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ABSTRACT

The practice of genetically identifying microbes has become increasingly commonplace in
recent decades. Since Carl Woese discovered the utility of small subunit ribosomal RNA,
for identifying an organism and Frederick Sanger introduced his method for de novo se-
quencing, the throughput of producing taxonomically relevant sequence information has
risen exponentially. Small subunit rRNA has been invaluable in preliminarily identifying
microbial organisms. With just a fragment of this single gene sequence, evolutionary
distances between organisms can be inferred and microbes identified. A novel software
pipeline - SSuMMo - was designed and developed to help identify organisms present in
complex microbial communities, using datasets produced by the latest high-throughput
sequencing technologies. SSuMMo was stringently tested for accuracy, speed and efficacy
on a variety of datasets to assess its utility when analysing real sequence datasets, generated
from both 16S rRNA primer-targeted and whole genome shotgun sequencing experiments.
Sequence length is often compromised with recent high-throughput sequencing technolo-
gies, so simulations were performed to ascertain the best candidate regions for primer
design on the 16S rDNA gene. The software is further demonstrated on public sequence
datasets generated from sequencing the human oral and gut microbiomes. Our analyses
show that SSuMMo is a viable software package for identifying species present in complex

communities, particularly with primer-targeted high-throughput sequence datasets.
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1

INTRODUCTION

MICROBIAL LIFE PERVADES ALL REACHES OF THE EARTH. As our understanding grows, so
too has its apparent ubiquity and number. From the bottom of oceans to clouds in the sky
[Sattler et al., 2001; Vetriani et al., 1999], microscopic life persists where we can just visit.
As more and more natural habitats are explored, so too do we acknowledge the unknown
forms of life that inhabit them. As way of example, in a single gram of soil, it is estimated
that there are up to twenty billion individual prokaryotes living therein [Whitman et al.,
1998]. Of those, less than one percent of species are purported to be cultivable [Amann

et al., 1995; Schloss & Handelsman, 2006].

The importance of microorganisms on Earth cannot be overstated. In their conquering
of the globe billions of years ago, it was they who formed the atmosphere that we now
require to live [Kasting & Siefert, 2002]. It was they who first learned how to harvest
energy from the sun, how to sense, swim [Blair, 1995] and even to communicate with
one another [Williams et al., 2007]. In a sense, to learn about microorganisms is to learn

about ourselves. In manipulating microorganisms, we can create fuel and medicine; food

and drink; life and death.

Since Koch’s postulates were founded in the 19" century [Falkow, 2004; Koch, 1890],
isolating microbes in pure culture has historically been one of the first steps taken in
attempting to understand a microorganism. In doing so, physiological and phenotypic

observations are made, providing knowledge of the organism in question. Since this is



recognised as impossible for a vast majority of organisms in natural environments, new
culture-independent methods have had to be developed. Many of these methods consist
of refinements, improvements and miniaturisation of DNA sequencing technologies,
used to determine the genetic information contained within and passed down between

generations of living organisms (see section 1.4).

11 Aims

This thesis begins with exploring how methods of microbiological inquiry arose and have
developed in human history, from identification of the first signs of microscopic life, to
the latest technologies used to inspect them. Computational tools were developed to assist
with analysing and visualising datasets resulting from such high-throughput sequencing
experiments and are presented herein. User manuals and library documentation, produced
as part of the software development process, are attached separately.

The overarching goals of the project are to create helpful and informative computa-
tional tools, to assist with identifying and characterising microbes in complex environ-
ments. As sequencing experiments become increasingly large and frequently created, it
is the aim of this project to create tools that may prove invaluable, in future analyses of

high-throughput sequencing data.

1.2 Motivation

Genetic sequencing has impacted and affected virtually all branches of contemporary
biology [Shendure & Aiden, 2012]. The scale at which the technology has developed
over the last decade has been unparalleled, in terms of speed, capacity and resolution

[Mardis, 2011; Metzker, 2009; Shendure & Ji, 2008]. Conversely, the cost of sequencing has



seen a rapid decline, shifting the main financial burden of sequencing experiments away
from generation of the sequence data itself, to practically every other stage of the process:
from collection of samples to storage of the resulting data [Shendure & Aiden, 2012].
The technical challenges of sequencing experiments have seen a similar shift, resulting
from the dramatic increase in dataset size. One of the remaining technical difficulties
regards manipulating resulting sequence data to provide meaningful insight from the
sheer quantity of genetic information produced [Nielsen et al., 2010]. Not only is technical
knowledge and skill required in using one of the many computational tools available, but
a huge amount of computational power and time is necessary to process the sequence

data [MacLean et al., 2009; Pop & Salzberg, 2008].

One of the many consequences of the sequencing revolution is the increased range
and scope of natural environments that can be investigated. While sequencing originally
had very limited coverage (see section 1.4), it is becoming increasingly common for
experiments to produce gigabases of DNA at a time (e.g. [Hess et al., 2011; Qin et al.,

2010]), with this upward trend unlikely to stop any time in the near future.

Although 100% genomic coverage is unlikely to be obtained from such densely popu-
lated environmental samples, the amount of raw data generated from single experiments
has still managed to overwhelm public data warehouses, to the extent that the National
Centre for Biotechnology Information (NCBI) announced in 2011 that, because of bud-
get constraints, they would at some point have to stop supporting the Trace and Short
Read Archives (the ‘SRA’ - since renamed the “Sequence Read Archive”) [Galperin &
Fernandez-Suarez, 2012]. Due to public demand, the NIH has since changed their stance
and has decided to continue funding the SRA, keeping in line with other consortia who

comprise the INSDC [Nakamura et al., 2013].

Although the NIH’s budget has only rarely seen decreases in its annual budget since

the 1970’ [Loscalzo, 2006], the recent technical innovations in DNA sequencing have



been improving faster than computer technologies have been able to keep up [Rothberg
et al., 2011]. Solutions to this problem include continually increasing the allocated budget
for computational infrastructure used to both analyse and store this mass of sequence
data. Another aim is to improve upon and develop new software for the job of both data

processing and storage [Fritz et al., 2011; Richter & Sexton, 2009].

1.3 The First Signs of Microbial Life

Biology has one of the longest and most illustriously documented histories in scientific
literature. Microbiology was a relatively recent introduction to the discipline, but can be
traced through the pages of history equally well. But what is a micro-organism? How can
they be identified and how, can they be told apart? These questions will be answered here
in the context of some important historical discoveries, before applying some classical
methodologies to contemporary datasets.

Nowadays, microbiological methods are used in a plethora of theoretical and applied
science, ranging from improving human health [Mitsuoka, 1990], to its detriment [Wheelis,
1998]; from biofuel production [Holder et al., 2011] to atmospheric cleansing [Falkowski
et al., 2008]; from manufacture of food and drink [Leroy & De Vuyst, 2004] to the
processing of waste [Tsai et al., 2007]. The use cases of microbes are now so widespread
that it is a wonder how the human race lived without recognising their existence for so
long. So when did the human race first become aware of microbial life?

“Microbe” and “microorganism” are fairly common terms nowadays, so a good place
to start might be the Oxford English Dictionary [2013], which contains entries and etymo-
logical records for both:

microbe, n.

An extremely small living organism, a microorganism,; esp. a bacterium causing disease or

fermentation.



microorganism, 7.

An organism so small as to be visible only under a microscope; esp. bacterium, fungus, or

alga.
For linguists and scientists alike, the common Greek ‘micro’ prefix is indicative of

something too small to see with the naked eye, exactly what the above dictionary defini-
tions imply. This would also explain their relatively recent introduction to the English
language. The first known uses of each word date only back to 1880 [Holden, 2013], al-
though microscopy had been practiced in England since the 17 century, when Robert
Hooke published Micrographia [1665], his notorious, illustrated book of observations

made under the microscope.

From this publication, Robert Hooke is recognised as the first to give a detailed
description of a microorganism; likely a fungus of the common Mucor genus [Gest, 2004;
Orlowski, 1991]. But it wasn’'t until the next decade that the Dutch shopkeeper Antonie
van Leeuwenhoek first described unicellular microorganisms. In letters written in Dutch
to the Royal Society of London, he described what later became known to be protists,
as ‘animalcules’ or ‘little eels;, ‘very prettily moving’ in pepper-infused water [Gest, 2004;
Mazzarello, 1999; Porter, 1976; Smit & Heniger, 1975]. The fact that they were motile was
indication enough that they were alive, but little more insight could be learned about
microorganisms until two centuries later. This is understandable when considering the
accepted philosophies of the period, as well as the technical achievement of constructing
a microscope in the 17" century. Both Hooke and van Leeuwenhoek had to make their
microscope components themselves and van Leeuwenhoek chose to keep his methods a

close-guarded secret [Gest, 2004; Porter, 1976].

Other than morphological and physiological observations made under the microscope,
it wasn’t until the 20™ century that micro-organisms could be distinguished by more
specific means. The 19™ century did herald a series of novel techniques for isolating,

culturing and distinguishing certain bacteria based on physical appearance [Barnett, 2003;



Drews, 2000], but it still required more theoretical, philosophical and technical advance
before microorganisms could be distinguished by any quantitative means. Even macro-
organisms - those lifeforms visible with the naked eye - which had been categorised based
on physiological properties since Aristotle (c. 384-322BC) [Gaarder, 1991] - could be given

no quantitative measure of relatedness until the 20t century.

1.3.1  Darwin’s struggle

Of course it was Darwin’s On the Origin on Species [Darwin, 1859] that provided some of
the first evidence for a theory of evolution, but it took time for this to become accepted.
Philosophers of the day were said mostly to be of the ‘essentialist’ school of thought, which
fundamentally contradicts the idea of evolution [Mayr, 1982]. Essentialism was introduced
by the well-renowned philosopher Plato (c. 428-437BC), a faithful student of Socrates,
whose ‘theory of ideas’ attempted to explain how individuals could be of the same species,
yet each individual of a species be different. Plato supposed that for every type of thing
that exists, be it living or otherwise, each has an eternal eide, or ‘essence, of which we
perceive only imperfect manifestations. The essences would exist only in the ‘world of
ideas, a place both eternal and immutable [Gaarder, 1991], while the observable forms
exist in the natural, sensory world. New species would therefore be an impossibility, as a
species’ ‘essence’ could not change or be created in the eternal world of ideas. This theory,
dubbed the “dead hand of Plato”, might explain what took mankind so long to accept the
theory of evolution [Dawkins, 2008, 2009; Mayr, 1959].

Ideas can evolve and so too, can species. After 2,000 years of Platoan, essentialist
thought and this began to be accepted. Darwin’s famous voyage on the Beagle provided
ample evidence supporting evolution, with natural selection as the mechanism in life’s
struggle to survive. But the conclusions his evidence led towards were hard for many to

accept, not only the ‘essentialists, but creationists too [Dawkins, 2009]. Perhaps the most



astonishing conclusion, was that species on Earth are related, in a family tree that spans at
least the entirety of macroscopic life [Glansdorft et al., 2008; Woese, 1998].

At the turn of the 20t century, this was still far from accepted, however. The mecha-
nisms by which to understand heredity were still a long way off, and a biological mecha-
nism for evolution equally so. Only once these were discovered and understood, could a
method to measure the relatedness of species be found. It took another half-century for
the necessary breakthroughs to arrive, but the insight gained from Darwin’s work allowed

a new dawn of biological thought.

1.3.2 A (re-)revolution of biological philosophy

According to Mayr [1959], a shift in thought away from essentialism led to ‘population-
ism, where types are not real, but are instead only averaged abstractions of individuals’
characteristics [Dawkins, 2008; Sober, 1980]. The theories are directly controvertible, as
Plato’s earlier philosophies assume the observable, sensory world we live in consists of
abstractions from eternal forms, whereas “for the populationist, the type (average) is an ab-
straction and only the variation is real” [Mayr, 1959]. Evolutionary theory undermines the
assumption in essentialism that species are static in nature, instead enforcing uniqueness
of individuals, concordant with Mayr’s populationism [Bradshaw, 2001].

This was an age-old argument dating again back to Aristotle, who was the first to
challenge Plato’s theory of ideas, claiming: “every change in nature [...] is a transforma-
tion of substance from the ‘potential’ to the actual” [Gaarder, 1991]. So why then, did
Platoss earlier philosophies dominate Aristotle’s up until the 19" century? The reason may
have been the so-called ‘neo-platonism, said to have been re-introduced into Western
philosophy by Plotinus (c. 205-270), who brought Plato’s theory of ideas from Alexandria
to Rome, merging Plato’s theories into common theological beliefs regarding an eternal

soul [Gaarder, 1991]. Over 500 years after Aristotle, Western philosophy could be said



to have taken a step backward: a disputed philosophical reasoning was merged with
theological belief, simultaneously strengthening both modes of thought and enforcing a

preconception against evolution.

A key consideration in both Aristotelian and Darwinian theory, but missing from
Platonic, is time. Darwin understood that evolution in the visible world could only be
valid if physical changes occurred over “geological time-scales” [Gould, 1983]. Although
Aristotle wasn't privy to the same information as Darwin when it came to geological
timescales, change of state is fundamentally a function of time. Furthermore, it remains
that what is ‘actual’ is only a subset of nature’s ‘potential’; natural environments dictate

what life has ‘potential’ to succeed, but we can only observe what actually has.

Another re-popularised concept in Aristotelian philosophy during the biological
renaissance of last century, was the argument for a Primum Mobile - a “prime mover” -
causing all motion in the universe. One of the key ideas here was that “every motion
must ultimately be traceable to an unmoved mover” [Bradshaw, 2001]. This statement
necessitates time in its definition: the unit of motion being speed, of which both time
and distance form a direct relation. These units (time, rate, distance) have also been
adopted by evolutionary biologists (e.g. [Kimura, 1981; Tamura et al., 2011]), but before
this adoption, physicists had unwittingly demonstrated Aristotle’s “unmoved mover” by

estimating an age for the universe, tracing time all the way back to the Big Bang, by
theorising, measuring and finally confirming a rate for the universe’s expansion [Silk,
1999].

Max Delbiick was keen to apply the Primum Mobile to biological processes, and
managed to do so, once it was understood that DNA acted as an unmodified template
for protein synthesis. In 1935, Delbiick initially struggled to apply this physical concept
to biological processes [Delbriick, 1935; Stent, 1968], but revisited the idea in later years

[Delbriick, 1971], claiming that it was in fact Aristotle who first conceived the DNA



principle: “the ‘unmoved mover’ perfectly describes DNA. It acts, creates form and

development, and is not changed in the process” [Kay, 2000, p. 38].

1.3.3 The Hereditary mechanism

Heredity had already long been observed by the time Darwin published his works [Gould,
2002], yet no-one had until then provided evidence as compelling or voluminous as in
On the Origin of Species. Through rigorous experimental and statistical analyses, the
century that followed flourished with studies on Eukaryotic progenial and ecological
phenomena. Microbiology was still fairly limited to physiological observations made
under the microscope, but biochemical methodology had by then progressed to allow
qualitative distinction between categories of bacteria, through Gram-staining techniques
[Brock, 1999; Gram, 1884].

It wasn't until the 1950s that progress in physical sciences provided determination of
the fundamental structures of reproduction and heredity, but through deductive reasoning
and application of known, physical law, a minimal mechanism for hereditary transfer was
theorised as early as 1944, by the renowned physicist Erwin Schrédinger [Stent, 1968].
In his Dublin lecture series, later published as a short book entitled What is Life? [1944],
Schrodinger admitted at the offset that physical and chemical knowledge of the day could
not account for all events occurring inside a living organism, but conversely, he disputed
that the phenomena of life could not be accounted for by those sciences. Such orderliness
as is found in nature, he noted, could still obey the laws of thermodynamics?, by drawing
on surrounding “negative entropy”. Until then, no reasonable explanation had been given
as to how life seemed to contradict the fundamental laws of thermodynamics, by its
avoiding decay to equilibrium.

The key metaphor Schrodinger chose, when postulating chromosomal structures as

"The 2" Law of Thermodynamics states that a closed system will tend towards maximum entropy.



‘aperiodic crystals™, was that of a “Morse-like code script” [Kay, 2000; Stent, 1968, p. 61-62].
In subsequent decades, the code-script metaphor was revisited and redefined in the context
of information transfer, a concept not cemented in genetics until after Henry Quastler’s
efforts to apply Shannon and Weaver’s communication theory [Shannon, 1949; Shannon
& Weaver, 1949] to biological phenomena [Dancoft & Quastler, 1953; Kay, 2000, p. 118].
Interestingly, both Schrédinger and Shannon had separately arrived at almost identical
mathematical formulae (equations 1.1 and 1.2, respectively) to describe their respective
systems: Schrodinger’s describing the amount of order extracted from an environment
into a living system; Shannon’s describing the information content in a message. The
relationship between the two was perhaps most simply described by Norbert Wiener:
“Just as the amount of information in a system is a measure of its degree of organization,

so the entropy of a system is a measure of its degree of disorganization” [Wiener, 1948].

1
—(entropy) = k-logB (11)
where D denotes “a quantitative measure of the atomistic disorder of the body in question”.

Equation 1.1: Schrodinger negative entropy

H:—K-Zpi-logpi (1.2)

i=1
where K “merely amounts to a choice of a unit of measure”;
pi denotes the probability of a symbol within a message;

pi-logpi a defined sample.
Equation 1.2: Shannon informational entropy

The significance of these formulae has impacted not only the fields for which they

were originally intended (genetics and communication theory, respectively) but also many

'As opposed to periodic (repetitive) crystal structures found in inanimate objects, aperiodicity reflects
an elaborate non-uniformity in structure.

10
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Figure 1.1: Shannon Entropy of DNA.
The Shannon relative entropy was computed for DNA, in a simulation based on the full range of GC ratios (a), and

calculated for a number of complete genome sequences downloaded from NCBI (b). Plasmids and incomplete
genomes were excluded.

others, including: cryptology [Ahmadian et al, 2010], machine-learning [Elias et al.,
2004] and ecological diversity studies [Magurran, 2009]. To illustrate Shannon’s formula
within a genetic context, figures have been plotted to show the informational entropy

contained within currently available genomes (Figure 1.1). Source code used for plotting

these figures is also provided (section A1.1).

1.3.4 Distance of difference

The 1950s held some of the most significant discoveries in the history of biology. At the
start of the decade, the first genetic metric of species difference had (albeit unknowingly)
been experimentally demonstrated. Retrospectively named ‘Chargaft’s Rule; a striking
discovery was made with respect to nucleic acids: molar ratios of purine:pyrimidine,
adenine:thymine and guanine:cytosine, all approximated unity [Chargaff, 1950; Kay, 2000,

p. 57]. Whilst smashing the ‘tetranucleotide hypothesis™’, a global shift in research followed,

"The presumption that all nucleotides were present in equimolar proportions, precluding nucleic acids
as carriers of hereditary information.

11



targeting nucleic acids (as opposed to the earlier misconception of proteins) as the key
hereditary material [Cobb, 2013; Kay, 2000, p. 55-57]. Even to present day, organismal GC
ratios provide a standard metric for distinguishing organisms based on overall genetic
content (e.g. Albertsen et al. [2013]).

The discovery of DNAs helical structure in 1953 [Watson & Crick, 1953] was another
landmark event in biology; finally a physical structure for the hereditary material was
known! But similar to public expectation following the first human genome sequence, it
took a lot longer than anticipated for the promises of the result to be fulfilled. It wasn't
until 1961 that Marshall Nirenberg and Heinrich Matthaei published the results from their
famous “poly-U” experiments [Matthaei & Nirenberg, 1961; Nirenberg & Matthaei, 1961],
providing the first ‘translation’ of a nucleic acid codon to an amino acid residue [Kay,
2000, p. 251-252].

Following the race to ‘crack the code’ in the 1950s and 60s, the next marked improve-
ment to a genetic metric of species difference wasn't demonstrated until 1977 [Woese
& Fox, 1977]. Even though decades later, Carl Woése’s choice of using SSU rRNA as a

phylogenetic marker gene was described as a “prescient” prediction by Pace [2009].

1.4 Genetic Sequencing since the 1970s

DNA sequencing is said to have started in the 1970s, when in 1972 recombinant DNA
technology first emerged [Jackson et al., 1972], and then three years later Sanger published
his novel, notorious chain-termination sequencing method [1975]. Sanger’s was the first
reliably reproducible and relatively safe and easy method of determining the order of
nucleotide residues in DNA sequences, compared with Maxam and Gilbert’s chemical
equivalent [Maxam & Gilbert, 1977]. Now, high-throughput (or next-generation) genomic

sequencing has arrived, bringing various innovative and competing technologies, which
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are essential for projects like the 1000 Genomes project [Siva, 2008], whose aim is to
produce a diverse set of 1,000 anonymous human genomes within 3 years; the $1,000
genome ideal; and of course for the procurement of invaluable knowledge and insight.

In 2007, two notorious geneticists were the first to have their genomes sequenced
and publicised: ]. Craig Venter and James Watson [Wadman, 2008]. Having once been
supervised by Watson, Venter later admitted having had a ‘love-hate’ relationship with his
former mentor [Wolinsky, 2007]. He made his genome available without publication, just
9 days before James Watson was due to receive his at a ceremony organised specifically
for the occasion. Venter produced his genome at an estimated cost of roughly USD 70
million [Metzker, 2009], whereas Watson’s was quoted by a Vice-President of 454 Life
Sciences as costing “well under USD 1 million” [Wolinsky, 2007].

If that seems expensive, what about the first complete human genome sequence?
Taking 13 years to complete, it was released in 2003 as a collaborative multinational effort
from over 20 different organisations, it summed to a total of USD 2.7 billion [National
Human Genome Research Institute, 2003]. Although more human genome sequences
have since been produced, as of 2009, this first human genome is still considered to be
the only finished-grade! human genome [Metzker, 2009].

Still, the technology has not reached a point where we can be satisfied. In 2006 Archon
announced a huge prize in the field of genomic sequencing: if a team can generate 100
high-quality human genomes in under 10 days for less than USD 10,000 per genome,
then that team would be awarded USD 10 million [Kedes & Liu, 2010]. The prize was
short-lived however. Before it could be awarded, the competition was cancelled, as the
organisers considered that iterative improvements to existing sequencing technologies
were advancing rapidly towards the competition’s goal, without producing any signifi-

cant technological breakthroughs, which the competition was designed to incentivise

'A finished grade, or “finished genome”, represents a high-quality genome with more of the genome
covered than in a “draft genome”, with fewer sequence errors and gaps.
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[Diamandis, 2013].

As sequencing technologies continue to emerge and compete with one another, there
is currently no “best” or standardised method when it comes to next-generation sequenc-
ing (NGS). Instead, “the potential of NGS is akin to the early days of PCR, with one’s
imagination being the primary limitation to its use” [Metzker, 2009]. Without delving
into the biochemical fundamentals of these technologies (which are covered in a range
of excellent review articles e.g. [Fuller et al., 2009; Metzker, 2009; Rothberg & Leamon,

2008]), some of the targeted applications of NGS already include:-

Seq-based methods e.g. ChIP-Seq, which is used to study interactions between

protein and DNA [Park, 2009];

» Genome-wide Association Studies, to find genetic traits associated with undesirable

phenotypic traits such as disease [Hirschhorn & Daly, 2005];

Resequencing of specific genomic target regions to search for genetic variants and;

 Taxonomic and functional metagenomic profiling [Segata et al., 2012].

Taxonomic metagenomic profiling is the application for which computational tools
have been developed as part of this thesis. When de novo sequencing methods are applied
to organisms within a complex microbial community, it is a huge challenge to associate
DNA fragments with the species from which they derive. Various computational methods
have been and are continuing to be developed for the purpose of identifying species
however [McHardy & Rigoutsos, 2007].

As well as trying to identify species present in a habitat and reconstructing entire
genomes from a complex community, it is also informative to determine statistics relating
to the diversity of species present and the abundance of each species found. With the

increasing number of publicly available whole genome sequences, it is probable that
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there is a representative whole genome for each known family found within a mixed-
community sample. As of September 2013, NCBI offer over 7,000 prokaryotic genomes,
whereas the ‘List of Prokaryotic names with Standing in Nomenclature’ (LPSN) includes
just 337 families, 2,393 genera, and 12,391 different prokaryotic species [http://www.bacterio.
net/-number.html#total (accessed 2010)].

Of course, the number of currently available whole genome sequences varies widely
between different taxa. For example, Ensembl offers 33 whole genome sequences for the
different strains and substrains of the model bacterial species Escherichia coli and none
for many other genera, while many other species are underrepresented [Dini-Andreote
et al., 2012]. The coverage of available fully sequenced species presents obvious gaps and
misrepresentations of species abundance and diversity naturally present on the planet,
something that will need to be considered when working with metagenomic experiments.

Taxonomic metagenomic profiling works with the Roche / 454 Life Sciences sequence
assembler on the basis that primers can be designed to target a specific conserved region
or gene in a multitude of organisms. The conserved gene of choice, that has become what
some called just a few years ago the “gold standard of phylogenetic taxonomy, and the
most accurate” [McHardy & Rigoutsos, 2007], is 16S small subunit ribosomal RNA. The
historical reasons for 16S rRNA becoming the target gene of choice - according to the

same authors [McHardy & Rigoutsos, 2007] - include:
o Its presence in almost all bacteria, often existing as a multi-gene family, or operon;

« The function of the 16S rRNA gene over time has not changed, suggesting that

random sequence changes are a more accurate measure of time (evolution); and
o The 16S rRNA gene (1,500 bp) is large enough for bioinformatics purposes.

These reasons have led to make 16S rRNA the gene of choice for phylogenetically

classifying a prokaryotic species and it has been a universally robust method of identifying
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a species or associating it with a taxa. However, I disagree with the assumption that
just one gene out of thousands in a genome can alone give a fair and comprehensive
representation of the evolutionary distances, in terms of time, between different species.
It has been reported [Wu & Eisen, 2008] that aligning, trimming concatenating multiple
conserved genes within and organisms results in much higher resolution trees in terms
of evolutionary distance, than when using just a single gene. This increased resolution
is a result of the fact that more sequence mutations will be present with more residues,
making the evolutionary distances in any distance-calculating algorithm become more

profound and better separable.

That said; the aims of my project do not include defining or redefining taxonomic
nomenclature or relationships between taxa. Instead I aim to provide tools with which to
represent species diversity and abundance within a sample using existing and standardised
nomenclature and topologies. This is a purpose for which SSU rRNA sequences are
ideal. The number of publicly available SSU genes far surpasses the number of sequences
determined for any other single gene, since Stackebrandt and Goebel first suggested
[Pruesse et al., 2007; Stackebrandt & Goebel, 1994] viability as a phylogenetic marker in
1994 . The ARB database houses over a million aligned SSU sequences of various qualities
(quality in this sense summed through a combination of sequence length and number of
predicted sequencing errors / gaps) and nearly half a million high quality sequences with
minimum length of 9oo residues [Pruesse et al., 2007]. All the high quality sequences are
provided with their individual topologies down to genus level, and this makes for a perfect
training set for supervised classification of sequences into their most likely operational
taxonomic unit (OTU - meaning any node or leaf on the tree of life, from kingdom down

to subspecies).

What databases seem to lack however, are programs designed specifically to find

the closest fully sequenced relatives to species found in a sample from a metagenomic
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experiment. It’s at least a new thought concept, and no robust method has been decided

on as a platform of choice.
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2

SYSTEM AND METHODS

MANY METHODS HAVE BEEN DEVELOPED TO COMPARE BIOLOGICAL NUCLEIC AND amino
acid sequences in order to quantify their differences. There are alignment-based and
alignment-free methods, the former requiring sequence alignment a priori, in order
to quantify differences. Alignment-based methods commonly assume that sequences
are somewhat homologous and share contiguous similarities [Castresana, 2000; Feng
& Doolittle, 1987], allowing for some genetic mutations but failing to accommodate
more unrelated sequences [Blaisdell, 1989; Vinga & Almeida, 2003]. Multiple sequences
that share enough similarity for alignment-based methods can often benefit from better
accuracy [Hohl & Ragan, 2007] and can be utilised for a number of goals, including
reconstructing phylogenetic trees, predicting structure, predicting function and more

[Kemena & Notredame, 2009].

When comparing sequences that share little or no similarities, alignment-free methods
have been employed, generally relying on counting word-frequencies [Pham & Zuegg,
2004; Vinga & Almeida, 2003; Wu et al., 1997], although other methods based on com-

plexity do exist [Almeida & Vinga, 2006; Almeida et al., 2001; Li et al., 2001].

Over a hundred different sequence alignment implementations have been produced
in the last few decades alone [Kemena & Notredame, 2009], yet as de novo sequencing
technologies develop, new alignment methods will be needed to scale with increased

dataset sizes [Li & Homer, 2010]. There are a number of reviews that cover in detail the
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different alignment-based similarity metrics [Li & Homer, 2010; Notredame, 2007]. Here,
one category is focused upon and employed for our own methods: those based on Hidden

Markov Models.

2.1 Hidden Markov Models in Biological Systems

Hidden Markov models have successfully been applied to many aspects of biological
sequence analysis, including alignment [Krogh ef al., 1994], database searching [Eddy,
1996; Finn et al., 2010], reconstructing phylogenetic trees [Siepel & Haussler, 2004]
and predicting higher order structures [Asai et al., 1993; Bystroft et al., 2000; S6ding,
2005]. When working with many orthologous sequences that have the same function,
constructing profile HMMs can be useful for performing all these types of analyses.

The process of creating a profile HMM is alignment-based, but a multiple sequence
alignment (MSA) need not first be created in order to create one [Eddy, 1996]. However,
creating a high-quality seed alignment a priori is known to create better profile HMM:s
[Bateman et al., 1999]. So what is a Hidden Markov Model and how does it work?

A profile hidden Markov model is a probabilistic representation of a set of sequences
that can be used to calculate confidence scores for sequences being described by that
model. Multiple sequences are modelled as Markov chains, insofar that each residue’s
confidence score is independent from adjacent residues’ identity [Eddy, 1996].

Profiles can represent any number of homologous sequences without increasing in
size, as the only required information are probabilities for every metric described by the
model, whose number relates to the number of columns in an MSA, not the number of
sequences in it. Traditional MSA profiles are based on position-specific scoring matrices
(PSSMs), where residue probabilities are calculated merely from their occurrence in

available sequences [Edgar & Sj6lander, 2004]. HMMs go further by also considering
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Figure 2.1: A simplified schematic of an Hidden Markov Model.

Shown is a basic architecture of an Hidden Markov Model, with begin and end states shown in circles
and emission states represented as diamonds. State emissions and transmissions are represented by
arrows, with each having an associated probability.

transition probabilities.

Figure 2.1 shows a simplified representation of how an HMM might be designed to
model a set of sequences. It is overly simplified for the purpose of representing biological
sequences, for reasons discussed below, but contains the basic ingredients for an HMM:
states, transitions and symbol emissions. Each state has an associated set of transition
probabilities P(t|e;) that describe the possible paths that can be followed from it. In
this simplified model, each model state is an emission state that can only follow one of
two paths: one that returns to itself, the other transitioning to the next emission state.
Emission states are so called because each time the path through the model reaches an
emission state, a symbol x is emitted from a defined alphabet with K different symbols.
Each emission state has its own set of probabilities associated with each symbol in the
alphabet. Both the sum of all transition probabilities and the sum of all symbol emission

probabilities from a particular state must separately equal one. That is: Z P(tle;) =1and

Y P(exle;) =1.

P(S, mHMM, 8) = [ P(exler) - P(1]e:)) (2.1)

i=1

Equation 2.1: Probability of a sequence S being emitted by a profile HMM with parameters 6, by taking
state path 7.
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The product of all emission and transition probabilities equals the probability that a
sequence S took a particular path 7 through the model (Equation 2.1) [Eddy, 1996; Krogh
et al., 1994]. The hidden aspect of an HMM rises from not knowing the state and transition
path through the model, even when a sequence has been aligned to it. This is because a
single sequence could potentially be created by many different paths through the same
model. The probability that a sequence is actually described by that model is therefore the
sum of all possible paths through the model that can produce that sequence [Eddy, 1996,
2004; Krogh et al., 1994].

As mentioned above, the model in Figure 2.1 is over-simplified for the purpose of
biological sequence analysis. Other states need to be considered in the model, to encom-
pass different evolutionary phenomena. The Plan 7 architecture of HMMs also includes
symbol insertion and deletion states [Eddy, 1998], which model sequence mutations of
the same name. These extra states increase the number of both transition and emission
probabilities in a model, as insert states have their own symbol emission probabilities and
both have their own allowed transition paths.

When building a profile HMM, all model probabilities are calculated from the training
sequences. By creating a multiple sequence alignment, position specific probabilities can
be calculated purely from their observed frequency. However, this would potentially
overfit the data, so to accommodate unseen sequences and avoid overfitting the data,
mixture Dirichlet priors are usually applied to observed symbol distributions [Eddy, 1998;

Krogh et al., 1994].

2.2 Building the SSuMMo database of HMMs

Taxonomy information was parsed from the sequence headers of ARB ‘tax’ sequence

datasets, to create a traversable Python object representing sequenced representatives of
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the tree of life. Due to the size of the uncompressed sequence file (6o GB), an index of
sequence locations was created and saved, while simultaneously associating sequence IDs
with their relevant species in the Python object model (see section 2.8). The ARB Silva
[Pruesse et al., 2007] reference alignment of SSU rRNA sequences was made compatible
with HMMER, and sequences with gaps or errors were removed. The sequence alignment
file was also split by domain, with each produced file processed to remove alignment
columns which are gapped in 100% of the domain’s sequences. HMM:s were trained by all
sequences selected from the alignments that are members of each taxonomic group, and
were saved in a directory structure created according to ARB’s taxonomy (see section 2.9).
The model building program (dictify.py) was designed to use a dynamic number of

hmmbu11d subprocesses that can be used to dramatically accelerate this building stage.

2.3 Associating names with taxonomic rank

A Python program (link_EMBL_taxonomy.py) was developed to load the latest NCBI
taxonomy database and link the taxonomic IDs and ranks to as many ARB taxon names
as possible, keeping the associations in a MySQL database. The script automatically
downloads and extracts the latest NCBI taxonomy database and loads selected rows
(where NameClass = ‘scientific name’) and columns (tax_ID, name, UniqueName) from
the included ‘names’ table into a local MySQL database. All rows were loaded from
the nodes table, but only columns: tax_ID, parent_tax_ID and rank. New tables for
Prokaryotes and Eukaryotes were populated with the ARB taxonomic structure, taking
taxon name, parent name, associated NCBI taxonomic ID and rank, wherever the ARB’s
OTU name/parent name combination uniquely matched. Non-unique name/parent name
combinations were inserted into a separate table ‘NonUniques’ and all IDs recorded. If no

match was found for a node, it was given a taxonomic ID of o and rank ‘unknown’ (see
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section 2.10).

2.4 Assigning novel sequences to taxa

Each query sequence gets scored against profile HMM:s in the SSuMMo database one node
at a time, choosing the best scoring child of each node as the most probable taxon that
the sequence has derived. Starting from the top, each sequence is compared and scored
against six profile HMMs: HMMs trained from forward and reverse-transcribed Bacteria,
Archaea and Eukaryota SSU rRNA sequence alignments. Each query sequence is assigned
to the model that returns the highest bit score, according to HMMer v3.0’s hmmsearch
program. SSuMMo.py continues to recursively traverse the taxon hierarchy, scoring
sequences against all HMMs that are direct children of the previous round’s assigned
taxon. If at any node there are multiple taxa resulting in the same bit-score, SSuMMo will
recursively score against all subsequent children from all these equal top-scorers until a
unique winner is found. When a clear winner cannot be found, the program will assign

the sequence to the last taxon with a unique top-score.

2.5 Accuracy Testing

2.5.1 HMM Testing

Several scoring and model training mechanisms built into hmmbui 1d were tested to see
what effect they had on overall accuracy. HMMs were built using the hmmbui 1d’s default
model-building options, but HMMs were also built and tested with the —-wg1iven option.
Several different search modes provided with hmmsearch were also tested, including
--max, ——nobias and --nonull2 options. --wgiven calculates the probability of

observing residues in each position directly from the training alignment, whereas by
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default residue probabilities are calculated with a Dirichlet-prior weighting mechanism.
--max and --nobias options affect model sensitivity and acceleration heuristics, and
--nonul12 affects the scoring procedure by turning oft score corrections based on biased

residue compositions.

2.5.2 Sequence length versus Assignment Accuracy

The 144 NCBI Archaea sequences were used to test how sequence length affects accuracy
of taxon assignment. The full and partial length sequences were shortened at the 3- end of
each sequence by five residues at a time, ensuring that all sequences had identical length,
i.e. shorter sequences were removed from the dataset until their sequence lengths were at
least the length being analysed. Sequence lengths spanning from 34 to 1,509 bases were
scored, and NCBI annotations compared with SSuMMo taxon predictions to calculate

percentage accuracy according to length (section 2.10, Figure 3.4).

2.5.3 SSUrRNA hypervariable region accuracy

SSU rRNA hypervariable regions were detected and extracted using Vxtractor [Hartmann
et al., 2010]. Sequence datasets were synthesized as if primers had been designed to target
regions adjacent to each hypervariable region, by extracting sequences of a user-defined
length either from the 5- end or up to the 3 -end of each hypervariable region. Five
residues were removed at a time from the opposite end of each sequence window, and the
percentage genus accuracy was noted at lengths between 500 and 35 residues ( Figure 3.2

and 3.3).
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2.6 Optimizing SSuMMo for speed

A test set of 144 full-length Archaeal rRNA sequences, downloaded from the NCBI ftp
servers (ftp://ftp.ncbi.nih.gov/genomes/TARGET/) was used for benchmarking. SSuMMo
vo.o.1 worked on a one-to-one basis, parsing one sequence at a time and scoring that
sequence against a single profile HMM using hmmsearch.

SSuMMo vo.o.2 worked on a many-to-one basis, perceived as such because all se-
quences are scored against a single model at a time, again using HMMer v3.0’s hmmsearch.

SSuMMo vo.0.3 was built with a many-to-many sequence-model comparison in mind,
by using HMMer v3.0’s hmmscan. In order to use hmmscan, the SSuMMo database had to
be modified to include ‘pressed’ collections of HMMs. In order to facilitate this database
update, dictify.py was extended to optionally use hmmpress on all HMMs at a given
node. Upon updating the database, SSuMMo vo.0.3 was updated to use hmmscan, scoring
all sequences at a node to that node’s pressed collection of HMMs in a single program call.
The aforementioned set of 144 sequences were used to test all versions of SSuMMo and
times taken for analysis compared (data not shown). SSuMMo vo.0.2 was found to be
the quickest implementation and was selected for further development to utilize multiple

Pprocessors.

2.7 Comparative metagenomics

A Python program (comparative_results.py) was written to combine SSuMMo
results files and show community differences in terms of diversity, ubiquity and abundance.
Phyloxml formatted trees can be exported and programmatically uploaded to ITOL
[Letunic & Bork, 2006], with delimited data files showing population structure and

community differences, which can be co-represented on cladograms as multi-value bar
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graphs. (e.g. http:/itol.embl.de/external.cgi?tree=226561982157513085564600). Multiple
sequence files can be grouped and the ubiquity of species across each group exported
as tabular form or ITOL representation as heatmaps. The user also has the option of
programmatically downloading the tree again in any of the formats ITOL allows to be

exported (pdf, jpeg, etc.; see Appendix I).

2.8 Assigning Training Sequences to Taxa

The ‘tax’ datasets provided by the ARB Silva database contain unaligned reference se-
quences for ribosomal RNA, which are annotated to species recognised in their taxonomy
database. The full taxonomic lineage is contained in each sequence header, and this was
used to create a multi-dimensional Python object, as an hierarchical mapping to the tree of
life. The sequence accessions (unique identifiers) were parsed from the sequence headers
and stored in the taxon instance at the bottom of the lineage. In this initial pass-through
of the sequence file, dictify.py also remembers the byte location of each sequence,
and stores these in a separate dictionary mapping of accessions to byte locations, as this
was found to significantly improve performance when later retrieving sequences from

files too big to store in memory. All the above can be done with a single program call:-
$ dictify.py --indexTaxa SSURef_<version>_tax_silva.fasta
This creates a .pkl file which holds the taxonomic hierarchy and training data ac-

cessions, as well as a .pklindex file, which stores the byte locations of each sequence in

<ARB_tax_file>.
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2.9 Training the Database of HMMs

ARB release 104 of aligned SSU rRNA sequences was first rewritten with dictify.py,
using the ‘--rewrite’ option. ARB sequence alignments contain both 7 and *-” charac-
ters, which is incompatible with hmmer. A ? in the middle of a sequence signifies missing
or unknown residues, whereas a ‘-’ signifies a known insertion or deletion. Sequences
are also padded with leading and trailing © characters. dictify.py was thus used to
remove sequences with © characters in the middle and to convert all leading and trail-
ing 7 characters to an equal number of *-’ characters. Bacteria, Archaea and Eukaryote
sequences were then separated and in the next step, alignment columns which were gaps
in every sequence within the relevant alignment file were removed. This is performed
in two calls to dictify.py, by using the subcommands: ¢--splitTaxa’ and then
¢--gapbgone’.

The HMMs are built using dictify.py’s ¢ --buildhmms’ subcommand. This first
loads the taxonomic index built previously, and uses it as a template to create a direc-
tory hierarchy representing the tree of life. In each directory, hmmbuild is started and
sequences assigned to that taxa are piped to the process. Each profile-HMM is saved in
the relevant directory. The number of simultaneously running hmmbui 1d processes can

be specified on the command line, but the default is to use all processor cores less one.

2.10 Matching Names Between ARB and NCBI Taxonomy Databases

Each taxonomy database holds a different representation of the tree of life, and so sequence
annotations can differ between identical sequences. SSuMMo uses the NCBI and ARB
taxonomy databases together to maximize the information available to the user. The

MySQL backend of SSuMMo holds five tables when fully populated: two from NCBI
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(names and nodes tables), and three which are populated using both ARB and NCBI
taxonomy information (Eukaryotes, Prokaryotes and NonUniques). These tables
were populated with 1ink_EMBL_taxonomy . py, which has two main modes of oper-
ation (‘--NCBI’ and ‘--compare’): the first downloads the latest NCBI taxonomy
database and populates the first two tables, and the second associates ARB sequence
annotations with NCBI taxonomy database entries. The MySQL database is populated

with two subsequent program calls:-

$ link_EMBL_taxonomy.py --NCBI
$ link_EMBL_taxonomy.py --compare

Names, lineages and recognized phyla commonly differed between databases, so
advanced methods to recursively walk up the NCBI taxonomy using the MySQL database
were required to map taxa where parental lineages differed. The program works by walking
down the ARB taxonomy from the ‘root’ of the tree, and for each name and parent name
combination, 1ink_EMBL_taxonomy . py will search the NCBI database for matching
nodes, based on their names. First, it checks if the ARB taxon name alone can be mapped
to a unique entry in the NCBI database. If the taxon is found and is unique, then its
NCBI taxonomic ID and rank are returned, and entered into either the Eukaryotes or
Prokaryotes table, along with the ARB name and parent name. If there are multiple
NCBI entries matching that name, then the NCBI database is searched again for entries
whose parent name also match. If this produces a unique match, then its ID and rank are
returned, but if none are found, then the taxon name is searched with a wildcard at the
end of the taxon name (see below). But if this still produces multiple possible children,
all of their parents and grand-parents (according to NCBI) are checked to see if the ARB
name / parent name combination can be matched with an NCBI name / grand-parent
name. If still there is not a unique match, then the taxon name is shortened by a word, if

possible, and the function calls itself again to repeat the process.
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The program 1ink_EMBL_taxonomy . py is written in Python and makes use of the

MySQLdb library to make raw SQL calls against NCBI’s taxonomy database.

2.11 Testing Accuracy

Four datasets of annotated reference sequences were downloaded from NCBI (ftp://ftp.ncbi.
nih.gov/genomes/TARGET/) and the Human Oral Microbiome Database (HOMD) (http:
//www.homd.org/Download) for accuracy testing. SSUMMO_tally.py was developed to
parse sequence annotations from sequence headers and match them to entries in the
combined ARB and NCBI MySQL taxonomy database. This uses recursive and wildcard
matching techniques to map taxa between databases. The ARB taxonomy is known from
SSuMMo sequence annotations, but the species name in the original sequence header
(query name) is matched separately to entries in the MySQL database, to try and locate
a corresponding NCBI taxonomic ID. If a unique match is found, then its taxonomic
lineage is identified by recursively searching up through the parents from that identified
taxon. This way, we can identify the lineage from sequence annotation and compare it
with the ARB lineage, as inferred by SSuMMo, at each rank. Any query name which
cannot be matched to an entry in the NCBI taxonomy database leads to all higher level
ranks being unidentified. This negatively affects the percentage of “compared” sequences
(3.1), which decrease with higher level rank from genus specificity. To compensate this
effect, percentage accuracies were inferred only from those ranks which could be directly
matched to a corresponding NCBI taxonomic identifier.

Where no species level match is found between original annotation and NCBI taxon-
omy database, the number of words matching between original species annotations and
assigned taxonomy names is counted, so long as the first word is confirmed to be a genus.

The first word is only here considered a genus if it ends in one of 35 two character-long
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endings identified within genera acknowledged by the NCBI database. If this is satisfied,
a single word match is considered a correct genus assignment, and two matching words
considered a correct species assignment.

To compare any annotated sequences to SSuMMo allocations, the command is:-

$ SSUMMO_tally.py [-format (fasta|sff|...)] --tally
<SEQUENCE_FILE_NAME>

2.12 Importing and Exporting Trees to IToL

comparative_results.py and versions of SSuMMo . py can programmatically upload
phyloxml formatted trees and associated metadata to IToL, as well as download them in
any format IToL supports. A Python API for IToL, produced by Albert Wang, is available
from the I'ToL website (http://itol.embl.de/help/iTOL_python.zip), and was used to facilitate
this functionality. From our experiences however, manually uploading trees allowed more
advanced IToL features to be used, enabling better manipulation of the trees, as well as
greater reliability. To enable automated upload and download from IToL, a user will need
to first create an account at I'ToL and enable “batch access”. This is documented in the

IToL website’s help pages and in the SSuMMo User Manual.

2.13 Calculating Biodiversity Indices

Ecologists have used biodiversity metrics to describe and compare macroscopic, natural
habitats for over 50 years. In the simplest of cases, biodiversity is just species richness; that
is, a count of the number of unique species in a given area [Magurran, 2009]. However,
further metrics were devised to incorporate other population-level features, including

evenness (Equation 2.2) and richness (Equation 2.3) between groupings.
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The Shannon index “assumes that individuals are randomly sampled from an infinitely
large community and that all species are represented” [Magurran, 2009; Pielou, 1975], and

is calculated with the following equation:-

S
H' = —ZpilnPi (2.2)

i=o
where p; is the relative number of individuals belonging to the it species in the sample
and S is number of species. A derivation of this equation shows that for the case where all
species are present in equal numbers, H’ will reach a maximum: H,,,, = In S. Although
the Shannon index (Equation 2.2) takes into account species evenness within a population,
a separate evenness measure can be calculated by dividing the Shannon index by its value
at maximum evenness, H,,,, [Magurran, 2009]. This amounts to a normalised Shannon
evenness and is calculated with J' = H'/p; .

Another commonly used biological diversity metric, Simpson’s index D, captures the
variance between species abundances in a population [Magurran, 2009]. The form used
in the context of the current work (Equation 2.3) rises with the diversity and evenness in
a community.

Y i (ni—1)

D=1- Z_\]-(N—l) (2.3)

N = total number of sequences sampled ;
S = total number of observed taxa ;

n; = number of sequences in the i taxon.

Equation 2.3: Simpson richness index.
In microscopic environments, where the definition of species can be somewhat am-
biguous, alternative features like the number of KEGG metabolic pathways or OTUs

have been used to describe genetic or functional biodiversity. SSuMMo can calculate
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biodiversity information at levels of specificity defined by taxonomic rank, rather than
arbitrary, percentage sequence dissimilarity.

rankAbundance. py was developed to calculate the percentage of sequences assigned
to each taxon at user specified rank, and save tabular data ranked in order of taxon
abundance. This information can be loaded into other programs for further anlysis
(e.g. Excel or EstimateS). Calculated biodiversity metrics are also printed to screen. For
example:-

$ rankAbundance.py -in results.pkl -out rankdata.txt

rarefactionCurve.py was developed with a multitude of configurable options
to calculate and plot biodiversity information after resampling the data. For example,
Simpson and Shannon indices can be plotted against the size of a randomly selected pool
of sequences, according to their genus allocations. The pool size could be increased by
1000 sequences each iteration, and 10 replicates performed at each pool size, with the
command:-

$ rarefactionCurve.py -collapse-at-rank genus -replicates 10

—increment 1000 -in results.pkl results2.pkl

2.14 Finding Taxa and their Lineage

findTaxa.py can be used to find taxonomic lineages matching any species name. This
uses regular expression matching (from Python’s re module) to find all taxa in the tax-
onomic index that match the given pattern. For each taxon in the matching lineage(s),
the MySQL database is also searched and rank information is printed below a text tree
representation. For instance, if a user wishes to find all taxa (and their lineages) that end
with the word ‘sp, the following command can be used:

$ findTaxa.py ‘sp.$’
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2.15 Plotting Tabular Data on to Trees

Given the above functionality it is possible to create phyloxml trees and plot arbitrary
numeric data at each taxon. plot_data.py was developed to create a phyloxml file, and
corresponding I'ToL files, to represent any tabular data data as bar graphs on an IToL tree.
For example, the number of rRNA genes present in the genomes of over 1,100 species was
copied from the rRNDB website [Klappenbach et al., 2001], and pasted into Microsoft
Excel. The genus, species, and strain columns were merged into one, column headers were
kept, and the table was saved as a plain-text, tab-delimited file called TRNAcounts.txt.

The tree and IToL-compatible files were then generated with the command:

$ plot_data.py rRNAcounts.txt -out rRNAPlot

2.16 Inferring Sequence Conservation

ACGTcounts.py was developed to create a position-specific scoring matrix (PSSM)
from any set of sequences. The 144 archaea 16S rRNA sequences were first aligned to
the domain-level archaea HMM using hmmalign, and the subsequent alignment was
loaded into ACGTcounts. py. The resulting PSSM was saved as a tab-delimited text file
and loaded into a spreadsheet. The sample variance across A, C, G and T residues was
calculated at each nucleotide position and normalised (Equation 2.4), giving the residue
conservation at each alignment position.
L
Cr,. = ; ];4 -var(Py, Pc, Pg, Pr) (2.4)

The tab-delimited PSSM can be created with the following command:-

$ hmmalign /path/to/arbDBdir/Archaea.hmm NCBIArchaea.fna |
ACGTcounts.py -format stockholm -out ArchaeaPSSM.txt
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2.17 Comparing Processing Times Against BLAST

The ARB Silva database of reference sequences used to create the SSuMMo database of
HMM:s was also used to create a BLAST database with which to compare processing times.
Databases were trained using 512,037 sequences present in the SSU reference database
v.104, with the only difference in training data being that the SSuMMo database could use
aligned sequences. Both BLAST and SSuMMo times were recorded by using the Unix
time program, which is provided by most Unix shells and is invoked simply by typing
‘time’ before the preceding program call. SSuMMo, BLASTN and MEGABLAST were
tested in this manner using each program’s default settings on the same datasets. To enable
a fairer comparison, BLASTN and MEGABLAST settings were changed to enable use of
the same number of processor cores as SSuMMo (all available CPU cores less one), and

timed when completion would occur in a feasible amount of time.
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3

IDENTIEFYING MICROBES WITH SMALL

SUBUNIT RIBOSOMAL RNA

A NUMBER OF CURRENT RESEARCH FOCI LOOK TO CREATE A BETTER understanding of
the complexity of microbial communities and interactions within diverse environments
[Korneel et al., 2007; Raes & Bork, 2008]. The analysis of complex microbial communities
with high-throughput sequencing (HTS) technologies can generate millions of small sub-
unit ribosomal RNA (SSU rRNA) reads [Roesch et al., 2007; Sogin et al., 2006; Turnbaugh
et al., 2009]. SSU rRNA sequences are commonly used to assess community complexity
and have been used in such disparate sample regimes as soils [Liu ef al., 2008], the human
gastrointestinal tract [Ley et al., 2006] and potential biofuel sources [DeAngelis et al.,

2011].

As an alternative to primer-targeted studies, whole-genome shotgun (WGS) metage-
nomics has become increasingly popular over the past decade, as it provides additional
insight into community function and is purported to reduce sampling bias [Manichanh
et al., 2008]. Both whole-genome and primer-targeted sequencing methods use the same
sequencing platforms, technologies producing ever-enlarging datasets [Shendure & Ji,
2008] and suffering similar sequence artefacts, including shorter sequence lengths and
greater uncertainty in the prediction of nucleotide bases when compared with older

methods [Ledergerber & Dessimoz, 2011].
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Regardless of method, it is always desirable to identify those species that most signifi-
cantly contribute to their environment. Powerful tools to visualise and identify differences
or commonalities between datasets at a number of hierarchical levels are needed to help
understand and model ecosystems and their dynamics in systems biology approaches

[Liu et al., 2008; Raes & Bork, 2008].

3.1  Taxon ldentification with SSuMMo

We have developed the Small Subunit Markov Modeler (SSuMMo) in response to the
growing computational demands of such large datasets. SSuMMo is based upon a database
of profile hidden Markov models (HMMs), trained with the ARB Silva reference database
of SSU rRNA sequences [Pruesse et al., 2007]. The hierarchy of HMMs [Eddy, 1998] is
arranged by EMBL taxonomy and acts as a decision tree to catalogue conserved gene frag-
ments into known species names, one taxonomic rank at a time. This design minimises
the number of pairwise comparisons and bypasses the need to create operational taxo-
nomic units (OTUs), species proxies based on percentage sequence similarity. SSuMMo
only groups sequences into acknowledged species names, defined after pure-culture,
phenotypic characterisations [Dewhirst et al., 2010; Schloss & Handelsman, 2005].
SSuMMo has been built and optimised for Unix multicore workstations running
Python v2.6+ and is interfaced through a set of command line programs, which can
read sequences in over 20 different file formats, as supported by BioPython. SSU rRNA
sequences contained within any sequence dataset (genome, HTS gene fragment, etc.)
are identified in the first pass of domain-level classifications and retained for further
taxonomic classification. Taxonomic assignments can be visualised in real-time, and
results automatically saved into a Python object file (Figure 3.1A), which is optimised

for fast conversion into a number of formats, including phyloxml, html, svg, jpeg, etc.
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Figure 3.1: High level overview of A) SSuMMo annotation pipeline; and B) select post-analysis programs.

Input & output files are represented with rounded boxes, programs in straight-edged boxes.

A) SSUMMo can accept any sequence file type supported by BioPython (e.g. sff, fastq, etc.); fasta formatted
files expected by default. Sequence files are read from files by a single process in SSUMMO . py, which pipes
sequences through threads that feed reformatted sequences into the hmmsear ch sequence scoring program.
As the population’s taxonomic structure is created, a plain text tree showing quantitative information is printed
to screen. Verbose mode also prints all raw hmmsear ch results. The main output is a “pickled file”, saved with
Python’s cPickle module next to the original sequence file. This currently stores the observed taxonomy and
assigned accession numbers in the form of a multi-dimensional dictionary.

B) For each .pkl file, post-analysis methods can produce various figures and / or tabular data.

*- Sequences are scored against multiple HMMs simultaneously, provided there are spare processor cores.

f- Simpson (D) and Shannon (H’, H,,.4x, J) indices are available to choose from.

*_ Rarefaction curves are plotted to screen using Python’s matplotlib plotting library. Images can be saved in
raster or vector-based formats.

Scripts are provided to calculate abundance and biodiversity information, and fast-track
visualisation of results using EMBLSs IToL web application [Letunic & Bork, 2006], which
can paint quantitative and comparative information onto inferred population structures

(Figure 3.1B). SSuMMo can also save annotated sequences separately for further down-
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stream analyses, or plot any numeric, tabular data onto the ARB taxonomy (section 2.15

and Figure 3.6).

Taxonomic accuracy of SSuMMo was tested by comparing annotated sequences ob-
tained from the NCBI FTP repository [NCBI, 2010] and the Human Oral Microbiome
Database [Dewhirst et al., 2010] against SSuMMo assignments (Figure 3.4 - 3.3, Table 3.1).
Initial tests showed genus prediction accuracy to be >90% (Table 3.1), prompting develop-
ment of tools to assist with visualisation and comparison of multiple datasets. Functionality
is demonstrated with SSU rRNA sequence datasets sampled from lean, overweight and

obese individuals in chapter 4.

Further detailed analyses exploring the relative accuracy of assignment in each of nine
‘hypervariable’ regions in 16S rRNA (V1-9), excised from full and near full-length archaeal
test sequences showed targeted sequences as short as 70 nucleotides could identity >70%
of genera correctly (Figure 3.2 and 3.3). Simulations were designed to identify ubiquitously
conserved sequence regions suitable for broad-spectrum primers. As HTS methods
produce relatively short reads compared with the length of the SSU rRNA gene, we looked
to identify those regions in Archaea that coincide with the highest percentage of correct
genus predictions (Figure 3.5). We note that no single region in SSU rRNA is conserved
to an extent as to enable a single primer to cover the entire Archaea domain Simulated
studies could be used to predict those taxa that would be identified with a designed 16S

rRNA primer by using the SSuMMo HMM database.

To assist with modelling changes in population structure and diversity within and
between datasets, programs were developed to perform rarefaction analyses, calculate
biodiversity indices and export stochastic matrices representing taxon probability dis-
tributions. Each program can prune resultant taxonomies at any specified rank prior to
performing analyses, an alternative to varying cluster sizes by sequence similarity. Results

can be exported in tabular form or visualised using Python’s matplotlib plotting library
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Figure 3.2: Accuracy of SSuMMo assignments in SSU rRNA hypervariable regions.
The percentage accuracy of assigning genus information to 144 Archaeal sequences at varying lengths was
recorded and tallied for all 9 hypervariable sequence regions of SSU rRNA, as detected by a modified version of
Vxtractor (available on request). The modifications worked to excise sequences of fixed length leading up to or
from the boundaries any specified hypervariable region. In this simulation, sequences of 500 residues in length
were excised from the 5" end of each hypervariable region, and simulate_lengths. py was written to reduce
the size of the sequences by 5 residues at a time, before calling SSuMMo and recording the number of genera

correctly predicted for each sequence length. Results were saved to a whitespace-delimited text file (and printed
to screen / standard output) for plotting.

(see section 2.13). The provided scripts can apply resampling methods to SSuMMo results,
enabling visual comparisons of estimated sampling depth, taxonomic diversity, species
evenness and sampling bias within and between datasets. This is performed by ‘rarefying;
or randomly sampling an equal number of sequences, from result datasets and calculating

Shannon and Simpson indices from the observed population distributions.

These statistical methods and metrics can be combined and compared within and

between sequence datasets to distinguish high-level features of diversity and commu-
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Figure 3.3: SSUMMo accuracy for antisense strands of hypervariable regions.

Sequences were cut at the 3’ end of each hypervariable region and re-tested for accuaracy. Percentage genus
accuracies are plotted for sequence lengths between 30 and 500 residues in length in steps of 5 residues.

nity structure. The ability to combine and visualise species distributions across multiple
datasets is a unique feature of SSuMMo, and provides a far speedier alternative to predict-
ing phylogenies, which is prone to human error and can be difficult to reproduce [Peplies
et al., 2008]. SSuMMo was shown to provide a robust framework for characterisation and
comparison of population structures, enabling fast access to an array of data-dependent
metrics. For annotation and inspection, the object-based model provides extensible tools

to help compare and edit taxa and sequence annotations between databases.
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Dataset (Rank) NCBI Archaea?® NCBI Bacteria® HOMD Extended® HOMD RefSeqb
Compared Matched | Compared Matched | Compared Matched | Compared Matched
(%) (%) (%) (%) (%) (%) (%) (%)
Phylum 98.6 100 49.8 92.9 43.7 95.1 38.3 97.5
Class 98.6 100 50.1 92.8 58.0 92.2 47.0 95.9
Order 98.6 100 66.1 90.7 72.3 87.4 66.3 93.2
Family 97.2 100 85.2 92.5 74.1 94.5 71.3 96.0
Genus 100.0 97.2 91.5 89.5 78.4 89.1 80.9 85.7
Species 91.7 65.2 94.6 56.8 77.5 44.2 43.1 50.1
# Sequences 144 3,186 34,879 1,646
Mean length + SD 1441.1 £ 36.7 1468.3 £ 47.0 481.7 £ 106.7 1176.3 £+ 447.7

Table 3.1: SSuMMo annotation accuracies.
Species information extracted from fasta sequence headers were compared against SSUMMo taxonomy assign-
ments as a measure of accuracy. ‘Compared’ shows the percentage of sequence annotations that could be found in
the NCBI taxonomy database and propagated back up the tree of life at each rank/Matched’ shows the percentage
of comparable sequences whose rank assignments agreed between SSuMMo and original annotation.

@ - ftp://ftp.ncbi.nih.gov/genomes/TARGET/16S_rRNA/.
b _ http://www.homd.org/Download - 165 rRNA RefSeq and extended RefSeq databases.

3.2 Results and Discussion

3.2.1  Assignment Accuracy

Initial accuracy tests were performed with 144 full and near-full length Archaeal 16S rRNA
sequences (all >1257 bp) obtained from the NCBI FTP server [NCBI, 2010]. Up to 99%
(142) were assigned to the correct genus and 100% of sequences are correctly assigned
to higher ranks, according to their original NCBI annotation (Table 3.1). No difference
in accuracy was noted between the different model training methods, when using the
Archaea test dataset. However, we found that hmmbu-i 1d’s default settings made HMMs
giving the best accuracy when using the NCBI Bacteria dataset of full length 16S rRNA

sequences.

The impact that sequence length had on SSuMMo’s assignment accuracy was investi-
gated with the same test dataset, by trimming residues from the 3- end of aligned sequences,

before analysing with SSuMMo, and tallying the scores (Figure 3.4). Interestingly, genus
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Figure 3.4: Accuracy of SSuUMMo compared with sequence length.
We tested the accuracy of genus assignment with sequence slices ranging from full length to just 34 residues, by
shortening the 5 residues at a time from the 3’ end. For each sequence length, all sequences were run through
SSuMMo and the percentage of allocations agreeing with NCBI annotation recorded. The first comparison method
of SSUMMO_tally. py incorrectly assumed that the first word in the annotation name was always genus, so
compared the first word in the annotation to the first word of the SSuUMMo allocated taxon. This is plotted against
a later version which took into account species with suffix names differing from their genus. The accuracy was

also tested against an HMM database built if passing the —-wgiven option to hmmbu1 1d. This showed lower
accuracy than the default hmmbui 1d method, which uses Henikoff position-based weights [Eddy, 1998].

assignment accuracy increased to the maximum of 99% (142) only after trimming the last
85 residues from the 3’ end of the test sequences. At lengths between 1119 and 1364 residues,
SSuMMo assigned sequences with a genus accuracy of 98%, below which accuracy de-
clined in a non-linear fashion (Figure 3.4). SSuMMo genus assignment accuracy was <95,

90, 80 and 70% for sequence lengths of 1059, 959, 554 and 387 + 2 residues, respectively.

Further tests were performed on SSU rRNA hypervariable regions, as detected by
V-Xtractor [Hartmann et al., 2010] (Figure 3.2 and Figure 3.3), by extracting sequences

extending 500 residues to or from locations either side of each hypervariable region.

44



SSuMMo was iteratively run on sequences after shortening by five residues at a time, and
percentage accuracies recorded. Our results show that the V4 region most accurately
assigned genera throughout the domain, with accuracies remaining > 75% for sequence
lengths of just 67 + 2 residues (Figure 3.2 and 3.3; raw data not shown). The Vg region
consistently performed worst, which is likely explained by a lack of training data, as
many of the Archaea sequences in the ARB database do not cover this region, which
spans alignment columns 1310-1340, according to alignments against RNAMMER HMMs

[Lagesen et al., 2007].

Some of the lowest accuracies for assignments within the Archaea domain occurred
with regions at the 3’ end of the full-length sequences (Figure 3.5, 3.2 and 3.3). This can
be explained by the increased likelihood of errors appearing at the tail of sequence reads
[Flicek & Birney, 2009] and by the fact that many training sequences were not full length.
Out of 511,814 training sequences housed in ARB vio4 database, 9,667 sequences are <
1,200 residues in length, the majority of which are members of the Archaea domain (9,621),

representing > 45% of the 20,994 Archaea sequences in the ARB vio4 database.

At sequence lengths of 400 nucleotides, a common read length generated by pyrose-
quencing technologies [Droege & Hill, 2008], SSuMMo was shown to accurately predict
the genus of >70% of archaeal sequences targeted at either end of regions V1-6 (Figure 3.2
and 3.3). Methodologies producing even shorter reads would benefit from well-designed
primers, as accuracies as high as 80.5% are achieved with sequences 250 bp in length, if
starting from the 5 end of the V4 region (Figure 3.2).

SSuMMo accuracy was tested for consistency in the Bacteria domain using sequences
obtained from NCBI and the Human Oral Microbiome Database (HOMD) [Dewhirst
et al., 2010]. SSuMMo correctly assigned >86% of reference sequences to genera described
in sequence annotations (Table 3.1), and >92% of bacterial family predictions matched

their annotation across all datasets, up to 96% accuracy for the HOMD RefSeq database.
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Reason for species mismatch Percentage Correct*

Only annotated to Candidate Division 4 4
Only annotated to family 1 1
Only annotated to genus 3 3
Annotated to “Oral taxon <123>" 3 2
Only assigned to genus 1 1
Assigned to an uncultured species 42 24
Naming convention differences 26 22
Assigned to wrong species 19 o}

Table 3.2: SSUMMo species mismatches.
A random sample of 100 species mismatches were selected from the lowest scoring dataset (HOMD extended) and
examined to understand why the wrong predictions occured. The majority of misassignments could be accounted
for by original annotation not actually reaching a species level annotation, but SSuMMo had actually predicted a
species. SSUMMo predicted 42 sequences with species level annotations to be from uncultured microbes.

*-The number of sequences for which SSuUMMo correctly predicted the taxonomic lineage to either the same level
as original annotation, or up to genus specificity.

The lowest accuracies were recorded for species level assignments. A random sample of 100
mis-assignments indicated ~40% were being assigned to uncultured species, with about
half of those being assigned to the correct genus (Table 3.2). The mis-assignments could be
due to a number of factors, including subtle differences in naming conventions between
databases (we estimate ~25% of mis-assigned sequences), differences in the number of
training sequences, and the taxonomy structure which underlies our method (ARB has

multiple unclassified branches at many different nodes).

Matching taxa names between databases posed a problem as database entries are
often misspelled (e.g. in ARB: ‘Brumimimicrobium’ instead of ‘Brumimicrobium’ etc.),
mismatched (e.g. exchangeable, non-alphanumeric characters), or non-unique (e.g. ‘Aci-
dobacterium’ is both a phylum and a class). These issues do not affect SSuMMoss ability
to assign sequences to most probable taxa, but negatively affect the inferred number of

comparable sequences in the accuracy tests (Table 3.1).
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Figure 3.5: Accuracy of Archaeal 16S rRNA sequences run through SSuMMo.
The percentage of 144 sequences to which SSuMMo correctly assigned genus is plotted against the starting

co-ordinate of sequence windows 250 nucleotides in length. Also plotted are C,, values, the residue conservation
over 10 base windows (Equation 2.4), and predicted positions of each hypervariable region for the query sequences.

3.2.2 Software comparisons

SSuMMo processing times were compared with those of BLASTN and MEGABLAST
(v2.2.21) using an array of datasets (see Appendix I). SSuMMo took 4 hours, 7 mins to
process 291,993 V2-targeted sequence reads and 6h 32min to process 3,186 near full-length
sequences (Table 3.3). When compared against the default BLAST configurations (1 CPU
core), SSuMMo is fastest, but after changing BLAST settings to use 11 of 12 CPU-cores, as
SSuMMo did by default, MEGABLAST was fastest with datasets up to several thousand

sequences, but slower than SSuMMo with the largest tested dataset (Table 3.3).

SSuMMo’s accuracy (Table 3.1) appears to outperform tools used to annotate WGS

metagenomic datasets according to values quoted in the literature [Brady & Salzberg,
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Dataset stats Processing times
Dataset N° seqgs Mean length SSuMMo vo.4®  Blastn® Megablast® Megablast®
+S.D.
NCBI Archaea* | 144 1441 + 36.7 3ms52s 3ms50s 2m38s 64s
NCBI Bacteria* | 3,186 1468 + 47.1 6hrs32mi4s 4d6h12m 19h17m2s  2hssma27s
V2 From Lean** | 291,993 230 +10.7 4hr7m39s© - - >24hrs

Table 3.3: SSuMMo vs. BLAST runtimes.
SSuMMo processing times were compared against NCBI BLAST programs: BLASTN and MEGABLAST. The 291,993
V2-targeted sequences were started with MEGABLAST, but were not run through to completion as it became
apparent that SSuMMo was far quicker at processing these larger sequence datasets.
@ - BLAST default settings, using a single process thread.
b Using all CPU cores less one (11 on our test system).
*- NCBI “target” datasets were downloaded from ftp://ftp.ncbi.nlm.nih.gov/genomes/TARGET/16S_rRNA/.
**-The pooled set of V2-targeted sequences, including only those extracted from “lean” individuals was produced
by Turnbaugh et al. [2009].
2009]. This should be as expected, given that SSU rRNA is currently the most highly
sequenced gene, by far. However, the RDP classifier, which is also designed specifically to

annotate SSU rRNA sequences, reports comparable accuracies [Wang et al., 2007].

3.2.3 Sequence Windows and Primer Design

Prokaryotes contain nine hypervariable regions in their 16S rRNA gene, which are in-
terspersed with relatively conserved regions that are more suitable for designing broad-
spectrum PCR primers. SSuMMo was tested to see if the extra variation in hypervariable
regions affected genus predictions, by excising a 250 base ‘window’ within each archaeal
sequence and shifting it 5 nucleotides at a time (Figure 3.5). In this scenario, the highest
accuracy recorded within this set of 144 sequences was 89% and the lowest was 48%. The
nucleotide conservation in Archaea sequence alignments was calculated and averaged
over 16 base windows along the whole SSU rRNA gene (Equation 2.4; I = 16). This returns
a value between o (no conservation) and 1 (perfectly conserved region) for any group of
aligned sequences. The start position of the most accurately assigned 250 base window

was identified in the middle of the V3 hypervariable region, where residue conservation is
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particularly low (Figure 3.5), making this an unsuitable location for targeted primer design.
A more effective primer selection might focus upon RNAMMER alignment positions
535-551, between regions V3 and V4 as it is highly conserved (C,s = 0.992) (5’ -CAGC[ -
c][AC]GCCGCGGUAA-3?). There are three 250 base long sequence windows, starting
from local alignment positions 562, 567 and 572 and extending downstream, which show
accuracies of 79%; the highest accuracy for any region starting from a ubiquitously con-
served region of sufficient length for primer design. However, if targeting the reverse
strand from this location, typical sequence lengths would extend beyond the V3 region

into positions that are relatively worse at resolving taxa accurately.

3.2.4 Biological Diversity

As with other SSU rRNA identifying software, SSuMMo does not account for multiple
rRNA operon copy numbers per genome, which vary between 1-15 copies per organism,
according to information available at the time of writing (Figure 3.6) [Klappenbach et al.,
2000]. There is also variation in chromosomal copy number between organisms, which
can vary with proliferation state [Pecoraro et al., 2011]. These factors mean that quantifying
16S rRNA genes in environmental samples does not indicate the number of individual
cells in a sample, but only the number of rRNA gene copies sequenced. Together, these
could contribute a 2 to 3 order of magnitude error in organism estimates.

However, using rank abundance scores and information gained on population distri-
butions, several biodiversity indices can still be calculated (section 2.13). Although these
biodiversity metrics don’t by themselves consider gene and genome copy number, these
metrics can still be used to give an approximation of relative organism abundance within
a sample. When calculating biodiversity indices, a defining unit is needed to discriminate
one taxon from another. In SSuMMo, these units are defined by taxonomic rank, rather

than percentage sequence similarity, which is commonly used when defining OTUs (e.g.
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Figure 3.6: Counts of rRNA operon genes in Human Oral Microbiome Database.

A tree showing the number of genes (5S, 16S, 23S) and Intergenic Transcribed Spacers (ITS) in SSU rRNA
operons, according to the rRNDB [Klappenbach et al., 2001]. This figure shows that there is no clear

relationship between the number of rRNA operon copy numbers and taxa.



[Schloss & Handelsman, 2005]).

3.2.5 Repository Annotation Effects

SSuMMo relies upon public repository data to generate its model libraries and taxonomy
information, and is therefore sensitive to inaccurate or outdated sequence annotations
present in public repositories [Siezen & van Hijum, 2010]. Inaccuracies and inconsistencies
between databases reduce inferred assignment accuracies, but these difficulties are faced
by all software which rely on pre-existing data to classify new sequences. Through working
with SSuMMo and the annotated test datasets, various inconsistencies were observed
between sequence annotations and species names found within the ARB database. Often,
annotated sequence names could not be found in the ARB database, with further investi-
gations showing the most likely causes to be human error, asynchronous name-changes
or taxa deliberately introduced into one database and not the other. The percentage of
uncultured species described in the ARB and NCBI databases is sizeable, with 11,126 and
15,200 taxa names starting ‘uncultured, respectively. Many taxa have numerous versions
of uncultured species too. For example, the family Methanobacteriaceae contains four
variations on ‘uncultured’ in the ARB database, including ‘uncultured; ‘uncultured ar-
chaeon, ‘uncultured Methanobacteriales archaeon’ and ‘uncultured Methanobacteriaceae
archaeon’ The NCBI taxonomy contains all of these names just once, but none of them
appear as children to Methanobacteriaceae.

Prior to isolating a culture, formal species names cannot be accurately assigned due
to an inability to fully characterise an organism’s phenotype [Dewhirst et al., 2010]. This
suggests that these uncultured species have been predefined based on (dis)similarity of
SSU rRNA sequences alone. As more extensive information is determined about species
whose sequences are defined as uncultured, eventually leading to the definition of new

species, it will be a challenge to maintain and update public databases while assigning
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‘uncultured’ sequences to their appropriate names.

Many of these uncultured species are direct children of a family name, e.g. the family
Halobacteriaceae is parent to the species ‘uncultured archaeon;, skipping the genus level
assignment and therefore bypassing the rank that SSU rRNA can confidently be assigned.
These curatorial discrepancies cause difficulties when trying to assess the accuracy of

SSuMMo (or any similar methods) using name-based matching between taxa.

3.2.6 SSuMMo for database curation

SSuMMo shows extremely high accuracies at ranks higher than genus. We suggest that
current sequence and taxonomy databases may benefit from features of SSuMMo that assist
with fast identification of outdated and erroneous entries. This would benefit individuals
and database administrators to achieve consistency when describing sequence taxonomies
and phylogenetic mappings. Consistency checks could be incorporated both pre- and post-
submission of SSU rRNA sequences into public repositories. The read sizes produced by
next-generation sequencing methods enabled datasets containing hundreds of thousands
of SSU rRNA sequence reads to be allocated to taxa in several hours (Table 4.4B). Running
SSuMMo on a raw dataset could assign sequences to probable taxa quickly and effectively,
and would also give extra assurance to annotations made with any other method.
Sequences already annotated in public repositories would also benefit from the as-
surance of a correct SSuMMo allocation. Not only are scripts provided to download and
update the latest NCBI taxonomy database and load a minimised version into MySQL,
but annotations can be compared with real taxa with their corresponding rank and NCBI
taxonomic ID. As the EMBL SSU rRNA database continues to be updated and enlarged,
the reference collection of SSU rRNA sequences will continue to grow, and so will the ARB
Silva database of aligned SSU rRNA sequences. ARB v106 currently has 1.9 million 16S

rRNA sequences and the reference database over 500,000 high-quality, aligned sequences
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allocated to 134,956 nodes across all three domains of life. As these databases continue to
grow exponentially, SSuMMo's database will not, yet it will still be updated to incorporate
the latest sequence data released with EMBL, and subsequently ARB. Instead of growing
(and performance decreasing) with the release of new reference sequences, SSuMMo will
only continue to grow with newly defined taxa, which will only become more informative

and accurate in their assignments.
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MICROBES INHABITING THE HUMAN

MICROBIOME

THERE HAS BEEN A GROWING INTEREST OVER RECENT YEARS IN understanding the mi-
crobes that live both within and on the surface of the human body (e.g. [Ehrlich, 2011
Peterson et al., 2009]). The full implications for human health are yet to be realised, but
the wealth of knowledge that has been bestowed upon mankind since these studies began
has been simply breathtaking. To explain, as DNA sequencing gets ever more accessible,
we are beginning to enter an era of “personalised medicine” [Feero et al., 2010]. The
sequencing technologies are already there, but burdens still lie with cost, time and also
the technical difficulties arising from both operating a sequencing machine and analysing

the resulting data [Fernald ef al., 2011; Hamburg & Collins, 2010].

A popular example demonstrating insight gained from human microbiome investi-
gations is that of Hehemann’s study of the Japanese gut microbiota [Hehemann et al.,
2010]. It was shown in the study that genes originating from seaweed-degrading marine
bacteria had horizontally transferred into the host microbiome, causing a net benefit to
the host microflora, but the bacteria from which the genes originate are not themselves
inhabitants of the gut. The porphyranase-coding gene, where prevalent amongst the guts
of Japanese individuals, was shown to be absent from the guts of Americans, providing

a clear demonstration of the human microbiota genetically adapting according to the
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influence of diet [Hehemann et al., 2010; Sonnenburg, 2010].

Internationally, the funding effort directed towards sequencing the human microbiome
has produced an unprecedented amount of sequence data [Huse ef al., 2012]. Along with
this surge in funding and research into characterisation of the human gut microbiome, a
huge amount of sequence data has been made freely available by research teams around
the world, such as the NIH’s Human Microbiome Project [Peterson et al., 2009], the EU’s
MetaHIT [Ehrlich, 2011] as well as many other independent studies (e.g. [Claesson et al.,
2011; De Filippo et al., 2010; Qin et al., 2010]).

This abundance of freely available data provides a great opportunity for testing novel
software analysis methods on sequence data generated using a variety of sequencing
platforms. SSuMMo [Leach et al., 2012] was used to analyse and visualise the species
distributions and diversities of human microbiome sequence data from individuals of
varying nationality, body mass index and sequencing method. High-level analyses of
pooled results show similar trends to those obtained by thorough analyses performed by
Turnbaugh et al. [2009], demonstrating SSuMMo’s ability to identify trends in dynamic,

complex populations.

4.1 Aims

Using the variety of datasets obtained over the course of the experimentation, several

hypotheses can be tested:

o There is a core set of bacterial species shared amongst the microbiome of healthy

individuals [Turnbaugh et al., 2007].

o Imbalances in the Human Microbiome can be associated with undesirable traits

such as Inflammatory Bowel Disease [Peterson et al., 2009].
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o A persons Body Mass Index is affected by the microbes inhabiting his or her gut

[Turnbaugh et al., 2006].

o Primer-targeted analyses will show a bias towards pre-sequenced species, whose

genes were used to design the primers in use [Chakravorty et al., 2007].

« Individuals from the same geographic location share a more similar microbial gut

population than individuals from other parts of the world [De Filippo et al., 2010].

4.2 Methods

Human microbiome sequence datasets produced from various studies around the world
were downloaded (Table 4.1), in order to test whether the above hypotheses could be
confirmed using our novel software solutions.

First, some basic statistics were calculated for each dataset, including the number of
sequences and the distribution of sequence lengths (Tables 4.1, 4.2 and 4.4b). Species
assignments were made for all sequences that SSuMMo found to contain SSU rRNA genes,
using methods described above (section 2.4). The number of sequences assigned to each
taxon was tallied in order to calculate biodiversity metrics and plot discovered taxon abun-
dances on to cladograms. Biodiversity indices were calculated and cladograms generated
at a number of different taxonomic ranks between phylum and genus. Cladograms were
annotated to show features such as taxon abundance distributions and ubiquity of a taxon
shared amongst multiple individual.

For the case where host health status information was made available (from the study
by Qin et al. [2010]), sequence datasets were pooled according to whether or not an
individual had inflammatory bowel disease (IBD). Microbial population distributions of
individuals with IBD and those without were plotted on to a cladogram containing all

genera found within the collection of all gut microbiome samples (Figure 4.2).
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Home Country | N%seqs N°people N°allocated Av.Length + Total Residues
S.D. (Mb)

Florence, Italy * 243,231 15 242,976 335.69 + 28.87 86.174

Burkina Faso * 226,864 14 223,402 360.137 + 80.65
46.27

USA * 1,450,758 24 1,450,645 559.108 =+ 816.293
69.55

Japan * 353,805 13 1,110 1,357.419 £ 462.99

1,140.27
Totals 2,274,658 66 1,918,133

Table 4.1: Geographical human gut dataset statistics.
Human microbiome sequence data for healthy human individuals were downloaded from various web servers and
analysed with SSuUMMOo's seqDB. py, providing initial statistics on dataset size. The number allocated shows how
many of the original dataset sequences could be assigned to a clade using SSuUMMo, whereas all other statistics
were tallied from the raw sequence data.
References:-
*De Filippo et al. [2010]

TPeterson et al. [2009]
*Kurokawa et al. [2007]

Where host body mass indices were disclosed, SSuMMo sequence annotations were
used to try and correlate the ratio of Bacterial phyla against the host's BMI. BMI informa-
tion was released either categorically (Lean, Overweight or Obese) or as quantitative values,
in the datasets released by Turnbaugh et al. [2009] and Qin et al. [2010], respectively. In
both cases, sequence annotations were used to calculate the ratio between Firmicutes and
Bacteroidetes phyla and plotted against the released BMI values (Figure 4.3). Rarefaction
plots were also generated for the Turnbaugh et al. [2009] dataset, where for every 20" of
the total number of sequences, the number of genera were counted, plotted and used to
calculate biodiversity indices, including the Shannon H’ and H,,,, values. These were
plotted individually for every BMI category and sequencing method used in the original
study. Three such sequencing methods were used to generate sequences in the original
study: 454 pyrosequencing reads of 16S rRNA hypervariable regions V2 and V6, as well
as Sanger dideoxy full- and near full-length gene sequences. For these rarefaction plots,

random sequence resampling was repeated fifty times at each subset size.
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Gut Health | N®seqs N°people N°allocated Av.Length+ Total Residues
S.D. (Mb)
Healthy 5,409,737 99 12,032 1,565.6 + 8,469.7
2,382.9
IBD 1,179,607 25 2,158 1,570.8 + 1,852.9
2,371.1

Table 4.2: Healthy vs. IBD gut dataset statistics.
Sequences obtained from whole genome shotgun sequencing experiments were processed with SSUMMo to get
an overall picture of presence and absence information between individuals suffering from Inflammatory Bowel
Disease (IBD) and those without. Unfortunately, only 0.22% and 0.18% of sequences were found to contain small
subunit rRNA.

Four different experimental datasets were used to compare the microbial diversity in
guts of individuals around the world. A rarefaction plot was generated after randomly
re-sampling sequence annotations every thousand sequences and tallying the number of
unique genera at each subset size. For each sample subset size, five repeat resamplings
were run and the resulting taxon distributions used to calculate a number of biological
diversity indices (Figure 4.7).

All rarefaction curves produced are displayed as box and whisker plots, where for
each subset size, median values are shown as well as 25 and 75 percentiles and “fliers”,

or outliers. Outliers are defined as being beyond 1.5 times the interquartile range, which

is the difference between the 25™ and 75 percentiles.

4.2.1 Sample Datasets

The Human Microbiome Project’s Data Analysis and Coordination Center (HMP-DACC)
[Peterson et al., 2009] made available a pilot reference dataset, consisting of over 13
Gigabases of primer-targeted 16S rRNA sequence data. This data was sequenced using
samples taken from 24 individuals across multiple body sites and generated by HMP
sequencing centers at four different locations in the United States of America. The data

generated in this Clinical Pilot Production Study of the Human Microbiome Project was
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later deposited in the Short Read Archive (SRA) under ID SRPoo2012, but downloaded
for this study from http://hmpdacc.org/resources/pps_data_download.php, in Fasta and
Qual format. Corresponding metadata (“overview”) files describing each of 17 sequencing
experiments were downloaded as well, so as to extract and organise sequence data of
interest. A Python script was written (A1.4) to find sequence descriptions of interest
from the compressed metadata files and to extract the corresponding sequences from the
respective archives. Sequence reads generated from Stool samples were extracted with
this script and separated into file names matching unique identifiers assigned to each
individual. The dataset taken forward for analysis included sequences sampled from all
24 healthy individuals’ fecal specimens and is described in Table 4.1. Genus assignments
were made for each microbiome sample (section 2.4) and biodiversity indices calculated

for each individual (Figures 4.6 and 4.7).

Primer-targeted sequence reads, sampled from 154 lean, overweight and obese twins
and their mothers [Turnbaugh et al., 2009] were initially used to test SSuMMo’s applica-
bility to analysing such datasets. The experimental results were used to compare observed
trends in the data to the original publication, in an attempt to relate population distribu-
tions to BMI category and sequencing method. The data obtained had been produced
using three different sequence targeting methodologies. Two hypervariable regions of
16S rRNA, V2 and V6, were targeted using region-specific primers and sequenced on the
454 GS FLX™ and GS FLX"™ Titanium platforms [Turnbaugh et al., 2009]. The remain-
ing sequence data was generated by Sanger sequencing of full- and near full-length 16S
rRNA genes. All sequences were downloaded and separated according to sequencing
methodology (V2, V6 and “full-length”). These were further separated by host BMI status
(Lean, Overweight or Obese) according to supplemental data made available with the
original paper [Turnbaugh et al., 2009]. Following organisation of the sequence data,

nine fasta-formatted sequence files had been produced, comprising all of the sequence
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information generated from each of the study’s 154 individuals. SSuMMo was used to
annotate sequences in each of these nine sequence files. Sequence annotation sets from
the Turnbaugh et al. [2009] dataset were later split up further, to separate microbiome
information of each individual, providing further replicates and confidence to statistical
analyses. Sequencing runs were almost exclusively run in duplicate, with samples taken at
two different time points. These repeat sequencing runs were grouped together so long
as the host’s BMI status had not changed. For five of the individuals, their BMI status
had changed from Overweight to Obese, or vice-versa between samples. In this instance,

sequence files were kept separate for the purposes of this experiment.

Another sequence dataset, generated using whole-genome shotgun (WGS) approaches
was used to compare results with those of the SSU rRNA primer-targeted experiments. The
dataset produced by Kurokawa et al. [2007] contains sequences sampled from 13 Japanese
individuals. The original experiment was designed to discover and explore common gene
functions shared amongst the microbiomes of multiple individuals [Kurokawa et al., 2007].
The dataset was chosen as it also included sequences sampled from human Stool samples,
added a new geographic location to those already obtained and provided insight into how

WGS sequencing experiment results differ from those of primer-targeted experiments.

Qin et al. [2010] also used WGS sequencing to produce sequence data from 124
European individuals. The released data also included information on the health status of
the individual and their body mass indices. Again, sequences were analysed with SSuMMo
and those containing SSU rRNA sequences were assigned down to genus specificity using
methods described above (section 2.4). Further, the microbiome population distributions
of individuals with inflammatory bowel diseases (IBD) were compared against those from
healthy individuals (Figure 4.2). Given BMI ratios, it was also possible to plot a graph
showing the abundance ratio of the two most common bacterial phyla against each host’s

body mass index (Figure 4.3).
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The study by De Filippo et al. [2010] was designed to test how diet affects the microbial
population distribution of the human microbiome. Microbiomes were sampled from
the stool of 15 individuals from Florence, Italy and 14 from Burkina Faso. Again, genus
annotations were made from the primer-targeted SSU rRNA sequences published with the
report [De Filippo et al., 2010] and biodiversity indices were calculated for each individual’s
microbiome. Biodiversity indices were compared against the same statistics as calculated
for other datasets described above, allowing a comparison between species distributions
between four different geographic locations, when compared against sequence datasets

collected from people in Japan [Kurokawa et al., 2007] and the USA [Peterson et al., 2009].

4.3 Results

4.3.1 A core healthy microbiome

SSuMMo results from Turnbaugh et al.’s data [2009] were used to find ubiquitously con-
served taxa across all individuals. Conserved taxa are visualised as ‘color strips’ using
the IToL web application [Letunic & Bork, 2006], so as to quickly and easily identify
conserved taxa (Figure 4.1). Across all sampling methods and BMI categories only eight
known genera were found in all result sets: Akkermansia, Bifidobacterium, Streptococcus,
Clostridium, Pseudobutyrivibrio, Papillibacter, Subdoligranulum. There were also uncul-
tured members of Candidate Division RF3 found in all result sets (Figure 4.1), but little

is known of these bacteria as they have not yet been cultured in a laboratory for further

Figure 4.1: Distribution of taxa up to genus specificity, present in the guts of 154 lean, overweight and
obese individuals, pooled by sequencing method and BMI category.

Graphs are shown grouped in order of increasing number of sequences generated per PCR-method, and represent
the relative abundances of each taxon that were identified in that sequence pool.

FL - Full Length sequences, V6 & V2 - sequences generated from V6 & V2 region specific primers.

L, Ov, Ob - Lean, Overweight and Obese BMI categories.
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testing. Some of the named genera have already been reported as beneficial to health when
found in human intestinal tracts (e.g. Bifidobacterium [Hao et al., 2011], Akkermansia
[Derrien et al., 2007], etc.). However, functional genetic information is needed to elucidate

if each provides unique metabolic capabilities that would justify their ubiquitous nature.

4.3.2 Healthy and IBD-infected gut microbiotas

Data analysed from the Qin et al. [2010] dataset produced a minimal number of sequence
matches (see Table 4.2) compared with the number of sequences analysed. Only 0.22% of
sequences from this study could be given even a domain-level assignment by SSuMMo,
as a result of the sequences being assembled from a WGS sequencing experiment and
that a single gene takes up such a small proportion of an entire genome. However, that
still equates to 14,190 sequences being annotated with a genus-level assignment over-
all (Table 4.2), from which the population distribution was visualised (Figure 4.2) and
biodiversity indices calculated.

Out of the 124 individuals sampled, 99 of those were described as having healthy guts,
compared with 25 having inflammatory bowel disease. As can be expected from more
thoroughly sampled environments, a greater number of genera were discovered amongst
individuals with healthy guts. This is to be expected and is a well-established phenomenon
in ecological studies [Magurran, 2009]. For instance, two samples taken from the same
environment but differing in size can lead to different conclusions on their diversity
[Pielou, 1975]. Simpson’s index is said to be one of the least sensitive biodiversity metrics
to differences in sample size [Magurran, 2009], but for this comparative dataset, both
values are extremely close to the maximum Simpson diversity of 1.0: 0.9956 + 0.0038 for
healthy guts (n=99) and 0.9954 + 0.0022 (n=25) for those with IBD (Table 4.3). A one way
analysis of variance (ANOVA) test, or one-way F-test on the Simpson index values gives a

p-value of 0.854, indicating that the species diversities in the IBD dataset almost certainly
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could have been drawn from the same species distribution as that for the healthy gut
samples, assuming a normally distributed range of values. The non-parametric equivalent,
the Kruskal-Wallis H-test calculated for the same set of Simpson indices gives a p-value of
0.104, which conversely indicates there to be an 89.6% chance of the samples being drawn
from independent environments, assuming a Chi-squared distribution. The former test
supports the null-hypothesis that there is no difference in gut microbial populations, but
the latter suggests that there could be a marked population difference, provided that gut
biodiversities follow a Chi-squared distribution. In macro-ecological studies, however,
species populations are “often approximately normally distributed” [Magurran, 2009],
further support that the two sets of samples are not markedly different, according to the

analysis.

The original study [Qin et al., 2010] and at least one other [Manichanh et al., 2006]
has reported significant differences between the microbial populations of IBD-sufterers
and those with healthy guts. In both studies, sequence reads were based on sequence
similarity, and clustered into OTUs before performing Principal Components Analysis

on the resulting sequence sample clusters. Here, more traditional ecological metrics are

IBD Healthy One-way ANOVA Kruskal-Wallis
(n=25) (n=99) F-value p-value H-value p-value
Shannon H'’ 3'2? 522: 309165;2 Oi 4.4631 0.0367 4.6441 0.0312
Sl}jlzzlfn 309435 8i 4:.)11;; 5.0923 0.0258 4.1348 0.0420
Simpson D O(fgg;i Ojggi; 0.0341 0.8538 2.6427 0.1040

Table 4.3: Analysis of Variance of biodiversity index calculations.

Shannon and Simpson biodiversity metrics were calculated for each of 124 individuals and are shown
with standard deviations. The variances in sample biodiversity were analysed for statistical significance
between 24 individuals suffering from IBD and 99 others who do not, using a one-way ANOVA and
Kruskal-Wallis tests.
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used to calculate sample species diversities. The ANOVA tests show that for our results,
Simpson diversity is not increased if considering the degrees of freedom in the samples.
However, a comparably higher statistical confidence (p < 0.04) is demonstrated for species
evenness across the healthy gut assemblage, according to Shannon indices. As can be seen
in the comparative genus abundances shown in Figure 4.2, taxa evenness is one attribute
that is visibly more apparent in the healthy dataset, which is confirmed as statistically

significant by the ANOVA and Kruskal-Wallis tests (Table 4.3).

4.3.3 Gut microbiome differences relating to adiposity

The dataset produced by Qin et al. [2010] was the only available dataset that published
quantitative BMI indices associated with each individual. To test the hypothesis that a
person’s BMI index is proportional to the ratio of Firmicutes / Bacteriodetes (F/B), a scatter
plot was generated to determine if any correlation existed (Figure 4.3). Unfortunately,
the number of sequences assigned to Bacteroidetes and Firmicutes was so low that no
confident conclusion could be made with regard to this hypothesis, using the results
obtained from this dataset.

However, SSuMMo analyses of V2 regions and full-length 16S rRNA sequences concur
with the observations made in the original study by Turnbaugh et al. [2009]: that obese
subject samples have significantly fewer Bacteroidetes, more Actinobacteria and less of
a difference in Firmicutes abundance relative to lean individuals (Table 4.4). Similar
trends were observed across the dataset at lower taxonomic ranks, with no single genus
dominating any subset of the data (Figure 4.1).

Sequences sampled from the V6 hypervariable region of 16S rRNA were not as con-
clusive. In analysing the sequence annotations, it was noted that Bacteroidetes were only
identified in a small handful of the V6 samples. This can be seen in Figure 4.1 and more

clearly in Table 4.4a, where the V6 sequence reads almost completely lack Bacteroidetes
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sequences. For V2 and Sanger sequence reads, enough Bacteroidetes and Firmicutes were
present in the 154 samples to calculate ratios between those phyla. These are displayed as
box and whisker plots in Figure 4.3b. Although there were far more V2 sequence reads
in the dataset than there were dideoxy sequences, there appears to be no correlation
between V2 reads and host BMI category. The same could be said of the V6 sequences,
for which no F/B ratio could be calculated (due to the division by zero). However, the
dideoxy sequences are more interesting, in that a striking correlation in the range of ratio
values is visible. Clearly, obese individuals show a much larger range of F/B ratios than
their lean and overweight counterparts. When the mean value is taken (Table 4.4a), the
difference is not nearly as apparent, due to some extreme outliers, which are omitted from
the boxplot. The median value and interquartile range increases noticeably however, with

more adipose BMI categories.

Shannon and Simpson biodiversity indices, biological diversity measures incorporat-
ing evenness and richness, respectively [Magurran, 2009], were calculated for each BMI
category based on species-level taxa assignments (Table 4.4b). These statistics were used
to investigate whether notable changes in biodiversity could be identified when sequences
were grouped at species rank. No consistent changes were observed across all three BMI
categories and sequence targets, as pooled samples obfuscate more subtle differences
which might be observed between individuals. For example, gut populations were shown
to be more similar between family members in the original publication, so characterising
species assemblages from lean and obese members of the same family (rather than all
families pooled together) should be a fairer method of delineating differences between
BMI categories. Furthermore, variation in the number of defined species per genus across
the tree of life will cause differences in primer specificity to drastically affect Shannon
and Simpson index calculations, which are functions of the number of observed taxa

(section 2.13).
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a)

Deferribacteres
Deinococcus-Thermus
Firmicutes
Fusobacteria
Gemmatimonadetes

Proteobacteria

Full length V6 targeted V2 targeted
Phylum Lean Over. Obese | Lean Over. Obese Lean Over. Obese
Acidobacteria - - - - - - 0.00 - 0.00
Actinobacteria 2.60 1.10 4.63 0.02 0.05 0.11 0.66 0.66 1.58
Bacteroidetes
Candidate Division BD1-5 - - -
Candidate Division RF3 0.46 - 0.36
Candidate division TM7 - - _
Candidate division WS3 - - -
Chlorobi - - - - - - 0.01 0.00 0.00
Chloroflexi - - - 0.02 - 0.01 0.08 0.10 0.09
Chrysiogenetes - - - 4.00 5.48 2.92 0.00 0.00 0.00
Cyanobacteria 0.03 - 0.02 0.08 0.61 0.22 0.02 0.06 0.01

Tenericutes 1.14 0.31 0.76 0.02 - 0.01 0.58 0.19 0.25
Verrucomicrobia 1.64 0.24 2.60 0.07 0.24 0.06 0.13 0.15 0.12
Others 0.03 - 0.02 0.63 0.95 1.86 0.94 1.46 1.16
b)

N. sequences 3,234 1,271 5,268 280,131 107,802 430,009 291,993 123,157 704,369

1,208.8 1,234.8 1,239.5 230.8 = 232.0 = 230.3
Mean Seq. length + std. dev. +247.3 *235.8 +236.9 | 59.7+1.7 59.7+1.4 59.7+1.6 10.7 13.8 10.0
Shannon Index, H' 3.91 3.48 3.69 3.47 3.02 3.59 4.01 3.82 4.04
Shannon Max Evenness, H,,,,, 5.06 4.56 5.26 5.53 4.97 5.44 12.58 6.14 6.72
J'(H'/ H,,.) 0.77 0.76 0.70 0.63 0.61 0.66 0.32 0.62 0.60
Simpson Index, D 0.96 0.94 0.94 0.94 0.89 0.95 0.96 0.95 0.96

Table 4.4: SSUMMo assignment statistics of Human Microbiome sequence data.

SSuMMo assigned phyla and Candidate Divisions for Turnbaugh et al.’s [2009] 16S rRNA data show similar trends
between BMI categories, including Obese individuals having fewer Bacteroidetes and more Actinobacteria. Se-
guencing method most significantly affects the proportions of detected phyla, with V6 sequences resulting in
drastically different taxonomic distributions compared with V2 and Sanger-sequenced reads.
a) Percentage of sequences assigned to each phylum. Dark cells indicate populous phyla, with darkest cells

indicative of most abundant phyla per sample pool.

b) Sequence statistics and biodiversity indices for each of the sample pools at species rank.
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Figure 4.3: Body Mass Index vs. Firmicutes / Bacteroidetes ratio.

Body mass indices were compared against the ratio of Firmicutes / Bacteroidetes (F/B) phyla, annotated from
sequence samples according to SSuUMMo analyses.

(@) Quantitative BMI data was only available with the Qin et al. [2010] dataset. Due to the extremely low proportion
of SSU rRNA sequences found within the WGS dataset, very few of the samples were found to contain both
Firmicutes and Bacteroidetes and of these, none of the samples had more than 2 sequences assigned to the
Firmicutes phylum. A scatter plot is shown of Firmicutes / Bacteroidetes ratio against Body Mass Index.

(b) The dataset made available by Turnbaugh et al. [2009] included many more sequences assigned to Firmicutes
and Bacteroidetes. A box and whisker plot is shown of 16S rRNA sequence read annotations against the BMI
category assigned to those individuals. Boxes show the F/B ratios at the 25" and 75" percentiles, with a line in
the middle showing the median F/B ratio value. Whiskers extending from the boxes show the range of the data.
Outliers are not shown, which are calculated as lying beyond 1.5 times the interquartile range (i.e. the difference
between the 25" and 75t percentiles). White boxes show values calculated from the V2 sequence reads, and grey
boxes show values calculated from reads sequenced using Sanger’s dideoxy segeuncing method.

In order to correct for differences between sequence sample sizes, rarefaction analyses
were run on each member dataset, selecting random subsets of each. By plotting calculated
Shannon and jackknife indices from random subsamples of Turnbaugh et al’s data [2009],
trends in the V2 and full-length sequence datasets are observed that follow the size of each
set of sequences. As mentioned above, these trends are likely affected by the number of
individuals sampled and pooled into a combined sequence dataset, as with more sampled
individuals, more singleton taxa are introduced. The V6 dataset is unique in that there

are fewer sequences in total sampled from lean individuals, yet more genera are observed
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Figure 4.4: Biodiversity analyses of Lean, Overweight and Obese individuals’ gut microflora.

Rarefaction analyses were performed on ‘Lean; ‘Overweight’ and ‘Obese’ sequence datasets, with random subsam-
ples selected from each complete dataset and biodiversity indices calculated for randomly selected subsets. For
each sequence type (V2-targeted, V6-targeted and full-length), 5% of the total sequences were selected from the

largest dataset per BMI type. From these subsets, the observed number of genera was counted and following

statistics calculated: Shannon index (H’), Shannon value at maximum evenness (H,,,) and jackknife values. This

was repeated with 50 replicates, each with a sample size 5% of the largest sequence dataset in each type.

a, cand e) Rarefaction box and whisker plots showing the number of genera observed by each random sequence

selection for V2, V6 and full length sequences, respectively. Box lower and upper limits show 25t and 75t

percentiles, respectively. Central horizontal lines show median values, and whiskers show the range of the data,
with outliers drawn as '+’ symbols.

b, d and f) Biodiversity indices were calculated for each of the 50 replicates and mean values were plotted along

with 95% confidence intervals.
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(Figure 4.4). This corresponds with a slightly higher species evenness, or Shannon H’
value (Table 4.4, Figure 4.4D), and a noticeably higher H,,,, value, suggesting that those
taxa targeted by V6 primers (Figure 4.1) are more evenly distributed in Lean individuals

than in their counterparts with higher BMI ratios.

4.3.4 Annotating WGS sequences

Data obtained from a WGS sequence experiment shows far less sampling bias for bacteria
than those of the primer-targeted sequencing experiments. Although the proportion of
sequences found to contain small subunit rRNA were substantially fewer (0.3% cf. > 98.5%;
Table 4.1), the WGS sequencing experiment uniquely shows a ubiquitous presence of Ar-
chaea among samples (Figure 4.5). Amongst the primer-targeted sequencing experiments
however, Archaea are consistent only in their absence. Archaea are known to provide
unique metabolic capabilities in a range of extreme environments [Jarrell et al., 2011]. If
they are entirely missing them from primer-targeted sequence samples, surely other wide
ranges of taxa are not surveyed either.

Primers are known to anneal preferentially with certain taxa over others [Chakravorty
et al., 2007], leading to a sampling bias dependent on the DNA primers chosen. This effect
is apparent in Turnbaugh et al’s data [2009], where presence and absence information
show V2- and V6- specific primers to have more influence on observed population
structure than host BMI category (see Table 4.4a and Figure 4.1). Although V6 taxon
assignments appear anomalous compared with assignments based on V2 fragments and
tull-length sequences, V6 results show high resolution in members otherwise missed.
This is demonstrated by the fact that the V6 sequence data identified so few Bacteroidetes
sequences, even though it is the second most abundant phylum in all other sequence sets
(Table 4.4). Similar evidence at the class level is observed, as many members of the class

Bacilli are ubiquitously present in all V6 sequence sets in high proportions, yet are not
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Figure 4.5: Genera identified in Japanese guts, from WGS experiment.

Sequences sampled from 13 Japanese individuals were annotated with SSuMMo and displayed using
IToL [Letunic & Bork, 2006]. Overall genus ubiquity is shown as a heatmap, to the right of the leaves.
Relative abundances within each individual sample are displayed also. Reference IDs were allocated to
each host individual by the original authors, which are shown above each dataset column.
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Figure 4.6: Biodiversity indices calculated for geographical datasets.

Sequence datasets obtained from various studies were annotated using SSUMMO and biological diversity
metrics calculated from resulting taxon annotations. Standard deviations are shown for each plotted
biological diversity index. Raw data is presented in Table A1.1.

present in the other sequence datasets at all. Consequently, many members of the class
Clostridia, in the phylum Firmicutes, are observed in high proportions with full-length

and V2 sequences, but are not identified at all with V6 reads.

4.3.5 Gut microbiome diversity relating to geographic location

The hypothesis that geographic location (and diet) plays a part in shaping the species
diversity of an individual’s gut microbiome was tested by analysing four different sequence

experiment datasets (Table 4.1). Rarefaction analyses of genus counts were performed
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Figure 4.7: Rarefaction curves of 66 healthy individuals’ gut microbiota.
Sequences obtained from the guts of 66 healthy individuals, sampled from four distinct geographic locations,
were annotated with SSUMMo. Random sub-samples were selected from the resulting genus annotations and

number of genera counted for each. Genus annotations were resampled ten times for each subset size and median
values plotted along with boxes showing 25" and 75" percentiles. Whiskers extend to show the range of the data.

(section 2.13) on each microbiome sample and results were plotted comparatively (Fig-
ure 4.7). Again, it is hard to draw a conclusion from the results, as healthy American
individuals appear to have both the highest and lowest levels of biodiversity in their gut

microbiomes.

The comparison is not a strictly fair one however, as the amount of taxonomically
informative sequences provided by Peterson et al.’s [2009] study outnumbers the other se-
quence datasets by over five times. The result is that Figure 4.7 is completely overwhelmed
by this dataset. As stated by Magurran [2009], sampling depth tends to increase the mea-
sured species diversity and richness of an environment. As Peterson et al.’s [2009] study

generated so much more sequence data than the others, it is no surprise that members

77



of his sampling cohort have the highest calculated species richness (Figure 4.7). Bearing
this in mind, what is perhaps more surprising, is that other members of his study had the

lowest diversity in terms of number of genera, out of the four geographic locations.

Although not disclosed along in the sequence metadata, the lower biodiversity indices
might be explainable by the ease of access Westerners have to modern medicines includ-
ing antibiotics. Antibiotics, as their name implies, are designed to wipe-out bacterial
infections, and as a side-effect can completely alter the microbial landscape of the human

gut, sometimes with lasting effect [Dethlefsen et al., 2008].

The relative biodiversities for four complete sequence datasets are shown in Figure 4.6.
Strikingly, the Japanese sequence dataset shows the highest taxa diversity according to
its Simpson index, when compared against the USA, Burkina Faso and Italian datasets.
It is not so surprising that it also has the highest taxon evenness, as the Japanese WGS
experiment contains the fewest number of taxa and the highest relative number of taxa

with just single sequences assigned.

The 16S rRNA primer-targeted datasets are more directly comparable due to having
more similar numbers of sequence annotations (Table 4.1). Amongst these, the Burkina
Faso dataset consistently has the lowest mean taxon diversity and the largest standard
deviation of biodiversity values (Figure 4.6 and Table A1.1). The Shannon H,,,, value
is exempt from this comparison, as it only amounts to a theoretical maximum value,
reached only if all species were present in even numbers, which will never be the case
in real biological systems. Both Shannon’s and Simpson’s diversity indices are similar
between American and European individuals, demonstrating similar species richness
and evenness distributions in the guts of Western individuals. It is too early to conclude
whether similarities arise as a result of diet, medicine, another factor, pure coincidence or
a combination of several factors. However, as sequencing experiments continue to grow

in size and scope, information required to realise causal relationships between the gut
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microbiome and how it is affected will be and are being brought to light [Cho & Blaser,

2012; Gevers et al., 2012; Marchesi, 2011; Peterson et al., 2009].
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5

DiI1SCUSSION

SMALL SUBUNIT RRNA HAS FREQUENTLY BEEN REFERRED TO AS THE “gold standard” gene
for phylogenetic inference [McHardy & Rigoutsos, 2007], but it is fairly controversial
to imply that a single gene can provide enough genetic information to infer taxonomic
identity up to species specificity, let alone a fraction of a gene up to species specificity
or higher. Higher resolution phylogenetic discrimination can be achieved with longer
sequence reads and SSuMMo proves to be no exception (subsection 3.2.1). It follows that
even better phylogenetic discrimination can be achieved by comparing multiple genes
conserved and sequenced amongst all target species [Dunn et al., 2008; Sjolander, 2004;
Wu & Eisen, 2008]. This can be used to great effect for inferring phylogenetic differences
between fully sequenced organisms, but poses problems if trying to use the same methods

on uncultivated organisms from environmental samples and complex communities.

First, as the number of genes being targeted increases, the number of species containing
those genes will be reduced. Very few genes are ubiquitous amongst living organisms,
one of the reasons why SSU rRNA was such a wise choice of phylogenetic marker gene
[Pace et al., 2012]. Second, with more genes being targeted, it is impossibly unlikely that
for each target gene sequenced, there would be a matching number of sequence reads
for other targeted genes from the same organism. This would skew the abundance of
each sequenced gene an unknown amount, owing to unknown copy numbers of each

gene, genome and cell cycle state. Thirdly, associating each set of genes to the correct
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species, dissecting a set of genes for each host organism from hundreds of thousands
of non-overlapping sequence reads poses a tremendous theoretical and computational
challenge [Krause et al., 2008; Mande et al., 2012]. Together, these problems make any
inference on a microbial community an estimate at best, especially while the majority of

environmental sequences are assigned to uncultured organisms [Sharma et al., 2012].

5.1 Sequence clustering methods

There are a number of ways in which microbial environments can be analysed in or-
der to better understand them. Conceptually, there are two: the so-called “top-down”
and “bottom-up” approaches [Nisbet & Weiss, 2010]. The former treats the system as
a black-box, measuring overall output while controlling the input, while the latter in-
volves analysing the most fundamental components of the system, piecing each individual
component together, like pieces of a puzzle.

Historically, the top-down approach was the only method available for enquiring
about microbiological systems; it was practically impossible to know what was happening
inside the cell, let alone the nucleus. But in the wake of the sequencing revolution, it has
become possible to obtain data on many of the most elusive components of microbial
systems and populations, to the point of redundancy.

However, a difficulty that remains is getting meaningful information out of compara-
tive sequence analyses. Nearest-neighbour and alignment-based search algorithms often
give meaningless results, with functional annotations of a majority of metagenomic genes
in recent studies annotated only as having “putative” or “unknown” function [Gosalbes
et al., 2011; Harrington et al., 2007; Qin et al., 2010].

Pairwise alignments are also notoriously slow for metagenomic sequence datasets,

with search times increasing exponentially with the number of query sequences, target
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sequences and sequence lengths [Wang & Jiang, 1994].

Unsupervised clustering methods, often based on Markov chains are a favourite
amongst high-throughput annotation projects, with algorithms such as Dotur [Schloss &
Handelsman, 2005], Esprit [Sun et al., 2009] OrthoMCL [Li et al., 2003] and many others
proving popular and increasingly quick at sifting through redundant, overlapping and

repetitive sequences.

Alternatively, there are the supervised clustering techniques, which can also be based
on Markov chain algorithms, but require pre-annotated data to train a database with req-
uisite information. The more “good” training data the better, akin to education. Incorrect
training data can lead to so-called “false-positives”, whilst increasing the amount of correct
training data usually leads to an increase in accuracy and decrease in false-negatives. A
useful metric of accuracy, is the ratio of True Positives against False Positives, which
can be used to compare the accuracy of different software implementations in similar

conditions [S6ding, 2005].

Some popular supervised training software packages, based on similar Markov-chain
based algorithms, include: HMMER [Eddy, 1998], Glimmer [Delcher et al., 1999] and
HHblits [Remmert et al., 2011]. Although all are based on Markov models, the way
in which comparisons are made and databases trained differ markedly. HMMER has
evolved since its first release [Eddy, 2011], but still uses sequences to train profile hidden
Markov models against which new sequences are compared (see section 2.1 for a further
introduction). Glimmer trains “Interpolated Markov models”, which are Markov chains
trained with variable length words, changing depending on the local composition of
the sequence [Salzberg et al., 1998]. HHblits is more similar to HMMER, but instead
of comparing raw sequences to HMMs, query sequences are grouped iteratively before
being used to build more hidden Markov models. These new HMMs are then aligned to a

pre-built database of HMMs [Remmert et al., 2011]. All authors claim to have made their
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software better than other competing tools, naturally.

5.2 Comparing microbiological community diversities

The concept of quantifying distance between built hidden Markov models is of particular
interest, especially in terms of SSuMMoss future development. One shortfall in SSuMMo's
generated cladograms is the lack of quantitative distance information between different
taxonomic ranks. With such quantitative information, so-called “UniFrac” scores can be
calculated, to compare the taxonomic diversities of two or more microbial communities
[Lozupone & Knight, 2005].

This allows discrimination between communities where species richness and evenness
are identical. However, where quantitative distance information is not known between
clades, taxonomic diversities can still be compared, simply by considering each path length
v as equal to a constant integer value [Pienkowski ef al., 1998a,b]. In the simplest of cases, v
can be set to 1. Since the taxonomic distinctness measure was first introduced, it has been
used and developed extensively to assess community differences under various differing
environmental situations. It was recognised early on that it is not always appropriate
to treat v as constant [Clarke & Warwick, 1999; Magurran, 2009]. For instance, some
taxonomic groups will contribute little or no additional information to the diversity of the
sample. In such a case, was suggested to weight each step with the proportion of taxon

richness attributed to each grouping.

5.3 Summary

Our novel software solution, SSuMMo, provided a novel approach to annotating taxo-

nomic information to sequence reads from primer-targeted high-throughput sequencing
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experiments. While its efficacy was limited to 16S rRNA gene sequences, these were and
still are one of the most popular methods for describing the community and structure of
microbial assemblages. However, a bias towards taxa that have already been thoroughly
sequenced is an inherent problem with primer-targeted studies. Whole genome shot-
gun sequencing experiments were shown to be less biased in sampling entire microbial
communities as a whole.

The number of taxa that can be identified using SSU rRNA targeted sequencing has
provided unprecedented species-level coverage of communities in recent years and may
still provide the best value for time and money for identifying the majority of microbial
species within a community. Highly conserved regions of 16S rRNA were identified as
part of this work that are adjacent to highly divergent and taxonomically informative
sequence regions.

As sequencing technologies continue to provide better value and bioinformatics so-
lutions improve, it is expected that WGS sequencing experiments will from now be the
method of choice for interrogating microbial communities in previously uncharacterised

habitats.

85






APPENDIX I

A1.1  Code Listings

calc_entropy.py

#!/usr/bin/env python
" plot informational entropy for values between 0 and 1 """

import numpy as np

from math import log
import plot_H

# Compute —K(p;log, p; +qilog,q;) for case where g;=(1-p;)
def defined_sample(p_i):
not_p = 1. - p_i
return - 2. * ( p_i * log(p_i, 4) + not_p x log(not_p, 4) )

# Calculate Shannon’s entropy for an array of probabilities p
def informational_entropy(p):

return [defined_sample(p_i) for p_i 1in p]

if __name__ == ’_ _main__":
p = np.arange(0.01, 1.0, 0.01)
H

= shannon_entropy(p)

plot_H.setup_axes(max(H))
plot_H.plot_entropy(p, H)

Listing A1.1: A Python script to plot informational entropy of a DNA sequence
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scatter_plot.py

"M"OA little module to help plot scatter graphs"™""
import matplotlib.pyplot as plt

fig = plt.figure()

# Set up graph axes and labels

def setup_axes(y_max):
plt.axis([0, 1, 0, y_max])
ax = fig.axes[0]
ax.set_xlabel("GC ratio")
ax.set_ylabel("H")

# Plot informational entropy H against probabilities
def plot_entropy(p, H):
plt.scatter(p, H, color="k", marker=".", s=1)
plt.grid(True)
plt.show()

fig.savefig("new_simulated.png")

Listing A1.2: A shared module containing common plotting functions
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plot_dna_probs.py

#!/usr/bin/env python

# Find and parse sequence files for the probability of a specific nucleotide’s

# occurrence

import argparse, re, os

from Bio +import SeqIO

import matplotlib.pyplot as plt
import plot_H

# Opens a fasta sequence file, and calculate the probability of a specific
# nucleotide within all sequences in that file. Search is case-insensitive
# and only parses fasta-formatted sequences files containing "complete genome"
# sequences.
#
# file_name - File to open
# nucl - The nucleotide whose probability should be returned.
def calc_nuc_probs(file_name, nucl="g’):
nucl = nucl. lower ()
count = 0
cum_len = 0
with file(file_name, ’r’) as seq_stream:
for record 1in SeqIO.parse(seq_stream, ’fasta’):
if ’plasmid’ in record.description \
or ’complete genome’ not 1in record.description:
continue
seq = record.seq.tostring().lower ()
count += seq.count(nucl)
cum_len += len(seq)
if cum_len == 0:
return

return float(count) / cum_len

# Yield each file from the directory path, whose name ends in ext
def find_seq_files(path, ext=’.fna’):
join = os.path.join
for path, dirs, files 1in os.walk(path):
for f in files:
if f.endswith(ext):
yield join(path, f)
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def parse_cmdline():
parser = argparse.ArgumentParser (description=__doc__)
parser.add_argument(’path’, help="paths to search", nargs=’+’, type=str)

return parser.parse_args().path

def gen_data():
seq_file_folders = parse_cmdline()
probs = []
dirname = os.path.dirname
for path 1in seq_file_folders:
for seq_file in find_seq_files(path):
# Double probability, as G~T and A~C.
p = 2. x calc_nuc_probs(seq_file)
if p is None:
continue
probs.append(p)
print("Parsed {0} genome sequences".format(len(p)))
H = dinformational_entropy(probs)

return (probs, H)

def plot_data(p, H):
plot_H.setup_axes(max(H))
plot_H.plot_entropy(p, H)
plot_H.fig.savefig(’{0}_genomes.pgf’.format(len(p)))

if __name__ == ’__main__"’:
import cPickle as pickle
if os.path.exists(’data.pkl?’):
# Load pre-processed data
with file(’data.pkl’, ’rb’) as data_f1ile:
(p, H) = pickle.load(data_f1ile)
else:
(p, H) = gen_data()
# Save processed data
with file(’data.pkl’, ’wb’) as data_file:
pickle.dump((p, H), data_file, -1)
plot_data(p, H)

Listing A1.3: A Python script that calculates informational entropy from genomic DNA sequence files
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extract_HMP_sequences.py

#!/usr/bin/env python

""" Extract specific sequence files from HMP Pilot study data. """

import tarfile
import os

import re

class OverviewInfo():

def __dinit__(self, directory, filters, header=None, name_file_by=None):
# directory - directory to check for sequence and overview files
# filters - Only output sequences where the data in column with title
# header is equal to filters. Sequences will be saved in a
# directory with the same name as the filter being applied.
# header - Choose column filter to filter data by. Default is ‘environment’
# name_file_by - Each sequence file will be named by data in the column
# with header name_file_by. 1i.e. Chooses how to split

# the sequence data.

self._dir = directory
self.filters = filters

self.header = header
self.name_file_by = name_file_by
if self.header 1is None:

self.header = ’environment’
if self.name_file_by is None:

self.name_file_by = ’subject_id’

# First group is any set of characters, excluding tabs.
self.splitter = re.compile(r’ ([\w\d,\.\+\- 1+)7)

self.line = re.compile(r’[\r\n]+”)

def get_overviews(self):
# Checks self._dir for any file with the word ‘overview’ 1in it.
# compressed_files are files with the suffix ¢.tgz’, and any other
# files are assumed to be uncompressed.
# Returns the tuple: (compressed_files, uncompressed_files).
compressed_files = []
uncompressed_files = []
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for file_name in os.listdir(self._dir):
if ’overview’ 1in file_name:
if file_name.endswith(’.tgz’):
compressed_files.append(file_name)
else:
uncompressed_files.append(file_name)
else:
continue

return (compressed_files, uncompressed_files, )

def get_headers(self, file_name):
handle = tarfile.open(file_name, ’r’)
headers = []
print(’Iterating through contents of {0}’.format(file_name))
for tarinfo in handle:
if not tarinfo.isreg():
# If the tar’d +item is not a file (e.g. a directory), skip it.

continue

buf = handle.extractfile(tarinfo)
this_header = self.splitter.findall(buf.readline())
buf.close()
if len(headers) == 0:
headers = this_header
handle.close()

return headers

def iter_contents(self, file_name):
# Given a tar archive name, iterate through the archive’s contents
# and yield buffer objects to each contained, compressed file.
# This will close each yielded file handle, so must be used as a
# generator function.
handle = tarfile.open(file_name, ’r’)
for tarinfo in handle:
if tarinfo.isreg():
sub_handle = handle.extractfile(tarinfo)
yield sub_handle
sub_handle.close()
elif tarinfo.isdir():
continue

else:
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print("What is {0}??".format(tarinfo.name))
handle.close()

return

def check_files(self):

# Checks for the existance of each file in self._dir.

# This looks for overview files as well as sequence files.

overviews = set()

data = set()

names = set([’F6RMMXF’, ’F6JVTIB’, ’F6J9Z3U’°,
’>F6J46LU’, ’F6AVWTA’, ’F6AVU3G’,
"FG6ASE4X’, ’F5MM0O90°, ’F5K51YR’,
"F57CATM?’, *F5672XE’, ’F51YIRY’,
"F48MIBB’, ’F4TUSSH’, ’F47LS8B’,
"F475432°, ’F5GZGTO’, ’F5MNGLX’,
>F5MP0OZS’, ’F5BSE3M’])

# data_did

# - First group is the pilot experiment number.

# - Second group 1is the long extension e.g. overview.tgz
# or fasta_and_qual.tgz.

data_id = re.compile(’hmp_pilot_([\w\d]+)\.{1}(.+)?)
for thing in os.listdir(self._dir):
reg = data_id.search(thing)
if reg:
_id, ext = reg.groups()
if ext.startswith(’overview’):
overviews.add(_id)
else:
data.add(_1id)
missing_data = names.difference(data)

missing_overview = names.difference(overviews)

if 0 == (len(missing_data) + len(missing_overview)):
print("Found all files in {0}".format(self._dir))

else:
self._print_missing_files(missing_data, ’fasta_and_qual’)

self._print_missing_files(missing_overview, ’overview’)
def _print_missing_files(self, files, sub_ext):

if len(files > 0):
print(’Missing {0} {1} files:-’.format(len(files), sub_ext))
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for file_id 1in files:
print(’hmp_pilot_{0}.{1}.tgz’.format(file_id, sub_ext))

def get_set(self, header_name, headers=None):
# Returns a set of all the column entries for a particular header.
# header_name must be found in the header entries. This will
# dterate through each compressed files contents and check for all
# unique entries to the column of interest.
#
# If headers is None, then this will check the headers of only
# the first file, and use them as an index for each column entry.
unique_set = set()
gzs, nongzs = self.get_overviews()
for gzipped in gzs:
iterator = self.iter_contents(gzipped)
for handle in iterator:
if headers == None:
headers = self.splitter.findall(handle.readline())
else:
handle.readline()
index = headers.index(header_name)
for line in handle:
line_list = self.splitter.findall(line)
unique_set.add(line_list[index])
# Break and do again so we don’t need to check for headers
# every ‘iteration.
break
for handle 1in iterator:
handle.readline() # Skip the header line.
for line 1in handle:
line_1list = self.splitter.findall()
unique_set.add(line_list[index])

return unique_set

def get_data(self, handle, header_line=True):
if header_l1ine:
line = handle.readline()
n_cols = len(self.splitter.findall(line))
all_data = (set() for dummy 1in xrange(n_cols))

for line in handle:
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line_data = self.splitter.findall(line)
for i in xrange(n_cols):
all_data[i].add(line_data[i])

return all_data

def sep_data(self, handle, split_index=None):
Give a handle to a tab-delimited data file, and this will read the

data into a list of lists (end_data), and a list of sets

#
#
# (data_sets), which contain all the unique values per
# column.
# Optional split_index will separate the data sets into multiple lists
# for each different entry in the column indexed by split_index.
handle.seek(0)
handle.readline() # Header line.
first_line = handle.readline().rstrip().split(’\t’)
if split_index == None:
end_data = [first_line]
n_cols = len(first_1line)
for line 1in handle:
vals = line.rstrip().split(’\t’)
split_value = first_line[int(split_index)]
end_data = {split_value : [first_line]}
# Initiate the data dictionary, with split_value as key; the
# value is an array containing the data.
n_cols = len(first_1line)
data_sets = [set() for i 1in xrange(n_cols)]
for line in handle:
vals = line.rstrip().split(’\t’)
# Turn tab-delimited line to list.
if vals[split_index] == split_value:
# If same as previous line, append to same key’s value.
end_data[split_value].append(vals)
else:
# Or create a new key / value pair.
split_value = vals[split_index]
end_data.update({split_value : [vals]})
for i in xrange(n_cols):
data_sets[i].add(vals[i])
return end_data, data_sets

def extract_sequences(self):
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from multiprocessing import Process, Queue
out_q = Queue()
_extractor = Process(target=extractor, args=(out_q, self._dir))
_extractor.start()
try:
for overview_info in self.yield_info():
if len(overview_info[’sequence_library_IDs’]) > 0:
# Get other process to extract the seqgeunces.
out_q.put(overview_info)
finally:
out_q.put(’END”)
_extractor.join()

def get_sizes(self):
total = 0.
for overview_info in self.yield_info():
exp_id = overview_info[’experiment_ID’]
seq_Llib_ids = overview_info[’sequence_library_IDs’]
if len(seq_lib_ids) > 0:
file_name = ’hmp_pilot_{0}.fasta_and_qual.tgz’.format(exp_id)
lib_re = re.compile(’|’.join(’ ({0})’.format(_id) for _id in seq_lib_1ids))
# lib_re - group is the library number.
archive_handle = tarfile.open(file_name, ’r’)
for tarinfo 1in archive_handle:
1lib = lib_re.search(tarinfo.name)
if not (tarinfo.name.endswith(’.fsa’) and 1lib):
continue
size = tarinfo.size
total += size
kbs = size / (1024.)
if kbs < 1000.:
size = {0} kB’.format(kbs)

else:
size = {0} MB’.format(kbs / 1024.)
assert len(overview_info[’subject_ID’]) == 1

print(os.path.join(file_name, tarinfo.name).ljust(60) + \
overview_info[’subject_ID’][0].1ljust(20) + size)
print(’\n Total: {0} MB’.format(total / (1024.%x%2)))
return total

def yield_info(self):
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def

# Looks through all overview and sequence archives in the present
# directory, and extracts all sequences according to the allowed
# filters.

gz_overviews, nongz_overviews = self.get_overviews()

id_finder = re.compile(’hmp_pilot_([\w\d]+)\.{1}(.+)?)

# did_finder:-

# - First group is the pilot experiment number.
# - Second group is the long extension e.g. overview.tgz or
# fasta_and_qual.tgz

for filter 1in self.filters:
if not os.path.exists(os.path.join(self._dir, filter)):
os.makedirs(os.path.join(self._dir, filter))

for file_name in gz_overviews:

handles = self.iter_contents(file_name)

exp = id_finder.search(file_name).groups()[0]

# Experiment ID taken from archive name.

print(’Checking {0}’.format(file_name))

for handle 1in handles:
# Yielding handles to compressed tabular data.
info = self.extract_info(handle, exp, file_name)

if dinfo 1is None:

continue
yield 1info
return
extract_info(self, handle, experiment, archive_name):

filters = self.filters
headers = self.splitter.findall(handle.readline())
# dinteresting_col: Index of header column ‘environment’, usually.
interesting_col = headers.index(self.header)
info = {’experiment_ID’ : experiment,
’sequence_library_IDs’ : [],
’subject_ID’ : [],
’save_dir’ : filters[0] # Changed if len(filters) > 1
}
file_name_col = headers.index(self.name_file_by)
file_data, set_data = self.sep_data(handle, file_name_col)
col_data = set_data[interesting_col]
lib_finder = re.compile(r’lib(\d+)’)
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if len(filters) > 1:
for filter in filters:
if filter 1in col_data:
print(’\tFilter {0} matches in {1}’.format(filter, handle.name))
lib = lib_finder.search(handle.name) .group()
info[’sequence_library_IDs’].append(lib)
info[’subject_ID’].append(set_data[file_name_col].pop())
info[’save_dir’] = filter
elif len(col_data) == 1 and set(filters) == col_data:
1lib = lib_finder.search(handle.name) .group()
info[’sequence_library_IDs’].append(lib)
if len(set_data[file_name_col]) == 1:
info[’subject_ID’].append(set_data[file_name_col].pop())

else:
print(’More than one subject_ID for this sample: ’ \
*{0}//{1}!!’ . format(archive_name, handle.name))
else:
col_names = ’, ’.join(list(col_data))

if filters[0] 1in col_data:
print("Archive {0}, file {1} has mixed data in the column "
"{2}, dincluding: {3}"\
.format(archive_name, handle.name, self.header, col_names))
else:
print("Skipping archive {0}, file {13}. "
"Data in column {2}, dis: {3}"\
.format(archive_name, handle.name, self.header, col_names))
return

return info

def extractor(in_queue, file_dir):

inval = in_queue.get()

contents = os.listdir(file_dir)
while inval != ’END’:

seq_lib_ids = dinval[’sequence_library_IDs’]
exp_id = dnval[’experiment_ID’]

lib_re = re.compile(’|’.join(’ ({0})’.format(id) for id 1in seq_lib_1ids))

file_name = ’hmp_pilot_{0}.fasta_and_qual.tgz’.format(exp_id)
if file_name 1in contents:

pass
else: # Just in case we made file_name wrong.

for file_name 1in contents:
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if dinval[’experiment_ID’] in file_name and \
>fasta_and_qual’ 1in file_name:
# If the file_name 1is a fastqg archive.
break
else:
continue
archive_handle = tarfile.open(file_name, ’r’)
for tarinfo 1in archive_handle:
lib = lib_re.search(tarinfo.name)
if not (lib and tarinfo.name.endswith(’.fsa’)):
## Skip if not a qual file, or a library of -dinterest
continue

write_seq_file(archive_handle, tarinfo, 1lib, dinval)
inval = in_queue.get()
in_queue.close()

return

def write_seq_file(archive, tarinfo, 1lib, data):

## Figure out which subject ID matches that library file == -1index of lib.
subject_ind = 0
try:
for group 1in lib.groups():
if group:
break

subject_ind += 1
except AttributeError:
raise("Error with {0} in {1}".format(lib, tarinfo.name))

save_dir = data[’save_dir’]
subject_id = data[’subject_ID’][subject_ind]

file_name = os.path.join(save_dir, subject_id + ’.fas’)

file_handle = archive.extractfile(tarinfo)
with file(file_name, ’a’) as out_handle:
out_handle.write(file_handle.read())

def main():
import argparse
arg_parser = argparse.ArgumentParser (description=__doc__)

arg_parser.add_argument(’-d’, ’--dir’, dest=’dir’,
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default=os.path.dirname(os.path.realpath(__file__)))
arg_parser.add_argument(’-env’, dest=’env’, nargs=’+’, default=[’Stool’],
help="Body environments for which to extract sequences. "
"Default: Stool")
arg_parser.add_argument(’-e’, ’--extract’, dest=’extract’, action=’store_true’,
help="Extract sequences from sequence files’)
arg_parser.add_argument(’-1’, ’--1list’, dest="1list’, action=’store_true’,
help="List headers 1in overview files’)
arg_parser.add_argument(’-1s’, ’--sizes’, dest=’sizes’, action=’store_true’,
help="List file sizes’)
arg_parser.add_argument(’-set’, dest=’set’, nargs=’1’, default=None,
help="Print all possible options from an overview column’)

args = arg_parser.parse_args()

processor = OverviewInfo(args.dir, args.env)

processor.check_files()

if args.list:
gzs, nongzs = processor.get_overviews()
headers = processor.get_headers(gzs[0])

print(’\n’.join(headers))

if args.sizes:

processor.get_sizes()

if args.extract:

processor.extract_sequences()

if args.set is not None:

processor.get_set(args.set)

if __name__ == ’__main__’:

main()

Listing A1.4: A Python script to extract sequences of interest from the Clinical Production Pilot Study
(PPS) of the NIH Human Microbiome Project
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A1.2 Tables

N° taxa Shannon H’ Shannon H,,,, Simpson D

USA | 113.27 +38.67 1.1+ 0.37 4.66 + 0.36 0.5 + 0.15

_og EU 42.86 + 8.82 1.09 + 0.32 3.72 £ 0.21 0.52 + 0.15
) BF 57.43 + 16.45 0.93 + 0.38 4 +0.31 0.46 + 0.19
JPN 18.48 + 4.51 1.87 + 0.35 2.85 + 0.28 0.72 + 0.11

USA | 186.59 + 62.68 1.72 + 0.51 5.17 + 0.35 0.67 + 0.16

= EU | 80.67 +18.53 1.78 + 0.36 4.36 £ 0.24 0.73 £ 0.11
g BF | 96.14 + 25.33 1.29 + 0.48 4.53 £ 0.27 0.53 + 0.22
JPN 24.07 + 6.36 2.35 + 0.53 3.12 £ 0.3 0.82 + 0.14

USA | 31768 £99.89  2.26 £ 0.72 5.71 &+ 0.32 0.71 + 0.18

é EU | 154.63 £30.76  2.69 + 0.54 5.02 £ 0.2 0.85 £ 0.1
o, BF | 179.03 + 43.74 1.93 + 0.78 5.16 + 0.25 0.61 + 0.23
JPN 39.61 + 13.43 3.18 + 0.62 3.6 £ 0.39 0.93 + 0.08

" USA | 468.58 £143.42 3.23+ 0.47 6.1+ 0.32 0.9 + 0.06
8 EU | 217.63 + 47.44 3.1+ 0.61 5.36 £ 0.22 0.88 + 0.09
g, BF | 255.02 + 64.1 2.46 £ 0.72 5.51 £ 0.25 0.76 + 0.14
? JPN 49.95 + 17.13 3.56 + 0.56 3.84 £ 0.39 0.96 + 0.04

Table A1.1: Biodiversity indices for geological datasets at different ranks.

The number of taxa shown at each rank is estimated using the jackknife estimate. Each table value was

resampled 50 times and the means are shown with standard deviations.
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NOMENCLATURE

Roman Symbols

k Boltzmann constant: 1.3806 - 10723] - K—!
Acronyms

API  Application Programming Interface
BMI Body Mass Index

HMM Hidden Markov Model

HTS High Throughput Sequencing

IBD Inflammatory Bowel Disease

ITS Intergenic Transcribed Spacer

MSA Multiple Sequence Alignment

OED Ogxford English Dictionary

OTU Operational Taxonomic Unit

PCR Polymerase Chain Reaction

PSSM Position-Specific Scoring Matrix
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rRNA ribosomal RiboNucleic Acid
SSU  Small SubUnit

WGS Whole Genome Shotgun
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