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Abstract 
 

Surveillance is the first line of defence against disease, whether to monitor endemic cycles 

or to detect emergent epidemics. Knowledge of disease in wildlife is of considerable 

importance for managing risks to humans, livestock and wildlife species.  Recent public 

health concerns (e.g. Highly Pathogenic Avian Influenza, West Nile Virus, Ebola) have 

increased interest in wildlife disease surveillance. However, current practice is based on 

protocols developed for livestock systems that do not account for the potentially large 

fluctuations in host population density and disease prevalence seen in wildlife.  

A generic stochastic modelling framework was developed where surveillance of wildlife 

disease systems are characterised in terms of key demographic, epidemiological and 

surveillance parameters.  Discrete and continuous state‐space representations respectively, 

are simulated using the Gillespie algorithm and numerical solution of stochastic differential 

equations. Mathematical analysis and these simulation tools are deployed to show that 

demographic fluctuations and stochasticity in transmission dynamics can reduce disease 

detection probabilities and lead to bias and reduced precision in the estimates of 

prevalence obtained from wildlife disease surveillance. This suggests that surveillance 

designs based on current practice may lead to underpowered studies and provide poor 

characterisations of the risks posed by disease in wildlife populations. By parameterising the 

framework for specific wildlife host species these generic conclusions are shown to be 

relevant to disease systems of current interest. 

The generic framework was extended to incorporate spatial heterogeneity. The impact of 

design on the ability of spatially distributed surveillance networks to detect emergent 

disease at a regional scale was then assessed. Results show dynamic spatial reallocation of a 

fixed level of surveillance effort led to more rapid detection of disease than static designs.   

This thesis has shown that spatio‐temporal heterogeneities impact on the efficacy of 

surveillance and should therefore be considered when undertaking surveillance of wildlife 

disease systems. 
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Chapter 1 

Introduction 

 

Wildlife diseases have the potential, not only to impact greatly on the populations of 

wildlife species themselves, but also on human and livestock populations. A demonstrative 

example of how detrimental zoonoses can be to human health and the economy is the 

recent swine flu pandemic in 2009, which has origins in both domestic pigs and wild boar 

(Shoham 2011). The disease outbreak started in Mexico and the USA and quickly spread 

worldwide followed by vast media coverage. The official worldwide death toll according to 

the World Health Organisation (WHO) as of 28th March 2010 was 17,483 (Girard et al. 

2010). As well as the impact on human health, the economic  impact of Mexico alone was 

estimated as > $3.2 billion (Girard et al. 2010). Wildlife diseases also have the opportunity 

to affect biodiversity and conservation efforts (Daszak et al. 2000; Smith et al. 2009; Pagán 

et al. 2012). Mathematical modelling is a tool which can be (and is widely) used to simulate 

disease systems (Renshaw 1991; Keeling & Rohani 2007) by manipulating equations in order 

to gain insights into the behaviour of the modelled system. Mathematical modelling will be 

used in this thesis in such a way to understand the effect that host fluctuations, disease 

dynamics and spatial heterogeneities have on the efficacy of wildlife disease surveillance. 

The literature surrounding wildlife disease is reviewed in the next sections and the impact it 

has on human health, wildlife health and conservation and the economy is outlined to show 

the importance of wildlife disease research.   

 

1.1 Wildlife diseases and Humans 

 
There is an increasing understanding in the literature that wildlife diseases pose a threat to 

human health (Bengis et al. 2004; Belant & Deese 2010; Kuiken et al. 2011). The World 

Organisation for Animal Health (OIE) stated in an editorial that ‘Surveillance of wildlife 

diseases must be considered equally as important as surveillance and control of diseases in 

domestic animals’ (Vallat 2008). In a comprehensive literature review carried out by Talyor 

et al, it was reported that out of all the infectious organisms known to be pathogenic to 



12 
 

humans, 61% were zoonotic. It was also found that out of the 175 diseases considered to be 

“emerging”  (Lederberg et al. 1992), 75% were zoonotic (Taylor et al. 2001). This was higher 

than expected by the authors and is indicative of the importance of wildlife disease 

research in terms of predicting and controlling emerging outbreaks, and promoting human 

health and safety. In comparison with human and livestock systems, with wildlife disease 

there are many added complications in terms of population demography and habitat 

location, and even though momentum is building behind wildlife disease research it is still 

the most poorly understood (Jones et al. 2008).  

There are many examples of zoonotic diseases in humans for which wildlife species act as 

an intermediary for disease transmission. Nipah is an RNA virus initially detected in pigs in 

Malaysia in 1999 (when at the same time it appeared that pig farmers were suffering from 

an outbreak of viral encephalitis), it is closely related to the Hendra Virus discovered in 1994 

in Australia. Host infection by Nipah virus is associated with a marked respiratory and 

neurological syndrome which can be followed by the sudden death of pigs. In the later 

stages of the initial outbreak of this disease, Nipah was characterised as causing a high 

mortality rate in humans when it emerged that the same causative agent was to blame for 

both the pig and pig farm workers mysterious illnesses. The outbreak had devastating 

consequences for the Malaysian Peninsular’s pig farming industry with an overall loss of 

1.08 million pigs and a reduction in pig farms from 1885 to 829 (Nor et al. 2000). Although 

the catalyst of the original outbreak of Nipah virus in pig farmers was domestic pigs (Chua et 

al. 1999), the natural host for the disease is fruit bats. The main drivers associated with the 

spread of this virus were identified as deforestation, drought and the expansion of pig 

farming in Malaysia. Fruit bats were forced to move out of their natural habitat as a result 

of depleting resources available to them, and nearby agricultural areas with productive fruit 

orchards were an appealing choice. These areas were also home to a large number of pigs 

which increased the chance of transmission from bat to pig and as a knock on effect, from 

pig to human in the initial outbreak (Bengis et al. 2004). The subsequent 2001 Indian and 

Bangladeshi outbreaks of Nipah virus were assumed to be caused by the ingestion of fruit 

and fruit related products that had been contaminated with fruit bat saliva and urine (WHO 

2004). 

Hantavirus Pulmonary Syndrome (HPS) is an infectious respiratory disease which is endemic 

to the Americas. The natural host of HPS is thought to be rodents, and is typically carried by 

the deer mouse (peromyscus maniculatus) in the United States. Transmission from wildlife 
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to humans is through the respiratory route as a result of air‐borne dispersion of rodent 

excretions (Bengis et al. 2004), and a study carried out in 1998 of 177 cases of HPS in 29 

states, estimated the case‐fatality proportion to be 45% (Young et al. 1998). Outbreaks of 

Hantavirus in humans in the United States have frequently been linked to changes in 

environmental conditions which are highly favourable to the rodent populations (Epstein 

1995). The HPS epidemic in the American Southwest of 1993 followed an abundance of 

rainfall increasing the food sources available for the deer mice. The high population 

densities driven out of their burrows by flooding increased the chance for the virus to 

flourish and transmit within rodent populations and eventually onto human populations 

(Epstein 1995) which can be likened to the perturbation effect (Tuyttens et al. 2000; Carter 

et al. 2007). Human activities such as herding livestock and cleaning out rarely used rodent 

infested areas have been attributed to increasing the risk of human exposure to HPS 

through contact with infected urine and faeces (Armstrong et al. 1995).  

Avian Influenza (perhaps the highest profile wildlife disease threat given volume of past 

epidemics and the risk of a pandemic outbreak in the future (Swayne 2009)) is an infectious 

viral disease found in birds (particularly wild water fowl) caused by strains of the flu virus 

not unlike the strains found in humans. In wild bird populations it often causes no clinical 

signs. Some forms of avian influenza have mutated in such a way that they are able to 

transfer from birds to humans populations. An example of this was demonstrated in 1997, 

when an outbreak of H5N1 (previously thought to only infect birds) was first reported in 

Hong Kong causing 18 cases of infection with a 33% mortality rate. The clinical progression 

in humans of this Influenza strain can be categorised into three stages. The first stage of the 

illness would usually show mild upper respiratory tract infection and fever, or be 

asymptomatic. The second stage is marked by additional symptoms of severe pneumonia, 

haematological liver and renal abnormalities. Finally the third stage shows a highly 

developed illness of acute respiratory distress syndrome, multiple organ malfunction and 

ultimately death (Tam 2002). The incidence of human infections reported in all major 

outbreaks of Avian Influenza to date has happened in people who have high level of 

interaction with poultry. It is thought these infections represent direct bird‐to‐human 

transfer of the virus, as fortunately there appears to have been negligible human‐to‐human 

spread. Nevertheless, the adaptation and mutation of these poultry viruses could lead to a 

new sub‐type of Influenza which is capable of sustaining itself within a human population 

alone. This is a key concern to public health services around the world as the threat of a 
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highly contagious new pandemic could be potentially looming ever closer (Bengis et al. 

2004). 

 

1.2 Wildlife disease and conservation  
 
Biodiversity can also be affected by the emergence and spread of wildlife diseases. If the 

pathogen in question induces a high enough mortality rate in the host, there is a risk of 

losing entire populations of species and endangering many others; disease induced 

reductions in population size may significantly increase the chance of local extinction due to 

demographic fluctuations. Recent outbreaks have demonstrated this, for example in 

Australia the chytrid fungus Batrachochytrium dendrobatidis (Bd) is thought to be behind 

the fall in population size and perceivable extinction of at least 14 high‐elevation species of 

rainforest frog (Retallick et al. 2004). This fungus is not unique to Australia, and it’s affects 

on the amphibian community can be felt worldwide. Using information from a “last year 

observed” database, Marca et al deduced that the frog genus Atelopus has undergone 67 

species extinctions since 1980 (Marca et al. 2005), which have been generally attributed to 

Bd. Bd has been categorised as an amphibiotic emerging infectious agent (Daszak et al. 

1999) and is considered to be pandemic. In 2008 the World Organisation for Animal Health 

reported Bd as a notifiable pathogen (OIE 2008). 

The impact of pathogens on wildlife conservation can be damaging when endangered or 

threatened species are affected by an outbreak of an infectious pathogen. The Tasmanian 

devil population has continually declined by up to 90% from 1996 when a debilitating and 

aggressive facial cancer tumour was first reported known as Tasmanian Devil Facial Tumour 

Disease (DFTD) (McCallum et al. 2007). This has caused the Tasmanian Devil, which was 

originally listed as “low‐risk” in terms of endangerment in 1996, to be officially categorised 

an “endangered” species as of 2008 by the International Union for Conservation of Nature 

(IUCN) Redlist (Hawkins et al. 2008). In the conservation biology literature emphasis is 

placed on the possible adverse consequences of wildlife disease due to a decline in genetic 

diversity (Epps et al. 2005; Schmid et al. 2009). The lasting effect of a decline in genetic 

diversity within a population is the reduction in the ability to adapt to changes, for example 

loss of habitat or fragmentation. A more immediate disadvantage is the incapacity to resist 

pathogen infection. DFTD is a prime example of how loss of genetic diversity within 

populations amplifies the risks posed by disease (Jones et al. 2004). This case highlights the 
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importance of surveillance and early action against emerging diseases threats; as DFTD was 

not quickly identified it has already spread across a large range of the species which makes 

eradication difficult (McCallum 2008). 

 

Canine distemper (CDV) is a viral disease affecting the respiratory tract, gastrointestinal 

system, skin, reproductive tract, eyes, and nervous system. It is classified as producing 

clinical signs such as nasal discharge, transient fever, diarrhoea, and weight loss. CDV has 

been recognised as a pathogen of domestic dogs, however numerous CDV infections of wild 

species have been documented (Leisewitz et al. 2001). In 1994, the Serengeti National Park 

lion population were subjected to a devastating outbreak of canine distemper. This led to 

the over‐all population reducing in size by approximately one‐third (i.e. 1000 animals) 

(Roelke‐Parker et al. 1996), a significant blow to the conservation and protection effort of 

the Serengeti National Park. However, as a consequence of intense monitoring of the lion 

prides, detailed observations were collected on the incidence of CDV and their movement. 

From this data it was deduced that it was unlikely lion movement patterns could account 

for the spread of the disease, which eventually led to the exploration of other potential 

reservoirs of the pathogen (Haydon 2008). It has been suggested that the most probable 

reservoir for CDV in the Serengeti lion epidemic was the domestic dogs of the local villages. 

Between 1991 and 1993, the seroprevalence of CDV increased in their population which 

preceded the 1994 outbreak in lions (Roelke‐Parker et al. 1996).   This 1994 outbreak of 

canine distemper illustrates quite clearly the risks posed by wildlife disease but also to the 

great advantages of surveillance. It would have been impossible or at the least very difficult 

to determine how the outbreak evolved without such rich data collection. 

 

1.3 Wildlife diseases and the livestock industry 

 
When a disease is classified as notifiable, it is required by law that it is reported to 

government authorities if discovered. This can lead to restrictions placed on the movement 

of livestock from affected premises and subsequently impact on the “disease status” of a 

country possibly leading to a ban on trade until the country is considered “disease free”. 

Therefore, there is potential for tremendous economic impacts when wildlife disease can 

transmit to livestock. Bovine TB (bTB), caused by Mycobacterium bovis, is a focal point for 

wildlife control because of the adverse consequences of the disease on livestock production 
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(Donnelly & Hone 2010) and the significant affect it has on trading as a result of EU trading 

standards and procedures (Caffrey 1994; DEFRA 2011). bTB is categorised as a bacterium 

which causes chronic incapacitating disease in cattle, humans and various wild species, 

including the badger (Meles meles) (Bengis et al. 2004). During the comprehensive 

Randomised Badger Culling Trial (RBCT), designed to establish if culling badgers reduced TB 

in cattle, badgers were shown to  be a source of infection to cattle (DEFRA 2013). The trial 

results suggested that culling of badgers over a fixed area of 150km2 would lead to an 

average of 16% reduction in bTB incidence in cattle in the local area. However, there are 

also negative impacts of culling which can lead to an increases in disease e.g. the 

perturbation effect as mentioned previously (Prentice et al. 2014). This situation has put a 

strain on the economy as infected cattle have decreased production of milk and infected 

carcasses will be seized at abattoirs if detected  (Amanfu 2006; Firdessa et al. 2012). Known 

infected cattle herds are put on a trade lockdown as required by the EU trading standards 

and are prohibited from moving until bTB free status is achieved. There are also added 

economic problems which come with the slaughtering of infected cattle. It is estimated that 

approximately 28,000 cattle were slaughtered in 2012 through bTB infection (DEFRA 2012) 

and the burden of compensation falls on the government or else must be absorbed by the 

individual infection sites which could result in farms going out of business if the financial 

impacts of the cull are too great.  

Schmallenberg is an emerging livestock virus that has been detected in parts of Europe and 

the UK and it is transmitted via vectors such as mosquitoes and midges to the livestock 

hosts (DEFRA 2012) and wild ruminants (ECDC 2012). The virus is characterised by the host 

showing clinical signs including a decrease in milk production, watery diarrhoea, and 

occasional fever (Elbers et al. 2012), and there have also been reports of congenital 

malformations in ruminants (van den Brom et al. 2012). DEFRA has stated that the most 

likely cause of Schmallenberg in the UK is due to infected midges being blown across the 

channel, most probably from France (Conraths et al. 2013). Although this is not a notifiable 

disease as yet, it is being closely monitored and any farmers who encounter the disease or 

suspicious symptoms are advised to contact their local vet. Impact assessments by the EFSA 

(2012) and Harris (2014) suggest that if this virus were to spread further across the UK and 

Europe it is likely to have serious adverse economic impacts on the farming industry (EFSA 

2012; Harris et al. 2014) as meat and milk production could be badly hampered. 
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Foot and mouth disease (FMD) is an infectious virus affecting ruminants and is 

characterised by clinical signs including loss of appetite, sudden death of young, lameness, 

blisters and reduced milk yield. Although recent outbreaks have been predominantly in 

livestock, wild ruminants can also play a role in the introduction and spread of FMD (Condy 

et al. 1969; Ward et al. 2007). The disease can have severe consequences for animal health 

and the economics of the livestock sector as exemplified by the 2007 outbreak in the UK. 

During August and September 2007, FMD caused large disruptions to the farming sector 

and cost hundreds of millions of pounds in control efforts and slaughtered animals (Cottam 

et al. 2008). For example in Scotland there was an export ban on live animals imposed until 

the close of the year, the effect of this was a reduction of market prices, although the real 

measure of this depends on the initial state of the market before the outbreak. This 

represented a considerable cost to farmers of livestock and in turn also represented losses 

to the overall agricultural supply chain (Scottish Government 2008). The burden of a 

restriction on movement requires farmers and other branches of the agricultural supply 

chain to diverge from the usual procedure and these effects can be exacerbated if farmers 

keep their stock for a longer period because of lower market prices, all of which 

demonstrate extra cost and strain on the livestock economy.    

 

1.4 Wildlife Disease Surveillance 

 
Surveillance is the first line of defence against wildlife disease and the threats it can pose. 

Wildlife disease surveillance aims to limit and end outbreaks of disease before they have 

the ability to cause major damage to public, livestock and wildlife health (Belant & Deese 

2010) . When used in an efficient and comprehensive manner, surveillance can be 

instrumental in controlling and overcoming disease outbreak (FAO 2011). There is an 

increasing recognition of the necessity of wildlife disease surveillance (Jebara 2004; Kuiken 

et al. 2011). However, there are a range of issues associated with surveillance of wildlife 

disease, e.g. poor knowledge of basic ecology and distribution of host species, this makes it 

particularly challenging even when compared to surveillance in livestock and humans. 

The wildlife disease surveillance strategies currently undertaken in Europe are few and far 

between (Artois et al. 2001). The protocols for these activities are still informal and as of yet 

there is no structure in place to facilitate coordinated surveillance/reporting of wildlife 

disease between countries (Kuiken et al. 2011). As previously mentioned, there is an 
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increasing acknowledgement that greater priority should be placed on wildlife disease 

surveillance, driven in part by the numerous examples of zoonotic outbreaks in the human 

population (SARS, Swine Flu, Avian Influenza etc). Leading international wildlife 

organisations and influential veterinary editorials have highlighted the importance of 

wildlife surveillance effort. The director general of the world health organisation for animal 

health (OIE) asserted that “Surveillance of wildlife diseases must be considered equally as 

important as surveillance and control of diseases in domestic animals” as well as concluding 

that the surveillance of wild animal disease is essential (Vallat 2008). In the first EWDA 

meeting for wildlife health surveillance on 15th October 2009 in Brussels, 25 representatives 

presented summaries of the wildlife health surveillance in their respective countries. Based 

on these summaries Kuiken et al. (2011) showed that there are significant differences in 

surveillance approach across Europe. The number of surveillance schemes in action per 

country, the intensity of those schemes, the number of animals examined, effort in terms of 

the number of people employed, and the sources of funding vary greatly. The authors 

categorised the differences in surveillance in each country by three different levels; no 

general surveillance, partial general surveillance and comprehensive surveillance, of which 

the UK fell into the later. As a result of this, there was a consensus among the participants 

that wildlife health surveillance in Europe would profit from a more formal network of 

people actively contributing to this research area (Kuiken et al. 2011). 

When undertaking surveillance of a given population (i.e. a group of individuals of the same 

species interacting within some defined area), the task becomes a lot easier if the 

population is closely managed (i.e. livestock), but unfortunately this is not the case when 

considering wildlife populations. Compared with surveillance in livestock there are many 

added complications to wildlife disease surveillance, for example locating the population, 

estimating accurately the size of the population and understanding the demography and 

transmission dynamics of the population including interactions with other populations and 

the wider community (i.e. other species). These added complications can make it difficult to 

obtain the samples required of a successful surveillance system (Nusser et al. 2008).  Many 

wildlife surveillance strategies depend on methodologies based on protocols developed for 

livestock systems. However, as discussed, wildlife populations are considerably more 

complex and to date there has not been a detailed exploration of whether methods used in 

livestock are suitable for application to wildlife populations.  
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Wildlife disease surveillance can be characterised under two broad categories, active 

surveillance and passive surveillance. Passive surveillance can be generally defined as the 

discovery and testing of naturally occurring deceased hosts (i.e. animals that have not died 

for the initial purpose of surveillance). There are instances of routine collection of hunter‐

killed samples and collection of road‐kill animals, but a primary difficulty of passive 

surveillance is that the strategy generally relies on members of the public identifying and 

delivering a case for diagnostic testing (Rhyan & Spraker 2010). The potential of passive 

surveillance is hard to realise in practice since disease detection is quite frequently time 

sensitive (i.e. sensitivity of diagnostic tests may reduce sharply with time since death) and 

the incentive for the general public to report a case is relatively low. There is also a 

considerable chance of bias in the sample when relying on passive surveillance especially if 

the host‐pathogen dynamic features significant disease induced mortality or if behaviour of 

infected individuals reduces or increases the chance that deceased individuals are 

encountered. Active surveillance in the context of this thesis is defined as the capture and 

subsequent testing of individuals driven by surveillance related objectives. A primary 

difficulty with this type of surveillance is that it can be more costly than other options and 

only limited funding is available (Lancoua et al. 2005). In livestock systems active and 

passive surveillance strategies are much simpler to implement, and as highlighted 

previously wildlife systems are much more complex. There are numerous complications 

when gathering samples in the field, including dynamic aspects of population turnover, 

habitat effects on density and distribution in space and time, behavioural aspects affecting 

sampling e.g. elusive nocturnal species trap shyness of animals etc. These complications 

typically result from dynamic processes which are subject to stochastic fluctuations making 

it more difficult to design and implement randomised sampling strategies. 

In summary, both passive and active surveillance have the potential to be effective tools for 

wildlife disease research, but they can suffer shortcomings including under‐reporting, and 

difficulties in designing effective surveillance strategies due to the complexity of host‐

pathogen systems (Stallknecht 2007). There is therefore a need to address these problems 

systematically; in particular there have been calls for improved pan‐European mechanisms 

including defined standard protocols and data sharing (Genovesi & Shine 2002; Kuiken et al. 

2011; “WILDTECH Report Summary” 2014). This is a long term goal which would aim for a 

coordinated approach to surveillance and monitoring, to offer increased protection from 

disease outbreaks and incursions. For this to work, unquantifiable biases need to be 

minimised (e.g. human behaviour in passive systems) and/or accounted for in subsequent 
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analysis.  For the purposes of this thesis, we investigate only active surveillance as the 

characterisation of biases in passive surveillance requires a focus on specific surveillance 

scenarios and here we wish to explore generic aspects of wildlife disease surveillance. For 

example, results not shown indicate the ability of passive surveillance to detect disease 

depends strongly on the level of disease induced mortality and the rate at which the 

animals decay. 

The key statistics we subsequently use to characterise the performance of wildlife disease 

surveillance systems are reviewed here. There are several statistics that can be estimated 

using surveillance information which give valuable information about the population itself, 

disease status and surveillance efficacy. However, in this thesis there are two primary 

statistics of interest used to investigate surveillance performance and the effect of 

population demography and disease transmission on surveillance efficacy, the estimate of 

prevalence and the probability of detection. 

1.4.1 The Probability of Detection 

 

The simplest and most widely used approach to estimating the probability of disease 

detection is to assume constant prevalence p and an effective infinite population size (i.e. 

assume sampling is with replacement/the population size is not finite). These assumptions 

lead naturally to a binomial formula for the probability of detecting disease from n samples. 

 

                                                               � =  1 − (1 − �)�                                                             (1) 

where n = the sample size  

           a = the probability of detecting disease 

           p = the prevalence 

 

The above formula can be used to carry out a power calculation as follows. Re‐arranging 

equation (1) in terms of n, gives an estimate of the sample size required to obtain a 

probability of detection a given an assumed prevalence p can be derived. 

 

                                                                      � =
�� (�� �)

�� (�� �)
                                                                    (2) 
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This required sample size increases rapidly as prevalence tends to 0, as demonstrated in 

Figure 1.1. This can lead to “over sampling” especially for smaller populations, since the 

underlying assumption is that the population is infinite. To counteract this effect which 

would lead to the repeated sampling of individuals, a number of authors (Martin et al. 

1987; Artois et al. 2009a; Fosgate 2009) have considered modifying this approach based 

upon the hyper‐geometric distribution which accounts for finite population sizes. This 

approach leads to the following sample size calculation 

  

                                           � =  �1 − (1 − �)�/� �× [� − 0.5(� − 1)]                                        (3)                                                        

 

 

where N = the total population size 

           D = the total number of diseased individuals within the population 

            p  =
�

�
= prevalence 

 

Figure 1.1 shows equation (3), demonstrating the effect of modifying equation (2) to 

account for finite population sizes. Without this modification, at low prevalence, the sample 

size required to detect disease presence can be greater than the population itself. As noted 

above this would entail sampling the same individuals more than once which is clearly 

inefficient and given perfect tests completely unnecessary, at least if the disease status of 

individuals is assumed not to change over time. This is of course consistent with the 

assumption of unvarying prevalence on which both equations (1)‐(3) rely. The hyper‐

geometric correction implemented in equation (3) ensures the maximum sample size 

required is capped at the total population size.  
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Figure 1.1:  Effect of disease prevalence on the sample size required to detect disease. 

Plots are shown for varying levels of diseased individuals when the probability of detection 

a = 0.5 for both equation (2) and (3). Plot 1.a shows the effect of number of diseased 

individuals on sample size requirement described by equations (2) and (3) for a fixed 

population size of 100 (i.e. maximum prevalence is 0.1). Plot 1.b shows the effect of number 

of diseased individuals on sample size requirement from equations (2) and (3) for a fixed 

population size of 1000 where again maximum prevalence is 0.1. 

Equations (3) can be re‐arranged to give an equation for the probability of detection for 

finite sized populations analogous to equation (1): 

 

                                                     � = 1 − �1 −
�

� � �.�(� � �)
�

�
       (4) 

 

Note that equation (1) is the form that will be used herein when referencing the binomial 

equation for the probability of detection. 

1.4.2 Estimating the True Prevalence: Bias and Standard Deviation 

 

In addition to simply detecting the presence of disease, surveillance may also be called 

upon to accurately estimate the prevalence in a population. However, as we show in this 

Equation (2)

Equation (3)

n n
D D

(a) (b)
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thesis achieving this can be quite difficult in the face of demographic fluctuations within the 

population. In contrast the standard approach is to ignore such fluctuations and assume 

constant prevalence p and population size. This leads to the conclusion that the number of 

infected individuals in a sample of n individuals, from a population with prevalence p, is 

drawn from a binomial distribution with Bin(n,p). Which has mean np and variance     

np(1-p). Therefore under these assumptions we find that the binomial estimate of 

prevalence is np/n =p and therefore 

 

                     E[surveillance estimate of prevalence]= E[true prevalence]                        (5) 

 

i.e. the bias of the surveillance estimate (under the above assumptions) is equal to 0.  

Given the variance in the binomial estimate of the number of infected cases in a sample of 

size n, the standard deviation (std dev) in the corresponding estimate of prevalence from 

surveillance is: 

 

                                                   
� ��(�� �)

�
=  � �(1 − �)/�                                                              (6) 

as before, p =prevalence and n = sample size. 

As with the probability of detection in equation (4), there can be corrections made to 

equation (6) to account for the finite size of the population. Frequently in survey research, 

samples are taken without replacement and from a finite population of size N. In this 

instance, and especially when the sample size n is proportionally not small (i.e. n/N > 0.05), 

a finite population correction factor (fpc) is used as a pre‐factor on the right hand side of 

equation (6) to define both the standard error of the proportion. The finite population 

correction factor is expressed as: 

 

                                                     ��� =  � � − �
� − 1�                                                                   (7) 

 

Figure 2 show the bias and standard deviation using the binomial theory based on the 

assumptions of constant population size and prevalence. As stated above, the binomial 
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equation does not predict any bias in the surveillance estimate of prevalence as the 

predicted prevalence is equal to the true prevalence, p. However, the error in this estimate 

is non‐zero and varies with true prevalence, as can be seen in Figure 2.b. Note that the 

correction factor in equation (7) is less than 1 for any N>2 and sample size n>1, and 

therefore the error in the estimated prevalence shown in Figure 2.b will be reduced when 

accounting for the finite size of populations.  

 

 

 

 

 

 

 

 

Figure 1.2: Using binomial theory to estimate the expected bias and std dev in the 

surveillance estimate of prevalence. Plots are shown for sample size n = 10 and varying 

levels of prevalence in the population for equation (5) and (6). Plot 2.a shows the predicted 

bias in the prevalence estimate from surveillance. Plot 2.b shows the predicted std dev in 

the prevalence estimate from surveillance.  

1.4.3 Improving wildlife disease surveillance 

 

In recent years, in line with the heightened interest in wildlife disease discussed above, a 

number of authors have identified a need for both improved implementation and 

methodological developments to enhance the design and evaluation of wildlife disease 

surveillance (Stallknecht 2007; Hadorn & Stärk 2008; Artois et al. 2009a; Ryser‐Degiorgis 

2013). In order to effectively do this, it is important to consider the ecology of the 

population under surveillance as this will have an impact on the results obtained (Béneult et 

al. 2014). A strategy that worked for one type of natural population may not necessarily 

work as well in another. Understanding how the dynamics of the host‐pathogen interaction 

affect the efficacy of surveillance is key, and potentially the most important step towards 

improvement of surveillance systems. However such effects have yet to be systematically 

considered in the literature. There have, however, been attempts to improve wildlife 
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disease surveillance design by incorporating weighting schemes based on habitat suitability 

of the observed population (Nusser et al. 2008; Walsh & Miller 2010). However, there are 

also other factors that should be taken into consideration if required, for example dispersal 

of populations, population fluctuations, disease stability, seasonality and environmental 

change. In this thesis we use mathematical modelling to explore how key ecological 

processes that govern wildlife populations, in particular demographic fluctuations, 

stochastic disease dynamics and spatial heterogeneity, impact on surveillance. Simulation 

modelling could make a positive contribution to this area, as testing out scenarios in the 

field is either very monetarily costly and/or time consuming or altogether unfeasible. By 

running simulations, what is expected from different surveillance strategies in a wide range 

of host‐pathogen systems can be explored. Using such studies, it would be possible to 

better understand the results obtained from a given surveillance strategy.  

 

1.5 Modelling Wildlife Populations, Disease and Surveillance 

 
Mathematical modelling is a tool, or more correctly a set of tools, used to represent 

different mechanisms in the natural world, and in particular enables prediction of system 

level impacts that results from interactions between multiple mechanisms (Lucio‐Arias & 

Scharnhorst 2012). Such techniques have a long established role in mathematical biology. 

Translating descriptions of biological processes, such as host‐pathogen interaction, into 

mathematical language is beneficial for many reasons, for example, the precise 

mathematical language aids in formulating ideas and recognising underlying assumptions as 

well as utilising mathematical techniques to manipulate equations in order to gain insights 

into the behaviour of the modelled system. Unfortunately non‐linearities and population 

heterogeneities, which are of key importance in many biological systems, make such formal 

analysis of associated mathematical models difficult and typically intractable. However a 

key advantage of this approach to biological research is the use of computers in performing 

calculations and running simulations. This is a considerable time saver and also enables the 

exploration of many scenarios that would be unfeasible to study in the field. There are, 

however, compromises to be made with this approach. As with most natural interacting 

systems, the dynamics of a host‐pathogen interaction are potentially extremely complicated 

and it is important to identify the key elements to include within the model since 

encompassing every aspect is typically unfeasible and such a comprehensive approach is 

unhelpful in terms of generating insights/understanding into how the studied system works. 
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“In principle models should be developed from the simple to the complex” (Murray 2002) 

and this ethos has been adopted throughout this thesis. With every added complexity 

introduced to the model description, the longer and more intensive are the methods 

required to handle the equations. Insights obtained from relatively simple model structures 

are more generic and can also aid in the understanding of more complex models. 

1.5.1 Temporal Modelling of Wildlife Populations with Disease 

 

When simulating natural populations it is essential to account for key demographic 

processes in the model, e.g. births, deaths and immigration. An example is shown in Figure 

1.3 which illustrates a population subject only to birth governed by a logistic growth rate. In 

this thesis, a primary interest is that of pathogen transmission, and we model both primary 

and secondary transmission. Primary transmission occurs when a susceptible from the 

modelled population becomes infected by routes including, infected water sources, 

contaminated food, and transmission from an individual outside the modelled population. 

Secondary transmission occurs when a susceptible individual from the modelled population 

becomes infected through contact with an infected individual within the modelled 

population. Vertical and pseudo vertical transmission represent the infection of offspring 

and young individuals by parents. However, unless such transmission is infallible vertical 

and pseudo vertical mechanisms are not capable of sustaining infection and in this thesis 

we do not consider such routes. Nonetheless such mechanisms could easily be incorporated 

as part of the models presented here. As well as these elements describing demographic 

processes and disease dynamics it will be important to model key aspects of the process 

surveillance in order to assess how it performs in differing circumstances. 

Compartmental models have been used frequently to describe host‐pathogen systems in 

wildlife disease research (Renshaw 1991; Murray 2002) as they aim to reduce the 

complexity of host‐pathogen dynamics into a manageable number of disease status 

“compartments”. There are many different examples of such compartmental models; some 

of the more well‐known include SI, SIS, SIR, SIRS and SEIR. In these compartmental models S 

represents a susceptible state, I an infected state, E a latent state (i.e. infected but not yet 

infective), and R represents a recovered state (recovered from disease and no longer 

infectious or able to be infected). There are two broad categories of mathematical 

modelling which can utilise such compartmental structure, deterministic and stochastic. In 

both cases the model state space typically represents the number of individuals in each 

category. Deterministic models ignore the random fluctuations that can be observed in real 
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systems, solving standard differential equations simultaneously to update the model at 

discrete time steps. The deterministic nature of these models means that, starting from a 

given input they will always return the same output. Continuous time stochastic models 

incorporate random variation by utilising probabilistic equations to determine a series of 

events which update the model at randomly generated time intervals and potentially (for 

multiple event types) in a manner that is also stochastic in nature. Such stochastic processes 

naturally lend themselves towards not only population level representations (e.g. where 

numbers of susceptible and infected individuals are tracked) but also to individual based 

models where the disease status over time of each member of the population is 

represented. There are pros and cons for both deterministic and stochastic approaches and 

the differences between them are now demonstrated with a simple birth‐death process SI 

example. 

A Simple Compartmental Model Worked Example 

 

 

 

 

Consider the components of the state space S(t) and I(t) which represent the number of 

susceptible and infected individuals respectively at time t. Birth is represented by logistic 

growth defined by Verhulst (1845), and since this is a feature embedded throughout the 

models used in this thesis a more detailed explanation is required. Deterministic logistic 

growth is defined by the following equation: 

��

��
= �� �1 −

�

�
� 

 

where N is the total population (S + I), r the intrinsic growth rate and K the carrying capacity. 

Figure 3 demonstrates a population experiencing deterministic logistic growth over time 

until reaching the carrying capacity, K. All individuals born via logistic growth are 

susceptible, which implies no vertical or pseudo vertical transmission.   

 

 

S I 
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Figure 1.3: An example of a logistic growth curve A Plot is shown to demonstrate how the 

population increases over time using the logistic growth equation. Despite an initial 

exponential increase growth is ultimately limited by the carrying capacity, K. 

If there is also a per capita death rate, d, and a density dependent secondary transmission 

with contact rate �. The deterministic approach then describes an SI model with births and 

deaths as: 

 

                                                           
��

��
= �� �1 −

�

�
� −  ���− ��                                               (8) 

 

                                                           
��

��
=  ���− ��                                                                          (9) 

Given that � = � + � 

 

The biological mechanisms underlying this model are summarised in Table 1 below, which 

shows the rate at which each event occurs as well as the associated change in the 

population. In the next section we describe how the basic model description shown in Table 

1.1 can be implemented as a stochastic model. 
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Table 1.1: SI model with rate and effects for each event type. A table is shown which 

contains the rates of all events which can occur at each time step with the associated effect 

on the state space. This model can be implemented as a discrete state space stochastic 

process or with a continuous state space, as a deterministic model using ordinary 

differential equations or an analogous system of stochastic differential equations (see text 

for details). 

Figure 1.4 demonstrates how S, I and N population sizes develop over time using both the 

deterministic and discrete state space stochastic approach (described below).  

 

  

 

 

 

 

 

 

Figure 1.4: Deterministic and Stochastic Time Trajectories. Shown here is the total 

population (green), the susceptible population (blue) and the infected population (red) over 

time for both a deterministic and discrete state space stochastic Gillespie implementation 

of an SI model with births and deaths. The parameter values used are � = 1, � = 0.06, 

� = 5 , � = 50, and starting with initial conditions of    S = 39, I = 1.   
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As Figure 1.4 shows, the outcome of a stochastic and deterministic simulation, although 

following roughly the same pattern, can be quite different.  Deterministic modelling has its 

merits, but in the interests of understanding the impacts of variability on the dynamics of 

host‐pathogen systems, a stochastic approach has been used in the models developed in 

this thesis. 

The mechanisms summarised in Table 1.1 can be used to formulate an integer valued 

discrete state space continuous time Markov process. This then provides a natural 

stochastic description of the assumptions implicit in equations 8 and 9 (made explicit in 

Table 1.1). Under this Markov process, the probability that a given event occurs during a 

short time interval (t, t+ Δt ) is given by its rate multiplied by Δt. The stochastic model can, 

and in some of the models of this thesis will, be simulated using the Gillespie algorithm 

defined by Gillespie (1979). To run Gillespie’s algorithm, starting from time t when the 

system is in state x(t), the time to the next event, �� , is randomly chosen from an 

exponential distribution with parameter, � �����(�(�)), which is the total rate (i.e. the sum 

of the rates of all possible events) evaluated at time t. The event, then occurs at time �+  � 

and is chosen from the set of possible events with probabilities given by the rate of each 

possible event divided by � �����(�(�)). The derivation of the exponential waiting time 

distribution for a Markov process which is the basis of the Gillespie algorithm is as follows. 

Let – 

 

� �� � �(�)�= probability that no event has occurred up to time t , 

 w hen starting at �(0)at time t = 0. 

 

Then considering the change in � �� � �(�)� over a small time �� gives, 

 

� ��+  �� | �(�)� =  � �� | �(�)� �1 − � �������(�)���� 

 

Where to first order in ��, 1 − � �������(�)��� = probability that no event has occurred in 

a small time interval (�,�+  ��) i.e. 1‐ the probability that one of the set of possible events 

did occur. 
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Rearranging this equation and taking the limit as �� → 0 we find 

 

��(� |�(0))

��
 ≡  lim

��→ �

� ��+  �� | �(�)� − � �� | �(�)� 

��
=  −� �� | �(�)� � �����(�(�))  

 

⇒  
1

�(� |�)

��(� | �(�))

��
=  −� �������(�)� 

 

⇒  �
1

�
 ��

�

�

=  − � � ����� ��
�

�

 

 

⇒ ln � �� | �(0)� − ln� �0 | �(0)� =  −� �������(0)�� 

 

⇒  � �� | �(0)� = �� � �������(�)��  

 

This last line follows on noting that, by definition, nothing has happened at time t=0 and so 

� �0 | �(0)� = 1. Note that this equation forms the basis of the Gillespie algorithm since it 

shows that the time to the next event has an exponential distribution.   

 

For the model described in Table 1 

� �����= �� �1 −
�

�
� +  ���+ �� + �� 

 

Thus starting at time t and the time is advanced to �+ � with the inter event waiting time 

drawn from the exponential distribution. i.e., � ~  exp�� �������(�)�� where �(�) =

{�(�),�(�)} represents the state space at time t. After the time to the next event is 

calculated, the event which has occurred is chosen randomly by generating a number from 

the uniform distribution, � ~  � (0, � �����). The next event is:  
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                Birth                  �� � <  �� �1 −
�

�
� 

                                   Death of S  �� � <  �� �1 −
�

�
� + �� 

                                   Death of I  �� � <  �� �1 −
�

�
� + �� + �� 

                                   Infection   �� � <  �� �1 −
�

�
� + �� + ��+  ��� 

 

Note alternative orderings of event types (and associated rates) are allowed but the order 

used does not affect the statistical properties of the model. The state space is updated 

accordingly, the rates are recalculated and the above process is repeated until some 

maximum time, ���� , or an alternative stopping criteria, is reached. An alternative 

stochastic approach which ignores the discrete nature of populations (and hence is closer in 

spirit to the deterministic model) is that of stochastic differential equations (SDE’s). The 

Gillespie implementation, e.g. of the SI model described above, is a continuous time 

discrete state‐space Markov process in which the number of infected individuals (I) and 

total individuals (N = S+ I) are represented as integer variables.  

Table 1.2 shows the expectation and variance of the updates that would be obtained during 

a small time interval from the Gillespie algorithm implementation of the model based on 

the description of events shown in Table 1.1. (i.e. from the discrete state space SI model 

with births and deaths). Comparison with Table 1.2 enables both drift e.g. fN,B(X(t)) and 

diffusion e.g. gN,B(X(t)) functions to be identified 

However the SDE approach makes use of continuous variables to represent the state space. 

Using the simple compartmental example above, we can represent the change in the 

system state variables during an infinitesimally small time interval dt as the following set of 

stochastic differential equations: 

 

�� (�) = ��� ,� ��(�)�+ �� ,�� ��(�)�+ �� ,����(�)�
  

+ �� ,�����(�)�� �� 

+  �� ,� ��(�)���� (�) +  �� ,�� ��(�)����� (�) 

+ �� ,����(�)�����(�)��(�)�+ �� ,�����(�)������(�) 
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��(�) = ���,� ��(�)�+ ��,�� ��(�)�+ ��,����(�)�+ ��,�����(�)�� �� 

+  ��,� ��(�)���� (�) +  ��,�� ��(�)����� (�) 

+ ��,����(�)�����(�) + ��,�����(�)������(�) 

 

The reader will notice that here we have chosen to represent the dynamics in terms of the 

numbers of infectives and the total size of the population rather than using the number of 

susceptibles and another variable. Therefore the state space at time t is now represented 

by the vector �(�) = {� (�),�(�)}. The quantities BB(t), BDS(t), BDI(t), B2ry(t) are independent 

Brownian motions corresponding to each of the four event types. For small but finite dt the 

quantities dBB(t), dBDS(t), dBDI(t), dB2ry(t) can be interpreted as independent draws, from a 

zero mean Gaussian with variance dt, for each event type and each time point 0,dt,2dt, ... 

,Tϵ(0,T).  Thus e.g. E[dBB(t)]=0, E[dBB(t)dBB(t)]=dt and E[dBB(t)dBDS(t)]=0. The so called drift 

term �� ,� ��(�)� represents the expected change in population size N associated with the 

birth event conditional on the system being in state �(�), whereas the diffusion term 

�� ,� ��(�)� represents the variance in this update. There are analogous drift and diffusion 

quantities corresponding to each state variable for each event type. These are detailed in 

Table 1.3. 

 

 

 

 

 

Table 1.2: Expectations and variance-covariance rates. Expectations and variance‐

covariances in changes (during the time interval t to t+δt) to the state space {I(t),N(t)} 

associated with each event type in the discrete state‐space model described above for the 

SDE implementation. All such quantities are shown to first order in δt.  

 

 

 

E-
type 

Event E[δN|X(t)] E[δI|X(t)] Var[δN|X(t)] Var[I|X(t)] Cov[δN,δI
|X(t)] 

B Birth 
 

�� �1 −
�

�
� �� 

0  
�� �1 −

�

�
� �� 

0 0 

DS Death of S −���� 0 ���� 0 0 
DI Death of I −���� −���� ���� ���� ���� 
2ry Secondary 

Trans-
mission 

 
 0 ����� 
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      ����� 
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Table 1.3: Expectation and variance-covariance. Expectation and variance‐covariances in 

changes (during the time interval t to t+dt) to the state space {I(t),N(t)} associated with each 

event type in the SDE model as described above. All such quantities are shown to first order 

in dt.   

The SDE implementation is the diffusion limit of the Gillespie implementation if it is 

constructed in such a way that the first and second order moments of the stochastic 

updates in the differential equations correspond with those of the Gillespie 

implementation. This ensures that the results are consistent between the two 

implementations.  It is easy to see that this consistency is achieved if the values of the drift 

and diffusion terms in the SDE model are chosen by comparing Tables 1.2 and 1.3. This then 

suggests, for example that �� ,� ��(�)� =  ��(1 − � /� ) and �� ,� ��(�)� =  ��(1 − � /� ) 

with assignments corresponding to other combinations of event types and state space 

variables made in an analogous manner (i.e. matching up the entries describing 

expectations and variances in  updates shown in Tables 1.2 and 1.3). For events which 

change both state space variables the above formulation also ensures that associated 

updates also have the correct covariance, between changes in N and I. 

There are pros and cons to both the SDE and Gillespie implementations, for example the 

Gillespie algorithm is computationally more intensive whereas using SDEs is faster and 

therefore facilitates more accurate estimation of model statistics (i.e. a greater number of 

realisations can be run). However, the discrete nature of the state‐space under the Gillespie 

algorithm represents a more natural description of the population and the processes that 

affect it. In particular, it provides a more accurate representation of population dynamics 

for small populations. 

 

E -
type 

Event E[δN|X(t)] E[δI|X(t)] Var[δN|X(t)] Var[I|X(t)] 

B �� ,� ��(�)��� ��,� ��(�)���  �� ,� ��(�)�
�

��  ��,� ��(�)�
�

�� 0 

DS �� ,�� ��(�)��� ��,�� ��(�)���  �� ,�� ��(�)�
�

��  ��,�� ��(�)�
�

�� 0 

DI �� ,����(�)��� �� ,����(�)���  �� ,����(�)�
�

��  ��,����(�)�
�

�� �� ,����(�)���,����(�)��� 

2ry  �� ,�����(�)�dt  ��,�����(�)���  �� ,�����(�)�
�

��  ��,�����(�)�
�

�� 0 
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1.5.2 Spatial Temporal Modelling of Wildlife Populations, Disease and Surveillance 

 

As well as describing the temporal ecological interactions in wildlife systems, mathematical 

models can also include spatial temporal dynamics. Research has shown how extrinsic 

spatial heterogeneity (i.e. habitat and land use), has an impact on disease prevalence and 

persistence (Hagenaars et al. 2004). This finding is important in terms of disease 

surveillance and this is taken into consideration in practice by targeting known habitats of 

wildlife species (Nusser et al. 2008). However, as far as we are aware, there has been no 

research or practical application which has addressed how intrinsic spatial heterogeneity 

(i.e. as generated by demographic fluctuations and disease dynamics) will affect surveillance 

and the efficacy of surveillance strategies.  

The implementation of spatial stochastic models used in this thesis (see Chapter 4) builds 

on the basis of a non‐spatial model, incorporating dynamics and time increments as 

described in section 1.5.1. within a spatial meta‐population. Here each node or “patch” in 

the defined space updates through time via birth, death and immigration events etc. Every 

patch is connected in the spatial area by a distance kernel describing the spread of disease 

between patches and it is this mechanism which controls the spread of disease from patch 

to patch. The distance kernel decays with distance and thus limits the extent to which each 

patch can transmit disease. The closer the patches are, the more likely they are to pass 

disease to one another. Because every process added to the model increases complexity, 

the simulations become ever more computationally expensive. There are many uses for 

both spatial and non‐spatial modelling approaches (Tilman & Kareiva 1997), small scale 

spatial heterogeneity is less significant (i.e. a single population) and it is these instances 

when non‐spatial methods may be more appropriate. However, when dealing with large 

scale meta‐populations, as can be seen in this thesis, spatial heterogeneity is an important 

factor to include. 
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1.6 The Thesis 
      

1.6.1 Aims 

 

The overall aim for this thesis is to investigate how attributes of wildlife populations affect 

surveillance efficacy. We focus primarily on the statistical calculations of prevalence 

estimation and the probability of detecting disease. This is implemented in a generic 

exploration and then subsequently with more specific examples. 

1.6.2 Thesis structure 

 

Chapter 2 

Chapter 2 uses a non‐spatial stochastic simulation model to implement a systematic 

exploration of the effects of pathogen transmission and host population dynamics on the 

efficacy of disease surveillance systems. Our results suggest that for the vast majority of 

disease systems this leads to over confidence in terms of both the power to detect disease 

and the bias and precision of prevalence estimates obtained. Accounting for such ecological 

effects will permit improvements to surveillance systems and better protection against 

emerging disease threats. 

Chapter 3 

Chapter 3 utilises the results in Chapter 2 and applies these findings to two worked 

examples of disease systems in the wild: badgers and tuberculosis; and rabbits and 

paratuberculosis. We show that similar effects to those characterised in Chapter 2 can be 

seen in these disease systems and we explore other sources of complexity and bias which 

have the potential to affect surveillance efficacy. This demonstrates the potential of the 

non‐spatial stochastic model to be used to quantify effects in real systems and also shows 

its potential as a tool to explore the potential impacts of known or putative sources of bias, 

illustrating the power of our approach to inform surveillance. 

Chapter 4 

Chapter 4 extends the non‐spatial model used in Chapter 2 and 3 to explore spatial aspects 

of wildlife disease and wildlife disease surveillance and their subsequent effects on 

surveillance efficacy. This chapter focuses on disease incursion events, representing 

emerging or re‐emerging disease threats, and in particular the amount and extent of spatial 
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spread of disease in the system at the point of first detection by the surveillance system. 

Different spatial surveillance designs are considered and compared to give a better 

understanding of the key mechanisms driving surveillance performance in spatial settings. 

Chapter 5 

Chapter 5 is a general discussion which brings the results from the preceding chapters into 

the wider research context. 
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Chapter 2 

 

 

 

 

The Ecology of Wildlife Disease 

Surveillance  
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Ecology Letters. Submitted September 2014, First Author: Laura Walton. 
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2.1 Abstract 

 
We present the first systematic exploration of the effects of stochasticity in pathogen 

transmission and host population dynamics on the efficacy of wildlife disease surveillance 

systems. The design of wildlife disease surveillance currently ignores fluctuations in these 

processes. Our results suggest that for many wildlife disease systems this leads to bias in 

surveillance estimates of prevalence and over confidence in assessments of both the 

precision of prevalence estimates obtained and the power to detect disease. Neglecting 

such effects thus leads to poorly designed surveillance and ultimately to incorrect 

assessments of the risks posed by disease in wildlife. Understanding such ecological effects 

will enable improvements to wildlife disease surveillance systems and better protection 

against endemic, emerging and re‐emerging disease threats. Our results suggest a need for 

a wider exploration of the impacts of ecology on wildlife disease surveillance. 

 

2.2 Introduction 

 
Surveillance is the first line of defence against disease, whether to monitor endemic cycles 

of infection (Ryser‐Degiorgis 2013) or detecting incursions of emerging or re‐emerging 

diseases (Daszak et al. 2000; Kruse et al. 2004; Lipkin 2013). Identification and 

quantification of disease presence and prevalence is the starting point for developing 

disease control strategies as well as monitoring their efficacy (OIE 2013). Knowledge of 

disease in wildlife is of considerable importance for managing risks to humans (Daszak et al. 

2000; Jones et al. 2008) and livestock (Frölich et al. 2002; Gortázar et al. 2007), as well as 

for the conservation of wildlife species themselves (Cunningham 1996; Daszak et al. 2000; 

Evenson 2008).  

Recent public health concerns e.g. Highly Pathogenic Avian Influenza (Artois et al. 2009b), 

Alveolar Echinococcosis (Eckert & Deplazes 2004) and West Nile Virus (Valiakos et al. 2014), 

have heightened interest in wildlife disease surveillance (Vallat 2008) and led to a growing 

recognition that current approaches need to be improved (Mörner et al. 2002). For 

example, there is no agreed wildlife disease surveillance protocol shared between the 

countries in the European Union (Kuiken et al. 2011). Furthermore several authors have 

argued that improvements are needed to the structure, understanding and evaluation of 

wildlife disease surveillance (Bengis et al. 2004; Gortázar et al. 2007).    
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Much current practice for wildlife disease surveillance (Artois et al. 2009a) is based on ideas 

developed for surveillance in livestock including calculation of sample sizes needed for 

accurate prevalence estimation (Grimes & Schulz 1996; Fosgate 2005) and detection of 

disease within a population (Dohoo et al. 2005). A common feature of these methods is that 

they ignore fluctuations in host populations and disease prevalence. These assumptions 

lead naturally to sample size calculations (for both disease detection and prevalence 

estimation) and other analyses, based on the binomial distribution and associated 

corrections for finite sized populations such as the hyper‐geometric distribution (Artois et 

al. 2009a; Awais et al. 2009). Fosgate (2009) reviews current approaches to sample size 

calculations in livestock systems and emphasises the importance of basing analyses on 

realistic assumptions about the system under surveillance.   

However, although constant population size and prevalence may often be reasonable 

assumptions for the analysis of livestock systems, they are considerably less tenable in 

wildlife disease systems that are typically subject to much greater fluctuations in host 

population density and disease prevalence.  For example, practicalities and changes in 

population density make it much harder to obtain a random sample of hosts of the desired 

sample size in wildlife disease surveillance programmes (Nusser et al. 2008) compared with 

livestock systems.  Furthermore the importance of temporal (Renshaw 1991; Wilson & 

Hassell 1997), spatial (Huffaker 1958; Lloyd & May 1996; Tilman & Kareiva 1997) and other 

forms of heterogeneity (Read & Keeling 2003; Vicente et al. 2007; Davidson et al. 2008) in 

population ecology and in particular their role in the dynamics and persistence of infectious 

disease has long been recognised (Anderson 1991; Smith et al. 2005). However, such effects 

have yet to be systematically accounted for in the design of surveillance programmes for 

wildlife disease systems, or in the analysis of the data obtained from them. Although there 

have been some attempts to account for spatial heterogeneities in the design of wildlife 

disease surveillance by incorporating weighting schemes based on habitat suitability of the 

observed population (Nusser et al. 2008; Walsh & Miller 2010), we are not aware of any 

attempts to account for temporal fluctuations in prevalence or host population size. Here 

we address this gap by assessing the impact of stochastic fluctuations in host demography 

and disease dynamics on the performance of surveillance in a non‐spatial context.  

We demonstrate analytically that correlations in fluctuations of prevalence and population 

density bias prevalence estimates obtained from surveillance. Simulations, using logistic 

models of population growth and susceptible‐infected disease dynamics, support this 
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finding and further show that variation in prevalence estimates can be considerably higher 

than would be apparent from standard calculations based on constant population size and 

prevalence. We also explore the impact of fluctuations in population density and prevalence 

on the ability of surveillance to detect the presence of disease. An approximate argument 

indicates that, in comparison with the detection rate obtained by assuming constant 

prevalence, the true probability of disease detection is reduced by fluctuations, and this is 

confirmed by subsequent simulation.  The potential range of possible detection rates is 

assessed by simulating a spectrum of host‐pathogen systems at two sampling levels to 

demonstrate the potential range of performance that could be expected when surveillance 

is deployed in the absence of knowledge of the underlying wildlife disease system.  

 

2.3 Methods 
 

2.3.1 Stochastic Model Description 

 

The model represents a host population subject to demographic fluctuations (births, deaths 

and immigration) and the transmission of a single pathogen. At each point in time t, the 

state‐space represents the total population size N(t), with I(t) of these infected and        

S(t) = N(t) - I(t) susceptible. In addition the prevalence is then given by p(t) = I(t)/N(t). 

The birth rate of individuals is logistic, rN(1 – N/k), with intrinsic growth rate r and carrying 

capacity k reflecting the assumptions that population growth is resource limited. Individuals 

have a per capita death rate μ and immigration occurs at a constant rate ν. 

A proportion γ of immigrants are infected, but otherwise all individuals enter the 

population (through birth or immigration) as susceptible since we assume vertical and 

pseudo‐vertical transmission are negligible. Susceptible individuals become infected 

through primary transmission (contact with infectious environmental sources including 

individuals outside the modelled population) and secondary transmission (contact with 

already infected individuals from within the population). Primary transmission occurs at 

rate β0 S(t) while secondary transmission occurs at rate βS(t)I(t).   

Disease surveillance is incorporated into the model in the form of active capture, testing 

and release at per capita rate α for both susceptible and infected individuals. All 

surveillance testing is undertaken assuming perfect tests, which means that our measures 
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of the performance of surveillance reflect a best case scenario. A summary of this 

conceptual model is given in Table 2.1 which shows all demographic, epidemiological and 

surveillance events with their corresponding rate and effect on the state‐space. 

2.3.2 Statistics generated from the model 

 

Since we allow immigration of susceptible and infected individuals neither the population 

nor the disease will become extinct and we therefore assume that long term averages are 

equivalent to ensemble expectations (typically approximated by averages over many 

realisations of the process). Each simulation is run for a period of time to allow the 

population to reach equilibrium before long run averages are calculated. For example, the 

expected mean E[N] and variance Var[N] of the population size are recorded along with 

the expected mean E[p] and variance Var[p] of disease prevalence. Similarly other statistics 

such as the covariance between the prevalence and population size are calculated as 

required.  

During a so called surveillance bout individuals are captured at per capita rate α, and both 

the total number and the number of infected individuals caught are recorded. Note this 

could be easily extended to account for imperfect disease diagnostics by recording the 

number testing positive but here we assume perfect tests. When the surveillance bout 

ends, either because a target number of individuals has been caught or because an upper 

time limit has been reached, the sample prevalence is recorded. In addition, if at least one 

infected individual was caught we note that disease was detected. Therefore over repeated 

surveillance bouts it is straightforward to estimate the probability of detection PD  (the 

proportion of bouts where disease is detected) and the mean E[p̂surv] and variance 

Var[p̂surv] of the prevalence estimates obtained from active surveillance. 

2.3.3 Model Implementation 

 

The model is implemented  as a continuous time continuous state space Markov process, 

based on a set of coupled Stochastic Differential Equations, SDEs (see e.g. Mao 2007) and 

simulated using the Euler‐Maruyama algorithm (see e.g. Higham 2001). For details see 

section 1.1 in Appendix 1. The model is also implemented as a continuous‐time discrete‐

state space Markov process (also described in section 1 in Appendix 1), which is simulated 

using Gillespie’s exact algorithm (Gillespie 1976). The SDE implementation has been 

constructed so that it is the diffusion limit of the Gillespie implementation. To achieve this, 

the first and second order moments of the stochastic updates in the differential equations 
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are chosen to correspond with those of the Gillespie implementation, ensuring that the 

results are consistent between the two implementations.  The Gillespie algorithm is 

computationally more intensive whereas using SDEs is faster and therefore facilitates more 

accurate estimation of model statistics (i.e. a greater number of realisations can be run) and 

more extensive exploration of parameter space. However, the discrete nature of the state‐

space under the Gillespie algorithm is a more direct implementation of the model described 

in Table 2.1 and provides a more accurate representation of population dynamics for small 

populations. 

 

 

 

 

T

a

b

l

e

  

Table 2.1: Model structure. Event, Rate and Effect on the State Space of the model. 

Conceptually the effect of each event affects an individual and this is reflected in the 

discrete nature of the corresponding changes in the state space. However, given this 

underlying conception of the model there are a number of different implementations which 

can be considered including via the Gillespie algorithm and stochastic differential equations 

(see text for details). 

  

Event Rate Effect 

Birth ��(1 − � /�)) � → � + 1 
Death of Susceptible �� � → � − 1 
Death of Infected �� � → �− 1 
Susceptible 
Immigration 

(1 − �) � � → � + 1 

Infected  
Immigration 

�� � → �+ 1 

Primary  
Transmission 

��� � → � − 1 
  �→ �+ 1 

Secondary 
Transmission 

��� � → � − 1 
� → �+ 1 

Susceptible Capture 
and Release 

�� � → � 

Infected Capture and 
Release 

��   � → � 
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2.4 Results 
 

2.4.1 Estimating Prevalence 

 

In order to develop an understanding of the properties of wildlife disease surveillance using 

the above model we now develop expressions describing prevalence estimates obtained by 

continuous surveillance i.e. continuously deployed effort resulting in per capita capture rate 

α. 

Consider the interval [0,T] during which the population history is                                       

ℋ [0,T ] = {(N(t ),p(t )): t Є [0,T]} where N(t) and p(t) represent the population size and 

disease prevalence at time t Є [0,T] respectively (see above). Let nT represent the total 

number, and iT the number of infected individuals sampled during this time interval. 

Conditional on the history ℋ [0,T ] the expectations of these quantities are 

E���| ℋ [0,�]�=  ∫ �� (�) ��
�

�
   and    E���| ℋ [0,�]�=  ∫ �� (�)�(�) ��

�

�
. 

Assuming perfect testing (as we do throughout this paper) the surveillance estimate of 

disease prevalence is simply the ratio pŝurv(T ) = iT/nT. If the stochastic process 

representing the disease system is ergodic, and given the inclusion of immigration (see 

above) we can rule out extinction, the long time limit of this estimate can be equated with 

its ensemble average (expectation over all histories) i.e.,  

lim�→ � ��̂���(�) = E[��̂���]= lim�→ �  
�

�
∫ � (�)�(�) ��

�

�
�

�
∫ � (�) ��

�

�

=
�[� (�)�(�)]

�[� (�)]
. 

This can be re‐expressed in the more suggestive form 

 

                                 E[��̂���]=  E[�(�)]+  
���[� (�),�(�)]

E[� (�)]
                                                        (1) 

 

Thus when the covariance Cov[N(t),p(t )] = E[N(t )p(t )] - E[N(t )]E[p(t )] between the 

population size and the prevalence is non‐zero the surveillance estimate of prevalence is a 

biased estimate of the true prevalence, E[p(t)]. Since Cov[N(t),p(t)] will be zero when 

either N(t) or p(t) are constant, this result leads to our first and most important conclusion, 
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namely that demographic fluctuations and stochasticity in disease dynamics undermine the 

efficacy of surveillance.  

2.4.1.1 Effect of host demography and disease dynamics 

 

We now focus on surveillance estimates of prevalence based on finite sample sizes, and 

compare these to the continuous sampling theory prevalence estimate (see equation 1). 

Using the SDE implementation of the full model, Figure 2.1 illustrates how population 

fluctuations and disease dynamics in the host‐pathogen system affect the efficacy of 

surveillance (in terms of the bias and variance of estimated prevalence). These results are 

generated by simulating the system for a range of values of the death rate μ, with other 

parameters fixed. As the death rate increases the expected population size decreases and 

demographic fluctuations increase. For a given rate of disease transmission β, increasing the 

death rate reduces expected prevalence, and therefore simulating for different values of μ 

generates the range of prevalence values shown.  Details of the parameterisations used are 

given in Table S.1.1 (see section 1.2 in Appendix 1). The resulting relationship between 

demography and expected prevalence for particular disease characteristics (here a fixed 

transmission rate, β) is illustrated in Figures 2.1.a and 2.1.b which show increasing 

population size and lower demographic fluctuations as expected prevalence increases. 

Simulations not shown here show that our results generalise, holding for transmission rates 

relative to a recovery rate (governing an additional transition from I to S) and death rates 

relative to birth rate, r.     

Figure 2.1.c shows the bias in the surveillance estimate of prevalence E[p̂surv] - E[p(t )] 

obtained from the same set of simulations. Results shown are based on 106 surveillance 

bouts with sample size m  = 10, where for each bout sampling is conducted at rate α until 

10 individuals have been caught and tested. The bias predicted by continuous sampling 

theory (which does not account for sample size) is also shown, and in this case is extremely 

accurate i.e. it agrees with simulation results. Figure 2.1.c shows the bias in surveillance 

estimates of prevalence for four different transmission rates. It is important to note that the 

results shown are conditioned on the underlying prevalence E[p(t)], and therefore for a 

given prevalence the populations associated with higher transmission rates are more 

variable than those with lower β.  We therefore conclude that such variability increases the 

bias of surveillance estimates of disease prevalence.  Finally, Figure 2.1.d shows the 

standard deviation in surveillance estimates of prevalence obtained from the same set of 

simulations. Comparison with the variability in prevalence estimates expected under the 
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zero fluctuation assumption reveals that fluctuations in our simulated wildlife disease 

system considerably reduce the precision (increase the variance) of estimates obtained by 

surveillance. The variability of these estimates also increases with demographic 

fluctuations. Thus, the dynamics of the host‐pathogen interaction are integral in 

determining the efficacy of surveillance in terms of prevalence estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Effect of host demography and disease transmission. Data are shown for a 

range of values of the death rate μ which controls the stability and size of the population, 

and thus determines disease prevalence for a given transmission rate, β. For β=1 plot 2.1.a 

shows that expected population size increases with expected prevalence E[p(t)] (i.e. as μ 

decreases) whilst plot 2.1.b shows that the coefficient of variation of the population size 

decreases.  For the four values of β  indicated and fixed sample size m=10, plot 2.1.c shows 

the bias E[p̂surv] - E[p(t )], and plot 2.1.d the standard deviation in surveillance estimates of 

prevalence, versus the expected value of true disease prevalence in the system, E[p(t)]. 

Results shown are based on 106 surveillance bouts using the SDE implementation of the 

model (see text) using the set of parameter values described in Table S.1.3 section 1.2 in 

Appendix 1. 
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2.4.1.2 Surveillance design 

 

An important determinant of surveillance efficacy is the design of the surveillance strategy 

itself. Figure 2.2 shows how the bias and variance of the estimate of prevalence changes as 

the intensity of surveillance (measured by the capture rate α) increases for fixed sample size 

(Figures 2.2.a and 2.2.c), and as the sample size, m , increases for a fixed capture rate 

(Figures 2.2.b and 2.2.d). For low capture rates and as α→ 0  the continuous sampling 

estimate given in equation (1) provides an accurate prediction for the level of prevalence 

estimated from surveillance based on fixed sample size, which as we saw above is a biased 

estimate of the true prevalence E[p(t)]. However, increasing the capture rate reduces bias, 

and as α increases this bias tends to zero. In addition, for large capture rates, the precision 

of the surveillance estimate of prevalence matches the variability of the underlying wildlife 

disease system (see Figure 2.2.c). Thus for low capture rates the bias in surveillance 

estimates of prevalence is well described by continuous sampling theory (equation 1). 

However, for larger capture rates the properties of the surveillance estimate of prevalence 

increasingly reflect the expected true prevalence (i.e. bias reduces) and the variability in the 

prevalence of underlying disease system. In contrast, increasing sample size improves 

precision, but not bias (Figure 2.2.b). However, the precision is lower and improves less 

quickly with increasing sample size than that predicted by the standard approach that 

neglects fluctuations (see Figure 2.2.d). 

 

 

 

 

 

 

 

 

  

 



48 
 

 

 

 

 

 

 

 

 

 

Figure 2.2: Effect of surveillance design. In all plots results are shown for three wildlife 

disease systems with (β, μ): (1, 0.43) solid lines; (1, 0.4) dashed; and (0.1, 0.43) dot‐

dashed. Plots 2.2.a and 2.2.b show expected values of the surveillance estimate of 

prevalence (purple), the true prevalence (blue) and the continuous sampling theory 

prediction (black, see text for details). Plots 2.2.c and 2.2.d show the expected standard 

deviation (denoted, σp) in both the true (blue) and the surveillance estimated (purple) 

prevalence. Plots 2.2.a and 2.2.c are plotted against a range of values of the capture rate α, 

for m  = 10, and 2.2.b and 2.2.d versus a range of sample sizes m for α = 0.1.  Plot 2.2.d also 

shows the constant prevalence estimate of the standard deviation based on the binomial 

(green). Parameter values used are described in Tables S.1.4 and S.1.5 (see section 1.2 in 

Appendix 1). 

 

Figure 2.2 is based on simulated systems for which average host life spans are in the range 

of 2.3‐2.5 time units and these results show bias in prevalence estimates for capture rates 

well above such levels. This suggests that demographic fluctuations will lead to bias in 

surveillance based estimates of prevalence unless surveillance intensity is high (i.e. 

corresponding to capture rates high enough to allow for individuals to be captured multiple 

times during their lifetimes). This does not imply that all individuals need to be tested, but 

just that the required samples should be gathered quickly relative to demographic 

fluctuations in order to reduce such bias. Nonetheless such capture rates are rare and only 
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occur in the most intensively sampled populations (see e.g. Delahay et al. 2000). Additional 

numerical results (not shown) indicate that as the sample size increases the capture rate 

required to obtain unbiased estimates increases, but even for large sample sizes when 

sampling is instantaneous sampling (i.e. α→∞ ) bias is zero and the standard deviation in the 

surveillance estimate of prevalence corresponds to that of the underlying wildlife disease 

system as shown above.  

 

2.4.2 The Probability of Detection 

  

In many cases the primary goal of wildlife disease surveillance is detection of disease rather 

than quantification of prevalence e.g. for emerging or re‐emerging disease where detection 

is a precursor to further action, including heightened surveillance. If prevalence is assumed 

constant and equal to the long term, ensemble, average prevalence E[p] of the wildlife 

disease system, then the probability that disease is detected in a sample of size m  is given 

by 

 

                   �� ��� = �(E[�],� ) =  1 − (1 − E[�])�                                    (2) 

 

This formula, based on simple binomial arguments, and variants that also assume constant 

prevalence, are the standard basis for sample size calculations (see e.g. Fosgate 2009). 

However, we now demonstrate that PDBin is a misleading estimate of the probability of 

detection if prevalence fluctuates.  

In real systems prevalence varies with time and therefore when conducting surveillance the 

prevalence values at the times each of the m  samples are collected will vary. Nonetheless, 

for simplicity here we assume that the prevalence during a given surveillance bout (i.e. the 

collection of m  consecutive samples) is constant and denoted p. The results shown in Figure 

2.3.a, which compare the probability of detection measured directly in model simulations 

with approximations based on averaging over prevalence fluctuations both within and 

between and only between surveillance bouts, demonstrate that this is an accurate 

approximation.  Then the expected probability of detection for sample size m  is defined as     
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                        �� = E[�(�,� )]=  E[1 − (1 − �)� ]                                              (3) 

 

where the expectation is over the between bout prevalence distribution P(p).  For a single 

sample   m = 1, equation (3) reduces to a linear form so that PD = PDBin = E[p]. However, 

if m  > 1 , then equation (3) is non‐linear and therefore PD ≠  PDBin. To illustrate this, we 

Taylor expand PD  by assuming that the difference between the bout prevalence p and the 

long term average prevalence is small i.e. p = E[p ] + Δp. Then noting that E[Δp] = 0 and 

var[p ] = E[Δp2 ] yields 

 

�� ≅ �� ��� +
�

�
���[�]��

��(�,� )

���
�

�� �[�]

+ � .� .� 

 

This suggests (to leading order) that the true probability of detection will be lower than 

PDBin, since the second derivative ∂2f(p,m )/∂p2 = -m (m - 1)(1 - p)m  –2 is negative for 

sample size m > 1  and p = E[p]. In addition, the size of this deviation depends on the 

sample size and the variance in prevalence.  Although the conclusions drawn are broadly 

correct, when compared with simulation results, the above Taylor expansion does not 

provide an accurate approximation to the probability of detection. However, analytic 

progress can be made with the following alternative approach. The approximation               

(1 - p)m  ≈ e-pm   holds for m  large (and is already accurate even for m  = 10) and enables us 

to write the probability of detection as  

 

�� = 1 − E�[(1 − �)� ]≅ 1 − E[�� �� ]= 1 − � �(� )                                    (4) 

 

where M p(m ) ≡  E[e -pm ] is the moment generating function associated with the between 

bout prevalence distribution P(p). This suggests that if we could parameterise a suitable 

distribution to approximate P(p) then we could use the corresponding moment generating 

function to calculate the probability of detection.  
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2.4.2.1 Effect of host demography and transmission dynamics 

 

The results shown in Figure 2.3 demonstrate the effect of host demography, transmission 

dynamics and surveillance design on the probability of detection. These results are obtained 

from the simulations described in Figure 2.1, except for those in Figure 2.3.d where these 

simulations are rerun for different values of the capture rate.  

Figure 2.3.a suggests that a moment‐generating function approximation (equation 4) based 

on the actual distribution of prevalence between surveillance bouts would be a very 

accurate approximation. Figure 2.3.b illustrates this approximation using an assumed 

gamma distribution parameterised with the mean and variance of P(p). Although the 

gamma approximation is not completely successful it does provide a more accurate 

prediction of PD  than PDBin and could improve sample size calculations in situations where 

simulation was not possible, but information about prevalence fluctuations was available. 

Moreover, the results of Figure 2.3.a show that such approximations could be improved by 

assuming a more accurate representation of the prevalence distribution P(p). Crucially 

these calculations support the conclusion that the true probability of detection is less than 

obtained when ignoring fluctuations i.e. less than PDBin.  Figure 2.3.b also shows the impact 

of biased prevalence estimation on disease detection for the case β = 0.1. Figure 2.1 

demonstrated that in this case surveillance results in inflated estimates of prevalence 

E[p̂surv] > E[p(t)]. Ignoring the effect of fluctuations would therefore lead to an estimated 

detection probability even greater than PDBin which is based on the true average prevalence 

E[p]. 

Figure 2.3.c shows the effect of interactions between disease dynamics and demography. As 

in the case of prevalence estimation, conditioned on a given expected prevalence, larger 

contact rates β are associated with greater fluctuations in the underlying wildlife disease 

system (i.e. greater transmission rates are needed to sustain a given prevalence). Here 

larger fluctuations translate into reduced probability of detection. In Figure 2.3.c for β = 1.0 

the probability of detection is only a little above the line PD = E[p] which corresponds to a 

single sample m  = 1.  Thus, in comparison with the zero fluctuation approximation PDBin, 

fluctuations reduce the effective sample size, for the β = 1.0 case from m = 10 to close to 

m = 1.  Results not shown indicate that reduction in effective sample size increases with 

sample size (and see Figure 2.4). Figure 2.3.d shows the effect of capture rate on the 

probability of detection with more intense surveillance effort actually reducing the 

probability of detection. This is consistent with the above observations regarding β, since 
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less intense effort means that the required sample size takes longer to gather which 

reduces between bout fluctuations in prevalence.  

 

 

 

  

 

 

 

 

 

 

 

Figure 2.3: Effect of host-pathogen and surveillance dynamics on probability of detection.  

Results based on simulations used for Figure 2.1 (for details see Table S.1.6 in section 1.2 in 

Appendix 1). Plot 2.3.d estimated PD  versus approximations based on modifcations of 

equation (3) accounting for fluctuations in prevalance (i) within and between bouts and (ii) 

between bouts only. Plot 2.3.c shows PDBin based on both E[p] (green) and E[p̂surv] (black) 

and (for β = 0.1) PD  and the approximation (equation 4) based on an assumed gamma 

distribution. Plot 2.3.a shows PDBin (green) and PD  for various values of β  (as shown 

yellow (β = 0.01); orange (β = 0.04); red (β = 0.1); purple (β = 1.0)) versus actual 

prevalence E[p]. (b) shows PDBin (green) and PD  for β = 0.1 and the three capture rates α 

= 0.01, 1.0, 10.  In plots 2.3.a, 2.3.b and 2.3.c the black line indicates PD = E[p(t )]. 

 

2.4.2.2 Limits to disease detection in wildlife disease systems 

 

Given that the nature of host demography and disease dynamics in wildlife disease systems 

will often be poorly understood, we carried out simulations similar to those explored above 

for a wide range of different host‐pathogen combinations.  These simulations focus on 

assessing the impacts of fluctuations on the ability of surveillance systems to detect disease 
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across a wide spectrum of wildlife disease systems.  Since we focus on probability of 

detection the results are conditioned on the presence of disease and simulations are run 

using the Gillespie implementation of our model which explicitly handles the discrete 

nature of small populations. The details of these simulations, including the range of 

parameter combinations used, are described in detail in Table S.1.5 (see section 1.2 in 

Appendix 1).   

Figure 2.4 shows how the probability of detection from surveillance, compares to the zero 

fluctuation approximation PDBin, at two different sampling levels, across this broad range of 

wildlife disease systems. Depending on the level of fluctuations in the system, the effective 

sample size can range from the actual number of samples taken all the way down to m ≈  1. 

These results suggest that ignoring the effect of fluctuations when designing surveillance 

could lead to studies that are underpowered in terms of disease detection. These results 

are consistent with those of Figure 2.3 based on the SDE implementation. 

 

 

 

 

 

 

 

 

Figure 2.4: Fluctuations reduce power to detect disease. The two panels show the 

probability that disease is detected (conditional on non‐zero prevalence) for target sample 

sizes 10 and 20. Each coloured dot represents the average of 100‐1000 realisations of the 

model implemented using the Gillespie algorithm that met the sample target for a 

particular combination of parameters representing a distinct host‐pathogen system (for 

details see Table S.1.7 in section 1.2 in Appendix 1). The green dashed line in both graphs 

represents PDBin the probability of detection assuming constant prevalence (see equation 

2). It can be seen that PDBin generally over‐estimates the power of the sample in that it 

predicts a larger probability of detection than is realised in the stochastic simulations. 
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2.5 Discussion 

 
We believe this paper represents the first systematic exploration of the impact of pathogen 

transmission dynamics and demographic aspects of host ecology on wildlife disease 

surveillance efficacy. We have developed a generic framework in which surveillance in 

wildlife disease systems is characterised in terms of key demographic and epidemiological 

parameters alongside those representing the process of surveillance. Results were obtained 

using a combination of mathematical analysis and simulation, with different 

parameterisations used to represent a broad range of wildlife disease systems. We 

conclude that demographic and disease fluctuations reduce the power of surveillance to 

detect disease, and both bias and reduce the precision of estimates of prevalence obtained. 

Current approaches to the design and analysis of surveillance in wildlife disease systems are 

largely based on methods developed for livestock (Grimes & Schulz 1996; Dohoo et al. 

2005; Fosgate 2005) and typically ignore temporal fluctuations in prevalence and host 

population size. These assumptions lead to conclusions that, in the absence of extrinsic 

sources of bias, e.g. variation in habitat quality (Nusser et al. 2008; Walsh & Miller 2010) or 

biased capture (Tuyttens et al. 1999), surveillance produces unbiased estimates of 

prevalence, and associated statistical power is determined completely by sample size and 

the underlying prevalence of disease. Our results demonstrate that such conclusions are 

not, in general, justified in wildlife disease systems where fluctuations bias prevalence 

estimates and reduce their precision compared with what would be expected in the 

absence of fluctuations. Similarly we find that the probability of disease detection increases 

with prevalence and sample size but at rates that progressively reduce as demographic and 

disease fluctuations increase. This suggests that wildlife disease surveillance programmes 

based on current theory are underpowered and produce biased results.   

Here we have introduced a framework within which surveillance design is characterised by 

both sample size m , and the capture rate α instead of simply sample size. Moreover, in this 

extended framework the performance of surveillance is assessed in light of the ecology of 

the wildlife disease system of interest (i.e. for particular population and disease 

parameters). A key insight is that sample capture (e.g. time taken to reach the sample 

target) is dependent on both the surveillance design and the ecology of the host (Nusser et 

al. 2008), represented here in terms of demography. Our results show that surveillance 

design (choice of m  and α) can have a large impact on bias and precision of prevalence 

estimation and on the power to detect disease. Bias in prevalence estimates increases and 
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the precision of such estimates reduces with more unstable populations and greater 

fluctuations in disease. Such bias can be reduced by increasing capture rate, but for fixed 

sample size this also reduces the ability to detect disease. However, simulation results 

suggest that for all but the most intensive wildlife disease surveillance programs (Delahay et 

al. 2000) typical capture rates are not sufficient to eliminate bias. In contrast increasing 

sample size does not affect bias, but does improve statistical power in terms of both 

precision of prevalence estimates and disease detection. However, as sample size increases 

such improvements in power are not as fast as would be expected if fluctuations were 

ignored, as they are in current surveillance design and analysis. 

The framework introduced here could be extended to account for details of particular 

wildlife disease surveillance programmes including the sensitivity and specificity of 

diagnostic tests, application to specific host populations and pathogens, multiple diagnostic 

test results (that are increasingly available), aspects of syndromic surveillance (Dórea et al. 

2011) and more complex deployment strategies than those considered here. 

Characterisation of the outcome of surveillance e.g. in terms of bias, precision and 

probabilities of disease detection would aid the identification of efficient designs and 

interpretation of any results obtained. However, the development of more formal statistical 

analyses that account for demographic fluctuations and stochastic disease dynamics 

remains the subject of future research.  

Surveillance is a critical prerequisite for defining and controlling wildlife disease risks and 

our results suggest that current approaches to the design and analysis of wildlife disease 

surveillance ignore fundamental aspects of ecology leading to inadequate assessment of 

risk. Moreover, these problems (unknowingly under powered studies and biased results) 

are likely to be very widespread given that the ecology of many wildlife species and the 

pathogens to which they are exposed, lead to significant temporal fluctuations in both 

population size and prevalence (Anderson & May 1979; Anderson 1991; Renshaw 1991; 

Wilson & Hassell 1997).   

There is much current interest in quantifying risks from wildlife disease (Daszak et al. 2000; 

Jones et al. 2008) and this is stimulating debate on the need to improve wildlife disease 

surveillance (Bengis et al. 2004; Butler 2006; Gortázar et al. 2007; Béneult et al. 2014). This 

paper contributes to this debate, highlighting the need to consider the ecology of wildlife 

disease systems when designing or analysing surveillance programs (Béneult et al. 2014), 

emphasizing the importance of temporal heterogeneities induced by demographic 

stochasticity and disease dynamics. Further research is needed to assess the impacts of 
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alternative and complimentary heterogeneities including intrinsic and extrinsic forms of 

spatial heterogeneity and other population structures. There is a rich literature describing 

the effects of such heterogeneity in ecology and epidemiology (Huffaker 1958; Lloyd & May 

1996; Tilman & Kareiva 1997; Keeling et al. 2000; Read & Keeling 2003; Keeling 2005; 

Vicente et al. 2007) and our results suggest that these are likely to important, but as yet 

unexplored, impacts on the efficacy of wildlife disease surveillance. 
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Chapter 3 

 

 

 

 

An Approach to Assessing Wildlife 

Disease Surveillance in Real Systems: 

tools and applications 
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3.1 Abstract 

 
We show how the theoretical framework presented in Chapter 2 can be further developed 

and applied as a tool to assess the outcomes of wildlife disease surveillance in real systems. 

In so doing, the effects on surveillance of fluctuations demonstrated in Chapter 2 are 

quantified for two real host populations. Our results show, using examples of badger and 

rabbit populations, that the impact of demographic fluctuations and stochasticity of disease 

dynamics on surveillance efficacy is a justifiable concern for current control strategies of key 

wildlife populations and diseases. Using these tools we also offer novel analyses of 

recognised sources of bias in natural populations i.e. disease induced mortality, diagnostic 

test sensitivity and trappability. These are shown to either further contribute to, or mask 

the bias occurring from natural stochastic fluctuations within the population. Understanding 

these subtle effects and the impact they have on surveillance efficacy is key in the pursuit of 

better control strategies, which ultimately offer protection for wildlife, livestock and 

humans against the threat of disease. 

 

3.2 Introduction 

 
Chapter 2 identified that combined fluctuations in population and disease dynamics bias 

surveillance estimates of prevalence with respect to the true mean. It was also shown that 

the variability in the prevalence estimate is much larger (i.e. the precision of the estimate is 

much lower) than current methods (i.e. binomial theory) estimate and both effects increase 

with the size of fluctuations in the host‐pathogen system. Furthermore variation in 

prevalence depresses the probability of detection compared to current theoretical 

estimates, based on binomial arguments, which ignore such effects. Overall, these results 

demonstrate the importance of assessing the host‐pathogen system more carefully before 

designing surveillance strategies. 

This Chapter aims to show how by building on the generic theoretical framework described 

in Chapter 2 we can employ stochastic models describing the dynamics of wildlife disease 

systems as tools which enable assessment of surveillance in real disease systems of current 

interest.  We extend the stochastic model from Chapter 2 to model two endemic disease 

systems, and quantify surveillance in each in terms of the extent to which standard 

theoretical tools which ignore fluctuations are able to predict the performance of 

surveillance. Here we model badger and rabbit populations, simulating population dynamics 
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in conjunction with the spread of Bovine Tuberculosis (Mycobacterium bovis) (TB) and 

Paratuberculosis (Mycobacterium avium subsp. paratuberculosis) (paraTB) respectively. 

Both diseases are endemic in many countries, including the UK, and are associated with 

economic loss to livestock production systems and health risk to humans.  

In addition rabbits and badgers can be thought of as representative of, respectively, r and K 

species under MacArthur and Wilson’s (MacArthur & Wilson 1967) general theory.  An r 

species has large population fluctuations seen as booms and busts of growth, resulting from 

high birth and death rates and typically lives in an unstable environment. A K species has 

population growth limited by resources and competition, lives in a stable environment, and 

has a relatively low birth and death rate; and hence lower population fluctuations. Thus, as 

host population fluctuations were shown in Chapter 2 to impact on surveillance, the results 

we obtain for rabbits and badgers will be relevant to other r and K species.  

Badgers were first identified as a host for M. bovis in 1974 (Byrne et al. 2012b) and have 

since been included in TB control strategies in the UK. During the comprehensive 

Randomised Badger culling Trial (RBCT), which aimed to test the hypothesis that badger 

population reduction would reduce the TB prevalence in sympatric cattle, badgers were 

shown as a source of infection to cattle (DEFRA 2013). Under the RBCT proactive culling of 

badgers (population reduction irrespective of cattle TB status) was associated with an 

average of 16% reduction in TB incidence in cattle. However, reactive culling of badgers 

(population reduction in response to TB in cattle) was associated with an increase in TB in 

badgers (Carter et al. 2007) and cattle (Donnelly et al. 2003, 2006).  

Rabbits were identified as a host of M. avium subsp. paratuberculosis in 1997 (Greig et al. 

1997; Beard et al. 2001). Modelling studies suggest that the direct and indirect routes and 

rates of rabbit to rabbit transmission identified and quantified in the field (Judge et al. 

2006) are sufficient for the disease to persist in rabbit populations (Judge et al. 2007). 

Rabbits excrete millions of bacteria in their faeces (Daniels et al. 2001) which are not 

avoided and are therefore ingested by grazing livestock (Judge et al. 2005).  More recently 

paratuberculosis in rabbits has been associated with a failure of disease control operations 

in cattle (Shaughnessy et al. 2013), and may be associated with Crohn’s disease in humans 

(Naser et al. 2014). 

Wildlife disease surveillance is also subject to a number of well known inaccuracies and 

biases, including diagnostic limitations e.g. sensitivity, and biases in animal sampling e.g. 
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trapping biases. Diagnostic limitations are a result of the test sensitivity and specificity 

which determine how accurate test results are. The sensitivity and specificity of the test can 

bias results by reporting false information, giving the impression of more/less disease than 

is actually present in the population. Research funding in wildlife disease surveillance is 

limited and in any case developing more accurate tests may not always be feasible due to 

technical and scientific challenges. Sampling biases can also occur through the interaction of 

survey implementation and the behaviours of the sampled population. For example, 

animals burdened with disease can become more or less likely to be trapped (trap shy / trap 

happy) which can lead to unrepresentative results. 

Accurate surveillance and monitoring of infection in these disease systems is essential for 

the quantification of the biological processes underpinning disease persistence and spread, 

accurate assessment of risk, and for the efficiency of disease control operations. In the 

current chapter we seek to understand the potential impacts of the above effects on two 

contrasting host systems. Therefore whilst in the previous chapter we explored a range of 

demographic parameters here we consider a range of possible pathogens, characterised in 

terms of both transmission rate β and disease induced mortality rate μI, infecting 

populations of badgers and rabbits. Within this context TB in badgers and paratuberculosis 

in rabbits correspond to particular combinations of transmission rate β and disease induced 

mortality rate μI. As in Chapter 2, we consider one form of surveillance; active capture and 

release (the capture and testing of individuals which are then released back into the 

population). Simulations are run to assess to what extent the results found in Chapter 2 are 

relevant to specific wildlife populations and diseases. We also investigate how the 

performance (e.g. sensitivity) of the diagnostic test and wildlife sampling biases (e.g. 

trappability) influence the efficacy of the surveillance strategy in terms of the probability of 

detection and the bias and variance (SD) in estimating the prevalence. 
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3.3 Methods 

 

3.3.1 Stochastic Model Description 

 

The model represents a host population subject to demographic fluctuations (births, deaths 

and immigration) and the transmission of a single pathogen species/strain. At each point in 

time t, the state‐space represents the total population size N(t), with I(t) of these infected 

and S(t) = N(t) - I(t) susceptible. In addition the prevalence is then given by p(t) = 

I(t)/N(t). The birth rate of individuals is logistic, rN(1 – N/k), with intrinsic growth rate r  

and a  carrying capacity k  reflecting the assumptions that population growth is resource 

limited. Individuals have a per capita death rate μ and if there is disease induced mortality 

in the system, infected individuals have an additional disease induced death rate μI i.e. 

infected individuals have a total death rate of μ+ μI. Immigration occurs at a constant rate ν 

with a proportion γ of immigrants are infected. As immigration is set as a constant rate, this 

can push the population size above the carrying capacity K, at which point the birth rate is 

set to 0. 

Disease surveillance is incorporated into the model in the form of active capture, testing 

and release at per capita rate α for both susceptible and infected individuals. The time for 

which individuals are removed from the population is assumed negligible. Surveillance 

testing is undertaken assuming perfect tests, unless otherwise specified by the 

sensitivity/specificity level.  A summary of this conceptual model is given in Chapter 2 in 

Table 2.1 which shows all demographic, epidemiological and surveillance events with their 

corresponding rate and effect on the state‐space. However, in this chapter, note that death 

of invectives occurs at rate μ+ μI. For a more detailed description of the model and how the 

surveillance is modelled, see Chapter 2. 

3.3.2 Model Implementation 

 

The model is implemented firstly as a continuous time continuous state space Markov 

process, which is simulated using Stochastic Differential Equations (SDE) as described in 

Appendix 1. Secondly the model is implemented as a continuous‐time discrete‐state space 

Markov process, which is simulated using Gillespie’s exact algorithm (Gillespie 1976). 

Descriptions of the implementation can be seen in Chapter 2. As noted above all events 

with their corresponding rate and effect on population size for the Gillespie implementation 

can be found in Table 2.1 in Chapter 2. 
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3.3.3 Model Parameterisation 

 

Parameters used to simulate the badger and rabbit social groups were estimated using 

information gathered from the literature including Shirley et al. (2003) and Judge et al. 

(2007) respectively. Appendix 2.1 provides details but an outline of the procedure followed 

is described here. A key issue in establishing parameter values used here is the differences 

between the structure of our models and those used in the cited literature. As outlined 

above here we adopt a continuous time framework whereas Shirley et al. (2003) used a 

discrete time model. This difference necessitates a translation between transition 

probabilities associated with the characteristic time step used in the discrete time model 

and the event rates used here. Judge et al (2007) uses continuous time also, however the 

rates are calculated for time measured in months and therefore needed some adjustment. 

Furthermore both (Shirley et al. 2003) and (Judge et al. 2007) model several age classes and 

both males and females. In contrast here we neglect such population structure and 

therefore must consolidate transition probabilities across many different age by sex classes 

in order to calculate a single rate per event considered i.e. birth and death rates, disease 

induced mortality and disease transmission rates. Details of these calculations are provided 

in Appendix 2.1. 

In addition to the above figures for badgers we also chose to model the average badger 

group size to be around 18 individuals based on the average group size observed at the 

Woodchester Park study site (Zijerveld 2012). Since in most parts of the UK badger group 

sizes are typically below 10 (Neal & Cheeseman 1996; Delahay et al. 2000) we set the 

carrying capacity (the maximum population above which the group size can’t go) to be 

k=20. However, we note that our results and conclusions regarding the impact of 

fluctuations on surveillance in badgers are robust to alternative choices for the carrying 

capacity, k>20. We consider the mortality rates derived from (Shirley et al. 2003) to be 

accurate and therefore since births must match deaths at an equilibrium of approximately 

18 this determines the growth rate parameter r. Considering figures for the number of 

offspring per breeding female per year given by Shirley et al. (2003) we find our estimates 

of the birth rate are consistent with observational studies (Woodroffe and MacDonald, 

1995) which suggest approximately two breeding females. In the case of rabbits the birth 

rate was similarly determined from the derived mortality rate, the carrying capacity and the 

desired equilibrium population size. The parameterisations representing badgers and 

rabbits are shown in Tables S.2.1 and S.2.2 in Appendix 2.2.  
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3.3.4 Simulations 

 

In contrast to the previous chapter here we explore a range of different diseases while 

keeping the demographic parameters fixed to represent both badger and rabbit 

populations. Within the model disease is characterised by disease induced mortality and 

transmission rate. Simulations were run using the SDE implementation of our model, firstly 

varying the disease induced (excess) death rate, but keeping other parameters fixed, 

leading to a range of prevalence. These simulations are repeated for several different 

transmission rates (some of which correspond to bTB transmission in badgers and 

paratuberculosis in rabbits) to demonstrate the effects of population fluctuations and 

disease dynamics on surveillance estimates of prevalence and probability of detection in 

badger and rabbit populations. Simulations were also run for a range of transmission rates 

(generating a range of prevalence) with other parameters fixed but repeated for several 

different disease induced mortality rates. Capture rates and sample size were also varied to 

explore surveillance design and differences between binomial sample size theory covered in 

Chapter 2 and simulation results in badger and rabbit populations.  

Using the Gillespie implementation of the model, simulations were run firstly to show how 

trappability of infected individuals affects the probability of detection and prevalence 

estimates seen previously. Secondly, Gillespie algorithm simulations were run to show the 

effects of test sensitivity and transmission rate on the probability of detection and 

estimates of prevalence obtained by surveillance.  

Figure 3.1 shows example trace plots from both the SDE and Gillespie implementations for 

rabbit and paraTB and badgers and TB. In the rabbit‐paraTB system two transmission rates 

corresponding to the estimated range of transmission rates found by Judge et al 2006, are 

labelled low and high as they correspond to both ends of the likely prevalence range. In the 

case of badgers and TB we used one transmission rate which we consider representative of 

the literature (see above).  Figure 3.1 demonstrates what can be seen in a single simulation 

of badger and rabbit populations with TB and paraTB respectively. The badger population is 

noticeably smaller and more stable whereas the rabbit population shows greater 

population fluctuations. There are close similarities between the Gillespie trace plots and 

the SDE trace plots which demonstrate their comparative similarities.  
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Figure 3.1: Trace plots from SDE and Gillespie implementation runs of the model. Data are 

shown for total population N (green) and infected population I (red) for three different real 

disease systems; Badgers and TB, Rabbits and low paraTB and Rabbits and high paraTB 

(corresponding to the range of paraTB transmission rates estimated in the literature used). 

The left hand plots 3.1.a, 3.1.c and 3.1.e show results based on the Gillespie 

implementation of the model, whereas the right hand plots 3.1.b, 3.1.d and 3.1.f show 

results from the SDE implementation of the model.  The badger and TB results are shown in 

plots 3.1.a and 3.1.b. The rabbit‐paraTB results are shown in plots 3.1.c and 3.1.d (low 

prevalence case) and 3.1.e and 3.1.f (high prevalence case). The plots shown were run using 

the set of parameter values described in Tables S.2.1 and S.2.2 in Appendix 2.2. 
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3.3.5 Statistics generated from the model 

 

As previously discussed in Chapter 2, we assume long term averages are equivalent to 

ensemble expectations (approximated by averages over many realisations of the process). 

Each simulation is run for a period of time to allow the population to reach equilibrium 

before such statistics are calculated. For example, the expected mean E[N] and variance 

Var[N] of the population size are recorded along with the expected mean E[p] and variance 

Var[p] of disease prevalence. Similarly other statistics such as the covariance between the 

prevalence and population size are calculated as required. For a more detailed description 

of the calculation process see methods section of Chapter 2. 

 

3.4 Results 

 
In Chapter two we showed, for the case where there is no sample target and the period for 

which sampling is conducted is extended indefinitely, that the surveillance estimate of 

prevalence will always be biased unless the covariance of population size N and prevalence 

p is equal to 0 with the equation: 

 

E[��̂���]=  E[�(�)]+  
���[� (�),�(�)]

E[� (�)]
 

 

This result proved to be a reliable indicator of surveillance estimates of prevalence based on 

finite samples for the case where surveillance effort (capture rate) is low. Moreover 

simulations demonstrated that qualitatively these effects occur for a wide range of 

parameterisations. Building on these earlier results, simulations have been run to explore 

the same fundamental effects in models of demography and disease dynamics 

parameterised to represent badger and rabbit populations. In Chapter 2 simulations for a 

range of death rates were used to generate the full range of prevalence levels. However, 

varying the total death rate may have such an impact on the disease free demography of 

the population that respective model outputs are no longer representative of badgers and 

rabbits. We therefore consider varying the disease induced death rate so as not to majorly 

impact on the stability of the population itself but rather on the stability of the disease. 
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3.4.1 Estimating disease prevalence in badger and rabbit populations 

 

3.4.1.1 Effect of disease system 

 

Figure 3.2 explores the impact of different diseases in populations of badgers by varying 

disease induced mortality for several different values of β. These results illustrate the 

extent to which population fluctuations and stochasticity in disease dynamics in badger 

host‐pathogen systems affect the bias and variance of the surveillance estimate of 

prevalence.   

Figure 3.2.a shows the total population size N for a full range of disease prevalence, at three 

different levels of β.  In Figure 3.2.a zero prevalence corresponds to high levels of disease 

induced mortality that rapidly remove diseased individuals from the population. Moving 

from left to right prevalence increases and due to disease induced mortality this reduces 

the population size. However because the increase in prevalence is driven by reducing 

levels of disease induced mortality this effect of disease on the population size diminishes 

as prevalence increases. Moving further to the right the reduction in disease induced 

mortality starts to compensates for the corresponding increase in prevalence and the 

population size is less affected by disease losses. Ultimately for a prevalence of 1 disease 

induced mortality is negligible and the population size is the same as the case with no 

disease.  

At any given level of prevalence, as the contact rate β increases the underlying dynamics of 

the system are more unstable; they require greater levels of contact to maintain the disease 

at the given prevalence. A given level of prevalence results from a balance between 

transmission and disease induced mortality so as the contact rate β  increases so does the 

disease induced mortality required to generate the given prevalence. This increase in μI, 

when β increases at a given prevalence, explains why population size reduces with 

increased contact rate. The variation in population size shown in Figure 3.2.b also reflects 

the pattern described above, where for both the disease‐free state and the state of 

complete infection the variance in population size is at a minimum where it is determined 

purely by demographic, as opposed to epidemic, processes. However for other prevalence 

levels the variance is inflated by additional fluctuations produced by stochasticity in the 

disease dynamics.   
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Figure 3.2.c shows the bias in the surveillance estimate of prevalence E[p̂surv] - E[p(t )] for a 

sample size of 10 (i.e. sampling occurs at rate α until m  = 10 individuals have been caught 

and tested) as obtained from simulating 106 surveillance bouts using the SDE 

implementation of the model described above.  Figure 3.2.d shows the standard deviation 

in surveillance estimates of prevalence obtained from the same simulation results. 

Comparison with the variability expected under the zero fluctuation assumption reveals 

that fluctuations in our simulated badger population considerably reduce the precision of 

prevalence estimates obtained by surveillance. As we saw in Chapter 2 (and above) these 

effects increase with the contact rate, since at a given expected prevalence larger values of 

β are associated with more unstable dynamics. The β value of 0.057 (shown in yellow) 

represents TB in badgers. Although relatively little bias is observed, the SD in the prevalence 

estimate is seen to be just under double that of the constant prevalence prediction at the 

point where the prevalence is around 0.48 (for the yellow curve). This prevalence was 

selected as representative of badgers (for details see Appendix 2.2). 
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Figure 3.2: Effect of infected population stability and disease transmission on surveillance 

in Badgers. Data are shown for three different values of the transmission rate each for a 

range of values of the infected death rate μI which controls the stability and size of the 

infected population and thus determines disease prevalence for a given transmission rate 

(see text). Each quantity considered is plotted against the resulting expected value of true 

disease prevalence in the system, E[p(t)].   Plot 3.2.a shows that expected population size 

for three contact rates β (1.0 – full line, 0.5 – dash line, 0.057 – smaller dash line) with 

increased prevalence (i.e. as µI decreases). Plot 3.2.b shows the coefficient of variation of 

the population size for same values of β. Plot 3.2.c shows the bias E[p̂surv] - E[p(t )], and 

plot 3.2.d the standard deviation in surveillance estimates for three different β (1.0‐

purple,0.5‐red,0.057‐yellow)  (based on a fixed sample size m  = 10) of . The green lines 

show the bias (3.2.c) and standard deviation (3.2.d) obtained by assuming constant 

prevalence. Results shown are based on 106 surveillance bouts using the SDE 

implementation of the model (see Chapter 2) run using the set of parameter values 

described in Table S.2.3 in Appendix 2.2. 
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Figure 3.3 quantifies the same range of effects on prevalence estimates and population size 

and variance in our simulated rabbit population. Plot 3.3.a shows the total population N  at 

three different levels of β. Figure 3.3.b shows the coefficient of variation for the same 

values of β . Plot 3.3.c shows the bias in the surveillance estimate of prevalence          

E[p̂surv] - E[p(t )] for a sample size of 10 (i.e. sampling is occurs at rate α until m  = 10 

individuals have been caught and tested) as obtained from simulating 106 surveillance 

bouts using the SDE implementation of the model described above. Figure 3.3.d shows the 

standard deviation in surveillance estimates of prevalence obtained from the same 

simulation results. Similar effects to those found above from badgers are seen in the case of 

rabbits and over the whole prevalence spectrum. Moreover these results suggest that the 

effects described in a more theoretical context in Chapter 2 are of importance in these real 

wildlife‐disease systems. Both the β values of 0.225 (yellow) and 0.552 (red) represent 

paraTB in rabbits. For cases of no disease induced mortality (e.g. paraTB), corresponding to 

large prevalences, we can see that in this instance, the constant prevalence estimate is very 

accurate. The effects seen in badgers and previously in Chapter 2 are more likely when the 

population becomes unstable (i.e. by introducing disease induced mortality). We see in 

both badger and rabbit examples, the effects diminish in the limit when there is no disease 

induced mortality (see Figure 3.2 and 3.3). 
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Figure 3.3: Effect of infected population stability and disease transmission on surveillance 

in Rabbits. Results shown are based on 106 surveillance bouts using the SDE 

implementation of the model (see Chapter 2) run using the set of parameter values 

described in Table S.2.4 in Appendix 2.2 except for constant prevalence theory estimates 

shown in green. Data from model simulations are shown for three different values of the 

transmission rate β (1.0‐purple/full line,0.552‐red/dash line,0.225‐yellow/smaller dash line) 

each for a range of values of the infected death rate μI which controls the stability and size 

of the infected population and thus determines disease prevalence for a given transmission 

rate. All results are plotted against the resulting expected value of true disease prevalence 

in the system, E[p(t)].  Plot 3.3.a shows the expected size and Plot 3.3.b the coefficient of 

variation of the population. Plot 3.3.c shows the bias E[p̂surv] - E[p(t )], and Plot 3.3.d the 

standard deviation in surveillance estimates (based on a fixed sample size m = 10).   

 

We can explore a different, but overlapping range of diseases by varying the transmission 

rate, β. We demonstrate similar effects in the bias and variance of the prevalence estimate 

in Figure 3.4 for both badgers (3.4.a and 3.4.b) and rabbits (3.4.c and 3.4.d) by varying the 

pathogen transmission rate, for three fixed disease induced mortality levels. The effects on 

the performance of surveillance, seen when varying β are similar to those seen when 
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varying the disease induced mortality rate. ParaTB can be found on plot 3.4.c and plot 3.4.d 

when disease induced mortality is 0 (yellow line) for prevalence between ~ 0.4 and ~ 0.8. 

Badgers and TB are located between the red and yellow lines for a prevalence of around 

0.48. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Effect of disease transmission and infected population death rate on 

surveillance. Plot 3.4.a shows the bias E[p̂surv] - E[p(t )], and plot 3.4.b the standard 

deviation in surveillance estimates (based on a fixed sample size m  = 10) of prevalence 

versus the expected value of true disease prevalence in the system, E[p(t)] for badger 

populations. Data are shown for three different values of disease induced mortality rate μI 

(1.0‐purple, 0.5‐red, 0‐yellow) each for a range of values of the infected death rate β. Plot 

3.4.c shows the bias E[p̂surv] - E[p(t )], and plot 3.4.d the standard deviation in surveillance 

estimates (based on a fixed sample size m  = 10) of prevalence versus the expected value of 

true disease prevalence in the system, E[p(t)] for rabbit populations. Data are shown for 

three different values of disease induced mortality rate μI (3.0‐navy, 2.0‐pink, 0.0‐yellow) 

each for a range of values of the infected death rate β. Constant prevalence theory 

estimates are also shown (green).  Results shown are based on 106 surveillance bouts using 

the SDE implementation of the model (see Chapter 2) run using the set of parameter values 

described in Table S.2.5 and S.2.6 in Appendix 2.2. 
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Effect of surveillance design 

In Chapter 2, it was shown that the surveillance strategy (sample size and capture rate) 

impact on the surveillance efficacy.  As in Chapter 2 sample size was found not to have a big 

impact on the levels of bias in the examples that were explored here. The standard 

deviation of the prevalence estimates decreases by about 5% very rapidly and then 

continues to decrease very slowly as the sample size increases and this decrease is still 

much slower than predicted when fluctuations are ignored. Figure 3.5 shows the more 

interesting effect of capture rate on a badger population where the bias and variance of the 

estimate of prevalence changes as the intensity of surveillance (capture rate α) increases for 

fixed sample size (plot 3.5.a and 3.5.b) .  

 

 

 

 

 

 

 

 

 

Figure 3.5: Effect of surveillance design. In all plots results are shown for surveillance in 

Badgers (β = 1 & μi = 1.75). Plot 3.5.a shows expected values of the surveillance estimate 

of prevalence (purple), the true prevalence (blue) and the continuous sampling theory 

prediction (black) for a range of values of the capture rate for a fixed sample size m  = 10. 

Plot 3.5.b shows the corresponding value of the expected standard deviation (σp) in the 

surveillance estimate of prevalence (purple) and the true prevalence (blue) for a range of 

values of the capture rate for sample size m  = 10 for a range of values of the capture rate 

α. Results shown are based on 106 surveillance bouts using the SDE implementation of the 

model (see Chapter 2) run using the set of parameter values described in Table S.2.7 in 

Appendix 2.2. 
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Figure 3.6 shows the same effects are seen in a rabbit population. It can be seen below how 

the differences in the two populations (turnover and stability) impact on how the capture 

rate and sample size affect the mean and SD of the prevalence estimate. 

 

 

 

 

 

 

 

  

Figure 3.6: Effect of surveillance design. In all plots results are shown for surveillance in 

Rabbits (β = 1 & μ = 4.4). Plot 3.6.a shows the expected values of the surveillance estimate 

of prevalence (purple), the true prevalence (blue) and the continuous sampling theory 

prediction (black) for a range of values of the capture rate for a fixed sample size m  = 10. 

Plot 3.6.b shows the expected standard deviation (σp) in the surveillance estimate of 

prevalence (purple) and the true prevalence (blue) for a range of values of the capture rate 

for sample size m  = 10 for a range of values of the capture rate α. Results shown are based 

on 106 surveillance bouts using the SDE implementation of the model (see Chapter 2) run 

using the parameter values described in Table S.2.8 Appendix 2.2. 

Figures 3.5 and 3.6 show similar effects of the capture rate on the estimate of prevalence. 

Whereby as α increases, the estimated prevalence moves from the continuous sampling 

theory to the true underlying prevalence in the system. The results show that less intense 

effort is needed in the rabbit population to achieve more accurate results (in comparison to 

the badger population). Given that α is the per capita capture rate this difference is largely 

explained by the contrasting size of the two host populations, for which a lower capture 

rate in rabbits yields the required sample size approximately three times faster than in the 

badger population (which is approximately the ratio of population sizes for these hosts). 
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3.4.2 Detecting disease  

 

In chapter 2 we elaborated on the binomial estimate of the probability of detection, PDBin, 

showing through simulation and analysis that it can over‐estimate the probability of 

detection depending on the characteristics of the host‐pathogen system (see Chapter 2 for 

details). Figure 3.7.a and 3.7.c shows the effect on detection probability of the interaction 

between two aspects of disease dynamics in badger and rabbit populations respectively, by 

varying disease induced mortality for three different levels of disease transmission. As in 

the case of prevalence estimation, conditioned on a given expected prevalence, larger 

transmission rates β are associated with greater fluctuations in the underlying wildlife 

disease system which results in reduced probability of detection. Figure 3.7.b and 3.7.d 

show the effect of capture rate on the probability of detection. 
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Figure 3.7: Effect of host-pathogen and surveillance dynamics on the probability of 

detection. Plot 3.7.a Probability of detection PD   versus actual prevalence E[p] for badgers. 

Plots are generated by varying disease induced death rate as in previous figures with 

samples size m = 10 and capture rate α = 0.1. Green – shows the zero fluctuation binomial 

estimate for all prevalances [0,1] whilst simulations results accounting for fluctuations 

are:purple (β = 1.0); red (β = 0.5); yellow (β = 0.057). Plot 3.7.b  shows the case β = 0.5 

but for three capture rates α = 0.1, 1.0, 2.0. Plot 3.7.c shows the probability of detection 

PD   versus actual prevalence E[p] for Rabbits. Plots are generated by varying disease 

induced death rate as in previous figures with samples size m = 10 and capture rate α = 

0.1. Green – shows the zero fluctuation binomial estimate for all prevalances [0,1] whilst 

simulations results accounting for fluctuations are:purple (β = 1.0); red (β = 0.552); yellow 

(β = 0.225). Plot 3.d  shows the case β = 0.552 but for three capture rates α = 0.1, 1.0, 2.0. 

All simulation results are based on 106 surveillance bouts using the SDE implementation of 

the model (see Chapter 2) run using the set of parameter values described in Table S.2.9, 

S.2.10, S.2.11 and S.2.12 in Appendix 2.2. 

 

Figure 3.7 shows both the prevalence and transmission rate β affect the probability of 

detection. Disease induced mortality is varied giving rise to the range of prevalence plotted 

on the x axis. As prevalence increases, so does the probability of detection but at different 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Prevalence

P
D

Beta 1.0

Beta 0.5
Beta 0.057

Const. P

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Prevalence

P
D

Capture 2.0

Capture 1.0
Capture 0.1

Const. p

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Prevalence

P
D

(c)

Beta 1.0

Beta 0.552

Beta 0.225

Const. P

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Prevalence
P

D

Capture 2.0

Capture 1.0

Capture 0.1

Const. p

(d)



76 
 

rates depending on the transmission rate. We can see that at lower transmission rates 

surveillance appears to have a better chance of detecting an infected individual for a given 

expected prevalence level E[p].  Comparing two transmission rates at the same prevalence 

the higher transmission rate corresponds to the more unstable infected population, leading 

to a lower probability of detection. The situation for badgers and TB can be seen on the 

yellow line in Plot 3.7.a at a prevaleance E[p] of approximately 0.48 (corresponding to a 

disease induced mortality rate of approximately 0.165 i.e. the estimate for TB in badgers – 

see Appendix 2.2 for details). This shows that in the two systems studied disease and 

demographic fluctuations drive a significant reduction in the ability of surveillance to detect 

disease compared with the prediction from theory ignoring such fluctuations. We note from 

Figure 3.7 that capture rate barely impacts on the probability of detection, with only a very 

slight difference seen in the rabbit population which could be attributed to stochastic 

fluctuations in the simulations. 

 

3.4.3 Explicit sources of bias 

 

Above we showed that bias can arise from the interaction between disease dynamics, 

demographic fluctuations and surveillance even in the absence of any explicit bias in 

sampling (capture of individuals). However we now consider an explicit source of bias 

driven by animal behaviour in response to disease status, namely, trappability. For example, 

it has been debated in the literature as to whether disease affliction will lead badgers to be 

trap happy or trap shy, that is more or less likely to be captured depending on their disease 

status (Tuyttens et al. 1999; Byrne et al. 2012a). Figure 3.8 shows the impact that both of 

these scenarios, as well as a neutral baseline, would have on the probability of detection 

and the mean and standard deviation of the prevalence estimate. We ran simulations 

varying both the surveillance capture rate and the transmission rate. This spanned scenarios 

of low and high transmissibility of disease and low and high effort. In order to ensure that, 

in the trap neutral example, bias is kept to a minimum, disease induced mortality is fixed at 

a relatively low level.  From here on in the Gillespie implementation of the stochastic model 

has been used to produce the results shown. As we are exploring specific details of the 

dynamics of the badger population in terms of individual behaviours and surveillance 

testing scenarios, the Gillespie algorithm provides a more appropriate representation of 

stochasticity. 
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Figure 3.8: Effect of trappability and surveillance dynamics in Badgers. Plots are generated 

by varying   the transmission rate β with samples size m = 10 for three trappability levels of 

infected indivduals modelled as different capture rates: yellow (Trap Shy – half less likely to 

catch an infected badger compared with an uninfected individual); red (Trap Neutral); 

purple (Trap Happy – twice as likely to catch an infected badger compared with an 

uninfected); For the same levels of trappability shown in Plot 3.8.a, Plot 3.8.b shows the 

bias E[p̂surv] - E[p(t )], and plot 3.8.c the standard deviation in surveillance estimates 

(based on a fixed sample size m  = 10) of prevalence versus the expected value of true 

disease prevalence in the system, E[p(t)]. Constant prevalence theory estimates are also 

shown (green). Results shown are based on 1000 surveillance bouts using the Gillespie 

implementation of the model (see text) run using the set of parameter values described in 

Table S.2.13 in Appendix 2.2. 

We can see in the graphs above that trap shyness leads to a reduction in the probability of 

detection as well as a negative bias in estimating the prevalence. Intuitively this relationship 

makes sense, if individuals are less likely to be trapped because of infection burden then it 

will be harder to detect the disease and this will also lead to a reduction in the prevalence 

estimate compared to the true underlying prevalence (hence negative bias). Conversely, 

trap happiness leads to an increased probability of detection and a positive bias in the 
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prevalence estimate. The parameterisations used here have been chosen to reduce the 

effects of fluctuations on the process of surveillance in order to highlight the impact of 

trappability. However in cases, such as those described earlier, where fluctuations have a 

greater impact, the effects of trappability will interact with the effects of demographic 

fluctuations and stochasticity in disease dynamics to determine probabilities of disease 

detection, and the bias and precision of prevalence estimates obtained via surveillance. 

Even in the results shown here the effect of population fluctuations on the standard 

deviation of the prevalence estimate can be seen for the neutral case where, as shown 

earlier, precision is reduced compared with standard theory. However, these effects are 

modified by animal behaviour. Trap shyness increases precision (reduces the standard 

deviation of the estimate) at low prevalence and reduces precision at high prevalence. In 

contrast, trap happiness on the part of infected individuals has the opposite effects i.e. 

precision is reduced at low and increased at high levels of prevalence. 

 

3.4.4 Imperfect diagnostic tests 

 

Our previous explorations of the effects of fluctuations and surveillance strategy on the 

efficacy of surveillance have assumed perfect diagnostic tests (i.e. sensitivity and specificity 

of the test = 1.0). It is worth recalling the definitions of both sensitivity and specificity of the 

test, namely 

 

 Sensitivity = probability  of detecting disease in an individual that is truly infected 

 Specificity = probability of a negative test in an individual that is truly uninfected 

 

Here we focus on the issue of false negatives, so consider sensitivities less than 1, whilst 

keep specificity = 1. In Figure 3.9 we demonstrate how the sensitivity of the test can impact 

on both the probability of detection and the bias in the prevalence estimate for a badger 

population. All parameters are held fixed at three different transmission rates (0.25, 0.057, 

0.025) with disease induced mortality = 0.165 whilst the sensitivity of the test is varied and 

specificity is constant at 1.0. 
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Figure 3.9: Effect of test sensitivity and disease dynamics in Badgers. 3.9.a shows the 

probability of detection PD   versus sensitivity of the diagnostic test for Badgers. Plots are 

generated by varying the sensitivity of the tests used in surveillance with sample size m = 

10 and capture rate α = 0.5  and μI = 0.165 for three transmission rates β: yellow (0.025); 

red (0.057); green (0.25) with associated prevleance of approximately 0.127, 0.483 and 

0.887 respectively. In each case simulaton results are shown by dots and theory based on 

constant prevalence by dotted lines. Plot 3.9.b shows the bias E[p(t )] - E[p̂surv] in 

surveillance estimates (based on a fixed sample size m  = 10) of prevalence versus the 

expected value of true disease prevalence in the system, E[p(t)]. Data are shown for three 

different levels of transmission rate β as in 3.8.a. Results shown are based on 1000 

surveillance bouts using the Gillespie implementation of the model (see text) run using the 

set of parameter values described in Table S.2.14 Appendix 2.2. 

Figure 3.9 shows that, scenarios in which the lack of a sensitive test can mask the effect of 

fluctuations in demography and disease dynamics on the probability of detection. In the low 

transmission rate examples shown here as the sensitivity of the test increases the 

discrepancy between the true probability of detection and the prediction based on 

assuming constant prevalence increases. In these cases as test sensitivity is increased the 

supposed gains in ability to detect disease predicted by binomial theory assuming constant 

prevalence are not realised.  We can see for β = 0.025 that even though the bias in 

prevalence estimate is highest at lower sensitivity levels, this is when the probability of 

detection follows the constant prevalence curve closely. It is only when sensitivity levels are 

increased, and bias in the prevalence estimate reduced, that there is a difference between 

the detection rate predicted by constant prevalence theory and the true (simulated) 

detection rate. It is important to note that the probability of detection does improve with 

increased sensitivity, but not at the same rate as would have been expected if fluctuations 
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are ignored. For the chosen disease induced mortality rate, the three values of the 

transmission rate correspond to low medium and high prevalence. Fluctuations have a small 

effect on detection rates at high prevalence and an increasingly large effect as prevalence 

decreases. This is why the above noted effect of sensitivity masking errors in the constant 

prevalence theory estimates of the probability of detection are most evident for lower 

values of β. 

The bias curves plotted in Figures 3.9 and 3.10 show E[p(t )]- E[p̂surv] and can largely be 

explained by  reference to constant prevalence theory (note here we have sought examples 

where the role of fluctuations is minimised). Consider a case where the prevalence is 

constant at a value of E[p(t )] and the test sensitivity is given by Se.  Then the expected 

value of the surveillance estimate of prevalence is Se*E[p(t)] and  

  

���� =  E[�(� )]− ��∗ E[�(� )] 

The linear form of this equation is seen in the results plotted in Figures 3.9.b and 3.10.b. For 

example, when the sensitivity Se =1, the bias is zero as shown in Figures 3.9.b. Moreover, 

when Se =0 the bias plotted is simply the underlying prevalence E[p(t )]. Figure 3.10 

explores the sensitivity of the test for varying prevalence; this demonstrates how disease 

dynamics can interact with test sensitivity in determining surveillance efficacy. As 

prevalence increases bias increases linearly as predicted by the above linear equation. 
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Figure 3.10: Effect of disease dynamics and test sensitivity in Badgers Plot 3.10.a shows 

the probability of detection PD   versus actual prevalence E[p] for Badgers. Plots are 

generated by varying β with samples size m = 10 and α = 0.5 and μI = 0.165  for three 

sensitivity levels: yellow (0.2); red (0.6); green (1.0). Plot 3.10.b shows the bias E[p(t )] - 

E[p̂surv], based on a fixed sample size m  = 10, of prevalence versus the expected value of 

true disease prevalence in the system, E[p(t)]. Data are shown for three different 

sensitivity levels as in 3.10.a. Results shown are based on 1000 surveillance bouts using the 

Gillespie implementation of the model (see text) run using the set of parameter values 

described in Table S.2.15 in Appendix 2.2. 

Figure 3.10 shows that the bias in prevalence estimate increases as the prevalence 

increases for sensitivity levels <1.0 and the lower the sensitivity level, the greater the 

increase in bias as prevalence goes up. At any sensitivity < 1.0 there is a percentage of test 

results that return as a false negative. This percentage also depends on how many infected 

individuals there are available to be diagnosed as false positive. As prevalence increases, 

the amount of false positive results also increases, hence the bias in prevalence estimate 

increases as the results get less accurate. This is consistent with binomial theory that states 

if true prevalence = p and sensitivity is se with specificity =1 then estimated            

prevalence = p*se and thus bias = p‐p*se. The probability of detection is seen to be 

depressed away from the binomial theory estimate for higher sensitivities (especially 

sensitivity 1.0) which has been shown in Chapter 2. However for lower sensitivity levels, the 

probability of detection seems to follow the binomial line very well. Thus as noted above 

one effect of fluctuations is that improvements in test sensitivity may not lead to the gains 

in detection rates predicted by constant prevalence theory. Moreover the effects of 

fluctuations on disease surveillance, which are the focus of this chapter and Chapter 2, may 

be masked by relatively poor tests with low sensitivity. 
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3.5 Discussion 

 
 In Chapter 2 we characterised surveillance of wildlife disease in terms of a handful of 

parameters describing the key components of such systems, namely host demography, 

disease dynamics and the nature of the surveillance itself.  A simple but generic stochastic 

modelling framework was used to study interactions between these elements in 

homogeneous/well mixed populations. The results obtained from analysis and simulation of 

this model showed that combined fluctuations in population and disease dynamics bias the 

surveillance estimate of prevalence with respect to expected true prevalence of the 

underlying wildlife disease system. In addition the precision of these estimates and the 

probability that surveillance will detect disease are both lower than would be expected 

based on standard arguments which ignore such fluctuations. Thus our results suggest that 

power calculations or analyses which ignore fluctuations may lead to under powered 

wildlife disease surveillance programmes and/or over confidence in the results obtained. 

Such results would lead to incorrect characterisation of the risks posed by a given wildlife 

disease system. 

In this chapter we have shown how the theoretical framework and models presented in 

Chapter 2 can be further developed and applied as tools to assess the outcomes of wildlife 

disease surveillance in real systems. Chapter 2 explored a broad range of wildlife disease 

systems i.e. a range of host‐pathogen combinations where as in this chapter we asked if 

such effects are likely to be a feature of particular wildlife disease systems. Our aim was to 

build on the theoretical developments presented in Chapter 2 by parameterising stochastic 

models to represent two natural wildlife host populations (badgers and rabbits) for a range 

of disease dynamics (including TB and paraTB respectively). In so doing we have quantified 

the effects seen in Chapter 2 for these wildlife disease systems and can conclude that they 

are of practical concern for real systems and a range of diseases including the two specific 

examples which are of current interest. For example, such effects potentially undermine 

management strategies for TB in badgers because current surveillance designs may be 

under powered leading to poor characterisation of the risk posed to sympatric cattle 

populations. 

In addressing the above wildlife disease systems we have expanded our theoretical 

framework to accommodate sources of bias related to aspects of the disease (i.e. disease 

induced mortality), diagnostic tests (reduced test sensitivity) and host behaviour (biases in 

trappability). The research presented in this chapter characterised and quantified the 
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impact of these currently acknowledged sources of bias in the context of wildlife disease 

systems subject to demographic and disease related fluctuations. The fluctuations 

demonstrated in badger and rabbit populations are not at the extreme end of the scale, and 

could be viewed as similar to the fluctuations found in livestock and managed populations. 

The results shown have the potential to be amplified when considering populations with 

larger and more extreme population fluctuations which could be demonstrated in source‐

sink scenario.   

The effects of disease induced mortality are complicated by the fact higher rates depress 

both prevalence and size of infected populations. This alters the stability of both the disease 

and the populations and the resulting fluctuations reduce the efficacy of surveillance. For a 

particular wildlife host (identified by birth and background/natural mortality rates), a given 

level of prevalence results from the interplay between disease transmission and disease 

induced mortality. When both are relatively high resulting fluctuations in demography and 

disease dynamics can lead to biased and low precision estimates of prevalence and reduced 

rate of disease detection from surveillance programmes.  This may, for example, be a 

feature of Rabbit Haemorrhagic Disease which is documented to have both a large disease 

induced mortality rate and be highly transmissible (Cooke 2002; Calvete 2006).   

Bias in the trappability of an infected host, within different surveillance and disease 

prevalence scenarios, increases the bias seen in the prevalence estimate. This can happen in 

two ways; there will be a tendency towards positive bias (i.e. the surveillance over‐

estimates the prevalence) if individuals are trap happy. There are examples in the literature 

whereby animals become more likely to enter traps as they become weaker with the 

burden of disease and the food often used to bait traps becomes more attractive (Tuyttens 

et al. 1999; Coltherd et al. 2010; Byrne et al. 2012a) . Conversely, there will be a tendency 

towards negative bias (i.e. the surveillance under‐estimates the prevalence) if the 

individuals are trap shy (Tuyttens et al. 1999; Wilkinson et al. 2000). For example TB can 

affect social aspects of badger behaviour and infected individuals become more isolated 

from the social group which may make it harder for surveillance to capture them if the 

effort is concentrated on the main sett (as is often the case). This relationship between 

trappability and bias is intuitive as, taking the case of positive bias, infected animals are 

more likely to be trapped and there will be a disproportionate number of infected 

individuals being caught by surveillance leading to an over‐estimate of prevalence. The 

error (standard deviation) associated with prevalence estimates is also affected by 
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trappability status in the infected population. Standard deviation is reduced at low 

prevalence for trap shy individuals and increased at high prevalence compared to the 

neutral case. The converse is true for trap happy individuals. The probability of detection 

decreased for infected individuals exhibiting trap shy behaviour, and this is to be expected 

as a reduction in the likelihood of an infected individual being caught will lower the chance 

infection will be detected. The converse, again, is true for trap happy individuals. This 

explicit source of bias has the potential to counteract or inflate the impacts on surveillance 

induced by population fluctuations which we studied above and in Chapter 2. 

The effect of sensitivity on the prevalence estimate is well described by standard binomial 

theory which ignores fluctuations. Surveillance detection rates rise with sensitivity and bias 

in the surveillance estimates of prevalence reduces. In the presence of fluctuations, at 

lower sensitivity levels the true probability of detections is quite accurately predicted by the 

constant prevalence estimate. However, at higher sensitivity levels the probability of 

detection is lower than the constant prevalence theory prediction (previously we had 

examined perfect high sensitivity tests). As the sensitivity of the test increases, the 

probability of detection from surveillance is lower than the constant prevalence theory 

predicts, and this is particularly marked at lower transmission rates (i.e. at lower 

prevalence’s, all else being equal). For the case of perfect tests the message from both this 

chapter and Chapter 2 was that fluctuations in prevalence reduce the true probability of 

detection relative to the constant prevalence theory prediction.  However, here we see that 

such effects may be masked by imperfect tests, such that they are not apparent at low 

sensitivities but may become discernible as sensitivity increases. Therefore as better tests 

become available the effects of fluctuations on wildlife disease surveillance described in 

Chapter 2 (and above) may be more noticeable in practice. If predictions for the 

improvement of disease detection rates (probability of detection) with enhanced (more 

sensitive) tests are based on constant prevalence theory then our results suggest that actual 

gains in the performance of surveillance may not be as great as predicted. 

In summary we have demonstrated that the results of surveillance are determined by 

complex interactions between surveillance strategy, host demography and pathogen 

transmission dynamics. We have also explored the impact of a range of aspects of the 

ecology of wildlife disease (the impact of the disease on host mortality and behaviour) and 

the tools used for surveillance (sensitivity of diagnostic tests). In so doing we have 

illustrated how the models and framework we introduced in Chapter 2 and extended here 
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might be used as computational tools to design better surveillance programmes which take 

account of ecological and other effects. For example, rather than rely on binomial type 

calculations based on assuming fixed population size and prevalence, surveillance design for 

specific systems could be based on the simulated outputs from models like those used here 

if they can be suitably tailored to the wildlife disease system of interest. Moreover in this 

chapter and the previous one we have shown how to explore the efficacy of surveillance for 

a range of population and disease dynamics. The information obtained from these more 

generic studies could be used to inform surveillance when knowledge of host demography 

and/or pathogen characteristics is uncertain, or when the goal is to design generalised 

surveillance suitable for a range of hosts and pathogens. 

The work of this and the previous chapter has established the role of temporal 

heterogeneities induced by stochasticity in well mixed spatially homogeneous local 

populations. However, the impact of spatial heterogeneity on the spread and persistence of 

disease has been well documented in the literature and given the results described here 

this is likely to have significant impacts on surveillance in wildlife. In the next chapter we will 

turn our attention to spatially extended meta‐populations and the impact of spatial 

heterogeneity on the design and efficacy of surveillance. 
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4.1 Abstract 

  
Spatial heterogeneity is known to be an influential factor in the spread and 

persistence of disease suggesting it is likely to impact on the efficacy of surveillance. 

The generic stochastic modelling framework introduced in Chapter 2 and further 

developed in Chapter 3 was extended to incorporate spatial heterogeneity. In order 

to study surveillance over an extended region we developed a stochastic and spatially 

explicit meta‐population model that describes demography, disease transmission and 

key aspects of surveillance.  The impact of various aspects of design on the ability of 

spatially distributed surveillance networks to detect emergent disease at a regional 

scale is assessed by the level of disease present in the system at the point of first 

detection. In particular we use the extended framework to explore key spatial aspects 

of surveillance design including within location effort, number of surveillance 

locations, and choice of such locations according to habitat suitability for the host 

species. In line with current practice we find that increasing effort/number of 

locations under surveillance and spatial stratification according to the habitat 

suitability improves the ability of surveillance networks to detect emerging 

outbreaks.  In addition we evaluate dynamic designs and find that, given the ability to 

conduct surveillance in a set number of locations, switching effort between locations 

is expected to lead to more rapid detection of disease than static designs. We 

conclude that spatial heterogeneity, disease dynamics and surveillance strategy 

should all be considered when assessing the ability of surveillance to detect emerging 

disease risk in a spatially extended wildlife population.  

 

4.2 Introduction 

 
In Chapters 2 and 3, it was shown that natural fluctuations in a target host population 

drive the efficacy of wildlife disease surveillance in terms of both estimating 

prevalence and the probability of detection. In many disease systems (host and 

pathogen combinations) fluctuations in host population size and disease prevalence 

lead to bias and reduced precision of estimates of prevalence and also lower the 

probability of disease detection when compared to standard binomial theory which 

ignores such effects. These results suggest that current surveillance programmes may 

be underpowered if designed using power calculations based on binomial theory. The 
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impact of the design of surveillance strategies (i.e. sample size and capture 

rate/effort) was also shown to impact surveillance efficacy in ways not predicted by 

standard theory. In particular capture rate can minimise bias in prevalence estimates 

and increasing sample size does not increase the probability of disease detection or 

the precision of prevalence estimates as fast as would be expected from standard 

arguments. These results were all shown in a non‐spatial context and for endemic 

(stable and unstable) disease scenarios. However, there are a range of spatial effects 

that have been shown to impact on both the host population size and stability and on 

disease persistence and spread e.g. intrinsic and extrinsic spatial heterogeneity driven 

by stochasticity and habitat composition (Tilman and Karieva, 1997; Keeling, 1999; 

Keeling et al 2001). In this chapter we aim to explore how spatial heterogeneity 

affects surveillance efficacy in the context of emerging infectious diseases.  

Emerging disease outbreaks are of particular importance when considering 

surveillance efficacy in a spatial context. Epidemiological modelling has shown that 

increased contact among populations can trigger epidemics (Hess 1996) and spatial 

composition of the environment (habitat) influences emergent disease risk (Ostfeld et 

al. 2005).  Emerging (and re‐emerging) disease outbreaks have the potential to be 

detrimental to wildlife (Bengis et al. 2004), including conservation efforts (Daszak et 

al. 1999, 2000), as well as livestock (Rhyan & Spraker 2010) and human health 

(Epstein 1995; Murphy 2008). In an emerging disease situation e.g. a disease 

incursion to a naïve population, the main goal of surveillance is to detect the disease 

as quickly as possible to limit spatial spread and risks to wildlife, livestock and human 

health. In order to do this effectively the premise of this chapter is that it is important 

to consider the spatial composition and structure of the environment (habitat quality, 

distribution, connectivity etc.) and the demography (births, deaths, immigration etc.) 

of the host population and how these are likely to affect the efficacy of surveillance. 

It has been repeatedly shown that spatial heterogeneity impacts on the spread and 

persistence of disease (Sattenspiel & Simon 1988; Cliff 1995; Keeling & Grenfell 

1998). Spatial effects have been found to be important in many types of systems, for 

example crops (Antle et al. 2003), human populations (Smith et al. 2002)  and 

predator‐prey systems (Hastings 1977) etc. In this chapter we will focus on spatial 

effects in wildlife meta‐populations. However, there is little literature addressing how 

intrinsic and extrinsic spatial heterogeneities would impact on the ability to carry out 
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effective surveillance and on the reliability of the results obtained from such efforts. 

Intrinsic spatial heterogeneity is driven by the dynamics of the population and is an 

emergent property of the system. Extrinsic spatial heterogeneities are driven by 

external conditions to which the population responds, such as habitat suitability. In 

term of surveillance design, efforts to account for extrinsic spatial heterogeneity have 

been made, for example tailoring surveillance to knowledge of wildlife habitat 

locations (i.e. extrinsic heterogeneity) (Walsh & Miller 2010). However, the effects of 

intrinsic spatial heterogeneity on surveillance have yet to be explored.  

In this chapter we will explore how the interaction between both intrinsic and 

extrinsic heterogeneity affect surveillance efficacy within an emerging infectious 

disease context. We aim to assess how the spatial distribution of habitat quality, 

disease dynamics and surveillance strategy can impact the amount of disease present 

within the system, at the point of first detection following an incursion event. In 

doing so the aim is to develop insights, general recommendations and tools which 

contribute to the design of better strategies for wildlife disease surveillance 

compared with current understanding and practice. 

 

4.3 Methods 

4.3.1 Stochastic Model Description 

 

The model represents a finite space, on which L so called patches are randomly 

distributed. Each patch supports a host population subject to demographic 

fluctuations (births, deaths and immigration) and the transmission of a single 

pathogen. At each point in time t and for each patch i=1,...,L, the state‐space 

represents the total population size N i (t), with Ii (t) of these infected and the 

remainder, Si (t) = N i (t) – Ii (t) susceptible. In addition the prevalence in patch i  is 

then given by pi(t) = Ii(t)/N i(t). The birth rate of individuals is logistic,                      

rNi (1 – N i /ki), with intrinsic growth rate r and a carrying capacity ki reflecting the 

assumptions that population growth is resource limited. The carrying capacity ki is 

determined by the suitability rating, σi, assigned to each patch multiplied by a 

maximum potential carrying capacity equal over all patches kmax i.e. ki = σi kmax. The 

suitability rating (or level) σi represents how suitable the habitat is on patch i  for the 

population and ranges from 0 to 1. Favourable patches are defined as those where    
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σ =1 and the carrying capacity is kmax, whereas less favourable patches refer to 

locations where σ <1  and the carrying capacity is less than kmax. It is therefore 

meaningful to talk about varying the suitability of less favourable patches in the 

interval [0,1). In the limit σ‐>1 less favourable patches become/would be classified as 

favourable. Individuals have a per capita death rate μ and secondary transmission 

within patch (contact with already infected individuals from the population) occurs at 

rate β0Si (t)Ii (t). 

Immigration into each patch occurs at a constant rate ν and a proportion, γ, of 

immigrants are infected, but otherwise all individuals enter the population (through 

birth or immigration) as susceptible as there is no vertical or pseudo‐vertical 

transmission. As well as within patch secondary transmission described above, 

susceptible individuals become infected through between patch secondary 

transmission. Between patch transmission is defined as an infected individual 

transmitting disease to a susceptible individual in a different patch. The distance by 

which the disease can transmit from one patch to another is controlled by the 

distance kernel, i.e. the probability of disease transmitting between patches 

decreases as the distance between them increases. Although other forms of distance 

dependence e.g. power‐law could easily be accommodated, in the model considered 

here between patch transmission is governed by an exponential kernel �� ����  where 

dkj is the Euclidean distance between infected individuals in patch k and the 

susceptible individuals in patch j  and θ controls the rate at which infection pressure 

decays with this distance. This means that at time t  the rate at which new infections 

occur in patch j due to infection by the Ik (t) infected individuals in patch k , given 

there are Sj (t) susceptible individuals in patch j, is  

����(�)��(�)�� �� �� 

In the spatial context, surveillance is characterised by the set of locations (patches) 

currently under surveillance, the effort applied in each of these patches and the 

manner in which surveillance can switch from one location or set of locations to 

another. Within patches currently under surveillance we adopt the model used in 

earlier chapters, namely that disease surveillance is incorporated into the model in 

the form of capture, testing and release at per capita rate α, for both susceptible and 

infected individuals. All surveillance testing is undertaken assuming perfect tests, 

which means that our measures of the performance of surveillance reflect a best case 
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scenario. The set of patches where this capture rate is applied is determined by 

random allocation of a proportion of patches where surveillance is activated at any 

one time. In some cases this allocation will be weighted according to habitat quality 

as described in the text e.g. when we only sample favourable habitats (see above). As 

indicated in some cases the set of patches under surveillance is allowed to evolve 

over time. When this is allowed an initial set of patches is chosen as described above 

and then this initial set remains under surveillance for a period of time after which 

surveillance is ended in that set and started in another set currently not under 

surveillance but otherwise chosen at random using criterion consistent with those 

used to identify the initial set of patches under surveillance. In the model used here 

we assume a fixed time to switching for surveillance sets. In the text below we 

describe this interchangeably as surveillance switching rates and times.   

 

4.3.2 Model Implementation 

 

The model is implemented as a continuous‐time discrete‐state space Markov process 

(see Chapter 2), which is simulated using Gillespie’s exact algorithm (Gillespie, 1976). 

In contrast to the stochastic differential equation approach predominantly used in 

the previous two chapters, the Gillespie algorithm is computationally more intensive 

but exact. The discrete nature of the state‐space under the Gillespie algorithm is a 

more direct implementation of the model described above, and as discussed 

previously it therefore represents a more natural description of the population and 

the processes that affect it. Moreover, it provides a more accurate representation of 

population dynamics for populations which are important when considering spatial 

heterogeneity of meta‐popualtions (Keeling & Ross 2008). All events with their 

corresponding rate and effect on population size for the Gillespie implementation can 

be seen in Table 4.1 below. 
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Table 4.1: Event, Rate and Effect on the State Space of the model. Conceptually the 

effect of each event affects an individual and this is reflected in the discrete nature of 

the corresponding changes in the state space. However, given this underlying 

conception of the model there are a number of different implementations which can 

be considered including via the Gillespie algorithm and stochastic differential 

equations (see text for details). 

In Chapter 2 we explored a range of wildlife host species and their pathogens and in 

Chapter 3 we focused on two exemplar host species with contrasting population 

dynamics. In both chapters we showed that temporal heterogeneities induced by 

stochasticity in demographic and disease dynamics impacted on the efficacy of 

wildlife disease surveillance (see above for details). Since such stochasticity is known 

to play an important role in spatial systems (see e.g. Tilman and Karieva, 1997) we 

anticipate that these impacts on surveillance will also be apparent in spatially 

extended systems.  

In this chapter we therefore focus our efforts on studying the impacts on surveillance 

of spatial (rather than temporal) heterogeneities. To do so we parameterise the 

model to represent a relatively stable host population.  A range of simulations were 

then run to assess the impact of surveillance design i.e., targeting surveillance on 

different habitat types, the number of patches under surveillance, the effort applied 

in each patch and different switching rates. In addition the structure of habitat 

composition within the modelled area was explored by varying both the spatial 

habitat composition (varying the ratio of favourable to less favourable habitat type 

Event Rate Effect 

Birth ���(1 − ��/�) �� → �� + 1 
Death of Susceptible ��� �� → �� − 1 
Death of Infected ��� �� → �� − 1 
Susceptible Immigration  (1 − �) � �� → �� + 1 
Infected Immigration  �� �� → �� + 1 
Between Patch 
Transmission 

�������−���� �� → �� − 1 
�� → �� + 1 

Within Patch 
Transmission 

������ �� → �� − 1 
�� → �� + 1 

Susceptible Capture and 
Release 

��� �� → �� 

Infected Capture and 
Release 

���   �� → �� 



93 
 

patches in the space) and habitat suitability (varying the suitability index of less 

favourable habitat type from 0 to 1).  Simulations were also run to explore the impact 

of within and between patch transmission rates. The results from all these 

simulations are described in detail below. The parameterisation of the model and 

details of the simulations run can be found in the relevant tables in Appendix 3 

(indicated in Figure descriptions in the results section).  

4.3.3 Statistics generated from the model 

 

In this chapter we are focussed on emergent disease and therefore we do not collect 

long term averages, but rather focus on ensemble expectations (approximated by 

averages over many realisations of the process) of out of equilibrium incursion events 

corresponding to the introduction of the disease and its spatial spread up to the point 

where it is detected by surveillance. Each simulation is run for a period of time to 

allow the population to reach equilibrium before a disease incursion is introduced 

into a random patch. A surveillance bout continues until a detection event occurs or 

until a maximum time, tmax, is reached. Statistics are calculated and averaged over the 

many realisations in which disease detection occurred. The calculations include; 

average number of infected at time of detection, the average number infected in 

infected patches, the average time of detection and the number of infected patches. 

Here a surveillance bout corresponds to a period starting with a disease incursion 

event where we conduct surveillance until an infected individual is detected, or until 

some large upper time limit is reached (this just covers cases where disease dies out 

prior to detection). Individuals within patches under surveillance are captured at per 

capita rate α, and patches under surveillance are switched at switching rate τ, as 

described in detail above.  The total number of infected individuals caught per patch 

are recorded until one of the totals reaches 1, i.e. all totals were previously 0 and this 

is the first infected individual to be caught in any patch. At this point, disease has 

been detected for the first time. Note this could be easily extended to account for 

imperfect disease diagnostics by recording the number testing positive. When 

surveillance ends, either because a detection event has occurred or because a time 

limit has been reached, the number of infected individuals and patches is recorded. In 

addition, the time taken for disease to be detected is also recorded. Therefore over 

repeated surveillance bouts it is straightforward to estimate the average amount of 

disease present in the spatial system at the point of first detection. 
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4.4 Results 

 

4.4.1 Static surveillance: spatial distribution of effort 

 

When disease first enters a naive population, surveillance aims to detect the disease 

before a significant risk has developed. The risk associated with a given level of 

spread will depend on factors including host species under surveillance, potential 

host range, pathogen virulence, the economic and cultural values attached to these 

species and many others. We measure how well surveillance performs by calculating 

the amount of disease in the space at the point of first detection. For any given 

wildlife disease system (host and pathogen characteristics) the way surveillance is 

distributed within the spatial system, and how much surveillance is undertaken, both 

in breadth of patches covered and within patch intensity (capture rate), will affect the 

amount of disease present at the point of first detection. Figure 4.1 demonstrates 

how the amount of disease present in the spatially extended system reduces at the 

point of first detection with increased number of patches concurrently included in the 

surveillance sample at three different capture rates. To explore the effect of the 

distribution of surveillance effort (i.e. the difference between spreading surveillance 

thinly with low effort compared to concentrating high effort on a small number of 

patches) the total effort was calculated as follows: 

 

�����  ������  =    
������   ��  ����ℎ��  ��   ������������  

�����   ������   ��  ����ℎ��
   ×   �������  ���� 
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Figure 4.1: Effect of the distribution of surveillance effort between patches. Data 

are shown for three different values of the capture rate α (1.0‐red,0.25‐green,0.1‐

blue) each for a varying range from 1 to 65 patches under surveillance (with no 

switching). Plot 4.1.a shows that the average number of infected individuals and plot 

4.1.b shows the average number of patches with infection both decrease as the 

number of patches in the surveillance sample increases. This improvement happens 

more quickly as effort increases (capture rate). Plot 4.1.c shows the average number 

of infected individuals for the “total effort” from the simulation values used in Plot 

4.1.a. The plots shown were run using the set of parameter values described in Table 

S.3.1 in Appendix 3.1. 

 

Figure 4.1 shows, as the number of patches included in the surveillance sample 

increases, the less disease is present on average at time of first detection. This is an 

intuitive result, as the more space that can be covered in surveillance, the higher the 

chance of detecting disease. However, these results also indicate that, somewhat less 

intuitively, the distribution of surveillance effort between patches does not impact 

significantly on the average size of the disease incursion at time of first detection. 
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4.4.2 Static surveillance: stratified designs 

 

Environmental factors, such as habitat suitability, can also influence the efficacy of 

surveillance. As discussed previously, habitat suitability is modelled in terms of the 

carrying capacity of each patch. This is characterised by a suitability level σi which 

ranges from zero to 1 and interpolates linearly between the carrying capacity of 

favourable patches and zero. In this chapter we consider two habitat types at any one 

time. Favourable habitat has the maximum possible carrying capacity σi=1 and less 

favourable habitat has σi <1  i.e. carrying capacity ranges from 0 to that of the 

favourable habitat. As previously discussed in the introduction, habitat distribution 

within the spatial system is integral to the spread and persistence of disease. Figure 

4.2 demonstrates the effect, on the amount of disease present at first detection, of 

varying proportions of favourable to less favourable habitat at three different capture 

rates for 1% patch surveillance set. Here less favourable habitat has a suitability index 

of σ = 0.5. Three different surveillance strategies are also compared: 1) only selecting 

more favourable habitat for the surveillance sample; 2) only selecting less favourable; 

and 3) selecting both with equal probability. 
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Figure 4.2: The effect of habitat quality on stratified sampling schemes. Amount of 

disease present at time of first detection for three differently stratified sampling 

strategies (surveillance in: Less favourable only – red; Favourable and less favourable 

equally – green; and Favourable only ‐ blue) as a function of the proportion of 

favourable habitat. Data are shown for effort level 1.0 in 1% of patches with a 

random disease incursion relative to the proportion of favourable and less favourable 

habitat in (a) the average number of infected individuals in the spatial system at the 

time of first detection and (b) the corresponding figure for the average number of 

infected patches. The plots shown were run using the set of parameter values 

described in Tables S.3.2 in Appendix 3.1. 

Figure 4.2 shows that as the proportion of favourable habitat increases the amount of 

disease in the system at first detection also increases, regardless of sampling strategy. 

This simply reflects the fact that the system as a whole is more susceptible to disease 

as there are more hosts to infect when the proportion of good quality habitat 

increases. In comparing the three sampling strategies Figure 4.2 shows that sampling 

only less favourable habitat patches leads to the highest level of disease in the 

system at the time of first detection. In contrast sampling only favourable habitat 

patches is the best performing strategy while the mixed strategy falls between the 

other two. When the proportion of favourable habitat patches approaches 1 the 

mixed strategy is equivalent to sampling only favourable habitat because there are 

fewer and fewer less favourable habitat patches. Similarly when the proportion of 

good habitat patches approaches zero the mixed strategy of sampling both  habitat 

type patches is equivalent to sampling only less favourable patches (because, in the 

limit, there are only poor quality patches). 
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Sampling good quality habitat patches is the superior strategy because hosts are 

more abundant in favourable habitat which is therefore more favourable for the 

pathogen and more likely to shelter infected individuals who can be sampled by 

surveillance. It is also evident from Figure 4.2 that this effect becomes more 

pronounced as the proportion of good quality habitat patches shrinks.  Initial disease 

incursion events occur into a randomly chosen patch and therefore when favourable 

habitat is rare incursion is most likely to occur in a poor quality patch. In such 

circumstances disease is less likely to spread far, but sampling in only less favourable 

habitat is most likely to detect disease. However, when disease incursion does 

(rarely) happen in a good quality patch not only will it be initially missed less 

favourable habitat sampling it is also likely to be a larger outbreak. This inflates the 

average outbreak size under this (and the mixed) sampling strategy. In contrast, in 

the limit of a low proportion of favourable habitat, when sampling in favourable only 

habitat the majority of outbreaks are small (because most patches are poor)but 

remain undetected. However, surveillance will detect disease quickly when an initial 

incursion occurs in, or an outbreak reaches, a favourable patch. In this case the size of 

outbreak on detection is likely to be small. These effects are amplified as the 

proportion of favourable patches shrinks and thus it makes most sense to develop 

stratified surveillance designs (based on habitat quality) when good quality habitat is 

rare. 

Figure 4.3 demonstrates the effect of varying the suitability level of the less 

favourable habitat  on the amount of disease in the system at the point of first 

detection, when the proportion of suitable and less suitable patches are equal i.e., 

0.5. We consider 4 levels of patch inclusion in surveillance ranging from 1% of 

patches to 25%. How hostile the environment is for the host species will not only 

impact on the population size but also on the disease and its ability to spread. This 

has implications for surveillance efficacy. 
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Figure 4.3 The effect of the suitability of less favourable on surveillance The 

proportion of favourable habitat patches is 0.5 i.e. 1‐0.5 have less favourable habitat. 

Data are shown for the difference between targeting surveillance on favourable 

habitat patches and random sampling of any habitat patch type (a positive difference 

indicates lower levels of disease at detection in the targeted case). In (a) the average 

number of infected individuals in the spatial system at the time of first detection and 

(b) the corresponding figure for the average number of infected patches.  Each graph 

shows four different percentages of patches under surveillance (1%‐red, 2%‐green, 

5%‐blue, 25%‐purple). The capture rate was set to 1.0 for any patch under 

surveillance. The suitability rating of the less favourable habitat type was varied 

range from 0 to 1 (as shown). The plots shown were run using the set of parameter 

values described in Tables S.3.3 in Appendix 3.1. 

Figure 4.3 shows that, generally, targeting favourable habitat patches is effective in 

reducing the amount of disease in the spatial system at the point of first detection, 

especially at low i.e. 1% patch inclusion rates. When considering only a small 

proportion of patches in the surveillance sample, it will generally take longer to 

detect disease and therefore there is likely to be more disease in the system at the 

point of first detection. As the habitat becomes more suitable for the host population 

infection levels will increase, as the disease is able to stabilise in the population and 

spread more easily within patches. When σi is low (i.e. when the less favourable 

habitat is really poor), sampling favourable habitat is a sensible approach; Figure 4.3 

demonstrates a clear reduction in disease levels. However as less favourable habitat 

improves (i.e. as σi increases) this benefit is reduced. This difference is greater when 

there are a smaller proportion of patches under surveillance. Finally as σi tends to 1, 

there is little difference between favourable and less favourable patches, and it 
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therefore makes no difference which is targeted as such targeting equates to random 

sampling of undifferentiated patches. 

Figure 4.4 shows the impact of both between patch and within patch transmission 

with varying surveillance effort. We can see from Figure 4.4 that the higher between 

patch transmission, the more effort required to decrease the level of disease at time 

of detection. From other simulations explored, it would appear that at fixed between 

patch transmission, the within patch contact rate does not have as big an impact on 

the amount of disease at time of detection. However we anticipate that this would 

have a greater effect at very low levels where the disease was on the limit of being 

locally stable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The effect of surveillance effort and secondary transmission. Data are 

shown for three different between patch transmission rates (0.1‐red, 1.0‐green, 5.0‐

blue) for varying surveillance effort from 0 – 1 (plots 4.4.a and 4.4.b) and three 

different within patch transmission rates (0.1‐red, 1.0‐green, 5.0‐blue) for varying 

surveillance effort from 0 – 1 (plots 4.4.c and 4.4.d). The percentage of patches under 

surveillance is set at 1% and disease incursion is introduced into a random patch. The 
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plots shown were run using the set of parameter values described in Tables S.3.4 in 

Appendix 3.1.   

The results above in Figure 4.4 show that the total effort and the distribution of that 

effort play a role in limiting the spread of emerging disease prior to detection. The 

design of surveillance is particularly important when habitat is heterogeneous with 

respect to its suitability for the focal host species. In such cases we have seen that 

stratifying sampling design with respect to habitat type results in more efficient 

surveillance.  We now consider the effect of disease transmission on the ability to 

conduct surveillance. 

4.4.3 Dynamic designs 

 

Although our results above showed that increasing the number of patches under 

surveillance improved the ability to detect emerging disease outbreaks, in real 

surveillance situations, resources are restricted and there will be a limit to how many 

patches can be brought under surveillance at any one time. A potential alternative 

strategy to increasing the number of patches in surveillance is fixing the number of 

patches under surveillance at any one time but to move this effort around by 

switching surveillance to a new set of patches. The rationale behind this approach is 

that if the disease is slow at transmitting over the spatial system, staying in a fixed 

spot could severely hinder the chance of detecting the disease early, whereas if 

surveillance is moving around the space at a faster rate than the disease, there is 

potential for earlier detection.  We do not consider the costs associated with such 

dynamic surveillance design (switching) here, but rather focus on quantifying the 

potential gains in terms of outbreak size at time of first detection. 

Figure 4.5 demonstrates the potential effects of switching on the amount of disease 

present at time of detection. Results are shown for different lengths of time 

(switching times/rates) surveillance effort is deployed in a patch before this effort is 

redeployed in another patch. As described earlier the patches to be subjected to such 

surveillance are chosen at random, but potentially weighted according to some 

selection criteria e.g. using a stratified design. These results are also shown for 

different numbers of patches under surveillance at any given time (percentage of 

patches under surveillance). 
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Figure 4.5: Effect of switching: Data are shown for four different percentage patches 

under surveillance (1%‐red, 2%‐green, 5%‐blue, 25%‐purple) each for a varying range 

from 0 to 1 of time spent in each combination of surveillance patch(es) before 

switching. Amount of disease is calculated at time of first detection for infected (a) 

individuals and (b) patches. Patches are split 50/50 into favourable and less 

favourable habitat. Between patch transmission was set to 0.1 and within patch 

transmission rate set to 0.5. The plots shown were run using the set of parameter 

values described in Tables S.3.5 in Appendix 3.1. 

Figure 4.5 shows switching can reduce the average amount of disease in the global 

population at time of first detection i.e. allows surveillance to detect outbreaks 

faster. Note that large switching times approach the limit of no switching whereas 

smaller ‘time before switching’ corresponds to increasingly fast switching. Therefore 

the potential gains from dynamic surveillance are measured to a good approximation 

from Figure 4.5 by comparing the average number infected for switching times 0 and 

1. The shorter the time spent in the current surveillance sample before switching, the 

less prevalent is disease at time of first detection. Figure 4.5 also shows that there is 

more to be gained from switching when a lower percentage of patches are under 

surveillance. If the number of patches surveillance sample is large, there will be no 

more to gain from switching the patches under surveillance periodically. Thus 

switching is potentially most useful when surveillance is relatively under resourced. 

This effect is amplified for low between patch transmission rates, i.e. when the 

disease is less likely to spread between patches. 
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Figure 4.6 considers the proportional difference between switching and not switching 

for varying effort and three switching rates.  The proportional difference (actual gain) 

of switching compared with not switching is defined as: 

 

 Proportional difference = (no switching – switching rate)/no switching  

 

 

 

 

 

 

 

 

Figure 4.6: Switching and deployed effort. Percentage improvement obtained from 

switching compared with not switching, measured in terms of the amount of disease 

present at time of first detection for infected (a) individuals and (b) patches. Data are 

shown for three different switching rates (0.01 switching‐red, 0.1 switching‐green, 

1.0 switching‐blue) as a function of surveillance effort from 0 – 1. Within and 

between patch transmission was set to 0.5 and all patches are favourable habitat. 

The plots shown were run using the set of parameter values described in Tables S.3.6 

in Appendix 3.1. 

Figure 4.6 shows that the biggest gain seen in terms of reduction of disease occurs 

when both the switching level is fast (i.e. the surveillance stays in each patch for a 

very short time before moving to the next patch) and the surveillance effort is 

highest. Figure 4.7 shows how between patch transmission and the rate at which 

surveillance switches between patches, affects the percentage difference in disease 

in the system at point of first detection compared to not switching at all. 
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Figure 4.7: The effect of between patch transmission for different switching levels. 

Data are shown for the difference between three different switching levels (0.01 

switching‐red, 0.1 switching‐green, 1.0 switching‐blue) and not switching for amount 

of disease at time of first detection for infected (a) individuals and (b) patches. 

Between patch transmission rate is varied from 0 – 1 for 1% of patches under 

surveillance. Within patch transmission was set to 0.5 and capture rate was set to 

1.0. The plots shown were run using the set of parameter values described in Tables 

S.3.7 in Appendix 3.1. 

Figure 4.7 shows that by switching surveillance around, the amount of disease 

present at first detection can be reduced (quite considerably in some cases). At low 

between patch transmission, the quicker switching between patches occurs, the 

greater the percentage reduction in the amount of disease at the point of first 

detection that can be seen compared with no switching.  Figure 4.7 also shows that 

switching at rate 0.01 gives reduction in disease of up to 80% compared to not 

switching. This is likely to be because in this case surveillance is moving around the 

region under observation faster than the disease is spreading and is therefore able to 

detect the outbreak before it becomes widespread.   
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4.5 Discussion 

 
Spatial heterogeneity is a big influencing factor on the spread, prevalence and 

persistence of disease (Keeling 1999; Fulford et al. 2002; Ostfeld et al. 2005). In this 

chapter we have explored the consequences of these effects on the efficacy of 

disease surveillance applied to disease incursions into pathogen free host meta‐

populations. Spatial structure and composition of the environment are important 

components in emerging infections (Favier et al. 2005; Suzán et al. 2008) as they will 

help determine the probability of the disease establishing within the population. The 

surveillance strategy (e.g. distribution of effort)  will also determine the time to 

detection of a disease incursion and thus how much and how widespread the disease 

is at the point of first detection (Morse 1995; Blanchong et al. 2008). If the 

surveillance effort is too low, or is deployed in an uninfected area for too long then it 

will be harder to detect disease before the infection has established widely within the 

modelled area. 

In this chapter we considered a relatively stable host population in order to more 

clearly explore the impact of spatial heterogeneity of habitat suitability on the 

performance of surveillance. However, in earlier chapters (2 & 3) we learned the 

importance of population fluctuations in determining the efficacy of surveillance. It 

would therefore be interesting to consider a wider range of host demographics in the 

context of surveillance in spatially extended systems. Moreover, the fact that, in a 

range of systems, spatial heterogeneity has been shown to interact with and typically 

increase the importance of local stochastic population fluctuations (Tilman & Kareiva 

1997) it is likely that the results of chapters 2 and 3 will be equally as important for 

spatially extended surveillance. Therefore, in addition to the effects shown here, 

spatially extended surveillance of wildlife systems are likely to lead to biased and 

lower precision estimates of prevalence and a reduction in the ability to detect 

disease compared with what would be expected under standard binomial 

assessments that ignore population and disease fluctuations. We have already 

explored these effects, driven by temporal heterogeneities in a non‐spatial setting 

and fully expect then to carry over to the spatial case. However, in this chapter we 

have applied a spatial model to explore the effects of spatial heterogeneities on 

surveillance rather than revisit the effect of temporal heterogeneities or consider 
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their interaction with spatial heterogeneity. Nonetheless this would be an interesting 

avenue for further research. 

The task of surveillance is to detect disease before infection becomes a major risk i.e. 

to limit the spread of infection prior to detection such that disease control remains 

logistically and financially possible and/or cost effective.  Firstly, we have explored 

how the number of habitat patches included in surveillance affects the amount of 

disease at first detection. It was shown that by increasing the number of patches that 

are under surveillance at any one time, the amount of disease at first detection 

reduces rapidly, even at low efforts. Increasing the area that surveillance can cover 

will always improve efficacy; however it is usually lack of resources (funding, 

manpower, knowledge etc) that prevent this from being a practical solution.   

As expected the number of patches infected in the space at time of first detection is 

highly sensitive to the between patch rate of transmission a pathogen. The further 

the pathogen can spread spatially, the greater number of sub populations it can 

infect and potentially colonise. In this spatial context, it was shown to have a 

generally larger impact on the amount of disease in the system as a whole compared 

to within patch transmission. Within patch transmission is only able to affect the level 

of disease found in an infected patch and the probability that when infection reaches 

a susceptible patch that it will be able to sustain. 

As mentioned previously, the composition of the environment (i.e. suitability and 

spread of the habitat) can impact surveillance efficacy. Factors which affect the 

stability and size of the population will also affect the stability and spread of an 

emerging disease. It has been demonstrated in this chapter that when the habitat is 

more favourable for the population, this can increase the amount of disease in the 

space at the point of first detection. If the population is stable, it will be easier for the 

pathogen to infect individuals and establish itself in the population. This effect can be 

partially mitigated against when surveillance is targeted in the most favourable 

habitat type. Utilising knowledge about the population and environment by targeting 

areas which are preferable to the population (i.e. due to food sources available, flora, 

and land type) or areas which are known to contain the population because of 

previous sightings for example, enables the surveillance strategy to gain the most 

from the resources available.  This result supports the stratification of surveillance by 

habitat type used by Nusser (2008). 
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While the biggest reduction in the amount of disease at time of first detection was 

arguably seen by increasing the number of patches under surveillance, this, as 

previously discussed, would very rarely be a viable option. Most national and regional 

surveillance strategies would only be able to cover a small percentage of the total 

area. Where resources limit the area under surveillance to only a small fraction of the 

region (1% in the simulations considered here) we have shown in this chapter the 

potential benefits of dynamically switching the surveillance from patch to patch. If 

the time between switching is sufficiently small, this can decrease the amount of 

disease in the system at first detection (i.e. improve the ability of surveillance to 

detect emerging outbreaks), when compared to not switching, by a significant 

percentage (in some cases this was shown to be over 80%). This effect is most 

apparent when the effort rate is high and when the between patch transmission is 

low. 

We have shown that there are alternative strategies to improving the efficacy of 

surveillance than simply increasing the area that surveillance covers. We have also 

demonstrated that, like non‐spatial demographic factors, the spatial ecology of host 

populations in relation to heterogeneous distributions of habitat resources affects 

the efficacy of disease surveillance. It is important to understand the ecology, 

demography and other factors that influence population and disease dynamics (i.e. 

habitat quality, quantity, structure and location). We have identified and 

characterised methods to improve the performance of surveillance when resources 

and thus effort are limited, as they always will be. Two main strategies were 

identified to improve the ability of surveillance networks to detect emerging and re‐

emerging disease threats, namely stratification by habitat suitability and dynamic 

reallocation of surveillance effort. The literature on wildlife disease surveillance 

makes limited reference to the first of these (Witmer 2005; Nusser et al. 2008; Walsh 

& Miller 2010), but we are unaware of any literature that discusses switching. Our 

characterisation of these aspects of surveillance design can be used to inform 

management strategies, as in many applications it will only be possible to cover a 

very small percentage of the total area over which surveillance is required. Therefore 

stratified designs and switching could be deployed to improve surveillance efficacy in 

these instances. The work presented here is a first step towards exploring spatial 

heterogeneity and how this impacts on the efficacy wildlife disease surveillance 

systems. There are many more attributes of ecology that could have been explored, 
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for example fragmentation of habitat (e.g. clumping, corridors), source‐sink dynamics 

and seasonality. As noted above we expect that the interaction of spatial and 

temporal heterogeneities will reduce the efficacy of surveillance in line with the 

results of Chapters 2 and 3. In addition, costs, including switching from one location 

to another, could also be accounted for in assessing efficacy of surveillance design. 

These aspects would be interesting next steps to take the research area forward. 
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Chapter 5 

 

General Discussion: Towards a new 

approach to wildlife disease 

surveillance  
 

5.1 Background 

 
The overall aim of this thesis was to explore how population and disease ecology in wildlife 

affects surveillance efficacy in a spatial and non‐spatial context. The first step of which was 

to seek out known theory and practice used in designing surveillance schemes. The 

literature on wildlife disease surveillance is somewhat lacking in terms of protocols used, 

how they are implemented in the field, approaches used for the analysis of results, and 

documentation describing what equations are used in the design of surveillance schemes. 

From the literature available, it seems that to a large extent, practice for wildlife disease 

surveillance (Artois et al. 2009a) is based on ideas developed for livestock systems. This 

includes both calculation of sample sizes needed for accurate prevalence estimation 

(Grimes & Schulz 1996; Fosgate 2005) and detection of disease within a population (Dohoo 

et al. 2005). Fluctuations in host populations and disease prevalence are ignored in these 

methods, and while constant population size and prevalence may be reasonable 

assumptions for the analysis of livestock systems, they are less appropriate in wildlife 

disease systems that are characteristically subject to much greater fluctuations in host 

population density and disease prevalence. Frosgate (2009) reviews current approaches to 

sample size calculations in livestock systems and emphasises the importance of basing 

analyses on realistic assumptions about the system under surveillance. The above 

discussion strongly suggests that current design and analysis for wildlife disease surveillance 

is not based on realistic assumptions.  
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Despite a long history of research which addresses how stochasticity impacts disease 

prevalence and persistence (Anderson 1991; Renshaw 1991; Marion et al. 2000; Smith et al. 

2005) we are not aware of literature explicitly addressing the implications for surveillance 

design or outcome. Similarly a great deal of work has explored the effects of spatial 

heterogeneity (Sattenspiel & Simon 1988; Cliff 1995; Tilman & Kareiva 1997; Keeling & 

Grenfell 1998; Keeling & Rohani 2007)  on  disease prevalence and persistence. However, 

for the case of intrinsically generated spatial heterogeneity (which emerges purely from 

system dynamics even in a homogeneous environment) again there is nothing to our 

knowledge that specifically addresses how such a fundamental characteristic of spatial 

systems affects the outcome of surveillance. On the other hand there have been papers 

which mention spatial stratification of samples based on extrinsic sources of heterogeneity, 

i.e. biasing surveillance effort towards favourable habitats where the host species will be 

more likely to be found (Nusser et al. 2008; Walsh & Miller 2010).   

As noted above current methods for assessing required sample size in wildlife disease 

surveillance also ignore temporal fluctuations in population size and disease prevalence. In 

addition, spatial heterogeneity is often a major factor in wildlife disease systems which are 

typically characterised by significant fluctuations in both space and time. This contrast 

between the spatial and temporal heterogeneity of real wildlife disease systems and the 

assumptions of homogeneity that underpin current approaches to the design and analysis 

of surveillance in such systems is the gap in knowledge which this thesis has sought to 

address.  

 

5.2 Fluctuations undermine wildlife disease surveillance 

 
This thesis has addressed the issues outlined above by firstly creating a stochastic model 

representing wildlife disease systems and comparing the results with what little common 

practice has been published in regards to surveillance design. This simple but generic model 

represents interactions between the three key elements of wildlife disease surveillance 

systems, i.e. host demographics, pathogen dynamics, and the surveillance effort itself. The 

efficacy of such surveillance was assessed in terms of the following measures: the 

probability with which the surveillance system detects disease, the bias of the prevalence 

estimate and the standard deviation (the inverse of precision) of the prevalence estimate. 

In Chapter 2 this framework was then used to address generic questions about the efficacy 
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of wildlife disease surveillance, by considering a range of parameterisations of host 

demography, representing a broad range of wildlife species, alongside a wide spectrum of 

different pathogens. Plotting the above measures of surveillance efficacy as a function of 

prevalence reveals the range of possible outcomes and allows the impact of key aspects, 

e.g. surveillance effort, sample size and pathogen transmission, to be explored.  

For a simplified surveillance scenario analytical results obtained show that unless the 

covariance of the population and prevalence fluctuations is zero (which is true e.g. if the 

population or prevalence are constant), there would be bias in the surveillance estimate of 

prevalence. This result was confirmed for more realistic surveillance scenarios by stochastic 

simulation of the model. In addition such results were compared with predictions based on 

standard theory which as noted above relies on binomial arguments and assumptions of 

constant population size and prevalence. The simulations showed the bias and standard 

deviation in the estimate of prevalence can be severely underestimated by such standard 

theory. 

Fluctuations in demography and disease dynamics were also shown to compromise the 

ability of surveillance programmes to detect disease. The results in Chapter 2 demonstrated 

that standard binomial theory which ignores such fluctuations can also under estimate the 

power of surveillance programmes to detect disease, i.e. the probability of detecting 

disease is predicted to be much higher than it actually is in reality. This misinformation gives 

rise to over‐confidence in the ability of the surveillance scheme which can only be 

detrimental to the design of surveillance, the interpretation of the results and ultimately to 

the actions taken based on them. This thesis has both highlighted such concerns and begun 

the development of a more complete theoretical underpinning describing how surveillance 

statistics are affected by key characteristics of wildlife systems. This work highlights 

reductions in the efficacy of wildlife disease surveillance caused by population fluctuations 

and stochasticity in disease dynamics. For example, we have highlighted how power 

calculations based on fixed prevalence calculations of the probability of disease detection 

would lead to under powered studies. Moreover the models presented in this chapter and 

the next could be used as the basis for more reliable power calculations. One area that 

deserves attention is the inverse problem, namely how to assess, say true prevalence, given 

only results from surveillance and some knowledge of the underlying wildlife disease 

system. However, this is beyond the scope of this thesis. 
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5.3 Tools for assessing wildlife disease surveillance in real 

systems 

 
In Chapter 3 we demonstrate how the modelling framework introduced in Chapter 2 may 

be adapted and employed as a tool to assess the efficacy of surveillance in real systems. 

Such an approach naturally provides an aid to the design of surveillance programmes if the 

efficacy of multiple surveillance designs are evaluated and compared. We sought to 

quantify the effects identified in Chapter 2 for two specific wildlife‐disease systems to both 

illustrate the power of the model and also to better understand surveillance in badger and 

rabbit populations. This work showed that the generic findings of Chapter 2 are relevant to 

real wildlife disease systems. Focusing on disease induced mortality as a natural source of 

bias found in wild populations, we have demonstrated that the interaction between disease 

dynamics and population stability impacts the ability to both detect disease and accurately 

estimate the prevalence in the population, as was shown for a wide class of systems in 

Chapter 2.  

We extended the theory quantified from Chapter 2 to explore other known, previously 

acknowledged, sources of bias to assess the effect they have on the efficacy of surveillance. 

Bias in the trappability of an infected host, biases the surveillance prevalence estimate. This 

can happen in two ways; there will be a positive bias (i.e. the surveillance over‐estimates 

the prevalence) if individuals are trap happy, and there will be negative bias (i.e. the 

surveillance under‐estimates the prevalence) if the individuals are trap shy. The probability 

of detection decreased for infected individuals showing trap shy behaviour, and this is to be 

expected as this lowers the likelihood of an infected individual being caught and lowers the 

chance the infection will be detected. 

The impact of the sensitivity of diagnostic tests of disease used in surveillance was also 

explored and showed some interesting results. Imperfections in diagnostic tests would 

appear to mask the effect of fluctuations on the ability of surveillance to detect disease in 

that for poor tests the resulting probability of detection (based on simulations that account 

for fluctuations) is close to the constant prevalence theory estimate. As test sensitivity 

increases the difference between the true probability of detection and the constant 

prevalence theory prediction widens. We can conclude that gains in the sensitivity of 

diagnostics are likely to be reduced in the field by the effects of fluctuations. On the other 

hand these results also suggest that as test sensitivities increase the inadequacies of 

standard theory should become more transparent.  
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In summary we can assert that there are clear differences between the constant prevalence 

theory estimates and our simulated results. The latter, account for fluctuations in host 

population and disease dynamics, and clearly show impacts on the efficacy of surveillance. 

These effects have the potential to impact management strategies for current disease 

challenges and should be assessed through simulation tools such as those introduced here 

and explored further in the field 

5.4 Spatial heterogeneity and the design of wildlife disease 

surveillance 

 
The generic framework was extended to incorporate spatial heterogeneity. The impact of 

design on the ability of spatially distributed surveillance networks to detect emergent 

disease at a regional scale was then assessed.  Moving on from the non‐spatial models used 

in the previous two chapters, chapter four aimed to explore how the ecology of populations 

in space would affect the efficacy of surveillance in an incursion scenario. We paid particular 

attention to how surveillance would be distributed and how habitat quality affecting the 

population would then go on to affect the surveillance outcome. By calculating the amount 

of disease in the system at the point of first detection it was clear that the more “patches” 

in space the surveillance was able to visit at one time greatly reduced the amount of disease 

seen in the system. In practice active surveillance can be prohibitively expensive and 

funding is often a limiting factor. Furthermore, the amount of time/manpower required to 

cover a large enough area of the habitat under surveillance may be unfeasible. 

 

To address this issue, we explored the idea of only visiting a select percentage of the spatial 

system, but switch periodically around the space using different strategies (i.e. only 

focusing on good habitat areas). When the time between each switching was very small and 

the effort (capture rate) of surveillance was large enough, there was a reduction in the 

amount of disease present at time of first detection. The biggest effect seen in switching the 

surveillance around the spatial system happened at high effort (capture rate), low between 

patch transmission and sampling the favourable habitat patches only. The first factor, high 

effort, is intuitively important in the efficacy of surveillance, and has been demonstrated to 

impact on surveillance in Chapter 2. The more effort that is put into surveillance, the 

quicker the disease will be detected, and therefore the less disease will be present at the 

time of first detection. Switching is more likely to be advantageous when the between 

patch transmission rate is low, as the spread between patch to patch will be limited and 
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surveillance (if the effort is high enough) will have a better chance of detecting disease 

before it has developed into a major risk.  

 

We have seen instances before of strategies targeting surveillance in order to improve the 

probability of collecting samples (Nusser et al. 2008; Walsh & Miller 2010) discussed in 

Chapter 2, here we have explored the effect of this strategy further. Comparing the 

reduction in disease at the point of detection when targeting favourable habitat to choosing 

patches randomly to be under surveillance, we have shown that there is an advantage in 

targeting habitats in which the population thrives. Again, this is intuitive as a surveillance 

strategy which targets areas in which the population lives (and preferably is stable) will 

have a higher probability of detecting infection if the population has been exposed to an 

incursion. Knowledge about the population and environment (i.e. food sources available, 

flora, land type, behaviours of host, social structure) should always be incorporated into 

management strategies as this enables the surveillance strategy to gain the most from the 

resources available.  

 

5.5 Future Work 
 

This thesis has demonstrated the importance of understanding demographic fluctuations 

and disease dynamics in the host population when undertaking surveillance. The potential 

for both implementations (SDE and Gillespie) of the stochastic model used in Chapter 2 

have been highlighted in Chapter 3, but there are still many other attributes of 

demography, surveillance, habitat and environmental factors that are still to be explored.    

In terms of surveillance, throughout this thesis we have only considered a type of active 

surveillance. However, in terms of national wildlife disease surveillance, passive surveillance 

is most often used around the world, as discussed previously, as resources for active 

surveillance can be limited. It would be interesting to explore the impact demographic 

fluctuations and disease dynamics have on passive surveillance, especially in cases of high 

disease induced mortality. Since passive surveillance is predominantly the collection of 

deceased animals (road kill, death by natural causes, hunting etc), there is a large scope for 

bias in the sample, especially when trying to estimate the prevalence. We have shown in 

Chapter 2 and Chapter 3 how much bias can be seen when dealing with active surveillance, 
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and as passive surveillance has an associated bias of its own, the results found previously 

have the potential to be magnified quite considerably. The demographic components 

associated with passive surveillance (decay of deceased individuals, scavenge rate of 

deceased individuals, probability of detecting deceased individuals, probability of public 

reporting a finding for potential testing etc) could be easily incorporated into the existing 

model as additional rates. The decay aspect for example could be included as an 

exponential rate increasing with time. This would multiply by the number of deceased 

individuals to determine the probability of full decomposition and removal from the 

deceased population. This approach would reflect that the probability of a dead body 

decomposing completely increases with the amount of time spent deceased.    

In an effort to keep the complexity of the stochastic model at a manageable level, and to 

leave scope for several different applications, there are common population traits that have 

not been included. It would be possible to distinguish between attributes such as, sex, age, 

dominance, added disease states etc, and to explore the effect of these on the efficacy of 

surveillance. For example, if there was a “recovered” state included in the disease 

dynamics, it would be interesting to explore how this would affect the bias seen previously 

in the prevalence estimate and probability of detection. This could be particularly significant 

when disease induced mortality is included in the disease dynamics. In addition inclusion of 

such a disease related state would complicate the modelling of surveillance since it is likely 

that different diagnostic tests would detect individuals in latent and infective states and the 

recovered state. The former would be targeted by pathogen recovery e.g. bacterial culture 

or DNA based tests for the presence and abundance of pathogens, whereas the latter would 

most likely be detected by tests based on serological analysis indicating exposure to a 

pathogen e.g. detecting antibodies (Teunis et al. 2002; Bidet et al. 2008; López‐Olvera et al. 

2010). The contrasting nature of these diagnostic tools would require identification of 

appropriate sensitivity and specificity levels associated with testing animals in different 

disease states. This would add to the complexity of modelling but such an analysis may 

reveal further sources of bias and uncertainty in wildlife disease surveillance.  

An external influence that has not been considered is climate; seasonality is known to affect 

the spread of disease (Dowell 2001; Altizer et al. 2006); and  climate change is predicted to 

have significant impacts on disease (Anderson et al. 2004; Trenberth 2008). Seasonality 

could impact the stochastic fluctuations of the population as many natural populations have 

specific breeding seasons. Limiting the growth of the population to certain seasons could, in 



116 
 

some cases, decrease the overall system stability if a disease had a high enough disease 

induced mortality rate. We have seen previously in this thesis that unstable population 

dynamics have a big impact on the bias and uncertainty of the prevalence estimate as well 

as in the probability of detection. Seasonal reproduction drives the total numbers of 

animals on the ground to dramatically increase in spring and summer compared to the 

autumn/winter population size. Furthermore the disease susceptibility profile of the 

population changes as disease‐resistant adult dominated populations are diluted with 

disease susceptible young. As well as this, winter is often associated with starvation and the 

adults surviving winter frequently emerge with a compromised immune system. There are 

well known and already characterised drivers of population fluctuation and disease 

dynamics, and the results obtained in this thesis strongly suggest that such factors need to 

be considered when designing wildlife disease surveillance. There is also scope for including 

such things as extreme weather events, for example. Climate change and extreme weather 

events have the potential to increase the prevalence of disease within a population 

(D’Amato et al. 2013) which could well have adverse consequences for the efficacy of 

surveillance i.e. if the influx of disease was rapid, surveillance might be too slow at 

detecting disease which would lead to increased disease risk.     

Spatial heterogeneity has been explored in Chapter 4 in terms of the ability of surveillance 

to detect disease incursion in spatially explicit wildlife disease system, but there are many 

more avenues to explore. Habitat distribution is known to influence both the host 

population demography and persistence of disease (Fahrig 2003). We have touched upon 

this by considering suitability of habitat and proportion of suitable habitat within the space. 

However another aspect we have yet to explore is clumping of habitat, i.e. the tendency of 

habitat patches of similar types be closer together than typical distances to habitats of a 

different type. If the habitat is clumped, this can mean that if disease is introduced into a 

clump then it will have a strong chance of spreading and sustaining itself in nearby habitats. 

However, other clumps of habitat patches of the same type (e.g. habitat suitable for a given 

host species) may be at less risk if the distance between such clumps is too far for the 

disease to travel. Clumping of habitats can lead to populations becoming isolated and to 

preserve species diversity, often corridors are introduced to allow animals to move from 

habitat clumps. While this can be good for the overall population level, it can also lead to an 

increase in the spread and persistence of disease. This has an obvious potential to impact 

on the efficacy of surveillance and it would be a worthwhile area to explore.  
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This thesis has been a first step in characterising how key ecological features of natural 

populations impact on surveillance efficacy. We have shown that currently standard 

assumptions made when designing surveillance strategies and design over‐look important 

stochastic fluctuations and biases found in estimating prevalence. Taking this research 

forward will hopefully benefit surveillance in the field by aiding more informed design, and 

interpretation of results. As the recent example of the West Africa Ebola outbreak has 

highlighted (Nishiura & Chowell 2014; PHE 2014), there is still a clear need for better 

disease surveillance strategies. The findings of this research should be investigated in the 

field to assess how important the relationships we have characterised are in practice. We 

have shown there are several factors which affect the efficacy of surveillance and at the 

very least should be considered when designing surveillance programs. Although wildlife 

disease surveillance has been our motivating example, there is no reason why the effects 

discussed in this thesis or related phenomena should not be applicable to human and 

livestock populations e.g. that are subject to large population fluctuations. It is difficult to 

give specific recommendations for wildlife disease surveillance, as each host‐pathogen 

system is unique. However we have presented results (e.g. specific graphs) that span a 

broad spectrum of wildlife disease systems, and these perhaps be used to design relatively 

robust surveillance systems (e.g. Figure 2.4) . In addition Chapter 3 demonstrated that we 

have developed tools in the form of our stochastic simulation models and the wider 

framework within which we have used them to assess the efficacy of different surveillance 

systems. This research demonstrated the potential to apply this framework to specific host 

populations and diseases of current interest, In addition the model we have developed has 

the scope to be adapted and used in many different situations. We conclude that host 

demography, disease dynamics and spatial heterogeneity do impact on the efficacy of 

surveillance and must be considered when undertaking/designing surveillance of wildlife 

disease systems. 
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Appendix 1  
 

1.1 Relationship between discrete and continuous (SDE) state-

space model implementations 
 

In this appendix we describe the relationship between the continuous time discrete state‐

space Markov process and the stochastic differential equation (SDE) implementations of the 

model described in the main text. 

Our starting point is the SI model described in Table 2.1 (main text) implemented as a 

continuous time discrete state‐space Markov process in which the number of infected 

individuals I(t) and total population size N(t) = S(t)+I(t), are represented as integer variables.  

The Gillespie algorithm exploits the fact that the time between events is distributed 

exponentially with parameter R(t) given by the sum of all the event rates in Table 2.1 and 

the probability that a given event occurs is given by the associated event rate divided by 

R(t).   

However, under this implementation one can also consider the expectation and variance‐

covariance of the change in the state‐space variables I(t) and N(t) during a small time 

interval. For convenience denote the state of the system at time t by X(t)={I(t),N(t)}. Then 

for example, conditional on the state of the system at time t, the expected change in the 

population size associated with birth events from time t to t+δt is given by EB[δN(t)|X(t)] = 

rN(t) (1 – N(t)/k)δt. Similarly, the variance in δN associated with birth events is VarB[δN(t)]= 

rN(t) (1 – N(t)/k)δt + O(δt2), and henceforth we will assume δt is sufficiently small to ignore 

the higher order terms. In the model described in the main text (see Table 2.1 and 

surrounding text) all individuals are born susceptible and therefore birth does not affect the 

infective population size I(t) i.e. EB[δI(t)|X(t)] = 0, VarB[δI(t)]=0, and CovB [δI(t),δN(t)|X(t)]=0. 

However, migration of infectives affects both I(t) and N(t) and to first order in δt we find 

that EmI[δN(t)|X(t)]= γνδt, VarmI[δN(t)]= γνδt, EmI[δI(t)|X(t)] = γ ν δt, VarmI[δI(t)]= γ ν δt  and 

CovmI [δI(t),δN(t)|X(t)]= γνδt. The full set of first‐ and second‐order statistics describing 

changes in the state‐space associated with each event type are given (up to first order in δt) 

in Table S.1.1.  
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Table S.1.1: Expectations and variance‐covariances in changes (during the time interval t to 

t+δt) to the state space {I(t),N(t)} associated with each event type in the discrete state‐

space model described in the main text (see Table 1.1). All such quantities are shown to first 

order in δt. Note: capture and release events are omitted since they affect neither I(t) or 

N(t). 

We now show how to construct a continuous time, continuous state‐space (diffusion) 

version of the model which is consistent with above implementation in that it preserves the 

means and variance‐covariance statistics shown in Table S.1.1. To do so we construct a set 

of stochastic differential equations (SDEs) which we later solve numerically in discrete time 

steps (Mao 1997; Higham 2001).  The following Itô stochastic differential equations 

represent the change in the system state variables during an infinitesimally small time 

interval dt 

�� (�)

= ��� ,� ��(�)�+ �� ,�� ��(�)�+ �� ,����(�)�+ �� ,�� ��(�)�                             

+  �� ,�� ��(�)�+ �� ,�����(�)�+ �� ,�����(�)�� �� 

 

+  �� ,� ��(�)���� (�) +  �� ,�� ��(�)����� (�) + �� ,����(�)�����(�)

+  �� ,�� ��(�)����� (�)  + �� ,�� ��(�)����� (�) + �� ,�����(�)������(�)

+ �� ,�����(�)������(�) 

E-
type 

Event E[δN|X(t)] E[δI|X(t)] Var[δN|X(t)] Var[I|X(t)] Cov[δN,δI
|X(t)] 

B Birth 
 

��(1 − � /�)�� 0  ��(1 − � /�)�� 0 0 

DS Death of S −���� 0 ���� 0 0 
DI Death of 

Infected 
−���� −���� ���� ���� ���� 

mS S Immi-
gration  

(1 − �)��� 0 (1 − �)��� 0 0 

mI Infected   
Immi-
gration  

���� ���� ���� ���� ���� 

1ry Primary 
Trans-
mission 

0  ����� 0 
 

����� 0 

2ry Secondary 
Trans-
mission 

 0 ����� 0 
 

����� 0 
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��(�)

= ���,� ��(�)�+ ��,�� ��(�)�+ ��,����(�)�+ ��,�� ��(�)�+  ��,�� ��(�)�

+ ��,�����(�)�+ ��,�����(�)�� �� 

+  ��,� ��(�)���� (�) +  ��,�� ��(�)����� (�) + ��,����(�)�����(�)

+  ��,�� ��(�)����� (�)  + ��,�� ��(�)����� (�) + ��,�����(�)������(�)

+ ��,�����(�)������(�) 

Here the quantities BB(t), BDS(t), BDI(t), BmS(t), BmI(t), B1ry(t), B2ry(t) are independent Brownian 

motions corresponding to each of the seven event types and the correct interpretation of 

these equations requires consideration of associated stochastic intergrals (REF). For small 

but finite dt the quantities dBB(t), dBDS(t), dBDI(t), dBmS(t), dBmI(t), dB1ry(t), dB2ry(t) can be 

interpreted as independent draws from a zero mean Gaussian with variance dt for each 

event type and each time point 0,dt,2dt, ... ,Tϵ(0,T).  Thus e.g. E[dBB(t)]=0, E[dBB(t)dBB(t)]=0 

and E[dBB(t)dBDS(t)]=0. This discretisation is the basis for the numerical simulation of these 

SDEs used in this paper. 

The so‐called drift, fN,B(X(t)), fN,DS(X(t)), fN,DI(X(t)), fN,mS(X(t)), fN,mI(X(t)), fN,1ry(X(t)), fN,2ry(X(t)) 

and diffusion, gN,B(X(t)), gN,DS(X(t)), gN,DI(X(t)), gN,mS(X(t)), gN,mI(X(t)), gN,1ry(X(t)), gN,2ry(X(t)), 

terms representing changes in the variable N(t) and the corresponding quantities 

representing changes in I(t) are deterministic functions of the state‐space X(t) determined 

as follows. 

Given the nature of the Brownian motions taking the expectation of the above equations 

yields 

�[�� (�)|�(�)]

= ��� ,� ��(�)�+ �� ,�� ��(�)�+ �� ,����(�)�+ �� ,�� ��(�)�+  �� ,�� ��(�)�

+ �� ,�����(�)�+ �� ,�����(�)�� �� 

�[��(�)|�(�)]

= ���,� ��(�)�+ ��,�� ��(�)�+ ��,����(�)�+ ��,�� ��(�)�+  ��,�� ��(�)�

+ ��,�����(�)�+ ��,�����(�)�� �� 
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Which suggests that for each event type Etype fN,Eype(X(t)) and fI,Etype(X(t)) should be 

interpreted as the mean update shown in Table S1 for N(t) and I(t) respectively.  For 

example, �� ,�����(�)� and �� ,�����(�)� are both zero since only birth, death and migration 

change the population size, i.e. neither primary nor secondary infection changes the 

population size. 

The variance in the update for N(t) is given by  

Var[�� (�)|�(�)]= �[�� (�)�|�(�)]− �[�� (�)|�(�)]� 

However, we have just shown that E[dN(t)|X(t)] is of order dt and therefore to first order in 

dt we can write 

  Var[�� (�)|�(�)]= �[�� (�)�|�(�)]=  

�� ,� ��(�)�
�

��+  �� ,�� ��(�)�
�

��+  �� ,����(�)�
�

��+   �� ,�� ��(�)�
�

��     

+  �� ,�� ��(�)�
�

��+ �� ,�����(�)�
�

��+  �� ,�����(�)�
�

�� 

and  

 Var[��(�)|�(�)]= �[��(�)�|�(�)]=   

��,� ��(�)�
�

��+   ��,�� ��(�)�
�

��+   ��,����(�)�
�

��+ ��,�� ��(�)�
�

��    

+   ��,�� ��(�)�
�

��+  ��,�����(�)�
�

��+  ��,�����(�)�
�

��   

Here we have made use of the independent nature of the Brownian motions described 

above. 

 

These last two equations therefore suggest that for each event type Etype, gN,Etype(X(t))2 and 

gI,Etype(X(t))2 should be interpreted as the variance in update shown in Table S.1.1 for N(t) 

and I(t) respectively.   

The above calculations are summarised in Table S.1.2. Comparison with Table S.1.1 allows 

the functional form for each drift and diffusion term to be identified. 

Finally, the covariance  

Cov[�� (�)��(�)|�(�)]= �[�� (�)��(�)|�(�)]− �[�� (�)|�(�)]�[��(�)|�(�)] 
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to first order in dt is given by  

Cov[�� (�)��(�)|�(�)]= �[�� (�)��(�)|�(�)]= 

+   �� ,����(�)���,����(�)���+   �� ,�� ��(�)���,�� ��(�)���   

where we have shown only the non‐zero terms. Comparison with the functional forms for 

the diffusion terms described above shows that this expression is consistent with the 

covariance terms shown in Table S.1.1. 

 

 

 

 

 

 

 

 

 

 

Table S.1.2: Expectation and variance‐covariances in changes (during the time interval t to 

t+dt) to the state space {I(t),N(t)} associated with each event type in the SDE model as 

described in Appendix 1. All such quantities are shown to first order in dt.  Comparison with 

Table S.1.1 enables both drift e.g. fN,B(X(t)) and diffusion e.g. gN,B(X(t)) functions to be 

identified. Note: capture and release events are omitted since they affect neither I(t) or 

N(t). 

 

  

  

E-
type 

Event E[δN|X(t)] E[δI|X(t)] Var[δN|X(t)] Var[I|X(t)] 

B �� ,� ��(�)��� ��,� ��(�)���  �� ,� ��(�)�
�

��  ��,� ��(�)�
�

�� 0 

DS �� ,�� ��(�)��� ��,�� ��(�)���  �� ,�� ��(�)�
�

��  ��,�� ��(�)�
�

�� 0 

DI �� ,����(�)��� �� ,����(�)���  �� ,����(�)�
�

��  ��,����(�)�
�

�� �� ,����(�)�

× ��,����(�)��� 

mS �� ,�� ��(�)��� ��,�� ��(�)���  �� ,�� ��(�)�
�

��  ��,�� ��(�)�
�

�� 0 

mI �� ,�� ��(�)��� ��,�� ��(�)���  �� ,�� ��(�)�
�

��  ��,�� ��(�)�
�

�� �� ,�� ��(�)�

× ��,�� ��(�)��� 

1ry �� ,�����(�)���  ��,�����(�)���  �� ,�����(�)�
�

��  ��,�����(�)�
�

�� 0 

2ry  �� ,�����(�)�dt  ��,�����(�)��� �� ,�����(�)�
�

��  ��,�����(�)�
�

�� 0 
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1.2 Parameterisations used 

 

This section of the appendix describes in detail the parameter combinations used to 

produce the graphs in the main text. Values of the form: a,b,c,d etc refer to discrete values 

used for different lines shown on the Figures. Values of the form a;b;c refer to smallest 

value; largest value; step size describing the range of values (e.g. of the death rate) 

simulated to produce the Figures. Values of the form a – b refer to the range of values 

covered with a non‐constant step size. All other parameters with single values are held 

constant in simulations. 

 

 

 

 

 

 

 

 

Table S.1.3: Parameter values are shown for Figure 2.1 in the main text which demonstrates 

the effect of the death rate and transmission rate on the bias and variance of the 

prevalence estimate as well as the effect of the death rate on the population size and 

variance. 100,000 simulations are run of each combination and terminate when the sample 

target is reached, i.e. there is no time limit imposed. These parameters were implemented 

using the SDE version of the model.    

 

  

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.1, 0.04, 0.01 
Carrying Capacity k 120 
Growth Rate r 0.5 
Death Rate  µ 0.1;0.5;0.1 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0 
Susceptible Active Capture α 0.1 
Infected Active Capture α 0.1 
Sample Target m 10.0 
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Table S.1.4: Parameter values are shown for Figure 2.2 in the main text which demonstrates 

the effect of the capture rate on the bias and variance of the prevalence estimate. 100,000 

simulations are run of each combination and terminate when the sample target is reached, 

i.e. there is no time limit imposed. These parameters were implemented using the SDE 

version of the model.    

 

 

 

 

 

 

 

 

Table S.1.5: Parameter values are shown for Figure 2.2 in the main text which demonstrates 

the effect of the sample size on the bias and variance of the prevalence estimate. 100,000 

simulations are run of each combination and terminate when the sample target is reached, 

i.e. there is no time limit imposed. These parameters were implemented using the SDE 

version of the model. 

 

 

  

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.1 
Carrying Capacity k 120 
Growth Rate r 0.5 
Death Rate  µ 0.4, 0.43 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0 
Susceptible Active Capture α 0 - 10 
Infected Active Capture α 0 - 10 
Sample Target m 10.0 

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.1 
Carrying Capacity k 120 
Growth Rate r 0.5 
Death Rate  µ 0.4, 0.43 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0 
Susceptible Active Capture α 0.1 
Infected Active Capture α 0.1 
Sample Target m 1 - 10000 
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Table S.1.6: Parameter values are shown for Figure 2.3 in the main text which 

demonstrates the effect of the death rate and transmission rate, as well as the sample 

size and capture rate, on the probability of detecting disease. 100,000 simulations are 

run of each combination and terminate when the sample target is reached, i.e. there is 

no time limit imposed. These parameters were implemented using the SDE version of 

the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.1, 0.04, 0.01 
Carrying Capacity k 120 
Growth Rate r 0.5 
Death Rate  µ 0.1;0.5;0.01 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0 
Susceptible Active Capture α 10, 1.0, 0.1, 0.01 
Infected Active Capture α 10, 1.0, 0.1, 0.01 
Sample Target m 10 
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Table S.1.7: Parameter values are shown for Figure 2.4 in the main text which 

demonstrates the effect of the transmission, death rate, birth rate, carrying capacity, as 

well as the sample size, on the probability of detecting disease. 1000 simulations were 

run per parameter combination with a time limit of 45. If the simulation did not reach 

the sample target within the time limit, the run is discarded and not used in the 

statistical calculations. If out of 1000 realisations a parameter combination ceases to 

reach the sample target at least 15 times, that parameter combination is discarded 

totally as the results are deemed to be unreliable. Increasing the time limit bears little to 

no effect on the amount simulations which reach the target sample, so the precise value 

of the time limit does not affect the results obtained from the model. These parameters 

were implemented using the Gillespie version of the model.  

  

Rate Name Rate Value 

Secondary Transmission Rate β 0.01,0.05,0.09,0.2,0.6, 
1.0,2.0,5.0 

Carrying Capacity k 1;36.0;3.5 
Growth Rate r 0.5;23;2.5 
Death Rate  µ 0.25;14.0;1.25 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.01 
Primary Transmission Rate β0 0.01 
Susceptible Active Capture α 0.5 
Infected Active Capture α 0.5 
Sample Target m 10.0, 20.0 
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Appendix 2 

Appendix 2.1 

 

2.1.1 Estimating Badger Parameters 

 

The paper on which the badger parameter exploration was based, Shirley et al 2003, 

describes an individual based spatially explicit model, using discrete probabilities for all 

event types. The model obtains data from each badger at 6 month intervals to determine 

the life history. The model accounts for sex, three separate age classes (cub, juvenile and 

adult), TB status and breeding structure where only one dominant breeding pair produce 

offspring. This creates additional difficulties when deriving parameters for the models used 

in this thesis since not only do we need to translate from discrete to continuous time 

formulations we also need to define average rates in our model using information 

describing the various classes defined in Shirley et al. Information was also used from 

Rogers et al 2003 and Kruuk and Parish 1982 for the carrying capacity estimate. Below we 

discuss how we translate between the parameters given in Shirley et al 2003 and those 

required for the models used in Chapter 2. 

2.1.1.1 Discrete to continuous time 

 

Suppose under the discrete time model there is a time step which represents Δt units of 

time (e.g. 6 months in the above example) and a given event type happens with probability 

P during this interval. For example, this event might correspond to a transition from one age 

class to another (i.e. survival to a given age). Starting at time t=0 the probability that this 

event has yet to occur after n time steps i.e. by time t=nΔt is given by:  

(1 − �)� 

On the other hand consider an analogous continuous time Markov process where the event 

rate is α, then as we saw in Chapter 1, the probability that the event has yet to occur by 

time t=nΔt is: 

�� ∝ �∆� 
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Equating the last two equations, taking logs and noting that the number of time steps n 

cancels we obtain: 

∝ = −
ln (1 − �)

∆�
,  

which enables translation between discrete and continuous time parameterisations.  Also 

note that when P is small ‐ln(1‐P) ~ P and this can be approximated by α=P/ Δt. 

Considering the event described above as the survival of an individual through a stage class 

(e.g. relating to an age range or a developmental stage) the average time spent in the stage 

is given by the length of each time step multiplied by the average number of steps before 

the event occurs, i.e. Δt*1/P in the discrete time model. This results from the fact that the 

probability of making a transition to the next stage class at time step n is given by a 

geometric distribution with a probability P of success per trial – which has mean 1/P (Consul 

et al. 2006). In the continuous time model the time to the next event is an exponential 

distribution (as shown above) which has mean 1/α. Equating these expected times from the 

discrete and continuous time models leads to:  

∝ =
�

∆�
 ,  

which as we saw is equivalent to the previous formula when P is sufficiently small. 

2.1.1.2 Translating from multi- to single-stage models 

 

Where parameters are available for multiple stages e.g. age or developmental stages, one 

approach to parameterising a model with only a single stage is to focus on the expected 

time spent transiting all the stages. For example Shirley et al 2003 consider cubs, juveniles 

and adults and therefore if we wish to consider mortality we need to estimate the expected 

lifespan i.e. the average time taken to transit all three of these stages from birth to death.  

Suppose in a discrete time stage structured model, the length of the first two stages are 

both a single time step and the probability of surviving the cub stage is A and the probability 

of surviving the juvenile stage is B. Thereafter if the probability of surviving each time step 

as an adult is C, then as we saw above the average number of time steps spent as an adult is 

1/C i.e. time spent as an adult = Δt*1/C. However, since it takes two time steps to reach the 

adult stage then the expected life time would be Δt*(2+1/C) if the survival of  
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cubs to juveniles and juveniles to adults were both assured i.e where A=B=1.  

In cases where A,B<1 and only a fraction of cubs and juveniles survive we calculate the 

expected life span in terms of the contribution from three groups, namely those that die as 

cubs, those that die as juveniles or those that die as adults. To do so, we consider the 

probability that an individual is in each category multiplied by the length of life in each 

category. However, note that in the discrete time model we only count in full time steps 

and therefore individuals that die as cubs do not contribute to the expected lifespan.  

The probability that an individual dies as a juvenile is A*(1‐B) i.e. they survived the cub stage 

but died during the juvenile stage. Individuals in this category live for one but less than two 

time steps and therefore each contributes Δt*1 to the expected lifespan.  

The probability that an individual dies as an adult is A*B*1 since any individual that reaches 

adulthood will die as an adult. The fact that such individuals have survived both the cub and 

juvenile stages means their age is at least  Δt*2. However, once an individual reaches 

adulthood its chance of survival per time step is C, and as we saw above this means that the 

expected number of time steps it spends as an adult is 1/C. Therefore, on average, 

individuals that die as adults will have lived (2+1/C)* Δt.  Putting these calculations together 

leads to an expected lifespan τ of: 

� = �(1 − �)∆�+ �� �2 +
1

�
� ∆� 

Which simplifies to:  

� = � �1 + � �1 +
1

�
� � ∆� 

As discussed above, this expected lifespan can be used to define the death rate in an 

unstructured continuous time model as 1/τ. 

We have utilised the methods above to estimate the badger parameters as follows. 

 Carrying Capacity used in the continuous time model K = 20 

 

European badger social groups documented in the literature range from 1 or 2 (Kruuk & 

Parish 2009) up to 27 (Rogers et al. 1997). Using this information the total carrying capacity 

used in the simulations presented here was chosen to be 20 to simulate a group large 

enough (around 18) to calculate meaningful statistics but not so large as to be extreme. We 
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tested the parameter choice for robustness and found that using a larger carrying capacity 

had little effect on the overall results. 

 

 Death rate used in the continuous time model d = 0.313 

 

This rate was derived using information from (Shirley et al. 2003) and calculating the life 

expectancy (LE) for Males and Females separately using a geometric distribution, as the 

model uses discrete time. Female badgers born have a probability 0.76 of dying while in the 

cub stage per 6 month period, probability 0.771 of dying in the adolescent stage and 

probability 0.122 of dying in the adult stage, the corresponding probabilities for Males are 

0.76, 0.704 and 0.161 respectively. Using information we can calculate the LE for females 

and males as follows: 

 

Female: 
�

�����.������.������
�

�.���
���

= 3.5745 

 

Male:  
�

�����.������.������
�

�.���
���

= 2.8091 

 

Averaged over sex, the average lifespan is calculated to be 3.1918. Therefore the annual 

mortality rate using a geometric distribution with mean 1/p is 1/3.1918 = 0.313. 

 

 

 Per capita growth rate used in the continuous time model r = 5 

 

Again, using information from (Shirley et al. 2003)  we find that the average litter size for a 

breeding pair is  2.97 and the average number of litters per pair is 1.1206. We can deduce 

therefore that the breeding pair will contribute 3.328 to the population per year. However, 

in our continuous time model we do not represent breeding structure and therefore need 

to translate this average number of offspring produced per year into an average annual 

growth rate per capita. This of course is dependent on the typical population size which in 

turn depends on the birth rate (given the death rate defined above). We therefore ran a set 

of simulations in which the birth rate was varied until we obtained a relatively stable 

population with an average population of 18 which lead to the choice of r = 5.  
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 Disease induced mortality rate used in the continuous time model μI = 0.165 

 

A small percentage of badgers infected with TB will become super‐excretors. These 

animals shed a lot more virus and also have a higher mortality rate associated with 

them. In the Shirley et al paper, only super‐exretors had added life history 

consequences, whilst both excretors and super excretors are infectious. Shirley et al 

2003 quote figurers describing the average length of time individuals spend as excretors 

and super‐excretors which reveals that as a fraction of the time spent infectious 0.6308 

was spent as a super‐excretor experiencing higher levels of mortality.  The mean super 

excretor mortality over both genders was calculated to be a probability of 0.2415 and 

therefore we estimate the probability of death for infections individuals to be  0 x (1‐

0.6308)+ 0.2415*0.6308. Therefore, using the formula for conversion between discrete 

and continuous time models described above our disease induced mortality rate is 

0.165 

 

 Disease transmission rate used in the continuous time model β = 0.057  

 

From Shirley et al 2003, transmission rate for both excretors and super excretors are 

said to “vary”. Therefore, through simulation of the stochastic model transmission rate 

for TB has been set at 0.057 to get an average prevalence around 48%. There are 

various reports of prevalence from badger studies and we we’re aiming for an average 

between 40% – 60%. Considering information from Zijerveld (2012), the estimated 

overall death rate = 0.4 but the author did not look at disease induced mortality 

separately. Therefore the average death rate for the parameters considered in this 

research should equal (n*0.313+I*0.165)/n=0.4 => 0.313+(I/n)*0.165=0.4, assuming  n 

individuals of whom I are infected. This then leads to a prevalence of (I/n) = (0.4‐

0.313)/0.165=0.5272~0.53. This is approximately consistent with the average 

prevalence levels simulated in this research. 
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2.1.2 Estimating Rabbit Parameters 

  

The paper on which the rabbit parameter exploration was based, Judge et al 2007, 

describes an individual based continuous time, stochastic process with state‐space defined 

by sex, age, disease status and location of each animal.  

 Carrying Capacity used in the continuous time model K = 115 

 

Using information from Judge et al 2007, rabbit social groups have a typical maximum 

population size of around 90 individuals. We set the carrying capacity based on the birth 

and death rate so that the population can peak around this number but the equilibrium is 

below (around 65). 

 

 Per capita death rate used in the continuous time model μ = 5.7 

 

Using monthly death rates for rabbits at different life stages (i.e. adult, adolescent, infant) 

we calculated ((0.0909+0.667+0.25+0.66)/4)*12 = 5.0 as an approximate death rate not 

taking into account time spent in each stage. Using simulation results we increased this 

slightly to 5.7 to produce realistic population fluctuations. 

 

 Intrinsic growth rate used in the continuous time model r = 13.5 

 

From the adult female birth rate in Judge et al 2007, a straight forward calculation of 

1.67*12 (i.e. birth rate multiplied by 12 months) would give approximately 20.0 as the birth 

rate. However, as the model in Judge et al 2007 differentiated sex and age, we might expect 

this estimate to be a little crude and indeed simulations where we employ the above death 

rates and carrying capacity, but vary the birth rate to target a typical population size of 

around 65 unsurprisingly do suggest a lower birth rate. This process led to the selection of a 

birth rate of 13.5 as this gave a more realistic depiction of rabbit population dynamics. 
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 Disease transmission rate interval β = 0.156 – 0.565  

 

Judge et al 2007 employed a statistical estimate of the disease transmission rate per 

susceptible‐infective pair used in the range 0.013‐0.046 per month. Therefore, based on 

these values, the range was calculated as 0.013*12 and 0.046*12 = 0.156 – 0.565. Rates 

chosen were within this calculated interval. 
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Appendix 2.2 
 

2.2.1 Parameterisations used 

 

This section of the appendix describes in detail the parameter combinations used to 

produce the graphs in the main text. Values of the form: a,b,c,d etc refer to discrete values 

used for different lines shown on the Figures. Values of the form a;b;c refer to smallest 

value; largest value; step size describing the range of values (e.g. of the death rate) 

simulated to produce the Figures. Values of the form a – b refer to the range of values 

covered with a non‐constant step size. All other parameters with single values are held 

constant in simulations. 

Badgers 

 

 

 

 

 

 

 

Table S.2.1: Parameter values are shown for part a in both sections of Figure 1 in the 

main text which demonstrates 1 realisation of the badger population through time using 

the Gillespie and SDE implementation. The Gillespie example is shown from time 0 until 

time 25 and the SDE model is shown from time 60 until time 80 to allow a longer burn in 

period. 

 

 

 

 

 

 

Rate Name Rate Value 

Secondary Transmission Rate β 0.057 
Carrying Capacity k 20 
Growth Rate r 5 
Death Rate  µ 0.313 
Infected Death Rate µi 0.165 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
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Rabbits 

 

 

 

 

 

 

 

Table S.2.2: Parameter values are shown for part b and c in both sections of Figure 1 in the 

main text which demonstrates 1 realisation of the rabbit population through time using the 

Gillespie and SDE implementation. The Gillespie example is shown from time 0 until time 25 

and the SDE model is shown from time 60 until time 80 to allow a longer burn in period. 

 

 

 

 

 

 

 

 

Table S.2.3: Parameter values are shown for Figure 3.2 in the main text which 

demonstrates the effect of the infected death rate and transmission rate on the bias 

and variance of the prevalence estimate as well as the effect of the death rate on the 

population size and variance in a badger population. 100,000 simulations are run of 

each combination and terminate when the sample target is reached, i.e. there is no time 

limit imposed. These parameters were implemented using the SDE version of the model.    

 

 

Rate Name Rate Value 

Secondary Transmission Rate β 0.156, 0.552 
Carrying Capacity k 115 
Growth Rate r 13.5 
Death Rate  µ 5.7 
Infected Death Rate µi 0 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.5, 0.057 
Carrying Capacity k 20 
Growth Rate r 5 
Death Rate  µ 0.313 
Infected Death Rate µi 0;2.5;0.05 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1 
Sample Target m 10.0 
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Table S.2.4: Parameter values are shown for Figure 3.3 in the main text which demonstrates 

the effect of the infected death rate and transmission rate on the bias and variance of the 

prevalence estimate as well as the effect of the death rate on the population size and 

variance in a rabbit population. 100,000 simulations are run of each combination and 

terminate when the sample target is reached, i.e. there is no time limit imposed. These 

parameters were implemented using the SDE version of the model.    

 

 

 

 

 

 

 

 

Table S.2.5: Parameter values are shown for Figure 3.4.a and 3.4.b in the main text which 

demonstrates the effect of the transmission rate at three fixed level of disease induced 

mortality in a badger population. 100,000 simulations are run of each combination and 

terminate when the sample target is reached, i.e. there is no time limit imposed. These 

parameters were implemented using the SDE version of the model. 

 

 

Rate Name Rate Value 

Secondary Transmission Rate β 1.0, 0.552, 0.225 
Carrying Capacity k 115 
Growth Rate r 13.5 
Death Rate  µ 5.7 
Infected Death Rate µi 0.0;7.4;0.2 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1 
Sample Target m 10.0 

Rate Name Rate Value 

Secondary Transmission Rate β 0.005;1.5;0.005 
Carrying Capacity k 20 
Growth Rate r 5 
Death Rate  µ  0.313 
Infected Death Rate µi 0,1,2 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1 
Sample Target m 10 
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Table S.2.6: Parameter values are shown for Figure 3.4.c and 3.4.d in the main text which 

demonstrates the effect of the transmission rate at three fixed level of disease induced 

mortality in a rabbit population. 100,000 simulations are run of each combination and 

terminate when the sample target is reached, i.e. there is no time limit imposed. These 

parameters were implemented using the SDE version of the model. 

 

 

 

 

 

 

 

 

 

Table S.2.7: Parameter values are shown for Figure 3.5 in the main text which 

demonstrates the effect of the capture rate on surveillance efficacy a badger 

population. 100,000 simulations are run of each combination and terminate when the 

sample target is reached, i.e. there is no time limit imposed. These parameters were 

implemented using the SDE version of the model. 

 

 

Rate Name Rate Value 

Secondary Transmission Rate β 0.05;1.5;0.05 
Carrying Capacity k 115 
Growth Rate r 13.5 
Death Rate  µ 5.7 
Infected Death Rate µi 0,2,3 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1 
Sample Target m 10 

Rate Name Rate Value 

Secondary Transmission Rate β 1 
Carrying Capacity k 20 
Growth Rate r 5 
Death Rate  µ  0.313 
Infected Death Rate µi 1.75 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1;10;0.1 
Sample Target m 10 
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Table S.2.8: Parameter values are shown for Figure 3.6 in the main text which demonstrates 

the effect of the capture rate on surveillance efficacy in a rabbit population. 100,000 

simulations are run of each combination and terminate when the sample target is reached, 

i.e. there is no time limit imposed. These parameters were implemented using the SDE 

version of the model. 

 

 

 

 

 

 

 

 

 

Table S.2.9: Parameter values are shown for Figure 3.7.a in the main which demonstrates 

the effect of the transmission rate and disease induced mortality on the probability of 

detection in a badger population. 100,000 simulations are run of each combination and 

terminate when the sample target is reached, i.e. there is no time limit imposed. These 

parameters were implemented using the SDE version of the model. 

 

 

Rate Name Rate Value 

Secondary Transmission Rate β 1 
Carrying Capacity k 115 
Growth Rate r 13.5 
Death Rate  µ 5.7 
Infected Death Rate µi 4.4 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1;10;0.1 
Sample Target m 10 

Rate Name Rate Value 

Secondary Transmission Rate β 1,0.5,0.057 
Carrying Capacity k 20 
Growth Rate r 5 
Death Rate  µ  0.313 
Infected Death Rate µi 0;2.5;0.05 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1 
Sample Target m 10 



140 
 

 

 

 

 

 

 

 

 

Table S.2.10: Parameter values are shown for Figure 3.7.b in the main text which 

demonstrates the effect of the capture rate and disease induced mortality on the 

probability of detection in a badger population. 100,000 simulations are run of each 

combination and terminate when the sample target is reached, i.e. there is no time limit 

imposed. These parameters were implemented using the SDE version of the model. 

 

 

 

 

 

 

 

 

Table S.2.11: Parameter values are shown for Figure 3.7.c in the main text which 

demonstrates the effect of the transmission rate and disease induced mortality on the 

probability of detection in a rabbit population. 100,000 simulations are run of each 

combination and terminate when the sample target is reached, i.e. there is no time limit 

imposed. These parameters were implemented using the SDE version of the model. 

 

 

 

Rate Name Rate Value 

Secondary Transmission Rate β 0.5 
Carrying Capacity k 20 
Growth Rate r 5 
Death Rate  µ  0.313 
Infected Death Rate µi 0;2.5;0.05 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1, 1, 2 
Sample Target m 10 

Rate Name Rate Value 

Secondary Transmission Rate β 1, 0.552, 0.225 
Carrying Capacity k 115 
Growth Rate r 13.5 
Death Rate  µ 5.7 
Infected Death Rate µi 0.0;7.4;0.2 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1 
Sample Target m 10 
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Table S.2.12: Parameter values are shown for Figure 3.7.d in the main text which 

demonstrates the effect of the capture rate and disease induced mortality on the 

probability of detection in a rabbit population. 100,000 simulations are run of each 

combination and terminate when the sample target is reached, i.e. there is no time limit 

imposed. These parameters were implemented using the SDE version of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate Name Rate Value 

Secondary Transmission Rate β 0.552 
Carrying Capacity k 115 
Growth Rate r 13.5 
Death Rate  µ 5.7 
Infected Death Rate µi 0.0;7.4;0.2 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1, 1, 2 
Sample Target m 10 
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Table S.2.13: Parameter values are shown for Figure 3.8 in the main text which 

demonstrates the effect of trappability and transmission rate, as well as the sample size and 

capture rate, on the probability of detecting disease. These parameters were implemented 

using the Gillespie version of the model. 1000 simulations were run per parameter 

combination with a time limit of 45. If the simulation did not reach the sample target within 

the time limit, the run is discarded and not used in the statistical calculations. If out of 1000 

realisations a parameter combination ceases to reach the sample target at least 15 times, 

that parameter combination is discarded totally as the results are deemed to be unreliable. 

Increasing the time limit bears little to no effect on the amount simulations which reach the 

target sample, so the precise value of the time limit does not affect the results obtained 

from the model. These parameters were implemented using the Gillespie version of the 

model. 

 

 

 

 

 

 

 

 

Rate Name Rate Value 

Secondary Transmission Rate β 0.0025;0.75;0.0025 
Carrying Capacity k 20 
Growth Rate r 5 
Death Rate  µ 0.313 
Infected Death Rate µi 0.165 
Immigration  ν 0.1 
Infected Immigration Proportion γ 0.1 
Primary Transmission Rate β0 0.1 
Active Capture α 0.1;1;0.1 
Sample Target m 10 
Trappability Rate τ 0.5,1, 2 
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Table S.2.14: Parameter values are shown for Figure 3.9 in the main text which 

demonstrates the effect of the sensitivity of the test at three different transmission rates on 

the probability detecting disease and the bias in estimating prevalence in a badger 

population. Specificity is 1.0 in all simulations. 1000 simulations were run per parameter 

combination with a time limit of 45. See description of Table S13 for simulation details. 

 

 

 

 

 

 

 

 

 

Table S.2.15: Parameter values are shown for Figure 3.10 in the main text which 

demonstrates the effect of the transmission rate at three different test sensitivities on the 

probability detecting disease and the bias in estimating prevalence in a badger population. 

1000 simulations were run per parameter combination with a time limit of 45. See 

description of Table S13 for simulation details. 

  

Rate Name Rate Value 

Secondary Transmission Rate β 0.25,0.057,0.025 
Carrying Capacity k 20 
Growth Rate r 5 
Death Rate  µ 0.313 
Infected Death Rate µi 0.165 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.01 
Primary Transmission Rate β0 0.01 
Active Capture α 0.5 
Sample Target m 10.0 
Test Sensitivity s 0;1;0.01 

Rate Name Rate Value 

Secondary Transmission Rate β 0.0025;0.75;0.0025 
Carrying Capacity k 20 
Growth Rate r 5 
Death Rate  µ 0.313 
Infected Death Rate µi 0.165 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.01 
Primary Transmission Rate β0 0.01 
Susceptible Active Capture α 0.5 
Sample Target m 10.0 
Test Sensitivity s 0.2,0.6,1.0 
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Appendix 3 
 

3.1 Parameterisations used 

 
This section of the appendix describes in detail the parameter combinations used to 

produce the graphs in the main text. Values of the form: a,b,c,d etc refer to discrete values 

used for different lines shown on the Figures. Values of the form a;b;c refer to smallest 

value; largest value; step size describing the range of values (e.g. of the death rate) 

simulated to produce the Figures. Values of the form a – b refer to the range of values 

covered with a non‐constant step size. All other parameters with single values are held 

constant in simulations.  

The total number of patches, L, is set constant at 130. The simulation has a “burn in” period 

of 10, at which point a disease incursion event is triggered in a randomly selected patch of 

any suitability type. After a single infected individual is introduced into a random patch; the 

statistics are collected until time of first detection or time tmax. The proportion of favourable 

to less favourable habitat is set at 50/50 unless otherwise stated and the habitat suitability 

level of the favourable habitat type is fixed at 1.0.  

 

 

 

 

 

 

 

 

 

 

Table S.3.1: Parameter values are shown for Figure 4.1 in the main text which demonstrates 

how the number of patches included in the surveillance set affects the level of disease in 

the spatial system at the point of first detection.  

Rate Name Rate Value 

Within Patch Transmission Rate β0 0.5 
Maximum Carrying Capacity k 50 
Growth Rate r 20 
Death Rate  µ 1.5 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.1 
Between Patch Transmission Rate β1 0.1 
Capture rate α 0.1, 0.25, 1.0 
Switching Rate τ 0 
Less Favourable habitat Suitability 
index 

σ 0.5 

Less favourable habitat proportion ρ 0.5 
Number of patches under 
surveillance  

n 1;65;1 
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Table S.3.2: Parameter values are shown for Figure 4.2 in the main text which 

demonstrates how the suitability index affects the level of disease in the spatial system at 

the point of first detection.  

 

 

 

 

 

 

 

 

 

 

 

Table S.3.3: Parameter values are shown for Figure 4.3 in the main text which 

demonstrates how the proportion of good and bad habitat, as well as the type of patch 

targeted by surveillance, affects the level of disease in the spatial system at the point of 

first detection.  

  

Rate Name Rate Value 

Within Patch Transmission Rate β0 0.5 
Maximum Carrying Capacity k 50 
Growth Rate r 20 
Death Rate  µ 1.5 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.1 
Between Patch Transmission Rate β1 0.1 
Capture rate α  1.0 
Switching Rate τ 0 
Less Favourable habitat Suitability 
index 

σ 0.02;1.0;0.02 

Less favourable habitat proportion ρ 0.5 
Number of patches in surveillance 
set 

n 1, 3, 7, 33 

Rate Name Rate Value 

Within Patch Transmission Rate β0 0.5 
Maximum Carrying Capacity k 50 
Growth Rate r 20 
Death Rate  µ 1.5 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.1 
Between Patch Transmission Rate β1 0.1 
Capture rate α  1.0 
Switching Rate τ 0 
Favourable habitat Suitability 
index 

σ 1.0 

Favourable habitat Suitability 
index 

σ 0.5 

Less favourable habitat proportion ρ 0.02;1.0;0.02 
Number of patches in surveillance 
set 

n 1 
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Table S.3.4: Parameter values are shown for Figure 4.4 in the main text which 

demonstrates how the effort (capture rate) of surveillance and the within patch and 

between patch transmission rate affects the level of disease in the spatial system at the 

point of first detection.  

 

 

 

 

 

 

 

 

 

 

Rate Name Rate Value 

Within Patch Transmission Rate β0 1.0, 2.0, 5.0 
Maximum Carrying Capacity k 50 
Growth Rate r 20 
Death Rate  µ 1.5 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.1 
Between Patch Transmission Rate β1 1.0, 2.0, 5.0 
Capture rate α 0.02;1.0;0.02 
Switching Rate τ 0 
Favourable habitat Suitability 
index 

σ 1.0 

Favourable habitat Suitability 
index 

σ 0.5 

Less favourable habitat proportion ρ 0.5 
Number of patches in surveillance 
set 

n 1 
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Table S.3.5: Parameter values are shown for Figure 4.5 in the main text which 

demonstrates how the time before switching of surveillance and percentage number of 

patches in the surveillance set affects the level of disease in the spatial system at the point 

of first detection.  

 

 

 

 

 

 

 

 

 

 

Rate Name Rate Value 

Within Patch Transmission Rate β0 0.5 
Maximum Carrying Capacity k 50 
Growth Rate r 20 
Death Rate  µ 1.5 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.1 
Between Patch Transmission Rate β1 0.5 
Capture rate α 0.1, 0.25, 1.0 
Switching Rate τ 0.02;1.0;0.02 
Favourable habitat Suitability 
index 

σ 1.0 

Favourable habitat Suitability 
index 

σ 0.5 

Less favourable habitat proportion ρ 0.5 
Number of patches in surveillance 
set 

n 1, 3, 7, 33 
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Table S.3.6: Parameter values are shown for Figure 4.6 in the main text which 

demonstrates the difference between switching (at different rates) and not switching and 

the effect of the effort put into surveillance has on the level of disease in the spatial system 

at the point of first detection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate Name Rate Value 

Within Patch Transmission Rate β0 0.5 
Maximum Carrying Capacity k 50 
Growth Rate r 20 
Death Rate  µ 1.5 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.1 
Between Patch Transmission Rate β1 0.1 
Capture rate α 0.02;1.0;0.02 
Switching Rate τ 0, 0.01, 0.1, 1.0 
Favourable habitat Suitability 
index 

σ 1.0 

Favourable habitat Suitability 
index 

σ 0.5 

Less favourable habitat proportion ρ 0.5 
Number of patches in surveillance 
set 

n 1 
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Table S.3.7: Parameter values are shown for Figure 4.7 in the main text which 

demonstrates the difference between switching (at different rates) and not switching and 

the effect of between patch transmission has on the level of disease in the spatial system at 

the point of first detection.  

  

Rate Name Rate Value 

Within Patch Transmission Rate β0 0.5 
Maximum Carrying Capacity k 50 
Growth Rate r 20 
Death Rate  µ 1.5 
Immigration  ν 1.0 
Infected Immigration Proportion γ 0.1 
Between Patch Transmission Rate β1 0.02;1.0;0.02 
Capture rate α 1.0 
Switching Rate τ 0, 0.01, 0.1, 1.0 
Favourable habitat Suitability 
index 

σ 1.0 

Favourable habitat Suitability 
index 

σ 0.5 

Less favourable habitat proportion ρ 0.5 
Number of patches in surveillance 
set 

n 1 
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