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Abstract

Learning discriminative feature representations has attracted a great deal of attention due
to its potential value and wide usage in a variety of areas, such as image/video recogni-
tion and retrieval, human activities analysis, intelligent surveillance and human-computer
interaction.

In this thesis we first introduce a new boosted key-frame selection scheme for action
recognition. Specifically, we propose to select a subset of key poses for the representation
of each action via AdaBoost and a new classifier, namely WLNBNN, is then developed for
final classification. The experimental results of the proposed method are 0.6% ∼ 13.2%
better than previous work. After that, a domain-adaptive learning approach based on multi-
objective genetic programming (MOGP) has been developed for image classification. In
this method, a set of primitive 2-D operators are randomly combined to construct feature
descriptors through the MOGP evolving and then evaluated by two objective fitness crite-
ria, i.e., the classification error and the tree complexity. Later, the (near-)optimal feature
descriptor can be obtained. The proposed approach can achieve 0.9% ∼ 25.9% better per-
formance compared with state-of-the-art methods. Moreover, effective dimensionality re-
duction algorithms have also been widely used for obtaining better representations. In this
thesis, we have proposed a novel linear unsupervised algorithm, termed Discriminative Par-
tition Sparsity Analysis (DPSA), explicitly considering different probabilistic distributions
that exist over the data points, simultaneously preserving the natural locality relationship
among the data. All these above methods have been systematically evaluated on sever-
al public datasets, showing their accurate and robust performance (0.44% ∼ 6.69% better
than the previous) for action and image categorization. Targeting efficient image classifi-
cation , we also introduce a novel unsupervised framework termed evolutionary compact
embedding (ECE) which can automatically learn the task-specific binary hash codes. It is
regarded as an optimization algorithm which combines the genetic programming (GP) and
a boosting trick. The experimental results manifest ECE significantly outperform others by
1.58% ∼ 2.19% for classification tasks. In addition, a supervised framework, bilinear local
feature hashing (BLFH), has also been proposed to learn highly discriminative binary codes
on the local descriptors for large-scale image similarity search. We address it as a noncon-
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vex optimization problem to seek orthogonal projection matrices for hashing, which can
successfully preserve the pairwise similarity between different local features and simultane-
ously take image-to-class (I2C) distances into consideration. BLFH produces outstanding
results (0.017% ∼ 0.149% better) compared to the state-of-the-art hashing techniques.
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Chapter 1

Introduction

Representation learning has become a field in itself in the machine learning community.
A discriminative feature representations of the data can make it easier to extract useful in-
formation when building classifiers or other predictors. This thesis is about representation
learning, i.e., learning representations of the data that make it easier to extract useful in-
formation when building classifiers or other predictors. In the case of probabilistic models,
a good representation is often one that captures the posterior distribution of the underlying
explanatory factors for the observed input. A good representation is also one that is useful as
input to a supervised predictor. In this thesis, three different branches of discriminative rep-
resentation learning schemes, i.e., feature selection, feature learning and feature embedding,
are carefully discussed. The rapid increase in scientific activity on representation learning
has been accompanied and nourished by a remarkable string of empirical successes both
in academia and in industry. For instance, learning discriminative feature representations
has successfully involved in speech recognition and signal processing. The recent revival of
interest in representation learning has had a strong impact in the area of speech recognition,
with breakthrough results [1–3] obtained by several academics as well as researchers at
industrial labs bringing these algorithms to a larger scale and into products. Furthermore,
MNIST digit image classification problem as a object recognition task has attracted lots
of researchers using various feature learning schemes [4] on it. Besides, natural language
processing (NLP) needs the phase of representation learning, as well. Among the various
applications using learned representations, in this thesis, high-level visual categorization
and retrieval tasks are focused and discussed in detail.

Visual categorization is regarded as a wide and significant tasks attracts increasing num-
ber of attentions. It Includes 2D applications such as, object classification, face recognition
and scene classification, and also cover the relevant 3D problems such as action recognition
and gesture recognition. The basic visual categorization algorithm is generally introduced
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in [5, 6], and involves two main stages: (1) low/middle level feature extraction and repre-
sentation; (2) high level visual classification. The low level part is commonly accomplished
by local or global feature descriptors, e.g., histogram of oriented gradients (HOG) [7], scale
invariant feature transform (SIFT) [8] and local binary pattern (LBP) [9], to represent the
extracted most salient features such as: edges, corners, orientations, which significantly af-
fect high level classification performance. To learn discriminative feature representations,
some learning schemes can be used. One of the effective and intuitive way is to select the
most discriminative features from the original feature pool. This scheme can successful-
ly discard the noisy data and make the classifier easier to conduct the final decisions. In
addition to select features, another big branch of research focuses on learning the totally
new but discriminative feature representations. This kind of scheme is usually based on ad-
vanced machine learning techniques such as: deep learning and genetic programming and
can automatically learn the feature representations from the raw visual sources. Of course,
besides the low/middle-level feature extraction, some embedding schemes are also proposed
to learn the discriminative representation such as principal component analysis (PCA) and
linear discriminative analysis (LDA). Although, these previously published techniques lead
to reasonable results in various applications, they are only suitable for a particular research
domain or data type and would result in poor performance on other unknown usages. So
how to propose an optimal solution that can be considered as a generalized way to extract
the most meaningful features for any user-defined application is presented to us.

Moreover, with spreading of World Wide Web and development of computer technolo-
gies, a huge amount of digital data, including text, images and videos, is generated, stored,
analyzed, and accessed every day. To overcome the shortcomings of text-based image re-
trieval, content-based image classification and retrieval has attracted substantial attention.
The most basic but essential scheme for image retrieval is the nearest neighbor search:
given a query image, to find an image that is most similar to it within a large database
and assign the same label of the nearest neighbor to this query image. However, greedi-
ly searching a dataset with N samples is infeasible because linear complexity O(N) is not
scalable in practical applications. Due to this kind of computational complexity problem,
researcher have already developed some approach to fast index data, e.g., K-D tree and R
tree [10]. Nevertheless, most of these methods can only handle the data within dimension-
ality of 100 [11, 12]. In addition, curse of dimensionality problems1 always exists in the
most of the vision-based applications due to visual representations usually with hundreds or
even thousands of dimensions. Thus, to make large-scale search or classification practical,

1The effectiveness and efficiency of these methods drop exponentially as the dimensionality increases,
which is commonly referred to as the “curse of dimensionality”.
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some hash-based methods have been proposed to effectively reduce the dimension of data
and increase the retrieval speed and accuracy. In the following sections, some of our main
work with its motivations for categorization and retrieval tasks will be briefly introduced.

1.1 Boosted Key-pose Selection for Action Recognition

Huamn action recognition, nowadays, plays a significant role in various applications, e.g.,
human-computer interaction [13], human activities analysis [14], [15], [16], [17], and real-
time surveillance systems [18], [19]. The goal of human action recognition is to identify the
actions being performed in a video sequence under different complications such as clutter-
ing, occlusion and change of lighting conditions.

Generally, the approaches to action recognition involve two main stages: (1) feature
extraction and representation; (2) action classification.

In recent years, some popular spatio-temporal features extracted from video sequences
are commonly extended from their counterparts in the 2D image domain, and are demon-
strated to achieve relatively good results for action recognition. Those methods include
histogram of optical flow (HOF) [20], 3D scale invariant feature transform (3D-SIFT) [21],
3D histogram of oriented gradients (3D-HOG) [22], 3D speeded up robust features (3D-
SURF) [23], etc. These spatio-temporal features can be used either globally or locally for
human action representation.

Local methods [24], [14] [25] represent human actions as a set of spatio-temporal in-
terest points detected from video sequences. Local methods based on the bag-of-features
model have achieved impressive results in various action recognition tasks. They follow a
typical procedure: unsupervised techniques are used to detect interest points around which
spatio-temporal features are extracted; then clustering methods, e.g., K-means clustering
[26], are employed to construct a codebook on which all the features from a video sequence
are mapped to form a histogram representation; the final representation is then fed to a clas-
sifier, e.g., SVM, for action classification. The bag-of-features [16] model tends to be more
robust in challenging scenarios, but this kind of sparse representation is often not precise and
informative because of the quantization error during codebook construction and the loss of
structural relationships among local features.

On the contrary, global methods [27] represent corresponding actions by treating the
entire video sequence as a whole which contains the complete motion and appearance in-
formation. Such a representation has attracted much attention due to its abilities to extract
more informative and accurate motion features from both spatial and temporal dimension-
s. However, global methods are quite sensitive to shift, scaling, occlusion and cluttering,
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which commonly exist in action sequences because the required background subtraction
and segmentation [28] tend not to be very accurate.

Both local and global methods have achieved remarkable results, but action recognition
by human suggests that they might be using more information than required [29]. Given
the available actions, the human brain can easily recognize what a person is doing by just
looking at a few poses without examining the whole sequence [30]. Inspired by this, re-
cently, pose representations for human action recognition have drawn more attention and
achieved promising results [30–33]. Pose-based representations can capture sufficient ap-
pearance information of actions and spatial layout of human bodies, and therefore it can to
a large extent overcome the information loss induced in local representations. If key poses
are selected well [30, 31, 33], pose-based representations are able to avoid the limitations
such as background variations, occlusions and shifts in global representations.

Considering all the advantages and drawbacks mentioned above, thus, human actions is
modeled based on the key pose representation. Each frame in an action sequence is treated
as a pose. Inspired by the multi-resolution analysis in image processing, we describe poses
using the extensive pyramidal features (EPF), which are composed of the Gabor pyramid,
the Gaussian pyramid and the wavelet Laplacian pyramid. These features capture the orien-
tation, intensity and contour information and thus provide an informative representation of
poses.

Directly representing the video sequence by all the poses (frames), which contain re-
dundant and indiscriminate information, would confuse the classifiers in action recognition
[29]. We, therefore, propose to select a subset of key poses for the representation of each
action by a supervised machine learning algorithm, i.e., AdaBoost [34]. The selected key
poses for each action type are not only more compact but also constitute the most discrimi-
native body poses of an action, because the common poses that can exist in different action
types have been eliminated.

In the proposed action representation, each frame contains the whole human body with
the full spatial structural information, which shares the advantages with the global repre-
sentation methods, while each video sequence is sparsely represented by a subset of key
poses, which enjoys advantages of local representations. Therefore, the proposed method
can be regarded as a semi-holistic representation of human actions and inherits the advan-
tages of global features in the spatial dimensions and, meanwhile, has the superiority of
local features in the temporal axis.

For local representations, the bag-of-features model and its variants plus SVM is the
standard method for action recognition. Recently, a classifier called Naive Bayes Nearest
Neighbor (NBNN) [35] is proposed for image classification tasks based on sets of local
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features. The NBNN classifier avoids the quantization error in the bag-of-features model by
computing ’Image-to-Class’ distance rather than the ’Image-to-Image’ distance. McCann
and Lowe [36] later developed the local Naive Bayes Nearest Neighbor (LNBNN) classifier
with a remarkable increase of accuracy and decrease of running time compared with NBNN.

Inspired by LNBNN, we propose to further improve the NBNN model and introduce an
enhanced version of NBNN, named weighted local Naive Bayes Nearest Neighbor (WLNBN-
N), for the final action classification.

1.2 Genetic Programming-evolved Feature Learning

Much of previous work for feature representation has explored the use of low-level image
features for high-level classification. Commonly, we adopt either dense sampling with lo-
cal descriptors or pure holistic descriptors for feature representations. Popular choices for
densely sampled feature descriptors include SIFT, HOG, P-HOG [37], LBP and shape con-
text [38]. These features can work well for certain image types but may not be so descriptive
for other types, since this kind of "hand-crafted“ features are not adaptive for more complex
and challenging work. With the development of artificial intelligence, evolutionary methods
simulate biological evolution to automatically generate solutions for user-defined tasks. GP,
as one of the most outstanding evolutionary methods (see Algorithm 1), has been widely
used in the computer vision domain.

Genetic Programming (GP), which is inspired by biological evolution and widely used
in machine learning, artificial intelligence and other human-computer interaction applica-
tions, allows the computer automatically solving pre-defined tasks without requiring users
to know or specify the form or structure of the solution in advance. In genetic program-
ming, we initially generate a population of computer programs which are regarded as the
potential candidates going through the following evolution strategies and optimized by the
fitness evaluation according to programs’ ability to perform the target task. After running
all of evolution generations, computer can successfully select the best-so-far solution for
user as the optimal result. The relevant Genetic programming algorithm flow is shown in
Algorithm. 1.

Since the previous methods for human action recognition are highly depended on a fixed
group of popular computer vision techniques and commonly achieve better results in some
certain domain or application type, we aim to use Genetic Programming (GP) to find a rel-
atively generalized motion feature descriptor for human action/gesture/objects recognition.
Each of the individual in our GP population represents a candidate feature descriptor. The
pre-processed action sequences as the input of GP are then calculated by computer programs
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Algorithm 1 Genetic Programming
Start

Initialization Randomly create an initial population of computer programs from the
available primitives (terminal set & function set).

Repeat
(1) Execute each program and evaluate its fitness;
(2) Choose one program from the population with a particular probability based
on the fitness to involve genetic operations;
(3) Create a new generation programs by applying genetic operations;
If An acceptable solution is found or reach the maximum number of generations
defined by user;

Stop
Return The best-so-far solution selected by Genetic Programming.

End

and the output form is a vector matrix of feature representations. To start with our GP algo-
rithm, here we need to pre-define three most significant concepts: terminal set, function set
and fitness functions.

The terminal and function sets are regarded as the key components of genetic program-
ming. The variables and constants of the genetic programming are always included in the
terminal set. While, the functions usually can be as set of mathematical functions, i.e., addi-
tion, subtraction, multiplication and division, or other task-specific orders such as complex
filtering operations.

The most important concept of genetic programming is the fitness function which deter-
mines how well a program is able to solve a problem. The basis of evolutionary methods
is always to maximize the performance of individual solutions as gauged by some appro-
priate fitness function. Fitness function can be regarded as a ’Engine’ driving the genetic
programming to find the optimal solutions.

Furthermore, for pattern recognition, GP with a single fitness objective, which is always
the accuracy of the program in recognising patterns, is usually used to measure solutions
over a learning set. However, the single-objective GP is limited by the manner in which
other objective criteria could be added to help guide the search, especially when conflicts
exist. Moreover, during the GP process, the complexity of evolved solutions is one of the
most difficult things to control in evolutionary systems, where the size and shape of the
evolved solutions are under the control of evolution. In some applications, the trees in GP
have a tendency to grow without limit - this phenomenon is called bloat [39], which always
causes serious overfitting at the pattern classification phase. To avoid bloat, we adopt an
improved GP version i.e., multi-objective genetic programming (MOGP), which considers
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both the accuracy rate and the tree complexity as the fitness objectives based on Pareto
dominance relations, to optimize the solutions and simultaneously reduce the overfitting
effectively.

Inspired by MOGP, a new approach using MOGP for generating (near-)optimal fea-
ture descriptors has been developed in image classification applications. Given a group
of primitive operators and a set of terminals (i.e., labelled training examples and random
constants), MOGP evolves (hopefully) better-performing individuals in the next generation.
Since MOGP selection depends on two fitness objectives, we use the Pareto front to rep-
resent a set of non-dominated ’rank-1’ solutions which provide different trade-offs among
the two objectives based on standard evaluation criteria. Furthermore, we test these evolved
solutions on the evaluation set to select the (near-)optimal one with the lowest test error as
the final feature descriptor. Typically, the features extracted by the MOGP system contain
domain-specific information which makes the later image classification easier. It should be
noted that our proposed method does not guarantee any mathematical optimum, while, in
practice, it usually finds a ’good’ solution to an NP-hard problem in an acceptable amount of
computing time. A preliminary version of this approach has been applied to evolve holistic
scene features for scene recognition [40].

1.3 Learning Compact Embedding

Learning compact embedding has been a critical preprocessing step in many fields of infor-
mation processing and analysis, such as data mining [41–45], information retrieval [46, 47],
and pattern recognition [48–51]. In this section, we mainly introduce manifold learning
based dimensionality reduction methods and hashing based binary code learning methods.

1.3.1 Manifold Learning for Dimensionality Reduction

Dimensionality reduction [52] has been a key problem attracting much attention in many
fields of information processing, such as data mining [53], information retrieval, and pat-
tern recognition [54, 55]. When data are represented as points in a high-dimensional space,
one is often confronted with tasks like nearest neighbor search. Actually, greedily search-
ing a dataset with N samples is infeasible because linear complexity O(N) is not scalable
in practical applications. To overcome this shortcoming of linear search, researchers have
developed methods to index the data for fast query response, such as K-D tree, R tree,
R* tree [10], which efficiently decrease the computational complexity from linear O(N)

to sublinear O(N
1
2 ). However, when the dimension of data points is more than 100 bits,
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the effectiveness and efficiency of those searching schemes will drop exponentially as the
dimensionality increases, which is commonly referred to as the ‘curse of dimensionality’.
During the last decade, with the advances in computer technologies and the advent of the
World Wide Web, there has been an explosion in the amount and complexity of digital data
being generated, stored, analyzed, and accessed. Much of this information is multimedi-
a in nature, including text, image, and video data. The multimedia data are typically of
very high dimensionality, ranging from several thousands to several hundreds of thousands.
Learning with such high dimensionality in many cases is almost infeasible. Therefore, to
make large-scale search or classification practical, many methods have been proposed to
effectively reduce the dimension of data and increase the classification speed and accuracy.
Among them, linear embedding techniques show their promising efficiency and robustness
for scalable data reduction tasks.

For manifold learning based dimensionality reduction algorithms, one of the most base-
line methods might be principal component analysis (PCA). PCA is usually applied to com-
pact the feature with a large amount of original variables into a smaller set of newly pro-
jected variables or dimensions, also guarantees a minimum loss of information. Another
effective scheme for dimensionality reduction is linear discriminant analysis (LDA). LDA
is a supervised method that has been proved successful on classification problems [56, 57].
Following the Fisher discriminant criterion, in which we maximize the between-class co-
variance meanwhile minimize the within-class covariance, the final projection vectors can
be obtained. However, the classical LDA is a linear method and cannot tackle nonlinear
problems. In order to overcome this limitation, kernel discriminant analysis (KDA) [58]
is then developed. KDA is the nonlinear extension of LDA using the kernel trick that can
be implicitly performed in a new feature space, which allows non-linear mappings to be
learned. Beyond that, some other dimension reduction methods can also achieve promising
results for different applications. In addition, another popular method, termed discrimina-
tive locality alignment (DLA) [59], is also been used as dimensionality reduction algorithms
for classification.

we also review some structure preserving learning methods, such as ISOMAP [52],
Laplacian Eigenmap (LE) [60] and Locally Linear Embedding (LLE) [61], were designed
to preserve the manifold structure in the original space. A unified review and other manifold
learning algorithms can be seen in [62]. Generally, linear methods possess high efficiency.
Locality preserving projections (LPP) [42] are linear projective maps that are obtained by
solving a variational problem that preserves the neighborhood structure of the data set. LPP
aims to find the optimal linear approximations to the eigenfunctions of the Laplace Beltra-
mi operator on the manifold. Neighborhood Preserving Embedding (NPE) [63] also tried
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to preserve the local representation of data. Capturing the intrinsic geometrical structure of
data, Sparse Concept Coding (SCC) [64], a matrix factorization method, provides a sparse
representation of the image space. For fast vision applications, pairwise structure preserv-
ing was adopted in [65] and each image was represented by a binary vector calculated via
boosting coding.

In this thesis, we also introduce a novel linear unsupervised algorithm, termed Discrimi-
native Partition Sparsity Analysis (DPSA), explicitly considering different probabilistic dis-
tributions that exist over the data points, meanwhile preserving the natural locality relation-
ship among the data. Specifically, the Gaussian mixture model (GMM) is first applied to
partition all samples into several clusters. In each cluster, a number of sparse sub-graphs are
computed via the ℓ1-norm constraint to optimally represent the intrinsic data structure. Such
sub-graphs are demonstrated to be robust to data noise, automatically sparse and adaptive
to the neighborhood. All the sub-graphs from the clusters are then combined into a whole
discriminative optimization framework for final reduction.

1.3.2 Hashing

Hashing on global representation

Recently, hashing has become a popular method applied to large-scale vision problems in-
cluding object recognition, image retrieval, local descriptor compression, image matching,
etc. In these problems, hashing is exploited to expedite similarity computation and search.
Since the encoding of high-dimensional image feature vectors to short binary codes as pro-
posed in, compact hashing has enabled significant efficiency gains in both storage and speed.
In many cases, hashing with only several tens of bits per image allows search into a collec-
tion of millions of images in a constant time. The early exploration of hashing focuses on
using random projections to construct randomized hash functions. One of the well-known
representatives is Locality-Sensitive Hashing (LSH) which has been continuously expanded
to accommodate more distance/similarity metrics including ℓp distance for p ∈ (0,2], Ma-
halanobis distance, and kernel similarity. Furthermore, kernelized locality-sensitive hashing
(KLSH) [44] has also been successfully proposed and utilized for large-scale image retrieval
and classification. Because of theoretical guarantees that original metrics are asymptotically
preserved in the Hamming (code) space with increasing code length, LSH-related methods
usually require long codes to achieve good precision. Nonetheless, long codes result in low
recall since the collision probability that two codes fall into the same hash bucket decreases
exponentially as the code length increases

To design effective compact hashing, a number of methods such as projection learning



10 Introduction

for hashing have been introduced. In [66], the authors proposed to use stacked Restrict-
ed Boltzmann Machine (RBM) [67], and showed that it is indeed able to generate compact
binary codes to accelerate document retrieval. Recently, another attempt called boosted sim-
ilarity sensitive coding (BSSC) [65] has also been proposed to learn a weighted Hamming
embedding for task specific similarity search. Furthermore, principled linear projections like
PCA Hashing (PCAH) [68] has been developed for better quantization compared with ran-
dom projection hashing. Additionally, another popular technique called Spectral Hashing
(SpH) [69] was proposed, which preserves the data locality relationship to keep neighbors
in the input space as neighbors in the Hamming space. After that, researchers utilize an-
chor graphs to obtain tractable low-rank adjacency matrices for efficient similarity search,
termed Anchor Graphs Hashing (AGH) [70]. Beyond that, Self-Taught Hashing (STH) [71],
Kernel-Based Supervised Hashing (KSH) [72], Compressed Hashing (CH) [73], etc., have
been effectively applied for large-scale data retrieval tasks, as well.

Although the existing learning methods achieve promising results in a variety of appli-
cations, they basically rely on complex and advanced mathematical knowledge to optimize
the pre-defined object functions. However, for some optimization problems, direct solution-
s cannot always be found. Besides, in large-scale settings, matrix factorization techniques
used in the above methods can also cause a heavy computational burden. So how to auto-
matically generate better solutions to optimization problems becomes an interesting topic
for real-world vision applications. In this thesis, we propose evolutionary compact embed-
ding (ECE), which applies genetic programming (GP) in combination with AdaBoost to
automatically evolve dimensionality reduction. ECE is demonstrated to enable accurate and
robust large-scale image classification/retrieval.

In particular, we intentionally combine GP with a boosting trick to obtain a novel embed-
ding method. For an M-bits embedding, GP is used to iteratively generate a best-performing
weighted binary classifier for each bit by jointly minimizing its empirical risk with the Gen-
tle AdaBoost strategy [74] on a training set. This embedding scheme reduces the Hamming
distance between the data from the same class, while increasing the Hamming distance for
data from different classes. The final optimized reduction representation is defined as the
code calculated from the non-linear GP-evolved binary learner for each embedding bit.

Local feature hashing

However, being either unsupervised or supervised, all these existing hashing algorithms are
primitively designed for global representations, e.g., GIST features [75] computed from w-
hole images. For realistic image retrieval tasks, however, these global hashing techniques
achieve suboptimal performance when images contain different complications such as clut-



1.3 Learning Compact Embedding 11

tering, scaling, occlusion and viewpoint changes. To overcome these problems, local fea-
tures, e.g., SIFT [8], are usually adopted to represent the images, which has been proved to
be more robust in challenging scenarios. Inspired by advantages of local representations, in
this thesis, we intend to develop a local feature based, supervised hashing method for im-
proving the retrieval performance on realistic datasets. Being applied to detected keypoints,
local hash codes are able to avoid the limitations such as background variations, occlusions,
and shifts in global representations.

The goal of the work is to model a unified image retrieval technique based on supervised
local feature hashing. To obtain more meaningful hashing code, two preserving schemes are
adopted in our optimization, i.e., pairwise structure preserving and bigraph regularization.
For pairwise structure preserving, a related work for fast vision applications has been car-
ried out by Shakhnarovich et al. [65], in which each image is represented by a binary vector
calculated via boosting coding. For the learning stage, positive examples are pairs of images
xi, x j, so that x j is one of the nearest neighbors of xi, x j ∈ NN(xi). Negative examples are
pairs of images that are not neighbors. A more related approach that works for local fea-
ture learning has also been introduced in [76]. In our framework, we preserve the pairwise
structure information in hashing learning to embed high dimensional feature descriptors in-
to a similarity-preserved Hamming space with a low dimension. However, only considering
the pairwise relationship between each local features is not informative, since it lacks the
high level measurement from source images. In fact, the images, which local features come
from, and their corresponding class labels are noteworthy as well for pattern recognition
tasks. Therefore, we are interested in the structure of the bipartite graph (a.k.a. bigraph)
consisted of images and classes, i.e., the relationship between images and classes connect-
ed by local features. Image-to-class (I2C) distance provides a feasible way to measure it,
which was first introduced in the naive Bayes nearest neighbor (NBNN) classifier [35]. It
represents the sum of all distances from the local features of an image to their correspond-
ing nearest neighbors in each class. This mechanism effectively avoids the quantization
error in the bag-of-features model by computing ‘image-to-class’ distance rather than the
‘image-to-image’ distance. Furthermore, motivated by [77], to alleviate the computation
of the eigen-decomposition of matrix in our method, a bilinear projection is employed to
make the algorithm more efficient. To be specific, bilinear projection applies two projection
matrices to local features, which have much smaller sizes than the original single projection
matrix. Since the computational complexity of eigen-decomposition is cubic degree on the
dimension of the matrix, the effect of applying smaller matrices is quite conspicuous.

We first propose a supervised Bilinear Local Feature Hashing (BLFH) framework for
large-scale image similarity search, in which the pairwise structure preserving and the I2C
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distance preserving are naturally combined together. Since the raised problem is regarded as
nonconvex and discrete, our objective function is then optimized via an alternate way with
relaxation and converges to a near-optimal solution. Considering a more realistic application
where not all samples’ labels in dataset are available, a semi-supervised version of BLFH
(referred as SBLFH) is additionally proposed. In the case of SBLFH, all the data can be used
but only a few data are labeled. The relevant results show that our SBLFH can effectively
learn the hash codes for image retrieval tasks as well. Moreover, our method is designed
for local feature hashing, however, the original Hamming Ranking and Hamming Table
cannot be directly applied to local feature based image indexing. Thus, we also introduce
an image indexing/searching scheme named Local Hashing Voting (LHV), which has been
demonstrated to be efficient and accurate for image similarity search in our experiments.

1.4 Summary of Remaining Chapters

The rest of the thesis is organized as follows. In Chapter 2, the work of learning discrimina-
tive key poses for action recognition is systematically reviewed. In Chapter 3, the detailed
architecture of our genetic programming-based hand gesture recognition is presented. The
work on feature learning for image Classification via multiobjective genetic programming
is also illustrated in Chapter 4. In Chapter 5, the proposed work of discriminative parti-
tion sparsity analysis for dimensionality reduction is presented. The evolutionary compact
embedding for large-scale image classification and retrieval is then presented in Chapter 6.
In Chapter 7, a novel bilinear local feature hashing via bigraph regularization for improved
image retrieval is demonstrated in detail. In the last chapter, a brief conclusion and future
works is included.



Chapter 2

Learning Discriminative Key Poses for
Action Recognition

2.1 Overview

In this chapter, we aim to model human actions based on the key pose representation. Each
frame in an action sequence is treated as a pose. Inspired by the multi-resolution analy-
sis in image processing, we describe poses using the extensive pyramidal features (EPF),
which are composed of the Gabor pyramid, the Gaussian pyramid and the wavelet Lapla-
cian pyramid. These features capture the orientation, intensity and contour information and
thus provide an informative representation of poses.

Directly representing the video sequence by all the poses (frames), which contain re-
dundant and indiscriminate information, would confuse the classifiers in action recognition
[29]. We, therefore, propose to select a subset of key poses for the representation of each
action by a supervised machine learning algorithm, i.e., AdaBoost [34]. The selected key
poses for each action type are not only more compact but also constitute the most discrimi-
native body poses of an action, because the common poses that can exist in different action
types have been eliminated.

In our proposed action representation, each frame contains the whole human body with
the full spatial structural information, which shares the advantages with the global represen-
tation methods, while each video sequence is sparsely represented by a subset of key poses,
which enjoys advantages of local representations.Therefore, the proposed method can be
regarded as a semi-holistic representation of human actions and inherits the advantages of
global features in the spatial dimensions and, meanwhile, has the superiority of local fea-
tures in the temporal axis. Besides, another motivation of using pose representation is that it
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is possible to recognize actions by just looking at a few poses without examining the whole
sequence.

After obtaining the feature representations, the bag-of-features model and its variants
plus SVM is the standard method for action recognition. Recently, a classifier called Naive
Bayes Nearest Neighbor (NBNN) [35] is proposed for image classification tasks based on
sets of local features. The NBNN classifier avoids the quantization error in the bag-of-
features model by computing ’Image-to-Class’ distance rather than the ’Image-to-Image’
distance. McCann and Lowe [36] later developed the local Naive Bayes Nearest Neighbor
(LNBNN) classifier with a remarkable increase of accuracy and decrease of running time
compared with NBNN.

Inspired by LNBNN, in this chapter, we propose to further improve the NBNN model
and introduce an enhanced version of NBNN, named weighted local Naive Bayes Nearest
Neighbor (WLNBNN), for the final action classification. We will show experimentally that
WLNBNN is a more efficient and accurate classifier for action recognition.

2.1.1 Contributions

The contributions of this work lie in the following three aspects:
(1) We propose to describe action poses by extensive pyramidal features (EPF), which

can effectively capture the orientation, intensity and contour properties in a pose, and are
tolerant to shifts and scaling.

(2) The AdaBoost learning algorithm is employed for selecting discriminative poses,
which can significantly improve the performance of action recognition.

(3) A new classifier named weighted local Naive Bayes Nearest Neighbor (WLNBNN)
is proposed for final action classification which outperforms other classifiers, e.g., NBNN.

2.2 Literature Review

Action recognition based on pose representation has been applied in a large number of pre-
vious works. Thurau and Hlavác [78] presented a method to recognize actions in videos or
images based on primitive pose representations which are described by Histogram of Ori-
ented Gradients (HOG) [79]. Niebels and Fei-Fei [80] have employed a pose-based method
using a hierarchical model of shape and appearance for action recognition. Yang et al.[81]
proposed a approach that treats the pose of the person in an image as latent variables and
recognizes human actions from still images. Shao et al. [32] combined the pose silhouettes
with correlograms [82] to achieve action recognition by adopting the K Nearest Neighbor
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(KNN) classifier.

In a video sequence, however, not all of the poses are informative and discriminative for
action recognition. Some poses carry neither complete nor accurate information and would
even contain common patterns shared by various action types. Since these poses in a video
sequence cannot well represent the action and would cause confusion during the classifica-
tion phase, a great deal of work has been carried out to select the most representative and
discriminative poses, i.e., the key poses. To obtain visually distinct representations, Cooper
and Foote [83] presented methods for key frame selection based on capturing the similarity
to the represented segment and preserving the differences from other segments’ key frames,
so that different segments will have visually distinct representations. Zhao and Elgammal
[84] developed an effective approach for action classification, in which they first described
all the poses with the distribution of local motion features and their spatio-temporal ar-
rangements, and then selected a small set of most discriminative poses by comparing their
discriminative power for each independent action. Zhuang et al. [85] have applied an un-
supervised clustering method for key pose selection. Baysal el at. [30] selected the most
representative and discriminative poses from a set of candidates by ranking the potentiality
of each candidate pose in distinguishing an action from others. Cao et al. [31] developed a
PageRank-based centrality measure to select key poses according to the geometric structure
recovered by a manifold learning technique.

However, the above methods all use unsupervised techniques to measure pose similarity
or calculate the pose probability distribution for key pose selection. Since such unsupervised
methods do not consider the relationship among poses from different classes and are not able
to select the very discriminative poses from each actin type. Accordingly, in this chapter,
we propose to use a supervised method, i.e., the AdaBoost algorithm, to select a subset of
key poses for action classification.

AdaBoost as a popular machine learning algorithm is widely used in computer vision.
A pyramidal architecture has been developed by Fathi and Mori [86] to extract boosted
mid-level motion features for action recognition. Shen and Bai [87] have combined Gabor
wavelet features with AdaBoost selection algorithm for image classification. Due to its
remarkable performance on various vision tasks, we adopt the AdaBoost algorithm to select
discriminative key poses for action representation.

The use of the AdaBoost algorithm [88] for feature selection in computer vision is fairly
recent although hitherto has only been applied to 2D data. Shan et al. [89] have used image
tilings of local binary patterns (LBPs) for facial expression recognition where each feature
ture was constructed from a fixed-size sub-region to yield a complete description of each
face image. A small set of the most discriminative LBP features were extracted using the
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Fig. 2.1 The flowchart of the proposed method

AdaBoost learning algorithm for each independent facial expression and a support-vector
machine (SVM) employed for classification.

Zhang et al. [90] have also used LBPs selected using AdaBoost for face recognition.
Zhou and Wei [91] have used a similar method combining Gabor wavelet descriptors with
AdaBoost to select features for face verification. The boosted-feature selection method has
also been employed for real-time object detection [92] and fast pedestrian recognition [93]
with improvements in recognition accuracy, compared to the original methods. Laptev [94]
has applied the method to retrieving actions in movies.

2.3 Methodology

Our recognition system is comprised of three principal stages. 1) Pose description: for each
video sequence, the extensive pyramidal features are extracted from each frame to represent
the pose appearing in it. 2) Pose selection: the AdaBoost algorithm is adopted to select
the most discriminative key poses for each video sequence to represent the corresponding
action. 3) Action recognition: based on the boosted poses, a newly proposed classifier,
i.e., weighted local Naive Bayes Nearest Neighbor (WLNBNN), is employed for action
classification. The flowchart of the proposed method is illustrated in Fig. 2.1. We will detail
the three stages in the following subsections.

2.3.1 Extensive Pyramidal Features

Given a frame containing a pose, we would like to describe it with informative features
extracted from it. The descriptor is expected to capture the orientation, intensity and con-
tour information which is the main cue of a pose. We therefore employ Gabor filters, the
Gaussian pyramid and the wavelet transform to obtain extensive pyramidal features for pose
representation.
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Fig. 2.2 Illustration of the max pooling mechanism

Gabor feature map

Gabor filtering is regarded as the most effective method to obtain the orientation informa-
tion, which is widely used in feature extraction due to its property of orientation selection.
To mimic the biological mechanism of the visual cortex, Riesenhuber and Poggio [95] pro-
posed the HMAX model composed of four hierarchical feed-forward layers: S1, C1, S2 and
C2, in which S1 is obtained by Gabor filtering. Inspired by their work, we convolve each
pose frame with a bank of Gabor filters with multiple scales and orientations to extract the
S1 feature map. More specifically, we adopt Gabor filters with six different scales: 7× 7,
9×9, 11×11, 13×13, 15×15, 17×17, and four different orientations: 0, 45, 90, and 135
degrees. As a result, by convolving with 6×4 = 24 Gabor filters, we obtain 24 S1 feature
maps. The Gabor filter function is defined as follows:

G(x,y) = exp
(
−(X2 + γ2Y 2)

2σ2

)
cos
(

2π

λ
x
)
, (2.1)

where, X = xcosθ − ysinθ ,Y = xsinθ + ycosθ , (2.2)

and (x, y) is the coordinate relative to the center of the filter.

To obtain our Gabor feature maps that are equivalent to C1 in the HMAX model, we
perform max pooling operations among the different scales. In the other words, we pick the
maximum value across all the S1 feature maps with filter scales in each orientation. The
pooling among different scales is defined below:

IMAX = max
(x,y)

[I7×7(x,y,θs), I9×9(x,y,θs), ..., I17×17(x,y,θs)] (2.3)

where, IMAX is the output of max pooling and Ii×i(x,y,θs) denotes the feature map with the
scale i× i and the orientation θs.

Max pooling is also performed over local neighborhoods with windows varying from
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8× 8 to 12× 12 and a shifting step of 2 pixels. It is regarded as a key mechanism for
object recognition in human brain cortex, which can achieve more robust response when
human recognize objects with clutter and complex background in the receptive field [95].
An example of max pooling over local neighborhoods is given in Fig. 2.2. The procedure
of Gabor feature map extraction is illustrated in Fig. 2.3.

Gaussian center-surround feature map

Center-surround (CS) fields have the properties of edge enhancement, which can effectively
work for the detection, location in the human visual system [96]. The features with different
scales are enhanced and segregated into a series of sub-band images via the center-surround
operation. Gaussian center-surround feature map is also inspired from neuroscience [96]
similarity by mimicking perception of nerve cells which commonly respond to the dramatic
change of colors (i.e., the dark pixels surrounded by bright ones or the bright pixels sur-
rounded by dark ones). Center-surround operation has been successfully used to capture
the intensity information for scene classification. We first construct a seven-level Gaussian
pyramid on each frame (pose) of the input action sequence. For one given pose which is
viewed as the first level of pyramid, the Gaussian pyramid can be built by successfully con-
volving a Gaussian filter (with σ = 2) with several copies of the original pose image with
reduced resolutions obtained by down sampling. In this way, we obtain the corresponding
Gaussian pyramid. To be precise, the construction of the Gaussian pyramid as follows:

W (x,y) =
1

(
√

2πσ)
2 e−

x2+y2

2σ2 (2.4)

Gaussianlevel=l(i, j) =

∑
x

∑
y

W (x,y)Gaussianlevel=l−1(2i+ x,2 j+ y) (2.5)

where, l denotes the levels of a Gaussian pyramid and (i, j) represents the position of a pixel
in the pose image.

Gaussian center-surround feature map is then computed by subtracting point-by-point
between different center levels (we use center level=2, 3) and surrounded levels (we use
surround level=center level + d, where d=3, 4). However, since scales are different between
center levels and surround levels, we need to interpolate images of surround levels to the
same size as the corresponding center levels. In this way, the center levels and surround
levels can be subtracted point-by-point to generate the relevant sub-band images. As a
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Fig. 2.3 The outline of the Gabor feature map extraction
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Fig. 2.4 Illustration of the Gaussisan center-surround feature map

result, four levels of feature map (i.e., levels of 2-5, 2-6, 3-6, and 3-7) are calculated as
our Gaussian center-surround feature map. An example of the center-surround operation is
illustrated in Fig. 2.4.

Wavelet Laplacian pyramid feature map

Wavelet transform [97], [98] has been an efficient way of feature extraction. It decomposes
the input image into low frequency and high frequency bands which carry the coarse infor-
mation and detail information, respectively. In our method, we consider to use the Cohen-
Daubechies-Feauveau (CDF) ’9/7’ wavelet [99] to construct a wavelet Laplacian pyramid,
which is proved to be an effective technique for multi-resolution analysis, successfully ob-
taining the contour information of action poses.

Similar to the Gaussian center-surround feature map, we build our wavelet Laplacian
pyramid by first using the five-level 2D CDF ’9/7’ wavelet decomposition which generates
the coefficient matrices of the approximation (cA) and horizontal, vertical and diagonal de-
tails (cH, cV, cD, respectively). We utilize the five-level wavelet decomposition on each
frame (pose) from a given action sequence and only adopt the approximation (cA) of each
level to built a CDF ’9/7’ pyramid. To further compute the wavelet Laplacian pyramid fea-
ture map, we make the difference between each two CDF ’9/7’ pyramid adjacent levels,
which have been already interpolated into the equal size (i.e., li =Wi+1−Wi, where Wi and
Wi+1 are the adjacent levels from the multi-level CDF ’9/7’ pyramid; li denotes the ob-
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tained level of the wavelet Laplacian pyramid). For this case, a four-level wavelet Laplacian
pyramid feature map has been calculated to extract the contour information of action poses.

Extensive pyramidal feature representation

We obtain our extensive pyramidal feature representation by flattening the Gabor feature
maps, Gaussian center-surround feature maps and wavelet Laplacian pyramid feature maps
into a 1D feature vector. The obtained extensive pyramidal features provide an informative
representation of poses capturing multiple features including orientation, intensity and con-
tour. In addition, Gabor filtering, the Gaussian pyramid and the wavelet pyramid incorporate
a multi-resolution analysis, and therefore enjoy the properties of invariance to scaling. To
make a compact representation, we further adopt principal component analysis (PCA) to re-
duce the high dimensional feature vector (1656D) into a low dimensional space by keeping
the 99% principal components. The outline of our extensive pyramidal features extraction
framework is visualized in Fig. 2.5.

2.3.2 Key-Pose Selection by AdaBoost

Each frame in a raw N-frame action sequence has been represented by the extensive pyrami-
dal features. The AdaBoost learning algorithm is adopted to select the most discriminative
poses from a large pose features pool, so as to increase the final classification accuracy and
reduce the computational cost.

AdaBoost is one of the most popular machine learning algorithms, which aims to con-
struct a strong classifier from several weak ones. Given a training set {(x1,y1)...,(xN ,yN)},
where xi is a pattern and yi ∈ {+1,−1} is the class label of the corresponding pattern. At
first, all training patterns are assigned with the equal weights. In the learning phase, one
weak classifier is trained and all patterns are updated. Patterns that are incorrectly classified
have their weights increased, and on the contrary, the weights of those patterns that are cor-
rectly classified are decreased. After all iterations of training, patterns that are consistently
difficult to classify acquire larger weights, while easily classified patterns acquire even s-
maller weights. Here we adopt the ’Classification and Regression Trees’ (CART) [100] as
our basic weak classifiers. The outline of the AdaBoost selection algorithm is shown in
Algorithm 2.

Since poses from different classes would share similar features, for instance, some poses
from Running and Jogging in the KTH dataset are quite similar, these poses tend to confuse
the classifier in the recognition stage. We would like to select the most discriminative poses
for each class. The AdaBoost learning algorithm is then employed to select a subset of
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Fig. 2.5 The proposed extensive pyramidal features (EPF) extraction procedure: Firstly,
bounding boxes are extraction for all sequences; Secondly, simulating the human brain cog-
nition, the three different feature maps are extracted. Thirdly, the feature map is concatenat-
ed and then fed to PCA to generate the final EPF representation.

Fig. 2.6 The left sub-figure shows some selected key pose samples from the KTH dataset.
The middle sub-figure illustrates the final AdaBoost boundary for pattern classification. The
right sub-figure shows the error rate Vs. iterations during the AdaBoost learning.



2.3 Methodology 23

Algorithm 2 AdaBoost Pose Selection

The training set:(x1,y1) , ...,(xN ,yN), where xi denotes the sample data, and yi ∈ {1,−1}
stand for positive samples and negative samples respectively.
First step
Initialize weights:D1 (i) = 1

N ;
Second step
For t = 1, ...,T :

1. For each feature i, a weak classifier ht : X → {−1,1} is trained and calculated.
The error is evaluated with respect to εt = PDt (ht (xi) ̸= yi);

2. Choose the classifier with the lowest error in each iteration;
3. Calculate the weight of this weak classifier: αt =

1
2 ln
(

1−εt
εt

)
;

4. Update the weight of training data: Dt+1 (i) =
Dt(i)exp(−αtyiht(xi))

Zt
;

End
Final step
Select those features with the smallest weight values.

poses which are assigned with lower weights and are the most easily classified patterns in
the boosting stage. For each action category we select the top 25% most discriminative poses
(with the lowest weights) from a whole sequence as the key poses. It is demonstrated that
applying the AdaBoost learning algorithm can successfully reject those unrepresentative
poses and dramatically increase recognition rates.

As the traditional AdaBoost learning algorithm is for binary classification, for the classi-
fication of multiple classes, a technique named ’One-Against-All decomposition’1 has been
proposed, in which the AdaBoost classifier is trained between one action type and all the
other action types in the training set and this procedure is repeated for every action type in
the dataset. This decomposition technique is an extension of the arbitrary binary method
to a multi-class one. The decomposition method splits the original multi-class problem
to a series of simpler binary problems which can be solved by the given binary method.
The resulting binary classifiers are then properly combined together to form the multi-class
classifier. The related algorithm is shown in Equation 2.6, where q : χ → ϕ is the trained
multi-classifier, fy ∈ χ → R, y ∈ ϕ are the real labels. Therefore, the most discriminative
poses can be selected from the corresponding sequences for each action type. The key pose
selection procedure is illustrated in Fig. 2.6.

q(x) = argmax fy(x)
y∈ϕ

(2.6)

1http://cmp.felk.cvut.cz/cmp/courses/recognition/eprc/node7.html
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Fig. 2.7 The left sub-figure shows the NBNN algorithm which finds the nearest neighbors
from each of the classes (different shapes mean different classes in this figure). The right
sub-figure shows the LNBNN algorithm which only searches the local neighbors, and the k
nearest neighbors may come from only some of the classes.

2.3.3 Weighted Local Naive Bayes Nearest Neighbor

The SVM kernel machines on the bag-of-features model have dominated the classifica-
tion on local features, however, it suffers from the quantization error. Boiman et al. [35]
proposed a simple NN-based classifier named Naive-Bayes Nearest-Neighbor (NBNN). In
NBNN framework, ‘Image-to-Class’ distances are directly computed without any descriptor
quantization. Although NBNN is significantly simple, efficient with no training phase, its
performance can still achieve competitive results compared with the top leading learning-
based image classifiers.

Algorithm 3 WLNBNN classification

Require:An exemplar set {pi} consisting of descriptors from all classes.
Require:A query Q consisting of descriptors from a certain class.
For all descriptors di ∈ Q do;
{p1, p2, p3, . . . , pk}← NN(di,k), (NN means finding the nearest neighbor);
For all categories C found in the k nearest neighbors do;
distC = (minp j|Class(p j)=C∥ di− p j ∥2)×weight
(weight = [k/#(Class(p j) =C)]);
totals[C]← totals[C]+distC;

End
End
Return argminCtotals[C].

Recently, McCann and Lowe [36] introduced locality to NBNN and proposed the local
Naive Bayes Nearest Neighbor (LNBNN) classifier for image classification which outper-
forms the original NBNN classifier. For a query from the test set, LNBNN searches k
nearest neighbors regardless of their class labels, instead of finding the nearest neighbor in
each class. As a result, the classification problem converts from ’Does this feature descrip-
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tor look like one from class A?, class B?, class C?. . . ’ to ’What does the feature descriptor
look like?’. Fig. 2.7 shows the schematic diagram of LNBNN and more relative details can
be found in [36].

Based on the LNBNN algorithm, we further improve the NBNN classifier by assigning
weights to the Euclidean distances between a query descriptor and the nearest exemplar
set. The weights are related to the number of descriptors of each action type appearing
in KNN search. If m poses in the k nearest neighbors of the descriptor di fall in a certain
class, the weight for this class is k/m. Our detailed WLNBNN is visualized in Algorithm 3.
Since the size of the exemplar set has been dramatically reduced by the AdaBoost selection
process compared to the primal number of raw data, and the WLNBNN classifier applies an
k-nearest-neighbor search which is much faster than searching the nearest neighbor in each
class, the running time of our final classification is greatly reduced.

2.4 Experiments and Results

We systematically test our proposed method on four different action datasets, KTH [101],
Weizmann [102], IXMAS [103] and HMDB51 [104].

2.4.1 Datasets

The KTH dataset, is regarded as a benchmark action dataset containing 599 video clips
with six human action classes, including walking, jogging, running, boxing, hand waving
and handclapping, performed by 25 subjects in four different scenarios. We adopt the leave-
one-person-out cross validation, i.e., videos of 24 subjects are used as training data and
videos of the remaining one subject are used for testing. Following the pre-processing step
mentioned in [105], the coarse 3D bounding boxes are extracted from all the raw action
sequences and further normalized into an equal size of 100×100×60.

The Weizmann dataset contains 93 video sequences showing nine different people, each
of which performing 10 different actions. We extract the bounding boxes by using fore-
ground masks which are provided with the original dataset and normalize them into the size
of 100× 100× 60. The same leave-one-person-out evaluation scheme is adopted on this
dataset.

The IXMAS dataset is a multi-view dataset which contains 11 action classes. Each
action is repeatedly executed three times by ten actors and recorded by five cameras simul-
taneously. These actions are checking watch, crossing arms, scratching head, sitting down,
getting up, turning around, walking, waving, punching, kicking and picking up. We pre-
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process all the action sequences into the size of 100×100×80 and repeat the experiments
we have mentioned above. The same leave-one-person-out evaluation scheme is adopted on
this dataset.

The HMDB51 dataset collects 6849 action sequences from various movies and on-
line videos. In our case, we adopt 2241 sequences from 19 body action categories (i.e.,
cartwheel, clap hands, climb, climb stairs, dive, fall on the floor, backhand flip, hand-
stand, jump, pull up, push up, run, sit down, sit up, somersault, stand up, turn, walk and
wave.) as our research data. In our experiments, bounding boxes have been extracted from
all the sequences through masks released with the dataset and initialized into the size of
250× 300× 150. Following the methods in [104], we perform our evaluation on the three
split settings.

2.4.2 Comparison Results

The experimental results on the KTH dataset are illustrated in Table 7.2. Our method
achieves an average recognition rate of 94.8%, which outperforms the state-of-the-art tech-
niques. In addition, we have evaluated the newly proposed WLNBNN classifier. From
Table 7.2, we can see that WLNBNN outperforms the baseline SVM, LNBNN and NBN-
N classifers. We also plotted the confusion matrix of accuracies for the KTH dataset in
Fig. 2.9. We can see from the confusion matrix that our method can give excellent recogni-
tion rates on actions such as Boxing, Handclapping, Handwaving and Walking, however, the
greatest confusion exists between Jogging and Running which are two actions that would
intuitively seem hard to distinguish reliably. Fig. 2.8 shows some failure cases in the recog-
nition. It can be observed that two actions, i.e., Jogging and Running, which share similar
motion patterns, are hard to distinguish even by human eyes. In addition, the comparison
between with and without AdaBoost indicates that the employed AdaBoost algorithm can
successfully select the most discriminative poses and improve the recognition performance.

The results on the Weizmann dataset are shown in Table 6.2. As expected, our method
achieves a perfect 100% recognition rate, since the Weizmann dataset is a relatively ’easy’
dataset with greater inter-class variations. For comparison, we have also included results
of previous work. The proposed WLNBNN classifier outperforms the SVM, NBNN and
LNBNN classifiers and the AdaBoost pose selection contributes to the recognition perfor-

2The value of k is correlated to the highest classification accuracy by applying WLNBNN shown in
Fig. 2.12.

3The value of k is correlated to the highest classification accuracy by applying LNBNN shown in Fig. 2.12.
4Here we adopt AdaBoost algorithm as a classifier directly by considering the weight value of each pose’s

feature together to make a combined judgment for action recognition.
5We utilize the linear-SVM for classification.
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Fig. 2.8 Some failure recognition samples on the KTH dataset.

Table 2.1 Comparison of action recognition accuracies in percentage (%) on the KTH
dataset with different methods

❳❳❳❳❳❳❳❳❳❳❳Methods
Actions

Boxing Handclapping Handwaving Jogging Running Walking Average

EPF+AdaBoost+WLNBNN (k=25)2 95 97 98 89 87 98 94.8
EPF+AdaBoost+LNBNN (k=25)3 96 96 98 89 88 97 94.0

EPF+AdaBoost+NBNN 93 95 95 86 83 96 91.8
EPF+WLNBNN (k=25) 91 93 94 84 81 93 89.3

EPF+AdaBoost4 88 90 92 79 74 91 85.7
EPF+BOW+SVM5 89 91 93 84 80 94 88.5
Dollár et al. [14] 93 77 85 57 85 90 81.2
Niebles et al. [16] 98 86 93 53 88 82 83.3
Taylor et al. [106] - - - - - - 90.0

Ji et al.[27] 90 94 97 84 79 97 90.2
Jhuang et al. [107] 92 98 92 85 87 96 91.7

Schindler and van Gool [29] - - - - - - 92.7
Le et al. [108] - - - - - - 93.9

Liu and Shah [109] 98 95 96 89 87 100 94.2
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Fig. 2.9 The confusion matrix of classification results on the KTH dataset.
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Table 2.2 Comparison of action recognition accuracies in percentage (%) on the Weizmann
dataset with different methods

Methods Accuracy

EPF+AdaBoost+WLNBNN (k=25)2 100
EPF+AdaBoost+LNBNN (k=30)3 100

EPF+AdaBoost+NBNN 99.2
EPF+WLNBNN (k=25) 98.5

EPF+AdaBoost4 95.2
EPF+BOW+SVM5 97.8
Niebles et al. [16] 72.8
Jhuang et al. [107] 98.8
Yang et al. [110] 99.4

Fathi and Mori [86] 100

mance as well.

On the IXMAS dataset, we have evaluated our method not only on each single view, but
also on multiple views by combining the data from all five cameras. The overall accuracy
we obtain by applying multi-view fusion achieves a recognition rate of 94.5% which sig-
nificantly exceeds all the other results listed in Table 6.3. For each single view, our method
achieves the best results among all the methods. The WLNBNN classifier outperforms the
SVM, NBNN and LNBNN classifiers and the AdaBoost pose selection improves the ac-
curacies both on single view and multiple views. Fig. 2.10 shows the confusion matrix of
the multiple-view fusion results on the IXMAS dataset. Our method can achieve 100%
recognition rates on several action categories.

The HMDB51 dataset is a quite challenging dataset, however, our method can still pro-
vide relatively good recognition rates on three split settings based on [104]. As far as we are
aware, this is the first report of action recognition on this subset of 19 body action categories,
therefore, we do not compare with other recognition results, and only present ours in Ta-
ble 6.4. Consistent with the other three datasets, the proposed WLNBNN classifier performs
better than the SVM, NBNN and LNBNN classifiers on this dataset. The AdaBoost pose
selection improves the results as well. The confusion matrix is plotted in Fig. 2.11, which
demonstrates that our method gives a reasonable and meaningful recognition for each of the
action category.



30 Learning Discriminative Key Poses for Action Recognition

Fig. 2.10 The confusion matrix of the multiple camera fusion results on the IXMAS dataset.

Table 2.3 Comparison of action recognition accuracies in percentage (%) on the IXMAS
dataset with different methods

PPPPPPPPPMethods
Actions

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 1-5 fusion

EPF+AdaBoost+WLNBNN (k=30)2 85.6 91.2 88.6 86.2 82.3 94.5
EPF+AdaBoost+LNBNN (k=25)3 83.1 90.0 86.2 84.9 82.0 94.0

EPF+AdaBoost+NBNN 84.1 88.2 85.8 85.1 79.4 93.1
EPF+WLNBNN (k=30) 82.0 86.4 83.5 83.1 75.9 91.7

EPF+AdaBoost4 79.2 82.5 83.1 80.5 70.7 87.7
EPF+BOW+SVM5 81.4 84.8 86.1 82.7 77.3 89.6

Varma and Babu [111] 76.4 74.5 73.6 71.8 60.4 81.3
Liu and Shah [109] 76.7 73.3 72.1 73.1 - 82.8

Wu et al. [112] 81.9 80.1 77.1 77.6 73.4 88.2
Weinland et al. [113] - - - - - 93.3
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Table 2.4 Classification accuracies (%) on the HMDB51 dataset

PPPPPPPPPMethods
Splits

Split1 Split2 Split3 Average

EPF+AdaBoost+WLNBNN (k=40)2 49.1 54.3 44.6 49.3
EPF+AdaBoost+LNBNN (k=20)3 47.3 51.1 45.7 48.0

EPF+AdaBoost+NBNN 47.3 52.5 42.9 47.6
EPF+WLNBNN (k=40) 45.0 49.4 40.9 45.1

EPF+AdaBoost4 43.8 40.6 38.1 40.8
EPF+BOW+SVM5 45.7 48.4 39.2 44.4

Fig. 2.11 The confusion matrix of classification results on the HMDB51 dataset.
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Table 2.5 The comparison of computational complexity (seconds) between NBNN and
WLNBNN.

PPPPPPPPPMethods
Dataset

KTH Weizmann IXMAS HMDB51

NBNN 37s 22s 92s 1105s
WLNBNN 23s 14s 56s 227s

Table 2.6 Evaluation of individual features on the KTH, the Weizmann, the IXMAS and the
HMDB51 datasets. NB:(1) for WLNBNN classification, the number of nearest neighbors k
on each dataset is consistent in previous tables. (2) the accuracies of the IXMAS dataset in
this table denote the multi-view fusion results.

PPPPPPPPPMethods
Dataset

KTH Weizmann IXMAS HMDB51

Gabor feature map+AdaBoost+WLNBNN 87.5 95.2 89.4 42.1
Gaussian center-surround feature map+AdaBoost+WLNBNN 89.2 94.9 90.2 43.4

Wavelet Laplacian pyramid feature map+AdaBoost+WLNBNN 85.0 93.7 86.1 35.5
EPF+AdaBoost+WLNBNN 94.8 100 95.5 49.3

Fig. 2.12 Evaluation of the effects of k on the performance of the proposed method on the
KTH, the Weizmann, the IXMAS and the HMDB51 datasets.
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Table 2.7 The analysis of the computational complexity for the entire system on the KTH
dataset

PPPPPPPPPMethods
modules

EPF extraction AdaBoost selection WLNBNN classification Accuracy

EPF+AdaBoost+WLNBNN (k=40) 1.02×103 seconds 2.24×104 seconds 23 seconds 94.8%
EPF+WLNBNN (k=40) 1.02×103 seconds - 85 seconds 89.3%

2.4.3 Performance Analysis

To evaluate the parameters of the proposed method, we have also conducted analysis exper-
iments on the four datasets. As both the WLNBNN and LNBNN classifiers use k nearest
neighbors search, we investigated the effects of k on the performance of WLNBNN and
LNBNN. The results on the four datasets are shown in Fig. 2.12. The proposed WLNBNN
classifier achieves higher accuracies than the LNBNN and NBNN classifiers on all the four
datasets.

In addition, as in the representation of poses, we combine Gabor features, the Gaussian
pyramid and the wavelet pyramid, we would like to evaluate the individual contribution of
each feature to the representation. The results are illustrated in Table 6.4. It is obviously
manifested that the extensive pyramidal features, i.e., the combination of the Gabor features,
the Gaussian pyramid and the wavelet pyramid, outperform any individual feature. The
results validate the effectiveness of the proposed extensive pyramidal features.

To demonstrate the efficiency of the proposed WLNBNN classifier, we compare the clas-
sification time between NBNN and WLNBNN on four different datasets in Table 6.7. The
results show that our WLNBNN classifier runs faster and more accurate than the original
NBNN.

Additionally, we have also evaluated the computational cost of each component and
the whole system. Table 6.5 shows the time comparison of the methods with and without
AdaBoost selection on the KTH dataset. From the results, we can observe that the AdaBoost
key pose selection is time-consuming, however, the computational time in the classification
phase is significantly reduced while producing a higher accuracy. The same trend would
exist on the other three datasets.

2.5 Summary

In this chapter, we have presented a new method based on key pose selection for human
action recognition. Poses from each video sequence are described by invariant and infor-



34 Learning Discriminative Key Poses for Action Recognition

mative extensive pyramidal features constructed by computing relevant Gabor feature map,
Gaussian pyramid feature map and wavelet Laplacian pyramid feature map. AdaBoost is
then employed to learn the most discriminative key poses to represent actions. With the
boosted poses for each action, a new classifier named weighted local naive bayes nearest
neighbor (WLNBNN) is proposed for action classification. We have further systematically
evaluated our proposed method on four different datasets, i.e., the KTH dataset, the Weiz-
mann dataset, the IXMAS dataset and the HMDB51 dataset, and obtained superior results
for action recognition over previously published works. Typically, the AdaBoost algorithm
takes much time to learn the discriminative key poses, however, it only needs to be carried
out once on the training set and the computational cost will be greatly reduced after the key
pose selection.

Although, these features selecting from original feature pool demonstrate their discrimi-
nant in current research domain, for some more realistic and complex scenarios, this kind of
selective features have been proved still not effective and flexible for task-specific problems.
Thus, in the next chapter, the new machine learned features via genetic programming (GP)
are introduced for dynamic gesture recognition.



Chapter 3

Dynamic Hand Gesture Recognition
Using Genetic Programming

3.1 Overview

In the last section, we have thoroughly discussed learning discriminative representations
via feature selection for human action recognition. In terms of the experimental results, it
indeed leads to a promising results compared with previous reports. However, most of the
current works rely on these kinds of hand-crafted features, which heavily limit the effec-
tiveness of the recognition methods. The main motivations of this work can be concluded
as follows: "Hand-crafted" schemes to extract information from the video is not meaning-
ful enough; and "Hand-crafted" even deep learned schemes are not adaptive and flexible to
task-specific video recognition. Therefore, in this chapter, we successfully apply an evolu-
tionary method genetic programming (GP) to synthesize machine learned spatio-temporal
descriptors for automatic gesture recognition instead of using hand-crafted descriptors. In
our architecture, a set of primitive low-level 3D operators are first randomly assembled as
tree-based combinations, which are further evolved generation-by-generation through the
GP system, and finally a well performed combination will be selected as the best descriptor
for high-level gesture recognition. To the best of our knowledge, this is the first report of
using GP to evolve spatio-temporal descriptors for gesture recognition.

We address this as a domain-independent optimization issue and evaluate our proposed
method, respectively, on two public dynamic gesture datasets: Cambridge hand gesture
dataset and Northwestern University hand gesture dataset to demonstrate its generalizabil-
ity. The experimental results manifest that our GP-evolved descriptors can achieve better
recognition accuracies than state-of-the-art hand-crafted techniques.
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The contributions of this work lie in the following two aspects:

(1) We utilize genetic programming (GP) to generate machine-learned spatio-temporal
descriptors for gesture recognition.

(2) The proposed methodology and the generated descriptors can be applied to other
video analysis related applications directly.

3.2 Literature Review

A comprehensive survey of recent gesture recognition methods can be found in [114]. S-
ince this work is on the design of descriptors, we briefly review feature representation-based
methods for gesture recognition. Holte et al. [115] proposed a view-invariant gesture recog-
nition algorithm by finding motion primitives in the 3D data using 3D optical flow and
harmonic motion context representation. A probabilistic Edit Distance classifier is further
applied to identify which gesture best describes a string of primitives. Cutler and Turk [116]
developed a real-time, view-based gesture recognition system, in which optical flow is esti-
mated and segmented into motion blobs. Gestures are recognized using a rule-based tech-
nique charactering the motion blobs. Campbell et al. [117] evaluated ten different features
combined with HHMs for learning and recognition of gestures and the final results indicate
that velocity features are superior to positional features, and partial rotational invariance is
sufficient for accomplishing good performance. Bretzner et al. [118]represented hand pos-
es using multi-scale color image features with qualitative inter-relations in terms of scale,
position and orientation.

Genetic programming (GP), as a powerful machine learning method, has been gradually
adopted in computer vision. Trujillo and Olague [119]used GP for the automatic generation
of a 2D low-level feature extractor that can be applied to high-level computer vision tasks.
Torres et al. [120] utilized GP to find a well-performed combination of the similarity func-
tions for image retrieval. Poli [121] applied GP to automatically select an efficient optimal
filter for segmenting the brain in medical images. On the same line, a GP-based detector was
proposed by Howard et al. [122] to detect ships in synthetic aperture radar (SAR) images.
Davis et al. [123] adopted GP to select the most discriminative features for multivariate data
analysis without any prior information. In this chapter, we use GP to automatically syn-
thesize spatio-temporal descriptors from a set of 3D filters and operators for dynamic hand
gesture recognition.
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Fig. 3.1 The outline of our architecture.

3.3 Methodology

Automatic gesture recognition has received much attention due to its potential in various
applications. In this chapter, we propose a domain-independent machine learning method-
ology to automatically generate low-level spatio-temporal descriptors for high-level gesture
recognition using genetic programming (GP). A group of 3D operators are assembled to
construct an effective problem-specific descriptor which is capable of selectively extracting
features from hand gestures. The final evolved descriptor, combining the nice properties
of those primitive 3D operators, can both extract meaningful features and form a compact
gesture representation. We learn our proposed system over a training set, in which descrip-
tors are evolved by maximizing the recognition accuracy through a fitness function, and
further evaluate the GP-selected one over a testing set to demonstrate the performance of
our method. The architecture of our proposed model is illustrated in Fig. 3.1.

Genetic programming (GP) is an evolutionary computation (EC) [124] technique that
automatically solves problems without requiring the user to know or specify the form or
structure of the solution in advance. The basic steps in GP is shown in Fig. 3.2. Generally,
GP programs can be represented as a tree structure, evolved (by selection, crossover and
mutation) through sexual reproduction with pairs of parents being chosen stochastically but
biased in their fitness on the task at hand, and finally select the best performing individ-
ual as the terminal solution. In our method, each individual in GP represents a candidate
spatio-temporal descriptor and is evolved continuously through generations. To establish the
architecture of our model, three significant concepts: function set, terminal set and fitness
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Fig. 3.2 The basic steps in a genetic programming.

function should be first defined.

3.3.1 Function Set and Terminal Set

A key component of GP is the function set which constitutes the internal nodes of the tree
and is typically driven by the nature of the problem. To make the GP evolution process fast,
more efficient operators that can extract meaningful information from gesture sequences
are preferred. Our function set consists of 18 unary operators and 3 binary ones, including
processing filters and basic arithmetic functions, as illustrated in Table 3.1.

In our GP structure, we divide our function set into two tiers: filtering tier (bottom tier)
and max-pooling tier (top tier). The order of these layers in our structure is always fixed.
This means, in any GP-evolved program, the operators in the filtering tier must be located
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Table 3.1 Function set in genetic programming

Operator Name Input Function Description Operator Type

Filtering tier
Gau1 1 Sequence 3D Gaussian smooth filter with σ = 1 Filter
Gau2 1 Sequence 3D Gaussian smooth filter with σ = 2 Filter
LoG1 1 Sequence 3D Laplacian of Gaussian filter with σ = 1 Filter
LoG2 1 Sequence 3D Laplacian of Gaussian filter with σ = 2 Filter

GBO-0 1 Sequence 3D Multi-scale-max Gabor filter with orientation of 0 degree Filter
GBO-45 1 Sequence 3D Multi-scale-max Gabor filter with orientation of 45 degrees Filter
GBO-90 1 Sequence 3D Multi-scale-max Gabor filter with orientation of 90 degrees Filter

GBO-135 1 Sequence 3D Multi-scale-max Gabor filter with orientation of 135 degrees Filter
Wavelet 1 Sequence 3D CDF ’9/7’ wavelet filter Filter

Aver 1 Sequence 3D Averaging filter with 5×5×5 sampling window Filter
Med 1 Sequence 3D Median filter with 5×5×5 sampling window Filter
ABS 1 Sequence Take the absolute value pixel by pixel Arithmetic
DoF 1 Sequence Subtract between adjacent frames of the input sequence Arithmetic

LOG2 1 Sequence Take the logarithm of with 2 at the bottom for the input sequence Arithmetic
ADD 2 Sequences Add two input sequences pixel by pixel Arithmetic
SUB 2 Sequences Subtract two input sequences pixel by pixel Arithmetic

ABSsub 2 Sequences Absolute subtract two input sequences pixel by pixel Arithmetic

Max-pooling tier
Max-pooling5 1 Sequence 3D max-pooling with pooling window size 5×5×5 on the input sequence Filter

Max-pooling10 1 Sequence 3D max-pooling with pooling window size 10×10×10 on the input sequence Filter
Max-pooling15 1 Sequence 3D max-pooling with pooling window size 15×15×15 on the input sequence Filter
Max-pooling20 1 Sequence 3D max-pooling with pooling window size 20×20×20 on the input sequence Filter

below the operators in the max-pooling tier. In addition, not all the operators listed in the
function set have to be used in a given tree and the same operator can be used more than
once. The topology of the tree is essentially unrestricted.

Filtering Tier

In the filtering tier, aiming to extract meaningful features from dynamic hand gestures, we
adopt 3D Gaussian filters, 3D Laplacian filers, 3D wavelet filters, 3D Gabor filters and some
other sequence processing operators and basic arithmetic functions.

3D Gaussian filters are adopted due to their ability for denoising and 3D Laplacian filters
are used for separating signals into different spectral sub-bands. 2D Gaussian and Laplacian
operators have been successfully applied to capture intensity features for scene classification
in [125]. Wavelet transforms can perform multi-resolution analysis and obtain the contour
information of hand gestures by using the 3D CDF ’9/7’ wavelet filters. 3D Gabor filters are
regarded as the most effective method to obtain the orientation information in a sequence.
Following Riesenhuber and Poggio’s work [126], we simulate the biological mechanism of
the visual cortex to define our Gabor filter-based operators. Firstly, we convolve an input
gesture sequence with Gabor filters at six different scales (7×7×7, 9×9×9, 11×11×11,
13×13×13, 15×15×15 and 17×17×17) under a certain orientation ( i.e., 0, 45, 90, or
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Fig. 3.3 The outline of multi-scale-max Gabor filter. This figure illustrates an example of
multi-scale-max Gabor filter with fixed orientation of 45 degrees

Fig. 3.4 Illustration of the mechanism of max-pooling filter
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135 degree); We further apply the max operation to pick the maximum value across all six
convolved sequences for that particular orientation. Fig. 3.3 illustrates the procedure of our
Multi-scale-max Gabor filters for a certain orientation. The max operation among different
scales is defined as follows:

IMAX = max
(x,y,z)

[I7×7×7(x,y,z,θs), I9×9×9(x,y,z,θs),

..., I15×15×15(x,y,z,θs), I17×17×17(x,y,z,θs)]
(3.1)

where IMAX is the output of the Multi-scale-max Gabor filter. Ii×i×i(x,y,z,θs) denotes the
convolved sequences with the scale i× i× i and the orientation θs.

Beyond that, several other 3D operators that are common for feature extraction are added
to the function set to increase the variety of the selection for composing individuals during
the GP running. Basic arithmetic functions are chosen to realize operations such as addition
and subtraction of the internal nodes of the tree to make the whole evolution procedure more
natural.

Max-pooling Tier

In the max-pooling tier, we include four functions listed in Table 3.1, which are performed
over local neighborhoods with windows varying from 5× 5× 5 to 20× 20× 20 with a
shifting step of 5 pixels. This max-pooling operation (see Fig. 3.4) is a key mechanism for
object recognition in the cortex and provides a more robust response, successfully tolerating
shift and scaling, in the case of recognition in clutter or with multiple stimuli in the receptive
field [126]. Given a sequence, max-pooling functions will pick out the local max values
from the input and shrink it along spatial and temporal dimensions to compose a more
compact representation of the input sequence. To ensure the closure property [39], we
further resize outputs calculated from max-pooling functions to an identical size as inputs
using linear interpolation. In this way, the sizes of inputs and outputs of our max-pooling
functions are the same.

In addition, the terminal set is also a significant component of genetic programming.
For gesture recognition, we consider the following aspects of our task: (1) The terminal set
must capture the holistic information of each gesture sequence; (2) During the evolution
process, the evaluation of the fitness function must be efficient. In our implementation, we
use the raw gesture sequence as the terminal set. In each tree-based genetic structure, a
gesture sequence is located as the bottom leaf of the entire tree and connects with the higher
function nodes directly. A representative GP tree is illustrated in Fig. 3.5.
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Fig. 3.5 Illustration of the tree structure of genetic programming
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Fig. 3.6 The procedure of spatio-temporal sequence representation

3.3.2 Fitness Function

The most important part of genetic programming is the fitness function which determines
how well a program is able to solve the problem. To evaluate the candidate GP-evolved
descriptors, we here adopt the classification accuracy calculated by a linear SVM classifier
on the training set as the fitness function. In our GP architecture, for any of the input gesture
sequences, we can obtain an output sequence with an identical size as the input due to the
enclosure property.

We further divide the output by a 10× 10× 5 grid. To make the final representation
further invariant to shift and scaling, we take the mean values of each divided sub-block and
concatenate them into a 500D vector as the input to the linear-SVM as shown in Fig. 3.6. To
obtain a more reliable fitness evaluation, we adopt five-fold cross-validation for each new
GP tree using SVM. We divide the GP training set randomly into five equally-sized parts and
perform five repetitions of training the SVM on 4/5 of the set and testing on the remaining
1/5. The overall fitness Er is the average of the five-fold cross-validation accuracies. The
corresponding fitness function is defined as follows:

Er = (1− (
n

∑
i=1

(SV M[acui])/n))×100% (3.2)

where SVM[acui] denotes the classification accuracy of fold i by the SVM, n indicates the
total number of folds executed with cross-validation. Here n is equal to 5.
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Table 3.2 Parameter settings for genetic programming running

Population Size 300
Generation Size 60
Crossover Rate 85%
Mutation Size 10%

Selection for Reproduction ’lexictour’
Survival Method ’totalelitism’
Stop Condition ≤ 2%

3.4 Experiments and Results

In this section we describe the details of our GP implementation and the experimental results
of our method.

3.4.1 GP Implementation

We evaluate our proposed method using 64-bit Matlab 2011a (with the genetic programming
toolbox GPLAB 1) on a server configured with a 6-core processor and 32G of RAM running
the Linux OS. Some significant user-defined parameters for GP are listed in Table 6.5.

For GP evolution, a lexicographic parsimony pressure has been applied as the selection
method in our running. Like the original selection method, a random number of individuals
are chosen from the population and further the best of them is chosen. The only difference
from the original selection is that, if multiple individuals are equally fit, the shortest one
(the tree with the least number of nodes) is chosen as the best. Lexicographic parsimony
pressure has shown effective control bloat [39] in different types of problems. In addition,
we have adopted the ’totalelitism’ scheme as the survival module in which all the individuals
from both parents and children populations are ordered by fitness alone, regardless of being
parents or children. This scheme has been demonstrated to lead to promising results in many
applications. We also set the GP termination of 2%, which means if the value calculated by
the fitness function is equal to or lower than 2%, our GP running will be stopped and return
the best-so-far individual to users.

3.4.2 Datasets

We systematically evaluated our proposed method on two dynamic hand gesture datasets,
namely, the Cambridge hand gesture dataset [127] and the Northwestern University hand

1http://gplab.sourceforge.net/download.html
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Fig. 3.7 Some example frames of two datasets. Images in the left black-box are from the
Cambridge hand gesture dataset and images in the right black-box are from the Northwest-
ern University hand gesture dataset.

gesture dataset [128]. Some example frames from these two datasets are visualized in
Fig. 3.7.

Cambridge hand gesture dataset is a commonly used benchmark gesture dataset with
900 video clips of 9 hand gesture classes defined by 3 primitive hand shapes (i.e., flat,
spread, V-shape) and 3 primitive motions (i.e., Leftward, Rightward, Contract). For each
class, it includes 100 sequences captured with 5 different illuminations, 10 arbitrary mo-
tions and 2 subjects. Each sequence was recorded in front of a fixed camera having coarsely
isolated gestures in spatial and temporal dimensions. All video sequences are further nor-
malized into 200× 200× 50 in our experiments by linear interpolation. Following the ex-
perimental setting in [127], the GP training is performed on the data acquired in the single
plain illumination condition, while testing is done on the data acquired in the remaining four
illuminations.

Northwestern University hand gesture dataset is a more diverse dataset which con-
tains 10 categories of dynamic hand gestures in total: move right, move left, rotate up,
rotate down, move downright, move right-down, clockwise circle, counterclockwise circle,
"Z", and "cross". This dataset is performed by 15 subjects and each subject contributes 70
sequences of these ten categories with seven postures (i.e., Fist, Fingers-extended, ’Ok’, In-
dex, SideHand, SideIndex and Thumb). Our hand gesture recognition task is similar to [128]
- we just focus on recognizing the 10 dynamic gestures. Therefore the samples within the
same category in different hand postures are considered as one category, and each category
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Fig. 3.8 The confusion matrix of classification results on the Cambridge hand gesture
dataset.

accordingly has 105 samples. In our experiments, we first resize all the sequences into an
identical size of 240×240××50 and gesture sequences from the first 8 subjects are chosen
to compose the GP training set and the rest of sequences are used as the testing set. We fur-
ther evaluate the performance by adopting ’leave-one-out’ cross validation on the remaining
7 subjects and consider the average accuracy as the final recognition result.

3.4.3 Results

For the Cambridge hand gesture dataset, Fig. 3.9 shows the LISP format of the GP-evolved
best-performing descriptor which finally achieves an overall accuracy of 85% on the four
testing sets with different illuminations using the linear SVM classifier. For comparison, we
list the results published in the original work of the Cambridge hand gesture dataset. All
these results were obtained using the same setting as ours. In addition, we also compare with
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Fig. 3.9 The LISP format of the GP-generated descriptor on the Cambridge hand gesture
dataset.

Table 3.3 Comparison of gesture recognition accuracies (%) on the Cambridge hand gesture
dataset

PPPPPPPPPMethods
Set

Set1 Set2 Set3 Set4 Average accuracy

Our Method 83 86 82 89 85
Kim et al. [127] 81 81 78 86 82

Niebles et al. [16] 70 57 68 71 67
Wong and Cipolla [129] - - - - 44

HMHI [130] 79 79 83 81 81
HOG/HOF [20] 81 77 79 80 79
3D-HOG [131] 76 72 80 75 76
3D-SIFT [132] 79 74 69 77 75

prevalent hand-crafted 3D descriptors including HMHI, HOG/HOF, 3D-HOG and 3D-SIFT.
Under the same experimental setting, we use the hierarchical motion history image (HMHI)
as a holistic descriptor to extract the motion features for gesture recognition. For the other
three 3D descriptors, we first divide gesture sequences with a 10×10×5 grid, and describe
each sub-block with one of the descriptors. Then, we concatenate the obtained features on
all the sub-blocks into a vector as the final representation which is fed to the linear SVM
for classification. All the relevant results are shown in Table 6.9. It is obvious that our
proposed method significantly outperforms both the state-of-the-art techniques and popular
hand-crafted features. A confusion matrix for the total testing sets is plotted in Fig. 3.8. We
can see that our method can produce excellent recognition rates on gestures with flat and
spread hand poses, however, the greatest confusion exists in V-shape hand pose which is
hard to distinguish from the other gestures reliably.

The results on the Northwestern University hand gesture dataset are shown in Table 3.4
with the comparison to other methods . As expected, our GP-evolved descriptor achieves
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Fig. 3.10 The confusion matrix of classification results on the Northwestern University hand
gesture dataset.

Fig. 3.11 The LISP format of the GP-generated descriptor on the Northwestern University
hand gesture dataset.
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Table 3.4 Comparison of gesture recognition accuracies (%) on the Northwestern University
hand gesture dataset.

❳❳❳❳❳❳❳❳❳❳❳❳Methods
Accuracy

’leave-one-out’ overall

Our Method 96.1
Shen et al. [128] 95.8
HOG/HOF [20] 86.4

HMHI [130] 85.2
3D-HOG [131] 82.5
3D-SIFT [132] 77.4

a classification accuracy rate of 96.1% on the testing set combining with linear SVM, s-
ince this gesture dataset is a relatively easy dataset with small intra-class variations and
large inter-class variations. The result of [128] was obtained by re-implementing relevant
experiments under the experimental setting as ours. Results of the popular 3D descriptors
were produced in the same manner as the Cambridge dataset described above. From Ta-
ble 3.4, we can observe that our method is comparable to Shen et al.’s and outperforms
prevailing hand-crafted descriptors. Fig. 3.11 shows the LISP format of the generated GP-
evolved descriptor. We also illustrate the confusion matrix of the recognition results on the
Northwestern University hand gesture dataset in Fig. 3.10. We can see that our method can
achieve 100% recognition rates on several gesture categories.

3.5 Summary

In this chapter, we have proposed a domain-independent method using genetic program-
ming (GP) to generate machine-learned descriptors for dynamic gesture recognition. Our
method addresses gesture recognition as an optimization problem, and allows a computer to
automatically synthesize holistic descriptors from a pool of primitive sequence processing
operators without any prior knowledge. We have evaluated our method on the Cambridge
hand gesture dataset and the Northwestern University hand gesture dataset and achieved
accuracies of 85% and 96.1%, respectively, with the obtained best-performing descriptors
evolved by GP. In both datasets, the GP-generated descriptors significantly outperform pre-
vailing hand-crafted features.

To make the GP learned descriptor more discriminative and robust for noisy and complex
data, in the next chapter, we will develop a multi-objective genetic programming (MOGP),
which can better resist the over-fitting for noisy data than original GP, for image classifica-
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tion.



Chapter 4

Feature Learning for Image
Classification via Multi-objective Genetic
Programming

4.1 Overview

Feature extraction is the first and most critical step in image classification. Most existing
image classification methods use hand-crafted features, which are not adaptive for different
image domains. In the last chapter, a genetic programming learning scheme has been used
for automatically evolving the discriminative feature representations and achieved better re-
sults compared with hand-crafted features. To further control the overfitting caused by noisy
data and outliers in standard genetic programming, a multi-objective genetic programming
has been successfully proposed. In this chapter, we report what we believe to be the first
approach using MOGP for generating (near-)optimal feature descriptors in image classifica-
tion applications. Given a group of primitive operators and a set of terminals (i.e., labelled
training examples and random constants), MOGP evolves (hopefully) better-performing in-
dividuals in the next generation. Since MOGP selection depends on two fitness objectives,
we use the Pareto front to represent a set of non-dominated ’rank-1’ solutions which provide
different trade-offs among the two objectives based on standard evaluation criteria. Further-
more, we test these evolved solutions on the evaluation set to select the (near-)optimal one
with the lowest test error as the final feature descriptor. Typically, the features extracted
by the MOGP system contain domain-specific information which makes the later image
classification easier. It should be noted that our proposed method does not guarantee any
mathematical optimum, while, in practice, it usually finds a ’good’ solution to an NP-hard
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problem in an acceptable amount of computing time. A preliminary version of our approach
has been applied to evolve holistic scene features for scene recognition [40].

To evaluate the generalizability of our approach, we apply the MOGP on four inde-
pendent datasets: object dataset - Caltech-101 [133], scene dataset - MIT urban and Na-
ture [75], face dataset - CMU PIE [134] and hand posture dataset - Jochen Triesch II [135].
For comparison, we also show that the proposed method is superior to some state-of-of-art
hand-crafted and learning techniques.

The contributions of this work lie in the following aspects:
(1) We have successfully utilized multi-objective genetic programming (MOGP) to au-

tomatically design feature descriptors for image classification and achieved better perfor-
mance compared with state-of-the-art methods.

(2) The proposed MOGP learned descriptors provide an effective way to simultaneously
extract and fuse the R, G, B and gray scale information into one feature representation.

4.2 Literature Review

Much of previous work has explored the use of low-level image features for high-level scene
(or object) classification. As this work is on holistic descriptors, we review related works on
holistic feature representations. Commonly, we adopt either dense sampling with local de-
scriptors or pure holistic descriptors for holistic representations. Popular choices for densely
sampled feature descriptors include SIFT, HOG, P-HOG [37], LBP and shape context [38].
These features can work well for certain image types but may not be so descriptive for other
types.

The other group of methods attempt to describe an image as a whole. In [75], a rep-
resentation of the structure for real-world scenes termed ’Spatial Envelope’ was proposed.
This representation is related to the shape of the space and is meaningful to human observer-
s. It can be described as a set of perceptual properties (naturalness, openness, roughness,
ruggedness and expansion). The spatial envelope properties provide a holistic description
of the scene where local object information is not taken into account. Song and Tao [125]
performed scene classification adopting biologically inspired features (BIF), which simulate
the human brain cortex by encoding orientation, intensity and color information of the scene
and can tolerate shifting, translation, and scaling. Beyond that, the work in [136] computes
the feature descriptor by adopting a bank of Gabor filters tuned to 8 orientations at 4 differ-
ent scales. The square output of each filter is then averaged on a 4×4 grid. In addition, the
methods in [137, 138] have also applied global features to different tasks of image classifi-
cation. Either discriminative or generative techniques used in the above methods are always
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based on hand-crafted features.

Recently, deep learning methodologies have been utilized to obtain machine-learned
features for image classification. They can always effectively control training overfitting
and overcome the limitations of back propagation. Among them, deep belief network (DB-
N) [139] shows its capacity to automatically learn multiple layers of non-linear features
from images and videos. Another similar learning method is called convolutional neural
network (CNN) [140]. In these architectures, the features are extracted at different levels
(e.g., edges, object parts, and objects). These methods aim to extract general-purpose fea-
tures for any images rather than learning domain-adaptive feature descriptors particularly
for certain tasks such as classification.

With the development of artificial intelligence, evolutionary methods simulate biologi-
cal evolution to automatically generate solutions for user-defined tasks. GP, as one of the
most outstanding evolutionary methods (see Algorithm 1), has been widely used in the
computer vision domain. Poli [121] has applied GP for image analysis which automatical-
ly selects efficient optimal filters for segmentation of the human brain in medical images.
Torres et al. [120] have used GP for finding an optimal combination of the similarity func-
tions to design a method for image retrieval. Specifically, GP has also been adopted to
automatically extract features. Koza [141] has evolved character detectors using GP, while
Tackett [142] has evolved a symbolic expression for image classification based on image
features. Bot [143] has also applied GP to evolve new features in the decision space by
using the k-nearest neighbour (KNN) classifier. Sherrah et al. [144] have proposed a sys-
tem which automatically extracts features for a range of classification problems. In their
method, GP is used to allow useful features to emerge from the raw data, simulating the
innovative work of the human designer. The proposed method has successfully improved
the classification performance on real-world problems. Atkins et al. [145] have explored
the domain-independent image classification application based on GP, which is capable of
evolving a single program that can both extract useful features and use those features to
classify an image. In addition, Guo et al. [146] have used GP to perform automatic feature
extraction from the original feature database with the aim of improving the discriminatory
performance of a classifier and reducing the input feature dimensionality at the same time.

The previous usages of GP are mostly based on a single objective. However, in real-
world design problems, there are often multiple competing objectives for target tasks. For
instance, in a GP evolved classification system, it is obvious that the design objective is to
minimize the classification error rate. In addition to the specific measure being taken for
evaluation, the tree complexity should also be considered to control the overfitting caused
by bloat. In fact, the experimental results show the multi-objective genetic programming
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Fig. 4.1 The outline of our method.

(MOGP) can successfully restrict the over-parameterization problems during the program
evolving. Zhang and Rockett [147] have proposed a genetic, optimal feature extraction
method through the MOGP. Their method has been applied to edge detection problems for
image processing and achieved a comparable result with the Canny edge detector. Simi-
larly, Watchareeruetai et al. [148] have also adopted MOGP for automatic construction of
feature extractor. Liddle and his colleagues [149] have proposed a MOGP approach for the
task of providing a decision-maker with a diverse set of alternative object detection pro-
grams that balance between high detection rate and low false-alarm rate. In addition, an
MOGP approach has been developed by Olague and Trujillo [150] for automated synthesis
of operators that detect interest points. In their work, the MOGP provides the appropriate
framework for the automatic design of image operators that achieve interesting trade-offs
between relevant performances criteria that are meaningful for a variety of vision tasks. In-
spired by the above successful applications, in this chapter, we have proposed a multi-layer
MOGP-based learning system that evolves a single individual program mimicking the visu-
al cortex and can simultaneously extract and fuse features from different color channels for
image classification.

4.3 Methodology

In this chapter, we design a multi-layer feature extraction system by successfully applying
multi-objective genetic programming (MOGP) for image classification. A group of primi-
tive 2D operators is adopted in our architecture to automatically evolve a single individual
program that is allowed to extract discriminative features from the 2D image data directly.
The proposed MOGP-based method is regarded as a generalized methodology for image
classification rather than just as a specific one for a certain task. We evaluate our method on
different types of datasets and it achieves outstanding results, which outperform previously
published techniques. The outline of our method is illustrated in Fig. 4.1.
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Fig. 4.2 The grammatical structure of an individual.

4.3.1 Program Structure Design

In our architecture, the individual MOGP program can be divided into four layers, i.e., the
data input (bottom layer), the filtering (middle 1 layer), max-pooling (middle 2 layer) and
concatenation (top layer) .The order of these layers in our structure is always fixed, which is
consistent with the physical structure of the human visual cortex [151]. Both data input and
concatenation are one-depth layer, while, the depth of the filtering and max-pooling layers
is dynamic and unrestricted according to the evolve procedure of MOGP. Fig. 4.2 illustrates
the proposed structure of an example program.

The data input layer is located at the bottom of the whole structure and serves as the entry
of the input 2D images which are all normalized into the same size by using bilinear interpo-
lation. As a result, all the images are fed to the MOGP program with the identical size. The
filtering layer is above the data input layer, and all the data are operated through the nodes
among the filtering layer and the outputs of these nodes are still 2D images, which have the
same size as the inputs. The third layer is max-pooling, where all the data are processed
by the max-pooling technique (see in Fig. 4.4) which is considered as a key mechanism for
robust response in the case of recognition in the clutter scene or with multiple stimuli in
the receptive field [126]. On the top of our proposed structure is the concatenation layer,
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Fig. 4.3 The Terminal Set, Fitness Measure and Function Set (shown at the top of the figure)
are the human-supplied inputs to the MOGP system. The computer program (shown at the
bottom) is the output of the MOGP system.

Fig. 4.4 The illustration of the max-pooling mechanism.

where all the data acquired from the adjacent layer are first ’flattened’ from 2D images to
1D vectors which are then fed to the concatenation operators. It fuses the features computed
from the below sub-trees of MOGP and constructs a more informative vector as the final
extracted feature descriptor of the input image.

The rest of this section describes the required terminal set, function set and fitness func-
tion, which are the most significant preparatory steps defined by users in our MOGP system
as shown in Fig. 4.3

4.3.2 Terminal Set

With the inspiration from the human visual cognition system, we attempt to mimic the cortex
of human brain to distinguish different scenes, objects based on the appearance features such
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Table 4.1 Statement of terminal nodes

Terminal Type Description

Ir Image Red component of the RGB-image
Ig Image Green component of the RGB-image
Ib Image Blue component of the RGB-image

Igray Image Gray scale image calculated from the RGB-image
C double Returns a random double between 0 and 5

Fig. 4.5 An example of the components of an input image.

as color, intensity or contrast information. For most of the time, our brain is more sensitive
to color-related information when recognizing the corresponding targets. As the relevant
mechanism in human brain is much more complex than how we think about it, we simply
simulate the basic principle of the human recognition procedure to solve practical tasks. In
this way, the terminal set for our proposed methodology is expected to be more specific
than a general GP definition and highly depends on the nature of specific tasks. Here, we
consider proposing a system to extract features from the color components (i.e., Red, Green,
and Blue) and intensity information (gray scale) of RGB-images. Furthermore, the input of
the bottom layer is image dependent, which means that each image Ii from the learning set
has a corresponding Ti defined by: Ti ={Ir, Ig, Ib and Igray} shown in Fig. 4.5

Additionally, to make the final feature fusion more flexible, we also define a group of
double-precision number coefficients C in our terminal set for constructing a weighted linear
concatenation of sub-MOGP-trees in the top layer. In the proposed architecture, the optimal
weight coefficients for the sub-trees are randomly distributed and selected by MOGP. C is
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Table 4.2 Filtering Layer functions

Operator Name Input Function Description Operator Type

Gau1 1 Image Gaussian smooth filter with σ = 1 Filter
Gau2 1 Image Gaussian smooth filter with σ = 2 Filter
GauX 1 Image The derivative along X axis of Gaussian filter Filter
GauY 1 Image The derivative along Y axis of Gaussian filter Filter
LoG1 1 Image Laplacian of Gaussian filter with σ = 1 Filter
LoG2 1 Image Laplacian of Gaussian filter with σ = 2 Filter
Lap 1 Image Laplacian filter Filter

GBO-0 1 Image Multi-scale-max Gabor filter with orientation of 0 degree Filter
GBO-45 1 Image Multi-scale-max Gabor filter with orientation of 45 degree Filter
GBO-90 1 Image Multi-scale-max Gabor filter with orientation of 90 degree Filter

GBO-135 1 Image Multi-scale-max Gabor filter with orientation of 135 degree Filter
Aver 1 Image Averaging filter with 5×5 sampling window Filter
Med 1 Image Median filter with 5×5 sampling window Filter
EHIS 1 Image Histogram equalization Enhancement
ABS 1 Image Take the absolute value pixel by pixel Arithmetic
ADD 2 Images Add two input images pixel by pixel Arithmetic
SUB 2 Images Subtract two input images pixel by pixel Arithmetic

ABSsub 2 Images Absolute subtraction of two input images pixel by pixel Arithmetic
MULTI 2 Images Multiply two input images pixel by pixel Arithmetic

DIV 2 Images Protected-division: divide two input images pixel by pixel and return 0 if divisor is 0 Arithmetic
SQR 1 Image Square the input image pixel by pixel Arithmetic

SQRT 1 Image Extract a square root pixel by pixel Arithmetic
LOG2 1 Image Take the logarithm with 2 at the bottom for input image Arithmetic

TIME-0.5 1 Image Multiply 0.5 to the input image pixel by pixel Arithmetic

defined by: C = coe f f icient ∈ (0,5) . Therefore, the complete terminal set is Ti∪C. The
data types used for the terminal of program nodes are listed in Table 4.1.

4.3.3 Function Set

A key concept for MOGP is the function set (i.e., internal nodes of the tree) which is the
alphabet of the programs and typically driven by the nature of the problem domain. Com-
monly, the choice of functions is based on the following principles:

(1)The set must contain functions which can extract meaningful information.
(2)To minimize the total running time of MOGP, all the operators in the function set

need to be relatively simple and efficient.

Functions for Filtering Layer

The filtering layer is the most significant part of our MOGP procedure, extracting the effec-
tive features from the input data. We construct the filtering layer by using 19 unary functions
and 5 binary functions, shown in Table 4.2. All the filtering functions listed here operate on
the images which represent in the form of a pixel matrix.

In the proposed MOGP architecture, we adopt Gaussian filter series, Garbor filter se-
ries and some basic arithmetic functions. Since Gaussian and Gaussian derivative filters are
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Fig. 4.6 The outline of multi-scale-max Gabor feature extraction.
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Table 4.3 Max-pooling Layer functions

Operator Name Input Function Description Operator Type

Maxpooling2 1 Image 2D max-pooling with pooling window size 2×2 on the input image Filter
Maxpooling4 1 Image 2D max-pooling with pooling window size 4×4 on the input image Filter
Maxpooling6 1 Image 2D max-pooling with pooling window size 6×2 on the input image Filter
Maxpooling8 1 Image 2D max-pooling with pooling window size 8×8 on the input image Filter
Maxpooling10 1 Image 2D max-pooling with pooling window size 10×10 on the input image Filter

widely used to reduce the noise and smooth input images, we adopt them into our func-
tion set to achieve denoising and extract the meaningful contour information. 2D Laplacian
filters are used for separating signals into different spectral sub-bands. Gabor filters are re-
garded as an effective method to obtain the orientation information. To mimic the biological
mechanism of the human visual cortex, we follow Riesenhuber and Poggio’s work [126] to
define our GBO-θs (i.e., u=0, 45, 90 and 135) filter by two steps: first, convolving the input
image with six different scale Gabor filters (7× 7, 9× 9, 11× 11, 13× 13, 15× 15 and
17× 17) with a certain orientation θs; Second, using max operation to pick the maximum
value across all six convolved images with the filter scales in each orientation. Fig. 4.6 il-
lustrates our multi-scale-max Gabor filter. The pooling equation among different scales is
defined below:

GBO-θs = max
(x,y)

[I7×7(x,y,θs), I9×9(x,y,θs),

..., I15×15(x,y,θs), I17×17(x,y,θs)]
(4.1)

where, GBO-θs is the output of a multi-scale-max Gabor filter and Ii×i(x,y,θs) denotes the
convolved images with the scale i× i and the orientation θs.

In addition, basic arithmetic functions are chosen based on the desire to allow the MOGP
process computing features from images more naturally. The binary arithmetic functions
also play a significant role to stretch the MOGP tree by splits and make the individual
programs more variable and diversified as such qualities significantly influence final results.

To ensure operator closure [39], we have only used functions which map one or two
2D images to a single 2D image with the identical size (i.e., the input and the output of
each function node have the same size). In this way, a MOGP tree can be an unrestricted
composition of function nodes but still always produce a semantically legal structure.

Functions for Max-pooling Layer

The max-pooling function set is listed in Table 4.3. All the functions in this set are per-
formed over local neighbourhoods with windows varying from 2× 2 to 10× 10 with an
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Table 4.4 Concatenation Layer functions

Operator Name Input Function Description Operator Type

Cat1 1 Image and 1 coefficient ’Flatten’ the 2D input image to a 1D vector with coefficient Fusion

Cat2 2 Images and 2 coefficients
’Flatten’ the two 2D input images to 1D vectors and concatenate

these two vectors into a long vector with coefficients Fusion

Cat3 3 Images and 3 coefficients
’Flatten’ the three 2D input images to 1D vectors and concatenate

these three vectors into a long vector with coefficients Fusion

Cat4 4 Images and 4 coefficients
’Flatten’ the four 2D input images to 1D vectors and concatenate

these four vectors into a long vector with coefficients Fusion

incremental step of 2 pixels both horizontally and vertically. This max-like feature selec-
tion operation is a key mechanism for object recognition in the human brain cortex and
provides a robust response in the case of recognition with clutter or multiple stimuli in the
receptive field. This kind of mechanism successfully achieves invariance to image-plane
transforms such as translation and scaling. One noteworthy point here is that the output of
a max-pooling filter is inevitably shrunk along the spatial dimensions relative to the input.
To ensure the closure property mentioned above, we further resize each output calculated
from max-pooling filters to an identical size with the inputs using linear interpolation. In
this way, the size of inputs and outputs of our max-pooling filters are totally the same.

Functions for Concatenation Layer

After the filtering and the max-pooling layers, we have successfully extracted the corre-
sponding features from the original input images through the tree-based MOGP programs.
By first converting 2D images to 1D vectors, we further concatenate these 1D vectors calcu-
lated from different sub-trees into a weighted linear concatenation vector with coefficients
randomly selected from the terminal set as shown in Fig. 4.7 , where C1 and C2 denote
the corresponding coefficients automatically obtained by MOGP and ‘

⊕
’ means concate-

nation. To cope with different numbers of sub-trees, in our architecture, we include four
different concatenation functions with different numbers of inputs. The relevant functions
are illustrated in Table 4.4. Different from the other three functions in this set, for Cat1,
there exists no concatenation procedure, but only ’flatten’ the 2D input image to a 1D vector
and complete multiplication by the corresponding coefficient for each element in the vector.
We also restrict the concatenation layer with only one depth. Since this layer is the last layer
in our program structure, the output we obtain from this layer is the final feature descriptor
extracted from the input image.

Each function in the function set is regarded as a tree node in evolved programs, which
connects the outputs of lower level functions or inputs. Note that, in our proposed MOGP
architecture, not all the functions listed in the function set have to be used in a given structure
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Fig. 4.7 An illustration of Concatenation Layer.

and the same function can be used more than once. The topology of our MOGP structure
is essentially unrestricted. Besides, functions in the function set are also highly related
to our problem domain. For this work, we aim to construct novel discriminative feature
descriptors for image classification. So, what we choose in the function set are effective
filters for feature extraction, i.e., Gaussian filters, Gabor filters, Laplacian filters, etc. We
expect the whole learned architecture is consistent with the physical structure of the human
visual cortex.

4.3.4 Fitness Function

The basis of evolutionary methods is to maximize the performance of individual solutions
as gauged by some appropriate fitness functions. In our approach, we apply multi-objective
genetic programming (MOGP) to evolve each individual program generation by generation
and finally select the best-preformed individual as the optimal solution.

Two Defined Fitness Objectives

Classification error rate: To evaluate the candidate MOGP-evolved feature descriptor, we
estimate their classification error rate Er using a linear support-vector-machine (SVM) on
the learning set. We take the output of the MOGP tree and first adopt principal component
analysis (PCA) to reduce the high dimensional vector into a low dimensional one which
comprises the input of the SVM. To obtain a more reliable fitness evaluation, for each can-
didate MOGP tree we estimate the classification error rate with the SVM by using n-fold
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cross-validation (we use n = 10 in all of our experiments below). We train the SVM on
n-1/n-ths of the set and test on the remaining. The overall fitness of the candidate MOGP
tree is taken as the average of the n SVM test-fold error rates. As an alternative way, other
classifiers, such as K nearest neighbor (KNN), can be also used for fitness evaluation. The
related fitness function is defined as follows:

Er = (1− (
n

∑
i=1

(SV M[acui])/n))×100% (4.2)

where, SVM[acui] denotes the classification accuracy of fold i by the SVM, n indicates the
total number of folds executed with cross-validation. Here n is equal to 10.

Tree complexity measurement: We usually measure solutions’ complexity by count-
ing the node number of the tree structure. Unless inhibited from doing so, trees in GP have
a tendency to grow without limit, which is termed bloat. As an undesirable phenomenon,
Bloat may cause poor generalizability, a manifestation of the well-known overfitting effec-
t in machine learning. In addition, bloated trees are also time-consuming for evaluation,
which slows the evolution and heavily influences the efficiency of program running, es-
pecially for on-line GP learning. According to [17], minimizing the tree node count in a
multi-objective setting can effectively suppress tree bloat.

Tree Optimization

For the proposed multi-objective genetic programming (MOGP) method, each individual
is evaluated against these two fitness objectives, each of which we wish to simultaneously
minimize. In fact, what we can obtain is a set of solutions which are all listed as the ’rank-1’
according to the Pareto front shown in Fig. 4.8. Members on the Pareto front dominate
the other candidates but are equivalent to each other. We further test the set of ’rank-1’
solutions on an independent evaluation set to select the (near-)optimal one with the best
test error (average classification error rate) by adopting the same 10-fold cross-validation
procedure mentioned above. In this way, we obtain the best-preformed solution through
MOGP as the final feature descriptor for image classification.

4.4 Experiments and results

In this section, we describe the details of our GP implementation and the relevant experi-
mental results we obtain by our approach.
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Fig. 4.8 A simple illustration of the Error-Complexity Pareto front. Given a set of objectives,
a solution is said to Pareto dominate another if the first is not inferior to the second in all
objectives, and, additionally, there is at least one objective where it is better. This notion can
lead to a partial order, where there is no longer a strict linear ordering of solutions. Here,
Point B significantly dominates Point A (A and B have the same error rate, while B has
less tree complexity than A), but is equal to point C. The final ’rank-1’ solutions are a set
of feature descriptors which dominate the other candidates but are equivalent to each other
according to our multi-objectives. In this figure, we consider that all the solutions (e.g.,
Point B and Point C) existing on the Pareto front compose the ’rank-1’ solution set.
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4.4.1 GP Implementation

We evaluate the proposed method adopting Matlab 2011a (with the genetic programming
toolbox GPLAB 1) on a server with six processor cores and 32 GB of RAM running the
Linux OS. To successfully operate the MOGP algorithm, some significant parameters are
defined below:

Population and Generation Size: According to some previous relevant experiments,
the larger population we define in GP running, the better solution we can potentially obtain.
In this case, considering the high computational cost, we set a population size of 200 in-
dividuals with the initial population generated with the ramped half-and-half method [39].
The number of generation is defined as 70.

Genetic Operators: We use both cross over and mutation [39] as our genetic operators
and fix their probabilities during the whole GP run at 90% and 10%, respectively.

Selection for Representation: The selection method we apply in GP is tournament
which chooses each parent by randomly drawing a number of individuals from the popula-
tion and selecting only the best of them.

Survival Method: We adopt the ’totalelitism’ scheme for MOGP running. In this
scheme, all the individuals from both parents and children populations are ordered by fit-
ness alone, regardless of being parents or children. Consequently, the best individuals can
be kept and inherited generation by generation. This scheme has been demonstrated leading
to promising results in many applications.

Stop Condition: We set our MPGP termination as 0.5% of the error rate. If the clas-
sification error rate computed through the fitness function is equal or lower than 0.5%, our
MOGP running will be stopped and return the best-so-far individual.

4.4.2 Datasets

To demonstrate the effectiveness, our proposed method is systematically evaluated on four
datasets of different genres, i.e., object dataset: Caltech-101, scene dataset: MIT urban and
Nature, face dataset: CMU PIE and hand posture dataset: Jochen Triesch II. Note that in
these four datasets, all the images are RGB color images. Some image examples from these
four datasets are shown in Fig. 4.9. In the remaining part of this section, we will show the
data structure of our methodology and the details of all of the datasets we use.

1http://gplab.sourceforge.net/download.html, A genetic programming Toolbox for MATLAB
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Fig. 4.9 Some image examples of four datasets. Images in the top black-box are from the
Caltech-101 dataset, images in the second black-box are from the MIT urban and Nature
scene dataset, images in the third black-box are from the CMU PIE face dataset and images
at the bottom black-box are from the Jochen Triesch II hand posture dataset.

Fig. 4.10 The division of a dataset.



4.4 Experiments and results 67

Experimental Data Division

As mentioned before, for each dataset, we first divide it into three parts, i.e., the learning set,
the evaluation set and the testing set. The details of the data division are shown in Fig. 4.10.

In our experiments, to obtain a more reliable fitness evaluation, each new MOGP in-
dividual is estimated by the average classification error rate with the SVM using ten-fold
cross-validation. We divide the learning set randomly into ten equal parts and perform ten
repetitions of training the SVM on 9/10-ths of the set and test on the remaining tenth. After
MOGP evolution, we obtain a set of the ’rank-1’ solutions as the potential candidates.

To select the best-performed solution, we further carry out the same procedure of ten-
fold cross-validation to test the classification error on the evaluation set. In this way, we
select one solution with the best testing error (lowest average error rate) as the (near-)optimal
feature descriptor for final testing.

For the testing set, all images are first represented by the selected feature descriptor. We
further divide the set into ten subsets with the identical size and in every loop we train the
SVM using 9/10 of the testing set and test on the remaining. This procedure is repeated ten
times and the overall classification result on a certain dataset is calculated as the average of
the ten SVM test-fold accuracies.

Dataset Description

The first dataset is the Caltech-101, a standard dataset for image classification. It has 101
classes (animals, furniture, vehicles, flowers, face, etc.) with high intra-class appearance
and shape variability. Due to the limitation of the computational resource, we only select
the first 20 images from each category as the learning data, the following 15 images from
each category as the evaluation data and the rest of images from each category as the testing
data. We further normalize all of them into an equal size of 100× 100 pixels using linear
interpolation. In this way, 3030 images construct the learning set, 1515 images compose the
evaluation set and the remaining 5800 images make up the testing set.

The second dataset is MIT urban and nature scene. This dataset is composed of 2688
color images with eight categories including ’coast&beach’, ’highway’, ’open country’,
’tall building’, ’forest’, ’street’, ’mountain’ and ’city center’. In the pre-processing stage,
each image in the dataset is first normalized into the size of 125× 125 pixels by linear
interpolation and then the first 100 images from each category are selected as the learning
set, the following 50 images from each category form the evaluation set and the remaining
images construct the testing set.

The third dataset is the CMU PIE face dataset which contains 41,368 images from 68
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Fig. 4.11 The LISP format of the (near-)optical feature descriptor generated through MOGP
on the Caltech-101 dataset.

subjects (people). All the face images are captured by 13 synchronized cameras and 21
flashed under 13 different poses, 43 different illumination conditions and 4 different facial
expressions. We select all the images with five near frontal poses (i.e., No. 05, No. 07, No.
09, No. 27, No. 29) under different illumination conditions and facial expressions. In this
way, about 170 images from each subject are obtained to compose our dataset. We further
pre-process all the images by employing the Viola-Jones face detector [152] to subtract the
background and then normalize them into the same size of 64× 64 pixels through linear
interpolation. In our experiments, the first 80 images are chosen from each subject to com-
pose the learning set, the following 40 images from each subject construct the evaluation set
and the rest of the images are used as the testing set.

The last dataset we utilize is Jochen Triesch Static Hand Posture Database II which
consists of more than 1000 RGB images of 128× 128 pixels with 12 hand gestures per-
formed by 19 persons with different skin colors under three backgrounds, i.e., light, dark
and complex. Considering the computational resource, we utilize linear interpolation to
normalize all the images into the identical size of 50× 50 pixels. Referring to [135], we
collect the first 10 images from each gesture category as our learning set, the following 5
images from each category form the evaluation set and the remaining data are used as the
testing set.

4.4.3 Results

For the Caltech-101 dataset, we select the best MOGP-evolved feature descriptor with 78.2
% from a set of potential solutions using the evaluation set and finally achieve a classifica-
tion accuracy of 80.3% on the testing set using the linear-SVM. Since MOGP can effectively
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Table 4.5 Comparison of image classification accuracies (%) based on color images.

❳❳❳❳❳❳Methods
Accuracy Method description RGB fusion method Caltech-101 MIT urban

and nature CMU PIE
Jochen Triesch

Static Hand
Posture II

Proposed MOGP-evolved holistic descriptors Tree structure fusion 80.3 88.5 81.2 91.4
Hand-crafted features

Flattened image Flatten the 2D raw image to a 1D vector Concatenation 27.6 22.3 44.3 32.1

Shape context
Apply Canny edge detector to obtain contour information

and diagram log-polar histogram bins (5 bins for log r, 12 bins for θ )
are used in computing the shape context.

Concatenation 38.1 48.2 47.0 67.4

Color histogram
Build joint histograms of 3 colors in the RGB space and

for each color component 4 bins (i.e., 0−63, 64−127, 128−191,
and 192−255) are used for a total of 64 dimensions.

Concatenation 20.1 27.6 34.7 28.8

HOG
Densely extract on a regular grid of 10×10 pixels with an

overlap of 5 pixels along both the length and width and then
concatenate the obtained features into a vector

Concatenation 60.7 65.4 55.3 70.2

P-HOG
Densely extract on a regular grid of 10×10 pixels with an

overlap of 5 pixels along both the length and width and then
concatenate the obtained features into a vector

Concatenation 67.2 71.8 60.0 74.2

SIFT
Densely extract on a regular grid of 10×10 pixels with an

overlap of 5 pixels along both the length and width and then
concatenate the obtained features into a vector

Concatenation 63.3 66.0 58.4 75.6

LBP
Densely extract on a regular grid of 10×10 pixels with an

overlap of 5 pixels along both the length and width and then
concatenate the obtained features into a vector

Concatenation 58.3 60.3 53.2 71.8

Gabor bank Gabor filtering with 4 orientations at 6 different scales and output
of each filter is then averaged on a 4×4 grid to form a vector. Concatenation 67.1 77.2 67.2 77.9

BIF Biologically-inspired feature combining orientation, intensity and color
information to represent images, see in [125] Contained in method 75.8 82.1 77.6 87.4

HRSE Use a very low dimensional feature to represent the dominant
spatial structure of a scene, see in [75] Concatenation 72.4 78.0 73.1 85.5

Texton histogram
A 512-entries texton dictionary [153] is built by clustering

responses to a bank of filters with 8 orientations, 2 scales and 2 elongations
and then mapping all images into 512D histograms.

Concatenation 73.4 78.7 75.2 86.1

Centrist Census transform histogram encoding the structural properties within
an image and suppressing detailed textural information, see in [154] Concatenation 75.1 84.0 74.3 86.7

Machine learned features

DBN
Train a hierarchical architecture (with neuron numbers in hidden

layers 500-500-2000) using the deep brief network with
backpropagation fine-tuning for feature extraction

Learned 78.9 82.3 78.2 90.5

CNN Train a 5-layer feature extraction mechanism using
the convolutional neural network Learned 75.8 80.8 77.8 89.4
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Fig. 4.12 The LISP format of the (near-)optimal feature descriptor generated through MOGP
on the MIT urban and natural scene dataset.

restrain the overfitting and the number of samples in the testing set is much larger compared
with the evaluation set, the (near-)optimal descriptor achieves a relatively unexpected high-
er result in the final testing set. In some sense, MOGP has managed to perform the task
of feature extraction all by itself, without any help from any domain expert or background
knowledge. On the other hand, this has somehow demonstrated the scalability of our ap-
proach for large-scale object recognition. The corresponding MOGP program is visualized
in Fig. 4.11, in which Gaussian, Laplacian and Gabor operators have been automatically
selected by MOGP at the filtering layer to extract the orientation and intensity features, and
several scales of pooling operators are able to obtain the most robust and distinctive respons-
es to different data resolutions on the top layer. The whole learned architecture is indeed
consistent with the physical structure of the human visual cortex.

The results on the MIT urban and natural scene dataset are shown in Table 4.5. As
expected, the best MOGP-evolved feature descriptor achieves a classification accuracy rate
with 88.3% on the evaluation set and 88.5% on the testing set, since this scene dataset is
a relatively easy dataset with small intra-class variations and large inter-class variations.
Fig. 4.12 shows the LISP format of the corresponding MOGP program. In addition, we plot
the confusion matrix of accuracies for the MIT urban and natural scene dataset in Fig. 4.13.
We can see from this confusion matrix that, our evolved descriptor can extract meaningful
information and lead to excellent classification accuracies on categories such as: Mountain,
Forest and Coast&beach, however, yields the greatest confusion between Street and City
Center which are, in some cases, intuitively hard to distinguish reliably.

On the CMU PIE face dataset, we successfully obtain a (near-)optimal feature descrip-
tor through MOGP evolution as shown in Fig. 4.14 Although the face images, which are
recorded with varying poses, illumination conditions and facial expressions, in this dataset
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Fig. 4.13 The confusion matrix of classification results on the MIT urban and natural scene
dataset.

Fig. 4.14 The LISP format of the (near-)optimal feature descriptor generated through MOGP
on the CMU PIE face dataset.
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Fig. 4.15 The LISP format of the (near-)optimal feature descriptor generated through MOGP
on the Jochen Triesch Static II Hand Posture Dataset.

are quite challenging and complex for classification, our MOGP evolving procedure can
tolerate the influence of these external factors and search for an optimized solution for face
classification. Consequently, the best MOGP-evolved feature descriptor can still achieve
relatively high results with 78.0% on the evaluation set and 81.2% on the testing set.

The Jochen Triesch Static Hand Posture Database II is a benchmark dataset for hand
gesture recognition. In our experiments, our proposed method still works well to assem-
ble a (near-)optimized feature descriptor by using MOGP. The LISP format of the evolved
descriptor is shown in Fig. 4.15. Combining with the linear-SVM classifier, the MOG-
P descriptor outputs excellent performance on these gesture images with both simple and
complex backgrounds. As a result, we use the evaluation set to select the best feature de-
scriptor with 93.8% from the Perato front and achieve the final classification accuracy rate
of 91.4%. on the testing set

For comparison, we have also evaluated some prevalent hand-crafted descriptors in-
cluding flattened image, shape context, color histogram, HOG, pyramid HOG (P-HOG),
SIFT, local binary pattern (LBP), Gabor bank [136], BIF, HRSE, texton histogram and Cen-
trist [154]. As HOG, P-HOG, SIFT and LBP are usually used as local descriptors, dense
sampling is applied on an image first and the final representation vector is the concatenation
of the descriptor calculated on a dense grid. Most of these descriptors in comparison are de-
signed for gray scale images. To fully exploit the color information of images, we compute
these descriptors on the color versions of the images. For color images in the datasets, we
calculate features on R, G, B and grey scale components, respectively, and then concatenate
them into a long vector as the final representation. As the BIF method already encodes color
information, we directly extract the BIF features from color images instead of calculating
on color components. Under the same setting, we first adopt PCA for dimension reduction
and then apply the linear SVM with ’ten-fold’ cross-validation on the testing set to compute
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the recognition accuracies. All the results on color images are shown in Table 4.5.
In addition, we have also utilized two popular deep learning methods, i.e., DBN and

CNN, to learn hierarchical architectures for feature extraction on the combined learning and
evaluation sets. In our experiments, we use DeepLearnToolbox2 with default parameter set-
tings according to previous publications by Hinton [139], to implement relevant tasks. We
then apply the learned architectures (and associated parameters) to extract features on the
testing sets and a same ’ten-fold’ cross-validation is used with the linear SVM to calculate
the recognition accuracies. To make the comparison fair, all the images used as the inputs
of the architectures are the combinations of the R, G, B and gray scale components of the
original color images. In Table 4.5, it is obvious that our MOGP-learned descriptors sig-
nificantly outperform the state-of-the-art hand-crafted and machine learned features on four
image datasets. The superior performance is mainly accredited to the simultaneous descrip-
tion and fusion of color components automatically assembled by the proposed methodology.
The implicit supervised nature of the descriptor learning mechanism also contributes to the
discriminative power of the MOGP-built descriptors.

4.4.4 Performance Analysis

To evaluate the performance of the proposed method, we also conduct analysis experiments
on the four datasets to investigate the effects of our proposed multi-objective GP by com-
paring with the single-objective GP (with both tournament3 and lexictour4 [155] searching
methods) which only considers the classification error rate as the main fitness. The testing
results on the four datasets are shown in Table 6.4 . With the totally same experimental
setting, the feature descriptors evolved by the proposed MOGP method lead to higher ac-
curacies than the single-objective GP on all of the four datasets. Furthermore, for both
single-objective GP based methods, it is obvious that using the lexictour searching scheme
achieves better results than adopting the tournament searching scheme. In a sense, the lex-
ictour scheme can also effectively restrain the tree bloat and reduce the training overfitting.

In addition, to illustrate time complexity of the feature learning process, we show the
evolving time costs of MOGP and the single-objective GP in Table 6.5. It can be observed
that our MOGP spends less time on evolving out a (near-)optimal feature descriptor than

2https://github.com/rasmusbergpalm/DeepLearnToolbox
3This method chooses each parent by randomly drawing a number of individuals from the population and

selecting only the best of them.
4This method implements lexicographic parsimony pressure similar as tournament selection. The only

difference is that the smallest individual (i.e.,fewest tree nodes) will be selected if more than one individual
has the same best fitness in the selection competition.
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Table 4.6 Evaluation of different evolutionary methods on the Caltech-101, the MIT urban
and nature, the CMU PIE and the Jochen Triesch Static Hand Posture II datasets. NB:
for single-objective genetic programming, we do not need to use the evaluation set and only
adopt the learning set and the testing set for final results. The rest of the experimental setting
is totally the same as our proposed method.

❳❳❳❳❳❳❳❳Methods
Datasets

Caltech-101
MIT urban
and nature CMU PIE

Jochen Triesch Static
Hand Posture II

Single-objective genetic programming+tournament searching 77.1% 84.5% 76.7% 89.3%
Single-objective genetic programming+lexictour searching 78.6% 84.8% 78.2% 90.0%

Multi-objective genetic programming 80.3% 88.5% 81.2% 91.4%

Table 4.7 The time costs of feature learning on the four datasets we used by applying three
different genetic programming methods (Note that Matlab 2011a is used for coding)

.

❳❳❳❳❳❳❳❳Methods
Datasets

Caltech-101
MIT urban
and nature CMU PIE

Jochen Triesch Static
hHand Posture II Total time

Single-objective GP+tournament searching 8.2h 3.6h 4.7h 3.1h 19.6h
Single-objective GP+lexictour searching 8.4h 3.7h 5.0h 3.3h 20.4h
Multi-objective genetic programming 7.6h 3.3h 4.5h 3.0h 18.4h

the single-objective GP. As many other learning algorithms, the training of the descriptors
is time-consuming, but it can be performed offline. Once the optimal descriptor is obtained
from the MOGP training phase, the classification phase will be very efficient, as the opti-
mized descriptor can be just used as a handcrafted descriptor like SIFT. Of course, with the
rapid development of silicon technologies, future computers will be much faster and even
the training will become less a problem.

4.5 Summary

The goal of this work is to develop a domain-adaptive learning approach based on multi-
objective genetic programming (MOGP) to generate (near-)optimal feature descriptors for
image classification. MOGP is used to automatically evolve robust and discriminative fea-
ture descriptors with a set of domain-specific images and random constants as terminals, a
number of primitive operators as functions, and both the classification error rate and tree
complexity as the fitness criterion. The method can simultaneously extract and fuse features
from different color and gray scale components of a color image. We have systematically
evaluated our method on four different image datasets, i.e.,the Caltech-101, the MIT ur-
ban and nature scene, the CMU PIE and the Jochen Triesch Static Hand Posture datasets,
and obtained superior results for image classification over previously published works. Al-
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though our MOGP method takes a quite long time for evolving, it only needs to be carried
out once on the learning set and evaluation set, while the obtained (near-)optimal descriptor
will be relatively generalized for image feature extraction and representation.

Besides learning the new descriptor via GP for visual classification, discriminative em-
bedding method is also one of hot topics for feature representation learning. Thus, in the
next chapter a new embedding method, termed Discriminative Partition Sparse Analysis
(DPSA), will be introduced and the related experimental results show the DPSA can out-
perform other state-of-the-art algorithms for dimensionality reduction tasks.





Chapter 5

Discriminative Partition Sparsity
Analysis

5.1 Overview

In the passed chapters, learning new feature representations via genetic programming has
been proved to be effective for visual categorization. In this chapter, a another significan-
t branch, i.e., dimensionality reduction, for discriminative representation learning is dis-
cussed.

Here, we develop a novel unsupervised linear dimensionality reduction algorithm, called
Discriminative Partition Sparsity Analysis (DPSA). From the data probabilistic distribution
point of view, samples in the high-dimensional space do not always follow the same dis-
tribution, but are naturally clustered into several groups. The data in each groupshare the
same probabilistic distribution. To keep this property, we first apply the Gaussian Mixture
Model (GMM) [156] to partition the training samples into different clusters. We then build
a sub-graph weight matrix to describe the relationship between the data points in each clus-
ter. Specifically, each data point is reconstructed as the linear combination of the remaining
data samples in a cluster by minimizing the ℓ1-norm of both the reconstruction coefficients
and data noise, and the combination coefficients are designated as the values in the weight
matrix. Different from constructing weight matrices via a manual neighborhood constraint
as in LPP and NPE, the ℓ1 weight matrix is more robust to data noise and can automati-
cally realize sparsity. Besides, the neighbors selected through the ℓ1 are also data-adaptive,
which can discover the natural locality information of the data manifold and be a nice prop-
erty for applications with uneven data distributions [157]. We further align these partitioned
sub-graphs and obtain the final projection via a general linear reduction framework.
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The contributions of this work lie in the following aspects:

(1) The proposed DPSA explicitly considers different probabilistic distributions that ex-
ist over the data points, meanwhile successfully preserves the natural locality relationship
among the data.

(2) The proposed DPSA is proved to be robust to data noise, automatically sparse and
adaptive to the neighborhood.

5.2 Literature Review

Dimensionality reduction [52] has become a key problem attracting much attention in many
research areas, such as information retrieval, data mining [53], and pattern recognition [54,
55]. One baseline linear reduction algorithm is Principal Component Analysis (PCA) [158].
PCA is commonly applied to condense the information when the data manifold is embedded
linearly or almost linearly in the ambient space. If the class information is available, Fisher
Discriminative Analysis (FDA) [159] can be used to find an optimal subspace for discrimi-
nation where the final projection vectors can be obtained via maximizing the between-class
covariance meanwhile simultaneously minimizing the within-class covariance. FDA has
been proved to be successful on classification problems [56, 57].

Furthermore, another popular linear technique, termed Locality Preserving Projections
(LPP) [42], has been proposed for dimensionality reduction that preserves local relation-
ships within the data set and uncovers its essential manifold structure. After that, a Semi-
supervised Discriminative Analysis (SDA) [160] embedding scheme has been developed,
as well. SDA inherits the advantages from both FDA and LPP to find an appropriate sub-
space which perceives the intrinsic data structure from the high dimensional space and also
maximizes the inter-class variation. Besides, a subspace learning algorithm called Neigh-
borhood Preserving Embedding (NPE) has been used for linear reduction. Different from
PCA, which aims at keeping the global Euclidean structure, NPE also aims at keeping the
natural neighborhood structure on the data manifold.

Compared with non-linear methods, the above linear techniques are computationally
much cheaper. Moreover, they yield projections that are not only defined on training data
points, but also efficient for ‘out-of-sample’ extensions on novel test data. Naturally, for
those ‘Big Data’ applications, we cannot manually annotate the ground truth for all training
samples. Thus, efficient reduction methods without using label information but can still
well describe the data manifold in the projected space are badly in need.
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5.3 Linear Reduction framework

In this Section, we provide a general framework for the existing subspace learning algo-
rithms from the graph embedding point of view.

Given a graph G= {X ,W}, each of vertices indicate a data sample, let W be a symmetric
N×N matrix with Wi, j having the weight of the edge joining vertices i and j. The purpose
of graph embedding is to represent each data points as a low dimensional vector that can
effectively preserves similarities between the data pairs in the high dimensional space. The
similarity is always represented by the edge weight.

Let us now consider a set of samples X=[x1,x2 . . . ,xi, . . . ,xN ] ∈ Rm×N . The problem of
linear dimensionality reduction is to find a projection matrix U ∈Rm×d that maps X ∈Rm×N

to Y =[y1,y2, . . . ,yi, . . . ,yN ] ∈ Rd×N , i.e., Y =UT X , where d < m. The basic idea of linear
reduction is to preserve the intrinsic data structure in the projected low-dimensional space.
The optimal Y is given by minimizing:

argmin
N

∑
i, j=1
||yi− y j||22Wi, j (5.1)

under an appropriate constraint. This objective function leads to a heavy penalty if neigh-
boring vertices i and j are embedded far apart. Thus, minimizing this objective function is
to ensure that if vertices i and j are ’close’, then yi and y j are close as well. Wi, j is the graph
weight over the whole data set and yi,y j ∈ Y .

Obviously, using different graph embedding techniques will lead to different dimension-
ality reduction performance. In the next section, we will present our Discriminative Partition
Sparsity Analysis (DPSA) via ℓ1 sparse graph construction.

5.4 Discriminative Partition Sparsity Analysis

Discriminative Partition Sparsity Analysis (DPSA) is proposed to preserve the locality in-
formation on different data distributions for dimensionality reduction. It operates in three
stages. In the first stage, each sample in the dataset will be assigned to an individual cluster
via the Gaussian mixture model (GMM). Thus, the whole dataset can be automatically par-
titioned into several groups. In the second stage, for samples in each cluster, an objective
function is designed to construct a sparse sub-graph via the ℓ1-norm constraint, which can
successfully preserve the local discriminative information. Since samples in one cluster can
be seen as a part of the whole dataset, this stage is termed ’part optimization’. We then
align all the part optimizations together to form a global coordinate. In the last step, termed
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Fig. 5.1 The outline of DPSA. Here three clusters are used for illustration.

’global optimization’, the projection matrix is obtained through a global alignment by solv-
ing a generalized eigenvalue eigenvector decomposition problem. Our proposed DPSA is
outlined in Fig. 5.1.

It is worthwhile to highlight several aspects of the proposed approach here. DSPA shares
some similar properties with other graph embedding algorithms, all of which aim to discover
the local structure of the data manifold. However, our objective function is totally different
from others. Furthermore, DSPA is regarded as a linear embedding. This makes it fast and
suitable for practical applications. Finally, DSPA is also an unsupervised scheme, which is
better for large-scale tasks where the label information is often unavailable.

5.4.1 Part Optimization

In the data space, each data point can be naturally assigned to a potential cluster, in which
all samples share the same probabilistic distribution. Meanwhile, samples from different
clusters always have different probability density functions. However, in either statistics or
physics, real-world data distribution basically follows the same form, i.e., Gaussian distri-
bution. Therefore, each potential cluster could be Gaussian distributed but with different
probabilistic parameters. Thus, how to estimate the Gaussian parameters for different data
distributions becomes a core problem.

The Gaussian Mixture Model (GMM) as one of the clustering methods is regarded as
the linear combination of different Gaussian components. The task of clustering is to group
observations into different components through estimating each cluster’s own parameters
i.e., φ , µ , Σ, under their likelihood function:

l(φ ,µ,Σ) =
m

∑
i=1

log p(x(i);φ ,µ,Σ)

=
m

∑
i=1

log
K

∑
z(i)=1

p(x(i)|z(i); µ,Σ)p(z(i);φ)

(5.2)
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Later, the Expectation Maximization (EM) algorithm [161] is always involved in such an
estimation problem. Details of GMM can be found in [162].

After finishing GMM clustering, data are partitioned into K clusters {C1,C2, . . . ,Ck, . . . ,CK},
and samples belonging to a certain cluster follow the same Gaussian distribution. To discov-
er the intrinsic data structure, samples from different Gaussians are better to be considered
separately. Thus, we first construct our partitioned sub-graphs for each cluster, respectively,
instead of using all the data points.

In this chapter, for each cluster, we propose to obtain the sub-graph via the ℓ1-norm
constraint for data sharing the same distribution. Specifically, the neighboring samples of a
data point and the corresponding similarities (graph weights) can be simultaneously calcu-
lated by solving an ℓ1-norm optimization problem, which has been successfully utilized for
spectral clustering [157], subspace learning [163], semi-supervised learning [164], etc.

Given a certain data point x with noise, a natural way to reconstruct this sample with a
robust estimation of sparse representation α is formulated as:

x = Dα +ζ =
[

D I
][

α

ζ

]
(5.3)

where D is an over-complete dictionary, α indicates the sparse reconstruction coefficients,

and ζ is the noise term. We further set B=
[

D I
]

and α
′
=

[
α

ζ

]
. Then, the ℓ1-norm

minimization problem can be solved for both the reconstruction error and data noise as
follows:

min
α ′
||α ′||1, s.t. x = Bα

′ (5.4)

In this chapter, since the sparse coefficients of the ℓ1 construction can be used to indicate
the similarities among different samples, we use the ℓ1 sparse representation to construct
our graph through part optimization. Each ℓ1-graph, termed as partitioned sub-graph here,
summarizes all the sample behavior of the corresponding cluster in sparse representation.
The construction process is formally stated as the following three main stages:

1) Input: Data matrix includes a set of samples XCk=[xCk1,xCk2, . . . ,xCki, . . . ,xCkn]∈Rm×n,
where XCk denotes all data samples from the cluster Ck after GMM, n indicates the number
of samples in Ck and k ∈ K.

2) Robust sparse representation: For each data point in a cluster, its robust sparse
coding is achieved by solving the ℓ1-norm optimization problem:

min||αCk
i ||1, s.t. xCki = BCk

i α
Ck
i (5.5)

where matrix BCk
i = [xCk1, . . . ,xCki−1,xCki+1, . . . ,xCkn, I].
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3) Graph weight setting: Denote GCk = {XCk ,W
Ck} as the sub-graph with the sample

set XCk from the cluster Ck, and WCk as the corresponding graph weight matrix, and we set
WCk

i, j =α
Ck
i, j , if i > j; and WCk

i, j =α
Ck
i, j−1, if i > j.

In more detail, given a data point xCki ∈ XCk , the sparse graph is embedded through the
ℓ1-norm constraint among all the training samples from the same cluster. Specifically, the
data sample xCki is represented by using all remaining data samples in Ck (i.e., XCk\xCki).
In real applications, we usually cannot estimate the existing noise in training data. Thus,
constructing the ℓ1 graph is constrained by a certain hyperparameter ε , which indicates the
maximum value of the reconstruction error in the sparse representation. Then Eq. 6.4 can
be rewritten as follows:

min||αCk
i ||1, s.t. ||xCki−bCk

i α
Ck
i ||2 < ε (5.6)

where bCk
i =[xCk1, . . . ,xCki−1,xCki+1, . . . ,xCkn] and ε is always an extremely small value.

This ℓ1 learning technique1 makes the sparse graph more discriminative and robust to
represent the relationship between two data samples from the same cluster, since it preserves
the same-distribution correlation affinity, meanwhile discarding the different-distribution
correlation after embedding. Furthermore, this kind of partitioned sub-graph can better
reflect the data relations with the locality information for optimization. Particularly, such ℓ1

embedding can effectively avoid influence from noisy data distributions and lead to a more
precise final classification.

5.4.2 Global Optimization

We repetitively compute ℓ1 sub-graphs for each cluster via the part optimization proce-
dure. In this subsection, these partitioned graphs will be first unified as a whole: Gwhole =

{GC1,GC2 . . . ,GCk , , . . . ,GCK} and the corresponding weight matrix Wwhole ∈ RN×N ,

Wwhole =



WC1

. . .

WCk

. . .

WCK


(5.7)

GCk denotes the graph optimized from the cluster Ck. Since the unified graph Gwhole

is directed, Wwhole will always be asymmetric. To satisfy the linear reduction framework

1ℓ1-norm optimization toolbox is available at: http://sparselab.stanford.edu
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mentioned in Eq. 5.1, we symmetrize Wwhole by setting the matrix as W=1
2(Wwhole+W T

whole).
Then, after some simple algebraic formulations, we can transform Eq. 5.1 to:

argmin
N

∑
i, j=1
||yi− y j||22Wi, j = 2Y LY T (5.8)

where, L=D−W is the graph Laplacian, and D is a diagonal matrix whose entries are column
(or row, since W is symmetric) sums of W , Di,i = ∑ j Wj,i. It is easy to observe that L is a
symmetric and semi-positive definite matrix. Finally, the minimization problem of Eq. 5.8
is reduced to a quadratically-constrained quadratic program:

min
Y LY T

YY T , s.t. YY T = I (5.9)

where, the constraint YY T = I requires the projected data in the low-dimensional space to
be uncorrelated.

Eq. 5.9 is a formulation of Rayleigh quotient. Thus, the optimal Y can be obtained by
solving the minimum eigenvalue eigenvector problem:

Y L = λY (5.10)

However, the graph embedding approach described above only provides the mappings
for the graph vertices in the training set. For classification purposes, a mapping for all
samples, including new test samples, is required. If we can find a projection U ∈ Rm×d , we
have Y =UT X . Eq. 5.9 can be rewritten as:

min
UT XLXTU
UT XXTU

, s.t. UT XXTU = I (5.11)

The optimal projection U can be obtained by solving the minimum generalized eigenvalue
eigenvector decomposition problem:

UT XLXT = λUT XXT (5.12)

Let the column vectors U={U0, . . . ,Ud−1} be the solutions of Eq. 5.12, ordered according
to their eigenvalues, λ0 ≤ . . . ≤ λd−1, from the smallest one to the (d− 1)th smallest one.
Therefore, yi ∈ Y is a d-dimensional vector after our DPSA reduction, and U is an m× d
linear projection matrix.

5.4.3 Complexity Analysis

The computation of DPSA involves three steps: 1) Data grouping into K clusters obtained
by GMM; 2) Partitioned sparse graph construction for each cluster via ℓ1 optimization; 3)
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Table 5.1 The top recognition performance (%) on the USPS dataset, CMU PIE dataset and
CIFAR-10 dataset, respectively.

PPPPPPPPDataset
Methods

Original feature PCA Fisherface LDA LPP NPE SDA DPSA

USPS 93.04 (256) 93.16 (51) 89.74 (9) 95.28 (98,9) 94.79 (47) 94.67 (56) 95.24 (5,10) 96.43 (30,39)
CMU PIE 96.30 (1024) 96.42 (98) 96.65 (67) 97.88 (96,67) 97.04 (82) 97.47 (79) 97.82 (5,68) 98.26 (28,54)
CIFAR-10 82.26 (384) 83.21 (95) 82.22 (9) 84.98 (98,9) 83.71 (73) 83.88 (68) 84.74 (5,10) 86.19 (120,60)

Note that the numbers in parentheses are the corresponding feature dimensions with the best results after dimensionality reduction. For

LDA, the first number is the percentage of energy retained in the PCA step, and the second number is the length of the final vector via

Fisherface. For SDA, the first number is the K, which means the percentage (we fix it to a very small number, i.e., 5%) of the labeled

data used in the training phase, and the second number is the final feature length. For DPSA, the first number is the number of clusters by

GMM and the second number is the reduced feature length.

Combining all partitioned sparse graphs and obtaining the final projection by solving the
eigenvalue eigenvector problem.

Actually, the main computational cost lies in the first two phases. In the GMM phase
(driven by the EM algorithm), it requires O(KNT ), where T is the number of iterations
until convergence through EM. For the second phase, assuming each cluster after GMM has
n samples, the complexity of graph construction for all the clusters is O(Kn2). Besides, the
general complexity for the eigenvalue eigenvector problem is O(N3) in the last step. Thus,
the total computational cost of DPSA is approximately O(KNT )+O(Kn2)+O(N3).

5.5 Experiments and Results

In this section, we systematically evaluate the proposed DPSA on different datasets, in
comparison to other popular dimension reduction algorithms.

5.5.1 Datasets

Three datasets are used to evaluate our DPSA algorithm, including handwritten digit images,
face images and object images. The details of the three datasets are as follows:

The USPS handwritten digit database is described in [165], which contains 9298 16×16
handwritten digit images belonging to 10 classes. In our experiments, we split them into
7291 training images and 2007 test images.

The CMU PIE face dataset contains 41,368 images from 68 subjects (people). Follow-
ing [12], we select 11554 front face images, which are manually aligned and cropped into
32×32 pixels. Further, 7,500 images are used as the training set and the remaining 4,054
images are used for testing.
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Fig. 5.2 The recognition error rate vs. number of dimensions on three datasets.
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Table 5.2 Computational costs for DPSA with the highest classification accuracies.
❵❵❵❵❵❵❵❵❵❵❵❵Datasets

Computational time
Learning time Coding time Classification time

USPS (96.33%) 207 seconds (7291 training samples) 0.0032 seconds/sample 0.35 seconds/sample
CMU PIE (98.06%) 245 seconds (7500 training samples) 0.0048 seconds/sample 0.48 seconds/sample
CIFAR-10 (86.19%) 1521 seconds (50000 training samples) 0.0035 seconds/sample 0.83 seconds/sample

The CIFAR-10 dataset is a labeled subset of the 80-million tiny images collection [166].
It consists of a total of 60000 32× 32 color images in 10 classes. The entire dataset is
partitioned into two parts: a training set with 50000 samples and a test set with 10000
samples and then we use a 384-d GIST descriptor to represent each image.

5.5.2 Results

We show the results of our DPSA algorithm on the three datasets compared with other
state-of-the-art dimensionality reduction methods including PCA, Fisherface, LDA, LPP,
NPE and SDA. Here, the Fisherface indicates the Fisher discriminative analysis, while LDA
denotes the method of PCA+Fisherface.

Since our DPSA is a linear unsupervised reduction method, the methods we compare
with are all linear unsupervised (or semi-supervised) except for Fisherface and LDA. For
SDA, only a quite small number of labeled samples, with the rest of data unlabeled, are
used to train the final projection. We compute the best recognition results for each method
via the same linear SVM classifier. Table 7.2 lists the top recognition accuracies of the seven
methods and their corresponding numbers of dimensions on the USPS, CMU and CIFAR-
10 datasets, respectively. In addition, Fig. 5.2 also plots the corresponding curves of the
recognition error rates of the seven comparable methods vs. the numbers of the projected
dimensions.

In terms of the classification accuracy, our unsupervised DPSA approach consistent-
ly outperforms all the unsupervised methods, i.e., PCA, LPP, NPE, and supervised (semi-
supervised) methods, i.e., Fisherface, LDA and SDA, on all three datasets. From Table 7.2,
for both USPS and CMU PIE datasets, DPSA achieves 1.15% and 0.38% higher than the
LDA, which gives the second best performance, and 1.64% and 0.79% higher than the best
unsupervised methods on these two datasets, respectively. For the larger and more complex
CIFAR-10 dataset, DPSA also reaches 1.21% higher than the best supervised method and
2.31% higher than the best unsupervised one. Regarding reduction effects, DPSA achieves
lower dimensional representations on all three datasets, compared with other unsupervised
techniques in Table 7.2.
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Fig. 5.3 The first 6 basis vectors of Eigenfaces, Fisherfaces, and DPSAfaces calculated from
the face images in the CMU PIE dataset.

This is because that PCA produces a set of linearly uncorrelated principal component
as the low-dimension projections, which only maximizes the variance of data features, but
misses their intrinsic data structures in the original feature space. For LPP, the graph Lapla-
cian indeed helps to keep the data locality structure in high dimension, and tries to preserve
the same structure in the low-dimensional space as well. The locality information in LPP
is always manually constructed via a neighborhood constraint, such that, if the two data
points’ pairwise distance exceeds a certain threshold, the value of graph Laplacian will be
set as zero. However, this kind of construction is sensitive to data noise and one noisy fea-
ture may dramatically change the data’s relationship. Furthermore, when data’s distribution
is not even, the weight matrix based on the pairwise-distance may also involve the far-
distance inhomogeneous data together, if the threshold is large. The same drawbacks also
exist in Neighborhood Perceiving Embedding (NPE) and Semi-supervised Discriminative
Embedding (SDA).

For those supervised methods (i.e., Fisherface and LDA), in our experiments, they in-
volve the label information in their training phase and build an objective function to max-
imize the inter-class variation and minimize the intra-class variation. The advantage of
Fisherface and LDA is that they can project the data into a very low-dimensional space with
C− 1, where C is the number of classes in the training data. However, the variation of
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the values of data from the same class is impaired and ignored in the reduced space. For
instance, two far-away data points from the same class may be very close after projection,
which would easily lead to over-fitting on testing data.

In contrast to all mentioned above, our DPSA treats the data samples on different dis-
tributions separately and focuses more on the natural relationship among samples, instead
of manually setting a threshold to break the intrinsic data properties. Therefore, our DPSA
is first clustered via GMM to partition all data into several groups, each of which shares
the same Gaussian distribution. Then an ℓ1 sub-graph is constructed to preserve the data
locality structure in each cluster and finally all the sub-graphs are merged to compute the
projection. DPSA shows its discriminative advantages for subspace learning as follows:
(1) great robustness to data noise, (2) automatic sparsity instead of manual setting, and (3)
adaptive neighborhood for each individual data point. Fig. 5.3 also visualizes the DPSA
projection vectors as feature images on the CMU PIE face dataset, together with Eigenfaces
and Fisherfaces.

Furthermore, a brief comparison of computational complexity is shown in Table 6.2. The
results show that DPSA always needs a few hundred seconds for learning the projection.
The learning speed highly depends on the size of the training set. Once the projection is
obtained, it is very fast for the DPSA to code a new sample and classify it (always with the
total time less than 0.9 seconds/sample in the Matlab environment).

5.6 Summary

In this chapter, we have presented a new unsupervised linear subspace learning approach,
named Discriminative Partition Sparsity Analysis (DPSA). DPSA explicitly considers dif-
ferent distributions that exist in data points and also keeps the natural locality relationship
among the data on each sub-distribution. Specifically, we introduced the Gaussian mixture
model(GMM) clustering and sparsity optimization for dimensionality reduction tasks, in
which each data point can be embedded via the ℓ1-constraint to construct the graph and then
the final projection is computed by solving the eigenvalue eigenvector problem .

We have systematically evaluated our method on the USPS, CMU PIE and CIFAR-10
datasets and produced the image classification accuracies of 96.43%, 98.26% and 86.19%,
respectively. In all three datasets, our DPSA achieves better results compared with other
popular supervised and unsupervised methods.

To make embedding methods more efficient for large-scale tasks, recently, binary em-
bedding algorithm have attracted an increasing number of attention. In the next chapter,
a new binary embedding approach via genetic programming has been proposed to solve
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large-scale visual classification and retrieval problems.





Chapter 6

Evolutionary Compact Embedding for
Large-scale Image
Classification/Retrieval

6.1 Overview

Effective dimensionality reduction is a classical research area for many large-scale analy-
sis tasks in computer vision. In the last chapter, a new dimensionality reduction algorithm
has been developed for data classification. Although the proposed one can achieve better
results, it is not scalable for big data tasks. Several recent methods has attempted to learn
binary hashing for fast and accurate applications in large-scale problems. In this chapter,
we propose a novel framework to automatically learn the task-specific compact coding,
called evolutionary compact embedding (ECE), which can be regarded as an optimization
algorithm combining genetic programming (GP) and a boosting trick. As an evolutionary
computation methodology, GP can solve problems inspired by natural evolution without
any prior knowledge of the solutions. In our evolutionary architecture, each bit of ECE is
iteratively computed using a binary classification function, which is generated through GP
evolving by jointly minimizing its empirical risk with the AdaBoost strategy on a training
set. We address this as greedy optimization leading to small Hamming distances for similar
samples and large distances for dissimilar samples. The final optimized reduction repre-
sentation is defined as the code calculated from the non-linear GP-evolved binary learner
for each embedding bit. To the best of our knowledge, this is the first time that GP with
the boosting trick has been successfully applied to feature embedding for large-scale image
classification/retrieval. We then evaluate ECE on four datasets: USPS digital hand-writing,
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CMU PIE face, CIFAR-10 tiny image and SUN397 scene for classification and two dataset-
s: SIFT 1M and GIST 1M for retrieval, showing the accurate and robust performance of our
method for large-scale tasks.

It is worthwhile to highlight several properties of the proposed method:
(1) To the best of our knowledge, this is the first time that GP with the boosting trick

has been successfully applied to feature embedding for large-scale image categorization and
retrieval.

(2) To improve the efficiency of this work, a faster embedding scheme, i.e., Random
batch parallel learning (RBPLECE), is proposed to speed up the learning phase without
degrading much of the accuracy.

(3) The proposed methodology and the generated descriptors can be also applied to other
data forms such as video or RGB-D data.

6.2 Literature Review

One of the most baseline dimensionality reduction algorithms might be principal compo-
nent analysis (PCA), which is used to explain the variance-covariance structure of a set of
variables through linear combinations of those variables. PCA is most commonly applied
to condense the information contained in a large number of original variables into a smaller
set of new composite variables or dimensions, at the same time ensuring a minimum loss of
information. Another effective scheme for dimensionality reduction is linear discriminant
analysis (LDA). LDA is a supervised method that has been proved successful on classifica-
tion problems [56, 57]. Following the Fisher discriminant criterion, the projection vectors
are commonly obtained by maximizing the between-class covariance and simultaneously
minimizing the within-class covariance. However, the classical LDA is a linear method and
cannot tackle nonlinear problems. In order to overcome this limitation, kernel discriminant
analysis (KDA) [58] is then developed. KDA is the nonlinear extension of LDA using the k-
ernel trick that can be implicitly performed in a new feature space, which allows non-linear
mappings to be learned. Beyond that, some other dimension reduction methods can also
achieve promising results for different applications. Locality preserving projections (LP-
P) [42] are linear projective maps that are obtained by solving a variational problem that
preserves the neighborhood structure of the data set. LPP aims to find the optimal linear
approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. In
addition, another popular method, termed discriminative locality alignment (DLA) [59], is
also been used as dimensionality reduction algorithms for classification. All the above meth-
ods can be thought as the direct graph embedding or its linear/kernel/tensor extensions of a
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specific intrinsic graph that describes certain desired statistical or geometric properties of a
data set, with constraints from scale normalization or a penalty graph [167]. With the need
for fast search and classification in large-scale vision applications, some recent effort has
been turned to applying binary hashing techniques, which explore the approximate similar-
ity search based on Hamming distance to effectively reduce the indexing time. Among this
kind of methods, kernelized locality-sensitive hashing (KLSH) [44] has been successfully
utilized for large-scale image retrieval and classification. KLSH is essentially a kernelized
method of performing probabilistic dimension reduction of high-dimensional data. The ba-
sic idea is to hash the input items so that similar items are mapped to the same buckets with
high probability. Beyond that, some deep learning methods are also used to learn binary
coding unsupervised, e.g., restricted boltzmann machine (RBM) [168].

6.3 Evolutionary Compact Embedding

In this section, the overall design of our evolutionary embedding algorithm is first introduced
and then we describe how to train our GP classifier with the boosting trick.

6.3.1 Problem Formulation

Let us now consider the M-bit evolutionary compact embedding Code= [b1(x), . . . ,bm(x), . . . ,bM(x)],
which maps the high dimensional representation into an M-dimensional string. Here, bm(x)∈
{1,0} is defined by: bm(x)=binary( fgp(x)), where fgp(x) indicates the classifier generated
by GP and “binary()” function returns 1 if the argument is positive; returns 0 if otherwise.
Thus, the result of fgp(x) is positive, binary( fgp(x)) is equal to 1; otherwise, binary( fgp(x))
is equal to 0.

Since our fgp(x) is originally designed for binary classification problems, here we use
the pair-wise trick to transfer the multi-class classification issue to a binary one. Given
a set of training samples X = {x1,x2, . . . ,xn, . . . ,xN} with labels Y = {1,2, . . . ,C}, we re-
distribute them into a pair-wise format Xpair = {. . . (xn,xp) j, . . .}N2

j=1 with labels Ypair =

{1,0}. Xpair is the set of N2 labeled training pairs such that Ypair = 1 if pair data xn and
xp belong to the same class, and Ypair = 0 otherwise. Since any two sample in X should be
assign together once to consist a data pair, thus for full-possibility we can obtain the size
of Xpair is N×N = N2 pairs in total. Now, we can involve binary classifiers into iterative
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AdaBoost learning to jointly minimizing its empirical loss:

L(Xpair,Ypair,M) =
N2

∑
j=1

(binary(
M

∑
m=1

[Dm ·Fm
weak( j)]) ̸= Ypair( j)) (6.1)

where, Fm
weak( j) calculates the result of data pair (xn,xp) j using m-th weak classifier;

Dm is the m-th coefficient corresponding to Fm
weak. Dm controls and adjusts the pair-data

classification result for each bit. Therefore, Loss function Eqn. 6.1 actually calculates the
total classification error rate1.

By adopting the AdaBoost scheme, each bit of ECE is iteratively optimized over same-
labeled and differently-labeled sample pairs. Initially, each data pair is assigned the same
weight value. At each iteration, incorrectly embedded samples, i.e., the pairs of differently-
labeled samples mistakenly regarded as from the same labels, are assigned larger weights,
while the weights of correctly embedded samples are reduced. Hence, the next bits tend to
correct the errors of the preceding ones.

Eqn. 6.1 reflects the final error rate on the classification of Xpair using ensemble weak
classifiers. Minimizing Eqn. 6.1 aims at reducing the Hamming distances of embeddings
between pairs of samples from the same class, while increasing the Hamming distances of
embeddings between pairs of samples from different classes. However, like regular Ad-
aBoost, it is difficult to directly get a proper bm(x) to optimize Eqn. 6.1 for multi-labeled
embedding problems. Thus, in this chapter, we use genetic programming (GP) to automati-
cally create binary classifiers for this optimization problem. Specifically, for each ECE bit,
we evolve the entire GP system once to generate a relatively effective weak classifier Fm

weak

(i.e., Errorrate < 0.5) under weighted data distribution.
ECE iteratively computes each bit for samples through the GP bit optimization proce-

dure. Based on the result (i.e., error rate) calculated from each bit, boosting is then applied
as a global optimization to balance the weights of different GP classifiers. Thus, the final
loss function (Eqn. 6.1) will be decreased effectively by using this kind of weighted ensem-
ble GP classifiers. In the following sub-section, we will describe our GP bit optimization
and boosting global optimization algorithms.

6.3.2 Genetic Programming Bit Optimization

Genetic programming (GP) is an evolutionary computation (EC) technique that automati-
cally solves problems without requiring the user to know or specify the form or structure

1For Fm
weak = bm(xn)

⊗
bm(xp), Fm

weak returns 0, when bm(xn) and bm(xp) are different, otherwise
⊗

returns
1.
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Table 6.1 Functions in Genetic Programming

Function Name Input Description
+ x1 and x2 y = x1 + x2
− x1 and x2 y = x1− x2
× x1 and x2 y = x1× x2
÷ x1 and x2 y = x1√

1+x2
2

IF x1, x2 and x3 if x1 > 0, y = x2; otherwise y = x3

of the solution in advance. Generally, GP programs can be represented as a tree structure
during the evolution procedure. In this work, each individual in GP represents a candidate
binary classifier and is evolved continuously through generations. To establish the architec-
ture of our model, three important concepts: function set, terminal set and fitness function
should be defined.

Terminal Set and Function Set

Individuals in the population are assembled from terminal and function nodes. Terminal
nodes taken from the terminal set are utilized as input of the genetic program. Two kinds of
terminals are always used in the terminal set: (1) feature terminals according to the image
features (2) constant terminals. Similar to other example-based learning algorithms, these
terminals remain unchanged throughout the learning process. In our classification model,
we define pair data Xpair and random constant numbers between 0 and 1 as the terminal set
for GP evolving. In each tree-based genetic structure, data is located at the bottom leaf of
the entire tree and connects with the higher function nodes directly.

In addition, another key component of GP is the function set which constitutes the in-
ternal nodes of the tree and is typically driven by the nature of the problem. Usually for
GP classification problems, ‘+’, ‘−’, ‘×’ and ‘÷’ are adopted in the function set. The
‘+’, ‘−’, ‘×’ operators are used as their original meanings, i.e., addition, subtraction and
multiplication. However, ‘÷’ is different from general division or protected division. ‘÷’
in our model is called analytic division, which is proved leading to better results in GP re-
gression problems [169]. Each of these four operators takes two arguments and returns one
result. Additionally, we get another conditional function ‘IF’ with three arguments. If the
first value is positive one, it returns the second argument; otherwise the third argument is
returned. The ’If’ function allows discontinuous programs rather than insisting on smooth
functions and allows a program to contain a different expression in different regions of a
feature space [170]. Table 7.2 lists all these functions used in our GP classification model.
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Fig. 6.1 Classification strategy using a GP program. Note: Attrb(i) indicates the i-th feature
of the input training vector.

GP Classification Scheme

The GP classifiers return a real value as output. In this way, there is a problem in this method
of classification. This is because the task of binary classification requires a binary output
rather than a continuous range of values as returned by the numeric expression representa-
tion. Therefore, a process of interpretation must be applied to convert the numeric output
to a binary one. For two-class problems, the division point between the negative and non-
negative numbers forms a natural boundary between the classes. Therefore, in our model,
we set the zero as a boundary to separate two classes. If the GP output is positive, the ex-
ample is predicted as belonging to one class, otherwise the other class. Fig. 6.1 illustrates
how we use the output of a genetic program for binary classification. Numeric expressions
have a hierarchical tree structure, which naturally suits the GP architecture. For numeric
expressions to be evolved by the GP evolutionary search algorithm, a fitness measure must
be derived.

Fitness Function

The fitness function in GP determines how well a program is able to solve the problem. For
separating the pair-wise samples (e.g., xn and xp) into positive (pairs of samples from the
same class) or negative (pairs of samples from different classes), we use Fm

weak = bm(xn)
⊗

bm(xp)
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to distinguish each pair of data. bm(x) is the GP classifier for the m-th bit. Assuming a N2

pair-wise sample dataset Xpair and their labels Ypair ∈ {1,0}, we run the GP system for each
bit, and the corresponding fitness function for the m-th bit is designed as follows:

f itnessm = [
N2

∑
Fm

weak( j)̸=Ypair( j)
wm

j ]×100% (6.2)

where Fm
weak( j) indicates the output of the j-th pair samples; Ypair( j) denotes the label of

the j-th pair samples; wm
j is the weight of the j-th pair samples for the m-th bit. This fitness

function calculates the error rate by summing the weights of those wrongly classified data
pairs. This is very similar to the AdaBoost by measuring the goodness of a weak hypothesis.
In this way, GP can effectively get a relatively precise binary classification by continuously
minimizing the value of fitness during the whole evolution procedure.

For large-scale datasets, the fitness function must be evaluated many times in each GP
generation. For getting good results, a large number of generations is usually required,
which leads to heavy computation. In our experiments, we implement parallel processing
to speed up the GP learning algorithm. In our implementation, the large number of fitness
evaluation can be performed by multiple processors at the same time, giving a tremendous
reduction in the training time.

Evolutionary Parameters

For GP evolution, a lexicographic parsimony pressure has been applied as the selection
method in our running. Like the original selection method, a random number of individuals
are chosen from the population and then the best of them is selected. The only difference
from the original selection is that, if multiple individuals are equally fit, the shortest one (the
tree with the least number of nodes) is chosen as the best. Lexicographic parsimony pressure
has shown its effectiveness for controlling the bloat [39] in different types of problems. In
addition, we have adopted the ’totalelitism’ scheme as the survival module in which all
the individuals from both parents and children populations are ordered by fitness alone,
regardless of being parents or children. This scheme has been demonstrated to lead to
promising results in many applications. The ramped half-and-half method [171] was used
for generating programs in the initial population. Table 6.2 shows these relevant parameters
for GP evolving. It is noted that, since each GP classifier is evolved as a weak learner
for the AdaBoost architecture, we empirically set the maximum number of generations as
50 which is proved to be enough for obtaining an acceptable weak learner (less than 50%
classification error) in this case.
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Table 6.2 Parameters for our GP algorithm.

Population size 300
Generation size 50
Crossover rate 75%
Mutation size 20%
Elitism rate 5%

Selection for reproduction ’lexictour’
Survival method ’totalelitism’
Stop condition ≤ 0.1%

6.3.3 Boosting-Based Global Optimization

The previous section presents the theoretical algorithm for calculating each bit for the ECE
code. However, we still haven’t mentioned how to get the coefficient Dm for minimizing
the loss function, Eqn. 6.1. To make our optimization convenient, we directly follow the
Gentle AdaBoost scheme to update the Dm for each bit of ECE. Previous experiments show
that Gentle AdaBoost performs slightly better than Real AdaBoost on regular data, but is
considerably better on noisy data and much more resistant to outliers.

In our model, the Fm
weak with the lowest error rate Er = [

N2

∑
Fm

weak( j)̸=Ypair( j)
wm

j ] via Eqn. 6.2 is

selected as the best solution for the current m-th bit after GP evolving. The corresponding
coefficient Dm for this Fm

weak can be then represented as: Dm = 1−2Er. For the next bit GP
optimization, the wm+1

j for the j-th training sample pair can be updated as:

wm+1
j =

wm
j exp(−DmYpair( j)Fm

weak( j))
N2

∑
j=1

wm
j exp(−DmYpair( j)Fm

weak( j))
(6.3)

Note that, for the first bit (m=1) of GP optimization, each data pair in the N2 samples training
set is initialized as the equal weight: wm=1

j = 1
N2 .

According to the above boosting-based global optimization, we can summarize our evo-
lutionary compact embedding algorithm as follows: given the existing training pairs Xpair

and their corresponding labels Ypair, each bit is iteratively evolved by an individual GP opti-
mization procedure with an updated sample weight w in the fitness function. In this way, to
compute an M bit ECE code, we need to repetitively run GP M times. After ECE learning
on the training set, for a new high dimensional data x, the final ECE code is represented as
Code = [b1(x), . . . ,bm(x), . . . ,bM(x)].
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Fig. 6.2 Each bit of ECE is iteratively optimized by GP over same-labeled and differently-
labeled sample pairs. Initially, each data pair is assigned the same weight. At each iteration,
incorrectly embedded samples, such as pairs of differently-labeled samples mistakenly as-
signed to the same embedding value, are assigned a larger weight, while the weight of
correctly embedded samples is reduced. Hence, the next bit tends to correct the errors of the
preceding ones.
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It is noteworthy that our approach can be regarded as an embedding learning method.
Once our ECE embedding functions obtained via GP, they are fixed and then can be direct-
ly utilized on any new-coming data similar as a hand-crafted embedding scheme without
re-learning. Fig. 6.2 visualizes the procedure of the ECE optimization scheme and the cor-
responding algorithm is depicted in Algorithm 4.

Algorithm 4 Evolutionary Compact Embedding

Input: A training set containing N2 pairs of dataXpair = {. . . (xn,xp) j, . . .}N2

j=1 with labels
Ypair ∈ {1,0}, where Ypair = 1 if pair data xn and xp belong to the same class, and Ypair = 0
otherwise;
Aim: Learn an M-bits embedding code
First step
Initialize data weights: wm=1

j = 1
N2 for the first bit optimization;

Second step
For m = 1, ...,M:

1. Complete the GP bit optimization procedure to obtain best-performing Fm
weak with

the fitness function Eqn. 6.2, where Fm
weak( j) = bm(xn)

⊗
bm(xp);

2. For each pair of data, the evolved weak classifier Fm
weak calculates: Xpair→{1,0}.

The error rate is evaluated with respect to Er=[
N2

∑
Fm

weak( j)̸=Ypair( j)
wm

j ];

3. If Er >= 0.5, STOP loop; Otherwise,CONTINUE;
4. Calculate the coefficient Dm of this Fm

weak: Dm = 1−2Er;
5. Update the weights of the N2 pairs of training data:

wm+1
j =

wm
j exp(−DmYpair( j)Fm

weak( j))
N2

∑
j=1

wm
j exp(−DmYpair( j)Fm

weak( j))
;

End
Output:
The M-bits ECE code expression: Code = [b1(x), . . . ,bm(x), . . . ,bM(x)], where x is a new
high dimensional feature .

6.4 Improved ECE Implementation for Large-Scale Ap-
plications

Our ECE method can theoretically reduce data of any dimension to a lower dimension com-
pact code. However, the GP algorithm is always time-consuming for training on large-scale
datasets, especially when the dimensionality of the original data is high.

To reduce the GP optimization complexity, we improve our ECE algorithm by using the
random batch parallel learning (RBPL) technique. Given a training set X = {x1,x2, . . . ,xn, . . . ,xN}
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Fig. 6.3 Comparison between basic ECE and RBPL-ECE.

with labels Y = {1,2, . . . ,C}, we randomly assemble them into N pairsX̂pair = {. . . (xn,xp) j, . . .}N
j=1

with labels Ŷpair = {1,0} using the half-half scheme2, instead of generating a full-possibility
N2-sized data pair set Xpair. We repeat this kind of random assignment K times, so that K
groups of pair-data sets are obtained: {X̂1

pair, X̂
2
pair, . . . , X̂

K
pair} with their corresponding pair

labels {Ŷ 1
pair,Ŷ

2
pair, . . . ,Ŷ

K
pair}.

Our algorithms are implemented using Matlab 2013a on a server configured with a 6-
core processor and 32G of RAM running the Linux OS. In this way, we can use parallel
computation to separately learn an M-bits ECE for each X̂pair at same time. We further
concatenate these ECE codes into a long code. Although using the original full-possibility
training set Xpair can theoretically learn a better ECE code than just applying any single N-
pair set X̂pair, in fact the ECE codes calculated in parallel from different randomly assigned
sets X̂pair can effectively compensate each other’s training errors (better resist overfitting).
So the concatenated code can still keep the smallest Hamming distance for data from the
same class and enlarge the Hamming distance for data from different classes. In terms of
complexity, if each bit GP optimization needs a population of S individuals evolved via T
generations, for embedding M bits using the basic ECE algorithm, the training complexity
is O(MST N2). Our RBPL technique can effectively reduce the basic ECE training complex-
ity from O(MST N2) to O(MST N).Thus, the RBPL-ECE implementation is about N times

2The half-half scheme aims to balance the training data by generating half of the pair-wise data belonging
to label ‘1’ and the rest of pairs belonging to label ‘0’. This scheme makes the training samples evenly fill the
data space and effectively reduce the overfitting in the training phase.
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faster than the basic ECE algorithm.

Furthermore, as the RBPL-ECE code is binary, for realistic applications, we always
make a extremely compact code by transferring every 8 binary bits of RBPL-ECE code
into a decimal number in the range of [0, 255]. The later experiments show that, after
RBPL-ECE learning, we can efficiently compute compact codes for any data. It is proved
to be fast and accurate for large-scale image classification applications by combining the
SVM classifier with a RBF-Hamming-distance kernel. Fig. 6.3 illustrates our RBPL-ECE
implementation.

6.5 Experiments on Image Classification

In this section, we systematically evaluate our proposed ECE with other popular dimension
reduction algorithms on different datasets and relevant experimental results are compared
and discussed in the following sub-sections.

6.5.1 Datasets

Three datasets are used to evaluate our evolutionary compact embedding algorithm, in-
cluding handwritten digit images, face images and object images. The details of the three
datasets are as follows:

The USPS handwritten digit database is described in [165], which contains 9298 16×16
handwritten digit images belonging to 10 classes. In our experiments, we split them into
7291 training images and 2007 test images. We further resize all images into 256-d vectors.
In our experiments, we train all the algorithms on the first 3000, 4500, 6000, or 7291 images
in the training set and evaluate on the 2007 test images.

The CMU PIE3 face dataset contains 41,368 images from 68 subjects (people). All
the face images are captured by 13 synchronized cameras and 21 flashes under 13 different
poses, 43 different illumination conditions and 4 different facial expressions. We select
all the images with five near frontal poses (i.e., No. 05, No. 07, No. 09, No. 27, and
No. 29) under different illumination conditions and facial expressions. All the images
are manually aligned and cropped. The cropped images are 32× 32 pixels and converted
to 1024-d vectors. Among the 11,554 images, 8,000 images are used as the training set
and the remaining 3,554 images are used for testing. Several cases are run with all the
algorithms on the first 4000, 5000, 6000, 7000, or 8000 images in the training set.

3http://www.ri.cmu.edu/projects/project 418.html
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The CIFAR-10 dataset4 is a labeled subset of the 80-million tiny images dataset [166].
In particular, 60000 32× 32 color images are included in CIFAR-10 with 10 classes and
each of classes has 6000 samples. It consists of a total of in 10 classes, each of which has
6000 samples. Fig. 6.4 illustrates some example images from the CIFAR-10 dataset. The
entire dataset is partitioned into two parts: a training set with 50000 samples and a test set
with 10000 samples. We use a global GIST5 [75] descriptor for each image, which is a
384-d vector describing the texture within localized grid cells. For all experiments on this
dataset, we repetitively train all the algorithms on the first 20000, 30000, 40000, or 50000
images in the training set.

6.5.2 Compared Algorithms

The eight state-of-the-art algorithms which are compared with ECE in our experiments are
listed below:

1. Principal Component Analysis (PCA), which is a mathematical procedure that uses
orthogonal transformation to convert a set of observations of possibly correlated variables
into a set of values of linearly uncorrelated variables called principal components.

2. Linear Discriminant Analysis (LDA), which is related to Fisher’s linear discriminant
and provides us a baseline performance of linear algorithms for dimensionality reduction.

3. Kernel Fisher Discriminant Analysis (KDA) is regarded as the kernelized version
of LDA. Using the kernel trick, KDA can be implicitly performed in a new feature space,
which allows non-linear mappings to be learned.

4. Spectral Regression Kernel Discriminant Analysis (SRKDA) casts discriminant anal-
ysis into a regression framework which can improve both efficiency of computation and the
use of regularization techniques.

5. Locality Preserving Projection (LPP) is linear projective maps that arise by solving a
variational problem that optimally preserves the neighborhood structure of the data set. LPP
should be seen as an alternative to PCA.

6. Discriminative Locality Alignment (DLA) focuses on the local patch of every sample
in a training set and implements the sample weighting by the margin degree, which is used
as a measure of the importance of each sample for classification.

7. Locality-Sensitive Hashing (LSH) is a randomized hashing scheme, developed with
the primary goal of K neighbor search. The basic idea is to hash the input items so that
similar items are mapped to the same buckets with high probability.

4http://www.cs.toronto.edu/ kriz/cifar.html
5We follow the common settings to use GIST features descriptors in this chapter. Of course, other features

can also been extracted to represent images.
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Fig. 6.4 A few example images from the CIFAR10 dataset. From top row to bottom row,
the image classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck,
respectively.
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8. Kernelized Locality-Sensitive Hashing (KLSH) is a kernelized method of LSH per-
forming probabilistic dimension reduction of high-dimensional data.

9. Boosted similarity sensitive coding (BSSC) is to construct an embedding similar to
the one achieved in LSH, but to explicitly maximize its sensitivity to the desired similarity
measure.

10. Restricted boltzmann machine (RBM) is a generative stochastic neural network
that can learn a probability distribution over its set of inputs widely used in dimensionality
reduction.

Note: the Gaussian RBF kernel is used for all the kernel-based methods. We manually
tune the kernel width parameter σ by cross-validation on the training set to achieve best
performance.

We combine all the above methods with (linear/non-linear) SVM classifier to evaluate
their capability. Particularly, since LSH, KLSH, BSSC, RBM and ECE are all treated as
hashing embedding methods based on Hamming distance, we apply RBF-Hamming kernel
(see in Eqn. 6.4) with SVM in our experiments instead of the original Euclidean-RBF.

K(x1,x2) = exp(−HD(x1,x2)
2

2σ2 ) (6.4)

where HD(x1,x2) indicates the Hamming distance between x1 and x2.

6.5.3 Results

We first show the results of our ECE algorithms on three datasets. Then we compare ECE
with the above state-of-the-art dimensionality reduction methods.

ECE Vs. RBPL-ECE

We compare our basic ECE algorithm with RBPL-ECE on different numbers of bits as
shown in Fig. 6.5. For each dataset, we use the whole training set (i.e., training samples on
USPS, CMU PIE and CIFAR-10 datasets are 7291, 8000 and 50000, respectively) to learn
the ECE embeddings and test on the rest of each dataset for image classification.

From the results illustrated in Fig. 6.5, we can conclude that, for both basic ECE and
RBPL-ECE, the classification accuracies on all three datasets at first rapidly climb up when
increasing the ECE bits. Then, acceleration of the growing speeds gradually decreases
and finally classification accuracies reach at a relatively stable level. We compute RBPL-
ECE codes by randomly assembling K=3 parallel training batches. The best classification
accuracies achieved by the basic ECE on the USPS, CMU PIE and CIFAR-10 datasets are
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Fig. 6.5 Classification results via the basic ECE and RBPL-ECE: the left sub-figure shows
the results of the basic ECE with a full-possibility N2-sized data pair set for training. Each
bit of the basic ECE code is a binary number - 1 or 0. The right sub-figure shows the results
of RBPL-ECE, which adopts K = 3 random assigned N-sized learning batches to compute
ECE codes in parallel.

Table 6.3 Basic ECE computational time with the highest classification accuracies.

❵❵❵❵❵❵❵❵❵❵❵❵❵❵Datasets
Computational time

Learning time Coding time Classification time

USPS (96.5%) 847 min(7291 training samples) 0.047s/sample 0.21s/sample
CMU PIE (97.6%) 891 min(8000 training samples) 0.056s/sample 0.21s/sample
CIFAR-10 (86.9%) 4786 min(50000 training samples) 0.051s/sample 0.54s/sample

96.5%(80-d), 97.6%(90-d) and 86.9%(90-d), respectively, while 96.1%(112-d), 98.15%(100-
d) and 86.4%(87-d) are the best results produced by RBPL-ECE. It can be observed that, for
both the USPS and CIFAR-10 datasets, the basic ECE just achieves slightly better results
than RBPL-ECE.

Table 6.3 and Table 6.4 compare the computational costs with the highest classification
accuracies for both the basic ECE and RBPL-ECE algorithms on three datasets. The re-
sults show that RBPL-ECE can vastly reduce the time during the learning phase with a tiny
increase for the coding phase compared with the basic ECE. Once the evolutionary embed-
ding functions are obtained, it is very fast for both the basic ECE and RBPL-ECE to code
a new sample and classify it (always with the total time less than 0.6 seconds in the Matlab
environment).

From the above evaluation, we prove that RBPL-ECE can get competitive results (i.e.,
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Table 6.4 RBPL-ECE computational time with the highest classification accuracies.

❵❵❵❵❵❵❵❵❵❵❵❵❵❵Datasets
Computational time

Learning time Coding time Classification time

USPS (96.1%) 12 min(7291 training samples) 0.071s/sample 0.21s/sample
CMU PIE (98.15%) 13 min(8000 training samples) 0.078s/sample 0.21s/sample
CIFAR-10 (86.4%) 71 min(50000 training samples) 0.073s/sample 0.53s/sample

Table 6.5 Performance (%) comparison on the USPS dataset.

❵❵❵❵❵❵❵Training Set
Methods Original feature PCA LDA PCA+LDA KDA SRKDA LPP DLA LSH KLSH BSSC RBM RBPL-ECE

3000 92.12 (256) 92.40 (49) 90.23 (9) 93.56 (98,9) 94.47 (9) 94.62 (9) 93.80 (112) 94.07(63) 89.40 (190) 92.93 (72) 92.20 (130) 91.20 (100) 95.04 (10,87)
4500 92.46 (256) 92.57 (58) 90.48 (9) 93.72 (95,9) 94.47 (9) 95.12 (9) 94.52 (73) 94.23 (96) 91.31 (214) 94.21 (77) 93.12 (153) 93.04 (100) 95.17 (10,87)
6000 92.81 (256) 92.64 (52) 90.08 (9) 94.43 (97,9) 94.97 (9) 95.57 (9) 94.88 (64) 94.55 (84) 93.16 (220) 95.13 (87) 94.83 (142) 94.47 (100) 95.72 (10,100)
7291 93.04 (256) 93.13 (71) 89.74 (9) 94.78 (95,9) 95.17 (9) 95.96 (9) 95.09 (97) 94.79 (91) 93.97 (239) 95.94 (95) 94.92 (178) 95.51 (100) 96.10 (10,112)

classification accuracies and dimensions) compared with the basic ECE but using much
shorter time for learning. Thus, in the rest of experiments, we only adopt RBPL-ECE as our
dimensionality reduction method to compare with the state-of-of-art.

Comparison with other methods

In this section, we compare our method against classical dimensionality reduction tech-
niques, PCA, LDA, KDA, SRKDA [12], LPP and DLA [59] and popular binary coding
methods, including BSSC [65], RBM [168] (with 100-100 two hidden layers) , LSH [172]
and KLSH [44] (with RBF kernel). Each of these methods is evaluated on three datasets
under different training settings. Table 6.5, Table 6.7 and Table 6.8 show the classification
accuracies by SVM6 for each method on the three datasets.

Note that the numbers in parentheses are the corresponding feature dimensions with the
best results after dimensionality reduction. For PCA+LDA, the first number is the percent-

6The RBF kernel and RBF-Hamming-distance kernel are used. We manually tune the kernel width param-
eter σ by cross-validation on the training set to achieve best performance.

Table 6.6 Time complexity analysis for best performance on the USPS dataset. (Note: Cod-
ing time denote the time used for each sample

PPPPPPPPTime
Methods

PCA LDA PCA+LDA KDA SRKDA LPP DLA LSH KLSH BSSC RBM RBPL-ECE

Learning Time 12s 44s 56s 50s 89s 33s 132s 2s 6s 957s 1921s 720s
Coding Time 67ms 34ms 133ms 63ms 52ms 80ms 104ms 13ms 17ms 94ms 151ms 71ms
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Table 6.7 Performance (%) comparison on the CMU PIE dataset

❵❵❵❵❵❵❵Training Set
Methods Original feature PCA LDA PCA+LDA KDA SRKDA LPP DLA LSH KLSH BSSC RBM RBPL-ECE

4000 96.26 (1024) 96.26 (154) 95.86 (67) 96.76 (97,67) 96.44 (67) 96.93 (67) 96.35 (77) 96.50 (90) 89.71 (112) 92.53 (178) 91.76 (141) 93.15 (100) 97.64 (10,87)
5000 96.59 (1024) 96.90 (161) 96.15 (67) 96.92 (91,67) 97.17 (67) 97.75 (67) 96.49 (103) 97.03 (101) 92.24 (187) 94.76 (175) 93.75 (132) 94.79 (100) 97.75 (10,87)
6000 96.95 (1024) 95.81 (241) 96.43 (67) 97.45 (98,67) 97.59 (67) 97.77 (67) 96.94 (96) 97.21 (94) 94.97 (139) 97.10 (175) 95.19 (197) 95.28 (100) 97.98 (10,100)
7000 97.21 (1024) 96.89 (228) 96.60 (67) 97.78 (95,67) 97.82 (67) 97.91(67) 97.51 (132) 97.52 (89) 96.16 (172) 97.94 (181) 96.83 (111) 95.85 (100) 98.10 (10,100)
8000 97.84 (1024) 97.04 (198) 96.65 (67) 98.10 (97,67) 97.89 (67) 97.93 (67) 97.87 (113) 97.81 (97) 96.77 (158) 98.13 (185) 97.53 (162) 96.07 (100) 98.15 (10,100)

Table 6.8 Performance comparison (%) on the CIFAR-10 dataset

❵❵❵❵❵❵❵Training Set
Methods Original feature PCA LDA PCA+LDA KDA SRKDA LPP DLA LSH KLSH BSSC RBM RBPL-ECE

20000 81.89 (384) 82.16 (164) 77.03 (9) 84.86 (95,9) 84.47 (9) 85.02 (9) 83.35 (60) 84.10 (82) 79.04 (99) 81.13 (46) 81.79 (191) 84.38 (100) 84.77 (10,87)
30000 82.04 (384) 82.27 (171) 79.96 (9) 84.95 (95,9) 84.97 (9) 85.05 (9) 83.37 (84) 84.43 (86) 81.10 (134) 83.55 (51) 83.40 (154) 84.50 (100) 85.02 (10,100)
40000 82.15 (384) 83.21 (154) 81.31 (9) 84.75 (95,9) 85.12 (9) 85.41 (9) 84.00 (82) 84.97 (92) 83.43(112) 84.74 (45) 84.13 (110) 85.22 (100) 85.98 (10,100)
50000 82.27 (384) 83.19 (159) 82.22 (9) 84.98 (98,9) 85.20 (9) 85.55 (9) 83.71 (73) 85.29 (88) 84.71 (123) 86.23 (48) 84.78 (144) 85.85 (100) 86.40 (10,87)

age of energy retained in the PCA step, and the second number is the length of the final
vector. For RBPL-ECE, the first number is the K which means the number of the random
batches for parallel computation, and the second number is the final feature length.

Among those methods based on graph embedding (i.e., PCA, LDA, KDA, SRKDA,
LPP), The SRKDA always gives the best performance for most of the cases in all the three
datasets. KDA and LPP have similar abilities on the first two datasets. PCA+LDA can
achieve better results than just PCA or LDA individually. When increasing the size of
training sets from the smallest to the largest, the maximum gains of results for these graph
embedding methods are 1.82%, 1.58% and 2.19%, respectively, on USPS, CMU PIE and
CIFAR-10. On the contrary, for the binary coding based methods ( i.e., LSH, KLSH, RBM
and BSSC), it can be observed that the classification accuracies are quite sensitive to the
size of the training set compared with graph embedding methods. When adding the number
of samples in their training phase, an obvious increase occurs on classification accuracies.

Compared with above methods, our RBPL-ECE is much more stable when changing
the training set size compared with all other reduction methods. This property is useful in
large-scale data classification, since a relatively small training set can achieve promising re-
sults. In general, our RBPL-ECE algorithm yields the best performance in large-scale image
classification on all three datasets. Particularly, RBPL-ECE reaches the highest classifica-
tion accuracies on the USPS dataset. For CMU PIE and CIFAR-10 datasets, only SRKDA
achieves same or slightly better results than RBPL-ECE.

We also illustrate the time cost corresponding to their their best performance on the
USPS dataset in Table 6.6. It is seems that our GP-based methods is still time-consuming
compared with other embedding approaches for learning, even though computational com-
plexity would not be very important in the area of GP training phase. Once the optimal



6.6 Experiments on Image Retrieval 109

embedding function is obtained from the GP training phase, the classification phase will
be very efficient, as the optimized embedding function can be just directly applied on any
newcoming data. Of course, with the rapid development of silicon technologies, future
computers will be much faster and even the training will become less a problem.

In terms of reduction effect, LDA, KDA and SRKDA are treated as the most effective
methods, which project the data from the original feature space to a subspace with the
dimension of the class number minus 1. Our RBPL-ECE code is still longer than some
of the embeddings we compare with, though our method is much faster for reduction. In
future work, we will focus on optimizing our embedding method to make it more compact
and effective.

6.5.4 Large-Scale Image Classification

Additionally, in this section, we further evaluate our RBPL-ECE on a very large dataset7,
i.e., SUN397 [136], which contains 108754 scene images in total from 397 well-sampled
categories with at least 100 images per category. We randomly select 5, 10, 20, 50 samples
from each category respectively to construct the training set and the rest of samples are
used as the test set. The same GIST feature is used to describe each image. In this way,
we train our RBPL-ECE on these extracted feature vectors to learn the compact binary
representation. We also compare all the above methods with ours and show the results in
Fig. 6.6. From the results, we can observe that our RBPL-ECE still consistently outperforms
all the compared methods in different settings.

6.6 Experiments on Image Retrieval

In this section, ECE algorithm on the high dimensional nearest neighbor search problem.
Different from classification tasks, in realistic retrieval scenarios, we cannot get the precise
label for each of the data point in large-scale retrieval tasks. Thus, we use an approxi-
mate scheme to obtain the weak label information. In particular, we first adopt a clustering
method (e.g., K-means) to partition the data into several groups. Since this kind of clus-
tering method is normally based on distances (e.g., Euclidean distance) to divide data into
different groups, data points from the same cluster always have high similarity. Therefore,
we assign pair label Ypair = 1 if pair data xn and xp belong to the same cluster (group), and
Ypair = 0 if pair data xn and xp come from different clusters (groups).

7For the image classification task, the size of a large scale dataset is always over ten thousand in previous
reports, such as Caltech-256 with 30607 images. A dataset containing over a hundred thousand images can be
regarded as a very large dataset.
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Fig. 6.6 The classification accuracies on the SUN397 scene dataset with different training-
test partitions.

Following the previous reports, two large scale realistic datasets8 are used in our exper-
iments, i.e., SIFT 1M and GIST 1M which both contain one million image features with
128−dim and 960−dim vectors, respectively.

For each data set, we randomly select 10k data points as the queries and use the remain-
ing to form the gallery database for training. We generate the ground truth using the same
criterion as in [173]. In test phase, similarly, a returned point is regarded as a true neighbor
if it lies in the top 2 percentile points closest to a query. Hamming distances ranking is then
used as the measurement for in our retrieval tasks, since it’s fast enough with short hash
codes in practice. We evaluate the retrieval results by the Mean Average Precision (MAP)
and the precision-recall curve. Additionally, we also report the training time and the test-
ing time (the average time used for each query) for all the methods. Our experiments are
completed using Matlab 2013a on a server configured with a 12-core processor and 128G
of RAM running the Linux OS.

6.6.1 Compared Methods and Settings

We compare our method against 10 popular hashing algorithms, i.e., LSH [172], KLSH [44],
RBM [67], BSSC [65], PCAH [68], SpH [69], AGH [70], STH [71], KSH [72] and CH [73].
Particularly, for KLSH and KSH, we both use the RBF-kernel and randomly sample 500
training samples to construct the empirical kernel map and set the scalar parameter σ always
to an appropriate value on each dataset. To run RBM, we train it with a set of 100− 100

8Download here: http://corpus-texmex.irisa.fr/
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Fig. 6.7 The Mean Average Precision of all the algorithms on SIFT 1M and GIST 1M data
sets.

hidden layers without fine-tuning. BSSC uses the labeled pairs scheme mentioned above in
a boosting framework to learn the thresholds and weights for each hash function. AGH with
two-layer is used in our comparison, which shows superior performance over AGH with
one-layer [70]. We further set k=200 as the number of the anchor points and the number
of nearest anchors in sparse coding as s=50. Both our CH method and the AGH need an
anchor-based sparse coding step, thus same settings are applied in CH, as well. For our
method RBPL-ECE, since we mainly evaluate the short hash codes, we just fix the batch
number as K=4 in all experiments. The number of clusters of K-means in the proposed
method for each dataset is selected from one of {600, 700, 800,. . . , 1000,. . . , 1500} with
the step of 100, which yields the best performance by 10-fold cross-validation. Due to
that basic ECE and RBPL-ECE are both inspired via genetic programming which is always
initialized randomly, all the experiments with our methods have been repetitively carried
out 10 times and the final results shown are the averages of the 10 runs with a degree of
uncertainty. All of the above methods in our experiments are evaluated on six different
lengths of codes (16, 32, 48, 64, 80, 96).

6.6.2 Results Comparison

Fig. 6.7 illustrates the MAP curves of all comparable algorithms on SIFT 1M and GIST
1M datasets. In its entirety, the searching accuracies on the SIFT 1M dataset are obviously
higher than that on the more complicated GIST 1M dataset. In particular, for the PCAH,
it has a high MAP when the code length is short. However, it fails to make significant
improvements and the performance decreases as the code length increases. On the contrary,
the rest of the methods keep an overall increasing or fluctuating tendency on MAP when
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Table 6.9 MAP of 32 bits and 48 bits with training and testing time of all algorithms on
SIFT1M and GIST1M data sets.

Methods SIFT 1M GIST 1M
32 bits 48 bits 32 bits 48 bits

MAP Train time Test Time MAP Train time Test Time MAP Train time Test Time MAP Train time Test Time
LSH 0.240 0.3s 1.1µs 0.280 0.6s 1.9µs 0.107 1.4s 2.7µs 0.135 2.1s 3.0µs

KLSH 0.150 10.5s 14.6µs 0.230 10.7s 16.2µs 0.110 29.5s 27.2µs 0.120 30.7s 38.0µs
RBM 0.245 4.5×104s 3.3µs 0.262 5.8×104s 3.7µs 0.123 5.5×104s 3.4µs 0.142 6.2×104s 3.7µs
BSSC 0.280 2.2×103s 11.2µs 0.293 2.6×103s 13.4µs 0.112 3.2×103s 13.0µs 0.130 3.8×103s 15.1µs
PCAH 0.252 6.5s 1.2µs 0.235 7.4s 1.9µs 0.090 49.2s 2.8µs 0.075 52.3s 3.0µs
SpH 0.275 25.8s 28.3µs 0.284 88.2s 101.9µs 0.130 65.3s 40.2µs 0.148 131.1s 116.3µs
AGH 0.161 144.7s 55.7µs 0.267 184.2s 72.0µs 0.134 242.5s 83.7µs 0.160 279.4s 95.6µs
STH 0.270 1.2×103s 17.4µs 0.318 1.8×103s 19.8µs 0.123 1.9×103s 21.3µs 0.171 2.5×103s 25.2µ

KSH 0.324 2.1×103s 32.0µs 0.339 2.3×103s 37.4µs 0.136 2.6×103s 34.2µs 0.161 2.9×103s 38.1µs
CH 0.320 93.4s 53.5µs 0.360 98.2s 54.4µ 0.175 194s 64.1µs 0.206 210.5s 71.5µs

(Basic) ECE 0.350
±0.009 5.5×104s 28.2µs

0.412
±0.014 6.2×104s 31.7µs

0.233
±0.018 6.1×104s 30.8µs

0.249
±0.017 6.7×104s 35.0µs

RBPL-ECE 0.335
±0.012 917s 32.1µs

0.387
±0.020 984s 33.5µs

0.204
±0.024 1.7×103s 32.7µs

0.213
±0.021 1.9×103s 33.9µs

The results of EBE and RBPL-EBE are mean accuracies of 10 runs with a degree of uncertainty

Fig. 6.8 The precision-recall curves of all algorithms on SIFT 1M and GIST 1M data sets
for the codes of 48 bits. The AUC values are illustrated in the brackets.
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the code length increases. Specifically, LSH and KLSH have a low MAP when the code
length is short. STH and BSSC always produce competitive search accuracies on both
two datasets. The performance of RBM and SpH achieves ‘rise-then-fall’ curves on the
SIFT 1M dataset. Beyond those, it is obviously observed that KSH and CH always reach
high search accuracies on both datasets. For our methods, both ECE and RBPL-ECE can
significantly outperform the other comparable methods (also see in Table 6.9) in terms of the
MAP. Fig. 6.8 also presents the precision-recall curves of all the algorithms on two data sets
with the code of 48 bits. From both figures, we can further discover that, for both datasets,
the (basic) ECE achieves slightly better performance than RBPL-ECE by comparing the
Mean Average Precision (MAP) and Area Under the Curve (AUC). The learned GP-tree
based hashing functions for embedding 16-bits binary codes on the SIFT 1M dataset are
illustrated in Fig. 6.9.

We also list the training time and test time for different algorithms on two data sets in
Table 6.9. Considering the training time, our (basic) ECE spends the most time to train.
While, the random projection based algorithms are relatively efficient, especially the LSH.
Compared with the (basic) ECE, the RBPL-ECE saves much computational cost in the
training phase, which is also more efficient than RBM, BSSC, STH and KSH (details can
be seen in Table 6.9). In terms of the test phase, LSH and PCAH are the most efficient
methods. Both of them simply need a matrix multiplication and a thresholding to obtain
the binary codes. Since the concatenation in our parallel coding, RBPL-ECE is slightly
slower than the (basic) ECE. AGH and SpH are the most expensive methods for testing,
due to the relatively high cost on calculating the sparse representation and computing the
analytical eigenfunctions, respectively. The most expensive part of the (basic) ECE and the
RBPL-ECE methods in coding is computing the algebraic weak functions generated by GP.

6.7 Summary

In this chapter, we have presented a novel framework to learn highly discriminative em-
bedding codes for dimensionality reduction using evolutionary compact embedding (ECE).
We address it as an optimization problem combining genetic programming (GP) with the
boosting-based weight updating trick. For each bit of ECE, the proposed learning scheme
evolves a binary classification function through GP and re-weights the training samples for
the next bit to jointly minimize its empirical risk with the AdaBoost strategy. We further im-
prove the basic ECE by using the random batch parallel learning (RBPL) technique, which
has been demonstrated to be more efficient for large-scale training but can still achieve
competitive results. We have systematically evaluated our method on the USPS, CMU PIE,
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Fig. 6.9 The GP-evolved tree hash functions for embedding 16-bits binary codes on the
SIFT 1M dataset. From top-left to bottom right, each tree illustrates a hashing function for a
bit, respectively. (Note., the nodes ’plus’, ’minus’, ’times’ and ’AQ’ in the tree correspond
with ’+’, ’−’, ’×’ and ’÷’, respectively.)
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CIFAR-10 and SUN397 scene datasets and produced the image classification accuracies
of 96.1%, 98.15%, 86.4% and 18.8%, respectively. In all four datasets, our evolutionary
compact embedding achieves better or competitive results compared with popular reduction
methods. Furthermore, two standard datastes SIFT 1M and GIST 1M have also been evalu-
ated for image retrieval, and show promising results compared with state-of-the-art hashing
methods.

Although, the proposed method can successfully used for large-scale image retrieval,
most existing hashing methods for image search are still based on global feature represen-
tations, which heavily limit the effectiveness of the hash code. In the next chapter, the
Bilinear Local Feature Hashing (BLFH) has been proposed, which is a novel supervised
hashing technique based on local features for image search and retrieval.





Chapter 7

Bilinear Local Feature Hashing

7.1 Overview

In the last chapter, a new evolutionary compact embedding (ECE) algorithm has been pro-
posed for large-scale image similarity search. Although ECE can achieves significant results
in terms of the final accuracies, this kind of hashing methods based on global feature rep-
resentations may heavily limit the effectiveness of the hash code. Particularly, very low
accuracies can be achieved for the final searching results if a large intra-class variation ex-
ists in the dataset. In this chapter, we propose the Bilinear Local Feature Hashing (BLFH),
which is a novel supervised hashing technique based on local features for image search
and retrieval. The proposed scheme aims to embed local feature descriptors from a high-
dimensional space into a Hamming space with a low dimension, rather than using global
features as in most existing hashing techniques which are susceptible to image variations
such as viewpoint changes and background cluttering. Specifically, BLFH seeks two or-
thogonal projection matrices to preserve the pairwise attributes including labels and simi-
larities between different local features. Meanwhile, a bipartite graph regularization item,
which is constructed by images and classes, is simultaneously used to preserve the image-
level intrinsic structure of local features. Since the raised problem is regarded as nonconvex
and discrete, our objective function is then optimized via an alternate way with relaxation
and finally converges to a near-optimal solution.

To the best of our knowledge, this is the first work specially on linear (bilinear) local
feature hashing. It is worthwhile to highlight several properties of the proposed method:

(1) BLFH is linear and efficient. With the bilinear projection, the complexity of the
eigen-decomposition, which is the cubic form of the dimensionality, will be significantly
reduced.

(2) BLFH simultaneously preserves pairwise structure and bigraph structure which can
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be regarded as the local structure and the global structure respectively in the original feature
space.

(3) BLFH can be extended to the semi-supervised learning case by incorporating the
optimization of unlabeled data, which is more practical for realistic applications.

7.2 Literature Review

An early work involving local feature binary coding was proposed in [174]. Specifically,
they introduced two schemes to improve the standard bag-of-words (BoW) model: (1) a
Hamming embedding (HE) which provides binary signatures to refine visual words; (2) a
weak geometric consistency constraint with the geometrical transformation. Both methods
can significantly improve the final performance for retrieval tasks. Furthermore, a coupled
Multi-Index (c-MI) framework was proposed for accurate image retrieval [175]. In their
framework, each keypoint in the image is described using both SIFT and color descriptors.
Two distinct features are encoded by the binary coding methods in [174] and [176], respec-
tively, and then fused together. Beyond that, a selective match kernel approach [177] has
also been developed to incorporate matching kernels sharing the best properties of HE and
VLAD. Based on [174], another related work can also be found in [178], which introduces
a color binary descriptor and this descriptor can be achieved via either a global or a local
form.

However, all the above BoW-related works mainly focus on the retrieval techniques
rather than the learning procedure of the binary coding for large-scale hashing. Besides,
these methods are not fully linear, which limits their efficiency and applicability for large-
scale datasets.

7.3 Bilinear Local Feature Hashing

In this section, we present our new supervised hashing approach, Bilinear Local Feature
Hashing (BLFH). Specifically, a bilinear projection scheme is first introduced to obtain the
hashing function and then we explain how to construct our objective function via preserving
the pairwise structure and the I2C distances. After that, we propose an alternate method
to learn the optimal projections for hash codes. The outline of the proposed method is
illustrated in Fig. 7.1.
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Fig. 7.1 The illustration of the working flow of BLFH learning. The algorithm intends
to preserve the pairwise structure and the I2C distances and outputs the optimal bilinear
projection matrices Θ1 and Θ2.

7.3.1 Bilinear Projection for Hashing

Bilinear projection is to multiply projection matrices on both sides of data. However, local
features are mostly represented as a vector form which needs to be transformed into a matrix
form. Given a local feature set F = {x1, · · · ,xN} from training samples, where xi ∈RD, ∀i,
we factor integer D as D = D1×D2. Then we can rearrange xi into a D1×D2 matrix Xi:

xi ∈ RD 7→ Xi ∈ RD1×D2, i = 1, · · · ,N.

In other words, we reorganize vector xi into matrix Xi such that vec(Xi) = xi, where vec(·)
represents the vectorization of a matrix. Then we have the inverse map of vectorization
vec−1(xi) = Xi, since the vectorization is a one-to-one correspondence if D1 and D2 are
given. To make the transformation more efficient, we apply a bilinear formulation using
two matrices Θ1 ∈ RD1×d1 and Θ2 ∈ RD2×d2 to define our hash function with the input of a
vector form:

H(xi) = sgn
(
vec
(
Θ

T
1 vec−1(xi)Θ2

))
, (7.1)

or with the input of a matrix form:

H(Xi) = sgn
(
vec(ΘT

1 XiΘ2)
)
. (7.2)

In fact, we notice that

vec(ΘT
1 XiΘ2) = (ΘT

2 ⊗Θ
T
1 )vec(Xi) = (ΘT

2 ⊗Θ
T
1 )xi,
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where ⊗ is the Kronecker product, thus a bilinear projection is simply a special case of
the single matrix projection Θ which can be decomposed as Θ = Θ2⊗Θ1. Besides, if
Θ1 and Θ2 are orthogonal, i.e., ΘT

1 Θ1 = Id1×d1 and ΘT
2 Θ2 = Id2×d2 , then Θ is orthogonal

since ΘT Θ = (Θ2⊗Θ1)
T (Θ2⊗Θ1) = (ΘT

2 ⊗ΘT
1 )(Θ2⊗Θ1) = ΘT

2 Θ2⊗ΘT
1 Θ1 = Id2×d2 ⊗

Id1×d1 = Id1d2×d1d2 . One of the differences, however, is that bilinear projection leads to an
eigen-decomposition on matrices with much smaller sizes D1×D1 and D2×D2 rather than
D1D2×D1D2, which will be shown later.

7.3.2 Objective Function

To obtain meaningful hash code for local features, we construct our objective function main-
ly based on two parts: pairwise structure preserving and I2C distance preserving.

Pairwise Structure Preserving

Let us consider the whole property of the local feature set F = {X1, · · · ,XN}, where N
is the number of local features in training data. We are concerned about the relationship
between each local feature in the high-dimensional space, which should also be retained
in the lower-dimensional space. Accordingly, the pairwise label information is introduced
instead of the class label. The binary property of hash function motivates us to employ the
pairwise label {−1,+1} to represent relationships between local features. However, similar
local features can appear in samples from many different classes. Thus, for each pair of
local features (Xi,X j), its pairwise label is determined by its neighbors rather than the class
label as follows:

ℓi j =

{
+1, Xi ∈ Nk(X j) or X j ∈ Nk(Xi)

−1, otherwise
,

where Nk(X) is the set of k nearest neighbors of X . We hope that the projected local features
X̂i = vec(ΘT

1 XiΘ2) and X̂ j = vec(ΘT
1 X jΘ2) have the same component-wise sign if they have

pairwise label +1, and the different component-wise sign if they have pairwise label −1.
We denote P = {(i, j)|Xi,X j ∈F}. Besides, to decrease the disturbance of noise, we assign
a weight for each pair which is defined as follow:

W P
i j = exp

(
−ℓi j∥Xi−X j∥2) . (7.3)
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Therefore, the following function

∑
(i, j)∈P

W P
i j ℓi j⟨sgn(X̂i),sgn(X̂ j)⟩

= ∑
(i, j)∈P

W P
i j ℓi jsgn(vec(ΘT

1 XiΘ2))
T sgn(vec(ΘT

1 X jΘ2))

= ∑
(i, j)∈P

W P
i j ℓi j tr(sgn(ΘT

1 XiΘ2)
T sgn(ΘT

1 X jΘ2))

= ∑
(i, j)∈P

W P
i j ℓi j tr(sgn(ΘT

1 XiΘ2)sgn(ΘT
1 X jΘ2)

T )

= ∑
(i, j)∈P

W P
i j ℓi j tr(sgn(ΘT

1 XiΘ2)sgn(ΘT
2 XT

j Θ1))

(7.4)

needs to be maximized, where ⟨·, ·⟩ represents the inner product. The above function reaches
its maximum value when ℓi jvec(ΘT

1 XiΘ2) and vec(ΘT
1 X jΘ2) are similarly sorted due to the

rearrangement inequality [179].

Bigraph Regularization

We are also concerned about a higher level connection, i.e., relationship between images
and classes. Thus we consider a complete bipartite graph (a.k.a. bigraph) G = (V1,V2,E) in
which V1 is the set of all images and V2 is the set of all classes. The image-to-class (I2C)
distance provides a feasible way to quantize the edges of E. Given the set of local features
of an image Xi = {Xi1, · · · ,Ximi}, which contains all of the local features of image i, the I2C
distance between image i and class c is defined as

Dc
Xi

= ∑
X∈Xi

∥X−NNc(X)∥2, (7.5)

where NNc(X) is the nearest neighbor of the local feature X in class c and ∥ ·∥ is Frobenius
norm.

However, searching the nearest neighbor in such a large scale space of local features
of each class will still cost much time. Here, to reduce the complexity of searching, we
first employ a K-means clustering algorithm on the set of local features of each class, i.e.,⋃

C(Xi)=c Xi, c = 1, · · · ,C, where C is the number of classes and C(·) ∈ {1, · · · ,C} is the
label information function that represents the class label of the input. And then we reduce
the searching range of nearest neighbor to the cluster centers, i.e., for c = 1, · · · ,C, we let

NNc(X) ∈ Centroids {S1, · · · ,SK} of
⋃

C(Xi)=c

Xi.
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Via I2C distances, we construct the bigraph G = (V1,V2,E), where V1 and V2 represent
the set of all the images and the set of all the classes, respectively. Then for each edge in
E, we define its weight W c

i , named the I2C similarity between image i and class c in the
original space, by the following Gaussian function

W D
ic = exp

(
−(Dc

Xi
)2

2σ2

)
, i = 1, · · · ,n, c = 1, · · · ,C, (7.6)

where σ is the Gaussian smooth parameter and n is the number of training samples. After
applying BLFH, we have the I2C distance in Hamming space

D̂c
Xi

= ∑
X∈Xi

∥H(X)−NNc(H(X))∥2. (7.7)

In order to preserve the order of projected similarity in the projected space, a reasonable
objective function for bigraph regularization is to minimize

n

∑
i=1

C

∑
c=1

D̂c
Xi
·W D

ic . (7.8)

One of the necessary conditions of the above function reaches the minimum value is that
{D̂c

Xi
} is order-preserved due to the rearrangement inequality [179].

In addition, to make the projected space more compact, we set orthogonality constraints
on the projection matrices Θ1 and Θ2, i.e., ΘT

1 Θ1 = I and ΘT
2 Θ2 = I. Combined with

the pairwise preserving part in Eq. (7.4) and orthogonality constraints, finally, we set our
optimization problem as follows:

argmax
ΘT

1 Θ1=I
ΘT

2 Θ2=I

∑
(i, j)∈P

W P
i j ℓi j⟨sgn(X̂i),sgn(X̂ j)⟩

− γ

n

∑
i=1

C

∑
c=1

D̂c
Xi
·W D

ic .

(7.9)

where γ is the regularization parameter.

7.3.3 Alternate Optimization via Relaxation

In this section, to gain a more optimal solution, we first relax the discrete sign function in
optimization problem (7.9) to a real-valued continuous function by using its signed mag-
nitude, i.e., sgn(x) ≈ x. In this case, the pairwise structure preserving part, i.e., Eq. (7.4)
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becomes

∑
(i, j)∈P

W P
i j ℓi j tr(ΘT

1 XiΘ2Θ
T
2 XT

j Θ1). (7.10)

For simplicity, we denote NNc(X) = Xc. Besides, we also make a statistical approximation
on the computation of projected I2C distances due to the large amount of local features. That
is, we exchange the operation of NNc and H(·) for all X ∈Xi, i.e., ∑X∈Xi ∥X−H(X)c∥2 ≈
∑X∈Xi ∥X −H(Xc)∥2. Thus, the projected I2C distance after applying matrices Θ1 and Θ2

becomes

D̂c
Xi
≈ ∑

X∈Xi

∥ΘT
1 XΘ2−Θ

T
1 Xc

Θ2∥2

= ∑
X∈Xi

∥ΘT
1 (X−Xc)Θ2∥2

=
mi

∑
k=1

tr(ΘT
1 (Xik−Xc

ik)Θ2(Θ
T
1 (Xik−Xc

ik)Θ2)
T )

=
mi

∑
k=1

tr(ΘT
1 (Xik−Xc

ik)Θ2Θ
T
2 (Xik−Xc

ik)
T

Θ1)

:=
mi

∑
k=1

tr(ΘT
1 ∆Xc

ikΘ2Θ
T
2 (∆Xc

ik)
T

Θ1),

(7.11)

where ∆Xc
ik = Xik−Xc

ik, k = 1, · · · ,mi.

Additionally, due to the difficulty of computing the optimal Θ1 and Θ2 simultaneously,
we derive an alternate iteration algorithm in this section. Specifically, for a fixed Θ2, we can
compute the optimal Θ1 by solving a classical eigen-decomposition problem. And for the
computation of Θ2, we can then update Θ2 by solving another eigen-decomposition problem
with the computed Θ1. First, let us denote the objective function in optimization problem
(7.9) by L (Θ1,Θ2) and transform it to the following form by Eq. (7.10) and (7.11)

L (Θ1,Θ2)

= ∑
(i, j)∈P

W P
i j ℓi j tr(ΘT

1 XiΘ2Θ
T
2 XT

j Θ1) (7.12)

− γ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W D
ic tr(ΘT

1 ∆Xc
ikΘ2Θ

T
2 (∆Xc

ik)
T

Θ1)

:= tr(ΘT
1 M2(Θ2)Θ1),
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where

M2(Θ2) = ∑
(i, j)∈P

W P
i j ℓi jXiΘ2Θ

T
2 XT

j

− γ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W D
ic ∆Xc

ikΘ2Θ
T
2 (∆Xc

ik)
T .

(7.13)

And we also have the following form

L (Θ1,Θ2)

= ∑
(i, j)∈P

W P
i j ℓi j tr(ΘT

2 XT
j Θ1Θ

T
1 XiΘ2) (7.14)

− γ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W D
ic tr(ΘT

2 (∆Xc
ik)

T
Θ1Θ

T
1 ∆Xc

ikΘ2)

:= tr(ΘT
2 M1(Θ1)Θ2),

since tr(AB) = tr(BA) if both products AB and BA exist, where

M1(Θ1) = ∑
(i, j)∈P

W P
i j ℓi jXT

j Θ1Θ
T
1 Xi

− γ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W D
ic (∆Xc

ik)
T

Θ1Θ
T
1 ∆Xc

ik.

(7.15)

Then M1 and M2 are two matrix-valued functions with their codomains RD1×D1 and RD2×D2 ,
respectively. Although the number of the local features is relatively huge, the size of our
final matrices M1 and M2 used for decomposition are small enough (D1 and D2 are always
less than 100). This property mainly guarantees the efficiency and feasibility. Therefore, for
t = 0, we randomly initialize Θ

(t)
2 ; for t-th step, we have the update rules:

Θ
(t)
1 ← the first d1 eigenvectors of M2(Θ

(t−1)
2 );

Θ
(t)
2 ← the first d2 eigenvectors of M1(Θ

(t)
1 ).

For the t-th step, we have the following inequality

L (Θ
(t−1)
1 ,Θ

(t−1)
2 )≤L (Θ

(t)
1 ,Θ

(t−1)
2 )≤L (Θ

(t)
1 ,Θ

(t)
2 ).

Thus L (Θ
(t)
1 ,Θ

(t)
2 ) is monotonic nondecreasing as t→∞. And continuous function L (Θ1,Θ2)

is bounded in the closed district {(Θ1,Θ2)|ΘT
1 Θ1 = I,ΘT

2 Θ2 = I}. Then the above alternate
iteration converges. In practice, we stop the iteration when the difference |L (Θ

(t)
1 ,Θ

(t)
2 )−
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L (Θ
(t−1)
1 ,Θ

(t−1)
2 )| is less than a small threshold or the number of iteration reaches a maxi-

mum. The corresponding integrated BLFH algorithm is depicted in Algorithm 5.

Algorithm 5 Bilinear Local Feature Hashing (BLFH)

Input: Local feature set of each training image Xi = {Xi1, · · · ,Ximi} in matrix form, the
whole local feature set F =

⋃
Xi, the parameter k for pairwise structure preserving, the

number of centroids K in K-means and the label information function C(·)∈ {1, · · · ,C}.
Output: The bilinear projection matrices Θ1 and Θ2.

1: Construct local feature pairing set P = {(i, j)|Xi,X j ∈ F} and their corresponding
pairwise labels ℓi j = {−1,+1}, where ℓi j = +1 if Xi ∈ Nk(X j) or X j ∈ Nk(Xi), and
ℓi j =−1 otherwise;

2: Employ the K-means clustering algorithm on the set of local features of each class⋃
C(Xi)=c Xi, c = 1, · · · ,C;

3: Compute pairwise weight W P
i j and I2C similarity W D

ic by Eqs. (7.3) and (7.6) respec-
tively;

4: Initialize Θ
(0)
2 randomly;

5: repeat
6: Θ

(t)
1 ← the first d1 eigenvectors of M2(Θ

(t−1)
2 ) by Eq. (7.13);

7: Θ
(t)
2 ← the first d2 eigenvectors of M1(Θ

(t)
1 ) by Eq. (7.15);

8: until L (Θ
(t)
1 ,Θ

(t)
2 ) converges.

7.4 Semi-supervised BLFH

For more realistic scenarios, it is difficult for all the samples in the training set to be
well labeled in some visual retrieval tasks. Therefore, in this section, we consider our
algorithm in a new environment by taking unlabeled samples into account and incorpo-
rating them with labeled samples to a whole optimization procedure as semi-supervised
BLFH (SBLFH). The unlabeled samples are attached to the original labeled sample set as
{X1, · · · ,Xn,Xn+1, · · · ,Xn+nU}, where the first n samples are labeled and the left nU ones
are unlabeled. Then the pairwise label is determined by the k nearest neighbors of each local
feature instead of class labels, i.e.,

ℓi j =

{
+1, Xi ∈ Nk(X j) or X j ∈ Nk(Xi)

−1, otherwise
,

where Nk(X) is the set of k nearest neighbors of X .
Besides, the I2C distance cannot be applied in unlabeled samples. Thus, similarly, we

introduce image-to-image (I2I) distance for all the samples including labeled and unlabeled
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ones. I2I distance from image i to image j simply changes the range of nearest neigh-
bor search to the local features in X j instead of the whole class in I2C distance, which is
formulated as

di j = ∑
X∈Xi

∥X−NNX j(X)∥2, (7.16)

where NNX j(X) represents the nearest neighbor in image j of local feature X . However, it
is easy to find that di j ̸= d ji. Thus, we define our symmetric I2I distance as their average

Di j =
1
2
(di j +d ji). (7.17)

Then in the projected Hamming space, I2I distance becomes

D̂i j =
1
2

(
∑

X∈Xi

∥H(X)−NNX j(H(X))∥2

+ ∑
X∈X j

∥H(X)−NNXi(H(X))∥2
)
.

(7.18)

And we also have the following I2I similarity between image i and image k in the origi-
nal space

W I
i j = exp

(
−D2

i j

2τ2

)
, i, j = 1, · · · ,n+nU , (7.19)

where τ is the Gaussian smooth parameter. Therefore, the following function

n+nU

∑
i=1

n+nU

∑
j=1

D̂i j ·W I
i j (7.20)

need to be minimized since when it reaches the minimum value, {D̂i j} and {W I
i j} are oppo-

sitely sorted, i.e., {D̂i j} and {Di j} are similarly sorted due to the rearrangement inequality
[179]. Finally, combined with the pairing preserving part and orthogonal constraints, we set
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the semi-supervised optimization problem as follows

argmax
ΘT

1 Θ1=I
ΘT

2 Θ2=I

∑
(i, j)∈P

W P
i j ℓi j⟨sgn(X̂i),sgn(X̂ j)⟩

− γλ

n

∑
i=1

C

∑
c=1

D̂c
Xi
·W D

ic

− γ(1−λ )
n+nU

∑
i=1

n+nU

∑
j=1

D̂i j ·W I
i j. (7.21)

where γ is the regularization parameter and λ ∈ (0,1) is the balanced parameter.

7.4.1 Optimizing SBLFH

Similarly, we also have relaxation sgn(x)≈ x in the optimization. If we denote X i j
k = Xik−

NNX j(Xik), i, j = 1, · · · ,n+nU , k = 1, · · · ,mi, similar to Eq. (7.11), we have the projected
I2I distance

D̂i j ≈
1
2

( mi

∑
k=1

tr(ΘT
1 X i j

k Θ2Θ
T
2 (X

i j
k )T

Θ1)

+
m j

∑
k=1

tr(ΘT
1 X ji

k Θ2Θ
T
2 (X

ji
k )T

Θ1)

)
.

And we also need an alternate optimization for the semi-supervised algorithm. We use
L semi(Θ1,Θ2) to denote the objective function in optimization problem (7.21). By the
similar derivation in Eqs. (7.12)–(7.15), we also have form

L semi(Θ1,Θ2) = tr(ΘT
1 M′2(Θ2)Θ1) = tr(ΘT

2 M′1(Θ1)Θ2),
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where

M′2(Θ2)

= ∑
(i, j)∈P

W P
i j ℓi jXiΘ2Θ

T
2 XT

j

− γλ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W D
ic ∆Xc

ikΘ2Θ
T
2 (∆Xc

ik)
T

− γ

2
(1−λ )

n+nU

∑
i=1

n+nU

∑
j=1

W I
i j

mi

∑
k=1

X i j
k Θ2Θ

T
2 (X

i j
k )T

− γ

2
(1−λ )

n+nU

∑
i=1

n+nU

∑
j=1

W I
ji

m j

∑
k=1

X ji
k Θ2Θ

T
2 (X

ji
k )T

(7.22)

and

M′1(Θ1)

= ∑
(i, j)∈P

W P
i j ℓi jXT

j Θ1Θ
T
1 Xi

− γλ

n

∑
i=1

C

∑
c=1

mi

∑
k=1

W D
ic (∆Xc

ik)
T

Θ1Θ
T
1 ∆Xc

ik

− γ

2
(1−λ )

n+nU

∑
i=1

n+nU

∑
j=1

W I
i j

mi

∑
k=1

(X i j
k )T

Θ1Θ
T
1 X i j

k

− γ

2
(1−λ )

n+nU

∑
i=1

n+nU

∑
j=1

W I
ji

m j

∑
k=1

(X ji
k )T

Θ1Θ
T
1 X ji

k

(7.23)

are two matrix-valued functions with their codomains RD1×D1 and RD2×D2 respectively.
Therefore, for t = 0, we randomly initialize Θ

(t)
2 ; for t-th step, we also have the update

rules:

Θ
(t)
1 ← the first d1 eigenvectors of M′2(Θ

(t−1)
2 );

Θ
(t)
2 ← the first d2 eigenvectors of M′1(Θ

(t)
1 ).

The iteration halts when the difference |L semi(Θ
(t)
1 ,Θ

(t)
2 )−L semi(Θ

(t−1)
1 ,Θ

(t−1)
2 )| is less

than a small threshold or the number of iteration reaches a maximum. We summarize the
integrated SBLFH algorithm in Algorithm 6 as follows.
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Algorithm 6 Semi-supervised BLFH (SBLFH)

Input: Local feature sets of each training labeled image {X1, · · · ,Xn} and unlabeled im-
age {Xn+1, · · · ,Xn+nU} in matrix form, the whole local feature set F =

⋃
Xi, the

parameter k for pairwise structure preserving, the number of centroids K in K-means,
the label information function C(·) ∈ {1, · · · ,C} and the balanced parameter λ .

Output: The bilinear projection matrices Θ1 and Θ2.
1: Construct local feature pairing set P = {(i, j)|Xi,X j ∈ F} and their corresponding

pairwise labels ℓi j = {−1,+1}, where ℓi j = +1 if Xi ∈ Nk(X j) or X j ∈ Nk(Xi), and
ℓi j =−1 otherwise;

2: Employ the K-means clustering algorithm on the set of local features of each class⋃
C(Xi)=c Xi, c = 1, · · · ,C;

3: Compute pairwise weight W P
i j , I2C similarity W D

ic and I2I similarity W I
i j by Eqs. (7.3),

(7.6) and (7.19) respectively;
4: Initialize Θ

(0)
2 randomly;

5: repeat
6: Θ

(t)
1 ← the first d1 eigenvectors of M′2(Θ

(t−1)
2 ) by Eq. (7.22);

7: Θ
(t)
2 ← the first d2 eigenvectors of M′1(Θ

(t)
1 ) by Eq. (7.23);

8: until L semi(Θ
(t)
1 ,Θ

(t)
2 ) converges.

7.5 Indexing via Local Hashing Voting

Once the bilinear projection matrices {Θ1,Θ2} are computed, we can easily embed the
training data into binary hash codes by Eq. (7.2). Generally, for global hashing, a common
way is to find the similar samples in the training set by using Hamming Distance Ranking
(HDR), which returns the nearest neighbors of query in Hamming space and is proved to be
efficient enough with short hash codes in practice. However, for our local feature hashing
scenario, linear search (e.g., HDR) with complexity O(N) is not fast any more, since N
denotes the total number1 of the local features. To achieve the local feature based visual
retrieval, in this chapter, we apply a fast indexing scheme called Local Hashing Voting
(LHV) as shown in Fig. 7.2. We first introduce the Hamming lookup table (a.k.a. the
hash table) into our LHV scheme. Hamming lookup table, which is in principle similar
with inverted index, builds a series of buckets containing the indices of the documents with
the same hash code. Given a query, we can find the bucket of corresponding hash codes
in near constant time O(1), and return all the data in the bucket as the retrieval results.
Nevertheless, as many hash bits with only one single lookup table used, the Hamming space
becomes increasingly sparse; and very few samples fall in the same hash code bucket of

1For large-scale database retrieval, the total number of local features is always huge. In practice, for a
training set of 10K images, if each image contains 300 local features, the total number N would be 300×10K =
3M.
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Fig. 7.2 An illustration of the proposed LHV. Specifically, given a query image, local fea-
tures are first extracted and embedded into hash codes via BLFH. Then, each hash code
(e.g., “1100101001”) corresponding to a local feature in the query image is then searched
in the Hamming lookup table within the Hamming radius r and this gives the corresponding
images’ indices. Finally, we vote and accumulate the times of each image’s index appearing
in relevant buckets and rank them to return the retrieved results.

a query feature. Thus, in this work, we return all the nearest samples located within the
Hamming radius r as the retrieval results, where r is always less than 3.

After construction of the Hamming lookup table over the training set, we store the cor-
responding indices for all the hash codes of local features. For instance, given a bucket with
hash code “1100101001”, we store the indices of the images, which contain the same local
feature hash code with this bucket. In this way, we search the hash code H(qi) for each of
the local feature qk ∈Q in the query image Q = {q1, · · · ,qm} over the Hamming lookup
table within Hamming radius r and return the possible images’ indices. It is noteworthy
that the same bucket in the Hamming lookup table may store the indices from different im-
ages. Furthermore, we vote and accumulate the times of each image’s index appearing in
relevant buckets and then rank them in decreasing order. LHV cannot be used individually
but can only be combined with the local hashing methods. The final retrieved samples are
returned according to the relevant ranking generated by our LHV scheme, which is depicted
in Algorithm 7.

7.6 Complexity Analysis

The cost of BLFH mainly contains three parts. The first part is for constructing the weight
matrix (W D

ic ) to preserve the I2C distance. The time complexity of this part is O(nCNKD).
The second part is for calculating the bilinear projection matrices via alternate optimiza-
tion. From Section 7.3.3, the update of Θ1 has the time complexity of the eigenvalue de-
composition of an D1×D1 matrix. It is O(D3

1). The update of Θ2 has the similar time
complexity of O(D3

2). The last part is for image indexing via the proposed Local Hash-
ing Voting (LHV). For the hash code of each local feature, the index complexity is O(1)
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Algorithm 7 Local Hashing Voting (LHV)

Input: The local feature set F = {x1, · · · ,xN} in vector form from all training images, a
local feature set of query image Q = {q1, · · · ,qm}, where xi, qi ∈ RD, ∀i, Hamming
radius r and the learned bilinear projection matrices {Θ1,Θ2}.

Output: The retrieved images ranked by similarity with the query.
1: Embedding all the local features in F and Q into Hamming space via Eq. (7.1) with
{Θ1,Θ2};

2: Construct Hamming lookup table over the training set;
3: for i = 1 to m do
4: For the local query hash code H(qi), store all the possible image indices that fall

into the Hamming lookup table within Hamming radius r;
5: end for
6: Vote and accumulate the times of each image’s index appearing and rank them in de-

creasing order; return All the relevant images as the retrieved results.

Table 7.1 Computational complexity of BLFH and SBLFH.

Procedures BLFH SBLFH
I2C distance

with centroids O(nCNKD) O(nCNKD)

I2I distance — O
(
(n+nU)

2
n+nU

∑
i=1

m2
i D
)

Alternate
optimization O(D3

1 +D3
2)NT O(D3

1 +D3
2)NT

Overall
(training) O(N)+O(D

3
2 ) O(N2)+O(D

3
2 )

LHV O(m) O(m)

using the Hamming lookup table. Thus, it costs O(m) for a query with m local features
in the search phase according to Section 7.5. In total, the time complexity of BLFH is at
most O(nCNKD)+ (O(D3

1)+O(D3
2))×NT +O(m), where NT is the number of the iter-

ation for alternate optimization. While, for SBLFH the total time complexity can be de-
noted as O(nCNKD)+O((n+ nU)

2
∑

n+nU
i=1 m2

i D)+ (O(D3
1)+O(D3

2))×NT +O(m), where
O((n+nU)

2
∑

n+nU
i=1 m2

i D) indicates the complexity of the I2I item in Eq. (7.21). Empirically,
D1 and D2 are approximately equal to D1/2. NT is always less than 10, i.e., BLFH/SBLFH
converges within 10 rounds.
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7.7 Experiments and Results

In this section, we evaluate the proposed method on image classification and searching tasks
respectively. The relevant results are also compared with the state-of-the-art methods.

7.7.1 Experiments on Efficient Image Classification

We first evaluate our binary codes for image classification tasks. A standard static object
dataset Caltech-256 [180] has been used. We use the naive Bayes nearest neighbor (NBN-
N) classifier to achieve our classification with a varied number of training sample for each
object category, i.e., {5, 10, 15, 20, 25, 30}. Particularly, we compare the classification
accuracies between using the original 128-d SIFT feature and the low-dimensional binary
codes via the proposed BLFH. Fig. 7.3 shows the comparison results in terms of the im-
age classification performance on the Caltech-256 dataset. We compute the accuracies on
three different lengths, i.e., {16, 32, 64}, using our BLFH embedding method. The results
manifest that combining the SIFT and the proposed BLFH can achieve better classification
performance than just using the original SIFT feature on lengths of 32 and 64. When the
length of codes decreases to 16, SIFT+BLFH gets less precision than the original SIFT,
since the discriminative information cannot be preserved well enough in the binary low-
dimensional space. Apparently, due to consideration of the pairwise data structure with
bipartite graph regularization, the proposed BLFH can significantly improve the classifica-
tion accuracy with reduced dimensionality of data representations.

Different from the original NBNN algorithm, in our experiments, the Hamming dis-
tance is used in NBNN when applying the BLFH. Obviously, SIFT+BLFH costs much less
time than only applying the original SIFT. Because computing the Hamming distance (X-
OR operation) in NBNN is much faster than using the Euclidean distance. Therefore, we
can conclude that in image classification tasks, the proposed BLFH can effectively achieve
higher performance while costing far less time.

7.7.2 Experiments on Image Searching

In this section, the proposed BLFH algorithm and its semi-supervised version SBLFH are
evaluated for the image similarity search problem. Three different datasets are used in our
experiments, i.e., Caltech-256 [180], SUN397 [136] and NUS-WIDE [181]. The Caltech-
256 dataset consists of 30607 images associated with 256 object categories. By following
the experimental setting in [182], we randomly select 1000 images as the query set and the
rest of dataset is regarded as the training set. The SUN397 dataset contains 108,754 scene
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Fig. 7.3 Performance comparison of NBNN on the Caltech256 dataset.

images in total from 397 well-sampled categories with at least 100 images per category. We
randomly select 70 samples from each category to construct the training set and the rest of
samples are the query set. Thus, there are total numbers of 27790 and 80964 in the training
set and query set, respectively. For the NUS-WIDE dataset, it contains around 270,000
web images associated with 81 ground truth concept classes. As in [70], we only use the
most frequent 21 concept classes, each of which has abundant relevant images ranging from
5,000 to 30,000. Unlike other datasets, each image in the NUS-WIDE dataset is assigned
with multiple semantic labels (tags). In this work, two images belong to the same class, only
if they share at least one common tag. We further sample uniformly 100 images from each of
the selected 21 tags to form a query set of 2,100 images with the rest serving as the training
set. Furthermore, given an image, we would like to describe it with a set of local features
extracted from it. In our experiments, we adopt SIFT2 [8] as the local feature to describe
the images and then learn to hash these local descriptors with all compared methods.

In the querying phase, a returned point is regarded as a true neighbor if it lies in the
top ranked 200, 200 and 500 points in LHV for Caltech-256, SUN397 and NUS-WIDE,
respectively. Specifically in LHV, we just consider the local hash codes lying in the buckets
that fall within a small Hamming radius r = 2 (following [69]) in the Hamming lookup table
which is constructed using the training set codes. We evaluate the retrieval results by the

2A 16× 16 local patch is divided into sub-blocks by a 4× 4 grid, and in each sub-block a histogram of
8 orientation bins is computed. Thus, the total length of a SIFT feature is 4× 4× 8 = 128. Assuredly our
approach can also work with any other legitimate local features.



134 Bilinear Local Feature Hashing

16 32 48 64 80 96
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Code length

P
re

ci
si

on
 a

t 2
00

−
N

N
 w

ith
 L

H
V

 

 
BLFH
KSH
BRE
MLH
LDAH
BinBoost
AGH
SpH
PCAH
LSH

16 32 48 64 80 96
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Code length

P
re

ci
si

on
 a

t 2
00

−
N

N
 w

ith
 L

H
V

 

 
BLFH
KSH
BRE
MLH
LDAH
BinBoost
AGH
SpH
PCAH
LSH

16 32 48 64 80 96

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Code length

P
re

ci
si

on
 a

t 5
00

−
N

N
 w

ith
 L

H
V

 

 
BLFH
KSH
BRE
MLH
LDAH
BinBoost
AGH
SpH
PCAH
LSH

(a) Caltech256 (b) SUN397 (c) NUS-WIDE

Fig. 7.4 Performance comparison with different numbers of bits.
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Fig. 7.5 Comparison performance (MAP) of our BLFH and other global hashing schemes.
Note: KSH and BRE are the top-performing supervised hashing methods.

Mean Average Precision (MAP) and the precision-recall curve by changing the number of
top ranked points in LHV. Additionally, we also report the training time and the test time
(the average searching time used for each query) for all the methods.

Our experiments are completed using Matlab 2013a on a server configured with a 12-
core processor and 128G of RAM running the Linux OS.

Compared Methods and Settings

Since our BLFH is the pioneer work for local feature hashing, we can only adopt existing
global hashing methods for comparison. Thus, in our experiments, we compare the pro-
posed method against nine general hashing algorithms, including five supervised methods:
LDAH [183], BRE [184], MLH [185], KSH [72] and BinBoost descriptor [76], and four
unsupervised methods: LSH [172], PCAH [68], SpH [69] and AGH [70]. All the above
methods (except BinBoost) are computed on the extracted SIFT local features to show their
capability. It is noteworthy that we treat BinBoost as a binary feature learning method which
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(a) Caltech256 (b) SUN397 (c) NUS-WIDE

Fig. 7.6 The precision-recall curves of all compared algorithms on the three datasets with the
code length of 96 bits. The corresponding AUC values of compared methods are illustrated
in the brackets.
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Fig. 7.7 Semi-supervised performance comparison with different numbers of bits. l denotes
the number of labeled examples for semi-supervised hashing training methods.

Table 7.2 MAP of 32 bits with training and test time (with LHV) on three datasets.

Methods Caltech-256 SUN397 NUS-WIDE
MAP

(200-NN)
Training

time
Test
time

MAP
(200-NN)

Training
time

Test
time

MAP
(500-NN)

Training
time

Test
time

KSH 0.196 4741.1s 57.4µs 0.106 8384.2s 63.8µs 0.492 9987.0s 62.7µs
BRE 0.188 2.84×104s 32.9µs 0.112 5.17×104s 48.8µs 0.488 5.83×104s 53.1µs
MLH 0.180 1.19×104s 18.3µs 0.100 3.48×104s 25.0µs 0.480 3.32×104s 28.4µs

LDAH 0.195 15.3s 11.2µs 0.091 41.4s 24.8µs 0.455 56.3s 26.1µs
BinBoost 0.212 9345.0s 134.7µs 0.122 2.12×104s 164.5µs 0.512 2.91×104s 174.8µs

AGH 0.172 764.2s 97.4µs 0.082 1832.8s 105.1µs 0.463 2018.0s 112.0µs
SpH 0.154 282.7s 103.4µs 0.074 883.0s 101.8µs 0.444 944.3s 109.6µs

PCAH 0.142 17.4s 16.1µs 0.052 42.4s 18.4µs 0.442 58.1s 19.2µs
LSH 0.104 9.1s 8.3µs 0.044 23.6s 11.5µs 0.414 31.7s 10.8µs

BLFH 0.253 1341.4s 49.3µs 0.129 3181.2s 54.1µs 0.551 3451.5s 57.0µs
SBLFH (l=10000) 0.235 1903.0s 53.1µs 0.098 4892.0s 65.2µs 0.506 5082.1s 68.5µs
SBLFH (l=15000) 0.240 1982.0s 57.2µs 0.111 4939.0s 68.0µs 0.524 5173.1s 69.1µs

(The test time indicates the average searching time used for each query.)
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Fig. 7.8 The retrieval results on the Flickr 1M dataset.

learns to hash from the original local patches3, however, the other methods construct the bi-
nary codes from extracted SIFT descriptors. We used the publicly available codes of BRE,
MLH, LDAH, SpH and AGH, and implemented LSH, PCAH, KSH and BinBoost ourselves.
All of the above methods are then evaluated on six different lengths of codes (16, 32, 48,
64, 80, 96). Under the same experimental setting, all the parameters used in the compared
methods have been strictly chosen according to their original papers.

For our BLFH/SBLFH, we set k = 15 for pairwise data structure preserving. In this
way, we assign the pairwise label ℓi j =+1 if they are 15 nearest neighbors of each other in
Euclidean space, for others, we assign the pairwise label ℓi j =−1. Besides, we set D1 = 16
and D2 = 8 for the transformation of SIFT local features (see Section 7.3.1)4. We further
adopt K = 300 in the K-means clustering. For BLFH/SBLFH, the optimal regularization
parameter γ for each dataset is selected from one of {0.05,0.1,0.15,0.2, . . . ,0.45,0.5} with
the step of 0.05, which yields the best performance by 10-fold cross-validation. In addition,
for SBLFH, the λ ∈ {0.1,0.2,0.3, . . . ,0.9,1} is determined by 10-fold cross-validation, as
well.

Results Comparison

Fig. 7.4 illustrates the MAP curves of all compared algorithms on Caltech-256, SUN397
and NUS-WIDE datasets. All MAP values are calculated using the proposed LHV ranking
algorithm under the same setting. In its entirety, the searching accuracies on the NUS-WIDE

3Each patch is with the size of 16×16 located on the keypoints detected by SIFT.
4Generally, the factorization for the dimension of local features is varied. However, the complexity reaches

the minimum value when D1 = D2 due to the inequality D3
1+D3

2 ≥ 2
√

D3
1D3

2. Thus we let D1 and D2 be close
enough.
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dataset are obviously higher than that on the other two datasets with more categories. Specif-
ically, the supervised methods, KSH, BRE, MLH, LDAH and BinBoost, always achieve the
better performance than unsupervised methods, since the label information is involved in
the learning phases. BinBoost has the best performance compared with all other existing
methods and AGH achieves the best performance among all of the unsupervised methods.
Furthermore, the results of KSH always climb up then go down when the length of codes
increases. The same tendency also appears with BRE, LDAH and PCAH. LSH consistently
brings the worst actuaries on all these datasets. In general, our BLFH significantly outper-
forms all other compared methods. Besides, we also compare our method with global hash
schemes. We first use the ‘Bag-of-Words’ scheme with 500 and 1000 codebook sizes to
encode SIFT features into global representations. After that, two best performing5 hashing
methods, KSH and BRE, are used to learn the hash codes on these global features. Besides,
we also list the search performance via directly using the global feature ‘GIST’ with KSH
and BRE. In Fig. 7.5, one can see that our local hashing method BLFH with LHV achieves
better results than the compared global hashing schemes. Moreover, the precision-recall
curves of all the comparable methods on three datasets with the code length of 96 bits are
presented in Fig. 7.6, as well. From all these figures, we can further discover that, for all
three datasets, BLFH achieves better performance than other methods for both the Mean
Average Precision (MAP) and Area Under the Curve (AUC).

In addition, we illustrate the relevant results of our semi-supervied version SBLFH in
Fig. 7.7. We have systematically evaluated SBLFH by using different numbers of labeled
data. Particularly, we learn SBLFH using the training sets with only 15000, 10000 and
5000 data labeled, respectively and then compare their retrieval actuaries with the fully
supervised BLFH under the same experimental setting. It can be obviously observed that,
the more labeled data being used, the better performance can be achieved. All the detailed
information can be seen in Fig. 7.4–7.7.

Finally, the training time and test time for different algorithms on three datasets are
illustrated in Table 7.2. Considering the training time, supervised methods always need
more time for the hash learning except LDAH. In particular, BRE and MLH spend the
most time to train hashing functions. BinBoost also spends much time for training since
hash functions are learned from the pixel-level local patches. While, the random projection
based algorithms are relatively efficient, especially the LSH. Our BLFH costs significantly
less time than KSH, BRE, MLH and BinBoost but more than other methods for training.
BLFH takes less time compared with SBLFH due to the extra cost item in its objective
function. In terms of the test phase, LSH, LDAH and PCAH are the most efficient methods,

5BinBoost is not considered here, since it cannot be directly applied on extracted features.
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while AGH has the competitive searching time with SpH. BinBoost needs the most time for
testing. More details can be also seen in Table 7.2.

7.7.3 Large-scale Image Retrieval

To further evaluate the scalability of the proposed BLFH approach, a larger image dataset
named Flickr 1M6 is used in our experiments. This dataset contains one million images
collected from the Flickr and the SIFT features are extracted from each image. To control
the computational complexity, we limit the number of the SIFT features for each image to
around 300. In a realistic scenario, we cannot obtain all of the label information in a huge
dataset for image retrieval tasks. Thus, on this dataset, only the semi-supervised BLFH (S-
BLFH) is used to enable a realistic setting. We randomly select 1K images as the queries
and use the remaining to form the gallery database. Considering the huge cost of com-
putation, in this experiment, only 25,000 randomly selected data points from the gallery
database form the training set. Furthermore, due to the semi-supervised setting, we test the
proposed SBLFH algorithm with only 10,000, 20,000, 30,000 labeled data in the training
phase, respectively. Later, we evaluate the retrieval results by the Mean Average Precision
(MAP) and the precision-recall curve on the Flickr 1M as shown in Fig. 7.8. It can be obvi-
ously observed that the higher results are obtained when more label information is involved
in our hashing code learning stage. In addition, compared with other fully supervised hash-
ing techniques, our SBLFH can achieve significantly better results with different lengths of
the codes. Meanwhile, the AUCs of the proposed SBLFH are also consistently higher than
those of compared methods.

7.8 Summary

In this chapter, we have presented a novel supervised framework, BLFH, to learn highly
discriminative binary codes on the local descriptors for large-scale image similarity search.
We address it as a nonconvex optimization problem to seek orthogonal projection matri-
ces for hashing, which can successfully preserve the pairwise similarity between different
local features and simultaneously take image-to-class (I2C) distances into consideration.
For more realistic scenarios, we further extend BLFH to the semi-supervised version, S-
BLFH, which only utilizes a few labeled samples in the hashing learning phase but can still
achieve competitive results. We have systematically evaluated our methods on Caltech-256,
SUN397, NUS-WIDE and Flickr 1M datasets and show promising results compared with

6http://www.multimedia-computing.de/wiki/Flickr1M
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state-of-the-art hashing methods. In the next chapter, a brief conclusion is conducted and
the potential future work is listed, as well.





Chapter 8

Conclusions and Future Work

In this chapter, the contributions of this thesis have been first briefly concluded. Further-
more, the possible future work have been also discussed.

8.1 Conclusions

In the first part, a boosted discriminative key poses selection scheme is first introduced for
improved human action recognition. In particular, Poses in video frames are described by
the proposed extensive pyramidal features (EPFs), which include the Gabor, Gaussian, and
wavelet pyramids. These features are able to encode the orientation, intensity, and contour
information and therefore provide an informative representation of human poses. Due to
the fact that not all poses in a sequence are discriminative and representative, we further
utilize the AdaBoost algorithm to learn a subset of discriminative poses. Given the boosted
poses for each video sequence, a new classifier named weighted local naive Bayes nearest
neighbor is proposed for the final action classification, which is demonstrated to be more
accurate and robust than other classifiers, e.g., support vector machine (SVM) and naive
Bayes nearest neighbor.

In the second part, a novel feature learning method is addressed for gesture recognition.
we successfully apply an evolutionary method-genetic programming (GP) to synthesize ma-
chine learned spatio-temporal descriptors for automatic gesture recognition instead of using
hand-crafted descriptors. In our architecture, a set of primitive low-level 3D operators are
first randomly assembled as tree-based combinations, which are further evolved generation-
by generation through the GP system, and finally a well performed combination will be
selected as the best descriptor for high-level gesture recognition. To the best of our knowl-
edge, this is the first report of using GP to evolve spatio-temporal descriptors for gesture
recognition.
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Inspired by the previous work, in the third part, a set of primitive 2-D operators are ran-
domly combined to construct feature descriptors for image classification through the MOGP
evolving and then evaluated by two objective fitness criteria, i.e., the classification error and
the tree complexity. After the entire evolution procedure finishes, the best-so-far solution
selected by the MOGP is regarded as the (near-)optimal feature descriptor obtained. This
MOGP-based method can effectively control the over-fitting and proved to be a good so-
lution to an NP-hard problem in an acceptable amount of computing time. Experimental
results verify that the proposed method significantly outperforms other hand-crafted fea-
tures.

In the fourth part, a novel linear unsupervised dimensionality reduction algorithm is
proposed, termed Discriminative Partition Sparsity Analysis (DPSA), explicitly consider-
ing different probabilistic distributions that exist over the data points, meanwhile preserving
the natural locality relationship among the data. Specifically, the Gaussian mixture mod-
el (GMM) is first applied to partition all samples into several clusters. In each cluster, a
number of sparse sub-graphs are computed via the ℓ-norm constraint to optimally represent
the intrinsic data structure. Such sub-graphs are demonstrated to be robust to data noise,
automatically sparse and adaptive to the neighborhood. All the sub-graphs from the clusters
are then combined into a whole discriminative optimization framework for final reduction.

In the fifth part, to solve many large-scale image classification and retrieval tasks, we
propose a novel framework to automatically learn the task-specific compact coding, called
evolutionary compact embedding (ECE), which can be regarded as an optimization algorith-
m combining genetic programming (GP) and a boosting trick. As an evolutionary compu-
tation methodology, GP can solve problems inspired by natural evolution without any prior
knowledge of the solutions. In our evolutionary architecture, each bit of ECE is iteratively
computed using a binary classification function,which is generated through GP evolving by
jointly minimizing its empirical risk with the AdaBoost strategy on a training set. We ad-
dress this as greedy optimization leading to small Hamming distances for similar samples
and large distances for dissimilar samples. The relevant result shows the accurate and robust
performance of our method for large-scale image classification/retrieval.

In the last part, the Bilinear Local Feature Hashing (BLFH) is proposed, which is a novel
supervised hashing technique based on local features for image search and retrieval. The
proposed scheme aims to embed local feature descriptors from a high-dimensional space
into a Hamming space with a low dimension, rather than using global features as in most
existing hashing techniques which are susceptible to image variations such as viewpoint
changes and background cluttering. Specifically, BLFH seeks two orthogonal projection
matrices to preserve the pairwise attributes including labels and similarities between differ-
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ent local features. Meanwhile, a bipartite graph regularization item, which is constructed by
images and classes, is simultaneously used to preserve the image-level intrinsic structure of
local features. Since the raised problem is regarded as nonconvex and discrete, our objective
function is then optimized via an alternate way with relaxation and finally converges to a
near-optimal solution. Furthermore, BLFH is extended to semi-supervised BLFH (SBLFH)
for more realistic applications. Extensive experiments consistently prove the superiority of
the proposed methods compared to the state-of-the-art hashing techniques.

8.2 Future Work

Considering the current jobs their potential extension in computer vision community, in
the following part, several topics that can be researched in the future time will be briefly
illustrated.

• Hashing based on feature merging: Most existed hashing embedding methods is
based on three schemes: (1) hashing via feature thresholding; (2) embedding with
learning projections; (3) embedding using regression algorithms, e.g., SVM and logis-
tic regression. However, these schemes above always rely on complex mathematical
analysis such as full-matrix-decomposition, which could cause significantly compu-
tational usages. Particularly for the hashing problem, when applying on large-scale
visual data, how to efficiently obtain the meaningful binary embedding becomes the
most important issue. Inspired by the recently jobs using feature merging for efficient
dimensionality reduction, we aim to develop a more scalable and efficient merging
based hashing scheme to solve extremely large-scale (usually more than 10 million)
image retrieval tasks. In detail, we will consider both the correlation between each
features in on representation and the geometry information for all of representations
in our objective function.

• Semantic local hashing for human action retrieval: For the large-scale video based
retrieval tasks, it is very difficult to represent a video sequences meaningfully with
just one global feature, since cluttering and complex background always exist in these
videos. Inspired by previous work on local feature based hashing for efficient image
search, in the video retrieval tasks, this technique can be easily extended to carry on
videos. To further improve the retrieval capability, the semantic information of videos
is also included in our scheme as a constraint. Specifically, we need to match human
actions with their particular scenario information. For instance, running Vs. field
(X); swimming Vs. water (X); running Vs. water (×). We will add this semantic
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constraint as a regularization item in our objective function to obtain more unique and
meaningful hash codes for human action retrieval tasks.

• Deep learning and its application: Deep learning nowadays has become one of
the most attractive topic in both research and industry area. Deep learning currently
provide the best solutions to many problems in image recognition, speech recognition,
and natural language processing. In future work, particularly, we will focus on two
aspects with deep learning: (1) deep learning for objects detection; (2) deep learning
for unsupervised feature learning. For detection application, deep learned networks
can efficiently and precisely to classify the positive samples from negative ones and
in the application of feature learning, deep networks have also shown their powerful
capabilities for visual recognition tasks.
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