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Abstract 

The increasing popularity of bandwidth-intensive video Internet services has 

positioned Content Distribution Networks (CDNs) in the limelight as the emerging 

provider platforms for video delivery. The goal of CDNs is to maximise the availability 

of content in the network while maintaining the quality of experience expected by 

users. This is a challenging task due to the scattered nature of video content sources 

and destinations. Furthermore, the high energy consumption associated with content 

distribution calls for developing energy-efficient solutions able to cater for the future 

Internet. This thesis addresses the problem of content placement and update while 

considering energy consumption in CDNs. 

First, this work contributed a new energy-efficient caching scheme that stores the 

most popular content at the edge of the core network and optimises the size of cached 

content to minimise energy usage. It takes into account the trend of daily traffic and 

recommends putting inactive segments of caches in sleep-mode during off-peak hours. 

Our results showed that power minimisation is achieved by deploying switch-off 

capable caches, and the trend of active cache segments over the time of day follows the 

trend of traffic. 

Second, the study explores different content popularity distributions and determines 

their influence on power consumption. The distribution of content popularity dictates 

the resultant cache hit ratio achieved by storing a certain number of videos. Therefore, 

it directly influences the power consumption of the cache. The evaluation results 



 

iv 

 

indicated that under video services where the popularity of content is very diverse, the 

optimum solution is to store the few most popular videos in caches. In contrast, when 

video popularities are similar, the most power efficient scheme is either to cache the 

whole library or to avoid caching completely depending on the size of the video library. 

Third, this thesis contributed an evaluation of the power consumption of the 

network under real world TV data and considering standard and high definition TV 

programmes. We proposed a cache replacement algorithm based on the predictable 

nature of TV viewings. The time-driven proactive cache replacement algorithm 

replaces cache contents several times a day to minimise power consumption. The 

algorithm achieves major power savings on top of the power reductions introduced by 

caching. 

CDNs are expected to continue to be the backbone for Internet video applications. 

This work has shown that storing the right amount of popular videos in core caches 

reduces from 42% to 72% of network power consumption considering a range of 

content popularity distributions. Maintaining up-to-date cache contents reduces up to 

48% and 86% of power consumption considering fixed and sleep-mode capable caches, 

respectively. Reducing the energy consumption of CDNs provides a valuable 

contribution for future green video delivery. 
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a replacement at time t when performing r  replacements 

𝜎2    Bimodal distribution variance 

𝜎𝜏
2    Bimodal distribution variance of content type 𝜏 

𝜏   Programme type in the Bimodal distribution (example 

𝜏 = 1 represents news-type programmes and 𝜏 = 2 

represents drama-type programmes) 

𝛷    Cache power consumption factor in W/GB 

𝜔    Time distribution factor for requests 
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 Introduction Chapter 1

The number of Internet users has grown to over 2.8 billion users [1] and Internet 

traffic is expected to exceed 1 Zettabytes (1 billion Terabytes) in 2016 with an annual 

growth rate of about 21% [2]. In a few years, video content is estimated to account for 

80% to 90% of the total IP traffic, and on average one million minutes of video content 

is projected to cross the Internet every second [2].  Energy consumption is predicted to 

become the new Internet bottleneck of communication networks. Data centres which 

mange and provide content are a critical part of the Internet and consume significant 

energy—up to 70% of the total transmission energy [3]. These alarming figures depict 

the increasing energy consumption of the Information and Communication Technology 

(ICT) industry, thus implying increasing associated carbon dioxide (CO2) emissions. 

ICT’s CO2 emissions are expected to increase from 0.5 billion tonnes in 2002 to 1.4 

billion tonnes in 2020 [4], exceeding 3% of global emissions [5]. The possible 

environmental impacts of the Internet expansion have boosted a global movement 

towards reducing the CO2 footprint of ICT. 
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One method gaining popularity for efficiently delivering Internet video traffic is 

Content Delivery/Distribution Networks (CDNs). A CDN is a collection of 

geographically distributed caches intended to enhance the performance of Internet 

video services and are forecasted to deliver around 67% of all Internet video traffic by 

2018 [2]. CDNs are in charge of strategically distributing video content over the 

network to ensure content availability and reduce video delivery delay. Caching is an 

effective technique for replicating content in multiple network locations.  The benefit 

of caching is maximised when the right content is stored at the right place in the 

network. At the same time, cache placement should be utilised with respect to energy 

consumption.  Today, CDNs face great challenges due to the large number of content 

providers, increasing user demands and the bulkiness of high-quality video content. 

Consequently, designing and provisioning a CDN is a complex task, particularly when 

considering other equipment and network constraints.   

The Internet is moving towards the content-oriented era [6], [7], thus triggering 

research aiming to reduce the energy consumption of CDNs. Even though some recent 

attempts have been proposed in the literature to reduce the energy consumption of 

CDNs, many issues and challenges in the area remain open. This thesis has addressed 

the issue of reducing the high energy consumption of delivering Internet video content. 

The intention is to decrease the energy consumption of video transport in a core 

network that deploys IP over WDM (Wavelength Division Multiplexing) and video 

caches. A Mixed Integer Linear Programming (MILP) model is developed to minimise 

the power consumption of the network by optimising the size of caches at the nodes. 

The model considers various video services and traffic volumes. Furthermore, this 
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thesis investigates the optimisation of daily cache updates to minimise power usage. 

The existence of the most up-to-date content in caches minimises the traffic passing 

through the network, reducing its power consumption. Optimising the number of daily 

cache updates saves power lost in unnecessary downloads. 

1.1 Research Objectives 

The dynamic nature of content popularity and user viewing behaviour makes the 

reduction of the power consumption of CDNs a challenging task. The aim of this thesis 

is to investigate the energy efficiency of content caching in optical core networks and 

offload content servers by storing content locally. In order to fulfil the overall goal of 

this work, the following objectives were set: 

1. Evaluate the direct impact of caching in the core network on power 

consumption and explore optimum cache sizes with respect to traffic volume 

and power consumption parameters. In addition, explore the effect of 

switching off unutilised sections of caches during off-peak hours and its 

influence on power usage.  

2. Investigate the influence of content popularity distribution on power 

consumption. The goal here is to estimate the required cache sizes under 

different video services to minimise power usage and determine the optimum 

location for videos based on popularity. 



 

4 

 

3. Use real TV viewing data traces to minimise the power consumption of IPTV 

services considering standard definition and high definition TV. This 

provides an accurate insight on the potential applications of the proposed 

models. Moreover, produce generalised results for the models by comparing 

two core network topologies. 

4. Highlight the significance of cache updates in relation to power consumption 

and explore frequent cache updates to find an optimum that maximises 

power efficiency. This provides an ideal strategy of keeping caches up-to-date 

in view of the additional power consumed in streaming content when a cache 

update occurs. 

1.2 Original Contributions 

To facilitate provisioning of CDN storage, identifying the ideal sizes and contents of 

deployed video caches is required. This work focuses on reducing the power 

consumption of video delivery in core topologies. First, the power efficiency of storing 

content in local caches to reduce the path to retrieve content is examined using a 

Mixed Integer Linear Programming (MILP) model. An extension to the model 

considers different content popularity distributions and optimises cache sizes under 

each distribution. Moreover, real TV viewing data is collected and the power 

consumption of the network is minimised considering standard and high definition 

TV. Finally, the work examines cache content replacements and proposes a MILP 
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model to optimise daily cache content updates. Following are the specific contributions 

of this thesis. 

1.2.1 Fixed and Variable Caching 

Content can be stored locally to reduce power and delay and to maximise content 

availability. However, the additional power consumed on storage should not exceed 

the power to retrieve content remotely. The goal is to identify the content to store in 

caches so that the video service power consumption is minimised. A MILP model is 

developed to minimise the power consumption of a video service employing IP over 

WDM by optimising fixed and variable (sleep-capable) caches at the nodes. The MILP 

model considers a Zipf distribution, different traffic demands and has been validated 

using a simulation that optimises traffic routing and a genetic algorithm that 

optimises cache sizes. Caching popular content reduces up to 38% of power 

consumption using caches of fixed sizes, and up to 42% when sleep-mode capable 

caches are utilised. The impact of cache updates on power efficiency has also been 

evaluated by recalculating the power consumption of the network in the situation 

where the 10 most popular videos are not present in caches. The power consumption in 

this case was found to be higher by up to 20%. 

1.2.2 Content Popularity Distributions 

The popularity of a video determines the traffic associated with requests to that 

video. Different video services hold videos with different popularities. Consequently, 

the optimum content to store in caches depends on the popularity distribution of 
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content. An improved MILP model has been implemented to consider different video 

services including YouTube-like services and Video-on-Demand (VoD). The optimum 

cache sizes that minimise power under each service have been determined. In 

addition, an energy efficiency sensitivity analysis has been provided. When the 

popularity of videos is highly diverse, storing the few most popular videos in caches 

minimises power consumption, with power savings of up to 72%. In contrast, when 

video popularities are similar the best power efficiency is achieved by maintaining 

variable caches in the network.  

1.2.3 Caching in Future IPTV 

Real TV viewing data traces have been analysed and used to acquire a content 

popularity distribution for a real IPTV service. The BT 21CN topology (the 21st 

Century Network is a next generation network implemented by British Telecom) has 

been considered and compared to the NSFNET topology in terms of power 

consumption and optimum cache sizes that minimise power. The minimum-power 

MILP model has been utilised to minimise the power required to deliver standard and 

high definition TV programmes. Since analyses for the BT 21CN topology are not 

publicly available, this work has explored a next-generation national core topology 

suitable for comparison with other topologies available in literature. 

1.2.4 Cache Content Replacements 

Performing frequent cache updates maximises the useful part of stored content, but 

consumes additional power. A MILP model has been developed to optimise cache 
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update frequencies for power minimisation. The power consumption of the network 

considering a range of update frequencies has been compared and the benefit of 

maintaining up-to-date caches is highlighted. The model finds the optimum number of 

daily cache updates that lead to maximum content availability while taking into 

account the additional routing components that consume power to stream up-to-date 

content (for cache updates). In operator-controlled video services such as streaming 

TV, updating cache content up to 12 times a day minimises power consumption as TV 

programmes are very popular only during a certain time window. Maximum savings in 

power consumption under 12 cache updates are up to 48% and 86% considering fixed 

caches and sleep-mode capable caches, respectively. The impact of regular traffic on 

power efficiency has also been explored by considering a range of traffic mixtures and 

illustrating that savings due to caching are proportional to the video component in the 

traffic mixture. 

1.3 List of Publications 

During the course of my PhD, I have published the following journal and conference 

papers: 

1. N. I. Osman, T. El-Gorashi, L. Krug, and J. M. H. Elmirghani, “Energy-

Efficient Future High-Definition TV,” J. Light. Technol., vol. 32, no. 13, pp. 

2364–2381, 2014. 



 

8 

 

2. N. I. Osman, T. El-Gorashi, and J. M. H. Elmirghani, “Caching in green IP over 

WDM networks,” J. High Speed Networks (Special Issue Green Netw. Comput., 

vol. 19, no. 1, pp. 33–53, 2013. 

3. N. I. Osman, T. El-Gorashi, and J. M. H. Elmirghani, “The impact of content 

popularity distribution on energy efficient caching,” in 2013 15th International 

Conference on Transparent Optical Networks (ICTON), 2013, pp. 1–6. 

4. N. I. Osman, T. El-Gorashi, and J. M. H. Elmirghani, “Reduction of energy 

consumption of Video-on-Demand services using cache size optimisation,” in 

2011 Eighth International Conference on Wireless and Optical Communications 

Networks, 2011, pp. 1–5. 

The work in Chapter 4 throughout Chapter 7 is based on these publications. 

1.4 Thesis Outline 

Apart from the introduction in Chapter 1, this thesis is organised as follows: 

Chapter 2 reviews Content Distribution Networks and explains the video delivery 

process. It also highlights content popularity distributions and video services. In 

addition, the chapter explains the architecture of IP over WDM and IPTV.  

Chapter 3 surveys cache placement and cache replacement algorithms. It also 

provides a description of relevant research related to energy reduction techniques in 

IPTV, CDNs and VoD. The chapter is concluded by a description of the optimisation 

methods used in this work. 
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In Chapter 4, the problem of high power consumption of video services is tackled by 

proposing caching video content in the core nodes. A full evaluation of the proposed 

MILP model is provided and discussed introducing fixed and variable caching. The 

results illustrate that there exists an optimum cache size which minimises power 

consumption. This optimum size depends on the content popularity distribution, 

traffic volume and power consumption parameters.  

Chapter 5 examines the influence of content popularity distribution on power 

efficiency and optimum cache sizes. It discusses the amendments to the original MILP 

model required to consider different popularity distributions. It also highlights the 

influence of the most significant network parameters including cache power 

consumption, video sizes, router port power consumption and IP over WDM 

implementations on power efficiency. It demonstrates by results that only very 

popular videos should be present in caches when video popularities are highly diverse. 

It also demonstrates that variable caches better suit distributions with similar video 

popularities.  

Chapter 6 sheds light on delivering high definition TV content in IPTV services. It 

explores the dynamics of TV viewing behaviour and investigates the benefit of caching 

on different network arrangements. The BT 21CN topology is introduced and 

compared to the NSFNET topology. Results reveal that larger cache sizes are required 

to store high definition content to achieve comparable power savings to those under 

standard definition. Results also show that similar power savings are attained 
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considering both test networks due to the similarity in the average nodal degree and 

hop count. 

In Chapter 7, using real TV viewing data, a proactive time-based cache replacement 

algorithm is proposed to deliver TV content with the minimal power consumption. The 

efficiency of the proposed scheme is tested considering various traffic mixtures and 

under current and future networks. We show that replacing cache contents several 

times a day does not compromise on power in a TV service environment. In addition, 

caching in the core network is most suitable with and without component power 

saving capabilities under the condition that optical multicast is not fully deployed in 

the network. 

Chapter 8 summarises the contributions of this work and suggests possible 

directions for future work.  
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 Background Chapter 2

2.1 Introduction 

The Internet began as a medium for text-based applications, e.g. email, file sharing, 

etc., thus the main goal of Internet Service Providers (ISPs) at the time was the 

efficiency of service. As network technologies improved, network bandwidth increased 

and service cost decreased leading to an increase in the number of Internet users and 

the widespread development of bandwidth-intensive multimedia applications. The 

rapid increase in Internet traffic has resulted in the degradation of Quality of Service 

(QoS) due to congestion.  

An initial approach in addressing this problem was to enhance Web server hardware 

(processor, memory, disk space, etc.). However, this method was not flexible as it 

eventually would require replacing the whole server system [8]. The further increase 

in multimedia content applications, such as YouTube and Netflix, transformed the 

Internet from a textual information system to a multimedia information system [9] 

and thus the sender and/or location of the content became irrelevant. The current 
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challenge has become to efficiently deliver a massive amount of multimedia content to 

a large number of geographically distributed users. 

Content Delivery Networks (CDNs) are employed to aid in the efficient delivery of 

multimedia to a geographically diverse user base. A CDN is a group of geographically 

distributed content servers that deliver web content to users. CDNs stream 

multimedia content to requesting users, and therefore require high bandwidth for 

transmission and large storage for audio and video files. The bulky size of media files 

requires large storage compared to other forms of data. This exhausts the network 

bandwidth and raises the challenge of providing multimedia applications with an 

acceptable QoS at an affordable cost. 

Content caching is an effective technique to reduce traffic on the long path between 

content servers and end users. In addition, caching can result in reducing the delay 

caused by congestion and content unavailability. Improving these factors has great 

influence on enhancing users’ Quality of Experience (QoE). Moreover, reducing 

network traffic implies reducing cost and energy consumption.  

This chapter provides a detailed overview of video services, content delivery 

networks, content caching and content popularity distributions. In addition, it 

describes the architectures and implementations of IP over WDM, CDNs and IPTV. 

The chapter is concluded by highlighting the current challenges facing CDNs. 
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2.2 Video Services 

Video services are the Internet applications that involve upload and/or download of 

video. Today, a range of video services are delivered to residential and business users 

over Internet Protocol television (IPTV). These services include: broadcast TV, Video-

on-Demand (VoD) and time-shifted TV. Other services such as Voice-over-IP (VoIP), 

cable television and Web/email are also delivered over IPTV [10]. Following is a brief 

overview of major video services. 

2.2.1 Broadcast TV 

Also referred to as over-the-top [11], broadcast TV streams content to the user’s Set-

Top-Box (STB) providing a cable TV-like experience with the intention of real-time 

consumption. The TV content provider has full control over the content and therefore a 

continuous stream from the provider to the user is guaranteed [12].  

2.2.2 Video-on-Demand  

Video-on-Demand (VoD) is a one-to-one service where the user selects a video from a 

list of available content to watch on a Personal Computer (PC), TV or other devices. 

Video-on-Demand offers videocassette recorder (VCR)-like functions such as pause, 

rewind and fast forward, with full control of the session [13]. For example, Netflix, a 

major VoD provider, is a video rental service featuring one of the largest streaming 

content libraries and has millions of subscribers. It provides users with old and new 
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TV programmes and movies to download and play. iTunes, is a leading media library 

in music that enables users to download and play audio and video including new 

releases. 

2.2.3 YouTube-like Services 

YouTube, with over 1 billion unique visitors a month [14], possesses a huge 

popularity in the content delivery market. YouTube and other YouTube-like services 

are considered a counterpart of VoD services as a platform for video download over 

IPTV. However, one major distinction is that they support two-way content streaming 

by enabling the upload of user generated content. Therefore, when considering 

YouTube-like services, video download traffic as well as video upload traffic should be 

taken into account. 

2.2.4 Time-shifted TV 

Time-shifted TV includes services such as Catch-up TV (Cu-TV) and start-over TV. 

Cu-TV is an Internet television service that allows users to watch previously 

broadcasted TV programmes. Start-over TV allows replaying the current TV 

programme from its beginning. The total number of videos in such services is 

relatively fewer compared to other video services.. 
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2.2.5 Voice-over-IP 

Voice-over-Internet Protocol (VoIP) is an Internet telephone service that allows 

audio and video communication over IP. Other supported services include Short 

Message Service (SMS), fax and voice-messaging. Popular VoIP providers today are 

Skype and Google+ Hangouts. 

2.3 Caching and Video Popularity 

A cache is a storage device placed in the network to store any type of data (web 

objects, images, audio, video, etc.) to offload servers. Another term for a cache, replica, 

is widely used in the literature to distinguish proxy caches from a PC cache (memory 

blocks for temporarily storing recently accessed data). Yet, the term cache has widely 

been used for content storage devices, as they have become a major component of 

Internetworking. In this work, the term cache is used to refer to network storage 

devices, and the term caching is used to mean storing in a cache. 

 The main objective of caching is to reduce traffic on the communication path 

between the server and the users by storing videos closer to the users [15]. As caches 

have limited storage capacity compared to servers, they should contain the most 

popular content. Having the right content stored in the cache increases content 

availability which reduces access latency and congestion at servers [16]. This also 

reduces cache updates and minimises required cache sizes which results in lowering 

the cost of caching, justifying the financial investments.  
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2.3.1 Video Delivery Process 

Figure 2-1 shows the steps to deliver video content when the video service deploys 

caches. In a typical video service, a user requests a video from the server. If the video 

is available at the user’s serving cache, the user receives the video from the cache. 

This outcome is known as a cache hit. If the video is not available at the cache, the 

request is forwarded to the remote server, where the video is sent to the user, 

representing a cache miss. The cache may update its contents and replace a video with 

the recently requested video, known as a cache update [15], which is governed by the 

cache replacement policy. 

 

Figure 2-1: Content delivery process 

The process described above is for a simple cache structure where a cache miss leads 

to direct communication with the video server. More complicated caching structures 

allow cache collaboration to maximise the benefit of caching. Figure 2-2 (a) shows an 
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example of hierarchical caching where caches are arranged in a tree of multiple levels.  

When a cache miss occurs at a certain caching level, the request is forwarded to the 

next caching level (the cache in the parent node) until the requested item is found. The 

item is then transmitted down the request path to the user, and a copy of the item is 

made and stored in the caches on the path for future requests. This scheme suffers 

from an additional delay at each level as well as having multiple copies of a single 

item in multiple caches [17].  

 

Figure 2-2 Caching structures: (a) hierarchical caching and (b) distributed caching 

In a distributed caching architecture in Figure 2-2 (b), caches are allocated at the 

edge of the network and collaborate by distributing content among themselves and 

serving each other’s misses. This scheme introduces additional communication and 

bandwidth overhead due to the necessary up-to-date cache update information that 

each cache needs in order to know about other cooperating caches [18]. An alternative 

caching structure is called en-routing, where each cache on the routing path of a 

request intercepts the request and delivers the requested item if found in the cache. 
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Otherwise, the request is forwarded along the routing path towards the video server 

[19]. However, due to storage capacity limitations this mechanism is used for web 

caching where HyperText Markup Language (HTML) pages and images are stored 

and not bulky multimedia files.  

2.3.2 Caching Technologies 

There is a large number of existing caching technologies and software that are 

employed by different web sites and content providers. Famous examples of these 

technologies are: Squid, Varnish and CoDeeN. 

Squid Internet Object Cache is a group of proxy servers that cache web objects to 

reduce latency and congestion. Squid caches collaborate by searching neighbour caches 

first when a request is not found in the local cache before forwarding the request to 

the origin server. They also keep digests of each other’s contents to reduce inter-cache 

signalling [20].  

Varnish is an open-source HyperText Transfer Protocol (HTTP) cache that 

accelerates content delivery from web servers by load balancing and handling requests 

by separate threads. An overflow queue is provided to accommodate additional 

requests when the maximum active requests are reached. It is employed by high 

profile online newspaper sites including The Guardian and The New York Times as 

well as major social media sites such as Twitter and Facebook [21]. 

CoDeeN is an academic test bed Content Distribution Network developed at 

Princeton University. It consists of a network of high-performance proxy servers which 
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act as both request redirectors and server surrogates. They collaborate with each other 

and provide fast and robust content delivery service to CoDeeN users [22]. 

2.3.3 Cache Hit Ratio 

The cache hit ratio H is defined as the ratio of the number of requests served from 

the cache (C_Req) to the total number of requests (Tot_Req), or [23]: 

 𝐻 = 𝐶_𝑅𝑒𝑞/𝑇𝑜𝑡_𝑅𝑒𝑞 (2-1) 

Each video in the service holds a certain value reflecting its popularity amongst 

other objects in the service. This popularity is calculated as [24]: 

 𝑃𝑖 = 𝑅𝑒𝑞𝑖/𝑇𝑜𝑡_𝑅𝑒𝑞 (2-2) 

where Reqi is the number of requests for object i. The popularity of a video is also the 

probability that a request will be made to this video. The hit ratio can also be 

calculated from the summation of the popularities of cached videos, or [24]: 

 
𝐻 =∑𝑃𝑖

𝑉

𝑖=1

 (2-3) 

where Pi is the popularity of the ith video in the cache, and V is the cache size in 

videos. The hit ratio of a cache depends on the capacity of the cache, the average size 

of videos and the popularity distribution of the content. The download demand 

between a node and a video server represents 1-H of the total demand, making the 

cache hit ratio an influential parameter.  
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2.4 Content Popularity Distributions 

Depending on the nature of the service, the popularity of videos follows different 

distributions. In this section, four content popularity distributions are discussed: the 

Zipf, Pareto, Bimodal and Equal Popularity distributions.  

2.4.1 Zipf Distribution 

The Zipf distribution is considered the best approximation that represents web 

access. Its long tail defines web objects where a very large number of objects exist, few 

of which are popular, and the remaining majority has little popularity. This pattern 

well describes the user access behaviour of YouTube with a limited number of hot 

videos experiencing high download rates and a long list of available videos with small 

number of hits [25]. The authors of [25] characterise the traffic of YouTube by 

analysing usage patterns, file properties and popularity and referencing 

characteristics. They found that YouTube video popularity follows a Zipf-like 

distribution. They also state that the use of caches can reduce network demands, as 

over 50% of video requests are for previously requested videos. Other studies on 

YouTube-like traffic follow their approach [26], [27]. Given that objects are arranged 

by popularity (the most popular object is number 1), the approximation in [28] defines 

the popularity Pi of the ith object in the rank following a Zipf distribution by: 

 
𝑃𝑖 = 1/(𝑖 . ln 𝑇𝑜𝑡) (2-4) 

where Tot is the total number of objects. 
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2.4.2 Bimodal Distribution 

In a CuTV service, TV programmes may be divided into two or more categories with 

respect to programme type. Each category has its own popularity rank and 

distribution with very popular programmes at the peak of each category. Such a 

service is best described by a Bimodal distribution. In a simple Bimodal distribution, 

representing the popularity of the jth category by a Gaussian distribution, the 

popularity Pi of each TV programme i is given by [29]: 

 𝑃𝑖 = 𝑒
−(𝑖−𝜇𝑗)

2/2𝜎2/√2𝜋𝜎𝑗
2  

(2-5) 

where 𝜇𝑗 is the mean of the jth category, which defines the location of the peak, and 

𝜎𝑗
2 is the variance of the jth category which gives the width of the distribution. 

2.4.3 Pareto Distribution 

The Pareto distribution is used to describe the popularity of content that is not as 

diverse in video popularities as the Bimodal distribution, but does not contain as long 

a tail as the Zipf distribution. The Pareto distribution can represent a VoD service 

where a long list of movies with different popularities is available for users on 

demand. The popularity Pi of a video i under the Pareto distribution is given as [30]: 

 
𝑃𝑖 = 𝛽. 𝑖𝑀𝑖𝑛

𝛽 𝑖𝛽+1⁄ , ∀𝑖 > 𝑖𝑚 (2-6) 

where iMin is the minimum possible value of i and 𝛽 is the most popular video.  
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Both Zipf and Pareto distributions are widely used to describe access to web content 

and multimedia. Although the Zipf distribution is considered a discrete counterpart of 

the Pareto distribution [30] and both represent heavy-tailed distributions, interesting 

distinctions between the two distributions motivated this work to consider both. The 

popularity of videos for content where the popularity follows a Zipf distribution 

depends on the total number of videos in the library. Here the influence of the library 

size can be considered. The Pareto distribution explicitly allows for more control on the 

popularity of the most popular video. This comes handy in services where the 

popularity of the most popular video(s) is known, and consequently the effect of this 

value can be evaluated. 

2.4.4 Equal Popularity Distribution 

The Equal Popularity distribution implies having a set of videos where the 

probability of a request for any of the videos is equally likely. The popularity of each 

video under this distribution solely relies on the total number of videos in the library. 

Therefore, the popularity Pi of a video i is given as [29]:  

 
𝑃𝑖 = 1/𝑇𝑜𝑡 (2-7) 

where Tot is the total number of videos in the library. 
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2.5 IP over WDM 

Wave Division Multiplexing (WDM) allows transmitting data over multiple 

wavelengths on the same optical fibre. This feature increases the capacity of the 

optical network without laying more fibres. As a result, WDM is an attractive solution 

for optical network expansion and is suitable for accommodating increasing Internet 

traffic demands. On the other hand, IP is expected to continue to be the revenue 

generating layer as the choice for all end user communication. Therefore, IP over 

WDM is expected to play an important role in next generation optical Internet, 

offering low cost efficient service delivery for a large audience [31].  

 

Figure 2-3: A Simple 2-node IP over WDM network architecture with content 

delivery 

2.5.1 Network Architecture 

A simple architecture of an IP over WDM network with content delivery consisting 

of two nodes is shown in Figure 2-3. A core router in the IP layer aggregates traffic 
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demands generated at the access network which enter the core network through 

aggregation ports. Aggregation ports are utilised by the router for receiving and 

delivering user requests. A physical link between a pair of optical switches includes 

one or more fibres. Each fibre is equipped with a pair of multiplexer/demultiplexers to 

join/split wavelength signals in addition to a number of Erbium Doped Fibre 

Amplifiers (EDFAs) depending on the length of the link. The number of EDFAs 

required on each fibre is: ⌊𝐷𝑖𝑗/𝑆 − 1⌋ + 2, where 𝐷𝑖𝑗 is the distance between node i and 

j, S is the EDFA spacing and ⌊∙⌋ is the integer part [32]. Each occupied wavelength on 

a fibre requires a pair of transponders for wavelength modulation and regeneration. 

2.5.2 Implementation 

A lightpath is a point-to-point all optical wavelength channel connecting a source 

and a destination [33]. Considering the manner that a lightpath traverses IP routers, 

two strategies can be employed when implementing IP over WDM.  

2.5.2.1 Lightpath non-Bypass 

Under lightpath non-bypass, all the IP routers of intermediate nodes on the path are 

traversed, engaging IP router ports on each intermediate node. Most networks 

currently employ lightpath non-bypass routing. 

2.5.2.2 Lightpath Bypass  

When lightpath bypass is considered, traffic passing through an intermediate optical 

node is forwarded to the next optical node bypassing the IP router of the intermediate 
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node. This approach is considered more energy efficient, as IP router ports consume 

relatively high power. Although lightpath bypass can result in higher power savings, it 

does not enable the operator to access data at intermediate nodes for security deep 

packet inspection and correction. 

2.6 Overview of Content Delivery Networks 

A Content Delivery/Distribution Network (CDN) is an overlay network that consists 

of a collection of strategically located servers that replicate and distribute content 

providing more reliability and better performance [8], [34]. The first CDN, Akamai 

[35], was founded in 1999 from a research project at Massachusetts Institute of 

Technology (MIT) aimed at solving the problem of flash crowds (server failure due to 

sudden increase in traffic). CDNs, such as Akamai and Amazon CloudFront [36] 

charge content providers for content delivery and allow them full control over how 

content is cached. The content is moved from the content provider and distributed over 

the CDN servers, and users access content from the CDN. CDNs represent a 

convincing solution for content providers as they take over the responsibility of hosting 

and distributing content. The large number of geographically distributed content 

servers owned by CDNs (thousands) offer high availability, easy access and less delay 

for users [37].  

In a conventional network, a user request is forwarded to the Domain Name Server 

(DNS) which translates the website’s name into its IP address and the request is 
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redirected to the origin server which responds to the user request. In a CDN 

architecture, shown in Figure 2-4, the content distributer is responsible for 

distributing the content of the origin server between the CDN content servers. When a 

user request is received at the DNS, it is forwarded to the Request-Routing System 

(RRS) which is responsible for directing users to their corresponding CDN content 

server [8]. The selection of the content server depends on the availability of content, 

the distance between the user and the content server, delivery cost and load balancing. 

In order to optimise content delivery, the CDN performs network measurements to 

maintain up-to-date information about content location and network condition. 

 

Figure 2-4: A CDN architecture 

2.7 IPTV Streaming and Structure 

IPTV is a system that offers streaming video content over IP networks. Typical 

services offered by IPTV include Broadcast TV, time-shifted TV and Video-on-Demand 
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(VoD). A typical IPTV network consists of three main parts: the content delivery 

network, the transport network and the access network. Following is an explanation of 

a typical IPTV network architecture, shown in Figure 2-5. 

 

Figure 2-5: IPTV network architecture 

2.7.1 Content Delivery Network 

The content delivery network (CDN) includes the data centre which is made up of 

the content storage and server components. The CDN also includes the video head-

end, responsible for transforming video streams into digital compressed streams that 

are encapsulated in IP packets and injected in the core network. These video streams 

are generally live TV broadcast and VoD libraries. One encoder is required at the 

video head-end for each TV channel, and possible output streams are standard 

definition, high definition and picture-in-picture [12], [38]. This part of the network 

also includes caches, which are deployed at one or more levels in the core, aggregation 

and/or access network.  
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2.7.2 Transport Network 

All core switching, distribution and aggregation is considered a part of the 

transport network. The transport network consists of core and aggregation switches 

and edge routers. The backbone utilises WDM optical transport technology [12], [39]. 

2.7.3 Access Network 

Passive Optical Networks (PONs) are becoming the leading choice for access as the 

popularity of Internet multimedia services grows. PONs provide attractive features 

including simplicity, cost and energy effectiveness and offer a bandwidth between 256 

kb/s and over 1 Gb/s per user [40]. A PON is made up of the Optical Line Terminal 

(OLT), the Passive Optical Splitter and the Optical Network Unit (ONU). The OLT is 

the interface between the core network and the PON. It is connected to a number of 

ONUs through a splitter which evenly splits the signal from the input to the output. 

The ONU converts optical signals to electrical signals to be transmitted to individual 

users.  

The Set-Top-Box (STB), connected to a TV, is one example of the end user 

equipment in an IPTV system. The STB has an embedded operating system, decodes 

the video to be viewed on TV and may include an Internet browser [12]. The STB can 

be connected directly to the PON or to a Digital Subscriber Line Access Multiplexer 

(DSLAM) through DSL (Digital Subscriber Line). The DSLAM connects multiple user 

DSL interfaces to a high-speed digital communication channel using multiplexing 

techniques. 
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2.8 CDN Challenges  

CDNs face a number of challenges mainly due to the high demand for content and 

the dynamic nature of video delivery. Following is a summary of these challenges. 

1. Content delivery cost: The massive commercial competition for content 

delivery has forced CDN operators to deploy a large number of content 

servers around the globe, increasing the cost of service. Consequently, the 

revenue of content delivery is monopolised by large CDN companies and only 

major content providers can enjoy CDN services [41]. The challenge is to 

bring down the cost of operating CDNs to expand the market. 

2. Content delivery energy consumption: Network provisioning and 

operation is a difficult task for ISPs as the traffic fluctuates depending on the 

change in provided content and content popularity. As a result, ISPs 

provision for maximum traffic which consumes excessive energy. The 

challenge is to develop a model that accurately predicts network traffic and 

required network equipment so that minimum devices are utilised to 

minimise energy consumption. 

3. User mis-location: In the CDN content delivery process, the Request-

Routing System (RRS) receives requests from the underlying network 

Domain Name Server (DNS) and not from end users. The user is assumed to 

be located close to the requesting DNS (which is not always true) and 

therefore directed to a content server near the DNS. This results in a mis-

location problem which results in content being delivered to the user from a 
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remote content server [41]. The challenge is to incorporate the user’s IP 

address in the request forwarded to the RRS to improve the decision of the 

content server selection. 

4. Network bottlenecks: Network bottlenecks represent a challenge facing 

CDNs as traffic flow is not always optimised. The reason is that despite the 

excessive network measurements that CDNs perform, it is a challenging task 

to maintain accurate up-to-date information regarding the network condition 

due to traffic fluctuations and distributed sources and destinations [42]. 

Today, the most popular CDN carries a significant part of the total daily Internet 

traffic, estimated between 15% and 30% [43]. Therefore addressing these challenges 

can have a great impact on the overall performance of video delivery over the Internet. 

An essential concern is the high energy consumption of CDNs which needs to be 

reduced in order to reduce CO2 emissions and operating costs. This thesis addresses 

the high energy consumption of CDNs by caching content in the core network to 

minimise the energy consumption of video delivery. Chapter 4 to Chapter 7 explain in 

details the proposed models.      

2.9 Summary 

Content Delivery Networks have emerged to support the fast delivery of the growing 

demand for digital content to a large number of geographically distributed users. This 

chapter has introduced CDNs and the different video services it delivers and 
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overviewed caching and content popularity distributions. It has also explained the 

importance of the cache hit ratio and its significance in estimating network 

performance. IP over WDM, CDN and IPTV architectures were discussed and the 

video delivery process was overviewed. 

The next chapter surveys cache placement and cache replacement algorithms as well 

as the related work on energy reduction attempts in CDNs, IPTV and VoD in the 

literature.   
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 Related Work Chapter 3

3.1 Introduction 

The work proposed in this thesis reduces the energy consumption of content delivery 

through optimum cache placement and content replacement. This chapter summarises 

previous research work related to caching and the energy efficiency of content 

delivery.  The chapter opens with related work on cache placement and replacement 

algorithms. Afterwards, a section is devoted to green Internet and energy efficient 

optical networks. The following section surveys energy reduction strategies in content 

delivery. The chapter is concluded by a section describing the optimisation methods 

used in this thesis. 

3.2 Cache Placement Algorithms 

The objective of cache placement algorithms is location, size and content 

optimisation. Location optimisation specifies the location in which to implement 



 

33 

 

caches in the network to meet certain criteria. Cache size optimisation decides how 

much capacity should be granted to each cache. Cache content optimisation identifies 

the best cache(s) to store each video. In the following, an overview of cache placement 

strategies proposed in the literature is presented. 

3.2.1 Hierarchical Cache Optimisation 

Hierarchical cache optimisation is concerned with optimising the size of caches 

implemented at each level in the caching hierarchy (core, access, etc.). There exists a 

trade-off between transport and caching costs and this trade-off is considered when 

optimising cache sizes. The cost of transport is related to the length of the path from 

the source to the destination. Therefore the influence of this trade-off is different at 

each network level.  

The work in [44] and [45] evaluates this trade-off between transport and caching 

costs and its influence on optimum cache sizes at each network level. Having caches 

closer to clients reduces traffic on all links upstream of caches. Nevertheless, caching 

in the access network requires deploying a large number of caching equipment, 

increasing operating costs. The results in [44] and [45] show that the trade-off leads to 

having small caches closer to end users to regulate cost and larger caches are located 

further from the access network. Moreover, the smaller caches located closer to end 

users are populated with the most popular content to maximise traffic reduction due to 

caching, and less popular content is to be stored in caches that are higher in the 

caching hierarchy. 
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3.2.2 Combined CDN and Proxy Server Solution 

The authors of [46] propose a caching method that increases the available storage 

area by making use of the caching space provided by proxy servers (intermediary 

servers between two networks) as well as the CDN. They propose a hybrid approach to 

reduce user delay. Their results show that the average response time is reduced by up 

to 40% compared to the stand-alone version due to the sufficient number of caches in 

the network containing the most popular content. They claim that their proposed 

hybrid solution does not introduce high administrative overhead for the CDN system. 

However, the hybrid scheme outperforms traditional caching by only 5%-10%, which is 

marginal considering the additional administrative overhead introduced by proxy-

CDN collaboration. 

3.2.3 Minimum Traversed Caches 

The authors in [47] formulate the content distribution problem as an optimisation 

problem in which content is replicated in the caches such that the number of hops to 

retrieve requested items is minimised. This problem assumes collaboration and 

communication between CDN servers, leading to developing a model for a Peer-to-Peer 

(P2P) network, (A P2P network is a distributed architecture where peers provide and 

request content). The work considers four heuristics that utilise available data 

differently. These heuristics are:  

1- Random: assign items to caches randomly 

2- Popularity: populate each cache with the most popular content 
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3- Greedy-Single: use a cost function to cache the furthest items from each node 

with no collaboration between nodes 

4- Greedy-Global: use a cost function to cache the furthest item from a node while 

using the new placement for the next cost function calculation 

Results show that the Greedy-Global algorithm has improved performance by up to 

24% compared to other heuristics. Content is made available at its closest possible 

cache for all the nodes through the cooperation between CDN servers provided by this 

method results.  

Although this work provides a useful strategy to improve performance, it is only 

suitable when the number of objects is small since the problem becomes NP-complete 

with a large number of objects. In addition, the optimisation minimises the number of 

hops without considering the cost of storage against the cost of transport to optimise 

cache contents. 

3.3 Cache Replacement Algorithms 

The popularity of videos in a video service decays over time due to the release of new 

videos or the time-related viewing patterns of videos. As a result, the contents of 

caches become less popular and must be updated periodically to maintain the most 

popular videos. A cache replacement algorithm is the process in charge of selecting an 

item from the cache to be removed and substituted with a more popular item. The 
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main goal of cache replacements is to maximise the cache hit ratio in order to improve 

other performance measurements.  

The prior work in content replacements considers two main types of caching 

algorithms: 

1. Reactive: In reactive cache replacements prior knowledge of future requests is 

not available. The work in [48] and [52] describes reactive caching algorithms 

that are invoked when the cache is full. A request for data not in the cache 

results in an item being evicted from the cache. The aim of this type of caching 

algorithm is to decide which item to evict from the cache. Examples of reactive 

cache replacement algorithms are the Viewers’ Biased Based, LRFU, p-Based 

LRFU-k, Quality Based and Probabilistic In-Network caching algorithms, 

described below. 

2. Proactive: Full or partial prior knowledge of requests can allow a caching 

algorithm to proactively update cache contents ahead of time [53], [54]. It is 

difficult to collect real request traces from video services and hard to predict 

future requests. Therefore, most prior works propose reactive algorithms. An 

example of a proactive cache replacement algorithm is the Reuse Time-Based 

algorithm, described below. 

Cache replacement algorithms differ in the parameters used to select the item to be 

evicted from the cache and the way these parameters are applied. Following is an 

overview of the cache replacement algorithms applied in the literature. 
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3.3.1 Least Frequency Used 

The Least Frequently Used (LFU) algorithm is a simple algorithm that has been 

used to manage computer memory. Its concept is that items which are accessed the 

most are the most likely to be requested again in the near future. The algorithm keeps 

track of the number of accesses for each item in the cache using a counter. When a 

new item is requested and the cache is full, the item with the smallest counter is 

removed from the cache [55]. 

The LFU is considered one of the simplest algorithms and is easy to implement, 

however it suffers from drawbacks. One problem is that considering a situation where 

an item was highly accessed in the past, its counter will hold a large value. 

Consequently, the item will be granted a place in the cache, although it is not being 

accessed at present. Another problem is that newly inserted items in the cache start 

with a small counter value, and therefore are most likely to be evicted first, even 

though they might experience many hits over a period of time. 

3.3.2 Least Recently Used 

The Least Recently Used (LRU) algorithm keeps track of the age of stored items. 

The item nominated to be evicted is the oldest item. LRU performance increases as the 

cache size increases, but suffers from its bias against items that are occasionally but 

consistently accessed [55]. Due to their simplicity, LRU and LFU algorithms are 

considered the base for many improved cache replacement algorithms and a reference 

for performance evaluation [48], [49], [50], [53]. 
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3.3.3 Viewers’ Bias Based Technique 

Cache management algorithms can be improved by maximising the number of 

incorporated parameters used in the cache replacement decision. The Viewers’ Bias 

Based technique (VBB) proposed in [48] considers the semantic content of the video 

such as fiction, horror, action, comedy, etc. as the most important feature influencing 

the viewers’ decision to view a video. The semantic content of videos is measured at 

different times and places to make the algorithm adaptive. The VBB cache 

replacement algorithm steps are shown in Figure 3-1. 

If (enough cache space for requested video) 

        store in cache 

Else 

       Repeat 

                calculate a priority for all videos 

                  mark video with lowest priority: can_be_deleted 

       Until (enough space can be freed in the cache) 
 

       If (enough space is freed in the cache) 

                  all videos marked can_be_deleted are removed 

                  the newly requested video is stored 

       Else 

                  the newly requested video cannot be stored 

                  all marked videos are unmarked 

Figure 3-1 Viewers’ Bias Based algorithm steps 

The performance of VBB is compared to LRU and LFU in [48] through simulation. 

For the evaluation, 400 videos are considered where 50 of the videos belong to the bias 

set. Results show that as the likelihood of a viewer choosing a video from the bias set 

increases, the cache hit ratio increases under all considered algorithms. When the 

likelihood is between 10% and 70%, the algorithm results in higher cache hit ratios, as 

it favours videos from the bias set to remain in the cache. However, the algorithm 
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outperforms LFU and LRU only under a small mean interarrival time (<30 

requests/second). The performance of VBB is similar to LFU and LRU for higher 

interarrival times. 

3.3.4 LRFU and p-Based LRFU-k Algorithms 

The authors of [49] propose the Least Recently/Frequently Used (LRFU) algorithm 

as an improvement to the LRU and LFU algorithms. The LRFU algorithm uses a 

weighted function to determine how much more favour is given to recently accessed 

items over older accessed items. Results show that the LRFU algorithm slightly 

increases the cache hit ratio compared to a number of LRU and LFU-based 

algorithms. Nevertheless, this algorithm requires infinite calculation memory as it 

calculates the weight for all past access history each time a cache replacement occurs. 

The algorithm proposed in [50], p-based LRFU-k scheme, solves the LRFU problem 

by using the period of time span (p) and the number of time spans (k). The period of 

time span (p) determines how far back the algorithm keeps track of the number of 

references for each time span, while the number of time spans (k) allows adding more 

weight to recent time spans over older time spans.  

The results show that a 30 minute-based LRFU-12 scheme results in the most 

increase in the cache hit ratio compared to LFU and LRU. However, the average hit 

ratio for a cache size of 100 items increased by only 6.5% and 4.5% compared to LFU 

and LRU algorithms, respectively. 
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3.3.5 Quality-Based Video Caching 

In [51], the authors evaluate replacement strategies for quality-based video caches 

considering the LRU algorithm and a simplified Greedy Dual Size Frequency (GDSF) 

algorithm. They explore vertical and horizontal replacements where in vertical 

replacements all versions of the least popular video in the cache are replaced first. 

Under horizontal replacements the versions with the highest quality are removed first 

for all cached videos.  

Simulations showed that horizontal replacements improve the cache hit-ratio by up 

to 22%. However, the performance of vertical replacements is similar to GDSF and 

slightly worse than LRU.  

3.3.6 Reuse Time-Based Caching Algorithm 

The authors in [53] treat movies as an ordered sequence of segments to predict 

future requests in a VoD service. They propose a caching algorithm that predicts the 

time that cached segments will be reused in the future. The segment with the furthest 

reuse time is evicted and replaced with a successive segment of a movie that is being 

viewed by active users. 

The results in [53] show that the proposed algorithm increases the cache hit ratio 

compared to LFU and LRU. Nevertheless, they assume that once a user requests the 

first segment of a movie, he will continue watching the movie to the end and request 

all other movie segments in order. The probability of users skipping segments and 

interrupted viewing is not considered when calculating reuse times. 
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3.3.7 Probabilistic In-Network Caching for Information-Centric 

Networks 

The work in [52] proposes a caching scheme, ProbCache, to reduce content 

redundancy in in-network caches (caching equipment provided at each content router 

in the network [56]). ProbCache is a probabilistic algorithm for distributed content 

delivered over a path of multiple caches in an ICN (Information-Centric Networking is 

a direction of moving the Internet to a content distribution architecture).  

The algorithm makes the caching decision by considering other flows on the caching 

path and the amount of traffic associated with each caching request on the path. 

Based on this, content from different flows is fairly multiplexed in caches in the 

shared path. The proposed algorithm reduces up to 20% of requests to the origin 

server and cache eviction by 10% compared to universal caching. 

The previously described cache placement and replacement algorithms do not 

consider the energy consumption of the network. They focus on maximising cache hit 

ratios to improve network performance. The energy efficiency of the network can be 

incorporated into these techniques by considering the power consumption of storage 

and transport. The objective is to minimise the network energy usage by optimising 

cache hit ratios. Other network factors including semantic video contents and video 

quality can be considered.  
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3.4 Green Internet and Optical Networks 

This section reviews the academic and industrial efforts to reduce the energy 

consumption of the Internet as well as optical networks. 

3.4.1 The Green Internet 

The Green Internet concept was initiated in [57] in 2003 by proposing switching off 

unutilised network equipment and traffic aggregation. Other studies followed the lead 

and proposed more detailed energy reduction strategies. The authors of [58] presented 

a model to estimate the power consumption of  the Internet. A thorough investigation 

of the energy efficiency of optical networks is provided in [59] reviewing energy-

efficient protocols and network architectures. It recommends that existing optical 

network techniques including traffic grooming and protection should be re-evaluated 

with respect to energy consumption. With more focus on Wavelength Division 

Multiplexing (WDM), the works in [32], [60], [61] propose models to evaluate the 

energy consumption of optical core networks considering switch on/off techniques and 

optical bypass. Renewable energy sources such as wind and solar are deployed in 

networks as a green source of energy. The work in [62] and [63] focuses on minimising 

the non-renewable energy consumption of the network to reduce total CO2 emissions. 

The industry has significantly contributed to the Green Internet movement as well. 

British Telecom (BT) has recently become one of the largest companies in the world to 

source 100% of its electricity from renewable energy [64]. The GreenTouch initiative 
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brings together industrial, academic and governmental bodies to reduce the energy 

consumption of networks by a thousand times by 2015 [65]. In addition, the Green 

Grid is an industry consortium of over 170 member companies including policy-

makers, technology providers and utility companies. These companies collaborate to 

improve the resource efficiency of data centres, having power as a major goal [66]. 

3.4.2 Energy Efficient Optical Networks 

A comprehensive survey in [59] on energy minimisation efforts in optical networks 

divides energy consumption approaches into four categories: (i) turning on/off network 

components, (ii) energy efficient network design, (iii) energy efficient IP packet 

forwarding, and (iv) green routing. When turning on/off network components, an 

entire node in the core network can selectively be turned off if it is unused or 

experiences low traffic. However, this approach results in additional control, 

management and operation overheads which can become significant. Similarly, 

inactive links, line cards and chassis can be shut down when traffic is low. Energy 

efficient network design implies developing energy efficient architectures during 

network design. This involves the selection of equipment with respect to capacity and 

energy consumption, placement of equipment and configuration.  

Optimising the size of IP packets results in energy efficient IP packet forwarding, as 

larger IP packets consume less energy when transferred between routers compared to 

smaller packets. However, larger packets experience longer delays, and therefore 

packet size optimisation considers the trade-off between energy and delay. Pipeline 
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forwarding, which is a time-driven packet switching scheme, is an approach for energy 

efficient IP packet forwarding. The optical implementation of pipeline forwarding 

allows packets to flow faster through the network, saving significant energy on 

transport. Green routing uses the energy consumption of network components as the 

optimisation objective. Traffic is routed through the most energy efficient route rather 

than the shortest route, and energy is saved by energy aware utilisation of line cards 

and chassis.  

In what follows, the greening efforts for IPTV, CDNs and VoD are explored. The 

reader is referred to [59] for detailed information on energy-efficient attempts in 

optical networks in general. 

3.5  Energy Reduction Strategies in Content 

Delivery 

 Continuous efforts have been made to reduce the energy consumption of the 

Internet and many issues in the field are yet to be solved. The rise in Internet video 

traffic increases the energy consumption of the network equipment that delivers that 

traffic [57], [58]. Many studies have proposed various approaches to reduce the energy 

consumption of the Internet at different network domains. Following is a survey of 

previously proposed energy reduction approaches in IPTV, CDNs and VoD. 
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3.5.1 Energy Reduction in IPTV 

The design of IPTV networks has become a matter of increasing concern, as the high 

traffic growth rate of IPTV is coupled with the bandwidth consuming nature of the 

service. While capacity, cost and QoS remain important, energy consumption is 

expected to become an important driver and constraint in the design of the future 

Internet. Different attempts have been proposed in the literature to reduce the power 

consumption of IPTV services with particular focus on equipment energy efficiency 

and network traffic. Following is an overview of different methods for energy reduction 

in IPTV systems. 

3.5.1.1 IPTV Caching Considering Viewer Behaviour 

Caching can be provided at a single level in the network in the core, aggregation or 

the access network. Multi-level caching or hierarchical caching involves local storage 

of content at more than one part in the network. The authors of [67] optimise the 

number of network levels to employ caches depending on cache sizes and user viewing 

behaviour. The size of the caches determines their power consumption and the number 

of videos they can store, whereas the similarity and variation in viewer preference 

decides how much of user requests the cache can serve.  

When viewing behaviour is similar, viewers tend to watch the same videos for 

comparable lengths of time. In this case, a single level of caching is sufficient to reduce 

the amount of energy used in the network substantially. As viewer preference becomes 

more diverse, the most energy efficient network design requires multi-level caching. 
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Although the results shown in [67] calculate the energy savings due to caching at 

different network levels, the higher power savings achieved assume a high similarity 

in viewer behaviour. The assumption states that the residents of a community are 

most likely to request the same video content over a similar session length. In reality, 

the similarity in viewer behaviour is expected to be low, and therefore the actual 

energy savings achieved using this technique would be moderate. 

3.5.1.2 Statistics Based Caching 

In [68], the caching decision is based on statistics from past requests where an 

algorithm calculates the optimum number of minutes from the start of the requested 

video that should be placed in the cache in order to minimise power consumption. The 

results show that the optimum chunk size to cache is larger for highly popular videos. 

They also show that when the number of requests increases, caching chunks from less 

popular videos becomes energy-efficient. 

The results shown in [68] consider only a limited number of movies (1 to 100) and a 

small average request rate (a maximum of 18 requests/second). In order to produce 

generalised results, a larger movie library and higher request rates should be 

considered. 

3.5.1.3 Selective Pre-Joining of TV Channels 

In current IPTV systems, the operator distributes all TV channels to all DSLAMs to 

avoid channel switching delay. However, only a limited number of TV channels are 

watched by the vast majority of audience (80%-90% of channels [69], [70]). Therefore, 
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pre-joining all channels is considered a waste of bandwidth (pre-joining a channel is 

including the channel in a specific multicast tree). The authors of [69] propose the pre-

joining of a subset of channels (the most popular) instead of the full collection. This 

approach considerably reduces the network bandwidth, while increasing channel 

switching delay for only a small number of requests. Reductions in network bandwidth 

can be translated into energy savings by reducing the number of powered-on network 

components. 

The results in [69] show that even though it is possible to reduce network 

bandwidth, the reduction in energy consumption due to selective pre-joining of 

channels is insignificant. They predict that savings in energy consumption will become 

much more significant when more channels become available in High Definition 

format (HDTV). 

3.5.1.4 IP Flow Aggregation with Multiple Line Rates 

Multicast IP over light-trees (a light-tree is a point-to-multipoint generalisation of a 

lightpath [33]) is an IP core network model that offers bandwidth reduction and 

improved performance. The work in [71] considers multicast IP flows for programme 

delivery in an IPTV network. The objective of the study is to optimise IP flows into 

light-trees and to find the appropriate line rate for each tree to minimise energy 

consumption. The results show that the high line rates are preferred by light-trees as 

long as the additional energy they consume is proportional to the extra rate they 

provide. 
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The work presented in [71] assumes optical multicast and therefore the complexity  

of the proposed model is high and increases with the increase in the number of 

established light-trees.    

3.5.2 Energy Efficient CDNs 

In CDNs and other related networks, a number of factors influence the energy 

consumption of video streaming. The distance between the cache and the user, the 

network domain at which caches are implemented and the cache configuration 

determine the energy consumption associated with streaming a video from the cache 

to the user. Continuous attempts are made to reduce the energy consumption of CDNs 

and related networks. Following is a summary of these attempts. 

3.5.2.1 Energy Efficiency of Content Delivery Architectures 

In [72], the energy consumption of several content delivery architectures is 

evaluated. These architectures include: a decentralised CDN, a Content-Centric 

Network (CCN) and a centralised CDN using optical bypass (CCN is a 

communications architecture that emphasises content rather than location [73]). The 

study takes into account the energy consumption of the core, edge and access network 

equipment and considers various library sizes. 

The results recommend deploying CCNs to deliver small size libraries since they are 

more energy efficient compared to CDNs which consume less energy under larger 

libraries. Results also show that CCNs are more energy efficient to deliver the most 
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popular content whereas optical bypass is more energy efficient when delivering less 

popular content. 

3.5.2.2 In-Network Caching for Information Centric Networks 

 The study of energy efficient content delivery presented in [74] considers 

Information Centric Networks (ICNs) that support multicast and in-network caching. 

It offers two caching solutions: an offline solution based on prior knowledge of user 

requests and an online solution where the caching decision is based on energy 

minimisation. 

The offline solution provides a lower bound for energy consumption, while the online 

solution consumes 67% less energy compared to LRU and LFU and 28% more energy 

than the lower bound. 

Although the study considers minimizing the energy consumption of storage as well 

as transport, the reported results do not show the resulting cache hit ratio for the 

assumed fixed cache size. In addition, the study does not justify how caching 40% of 

content in each node provides the most energy efficient solution. Results should 

demonstrate the benefit of caching by showing the traffic reduction due to caching and 

the additional incurred costs of storage. 

3.5.2.3 Energy Efficient Trade-offs among P2P and CDNs 

The work in [39] compares the energy consumption of Internet TV in the transport 

network considering Peer-to-Peer (P2P) and CDN architectures. The results show that 
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while P2P minimises the energy usage of the ISP, this reduced energy is migrated to 

users’ Set-Top-Boxes. On the other hand, the CDN architecture results in the 

minimum overall energy consumption. 

The comparison in [39] considers the energy consumption of downloading movies 

without taking into account the energy consumption of storing and updating movies. 

Considering the energy consumption of storage is necessary in the comparison as the 

CDN architecture consumes energy on a large number of caches whereas a P2P relies 

on user’s storage capacities. 

3.5.2.4 ISP and CP Cooperation 

The authors of [75] propose a model to reduce the energy consumption of the 

backbone network based on full cooperation between the Internet Service Provider 

(ISP) and the Content Provider (CP). Results show that the proposed model can reduce 

the energy consumption by up to 71% on real ISP topologies. Nevertheless, they 

recognise the inconvenience of the idea, as ISPs and CPs do not openly share sensible 

data (network topology, server load, traffic, etc.). They therefore introduce another 

model in [76] to limit this cooperation. The results show that the loss in energy 

efficiency due to this limitation does not exceed 17% and hence full cooperation 

between the ISP and the CP is not necessary. 

While the ISP and CP cooperation is limited, it still adds to the complexity and cost 

of the proposed model by employing third-party authorities to control this cooperation. 

In addition, the model assumes that user requests are made for very popular content 
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and the influence of less popular content is negligible. Even though the most popular 

content accounts for a significant share of network traffic, less popular content 

contributes to a serious portion of network traffic and occupies a large part of storage 

capacities. As a result, less popular content accounts for a considerable amount of the 

energy consumption of the network.     

3.5.2.5 Energy-Aware Load Balancing in CDNs 

The authors of [77] propose reducing the energy consumption of CDNs by local load 

balancing within data centres and global load balancing between data centres. The 

results in [77] show that the energy consumption of the network is reduced by up to 

51% through local balancing. However, only limited additional energy savings (4%-6%) 

can be achieved through global load balancing, as the load over the network is similar.  

The authors claim that more savings can be achieved in scenarios where the load 

significantly increases in one cluster in the network; however, flash crowds are 

typically experienced in the whole network. In addition, the authors indicate that 

switching on as little as 10% of spare servers in data centres ensures acceptable 

content availability during load spikes. Nevertheless, continuously provisioning for an 

additional 10% of network traffic leads to increasing the energy consumption of the 

network. A trade-off between content availability and energy consumption needs to be 

considered. 
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3.5.3 Energy Efficient VoD 

In VoD services, the total number of videos is larger compared to broadcast TV and 

CuTV. In addition, the popularity distribution of VoD content is heavy-tailed. As a 

result, it is a challenge to optimise content location, replacement and access patterns 

for VoD. The optimum solution depends on the type of service and other parameters 

such as the network topology and storage constraints. There is ongoing research that 

aims to minimise the energy consumption of VoD, and following is an overview of some 

of these attempts. 

3.5.3.1 Proactive Server Provisioning 

The authors of [78] propose a server provisioning strategy for a VoD service that 

turns on/off servers with respect to traffic load. They use a proactive online algorithm 

to calculate the predicted number of requests at each time. The data provided by the 

algorithm is utilised to turn servers on before they are needed, allowing them booting 

time to minimise user rejections. They compare their results to a non-prediction 

scheme that turns servers on/off with respect to instantaneous number of requests. 

Simulation results show that their proposed scheme reduces the number of rejected 

requests. In addition, it reduces the energy consumption by minimising the number of 

idle servers (which consume up to 66% of peak power [79]).  

The drawback of this algorithm is that it results in increasing user reconnections. A 

reconnection occurs when the user’s server is turned off and the user is transferred to 

an alternative active server, resulting in a short-term experience degradation. 



 

53 

 

3.5.3.2 Multi-level Content Placement Optimisation 

Multi-level caching can potentially be provided at five strategic locations in the VoD 

network. Examples of possible content placement locations include at the head-end 

server (level 5) in the CDN network, the edge router (level 4) and aggregation switch 

(level 3) in the transport network, and at the DSLAM (level 2) and STB (level 1) in the 

access network. The work in [80] evaluates the energy consumption of retrieving 

content from each level and numerical analysis decides whether replicating a movie at 

a certain level is energy efficient. Movie request arrival rates play an important role in 

the accuracy of the decision, as replicating a movie stored at one level into a lower 

level is considered more energy efficient only if the overall user request arrival rate 

exceeds a certain threshold.  

Results show that by evaluating energy consumption parameters it is feasible to 

determine which portions of content storages to switch off with respect to movie 

request arrival rate. Deploying the proposed multi-level content placement approach 

introduces significant savings in energy consumption, ranging from 25% at (level 4) to 

97% at (level 1). 

The authors propose varying the number of movies stored at each network level and 

switching off portions of caches during off-peak hours. This implies that a certain 

movie is served from five possible network locations depending on instantaneous 

traffic. As a result, additional communication overhead is introduced to the network as 

the location of movies has to frequently be updated in Domain Name Servers (DNSs). 
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The research reviewed in this section considered methods that can be used to reduce 

the energy consumption of video delivery by reducing network traffic or optimising the 

use of storage. To achieve that, the researchers used different strategies including load 

balancing, cache size optimisation and traffic aggregation techniques.  

In this thesis, the power consumption of video delivered over an IP over WDM 

network is minimised by optimising cache sizes and cache updates. The evaluation 

utilises Mixed Integer Linear Programming (MILP) models, a Constrained-Based 

Genetic Algorithm (CBGA) and simulations. The following section describes these 

methods. 

3.6 Optimisation Methods 

Optimisation can be conducted using different methods including linear and 

nonlinear programming, simulation, game theory, genetic algorithms and many more. 

Following is a brief description of the optimisation methods used in this thesis. 

3.6.1 Mixed Integer Linear Programming 

Linear Programming (LP) is a form of constrained optimisation where the best 

solution is found while satisfying some constraints. Constrained optimisation 

problems consist of four main elements [81]: 
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1. Objective function: a mathematical expression that symbolises the goal. 

During the optimisation process this objective function is maximised or 

minimised. 

2. Variables: the set of variables in the problem are adjusted during the 

optimisation process until the best value for the objective function is found. 

3. Constraints: a set of mathematical expressions that set limits and determine 

the accuracy of possible solutions to the problem. 

4. Variable bounds: a range of possible values that a variable can take is 

predefined to reduce the size of the problem. 

In LP, the objective function and constraints are linear. Integer Linear 

Programming (ILP) is an LP problem where all of the solution variables are integer. 

This criteria makes them more difficult to solve [82]. 

Mixed Integer Linear Programming (MILP) is used to solve problems having some 

integer variables and some real variable, or a model with mixed variables. However, it 

can accept problems with any combination of integer, real and binary variables [81]. 

There exist a number of algorithms that are used for solving optimisation problems. 

Following is a brief description of the most popular in literature [83]. 

1. Simplex Method: this was the first method developed for solving LP problems. 

The simplex method states that the optimal solution is found by following the 

boundary of the feasible region (the region defined by the set of constraints). The 

method iterates from one vertex on the boundary of the feasible region to another 



 

56 

 

until an optimal solution is found. This method is considered the best for most 

LP problems; however, it is not suitable for MILP problems.  

2. Dual Simplex Method: similar to the simplex method, this method relies on 

iterations until an optimal solution is found. It differs in the vertices it considers 

and the iteration method. While the simplex method starts at a feasible vertex 

and then iterates searching for an optimal solution, the dual simplex method 

starts at an optimal solution (that is not feasible) and iterates until a feasible 

solution is found. The dual simplex method solves MILP problems and therefore 

was ideal for the MILP models proposed in this thesis.  

3. Newton Barrier Method: this method differs from the simplex methods in that 

it iterates through solutions that are not on the boundary of the feasible region. 

Therefore, only an approximate solution is found. The number of iterations is 

determined by the level of proximity required by the optimal solution. 

Consequently, the number of iterations is similar irrespective of the size of the 

problem. 

4. Branch and Bound Method: this method is most useful when no feasible 

solution is found by other methods. It works by dividing (branching) the problem 

into sub-problems and using LP relaxation (the LP problem resulting from 

dropping the integer constraint from variables) to find feasible solutions for the 

original problem. The bounding part of the method is to estimate how good a 

solution can be found for all sub-problems. 

The IBM ILOG CPLEX Optimisation Studio is a popular optimisation software 

package that solves complex MILP problems. It is accessed through AMPL (A 
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Mathematical Programming Language) [84] and provides interfaces to a number of 

programming languages including C++, C# and Java. The AMPL/CPLEX solver was 

used to solve the proposed MILP models on a Pentium(R) Dual – Core CPU at 2.8GHz 

with 3GB RAM using the dual simplex method. Each model defines an objective 

function, 7 to 11 constraints and between 1 million and 3.6 million variables. 

3.6.2 Constraint-Based Genetic Algorithms 

A Genetic algorithm (GA) is an evolutionary algorithm that is used to solve 

optimisation and search problems. The components of a GA are [85]: 

1. Population:  is made up of a number of individuals called chromosomes that 

hold information (genes) representing a possible configuration of the problem. 

Genes can hold binary, integer or real values and are initialised either randomly 

or by seeding likely optimum values.  

2. Fitness function: is an equation representing the target of the optimisation 

problem. The fitness function of a chromosome is calculated using the values of 

the genes.  

3. Parent selection: a group of the existing population is selected to reproduce the 

next generation based on their fitness. Fit individuals are more likely to produce 

a fitter offspring, bringing the problem closer to the optimum solution.  

4. Crossover: is the recombination method that produces an offspring using the 

chromosome information of two parents. 
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5. Mutation: is an operation where the value of one or more gene is altered. This 

alteration results in avoiding local minima and improving results. Mutation is 

performed by a given rate which should not be too high to avoid transforming the 

problem into a random search.  

6. Termination criteria: the GA process iterates by selecting the group of parents 

for the iteration, producing the next generation and calculating the fitness 

function for each offspring. This process is repeated until the fitness function 

target is reached or additional repetitions do not improve fitness. 

A Constraint-Based Genetic algorithms (CBGA) is a GA that describes an 

optimisation problems having one or more constraints to satisfy [86]. In CBGAs, the 

conventional GA selection, crossover and mutation processes are performed to obtain 

fitter population individuals. A CBGA is more complex compared to a GA, as the 

values of genes of new chromosomes generated by the GA process must satisfy one or 

more constraints. Since the GA process does not consider these constraints during 

execution, chromosomes are likely to violate them. The CBGA can overcome these 

violations either by repairing each chromosome once generated or by applying a 

penalty value to the chromosome’s fitness. Repairing chromosomes becomes 

challenging when the problem contains several constraints and/or the chromosome 

consists of a large number of genes. 

No prior work in network energy optimisation is carried out using CBGAs. In this 

work a CBGA is used to optimise cache sizes to minimise power usage. The number of 

genes and capacity and flow constrains to satisfy in the proposed model is large (over 
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150,000 genes and 11 constraints). Therefore, the CBGA penalises chromosomes that 

violate constraints by attaching a high penalty to their fitness function (power 

consumption). The optimum cache sizes found by the CBGA were used to validate 

those found by the MILP model. 

3.6.3 Simulation 

A computer simulation is a software reproduction of a system implemented to 

evaluate the performance of the system. Simulations can be classified into two types 

with respect to the manner that they track events. Discrete-event simulation is used 

when the system contains a list of discrete events and simulation starting and ending 

points are predefined. An example for a discrete-event simulation is a queuing system 

as the system is evaluated whenever a customer enters or leaves the queue. 

Continuous simulation evaluates the state of variables and events at equal time 

intervals and variables change continuously over time. Network traffic routing is an 

example of this type since the flow of traffic is continuous. 

In this work, continuous simulations are used to route network traffic between 

nodes. The state of the network is evaluated at two-hour time intervals where the 

traffic demand is input and the power consumption of the network is calculated. 

Simulations were used to validate power consumption results produced by the MILP 

models. 
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3.7 Summary 

This chapter has provided an overview of cache placement and replacement 

algorithms. It has also surveyed different approaches in reducing the energy 

consumption of IPTV, CDNs and VoD. The chapter was concluded by a description of 

the optimisation methods used in this work. 

The energy consumption of CDNs is important in deciding the future directions of 

video applications delivered over the Internet. The ongoing research covered in this 

chapter tries to minimise the energy consumption associated with CDNs in an effort to 

improve the feasibility of future CDNs. In general, these attempts offer a valuable 

insight into network energy efficiency by highlighting the network areas where energy 

reduction is possible. Some of these studies compare the energy efficiency of different 

content delivery techniques including P2P and CDNs while others are considered with 

reducing the energy consumption of storage. However, none of the studies evaluates 

the energy efficiency of different video services delivered by CDNs. In addition, they do 

not incorporate sleep-capable equipment to optimise utilised network equipment. In 

this thesis, minimum-power optimisation Mixed Integer Programming (MILP) models 

are developed to optimise the size of stored content in network nodes to minimise 

power usage. In these models network resources are provisioned for current traffic 

requirements and network equipment is provided with sleep-mode capabilities for 

maximum power efficiency.  
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 Energy Efficient Video-on-Chapter 4

Demand with Fixed and Variable Caches 

4.1 Introduction 

Due to the high energy consumption associated with the storage and delivery of 

bulky multimedia files, Video-on-Demand (VoD) is an energy consuming service [80]. 

Storing the most popular content towards the edge of the network is an effective 

strategy to reduce the energy consumption of video services. This Chapter evaluates 

the energy consumption of delivering video over an IP over WDM network. It explores 

the power savings introduced by utilising caches at core nodes. A Mixed Integer Linear 

Programming (MILP) model is developed to optimise the cache size for each node in 

the network to minimise power consumption. The MILP model is extended to consider 

variable caches (caches which are equipped with sleep-mode capabilities allowing 

them to power down inactive sections when traffic is low). The model finds the 

optimum cache size for each node at different times of the day that achieve the most 
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power savings. The MILP model is validated by simulation as well as a Constraint-

Based Genetic Algorithm (CBGA).  

4.2 Energy-Efficient Cache Size Optimisation 

Caching content locally results in shorter routes to content and hence lower power 

consumption. This strategy however results in increased equipment power 

consumption through the deployment of local caches. A trade-off has to be struck 

therefore where the optimum cache size is a function of the two above drivers. This 

evaluation aims to minimise the power consumption of a video service by optimising 

the sizes of caches deployed at the nodes. It takes into account a VoD service deploying 

an IP over WDM network with the network architecture described in Figure 2-3 in 

Chapter 2. 

4.2.1 Fixed Cache MILP Model 

This MILP model finds the optimum cache size to be deployed at each node in the 

network to minimise power consumption. Caches are considered having a fixed size 

that is fully operated for the whole day. The model declares a number of sets, 

parameters and variables as follows: 

Sets: 

𝑁  Set of nodes 
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𝑁𝑚𝑖  Set of neighbouring nodes of node i 

𝑇  Set of points in time 

𝐾 Set of equations that approximate the convex function describing the 

relationship between the cache and its hit ratio. 

Parameters: 

𝑃𝑝  Power consumption of a router port 

𝑃𝑜𝑖𝑡  Power consumption of optical switch i at time t 

𝑃𝑡  Power consumption of a transponder 

𝑃𝑎  Power consumption of an amplifier 

𝑃𝑚𝑑  Power consumption of a multiplexer/demultiplexer 

𝐵  Capacity of a wavelength 

𝑊  Number of wavelengths in a fibre 

𝐷𝑖𝑗  Distance from node i to j 

𝑆  Span distance between two amplifiers  

𝐴𝑚𝑝𝑖𝑗 Number of amplifiers used on each fibre on the physical link from node i 

to j, 𝐴𝑚𝑝𝑖𝑗 = ⌊𝐷𝑖𝑗/𝑆 − 1⌋ + 2 

𝑅𝑃𝑚𝑎𝑥𝑥 Maximum router ports available to node x 

𝜆𝑥𝑦𝑡  Demand from node x to y at time t 
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𝛿𝑖 Is 1 if node i has a video server, 0 otherwise, ∑ 𝛿𝑖𝑖∈𝑁 = 𝑢, where u is the 

total number of servers in the network 

𝑅𝑢  Server ratio of uplink demand to regular traffic 

𝑅𝑑  Server ratio of downlink demand to regular traffic 

𝛷  Cache power consumption factor in W/GB 

𝑎, 𝑏 Approximation vectors 

Variables: 

𝑓𝑖𝑗  Fibres on the physical link from node i to j 

𝜆𝑖𝑗𝑡
𝑥𝑦

 Regular traffic from node i to j, part of the virtual link from node x to y at 

time t 

𝜆𝑢𝑖𝑗𝑡
𝑥𝑦

 Uplink traffic from node i to j, part of the virtual link from node x to y at 

time t 

𝜆𝑑𝑖𝑗𝑡
𝑥𝑦

 Downlink traffic from node i to j, part of the virtual link from node x to y 

at time t 

𝑤𝑖𝑗𝑡
𝑥𝑦

 Wavelengths on the link from node i to j, part of the virtual link from 

node x to y at time t 

𝑤𝑖𝑗𝑡  Wavelengths on the physical link from node i to j at time t 

𝐶𝑥𝑦𝑡  Wavelengths on the virtual link from node x to y at time t 
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𝐴𝑃𝑖𝑡   Aggregation ports at node i at time t 

𝐻  Cache hit ratio 

𝑀 Cache size in GB 

Under lightpath bypass, the power consumption of the network consists of the power 

consumption of the following components: 

1. Router ports at time t, where a port is required for each occupied wavelength: 

∑𝑃𝑝(𝐴𝑃𝑖𝑡 + ∑ 𝐶𝑖𝑗𝑡
𝑗∈𝑁𝑚𝑖:𝑖≠𝑗

)

𝑖∈𝑁

 

2. Optical switches at time t:  

∑𝑃𝑜𝑖𝑡
𝑖∈𝑁

 

3. Transponders at time t: 

∑ ∑ 𝑃𝑡 ∙  𝑤𝑖𝑗𝑡
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

 

4. Amplifiers at time t:  

∑ ∑ 𝑃𝑎 ∙  𝐴𝑚𝑝𝑖𝑗 ∙  𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

 

5. Multiplexers/demultiplexers at time t: 

∑ ∑ 𝑃𝑚𝑑 ∙  𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁
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6. Deployed caches at time t: 

∑∅𝑀

𝑖∈𝑁

 

It is worth mentioning that the model does not assume a simple symmetric case, and 

therefore, the number of lightpaths from node i to j can be different to the number of 

lightpaths in the reverse direction. Mainly, fij , wijt and Cijt are not necessarily equal to 

fji, wjit and Cjit, respectively. Note that uplink traffic is the video traffic uploaded from 

nodes to video servers, downlink traffic is the video traffic downloaded from video 

servers to nodes and regular traffic is other non-cacheable traffic (email, live video, 

dynamic content, etc.). 

The goal of the proposed MILP model is to minimise the network total daily power 

consumption while satisfying a number of flow and capacity constraints. The complete 

MILP model is defined as: 

Objective: minimise 

 ∑

(

 
 
 
 
 
 ∑𝑃𝑝(𝐴𝑃𝑖𝑡 + ∑ 𝐶𝑖𝑗𝑡

𝑗∈𝑁𝑚𝑖:𝑖≠𝑗

)

𝑖∈𝑁

+∑𝑃𝑜𝑖𝑡
𝑖∈𝑁

+

∑ ∑ 𝑃𝑡 ∙  𝑤𝑖𝑗𝑡
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+∑ ∑ 𝑃𝑎 ∙  𝐴𝑚𝑝𝑖𝑗 ∙ 𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+

∑ ∑ 𝑃𝑚𝑑 ∙  𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+∑∅𝑀

𝑖∈𝑁 )

 
 
 
 
 
 

𝑡∈𝑇

 
(4-1) 

Subject to: 
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∑𝐶𝑥𝑦𝑡 + 𝐴𝑃𝑥𝑡 ≤ 𝑅𝑃𝑚𝑎𝑥𝑥
𝑦∈𝑁

∀ 𝑥 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 (4-2) 

∑𝐶𝑦𝑥𝑡 + 𝐴𝑃𝑥𝑡 ≤ 𝑅𝑃𝑚𝑎𝑥𝑥
𝑦∈𝑁

∀ 𝑥 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 
(4-3) 

∑ ∑ 𝑤𝑖𝑗𝑡
𝑥𝑦

𝑦𝜖𝑁:𝑥≠𝑦𝑥𝜖𝑁

≤ 𝑊 ∙ 𝑓𝑖𝑗

∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚𝑖 , ∀ 𝑡 ∈ 𝑇 

 
(4-4) 

∑ ∑ 𝑤𝑖𝑗𝑡
𝑥𝑦

𝑦𝜖𝑁:𝑥≠𝑦𝑥𝜖𝑁

= 𝑤𝑖𝑗𝑡

∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚𝑖 , ∀ 𝑡 ∈ 𝑇 

 
(4-5) 

∑ 𝑤𝑖𝑗𝑡
𝑥𝑦

𝑗𝜖𝑁𝑚𝑖

− ∑ 𝑤𝑗𝑖𝑡
𝑥𝑦

𝑗𝜖𝑁𝑚𝑖

= {

𝐶𝑥𝑦𝑡     𝑖 = 𝑥

−𝐶𝑥𝑦𝑡   𝑖 = 𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∀ 𝑖, 𝑥, 𝑦 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 

 
(4-6) 

∑ 𝜆𝑖𝑗𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

− ∑ 𝜆𝑗𝑖𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

= {
𝜆𝑥𝑦𝑡               𝑖 = 𝑥
−𝜆𝑥𝑦𝑡            𝑖 = 𝑦
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∀ 𝑖, 𝑥, 𝑦 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 
(4-7) 

∑ 𝜆𝑢𝑖𝑗𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

− ∑ 𝜆𝑢𝑗𝑖𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

= {

𝜆𝑥𝑦𝑡 ∙  𝑅𝑢 ∙ 𝛿𝑦      𝑖 = 𝑥

−𝜆𝑥𝑦𝑡 ∙  𝑅𝑢 ∙ 𝛿𝑦      𝑖 = 𝑦

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∀ 𝑖, 𝑥, 𝑦 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 
(4-8) 

∑ 𝜆𝑑𝑖𝑗𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

− ∑ 𝜆𝑑𝑗𝑖𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

= {
𝜆𝑥𝑦𝑡 ∙ 𝑅𝑑 ∙ 𝛿𝑥 ∙ (1 − 𝐻)     𝑖 = 𝑥

−𝜆𝑥𝑦𝑡 ∙ 𝑅𝑑 ∙ 𝛿𝑥 ∙ (1 − 𝐻)  𝑖 = 𝑦
0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∀ 𝑖, 𝑥, 𝑦 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅

 
(4-9) 
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∑ ∑ (𝜆𝑖𝑗𝑡
𝑥𝑦
+ 𝜆𝑢𝑖𝑗𝑡

𝑥𝑦
+ 𝜆𝑑𝑖𝑗𝑡

𝑥𝑦
)  ≤  𝐶𝑖𝑗𝑡 ∙ 𝐵

𝑦∈𝑁:𝑥≠𝑦𝑥∈𝑁

∀ 𝑖, 𝑗 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 
(4-10) 

𝐴𝑃𝑖𝑡 = ∑ (𝜆𝑖𝑦𝑡 + 𝜆𝑖𝑦𝑡 ∙ 𝑅𝑢 ∙ 𝛿𝑦 + 𝜆
𝑦𝑖𝑡 ∙ 𝑅𝑑 ∙ 𝛿𝑦 ∙ (1 − 𝐻 ))

𝑦∈𝑁:𝑦≠𝑖

/𝐵     

∀ 𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 
(4-11) 

𝑀 ≥ 𝑎𝑘 ∙  𝐻 + 𝑏𝑘
∀ 𝑘 ∈ 𝐾

 (4-12) 

 Objective (4-1) calculates the power consumption of the network by summing up the 

power consumption of different network components at each time point. Constraints 

(4-2) and (4-3) limit the number of occupied router ports at each node to its maximum. 

Constraint (4-4) and (4-5) are the capacity constraints for the optical layer. Constraint 

(4-6) is the flow conservation constraint in the optical layer. Constraint (4-7) is the 

flow conservation constraint for regular traffic in the IP layer. Constraints (4-8) and 

(4-9) differ from Constraint (4-7) by considering the uplink and downlink traffic 

terminating and originating at nodes equipped with a video server, respectively. 

Constraint (4-10) ensures that the total regular, uplink and downlink traffic carried by 

a lightpath does not exceed its capacity. Constraint (4-11) calculates the number of 

required aggregation ports. Finally, Constraint (4-12) is the piecewise linear 

approximation utilised to find the cache size M from its hit ratio H. 

4.2.2 Variable Cache MILP Model 

The variable cache MILP model finds the optimum cache size of each node varied 

over the time of the day. The model assumes that caches are equipped with sleep-mode 
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capabilities such that inactive parts of a cache can go to sleep. The goal is to explore 

the potential additional power savings on top of the use of fixed caches and to analyse 

the variation in optimum cache sizes that minimise power consumption with the 

variation in network traffic. 

The variable cache MILP model defines the same sets, parameters and variables 

defined for the fixed cache MILP model. Since cache sizes are variable for each node at 

each time of the day, the cache size variable M and its hit ratio H are modified as 

follows: 

𝐻𝑖𝑡  Hit ratio of the cache deployed at node i at time t 

𝑀𝑖𝑡  Cache size in GB deployed at node i at time t  

Therefore the objective function becomes: 

 ∑

(

 
 
 
 
 
 ∑𝑃𝑝(𝐴𝑃𝑖𝑡 + ∑ 𝐶𝑖𝑗𝑡

𝑗∈𝑁𝑚𝑖:𝑖≠𝑗

)

𝑖∈𝑁

+∑𝑃𝑜𝑖𝑡
𝑖∈𝑁

+

∑ ∑ 𝑃𝑡 ∙  𝑤𝑖𝑗𝑡
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+∑ ∑ 𝑃𝑎 ∙  𝐴𝑚𝑝𝑖𝑗 ∙ 𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+

∑ ∑ 𝑃𝑚𝑑 ∙ 𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+∑∅𝑀𝑖𝑡

𝑖∈𝑁 )

 
 
 
 
 
 

𝑡∈𝑇

 (4-13) 

In addition, Constraints (4-9), (4-11) and (4-12) are modified as follows: 

∑ 𝜆𝑑𝑖𝑗𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

− ∑ 𝜆𝑑𝑗𝑖𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

= {

𝜆𝑥𝑦𝑡 ∙  𝑅𝑑 ∙ 𝛿𝑥 ∙ (1 − 𝐻𝑦𝑡)     𝑖 = 𝑥

−𝜆𝑥𝑦𝑡 ∙ 𝑅𝑑 ∙ 𝛿𝑥 ∙ (1 − 𝐻𝑦𝑡)  𝑖 = 𝑦

0                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∀ 𝑖, 𝑥, 𝑦 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅

 
(4-14) 
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𝐴𝑃𝑖𝑡 = ∑ (𝜆𝑖𝑦𝑡 + 𝜆𝑖𝑦𝑡 ∙ 𝑅𝑢 ∙ 𝛿𝑦 + 𝜆
𝑦𝑖𝑡 ∙ 𝑅𝑑 ∙ 𝛿𝑦 ∙ (1 − 𝐻𝑖𝑡 ))

𝑦∈𝑁:𝑦≠𝑖

/𝐵     

∀ 𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 
(4-15) 

𝑀𝑖𝑡 ≥ 𝑎𝑘 ∙  𝐻𝑖𝑡 + 𝑏𝑘
∀ 𝑘 ∈ 𝐾

 (4-16) 

4.3 Constraint-Based Genetic Algorithm and 

Simulation Schemes 

A Constraint-Based Genetic algorithm (CBGA) and a simulation are developed to 

validate the proposed MILP models, explained below. 

4.3.1 CBGA for Cache Size Optimisation 

To validate the results of the variable MILP model, a Constraint-Based Genetic 

algorithm (CBGA) is developed having objective (4-13) as the fitness function. The 

genetic algorithm defines a population of individuals or chromosomes, and their 

structure is shown in Figure 4-1. Each chromosome represents one possible network 

configuration made up of the number of wavelengths in the optical and virtual layer, 

the amount of (regular, uplink and downlink) traffic carried by each link and the cache 

size at each node. The fitness of a chromosome is the power consumed using the 

configuration given by the values of the chromosome genes. 

The CBGA process, illustrated in Figure 4-2, starts by initialising chromosomes 

using random numbers. The fittest individuals are selected to reproduce the offspring 
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by undergoing the crossover process with a crossover rate Pc and the mutation process 

with a probability Pm. All members of the offspring go through a screening process 

where constraints are enforced. Violating members are assigned a penalty that 

increases their power consumption and therefore decreases their fitness which gives 

them a higher expectancy to die out in the next generation. 

𝐶𝑖𝑗 𝑤𝑖𝑗
𝑥𝑦

 𝜆𝑖𝑗
𝑥𝑦

 𝜆_𝑢𝑖𝑗
𝑥𝑦

 𝜆_𝑑𝑖𝑗
𝑥𝑦

 𝐻𝑖 

Figure 4-1: The CBGA chromosome structure 

 

Figure 4-2: The constraint-based genetic algorithm process 

Since the objective is to minimise power consumption, chromosomes with low values 

of the fitness function are considered to be fit individuals. This procedure is repeated 
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until no reduction in network power consumption is observed for numerous iterations. 

In other words, the process terminates when the number of iterations Count exceeds a 

large number Threshold, with no reduction in power consumption. Finally, the 

optimum individual representing the most energy-efficient configuration is obtained, 

carrying the optimum cache size for each node in the network. 

4.3.2 Minimum Power Simulation 

As a second validation technique for the MILP models, a simulation is developed 

based on the lightpath bypass heuristic proposed in [32]. The algorithm, illustrated in 

Figure 4-3, makes use of the optimum cache sizes produced by the MILP model by 

assuming the deployment of the optimum cache size at each node in the network at 

each considered time of the day. The downlink traffic demand from a server to a node 

is directly influenced by the size of the cache deployed at the node (becomes 1−H of the 

original downlink traffic, where H is the cache hit ratio). Therefore, the remaining 

downlink traffic and consequently the total traffic (regular, uplink and downlink 

traffic) is calculated for each node after assuming a certain cache size for a node.  

Node pairs are then arranged in a descending order starting with the node pair 

having the highest demand to ensure that the algorithm accommodates high demands 

on virtual links first and hopefully accommodate lower demands on existing links. An 

empty topology G is created to track established links and their capacities. The node 

pair (x, y) with the highest demand d(x, y) is selected and the algorithm attempts to 

route d(x, y) over existing virtual links. If this process is successful, the remaining 
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capacities of G are updated. Otherwise, (capacities of existing virtual links in G are 

insufficient to accommodate some or all d(x, y)), a new virtual link connecting x and y 

is created and added to G. The demand d(x, y) is routed over the new link and the 

remaining capacities of G are updated. The algorithm continues by repeating the 

selection of node pairs until all demands are routed. 

 

Figure 4-3: The simulation flowchart 

At this point, G represents the set of lightpaths to be routed over the physical 

topology in the optical layer. The simulation uses the shortest path routing algorithm 

to route the lightpaths over the physical topology, as the shortest path provides the 

minimum usage of EDFAs, transponders and multiplexer/demultiplexers, and 
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therefore minimises the power consumption of the optical layer. Note that minimum-

hop routing can result in lower power consumption if the IP layer (at nodes) power 

consumption dominates. (A shorter route may involve many intermediate nodes). 

However, shortest path routing is implemented here as it minimises delay, and the 

simulation results obtained are in any case close to the results found using the MILP 

models.  

The power consumption of the IP layer is determined using the capacities of the 

virtual links to calculate the number of required ports and their power consumption, 

and the total network power consumption is found. The algorithm improves virtual 

link utilisation by allowing more than one demand to be routed on the same virtual 

link. This feature results in decreasing the number of established virtual links and 

consequently utilising less IP router ports, the network major power consuming 

component, leading in turn to overall network power reduction. 

4.4 Power Consumption Evaluation 

This section demonstrates by results the outcomes of the proposed power-minimised 

MILP models. The power consumption of an IP over WDM network is evaluated and 

the optimum fixed and variable cache sizes to achieve the most power efficiency are 

found.  
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4.4.1 Test Network and Input Parameters 

A network architecture having multiple servers where content is replicated and/or 

distributed among servers influences the traffic behaviour, as demand to a certain 

node is retrieved from multiple servers. This behaviour better describes traffic 

generated by famous services such as Google, which has 19 data centres in the US 

alone [87] and YouTube which has 6 data centres excluding the CDN [88]. To evaluate 

the proposed power-minimisation MILP model, the NSFNET topology of 14 nodes and 

21 bidirectional links is considered. The network is considered having 7 video servers 

where their optimum locations (locations that minimise the network power 

consumption) are obtained from the MILP model assuming caches of fixed sizes. 

Results show that the optimum locations of video servers are independent of cache 

sizes, and are given as nodes 1, 3, 5, 8, 10, 12 and 14. Figure 4-4 shows the NSFNET 

topology with distances between nodes in kilometres and locations of optimum servers.  

 

Figure 4-4: The NSFNET topology with video servers and fibre lengths (km) [32] 
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The average demand between node pairs ranges from 20Gb/s to 120Gb/s and the 

peak occurs at 23:00. The regular traffic demand between each node pair is generated 

using a random function having a uniform distribution on the interval (10Gb/s, 

230Gb/s][63]. The presence of servers creates a hot node scenario where more traffic 

originates from and terminates at servers. Therefore uplink and downlink traffic 

demand between nodes and video servers is considered and is generated based on 

regular traffic demand between nodes. Three different values for the uplink to regular 

traffic demand ratio Ru and the downlink to regular traffic demand ratio Rd are 

considered: (1) Rd = 1.5 and Ru = 0.2, (2) Rd = 4.5 and Ru = 0.6, and (3) Rd = 7.5 and 

Ru = 1.0. These values match the input and output rates of a typical video server [89] 

and reflect the expected growth rate in Internet video traffic [2]. The considered 

regular and total network traffic at each time of the day is shown in Figure 4-5.  

 

Figure 4-5: Network traffic demand considering uplink and downlink traffic 
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The input values for power consumption parameters used in the model are shown in 

Table 4-1. The power consumption of an 8-slot CRS-1 is 8000W including backplane 

power [90], and therefore the power consumption of a 40Gb/s port is estimated at 

1000W [32]. The power consumption of a Cisco ONS 15454 Optical Filter Card is 16W 

[91], and a Cisco ONS 15501 Optical Amplifier is 8W [92].  

Table 4-1: Input data for the MILP model 

Distance between two neighbouring EDFAs (S) 80 (km) 

Number of wavelengths in a fibre (W) 16 [32] 

Capacity of a wavelength (B) 40 (Gb/s) 

Power consumption of a router port (Pp) 1000 (W) [90] 

Power consumption of a transponder (Pt) 73 (W) [32] 

Power consumption of an EDFA (Pa) 8 (W) [92] 

Power consumption of an optical switch (Po) 85 (W) [93] 

Power consumption of a MUX/DEMUX (Pmd) 16 (W) [91] 

Cache power consumption factor (∅) 7.4 (W/GB) 

The energy consumption of streaming 1 bit (READ/WRITE operation) is given as 

211×10-9J [94]. This value is converted into the power in Watts consumed to stream 

1GB of data over a given time duration, to utilise in the MILP model. The energy 

consumption of streaming 1GB of data is: 211×10-9 ×109 ×8=1688J. The typical 

maximum access data rate for a fibre channel hard disk is up to 100MB/s. However, 

the typical average data rate is around 50% of that value and is up to 50MB/s [95]. 

Higher hard disk access speeds reduce the cache update time, but lead to higher power 

consumption. A lower hard disk data rate of 35Mb/s is considered to achieve 

reasonable power consumption. The time required to stream 1GB becomes: 103 
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×8/35=228 seconds. Consequently the power consumption of caching 1GB is 

1688/228=7.4W/GB. Each node in the network is assumed to have a cache containing 

the most popular objects and therefore a total of 14 caches are deployed in the 

network. The Zipf distribution explained in Section 2.4.1 in Chapter 2 is considered for 

the popularity of video content. The MILP model utilises the piecewise linear 

approximation equation given in Equation (4-12) to define the relationship between 

the cache size and its hit ratio. 

To run the proposed MILP model, the described NSFNET topology in Figure 4-4 is 

assumed (14 nodes and 21 links) having an IP over WDM architecture, where the 

details of the architecture are shown in Figure 2-3 in Chapter 2 considering 2 nodes 

only. Considering the traffic, content distribution and power consumption parameters 

explained above, a typical run of the model requires between 1 and 5 hours for its 

different states using the solver and computer specified in Section 3.6.1 in Chapter 3. 

The model defines over 1.8 million variables and uses dual simplex iterations to find 

the optimum solution.  

4.4.2 Optimum Fixed Caches 

The MILP model, CBGA and simulation are utilised to evaluate the power 

consumption of the fixed cache size approach and compare it to the power consumption 

of the network when no caches are deployed at the nodes. A library of 2 million objects 

of the same size of 0.2GB (a typical YouTube video size) is considered. To evaluate the 

influence of deploying caches of fixed sizes on the network energy efficiency, a range of 
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cache sizes are deployed at the network nodes and the corresponding energy 

consumption of the network is calculated. Figure 4-6 shows the energy consumption of 

the network when deploying caches of sizes ranging from 20GB to 4000GB when Rd = 

1.5, 4.5 and 7.5. The addition of caches increases the power consumption of network 

components, however content can be accessed locally in the presence of caches which 

reduces the power used to access an object. The net effect of these two trends is the 

existence of an optima in Figure 4-6 where a particular cache size minimises the 

overall power consumption of the network (200, 1000 and 2000GB when Rd = 1.5, 4.5 

and 7.5, respectively). 

 

Figure 4-6: Energy consumption considering fixed cache sizes 

4.4.3 Optimum Variable Caches 

Caching can be provided through a number of hard disks, and unused capacity can 

go to sleep mode. Future implementations can use flash memory and therefore provide 
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finer granularity in terms of the number of memory units powered at a given point in 

time. The MILP model is used to find an optimum variable cache size that minimises 

power consumption varied over network nodes and time of the day. Figure 4-7 depicts 

the optimum cache size for each node in the network at different times of the day. For 

each node, the optimum cache size varies with the traffic passing through the node at 

a certain time. Therefore when considering one row along the time of day axis, the 

optimum cache size for a certain node over 24 hours follows the trend of the traffic 

shown in Figure 4-5. When considering a column showing the optimum cache sizes of 

all nodes at a certain time of day, cache sizes are comparable, as the traffic demand of 

nodes congregates around the average network traffic demand at that time of day.  

 

Figure 4-7: Optimum cache sizes for each node at different times of the day (a) Ru = 

0.2 and Rd = 1.5, (b) Ru = 1.0 and Rd = 7.5 

Observing cache sizes in Figure 4-7, there exists a step between one cache size and 

another. This is caused by the piecewise linear approximation equation given in 
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Equation (4-16), as the optimum cache size is approximated to the closest value 

provided by the approximation. Improved granularity can be achieved by including 

additional linear equations in the approximation. Optimum cache sizes are relatively 

high throughout the network when the traffic is high and vice versa. Note that the 

cache power consumption is a function of the desired hit ratio. A higher hit ratio 

requires the storage of more objects and higher cache power consumption. For a 100% 

hit ratio, all the objects are stored at the cache and the power consumption of the 

cache is at its maximum. Additional effects can be considered beyond the current 

work. For example, the transmission mechanism used may call for small local caches 

to be attached to each link so that the main cache is shared between all links and is 

used to update the small transmission caches in each outgoing link. Such refinements 

warrant further investigation. 

4.4.3.1 Power Evaluation using the CBGA 

To validate the optimum cache sizes determined by the MILP model, the CBGA is 

employed to find the optimum cache size for each node at different times of the day. 

The considered test network (NSFNET topology), traffic and power consumption 

parameters are similar to those applied to the MILP model. The algorithm defines a 

population of 240 individuals to form a generation having 0.5 as the crossover point. 

The values of the mutation rate influences the rate at which the algorithm converges. 

A slow convergence allows the algorithm to perform more iterations searching for the 

best possible fitness. Initially, three values for the mutation rate are assumed (0.02, 

0.1 and 0.2) to evaluate the effect of the mutation rate on the optimum cache sizes 
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found by the CBGA. The insert in Figure 4-8 shows that applying a large mutation 

rate results in a slower convergence of the algorithm, and consequently a longer 

execution time for the CBGA. While the slow convergence might be considered as a 

downside, this larger value for the mutation rate resulted in the least error rate 

compared to the MILP model results. The value of 0.2 results in an acceptable error 

rate, and was therefore used to attain the optimum cache sizes for the considered 

duration. The CBGA was developed using Java programming language and the 

algorithm takes over 6 hours to converge per time of day. Figure 4-8 shows the 

average of the optimum cache sizes obtained by the MILP model and the CBGA taken 

over 24 hours. The optimum cache sizes produced by the two techniques are 

comparable and follow the trend of the traffic demand shown in Figure 4-5. 

 

Figure 4-8: The average of the optimum cache sizes of 14 nodes taken over 24 hours 

obtained by the MILP model and the CBGA. The insert figure shows the average of 

the optimum cache sizes at 4:00 using different mutation rates 
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4.4.3.2 Power Evaluation using Simulation 

The power consumption of routing the traffic demand over the physical topology 

configuration obtained by the MILP model is validated by implementing the 

minimum-power simulation. The optimum cache sizes found by the MILP model and 

validated by the CBGA are used as input cache sizes to the simulation. All other 

power consumption parameters and assumptions are similar to those used in the 

MILP model.  

 

Figure 4-9: Network power consumption at different times of the day using fixed and 

variable cache sizes obtained by the MILP model and simulation 

As can be seen in the simulation flowchart in Figure 4-3, the algorithm performs one 

iteration per traffic demand, and therefore the simulation execution time is negligible. 

The simulation considers the situation of network dimensioning where extra resources 

are added where required. As a result, traffic is always routed over the shortest path 



 

84 

 

in the physical layer. In the case where a maximum physical link capacity is 

identified, some traffic will have to be routed over longer routes, consuming more 

power. A more extreme situation to consider is where demands may be rejected due to 

lack of resources. Such scenarios require further investigation.  

Figure 4-9 shows the power consumption of the network taken over 24 hours using 

the MILP model and the simulation when Rd = 1.5, Ru = 0.2 and Rd = 7.5, Ru = 1.0. 

The figure shows the power consumption of the network when no caches are deployed, 

using fixed caches, and when variable caches are deployed at the nodes. 

The results produced by the MILP model, CBGA and simulation show consistency in 

the power consumption figures and optimum cache sizes, giving confidence in the 

developed methods. In addition to the two considered validation approaches, the power 

consumption figures obtained using the MILP model considering no caching are 

consistent with the results in [63] when similar number of servers and input values for 

traffic and power consumption parameters are considered. 

4.4.3.3 Power Saving Figures 

Using the MILP model and caches of fixed sizes, reductions in network power 

consumption of up to 19% (average of 8%) and up to 38% (average of 30%) when Rd = 

1.5, Ru = 0.2 and Rd = 7.5, Ru = 1.0 are achieved, respectively. It is also observed that 

more significant power is saved when the traffic is high compared to when the traffic 

is low. However, using optimum fixed size caches under low traffic results in higher 

power consumption compared to when no caches are deployed in the network. This is 
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because optimum caches of fixed sizes are larger than required when the traffic is low, 

as optimum cache sizes are found for all nodes at all times considering overall network 

traffic. As a result, unnecessary power is consumed for storage.  

To achieve the maximum power efficiency, the MILP model identifies the optimum 

cache size for each node for each considered time of day, shown in Figure 4-7. Variable 

cache sizes are optimised with respect to traffic conditions of each time of the day. 

Using the power minimising MILP model under caches of variable sizes, the power 

consumption of the network is reduced by a maximum of 19% (average of 16%) and a 

maximum of 42% (average of 37%) when Rd = 1.5, Ru = 0.2 and Rd = 7.5, Ru = 1.0, 

respectively. Varying the cache size with respect to instantaneous traffic achieves 

more power savings compared to caches of fixed sizes, although limited. A maximum 

reduction in power consumption of 20% (average of 6%) and 14% (average of 6%) is 

obtained when Rd = 1.5, Ru = 0.2 and Rd = 7.5, Ru = 1.0, respectively. The 

improvement in power efficiency introduced by utilising caches of variable sizes is 

higher when traffic experiences steep fluctuations during the course of the day. In 

other words, the use of caches of variable sizes becomes more desirable when the 

difference between the minimum and maximum traffic passing through a node is 

large. Network additional savings of 6% suggest that the use of fixed caches saves a 

significant amount of power without the need for traffic measurements and storage 

devices that have sleep-mode capabilities. 

All the previously reported power saving figures are for the power consumption of 

transport as well as the additional power consumed on storage. To analyse the 



 

86 

 

achieved power savings, the net power savings on transport and the additional cache 

power consumption are also reported, shown in Table 4-2. 

Table 4-2: The Breakdown of network power savings 

 Low Traffic High Traffic 

Fixed 

caching 

Variable 

caching 

Fixed 

caching 

Variable 

caching 

max Avg. max Avg. max Avg. max Avg. 

Power savings on transport % 22 12 22 18 43 37 49 42 

Cache power consumption % 5 4 3 2 8 7 7 5 

Total (overall) power savings % 19 8 19 16 38 30 42 37 

The power consumption of caching is added to the power consumption of transport to 

attain the overall network power consumption. The power consumption of transport is 

the power consumption of the network excluding the power consumption of caching, 

and therefore the power saving figures are higher. The optimum cache sizes found 

under variable caching are smaller than when considering fixed cache sizes, 

contributing however to larger overall power savings. The additional power consumed 

on storage (2% – 8% of network power) is hence a worthwhile power investment, 

leading to considerable overall power savings (42% maximum). 

4.5 Summary 

Energy efficiency has become a key factor in the design and implementation of 

communication networks. This Chapter has evaluated the energy efficiency associated 

with the introduction of caching in IP over WDM networks. A MILP model has been 
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developed with the objective of minimising the network power consumption by 

optimising the cache size deployed at network nodes. An extended MILP has been 

developed considering optimising the size of the cache for each node varied over the 

time of the day. A simulation and a Constraint-Based Genetic Algorithm (CBGA) have 

also been developed to validate the results obtained by MILP models.  

The results reveal that optimising the cache size for each node at different times of 

the day introduces power savings of up to 42% considering a Zipf distribution for 

content popularity. Varying the size of the cache at each node during the day can save 

up to 20% power compared to utilising a cache of a fixed size all the time at each node 

in the network. These savings depend on the level of fluctuation that the traffic 

experiences during the day. However, the additional average network power savings 

are 6% and therefore, finding the optimum fixed cache size to deploy in the core 

network is adequate to introduce considerable power savings.  
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 Impact of Content Chapter 5

Popularity Distributions and Network 

Parameters 

5.1 Introduction 

The previous chapter has investigated the impact of caching the most popular videos 

towards the edge of the core network to minimise power consumption. It has 

incorporated a Zipf distribution for content popularity and illustrated by results the 

optimum cache sizes that minimise power usage, and the power saving figures 

obtained. The popularity distribution of content plays an important role in the caching 

decision since it provides an accurate indication of the hits associated with each video 

and therefore the cache hit ratio. Consequently, it is an important measure for 

optimising cache sizes that minimise power usage. This chapter investigates the 

impact of content popularity distribution on power efficiency by considering and 
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comparing four different distributions for content popularity: Zipf, Bimodal, Pareto 

and Equal Popularity distributions. The MILP model proposed in Chapter 4 is 

modified to adapt to the variations introduced by these distributions. 

In addition, this chapter provides a sensitivity analysis of power consumption using 

the most influential network parameters. The size of the video in GB influences 

optimum cache sizes as the video size is linked with the power consumption of caching 

a video and the availability of storage space. Moreover, the power consumption of 

caches and IP router ports indicates the benefit of caching. The IP over WDM 

implementation also effects the power consumption by dictating the number of 

occupied router ports. Results show the impact each of these parameters has on the 

power consumption of the network. 

5.2 Content Popularity Distributions and the MILP 

Model  

This section evaluates the influence of content popularity distribution on power 

consumption. In addition, this section generalises the original minimum-power MILP 

model required to evaluate the power consumption of the network under the 

considered popularity distributions. 
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5.2.1 The Influence of Content Popularity Distributions 

The content popularity distribution of videos provides an accurate measurement to 

calculate the number of hits each video receives in the video service. To carry out the 

power consumption evaluation, four distributions are considered: Zipf, Bimodal, 

Pareto and Equal Popularity distributions. These distributions have been explored in 

Chapter 2.  

Video popularities can be very diverse as in a Bimodal distribution, or can be alike 

as in an Equal Popularity distribution. The objective of this evaluation is to find out 

the best caching strategy to achieve the most power efficiency and how this strategy 

varies with the variance in video popularities. The optimum number of videos to store 

in caches and resultant cache hit ratios are utilised to calculate the cache power 

consumption and the remaining network traffic which is used in turn to compute the 

video delivery power consumption. Therefore, the content popularity distribution 

highly influences the power consumption of the network and optimum cache sizes that 

minimise power. 

5.2.2 Minimum Power MILP Model 

In order to carry out this evaluation, the MILP model introduced in Chapter 4 is 

taken into account. To apply the four considered content popularity distributions to 

the MILP model, an independent piecewise linear approximation equation describing 

the relationship between a cache size and its hit ratio is required under each 

distribution.  
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Here the parameters appended to the original MILP model are introduced and the 

modifications applied to the equations are explained. 

In addition to the parameters that the original MILP model defines, the modified 

MILP model utilises the following parameters: 

𝜏   Programme type in the Bimodal distribution (example 𝜏 = 1 represents 

news-type programmes and 𝜏 = 2 represents drama-type programmes) 

𝜇𝜏   Bimodal distribution mean of content type 𝜏 

𝜎𝜏
2  Bimodal distribution variance of content type 𝜏 

𝑚𝑀𝑖𝑛  Pareto distribution minimum possible value of 𝑚 

𝛽   Popularity of the most popular video in the Pareto distribution 

𝑉𝑠𝑖𝑧𝑒 Video size in GB 

𝑉𝑖𝑡   Cache size at node i at time t in number of videos (= 𝑀𝑖𝑡/𝑉𝑠𝑖𝑧𝑒) 

𝑇𝑜𝑡  Total number of videos in the library 

Constraints (4-14) and (4-15) in Chapter 4 are generalised to include four different 

content popularity distributions as follows:  
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∑ 𝜆𝑑𝑖𝑗𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗
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𝐴𝑃𝑖𝑡 =
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𝑉𝑖𝑡
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𝑦∈𝑁:𝑦≠𝑖

/𝐵                                                                         𝐸𝑞𝑢𝑎𝑙

∀ 𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 
(5-2) 

 
 

Constraint (5-1) is the flow conservation constraint for download traffic considering 

different content popularity distributions. Constraint (5-2) calculates the number of 

required aggregation ports at each node under various content popularity 

distributions.  

5.3 Power Consumption Evaluation of Popularity 

Distributions 

In order to evaluate the influence of different content popularity distributions, the 

modified MILP model is run using different input values for the associated 

parameters. All other input values are similar to those used in Chapter 4. 

Four distributions are considered in the evaluation: Zipf, Bimodal, Pareto and Equal 

Popularity distributions. The popularities of videos under each distribution are shown 
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in Figure 5-1. The next sections explain the input values applied to the MILP model 

and power consumption results under each distribution. 

 

Figure 5-1: The popularity of videos under the Zipf, Bimodal, Pareto and Equal 

Popularity distributions 

5.3.1 Input Parameters 

A Zipf distribution represents a YouTube-like service having a total of 2 million 

videos in the library. For simplicity, the library is used without any interim updates 

during the considered 24 hours. The Bimodal distribution signifies a Catch-up TV 

service that stores highly watched TV programmes available to users all the time. The 

number of videos in such a service is relatively smaller compared to other services. A 

library of 1000 videos is assumed divided into two categories, each category has a 

Gaussian distribution with the same variance, but a different mean. Three values of σ2 
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are considered to examine the impact of video popularity diversity on the optimum 

cache size: 1) σ2 =0.2, 2) σ2 =1 and 3) σ2 =5.  

The Pareto distribution describes a VoD service assuming a library of 1000 videos 

taking into account three different values of the parameter β representing three 

different popularity values for the most popular video. These values are: 1) β=0.2, 2) 

β=0.4, and 3) β=0.6. The Equal Popularity distribution exemplifies a service where all 

videos are of the same popularity. Three services are assumed having a library of: 1) 

Tot =1000, 2) Tot =10000 and 3) Tot =2 million videos to evaluate the influence of the 

total number of videos on the popularity of videos and on power efficiency. 

5.3.2 Power Consumption and Optimum Cache Sizes 

Table 5-1 shows the popularity of the most popular video under different 

distributions considering different values of the relevant distribution parameters as 

well as the optimum cache sizes found by the MILP model. The videos are assumed to 

be of the same size of 200MB and the power consumption of deployed caches is 

7.4W/GB. Figure 5-2 shows the power consumption of the network at different times of 

the day under different content popularity distributions.  
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Table 5-1 Popularity values and optimum cache sizes under different 

content popularity distributions 

Distribution 
Parameter 

Value 

Popularity of the 

Most Popular 

Video 

Optimum 

Cache Size 

Bimodal 

σ2
 
= 0.2 0.44 5 

σ2 = 1 0.19 25 

σ2 = 5 0.08 50 

Pareto 

𝛽 = 0.2 0.2 variable 

𝛽 = 0.4 0.4 40 

𝛽 = 0.6 0.6 10 

Zipf Tot = 2 million 0.068 variable 

Equal 

Popularity 

Tot = 1000 0.001 1000 

Tot = 10000 0.0001 variable 

Tot = 2 million 0.0000005 0 

5.3.3 Analyses of Results under Each Popularity Distribution 

In the following, the obtained outcomes for power consumption and optimum cache 

sizes are analysed under each considered content popularity distribution.  

5.3.3.1 Zipf Distribution 

The power consumption under the Zipf distribution is higher compared to the other 

distributions as popularities of the most popular videos are low. This requires either 

storing a large number of videos in caches to achieve high cache hit ratios which 

consumes high power for storage, or caching less videos and consequently consuming 
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more power on streaming content from servers. The resulting optimum caches that 

minimise power are variable during the day and their size depends on network traffic.  

 

Figure 5-2: The power consumption of the network considering no caching and 

under Zipf, Bimodal, Pareto and Equal Popularity distributions with different 

parameter values 

5.3.3.2 Bimodal Distribution 

In contrast to the Zipf distribution, the Bimodal distribution results in the largest 

power savings due to the fact that the most popular videos have very high popularity 

values. Therefore storing a small number of videos achieves a high cache hit ratio. 

Under all values of σ2, the power consumed at different times of the day is the same 

when the other network parameters are fixed. Optimising the cache sizes under the 

Bimodal distribution resulted in cache hit ratios of approximately 1. A fixed cache size 

for all the nodes in the network of 5, 25 and 50 videos achieves the maximum power 

efficiency for σ2 = 0.2, 1 and 5, respectively. 
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5.3.3.3 Pareto Distribution 

The Pareto distribution results in similar power consumption values to those of the 

Bimodal distribution under β=0.6 and β=0.4. For lower values of β, the power 

consumption of the network increases, since lower popularity values result in 

relatively larger caches and lower cache hit ratios making it more power-efficient to 

retrieve more content directly from servers. The maximum savings in power 

consumption are reached by deploying a fixed cache size of 10 and 40 when β=0.6 and 

β=0.4, respectively. Similar to a Zipf distribution, under a Pareto distribution having 

β=0.2 the maximum power savings are achieved by deploying variable cache sizes at 

the nodes. 

5.3.3.4 Equal Popularity Distribution 

Under Equal Popularity distribution, with a library of 1000 videos, maintaining a 

copy of the whole library at each node (cache hit ratios of 1) results in the minimum 

power consumption. However for a library of 2 million videos, the power consumption 

of the network is minimised when all content is retrieved directly from servers, i.e. 

when no caches are deployed. This is because storing a limited number of videos of low 

popularity (0.5×10-6) will not achieve a significant cache hit ratio. The resultant power 

consumption is similar to that under no caching. The power consumption ranges 

between the two considered extremes as the total number of videos in the library rises 

from 1000 to 2 million. Minimising the power consumption when the library is made 

up of 10000 videos is realised by the deployment of variable cache sizes at the nodes. 

When the traffic is high, the optimum configuration is to store part of the content in 
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caches whereas under low traffic (videos experience small number of hits) the 

optimum solution is no caching. 

5.3.4 Power Saving Figures 

Results reveal that optimising the cache size for each node at different times of the 

day under a downlink traffic demand ratio of Rd=1.5 and an uplink traffic ratio of 

Ru=0.2, introduces power savings of 20%, 34%, 40% and 39% for the Zipf, Pareto, 

Bimodal and Equal Popularity distributions, respectively. These savings increase to 

42%, 68%, 72% and 71% under Rd=7.5 and Ru=1 considering the same distributions, 

respectively. The results also show that under the Bimodal distribution the network 

can achieve the maximum power savings by caching the 5 most popular objects. 

5.4 Network Parameters and MILP Modifications 

In this section, the video and network parameters considered in the sensitivity 

analyses are highlighted and the influence of each of these parameters on network 

power consumption is evaluated. The required changes to the original MILP model to 

perform the power consumption evaluation are also given. 

5.4.1 Network Parameters and Power Consumption 

In this section the significance of each considered network parameter is evaluated in 

terms of its impact on the power consumption of the network. 
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5.4.1.1 Video Sizes 

The importance of studying the influence of the size of video objects on power 

efficiency is due to a number of reasons. Different services use videos of different sizes, 

i.e. a Catch up TV service has large 1-hour programmes, while downloadable videos of 

a social network are mostly short 3-minute clips. In addition, for some services the 

amount of storage required to store videos depends on the data rate, resulting in many 

possible video sizes with respect to data rate. Moreover, the advances in video delivery 

technologies have resulted in one video having several versions in Standard Definition 

SD and High Definition HD for example, of different sizes in GBs. Another possible 

reason is that using different data compression techniques in a service produces 

different video sizes, and switching from one technique to another affects the average 

video size. 

5.4.1.2 Cache Power Consumption 

The power consumed to store 1GB of data in a cache depends on the type of storage 

implementation whether it is hard disk arrays or a flash memory for example. In 

addition, there is ongoing research aiming at reducing the power consumption of 

network equipment including storage devises. Caching technology enhancements can 

improve the power efficiency of caching equipment resulting in possible changes in the 

feasibility of caching, and therefore caching decisions. The aim in this evaluation is to 

examine the extent of influence the cache power consumption has on the total network 

power consumption and the selection of the optimum cache sizes.  
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5.4.1.3 Power Consumption of a Router Port 

The power consumption of a router port is the decisive factor of whether to stream a 

video remotely or to store it in a local cache since the router port is the most power 

consuming element in the IP over WDM network. The benefit of caching increases 

when the power consumption of streaming content from servers is high. The power 

consumption of other components in the network such as amplifiers, transponders, 

switches and multiplexing equipment also influence the power consumption of the 

network and the caching decision. However, since the IP router port consumes 

considerably more power compared to other network components (1000W per router 

port operating at 40Gb/s versus 8-85W for other components), this evaluation only 

considers router ports. 

5.4.1.4 IP over WDM Implementation 

Under lightpath non-bypass, IP router ports are engaged at each intermediate node 

that traffic traverses. In contrast, under lightpath bypass traffic is forwarded to the 

next optical node on the path without occupying router ports at that node. This 

difference implies that no power is consumed by router ports at intermediate nodes 

under lightpath bypass. Since router ports are major power consumers, the difference 

in the IP over WDM implementation is bound to influence the power consumption of 

the network. 
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5.4.2 Modifications to the MILP Model 

To carry out the power consumption evaluation, the MILP model introduced in 

Chapter 4 is considered. However, the equation to calculate the power consumption of 

router ports is different under each IP over WDM implementation. Under lightpath 

bypass, router ports are considered only at the source and destination nodes and their 

power consumption is given in Objective equation (4-1) in Chapter 4. Under lightpath 

non-bypass, the power consumption of router ports is considered at each IP node 

connected to an optical node on the path that the traffic traverses, and therefore 

becomes: 

 ∑𝑃𝑝.  (𝐴𝑃𝑖𝑡 + ∑ 𝑤𝑖𝑗𝑡
𝑗∈𝑁𝑚𝑖:𝑖≠𝑗

)

𝑖∈𝑁

 
(5-3) 

Constraints (4-2) and (4-3) in Chapter 4 that restrain the number of occupied ports 

at each node to a maximum considering lightpath bypass are modified to consider 

lightpath non-bypath and are defined as: 

 

∑𝑤𝑖𝑗𝑡 + 𝐴𝑃𝑖𝑡 ≤ 𝑅𝑃𝑚𝑎𝑥𝑖
𝑗∈𝑁

∀ 𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 
(5-4) 

 ∑𝑤𝑗𝑖𝑡 + 𝐴𝑃𝑖𝑡 ≤ 𝑅𝑃𝑚𝑎𝑥𝑖
𝑗∈𝑁

∀ 𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 

(5-5) 
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5.5 Power Consumption Evaluation of Network 

Parameters 

This section illustrates by results the influence of considered network parameters on 

power consumption. 

5.5.1 Video Sizes 

To investigate the impact of varying the average video size on power consumption, 

the cache sizes are optimised assuming three average video sizes: 1) Vsize=0.2GB, 2) 

Vsize=1GB and 3) Vsize=2GB.  

Figure 5-3 illustrates the power consumption of the network using different video 

sizes. Here, the results under the four considered content popularity distributions are 

shown to generalise the results. The Bimodal distribution and the Pareto distribution 

are considered having a library of 1000 videos with σ2=5 and β=0.2, respectively. The 

Equal Popularity distribution is assumed to have a library of 10000 videos. Under all 

distributions the power consumption increases as the size of videos increases. The 

increase is negligible under the Bimodal distribution as the number of videos stored in 

caches is limited. The largest variation in power consumption from one video size to 

another is observed under the Equal Popularity distribution. The reason behind this is 

the large number of videos that have to be stored in caches in order to make an 

influential increase in cache hit ratios. 
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Figure 5-3: Power Consumption of the network at different times of the day 

considering different video sizes under different content popularity distributions 

5.5.2 Cache Power Consumption 

The power that a cache consumes to store a unit of data depends on the cache 

technology. Considering massive numbers of large videos, the power efficiency of a 

cache plays a significant role in the network overall power consumption. This study 

investigates the impact of the cache power efficiency considering three different values 

for the cache power consumption: 1) 𝛷 =2.5W/GB, 2) 𝛷 =5W/GB and 3) 𝛷 =7.5W/GB.  

The power consumption of the network is evaluated under four popularity 

distributions deploying caches of different power efficiencies. Video sizes are assumed 

to be 200MB and the parameter values of the distributions are similar to those in the 

previous section. As depicted in Figure 5-4 the power consumption of the network 
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increases under all distributions as the power consumption of caching 1GB of data 

increases. 

  

Figure 5-4: Power Consumption of the network at different times of the day 

considering caches of different power consumption under different content 

popularity distributions 

Under the Equal Popularity distribution the optimum cache size averaged over the 

time of the day decreases from 10000 to 8450 videos when the cache power 

consumption rises from 2.5 to 7.5W/GB since the storage of videos becomes less power-

efficient. Under the same rise in cache power consumption considering the Zipf 

distribution, the averaged optimum cache size for the network decrease from 5120 to 

1670 videos. Under the Bimodal and Pareto distributions the average cache size in the 

network remains the same. When a library of 2 million videos is assumed under the 

Equal Popularity distribution, the network power consumption is not affected as no 
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videos are stored in caches. The power consumed in this case is similar to the situation 

where no caches are deployed in the network. The Zipf distribution results in the 

highest power consumption compared to other popularity distributions.  

5.5.3 Router Port Power Consumption 

The power consumption of an 8-slot CRS-1 was reported at 8000W at the start of 

this work in 2011. Due to technology enhancements this value was reduced to 4834W 

in 2012. As a result, the estimated power consumption of a single 40Gb/s port Pp was 

reduced from 1000W to 604W. Figure 5-5 shows the influence of the router port power 

consumption Pp on the network power consumption with no caching and under 

variable caches. The input values for the cache power consumption and video size are 

7.4W/GB and 200MB, respectively. The popularity distribution of content is considered 

to follow a Zipf distribution. 

Since router ports are the major power consumers, the power consumption of the 

network reduces when router ports are more power efficient under no caching and 

variable caching. The power consumption of the network falls by 36% and 35% 

(maximum and average) under no caching and variable caching, respectively. Under 

variable caching, the optimum cache sizes that minimise power consumption averaged 

over the time of the day drop from 1660 to 1080 videos when Pp falls from 1000W to 

604W. When Pp=1000W the power consumption to download videos from servers is 

high, making it more power efficient to store more videos at caches deployed in local 

nodes. As this value reduces the feasibility of consuming more power on caching 
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reduces. Nevertheless, the total network power savings due to caching are similar 

considering the two values of Pp (19% maximum and 16% average).  Consequently, for 

the remainder of the thesis the most recent value for the power consumption of an 8-

slot CRS-1 (Pp=604W) is taken into account to produce more up-to-date results. 

 

Figure 5-5: Network power consumption with no caching and under variable 

caching considering previous and current values for the power consumption of a 

router port 

5.5.4 IP over WDM Implementation 

Under lightpath non-bypass, the traffic passing through an intermediate node in the 

optical layer is forwarded to the corresponding intermediate node in the IP layer. This 

results in additional power being consumed in the IP layer (including router ports 

which are the main power consumers in the network). Figure 5-6 shows the power 

consumption of the network under the two IP over WDM implementations considering 

no caching and variable caching. The influence of the IP over WDM implementation on 
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power consumption increases when the average number of hops required to deliver 

content is high. In other terms, implementing lightpath bypass reduces more power 

when the average number of bypassed intermediate nodes is high.  

Savings in power consumption are up to 21% (19% average) and 19% (16% average) 

under lightpath non-bypass and lightpath bypass, respectively. When variable caches 

are considered, the average optimum variable cache sizes that minimise power 

consumption are 2600 and 1660 videos under lightpath non-bypass and lightpath 

bypass, respectively. The reason behind this is that lightpath bypass consumes less 

power on transport, favouring more videos to be delivered remotely. 

 

Figure 5-6: Network power consumption with no caching and under variable 

caching considering lightpath non-bypass and lightpath bypass 
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5.6 Summary 

This chapter has explored the influence of content popularity distribution on the 

network power consumption. The popularity distribution which content follows decides 

the popularity of each video in the service. Therefore, it directly determines the cache 

hit ratio from the number of stored videos. When video popularities are highly diverse, 

the most power efficient solution is to store the few most popular videos in caches 

reducing up to 72% of network power consumption. Caches of variable sizes are 

deployed to minimise power consumption when video popularities are less diverse. 

Specifying the amount of content to cache under different video services increases the 

diversity of potential application areas of this work. 

The chapter has also evaluated the influence of significant parameters on the 

network power consumption. The power consumption of the network rises following 

increase in video sizes, power consumption of caches and power consumption of IP 

router ports. If technology advances in the transport network are not met by matching 

power reduction strategies in storage devices, caching is expected to become less 

favourable. Bypassing intermediate IP nodes on the path that traffic traverses is an 

effective technique for power reduction. 
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 Energy Efficient Future Chapter 6

IPTV 

6.1 Introduction 

The rapidly growing IPTV market has resulted in increased traffic volumes raising 

concerns over Internet energy consumption. In this chapter, the dynamics of TV 

viewing behaviour and programme popularity are explored in order to devise a 

strategy to minimise energy usage. The power consumption of IPTV delivered over an 

IP over WDM network is calculated. The evaluation considers standard definition TV 

(SDTV) as the most common video delivery technology for today’s TV channels and 

high definition TV (HDTV) as the emerging technology rapidly replacing SDTV. The 

state of art BT 21CN topology is introduced under different scenarios and compared to 

the NSFNET topology. The aim of the work in this chapter is to evaluate the power 

consumption of watching SDTV and HDTV programmes considering real TV data and 

two network topologies. Fixed and variable caches are employed in the network to 



 

111 

 

investigate the savings in power consumption due to caching TV programmes. The 

results illustrate these power savings as well as identify optimum fixed and variable 

cache sizes.  

6.2 TV Programme Popularity 

In Chapter 4 and Chapter 5, the power consumption of different video services was 

minimised using Zipf, Pareto, Bimodal and Equal Popularity distributions to describe 

the popularity of video content. These distributions allow a close-to-real environment 

to evaluate the power consumption of content delivery networks and enable 

comparisons between different video services. However, using real data to calculate 

traffic demand and video popularities in a video service gives a better insight into 

actual input values for these services and provides a more accurate evaluation of the 

network.  

One day TV viewing data from Friday the 9th November 2012 is obtained from [96] 

[97]. The number of viewers of the most popular TV programmes is mapped against 

the total number of viewers at each time of the day. The number of viewers for each 

TV programme and the times these programmes aired were collected from [96] and 

[97], respectively. A viewer of a TV programme is considered among the programme 

audience if the viewer watches 3 minutes or more of the programme. The number of 

viewers of the most popular TV programmes is based on a sample of viewers. The total 

number of viewers is the average daily viewing of all TV channels measured over 
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November 2012 [96], [98]. The number of viewers per TV programme is used to 

calculate the popularity of the programme and hence its potential contribution to the 

network traffic due to user requests.  

 

Figure 6-1 The average daily TV viewing figures, the most popular TV programmes 

and their number of viewers at each time of the day viewed on Friday November the 

9th 2012 
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Figure 6-1 lists the most popular TV programmes and their corresponding 

broadcasting TV channels as well as the number of viewers for each programme in the 

UK. It also plots the total number of TV viewers during the day, and therefore can be 

used to estimate the amount of traffic devoted to the most popular programmes. The 

most popular TV programmes would account for a significant portion of network 

traffic, particularly at primetime. This observation justifies the use of caching the 

most popular TV programmes to reduce the duplicate traffic and therefore reduce the 

power consumption of transport. Moreover, requests for other TV Catch-up services 

(CuTV) such as the BBC iPlayer and Channel 4 on Demand (4oD) can be served from 

content already stored in caches.  

It is worth mentioning that mainstream TV today is usually broadcast over the air 

and where scheduled TV is delivered over IP, IP multicast is the technology of choice. 

However, two recent trends motivated us to consider cache solutions: 

1.   Firstly, whilst viewers prefer to watch scheduled TV, they increasingly expect 

more control over the timing of their viewing – to be able to start a programme 

slightly late (a need that is driving the +1 channels) or to pause a viewing 

temporarily [99].  

2.   Secondly, there is a rise in emerging rich streaming space served by YouTube 

live streams, Twitch.tv, etc. which have already attracted millions of viewers.  

 Little is known yet about user behaviour and content popularity of these services, 

leaving mainstream TV data the closest available alternative. Mainstream TV viewing 

patterns can be a good reflection of future IPTV viewing patterns as, despite the 



 

114 

 

availability of CuTV, most users prefer to watch TV close to schedule. The use of social 

media to communicate between friends whilst watching TV may in part be driving this 

trend. However, certain types of programmes may be less suited to a cache solution 

(e.g. live sports). Therefore, it is important to estimate the proportion of live content to 

decide if caching is beneficial. The number of TV programmes broadcasted on 91 major 

UK channels are obtained from [100] and the number of live and non-live TV 

programmes shown between the 14th and the 20th of September 2013 are calculated. 

The methodology includes basic channels in addition to entertainment, documentary, 

lifestyle, films, sport and children channels. In total, 14323 TV programmes were 

aired during the time considered. Of these, 322 were live shows, accounting for only 

2.25% of broadcast TV programmes. 

6.3 Test Networks 

The study considers two physical topologies as test networks. The NSFNET topology 

is selected as a communication infrastructure widely used in network studies, and the 

UK BT 21CN topology is introduced as a Next Generation Network (NGN) network. 

Including the NSFNET enables other researchers to compare their work to the 

outcomes of this work. The UK BT 21CN topology is also included since the TV 

viewing data used in the evaluation is based on UK audience. Original analysis on the 

BT 21CN topology is provided as not much research has been reported on this 

network.  
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Considering these two topologies allows comparison between a European network 

where population densities are high and an American network with large distances 

between content locations.  

6.3.1 The NSFNET Topology 

The NSFNET topology of 14 nodes and 21 links is shown in Figure 6-2, with 

distances between nodes given in kilometres. Each node in the network is assumed to 

have a video cache. With respect to the number and location of video head-ends in the 

network, three options are considered: 

 

Figure 6-2: The NSFNET topology with video head-end locations under SVMD, SVMP 

and MVMP and fibre length in kilometres 

6.3.1.1 A Single Video Head-end with Minimum Delay Location (NSF-SVMD) 

The location of the video head-end is optimised such that the propagation delay to 

end users is minimised. Other end-to-end delays are not considered here as they are 
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proportional to the amount of streamed video traffic. The location of the video head-

end under NSF-SVMD is node 5. The optimum locations of the video head-ends 

assuming no caching were obtained using the MILP model proposed in Chapter 4. This 

required that the server location indicator is set as a variable rather than a 

parameter. The MILP model was re-run to find the optimum server locations with 

respect to the total number of servers in the network and the target parameter (delay 

here and power consumption for the next two options).  

6.3.1.2 A Single Video Head-end with Minimum Power Location (NSF-SVMP) 

The location of the video head-end is optimised to minimise the power consumption 

of the network. Unlike in SVMD where the distance between nodes is the dominant 

factor in finding the optimum location of the video head-end, here minimising the 

number of hops that content traverses from source to destination is the key element 

under SVMP. This is explained by the fact that the most power consuming network 

components are routers which are utilised at each hop in the communication path. The 

optimum location of the video head-end under NSF-SVMP is node 6. 

6.3.1.3 Multiple Video Head-ends with Minimum Power Locations (NSF-MVMP) 

A further evolution is considered where 7 video head-ends are assumed, each 

injecting unique content into the core network. This is the most complex yet realistic 

scenario[87], [88]. The locations of video head-ends are optimised to minimise the 

overall network power consumption. Since no content replication is considered among 
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video head-ends, the comparison of NSF-SVMD, NSF-SVMP and NSF-MVMP is not 

directly possible. 

6.3.2 The BT 21CN Topology 

 

Figure 6-3: The BT 21CN topology with inner and outer core node locations 

The BT 21CN (British Telecom 21st Century Network) is a NGN implemented by 

BT. Its core topology shown in Figure 6-3 consists of 20 nodes and 68 links. Core nodes 
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are divided into inner core nodes (8 nodes) which are fully meshed and outer core 

nodes (12 nodes) which are connected to at least three other core nodes [101]. In order 

to determine the topology information required to carry out the investigation, the 

network core node connectivity is obtained from [101] and the core node locations from 

[102]. Three topologies under BT 21CN are considered with respect to server location: 

6.3.2.1 A Single Video Head-end at Node 4 (BT 21CN-SV4)  

This approach represents the current network situation as Telehouse located in 

Docklands (node 4) is the major peering location for the UK. 

6.3.2.2 A Single Video Head-end with Minimum Power Location (BT 21CN-

SVMP) 

Similar to the method employed under the NSFNET topology, the location of the 

single video head-end that minimises the power consumption is found, which in this 

case is node 14. 

6.3.2.3 Multiple Video Head-ends with Minimum Power Locations (BT 21CN-

MVMP) 

The locations of 7 video head-ends in the network that minimise overall power are 

found using the same approach used under the NSFNET topology. These locations are 

node 9, 10, 16, 14, 18, 19 and 20. The locations of video head-ends under all considered 

topologies are shown in Figure 6-3.  
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The two network topologies considered are small. Nevertheless, note that this work 

is concerned with core networks and they are typically of this size. Heuristics based on 

the MILP model insights can be developed and applied to larger networks.  

Table 6-1 compares the NSFNET and BT 21CN topologies in terms of coverage, 

average hop count and average nodal degree.  

Table 6-1: Comparison of the NSFNET and BT 21CN topologies 

Property NSFNET BT 21CN 

Coverage Continental National 

Average hop count 1.7 1.8 

Average nodal degree 3 6.6 

6.4 Input Parameters 

Table 6-2: Input data for the MILP model 

Distance between two neighbouring EDFAs (S) 80 (km) 

Number of wavelengths in a fibre (W) 16 [32] 

Capacity of a wavelength (B) 40 (Gb/s) 

Power consumption of a router port (Pp) 604 (W) [90] 

Power consumption of a transponder (Pt) 73 (W) [32] 

Power consumption of an EDFA (Pa) 8 (W) [92] 

Power consumption of an optical switch (Po) 85 (W) [93] 

Power consumption of a multiplexer/demultiplexer (Pmd) 16 (W) [91] 

Cache power consumption factor (∅) 7.4 (W/GB) 
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The power consumption parameters used in the evaluation are shown in Table 6-2.  

The power consumption of an 8-slot CRS-1 is 4834W[90]. Each slot can contain one 

40Gb/s port and therefore the power consumption of a 40Gb/s router port is estimated 

at 604W. 

Chapter 4 explained how the energy consumption of streaming data is converted 

from J/b to W/GB to utilise in the MILP model. The time required to stream 1GB was 

228 seconds resulting in a cache power consumption of 7.4W/GB. Note that the 228 

seconds streaming time results in one 1-hour TV programme being delivered in 

approximately 2.5 minutes and 17 minutes under SDTV and HDTV, respectively. To 

reduce this time for example to 1 minute under HDTV, 17 parallel disks are required, 

however the hard disk access speeds continue to improve and access speeds below 1 

minute in this case may become possible in the near future.  

 To generate the network video traffic demand, all the TV demand of Figure 6-1 is 

assumed to be carried over an IP over WDM network, at standard or high definition 

rates. For simplicity, user requests are assumed to be equally distributed among the 

nodes. A more complex and more accurate approach is to distribute user requests with 

respect to population density which requires further investigation. The IP over WDM 

implementation considered in the evaluation is lightpath non-bypass where router 

ports are occupied in each intermediate node allowing the operator more security and 

packet correction. 

Assuming the compression standard MPEG-4 AVC (Motion Picture Experts Group 

4 - Advanced Video Coding), the Digital Subscriber Line Forum (DSL Forum) 
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recommends bit rates between 1.5Mb/s - 3Mb/s for SDTV and 8Mb/s - 12Mb/s for 

HDTV [103].  Here 1.5Mb/s is assumed for SDTV and 10Mb/s for HDTV producing 1-

hour TV programmes of size 675MB and 4.5GB under SDTV and HDTV, respectively. 

Although MPEG-4 AVC is not as widely deployed as MPEG-2, it is expected to become 

more commonplace as it delivers up to 50% bit rate savings, offering better bandwidth 

utilisation, deployment of advanced HDTV services and lower power consumption due 

to reduced download times. 

The number of viewers of each TV programme and the total viewers are utilised to 

calculate programme popularities. Note that the most popular TV programmes shown 

in Figure 6-1 account for only a trivial number of the entire TV programmes 

broadcasted on the day (30 out of over 2000 programmes). The MILP model finds 

optimum cache sizes that minimize power consumption, and are expected to expand 

beyond 30 programs. As a result, the popularity of remaining TV programmes must be 

found. Since these values are not available, an extrapolation is used to estimate these 

values based on the popularity of the known 30 most popular programmes. The 

popularity of TV programs generated by the extrapolation are utilised in the model in 

the piecewise linear approximation equation. Since the popularity of less popular 

programmes are insignificant compared to the 30 most popular programmes, the 

consequent error due to the estimation is negligible. 

 The utilised TV viewing data is based on UK audience. US TV programme 

popularity and viewing data are not available in public domain to the best of our 
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knowledge. Therefore, the same TV traffic demand derived from Figure 6-1 is applied 

to both network topologies (BT 21CN and NSFNET). 

6.5 Energy Efficiency of Caching in Future IPTV 

Requests for TV programmes broadcasted from a video head-end are generated at 

different nodes in the network. Dedicating a stream for each programme request, 

results in consuming high power in transport. Therefore as traffic increases it becomes 

more power-efficient to store popular programmes in local caches. Generally, 

deploying caches at network nodes reduces the traffic passing through the network 

and the amount of reduction in traffic at each time of the day depends on the volume 

of traffic. It would be valuable to apply the obtained real TV viewing data to the 

minimum-power MILP model explained in Chapter 4 (considering fixed and variable 

caches) to explore the potential power savings and optimum cache sizes for the 

scenarios considered. 

6.5.1 Caches of Fixed Sizes 

To explore the power savings introduced by caching popular content locally, caches 

of fixed sizes are assumed at each node in the network. Applying the obtained TV 

viewing profile, the optimum fixed cache sizes that minimise power consumption 

under SDTV and HDTV are 200GB and 650GB corresponding to approximately 37 and 

18 1-hour TV programmes, respectively. Figure 6-4 shows the power consumption of 
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watching SDTV when no caching is considered and when each node in the network is 

allocated its optimum cache size under NSFNET and BT 21CN.  

 

Figure 6-4: Power consumption of watching SDTV programmes with no caching 

and considering caches of a fixed size of 200GB under SVMD, SVMP, MVMP 

(NSFNET) and SV4, SVMP and MVMP (BT 21CN) 

The power consumption of watching HDTV under the same scenarios is shown in 

Figure 6-5. One observation is the higher network power consumed under HDTV 

which is explained by the larger sizes of HDTV programmes which consume more 

power when streamed through the core network. Deploying caches of fixed sizes 

achieves similar power savings at each time of the day which results in the largest 

power reduction gained when the traffic is high. Figure 6-8 displays maximum and 

average power savings achieved by deploying caches of fixed sizes at the nodes. The 

power savings introduced by caches of fixed sizes are comparable under SDTV and 

HDTV considering all network topologies, as maximum savings range between 31% 
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and 38%. Slightly higher power savings are achieved assuming the BT 21CN topology 

under HDTV. 

 

Figure 6-5: Power consumption of watching HDTV programmes with no caching 

and considering caches of a fixed size of 650GB under SVMD, SVMP, MVMP 

(NSFNET) and SV4, SVMP and MVMP (BT 21CN) 

6.5.2 Caches of Variable Sizes 

Operating large caches during off-peak hours consumes unnecessary power, as it is 

more power-efficient to stream programmes from video head-ends directly. TV viewing 

data is applied to the variable cache minimum-power MILP model proposed in 

Chapter 4 to find the optimum cache size for each node at each time of the day that 

minimises power consumption. The results confirm that using caches of larger sizes is 

power-efficient only during primetime whereas the network power consumption 

during off-peak hours is minimised when smaller caches are utilised.  
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Figure 6-6 and Figure 6-7 show the power consumption of watching SDTV and 

HDTV programmes under variable cache sizes considering NSFNET-SVMP and BT 

21CN-SV4, respectively. They also show the power consumption of the network under 

fixed caches for comparison. The power consumption is similar under all network 

topology scenarios, therefore for clarity, one scenario for each topology is shown.  The 

maximum and average savings in network power consumption with caches of variable 

sizes considering all network topologies are shown in Figure 6-8. Maximum savings in 

power consumption are up to 40% under HDTV BT 21CN-MVMP. The improvement in 

power efficiency of caches of variable sizes over the power savings achieved by caches 

of fixed sizes is limited. Nevertheless, it is worth investigating the situation where 

cache sizes are optimised over the time of the day to minimise power consumption in 

order to observe the variance in optimum cache sizes with respect to traffic trend, 

network topology and the number of video head-ends in the network. 

The optimum sizes of caches during the hours of the day follow the trend of 

programme requests shown in Figure 6-1. Figure 6-9 to Figure 6-14 show the optimum 

cache sizes for each node in the network at each considered time of the day under 

SDTV BT 21CN-SV4, HDTV BT 21CN-SV4, SDTV NSF-SVMP, HDTV NSF-SVMP, 

SDTV NSF-MVMP and HDTV NSF-MVMP, respectively. Optimum cache sizes 

increase as the traffic volume increases reaching their peak at primetime. At a given 

time of the day, nodes where video head-ends are allocated require caches of smaller 

sizes, since programmes requested from those nodes are served locally. Therefore 

when a single video head-end is assumed as under BT 21CN-SV4 and NSF-SVMP 

(Figure 6-9 to Figure 6-12), the node equipped with the video head-end does not 
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require a cache, as content is available at the node (node 4 and 5, respectively). Under 

HDTV, optimum cache sizes are considerably larger compared to SDTV due to larger 

sizes of HDTV programmes. 

 

Figure 6-6: Power consumption of watching SDTV and HDTV programmes with no 

caching and considering caches of fixed and variable sizes under NSFNET-SVMP 
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Figure 6-7: Power consumption of watching SDTV and HDTV programmes with no 

caching and considering caches of fixed and variable sizes under BT 21CN-SV4 

 

Figure 6-8: Maximum and average power savings of fixed and variable caching 

under SDTV and HDTV considering SVMD, SVMP and MVMP (NSFNET) and SV4, 

SVMP and MVMP (BT 21CN) 
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Figure 6-9: Optimum cache sizes at each node varied over the time of day under 

SDTV BT 21CN-SV4 

 

Figure 6-10: Optimum cache sizes at each node varied over the time of day under 

HDTV BT 21CN-SV4 



 

129 

 

 

Figure 6-11: Optimum cache sizes at each node varied over the time of day under 

SDTV NSF-SVMP 

 

Figure 6-12: Optimum cache sizes at each node varied over the time of day under 

HDTV NSF-SVMP 
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Figure 6-13: Optimum cache sizes at each node varied over the time of day under 

SDTV NSF-MVMP 

 

Figure 6-14: Optimum cache sizes at each node varied over the time of day under 

HDTV NSF-MVMP 
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6.6 Summary 

This chapter has investigated the power consumption associated with the delivery of 

TV programmes over an IP over WDM network. It has explored the dynamics of 

watching TV including viewing figures and programme popularities. This work is 

significant due to the high power consumption associated with high quality TV during 

storage and transport. The state of the art BT 21CN network has been introduced 

considering three topologies with respect to video head-end location. The BT 21CN 

topology is similar to the NSFNET topology in terms of average hop count, but 

different in terms of coverage area and average nodal degree. The real TV data 

obtained in this chapter has been applied to the minimum-power optimum cache 

MILP model. The power consumption of delivering SDTV and HDTV programmes 

with caches of fixed and variable sizes has been evaluated.  

The traffic demand generated by the most popular TV programmes accounts for a 

significant share of the total daily TV traffic. Only 2.25% of broadcast TV programmes 

were found to be live shows. These findings support the use of caching in the core 

network as a power reduction strategy. Storing popular TV programmes towards the 

edge of the network achieves an instantaneous power reduction of up to 36% under 

fixed caches. These savings are up to 40% when variable caches are considered. The 

optimum variable cache sizes that minimise power consumption follow the trend of TV 

traffic, and are larger under high definition TV. Similar power saving figures have 

been obtained under the two network topologies considered.  
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 Energy Efficient IPTV with Chapter 7

Cache Content Replacements 

7.1 Introduction 

Chapter 4 to Chapter 6 have shown that caching data can enable reductions in 

overall energy use. This energy optimisation occurs when the cache hit ratio is high 

(reducing the energy of the transport network) and the cache size is small 

(constraining the energy of the cache). Chapter 6 has explored TV viewing figures and 

TV programme popularities. Measuring TV viewing and its distribution over a day 

provides information about likely IPTV traffic demand and its variation over time. The 

similarity of TV viewing is higher when more viewers prefer to view the same 

programme. This measurement is useful to estimate the potential reduction in 

network traffic due to caching, as the popularity of each programme stored in the 

cache is used to find the cache hit ratio. TV viewing behaviour can also be used to 

calculate the required cache capacities to achieve a desired cache hit ratio. 
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In this chapter, a novel time-based content replacement algorithm is proposed to 

maintain high cache hit ratios and small cache sizes as programme popularities 

change. The algorithm is based on the fact that programme popularities are both time 

dependent and predictable. Cache content replacements are therefore performed with 

respect to time-based programme popularities to maximise cache hit ratios whilst 

minimising the required cache size. The influence of regular traffic on power savings is 

explored where a number of regular and TV traffic mixtures are considered. The 

significance of the proposed cache management techniques is highlighted with respect 

to current and future network technologies. 

7.2 Time Driven Cache Hit Ratio 

For a given TV programme, we are interested in three quantities with respect to 

viewing popularity:  

1.   The programme average popularity over all time which determines the 

significance of caching the programme. 

2.   The instantaneous popularity that shows the dynamics of viewing the 

programme over time. 

3.   The programme popularity over a time window which is useful when cache 

content replacements are considered. 
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Assuming a popular programme which is, for example, primarily viewed in the 

morning and hardly viewed during other hours of the day, the average popularity Pi of 

this programme is given as:  

 𝑃𝑖  =  𝑅𝑒𝑞𝑖/𝑇𝑜𝑡_𝑅𝑒𝑞 (7-1) 

where Reqi is the number of requests to programme i and Tot_Req are the total 

requests. Note that Reqi and Tot_Req are measured over the same time duration. If 

this time duration is long and the process is stationary then Pi converges to its actual 

probability of that event.  

Let us next consider the popularity of a programme over a time window from time 

t=a to time t=b to signify a duration in time over which cache contents remain the 

same. The popularity of programme i during the time from a to b P(i,a,b) is calculated 

as the ratio of the sum of requests for the programme throughout the time duration 

from a to b to the total requests taking place during the same time duration, 

 𝑃(𝑖, 𝑎, 𝑏) =∑𝑅𝑒𝑞𝑖𝑡

𝑏

𝑡=𝑎

/∑𝑇𝑜𝑡_𝑅𝑒𝑞𝑡

𝑏

𝑡=𝑎

 (7-2) 

Let (i,a,b) be a factor that specifies how requests for programme i are distributed 

over time and is given as the ratio of the number of requests for programme i over a 

time window to the overall number of requests, or:  

 

where (i,a,b)=1 implies that all requests for programme i occur in the considered 

 
(𝑖, 𝑎, 𝑏) =∑𝑅𝑒𝑞𝑖𝑡

𝑏

𝑡=𝑎

/𝑅𝑒𝑞𝑖    0 ≤  ≤ 1 (7-3) 
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time window and the value of ∑ 𝑅𝑒𝑞𝑖𝑡
𝑏
𝑡=𝑎  reaches its maximum ∑ 𝑅𝑒𝑞𝑖𝑡

𝑏
𝑡=𝑎 = 𝑅𝑒𝑞𝑖. 

Consequently programme i must be stored in the cache for the time duration from 

time t=a to time t=b (assuming that the programme’s time-driven popularity ranks at 

the top of all programmes’ popularity list). In the other extreme when the value of 

(i,a,b) is 0, programme i is never requested in the considered time duration, since 

∑ 𝑅𝑒𝑞𝑖𝑡
𝑏
𝑡=𝑎 =0. Although this programme might have a high global popularity, having 

the programme in the cache during the particular duration of time from a to b is not 

useful. The number of daily content replacements to be performed influences the 

resultant time-driven programme popularity P(i,a,b) by determining the lengths of 

considered time windows. Note that time t is a continuous variable and therefore 

Equation (7-2) and (7-3) can be calculated using integrals. In this evaluation however, 

the number of programme requests are grouped at the start of each hour of the day, 

thus a summation provides an accurate approximation. 

As previously explained in Chapter 2, the cache hit ratio H is the ratio of the 

number of requests served from the cache to the total number of requests,  

 
𝐻 =  𝐶_𝑅𝑒𝑞/ 𝑇𝑜𝑡_𝑅𝑒𝑞 (7-4) 

where C_Req is the number of requests served from the cache. The cache hit ratio is 

also calculated from the summation of the popularities of programmes stored in the 

cache, 

 
𝐻 =∑𝑃𝑖

𝑉

𝑖=1

 (7-5) 
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where V is the cache size in programmes. Considering content replacements, the time-

driven cache hit ratio during a time window from time t=a to time t=b, H(a,b), is 

derived from the sum of the time-driven popularities of programmes P(i,a,b) stored in 

the cache during that time window,  

 
𝐻(𝑎, 𝑏) =∑𝑃(𝑖, 𝑎, 𝑏)

𝑉

𝑖=1

 (7-6) 

The cache hit ratio can be considerably increased by performing content 

replacements, since a replacement populates the cache with programmes which are 

highly relevant during the considered time window. Such programmes replace 

programmes which are hardly viewed during that time window thus removing 

programmes with lower values of P(i,a,b). This strategy acts on shorter time spans and 

is therefore more effective (in terms of the required cache size and therefore its power 

consumption) than conventional approaches which use the global popularity Pi. 

7.3 Content Replacements MILP Models 

Two MILP models are developed to find the optimum number of daily replacements 

in order to minimise power consumption, one for fixed and one for variable caches. 

These models are applied to two test network topologies (NFSNET and BT 21CN) 

considering both SDTV and HDTV.    



 

137 

 

7.3.1 Content Replacements MILP Model Assuming Caches of Fixed 

Sizes 

The optimum number of daily replacements that achieves the best power efficiency 

is a trade-off. Infrequent replacements lead to low cache hit ratios and so high power 

consumption associated with viewing TV from the head-end. At the same time, 

frequent cache updates waste energy through populating the cache unnecessarily. The 

MILP model finds the optimum number of cache updates, using the IP over WDM 

network architecture described in Figure 2-3 in Chapter 2 and the programme 

popularities obtained in Chapter 6. The model assumes that the cache size is fixed and 

defines sets, parameters and variables as follows: 

Sets: 

𝑁  Set of nodes 

𝑁𝑚𝑖  Set of neighbouring nodes of node i 

𝑇  Set of points in time 

𝑅  Set of possible daily content replacement frequencies 

Parameters: 

𝑃𝑝  Power consumption of a router port 

𝑃𝑜𝑖𝑡  Power consumption of optical switch i at time t 

𝑃𝑡  Power consumption of a transponder 

𝑃𝑎  Power consumption of an amplifier 

𝑃𝑚𝑑  Power consumption of a multiplexer/demultiplexer 

𝐵  Capacity of a wavelength 
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𝑊  Number of wavelengths in a fibre 

𝐷𝑖𝑗  Distance between nodes i and j 

𝑆  Span distance between two amplifiers  

𝐴𝑚𝑝𝑖𝑗 Number of amplifiers used on each fibre on the physical link from node i 

to j, 𝐴𝑚𝑝𝑖𝑗 = ⌊𝐷𝑖𝑗/𝑆 − 1⌋ + 2 

𝑅𝑃𝑚𝑎𝑥𝑥 Maximum router ports available to node x 

𝜆𝑥𝑦𝑡  Demand from node x to y at time t 

𝛿𝑖  Is 1 if node i has a video head-end, 0 otherwise, ∑ 𝛿𝑖𝑖∈𝑁 = 𝑢, where u is 

the total number of servers in the network 

𝐻𝑟𝑡  Cache hit ratio at time t when r daily replacements are performed 

𝑀𝑟𝑡  Cache size in GB at time t when r daily replacements are performed 

𝛷  Cache power consumption factor in W/GB 

𝛼𝑟𝑡  Is 1 if a replacement is performed at time t with r daily replacements, 0 

otherwise 

𝜋𝑟𝑡  Additional download traffic to be streamed to a node due to a 

replacement at time t when performing r replacements 

Variables: 

𝑓𝑖𝑗  Fibres on the physical link from node i to j 

𝜆𝑖𝑗𝑡
𝑥𝑦

  Traffic from node i to j, part of the virtual link from node x to y at time t 

𝑤𝑖𝑗𝑡
𝑥𝑦

  Wavelengths on the link from node i to j, part of the virtual link from 

node x to y at time t 

𝑤𝑖𝑗𝑡  Wavelengths on the physical link from node i to j at time t 
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𝐶𝑥𝑦𝑡  Wavelengths on the virtual link from node x to y at time t 

𝐴𝑃𝑖𝑡   Aggregation ports at node i at time t 

𝑟  Number of replacements performed 

The power consumption of the network consists of the power consumption of the 

following components: 

1. Router ports at time t, where a port is required for each occupied wavelength: 

∑𝑃𝑝(𝐴𝑃𝑖𝑡 + ∑ 𝑤𝑖𝑗𝑡
𝑗∈𝑁𝑚𝑖:𝑖≠𝑗

)

𝑖∈𝑁

 

2. Optical switches at time t:  

∑𝑃𝑜𝑖𝑡
𝑖∈𝑁

 

3. Transponders at time t: 

∑ ∑ 𝑃𝑡 ∙  𝑤𝑖𝑗𝑡
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

 

4. Amplifiers at time t:  

∑ ∑ 𝑃𝑎 ∙  𝐴𝑚𝑝𝑖𝑗 ∙  𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

 

5. Multiplexers/demultiplexers at time t: 

∑ ∑ 𝑃𝑚𝑑 ∙  𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁
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6. Deployed caches at time t: 

∑∅𝑀𝑟𝑡
𝑖∈𝑁

 

Note that the number of lightpaths from node i to j is allowed to be different to the 

number of lightpaths in the reverse direction. Thus, 𝑓𝑖𝑗 and 𝑤𝑖𝑗𝑡 are not necessarily 

equal to 𝑓𝑗𝑖 and 𝑤𝑗𝑖𝑡 respectively, since the model does not assume a simple symmetric 

case.  

The goal of the proposed power-minimised content replacements MILP model is to 

minimise the network overall daily power consumption, and therefore the objective 

function is defined as:  

Objective: minimise 

 ∑

(

 
 
 
 
 
 ∑𝑃𝑝 (𝐴𝑃𝑖𝑡 + ∑ 𝑤𝑖𝑗𝑡

𝑗∈𝑁𝑚𝑖:𝑖≠𝑗

)

𝑖∈𝑁

+∑𝑃𝑜𝑖𝑡
𝑖∈𝑁

+

∑ ∑ 𝑃𝑡 ∙  𝑤𝑖𝑗𝑡
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+∑ ∑ 𝑃𝑎 ∙  𝐴𝑚𝑝𝑖𝑗 ∙ 𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+

∑ ∑ 𝑃𝑚𝑑 ∙ 𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+∑∅𝑀𝑟𝑡
𝑖∈𝑁 )

 
 
 
 
 
 

𝑡∈𝑇

 (7-7) 

The model specifies a number of capacity and flow conservation constraints that 

must be satisfied, as follows: 
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Subject to: 

∑ ∑ 𝑤𝑖𝑗𝑡
𝑥𝑦

𝑦𝜖𝑁:𝑥≠𝑦𝑥𝜖𝑁

≤ 𝑊 ∙ 𝑓𝑖𝑗

∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚𝑖 , ∀ 𝑡 ∈ 𝑇 

 (7-8) 

∑ ∑ 𝑤𝑖𝑗𝑡
𝑥𝑦

𝑦𝜖𝑁:𝑥≠𝑦𝑥𝜖𝑁

= 𝑤𝑖𝑗𝑡

∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁𝑚𝑖 , ∀ 𝑡 ∈ 𝑇 

 (7-9) 

∑ ∑ 𝜆𝑖𝑗𝑡
𝑥𝑦
 ≤  𝐶𝑖𝑗𝑡 ∙ 𝐵

𝑦∈𝑁:𝑥≠𝑦𝑥∈𝑁

∀ 𝑖, 𝑗 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 (7-10) 

∑𝑤𝑖𝑗𝑡 + 𝐴𝑃𝑖𝑡 ≤ 𝑅𝑃𝑚𝑎𝑥𝑖
𝑗∈𝑁

∀ 𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 (7-11) 

𝐴𝑃𝑥𝑡 ≥ ∑(𝜆𝑦𝑥𝑡 ∙ 𝛿𝑦)/ 𝐵

𝑦∈𝑁

∀ 𝑥 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 (7-12) 

∑ 𝑤𝑖𝑗𝑡
𝑥𝑦

𝑗𝜖𝑁𝑚𝑖

− ∑ 𝑤𝑗𝑖𝑡
𝑥𝑦

𝑗𝜖𝑁𝑚𝑖

= {

𝐶𝑥𝑦𝑡     𝑖 = 𝑥

−𝐶𝑥𝑦𝑡   𝑖 = 𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∀ 𝑖, 𝑥, 𝑦 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 

 
(7-13) 

∑ 𝜆𝑖𝑗𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

− ∑ 𝜆𝑗𝑖𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

= {

𝛿𝑥 ∙ (𝜆
𝑥𝑦𝑡 ∙ (1 − 𝐻𝑟𝑡) + (∝𝑟𝑡∙ 𝜋𝑟𝑡))     𝑖 = 𝑥

−𝛿𝑥 ∙ (𝜆
𝑥𝑦𝑡 ∙ (1 − 𝐻𝑟𝑡) + (∝𝑟𝑡∙ 𝜋𝑟𝑡))  𝑖 = 𝑦

0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∀ 𝑖, 𝑥, 𝑦 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅

 
(7-14) 

Objective (7-7) specifies the power consumption of the network by considering the 

power consumption of occupied network components at each time of the day. 

Constraints (7-8) and (7-9) are the capacity constraints of the physical layer. 
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Constraint (7-10) is the lightpath capacity constraint. Constraint (7-11) ensures that 

the total router ports used at a node do not exceed its maximum. Constraint (7-12) 

calculates required aggregation ports. Constraint (7-13) is the flow conservation 

constraint in the optical layer. Constraint (7-14) is the flow conservation constraint for 

traffic originating at nodes equipped with a video head-end. Note that the traffic 

increases at the times of day when a replacement is performed, but with the advantage 

of having higher cache hit ratios throughout the day. 

7.3.2 Content Replacements MILP Model with Variable Cache Sizes 

This model extends the first model by introducing caches that can reduce their 

active capacity. A smaller cache will use less power but will be able to store less data. 

The relationship between the number of programmes stored in the cache and its hit 

ratio is obtained. This relationship is represented by a convex function. However, cache 

hit ratios vary with the difference in the number of daily content replacements, 

requiring a different convex function for each considered number of replacements. 

Therefore, the goal is to find the optimum cache size for each node at each time of the 

day under each number of daily replacements.  

The MILP model declares the number of replacements as a parameter in order to 

maintain the linearity of the model. In addition, having the number of replacements as 

an input is required to construct the equations of the piecewise linear approximation. 

Note that the amount of content to be replaced at each replacement is different for each 

node at each time of the day under each considered number of replacements. The sets, 
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parameters and variables declared in the original content replacements MILP model 

are utilised, in addition to the following amendments: 

Sets: 

𝐾  Set of equations that approximate the convex function describing the 

relationship between the cache size and its hit ratio 

Parameters: 

𝑟  Number of replacements performed  

𝑎𝑘𝑡𝑟, 𝑏𝑘𝑡𝑟  Piece-wise linear approximation equations coefficients, three 

dimensional vectors 

𝑇𝑟𝑒𝑝  Time duration over which cache contents are updated 

Variables: 

𝐻𝑖𝑡𝑟  Cache hit ratio of node i at time t when r daily replacements are 

performed 

𝑀𝑖𝑡𝑟  Cache size of node i at time t when r daily replacements are performed 

𝜋𝑖𝑡𝑟 Additional download traffic to be streamed to node i at time t when r 

daily replacements are performed 

The objective of the model is to minimise the overall network power consumption 

over time t, and is given as: 
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Objective: minimise 

 
∑

(

 
 
 
 
 
 ∑𝑃𝑝(𝐴𝑃𝑖𝑡 + ∑ 𝑤𝑖𝑗𝑡

𝑗∈𝑁𝑚𝑖:𝑖≠𝑗

)

𝑖∈𝑁

+∑𝑃𝑜𝑖𝑡
𝑖∈𝑁

+

∑ ∑ 𝑃𝑡 ∙  𝑤𝑖𝑗𝑡
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+∑ ∑ 𝑃𝑎 ∙  𝐴𝑚𝑝𝑖𝑗 ∙ 𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+

∑ ∑ 𝑃𝑚𝑑 ∙ 𝑓𝑖𝑗
𝑗∈𝑁𝑚𝑖𝑖∈𝑁

+∑∅𝑀𝑖𝑡𝑟
𝑖∈𝑁 )

 
 
 
 
 
 

𝑡∈𝑇

 

 

(7-15) 

 

Subject to: 

The model satisfies constraints (7-8), (7-9), (7-10), (7-11), (7-12) and (7-13) in the 

original model. Constraint (7-14) is replaced with 

∑ 𝜆𝑖𝑗𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

− ∑ 𝜆𝑗𝑖𝑡
𝑥𝑦

𝑗𝜖𝑁:𝑖≠𝑗

= {

𝛿𝑥 ∙ (𝜆
𝑥𝑦𝑡 ∙ (1 − 𝐻𝑦𝑡𝑟) + (∝𝑟𝑡∙ 𝜋𝑦𝑡𝑟))      𝑖 = 𝑥

−𝛿𝑥 ∙ (𝜆
𝑥𝑦𝑡 ∙ (1 − 𝐻𝑦𝑡𝑟) + (∝𝑟𝑡∙ 𝜋𝑦𝑡𝑟))  𝑖 = 𝑦

0                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
∀ 𝑖, 𝑥, 𝑦 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅

 

 

(7-16) 

 

In addition, the model satisfies the following constraints 

 𝑀𝑖𝑡𝑟 ≥ 𝑎𝑘𝑡𝑟 ∙ 𝐻𝑖𝑡𝑟 + 𝑏𝑘𝑡𝑟
∀ 𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅, ∀ 𝑘 ∈ 𝐾  

 (7-17) 

 𝜋𝑖𝑡𝑟 = 𝑀𝑖𝑡𝑟 ∙  8/𝑇𝑟𝑒𝑝
∀ 𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇, ∀ 𝑟 ∈ 𝑅  

 (7-18) 

Objective (7-15) is the power consumption of the network made up of the power 

consumption of network components at each considered time of the day. Constraint 

(7-16) is the flow conservation constraint for downlink traffic. Note that the different 

cache sizes for each node at each time of the day under each considered number of daily 

replacements governs the amount of additional download traffic due to a performed 
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replacement. Constraint (7-17) is the set of convex equations of the piecewise linear 

approximation utilised to convert a cache hit ratio into its corresponding cache size 

with respect to the number of daily replacements. Constraint (7-18) calculates the 

additional traffic to update cache contents by converting the cache size (GB) into Gb/s.  

7.4 Content Replacements Simulation Approach 

In order to validate the proposed MILP model, a simulation is developed to 

calculate the power consumption of the network. The routing algorithm of the 

simulation is based on the heuristic proposed in [32] where traffic is routed over an IP 

over WDM network considering lightpath bypass. This algorithm is extended to 

include caches and consider lightpath non-bypass. 

7.4.1 Demand Calculation 

The content replacement process, shown in Figure 7-1 starts by obtaining the hit 

ratios of deployed caches using the optimum number of replacements found by the 

content replacements MILP model. Using these cache hit ratios, the network traffic 

demand is calculated. The algorithm then checks if content is to be replaced at the 

current time of day according to the number of replacements. If so, the additional 

traffic demand due to content replacements is added to the total traffic entering each 

node.  
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Figure 7-1: The content replacements algorithm flow chart 

7.4.2 Routing Traffic over the Virtual Layer 

The algorithm continues by arranging node pairs in a descending order starting with 

the node pair having the highest demand to accommodate high demands on virtual 
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links first and try to accommodate lower demands on the same existing links. An empty 

topology G is created to record established links and their capacities. The node pair 

(x,y) with the highest demand d(x,y) is selected and the algorithm attempts to route 

d(x,y) over existing virtual links. If the capacities of existing virtual links in G are 

sufficient to accommodate d(x,y), the process is successful and the remaining capacities 

of G are updated. Otherwise, a new virtual link connecting x and y is created and added 

to G. The demand d(x,y) is routed over the new link and the remaining capacities of G 

are updated. The selection of node pairs is repeated until all demands are routed. 

7.4.3 Routing Traffic over the Physical Layer 

When iterations are complete, G holds the set of lightpaths to be routed over the 

physical topology in the optical layer. The simulation uses the shortest path routing 

algorithm to route the lightpaths over the path with the shortest physical distance in 

the physical topology. The shortest physical distance minimises delay but does not 

necessarily result in the minimum usage of network components, and consequently 

minimum overall power consumption. For example the path with shortest physical 

distance may traverse more intermediate nodes compared to a slightly longer path and 

therefore consumes more power in this case. It minimises delay however (and in 

general is a good choice for power minimisation) and is therefore chosen here [62], [63]. 

The alternative minimum hop routing approach may result in lower power 

consumption, but higher delay and is therefore not adopted in this study. In the IP 

layer, the number of ports required to accommodate the capacities of lightpaths is 

calculated, and the power consumption of the IP layer is found.  
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The algorithm allows traffic grooming where more than one demand may be routed 

on the same virtual link, and therefore improves virtual link utilisation. This feature 

results in decreasing the number of established virtual links and hence fewer IP router 

ports are required. Since router ports are the network major power consuming 

components, the overall power consumption is reduced. 

7.5 Content Replacements Power Consumption 

Evaluation 

To evaluate the power consumption of content replacements, the TV viewing data 

obtained in Chapter 6 is considered. The evaluation also considers the same NSFNET 

and BT 21CN network topologies as in Chapter 6 depicted in Figure 6-2 and Figure 

6-3, respectively. The power consumption of different network components, EDFA 

spacing, wavelengths per fibre and wavelength capacity are the same as Table 6-2 in 

Chapter 6. These inputs are applied to the previously explained MILP models and 

simulation to calculate the power consumption of delivering TV programmes under 

content replacements.  

Caches are in the READ state as long as no replacements are performed. During a 

replacement, the portion of the cache being replaced enters the WRITE state for a very 

short time (a few minutes versus 24 hours). The power consumption of a READ or 

WRITE state is therefore considered to be the same (7.4W/GB).  
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The MILP models use dual simplex iterations to find the optimum and define 

around 1 million variables and over 3.6 million variables in the NSFNET and the BT 

21CN topologies respectively. A typical run of the content replacements MILP model 

required between 2.4 and 6 hours for the NSFNET and 48 hours for the BT 21CN 

network using the solver and computer specified in Section 3.6.1 in Chapter 3. In this 

section the results are presented. 

7.5.1 Content Replacements with Fixed Size Caches 

Chapter 6 has shown that the optimum cache sizes that minimise power 

consumption using TV programme popularities are 200GB and 650GB (fixed-size 

caches) for SDTV and HDTV respectively. Here the popularity of each programme is 

calculated with respect to time windows using Equation (7-2) and the traffic profile in 

Figure 6-1 in Chapter 6. The values for programme popularities are used to find the 

cache hit ratio from Equation (7-6). Each programme is assumed to have a fixed 

number of viewers for the programme duration and to have no viewers outside 

broadcasting time. To include consideration of CuTV or time-shifted viewing, a non-

zero popularity could be assigned to each TV programme after the end of broadcasting. 

Since the contents of the cache may not always be entirely replaced, this approach is 

conservative as CuTV would lead to higher cache hit ratios than calculated here. 

However, this traffic is currently small compared to TV traffic [98]. The influence of 

CuTV viewing on cache hit ratios will become visible when CuTV traffic reaches 

considerable levels. 
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When a content replacement is performed, the new cache content is streamed from 

the video head-end to the cache resulting in additional traffic passing through the 

network. The amount of traffic is a function of the percentage of the cache size that is 

replaced. It is possible that only a fraction of the cache is updated with each 

replacement as some programmes may remain popular through two or more time 

windows. Here the entire cache contents are replaced each time. This assumption has 

the advantage of achieving a high cache hit ratio as the cache is occupied with the 

most popular programmes for the considered time duration. However, the shortcoming 

is that more traffic passes through the network to fill the cache when a replacement 

occurs. This assumption allows the evaluation of the full effect of additional traffic 

introduced by content replacements and therefore the reported power savings are 

conservative.  

It takes time to update the cache contents, and this time delay is used to calculate 

the additional network traffic in Gb/s. The cache update time should be much shorter 

than the minimum replacement interval (2 hours). In addition, the resulting data rate 

should not overload the network. Therefore, a cache update time of 1 minute is 

selected, leading to cache update traffic of 26.6Gb/s and 86.6Gb/s under SDTV and 

HDTV, respectively. The cache update traffic is much smaller than the overall 

network traffic (40Tb/s). A more sophisticated scenario for cache updates may be 

considered where only sections of the cache are updated. For example, it might be 

more power-efficient to replace only 20% of the programmes during content 

replacements performed in the early hours of the morning, whereas updating 100% of 

the cache becomes necessary at primetime to achieve maximum power savings. A more 
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practical approach can also be considered where the list of the most popular 

programmes during the next time window is compared to the list of the most popular 

programmes currently stored in the cache. Only the TV programmes which are not 

already in the cache are streamed from the video head-end. This strategy results in 

communication overhead where knowledge of the up-to-date cache contents is 

required. Such complex refinements warrant further investigation. 

7.5.1.1 Power Consumption Evaluation 

In order to evaluate the power consumption of the network under various daily 

replacements, replacement frequencies of 2, 3, 4, 6 and 12 per day are compared. The 

MILP model is solved considering the NSFNET topology under SVMD, SVMP and 

MVMP and for the BT 21CN topology under SV4, SVMP and MVMP. Figure 7-2 shows 

the resultant power consumption of content replacements under BT 21CN-SV4, NSF-

MVMP and NSF-SVMP compared to the power consumed without caching and having 

fixed caches with no replacements. The largest savings in power consumption are 

achieved when 12 content replacements are performed. Nevertheless with a fixed 

cache size, content replacements give little benefit over a cache that is populated once 

a day as there is only a marginal increase in cache hit ratios. The largest 

instantaneous power savings of 48% were seen for the BT 21CN topology under HDTV 

and MVMP.  
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Figure 7-2: Power consumption of watching TV programmes with no caching, fixed 

optimum caches and under 2, 3, 4, 6 and 12 daily content replacements considering 

(a) SDTV BT 21CN-SV4 (b) HDTV BT 21CN-SV4 (c) SDTV NSF-MVMP, (d) HDTVNSF-

MVMP, (e) SDTV NSF-SVMP, and (f) HDTV NSF-SVMP 
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7.5.2 Content Replacements under Variable Caches  

The goal here is to investigate the additional savings possible by using variable size 

caches.  

7.5.2.1 Cache Hit Ratio Dynamics 

To carry out the investigation, the popularity of TV programmes is found to obtain 

the relationship between the number of programmes stored in the cache and its hit 

ratio. The popularity of each programme is different under each of the considered daily 

replacement schemes and at each time of the day, so cache hit ratios will vary with 

time. Each equation that describes the relationship between the number of 

programmes stored in the cache and its hit ratio under a certain replacement 

frequency is a concave function. The combination of all equations representing all 

considered number of daily replacements form a surface.  

Figure 7-3 shows two examples of this relationship at time 6:00 and 20:00. From 

each resulting surface, a piecewise linear approximation is calculated under each 

considered daily replacement frequency. All piecewise linear approximation equations 

are input to the MILP model to calculate cache sizes from optimum cache hit ratios 

rather than finding the cache hit ratio from the cache size as in Figure 7-3. Therefore 

the relationship described in the MILP model is a convex function. 

The resulting surfaces shown in Figure 7-3 (a) and (b) show that the hit ratios of 

variable caches increase with the increase in the number of content replacements 

performed. When no content replacements are performed, increasing the cache size 
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leads to increasing the cache hit ratio. When further increasing the cache size, the 

cache hit ratio saturates as programmes become less popular.  

If the cache is of a fixed size, then at any point in time it is storing programmes 

which are not needed at that time. Under content replacements, the cache stores 

programmes which are viewed during the current time window and thus the whole 

cache is usable. This explains the few dips in cache hit ratio that can be observed in 

Figure 7-3 where at a number of points the cache hit ratio under replacements 

becomes lower than the cache hit ratio under fixed cache sizes, yet entirely effective. 
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Figure 7-3:  The relationship between the number of TV programmes stored in the 

cache, the number of daily content replacements and the cache hit ratio at time: (a) 

6:00 and (b) 20:00 

 

 

  
  
  



 

156 

 

  
        (a)         (b) 

  
       (c)        (d) 

  
        (e)         (f) 

Figure 7-4: Power consumption of watching TV programmes with no caching, 

variable cache sizes with no content replacements and under 2, 3, 4, 6 and 12 daily 

content replacements considering (a) SDTV BT 21CN-SV4, (b) HDTV BT 21CN-SV4, 

(c) SDTV NSF-SVMP, (d) HDTV NSF-SVMP, (e) SDTV NSF-MVMP and (f) HDTV NSF-

MVMP 
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7.5.2.2 Power Consumption Evaluation 

 Figure 7-4 shows the power consumption of the network under different topologies 

generated by the MILP model. This shows that, with variable cache sizes, there is now 

a significant benefit in having frequent content replacements. The savings are 

greatest during primetime when the traffic volume is high and there are only a few 

very popular programmes.  

The peak and average savings in power consumption due to content replacements 

performed on caches with fixed and variable sizes are shown in Figure 7-5. The 

maximum savings under variable caches range between 80% and 82% for the 

NSFNET topology and up to 86% for the BT 21CN topology. These savings are 

significantly greater than the savings due to content replacements under fixed cache 

sizes (47% and 48% for the NSFNET and BT 21CN topology, respectively).  

The following observations are made: 

1.   The greatest savings in energy consumption are achieved by performing 12 

daily replacements on cache contents (see Figure 7-4).  

2.   Under time-based content replacements the cache hit ratio varies over the 

day, resulting in varying savings in power consumption (see Figure 7-7).  

3.   Variable cache sizes are beneficial as the optimal cache size is different 

depending on the traffic volume. As a result, when performing replacements 

on variable cache sizes, the maximum power savings achieved are much 

higher than the average power savings. The greatest power savings are 
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achieved at primetime where traffic is high and a small number of 

programmes are very popular (see Figure 7-2 and Figure 7-4). 

 

Figure 7-5: Maximum and average power savings of content replacements using 

fixed and variable caching under SDTV and HDTV considering SVMD, SVMP and 

MVMP (NSFNET) and SV4, SVMP and MVMP (BT 21CN) 

It is worth pointing out that the TV data utilized in this evaluation is one day 

viewing figures obtained on a weekday (Friday) in November 2012. TV data is 

expected to differ when other dates are considered. The total number of viewers 

changes from one year to another. The most popular TV shows are mainly seasonal 

and do not run throughout the year [96]. Consequently, the most popular TV shows 

and their corresponding number of viewers are different from one month to another. 

In addition, daily viewing figures are different in weekends compared to weekdays 

[104],[99]. Figure 7-6 shows the total number of TV viewers during weekdays and 

weekends in 2011 and 2012. As depicted in Figure 7-6 the difference in the total 
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viewers is marginal and the trend of viewing during the day is identical. This can also 

be observed when comparing viewing figures of different months of the same year 

[105]-[107],[98]. In addition, the difference between the number of viewers in 

weekdays and weekends is insignificant considering that the trend and peak are 

similar.  

 

Figure 7-6: Average 2011/2012 TV viewers during weekdays and weekends 

[104],[99] 

The combined popularity of the 5 most popular TV programs viewed on Friday 9th 

and Saturday 10th November 2012 is 0.34 and 0.36, respectively [96]. The variance in 

the number of viewers and the popularity of the most popular programs results in 

obtaining different power saving figures from the replacements MILP model. However, 

given the facts above, these differences are expected to be insignificant. An exception 

to this is when a major event is broadcasted causing considerable changes in viewing 

figures. One example is the London 2012 Olympic Games where live TV viewing and 

BBC iPlayer requests hit record breaking figures [105]. 
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7.5.2.3 Optimum Variable Cache Sizes 

Figure 7-7 shows how the cache hit ratios change due to content replacements when 

cache sizes can be varied over the day. The increase in the number of daily content 

replacements leads to an increased cache hit ratio. The average cache hit ratio 

increases from 0.32 to 0.69 and 0.7 under SDTV and HDTV, respectively. These 

increases in cache hit ratios are the primary driver for the reduction in power 

consumption. 

 

Figure 7-7: Cache hit ratios of optimum cache sizes averaged over network nodes 

with no content replacements and considering 2, 3, 4, 6, and 12 daily content 

replacements under SDTV NSFNET with a single video head-end 

It is worth mentioning that it is not guaranteed that the cache hit ratio will increase 

at each time slot with the increase in replacement frequencies. For instance, the 

average cache hit ratio at 18:00 when performing 4 and 6 replacements is 0.5 and 0.39, 

respectively. This results (as shown in Figure 7-4) in the network power consumption 
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with 6 replacements being higher than that with 4 replacements for that particular 

point in time. However, the overall energy consumption of the network reduces with 

increase in the replacements frequency, including that additional power consumed to 

replace content. 

 

Figure 7-8: Optimum variable cache sizes averaged over network nodes with no 

content replacements and considering 2, 3, 4, 6, and 12 daily content replacements 

under SDTV NSFNET with a single video head-end 

The optimum variable cache sizes over the time of the day found by the MILP model 

follow the daily trend of input traffic. These cache sizes are averaged over network 

nodes and are shown in Figure 7-8. Performing content replacements on smaller 

caches achieves higher cache hit ratios than deploying variable cache sizes with no 

content replacements. When a single video head-end is considered in the network the 

average cache size falls from 320GB to 51GB and from 2058GB to 443GB (variable 
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cache sizes) under SDTV and HDTV, respectively. In other words, the power savings 

in caching are an average of 84% and 78.4% under SDTV and HDTV, respectively. 

The results on cache savings are only accurate when the number of replacements is 

high (e.g. 12 replacements). Considering variable caches sizes, it is assumed that by 

caching the most popular programmes and by obtaining a cache hit ratio of H, this 

cache hit ratio remains effective all day. In reality, the most popular programmes may 

be evening programmes and in real time TV there is no interest in them in the 

morning. Therefore in Figure 7-8 for example, the variable cache size at 2:00 should be 

zero since the most popular programmes are evening programmes that are cached, but 

are not relevant in the morning. With the increase in the adoption of CuTV and 

iPlayer type services, this approximation becomes valid as popular programmes 

remain popular and available to play for extended hours and may be for a few days 

(one week typically for iPlayer). For the approximation to be accurate, popular 

programmes must remain popular all the time, with no real time TV effect. In 

addition, programmes need to be available to stream at any time of the day. 

7.6 Comparison of the Two Network Topologies and 

Simulation Results 

This section compares the power savings achieved by content caching and content 

replacements under the two considered network topologies (NSFNET and BT 21CN). 
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It also shows the network energy savings obtained by the simulation compared to 

those obtained by the MILP model. 

7.6.1 Comparison of the NSFNET and BT 21CN Topologies 

The NSFNET and BT 21CN topologies are similar with respect to hop count, but 

are different in terms of the coverage area and nodal degree (see Table 6-1 in Chapter 

6). Average power savings of caching (with no content replacements) are 30% – 31% 

and 33% – 35% under NSFNET and BT 21CN, respectively. The average power 

savings introduced by content replacements are 68% – 74% and 70% – 77% under 

NSFNET and BT 21CN, respectively. The coverage area of the network does not 

influence the power consumption much, as the additional distance between nodes 

requires extra EDFAs which do not consume significant power (8W). Consequently, 

the power savings are comparable under all cache management techniques in the two 

topologies. The slight further improvement in power savings under the BT 21CN 

topology is due to the higher nodal degree which provides more possible paths through 

which traffic can be routed without underutilising resources (in the MILP model the 

path that achieves the most power saving is selected). The consideration of two 

network topologies (the NSFNET and BT 21CN) in the evaluation helped generalise 

the results. Although there are slight differences, there is good consistency in the 

results giving confidence in the methods developed. 
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7.6.2 Simulation Results 

Figure 7-9 shows the overall energy consumption of the network under SDTV and 

HDTV using both MILP models and simulation.  

 

Figure 7-9:  The daily energy consumption of watching SDTV and HDTV 

programmes when no caches are deployed and when 12 daily replacements are 

performed on fixed and variable caches under NSF-SVMD using the MILP model and 

simulation 

To run the simulation considering content replacements on caches of fixed sizes, the 

cache hit ratios are calculated considering the number of daily replacements, and 

these cache hit ratios are used to calculate the remaining network traffic to be routed 

from the video head-end to each node. The simulation considers the additional traffic 

due to replacements and is included to find the total traffic to route at each time of the 

day. Considering replacements on variable cache sizes, the variable cache sizes and 

cache hit ratios are found from the MILP model for each replacement frequency and 
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are used in the simulation. Traffic demands are routed over the shortest path as 

network dimensioning is assumed where additional network resources are allocated 

when demanded. However, physical link maximum capacities are not considered 

where some demands are forced to be routed over longer routes or rejected due to 

unavailable resources. All other parameters used in the simulation are similar to the 

input values used in the MILP models. The simulation is run to find the network 

energy consumption considering SDTV and HDTV when no caches are deployed in the 

network and when 12 daily content replacements are performed on caches of fixed and 

variable sizes. 

The results show close agreement between the MILP models and the simulation. 

They also clearly show that content replacements are more beneficial under HDTV, 

supporting expected future developments in video delivery technologies. 

7.7 The Influence of Regular Traffic on Power 

Efficiency 

The results presented in Chapter 6 and Chapter 7 so far have considered TV video 

traffic downloaded from the video head-end to network nodes, but have not included 

regular traffic. However, some IPTV service providers cater for both video and non-

video services including web, email, data, gaming and interactive TV. In this section, 

some of the previous scenarios are re-evaluated assuming that the network traffic 

comprises both regular and TV video traffic. 
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7.7.1 Traffic Mixtures 

In addition to the formerly evaluated network traffic having only TV video traffic, 

four further traffic mixtures are considered:  

1.   10 – 90: Internet traffic reports forecast that by 2016 Internet video traffic will 

account for about 80%-90% of total Internet traffic [2]. 

2.   30 – 70: This is based on the fact that the 80%-90% share of video in the total 

traffic is made up of various types of video including TV along with VoD and Peer-to-

Peer. Consequently, this mixture considers the situation where regular, VoD and Peer-

to-Peer traffic represent 30% of the traffic and the remaining 70% of network traffic is 

TV video. 

3.   50 – 50: This traffic mixture represents a service having equal amounts of 

regular and TV traffic. 

4.   70 – 30: The traffic mixture considered here is that of a service provider whose 

main service is not TV but still carries some TV video content having 70% regular 

traffic and 30% TV traffic. 

7.7.2 Power Consumption Evaluation 

The intention is to investigate how the presence of regular traffic along with TV 

traffic influences the power consumption. The evaluation considers three network 

schemes that were evaluated in the previous sections: deploying caches of fixed sizes 

at the network nodes, performing time-based content replacements on the contents of 

caches of fixed sizes and replacing the contents of variable caches. The fixed-cache 
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MILP model proposed in Chapter 4 and content replacements MILP models are run 

after including regular traffic matrices in the input data. 

 

 

Figure 7-10: Average network traffic demand considering TV video traffic and 

regular traffic where regular traffic is: 10%, 30%, 50% and 70% of the total (regular + 

TV video) traffic 

Under each considered traffic mixture, the total daily regular traffic is obtained from 

the total TV traffic using the traffic ratios that apply to each case. The regular traffic 

between each node pair is then generated using a random function with mean values 

compliant with the considered traffic mixtures. The trend and volume of regular traffic 

under each considered case are shown in Figure 7-10. The curves in Figure 7-10 show 

TV video and regular traffic components. Therefore the total traffic mixture of 10 – 90 

for example can be calculated by adding the TV video traffic curve to the 10% regular 

traffic curve. The traffic volume is calculated from the average daily TV viewing 
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figures in Figure 6-1 in Chapter 6 assuming that all TV programmes are delivered 

using HDTV. Therefore a peak traffic of over 260Tb/s can be observed which is 

moderate compared to future busy-hour Internet traffic that is expected to reach 

720Tb/s in 2016 [108]. 

Table 7-1: Network maximum and average power savings (%) with different traffic 

mixtures under HDTV NSF-SVMP 

Traffic 

Mixtures 

Power Savings (%) 

Fixed Caching 
Replacements on 

Fixed Caches 

Replacements on 

Variable Caches 

Max. Avg. Max. Avg. Max. Avg. 

TV Video 31% 30% 47% 31% 83% 74% 

10 – 90 30% 27% 36% 26% 78% 66% 

30 – 70 26% 21% 32% 20% 68% 50% 

50 – 50 21% 14% 26% 14% 54% 34% 

70 – 30 15% 8% 18% 8% 38% 21% 

 

Table 7-2: Network maximum and average power savings (%) with different traffic 

mixtures under HDTV BT 21CN-SV4 

Traffic 

Mixtures 

Power Savings (%) 

Fixed Caching 
Replacements on 

Fixed Caches 

Replacements on 

Variable Caches 

Max. Avg. Max. Avg. Max. Avg. 

TV Video 36% 34% 48% 34% 86% 77% 

10 – 90 36% 33% 44% 32% 84% 73% 

30 – 70 28% 25% 35% 24% 74% 59% 

50 – 50 25% 19% 30% 18% 64% 45% 

70 – 30 19% 12% 23% 12% 44% 21% 
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Table 7-1 and Table 7-2 show the maximum and average savings in power 

consumption considering TV traffic only and the four assumed traffic mixtures when 

deploying caches of fixed sizes and when performing content replacements on caches of 

fixed and variable sizes under NSF-SVMP and BT 21CN-SV4, respectively. Deploying 

caches in the network reduces the traffic by storing popular TV programmes locally. 

The presence of caches however does not reduce regular traffic passing through the 

network since the objects related to this traffic type are not stored in caches. Since the 

MILP models are linear, savings in power consumption are likely to be proportional to 

the portion of TV traffic in the traffic mixture. As can be inferred from Table 7-1 and 

Table 7-2, overall power savings are relative to the TV video component in the network 

traffic since maximum savings are attained when the traffic is made up of only TV and 

less power savings are achieved as the percentage of regular traffic increases in the 

traffic mixture. The linear property of the MILP models allows an estimated 

calculation of network power savings for any traffic mixture as long as the portion of 

traffic that will benefit from deployed caches is known. 

Figure 7-11 and Figure 7-12 show the percentage of power savings over the time of 

the day when deploying caches of fixed sizes and when performing 12 content 

replacements on caches of fixed and variable sizes in the BT 21CN-SV4 topology. 

Figure 7-11 shows the power savings with traffic mixtures 10 – 90 and 30 – 70 while 

Figure 7-12 considers the traffic mixtures 50 – 50 and 70 – 30. The peaks of regular 

traffic and TV traffic are not aligned (see Figure 7-10), resulting in a different trend of 

power consumption over the time of the day under each considered traffic mixture. If 

caches of fixed sizes are deployed in the network, moderate and comparable power 
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savings are achieved over the time of the day. These savings become more diverse as 

the amount of regular traffic increases in the traffic mixture.  

When 12 content replacements are performed on the contents of fixed caches, the 

amount of power savings vary over the time of the day since popularities of TV 

programmes are different over the time of the day resulting in different cache hit 

ratios. Nevertheless, the resultant average daily power savings are similar to those 

assuming fixed caches with no content replacements. The maximum power savings are 

attained under 12 content replacements with variable caches under all traffic 

mixtures. The combined influence of varying the size of the cache with respect to 

traffic and maximising cache hit ratios due to content replacements results in the 

greatest power savings compared to other methods. 

 

Figure 7-11: Power savings (%) over the time of the day with fixed caching and 

when 12 content replacements are performed on fixed and variable size caches 

under BT 21CN-SV4 with traffic mixtures of TV video only, 10 – 90 and 30 – 70 
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Figure 7-12: Power savings (%) over the time of the day with fixed caching and 

when 12 content replacements are performed on fixed and variable size caches 

under BT 21CN-SV4 with traffic mixtures of TV video only, 50 - 50 and 70 – 30 

7.8 Current and Future Networks 

In this section the significance of the proposed cache management techniques are 

highlighted with respect to current and future network technologies.  

7.8.1 Adaptation 

Current networks do not support resource adaptation and networks are provisioned 

for peak load. As a result, current networks consume constant power, proportional to 

the peak traffic. Caching significantly reduces peak traffic which could therefore lead 

to reduction in power consumption. However, the greatest benefits will not be obtained 

until variable sized caches can be deployed. 
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Figure 7-13: Power consumption of watching HDTV programmes assuming BT 

21CN-SV4 considering no caching, caches of fixed sizes, variable cache sizes, content 

replacements on caches of fixed sizes and content replacements on variable cache 

sizes assuming the network with no resource adaptation facilities 

 

Figure 7-14: Power consumption of watching HDTV programmes assuming BT 

21CN-SV4 considering no caching, caches of fixed sizes, variable cache sizes, content 

replacements on caches of fixed sizes and content replacements on variable cache 

sizes assuming the network with resource adaptation facilities 
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Figure 7-13 shows the power savings that would be possible with current technology 

caching HDTV content in the BT 21CN-SV4 topology. The maximum power savings in 

the network are 36% and 48% for fixed size caches without and with content 

replacements respectively. 

Future networks are expected to be able to adapt their resources by switching off 

any components that are not in use. This would reduce the power consumption when 

the traffic is low and therefore the network consumes the maximum power only when 

the traffic is at its peak. The overall power consumption under this assumption follows 

the trend of traffic. The proposed cache management techniques reduce network 

traffic resulting in lower overall power consumption. Maximum power savings are 

achieved when the traffic peaks.  

Figure 7-14 shows the power consumption of the cache management techniques 

considering a future network with resource adaptation capabilities. The maximum 

power savings are 36%, 40%, 48% and 86% with caches of fixed sizes, variable cache 

sizes, content replacements performed on caches of fixed sizes and replacements on 

variable cache sizes, respectively. The daily-averaged power savings under these 

schemes are 34%, 36%, 34% and 77%, respectively. As can be observed in Figure 7-13 

and Figure 7-14, the proposed cache management techniques are suitable for network 

power consumption reduction considering both current and future network 

capabilities. 
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7.8.2 Alternative Technologies 

Cache management can reduce video traffic generated by the growing number of 

Internet video services. An alternative technique that can effectively reduce the 

number of video replications in the network is multicasting. Multicast routing 

supports the simultaneous delivery of one copy of a video to multiple recipients.  

Currently, multicast support is provided at the IP routing layer. In order to 

minimise energy consumption, it would be preferred to implement this functionality 

within the optical layer. In order for an optical core network to support multicasting, it 

requires the deployment of Multicast-Capable Optical Cross Connects (MC-OXCs) 

equipped with light splitters. However, the implementation of WDM multicast in 

reality is difficult for many reasons: 

1. The high cost of the MC-OXC construction.  

2. Multicast algorithms require a large number of wavelengths which cannot be 

supported by current optical device technology [109]. 

3. Designing optical multicast algorithms is complex as two multicast trees cannot 

be assigned the same wavelength if they traverse common links [110]. 

The benefit of multicasting over caching is that no caches are required at the nodes, 

and therefore no power is consumed for caching. Consequently, multicasting may be 

more power efficient than cache management if all OXCs in the core network could 

support multicast routing.  
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Multicast has a limitation in that viewers have no control (on demand, pause, 

rewind, etc.) on the video stream. Caching provides an added degree of freedom that 

allows delay and differentiated viewing times most suitable for emerging TV and time-

shifted services. 

7.9 Summary 

This chapter has utilised the TV viewing data explored in Chapter 6 and proposed a 

cache content replacement scheme to reduce the power consumption of TV delivery. It 

has considered the time-driven popularity of TV programmes, taking into 

consideration the large number of requests associated with each programme during a 

time window with the programme losing its popularity during the rest of the day. 

Time-based popularities have been used to form equations to calculate the resultant 

cache hit ratios. A MILP model has been developed and validated by simulation to 

minimise the power consumption by optimising the number of daily content 

replacements. In addition, the model has been extended to perform content 

replacements while varying the sizes of caches at each node at each time of the day. 

The chapter has also studied the influence of regular traffic on percentage power 

savings by evaluating the power consumption assuming various traffic mixtures 

containing different shares of TV and regular traffic. The NSFNET and BT 21CN core 

topologies have been considered with both single and multiple video head-ends. 

Finally, the power savings achieved by caching techniques have been examined with 

respect to current and future networks. 
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When the power consumption of caching is low and fixed caches are deployed, the 

optimum cache sizes that minimise power consumption are sufficient to store the 

popular content for the whole day. Therefore, content replacements during the day are 

not beneficial. However, content replacements save significant power when user 

viewing has high variance over time with up to 48% instantaneous power savings in 

transmission and caching power consumption. These savings are maximised and are 

up to 86% when variable caches are considered. The significance of caching TV 

programmes rises as demand for IPTV Catch-up services grows and viewing is not real 

time, and is expected to surpass the power efficiency of IP multicast. 
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 Summary of Contributions Chapter 8

and Future Directions 

This chapter summarises the work that has been accomplished and presented in this 

thesis as well as its original contributions and findings. Furthermore, it suggests 

possible directions for future research in the area. 

8.1 Summary of Contributions 

This thesis addresses the problem of high energy usage in content delivery 

networks. The increasing demand for bandwidth-intensive content introduces routing 

and storage challenges for content providers and distributors. The energy consumption 

associated with such services is a major factor in designing the future Internet 

infrastructure. 
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Motivated by these challenges, the first contribution in this thesis was to evaluate 

the energy efficiency of caching video content delivered over an IP over WDM network. 

Storing popular content at the edge of the network is proposed by equipping each node 

with limited storage capacity in the form of disk arrays. This strategy allowed 

streaming one copy from the video server to each cache instead of a dedicated stream 

for each request. In addition, the optimum cache sizes that minimise energy usage 

when deployed at nodes are found based on traffic demand and power consumption 

parameters. Furthermore, the benefit of deploying caches with sleep-mode capabilities 

and their variation with traffic is examined. The main finding of this study was that 

caching the most popular content at the edge of the network reduces traffic on the 

path from servers to end users and therefore energy consumption. There exists an 

optimum cache size that minimises energy consumption, this size follows the increase 

in traffic demand. When sleep-mode capable caches are considered, the trend of the 

active section of caches during the day follows the trend of traffic. Using this strategy, 

further reductions in energy consumption are possible. These additional energy 

savings are more significant when the traffic experiences high fluctuations during the 

day. 

The second contribution in this thesis is the analysis of the influence of content 

popularity distribution on energy consumption. The energy consumption of the 

network is evaluated considering a number of distributions for content popularity 

exemplifying a range of popular video services. While a YouTube-like service has a 

massive number of videos with a long tail of videos with low popularity, a CuTV 

service enjoys a limited number of videos, some of which are highly popular. These 
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variances in popularity influence the resulting cache hit ratio achieved under each 

distribution. The main outcome of this study is that when a small number of very 

popular videos exist in a service, the most energy-efficient solution is to store these 

videos in caches, and the rest of the content is efficiently delivered remotely. 

Furthermore, there is a situation where not caching at all is energy-efficient, and that 

is when the probability of requesting a video from a huge catalogue is equally likely. A 

size-adaptable cache provides the most energy savings for popularity distributions 

that fall between the two extremes. 

     One day viewing figures for British TV channels were acquired and utilised to 

find the popularity of TV programmes for the day. This data was applied to the 

caching MILP model to minimise energy consumption of IPTV services considering 

standard and high definition streaming. Also, the topology of the BT 21CN was 

introduced and included in the evaluation for comparison. The main conclusion was 

that caching provided significant energy savings under high definition TV, supporting 

future video enhancement technologies. In addition, similar savings were achieved 

when comparing two major core topologies (NSFNET and BT 21CN), as the average 

hop count was comparable. 

The predictable patterns of TV viewing lead to the fourth contribution of the thesis. 

The work contributed a proactive time-based method for cache management that 

updates the contents of caches a number of times a day to maintain the most popular 

content in caches. Updating cache contents by predicting which programmes will be 

requested in the next time slot increases the cache hit ratios, which reduces the traffic 
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traversing the network, reducing in turn the power consumption. The evaluation 

considered fully replacing cache contents 2, 3, 4, 6 and 12 times a day and compared 

the energy consumption in each case to that when no replacements are performed. The 

main conclusion is that time-based content replacements reduce substantial energy for 

these services. The additional traffic due to the cache content replacements is justified 

by the conclusive energy savings achieved. 

All proposed schemes in this thesis were evaluated using MILP models validated by 

simulation and a genetic algorithm. Developing generic models gave a better insight of 

predicting energy savings for different services. The use of real data added to the 

credibility of results and this data can be utilised in further research. The models 

introduced in this thesis support the recent green Internet movement, and are 

expected to contribute to further research in the area and enhance the implementation 

of caching in CDNs. 

Note that the work in this thesis was completed prior to the increased dominance of 

alternative non-spinning disk technologies such as Solid State Drive (SSD) and Static 

Random Access Memory (SRAM). These alternative caching technologies are expected 

to provide higher speed and more power efficient caching. 

8.2 Future Directions 

This thesis has tackled the challenging task of reducing the power consumption of 

bandwidth-consuming video services. The findings achieved during the study are key 
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to more energy-efficient content delivery and lead to the following future research 

directions. 

8.2.1 Energy-Efficient Caching in the Access Network 

The energy efficiency of caching in the access network can be considered, as energy 

savings due to caching increase with the size of the network. Also, deploying caches 

closer to end users minimises the journey between the source and destination much 

more than caches in the core network. In addition, the connectivity of the access 

network is denser compared to the core network. Therefore, a network topology with 

an increased nodal degree and average hops can be evaluated.  

The work in [80] and [67] considers the access network and optimises the location 

where each video in the service is to be cached to minimise power usage. A caching 

algorithm for PONs is proposed in [111] that responds to the dynamics of video 

popularity distribution. It maintains the most popular videos at any time in the cache 

by assessing the most recent interarrival requests for videos. Additional models 

considering caching in the access network can be explored. The energy-efficient trade-

off between having a large number of small caches located closer to users and 

deploying a small number of large caches further away from users can be optimised. 

Different emerging content delivery architectures including CCNs and P2P can be 

applied and compared. Analysing power savings in the access network considering the 

influence of video service, access network topology and content popularity distribution 

is worth investigating. 
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8.2.2 Energy-Efficient Cache Collaboration in CDNs 

In the work presented in this thesis, caches are only accessed by the local node. This 

assumption is valid here, since the caches are considered at the core network where 

the average hop count is small (1.7 – 1.8). Therefore, when content is not provided by 

the local cache it can be retrieve from the origin server without compromising the 

power efficiency. Nevertheless, this setting might not be optimum in highly connected 

networks with large average hop counts (the access network for example) or when the 

location of a single origin server is not optimum. 

Cache collaboration is already implemented in existing caching solutions as 

described in Section 2.3.2 in Chapter 2, and is an active field of research where a 

number of schemes have been proposed in the literature [112]-[115]. The authors of 

[112] propose a mechanism that locates multiple nearby copies of requested content for 

efficient delivery. They demonstrate that their proposed scheme delivers content faster 

than other schemes and reduces network traffic. In [113], a cooperative cache 

management algorithm is developed to minimise bandwidth cost and maximise traffic 

served from caches. The work classifies cache collaboration into intra-level, where 

content is only retrieved from leaf nodes and not from the parent node, and inter-level 

cache collaboration, where content is only fetched from the parent node. Results show 

that the proposed algorithm is guaranteed to perform within a constant factor from 

the globally optimal performance with better worst-case scenarios than previous work. 

The content caching scheme presented in [114], WAVE, adjusts the number of file 

chunks to be cached with respect to the popularity of the file. Each file request results 
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in exponentially increasing the number of chunks to cache at each node on the path 

between the origin server and the end host. The proposed scheme reduces the average 

hop count of content delivery and achieves higher hit ratios compared to other 

schemes. The work in [115] investigates cooperative caching in content delivery 

networks. It evaluates the influence of request rates and the size of locally stored 

objects on the local cache hit rate and the cluster hit rate. The results reveal that 

devoting a small portion of storage area for local popular content ensures high local 

and cluster cache hit rates.  

All these proposed mechanisms do not take into consideration the energy 

consumption of the network. While minimising cost and traffic has a significant 

influence on reducing the energy consumption of the network, incorporating energy in 

the optimisation process affects cache configuration and optimum content placement 

without compromising other performance measurements. A distributed caching 

environment can be investigated where cache collaboration is managed based on 

energy minimisation. It would be interesting to compare collaborative cache 

optimisation models based on geographical distance, minimum hop, cluster size and 

content popularity distributions. It addition, a cache content optimisation model can 

be used to determine a popularity threshold where all videos with popularities higher 

than the threshold are replicated in all caches, and the remaining are distributed over 

the cluster. 
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8.2.3 Energy Evaluation of Caching-Aided WDM Multicast 

The rapidly growing market of video-rich applications calls for the utilisation of the 

high bandwidth provided by WDM. The importance of multicast arises from the 

increasing popularity of services that require the delivery of data from one source to 

multiple destinations. Multicasting is more beneficial in such bandwidth-intensive 

services including video conferencing and Internet TV. To date, full multicast in the 

optical layer is not viable due to cost, complexity and optical device technology reasons 

[109], [110]. Previous work has considered proposing models to construct multicast 

light trees and traffic routing over WDM networks [116]-[118]. Other studies focused 

on wavelength assignment strategies [119]-[122]. While some studies have considered 

caching-aided multicast schemes [115], [123], [124], only a few considered video traffic 

[125]-[127]. Nevertheless, all previous work considered multicasting in the IP network 

and therefore does not address the complexity of multicasting in the optical network. 

In addition, none of the previous work addresses the energy consumption perspective 

of caching-aided multicast. These facts make this topic an open area for research and 

extensions. Tackling the issue of the energy efficiency of caching-aided multicast in 

WDM has great value due to the expected increase in video traffic coupled with the 

success of IP over WDM for Internet traffic delivery. On top of that, proposing models 

that consider full optical multicast networks can provide valuable insight to expected 

energy reductions when all-optical multicast is realised. A very important statement 

would be to prove whether the deployment of all-optical multicast actually eliminates 

the practicability of caching in the core network. 
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8.2.4 Minimising Energy Usage for CDNs using Network Coding 

Network coding optimises the use of bandwidth by coding multiple flows at 

intermediate nodes on the route of traffic. It has been widely utilised in wireless 

communication to increase the resilience of the network and save energy [128]-[130]. 

Merging the benefits of network coding with emerging network architectures such as 

ICNs and P2P can produce promising outcomes suitable for catering for the future 

Internet video demand [6], [123], [131], [132]. For instance, in [133], the location of 

content in an ICN is optimised and network coding is used to reduce network 

bandwidth and cost. Nevertheless, the energy efficiency of network coding considering 

CDNs and optical networks is a new research topic. Recent work in [134] and [135] 

evaluated the energy-efficiency of network coding in PONs. It is worth investigating 

the influence of introducing caching in this model on energy consumption. Another 

method is to evaluate coded storage at the caches. This technique can lead to savings 

in storage, reducing in turn energy consumption. The energy efficiency of network 

coding can be studied on different network levels. For instance, coding in the optical 

network can be coupled with coding in the IP network to maximise energy savings. 

Developing network coded content delivery architectures is a wide area of research 

where ICNs, CCNs, P2P, etc. architectures can be considered. Also, a possible 

direction is to evaluate the impact of physical topology and the dynamics of video 

content (traffic trend, location and number of sources and destinations, etc.) on energy 

efficiency. 
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