks, depending on what priority levels they have, will receive interference

from high priority tasks. On the other hand, a container might be full because

it contains a task with high utilisation, but by first allocating tasks with high

utilisation the interference in the container could be lessen. However, having a

container with only a task is less efficient, considering it can accommodate more

tasks if it has enough space. Since interference will affect the schedulability of

every task in a container, their schedulability is tested along with the given task

as if they have been all allocated to the container.

In the second step, tasks in all the containers are mapped onto the platform.

All the tasks from the same container are mapped onto the same core. The

allocation of container on the platform depends on another attribute known as

the Euclidean distance: the distance between two cores in the NoC platform.

Before any allocation is performed by the latter process, the containers are sorted

140



6. Constructive Task Mapping Algorithm

according to their number of outgoing messages. At this stage, whether a task

will need to send a message can be determined, that is, if two interconnected tasks

are mapped into the same container, messages will not be sent between the two

tasks over the network. Based on the number of messages, containers are sorted

in descending order; the container with the highest number of messages becomes

the top in the list of containers. The purpose of sorting in this order is to allow

the mapping of containers, which sends high number of messages, away from

each other. Starting with the container at the top of the list, this process maps

the tasks of the container onto the farthest core in the platform from the recent

mapped core, consecutively until the last container. The benefit of mapping the

containers this way is to avoid tasks that are mapped onto different cores but are

not communicating with each other from being closely mapped in the same area,

the idea is to lessen the interference in the shared network resources. This kind of

mapping is targeted for cores with less or no communication between them, but

need to send messages through the network resources. In future, we will improve

the mapping of cores with high communication volume between them.

In the last step, the schedulability of all tasks and messages are evaluated to

determine the fitness of the task mapping. At this research stage, the purpose

of CoA is to construct a task mapping in a single run based on the properties

explained in the following sections. Several repetition of the constructive map-

ping process by using different ways of mapping the tasks, if a schedulable task

mapping cannot be found, is possible. However, this require integration of other

rules and properties with the flow of the algorithm to create different kind of

mappings. In future work, this kind of techniques will be considered.

6.2.1 Main Function

This section explains the entry point of the constructive mapping algorithm, as

shown in Figure 6.2.

The main function receives two inputs: an application object consisting a

set of tasks and a platform object consisting a NoC platform. In the function,

a task mapping is constructed in two steps and then tested to determine its

schedulability.
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1: procedure Main(Application app, P latform plat)
2: ArrayList containerList = MappingToContainer(app, plat)
3: Platform mappedP latform = MappingToP latform(containerList, plat)
4: Integer totalUnschedulable = SchedulabilityTest(app, mappedP latform)
5: end procedure

Figure 6.2: Constructive mapping algorithm example

The MappingToContainer function (line 2, Figure 6.2) sorts the task set ac-

cording to the utilisation order before each task is pushed into a container. A

list of containers is created to represent all the processing nodes in the platform

and thus the number of containers in the set is equivalent to the number of pro-

cessing nodes. The notion behind the first step is finding an allocation of tasks

in the containers, starting from a task with the highest utilisation down to that

with the lowest utilisation, without exceeding the specified utilisation of each

container. After all tasks have been allocated to containers, the function returns

the container list.

The MappingToPlatform function (line 3, Figure 6.2) receives the container

list returned by function MappingToContainer and performs the second step by

first sorting the container list in ascending order according to the volume of

outgoing messages sent by the tasks in every container. Second, it maps all tasks

in every container onto the processing nodes of the NoC platform starting from

the container with the highest number of outgoing messages to the farthest node

from the latest mapped node.

Once all tasks have been mapped onto the platform, the SchedulabilityTest

function (line 4, Figure 6.2) will analyse all tasks and messages of the applica-

tion to determine their schedulability. This function calculates the number of

unschedulable tasks and messages as the fitness of the task mapping.

In the following sections, the details of each function are explained in more

detail.

6.2.2 SchedulabilityTest Function

The SchedulabilityTest function (line 1, Figure 6.1) receives an application and

a platform objects as inputs and evaluates the schedulability of every task and
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message. After evaluating all tasks and messages in the application, the number

of unschedulable tasks and messages is calculated and returned as the function’s

output. This return value is the result that helps to determine how schedulable

the system is with the task mapping.

In the PassSchedulabilityTest procedure, the worst-case response time of

task i is calculated using equation 3.1 and then, with equation 3.5, its schedula-

bility is analysed. If the task is unschedulable, the procedure returns false and

the Ut variable is increased by one. Similar to the evaluation of tasks, every

message is analysed by calculating its worst-case latency based on equation 3.4

and then comparing this with its deadline using equation 3.6. If the message is

unschedulable, the Uf variable is increased by one. Then, the cumulative value

of all unschedulable tasks and flows is given by the summation of the variables

and returned as the function’s output (line 12).

6.2.3 MappingToContainer Function

The MappingToContainer function determines the allocation of tasks in a set of

containers based on task utilisation. For this purpose, a task list and a container

list must be created respectively from the application and platform objects which

it receives as inputs. The task list contains all the tasks extracted from the

application object (line 15, Figure 6.1). Based on the number of processing cores

in the platform object, the same number of containers is created at line 16.

At line 17, the task list is sorted by the heuristic sorting procedure called

SortTaskUsingUtilisation. This procedure sorts the task list according to task

and message utilisation. The utilisation of task i is computed using equation

6.1, where ci and ti are the worst-case execution time and the period of task i

respectively. At this stage, the full routes of messages are yet to be determined.

It should be noted that the routes of all messages can only be determined after

all tasks have been mapped on the platform, and therefore the utilisation of each

message on all links (or complete path) cannot be calculated by this function.

Instead, the utilisation of each message is computed as a single-hop utilisation

based on equation 6.2. Given the size of packet i as PacketSizei and its period

Ti, the utilisation of message i is given by equation 6.2. Then, the summation
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of both utilisations can be calculated with equation 6.3, which is the property

used by the sorting algorithm to sort all tasks in the list. The list is sorted in

descending order. At the top of the list is the task with the largest utilisation

followed by the next task with the second largest utilisation and so on until the

last task with the least utilisation comes at the end of the list.

Util ti =
ci
ti

(6.1)

Util fi =
PacketSizei

Ti
(6.2)

Util Totali = Util ti + Util fi (6.3)

Util Totali + Util Containerj ≤ Util Max (6.4)

After all tasks have been sorted in the list, a task is selected from the top

of it to become a candidate for one of the containers (line 19). This operation

is performed by the procedure AllocateLeastUtilisedContainer, which receives the

task and the list of containers as inputs. All the containers are checked according

to the conditions for every task that is given as input and a container that meets

the conditions will become the container for the task. The first condition, as

shown by equation 6.4, is true if the total utilisation of the container and the

task does not exceed the maximum utilisation of the container. Any container

that does not meet this condition is excluded from the selection.

Following the first condition, the procedure checks the remaining containers

according to the second condition. The second condition states that the least

utilised container with the highest schedulability percentage will be selected as

the container of the given task. In other words, the second condition refers to

the schedulability percentage first before deciding which container has the least

utilisation among them. For example, in Figure 6.3, container C2 is selected

for task T1 rather than container C1, even though the latter container has the

lowest utilisation. In order to follow the second condition, each of the remaining
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containers is evaluated by analysing the schedulability of all the existing tasks

in the container and the task that is going to be pushed into it. It should be

noted that the maximum utilisation of each container can be defined as 100%

(full utilisation) or any reasonable percentages, for example 80% or 90%. Once

all tasks have been allocated to the containers, the container list is returned as

the output of the MappingToContainer function.

Figure 6.3: Mapping tasks to containers based on task utilisation and the schedu-
lability inside the containers

6.2.4 MappingToPlatform Function

Given a list of packed containers and the NoC platform as inputs, the func-

tion MappingToPlatform allocates the tasks in the containers onto the process-

ing nodes of the platform. First, at line 25 Figure 6.1, the procedure SortCon-

tainerUsingOutgoingMessages sorts the container list according to the number of

outgoing messages from each container. The container with the highest number

of outgoing messages leads the container list, followed by the second container

and so on until the last container with the lowest number of outgoing messages.
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In the next step, once the sorting has been completed, tasks from the first

container in the list are mapped onto the first processing node in the platform.

Unlike the first container, the mapping of the rest in the list is determined based

on the Euclidean distance from the recent mapped node. Given the location of

a source node (xs, ys) and a destination node (xd, yd), the Euclidean distance

between the two nodes can be calculated using function 6.5. A processing node

is restricted to one container only; once a container has been mapped it will be

excluded from the list to prevent it from being reused.

Euclidean distances,d =
√

(xd − xs)2 + (yd − ys)2 (6.5)

The mapping step is performed by the procedure AllocateLongestEuclidean-

DistanceNode at line 27. For every container except the first one in the container

list, the function calculates the Euclidean distance from the recent mapped node

to another node which is still available in the platform, as shown in Figure 6.4.

From the figure, the Euclidean distance between the recent mapped node (1, 1)

and the available node (3, 3) is 2.82. Given a container, the Euclidean distances

to all available nodes are calculated from the recent mapped node, excluding any

node that has already been allocated to a container.

A set of free nodes with varying Euclidean distances may be available for

a container at the same time. It is the aim of the algorithm to disperse the

interference in NoC by mapping containers with the highest number of outgoing

messages far away from each other. Therefore, a node with the longest Euclidean

distance will be selected as the node where the tasks from the container will be

mapped. If more than one free nodes with the same Euclidean distance exist at

the same time, the function selects the first node that it finds with the longest

distance. The function returns once all tasks from the containers have been

mapped onto the platform.
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Figure 6.4: Mapping tasks from containers to NoC platform based on the number
of outgoing messages and Euclidean distance between two nodes

6.3 Evaluation

6.3.1 Test benches and Baselines

Several sets of synthetic test benches and three different platform sizes, 4x4, 5x5

and 10x10, were used in this study. For every platform, a set of test benches was

generated in the same way as explained in section 3.8.1. Some of the synthetic test

benches in the sets were similar with the synthetic test benches used in section

3.8.1, but each set contained a greater number of test benches than the test bench

sets used in that section because the experimental work in this chapter required

more utilisation range to prove the hypothesis. The last test bench in every set

contained the maximum utilisation equivalent to the maximum utilisation of all

cores in the platform. For example, on a 4x4 platform, the maximum utilisation

of all cores was 1600%. In addition to the synthetic test benches, a test bench

known as AVA (see Appendix A), similar as the realistic test bench explained in

section 3.8.1 was again used in this study.

For this study, a single-objective GA and a Random Mapper (RN) were used

as baselines. The multi-objective GA such as MOGA was not selected because

our aim was to study how the CoA can produce a schedulable task mapping

(because it was designed for schedulability and not power dissipation) and the
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suitable baseline for comparison is the single-objective GA. The GA used in this

study is the same baseline algorithm as what we used in section 3.8.2 and the

RN is the same algorithm explained in section 4.7.1. GA is classified as a meta-

heuristic and thus the general time complexity that applies to all the genetic

algorithms is difficult to find. Instead, it is common to use the convergence rate

to measure how fast it finds the solution. For example, in the results section of

the previous chapters, the number of generations is used to show the algorithm’s

convergence to a fully schedulable task mapping. Conversely, CoA is a determin-

istic algorithm which iterates once in every execution, thus it is different from

GA which performs in several iterations (or generations). In order to compare

the run-time performance of both algorithms in performing task mapping, the

cumulative time of finding the best task mapping was calculated. For GA, it

is the total time to find the first schedulable task mapping or, if the mapping

cannot be found, it is the time taken to perform every generation. Since CoA

only found a task mapping in each execution, it is the time taken to produce the

task mapping itself.

6.3.2 Results

CoA is proposed to serve as an alternative heuristic for producing a schedulable

task mapping but without requiring a population of individuals as GA does to

explore task mappings. As mentioned in the motivation section of this chapter,

the optimisation run-time can be affected by the number of evaluations performed

by GA, depending on how many individuals are contained in the population. The

problem is further exacerbated if the fitness function which evaluates every indi-

vidual consumes a large amount of time to yield a single fitness value, increasing

the total time taken to optimise a single parameter.

It should be noted that the natures of the two algorithms are different, influ-

encing the way of finding a schedulable task mapping. For example, GA finds the

task mapping by evolving many individuals in the population over generations:

an ability that helps to simultaneously explore many alternative solutions. Unlike

GA, CoA is less dependent on many solutions, instead it constructs a task map-

ping based on the specific properties of a task set, reducing the exploration effort
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and thus offering the potential to apply a computation-intensive fitness function.

As an optimisation algorithm, it has been proven that GA is a good option for

addressing the design space exploration problems and finding the task mappings

effectively. At the same time, CoA could become an alternative approach if

the search effort depends on computation-intensive fitness functions that require

more time to evaluate, which is a hurdle for optimisation techniques based on

GA which depend on many individuals. This experiment was conducted to study

the performance of CoA: if it is not similar, to what extent can it produce a

schedulable task mapping compared with GA.

Figure 6.5, 6.6 and 6.7 shows the schedulability percentages achieved by CoA

and the baselines. The figures also display the cumulative execution time taken by

CoA for creating a task mapping and by GA for finding the first schedulable task

mapping. If a schedulable task mapping is not found until the last generation, the

cumulative time of GA includes the total time to complete all the generations.

It is worth noting that CoA is our early version of the constructive mapping

algorithm. It builds a task mapping based on certain properties in a single run,

unlike GA that has established and can explore many task mappings, the way of

the task mapping can be changed by CoA is limited. With the early version of

CoA we expected that achieving the same level of performance as GA is difficult.

Therefore, we aimed for a task mapping with better schedulability than a random

task mapping, but the difference in performance as compared with GA must not

less than 50%. The main advantage of CoA is its fast execution time because it

does not need to evaluate many task mappings in a single run. If the difference

between the execution time of CoA and the GA is significant, it could be implied

that CoA has a margin for improvement in the next version (for example, by

adding evaluation functions to improve mapping).

Figure 6.5a displays the mapping results on a 4x4 platform. At each utilisa-

tion level, the graph shows the schedulability percentage of the system based on

the task mapping produced by CoA and the baselines (RN and GA). For GA,

the selected task mapping displayed on the graph was the first schedulable task

mapping found during optimisation, whereas CoA and RN only produced a single

task mapping each in every execution. The level of schedulability of CoA started

to drop below 100% at 35% utilisation, whereas GA recorded a drop at 60% util-
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(a) Schedulability (b) Cumulative time

Figure 6.5: Based on a 4x4 platform; (a) schedulability convergence of CoA and
the baselines, (b) the cumulative time to perform task mapping

isation. Although CoA performed less than GA when the level of utilisation was

above 35% utilisation, at levels below 35% utilisation both algorithms produced

similar performance, that is, a fully schedulable task mapping was found. The

value of 50% from the recorded GA performance (60% utilisation) is 30%, and

hence at 35% utilisation CoA has achieved the target we set earlier. In addi-

tion, Figure 6.5b shows that CoA took less execution time than GA to produce

a schedulable task mapping.

On a 5x5 platform, CoA showed a similar performance pattern to that on

the 4x4 platform. As depicted in Figure 6.6a, the performance of CoA started

to drop after reaching 30% utilisation compared with GA at 50% utilisation, but

was better than the random mapper. At 30% utilisation, CoA has achieved the

target we set earlier, more than half of 50% utilisation of GA. As shown in Figure

6.6b, CoA maintained the same performance as for the 4x4 platform by executing

in less time than the GA.

Again, CoA showed a drop in schedulability at 20% utilisation on a 10x10

platform compared with GA at 30% utilisation. These results are depicted in

Figure 6.7a, which also displays the worst performance by RN compared with

CoA. Similar as in the 4x4 and 5x5 platforms, CoA achieved the target we set
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(a) Schedulability (b) Cumulative time

Figure 6.6: Based on a 5x5 platform; (a) schedulability convergence of CoA and
the baselines, (b) the cumulative time to perform task mapping

(a) Schedulability (b) Cumulative time

Figure 6.7: Based on a 10x10 platform; (a) schedulability convergence of CoA
and the baselines, (b) the cumulative time to perform task mapping
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earlier at 20% utilisation, which is more than 15% difference in utilisation (50%

out of 30% utilisation). Figure 6.7b depicts the cumulative time of both CoA and

GA, and it shows that CoA’s cumulative execution time was lower than that of

GA.

The previous results depicted in Figures 6.5a was based on the increase of

task utilisation, but message utilisation was constant at 3% utilisation. There-

fore, further investigation was conducted to study the impact of increased mes-

sage utilisation. From 3%, message utilisation was gradually increased to 20%

and 50% utilisation. For this investigation, task utilisation was fixed at 20% of

a 4x4 platform. Figure 6.8a shows the results of mapping for CoA and the base-

lines (GA and random mapping). From the results, CoA and GA both found

a schedulable task mapping at 3% message utilisation. With increased message

utilisation at 20% and 50%, both algorithms failed to find any schedulable task

mapping, although GA’s task mapping had better schedulability than CoA’s task

mapping. In all the utilisation levels, RAN produced task mappings with lower

schedulability than CoA.

(a) 4x4 platform (b) 5x5 platform

Figure 6.8: Task mapping results on 4x4 and 5x5 platforms based on different
levels of message utilisation

Figure 6.6a shows results of task mapping on the 5x5 platform with message

utilisation was fixed at 2% utilisation. Starting with 2% message utilisation,

Similar as the 4x4 platform, task utilisation was fixed at 20% and the message
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utilisation was gradually increased to 20% and 50% utilisation. The mapping

results are shown in Figure 6.8b for CoA and the baselines. At 2% utilisation,

both CoA and GA were able to find a schedulable task mapping. However, at

higher utilisation levels (20% and 50%) neither algorithm found any schedulable

task mapping, although GA produced task mappings with better schedulability

than CoA. CoA outperformed RAN at all utilisation levels except at the 50%

utilisation, where the performances of both algorithms were recorded as similar.

The graph depicted in Figure 6.7a shows the results of task mapping on a

10x10 platform, by gradually increasing task utilisation while message utilisation

was constant at 1%. Similar as the 4x4 and 5x5 platforms, further investigation

on the 10x10 platform was conducted to study the effects of increased message

utilisation on task mapping. From 1%, message utilisation was increased to 15%

and 50%. For the 10x10 platform, the amount of task utilisation was fixed at 15%

utilisation. Figure 6.9 shows the results of mapping on the 10x10 platform. CoA

and GA each produced a schedulable task mapping at 1% utilisation. However, at

the 15% and 50% utilisations, both failed to find any schedulable task mapping,

although GA produced a task mapping with higher schedulability than CoA.

CoA outperformed RAN, which failed to find any schedulable task mapping at

all utilisation levels.

Figure 6.9: Task mapping results on a 10x10 platform based on different levels
of message utilisation
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Table 6.1: Selected percentages of utilisation for studying the effects of varying
message utilisation on task mapping

Platform Task utilisation9 Message utilisation10

4× 4 20% 3%
20%
50%

5× 5 20% 2%
20%
50%

10× 10 15% 1%
15%
50%

The study of the effects on task mapping based on the increases in the message

utilisation was limited to certain percentages due to the time constraint of this

study. Constant task utilisation at 20% for each of the 4x4 and 5x5 platforms and

15% for the 10x10 platform were selected based on the results depicted in Figure

6.5a, 6.6a and 6.7a. From the figures, the selected percentages were the point

where CoA could find a schedulable task mapping right before the schedulability

started to drop. The study began from the corresponding levels of message util-

isation (3% for the 4x4 platform, 2% for the 5x5 platform and 1% for the 10x10

platform) of the selected task utilisation, followed by the intermediate (15% and

20%) and the high (50%) percentages of message utilisation. The intermediate

message utilisation (20% for the 4x4 and 5x5 platforms, and 15% for the 10x10

platform) were for studying the effects on task mapping when tasks and messages

had equal utilisation. Table 6.1 displays the summary of the selected task and

message utilisation for the study.

In addition to the synthetic test benches, the AVA test bench as used in the

previous experiment was used again to study the performance of CoA in mapping

a real application. CoA showed equal performance to GA, since both algorithms

found a fully schedulable task mapping. This is clearly depicted in Figure 6.10,

which also shows that CoA outperformed RN; the latter algorithm only achieved

9Task utilisation were selected from results depicted in Figure 6.5a, 6.6a and 6.7a
103%, 2% and 1% were the corresponding message utilisation of the selected task utilisation

for the 4x4, 5x5 and 10x10 platforms respectively
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Figure 6.10: Schedulability of AVA on a 4x4 platform with CoA, GA and RN
task mappings

Figure 6.11: Time taken by CoA, GA and RN to find a schedulable task mapping
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60% schedulable tasks and messages in the system. Although both CoA and GA

exhibited the same performance, the former algorithm took less time to perform

task mapping compared with GA. As depicted in Figure 6.11, the difference in

time between the two algorithms is significant, which shows how much time can

be saved to achieve the same result.

6.4 Summary

CoA is proposed for creating a schedulable task mapping without requiring an

extensive amount of evaluation effort. Its approach is different from that of GA,

which depends on a group of individuals to explore and improve task mappings.

With CoA, a task mapping is constructed rather than explored, which allows it

to avoid evaluating so many solutions. Based on specific attributes such as the

utilisation of a task set, task schedulability and the number of outgoing messages,

finding a schedulable task mapping without consuming a lot of computation time

is possible. In particular cases, finding the schedulable task mapping with CoA

is difficult, such as when the utilisation of a task set is high. Although its perfor-

mance in this respect was less than what has been achieved by well-established

GA, we imply that it has the potential for further improvement in the future.

This is based on our finding from the mapping of AVA test bench. CoA showed

that it could find a schedulable task mapping as the GA, but in less time than

what was taken by the latter algorithm. Further evaluation with the synthetic

test benches revealed its true potential by successfully achieving our target for

the early version. Since CoA did not consume a lot of computation time, it could

be extended with additional evaluation functions to improve the quality of task

mapping that it produces.
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Conclusions

NoC is seen as a reliable communication infrastructure for hard real-time em-

bedded systems. A hard real-time embedded system based on NoC has stringent

timing constraints that must be met in any scenario, otherwise the system can-

not be guaranteed to be schedulable. Task mapping determines how tasks are

mapped on the NoC platform and could affect the schedulability of the system.

Exploring task mappings which keep tasks and messages schedulable is challeng-

ing because other parameters have influences on the schedulability. In addition,

finding schedulable task mappings must also consider other constraints that are

crucial to the system performance. In this thesis, the task mapping optimisation

problems have been successfully addressed based on different approaches. This

chapter concludes the research findings and provides some suggestions for possible

future works.

7.1 Review of Research Findings

In Chapter 1 the following proposition was stated:

A schedulable task mapping can be found for NoC-based hard real-time

embedded system

This proposition has been proven by a series of experimental results developed

through Chapters 3, 4, 5 and 6.
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Feasible task mappings for NoC-based hard real-time embedded systems are

hard to find if low-priority tasks and messages receive high interference which

leads to them becoming unschedulable. In a system with a fixed priority pre-

emptive policy, low-priority tasks and messages are pre-empted to make sure

that their high-priority counterparts have guaranteed access to shared resources.

This scheduling policy is essential to ensure the predictable behaviour of the

system, but it imposes interference on low-priority tasks and messages. The hard

real-time requirements dictate that the system is deemed schedulable only when

all tasks and messages meet their timing constraints in any scenario. In order

to meet the requirements, the interference imposed on low-priority tasks and

messages should be reduced, but without sacrificing the level of services received

by their high-priority counterparts. To address this problem, the simultaneous

configuration approach has been proposed in Chapter 3 based on the notion that

changing the priority assignment could lessen the interference suffered by the

low-priority tasks and messages of a given task mapping. With the approach,

task mapping and priority assignment are simultaneously configured during the

optimisation process. From the results of the experiments carried out, it has

been proved that the approach addresses the problem effectively and offers other

advantages as well. Briefly, it produced feasible configurations which enabled the

system to meet the timing constraints of all tasks and messages, as opposed to

the baselines which failed to achieve the same result using similar test benches.

In addition, it improved the convergence of the optimisation algorithm to become

faster than the baseline heuristics.

In Chapter 4, a multi-objective optimisation technique was proposed to ad-

dress the problem of conflicting objectives in NoC-based hard real-time embedded

system designs. The power dissipation problem affects the design of such systems.

For example, mapping tasks closer to each other might reduce the energy foot-

print in the network, but it will also be likely to increase the interference between

tasks, delay their response time and lead to the system becoming unschedulable.

These constraints are made as a list of objectives that must be achieved in designs.

Focusing on one design objective but ignoring the others hides their impacts from

system design, whereas simply aggregating both objectives into one objective im-

poses bias on the solutions. The conflict between these objectives made them
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challenging to address through single objective optimisation techniques. In the

multi-objective optimisation technique, the Pareto-optimal concept underlying

the optimisation process provided an effective means of addressing the conflicting

objectives by considering the trade-off between them. With the multi-objective

optimisation algorithm, task mappings were improved better than the task map-

pings of the single objective optimisation algorithm. The results suggest that the

proposed multi-objective optimisation technique is more effective than the single-

objective optimisation technique at finding fully schedulable task mappings with

low power dissipation.

In some cases, a task mapping that makes the system schedulable is hard to

find. Improving the task mapping is challenging because of the limited informa-

tion provided by the schedulability metric. As a result, this limits the potential

of the optimisation algorithm to find alternative task mappings that might be

schedulable. Based on the idea of increasing the frequency to speed-up the com-

putation of tasks and the communication of messages, a fitness function was

proposed in Chapter 5 to calculate a new metric called the breakdown frequency,

which can be applied as a property of a task mapping. The breakdown frequency,

if it exists, is the minimal frequency at which all tasks and messages in the system

can become schedulable. Finding that frequency, however, is not a simple matter.

For example, increasing the frequency will make the system easily schedulable,

but it may not be the minimal frequency for the system. Instead, the proposed

fitness function finds the minimal frequency by analysing the schedulability of

all tasks and messages for every frequency value selected for the task mapping.

The effectiveness of this approach helped the optimisation algorithm to improve

the quality of the task mappings. As the optimisation progressed over time, the

breakdown frequency gradually decreased, leading to a lower frequency below the

nominal level. The only drawback of this approach is its immense evaluation

time due to necessary evaluation of the schedulability of all tasks and messages

for every selected frequency value.

The optimisation techniques proposed in Chapters 3, 4 and 5 depend on a

GA to perform the task mapping optimisation. Its effectiveness in addressing

the optimisation problems comes from manipulating a group of individuals in a

population. Each individual represents a task mapping and its fitness must be
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evaluated by one or more fitness functions. The number of evaluations performed

by the algorithm depends on the population size and a large size has a negative

implication on the optimisation run-time. In order to avoid evaluating many

solutions in a single optimisation run, a constructive algorithm was proposed in

Chapter 6 to construct one task mapping rather than explore many task mappings

at the same time. This provided a fast means of finding a schedulable task

mapping. From the results based on synthetic test benches, although they were

less than the achievement made by GA, the constructive mapping algorithm was

able to find the schedulable task mapping up to specific utilisation levels. For the

realistic test bench, the algorithm was able to find a schedulable task mapping

as effectively as GA could. Based on these results, CoA has the potential to find

the schedulable task mapping in less than the time taken by GA.

7.2 Future Works

The optimisation problems discussed in this thesis have been effectively addressed

with the proposed DSE approaches, but some issues related to this subject are

still open for future study.

Simultaneous configuration of task mapping and priority assignment improves

the schedulability of the system and also the DSE process. However, the influ-

ence on the system performance is not limited to these parameters only; other

parameters such as routing may have similar impacts on the schedulability of

tasks and messages. In the system model, static XY routing was used to route

messages. However, routing selection has a potential to reduce the interference

in the network by redirecting high-priority messages away from low-priority mes-

sages. If this parameter can be manipulated accordingly, it might improve the

schedulability of the system.

The breakdown frequency fitness function provides a new metric that can

be applied as the fitness value of a given task mapping. The metric provides

information on how to make the task mapping schedulable at the minimal fre-

quency. Since frequency scaling affects the power consumption of the system, it

is important to measure how much power will be consumed by the system if the
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breakdown frequency is applied. This provides another direction for future work,

in which the function can be further improved by including a new power macro-

model which is related to the frequency in the calculation of power consumption.

In the end-to-end schedulability analysis, the iterative method used to cal-

culate the worst-case response time has the characteristic of pseudo-polynomial

complexity. With an increase in processing and communication volume, the anal-

ysis may impose considerable delays on the optimisation process. In practice,

system designers face time pressure to find approximate solutions quickly, thus

at the early stage of design, analysing every task and message may not be a pre-

ferred way to accomplish this task. Therefore, an approximate approach with

lower computational complexity in the fitness function is desired [148].
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Table 1: Autonomous vehicle application tasks

Task Task description
Computation

time
Period

TPMS Tyre pressure monitoring system 0.005 0.5

VIBS Vibration sensor 0.005 0.1

SPES Speed sensor 0.005 0.1

POSI Position sensor interface 0.005 0.5

USOS Ultrasonic sensor 0.005 0.1

FBU1
Frame buffer - Left camera,
upper-left quadrant

0.01 0.4

FBU2
Frame buffer - Left camera,
upper-right quadrant

0.01 0.4

FBU3
Frame buffer - Left camera,
lower-left quadrant

0.01 0.4

FBU4
Frame buffer - Left camera,
lower-right quadrant

0.01 0.4

FBU5
Frame buffer - Right camera,
upper-left quadrant

0.01 0.4

FBU6
Frame buffer - Right camera,
upper-right quadrant

0.01 0.4

FBU7
Frame buffer - Right camera,
lower-left quadrant

0.01 0.4

FBU8
Frame buffer - Right camera,
lower-right quadrant

0.01 0.4

STAC Stability control 0.01 1

TPRC Tyre pressure control 0.001 0.01

DIRC Direction control 0.001 0.01

OBDB Obstacle database 0.15 0.5

BFE1
Background estimation and
feature extraction 1

0.02 0.04

BFE2
Background estimation and
feature extraction 2

0.02 0.04

BFE3
Background estimation and
feature extraction 3

0.02 0.04

BFE4
Background estimation and
feature extraction 4

0.02 0.04

BFE5
Background estimation and
feature extraction 5

0.02 0.04

BFE6
Background estimation and
feature extraction 6

0.02 0.04

163



Appendix A

Task Task description
Computation

time
Period

BFE7
Background estimation and
feature extraction 7

0.01 0.04

BFE8
Background estimation and
feature extraction 8

0.01 0.04

FDF1 Feature data fusion 1 0.01 0.4

FDF2 Feature data fusion 2 0.01 0.4

STPH Stereo photogrammetry 0.03 0.04

THRC Throttle control 0.001 0.01

VOD1 Visual odometry 1 0.02 0.04

VOD2 Visual odometry 2 0.02 0.04

OBMG Obstacle database manager 0.02 1

NAVC Navigation control 0.01 0.5
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Table 2: Traffic flows between tasks

Flow Source Destination Flits Period
1 POSI NAVC 1024 0.5
2 NAVC OBDB 2048 0.5
3 OBDB NAVC 16384 0.5
4 OBDB OBMG 32768 1
5 NAVC DIRC 512 0.1
6 SPES NAVC 512 0.1
7 NAVC THRC 1024 0.1
8 FBU3 VOD1 38400 0.04
9 FBU8 VOD2 38400 0.04
10 VOD1 NAVC 512 0.04
11 VOD2 NAVC 512 0.04
12 FBU1 BFE1 38400 0.04
13 FBU2 BFE2 38400 0.04
14 FBU3 BFE3 38400 0.04
15 FBU4 BFE4 38400 0.04
16 FBU5 BFE5 38400 0.04
17 FBU6 BFE6 38400 0.04
18 FBU7 BFE7 38400 0.04
19 FBU8 BFE8 38400 0.04
20 BFE1 FDF1 2048 0.04
21 BFE2 FDF1 2048 0.04
22 BFE3 FDF1 2048 0.04
23 BFE4 FDF1 2048 0.04
24 BFE5 FDF2 2048 0.04
25 BFE6 FDF2 2048 0.04
26 BFE7 FDF2 2048 0.04
27 BFE8 FDF2 2048 0.04
28 FDF1 STPH 8192 0.04
29 FDF2 STPH 8192 0.04
30 STPH OBMG 4096 0.04
31 POSI OBMG 1024 0.5
32 USOS OBMG 1024 0.1
33 OBMG OBDB 4096 1
34 TPMS STAC 2048 0.5
35 VIBS STAC 512 0.1
36 STAC TPRC 2048 1
37 SPES STAC 1024 0.1
38 STAC THRC 1024 0.1
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1: procedure SchedulabilityTest(TaskMapping)
2: for each taski in TaskMapping do
3: if PassSchedulabilityTest(taski)! = true then return false
4: end if
5: end for
6: for each flowi in TaskMapping do
7: if PassSchedulabilityTest(flowi)! = true then return false
8: end if
9: end for

10: return true
11: end procedure
12: procedure ScaleFrequency(Schedulable, CurrentFrequency)
13: if Schedulable == true then
14: NewFrequency = DecreaseFrequency(CurrentFrequency)
15: else
16: NewFrequency = IncreaseFrequency(CurrentFrequency)
17: end if
18: return NewFrequency
19: end procedure
20: procedure CalculateBreakdownFrequency(TaskMapping)
21: Frequency = ScaleFrequency(SchedulabilityTest(TaskMapping), 1)
22: while Frequency! = null do
23: SetFrequency(Frequency)
24: Schedulability = SchedulabilityTest(TaskMapping)
25: Frequency = ScaleFrequency(Schedulability, Frequency)
26: end while
27: return Frequency
28: end procedure

Figure 1: Breakdown frequency fitness function
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Glossary

Roman Symbols

ACO Ant Colony Optimisation

ADL Architecture Description Language

ADT Abstract Data Type

ATM Asynchronous Transfer Mode

AV A Autonomous Vehicle Application

AXI Advanced Extensible Interface

BE Best Effort

BF Best Fit

BFF Breakdown Frequency Fitness Function

CAN Controller Area Network

CoA Constructive Mapping Algorithm

CPU Central Processing Unit

DM Deadline Monotonic

DSE Design Space Exploration

DTL Device Transaction Level
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EDF Earliest Deadline First

ESL Electronic System Level

FF First Fit

FIFO First In First Out

GA Genetic Algorithm

GALS Globally-Asynchronous Locally-Synchronous Systems

GT Guaranteed Traffic

HDL Hardware Description Language

IP Intellectual Property

ISA Instruction Set Architectures

ISS Instruction Set Simulator

LLF Least Laxity First

MMIO Memory Mapped IO

MoC Models of Computation

MOGA Multi-Objective Genetic Algorithm

MPSoC Multiprocessor System-on-Chip

NI Network Interface

NN Nearest Neighbour

NoC Networks-On-Chip

OCP Open Core Protocol

P2P Point-to-Point

PSO Particle Swarm Optimisation
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RC Routing Computation

RM Rate-Monotonic

RMGT Rate Monotonic General Task

RMM Rate Monotonic Matching

RN Random Mapper

RTA Real-Time Analysis

RTL Registers Transfer Level

SA Simulated Annealing

SA Switch Allocation

SAP Synthetic Application

SCF Schedulability Fitness Function

SDF Synchronous Data Flow Graphs

SoC System-On-Chip

SOGA Single Objective Genetic Algorithm

TB Tabu Search

TDMA Time Division Multiple Access

TLM Transaction-Level Modelling

TTM Time-to-Market

TTP Time-Triggered Protocol

V A Virtual Channel Arbitration

V C Virtual Channel

V CI Virtual Component Interface
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V HDL VHSIC Hardware Description Language

WCET Worst-Case Execution Time

WF Worst Fit
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