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Abstract

Can inkjet technology revolutionise manufacturing processes as we know them?

By extending the existing benefits of inkjet methods to attain the speed, coverage and
material diversity of conventional printing, we can transform inkjet from its present status
as a niche technology into a mainstream process, with the UK as a major player. However,
we require a better understanding of the science underlying the formation of small droplets
and the effect of complex additives.

First, we highlight key inkjetting methods and discuss well-known effects that particles
and polymers have on jet evolution. We describe how jetting and filament-thinning exper-
iments can be used to measure key characterisation parameters and how these techniques
can be modelled via an established simulation method. Second, we review the literature
exploring jet stability and break-up, including the Rayleigh stability analysis and universal
self-similar thinning laws.

In Chapter 3, we develop a simple one-dimensional model. First, we model particulate
effects on the decay of a liquid bridge and identify three thinning regimes. In particular,
we describe a mechanism for acceleration, which agrees quantitatively with experiments.
In contrast, the addition of viscoelasticity retards thinning processes and delays break-
up. Our viscoelastic jetting model demonstrates the theoretical exponential thinning law,
‘beads-on-string’ structures and is in quantitative agreement with axisymmetric simula-
tions.

In Chapter 4, we develop a simplified drop-on-demand jetting model to predict the
printability of polymer solutions. We demonstrate three known jetting regimes and the
predicted ‘jettable’ concentration threshold is in quantitative agreement with experimental
data. Using axisymmetric simulations, we identify a ‘pre-stretch’ mechanism that is able
to fully extend polymers within the nozzle. Consequently, we show that molecules can
undergo central scission due to high strain rates at the nozzle exit.

In Chapter 5, we simulate a one-dimensional continuous inkjet using an adaptive mesh
technique. We explore non-linear behaviour caused by finite-amplitude modulations in the
driving velocity profile, where jet stability deviates from Rayleigh behaviour. We identify
a modulation range where pinching becomes ‘inverted’, occurring upstream of the filament
connecting the main drops, rather than downstream. This behaviour can be controlled by
the addition of a second harmonic to the initial driving signal. Our results are compared

to full axisymmetric simulations in order to incorporate the effects of nozzle geometry.
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Chapter 1

Inkjet Printing Complex Fluids

1.1 Inkjet Technology

‘We are at the dawn of a digital age for printing.'’

Newspapers, books, photographs, the generic desktop printer - the print industry has
existed for decades. However, the technology for drop generation and deposition has
advanced dramatically over the last forty years [74]. With a combination of physics,
chemistry, engineering and of course mathematics, jetting techniques are now more precise
and flexible than ever, lending themselves to a diverse range of applications [41], [45].
Using inkjet technology to print conductive tracks is becoming common practice, par-
ticularly since nano-sized droplets are now possible [74]. As well as metals [87], we have
the ability to print a range of materials, including ceramics [2] and polymers [73]. Ad-
vances at microscopic level means that we can print biological material, including DNA
and even living cells [125], [115]. Whereas, at large scales, there is potential to build solid
structures using 3D printing techniques [89]. Jetting is a new and powerful manufacturing

tool; the possibilities seem endless in this new age of inkjet technology.

1.1.1 History and Development of Inkjet Printing

Traditionally, printing is the repeated reproduction of an image or text and German printer
Johannes Gutenberg is credited with introducing the printing press to Europe in around
1439. This conventional technique involves transferring ink from a master pattern to a
substrate via direct contact and changing the print requires changing the master pattern
within the print head. As a relatively slow process with obvious restrictions, printing
remained unchanged for hundreds of years.

Compared to traditional printing, inkjet technology implements a completely different
principle in which small droplets of liquid are generated and deposited at precise locations
on the substrate. The master pattern is controlled digitally and so any number of patterns

can be reproduced without adapting the actual print head. The mathematical foundation

"Hutchings & Graham et al. [74]
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Figure 1.1: Time line illustrating the history and development of inkjet printing.

of this technology is attributed to Plateau and Rayleigh and their work on the stability of
liquid jets [107], [109]. Rayleigh deduced that an infinitely long jet is linearly unstable to
perturbations whose wavelengths exceeds the circumference of the jet and so will ultimately
break up into droplets. Furthermore, Rayleigh identified the wavelength of the fastest

growing disturbance and hence the separation distance between droplets.

Still, it took many decades before the applications of the physical properties of drop
formation were used in inkjet devices. Inkjet printing as a distinct concept is attributed
to Lord William Kelvin. A patent was granted to Lord Kelvin in 1867 for the direc-
tion of droplets through electrostatic forces and the device he invented was named the
Siphon recorder. However, without the means to generate detailed instructions to steer

the droplets, inkjet printing remained unused until the 1950’s.

Kelvin’s device was a direct forerunner of continuous inkjet (CLJ) technology, which
is still used in production lines worldwide, mainly for labelling applications. CIJ provides
high-speed printing with low resolution in the final printed text, thus it is ideal for printing
dates and bar codes onto products. Although print quality is not a problem for these
applications, for more precise printing high resolution is vital. Consequently, in the 1980’s
drop-on-demand (DoD) technology emerged, providing high-resolution printing at low
costs. This new technology soon became readily available to the office and household

environment in the form of your everyday desktop printer.

More recently, there has been a new wave of technological advances allowing inkjet
printing to be used as a manufacturing process. Inkjets may be used as robotic pipettes
to create micro arrays, fabricate three-dimensional structures and print electrical and
optical devices. As a highly versatile tool, inkjet technology is ideal for a wide range of
applications. For example, the pharmaceutical industry requires the accurate delivery of
active ingredients at specific locations for which inkjets are ideal, the electronics industry

uses printing techniques to produce conductive tracks and inkjet technology is also being
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developed for applications in tissue engineering.

In these new application areas the technology for drop generation and deposition re-
mains essentially the same as in graphical printing. Several features of the existing technol-
ogy are particularly attractive to the manufacturing industry. The digital process allows
the location of the deposition to be pre-determined and changed in real time if necessary.
Also, storing the master pattern as digital data is comparatively cheap compared to pro-
cesses requiring a physical template. Since the method is non-contact, fragile materials
can be printed that would not withstand conventional printing methods. As well as al-
lowing a range of materials to be printed, the advanced technology is also modular and
scalable; multiple print heads can be aligned to print simultaneously or jets may print a
number of different materials in succession.

However, there are important limitations to the use of inkjet processes that must be
considered, namely resolution, precision and material diversity. The achievable resolution
not only depends upon the size of the printed drop after drying, but on the precision at
which the drop can be deposited. Precision may be limited by the movement of the print
head or the substrate, as well aerodynamic and electrostatic effects on the drop whilst in
flight. Currently, drop placement accuracy is approximately several microns and ~ 10 um
represents the lower size limit of features that can be printed by a DoD printer [74]. While
this is adequate for graphical imaging, some manufacturing applications require higher
resolutions. Furthermore, current inkjet printing technology can only be used to print a
restricted range of fluids properties based upon established ‘good’ inks. To widen the range
of complex materials available to inkjet technology, a systematic study of printability as

a function of molecular structure, concentration and solvent characteristics is required.

1.1.2 Mechanisms for Drop Generation

Inkjet printing requires the generation and deposition of small ink drops onto a substrate.
Many techniques for producing droplets have been devised, however continuous ink jetting
(C1J) and drop-on-demand (DoD) jetting remain the two most important technologies in
the inkjet industry. The essential difference between the two methods is the nature of the
flow through the nozzle.

In CIJ printing, as the name suggests, a continuous jet of liquid is ejected from a
large reservoir through the nozzle orifice. The jet subsequently breaks up into droplets
via the Rayleigh-Plateau instability of a liquid column. To control the break-up, the jet is
modulated by imposing a pressure fluctuation on the nozzle close to the Rayleigh frequency
to ensure that the size and spacing of every drop is uniform. Drop diameters are typically
slightly larger than the nozzle diameter.

The droplets must then be directed and deposited on the substrate using electrostatic
deflection. Selected droplets are charged as they pass through a set of charging electrodes.
The stream of droplets then pass through a strong electric field generated by a deflector
plate, which deflect selected droplets towards the substrate. All uncharged, and hence
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Basaran’s review paper [8].

undeflected droplets, collect in a gutter where they are then recycled and reused in the
jetting process. This commonly used CIJ practice is known as the Sweet method [123]
and allows an image of around 10 pixels in height in a single pass. An alternative method
is to deflect the charged drops into the gutter and thus print with the uncharged drops.

This provides higher accuracy but each nozzle can only print a single line with each pass.

In CIJ systems, drops are produced continuously and so key benefits include high-
speed printing that keeps up with even the fastest production environments, as well as
non-contact printing, which enables printing on virtually any surface. On the other hand,
DoD printers produce droplets as and when required. Since DoD printing does not require
a drop selection process, the nozzle can be located closer to the substrate, which increases
precision in comparison to CIJ.

An industrial DoD print head consists of multiple nozzles, with each nozzle contributing
to one line of printed drops that make up the complete image. Individual ink drops are
ejected through a nozzle in response to a pressure pulse. The two most common actuation
mechanisms used to generate this pressure pulse are thermal and piezoelectric actuation.
In thermal DoD printing, a small film of fluid is heated so that it boils creating a small
vapour bubble in the fluid reservoir. The bubble quickly expands creating the energy
required to force a droplet through the nozzle. Alternatively, in piezoelectric DoD printing,
the actuator is formed from a piezoelectric material that changes shape in response to an
electric current creating a pressure pulse via direct mechanical actuation.

The shape of a single drop upon exit is that of a nearly spherical bead with a trailing
ligament [91], [47]. The trailing ligament may either retract into the main drop or break up
into a number of satellite drops. These smaller satellite drops are affected by aerodynamic
drag and so do not precisely follow the pattern of the main drop. Thus, if these satellite

drops are present at impact, then they can cause splash on the substrate and hence reduce
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print quality.

Usually the size of the main drop ejected in DoD printing is equivalent to the nozzle
diameter. However, new experimental techniques have been developed to decrease the
droplet radius in comparison to the nozzle size [29]. The use of a fixed drop size means
that there is always a compromise between high performance and image quality to achieve
production speed. Grey-scale technology, on the other hand, uses multiple pulses to pro-
vide drops of different sizes; small drops for high resolution images or text and large drops
to cover large areas quickly.

While inkjet technology is highly flexible, it is currently slow compared with direct
printing. If inkjet technology can be extended to attain the speed and coverage of con-
ventional methods, then inkjet printing could revolutionise manufacturing processes. To
achieve this transformation, we require a much better understanding of the science un-
derlying the formation and behaviour of small liquid drops in both CIJ and DoD jetting

techniques, particularly for more complex fluids.

1.1.3 Fluid Properties of Standard Inks

There are three significant fluid properties that dominate jet break-up and drop generation
in inkjet printing of standard inks, that is, surface tension, viscosity and inertia. The
cohesive forces in a liquid are responsible for the phenomenon known as surface tension
and cause a liquid to form the shape with the lowest surface energy. This phenomenon is
crucial to the process of inkjet printing; initially, fluid ejected though a nozzle is cylindrical
in shape, however, surface tension drives the jet to neck inwards and ultimately break
up into spherical drops that can be used for printing. This mechanism is know as the
Rayleigh-Plateau or ‘capillary’ instability.

In contrast, the forces which resist the contraction of a liquid jet into droplets have two
origins; the inertia of the liquid and its viscosity. Inertial forces are those associated with
a body’s resistance to change in its state of motion or rest. In a liquid jet, this change in
momentum is proportional to the density of the fluid times the rate of change of velocity.

Viscous forces arise from interactions between the molecules in the fluid. In particular,
the viscosity is a measure of a fluid’s resistance to a gradual deformation of the fluid, for
example in shear or extension. If the viscosity is independent of the deformation rate,
then the fluid is classed as linear or Newtonian. But, even for these simple fluids, the
measured viscosity varies depending on the type of deformation applied. For example, for
Newtonian fluids, the extensional viscosity is three times that of the viscosity measured in
simple shear flow. This key parameter is known as the Trouton ratio. On the other hand,
for non-Newtonian fluids the stress-strain relationship is non-linear such that viscosity is
a function of the deformation rate and the Trouton ratio grows much larger than three,
particularly for polymeric fluids.

Standard inks commonly demonstrate shear-thinning properties, where a deformation

reduces the local viscosity. This property can be beneficial to inkjetting; due to high shear
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Figure 1.3: Phase diagram showing the range of stable DoD printing in terms of the

Ohnesorge number and the Reynolds number taken from [74]

rates at the nozzle exit, the fluid viscosity is reduced allowing higher concentrations to
be ejected. However, during flight the viscosity is recovered so that there is sufficient
resistance for the trailing ligament retract and merge with the main drop. Thus, for
Newtonian inks, the formation of unwanted satellite drops may be prohibited with the
addition of shear-thinning additives.

The behaviour of liquid drops can be characterised by a number of dimensionless
groupings of these fluid properties. The importance of surface tension -y, viscosity u
and inertia may be described using the Reynolds number and the Weber number. The
Reynolds number describes the ratio between inertial and viscous forces in a jet and is
defined as

Y

Re ,
1

for fluid density p. The characteristic length L is often defined by the jet radius and U
denotes the characteristic velocity. On the other hand, the Weber number represents the

ratio between inertia and surface tension and is defined as

2
We = pLU .
Y

Drop formation is usually characterised by the Ohnesorge number,

e

I
Oh = = —
Re vVpyL’

which represents the ratio between viscosity and surface tension in the absence of a velocity

scale.

It is useful to construct phase diagrams in order to determine the printability of a
particular fluid; mapping out the parameter space demonstrates not only optimal fluid
properties for drop generation, but also conditions to avoid. For Newtonian fluids, stable
drop generation without satellites for DoD printing is limited to a narrow range of viscosi-

ties corresponding roughly to the Ohnesorge numbers in the range 0.1 < Oh < 1 [45], [94].
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If the Ohnesorge number is too high, then viscous forces prevent break off of the ligament
from the nozzle. On the other hand, if the Ohnesorge number is too low, then surface
tension causes the trailing ligament to break up into a number of unwanted satellites.
Figure 1.3 shows that optimal printability in DoD printing depends on a combination of

physical properties that depend on the nozzle size and velocity.

1.1.4 Jetting Complex Fluids

For many applications in materials science, the fluids to be printed are non-Newtonian.
The rheology of particulate suspensions and polymer solutions, for example, is highly
non-linear and simple rules such as those defined in Figure 1.3 do not apply.

Most graphical inks contain solid pigment particles rather than dyes and in many non-
graphical applications, such as printed electronics, the functional components of the ink
are solid particles. Solid-laden inks are also required in ceramic manufacture and textile
printing. The existence of small particles in the ink can disturb the usual jetting process.
However, there is relatively little known about particulate effects on the stability and
break-up of liquid jets compared to Newtonian fluids or even other complex fluids such as
polymer solutions.

It is known that the presence of particles in a solvent increases the bulk viscosity of
a fluid [83]. Thus, particles are expected to retard the thinning process and consequently
delay the time to break-up. However, experimental measurements using the pendant-drop
technique [15], [60], [61] suggest that once the filament has thinned to approximately five
particle diameters, the thinning no longer follows the behaviour predicted by the bulk
viscosity. In fact, the thinning is ‘accelerated’ due to the effects of finite particle size.
Even for small volume fractions < 6%, van Deen et al. [133] show that even the presence
of a single particle in the thinning filament modifies the detachment dynamics, again
accelerating the thinning rate. Furthermore, the thinning dynamics of particulate fluids
are found to be less predictable than those of continuous fluids.

A mathematical model [65] has also been developed to study the dynamics of filament

evolution towards break-up in the presence of an embedded, solid, spherical particle. A

(a) (b) (©) (d)

Figure 1.4: Furbank & Morris [60] pendant drop experiments of particulate suspensions.
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Figure 1.5: Hoath’s images [132] of DoD jetting. (Top:) Newtonian fluid; (Bottom:)

polymeric fluid.

single particle is modelled as a ‘stresslet’ and assumed to remain stationary at the jet
midpoint. Initially the jet evolves much like a pure liquid jet, until stretching-induced
stresslet flow begins to alter the dynamics. The particle-induced flow causes a strong
local deformation of the free surface and their results demonstrate the formation of a
liquid bulge around the particle, with the point of pinch off shifting from the centre to
accommodate the particle. Their results explain the observations in experiments [60] that
if a large enough number of particles become trapped in the filament region during the
thinning process, then thinning is resisted rather than accelerated. However, this model
does not explain the accelerated dynamics that is generally observed in experiments of
particulate suspensions.

Alternatively, inks may exhibit viscoelastic properties, due to the presence of polymer
molecules, for example. Polymers are long-chain macromolecules, which on average are
randomly coiled like a scrunched up piece of string. However, when subjected to a flow
the chains begin to unravel and are stretched out. Thermal fluctuations resist this action
and try to restore the polymer to its equilibrium state. This gives the fluid an elasticity
that enables polymeric fluids to be drawn out into extremely long thin filaments, which
can have a significant effect on the jetting behaviour.

Figure 1.5 shows that the addition of polymer molecules can significantly affect the
break-up of liquid filaments generated by flow through a DoD nozzle [9], [41], [43], [66],
[120]. In particular, the addition of small amounts of high-molecular-weight polymer can
inhibit the formation of unwanted satellite drops so that the ligament retracts into the
main drop. On the other hand, polymer content affects the reliability of jetting; print
speed may be compromised and, at high concentrations, the main drop may even fail to
detach from the nozzle. Thus, there exists a critical polymer concentration threshold at
which printing at the desired speed is possible, within the limit of the print head drive
[71].

A fluid is formally defined to be viscoelastic if the rheological behaviour is dominated by
an intrinsic timescale. In the case of polymeric fluids, this is the time taken for a polymer

to return to its equilibrium state after a deformation, namely the relaxation time. In
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practice, inkjet inks often exhibit some degree of viscoelasticity over the timescales of

jetting.

1.2 Theory of Polymeric Fluids

1.2.1 Modelling Polymer Molecules

Usually, small particles dissolved in a solvent diffuse through a liquid due to fluctuations
of random collisions of particles. The mean-square displacement of a particle over time ¢

in three-dimensional space is given simply by
< |r(t) —r(0)|* >= 6Dt,

where D is the diffusion coefficient that describes simple diffusive motion. If a constant
force F is applied to a small isotropic particle suspended in a Newtonian fluid, then the
particle will achieve a constant velocity v in the same direction as the applied force so
that

F=¢v,

where € is the coefficient of friction. For a spherical particle of radius ¢ moving through a

Newtonian liquid of viscosity s, the friction coefficient is found to be
§ = bmpsa,

from the full Stokes-flow calculation of flow past an isolated sphere and is related to the
friction coeflicient £ via the Einstein relation

_ kpT

=~

where kp is the Boltzman constant and 7' is the absolute temperature.

D

Polymers, on the other hand, are very large molecules that do not move in simple
diffusive motion. They are composed from a long chain or network of repeating units called
monomers, which are typically joined by covalent bonds between the carbon atoms that
make up the backbone of the polymer. The way in which these monomers are arranged,
the polymer microstructure, significantly influences the material properties of the fluid
and results in non-Newtonian phenomena.

Since the structure is highly flexible, polymer chains can exist in a large number of
configurations. The carbon atoms are able to rotate about the covalent bonds in such
a way that the orientation of a particular monomer is uncorrelated with others. Due to
this rotational freedom, a polymer chain is modelled as a random walk of freely-jointed
sections. Furthermore, the polymer shape is constantly changing as a result of random
thermal fluctuations; if a polymer is stretched, then it will recoil due to the constant
motion of the atoms in the chain. Since the configuration of the microstructure carries
information about the flow history, polymers are said to have a deformation memory,

which is represented by a relaxation time.
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Figure 1.6: A sketch showing how a polymer chain can be modelled by a number of beads

connected my springs.

In order to characterise the effect of a flow on the shape of a polymer chain, we
require a model that changes its physical configuration in response to a deformation.
A spring serves as the simplest form of a deformable object and captures the entropic
tendency of a polymer chain to return to a relaxed random state after a deformation is
applied. Consequently, a polymer chain is usually represented by a set of particles, or
beads, connected by a number of springs. An illustration of these beads-springs models is
shown in Figure 1.6.

Let rg,...,ry denote the position of N + 1 beads connected by frictionless springs of

length b. Therefore, we have N bond vectors given by
Ri:ri—ri_l, iIl,...,N,

with the end-to-end vector of the entire polymer chain
N
R:I‘N—I'():ZR,‘.
i=1

If this end-to-end vector is measured for a large number of polymers suspended in a melt,
then the distribution of the end-to-end vectors is always Gaussian, irrespective of the
chemical properties of the polymer, and the root-mean-squared end-to-end distance scales

with the number of bonds such that
< |R|? > Nb2.

This is a consequence of the central limit theorem, which states that, provided the number
of segments N is large enough, the end-to-end vector distribution will be Gaussianly
distributed and the local structure of the polymer appears only through the statistical
segment length b. Thus, a polymer molecule is represented by a Gaussian chain consisting

of a collection of beads connected by harmonic springs of strength

3kpT

This spring constant captures the entropic restoring forces of the chain as a whole and is

the origin of elastic behaviour.
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Figure 1.7: The dumbbell model for polymer molecules.

1.2.2 A Dumbbell Approximation

The simplest beads-springs model is known as the linear dumbbell model. For this simple
approximation, the chain is represented by two beads connected by a single frictionless
spring, as shown in Figure 1.7. In this way, the friction is concentrated at either end
of the polymer chain. Let r; and rs denote the positions of the two beads so that the
end-to-end distance R = ry —r; is represented by the spring displacement. As long as the
elongation remains smaller than the the maximum length of the chain, then the chain can
be modelled by an elastic spring with spring constant
g

where R, denotes the chain length at equilibrium. Thus, in this model the dumbbells are
assumed to be infinitely extensible.

In total, there are three forces acting on each bead; the spring force, a frictional force
and random thermal motion. The frictional force acting on each bead is proportional to
the difference between the bead’s velocity dr;/dt and the fluid velocity at the bead u(r;).
The thermal force, denoted f;, originates from individual collisions of separate polymer
molecules. By equating these forces we can derive an equation of motion for the spring
displacement R.

For each bead, we have the equations

f <(Zrtl — u(r1)> = k:(r2 — 1'1) + f1,

3 <Cgf - u(r2)> = k(r; —r2) + £y,

where £ denotes the friction coefficient. Subtracting gives a differential equation for the

end-to-end vector R:

3 (Cgf —u(rz) + u(r1)> = —2kR +f,

where f =15 — f
Since the length of the dumbbell is assumed to be much smaller than the length scale

over which the fluid varies, the fluid velocity at the second bead can be expanded as a
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Taylor series about the fluid velocity at the first. Thus, using index notation,

ou;
u;i(re) = ui(ry) + alerl(% T1j)

The differential equation for the end-to-end vector R then becomes

IR % _ f
o K R=-Ri (1.1)

where K is the velocity-gradient tensor defined as K;; = g Converting to index notation

and multiplying equation (1.1) by R; gives

dR; ;
R;j=" — KioRiR; = €RR +J;R (1.2)

The indices can be interchanged to give a second equation, which added to equation (1.2)

and taking the ensemble average < --- > yields
d
% < RiRj > —Ki < RkRj >— < RRp > K. =
4k 1
—? <R1'Rj >+E <fiRj—|-ijl' > .

In order to determine the last term, we employ the Ito-Stratonovich relationship from

(1.3)

statistical mechanics [100] that is
< fiR; >= 2kpTd;;,
so that the evolution equation for the end-to-end vector becomes
¢ RR> K <RR>-<RR>K'= 2 _gp. 457

dt 3 §

where I denotes the unit tensor given by the Kronecker delta I;; = d;;.

I,

At equilibrium, the steady-state solution determines the average

kpT . R
RR >= 21— 297,
< >= A 3

Hence, introducing the following structure tensor and relaxation time

3 §
A:ﬁg<RR> and T:E,

respectively, yields the evolution equation

dA

1
—K-A+A-K'—~(A-1I).
dt T

This linear-dumbbell equation, also known as the Oldroyd-B model, describes the evolution
of a polymer molecule provided that the chains are considered infinitely extensible.
The additional stress in a suspension due to the presence of these dumbbells is given
by
=Ck < RR >,
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where C is the number of chains per unit volume. By substituting for the spring constant

and rescaling via the structure tensor A the polymer stress becomes
o¥ = CkpTA = GA,

where G = CkpT is called the elastic modulus. Then, the total stress T is given by a
combination of an isotropic term, the Newtonian stress and the additional polymer stress
so that

T =01+ us(K+K7) + GA,

where ug is the solvent viscosity. However, it is often useful to write the constitutive
equation neglecting the isotropic term, such that 7 = o — pI, where p = —(8 + G) is the
pressure. Then, the extra stress tensor o is simply a combination of the Newtonian and
polymeric stress, defined as

o =2uE+GA-T),

where E = £(K + K7 is the strain-rate tensor.

Strictly, the Oldroyd model is only applicable to configurations where the entropic
spring force is linear. An alternative, more realistic constitutive model for describing dilute
polymer solutions in extensional flow is the finitely extensible non-linear elastic (FENE)
dumbbell model, which takes into account changes to the spring law as the end-to-end
distance approaches the maximum length of the chain. The spring law is replaced by
kf(R)R where f(R) is a non-linear function called the FENE factor. However, when this
term is incorporated into the bead equation (1.1) the resulting second moment equation
(1.3) cannot be closed. Thus, this full FENE model involves a full solution of the probabil-
ity density function, which requires a huge amount of computation time, even for simple
flows. A simplified version, which employs the Chillcott-Rallison closure approximation
[31], is known as the FENE-CR model and is defined as follows.

The FENE-CR constitutive equation is given by

g = 2MSE+Gf(A_I)7
with the FENE factor f is defined as
L2
L2 +3—tr(A)’
where tr(A) = A,, + 2A,, and the finite extensibility L represents a ratio of the length

f=

of a fully extended dumbbell to its equilibrium length. The conformation tensor A then
satisfies
dA f

— =K-A+A - K'-2(A-1
dt * T( )

which is referred to as the FENE dumbbell equation.

An alternative model is the FENE-P model where the exact spring force for each
dumbbell is replaced with an ensemble average. The net effect is that the term — f(A—I)/7
is replaced by —(fA —I)/7. In simple steady shear this gives a shear-thinning viscosity,
as does the exact FENE equations, whereas the FENE-CR model gives a constant shear

viscosity. However, in extensional flows the behaviour of the two approximations is similar.
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1.2.3 General Beads-Springs Models

Although the dumbbell approximation can qualitatively predict the behaviour of polymers
in solution, it provides a crude representation of the molecules, with a single mode of
relaxation. A more accurate representation is to sub-divide the chain into a number of
beads and springs, to distribute the friction throughout the chain.

Let rg,...,ry denote the position of N 4+ 1 beads connected by frictionless springs of

length b. Assuming a Gaussian distribution, the equilibrium chain length scales like
R? x Nb*.

In the absence of external forces, each bead moves randomly under Brownian motion and

the general equation of motion can be derived from Langevin dynamics [46] to be
or; 1 0 ou
— = —kpgT — -Hy; H - |———+f;|. 1.4
ot~ 2kB zj:arj 3+§j: 7 ( arj+9) (1.4)

Here U is the interaction potential given by
N

U= SZ(U —ri_1)? (1.5)

n=i
for spring force k, f; is a stochastic variable representing random thermal forces and H;
denotes a mobility matrix.
Let Fy,...,Fxy be the forces acting on the respective beads that arise from the forces
in the springs. Since spherical beads are independent of orientation, angular velocity is

neglected and the velocity of each bead is given by
V; = Z Hij . Fj.
J

If the velocity of the bead is determined only by the force acting on it, then the mobility
matrix reduces simply to
I

That is, the mobility of the bead is affected only by the friction coefficient £. This is
sometimes referred to as the Rouse approximation, which we consider in section 1.2.4.

However, in a fluid the velocity of a single bead also depends on the forces acting on
surrounding beads; forces acting on one bead cause fluid motion and therefore affect the
velocity of beads nearby. When these bead-bead interactions are included, the off-diagonal
elements of the mobility matrix become non-zero and can be derived as follows [46].

In the absence of inertia, Stokes equation of motion for a fluid having velocity u and
viscosity s is

psVu+Vp=V-o,

where p denotes pressure and o is the stress tensor that determines the external forces
acting on a unit volume of fluid. To calculate the flow field u created by the external

forces, the beads are assumed to be points so that the external forces are approximated as

V.o= —ZFi(S(I‘—I‘Z’),
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for some position r in the fluid. Thus, the momentum equation can be solved via Fourier

transform, together with the incompressible condition V - u = 0, to yield
u = ZH(I‘—I‘Z‘) . Fz
i

Here H is the Oseen tensor given by

where T is the unit vector parallel to r. Since the beads move at the same velocity as the

fluid,
vi=>Y H(ri—r1;)-Fj,
j

and so the mobility tensor is given by

/ (1.7)

Hz] :{ H(ri_rj)v lfl#.]v
ga

if i = j.

The approximation given here for i = j is commonly adopted in the theory of polymers,
otherwise H;; = H(0) and the mobility tensor would become infinite. This failure arises
from approximating that the beads are points.

As we have seen, this mobility matrix accounts for hydrodynamic interactions between
individual beads. However, there are two more important interactions that can be in-
corporated into the interaction potential U. First, there is the hydrodynamic interaction
between the beads and nearby solvent molecules, which causes the polymer chain to con-
tract in a poor solvent. Second, there is an excluded volume effect that accounts for the
finite volume of each chain segment; since segments of the chain cannot overlap, repulsive
force cause the polymer to swell. Bead-solvent interactions and the excluded volume effect
change the statistical properties of the chain so that the chain no longer has a Gaussian
distribution. Thus, the equilibrium length Rf] is no longer proportional to Nb?. Hydrody-
namic interactions and the excluded volume effect are included in the Zimm model, which

we discuss in section 1.2.5.

1.2.4 The Rouse Model for Relaxation Time

First we consider the Rouse model, which assumes an ideal chain with Gaussian distri-
bution Rg o Nb?. The mobility matrix is given by equation (1.6), so that bead-bead
interactions are neglected, and the interaction potential is given by equation (1.5), so that
polymer-solvent interactions and the excluded volume effect are ignored. Thus, the Rouse
model is ideal for modelling polymer melts, where hydrodynamic interactions are unim-
portant. Ultimately the Rouse model produces an equivalent bead-evolution equation as
the dumbbell approximation. However, multiple modes are introduced to represent the

relaxation times of each individual spring.
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The time scale on which an individual bead diffuses distance b is determined from the
diffusion coefficient to be
b? £v?
TnD=—- = —
°T D kpT’
where £ is the bead friction coefficient. This is known as the Kuhn monomer relaxation
time. Then, the total friction of the entire Rouse chain is found by summing the contri-

butions from each of the N beads so that

§r = NE.

Thus, the diffusion coefficient of the entire Rouse chain is obtained from the Einstein

relation to be
kT

Dr=——.
R= N ¢
Over a characteristic time scale 7, a polymer chain will diffuse a distance the order of its
size Rz giving the Rouse time
NV ENPY?
~ Drp  kgT’

TR

or alternatively 7p = 79N 2.

This Rouse time has a special significance. On time scales less than the monomer
relaxation time 7y the polymer will not move and exhibits an elastic response. For time
scales longer than the Rouse time 7g, the chain will simply diffuse through the solvent
and the fluid behaviour is Newtonian. In the intermediate time scale 79 < t < 7Tg, the
chain demonstrates viscoelastic modes.

To derive the evolution equation for multiple modes, consider the Langevin equation

(1.4) for the bead motion, which for the Rouse model reduces to

3 <ari - u(n)) _ R0y, (1.8)

ot 012
in the continuous limit. To derive the relaxation time, we ignore the thermal noise f; and,

treating relaxation in the absence of flow, we solve the simplified equation

8r,» 821‘1'
_ 1.
¢ ot k 9i2’ (1.9)
with boundary conditions
(31‘0 . 81‘]\[ .
E =0 and at =0.

We try specific solutions of the form
r;=Xcos(Ai+B), i=0,...,N

for constants A and B. The normal modes of the operator g—; are the sinusoidal func-
tions. Considering the boundary conditions at the end beads, cosine modes are chosen
for consistency and independent solutions are found from calculating constants A and B.

Consequently, r; can be represented as a sum of normal modes of the form

ri=Xo+2) X,cos <p]7\?) (1.10)
p
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for integer p. The factor 2 in front of the summation is for reasons of convenience. The
zero mode Xg gives the diffusion of the centre of mass and, since this does not contribute
to the stress, it may be neglected. Taking p = 1 represents the stretching of the entire
chain and therefore gives the longest relaxation time, or Rouse time 7. Modes such that
p > 1 represents other changes to the configuration with shorter relaxation times.

Substituting this solution (1.10) into equation (1.9) for bead motion yields

0X,, n2kp?
5 :7§N2 Xy, p=1,...,N,

which has the relaxation time

Thus, substituting for the spring constant, the spectrum of Rouse relaxation times is given
by 272
Tp:(%:;?, p=1,...,N.

Notice that the relaxation time derived in the dumbbell model 7 = £/4k has the same form
as the longest Rouse time 75 but differs by a numerical factor of 72 /4 ~ 2.5. Both models
predict that the longest relaxation time increases as N2 so that for the same chemistry,
the relaxation time should increase with the square of the molecular mass of the polymer.

Each normal mode has a different relaxation time but contributes the same to the

elastic modulus. Thus, the additional polymer stress is simply
N
O'P:GZAP, p=1,...,N,
p=1

and the equivalent evolution equation is derived from the full dynamical equation (1.8) to

be
dd;";p :K-Ap+Ap-KT—T1p(Ap—I), p=1.....N,
which has a relaxation time for each mode.

This modal spectrum for relaxation times was first derived by Paul Rouse in 1953.
Although an improvement on the dumbbell approximation, important physics remain to
be considered. In particular, inkjet printing of polymer solutions is restricted to dilute
solutions, where hydrodynamic interactions are significant. Hydrodynamic interactions
were first treated by Zimm in 1956. For this level of molecular detail, the off-diagonal
entries of the mobility matrix H;; are non-zero to account for bead-bead interactions and

the interaction potential U is adapted to include solvent effects and interactions between

segments of the chain.

1.2.5 The Zimm Model for Dilute Solutions

A dilute solution is defined to be a solution of sufficiently low concentration such that

the polymers are separated enough from each other that polymer-polymer interactions
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are negligible. As the weight-fraction concentration ¢ increases, the polymer coils become
closer together and begin to overlap each other. The critical concentration at which this
occurs is called the overlap concentration ¢*. For ¢/¢* < O(1), the frictional interactions
between neighbouring polymer molecules are considered negligible and the rheological
response of the fluid is determined solely by the deformation of the polymer coupled with
the hydrodynamic interactions.

In the Zimm model, the polymer is again represented by N + 1 beads connected by
springs of length . However, the friction is not distributed throughout the beads like
in the Rouse model; alternatively, the resistance is a function of the solvent viscosity ps
acting on the whole chain. For an ideal Gaussian chain with equilibrium length RZ x Nbv?,

the friction coefficient is predicted by Stokes’ law to be
§z = 6mus Ry,

where the prefactor 67 is usually neglected. Thus, from the Einstein relation, the diffusion

coefficient for the Zimm model is

P
276 T /N

The polymer molecule will diffuse like a particle with a volume proportional to the per-

vaded volume of the chain in solution, which for an ideal chain is equivalent to its size R;.
Hence, the characteristic time scale for the entire chain is

Nb2 N8N3/2b3
Dy kT

~

Ty ~

the longest Zimm relaxation time.
Since the modes are of the same form as the Rouse model, the constitutive equation

and the polymer evolution equation remain the same:

N
o’ =G) A,

p=1
A 1
u:K-A,ﬁ—AP-KT——(Ap—I), p=1,...,N.
dt Tp

However, the relaxation spectrum 7, is changed.

For an ideal Gaussian chain, the interaction potential is equivalent to that used in
the Rouse model (1.7). To incorporate bead-bead interactions, the full mobility tensor
given by equation (1.7) is included and a similar normal-mode analysis yields the Zimm
relaxation spectrum [46]

uNY2 g

Ty = = .
P\ BrkpTp3/2  p3/2
So far we have neglected the effects of excluded volume and bead-solvent interactions.

This effect can be modelled by modifying the bead interaction potential to

1
U= §ychTZ S(r; — ),
ij
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for excluded volume exponent v. The equilibrium chain length is now proportional to
2 2072
Ry o< N77b7,

rather than Nb?, so that the chain is no longer assumed to have a Gaussian distribution.
The exponent includes both excluded volume effects, which cause the chain to swell, and
polymer solubility effects that cause the chain to contract in a poor solvent. A solvent
in which these effects balance is called a ©-solvent. In this way, the spectrum of Zimm

relaxation times becomes
s N 3vp3 Ty

" kT
full details of which are given in reference [46]. Taking v = 1/2 gives © conditions, whereas
in a good solvent, the excluded volume exponent is approximately v ~ 3/5.
The dynamics of polymers in a dilute solution can be studied by measuring their
viscoelastic properties. The total viscosity u of a fluid is the sum of the solvent viscosity

s and the polymer contribution to viscosity, so that

N
M:M5+GZTp-
p=1

In both Rouse and Zimm theory, the contribution G to the elastic modulus is invariant of
each mode and depends only on the concentration by weight, denoted ¢, and the molecular
weight M, of the polymer [57] such that

kTN
a— Pkp A

My,
Here N4 is the Avogadro number, which defines the number of constituent particles in
one mole of a given solution.

On the other hand, the reduced viscosity for polymer concentration ¢ is defined to be

= Hs
Phus

In the limit of very low concentrations, the reduced viscosity becomes linear in concentra-

tion so can be represented by an intrinsic viscosity defined as [46]

(4] = lim £ #s
¢—0 Qs
Since the polymer contribution to viscosity is proportional to G, we have
G PkpT N4
—ps=Gr=-——=—r7
H— Hs M, )

and for the longest Zimm relaxation time 7z, the intrinsic viscosity is defined as

~ SNV L
for coil size Ry = N"b. This is known as the Flory-Fox relation and the prefactor is found
to be ® = 0.45N4 ~ 2.56 x 1023mol~!. Thus, the intrinsic viscosity increases as a power

law in molecular weight, known as the Mark-Houwink relation

n] = KM
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The constant K depends upon the polymer system and the exponent is given by a = 3v—1,
which describes the molecular weight dependence on coil size in a particular solvent with
excluded volume exponent v.

Since the number of polymers in a unit volume if given by ¢Ny /M, the overlap

concentration ¢* is estimated as

@*Nad o
-TR> ~ 1.
M, 3"

Hence, in terms of the intrinsic viscosity, the widely accepted definition of the overlap

concentration [36] is
077

Ze
Near to this overlap concentration such that ¢/¢* ~ 1, the Zimm model is no longer valid.

d)*

In fact, the Rouse model is more appropriate for concentrated polymer solutions in which
the hydrodynamic interactions are screened by neighbouring molecules. However, fluids
used in inkjet printing are limited to the dilute regime, where the Zimm model is more

appropriate.

1.3 Measuring Rheological Properties

1.3.1 The Capillary-Thinning Rheometer

The progressive thinning of a fluid filament is driven by surface tension and retarded
by inertia, viscosity and additional stresses arising from the extensional deformation of
the fluid microstructure. For non-Newtonian fluids that contain polymers or suspended
particles, the way that fluids stretch, thin and eventually break into droplets is dominated
by these additional stresses. Thus, many studies of capillary-driven break-up concentrate
on determining the transient extensional viscosity of the fluids, a review of which is given
by McKinley [93]. Viscoelastic fluids have been of particular interest both experimentally
[5] and numerically [35]. Overall, extensional flows have dramatic effects on polymeric
fluids since the flow is able to stretch out the coiled up polymer molecules more effectively
than shear flow.

There are many possible free-surface conformations that may be realised during the
thinning and break-up of a fluid. Common experimental methods to induce surface-tension
driven flow on a thin filament of fluid involve stretching a sample of fluid between two
vertically-orientated end-plates. A predominantly extensional flow is generated, however
in the early stages shear forces are important due to the non-slip boundary condition at
the fluid-plate interface. The role of pre-shear on extensional flow is not well understood
and has only been considered by few authors [4].

In particular, capillary-thinning rheometers have long been used to study the thinning
dynamics of both Newtonian and polymeric fluids [143],[21],[126]. This method imposes a
rapid step strain of given magnitude on a fluid sample. Subsequently, an unstable liquid

bridge is generated between the two end-plates and proceeds to thin, under the action
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Figure 1.8: The slow-retraction method for capillary thinning.

of capillary forces, into a slender filament shape, before eventually pinching. The rate at
which the filament radius decreases is controlled by a balance between surface tension,
viscosity, inertia and elasticity. In the absence of external forcing, the dynamics of the
necking process are often self-similar and observations of the minimum filament radius can
be used to extract qualitative, or even quantitative measures of the extensional viscosity
of a fluid.

Compared to filament-stretching devices, which separate end plates exponentially in
time, capillary-thinning rheometers are considered superior for low-viscosity fluids, since
surface tension can be used to measure the force acting on the liquid filament. However,
there is no active control over the extension rate. For very low-viscosity fluids it can
be difficult to create an unstable liquid bridge fast enough to observe a fully developed
capillary-thinning regime; the bridge may collapse before the plates have finished moving.
Also, the rapid separation of the plates may produce inertia-induced oscillations in the

filament free surface, which may obscure measurements of the thinning dynamics.

The slow-retraction method [21] is a revised protocol for measuring extensional rhe-
ology using a capillary-thinning rheometer and is illustrated in Figure 1.8. The end-
plates are separated at a moderate velocity, slower than the axial step-strain of traditional
capillary-thinning rheometers. This velocity is prescribed to be sufficiently fast such that
the fluid sample does not sag due to gravity, but slow compared to the intrinsic timescale
of the fluid. For example, for polymeric fluids this separation velocity is determined by
the polymer relaxation time so that the molecules remain at equilibrium during the initial
stretching stage. The plates are separated to a distance just below the critical aspect ratio
at which the liquid bridge is on the verge of stability. After this stable separation distance
is reached, the plates are extended at a much slower velocity to induce capillary thinning.
The main benefit of this revised technique is that the initial conditions are well defined
and can be easily controlled. Since the plates are extended through the critical separation
distance at a much slower velocity, the oscillation effects due to fluid inertia are minimised

and consequently the minimum filament radius can be measured more accurately.



22 Chapter 1. Inkjet Printing Complex Fluids

1.3.2 Rheometry using Inkjet Technology

Although rheometers have long been employed to measure fluid response and extract
rheological properties, the speed at which traditional rheometers operate is slow compared
to the jetting speed of a DoD printer. For example the Cambridge Trimaster [131] operates
at around 0.15 m/s, corresponding to a filament extension rate of 250 s~!. On the other
hand, the optimum print speed for DoD printer is usually around ~ 2 —6 m/s, generating
much higher extension rates in the region ~ 10% s~! depending on the nozzle size. Although
current filament-thinning experiments cannot reach the extension rates achieved in inkjet
printing processes, they do enable the measurement of very short extensional relaxation
times with time scales comparable with inkjet drop formation [132].

Recent developments of the Trimaster rheometer have lead to a revised model, which
can extend fluids at a speed of 2 m/s, giving extension rates of ~ 10% s~1, much closer to
real jetting conditions. However, at such a fast stretching speed, shock waves are induced
when the pistons stop moving, which may be problematic when measuring the minimum
filament radius. Furthermore, it has recently been suggested that filament-stretching de-
vices alone may be insufficient to predict inkjet behaviour due to effects that occur within
the nozzle?. Hoath et al. [70] find that DoD jetting behaviour is not consistent with
the extensional relaxation time measurements obtained from a fast filament-stretching
rheometer [130]. Rather, it is suggested that the predicted slowing of the main drop and
the delay in the break-off time are caused by the polymer molecules becoming fully ex-
tended during the jetting process, which produces an enhanced extensional viscosity. Full
extension of the molecules arises from the high speed jets with small nozzle diameters, in
combination with the relatively high solvent viscosity and small molecular weights. Conse-
quently, inkjet fluid assessment methods need to provide a full characterisation including
both linear and non-linear viscoelastic properties.

The least developed, but potentially high-impact method to characterise extensional
properties of complex fluids is to use real inkjets as rheometers. The use of jet break-up to
measure the extensional viscosity of a material was first proposed by Schummer & Tebel
[119]. In both DoD and CIJ printing, the generation of an ink drop involves a thinning
liquid filament, either between the droplet and the nozzle in the case if DoD printing or
between two adjacent droplets in a continuous jet. This filament is analogous to that
generated in a capillary-thinning rheometer and so the thinning data could be used to

extract extensional properties at jetting strain rates.

1.3.3 Polymer Behaviour in Extensional Flow

Consider the uniaxial deformation of a polymeric fluid. For extension rate ¢, the axial

velocity is given by u, = éz and mass conservation of an incompressible fluid determines

2Published: S. D Hoath, D. C. Vadillo O. G. Harlen, C. Mcllroy, N. F. Morrison, W. Hsiao, T. R.
Tuladhar, S. Jung, G. D. Martin, I. M. Hutchings Inkjet printing of weakly elastic polymer solutions J.
Non-Newt. Fluid Mech. 205 (2014) 1-10
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the radial velocity u, to be

10 Ou,
Vious g g =0
0
E(Tur) = —T¢,
— 1 ;
Uy —567'

Thus the velocity profile for uniaxial extension is given by
1. )
(uT7 07 uZ) = (_567‘7 07 EZ),

and the velocity gradient tensor is

duy 1.
ou; o 0 I
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The extensional viscosity describes the fluid’s resistance to uniaxial stretching and is

calculated from the thinning data via

F
émh?

man

pE =

where the force F is the tension on the filament and h,,;;, is the minimum filament radius.

Furthermore, the total stress in a liquid cylinder consists of an isotropic pressure plus the

extra stress tensor, so that at the free surface r = h the radial stress is given by

Trr = —P + Oprr = —Datm-

Thus, the axial force required to stretch the fluid in the z-direction is

h
F= 27/ T<Tzz +patm)d7" = 7rh2(0zz —-D +patm) = Wh?(gzz - UTT)a
0

and the extensional viscosity is reduced to

Ozz — Opp

HE=—"7>""",
€

at the minimum filament radius h = hpin.

For a Newtonian fluid, stress is a linear function of shear viscosity p and the stress

tensor is defined by the constitutive equation
o =uK+K7),
so that the extra stress components are given by
Oz = 20€ 5 Opp = —pE.
Hence, the force in the filament is given by

F = 3wh?peé
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and the extensional viscosity is simply

KE = 3p.

This is the Trouton ratio, which states that the extensional viscosity is three times the
shear viscosity in Newtonian fluids.

For polymeric fluids, we consider only the polymeric stress defined by the constitutive

equation
o=Gf(A-T),
for elastic modulus G' and FENE factor
L2
F= L2 +3—tr(A)’

that accounts for the finite extensibility L of the polymer molecules. The evolution equa-

tions of the polymer configuration tensor A are given by

dA,, . f
dt = eArr ;(Arr 1)7
dA.. Y f
o =2éA,, — =(A,, — 1),

in extensional flow.
In the Oldroyd limit of infinitely extensible dumbbells, f = 1 and the dumbbell evolu-

tion equations are solved simply by the integration factor method to give

1 14 ¢€
A = - <1 + éT exp (—Heﬂt>> ,
14 ér T
1 1 — 2¢
A, = (1 2erexp (~ T2
1—2ér T

Hence, in the limit ¢ — oo, the extensional viscosity is given by

G(A,, — A.) 3Gt

he = ¢ T (At en)(1—2ér)

Thus, as ér — 1/2, the extensional viscosity becomes singular. This value ér = 1/2
defines the boundary between viscous and elastic-solid like behaviour. For ¢ < 1/2, fluid
behaviour is viscous and for é < 1 the Newtonian Trouton ratio is recovered.

On the other hand, for é7 > 1/2, A,, grows exponentially, indicating the unravelling of
the polymer chains. In this limit of large deformations, A, < A,, and the FENE factor

is approximated as
L2
=~ Rt
L* — Azz

For steady state % = 0, the evolution equation of the axial configuration tensor reduces

<2é - i) A, =0,

giving a second approximation to the FENE factor, f = 2ér. Thus, equating the two

to

approximations, we find that for long deformation times

Azz:L2 <1_j¥>§
2¢éT
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as breakup time approaches, ¢ — oo so that A,, — L?. Thus, at finite extension, the

polymers behave like a suspension of rigid rods with extensional viscosity

wE = foélzz = 2GTL2,
€

as recognised by Entov & Hinch [54].

The above derivation of extensional viscosity assumes that the filament thins uniformly
as a liquid cylinder. A more detailed model is required to obtain an expression for ten-
sion, particularly for complex fluids, so that the extensional viscosity can be accurately

measured solely from the actual necking shape of the thinning filament.

1.4 Modelling and Simulating Jets

1.4.1 Long-Wavelength Approximation for Newtonian Jets

In the study of Newtonian jets, the biggest challenge both theoretically and numerically

is to solve the full Navier-Stokes equation,

0
p(altlJru(V-u)) =-Vp+V.0o+pg,

for an incompressible fluid such that
V.-u=0,

in a domain with an evolving boundary, where the forcing depends critically on the shape
of this boundary. Here we denote density p, pressure p, jet velocity u and stress o. In
inkjet applications, the gravitational force g is negligible since the jet dimensions are
small and we consider motions driven by capillarity alone. For complex fluids, there is an
additional constitutive equation to solve for the stress.

In capillary thinning, the driving force is the Laplace pressure
Ap =7k,

for surface tension v and mean curvature . If n is the outward normal, then the mean

curvature is given by

R = —V|5Q -1,

where V is restricted to the surface §{). The Laplace pressure describes the pressure jump
across a curved interface, which produces an increased pressure inside a convex surface.
It is known that the free surface moves with the local fluid velocity. Thus, to derive
an equation for this motion we define a function S(r,¢) that is constant at the jet surface
[53]. Thus, for jet velocity u = (u,, ug,u,), the evolution of the free surface is described

by the kinematic equation

oS
E‘F(U-V)S—O.
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For an axisymmetric jet that is not folded on itself, the free surface is defined by a height
function S = h(z,t) — r, which gives the local radius of the jet at some axial position z.

Thus, the kinematic equation reduces to

Oh Oh
a“‘uz& = Up|r=h, (1.11)

which specifies that the jet surface moves with the velocity of the neighbouring liquid.
Furthermore, the strength of the forcing on the free surface is proportional to the mean

curvature, which for an axisymmetric jet is defined to be

1 hzz
h(1+h2)V2 (1 + h2)3/2°

(1.12)

where the subscript here indicates differentiation with respect to z. Thus, as the jet
radius decreases to zero, the mean curvature becomes infinite, so that jet break-up is a
singularity. At the liquid-air interface, the pressure and the viscous forces are balanced by
the surface tension. Thus, for a known velocity, the motion of the interface is described
by the kinematic equation (1.11) and the shape of the interface couples back into the flow
via the boundary condition

o -n = —yKnlsq.

However, solving the full Navier-Stokes equations in this way can be computationally
expensive. In order to simplify the problem, the slender-jet approximation is often used
for modelling jet break-up. In this case, perturbations are assumed to have a wavelength

much longer than the radial extension so that
L.=¢el,, e<1,

where € is a small number and the hydrodynamic fields are expanded in the radial direction

such that

"LLZ(T', Z7t) - uo(Z,t) —+ UQ(Z,t)(GT)2 + - ,
3
ur(r 2, 0) = —up(2.) % e ) S

p(r,z,t) = po(2,t) + pa(z, t)(er)? + -+ |

where the ‘prime’ denotes differentiation with respect to z. The leading-order axial velocity
is denoted v(z,t) = up. This long-wavelength description, based on Reynolds’ lubrication
theory, is surprisingly accurate, even if the long-wavelength assumption is not strictly valid
[52], [3]. Results under this approximation are found to be highly quantitative and often
represent the exact solution near to break-up.

A unique long-wavelength description requires choosing a length scale L, as well as a
time scale T', which correspond to a balance of terms in the Navier-Stokes equation. A
convenient choice is the balance in which surface tension, inertia and viscosity all enter

the governing equation at leading order [53] so that
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Quantities are made dimensionless using the above scaling and the radial expansion is in-

serted into the full Navier-Stokes equation for incompressible flow so that the z-component

P (31) + 'Uav> = —’7% + ié (h2 (Uzz - Urr)) .

reduces to

ot 0z 0z  h?20z
The full derivation of this leading-order equation is detailed by Eggers [50].

For a Newtonian fluid, the stress tensor o is defined by the constitutive equation

g = ,UJ(K + KT)>

Ou;

for fluid viscosity p and velocity gradient tensor K;; = 5 +. Thus, the axial and radial

stress components are
ov v
Ozz = 2#% y Opr = _N&7

and Navier-Stokes reduces to

P\ar TY02) = Vo "Mooz )

This equation describes the force acting on a cross-section of fluid that has momentum
h2v per unit length; the right hand side consists of a combination of capillary and viscous
forcing, and the left-hand side corresponds to inertia. Additionally, in the long-wavelength

approximation, the kinetic boundary condition (1.11) is reduced to

on: 9, ,
W‘f‘&(h U)—O,

which explicitly describes the motion of the free surface and is the conservation law for
the volume h2dz contained in a small cross-section of the jet of length dz.

Although mean curvature x is given by

at leading order, in order to include the effects of longitudinal curvature and retain accu-
racy of the curvature beyond the limit where |h,| < 1, the full expression of the curvature
(1.12) is kept. A detailed comparison with the full Navier-Stokes simulations has been
carried out by Ambravaneswaran et al. [3], with excellent agreement for a wide range of
parameters. This method can be pursued to higher order in € by continuing the radial
expansion to higher powers in r. In principle, this could lead to a better description of
non-linear jet dynamics. However, due to the increasing order of spatial derivatives, which
are difficult to compute, this has not generally been pursued.

Since the equations of fluid dynamics are based upon conservation laws, it is convenient
to express the governing equations in flux-conservative form. The conservation of mass
equation is already in this form, while the left-hand side of conservation of momentum

can be re-written as

E—H}(%_ﬁ

ov ov 1 /0
ot 0z

—(h%v) + 8(h2v2)) ,
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using conservation of mass and the gradient of curvature is rewritten as [55]

0K 1 0
—— = (R’ K(h
0z h? 82( (R)),
where K is defined to be
1 n hs.
h(1+ h%)l/2 (1+ h§)3/2'

K=

Note that K has almost the same form as the mean curvature , but both the axial and
radial contribution to this curvature term are positive. Hence, the Newtonian slender-jet

equations may be written in flux-conservative form:

on: 9, ,
W—I—%(hv)—o,

p <§t(h2v) + aaz(h%?)) = 882 <h2 <7K + 3;@2)) .

Models based on these one-dimensional equations have been developed for their simplicity

(1.13)

and computational efficiency, with much success in modelling the thinning of liquid jets
[35], [90], [131] and the formation of droplets [3], [6]. These equations will form the

foundation of our one-dimensional jetting models developed in Chapters 3 and 5.

1.4.2 Full Numerical Simulations

There has been a vast improvement in computational speed and resources over the last
decade. Over the last ten years, powerful and accurate computational tools have been
developed to simulate flow through a nozzle, liquid jet dynamics and the subsequent for-
mation of drops. Consequently numerical simulation of inkjet printing using computational
fluid dynamics (CFD) is now as equally important as experimental data in analysing the
jetting process. Much research has focused on axisymmetric models that employ finite-
difference or finite-element methods in order to solve the Navier-Stokes equations [142],
[66], [30]. Often, for simplicity, the full flow inside the nozzle is neglected, with boundary
conditions imposed at the nozzle exit.

In this thesis, the simulation method of Morrison & Harlen [66] is used for comparison
with simpler models. This axisymmetric simulation uses a Eulerian-Lagrangian finite-
element method to capture the evolving free-surface shape and has previously been used
to study jet breakup in drop-on-demand printing for both Newtonian [24] and viscoelastic
fluids [66] and continuous inkjet printing of Newtonian fluids [23]. Here we give a short
overview of the numerical techniques used for this particular simulation method.

The velocity u of a general fluid with density p and pressure p is described by the usual
conservation of momentum equation

p(?:—i-u(v-u)) =-Vp+V.o, (1.14)

along with the incompressible condition.

V.u=0, (1.15)
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and a constitutive equation for the stress tensor o. The software uses a moving-mesh,
finite-element method to solve these governing equations. By allowing the finite elements
to deform with the fluid velocity, the constitutive equation is solved in the co-deforming
frame. For free-surface problems such as inkjet printing, this method naturally captures
the free-surface shape. Further details of the numerical scheme can be found in references
[66], [67] and [139].

Since the mesh deforms with the fluid, it is distorted by velocity gradients, which
reduces the accuracy of the finite-element solution. Thus, it is necessary to limit the mesh
distortion by introducing a re-meshing algorithm to maintain element-shape quality and
resolution. To reconnect the mesh after each time step, nodes are retained as material
points and reconnected is such a way to produce best triangulation via the process of
Delaunay triangulation. There is a simple algorithm for reconnecting an existing mesh to
obtain a Delaunay triangulation given in [67].

In addition to controlling mesh distortion, an adaptive mesh resolution is also em-
ployed. A greater resolution is needed in regions of high stress or velocity gradient, such
as the neck regions that precede break-up, and, for polymeric fluids, in regions of high
polymer extension. Due to the nature of a Lagrangian mesh, it is necessary to continually
add and remove nodes to control mesh resolution. A quantitative measure of the need for
extra resolution is certain areas of the mesh is given in [67].

At the fluid-air interface the boundary condition is defined to be

where 11 is the unit vector normal to the interface, v denotes surface tension and Ry, Rs are
the principle radii of curvature. The boundary conditions imposed in the axial direction
determine the jetting conditions of the desired simulation. For example, periodic bound-
ary conditions are specified to model an infinite jet, whereas Dirichlet boundary conditions
are imposed to correspond to the fixed end plates of a capillary-thinning rheometer. Fur-
thermore, certain nozzle geometries and initial velocity profiles can be implemented to

simulate both DOD and CI1J jetting.

1.4.3 A Drop-on-Demand Inkjet Simulation

The nozzle geometry used for the axisymmetric simulation of a DoD inkjet is detailed in
Figure 1.9. The jet is assumed to be axisymmetric such that a 2D coordinate system may
be employed to fully describe the jet dynamics and nozzle geometry, with the axis of sym-
metry at the centre of the outlet nozzle. The nozzle shape and dimensions considered here
are based on the Xaar XJ126-200 print head used by Hoath et al. [71]. The simulations
only consider the contraction flow into the nozzle and do not model the details of the print
head itself, which is non-axisymmetric.

The fluid is driven by imposing a time-dependent velocity profile on the curved inlet

boundary upstream of the nozzle. The driving signal uses the profile of Morrison & Harlen
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(a) Nozzle Geometry (b) Driving Wave Form
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Figure 1.9: (a) Nozzle geometry used in axisymmetric simulations; (b) Initial velocity

profile/driving signal applied to the curved nozzle inlet.

[66] and consists of three stages known as the ‘pull-push-pull’ curve, shown in Figure 1.9.
This profile is chosen to match the flow conditions of the Xaar print head near to the
nozzle outlet, although some other DoD printers use a push only profile. The initial ‘pull’
phase draws fluid into the print head from the nozzle outlet, the following ‘push’ phase
ejects the fluid from the nozzle and the final ‘pull’ phase draws back the trailing ligament

to ensure that it breaks primarily at the nozzle.

Figure 1.10 shows a time series from a simulation of Newtonian jet generation and
breakup from a DOD inkjet. The initial pull phase of the driving signal is shown in Figure
1.10(a). The velocity Up corresponds to the tip velocity when the ligament length and
diameter are equal (and equal to the nozzle diameter). This occurs at the beginning of
the final ‘pull’ stage of the simulated driving signal and can be seen in Figure 1.10(b).
The ligament is then seen to break off from the nozzle at the end of this ‘pull’ phase in
Figure 1.10(c). The final velocity Uy is the speed that the front of the main drop reduces
to. This is usually measured at 1 mm from the nozzle exit and corresponds to Figure
1.10(d). However, the velocity after break off from the nozzle is approximately constant

across Figures 1.10(c-e).

After break off from the nozzle, the trailing ligament may merge with the main drop
or break up due to the capillary instability. The front drop, which is the drop of greatest
volume, is referred to as the main drop and any subsequent droplets generated by liga-
ment breakup are called satellite drops. The generation of satellite drops is dependent on
a number of factors, notably the Ohnesorge number, and for polymeric fluids the concen-
tration and the molecular weight significantly affect both the number and the size of the
satellite drops produced [66]. In counting the satellite drop volume in our simulations,
no post-breakup coalescence is considered, whereas in reality drops may merge into one

another. The ligament is seen to breakup into numerous satellite drops in Figure 1.10(e).
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Figure 1.10: Simulation of the different phases of DoD jet generation for a Newtonian
fluid.

1.4.4 A Continuous Inkjet Simulation

The shape of the print head used in our axisymmetric CIJ simulations is chosen to replicate
the dimensions of CIJ nozzles used in experiments, while simplifying the interior of the
print head above the nozzle. The initial finite-element grid, with a nozzle aspect ratio 1,
is shown in Figure 1.11. A slight fillet is applied to the sharp corner where the conical and
straight nozzle sections meet. The print head inlet is located at the top boundary of the
grid. Here a time-dependent-velocity boundary condition is imposed to represent the drive

modulation. The bottom boundary condition represents the nozzle outlet and the initial
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Figure 1.11: Initial grid used in CIJ simulations for nozzle aspect ratio 1.

meniscus is assumed to be flat as observed in experiments. The remaining boundaries
correspond to the rigid interior walls of the print head, thus a no slip boundary condition
is imposed.

To simulate a jet with modulation of frequency f and amplitude ¢, the inlet velocity

is prescribed in terms of time ¢ as
uin(t) = uo(1 + esin(2m f1)),

where
TR2U
Ain ’

for nozzle radius R, mean jet velocity U and the inlet surface area A;,. While this is not

ug =

expected to fully represent the experimental flow throughout the entire print head, it is
designed to produce sufficiently similar flow conditions in the vicinity of the nozzle. The
possible presence of higher harmonics in the jet actuation is neglected. Again, no method

of coalescence was implemented in the simulations.

(a) Initial ejection phase

(b) Onset of Rayleigh instability

(c) Jet becomes thin before break-up

- -9

(d) Jet breaks into a series of main drops and satellites

Figure 1.12: Simulation of the different phases of CIJ drop generation for a Newtonian
fluid.
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Figure 1.12 shows a time series from a simulation of Newtonian jet generation and
break-up from a continuous inkjet nozzle. Figure 1.12(a) shows the initial ejection phase.
Figure 1.12(b) shows the onset of the Rayleigh capillary instability downstream of the
nozzle exit and the jet becomes increasingly thin downstream, as seen in Figure 1.12(c).
The jet subsequently breaks up into a series of main drops and smaller satellite droplets
as shown in Figure 1.12(d). At break-up the droplets are slightly elongated due to the

shape of the nozzle and eventually evolve into a spherical shape.

1.5 Thesis Outline

The research surrounding inkjet printing and its applications is vast. However, the founda-
tion of this advancing technology lies simply in the stability and break-up of liquid jets. In
Chapter 2, we review the literature detailing key mathematical advances in understanding
the formation of liquid drops.

In the following chapters, we discuss three distinct problems related to the development
of inkjet technology. In particular, we use simple numerical modelling to examine the
effect that particles, polymers and non-linear driving have on certain jetting techniques,
including DoD and CIJ. We compare our results with full numerical simulations and, for
some cases, experimental data. A brief outline of these chapters is given here.

In Chapter 3, we develop a simple one-dimensional model, based on the long-wavelength
approximation. First, we simulate particle effects on the capillary-thinning of a liquid
bridge and establish the mechanism responsible for accelerating the thinning process.
Second, we examine viscoelastic effects on infinite-jet dynamics and validate our one-
dimensional model against the results of the full axisymmetric simulation.

In Chapter 4, we develop a simple DoD jetting model in order to determine the maxi-
mum polymer concentration that can be jetted at a desired print speed. Furthermore, we
discuss a prestretch mechanism, driven by an abrupt contraction in the nozzle geometry,
and the jetting conditions for which polymer degradation is possible.

In Chapter 5, we use an adaptive mesh alongside our one-dimensional model developed
in Chapter 3 to simulate CLJ printing of Newtonian fluids. In particular, we examine
how break-up behaviour is affected by non-linear modulations in the velocity profile. We
compare our results with full axisymmetric simulations in order to incorporate nozzle

effects into our one-dimensional model.
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Chapter 2

Stability and Break-up of Liquid
Jets

2.1 History of Studying Liquid Jets

A jet is defined to be a stream of matter that is cylindrical in shape. With such an
extensive definition, jets appear in a huge number of circumstances and the study of their
stability is often motivated by practical questions and applications: will the jet break, and
if so, how long will it take? How does viscosity affect the ultimate break-up regime into
spherical droplets? After break-up, what is the size distribution of droplets?

Jet dynamics probe a wide range of physical properties such as surface tension, vis-
cosity, and both bulk and surface rheology. It is the interaction of these properties that is
key to understanding, and therefore characterising, jet thinning and break-up processes.
Moreover, optimising jet propulsion for a wide range of complex fluids is important to the
future development of inkjet technology.

The earliest study of liquid jets is attributed to Leonardo da Vinci in his collection
of largely scientific writings known as the Codex Leicester. He correctly noted that the
detachment of falling drop is governed by the balance between gravity and surface tension
[39]. However, he mistakenly assumes that the same mechanism is responsible for the
separation of the drop itself. This problem was solved one hundred years later by Laplace

[84] and Young [144], who demonstrated the crucial role of mean curvature in the form of

11
Ap—“y(RJrR)EW

where « is the surface tension and x is the mean curvature. The axial R, and radial R,

the Laplace pressure

contributions are known as the principle radii of curvature.

The work of Laplace and Young demonstrates the fact that surface tension can act in
two different ways. For a hanging drop, the surface tension acts like an elastic membrane
and is therefore stabilising, resisting the gravitational force. On the other hand, once a
cylindrical shape is reached, the radial curvature acts as the driving force to destabilise

the free surface and leads to the detachment of the drop. In the absence of viscosity, the

35
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Figure 2.1: A figure from Savart’s original paper [118] showing the break-up of a liquid

jet. The production of smaller satellite droplets is clearly visible.

characteristic time scale on which this break-up occurs is given by

R3
tb = L7
Y

where p denotes the fluid density and R is the initial radius of the cylinder.

This mathematical break through was followed by Savart’s pioneering experimental
work in the study of jet break-up [118], as shown in Figure 2.1. He observed that the
break-up of a jet into droplets occurs spontaneously and is governed by laws independent
of the circumstance under which the jet is produced, concluding that the thinning and
break-up behaviour is a feature intrinsic to the jet properties. Savart also noted the
appearance of smaller satellite drops in between the main drops of fluid, a non-linear
characteristic of jet break-up, which can be observed in Figure 2.1.

A fully developed mathematical theory describing the break-up of liquid jets, in which
the role of surface tension was truly recognised, came fifty years later with the work of
Plateau and Rayleigh. Plateau [107] was first to recognise that a jet is unstable to small
perturbations that reduce the surface area and proposed that that there exists a critical
wavelength below which jets are always stable. Rayleigh then introduced the method of
linear stability analysis to quantify this critical wavelength, first for inviscid fluids in a
vacuum [109] and then a few years later he discussed the case of a viscous cylinder [110].
However, as perturbations become large, non-linear effects become increasingly important
and ultimately dominate near to break up, where Rayleigh’s linear stability analysis is no
longer valid.

With the development of high-speed photography, intricate features of drop break-up,
such as the formation of secondary and even tertiary droplets, could be documented. In
particular, early jetting experiments showed that satellite drops originate from an elon-
gated neck joining two main drops of fluid. Also, the shape of the neck region close to
break-up was observed to be independent of initial conditions such as nozzle size, jet speed
and the amplitude of the initial perturbation. In the absence of viscosity, a dimensional
analysis of the characteristic break-up time t; shows that the minimum neck radius can

be described by a simple power law

5 1/3 )
Popin, ~ | ~ t—t)%/3.
()"

However, this early research lacked a theoretical framework for fully describing non-linear
features of the free-surface flow. Significant progress occurred after the suggestion that

self-similarity could provide the foundation for a theoretical description [104],[127].
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In this chapter, we first consider the stability of a liquid jet subject to small perturba-
tions and derive the dispersion relation for an inviscid jet via the classic Rayleigh linear
stability analysis [109]. This inviscid result is compared to the viscous case in order to
highlight the increased break-up length due to the influence of viscosity, which reduces
the growth rate of small disturbances. In light of the Newtonian theory, we derive the
viscoelastic dispersion relation, as given by Goldin et al. [62], and comment on the failure
of this linear analysis to predict the change in break-up length for viscoelastic fluids. Sec-
ond, we consider the subsequent dynamics of an unstable liquid jet, for which non-linearity
dominates the flow. We detail the universal self-similar solutions that describe Newtonian
thinning and derive the exponential thinning law unique to viscoelastic fluids. Finally, we

consider the ultimate break-up of Newtonian and viscoelastic filaments.

2.2 The Initial Capillary Instability

2.2.1 The Classic Rayleigh Stability Analysis

From the work of Young and Laplace it is known that the surface tension, or capillary
force, drives a cylindrical jet to minimise its surface area and consequently break up into
a number of spherical droplets. Pioneered by Rayleigh, a mathematical description of this
instability is provided by the powerful tool that is known as linear stability analysis. By
this method, the characteristic time and length scales associated with this free-surface
transition can be predicted. Furthermore, Rayleigh established that an inviscid cylinder
of liquid will only destabilise provided that the wavelength A exceeds the circumference.

That is, a cylindrical liquid jet will break up into droplets if and only if
A > 27R,

for jet radius R. Here we derive this well-known result.
For a Newtonian liquid jet of viscosity u, density p, and pressure p the Navier-Stokes

equation is given by

ot

for jet velocity u, together with the incompressibility condition

p <(9u + (u- V)u) = —Vp+ uV3y,

V-u=0.

As described earlier, the Laplace pressure at the jet free surface Ap is written in terms the
mean curvature k. For an axisymmetric jet with free surface h(z,t), the mean curvature
is defined as 1 X

P AT RE (R 21)

where the subscript z denotes the spatial derivative.

For a linear stability analysis, a base state is defined by a solution to the governing

equations; for example, it is typical to take the base state ug = 0. Instability of a liquid jet
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arises due to the existence of small perturbations from the base state. Perturbations can
be thought of as small disturbances in the jet radius and velocity and are usually written
in the form

6 = & exp(i(kz + mo) + at),
for some parameter §. Here ¢’ is the amplitude of the disturbance, « is the growth rate of
the disturbance and ¢ is the azimuthal angle. The longitudinal wave number k is defined
in terms of the jet wavelength A to be

k="
A

In this way, growing and decaying disturbances can be easily identified; growing perturba-
tions are unstable modes acting to destabilise the jet whereas decaying perturbations are
stable, returning the jet to the base state. Azimuthal perturbations m > 0 correspond to
corrugation of the free surface and so always increase the surface area of the jet. Conse-
quently, all azimuthal modes corresponding to non-axisymmetric perturbations are stable.
Thus, we restrict ourselves to axisymmetric perturbations where m = 0.

For a perturbed base state, linearisation leads to a simple set of governing equations,
which can be solved to yield a dispersion relation. The dispersion relation determines the
rate at which the perturbations grow and depends on both the wave number k£ and the jet
radius R:

a = a(k,R).
The fastest growing disturbance, with the maximum growth rate o* and corresponding
critical wave number £*, will eventually dominate the dynamics and cause the jet to pinch
off into droplets. Solutions of the dispersion relation determine jet stability, as well as the
rate at which the jet will destabilise. It is also possible to derive conditions for the critical
wavelength A* and therefore the ultimate break-up length of the jet.

For an inviscid jet p = 0, conservation of momentum and incompressibility can be

combined to give the Laplace equation
Vip =0, (2.2)

for pressure p under a linear approximation. We seek axisymmetric perturbations about

the base state ug = 0 of the form
u(r,z) =ug+u(r,z) ; plrz)=mpo+prz),
in the radial r and axial z directions. The pressure perturbation takes the form
p(r,z) = F(r) cos(kz),

where the function F(r) is found from the Laplace equation (2.2) to satisfy

0’°F 10F
ARSIy ) A
or +r8r ’



2.2. The Initial Capillary Instability 39

the non-singular solution of which is the modified Bessel function F(r) = p'Iy(kr) for
disturbance amplitude p'.
We now seek a boundary condition for the liquid-air interface, where the Laplace

pressure is Ap = yk. The perturbation about the free surface takes the form
h(z,t) = R+ e(t) cos(kz),

where R is the radius of the base state. Then, by the definition of the mean curvature

given by equation (2.1), the linearised pressure perturbation at the free surface is given by
~ g
p(r=R,z) = 7 (1- kQRQ) ecos(kz),

and

_ Io(kr
plr ) = —g5(1 - k:2R2)I§((kR))

The problem is closed by relating the amplitude of the pressure perturbation p’ to the

ecos(kz). (2.3)

interface displacement €(t).

We assume that the time dependence of the perturbation is given by
(t) = h exp(—at),

for the disturbance growth rate o and amplitude 4’. In a linear approximation, the motion

of the free surface is determined by the kinematic equation to be

oh
i t.(r =R, z).

Furthermore, the radial velocity , is related to the pressure by the linearised conservation

of momentum equation
Oty 10p

o por’

Thus, the free-surface evolution is described by the equation

02h 19p
@ = —;E(T‘ = R, Z).

Seeking the time-dependent perturbation e(t) = h'e~*, along with the pressure perturba-

tion given by equation (2.3), yields the dispersion relation

I (kR)
Io(kR)’

2_’Yk 2 2

(2.4)

first derived by Rayleigh [109], where Iy and I; denote the modified Bessel functions.
The growth rate a depends on the ratio of the driving surface tension to the initial

jet radius; the larger the surface tension, the faster the growth rate of disturbance wave.

Furthermore, for o to have real positive roots requires
kR <1= A>27R.

Thus, jets are stable and will not break up into droplets provided that the wavelength is

less than the jet circumference.
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Figure 2.2: The dimensionless growth rate o determined by the dimensionless wave
number kR for an inviscid jet given by dispersion relation (2.4) and the long-wavelength

approximation (2.5).

Solving the dispersion relation (2.4) yields the maximum growth rate

«_ 1 [
o ==, —=
3\ pR3’

with the characteristic time scale for the instability determined by a balance of inertia and

3
= [P
v

The corresponding critical wave number

surface tension

kR ~ 0.7,

is the most amplified wave number, known as the Rayleigh mode, and corresponds to
wavelength
A* =~ 9R.

Since the most unstable wavelength is given by approximately 9 times the jet radius, a
long wavelength model describes the linear stability of a jet well, provided that the full
curvature (2.1) is kept to describe the cut off at short wavelengths.

Hence, assuming that the wavelength of the disturbance is large compared to the initial
jet radius so that kR < 1, the modified Bessel functions appearing in equation (2.4) can

be approximated by the leading-order term in the expansions such that
kR
=5

Thus, for a long-wavelength approximation of an inviscid jet, the dispersion relation (2.4)

Iy=1 ; L

is simplified to

2 ’7k2 2 p2
=—(1—-Ek°R 2.5

which has maximum growth rate
1
o' = ——.
2v/2
Figure 2.2 compares the dimensionless growth rate oI" predicted by the long-wavelength
approximation given by equation (2.5) to that calculated from the full dispersion relation

(2.4).



2.2. The Initial Capillary Instability 41

2.2.2 A Dispersion Relation for Viscous Jets

It is also possible to perform the linear stability analysis for the viscous case by solving
perturbations to the full Navier-Stokes equations. However, the resulting analytic formulae
involve Bessel functions and the effects of viscosity are more easily seen by considering the
simplification of Rayleigh’s analysis that assumes the long-wavelength approximation.
Recall that the Newtonian slender-jet equations (1.13) for the free-surface height h(z, )
and velocity v(z,t) are given by
o 9
ot 0z

L DV o
p<8t<hv)+az(hv)>_8z(h 7K—|—3uaz ,

where the curvature term is defined as

(h*v) =0,

1 hz

K .
WA+ 12 (L h2)

By taking this long-wavelength approximation, we implicitly assume that the jet radius is
much smaller than the perturbation wavelength so that kR < 1. Note that the stability of
modes with kR > 1 is not affected by viscosity since the stability arises from the curvature
term.

We consider small perturbations about the base state
hp=R ; wvy=0,

which take the form

h=R(1+h(zt) ; v=109(z1).
We then seek solutions

h z,t) = h exp(ikz + at),
(2,1) ( ) (2:6)
0(z,t) = v exp(ikz + at),

where the prime ’ denotes the amplitude of the perturbation, k is the wave number and «
is the growth rate of the disturbance.
Applying the perturbation to conservation of mass and linearising yields
oh  0b

220y RYY .
3t+Raz 0

Then, substituting solution (2.6), we find the amplitude of the free-surface perturbation

to be
1ik ,
—— .
2 «

h' =

Similarly, applying the perturbed state to conservation of momentum and linearising yields
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and substituting solution (2.6) gives

3:uk2> / Y 272\ 7.1/
a+ v = —(1— R°k*)ikh’.
< P pR( )

Finally, eliminating b/, we arrive at the dispersion relation

2 2
o? + Suk o — Lk
p 2pR

(1-k*R?) =0, (2.7)

as first derived by Rayleigh [109] for a viscous cylinder of fluid.

In this case, the growth rate of the disturbance depends on the balance between the
driving surface tension and the resisting viscosity and fluid inertia. Solving the dispersion
relation via implicit differentiation yields the maximum growth rate

1
© 2V2+60h

a*T

for Ohnesorge number

and corresponding wave number
-
2 + 3v/20h

Thus, viscous forces are predicted to dampen the growth rate of disturbances so that the

E*R =

lifetime of the jet is increased, as expected.
In this case, the critical wavelength A* depends on the viscosity of the jet as well as

the jet radius. Consider the surface displacement of the form

h = K exp(ik*z + ot),
where I/ is the amplitude of the most rapidly growing disturbance. Then, the time taken

for the perturbation at z = 0 to become comparable to the initial jet radius R is

t**iln E
o W)

Defining the break-up length as A\* = Ut*, for a characteristic jet velocity U, yields
U

ar’

A=C

for some constant C' that can be determined experimentally. Thus, for maximum growth

rate o, the break-up length is determined by

%z%(2ﬂ+60h>,

for Weber number )
We = Pu R.
vy

Hence, the critical break-up length is seen to increase with viscosity.

Figure 2.3 shows the dimensionless growth rate o/ for a range of Ohnesorge numbers.

An inviscid jet is the most unstable and the maximum growth rate of disturbance occurs at
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Figure 2.3: The dimensionless growth rate o' determined by the dimensionless wave
number kR for an inviscid jet and viscous jets having Ohnesorge numbers Oh = 0.1 and
Oh = 1.0.

k*R =~ 0.7, the critical Rayleigh wave number. As the Ohnesorge number is increased, the
maximum growth rate is reduced due to viscosity retarding the disturbance. Furthermore,
the critical wave number corresponding to the maximum growth rate is shifted to smaller
values highlighting the fact that the length of the most unstable wave increases for higher

viscosity jets.

2.2.3 The Stability of Polymeric Jets

The study of non-Newtonian effects on the stability of a liquid jet is comparatively recent
compared to Rayleigh’s work. Since the linear stability analysis proved very successful in
predicting the behaviour of Newtonian fluids, a similar analysis was desired for viscoelastic
jets.

In 1965, Middleman [96] was first to publish a viscoelastic dispersion relation, based
on the Oldroyd fluid model, by extending the stability analysis of the slender-jet model
described in the previous section to include viscoelasticity. The solution of this simple
approach predicts that viscoelastic jets are less stable compared to the corresponding
Newtonian case having the same viscosity. This surprising result contradicts much exper-
imental evidence demonstrating that viscoelasticity prolongs the lifetime of a jet.

Later Goldin et al. [62] extend the full stability analysis of an axisymmetric jet to a
generalised viscoelastic material and compare their results to experimental data. They also
conclude that a liquid column of viscoelastic fluid exhibits a faster growth rate of axisym-
metric disturbance waves than a Newtonian fluid and show that this result is independent
of the constitutive equation chosen. Experiments in weakly elastic fluids confirm their
expectation. However, for jets having more pronounced elastic properties, the break-up
observed does not occur by the growth of clearly defined disturbance waves. In this case,
non-linear phenomena dominate and so the linear stability analysis is not valid. Goldin et
al. also note that the analysis assumes a relaxed initial profile; if stress relaxation occurs

along a significant proportion of the jet, then this assumption ceases to be valid.
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Brenn et al. [20] further extend the full analysis to include the effects of an inviscid
gaseous environment. Again a linear theory predicts that a non-Newtonian liquid breaks
up faster than a corresponding Newtonian liquid but is inapplicable for calculating the
break-up lengths of viscoelastic jets due to the strong influence of nonlinear dynamics in
the final stages of thinning. They conclude that a high-density environment enhances the
instability of viscoelastic jets.

In this section, we extend the stability analysis of the slender-jet model given by
equation (1.13) to incorporate the effects of viscoelasticity using the Oldroyd-B model. We
derive the viscoelastic dispersion relation and demonstrate the effect that viscoelasticity
has on the initial growth rate of disturbance waves, which contradicts the stabilising effect
observed in experiments.

Consider the general slender-jet equations for radius h(z,t) and velocity v(z,t) given
by

2
on” + g(hzv) =0,
ot 0z
0 2 0 h2 2 9 h2 K (28)
(i) + - 02)) = L (0K + 0 = 00)

where the axial and radial stress components, 0., and o,, respectively, are determined
by a choice of constitutive equation. For a general linear viscoelastic model, as used by

Goldin et al. [62], the stress tensor satisfies
t
045 = 2/ G(t - t/)Eij(t/)dt/,

where G(t) is the relaxation modulus and Ej; is the strain rate tensor. For the case where
Ej;; is of the form

Eij = EZ/] exp(ik:z + Oét),
we can write the stress perturbation as
Gij = 2E{m(a) exp(ikz + at),

where the viscosity is defined as

n(a) = /O  Gs)eds.

Note that the base state of the stress tensor is assumed to be zero.
For simplicity, we take the Oldroyd-B approximation, where this viscosity is written
as a sum of the solvent viscosity ps and the polymer contribution to viscosity such that

(@) n Gt
) =
" He T T or

(2.9)

for relaxation time 7. In this way, the long-wavelength approximation for conservation of

momentum (2.8) reduces simply to

p (gt(h%) + i(h%ﬁ)) = gz <h2 <7K + 3n(a)gz>> :
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Figure 2.4: The dimensionless growth rate o' determined by the dimensionless wave
number kR for a viscoelastic jet with Oh = 1.0 and De = 90 compared to an inviscid jet

and the corresponding Newtonian jet with Oh = 1.0.

and the stability analysis is equivalent to the Newtonian case with n(a) = ps.

Hence, the dispersion relation is deduced directly from the Newtonian case (2.7) to be

2 377(05)]‘32 ’Ykz

- 1 - k*R?) = 2.1
o’ + p o 2,0R( R*) =0, (2.10)
with maximum growth rate
1
T = —————,

2v/2 + 60hy-

for the modified Ohnesorge number
Ohyye — n(e”)

VR

Comparing this viscoelastic growth rate a* to that of the Newtonian fluid ag yields

ap  2v/2 4 60h,-

a* 224 60h
which indicates that the ratio afj/a* depends only on the magnitude of the viscosity at
the maximum growth rate a*. Furthermore, we have

n(a)

——— <1, fora>0,
M5+GT

demonstrating that the viscosity is a monotonically decreasing function of the growth rate,

with ug as the lower limit. Thus, we can conclude that
n(a®) > n(ag) = a* > ag,

revealing that the growth rate of a viscoelastic jet is faster than that of the correspond-
ing Newtonian jet. This result is consistent with the full stability analysis for a linear
generalised viscoelastic fluid, as given by Goldin et al. [62].

Thus, contrary to experimental observations of the break-up length of viscoelastic jets,
the linear stability analysis shows that a viscoelastic jet is less stable than a Newtonian
jet of the same zero-shear-rate viscosity. Confirming this result, Figure 2.4 compares

the dispersion relation for an inviscid jet (2.5), the Newtonian dispersion relation with



46 Chapter 2. Stability and Break-up of Liquid Jets

Ohnesorge number Oh = 1 given by equation (2.7) and the equivalent viscoelastic case

given by equation (2.10) with the Deborah number

set to De = 90.

2.2.4 Unrelaxed Viscoelastic Tension

Goren & Gottlieb [63] were first to recognise that a liquid jet may be subject to an
unrelaxed axial tension due to the deformation history, and consequently, the initial growth
of small perturbations may be affected. The idea is that, although the jet radius and
velocity approach asymptotic values some distance several jet diameters downstream of
the nozzle exit, as a result of shear stresses within the nozzle, the axial tension may not have
decayed to zero. In this section, we consider a simple case of the theory presented by Goren
& Gottlieb [63], where we assume the long-wavelength approximation of a viscoelastic jet
described by the Oldroyd-B model. The analysis predicts that a non-zero elastic tension
in the axial direction can be a stabilising influence.

Suppose that the axial tension decays exponentially according to
T(z) = Tyexp(—z/TU),

for jet velocity U, relaxation time 7 and initial axial tension Ty. Thus, the base state of

the axial stress 0., is no longer zero and a small disturbance is imposed such that
Uij(z,t) =T%%7 + 52‘]'(2:,15),

for unrelaxed tension 7' in the Zz-direction.

Again, applying the linear stability analysis to the long-wavelength approximation for
a viscoelastic fluid described by the Oldroyd-B constitutive model with viscosity (2.9), the
following dispersion relation is derived:

3k%n(a) vk? TK* (1 —ar

2 2 2

+ o — 1-kR°) — — =0
P 2,0R( ) p \1l+ar

(07

If the axial tension 7' = 0, then the relation reduces to the earlier viscoelastic case (2.10).
However, an unrelaxed axial tension 1" > 0 is stabilising provided that a7 > 1. Thus, in
the high Deborah number limit, unrelaxed tension acts to resist the driving surface tension
and reduces the maximum growth rate of the disturbance wave, as shown in Figure 2.5
for T = 0.5, De =90, Oh = 1.0.

Goren & Gottlieb claim that the addition of an unrelaxed axial tension to the lin-
ear stability analysis accounts for the increased stability of viscoelastic jets observed in
experiments. However, a quantitative comparison of the full theory with experimentally
measured breakage patterns requires measurement of rheological responses from which

time restraints can be inferred, as well as a measure of the initial elastic tension Tj.



2.3. Asymptotic Scaling Laws and Break-up 47

4
—Newtonian Oh=1.0
0.35| ~Viscoelastic Oh=1.0, De=90
- ~Viscoelastic Oh=1.0, De=90, T=0.5

Dimensionless Growth Rate

0.05

. . . . I . I I
0 0.1 02 0.3 04 0.5 0.6 07 0.8 0.9 1

Dimensionless Wave Number

Figure 2.5: The dimensionless growth rate ol determined by the dimensionless wave
number kR for a viscoelastic jet with unrelaxed axial tension T = 0.5, compared to
the usual viscoelastic (2.10) and Newtonian (2.7) dispersion relations for Oh = 1.0 and
De = 90.

Following this proposal, Bousfield et al. [18] present a full non-linear analysis of surface-
tension driven break-up, which numerically predicts the entire evolution of a viscoelastic
filament in the small Deborah number limit. They claim that, although large initial stresses
originating from the nozzle flow will delay the initial growth rate of the disturbance wave,
they are unlikely to be relevant to the ultimate break-up mechanism.

Their finite-element solution of the Navier-Stokes and Oldroyd-B constitutive equa-
tions for an infinite jet shows that the initial capillary instability grows more rapidly on
viscoelastic filaments than Newtonian filaments of the same zero-shear-rate viscosity, in
agreement with the linear stability analysis. However, as the amplitude of the disturbances
grow, non-linear extensional stresses stabilise the filament and delay break-up time, such
that the minimum radius ultimately decays exponentially at a rate 1/37. Furthermore,
their one-dimensional approximation is consistent with the full numerical result and the
predicted profile evolution is in agreement with experimental data for the break-up of
Newtonian and polymeric jets. Thus, Bousfield et al. conclude that, although a residual
tensile stress from the nozzle flow will retard the initial disturbance growth rate, ultimately
it is non-linear extensional stresses that control the final break-up length of a viscoelastic

jet.

2.3 Asymptotic Scaling Laws and Break-up

2.3.1 Newtonian Thinning Near to Pinch Off

As we have seen, the initial stages of Newtonian thinning are governed by linear theory.
The growth rate of a disturbance wave is exponential so that the break-up time and the
break-up length can be estimated. However, this linear theory does not explain features
of break-up, such as satellite drops, due to the exclusion of non-linear effects. A theory
for drop formation, based on flow close to break-up, has been developed by Eggers [49].

As a jet thins and approaches break-up, the minimum radius of the jet approaches zero
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creating a singularity in the curvature term. Thus, solutions to the governing equations
do not posses a characteristic time scale. However, the behaviour of this singular solution
is expected to be governed by a universal scaling law, independent of initial or boundary
conditions. The physical reasoning for this assumption is that singularities involve the
production of infinitesimally small scales and ultimately, the governing equations evolve
on scales widely separate from those set by the boundary conditions. It is therefore
appropriate to seek solutions that are invariant under a suitable scale formation; a universal
solution, which, in the absence of a time scale, is self-similar near to the singularity.
Asymptotically, break-up always proceeds according to a solution that balances surface
tension -y, viscosity p and inertial forces. Thus, the natural length and time scales for an

invariant self-similar solution are chosen to be

2 3
R
P rp

for fluid density p. Choosing z;, and t; as the origin of the singularity, the dimensionless

distance and time from break-up are given by

’ Z— Zp ’ tb—t
= N t: .
S T

A crucial simplification to the asymptotic analysis of break-up comes in by taking a long-
wavelength description of the jet as given by equation (1.13) in Chapter 1. Close to the
singularity, higher-order radial terms appearing in the long-wavelength expansion become
arbitrarily small and this slender-jet description gives the exact asymptotic representation
of the full governing equations.

In the pinch region such that |2/| < 1 and |t/| < 1, the radius and velocity are expected

to obey the power laws
L
Bt = L0 5 ot = () 10(E),

for some similarity functions ¢(&), (), where the similarity variable is

The power law exponents are found by balancing the terms of the original equation or the
one-dimensional counter-part. It is easy to confirm that with the choice a1 = 1,0 = —1/2
and 8 = 1/2, this self-similar profile satisfies the slender-jet equations (1.13) for ¢ — 0.
The slender-jet equations (1.13) are then transformed to similarity equations for the scaling

functions ¢, v:

/ 1_¢//2
d"%w/r
@D ! I ! " 7/}/¢/

where the prime ' denotes differentiation with respect to the similarity variable £.
This system has many solutions, which correspond to a discrete sequence of self-similar

profiles for increasingly small radii. A unique physical solution can be obtained by applying
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Figure 2.6: A sequence of free surface profiles of a jet of glycerol close to the point of

break-up compared to the self-similar solution (2.11), taken from reference [53].

matching conditions to the flow away from the singularity. Numerical evidence suggests
that only the first solution in the sequence, the solution which gives the thickest minimum
radius, is stable and therefore gives a physically realistic solution. The minimum of this
stable similarity solution is found to be ¢, ~ 0.030426 - - -, which predicts a minimum
jet radius of

Bmin = 0.0304 (Z) (ty — 1). (2.11)

This equation (2.11) is fully derived by Eggers [49] for the universal pinching of 3D ax-
isymmetric free-surface flow. Figure 2.6 shows that this similarity solution (2.11) appears
increasingly elongated, leading to a thin filament connected to the main drop. Thus, the
solution is highly asymmetric; the steep side merges onto the drop whereas the other takes
the form of a thin thread. The neck connecting the two regions is where break-up occurs,

causing the filament to contract and create a small spherical satellite drop [51].

For extreme values of Ohnesorge number, other self-similar thinning regimes are also
possible. If the initial jet radius R is much greater than the length scale L, then the
dynamics are characterised by a balance between inertia and surface tension. So for low
Ohnesorge numbers (Oh < 1), the fluid viscosity can be neglected and the thinning is
described solely by inviscid dynamics. Inviscid pinch-off is particularly important in inkjet
printing, both during ejection from the nozzle and the subsequent break up of airborne
drops. The pinch-off region of an inviscid flow takes the form of a double cone due to an
overturning profile. Since such a shape is strictly two-dimensional, pinch-off cannot be
examined by the slender-jet equations; instead the full inviscid equations must be solved.
From the balance of surface tension and inertia, a dimensional analysis shows that the only

non-dimensional grouping of the fluid parameters is v¢2/R3p. Thus, the natural length

")/t2 1/3
()

The similarity solution derived by Day et al. [40] is found to have a double-cone shape

scale for break-up in this case is
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with angles 18.1° and 112.8° and the minimum jet radius is given by

- 1/3
Romin = 0.64 <> (ty — )%/3,
p

which is again independent of initial conditions. In this case, pinching is also asymmetric,
occurring near to the end-drops so that a satellite drop is produced at break-up.

On the other hand, if initially the jet radius R is much smaller than the viscous
length scale L, then inertia cannot play a significant role. So for large Ohnesorge numbers
(Oh > 1), inertial forces can be neglected and the dynamics are characterised by a balance
between viscosity and surface tension. Papageorgiou [103] was first to examine the thinning
properties of a viscous thread and the model is based on Stokes equations for viscous flow
under the slender-jet approximation. The equations are solved numerically and the jet

radius found to vanish after a finite time, with the minimum radius behaving like
_ i
Rmin = 0.0709 <) (ty — ).
L

The model admits self-similar solutions that, unlike Eggers solution (2.11), give symmetric
shapes at break-up; the jet ruptures at the mid-filament position and no satellite drops
are produced at break-up. It is also verified that the terminal state of the simplified model
is identical to that predicted without invoking the slender-jet assumption.

The dominant parameter controlling thinning dynamics can be understood by consid-

ering the local Ohnesorge number

Oh=—t_

NG
for jet radius h. In order to determine the critical Ohnesorge number defining the boundary
between viscous and inertia dominated regimes, we consider the thinning velocity of each
regime, as proposed by Campo-Deano et al. [21]. The velocity of a thinning liquid filament

can be calculated by differentiating the radius with respect to time:

_oh
ot’

Uy =

Thus, the thinning velocities of the viscous regime and the inertial regime are given re-

g g
U,=0.0709- ; U,=0.3414,/—.
H L ’ P ph

Formulating the Ohnesorge number from the ratio of these thinning velocities yields

U, Oh

U, 02077

spectively by

and the critical Ohnesorge number identifying the boundary between regimes is defined

when the thinning velocities are equal U, = U,. Thus, the critical Ohnesorge number is
Oh* = 0.2077,

with excellent agreement to the experimental results of Campo-Deano et al. [21]. Hence,

for fluids with Oh < OA* behaviour is initially governed by inertial forces, whereas a
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viscosity dominated regime is observed for fluids such that Oh > Oh*. However, both the
inertial and viscous regimes eventually cross over to the universal Eggers solution (2.11)
for some critical radius.

In the case of inertial flow, as the filament radius becomes thinner, the local Ohnesorge
number increases so that eventually viscous effects are significant. Somewhat surprisingly
in the viscous regime, inertia eventually becomes important. This is because as the min-
imum radius shrinks to zero, the extension rate becomes infinite, leading to a divergence
of axial velocity and hence a growth of the local Reynolds’ number. In each case, the local
balance induces a transition to the Eggers regime (2.11) in which all three forces become
significant. However, the critical radius at which this transition occurs may not be within

the limits of observation or the continuum approximation.

2.3.2 Satellite Drop Formation

Savart [118] was one of the first experimentalists to note the appearance of smaller satellite
drops interspersed between the main drops of fluid in the break-up of a continuous jet.
Since then, the understanding of satellite drop formation has been the motivation behind
much research on drop formation.

Qualitatively, satellites appear through two properties of the pinching singularity.
First, the singularity is localised and causes break-up at a specific point on the jet free
surface. Second, for low-viscosity fluids, self-similar thinning is highly asymmetric, with
a thin filament of fluid joining the main drop and break-up occurring in the connecting
neck region. Consequently, at break-up the filament separates from the main drop and
contracts to form a smaller satellite drop in a symmetric flow.

Since linear theories based on the Rayleigh stability analysis do not predict the for-
mation of satellite drops, the development of weakly non-linear theories is required. In
particular, Yeun [145] and Lee [86] use the method of strained coordinates to develop a
solution for an inviscid jet, up to third order, for a temporal disturbance of the free surface.
Yeun’s theory predicts the formation of satellite drops for all wave numbers and that the
detachment of the satellite drop from the two adjacent main drops occurs at both necks
simultaneously, due to the symmetry of the flow.

However, as shown in Figure 2.7, satellites can form in several different ways depending
on the nature of the applied initial disturbance. In most liquid jet applications it is
necessary to excite the jet via a velocity perturbation creating a disturbance wave that
grows with distance from the nozzle exit. Keller et al. [77] show that this disturbance
is only equivalent to a temporally growing Rayleigh wave in the limit of infinite Weber
number. Consequently, Pimbley & Lee [106] conduct a non-linear analysis of the drop
formation problem, through to second-order, via a spatial instability analysis.

Pimbley & Lee [106] find that the two most relevant parameters that control satellite
formation are the amplitude and wavelength of the initial perturbation. For certain values

of these parameters satellite detachment can occur on the fore side of the droplet first,
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Figure 2.7: Satellite formation at three different initial perturbation amplitudes, increasing

from (a) to (c) taken from reference [26].

the aft side first, or on both sides simultaneously. This transition is characterised by a
‘satellite interaction’ time, which is defined by the time period between the two breaks
and signifies a transfer of momentum. If there is a strong backward pull, then this causes
rear-merging as in Figure 2.7(a), whereas forward momentum causes the drop to merge
with the leading drop as in Figure 2.7(c). Zero satellite interaction time marks an infinity
condition, where the two breaks occur simultaneously, as shown in Figure 2.7(b).
Pimbley & Lee’s theory agrees qualitatively with the experimental findings of Chaud-
hary & Maxwell [26] in that there is a transition from rear to forward-merging behaviour
for increasing perturbation amplitude and the critical amplitude corresponding to the in-
finity condition increases with wave number. Furthermore, Chaudhary & Maxwell [27]
show that this break-up behaviour can be controlled by forcing the jet with a suitable har-
monic component added to the initial velocity profile. However, left out of these studies
is the effect of changing Weber number, which has been shown by Vasallo & Ashgriz [135]

to have a significant effect.

2.3.3 Exponential Thinning of Polymeric Fluids

Simple Newtonian fluids thin relatively rapidly and break up into droplets. However,
the addition of small amounts of polymer to a Newtonian solvent significantly delays
this surface-tension-driven thinning due to the presence of resistive elastic forces. Conse-
quently, the formation of satellite drops can be eliminated.

For small deformations, polymer molecules remain coiled in an equilibrium state. So,

for the temporal instability on an infinite jet, the early stages of polymeric thinning follow
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the behaviour predicted by the instability theory for linear viscoelastic fluids described
in section 2.2.3. However, capillary forces induce a strong extensional flow, which acts to
unravel the polymer molecules from their equilibrium state. This mechanism causes elastic
stresses to build up in the fluid. Consequently, thinning deviates from linear viscoelastic
behaviour and enters an elasto-capillary regime in which non-linear viscoelasticity balances
surface tension [54].

During this elasticity-dominated regime, viscoelastic jets thin exponentially in time.
To prevent the molecules from relaxing, the jet radius must decay continuously in time
at a rate proportional to the relaxation time of the fluid. Thus, the extension rate in the
thinning filament is constant and the radius decreases exponentially in time at an inverse
rate that is three times the relaxation time of the fluid [35]. Thus, measurement of the
elasto-capillary thinning rate enables a direct determination of the relaxation time.

The polymeric resistance to stretching causes long, thin filaments to form between the
main drops of fluid, as shown in Figure 2.8. Thus, a one-dimensional model provides a
sensible approximation in order to derive the exponential thinning regime [54], [35]. In
this section we derive the exponential thinning law for a thin filament of viscoelastic fluid
described by the Oldroyd-B constitutive model, based on the slender-jet equations for
free-surface height h(z,t) and velocity v(z,t) given by

oh: 0

- - 2 —
5 +8z(h v) =0,
0

9 2 0 2 2 o 2 ov .
p(m<hv>+8z<hv>)—az(h K+ =)

where curvature term K is defined as

1 hzz

K .
WA+ 122 T (L h2)

(2.12)

In the Oldroyd-B framework, the polymeric stress is defined as
oc=GA-1I),

for elastic modulus G and conformation tensor A, which describes the deformation of

infinitely extensible dumbbells. The evolution of the stress is then given by

Do DA
T —_G=
Dt Dt’

where substituting for the linear dumbbell evolution equation yields

Do o
— =K. KT K+KT) - =
Di oc+o +GK+K") =

Thus, the axial stress evolution is given by

do. 0o, _ Q@Uzz + 2#;}@ . Uzz7

ot v 0z 0z T 0z T

for polymer contribution to viscosity p, = G7.
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We assume that the jet radius decays exponentially such that
h = Ry exp(—at),

where Ry denotes the initial radius of the uniform filament region, shown in Figure 2.8,

and « denotes the growth rate. Inserting this solution into conservation of mass gives

ov

— = 2a,

0z
indicating that the extension rate is constant in the filament region. Thus, assuming that

the axial stress o, is spatially constant, the stress evolution equation reduces to

0o, —4 Ozz
=4dao,, — .

Hence, the axial stress is found by integration to be
1
0., = 00 €exp da—— |t |,
T

During elasto-capillary thinning, the capillary force, governed by the curvature term

for an initial stress og.

K, balances the axial elastic stress o,,. Thus, inertia is neglected from conservation of

momentum and, since % is constant, the elasto-capillary balance is determined by

0
&(h%'yK +0.2)) =0,

where the radial stress o, is assumed to be small. Thus, in the uniform filament region,
K =~ 1/h and integrating yields
yh+ h*c., =T,

where T' denotes the tension in the filament, which is assumed to be non-zero [35]. For

consistency, o, must grow like 1/h, thus

exp <(4a - i) t) — exp(at),

giving a growth rate of a = 1/37. Thus, the filament radius decays like

t

o)~ oo ().

-
The initial radius Rg of the uniform filament can then be calculated by matching the
filament region to the end drop, as shown in Figure 2.8.

For uniaxial extension, the extension rate is given by

_ 20n

h ot

Thus, assuming that ¢ > 7, the dumbbell evolution equations

dA 1
zZZ — s = Azz
dt <26 T) ’

dAT‘T’ . 1
= - <€ + ) Arra

dt
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Figure 2.8: (a) Uniform filament region. (b) Matching region. (c¢) Drop region.

can be integrated to give the axial and radial components of the configuration tensor

ho\* h\2
Azz - <h> ) AT’?" - (ho) )

respectively. The radius at which the polymers begin to uncoil is denoted hg and corre-
sponds to extension rate é7 = 1/2. Hence, the elastic stress appearing in the momentum
equation takes the form
2 ho  h
W6~ ) =G (- Ta )

and assuming that elasticity balances the capillary forces yields

YR’ K + G <Z§ — ;i) =T. (2.13)

0
We now seek two solutions to this elasto-capillary balance (2.13); the first solution corre-
sponds to the uniform filament region so that curvature can be approximated to leading
order and the second solution corresponds the matching region shown in Figure 2.8.
In the uniform region, the filament is assumed to be thin so that h < 1 and the
curvature term (2.12) is approximated as K = 1/h. Thus, the uniform filament solution
at h = Ry is A
YRo + C;g) =T. (2.14)

0
On the other hand, in the matching region, the full curvature term (2.12) must be kept.
In this case, the elasto-capillary balance (2.13) is multiplied by integration factor h,/h3

to give
h h, (ht R4 h
KZ g2 (20_ ) 7=
YR s <h2 h%) =R
which can then be integrated to yield
9 4 4 2
R 0 BN
(1+ h2)1/2 2h% ki C

for some constant of integration C'. Thus, at h = Ry, the solution is

Ghi

27Ro + -5
’Yo—i—zR%

=T, (2.15)
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Figure 2.9: Beads-on-string structures generated during the exponential thinning phase,

taken from reference [117].

where we assume h < 1 and h, vanishes.

Eliminating tension 7' from our two solutions (2.14) and (2.15), we find the initial

Gh 1/3
Ro = ho <2°> .
¥

Hence, in the elasto-capillary thinning regime, the filament radius decay is described by

Gho\ /3 t
hm”m, = h(] (27> exXp —377_ s

for polymer relaxation time 7. Under the assumption of infinitely long dumbbells, the

filament radius to be

filament will never break [111].

Christianti & Walker [32] study the droplet size distribution and jet break-up length
for a series of polymer solutions. As the molecular weight and concentration increases,
elastic stresses in the fluid become increasingly important and the jet break-up evolves
from the classical Rayleigh mode towards the classic ‘beads-on-string’ morphology, where
the main drops are connected by thin long-lived filaments of fluid, as shown in Figure 2.9.
Furthermore, they find that the formation of satellite drops can be completely eliminated
for a range of elasticities.

Clasen et al. [35] give a qualitative description of the shape and the flow inside the
filament of these beads-on-string structures for a one-dimensional approximation. By
matching the spherical end drops to the uniform filament region, they introduce a similarity
description of the neck region, which they compare to experimental observations. Although
the experimental data converges onto a single curve, in much the same way as the computed
profiles, the experimental profiles are sharper than the theory predicts. This discrepancy
is attributed to the validity of the one-dimensional approximation for increasingly steep
gradients.

Exponentially thinning filaments are generated in capillary-thinning rheometers and
so the relaxation time can be extracted from the thinning data. However, the relaxation
time measured in rheometers is often found to differ from the longest Zimm relaxation

time 77, described in Chapter 1. In particular, both Vadillo et al. [130] and Clasen et al.
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[36] find that the relaxation measured by capillary thinning does not agree with the linear

viscoelastic relaxation time measured by oscillatory shear.

2.3.4 The Break-up of Polymeric Filaments

During the final thinning stages before break-up, highly-extended viscoelastic filaments are
observed to become unstable to further instability and a complex flow pattern develops.
This phenomenon is known as iterated beading and is shown in Figure 2.10. Bhatt at al.
[11] present a phase diagram in order to determine the fluid parameters responsible for a
number of different beads-on-string morphologies.

Yet, the mechanism for this secondary instability is not fully understood. The elasto-
capillary balance and resulting exponential stress growth obtained from the Oldroyd-B
model excludes the possibility of filament break-up [111]. However, Chang [25] gives a
stability analysis that shows the neck region connecting the main drop to the uniform
filament is unstable to small perturbations. This leads to elastic recoil and the formation
of smaller satellite drops on the main filament, which are connected to the main drops
by finer filaments. Under the assumption of infinitely extensible dumbbells, the process
repeats indefinitely in a self-similar way. Although the evaluation of the exponential
thinning regime is also possible from the finer filaments that connect the satellite drops to
the main drops, the induced oscillations caused by the appearance of higher-order satellites
restricts a quantitative evaluation of the minimum filament radius [21].

Ultimately there are two effects that modify the thinning dynamics; inertia and the
finite extensibility of the molecule. Since finite extensibility bounds the maximum stress
that can be exerted by the chain [54], the iterating process is restricted and the thinning
dynamics depart from the exponential law, an effect which has been observed experimen-
tally [10], [5].

When polymers reach full extension, rather than behaving like elastic springs, the solu-
tion is similar to a suspension of rigid rods. Consequently, the polymer stress is thought of
as viscous and the dynamics adopt a linear thinning regime, rather than exponential decay.
In order to predict this final regime, and thus the break-up time of a viscoelastic filament,

the finite extensibility L of the polymers must be incorporated into the constitutive model.
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Figure 2.10: Iterated beads-on-string structures and the generation of a solid fibre. Images

taken from reference [117].
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Entov and Hinch [54] estimate the time to break-up by patching together the exponential
law derived from the FENE model with Newtonian viscous thinning. They find the break-
up time to be approximately t;, ~ t. + 37, where t. is the cross over time between elastic
and viscous behaviour. This result gives a good approximation to experimental data for
long polymers with finite extensibility L > 150.

However, for sufficiently high polymer concentrations, a viscoelastic filament is found
not to break [117]. Instead the filament is observed to form a solid fibre less than a micron
across, as shown in Figure 2.10. Since evaporation does not play a significant role, the
formation of the solid fibre is claimed to be the result of a slow induced phase separation.

This phenomenon is observed for a range of polymer-solvent systems.



Chapter 3

A One-Dimensional Model

3.1 The Slender-Jet Approximation

3.1.1 Governing Equations

As discussed in Chapter 1, a simplification of the full Navier-Stokes equations is to assume
the slender-jet approximation for long wavelengths [53], which for the Newtonian case is
defined by equation (1.13). To non-dimensionalise equation (1.13), the initial jet radius
R is chosen as a typical length scale and the Rayleigh capillary time T = \/m as a

typical time scale to give the non-dimensionalised equations

o 9,
O 2o+ D2ty = 9 (12 v
8t(hu)+az(hv)_az(h K +30h5-) ).

for Ohnesorge number

s
Oh = .
vpyR

For a polymer solution, there is an additional stress difference arising from the state of

deformation of the polymer chains.
In the Oldroyd-B constitutive model, as derived in Chapter 1 for linear dumbbells, the

zz and rr stress components satisfy the evolution equations

00, 0 B ov fp OV 0
gt s \Vom) = 3mg H 2T -
00 0 My ov Orr

0z + g(vazz) 10z 1

Here 7 denotes the relaxation time of the polymer and y,, = G'7 is the polymer contribution
to viscosity for elastic modulus G. We non-dimensionalise these governing equations using
the characteristic length scale R and time scale T', so that the unit of stress is 7/R. This
introduces two additional non-dimensional variables. The Deborah number is defined to
be

-

De = T

The Deborah is intrinsic to the fluid since it is defined only in terms of material and

geometric parameters and is independent of the imposed fluid velocity. For capillary-driven

99
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Figure 3.1: Simulating experimental conditions: The infinite jet compared to a liquid

bridge suspended between two end-plates, taken from reference [93].

flows, where the stretching rate is determined by surface tension, the Deborah number
determines the extent to which the polymers are deformed during capillary thinning. The

dimensionless polymer concentration is defined as

by _ GT
Hes ths
which determines the relative contribution of the polymer contribution to the shear vis-

cosity. Thus, the non-dimensional polymeric slender-jet equations are defined as

oh? 9

2
W + &(h U) = 0,
gt(h%) n ;Z(h%z) _ gz (hz (K + 30hgz t 0., — arr)> : )
00, 0 ov  2c0v 0, .
gt T a:\v7=) =30t 50h, T De
doyr 0 c Ov o
ot T 929 T e T De

where 0, and o,, are now dimensionless quantities, as derived by Forest & Wang [59]. By
applying appropriate boundary conditions, we are able to simulate experimental condi-
tions. Figure 3.1 shows examples of capillary-driven flows in a continuous jet and a liquid
bridge held between two end plates.

The conditions of an infinite jet are created by applying periodic boundary conditions
as in references [6] and [90]. This infinite-jet model can be thought of as section of a free
jet containing a single wavelength and the configuration is analogous to a downstream
section of a continuous inkjet, driven at the Rayleigh wavelength in the limit of infinite
Weber number. We choose the frame of the moving jet so that the jet is assumed to be
initially at rest and a small sinusoidal perturbation is applied to the free surface at time

zero, such that
2
h(z,0) = R+ ecos <7Ir/z> )

where R is the initial jet radius and L is the length of one wavelength. Since there is no
external forcing, the jet is subject only to the capillary instability.
Alternatively, to simulate a capillary-thinning rheometer, where a liquid bridge is held

between two end plates, we impose Dirichlet boundary conditions to account for the end
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plates used in experiments; the free surface height is fixed at each plate and there is
zero axial velocity. To induce instability in this case, the free surface profile is initially
modelled as an arc of a circle for some initial mid-filament radius R. Thus, the initial
condition assumes a liquid bridge on the verge of stability, like that generated by the slow-
retraction method [21]. Under the action of surface tension the liquid bridge develops
into two hemispherical drops connected by a thin filament. Apart from this difference in
boundary conditions, this set up is equivalent to the break-up of an infinite jet and so
the local thinning behaviour is expected to be the same in the thin-filament region. This
one-dimensional approximation for the thinning of a liquid bridge is surprisingly accurate,

even though the long-wavelength assumption is not strictly valid [3], [52].

3.1.2 The Lax-Wendroff Scheme

The slender-jet equations (3.1) and (3.2) are solved using the explicit Lax-Wendroff scheme
[108]. This numerical scheme is appropriate for problems of flux-conservative form, which

are in general given by

Oa oF

ot 0z’
for some flux variable F' and provides solutions that are second-order accurate in both
time and space. Lax was first to introduce a finite-difference approximation for equa-
tions in conservative form that adheres to the physical principle of flux conservation more
appropriately than non-conservative schemes [85].

In this chapter, the slender-jet equations are solved on a uniform mesh for equally
spaced mesh nodes z; and times steps ¢,, given by
zj=2z0+jdz, j=0,1,...J,
th=to+ndt, n=0,1,..., N,
for mesh size dz and time step dt. In general, the notation aj will be used to denote the
value a(zj,t,) at a particular time and spatial position.
To solve the general flux-conservative equation, the Lax-Wendroff scheme is based on
forward differencing in time

n aT.L+1 —a

Oa

J J
—| = —————+0(dt).
ot |, a o
and central differencing in space
OF|" _ Fin —Fity 2
bl d
0z |; dz +0(d=),

where O denotes the order of the approximation. Central differencing in this way ensures
second-order spatial accuracy. However, applying this forward-time, central-space method
directly to a general flux-conservative equation yields an unconditionally unstable scheme
[108]. This numerical instability may be cured by a simple change due to Lax; at each

node, the value a7 is replaced by the average value

1
aj = i(a’jﬂ +aj_y). (3.3)
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Figure 3.2: Representation of the two-step Lax-Wendroff differencing scheme. Two in-
termediate points are calculated by the Lax averaging approximation. The intermediate
points plus one of the original points produce the updated value via a staggered leap frog

method.

Furthermore, to increase temporal accuracy from first to second order, the Lax-Wendroff
scheme employs a two-step method for which a half-time step ¢, /7 is introduced. The
Lax-Wendroff scheme is defined as follows and a diagram of the two steps is given in Figure
3.2.

The first step of the algorithm introduces intermediate values defined at half-time steps
tn+1/2 and half-mesh nodes 21 /5. Central differencing in space across the half-mesh node

zj+1/2 and projecting forward in time to the half-time step ¢, /7 yields

n

Oa|” OF

a7 == o= +0(dt, dz?),
Ot |j11/2 92 |j11/2
2 12 g 1, . "
= %(aj+1//2 —ajy) = —5( M — FP) 4 O(dt, da?).

Then, using the Lax averaging approximation (3.3) the intermediate values are found to
be

2 1/2 1 n n 1 n n
dt <a?:1//2 — 5 (afy — aj)) = —a( e — F) + O(dt, dz?),

dt 2
+172 1 t
= a1y = 5@ +af) = 5 (i = F]) + O(dt, da?),
Using this information, the intermediate flux values F;fll/; can be evaluated, which are

required for the second step of the scheme.

+1

The second step of the algorithm calculates the updated nodal values a;-‘ using a stag-

gered leap frog method [108]. Staggering enables forward-time differences to be used in
conjunction with central spacing without developing instability. The forward-time differ-
ence is now centred about the half-time step ¢,,1 /5 so that second-order temporal accuracy

is achieved:

n+1/2

n+1/2 OF N O(dt2’d22)’

Oa

8tj

- 0z

J

1 n+1 n 1 n+1/2 n+1/2 2 2
= %(aj —aj) = _i(FjHﬂ —F,7\ )y ) +0(dt”, dz").
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Hence, the properly centred expression for the updated values is given by

dt
41 n n+1/2 n+1/2 2 2
o = = G~ F ot o),

where the intermediate flux values are determined during the first step. Once the updated
values have been computed, the intermediate values can be discarded.
The Newtonian slender-jet equations (3.1) consist of a coupled pair of flux-conservative

equations, which can in general be written as

o0 _or
ot 0z’
or _ oG
ot 0z’

so that @ = h?, F = h?v and G = h?(v? — K — BOh%). The first and second derivatives
contained in flux term G are calculated separately by the usual central-difference formulae.

For example, the first and second derivatives of the free surface height h(z,t) are given by

on|"™  hi —hi, 9 O?h|"  hi =207 +hh 2
5z, = 5 + O(dz*) and 572, = 7.2 + O(dz*).

Derivatives at the intermediate step can also be found by central differencing and for the
case of Dirichlet boundary conditions, one-sided second-order difference formulae are used.
In the case of a polymeric fluid, there are two additional equations

0o,, O ov  2c0v 0y
+ 7(1)0'22) =307+ —F5 —

Ot 0z 0z Dedz De’
aUTT+2( )__i@_ﬁ
ot 0z Yorr) = T he 0z De’

which can also be solved using the Lax-Wendroff scheme. Terms appearing on the right-
hand side are treated as source terms, as opposed to the flux terms appearing on the left.
These source terms are calculated separately during both steps of the algorithm and added
to the final solution. For example, in general the stress evolution may be written as

aa__ﬁj

ot~ 0z

for some flux term F' and source term S. The Lax average (3.3) is used to calculate the

+ 5,

source terms at the half mesh nodes to ensure stability
n ]‘ n n
j+1/2 = g(SjH + Sj )-
Then, the intermediate values are given by
G = S ) — o (B~ EY) + (S} + 8) + Ol d22)
On the right-hand side, the first term comes from the Lax averaging approximation, the
second from central differencing the flux term and the third from averaging the source

term. Similarly, the updated values are given by

dt dt
nt+tl _  n n+1/2 n+1/2 n+1/2 n+1/2 2 2
o =i = e —Fip) + 5 (S5 + 85 /) + O, d27).

Again, the intermediate flux and source terms are calculated using information found in

the first step and then discarded.
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3.1.3 Stability of Solutions

Von Neumann stability analysis is a simple method to determine the local stability of
numerical solutions. It is restricted to constant-coefficient, partial differential equations,
where the difference scheme implemented consists of no more than two time steps [108].
This stability analysis does not rigorously treat the effects of boundary conditions, but de-
spite its lack of rigour, the von Neumann analysis gives a good indication of the restrictions
required on the time stepping dt in relation to the mesh size dz.

Let mesh nodes be denoted z; for j = 0,1,...,J with uniform mesh size dz where
xo = 0 and zy = L is the length of the domain. Let time steps be denoted %, for
n=0,1,...,N. For linear problems, the stability of a difference scheme can be analysed
in terms of the initial error E° at time ¢ = 0. Since the error at a particular mesh node
zj is defined over the finite interval z; € [0, L], the error can be expressed by a finite
Fourier series, which is then reflected in the domain [0, L] to obtain a complex Fourier

representation

J .
immz;
E°(z;) = Z C’mexp< 7 j>.

m=—J
In the domain [—L, L], the maximum possible wavelength is \,q; = 2L and the minimum
possible wavelength is A, = 2dz, such that the nodes are resolvable on the mesh. The

corresponding wave numbers are thus

s 2 om ks 27
min — )\mzn - L b max — )\mam - dz‘
In the Fourier series we have
mm mm
Koin = T form=1 ; kmam:T, for m = J,
hence, in general the wave number is expressed as
mm
k’m = T, m = 1, . y J.

We assume that the solution has a standard linear waveform
a(z,t) = exp(i(kmz — wt)),

where w is a complex number defining the wave frequency. Thus, the error at time step

t, can be written as

J
E(zj,ty) = Z Cr, exp(—iwty,) exp(ikmz;).

m=—J

By the principle of superposition, it is sufficient to consider just one harmonic and so the
subscript m is dropped. Thus, for mesh node z; = jdz and time step t,, = ndt, we consider
the single error component

E} = exp(—iwndt) exp(ikjdz).
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Since || =1, V6 € R, the magnitude of the error is
’Ejn‘ — ‘e—iwdt’n’
and so the error is bounded provided that |e~™%| < 1.

The amplification factor £ is defined to be the error ratio between successive time steps

n+1
gz Ej — efiwdt

Ej

Thus, a numerical scheme is considered to be stable provided |{| < 1. By linearity the
error E]" satisfies the difference scheme, so we can assume that independent solutions of

the difference scheme take the form
n _ ¢n ikjdz
aj =¢"e .

We seek the local stability of the Newtonian slender-jet equations (3.1). The first
governing equation )
% + %(hgv) =0,
corresponds to conservation of mass for the jet area h2, advected with jet velocity v.
For simplicity, the equation is linearised by assuming that velocity is constant in a local
analysis. Conservation of mass is coupled with conservation of momentum and solved via

the Lax-Wendroff algorithm, which, for a general flux-conservative equation

Oa oF

a9z

is given by the two-step scheme:

n+1/2 1 n n dt n n
s = S(afy +af) = o (Ffyy + FJ') + O(dt, d2?),

Yj+1/2 T 3 2dz
dt
n+tl _ n n+1/2 n+1/2 2 2
i =aj = (F e — By jy) + O(dt, dz).

The first step calculates intermediate variables and the second updates variables at the
next time step.

For conservation of mass, we have a = h? and F = av, where v is considered constant
in the linear approximation. Thus, the Lax-Wendroff scheme can be reduced to a single

step by writing the intermediate flux variables as

nt1/2 nt12 (1 dt
FE =t = (5 ) - v @ - ).
and substituting them into the second step to give
i1 vdt (1 vdt 1 vdt
a;" =aj — e <2(G§L+1 +aj) — %(a?—kl —aj) — 5( jHajg)+ E(a? —ajq) |-

Assuming the independent solution takes the form a? = ¢"e*i% and simplifying yields an

equation for the amplification factor

€ =1—iasinkdz — o*(1 — coskdz).
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where « is defined to be
_vdt

O[:E

Thus, the magnitude of the amplification factor is
€2 =1 - a?(1 — ®)(1 — cos kdz)?.
and the stability criterion [£|? < 1 therefore reduces to
<1 = wdt<dz.

This is the famous Courant-Friedrichs-Lewis stability criterion, often called simply the
Courant condition. Consider a wave travelling across a discrete spatial grid and the
amplitude of the wave is required at discrete time steps of equal length. The length of the
time step must be less than the time taken for the wave to travel to adjacent mesh nodes.
Thus, when the mesh size is reduced, the upper limit of the time step must decrease.
The numerical domain must contain the analytical domain to ensure that the scheme can
access the information required to form the solution.

In the momentum equation a = h?v, which is also advected with velocity v. Con-
sequently, the stability of this equation also requires that the Courant condition is met.
Furthermore, the stability of this explicit method is also subject to the condition that
the time step dt must be less than the diffusion time h%/Oh, thus is restricted at high
viscosities [35]. Hence for Oh > 3, we find that an implicit numerical scheme is more

suitable, the details of which are given in Chapter 5.

3.1.4 Capillary Thinning of a Newtonian Liquid Bridge

To simulate the capillary thinning of a Newtonian liquid bridge, the slender-jet equations
(3.1) are solved via the Lax-Wendroff scheme described in the previous section. We imple-
ment a uniform mesh for nodes j = 1,...,J, where the mesh size dz satisfies the Courant
stability condition vdt < dz for time step dt. The initial shape of the free surface is
modelled as an arc of a circle, with mid-filament radius set to R = 1, to induce capillary
thinning. We assume Dirichlet boundary conditions, where the free surface h is fixed and
there is zero axial velocity v at the end-plates. The end-plates have radius 2 and are held
at fixed separation distance 6.

As discussed in Chapter 2, the thinning dynamics of a liquid bridge are governed by a
balance of surface tension, viscosity and inertia, characterised by the Ohnesorge number.
Under the action of surface tension the liquid bridge develops into two hemispherical drops
connected by a thin filament. In Figure 3.3 we compare the evolution of the minimum
filament radius predicted by our model for two Newtonian fluids of differing viscosities.

In Figure 3.3(a) we show the results for a fluid with Oh = 0.2 (typical of inkjet printing
fluids for which 0.1 < Oh < 1), where the origin of time is shifted to the break-up time.
Since Oh < Oh*, the thinning is initially dominated by inertia and is seen to follow the
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Figure 3.3: (a) Newtonian model Oh = 0.2 for filament thinning compared to the inertial
regime (3.4) and the Eggers regime (3.5). (b) Newtonian model Oh = 1.5 compared to

the Papageorgiou viscous regime (3.6).

inertial regime given by

1/3
Pmin = 0.64 <Z> (t - tb)z/g- (34)

However, since the Ohnesorge number is close to the critical value Oh* = 0.2077, we
observe the transition to the universal Eggers regime, where viscosity enters the force
balance. Thus, once the filament radius has thinned to approximately A, ~ 0.05, we
observe a transition from inertia-dominated thinning to a inertial-viscous regime , where

the minimum filament radius is given the equation
Bmin = 0.0304L (£ — t;). (3.5)
I

In contrast, a fully developed viscous regime is seen for Oh = 1.5 in Figure 3.3(b), where

the radial decay follows Papageorgiou’s linear thinning regime
_ gl
Pomin = 0.0709;(t —tp), (3.6)

These results are in agreement with the experimental observations of Campo Deano et al.

[21].
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3.2 Modelling Capillary Break-up of Particulate Suspen-

sions

3.2.1 Problem Outline’

A diverse range of materials can be manipulated using inkjet technology, the most com-
mon being particulate suspensions. Particles appear in most graphical inks, as well as
in inks used for printed electronics and ceramic manufacture. However, compared to the
Newtonian and viscoelastic cases, there is little known about particulate effects on jet
stability and break-up.

The existence of universal thinning laws (3.4), (3.5) and (3.6) initiated the use of
capillary break-up as a rheological technique and recent studies have demonstrated that
extensional rheometry can be successfully performed on particulate suspensions [140], [28],
[121]. In particular, large-scale pendant-drop experiments have observed that the presence
of particles in a solution accelerates the thinning process compared to that predicted for
the equivalent Newtonian fluid [15], [60], [61]. However, the detachment dynamics of
particle-laden fluids are not yet fully understood.

The hypothesis is that the accelerated thinning arises from variations in the local
particle density. As the filament thins, the variations are amplified leading ultimately to
sections of the filament containing no particles at all. Sections of the filament that have
a low particle density consequently have a lower viscosity and can therefore thin more
easily. Similar fluctuations in particle density have been observed by Roche et al. [114]
during the thinning of a liquid bridge; close to break-up, certain regions within the bridge
become jammed whilst particles experience a significant flow in other areas.

To test this hypothesis, we construct a simple one-dimensional model for capillary
break-up of a liquid bridge, in which the viscosity is determined from the local particle
density, found by tracking individual particles within the suspension. The particles are
assumed to be non-Brownian so that they are simply advected with the fluid velocity.
Since the particles only contribute to the dynamics through the local viscosity, the direct
effects of hydrodynamic interactions between the particles and the effects of the individual
particles on the shape of the free surface are not included. Nevertheless, this model is able

to reproduce the accelerated thinning found in experiments.

3.2.2 A Simple Particle Model

In their study of falling particle plumes, Crosby & Lister [38] conclude that the effect of
particle density modes in the r and 6 directions are unimportant. Thus, we shall assume
that particle density varies only in the axial coordinate z and adopt a one-dimensional
approximation for the particle distribution.

As in section 3.1.4 for a Newtonian liquid bridge, we solve the slender-jet equations

'Published: C. Mecllroy & O. G. Harlen Modelling Capillary Break-up of Particulate Suspensions
Phys. Fluids 26 (2014) 033101
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Figure 3.4: A one-dimensional model to represent the capillary thinning of a particulate
suspension. Particles are sorted into ‘bins’ of length bz. Shaded particles are allocated to

a bin according to their position.

(3.1) via the Lax-Wendroff scheme. The initial shape of the free surface is modelled as an
arc of a circle, with mid filament radius set to R = 1, to induce capillary thinning. We
assume Dirichlet boundary conditions such that the free surface h is fixed and there is
zero axial velocity v at the end-plates. The end-plates have radius 2 and are held at fixed
separation distance 6.

Initially, particles are uniformly distributed at random locations throughout the fluid.
We assume that the number of particles N is much larger than the number of mesh nodes
J. The initial particle positions z, for p =1,..., N are assigned as follows. We define the

accumulated volume V' (z) as

V(z) = W/OZ h%(2)d7 . (3.7)

A corresponding V' position is chosen for each particle from a uniform distribution on the
interval [0, Vio], where V4 is the volume of the entire liquid bridge. Then, the correspond-
ing value of z), is found by inverting equation (3.7). In subsequent motion, we assume that
each particle moves with the axial velocity v(zp,t) obtained by linear interpolation be-
tween grid points. The distribution of particles is then determined from particle position.
A diagram of particle motion within the liquid bridge is shown in Figure 3.4.

Brownian motion opposes the creation of particle-density gradients, however, in our
model, we assume that the particles are sufficiently large that Brownian motion is negli-
gible. The importance of particle diffusion on the length scale of the particle radius r is
measured by the Peclet number,

_ 67 psér>

Pe — 5%
T kT

for the Boltzman constant kg and absolute temperature 7. The characteristic stretching
rate € is defined by the time scale of the flow, which is taken to be the smaller of the inverse
Rayleigh time scale \/fy/TRS’ or the inverse viscous time scale v/uRy. For an extension
rate of € ~ 10 s~!, which is typical of capillary-thinning experiments, the Peclet number

for 1 pm particles is of the order Pe ~ 10* for solvent viscosity 389 mPa.s and filament
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Figure 3.5: (a) Plot showing the bulk viscosity Ohg, obtained from the Krieger-Dougherty
model as a function of particulate volume fraction for various values of solvent viscosity
Ohs. (b) Effective particle radius r as a function of the total number of particles N for

various volume fractions ¢y .

radius 1 mm. Thus, the large Peclet number assumption is valid for the pendant drop
experiments [15], [60], where the particle sizes are around ~ 40 — 250 pum. For inkjet
printing applications, where inks are much less viscous (~ 11 mPa.s) and typical nozzle
length scales are around Ry ~ 50 pm, the extension rates are around é ~ 10% s~1 and the
limiting particle size is approximately ~ 10 nm.

The average volume fraction of particles in a suspension is given by

N Ve,
‘/tot

Qsafu =

where VP is the particle volume, which for spherical particles is

4
Vp = §7TT3.

Thus, particle size can be varied by changing the total number of particles N for a given
average volume fraction ¢4,. We determine the local particle volume fraction by dividing
the filament into a number of ‘bins’, as shown in Figure 3.4. The length of each bin bz
is set to ~ 2r so that the length scale for volume fraction perturbations is set equal to
the particle diameter. This bin size is typically larger than the grid resolution used in the
velocity calculation.

The local viscosity is determined by the Krieger-Dougherty model [83] so that the local

Ohnesorge number in the governing equation (3.1) is given by

quax

for local volume fraction ¢; and solvent Ohnesorge number Ohs. Here ¢pqe is the maxi-

¢\’
Ohi:OhS<1 Z) ,oi=1,..., (3.8)

mum packing coefficient, which is found from numerical simulations to be ¢4, = 0.64 for
random close-packing of monodisperse spheres [113]. This maximum packing condition

implicitly constrains the number of particles that can occupy a particular axial position.
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For a uniform distribution of particles, the average or bulk viscosity Ohg, can be calculated
by evaluating the Krieger-Dougherty model at the average volume fraction ¢g,.

The concentration dependence of the bulk viscosity predicted by the Krieger-Dougherty
model is plotted in Figure 3.5 for a range of solvent viscosities Ohs. Also shown in Figure
3.5 is the dependence of particle size on the total number of particles for a range of average
volume fractions. For example, a suspension of ¢4, = 20% particles will increase a solvent
viscosity of Ohgy = 0.1 to the bulk value Ohg, = 0.22 and for N = 100000 particles the

effective particle radius is 7 = 0.024.

3.2.3 The Effect of Particles on Thinning Behaviour

The addition of particles to a Newtonian solvent increases the bulk viscosity of the fluid,
as predicted by the Krieger-Dougherty equation (3.8). For solvent viscosity Ohs = 0.1,
the addition of ¢4, = 20% particles to the Newtonian solvent increases the viscosity to the
bulk value Ohg, = 0.22. The increased resistance acts to retard the thinning process and
Figure 3.6 shows that the time to break-up for a Newtonian fluid with the bulk viscosity

is nearly twice as long as that of the solvent viscosity.

11

pa‘rticle model

1 e solvent viscosity -
Sy bulk viscosity

0.9

0.8

0.7 1

0.6 -

0.5

04 |

Minimum Filament Radius

03 |
0.2 |
0.1 |

Figure 3.6: Radial decay profiles of pure solvent Ohs; = 0.1, bulk viscosity Ohg, = 0.22
and the corresponding particulate suspension of volume fraction ¢4, = 20% and particle
size r = 0.024. The shaded area shows that standard deviation from the mean for ten

realisations.

Figure 3.6 also shows the mean radial decay profile of ten realisations predicted by
our particle model, where the effective particle size is r = 0.024 relative to the initial
mid-filament radius; the shaded region indicates the standard deviation from the mean.
The particulate suspension is seen initially to follow the behaviour of the bulk viscosity.
However, as the filament radius decays we observe accelerated thinning and the time to
break-up is consequently reduced. The results of choosing different bin sizes are shown in

Figure 3.7 and compared to the bulk viscosity model. The difference in the radial decay
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Figure 3.7: Radial decay profile of a particle suspension for varying bin size bz compared

to the bulk viscosity model for suspension properties Ohs = 0.1, ¢g = 20%, r = 0.024

profile for different bin lengths is small compared to the effect of particles on the bulk
behaviour. Furthermore, the difference due to changing bin size is within the standard
deviation measured for the suspension shown in Figure 3.6. Consequently, the specific
bin size does not significantly affect the dynamics provided b, > 27, but remains small

compared to the filament length.

To understand particle effects on the thinning behaviour, we study the evolution of the
local particle density. Since the particles move with the fluid velocity, they are transported
out of the thinning filament and into the end drops as the filament radius decays. Thus,
although the average particle density in the filament remains constant, large fluctuations
in the local particle density appear, as shown in Figure 3.8(a). Near to break-up, there

are regions depleted of particles as well as regions of high density.

Figure 3.8(b) shows that the particle fluctuations are mirrored in the fluid viscosity so
that there are regions of both high and low viscosity in the filament compared to the bulk
viscosity Ohg, = 0.22. The viscosity is reduced to that of the solvent Ohs = 0.1 in areas
devoid of particles. It is these areas of low viscosity that allow the filament to neck and

thin faster than a Newtonian fluid of the bulk viscosity.

The free surface evolution profile of the particulate suspension is shown in Figure 3.9(a).
Although our model is unable to predict individual particle effects on the free surface, close
to break-up the profile appears ‘lumpy’ with variations in filament thickness that reflect
variations in particle concentration. Particle-rich regions appear as bulges that correspond
to clusters of particles. In the region containing no particles, the free surface is able to
thin down and form a uniform filament, as observed in the corresponding Newtonian case

shown in Figure 3.9(b).

A plot of particle evolution with time is shown in Figure 3.10, which provides a spatio-

temporal diagram of the variation in volume fraction with radial decay and axial position.
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Figure 3.8: (a) Volume fraction evolution profile, (b) viscosity evolution profile for sus-

pension properties Ohg = 0.1, ¢q,, = 20%, 7 = 0.024.
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Figure 3.9: Free surface evolution profile of (a) suspension with properties Ohgs = 0.1,
bav = 20%, = 0.024, (b) bulk viscosity Newtonian fluid Ohg, = 0.22.

We illustrate two different scenarios in Figures 3.10(a) and 3.10(b); first, we show the full
particle model, where the onset of particle fluctuations is fed back into the fluid viscosity
and therefore affects the local thinning dynamics; second, we show a hypothetical case
in which viscous feedback is neglected and we consider only the motion of the particles
in a fluid of uniform viscosity. The latter case is referred to as the average viscosity
model. By comparing Figures 3.10(a) and 3.10(b), we can examine how the dynamics

affect fluctuations in particle density.

In particular, Figure 3.10(a) shows how the volume fraction variations grow with time
for one particular realisation of a suspension with Ohs = 0.1, ¢g, = 20% and r = 0.024,
whereas Figure 3.10(b) shows how the fluctuations would have evolved if we hypothet-
ically impose a uniform viscosity Oh = 0.22, which corresponds to the average volume
fraction used in the full particle simulation. We continue by highlighting the differences
between these two plots and describing how particle fluctuations develop as a consequence

of variations in the local viscosity.
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Figure 3.10: (a) Evolution of volume fraction variations for one realisation in the case
Ohs = 0.1, ¢g, = 20%, r = 0.024 predicted by the particle model. (b) Evolution of
particle fluctuations for the same suspension properties, but for a hypothetically imposed
uniform viscosity Oh = 0.22 (see text for details). Each are compared to the free surface

profile at the point of break-up.

In each case, the initial statistically uniform state corresponding to h.,;, = 1 shows
little variation in the particle density. It is evident that fluctuations are amplified as the
volume of fluid in the filament is reduced, which can be observed in the development of
light and dark areas in Figure 3.10. For the average viscosity model shown in case (b),
random clusters of particles form during radial decay, whereas the fluctuations in density

develop much more smoothly for the full particle simulation shown in case (a).

In the latter case, the particle density feeds back into the fluid viscosity. The higher
viscosity of particle-rich regions means that these tend not to thin further, but are advected
along the filament. On the other hand, in the light areas that contain a lower particle
density, the viscosity is reduced and consequently the region is able to thin more rapidly
than the rest of the fluid. The reduction in volume drives more particles out of the filament
into the end drops so that the low-viscosity region is able to develop into a uniform filament.
We observe that, in most realisations, the viscous feedback of the particle model allows
a single, uniform, low-viscosity filament to form between the two end drops. This is in

contrast to the average viscosity model, which neglects dynamic feedback, where we see
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Figure 3.11: Evolution of volume fraction fluctuations for one realisation predicted by the
particle model compared to the free surface profile at the point of break-up for Ohs; = 0.1,
Gav = 20%, r = 0.024.
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Figure 3.12: (a) Standard deviation of particle density from the average volume fraction
Pav = 20% averaged over six realisations for suspension properties Ohgs = 0.1, r = 0.024.

(b) Difference between the particle model and average viscosity model.

alternating regions of low and high volume fraction over the length of the filament. In
our model, we neglect the effects of individual particles on the free surface. These effects
are expected to become important only when the filament diameter is of the order of the
particle diameter. However, at this point we observe that the filament contains no particles
at all and consequently the local thinning dynamics at the minimum filament radius are

unlikely to be affected by these interactions.

Other structures are possible depending on the initial distribution of particles, as shown
in Figure 3.11. Instead of a single uniform filament, we observe an area of high particle
density located at the centre of the axis, with regions depleted of particles surrounding
it. This corresponds to the generation of a small satellite drop at the mid-filament point,
which is connected to the end drops by threads of liquid. Instead of being advected into

the end drops, particles remain trapped in the satellite indicated by the darker central
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Figure 3.13: Radial decay profile of a particulate suspension Ohg = 0.1, ¢qp, = 20% for

varying particle size.

region, which does not thin down due to its high local viscosity. The surrounding areas
have a lower viscosity and are therefore able to thin more rapidly than the central droplet.
This creates two shorter, uniform filaments that suspend the particle dense satellite drop
between the end drops. Similar ‘beads-on-string’” morphologies have been observed by
Zimoch & McKinley [147] and also compared to a one-dimensional model. For this ‘beads-
on-string’ case, the particle interactions with the free surface are more important and our
model assumptions do not hold in the region of the bead. However, our model will still

capture the differential thinning of the connecting filaments that contain no particles.

We have calculated the standard deviation of particle density from the average volume
fraction ¢q, = 20% and taken the mean over six realisations. Figure 3.12(a) compares
the particle model to the average viscosity model without dynamics and Figure 3.12(b)
highlights the difference between the two cases. The variation in particle fluctuations
is equivalent in the initial stages of thinning. The effect of viscosity variation on the
distribution becomes evident at approximately h,,;, ~ 0.1, where the fluctuations observed
in the particle model grow more slowly than in the case without viscosity feedback. In this
example the dimensionless particle radius is 7 = 0.024. Thus, the point at which finite size
affects the dynamics occurs when the filament radius has reduced to around four to five
times the particle radius. This observation is not affected by the bin discretisation, as we
have shown in Figure 3.7. This change in dynamics agrees with experimental observations
that the dynamics follow that of the bulk viscosity up to the point where the filament

diameter has thinned to approximately five particle diameters [61].

Figure 3.13 shows the effect of increasing particle size on the mean minimum filament
radius and the time to break-up. As particle size increases, the total number of particles
in the simulation decreases and, as a consequence, the statistical variability between re-

alisations increases. Therefore more realisations are required in order to determine the
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Figure 3.14: Standard deviation divided by mean break-up time averaged over ten realisa-
tions. (a) Increasing solvent viscosity Ohs and volume fraction ¢q,. (b) Increasing particle

size.

mean break-up time. We observe that the thinning behaviour is equivalent for each of the
particle radii until finite size affects the dynamics at approximately A, ~ 5r. For larger
particles, fluctuations in volume fraction are amplified and these variations occur earlier
in the thinning process. Thus, increasing particle size further reduces the average time to
break up. For very small particles r < 0.01, Newtonian behaviour will be recovered.

For a range of Ohnesorge numbers, volume fractions and particle sizes, we find that
the mean time to break-up of a particulate suspension is reduced in each case, in compar-
ison with the break-up time of the corresponding Newtonian fluid of the bulk viscosity.
However, variation from the mean break-up time is found to increase with each of these
properties. The values of the standard deviation normalised by the mean break-up time,
averaged over ten realisations, are shown in Figure 3.14. Hence, as seen in experiments,
the behaviour of particulate suspensions is less predictable than that of the equivalent
continuum fluid.

Although on average the time to break-up for a particulate suspension is decreased
compared to that of the continuous fluid, this may not necessarily be the case for a
single realisation. Our model demonstrates that as particle size and volume fraction are
increased, the standard deviation from the mean break-up time is increased. The spread
of break-up times depends upon the distribution of particles as break up approaches. In
general a particle-free filament, having a lower viscosity than the bulk, is generated and
we observe accelerated thinning due to particle effects. However, in some cases particles
become trapped in the filament region creating areas of high viscosity compared to the
bulk. These structures may change the whole pinch off dynamics depending on the number
of particles that are trapped in the filament.

Experiments have shown that, for small numbers of particles in the filament, finite size
effects induce accelerated thinning as discussed above. On the other hand, if a sufficiently

large number of particles become trapped in the filament region, then the effect tends
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to be stabilising; the individual motions of the particles are restricted and the necking
of the filament is slowed [60]. Hammeed & Morris [65] study this mechanism further by
modelling the local deformation of the fluid interface due to particle-induced flow. They
show that for a single particle located at the centre of a thinning filament, the thinning
rate is decreased for larger particle sizes. Consequently, the larger the particle trapped in
the filament, the more stable the filament is and break-up time is consequently delayed.
Our model does not include this stabilisation mechanism, which occurs at a later
stage in the development when the minimum filament radius is less than the particle
radius. However, our model does predict that thinning becomes more varied as particle
size and volume fraction are increased. Fluctuations in the particle density become more
random and so it is more likely that more particles become trapped in the filament for
highly concentrated suspensions containing larger particles. Thus, the stabilising effect
of increasing particle size or volume fraction may decrease the number of satellite drops

produced during jetting.

3.2.4 Three Distinct Thinning Regimes

We have already observed that the initial thinning behaviour of a particulate suspension
follows that of the corresponding Newtonian fluid of bulk viscosity. As the filament radius
is reduced, the thinning enters an accelerated thinning regime due to finite size effects.
For solvent viscosity Ohs; = 0.2 we have tested a range of average volume fractions ¢q, =
0.15,0.20,0.25. The thinning profiles for each fraction collapse onto a single curve near the
break-up point, as shown in Figure 3.15, where the origin of time has been shifted to the
break-up time. This suggests that the thinning behaviour near to break-up is independent
of the initial volume fraction ¢,,. The accelerated regime we observe is not only faster

than the rate of corresponding Newtonian fluid of bulk viscosity, it is faster than the
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Figure 3.15: Radial decay profiles near to the point of break-up for a range of average

volume fractions ¢4, = 0.15,0.20,0.25 compared to that of the solvent Ohs; = 0.2.
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Figure 3.16: Radial decay profile near to break-up for volume fraction ¢4, = 10% and
particle size r = 0.02 compared to the Papageorgiou regime (3.6) for the solvent Oh, = 2.5
and the bulk viscosity Ohg, = 3.5.

thinning rate of the pure solvent, which is also shown in Figure 3.15.

We have seen that as the filament becomes devoid of particles, the viscosity is reduced
to that of the solvent. Thus, we would expect to observe a transition from the acceleration
phase to a final regime in which the thinning follows the behaviour of the solvent. However,
in these cases, it is difficult to determine a final thinning regime adopted by the suspension
in comparison to the solvent behaviour, since Ohgs =~ Oh*. In section 3.1.4 for Newtonian
fluids, we observe changes in the thinning behaviour at this solvent Ohnesorge number
due to inertia; Figure 3.3 shows that there is a transition from inertial regime (3.4) to
the universal Eggers regime (3.5), which occurs at around the same radius that finite size
affects the dynamics. Thus, at this low Ohnesorge number, inertia still plays a significant

role in the thinning process and may obscure dynamics due to particle effects.

In order to avoid this, we consider a larger Ohnesorge number for which a fully devel-
oped Papageorgiou regime (3.6) is observed. Figure 3.16 illustrates the thinning profile
of a particulate suspension with solvent viscosity equivalent to Ohgy = 2.5. For volume
fraction ¢q, = 10%, the bulk viscosity increases to Ohg, = 3.5 and for this suspension,

the effective particle size is given by r = 0.02.

The thinning profile of the suspension initially follows the bulk behaviour and Figure
3.16 shows that the radial decay obeys Papageorgiou’s thinning law (3.6) for the bulk
viscosity. We then observe a transition to the accelerated thinning regime due to finite
size effects at approximately h.,;, ~ 57; particles are forced into the end drops and particle-
free regions develop. Again, the rate of the accelerated regime is seen to be faster than
the thinning rate of the pure solvent given by Papageorgiou’s law (3.6), which is valid for
long, uniform filaments. Acceleration is attributed to the fact that a depleted filament is

not yet slender, thus has a relatively high curvature and therefore must thin faster than a
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uniform filament in order to conserve volume [21]. When the filament becomes sufficiently
long and thin, the thinning dynamics enter a final regime. Figure 3.16 shows that the
transition into this regime occurs at around h,,;, ~ r and the thinning behaviour can be
described solely by the solvent properties, characterised by Papageorgiou’s law (3.6) for
the solvent viscosity.

If large numbers of particles become trapped within the filament, then the generation
of a slender filament may be restricted. Our model predicts this is more likely to occur
for higher volume fractions. For these cases, we propose that the solvent regime will be
observed once the filament has thinned to less than the particle radius. A liquid bridge of
solvent is suspended between two individual particles, which subsequently forms a slender
filament following Papageorgiou’s law for the solvent viscosity. However, our model is

valid only for h,;, > 7, since we neglect individual particle effects on the free surface.

3.2.5 Comparison to Experimental Data

In Figure 3.17 we compare our numerical results with experimental data; polystyrene
particles of radius 20 ym are suspended in silicon oil (PDMA) and the minimum filament
radius is measured using a capillary-thinning rheometry [92]. The end plates have radius
2 mm and are held at fixed separation distance 6 mm. The initial shape is modelled as
an arc of a circle with mid-filament radius R = 1 mm. The Ohnesorge number of the
solvent alone is Ohs = 2.5. For a 10% solution the bulk Ohnesorge number is increased to
Ohgy = 3.5 and the suspension does not demonstrate shear-thinning properties. Despite
the simplicity of our model, the numerical results are in excellent agreement with the

experiment.
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Figure 3.17: Radial decay profile near to break-up for ¢,, = 10% polystyrene particles
with » = 20 pm suspended in silicon oil compared to the Papageorgiou regime (3.6) for
the solvent Ohs = 2.5 and the bulk viscosity Ohg, = 3.5. Experimental data given by

Crosses.
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Initially, we observe the bulk regime in which there is a uniform distribution of particles
and the suspension behaves like a Newtonian fluid having the bulk viscosity. As the
filament thins, fluctuations in the particle density are amplified and development of low-
viscosity regions induces a faster thinning rate. Thus, the dynamics enter the accelerated
regime. The filament eventually becomes devoid of particles and so the thinning behaviour

is governed by the properties of the solvent only. Thus, we observe the final solvent regime.

3.3 Modelling the Jetting of Polymer Solutions

3.3.1 Problem Outline

In contrast to the addition of particles, the addition of small amounts of long-chain poly-
mers delays surface-tension-driven thinning and break-up. This mechanism may be ex-
ploited to prevent the formation of unwanted satellite drops in inkjet printing applications
[66], [73], [120].

During the thinning of a viscoelastic jet, a stable uniform filament develops between
the main drops of fluid. This polymeric phenomenon is known as the ‘beads-on-string’
structure and is examined in detail by Clasen et al. [35]. The long-lived filament is highly
stable due the elastic forces and, as detailed in Chapter 2, exhibits classic exponential
thinning at the inverse rate of three times the polymer relaxation time 7 [21], [54], [130]. As
fluid is expelled from the thinning filament, the main drops become increasingly spherical
and, under the assumption of infinitely extensible dumbbells, the filament will never break
[111]. For sufficiently low polymer concentrations, the filament may become unstable to
the formation of smaller beads that develop on the uniform filament. These secondary
satellites form an iterated beads-on-string structure, which has been observed in many
experiments [32], [11], [117]. Furthermore, it has been suggested that this structure is
self-similar [25].

In this section, we use our one-dimensional model, together with the Oldroyd-B consti-
tutive equation, to explore the effects of viscoelasticity on an infinite jet. In particular, we
demonstrate the exponential thinning law during the development of the beads-on-string
structure and show a case where a secondary bead forms on the filament between the two
main drops. For the latter case, we propose that the secondary satellite grows exponen-
tially in time and compare the satellite drop shape to a Gaussian distribution, as in Sattler
et al. [117]. We compare the results of our one-dimensional model to full axisymmetric
simulations, the details of which are given in Chapter 1. We do not consider the final

stages of break-up where the finite extensibility of the polymer affects the dynamics.

3.3.2 An Infinite-Jet Model

To simulate an infinite jet of polymeric fluid described by the Oldroyd-B constitutive
equation, we solve the polymeric slender-jet equations (3.2) with periodic boundary con-

ditions via the Lax Wendroff scheme. For the Oldroyd-B constitutive model, the polymers
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are assumed to be infinitely extensible dumbbells, so that we neglect the effects of finite
extensibility.
The jet is assumed to be initially at rest so that v =0 and 0,, = ,,- = 0. In order to

provoke instability, we introduce a small sinusoidal perturbation to the free-surface profile

h(z,0) = R+ ecos <27r)\z> ,

for initial radius R = 1, where A = 20 is the disturbance wavelength and the amplitude
is set to € = 0.01. These initial parameters are chosen for direct comparison with the

one-dimensional model results of Li & Fontelos [90].

3.3.3 Exponential Thinning of Polymeric Jets

To observe the typical beads-on-string structure the Ohnesorge number, polymer concen-
tration and Deborah number for this simulation are chosen to be Oh = 0.79, ¢ = 2.37 and
De = 94.9, respectively, for direct comparison with Li & Fontelos [90]. For comparison
to a Newtonian solvent, we also solve the Newtonian slender-jet case (3.1) for Oh = 0.79,
which follows Papageorgiou’s thinning regime (3.6).

The profiles given in Figure 3.19 are shown for a length of two periods for clear visual-
isation. Figure 3.19(a) shows that the initial perturbations to the jet radius remain small.
Since the associated strains are small, the polymers remain close to their equilibrium con-
figuration. Thus, the elastic stresses are small and the stress originates mainly from the
solvent viscosity. Consequently the jet is Newtonian in character and, at this time ¢t = 20,
Figure 3.18 shows that the radial decay profile of the minimum filament radius is close to
that of the Newtonian solvent.

Figure 3.19(b) shows the point at which elastic stresses become comparable to the

capillary and viscous forces. This force balance is called the elasto-capillary balance.
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Figure 3.18: Radial-decay profile predicted by our one-dimensional model for fluid param-
eters Oh = 0.79, ¢ = 2.37 and De = 94.5 compared to the exponential thinning law (3.9)

and the corresponding Newtonian case.
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Stretching is evident at the centre of the jet, where the free surface begins to adopt a
uniform shape. Since the viscous forces are large compared to the driving surface tension
in this case, any necking action near to the main drops is dampened and the free surface
continues to develop symmetrically. At this time ¢t = 38, the radial decay profile shown in
Figure 3.18 is seen to deviate from the Newtonian prediction and enter a new regime, which
is dominated by elasticity. In this elastic phase, the thinning behaviour adopts the classic
exponential thinning regime in which the minimum filament radius decays according to

t
3De

)s (3.9)

hmin ~ exp(—

that is three times the relaxation time of the fluid, as shown in Figure 3.18.

As elastic stresses continue to grow, the jet evolves into a fully developed uniform
filament connecting the main drops of fluid. Figure 3.19(c) shows this typical beads-on-
string structure; the end drops are almost spherical and the thin filament is an order of
magnitude smaller than the drop radius. These results agree with those of Li & Fontelos
[90] and show that, for the Oldroyd-B model, a stable viscoelastic filament is formed that
does not break in finite time. Ultimately, the effects of finite extensibility will cause the

filament to break, but this will be at a later time compared to the Newtonian fluid.

3.3.4 Secondary Beads-on-String Structures

At lower Ohnesorge numbers, surface tension drives a necking instability causing the free
surface to evolve into an asymmetric shape before entering the elastic phase. Consequently,
secondary beads appear between the main drops in the beads-on-string structure. For this
scenario, we simulate fluid parameters Oh = 0.25, ¢ = 0.75 and De = 300, again for direct
comparison with Li & Fontelos [90]. We compare to the Newtonian model (3.1) for solvent
viscosity Oh = 0.25, which is close to the critical Ohnesorge number Oh* = 0.2077 and
breaks asymmetrically creating a satellite drop.

Figure 3.20(a) shows that, as in the elastic case shown in Figure 3.19, the jet is not
very stretched and so the stress originates from the solvent viscosity. However, in contrast
to the elastic case, the elastic stresses build up much more slowly and the solvent viscosity
is too small to dampen the capillary-driven flow. Thus, in Figure 3.20(b) we observe a
necking instability for which the free surface pinches in near to the end drops before a
uniform filament is able to develop. This pinching behaviour and the development of neck
regions is typical of the Newtonian behaviour predicted by Egger’s self-similar solution
described in Chapter 2.

In these neck regions, the jet stretches and so elastic stresses build and eventually
dominate the flow. Any further necking is resisted by this elasticity and a smaller satellite
drop develops. This smaller drop is connected to each main drop by a smaller uniform
filament and Figure 3.21 shows that the thinning behaviour adopts the exponential decay
law (3.9). Consequently, a two-level beading structure is created where smaller droplets

appear in between the main drops.
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Figure 3.21: Radial-decay profile predicted by our one-dimensional model for fluid param-
eters Oh = 0.25, ¢ = 0.75 and De = 300 compared to the exponential thinning law (3.9)

and the corresponding Newtonian case.

In Figure 3.22, the secondary drop shape is compared to the Gaussian distribution

2
d(z,t) & ho(t) + A(t) exp <Z;(th)<t)> : (3.10)

for comparison with the isolated drops observed experimentally by Sattler et al. [117],
which are well approximated by equation (3.10). Here hg(t) is the radius of the filament
outside the drop and A(t), w(t) and z4(t) are the amplitude, width and position of the
drop, respectively. The drop shape of the simulation is much sharper than the Gaussian
approximation observed by Sattler et al. and may be a consequence of the long-wavelength
approximation. Figure 3.22(b) shows that these secondary drops initially grow exponen-

tially, demonstrating a linear instability on the polymeric filament. The droplet size then
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Figure 3.22: (a) Droplet free surface compared to the Gaussian distribution (3.10). (b)
Exponential growth of droplet height for fluid parameters Oh = 0.25, ¢ = 0.75 and De =
300.
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reaches a constant radius.

It should be noted, however, that at this Ohnesorge number Oh = 0.25, the corre-
sponding Newtonian fluid develops satellites between its main drops and therefore this
two-level bead-on-string structure is the result of elasticity frustrating the formation of
satellites. This is quite different from the iterated mechanism given by Chang et al. [25]
that is caused by an instability at the junction between the bead and the filament. This
instability not observed in this model or in previous studies using a one-dimensional model
[6],]90], which may be a result of the long-wavelength approximation.

Experimentally, iterated beading originating from a highly-stretched state has been
investigated by Oliveira et al. [101], [102] and is termed ‘blistering’. Due to the effects of
finite extensibility, the Oldroyd-B constitutive model is not sufficient to capture this effect.
Oliveira et al. suggest that the hierarchy of beads and connecting filaments is self-similar.
However, further investigation by Sattler et al. [117] show that blistering is not necessarily
a self-similar process and the sequence of instabilities suffered by polymeric filaments is

considerably more complicated than previously reported.

3.3.5 Comparison to Axisymmetric Simulations

In this section, we compare the results predicted by our one-dimensional model to full
axisymmetric simulations [66] described in Chapter 1. Again, we assume an infinite jet
of viscoelastic fluid described by the Oldroyd-B constitutive model for fluid parameters
Oh = 0.79, ¢ = 2.37 and De = 94.9.

Figure 3.23 shows that the one-dimensional approximation for the free-surface height
is in quantitative agreement with the axisymmetric simulation. For this elastic case, a uni-
form filament is generated creating the typical beads-on-string structure described earlier.

The axisymmetric simulation gives a clear visualisation of the axial stress that is generated

T
one-dimensional
axisymmetric

height

0 5 10 15 20
axial positon

Figure 3.23: Free-surface profile predicted by the one-dimensional model compared to the

axisymmetric model for fluid parameters Oh = 0.79, ¢ = 2.37 and De = 94.9.
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Figure 3.24: Jet profile predicted by the axisymmetric model for fluid parameters Oh =
0.79, ¢ = 2.37 and De = 94.9. The colour scale corresponds to the axial component of the

structure tensor A describing dumbbell stretch.

throughout the filament region compared to the relaxed end-drops; the colour scale shown
in Figure 3.24 indicates the increase in the axial component of the conformation tensor A,

which describes the structure of the dumbbells, and is related to the polymer stress via
oc=GA-I).

The high extension rate in the filament region causes the infinitely-extensible dumbbells
to uncoil indefinitely and consequently the axial stress becomes large in this area. In
contrast, the dynamics are slow in the drops of fluid and so the polymers remain relaxed.
Furthermore, the stress appears uniform across the filament radius. This is in contrast
to numerical simulations of the filament-stretching technique, which report a high stress
boundary layer near to the free surface of the filament [12], [143].

Figure 3.25 compares the evolution of the minimum filament radius predicted by our
one-dimensional model to the full axisymmetric simulation. The profiles have been shifted
so that the initial Newtonian regime collapses onto approximately the same curve. The

filament radius is seen to decay exponentially according to equation (3.9) and the results
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Figure 3.25: Evolution of the minimum filament radius predicted by the one-dimensional
model compared to the axisymmetric model for fluid parameters Oh = 0.79, ¢ = 2.37 and

De = 94.9. The exponential thinning law is also plotted.
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of the two models are in agreement once a slender filament is generated. Discrepancies
during the early stages of thinning are probably due to discrepancies in the initial growth
rate of radial perturbations of the free surface between the full solution and the long-
wavelength approximation in the one-dimensional model. Similar differences have been
observed when comparing this axisymmetric model to a one-dimensional approximation
for fast filament stretching [130]. Vadillo at al. [130] also found it necessary to use a
multi-mode FENE approach in order to obtain realistic agreement between experiments

and the full axisymmetric simulation.

3.4 Concluding Remarks

In this chapter, we have developed a simple one-dimensional model under the long-
wavelength approximation in order to simulate surface-tension-driven thinning. In par-
ticular we have considered two cases; a liquid bridge held between two end-plates and
the case of an infinite jet of fluid. This model has proved successful in predicting the
thinning dynamics observed for Newtonian fluids, particulate suspensions and viscoelastic
solutions. Here we summarise the results presented in this chapter.

First, we developed the model to demonstrate experimental observations of drop for-
mation in the case of particulate suspensions. A two-stage thinning model has previously
been suggested [60] based on the idea that the initial and final thinning dynamics involve
a transition from a regime where particle effects are governed by bulk properties, to one
where finite size effects dominate the behaviour.

For an initially uniform distribution of particles, our model predicts that as a liquid
filament thins, fluctuations in the local particle density are amplified resulting in areas of
both high and low particle density. These fluctuations are reflected in the fluid viscosity.
Initially, the particulate suspension behaves like a Newtonian fluid with the corresponding
bulk viscosity, however, the development of low-viscosity regions allows the filament to thin
more easily. We therefore observe an accelerated thinning regime in which the thinning
rate is faster than that of the bulk and the solvent behaviour. Furthermore, our model
is able to quantify that finite-size effects dominate when the filament radius has thinned
to approximately five times the radius of the particle, as seen in large scale pendant drop
experiments [15], [60], [61].

For high-viscosity suspensions, we observe a transition from the accelerated regime
to an ultimate thinning regime, once the filament has become sufficiently long and thin.
Since the filament is particle-free, the thinning is no longer governed by finite-size effects,
but follows the behaviour of the pure solvent, which is characterised by Papageorgiou’s
thinning law. For low-viscosity suspensions, a slender filament is not generated at this
final stage and the solvent regime is not observed.

Second, we developed the model to simulate the evolution of a viscoelastic infinite
jet under the action of surface-tension-driven thinning. In contrast to the acceleration

effect particles have on a Newtonian fluid, the addition of polymer to a Newtonian solvent
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significantly delays to time to break-up. As the polymers are unravelled by the extensional
flow, elasticity becomes increasingly important and the elasto-capillary balance is achieved.
Our model shows that the thinning then enters the well-established elasto-capillary regime,
unique to polymeric fluids, in which the minimum filament radius decays exponentially;
the radius decays at an inverse rate that is three times the relaxation time of the fluid, as
predicted by the theory [35]. Consequently, the time to break-up is increased in comparison
with the corresponding Newtonian fluid. Our model is able to predict the classic ‘beads-
on-string’ structures seen in experiments, including two-level beading [117], and is in
quantitative agreement with other one-dimensional modelling [90] and full axisymmetric

simulations [66].



Chapter 4

The DoD Inkjet

4.1 Problem Outline!

As we have observed, the addition of polymer molecules to a Newtonian solvent can signifi-
cantly affect the break-up of liquid filaments. This increased stability due to viscoelasticity
has also been observed in liquid ligaments generated by flow through a nozzle [9], [43],
[120]. In particular, the addition of small amounts of high-molecular-weight polymer can
cause the ligament to retract into the main drop, so that the formation of unwanted satel-
lites can be inhibited. On the other hand, polymer content affects the reliability of jetting;
print speed may be compromised and, at high concentrations, the main drop may even fail
to detach from the nozzle. Thus, there exists a critical polymer concentration threshold
at which printing at the desired speed is possible, within the limit of the print head [71].

Hoath et al. [71] have recently analysed experimental results for the drop-on-demand
jetting behaviour of two polystyrene solutions. These solutions consist of mono-disperse,
linear polystyrene dissolved in two solvents of disparate viscosity and are jetted through
different nozzle diameters at different print speeds. They introduce a simple model (based
on one originally proposed by Bazilevskii et al. [9]), in which the fluid is modelled as a
solution of finitely-extensible dumbbells (FENE model) and the parameters are chosen to
fit the Zimm model [36]. Although the polymers present in ink formulations are rarely
linear [141], the model system was chosen to determine how the polymer-concentration
threshold, at which jetting at the desired speed is possible, varies with molecular weight.

Three regimes of jetting behaviour are defined by the dominant mechanism that limits
jet speed; regime 1 is restricted by (zero-shear) viscosity, regime 2 by viscoelasticity and
regime 3 by high-strain-rate extensional viscosity. The transitions between these regimes
are determined by the initial Weissenberg number Wiy = Uyr/D, where Uy is the jet
velocity at the nozzle exit, 7 is the fluid relaxation time and D is the nozzle diameter.
The first transition from regime 1 to 2 occurs at Wiy = 1/2, at which point polymers can
become significantly extended from their equilibrium configuration. The second transition

from regime 2 to 3 occurs at Wig = L, when polymers reach their finite-extensibility limit

!Published: C. Mcllroy, O. G. Harlen, N. F. Morrison Modelling the jetting of dilute polymer solutions
in drop-on-demand inkjet printing J. Non-Newt. Fluid Mech. 201 (2013) 17-28
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In their paper, Hoath et al. [71] demonstrate that the scaling of the maximum jettable
polymer concentration with molecular weight, predicted by these jetting regimes, agree
with experimental data. However, they do not perform a quantitative comparison. The
aim of this chapter is to explore these jetting regimes, and the transitions between them,
numerically and attempt a quantitative comparison with the experimental measurements
for the two polymer systems.

Furthermore, flow-induced deformations can lead to irreversible changes in the struc-
ture of a polymeric fluid; if the rate of extension far exceeds the rate of relaxation, then
the polymer chain can be broken. Mechanical degradation of polymers in extensional flow
has long been recognised [99] and leads to a reduction in the average molecular weight.
A-Alamry et al. [1] have recently reported evidence of flow-induced polymer degradation
in DoD jetting; central scission of high-molecular weight polystyrene is observed in a num-
ber of good solvents under certain jetting conditions. Since only those molecules that are
fully extended can be fractured at the centre of the polymer chain [97], in this chapter we
investigate if the strain rates in the ligament are large enough for central scission to occur

in DoD jetting.

4.2 Modelling Drop-on-Demand Jetting

4.2.1 Constitutive Model

A simple constitutive model for describing dilute polymer solutions in extensional flow is
the finitely-extensible non-linear elastic dumbbell model with the Chilcott-Rallison closure
approximation [31], also known as the FENE-CR model. Recall from Chapter 1 that the
total stress is given by

o =2uE+Gf(A—T),

where s is the solvent viscosity, E is the strain-rate tensor and the polymer stress consists
of the elastic modulus G, the conformation tensor A and the FENE factor

L2

/= L2 43— tr(A)

(4.1)

that accounts for the finite extensibility L of the polymer chain. The conformation tensor

A satisfies the evolution equation

DA f

— =K-A+A K' - 2(A-TI 4.2

~ - (a1, (42)
where 7 is the relaxation time of the polymer and K;; = 27“]"_ is the velocity-gradient tensor.

For a dilute, monodisperse polymer solution the parameters in the FENE-CR model,
namely elastic modulus G, relaxation time 7 and finite extensibility L, can be determined
as functions of the molecular weight M,,, concentration by weight ¢ and solvent quality

factor v using Zimm theory [36]. The elastic modulus is governed by the number density
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of polymer chains and so is proportional to concentration and inversely proportional to

molecular weight such that
oRT
= . 4.
o= (49

Here R is the universal gas constant and T is the absolute temperature. The relaxation

time 7 of the dumbbell is chosen to be the longest Zimm time and is defined as

_ 1 (1] pos M
A RT

T

(4.4)

where A = 7/7 = .73 is the universal ratio of the characteristic relaxation time 7 to
the longest relaxation time 7. The intrinsic viscosity [u] is described by the Mark-Houwink

relation

1] = KMy~ (4.5)

where K is a constant dependent upon the polymer system. The finite extensibility L can

be determined from the ratio of the equilibrium coil to the fully-extended length of the

s <a<9/2>M>” | (46)

polymer so that

Coo M,
where 0 is the carbon-carbon bond angle, j is the number of bonds of a monomer unit with
molar mass M, and C is the characteristic ratio. It should be noted that there is exper-
imental evidence [124] suggesting that this equation over-predicts the finite extensibility

of a molecule. For Zimm theory to be valid we require that

P/ <1, (4.7)

where ¢* is the critical overlap concentration.
Hence, for a dilute mono-disperse polymer solution, the FENE-CR model parameters

scale with molecular weight as

G~ M;' T~ MY LMY, (4.8)

w

derived from the equations (4.3)-(4.6). As an example, polystyrene dissolved in acetophe-

none (ATP), a good solvent with a quality factor of v = 0.59, has relaxation time

M1'77
TS 320w 10 M (4.9)
and finite extensibility
) MO8?
T 92x 103 (4.10)

for a molecular weight M,, measured in Daltons (Da).

4.2.2 A Simple Jetting Model

In their recent paper, Hoath et al. [71] describe a simple model for predicting the print-
ability of polymeric fluids, as illustrated in Figure 4.1. After ejection from the nozzle, the

main drop is slowed down by the extensional flow in the connecting fluid ligament. We
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(a) initial condition (b) ligament length increases
D
<>
Vig —— = I D Viig -
Vdrop
Z

u
| @
u

Figure 4.1: Simplified model of drop-on-demand printing. The main drop slows down
from velocity Up in (a) to velocity U in (b). The ligament increases from initial length D
in (a) to length Z in (b).

assume that a drop of density p and volume Vg, is ejected from a nozzle of diameter D,
at speed Uy, which we define as the speed of the main drop when it is a distance D from
the nozzle exit. The main drop is connected to the nozzle by a ligament of volume V};, and
initial length D. The volume of fluid in the drop and the ligament is assumed to remain
constant and the ligament is assumed to deform uniformly as its length Z increases. The
main drop slows down to final velocity Uy, due to resistive forces in the ligament.

The initial conditions defined for the simplified jetting model, as shown in Figure 4.1,
correspond to the time at which the fluid leaves the nozzle orifice in both experimental
applications and the full axisymmetric simulations. Thus, for comparison, we assume that
the model velocity Uy is equivalent to the velocity at which the drop exits the nozzle. This
velocity is greater than the final jet velocity Uy, which is the drop speed measured at a
distance of 1 mm from the nozzle exit, by a factor of 1.5 to 3 times (see Hoath et al. [72]).

For our simplified jetting model, we have the following governing equations [71]. The

speed of the drop at some time t is given by

dz
U= e
and the strain rate is € = U/Z. Assuming that the only forces acting on the drop are from
the stress difference in the ligament, the drop velocity satisfies the force balance
AU Vi <3usU

P gy ==7 \ "z

+ Gf(Azz - Arr)) .

The force consists of a viscous and polymer contribution multiplied by the cross-sectional

area of the jet. From the dumbbell evolution equation (4.2), the configuration tensor
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components A,, and A, satisfy the evolution equations
dA,, 20  f f
— (= _L)a. .+
dt < 7 7)o

dArmn U f f
=—(=+=)A,+=
dt (Z 7') T

(4.11)

These equations are non-dimensionalised using relaxation time 7 as the unit of time
and nozzle diameter D as the length scale. Hence, for dimensionless velocity u and di-

mensionless length z we have the following set of non-dimensional governing equations:

Y
Cdt’
d El*
7“ = - (3u + Cf(Azz - Arr)) y
dt z z
JA 5 (4.12)
U
2z _ [ 2% Azz
(2 r) A
dA U
T - _ et AT.,,,
dt (z + f) +F

together with the initial conditions,

_ Uor
=5
z=A,,=A, =1, att=0.

U:Wio att:O,

In our dimensionless units, the velocity at time zero is equal to the initial Weissenberg
number Wig. However, the Weissenberg number at time ¢ is given by Wi = Ur/Z = u/z
and is a decreasing function of time, as the length of the ligament z increases. Thus, even if
the initial Weissenberg number is large, the extension rate in the ligament will drop below
the coil-stretch transition by the time that the ligament has grown to a dimensionless
length of 2Wiy.

The dimensionless number that determines the deceleration of the drop is the modified

elasticity number El*, defined as

Bl — ‘/lig Wig _ ‘/l'ig HsT
Vdrop Re Vdrop pD2
This is a combination of the initial Weissenberg number, W4, defined as above and the
Reynolds’ number
UyD
Re — pPY0 ’
Hs

which gives a measure of the viscous forces compared to the inertial forces. The pre-factor

Viig/ Virop appearing in the modified elasticity number is assumed to be 1/4 based on obser-
vations in both simulations and experiments that approximately 80% of the fluid ejected
from the nozzle ends up in the main drop. The dimensionless polymer concentration c is
given by
Gt
c=—,
Hs

and is equivalent to the dimensionless grouping ¢/¢*.
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The governing equations (4.12) are solved numerically to calculate the ‘maximum jet-
table concentration’ as a function of molecular weight. In experiments, this concentration
is considered to be the maximum polymer content that can be jetted from the nozzle at a
desired jetting velocity Uy, using the range of drive voltages available. For our simplified
model, we define this maximum to be the polymer concentration at which the specified
ratio Up/Uy is achieved.

This simple model has a number of limitations. First, the model neglects the nozzle
geometry and any subsequent effects due to the flow though the nozzle. Consequently,
the model assumes that the polymers are initially at equilibrium i.e. A° =1I. Second, the

model does not take into account the break-off of the ligament from the nozzle.

4.2.3 Asymptotic Predictions of the Simple Jetting Model

To determine the three jetting regimes, as derived by Hoath et al. [71], we consider the
asymptotic limits of the force balance equation

Wip dt ~ 4Re

1 du 1 3£ g
22 z

(A, — AT,.)) , (4.13)
as given in the governing equations (4.12). For reference, the molecular-weight scalings of
the initial Weissenberg number Wi, the dimensionless concentration ¢ and extensibility
L are

Wig~ MY o c~ MP™V o L~ MLV (4.14)

w

which can be derived from the scalings given by equation (4.8).
In jetting regime 1, the initial Weissenberg number Wi is small such that the extension

rate in the ligament u/z < 1. So in this limit,
AzzN1+2U/Z, Arer—u/Z, fZl,
and the force balance equation (4.13) reduces to

1 du_ 1 (3u
Wip dt  4Re

Bata).

22

The fluid behaviour is Newtonian with a viscosity given by

po = ps(1+c).

Thus, the maximum polymer concentration that can be jetted at a particular molecular
weight is limited by the increase in the zero-shear-rate viscosity and the reduction in drop
velocity scales with molecular weight via (4.14) such that

C
— AU~ — ~ M3
Re w

Jetting regime 2 is defined to be the regime in which the initial Weissenberg number
satisfies 1/2 < Wiy < L. In this case, the initial extension rate is strong enough to

stretch the polymer molecules and fluid behaviour is viscoelastic. However, as the strain
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increases, the strain rate decreases so that the polymers ultimately relax. Thus, in this
regime the polymers relax before becoming fully extended and so the FENE factor can
again be approximated by f ~ 1. Assuming that 1 < A,, < L?, the dumbbell evolution

equation (4.12) can be integrated to give

and so the force balance equation (4.13) reduces to

Ldw 1 (3u +c(ze™)
Wig dt — 4Re \ 22 '

Integrating along the ligament length from 1 to z, the reduction in drop velocity is given

by
Au 1 1 t .
io = —m <3 <]. — Z> + C/O Z(t)e dt) .

Recalling that the initial Weissenberg number is equivalent to the dimensionless velocity,

the integral can be approximated by taking z = 1 + Wigt and the limit z — oo
o
/ ze ldt =1 + Wip.
0

The reduction in drop velocity is thus given by

Au 1
2 34 e(14 Wi
Wie ~ 1ge BT cll+Wio)),

which for ¢Wig > 1 has the molecular-weight scaling

~ My,

using equation (4.14) .

In jetting regime 3, defined by Wiy > L, the polymer chains reach their finite-extension
limit and the fluid then behaves like a suspension of rigid rods. Assuming that A,, — L?,
the dumbbell evolution equation (4.12) is approximated as

fA. ~ L2,
V4

and so the force-balance equation (4.13) reduces to

Ldu_ 1
Wio dt  4Re

(8+2cL%) 55 ~ () eI

22
Integrating along the fully extended ligament length from L to z — oo finds the reduction

in drop velocity to be

using the molecular-weight scalings (4.14).
Thus, by using the Zimm model to determine the molecular-weight dependence of
the relaxation time we can determine how the maximum jettable polymer concentration

scales with molecular weight during each of the three jetting regimes. These scalings
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Concentration | Regime 1 | Regime 2 | Regime 3

wt% ML ML M,%
c 1 1/Wig 1/L

Table 4.1: Regime scalings in terms of wt% concentration and dimensionless concentration

C.

laws are summarised in Table 4.1, where the concentration by weight ¢ is related to the
dimensionless concentration via ¢ = ¢/¢*.

The transition from regime 1 to regime 2 occurs at Wiy = 1/2 and corresponds to
the molecular weight at which coil-stretch transition will occur during the jetting process.
The transition from regime 2 to regime 3 occurs at Wiy = L, at which polymers of
this molecular weight reach their finite extension limit during jetting. The transitions
depend upon jetting conditions such as drop speed and nozzle diameter, as well as polymer

characteristics and the solvent viscosity.

4.3 Jettable Concentration Thresholds

In order to test whether these asymptotic regimes exist in practice, we have calculated
numerical solutions to the governing equations (4.12) for parameter values chosen to match
the experimental systems studied by de Gans et al. [42] and Hoath et al. [73]. These

calculations were performed using MATLAB.

4.3.1 Polystyrene/ATP Solution jetted using the AutoDrop System

The fluids studied by de Gans et al. [42] are solutions of polystyrene dissolved in ace-
tophenone (ATP) jetted at Uy = 2 m/s from a 70 pm diameter nozzle using an AutoDrop
system. The AutoDrop system, manufactured by microdrop technologies, uses a standard
micropipette for the nozzle. The speed of the jet on exiting the nozzle is unknown for this

case. We estimate that the ratio between final jet speed and the speed at which the ink

Nozzle Micropipette | Solvent ATP
nozzle diameter, D 70 pm solvent viscosity, us | 0.0017 Pa.s
initial speed, Uy 3 m/s quality factor, v 0.59
print speed, Uy 2 m/s fluid density, p 1028 kg/m3

Table 4.2: Jetting conditions and fluid parameters for polystyrene dissolved in ATP jetted

from an AutoDrop system chosen to correspond with experimental data [42].
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Figure 4.2: A, profiles for molecular weights M,, = 100 kDa (solid), M, = 1000 kDa
(dash) and M,, = 7000 kDa (dot) for polystyrene in ATP jetted from an AutoDrop system.

exits the nozzle for a micropipette to be 1.5 by fitting the jetting model to the experimen-
tal data at low molecular weight, where the fluid behaviour is Newtonian. Thus, we shall
take Uy = 3 m/s. The solvent ATP is of low-viscosity (us = 0.0017 Pa.s) and is classed as
‘good’, with solvent quality factor v = 0.59. The jetting conditions and fluid parameters
are listed in Table 4.2.

Figure 4.2 demonstrates the change in zz-component of the configuration tensor A as
molecular weight is increased. For low molecular weights (M,, = 100 kDa), A,, remains
small indicating that the flow is not strong enough to deform the polymer molecules.
Thus, the axial stress is proportional to the strain rate and jettability depends on the
fluid viscosity. For intermediate molecular weights (M,, = 1000 kDa), A, initially grows
but then relaxes before reaching its finite extensibility limit L? = 762. Thus, the defor-
mation remains within the Oldroyd limit where A,., < L? and jettability is limited by
viscoelasticity. For large molecular weights (M, = 7000 kDa), A,, approaches the finite
extensibility limit L? = 3783 indicating that polymer molecules reach their finite extension
limit.

In the steady state equilibrium dA../dt = 0, the FENE factor given by equation (4.1)
balances the stretching induced by the velocity gradient. So, in the limit A,, > 1, the

dumbbell evolution equation (4.11) reduces to

0= <25‘ - f) A,
T

and the FENE factor can be approximated as f = 2ér. In this limit, the FENE factor is

also approximated as
L2
f=g—u
L* — Azz

Thus, equating the two approximations, the axial stress component can be written as

A, - 1
L2 oW
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Figure 4.3: Maximum jettable concentration (c) of polystyrene in ATP jetted using an
AutoDrop system predicted by the jetting model (solid curve). Predicted asymptotic
scaling laws for each regime (solid lines). Transitions between regimes (dashed lines)

calculated from Zimm theory.
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Figure 4.4: Maximum jettable concentration (wt%) of polystyrene in ATP jetted using an
AutoDrop system predicted by the jetting model (solid curve). Experimental results [71]
(circles) assuming a 25% error bar. Transitions between regimes (dashed lines) calculated

from Zimm theory.
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Provided that Wi > 1/2, it is the non-linear spring that is responsible for the relaxation of
the axial stress. The molecules do not recoil, but remain in a fully-extended equilibrium.
Consequently, jettability is limited by high-strain-rate extensional viscosity rather than
molecule elasticity.

Figure 4.3 shows the maximum jettable concentration predicted by the jetting model in
terms of the dimensionless concentration, ¢, compared to the initial Weissenberg number,
Wig. In this case, the maximum jettable concentration is considered to be the ejected
concentration at which the ratio Up/U; = 1.5 is achieved. The numerical calculations
demonstrate three distinct jetting regimes. The scaling of jetting regimes 1 and 3 are
in quantitative agreement with the asymptotic scaling laws Wz'g and L~!, respectively.
However the asymptotic scaling of regime 2, namely Wi, ! is not quite achieved for
reasons which we now discuss.

Hoath et al. [71] define the transition from the Newtonian regime to the viscoelastic
regime to be at Wip = 1/2. The corresponding molecular weight at which this transition
occurs is calculated using the Zimm relaxation time (4.9) to be

M, = <;503.24 X 108> v ~ 258 kDa.
At this molecular weight, although the initial strain rate exceeds the coil-stretch transition
(o7 = 1/2), the strain rate then drops below critical so that the polymers have not
uncoiled for a sufficient amount of time to allow viscoelasticity to fully dominate. Thus, the
transition from regime 1 to regime 2 predicted by our model occurs at a higher molecular
weight than the theoretical criterion Wip = 1/2. On the other hand, the second transition
from regime 2 to 3 at Wip = L is calculated using the Zimm relaxation time (4.9) and

finite extensibility (4.10) to be

D 1/(4v—1)
M, = <\/9.2 X 10—333.24 X 108) ~ 3273 kDa,
0

and is in agreement with our observations. Since Wiy = 1/2 is too early as a criterion for
the beginning of regime 2, the viscoelastic regime does not fully develop and we do not
fully achieve the asymptotic scaling law in our model.

Figure 4.4 compares the maximum jettable concentration (wt%) that can be jetted
experimentally [71] with that predicted by the jetting model. The experimental results

agree well with the model predictions, however, the data does not extend into regime 3.

4.3.2 Polystyrene/DEP Solution jetted using the Xaar Print head

We now consider the system studied by Hoath et al. [73] in which polystyrene dissolved
in diethlyphthalate (DEP) is jetted at Uy = 6 m/s from a 50 pm diameter nozzle using a
Xaar XJ126-200 print head. Hoath et al. [72] show that the actuation pulse used in the
Xaar print head typically produces a ratio of 2-3 between the drop speed upon exiting the
nozzle and the final drop speed measured at a distance of 1 mm from the nozzle exit. Here

we will take the ratio as 3 and assume Uy = 18 m/s in the jetting model. The solvent
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Figure 4.5: Maximum jettable concentration of polystyrene (¢) in DEP from the Xaar
print head predicted by the jetting model (solid curve). Predicted scaling laws for each
regime (solid lines). Transitions between regimes (dashed lines) calculated from Zimm

theory.
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Figure 4.6: Maximum jettable concentration of polystyrene (wt%) in DEP from the Xaar
print head predicted by the jetting model (dashed curve) compared to the corrected jetting

model (solid curve). See text for details. Experimental results [71] with error bars (circles).
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Nozzle Xaar | Solvent DEP
nozzle diameter, D | 50 ym | solvent viscosity, us | 0.01 Pa.s
initial speed, Uy 18 m/s | quality factor, v 0.567
print speed, Uy 6 m/s | fluid density, p 1117 kg/m?

Table 4.3: Jetting conditions and fluid parameters for polystyrene dissolved in DEP jetted
from a Xaar XJ126-200 print head chosen to correspond with experimental data [73].

DEP has a higher viscosity than ATP (us = 0.01 Pa.s) and is also classed as ‘good’, with
a similar solvent quality factor v = 0.567. The jetting conditions and fluid parameters are
listed in Table 4.3.

Figure 4.5 shows the maximum jettable concentration, ¢, on the assumption that the
ratio Up/Uy = 3 is achieved. The results follow the predicted asymptotic scaling laws Wig
and L~! for jetting regimes 1 and 3, respectively, however, as in the previous case, the
middle regime asymptote of Wiy s not achieved. Again using Zimm values for relaxation
time and finite extensibility, the first transition from regime 1 to 2 is predicted to occur at
approximately M,, = 54 kDa, again a lower value than predicted by our model for reasons
discussed earlier, and the second transition from regime 2 to 3 is predicted to occur at
M, = 608 kDa.

In this case, the Weissenberg numbers for a particular molecular weight are larger
due to the higher solvent viscosity of DEP and faster jetting speed of the Xaar print
head. Consequently, the second transition occurs at a lower molecular weight than in the
previous case. Thus, the development of viscoelastic regime is further restricted by the
range of Weissenberg numbers and we observe a greater discrepancy from the asymptotic
scaling law. Furthermore, Figure 4.6 shows the maximum jettable concentration (wt%)
predicted by the jetting model (dashed line) significantly overestimates the experimental
data [71]. There are two partial explanations for this discrepancy.

First, we have assumed that the relaxation time given by equation (4.4) is independent
of concentration. However, Vadillo et al. [130] measure the relaxation time for polystyrene
in DEP from oscillatory shear and find that it increases with concentration for ¢ close to
the overlap concentration ¢*. This data is shown in Figure 4.7 for molecular-weight range
M, = 70 — 488 kDa, where the experimentally measured relaxation time 7 is compared
to the Zimm relaxation time 77 given by equation (4.4); the relaxation time measured at
a dimensionless concentration ¢ = 1 is about a factor of 3 larger than the Zimm time. To
compensate for this concentration dependence, the relaxation time 7 defined in the jetting
model is adjusted according to the line of the best fit shown in Figure 4.7, which is given
by a second-order polynomial. In making this correction, the predicted concentration
threshold is reduced and is now much closer to the experimental data, as shown by the
solid line in Figure 4.6.

However, even with this correction, at high molecular weights (M,, > 100 kDa) the
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Figure 4.7: The measured relaxation time 7 compared to the Zimm relaxation time 7
is shown as a function of concentration ¢ = ¢/¢* for a range of molecular weights M,, =

70 — 488 kDa, as given in reference [130]. Line of best fit is a second-order polynomial.

jetting model continues to overestimate the experimental data. This is in contrast to
the ATP /micropipette system where we find quantitative agreement. A possible explana-
tion for this discrepancy is pre-stretch of the polymers due to the print-head geometry.
The AutoDrop system uses a micropipette nozzle, which tapers gently to the nozzle exit,
whereas the Xaar print head has a sudden contraction. Consequently, the contraction flow
into the nozzle may extend the polymers before they are subjected to the extensional flow
in the ligament. Similar issues were suspected for the Dimatix DMP print head used by
A-Alamry et al. [1], which we will discuss in section 4.5.

Evidence of polymers subjected to pre-stretch in a nozzle has previously been observed
experimentally by Clasen et al. [34] in the study of the dripping to jetting transition. This
transition has also been studied numerically using a simplified jetting model [33]. Pre-
stretch was seen to prevent the occurrence of first-stage inertio-capillary thinning of a
liquid jet and, for very small nozzles, even prohibit the establishment of the viscoelastic
thinning regime. To investigate the effect of pre-stretch requires full simulations of the

flow within the nozzle.

4.4 Full Axisymmetric Simulations

4.4.1 Comparison to Axisymmetric Simulations

In order to explain the discrepancies between the jetting model and the experimental
data discussed in section 4.3.2, we have performed full axisymmetric simulations of a
polystyrene/DEP system jetted from a Xaar print head. The axisymmetric model [66]
has been fully described in Chapter 1. Simulations of each jetting regime are shown in
Figure 4.8. The molecular weights chosen to represent each regime are listed in Table 4.4

along with the maximum jettable concentration predicted by the simulations. The solvent
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Figure 4.8: Newtonian simulation with fluid viscosity 0.02 Pa.s. Simulations of polystyrene
in DEP jetted from a Xaar print head; regime 1 (3% M, = 50 kDa), regime 2 (0.095%
M, = 200 kDa) and regime 3 (0.003% M,, = 2000 kDa) shown when the main drop is 1

mm from the nozzle exit.
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Figure 4.9: Volume distribution of drops produced in simulations of jetting polystyrene in

DEP through a Xaar print head for molecular weights spanning the three jetting regimes.
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Max conc. | Max conc.
M, (kDa) | Wiy (wt%) (c)
Regime 1 50 0.4 3% 0.47
Regime 2 200 4.6 0.095% 0.04
Regime 3 2000 232 0.003% 0.005

Table 4.4: Molecular weights chosen to represent each jetting regime and maximum jet-

table concentrations predicted by the axisymmetric simulations.

parameters and jetting conditions used for these simulations correspond to those detailed
in Table 4.3.

Figure 4.8 demonstrates the distinct jetting behaviours of each regime. In regime 1,
the breaking behaviour is similar to that of a Newtonian fluid. Break-off from the nozzle
occurs earlier than in the other regimes, as expected, and the ligament undergoes capillary
thinning before subsequently breaking up into a number of satellite drops. In the second
jetting regime, the ligament becomes unstable and develops the beads-on-string structure
[11], where the droplets are held together by thin filaments of fluid in which the polymers
are highly extended. In regime 3, an extremely long ligament is generated that is still
attached to the nozzle when the main drop is 1 mm away. The polymers in the ligament
are close to their extension limit, indicating that extensional viscosity dominates the fluid
behaviour in this regime. The fluid acts like a suspension of rigid rods and this high
extensional viscosity limits the capillary instability.

Figure 4.9 shows the satellite-drop-volume distribution for a range of molecular weights,

which span each of the jetting regimes. At this Ohnesorge number, the low molecular

Polystyrene in DEP]
Xaar Print Head
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Figure 4.10: Maximum jettable concentration (wt%) of polystyrene in DEP from a Xaar
print head predicted by the corrected jetting model (solid line), the corrected jetting
model with pre-stretch factor 10 (dash line) and with pre-stretch factor 100 (dot-dash

line) axisymmetric simulations (squares) and experimental data (circles).
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weight solution breaks up into numerous, small satellite droplets, whereas, at high molec-
ular weights fewer, but larger, satellite drops are generated. For example, Figure 4.9
shows that the number of satellite drops is reduced from 16 relatively small drops in jet-
ting regime 1 (with nearly half having volume < 0.1) to 4 larger drops in jetting regime
3.

Figure 4.10 shows the maximum jettable concentration (wt%) predicted by the ax-
isymmetric simulations compared to the corrected jetting model results. Again, we see
that the jetting model overestimates the jettable concentration predicted by these axisym-
metric simulations, as well as the experimental data. As discussed earlier, one cause may
be due to the pre-stretching of the polymer molecules in the print head prior to exiting

the nozzle.

4.4.2 Pre-Stretch due to Nozzle Geometry

We define the average initial value of A,, for a cross-section radius a to be

— 2 a
A == | rAY dr, (4.15)
0

zz a2

where A, is the value of A, at the positions along the nozzle exit. This pre-stretch factor
is calculated from our simulations for a range of molecular weights spanning each jetting
regime.

The A9, profile is not uniform across the jet radius, but is shown in Figure 4.11 to
increase steeply in a thin boundary layer close to the outer edge of the jet. Figure 4.12
demonstrates that there is a large difference in the pre-stretch factor calculated for the

entire jet radius compared to that calculated for a central section of the jet that excludes

300
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Figure 4.11: Simulation of initial A%, profile across the nozzle exit generated by jetting a
polymer of molecular weight M,, = 2000 kDa through a Xaar nozzle D = 50 pm at initial
speed Up = 12 m/s.
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Figure 4.12: Pre-stretch factor from simulations of jetting polystyrene in DEP through a
Xaar print head calculated by equation (4.15) across the entire jet radius (dot) and across

the jet centre (plus).

the high-stress boundary. Stretching in this central section of the jet is attributed to the
contraction flow into the nozzle, whereas the high stress region at the outer edge of the jet
is due to the stretching of the free surface. In both cases the pre-stretch factor increases
with molecular weight indicating that polymers are indeed stretched out to some degree
inside the print head. As molecular weight increases, the degree to which the polymers
can uncoil via the pre-stretch mechanism is limited. For example, the pre-stretch factor
calculated across the centre of the jet reaches a maximum value of ~ 10 as molecular
weight increases, due to the limited strain available through the contraction. Including

the high-stress boundary, the pre-stretch factor reaches a maximum value of ~ 100.

The presence of a high-stress boundary layer has been observed in simulations of a
filament stretching device [12], [143], in which a polymeric liquid filament is extended
between two end plates. An area of concentrated stress develops in a thin layer near to the
fluid-air interface at the mid-point of the filament and remains even when a homogeneous
extensional strain is reached. This is due to the viscoelastic memory of the fluid to its

deformation history.

Excluding the high-stress boundary by choosing the initial condition A%, = 10 gives a
quantitative agreement between the corrected jetting model results and the experimental
data, as seen by the dashed line in Figure 4.10. However, the axisymmetric simulations
significantly underestimate the jettable concentration predicted by the experiments. This
discrepancy is probably the result of differences in the print head geometry between the
axisymmetric simulations and the actual highly non-axisymmetric print head. However,
a second possible explanation is that the polymers are being fractured due to the high

stresses.
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4.5 Polymer Scission during Jetting

4.5.1 Fracturing Polymer Molecules

Evidence of polymer scission occurring in inkjet printing was recently reported by A-
Alamry et al. [1], in jetting experiments where approximately monodisperse polystyrene
solutions are jetted through two different print heads. They examined the molecular-
weight distributions of the polymer before and after jetting. In the faster Dimatix print
head, they found a change in the molecular-weight distribution corresponding to an in-
crease in the fraction of polymers of half the mean molecular weight. However, the distri-
bution remained unchanged when using the Microfab printer, which is much slower and
has a wider nozzle diameter. Full details of the two print heads are given later.

Halving of the molecular-weight distribution indicates that the polymer is broken into
two equally sized chains during the jetting process. This mechanism is known as central
scission. Although there may be some circumstances where reducing the molecular weight
during printing may be advantageous, flow-induced degradation is a serious problem in
jetting applications involving functional organic materials, where damage to the molecular
structure will prevent the molecules from functioning correctly.

Odell & Keller [99] show that flow-induced central scission of high molecular weight
polymers can occur in the high-strain extensional flow produced by an opposed jet. A
polymer molecule will fracture if the tension force at the centre of a fully extended polymer
molecule exceeds the carbon-carbon bond force. For polystyrene in ATP this gives a critical

fracture strain rate [99] of
724 %107 )

ép = Mz s, (4.16)
for molecular weight measured in Daltons (Da). This is a decreasing function of molecular
weight indicating that higher molecular weight polymers are easier to fracture. For a
molecule to undergo central scission, the polymer must be both fully extended (i.e. in
jetting regime 3) and the the strain rate of the flow must overcome this fracture condition
(4.16).

In order to investigate whether the conditions for central scission exist within inkjet

AR coooos o %0 g0 Ny

- ¢ —> &
Polymer under Fully extended Central scission Molecular weights is
uniaxial extension polymer molecule occurs halved

Figure 4.13: Central scission of a fully extended polymer molecule when the strain rate é

of the flow exceeds the fracture strain rate é; given by equation (4.16).
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Figure 4.14: Critical strain rate €. given by equation (4.17) compared to the strain rate

measured at the nozzle é,,, given by equation (4.18) in the jetting model.

printing, we consider the strain rate of the flow at two locations; in the ligament when the
polymers become fully extended and at the nozzle exit. These strain rates are illustrated
in Figure 4.14. The critical strain rate at which the polymers are at full extension in the

ligament is defined to be

Eorit = gz s, (4.17)
where critical values are defined at maximum axial stress. The strain rate at the nozzle
exit is defined as

Uyb

bnoz =87 57, (4.18)

on the assumption of fully developed Poiseuille flow in the nozzle.

4.5.2 Polystyrene/ATP Solution jetted using the Dimatix Print head

A-Alamry et al. [1] examine the changes to the molecular-weight distribution of polystyrene
dissolved in ATP for two different print systems. First, the solution is jetted at Uy = 10
m/s from a 23 pm diameter nozzle using a Dimatix DMP-2800 10P1 print head. We assume
that the ratio between the final print speed and the speed at which the ink exits the nozzle
is 3. Thus, the speed used in the jetting model is Uy = 30 m/s. The jetting conditions

Solvent ATP Nozzle Dimatix
solvent viscosity, us | 0.0017Pa.s | nozzle diameter, D | 23 pum
solvent quality, v 0.59 initial speed, Uy 30 m/s
fluid density, p 1028 kg/m? | print speed, U 10 m/s

Table 4.5: Fluid parameters and jetting conditions for polystyrene in ATP jetted from a
Dimatix DMP-2800 10pl print head.
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Figure 4.15: A,./L? profiles for molecular weight range M, = 200 — 1000 kDa for
polystyrene in ATP jetted from a Dimatix print head.

and fluid parameters are listed in Table 4.5. A-Alamry et al. find that central scission
occurs for the molecular weight range 290 < M,, < 770 kDa under these conditions.

Figure 4.15 shows the evolution of the axial configuration component A, ., predicted by
our simple jetting model, compared to the finite extensibility limit L? as ligament length
increases for a number of molecular weights. The change in behaviour from the viscoelastic
regime to the fully extended regime, in which the non-linear spring dominates, is evident
as molecular weight is increased. In particular, for M,, = 1000 kDa, A,, ~ L? indicating
that the polymer has reached full extension. For a sufficient strain rate, the tension force
may exceed the strength of the chain bond leading to fracture of the polymer backbone.
The jetting model can be used to determine whether the strain rate is large enough for
this degradation to occur.

We calculate that the transition from regime 2 to regime 3 occurs at M,, = 256 kDa
and this transition is plotted in Figure 4.16. Thus, there exists a range of molecular
weights used by Alamry et al. within jetting regime 3, where polymers will become fully
extended under these jetting conditions. However, the strain rate at full extension given
by equation (4.17) is not large enough to fracture the polymer molecules, as shown in
Figure 4.16. Hence, we can conclude that the extensional flow in the ligament of the DoD
jet is not strong enough to cause central scission.

On the other hand Figure 4.16 also suggests that the nozzle strain rate given by
equation (4.18) is sufficient to exceed the fracture condition. Thus, polymers will undergo
central scission at the nozzle exit, provided that the molecules have become fully extended
within the nozzle. Our axisymmetric simulations in section 4.4 have demonstrated that
significant stretching occurs within a print head with a sudden contraction and Figure
4.17 demonstrates the high stress boundary layer near to the free surface generated at the
nozzle exit for Dimatix jetting parameters. In this region, the initial axial configuration
AYis near to the upper limit L?, suggesting that the polymers are near to their finite

extension limit as the fluid exits the nozzle.
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Figure 4.16: Fracture strain rate (4.16) (solid), nozzle strain rate (4.18) (dashed) and
critical strain rate (4.17) (dash-dot) for the Dimatix nozzle with the transition from regime

2 to 3 (dashed). The arrow indicates the range of M,, for which central scission is reported

1].

In conclusion, our modelling suggests that, under the conditions present in the Dimatix
print head used in the experiments of A-Alamry et al. [1], a proportion of the molecules will
become both fully extended and subjected to a sufficient strain rate at the nozzle exit such
that central scission is possible. Hence, we can conclude that the mechanism responsible
for central scission under DoD jetting conditions is likely to be the high strain rate at the
nozzle exit rather than the extensional flow in the jet. A-Alamry et al. observe central

scission occurs in the molecular weight range 290 < M,, < 770 kDa. The lower boundary
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Figure 4.17: Simulation of Agz /L? across the nozzle exit generated by jetting a polymer of
molecular weight M,, = 500 kDa through a Dimatix nozzle D = 23 pym at reduced speed
Up = 10m/s.
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coincides with the transition to regime 3, as well as the nozzle strain rate overcoming
the fracture condition. The upper boundary is possibly due to these very large molecules

being unable to uncoil to their full extension within the nozzle.

4.5.3 Polystyrene/ATP Solution jetted using the Microfab Print head

A-Alamry et al. [1] also jet the polystyrene/ATP solution at Uy = 5 m/s through a 50
pm diameter nozzle using a Microfab micropipette system. Recall that the micropipette
nozzle is smooth and tapered compared to the sudden contraction of the Dimatix nozzle
and so are unlikely to cause pre-stretch in the nozzle. In contrast to the Dimatix print

head, A-Alamry et al do not observe central scission with this system.

Solvent ATP Nozzle Microfab
solvent viscosity, us | 0.0017Pa.s | nozzle diameter, D | 50 pym
solvent quality, v 0.59 initial speed, Uy 15 m/s
fluid density, p 1028 kg/m? | print speed, Ur 5m/s

Table 4.6: Fluid parameters and jetting conditions for polystyrene in ATP jetted from a

Microfab micropipette system.

In Figure 4.18, we show that the strain rate at the nozzle exit and the strain rate at full
extension, on the assumption that the fluid velocity at the exit is 3 times the final velocity
i.e. Uy = 15 m/s. Details of the jetting conditions and fluid parameters are given in Table
4.6. Again we see that the strain rate in the ligament is too small to cause fracture. On

the other hand, although the strain rate at the nozzle is lower than the Dimatix system, it
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Figure 4.18: Fracture strain rate (4.16) (solid), nozzle strain rate (4.18) (dashed) and
critical strain rate (4.17) (dash-dot) the Microfab nozzle with the transition from regime
2 to 3 (dashed).
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is still sufficient to induce central scission for molecular weights M, > 500 kDa. However,
unlike the Dimatix head, the Microfab print head does not have a sudden contraction and
therefore it is unlikely that the polymers will become fully extended in the nozzle. Indeed,

A-Alamry et al. do not observe central scission in this case.

4.6 Concluding Remarks

In this chapter, we have tested the predictions of the simple model of jetting given by
Hoath et al. against both experimental observations and full numerical simulations. For a
low viscosity solvent (ATP), where the molecular weight corresponding to a relaxation rate
equal to the initial strain rate is large, we have identified all three of the asymptotic regimes
defined by Hoath et al. Furthermore, the predictions of the model agree quantitatively
with the experiments of de Gans et al. [42] using a micropipette system. However, for the
higher-viscosity DEP system jetted through an industrial print head, the middle scaling
regime is restricted and there is a significant discrepancy from the experimental results.
We have identified three factors that contribute to these discrepancies. First, for the
DEP system of Hoath et al. [72], where jetting of low molecular weight polymers is
possible at concentrations above ¢*, the Zimm model underestimates the relaxation time
and therefore both the polymer contribution to viscosity and the Weissenberg number.
Second, the abrupt contraction of the industrial print head compared to the gently tapering
micropipette nozzle produces a significant pre-stretch of the polymers that is not accounted
for in the model. When these effects are included, the model produces predictions similar
to the full numerical simulations and the experimental data. Finally, there is possibility,
already identified by A-Alamry et al. [1], that polymers are degraded due to flow-induced
scission. Our modelling suggests that this does not occur as a result of the extensional
flow in the ligament, but rather as a consequence of the high strains and strain rates in

the nozzle and so could be avoided by changing the nozzle geometry.



Chapter 5

The Continuous Inkjet

5.1 Problem Outline

Many studies have contributed to understanding droplet creation and evolution during
the continuous inkjet (CLJ) process [64], [68], [134], [23], the first attempts dating back to
the nineteenth century and the studies of Rayleigh [109] and Savart [118]. However, al-
though the inks used in CIJ printing are predominantly Newtonian, there remain unsolved
problems surrounding the break-up regime.

Theoretical and numerical predictions of jet break-up prove challenging due to the
pinch-off singularity that occurs in free-surface flows. Several approaches have been fol-
lowed in recent years, of which a comprehensive review can be found in reference [50].
The first quantitative comparison of drop formation with experimental data was carried
out by Eggers & Dupont [52], who use a second-order, finite-difference scheme on a highly
non-uniform mesh that is adapted to the solution. They find that fully implicit time
integration is essential in order to control numerical instabilities.

Since the continuous jetting technique can achieve much faster print speeds than DoD
printing, applications based on continuous inkjet technology continue to be developed.
However, pushing the boundaries of print resolution and complex material properties
requires a fast and accurate numerical simulation of the jet break-up and drop formation.
The Lagrangian axisymmetric jetting model [66], described in Chapter 1, has previously
been applied to the CIJ problem, with quantitative agreement to experimental data [23].
However, the implementation of this fully axisymmetric simulation is computationally
expensive.

In this chapter, we apply the one-dimensional slender-jet model, described in Chapter
3, to a continuous inkjet of Newtonian fluid. In addition, we implement the adaptive-
mesh technique previously developed by Kelmanson [79], [80], [81], [82]. In this way, the
computation time is dramatically reduced compared with the full axisymmetric model.
Using this adaptive model, we explore the stability and break-up of a continuous jet, for
two different driving techniques.

As detailed in Chapter 2, jetting through a nozzle creates a stream of liquid that is

115
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rendered unstable by surface tension. For a continuous free jet, this instability creates a
succession of main drops connected by thin filaments, with drop separation determined
by the fastest growing mode. However, in order to control break-up and increase printing
speed, CIJ printing exploits the effects of finite-amplitude modulations in the jet veloc-
ity profile, giving rise to conditions in which jet stability deviates from linear Rayleigh
behaviour.

It is the growth of non-linear interactions, caused by large modulations in the driving
velocity, that significantly influence the break-up behaviour. In particular, we identify a
modulation range for which pinching occurs upstream of the connecting filament, rather
than downstream - a phenomenon we call ‘inverted’ break-up. Furthermore, this behaviour
can be controlled by the addition of a second harmonic to the initial driving signal. Our
results are compared to the full axisymmetric simulations in order to incorporate the

effects of nozzle geometry in our one-dimensional model.

5.2 An Adaptive Mesh Technique

5.2.1 Linked Lists for Adaption

Adaptive meshing is an efficient modelling technique that allows multi-spatial-scale con-
temporaneous resolution. That is, the solution may be computed on a low-resolution mesh
that adapts to allow refinement only in regions where high resolution is required, within
the context of the problem. In this way an accurate solution can be achieved for a reduced
computation time.

As observed in previous chapters, capillary thinning of a low-viscosity Newtonian jet
induces a necking instability, which ultimately causes the production of small satellite
drops. These neck regions, where pinching of the free surface occurs, require a sufficiently
fine mesh size in order to obtain a more accurately resolved solution. On the other hand,
dynamics within the main drops of fluid are slow and therefore can be computed on a
coarser mesh. Consequently, the use of an adaptive mesh scheme, which, by construction,
automatically refines areas of high curvature, is beneficial to this problem. A computa-
tional mesh that adapts in this way may be implemented using a linked-list data structure,
as used in references [79], [80], [81], [82].

The linked-list data structure is an elegant way to implement the dynamically adaptive
storage requirements associated with an irregular evolving mesh. Since this structure
facilitates the addition of information to an existing set of data, it is convenient for the
development of an adaptive mesh scheme, where new nodes are added to the original mesh
in order to increase resolution. The addition of new nodes to a mesh is analogous to adding
new information to the linked-list data structure. Moreover, information can be readily
deleted from the list in the event that mesh coarsening occurs.

A linked list contains an ordered collection of elements, each of which corresponds to

a node on a mesh. When allocated in memory, each list element is assigned an address, as
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Figure 5.1: An element of a linked list.

well as information relating the element to the global mesh structure and to the variables

of the problem. Typically, each element consists of

e address,

node value,

level of refinement,

information field,

pointer field.

Figure 5.1 shows a representation of a single element of a linked list, the details of which
are now explained.
First, the nodal value locates the element in relation to the global mesh in physical

space. For example, for mesh nodes denoted
zj=z0+jdz, j=0,1,...,J,

for some mesh size dz, the nodal value j is stored in the list element and determines the
location of the element in relation to the boundaries, which are defined to be at j = 0 and
j = J. Second, the level of refinement implicitly defines the local mesh size. For example,
level 0 corresponds to the coarsest mesh size dz; after one refinement, the level increases
to 1 and the mesh size is halved to dz/2, and so forth. Next, the information field of
an element contains the physical variables at the mesh location marked by the particular
nodal value. For the CIJ problem, the free-surface height h(z;,t) and the velocity v(z;,t)
are stored in the information field at time t. Finally, the pointer field, shown graphically
as arrows, contains a reference to the next element in the list i.e. the memory address of
the adjacent element. In this way, the next element in the list can be found in memory,
wherever it is dynamically allocated as the mesh evolves. The overall structure of the list
is built by using pointers to connect all the elements sequentially. Figure 5.2 illustrates

the linked-list structure in relation to a uniform mesh structure.
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Figure 5.2: The structure of a doubly-linked list compared to a uniform mesh.

The order in which a list is traversed is naturally ‘left to right’ for a one-dimensional
problem. However, for higher dimensions this process must be more clearly defined [79],
[80], [81], [82]. For a singly-linked list, the data may only be traversed in one direction,
whereas doubly-linked lists allow traversal in both directions. In the latter case, an ad-
ditional pointer is defined for each element, which points to the previous element in the
list. Thus, for a doubly-linked list, the pointer field contains the addresses for the adjacent
elements in both the forward and backward directions. Although more space is required
per element for a doubly-linked list, computing time associated with the list traversal (an
essential part of the adaption process) can be significantly reduced.

For the last element in the list, the next pointer contains a special value known as
NULL. This is not a valid address but signifies the end of the list and usually admits a
physical correspondence with the ‘earth’ in an electrical circuit. Similarly, for a doubly-
linked list the previous pointer of the first element is also set to NULL. Using the NULL
points, the terminal elements corresponding to the boundary nodes of the problem can be

easily identified within the linked-list structure.

5.2.2 Mesh Refinement and Smoothing Algorithms

First, an ‘adaption criterion’ for identifying nodes at which higher resolution is required
must be decided in order to trigger the refinement process. For the CIJ problem, the
dynamics near to the nozzle boundary are assumed to be simple under our one-dimensional
approximation (as expanded upon later) and therefore do not require high resolution. On
the other hand, downstream of the nozzle the jet is subject to the Rayleigh instability and
becomes thin before breaking into droplets. The dynamics in this spatial region are much
more complicated due to the steepening gradient of the free surface; the curvature becomes
large in the neck regions, where the jet pinches inwards, compared to the curvature of the
free surface near the nozzle. Thus, we choose an adaption criterion based on an increase in
the free-surface curvature. An upper-bound is decided such that, if the curvature exceeds
this limit at a particular mesh node, then the node is marked for refinement. Furthermore,
if the curvature drops below this limit after refinement has occurred, then a coarser mesh

can be recovered with a corresponding release of resources back into the memory.

The original mesh is made finer by adding a new node in between two existing nodes.
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Figure 5.3: Adding a new element to a linked list during mesh refinement.

In particular, for our adaptive scheme, new nodes are inserted at the mid-point so that
the mesh size is halved during the refinement process. In the linked-list format, this
corresponds to adding a new element to the list, at the corresponding level of refinement.
Introducing a new element to the linked-list data structure is done in two steps. First, the
information field of the flagged element, identified by the adaption criterion, is updated;
since the mesh size is halved, the level of adaption stored in the flagged element is increased

by one. Second, a new element is inserted into the list:
e memory is allocated for the new element;
e the pointer of this new element is set to point to the next element in the list;
e the pointer of the flagged current element is set to point to the new element;
e the new element is then filled with data, using interpolation of the old data.

The process of adding a new element to a linked list is illustrated schematically in Figure
5.3. For the CIJ problem, cubic Lagrange interpolation is used to calculate the free-surface
height and the velocity at the new node, giving h(zj11/2,t) and v(2;41/2,t) to be stored
in the information field of the new element.

There are two possible modes of adaption; ‘level-by-level’ and ‘coarse-to-fine’. In level-
by-level adaption, the entire mesh is refined by one level where necessary during one
transversal of the list. Refinement to the next finer level requires a second transversal
of the list and so forth. In this way each element of the list is tested by the adaption
criterion during each transversal of the list. On the other hand, in coarse-to-fine mode, if
an element is marked by the adaption criterion, then the mesh is refined to the finest level
required before moving on to the next element. Since each element is visited only once in
a single transversal of the list, coarse-to-fine adaption is more efficient than level-by-level.

Since we use finite-difference approximations to calculate derivatives in our one-dimensional

model, we limit the number of local mesh structures that arise during the refinement pro-
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cess. This is done using a mesh-smoothing algorithm, which ensures the difference in level
between adjacent elements is no more than one: if this scenario is ever violated, then extra
elements are added to smooth the mesh. This smoothing algorithm ensures that only two

local mesh structures can occur:

e parent-parent structure in which adjacent elements are at the same level of adaption

and so the mesh size is the same for each node;

e parent-child structure in which the child element is at one level of adaption higher
than the parent element. In this case, the mesh size of the child node is half that of

the parent node.

Thus, the smoothing algorithm eliminates the possibility of a parent-grandchild structure
in which the mesh size of adjacent nodes differs by a factor of 22 = 4.

For the parent-parent structure, the mesh size is uniform across the local mesh and
so the usual second-order, central-difference approximation may be used to calculate the

first derivative of the free-surface height
oh
0z |,

for mesh size dz. In the linked list, the free-surface height h; is stored in the information

_ Dy — Ry 2
= 5d> + 0(dz?),

field of the current element; hj;y; is the height stored in the next element of the list and
hj_1 is stored in the previous element. Thus, in linked-list notation, this central-difference
equation can be written as

oh o hnea:t - hprev 2

Similar central-difference formula can be used for higher orders of differentiation and one-

cur

sided formulae are used at the boundaries. However, for asymmetric structures such as
the parent-child, the local mesh is non-uniform and the difference approximation must be
adapted accordingly. A systematic method for determining finite-difference approxima-

tions on a non-uniform mesh is discussed later.

5.2.3 Error Analysis for Mesh Refinement

As stated above, the central-difference approximation for the first, spatial derivative is
given by

hjr1 —hj N
L AR EL =1,...
2dz +O(dz )7 j ? 7J7

where we use ‘prime’ to denote differentiation with respect to z. This approximation is

hy =

accurate to second order in space. For a periodic data set with period J, this central-
difference approximation can be used at all nodes j = 1,...,J. Assembly of central

differences in this way yields a matrix-vector system such that

hh 0 1/2 ... ... 0 hy
R -1/2 0 1/2 ... ... h
h' — 2 :i / / 2 = Dsh,
dz | oL L
n, /2 ... ... =1/2 0 hy
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Figure 5.4: Log-log plot of the error Fs for the second-order finite-difference approximation
compared to number of nodes J for a unrefined mesh (m=0) and for a refined mesh with
levels increasing from m = 2 to m = 8. The error gradients are all -2 in keeping with the

theoretical prediction (5.1).

where Dy is the polynomial differentiation matrix that differentiates to first order with
second-order spatial accuracy. Differentiation matrices are circulant, in that the rows
‘wrap’ round when they are displaced and they also demonstrate skew-symmetry such
that DT = —D.
The maximum error of differentiation at the nodes is of order O(dz?) and is determined
by
Es = ||h' — Doh||o,

where h’ is a vector of the exact first derivative for some prescribed function h, defined
at nodal values z;. In the following example, h(z) = exp(sin(z)) is used to generate the
nodal data h;. Using the Lagrange error formula [78], it is possible to make the theoretical

prediction
. 26.319
EQ — T,

for the error incurred using the approximation Dy. Figure 5.4 demonstrates how this

(5.1)

error is reduced by increasing the number of mesh nodes J and that the gradient of the
numerically obtained FE», is in agreement with this theoretical prediction F3.

The equivalent error for m-levels of refinement in our scheme is of the order
O((d=/2™)%)) = O(4"™dz?),

since the mesh size is halved at each level of refinement. Thus, the theoretical error for
m-levels of adaption is
4—m
*
E5 = 26.319?,
and is also plotted in Figure 5.4 for increasing m. We see that the error incurred on a

refined mesh is simply a factor 47" of the error incurred for m = 0. Thus, a significant
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reduction in the error is achieved for increasing levels of refinement. In our example
h(z) = exp(sin(z)), the implementation of two levels decreases the error E; incurred by a
factor of 10 compared to the unrefined case and this error may be reduced to as little as

10~8 for eight levels of refinement.

5.3 Numerical Schemes for Non-Uniform Meshes

5.3.1 Finite-Difference Approximations

Refining a global mesh via a locally determined adaption criterion leads to a highly non-
uniform mesh structure. Since we intend to solve our one-dimensional jetting model using a
second-order finite-difference scheme, the asymmetry resulting from non-uniform adapted
mesh structures leads to node-specific discrete approximations of derivatives. The deriva-
tion of these asymmetric equations requires knowledge of only the local mesh structure
surrounding the nodes required for a particular approximation.

For a regularly spaced mesh with initial nodes z1, ..., zs, the original mesh size is given
by

ZJ — 21

dz =
z T ,

and nodal data can be determined using Taylor’s theorem. For example,

d 2
hip1 = h(zj11) = h(z; +dz) = hy + d=h; + %h}’ +O(d=?),

dz?

hj—1 = h(zj—1) = h(zj — dz) = h; — dzh; + 7@’ — 0(dz%),

where a ‘prime’ denotes differentiation with respect to z. By manipulating Taylor ex-
pansions, finite-difference approximations for certain derivatives of the nodal data may
be derived. For example, the second-order, central-difference approximation to the first
derivative is found by subtracting the two expansions given above to yield

hjt1—h

hy = = =L 4 0(d2?).

This equation can be interpreted of as a molecule containing the atomic weights {—1/2,0,1/2}
acting on the three nodes {z;_1, 2j, zj+1} in the global mesh, to obtain an approximation
of h; at the base node z;. Figure 5.5 illustrates this difference equation in molecular form,
which is said to be central since it is symmetric about the base node. The base node
corresponds to the current element in the linked-list data structure. The arrows point
away from the base node and the weights appear inside the circles. At the boundaries,
one-sided molecules are required, which use only information ahead of, or behind, the base
node. In the linked-list data structure, information to the right of the current element
can be accessed via the next pointers for forward-difference approximations. Similarly,
for backward-difference equations, information to the left of the current element can be
accessed via the previous pointers.

In order to obtain both higher derivatives and higher-order errors, more terms are

required in the Taylor expansion, thereby increasing the number of nodes required in
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Figure 5.5: Second-order finite-difference approximations to the first derivative in molec-

ular form.

the molecule to eliminate the higher derivatives. In fact, adding the order of the error
and the order of derivative sought gives the maximum number of nodes required for the
approximation. For the CIJ problem, we require second-order spatial accuracy and so ap-
proximations of the first derivative require a maximum of three nodes and approximations
of the second derivative require a maximum of four nodes. Note that central-difference
approximations are special symmetric cases and so require one less node.
In general, the second-order, central-difference approximation to the first derivative at
the base node z; may be postulated as
wj—1hj—1 +wjih; +wjt1hj
dz

for which the weights {w;_1,w;, w;+1} and the error coefficient C' are to be found. For this

— 2 3
= h; 4 Cdz* + O(dz?),

example, the weights can be calculated by rewriting h;_1 and h;41 using Taylor expansions
about h;. Comparing coefficients then gives a set of simultaneous equations to solve for
weights {w;j_1,w;,w;11} and the error coefficient C.

This well-known method can be generalised further to incorporate varying mesh size,

which arises in our adaptive scheme, by considering this method in the matrix-vector form
M- w = b, (5.2)

for the vector w of the unknown weights. The order of differentiation plus the order of
the error defines the size of vector b and therefore the number of unknown weights. In

the CIJ problem, the b vectors are

(0,1!,0)7,  for second-order, first derivative,
b — ( (5.3)

0,0,2!,0)7, for second-order, second derivative.
The square matrix M corresponds to the distance of the local nodes used in the approxi-
mation from the base node z; and can be generated via the simple formula

My =d'™ (5.4)

where d; is 1/dz times the distance of node j from the base node. Essentially, d; is a
structure vector defining a local mesh labelling about the base node. A specific example

is given below.
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For known d;, the unknown weights can readily be found by solving equation (5.2).
Since we require only second-order approximations to the first and second derivatives,
the size of matrix M does not exceed 4 x 4 and it is convenient to use usual Gaussian

elimination to solve the system.

Example: Second-order, forward-difference approximation for h;- on the parent-

child local mesh structure

Consider the second-order, forward-difference approximation to the first derivative given

by
wihj + wjt1hj1 +wji39R48/
dz
at the base node z;. For the global nodes {2;, 241, zj43/2} required in the approximation,

the base node is relabelled zg, so that the local labelling is given by {0, 1,3/2}. Since the

— 2 3
= h 4 Cdz* + O(dz?),

mesh spacing between 2o and z; is twice that between 21 and z3/9, the local mesh has the

parent-child structure, which is reflected in the structure vector
d; = (0,1,3/2)7.

By choosing vector b from equation (5.3) and using equation (5.4) to generate the

matrix M, we have

11 1 w; 0
M = 0 1 3/2 , W= Wi+1 5 b= 1!
0 1 9/4 ’UJj+3/2 0

In general, the vector b has one non-zero entry appearing in the position corresponding
to the derivative sought. The value of the entry arises from the factorial dividing the
corresponding derivative in the Taylor expansion i.e. 1! for the first derivative. By viewing

the matrix M as

1 19 (3/2)°
M=1|o0 1' (3/2)" |.
0 12 (3/2)?

we see that equation (5.4) captures in one formula all Taylor coefficients of the atomic
nodes relative to the base node.
The matrix-vector system

M.-w=b,

is solved via Gaussian elimination to yield the weights
w = (-5/3,3,-4/3)T.

Thus, the second-order, forward-difference approximation to the first derivative is given

by
o —5h; +9hj11 — 4hj+3/2 .

2
J Sdz O(dZ )7
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Local Labelling Forward Central Backward
parent-parent {0,1,2} {-1,0,1} {-2,-1,0}
parent-child {0,1,3/2} | {-1,0,1/2} | {-3/2,—1/2,0}
child-parent | {0,1/2,3/2} | {-1/2,0,1} | {-3/2,—-1,0}

Table 5.1: Local mesh labelling for a second-order approximation to the first derivative.

at global base node z;. The parent-child mesh structure is incorporated via the atomic
weights; for comparison the weight vector calculated for this forward approximation to

the first derivative in the parent-parent case is w = (—3/2,2, —1/2)T

By using d; dictated by the appropriate Taylor expansion, any second-order differ-
ence approximation to the first or second derivative can be readily derived. Table 5.1
summarises the local mesh labelling required for the first derivative, for each possible
structure. It is clear to see that the local labelling for the child-parent structure is a
reflection about the base label 0 of the parent-child case. Similar labelling can be derived
for the second derivative approximation, however, more structures are possible since more

nodes are required.

5.3.2 An Implicit Numerical Scheme

Implicit time-marching algorithms involve solving a boundary-value problem at each time
step in order to advance the solution forward in time. The reward for this costly process
is that implicit methods are stable for much longer time steps by comparison with explicit
schemes. For non-linear equations, a fully-implicit algorithm is highly computationally
expensive. Thus, for the Navier-Stokes equations, it is more common to use a semi-
implicit algorithm in which some terms are approximated by an explicit scheme, while
others are approximated implicitly. Since the thinning is driven by surface tension, we use
an implicit treatment of the terms determining the jet shape, but treat the velocity terms
explicitly. For the CIJ problem, we use the following semi-implicit algorithm, which we

found to be stable for non-uniform mesh structures.
Consider the Newtonian slender-jet equations (3.1) given by
Oh? 0
4+ Z(h*) =0
ot + 82( v) ’
0 0 0

ov
2 2.2y _ 2
6)t(h v)+az(hv) 5 (h <K+3Oh0z>>’

for the free-surface height h(z,t) and jet velocity v(z,t). The curvature term is denoted

by K and the Ohnesorge number by Oh.

Discretising conservation of mass such that a} = h%(zj,t,) and v} = v(2j,tn), for mesh
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)

Here the velocity component is evaluated explicitly at the current time step t,, whereas

node z; and time step t,,, yields

" n Oa
= v 5

J

aa n+1

el n+1 @
ot

a
J 0z

J

the cross-sectional area is evaluated implicitly at the next time step t,4+1. On a uniform
mesh, the usual forward-time, central-space difference approximations can be applied such
that

n+l _

a a’ a"fl — o tl v — ot
J J n_J+l1 j—1 n+1 Jj+1 Jj—1 2
= |l = g gntl it 7 O(dt,dz*"),
dt (Vf 2dz % 2dz +O(dt, d=°)

for mesh size dz and time step dt, which gives first-order temporal accuracy and second-
order spatial accuracy. For non-uniform mesh structures the appropriate difference ap-
proximations are applied in order to achieve second-order accuracy in space. This leads
to a tridiagonal system of equations for a semi-implicit calculation of the jet area. For

example, for a parent-parent mesh structure, the system is given by

dt dt dt
—v?@a?fll + <1 + sz(v;brl - v}‘_l)> a}”l + U’-‘—Za?ill = aj + O(dt, dz?).

A tridiagonal matrix system can be solved via a simple algorithm consisting of a simplified

form of Gaussian elimination [108]. Furthermore, to achieve second-order accuracy in time
[108] the average of the explicit and implicit schemes are taken such that

+1
n n " av

i 2 J 0z i J 9z i J 0z i

Similarly, conservation of momentum can be solved; the equation takes the same gen-

da

- n+1 @
ot

a
J 0z

J
eral form with the addition of a source term on the right-hand side:
n+1

= [ & + S
j (Jazj J’) ’

For the Newtonian slender-jet equations, F' = h?v and the source term is defined as

n+1
0 (,9 Ov
"ol (122)

oF

il n+1 @
ot

J 0z

n

n_a 2
S} = 5 (WK)

J

where the first term corresponds to curvature and is known implicitly from the solution of
conservation of mass and the second term corresponds to viscosity and is solved explicitly.
Again, the appropriate finite-difference approximations are applied according to the local

mesh structure and second-order temporal accuracy is achieved by averaging.

5.3.3 An Adaptive-Mesh Example

In this section, we use the adaptive mesh technique alongside our one-dimensional model
to simulate the capillary break-up of a liquid bridge, as described in Chapter 3. The Ohne-
sorge number is set to Oh = 0.2, as a typical parameter for CIJ inks, and the Newtonian

slender-jet equations (3.1) are solved via the semi-implicit numerical scheme described
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(a) Height Evolution (b) K* Evolution
2 10
18 - 9
16 - 8
g l4r 7
2
2 12 6
® . A
E 1 i « 5
2
o 0.8 | 4
2
= 06| 3
04 2
0.2 | 1
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

axial position axial position

Figure 5.6: (a) Free-surface evolution of the liquid bridge for three time profiles calculated
via relative criterion (5.6); (b) corresponding K* given by equation (5.5). Points indicate
the distribution of mesh nodes for m = 4 levels of adaption. The Ohnesorge number is

Oh = 0.2 and the time step is dt = 1075.

above. We assume Dirichlet boundary conditions to simulate a capillary-thinning rheome-
ter; the free surface h is fixed and there is zero axial velocity v at the end-plates.

We select an initial mesh size dz = 0.2 and implement m = 4 levels of adaption, so
that the coarse mesh is refined to dz = 0.0125 via the coarse-to-fine refinement process.
After adaption, the mesh is smoothed using the algorithm described in section 5.2.2 and
coarsened to remove higher-level nodes that are not required. The time step is set to dt =
1075, which proved to be stable in the uniform case for the finest mesh size implemented
during adaption.

We choose to refine according to the sum of the absolute magnitude of the components
of the curvature term in equation (3.1), that is

hZZ
(1+ h2)32

. ‘ 1 . (5.5)

" R(1 + h2)172

l

Since our scheme is second-order spatially accurate, the error incurred calculating K* at
node z; is of the order O(dzjz), where dz; is the local mesh size. Thus, a suitable adaption

criterion is the ‘relative’ condition
K*de > 51, (56)

for some limit d;. We find that the choice §; = 0.2 is sufficiently large that the slow
dynamics in the end drops are computed on the coarsest mesh size, yet small enough to
provide adequate resolution as the bridge thins, as shown in Figure 5.6.

Figure 5.6 shows the evolution of the liquid bridge for three time profiles, with the
points indicating the distribution of mesh nodes, alongside the corresponding evolution of
K* given by equation (5.5). Initially, the mesh nodes are seen to be evenly distributed

along the bridge with uniform mesh spacing of the largest size dz = 0.2. As time progresses,
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Figure 5.7: Level structure created by adaption criterion (5.6).

surface tension drives the liquid bridge to evolve into a thin filament. Although the
curvature remains O(1) in the end drops, K* increases in the region where the filament
radius decays. Consequently, when criterion (5.6) is satisfied, new nodes need to be added
to the mesh, so that the mesh spacing becomes smaller in the thin-filament region and a

new distribution of nodes can be seen.

The mesh structure becomes highly non-uniform with nodes concentrated in the fila-
ment region where the curvature is large. Thus, the resolution is improved in precisely
those areas where the dynamics are most complicated. In contrast, the nodes are sparsely
distributed in the end-drop regions, where the dynamics are relatively slow and hence
where lower resolution is sufficient. Figure 5.7 illustrates how the level distribution of the
adaption technique evolves as the minimum filament radius decreases. Light regions indi-
cate the coarsest level of adaption and therefore the largest mesh size, whereas dark areas
correspond to higher levels of adaption and consequently smaller mesh sizes. A range of

mesh sizes are used as the filament radius decays and a fully resolved mesh is implemented

minimum filament radius
n
level

axial position

Figure 5.8: Level structure created by adaption criterion (5.7).
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(a) Height Evolution (b) K* Evolution
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Figure 5.9: (a) Free-surface evolution of the liquid bridge for three time profiles calculated
via absolute criterion (5.7); (b) corresponding K* given by equation (5.5). Points indicate
the distribution of mesh nodes for m = 4 levels of adaption. The Ohnesorge number is

Oh = 0.2 and the time step is dt = 1075.

in the filament region for h.,,;; < 0.1. Thus, the mesh adapts to the solution providing
high resolution only in the thin-filament region where it is required to capture the fastest
dynamics.

An alternative to adaption criterion (5.6) is the ‘absolute’ condition
K* > 49, (5.7)

for K* given by equation (5.5) and some d2, for which we find d = 2.5 is a suitable limit.
In this way, a fully resolved mesh is implemented when the criterion (5.7) is satisfied and
buffered into a coarser mesh, via the smoothing algorithm, where high resolution is not
required. For example, Figure 5.8 illustrates this absolute level structure, in comparison
with Figure 5.7 for the relative criterion (5.6). In this case, the darkest shading indicates
that a fully resolved mesh is implemented at the larger minimum radius A, < 0.6.

The solution computed via criterion (5.7) is equivalent to that calculated using the
first method (5.6); Figure 5.9 shows the evolution of the liquid bridge alongside the corre-
sponding adaption criterion K* for comparison with Figure 5.6. However, the advantage
of using the absolute criterion (5.7) is that higher resolution is provided in the neck regions
during the thinning process, as can be seen in Figure 5.10. Having high resolution in this
area is beneficial in the CIJ problem, where break-up of the jet into drops is considered.
As a result, the absolute criterion (5.7) is used is preference to the relative criterion (5.6)
in ensuing computations.

In Figure 5.11, we compare the free-surface profile at the point of break-up, computed
on three different meshes; a coarse uniform mesh (dz = 0.2), a fine uniform mesh (dz =
0.0125) and the m = 4 adaptive mesh described above for adaption criterion (5.7). The

time step is dt = 107° for all cases. The solution computed using our adaptive scheme is
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Figure 5.10: The computed neck region for two different adaption criterion (5.6) and (5.7),

with points indicating node distribution. The absolute criterion (5.7) provides higher res-

olution than relative criterion (5.6) in the neck region, which is beneficial in the prediction

of satellite drop formation.

in agreement with the uniform solution computed on the high-resolution grid, as shown

in Figure 5.11.

In contrast, the uniform mesh with the coarse node spacing does not provide sufficient

resolution to compute an accurate solution; Figure 5.11 shows that the absolute difference

from the fine-mesh solution is of the order O(10~!). By employing the adaptive technique,

which uses the larger mesh size for an initial grid and refines to the smaller spacing when

required, the error is reduced by the order O(10%) in the thin-filament region. Note that
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Figure 5.11: (a) The free-surface profile at the point of break-up computed on a coarse

uniform mesh (dz

0.2), a fine uniform mesh (dz = 0.0125) and an adaptive mesh

with m = 4 levels of adaption; (b) the absolute error from the fine mesh solution. The

Ohnesorge number is Oh = 0.2 and time step dt = 1076,
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Coarse | Fine | Adapted
Mesh size 0.2 0.0125 | 4 levels
CPU Time (min) 1.13 13.92 2.51
Number of nodes 30 480 141

Table 5.2: Computation time and number of nodes required for a coarse (dz = 0.2) and
fine (dz = 0.0125) uniform mesh compared to the adaptive case using m = 4 levels of
adaption. Computations were performed on a Dell workstation with 2.40GHz processor,

and the time step is dt = 107 for each case.

the error incurred using this non-uniform mesh is not necessarily symmetric due to the
nature of the adaptive technique, because nodes are added ahead of an existing node.
Table 5.2 compares the computation time taken to simulate this liquid bridge prob-
lem for the three different meshes described above on a Dell workstation with a 2.40Ghz
processor. The increase in computation time from a coarse to fine uniform mesh is ap-
proximately linear in the number of points required, which is what one would expect for a
tridiagonal solver. However, the computation time can be optimised by using the adaptive
mesh scheme; for this problem, the time taken to compute the solution is reduced by a

factor of five compared with the fine-mesh solution.

5.4 Modelling a Continuous Inkjet

5.4.1 A Simple Jetting Model

We now consider the dynamics of a continuous inkjet of Newtonian fluid using our adaptive,
one-dimensional model. Recall that the slender-jet equations (3.1) are given by
o o
ot = 0z
0, 5 0,9 9 0 9 v
el “ -2 K it
8t(h v)+az(hv) 5 h +30h8z ,

where the curvature term is defined as

(h%v) =0,

1 has
h(1+ h2)1/2 + (1 + h2)3/2’

and the Ohnesorge number is

o
Oh=—-_
VR

for initial jet radius R. Here jet velocity v(z,t) has been non-dimensionalised with respect
to the nozzle radius R and the Rayleigh capillary time 1" so that the initial dimensionless

jet velocity is defined by the Weber number

2
We — pU R7
Y
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for mean jet velocity U.

The governing equations are solved via the above-described semi-implicit numerical
scheme on an adaptive mesh. The mesh refinement is based on the sum of the absolute
magnitude of the components of curvature, given by equation (5.5), according to the
absolute adaption criterion (5.7), so that new nodes are added if K* > 2.0. Since the CIJ
problem takes into account break-up of the jet into drops, this adaption limit is chosen to
be less than that used for the liquid-bridge problem in section 5.3.3, to implement a larger
area of high resolution in the neck regions. The mesh is then smoothed and coarsened.

In the framework of our simplified one-dimensional model, the details of the nozzle are
neglected and we consider dynamics at the nozzle exit only. In order to drive the jetting,
two different methods are employed. First, the height profile is varied at the nozzle exit
such that

hnoz(t) = (1 + esin(2n ft)), (5.9)

for some time ¢. The modulation amplitude is denoted e and the the jetting frequency is

defined as
vVWe

e

for the most unstable wavelength A* = 9. In this way, the fastest growing disturbance

f=

dominates the flow, since inks generally have low viscosity and are dominated by inertial
effects. Modulations in the height mimic thermal fluctuations in the nozzle and we assume

constant velocity at the nozzle exit
Unoz(t) = VWe.

A similar approach is used by van Hoeve et al. [134]. For small amplitudes (e < 0.01), a
Rayleigh-type instability wave is propagated downstream from the nozzle exit. Although
these waves are closely related to Rayleigh waves, they grow with spatial distance from
the nozzle, rather than time. However, Keller et al. [77] find that the temporal and spatial
growth rates agree in the large-Weber-number limit.

More realistically, inkjets are driven by a pressure modulation that translates to a
variation in the velocity profile. Thus, the second driving method is to impose a time-

dependent velocity perturbation at the nozzle exit such that

Unoz(t) = VWe(l + esin(27 ft)), (5.10)
with the jet radius fixed as
Bnoz(t) = 1.

Modulations in the velocity profile do not necessarily translate to a sinusoidal variation in
the free-surface height and so the instability is not necessarily related to a typical Rayleigh
wave. Furthermore, for industrial applications, although the Weber number is typically
large (We ~ 400), large modulation amplitudes (¢ > 0.01) are applied, meaning that

non-linear interactions become important and Rayleigh theory is no longer valid.
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Figure 5.12: The initial condition prescribed for our one-dimensional model as given by

the spherical cap equation (5.11).

One-dimensional modelling in this way assumes a plug-flow profile where the velocity is
constant across the jet radius. However, in real inkjets, flow through the nozzle generates
a Poiseuille flow, which creates a parabolic velocity profile; shear at the nozzle wall slows
down fluid located at the free surface, so that the central section of the jet moves faster.
Nonetheless, it has been shown that, for a sufficient distance downstream of the nozzle
exit, the velocity profile relaxes to plug flow [22]. Hence, a one-dimensional model is
expected to be sufficient to model the downstream dynamics of a continuous inkjet.

We assume that the initial shape of the jet takes the form of a spherical cap,
ho(z) = V1 — 22, (5.11)

where z is the nodal position on the axis, as shown in Figure 5.12. We assume that the
jet advances from the nozzle in the axial direction, maintaining this prescribed spherical
shape at the right-hand boundary. The first and second derivative of a spherical-cap free

surface are found analytically to be

Ohg z 9%hy 1 22
— =—— and —5 =-—"— — —,
0z ho 072 ho  h}

respectively. Consequently, the curvature term given by equation (5.8) in this spherical
cap region reduces to

K=-1+1=0. (5.12)

Thus, at the leading boundary we impose zero curvature in order to model an advancing
spherical cap.

We employ a Eulerian mesh such that the nodes z; are fixed in the frame of the nozzle.
Since the material flows through the mesh, nodes must be ‘switched on’ as the jet advances
from the nozzle. In order to switch on new nodes in this manner, we specify a ‘ghost’ node

zg, which corresponds to the axial position at which the jet free surface h is zero. This



134 Chapter 5. The Continuous Inkjet

12

height

-0.2

0 0.2 0.4 0.6 0.8 1 1.2
axial position

Figure 5.13: Switching on nodes for an advancing jet on an Eulerian mesh.

ghost node is calculated by quadratic Lagrange interpolation of the existing data points.
For example, Figure 5.12 shows the initial spherical-cap shape defined at mesh nodes z;;
the ghost node z, is found by interpolating these prescribed data points.

Over a small time step dt, the jet advances from the nozzle in the axial direction.
Thus, at the right-hand boundary node zj, the height of the jet increases and the ghost
node z, moves along the axis in the direction of the jet, as shown in Figure 5.13. If the

ghost nodes exceeds the location of the next node such that
Zghost > zj +dz,

then the next node zj4; is switched on. The fluid parameters at the new node, namely
height A j41 and velocity vy, are calculated by quadratic extrapolation. We assume that
the time step is sufficiently small for these new nodes to be located within the spherical-cap
region of the advancing jet. Thus, we impose the first and second derivative analytically
so that the zero-curvature boundary condition, K = 0 in equation (5.12), at the front of
the jet is maintained.

We define a break-up criterion when h becomes less than a cut-off radius h., which we
typically set as 1% of the nozzle radius to ensure h > O(dz?). When h = h,, the fluid
ahead of the break-up point is separated from the remaining jet. After separation, the
separated fluid evolves to form a droplet. However, since the slender-jet approximation
ceases to be valid, the shape of the droplet is not well described and separated drops are
removed from the simulation. The distance from the nozzle outlet to this point of break-up

is defined to be the break-up length of the jet.

5.4.2 Error Analysis for Simple Jetting

For typical CIJ parameters, We = 338 and Oh = 0.122, we have tested the accuracy of

our adaptive one-dimensional model by considering the variation in jet break-up length for
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Figure 5.14: Break-up length calculated for a range of time steps dt on a uniform mesh
dz = 0.025. Error bars indicate standard deviations from the mean; they remain within
one wavelength, \* = 9.

108

106

104
102

100 -

HHH

Breakup Length

96

94

0 0.0005 0.001 0.0015 0.002 0.0025 0.003
dz?

Figure 5.15: Break-up length calculated for a range of uniform mesh sizes dz. Error bars
indicate standard deviations from the mean they remain within one wavelength, \* = 9.
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various time steps dt, mesh sizes dz and levels of adaption m, where m = 0 corresponds
to a uniform mesh. In this case, we consider a velocity perturbation, as given by equation
(5.10) for € = 0.1 and wavelength A* = 9, and plot in Figures 5.14, 5.15 and 5.16 the mean
break-up length calculated over ten drops, with standard deviations indicated by the error

bars.

Figure 5.14 shows the break-up length calculated for a range of time steps dt, on a
uniform mesh with spacing dz = 0.025. We find that the variation in the break-up length is
small compared to the wavelength of the jet for each of the time steps dt = 107°,107% and
10~7. Furthermore, the error is approximately constant (= 2.3) for decreasing time step,
despite the numerical scheme admitting second-order temporal accuracy. We therefore

conclude that deviations from the mean length originate from the mesh resolution.

Figure 5.15 shows the break-up length calculated for a range of uniform mesh sizes
dz. We see that for decreasing mesh size, the mean length converges to approximately
~ 104 and the standard deviation from the mean length remains within one wavelength.
However, as mesh size is increased, the calculation of the mean break-up length becomes
less accurate, with Figure 5.15 showing the mean length decreasing linearly with dz? due
to the second-order spatial accuracy of the implicit scheme. Somewhat counter-intuitively,
the size of the error bar is reduced for coarser mesh sizes. Whereas fine meshes capture all
features of break-up, low resolution does not capture the appearance of smaller satellite
drops, which cause variation in the break-up length. Thus, since only break-up of the
main drops is accounted for, there is a smaller deviation from the mean for larger mesh

sizes.

Figure 5.16 shows the break-up length calculated for a number of adaption levels m
for minimum mesh sizes dz = 0.025 and dz = 0.0125. For the uniform cases m = 0, we
find that decreasing the fully refined mesh size from dz = 0.025 to dz = 0.0125 does not
have a significant effect on the mean break-up length or standard deviation. For increasing
levels of adaption m, the standard deviation is found to increase and the calculation of

the mean becomes less accurate, departing from the converged value ~ 104. However, the

Levels 3 2 1 0
Coarse Mesh Size | 0.2 0.1 | 0.05 | 0.025
CPU Time (min) | 52.65 | 65.63 | 82.4 | 102.86
Number of nodes | 1709 | 2314 | 2866 | 4172

Table 5.3: Computation time and number of nodes required for increasing levels of adap-
tion m with minimum mesh size dz = 0.025 on a Dell workstation with 2.40GHz processor
for a fixed simulation time. The time step is dt = 10~ for each case. The reduction of

resource requirements from a uniform mesh (m = 0) is clear in the adaptive cases (m > 0).
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calculated lengths are within the same wavelength for all m and the size of the variation
remains less than the wavelength.

Although the error from the converged mean length is increased for additional levels
m, the compromise is small considering the significant reduction in computation time
summarised in Table 5.3. By using three levels of adaption to provide fine-mesh resolution
dz = 0.025 in high-curvature areas, the computation time for the simulation is almost
halved compared with the fully-resolved case. Furthermore, we see that the adaption
scheme is efficient, since the increase in computation time is approximately linear in the
number of nodes used. In the following, we choose m = 3 with finest mesh size dz = 0.025

and time step dt = 107°.

5.4.3 Rayleigh Behaviour at Moderate Weber Number

We now compare the results of this Newtonian CIJ model with Rayleigh’s linear stability
theory detailed in Chapter 2. The Weber number is initially chosen as We = 81 with
Ohnesorge number Oh = 0.122. First, we impose a sinusoidal height perturbation at the
nozzle exit, as given by equation (5.9) for small amplitude e = 0.01. The most unstable
wavelength A\* = 9 corresponds to Rayleigh frequency f* = 0.91 at this particular jet
velocity.

Figure 5.17 shows the sinusoidal free-surface profile predicted by our one-dimensional
model. Due to the uniform jet speed and the relatively small perturbation of the free-
surface height, the jet becomes extremely long (approximately 20\*) before the capillary
instability becomes apparent. Far downstream of the nozzle exit, surface-tension-driven
thinning causes the jet to evolve into a series of spherical main drops connected by thinner
filaments. The distance between the main drops of fluid is seen to be ~ 9, corresponding
to the wavelength imposed at the Rayleigh frequency. In this case, the thinnest part of the
jet is downstream of the connecting filament, so that the first pinching event occurs behind
the main drop of fluid. At break-up, these filaments contract to form a series of smaller
satellite drops interspersed between the main drops. This contraction of the filament after
detachment from the main drop has recently been investigated by Eggers [51].

Typical CIJ practices impose a controlled disturbance on the jet velocity, rather than
the free-surface height. Thus, for the same fluid parameters We = 81 and Oh = 0.122,
we can instead impose a velocity perturbation at the nozzle exit, as described by equation
(5.10), with equivalent Rayleigh frequency f* = 0.91 and small amplitude ¢ = 0.01. At
this slow speed and small perturbation size, Figure 5.18 shows that perturbing the driving
velocity profile induces a sinusoidal-like variation in the free-surface height and the profile
is similar to the perturbed-height case shown in Figure 5.17. Again, we observe the
same asymmetry, where pinching occurs downstream of the connecting filament. However,
compared to Figure 5.17 for the same amplitude of perturbation, the varied velocity profile
gives a significantly shorter jet length; the jet length is nearly halved by changing the
driving method.
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Figure 5.17: (a) Free-surface profile predicted by our one-dimensional model for We =
81,0h = 0.122 and \* = 9 with perturbation amplitude ¢ = 0.01 of the height profile

at the nozzle given by equation (5.9); (b) a close-up for axial positions in the interval
[180 : 210] is also shown.
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Figure 5.18: (a) Free-surface profile predicted by our one-dimensional model for We =
81,0h = 0.122 and \* = 9 with perturbation amplitude ¢ = 0.01 of the driving velocity
profile given by equation (5.10); (b) a close-up for axial positions in the interval [80 : 110]

is also shown.
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Figure 5.19: The Rayleigh dispersion relation (5.13) for Oh = 0.122. The dashed lines are

discussed in the main text.

We now explore the effects of varying Weber number and jet wavelength \ and compare
our results to the theoretical predictions of Rayleigh’s linear stability analysis. Recall that,
in the long-wavelength approximation, the dispersion relation for a Newtonian fluid is given

by

3uk? k2
2 R —
a” + ) e} 2R

for growth rate o and wave number k. The dispersion relation is plotted in Figure 5.19

(1-k*R?) =0, (5.13)

for Oh = 0.122 and the fastest growing mode is found to have wavelength A = 9.8,
when taking into account the fluid viscosity. Since the Ohnesorge number is small, the
dynamics are dominated by inertia and the Rayleigh mode (A* = 9) is approximately equal
to the fastest growing mode. The inverse of the dispersion relation (5.13) gives a break-
up curve to predict the ultimate break-up length of the jet for a particular wavelength.
For comparison with experimental data, this break-up curve is multiplied by an arbitrary
constant that accounts for the initial disturbance. Furthermore, for Weber number We,
the break-up length L of the fastest growing mode is predicted to be

% — CVITe(2v/2 + 60h), (5.14)

in which C' is an arbitrary constant that accounts for the initial disturbance.

Figure 5.20 shows the break-up lengths predicted by the one-dimensional model for
driving methods (5.9) and (5.10) with € = 0.01, for a range of Weber numbers. Each
simulation is run until ten drops are produced. The average break-up length is then
calculated over the number of drops produced during the simulation and the standard
deviation from the mean is indicated by the error bar. The error remains within one jet
wavelength (in this case it is small ~ 1.5 compared to the axis scale) and originates from
the mesh resolution, as discussed earlier. The increase in break-up length with Weber
number predicted by our model is in agreement with Rayleigh’s theory, given by equation
(5.14), which is also plotted in Figure 5.20. However, we observe small discrepancies when
driving the velocity component since an exact sinusoidal height profile is not achieved.

Additionally, Figure 5.21 shows the break-up lengths predicted by our one-dimensional
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Figure 5.20: Break-up length predicted by our one-dimensional model with small-
amplitude perturbation € = 0.01 applied to both driving methods (5.9) and (5.10), com-
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Figure 5.21: Break-up length predicted by our one-dimensional model with small-
amplitude perturbation € = 0.01 applied to both driving method (5.9) and (5.10), com-
pared to the inverse of equation (5.13) for a range of wavelengths with We = 81 and
Oh =0.122
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Figure 5.22: Exponential growth of the disturbance wave A* = 9 predicted by our one-
dimensional model for small-amplitude perturbation ¢ = 0.01 applied to both driving
methods (5.9) and (5.10), compared to the predicted growth rate a* = 0.27 for We = 81
and Oh = 0.122.
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model for a range of wavelengths, again with € = 0.01 for driving methods (5.9) and (5.10).
We observe that the shortest jets are generated by the most unstable wavelength A = 9.8,
and that longer jets can be generated by imposing a different frequency due to the increased
stability of the disturbance wave. The results are in agreement with Rayleigh’s dispersion
relation (5.13), the inverse of which is also plotted in Figure 5.21; again there is some
discrepancy for the perturbed-velocity case.

Figure 5.22 shows that, for an ¢ = 0.01 perturbation of each driving method, the
disturbance wave initially grows exponentially with time, indicating a linear instability.
However, the rate of growth is slower than the o = 0.27 predicted by Rayleigh’s theory
shown in Figure 5.19. This discrepancy is due to the nature of the disturbance wave

produced by a continuous jet.

5.4.4 Spatially Growing Waves

The linear stability theory of Rayleigh treats a jet as an infinite parallel flow and deter-
mines whether the flow becomes unstable to spatially periodic disturbances that grow in
time. However, experimentally it is more natural to approach this problem by imposing
controlled-time harmonic disturbances on the flow at the nozzle exit. These waves are
closely related to Rayleigh waves; however, the waves grow with distance from the nozzle
rather than time.

Keller at al. [77] analyse spatially amplifying capillary waves by transforming Rayleigh’s
dispersion relation to a moving jet. In contrast to the Rayleigh analysis, the wave number
k is allowed to be complex so that the waves grow only with distance from the nozzle and
not with time. Keller et al. find that the temporal and spatial growth rates agree only

in the infinite-Weber-number limit. One-dimensional theories by Pimbley [105] and Bogy
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Figure 5.23: Rayleigh’s prediction of disturbance growth rate o = 0.27 found from the
dispersion relation (5.13), compared to the growth rate of the disturbance wave predicted
by our one-dimensional model for jet velocities We = 20, 81, 338 and 500 with Oh = 0.122,
A" =9 and e = 0.001.
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Figure 5.24: Free-surface profiles predicted by our one-dimensional model. (a) e = 0.1
modulation of the height profile given by equation (5.9); (b) ¢ = 0.1 modulation of the
driving velocity profile given by equation (5.10). The parameters are We = 81, 0h = 0.122
and A* =09.

[13] find identical results to those of Keller et al..

To test this theory, we simulate a continuous jet of Newtonian fluid having Ohnesorge
number Oh = 0.122 and varying Weber numbers; the jet is modulated at the Rayleigh
frequency f* for modulation amplitude e = 0.001. Figure 5.23 shows the growth rate of the
disturbance wave for a range of jet velocities with Weber numbers We = 20, 81, 338 and
500. For comparison, we have plotted the theoretical growth rate a® = 0.27 predicted by
the dispersion relation shown in Figure 5.19. As predicted by Keller et al., the growth rate
of the instability increases with Weber number and approaches the Rayleigh prediction in
the large-Weber-number limit, since the spatial structure of disturbances growing along

the jet is almost periodic at large Weber number.

Since CIJ jets operate in the high-Weber-number limit, Rayleigh’s temporal theory
is considered to be valid for describing the linear dynamics during the jetting process.
However, for industrial applications, it is also typical to modulate the jet at much higher
amplitudes, around ~ 10% of the mean jet velocity, to control break-up. Thus, a linear

analysis is not sufficient to explain typical features of CIJ jetting.

For example, for parameters We = 81, Oh = 0.122, A* = 9 and large modulation am-
plitude € = 0.1, Figure 5.24 shows the free-surface profile predicted by our one-dimensional
model for each driving method; that is a height modulation at the nozzle exit, given by

equation (5.9), and a modulation of the driving velocity, given by equation (5.10). We ob-
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serve the same break-up behaviour, where pinching first occurs downstream of the satellite
drop, for both driving methods. However, the jet length is significantly reduced in com-
parison to the small-amplitude cases shown in Figures 5.17 and 5.18. This reduction in jet
length is induced by the size of the initial perturbation and is not necessarily accounted

for by Rayleigh’s linear theory, as we now discuss.

5.5 Characteristics of CIJ Break-up

5.5.1 Modulated High-Weber-Number Jetting

Here we increase the Weber number to We = 338, while the Ohnesorge number remains
fixed at Oh = 0.122, and we consider driving the velocity profile at the nozzle described
by equation (5.10). These parameters are used for comparison with the large-scale CLJ
experiments detailed in Casterjon-Pita et al. [23]. We explore the effects of increasing the
modulation amplitude € and varying the jetting frequency f by changing the wavelength
A. Recall that the Rayleigh wavelength is A* = 9, which gives a frequency f* = 1.86 for
this particular jet velocity.

Figure 5.25 shows the effect that increasing the amplitude e of the velocity modulation
has on the ultimate break-up length of the jet. We consider two different wavelengths,
A* =9 and A = 7, which have linear growth rates o* = 0.27 and o = 0.17, respectively. As
expected, increasing the amplitude of the velocity modulation reduces the break-up length
of the jet for both wavelengths. For small amplitudes ¢ < 0.01, we see that the Rayleigh
mode A\* generates a shorter jet length than A = 7, in line with the relative values of the
linear growth rates.

However, as € is increased to a range nearer to that observed CIJ printing, we observe
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Figure 5.25: Break-up length compared to modulation amplitude € predicted by the one-
dimensional model for We = 338, Oh = 0.122 and two different imposed wavelengths
A=Tand \* =9.
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Figure 5.26: Break-up length compared to wavelength A predicted by the one-dimensional
model for We = 338, Oh = 0.122 and modulation amplitude ¢ = 0.05.

a change from this linear behaviour. In particular, for ¢ > 0.01, Figure 5.25 shows that
A = 7 generates a shorter jet than the Rayleigh mode, despite the linear theory predicting a
slower growth rate. This transition is a result of non-linearity; for amplitudes greater than
€ = 0.01, non-linear effects become increasingly important and the break-up length can no
longer be described by Rayleigh’s linear theory. To highlight this non-linear phenomenon,
Figure 5.26 shows how the break-up length of the jet increases with increasing disturbance

wavelength for fixed modulation amplitude € = 0.05, which effect has also been observed
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Figure 5.27: Free-surface profiles predicted by our one-dimensional model. (a) e = 0.1
height modulation at the nozzle given by equation (5.9); (b) € = 0.1 modulation of the
driving velocity given by equation (5.10). The parameters are We = 338, Oh = 0.122 and
A*=0.
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velocity profile height profile

Figure 5.28: Schematic figure showing how the velocity profile evolves into a sawtooth

wave causing isolated bulges to form on the uniform thread.

experimentally by Meier et al. [95].

We now consider the break-up behaviour of these large-amplitude, high-Weber-number
jets for the Rayleigh wavelength \* = 9 and compare both driving methods given by
equations (5.9) and (5.10) for € = 0.1. In particular, Figure 5.27 shows the free-surface
profile predicted by our one-dimensional model for a ¢ = 0.1 height modulation at the
nozzle exit compared to a ¢ = 0.1 modulation of the driving velocity profile. Although
using a height modulation to drive the jetting demonstrates the same asymmetric break-
up, with pinching occurring downstream, that we have seen for smaller Weber numbers,
at this amplitude € = 0.1 (see Figure 5.24) and smaller amplitude € = 0.01 (see Figures
5.17 and 5.18), we observe a dramatic change in behaviour when modulating the driving
velocity component at this high Weber number.

The free-surface variation produced by modulated velocity is no longer similar to a
sinusoidal wave, as we have seen previously. For this large amplitude and high Weber
number, the jet velocity is distorted due to the non-linear advection term appearing in

conservation on momentum:

L e

( 60h 6h> ov

Due to this non-linearity, the peak of the velocity profile travels faster than the trough, so
that the pulse becomes accumulatively more like a sawtooth wave and generates a shock
in the velocity profile, as sketched in Figure 5.28. Consequently, fluid upstream of the
shock moves faster than the fluid downstream causing steep bulges to form on the uniform
thread, also sketched in Figure 5.28. Due to this distortion, other frequency components
are introduced, which we investigate later via a Fourier analysis.

Furthermore, in this case we observe that the pinching position is switched to the
opposite end of the connecting filament, causing pinch-off to occur upstream, rather than
downstream. We call this phenomenon ‘inverted’ pinching. A transition from downstream
to upstream pinching in this way has previously been studied by Pimbley & Lee [106]
and Chaudhary & Maxwell [26], and an overview of their results is described in Chapter

2, section 2.3.2. It is evident that this behaviour must originate from the distortion of
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the velocity profile and, compared to Figure 5.24, occurs only for sufficiently large Weber

numbers.

5.5.2 Inversion of Break-up Behaviour

Existing theories of drop formation do not offer a full explanation of satellite formation, or
this inverted break-up behaviour we observe in Figure 5.27. Whereas the linear theories of
Rayleigh [109], [110], Weber [138] and Keller et al. [77] do not account for satellite drops,
non-linear theories based on a temporal instability on an infinite jet by Yeun [145] and Lee
[86] predict that satellites are always generated, with break-up occurring simultaneously
either side of the droplet due to the symmetry of the flow. Although a transition in the
break-up behaviour from downstream to upstream pinching is described via a non-linear
spatial stability analysis, as in the work of Pimbley & Lee [106], a quantitative agreement
with experiments is lacking.

In Chapter 2, we detail how the elimination of satellites depends on whether the
first pinching event occurs downstream or upstream. A schematic of these two pinching
behaviours is shown in Figure 5.29. If pinching first occurs on the downstream side of
the connecting filament, then the front side of the filament separates from the main drop
first. On the other hand, if pinching first occurs upstream, the back side of the filament is
separated from the main drop first and we observe the inversion phenomenon. The time
that exists between the front and back separations is known as the ‘satellite interaction
time’ [106]. During this time, a change in momentum occurs causing the satellite to
slow down or speed up relative to the velocity of the main drops. Thus, for the correct
parameter space, satellites can either forward-merge with the leading drop or rear-merge
with the preceding drop.

Figure 5.30 shows the free-surface profiles predicted by our one-dimensional model for
a range of modulation amplitudes ¢ = 0.05,0.1 and 0.15, with We = 338, Oh = 0.122 and
A" = 9. In general, the jets form a series of main drops connected by thinner filaments,

which ultimately contract to form satellite drops at break-up. As predicted by the theory

Downstream Pinching -> Front Break
Upstream Pinching -> Back Break

O
|

Figure 5.29: Schematic figure showing the difference between downstream and upstream

pinching. Upstream pinching produces inverted break-up.
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Figure 5.30: Free surface profile predicted by our one-dimensional model. (a) e = 0.05;

(b) € =0.1; (¢c) € = 0.15. The parameters are We = 338, Oh = 0.122 and \* = 9.
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Figure 5.31: The effect of changing amplitude € on the break-up length for We = 338,
Oh = 0.122 and \* = 9. Inverted break-up behaviour is indicated in green.
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of Pimbley & Lee [106], we observe that the position of the first pinch-off event is dependent

on the modulation amplitude.

Figure 5.30 shows that, for e = 0.1, pinching first occurs upstream, with the back side
of the filament detaching from the main drop before the front side. For this inverted case,
a complete wavelength of fluid detaches from the jet as a single unit of fluid. Moreover,
if this detached unit proceeds to break into a main drop and a satellite drop, then the
satellite produced is relatively fast moving due to the positive change in momentum. Thus,
the satellite will tend to merge with the leading drop. This inverted break-up behaviour
has been observed in both experimental and industrial applications [26],[95], [75], [23] and

is considered preferable for eliminating satellites.

In contrast, Figure 5.30 shows that, for ¢ = 0.05 and 0.15, pinching first occurs down-
stream, with the break position located at the front side of the filament. This type of
pinching is less desirable, although the formation of satellites can be managed by rear-
merging. Similar break-up behaviour has been observed experimentally and compared to

a one-dimensional model by van Hoeve et al. [134].

Figure 5.31 shows the effect that increasing the amplitude € of the velocity modulation
has on the ultimate break-up length of the jet. The inverted break-up region is indicated
in green. For small amplitudes ¢ < 0.01, we observe an exponential decay in the break-
up length with increasing amplitude, as would be expected for a linear instability. In
this region, break-up first occurs downstream, as indicated by the red data. However,
when the amplitude exceeds 0.01, non-linear interactions become important and the jet
stability deviates from exponential decay. Furthermore, as the amplitude is increased to
~ 0.1, a small increase in break-up length is found; it is in this region, where break-up
length increases with amplitude, that we observe inverted pinching. The behaviour then
reverts back to downstream pinching and the break-up length decreases with amplitude.
The position of the critical window in modulation amplitude for which inverted pinching

occurs is sensitive to a number of parameters, as detailed below.

Figure 5.32 shows the position of the critical inversion window for two different wave-
lengths, the Rayleigh mode \* =9 and A = 7. The Weber number is We = 338 and the
Ohnesorge number is Oh = 0.122. For the Rayleigh mode A\*, our model predicts that
inverted break-up is restricted to the modulation range 0.08 < € < 0.12. However, as
found by Pimbley & Lee [106], the transition in behaviour depends on the wavelength of
the initial disturbance wave. In particular, Figure 5.32 shows that the critical amplitude
at which inversion occurs increases for the shorter wavelength disturbance A = 7; inversion

is shifted to the larger range 0.12 <€ < 0.17.

Furthermore, the critical modulation window for inverted break-up is affected by chang-
ing the Weber number and Ohnesorge number, an effect that is not considered by Pimbley
& Lee [106]. Figure 5.32 shows that, for a fixed Weber number We = 338, increasing vis-
cosity shifts the inverted break-up behaviour to a higher modulation range. This is because

viscosity is a resistive force that makes it more difficult to drive the jet forward. Thus,
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a greater velocity is required to achieve the desired break-up behaviour. For sufficiently
large viscosity (Oh = 0.488), we do not observe inverted behaviour at all. Similarly, Figure
5.32 shows that, for a fixed Ohnesorge number Oh = 0.122, increasing the jet inertia make
it easier to drive the jet forward and so the inverted break-up regime occurs at a lower
velocity modulation. For small Weber numbers (We = 81), we do not observe inverted

behaviour at all.

5.5.3 A Secondary Instability Wave

As first suggested by Pimbley & Lee [106], large modulations in the driving velocity
induce non-linear interactions that generate a secondary instability wave. Indeed, if a
component with a shorter wavelength has the chance to grow sufficiently with respect to
the fundamental, it will produce an additional growth of surface perturbations across the
connecting filament and cause inverted pinching, as suggested in reference [50].

This idea has previously been tested by Eggers [50] within a one-dimensional model.
For small amplitudes, the connecting filament region is found to develop symmetrically,
causing simultaneous front and back pinching either side of the filament. However, the
break-up behaviour remains almost identical for increasing modulation amplitude. Fur-
thermore, the amplitude of the harmonics generated by non-linear interactions are found
to remain small, and so do not affect break-up. We suspect that the reason for this is that
the viscosity used in Eggers’ calculations is large, corresponding to an Ohnesorge number
Oh = 0.396. In Figure 5.32, inverted pinching is not observed at high Ohnesorge numbers.

To understand this secondary instability wave, we decompose a number of free-surface
profiles into their Fourier components. In this way, the jet is divided into a series of
simpler functions and we are able to identify whether a second harmonic component is

responsible for inverted pinching as previously suggested [106]. Figure 5.33 shows one
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Figure 5.33: One period of the height-time data taken at z = 50 for a range of modulation
amplitudes € = 0.05,0.1,0.17, with We = 338, Oh = 0.122 and A\* = 9.
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period of the height-time profile taken at downstream position z = 50 for a jet modulated
at three different amplitudes (e = 0.05,0.1,0.15), with the wavelength set to the Rayleigh
mode \* = 9. The fluid parameters are We = 338 and Oh = 0.122. These amplitudes
span the different types of break-up behaviour, as seen from the single-period profiles in
Figure 5.33.

The time-dependent height at the point z = 50 is fitted to a Fourier series of the form

n
hso(t) = ao + Y _ a;cos(2mift) + by sin(2mift), (5.15)
i=1
where f = f* is the Rayleigh frequency. In Figure 5.34 we plot equation (5.15) for n = 1,2
and 3, in the case that ¢ = 0.05. The first harmonic, or the fundamental mode, is the
Rayleigh instability and determines the size of the main drops and the inter-drop spacing.
The addition of the second harmonic determines the asymmetry between the minima at
the front and back of the connecting filament and consequently the pinching behaviour.
The third harmonic, when superimposed with the first two harmonics, determines the
discrimination between the main drop and the filament.

In order to quantify the magnitude of the secondary harmonic, in Figure 5.35 we plot

c,-:\/a%—i—b%, i=1,...6,

at z = 50 for a range of modulation amplitudes. Figure 5.35 shows that the first four
Fourier components are the most important, as suggested by the second-order, non-linear
analysis of Chaudhary & Redekopp [27]. The fundamental mode, corresponding to the
main drops, is clearly the largest and increases as jet modulation is increased. The sec-
ond harmonic is the second-largest component, although the relative size depends on the
modulation amplitude. The third harmonic remains small and the fourth harmonic is also
small but grows with increasing amplitude. The Fourier transform
0o

Flhso(t)](w) = / hso(t)e ™21t (5.16)

—0o0

for frequency w, shown in Figure 5.36, highlights the relative magnitude of the first four
Fourier components for the three individual amplitudes € = 0.05,0.1 and 0.17 that span
the break-up behaviour at z = 50.

Figure 5.35 shows that, for the region of inverted break-up, 0.08 < e < 0.12, the
magnitude of the second harmonic is significantly larger than in the regions of downstream
pinching. This change in the second harmonic can also be seen in the Fourier transform
shown in Figure 5.36; the second peak is approximately 30% larger for the inverted case
e = 0.1, than the downstream pinching cases ¢ = 0.05 and 0.17. This Fourier analysis
suggests the existence of a secondary instability wave, which becomes sufficiently large for
a limited range of modulation amplitudes corresponding to the region of inverted break-up.
The way in which this secondary instability wave interacts with the fundamental solution

is key to understanding the break-up behaviour [106], [27].



152 Chapter 5. The Continuous Inkjet

/ * height data

3 ~~"Fouriert
— Fourier2
~~~Fourier3

height at z=50
o = =
o = M : ~

o
o

o
~

44 435 43 425 42 415 41 405 4 395 39
time

Figure 5.34: Height-time data, hsg, for € = 0.05 taken and z = 50 alongside reconstruction

of the data for one, two and three Fourier modes.

1 0.5
0.7
2
= 0.6
2
=3 0.5
5
5] 0.4
g 4 0.3
[=]
w . 0.2
0.1
6 L 1 1 1 1 1 O

0.4 006 008 01 012 014 018
M odulation Amplitude

Figure 5.35: Magnitude of Fourier coefficients ¢; at z = 50 plotted as a function modulation

amplitude e.

F(hso)

:
\
AR
" ‘\
y
L b . .
2 3

Frequency

Figure 5.36: Spectrum of frequencies w identified by the Fourier transform F'(hsp) given
by equation (5.16) of the height-time data hsg at z = 50 for € = 0.05,0.1 and 0.17. The

frequency is normalised so that the fundamental mode occurs at w = 1.



5.5. Characteristics of CIJ Break-up 153

A=9

secondary l i
1

minimum grows

Figure 5.37: Schematic figure showing how a secondary instability grows on the con-
necting filament generating a second minimum for comparison with the results of our

one-dimensional model shown in Figure 5.38.

The fundamental jet consists of a series of main drops connected by filaments. Due to
the imposed Rayleigh frequency, the length of the filament is approximately 9/2, as shown
by the sketch in Figure 5.37, and does not depend on the amplitude of the disturbance. At
small amplitudes, non-linear interactions are small and the fundamental mode dominates.
In this case a single minimum in the free-surface height is generated downstream of the
connecting filament, as shown in Figure 5.38 for ¢ = 0.04. This single minimum grows
undisturbed and eventually causes downstream break-up of the jet.

However, for sufficiently large amplitudes of the driving velocity, the growth of non-
linear interactions induce the secondary instability wave. Since this secondary instability
wave has twice the Rayleigh frequency, the wavelength is half that of the fundamental
mode and so is the same length as the connecting filament, as sketched in Figure 5.37.
Hence, for sufficiently large modulation amplitudes, the secondary instability wave is able
to grow on the filament region. This secondary instability generates a second minimum
in the free-surface height, as shown in Figure 5.38 for ¢ = 0.1. This new minimum is
located upstream of the connecting filament and grows faster than the minimum located
downstream causing inverted pinching.

As the amplitude is increased further, the filament region becomes ‘frustrated’, a term
used by Pimbley & Lee [106] to describe the reduction in growth rate at higher amplitudes.
This behaviour is due to the growth of higher-order harmonics, which are stable to the

Rayleigh instability, for which k;hy > 1, where k; is the wave number of the ith-order
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Figure 5.38: Free surface profile predicted by our one-dimensional model. (a) e = 0.04;
(b) € = 0.1; (c¢) € = 0.15. The parameters are We = 338, Oh = 0.122 and A\* = 9. Green

points indicate positions of minimum height.

harmonic and Ay is the filament radius. In particular, Figure 5.35 shows how the magnitude
of the fourth-order harmonic (ks = 2.8) increases with modulation amplitude and so is
particularly large for ¢ = 0.15. Moreover, at this amplitude, the free surface develops
multiple minima, at which point the filament radius is hy ~ 0.5, as shown in Figure 5.38.
Thus, the stability criterion k4hy > 1 is satisfied. Due to the stability of the higher-order

harmonics, break-up reverts back to downstream pinching.

5.5.4 Addition of a Second Harmonic

The addition of harmonics to the initial velocity profile can have a significant effect on
the break-up behaviour of a continuous inkjet. In particular, Chaudhary & Redekopp [27]
have shown theoretically that the formation of satellites can be controlled by forcing the
jet with a suitable harmonic added to the fundamental.

As an example, we examine the effect of adding a secondary harmonic to the velocity

profile such that
Unoz(t) = VWe (1 + esin(2m f1t) + esin(27 fot + 0)) . (5.17)

where f; = f* is the Rayleigh frequency and we set fo = 2f;. The phase of this second

harmonic is given by 6 and its amplitude is equal to that of the fundamental €. Eggers
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Figure 5.39: Free-surface profile predicted by our one-dimensional model. (a) original
e = 0.04 case; (b) € = 0.4 case for an added second harmonic component as in equation

(5.17) for = w/4. The parameters are We = 338, Oh = 0.122, \* = 9.

[50] has previously analysed the effect of adding a second harmonic in his one-dimensional
model but he did not find inverted break-up behaviour. In his study, the ratio of the
amplitudes of the secondary and the fundamental harmonic is 1/10 and the effect of
a phase shift 6 is not considered. However, the work of Chaudhary & Redekopp [27]
suggests that the magnitude of the two harmonics should be of the same order to affect
the break-up behaviour, and that the phase of the various wave components should change

with time.

Figure 5.39 shows the effect that the addition of a second harmonic in the form (5.17)
has on the free-surface profile predicted by our one-dimensional model for modulation

amplitude ¢ = 0.04 and phase shift § = w/4. We observe a distinct change from the
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Figure 5.40: Phase angle 05 of the second harmonic component relative to the fundamental
solution for a range of modulation amplitudes e. The critical modulation window for

inversion is indicated by the vertical lines.
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usual downstream pinching to inverted break-up behaviour for driving signal (5.17). The
addition of a second harmonic to the velocity profile artificially induces a large secondary
wave that has half the wavelength of the Rayleigh mode. Since this wave is able to grow
on the connecting filament, break-up occurs at the back side of the filament, generating
inverted pinching. However, this growth can occur only if the secondary wave has the

correct phase # in relation to the fundamental solution.

In Figure 5.40, we plot the phase angle of the second harmonic component

6y = tan ! (—62) ,
az

for a range of modulation amplitudes, relative to the phase of the fundamental solution,
where ag and b2 are the Fourier coefficients in equation (5.15). We see that the relative
phase angle of the second harmonic is dependent of the modulation amplitude €. At the
lower limit of inversion (¢ = 0.08), the phase angle becomes positive, increasing with
amplitude, but remains in the range 03 € (0,7/4). On the other hand, at the amplitude
that the filament becomes frustrated (e = 0.12), the phase angle decreases with amplitude.
For our example, we find that imposing a phase shift of § = 7/4 or 7/8 generates inverted

pinching at € = 0.04; however, phase shifts § = 0 and 7/2 do not.

5.6 Axisymmetric Simulations with Nozzle Geometry

5.6.1 A Qualitative Comparison

In Figures 5.41 and 5.42, we show a qualitative comparison of the free-surface profile
predicted by our one-dimensional model and the full axisymmetric simulation detailed in
Chapter 1. A quantitative comparison is given later. The Ohnesorge number and Weber
number are Oh = 0.122 and We = 338, respectively, with A* = 9. The nozzle aspect ratio
in the full simulation, defined by

(5.18)

for nozzle length L,,,,, is set to I' = 1.

The one-dimensional model is in qualitative agreement with the full simulation, with
both models demonstrating the two distinct break-up behaviours described in the previous
section. However, the free-surface profiles of the full axisymmetric simulation appear to
be more elongated than those predicted by the one-dimensional model, particularly near
to the nozzle exit.

This effect is due to variations in the velocity over the cross-section generated by flow
through a nozzle; the nozzle geometry included in the full simulation generates a Poiseuille
flow near to the nozzle exit and the parabolic velocity profile can be seen in Figure 5.43.
On the other hand, the one-dimensional model neglects the nozzle dynamics so that the

velocity is assumed to have a uniform plug-flow profile.
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Figure 5.41: (Top:) Free-surface profile predicted by the one-dimensional CIJ model;
(Bottom:) the full axisymmetric simulation with nozzle aspect ratio I' = 1. The param-
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Figure 5.42: (Top:) Free-surface profile predicted by the one-dimensional CIJ model;
(Bottom:) the full axisymmetric simulation for nozzle aspect ratio I' = 1. The parameters
are We = 338, Oh = 0.122, ¢ = 0.15 and A* = 9. Colour bar: red-to-pink indicates

minimum-to-maximum jet velocity.

5.6.2 The Effect of Poiseuille Flow on Break-up Length

For a sufficient distance downstream of the nozzle exit, the mean flow of the axisymmetric
simulation relaxes to a plug-flow profile [22], which is evident in Figure 5.43. However, in
the case of a non-uniform velocity profile, the form of the disturbance wave is altered. In
fact, the maximum growth rate of a uniform plug-flow profile is found to be four times
larger than that of a Poiseuille profile [88].

On the basis of measurements of the centre-line stagnation pressure in jets initially
in fully developed laminar flow, Rupe [116] suggests that the jet length required for the
velocity profile to relax to a uniform state is comparable with the entry length for laminar
flow in a pipe. This has been found to agree well with theoretical results [14], [48] and the

relaxation length Ly for which a fully relaxed plug-flow profile is achieved is given by

@ ~ vWe
2R Oh '’
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Figure 5.43: Poiseuille flow generated by flow through the nozzle in the axisymmetric
simulation for € = 0.01, Oh = 0.122, We = 338, \* = 9 and nozzle aspect ratio I' = 1.

Colour bar: red-to-pink indicates minimum-to-maximum jet velocity.

for nozzle radius R, as in Sterling & Slicer [122].

Figure 5.44 compares the break-up length predicted by our one-dimensional model to
the full axisymmetric simulation with nozzle aspect ratio 1 for increasing velocity modu-
lation amplitude, €. Again, the average break-up length is calculated over the number of
drops produced in the simulation and the standard deviation from the mean is indicated
by the error bar. The two models agree for very small perturbations € ~ 0.001, where the
length of the jet is extremely long and the initial growth rate is given by linear instability,

and for large perturbations € > 0.1, where the break-up length approaches a plateau.

However, for 0.01 < € < 0.1, we observe a significant difference between the two
models; the axisymmetric simulation predicts a much longer break-up length than our one-
dimensional model. We attribute this discrepancy to the effect of unrelaxed Poiseuille flow
for this range of modulation amplitudes. In our case, the relaxation length is L = 330,
which is equivalent to the break-up length for the smallest amplitude ¢ = 0.001. However,
we find that for amplitudes ¢ > 0.001, the break-up length is shorter than Li. Thus,
once the amplitude exceeds € = 0.001, the stability of the jet is affected by an unrelaxed

Poiseuille flow. Hence, for modulation range 0.01 < € < 0.1, our one-dimensional model
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Figure 5.44: Break-up length compared to modulation amplitude € predicted by the one-
dimensional CIJ model (red) for We = 338, Oh = 0.122, A\* = 9 and full axisymmetric

simulations (blue) for nozzle aspect ratio I' = 1.
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Figure 5.45: Axisymmetric simulations for increasing amplitude ¢ = 0.01,0.05,0.1 and
0.15 with We = 338, Oh = 0.122, A* = 9 and nozzle aspect ratio I' = 1. Colour bar:

red-to-pink indicates minimum-to-maximum jet velocity.

predicts shorter break-up lengths than the axisymmetric model due to the larger growth
rate of the plug-flow velocity profile.

Recall equation (5.14), which shows that the break-up length of a Newtonian jet scales
as

% o VIWe(2V2 + 60h),

due to the Rayleigh instability. From this linear analysis, we can estimate the ratio of

Lr/L, as in [122], to be
L 1

T S Oh+30R2

Thus, for large Ohnesorge numbers, the relaxation length is small compared to the break-

(5.19)

up length and the effects due to the nozzle flow are small. Conversely, for low viscosity flu-
ids, such as those used in continuous inkjetting, this ratio is small and the non-uniformity
of the velocity-profile significantly affects the break-up. It should be noted that this argu-
ment assumes that the flow profile is fully developed in the nozzle. However, the nozzle
lengths used in CIJ are not long enough for the flow to become fully developed. Further-
more, non-linear interactions due to the size of the initial modulation are not considered
in the estimation (5.19).

Figure 5.45 shows how the parabolic velocity profile near to the nozzle is affected by
increasing modulation amplitude. For € = 0.1, the bulges in the free surface due to non-
linear effects become prominent in the region of the parabolic profile and appear to smooth

out the Poiseuille flow; the length of the undisturbed high-velocity region, indicated by
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Figure 5.46: Break-up length compared to modulation amplitude € predicted by the ax-
isymmetric CIJ model for We = 338, Oh = 0.122, A* = 9 with nozzle aspect ratios I' = 1,2
and 4.

the pink shading, is decreased for ¢ = 0.1 compared to the ¢ = 0.01 case. Furthermore,
although some variation in first couple of bulges remains, for € = 0.1, the velocity across
the filament region is uniform considerably close to the nozzle. Thus, due to the effect of
non-linear bulges smoothing the Poiseuille flow in this way, we conclude that nozzle effects
do not affect the break-up for amplitudes ¢ > 0.1. Hence, the axisymmetric model and
the one-dimensional model are in agreement for sufficiently large modulation amplitudes,
thereby explaining the results shown in Figure 5.44.

Figure 5.46 shows the effect that changing the nozzle aspect ratio, as given by equation
(5.18), has on the break-up length of the jet predicted by the full axisymmetric simula-
tion. By increasing the length of the nozzle, the stabilising effect of the Poiseuille flow is

amplified. Thus, as expected, longer nozzle lengths give rise to longer break-up lengths.

5.6.3 Incorporating Nozzle Effects into the One-Dimensional Model

It has previously been recognised and measured that the driving force generated by real
industrial nozzles contain high-harmonic components [26]. Such components are produced
by non-linearities of the piezoelectric actuator and, due to the non-constant velocity pro-
file being approximately parabolic, depend on the length of the nozzle. This non-linearity
translates into non-sinusoidal modulations of the jet. Using the full axisymmetric simula-
tion, we examine this behaviour by conducting a harmonic analysis on the velocity data
near to the nozzle and studying the magnitude of the Fourier coefficients.

As used in previous computations, we choose parameters We = 338, Oh = 0.122,
A" = 9 and € = 0.1, and consider a number of nozzle aspect ratios I', as defined by
equation (5.18). We choose fixed position z = 20 downstream of the nozzle exit and, due

to the axisymmetry of the simulation, take the average velocity over the cross-sectional
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Figure 5.47: Averaged cross-sectional velocity data calculated by the axisymmetric sim-

ulation at z = 20 for modulation amplitude ¢ = 0.1 with We = 338, Oh = 0.122 and
A =09.

area. Omne cycle of this velocity flux is plotted in Figure 5.47 for nozzle aspect ratios

I' =0.5,1 and 2; the length of the nozzle is varied, whilst the nozzle radius is kept fixed.

We see that the velocity perturbation becomes increasingly non-sinusoidal and lower

in amplitude as the aspect ratio increases. To examine the harmonic components of this

signal, we fit a Fourier series of the form

Magnitude, ¢;
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Figure 5.48: Magnitude of Fourier coefficients ¢; plotted for increasing modulation ampli-

tude e. (a) I' =1; (b) I' = 2. The parameters are We = 338, Oh = 0.122 and \* =9
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Figure 5.49: Velocity measured from the full axisymmetric model at the axis of symmetry
and at the free surface. (a) e = 0.005; (b) e = 0.1. The parameters are We = 338,
Oh=0.122, A*=9and ' = 2.

to the velocity flux at z = 20. Figure 5.48 shows the magnitude of the Fourier coefficients

ci:\/a%—i—b%, i=1,...3,

for a range of modulation amplitudes and nozzle aspect ratios I' = 1 and 2. We see that
the higher (second and third) harmonic components both increase with amplitude. In
contrast, growth of the third harmonic is not observed in the one-dimensional model. We
also see that the relative magnitude of the second harmonic compared to the fundamental
mode is larger for the longer nozzle length.

Since this full axisymmetric simulation is computationally expensive, it is highly de-
sirable to develop a simpler model that includes these nozzle effects. Thus, we incorporate
the initial driving signal created by the axisymmetric simulation into our one-dimensional
model. We will call this combined model the one-dimensional splice. As an example, we
choose nozzle aspect ratio 2 and the parameters remain the same as previous calculations
(We =338, Oh =0.122, \* =9 and € = 0.1). Since dynamics near to the nozzle are now
important, we require a fully resolved mesh upstream, as well as downstream, and so the
adaptive scheme is not needed in this case.

To generate the input data, both the radius and cross-section-averaged velocity data
are calculated at some fixed point downstream of the nozzle for one time period. We call
this point the splice position with notation zs;. The position of the splice is chosen so that
the cross-sectional velocity profile is sufficiently relaxed. In Figure 5.49, we plot the axial
velocity calculated from the full axisymmetric simulation at the axis of symmetry and at
the free surface for modulation amplitudes € = 0.005 and € = 0.1. We see that the velocity
along the symmetry axis approaches a constant and eventually equals the velocity at the

free surface. This relaxation is seen to occur closer to the nozzle for the smaller-amplitude

100



5.6. Axisymmetric Simulations with Nozzle Geometry 163

1D splice

axisymmetric --—-----

height

axial position

Figure 5.50: Free-surface profile predicted by the one-dimensional splice compared to the
full axisymmetric simulation for € = 0.1, We = 338, Oh = 0.122 and A\* = 9. The nozzle

aspect ratio is I' = 2.
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Figure 5.51: Break-up length predicted by the one-dimensional splice compared to the
axisymmetric simulations for a range of modulation amplitudes € with We = 338, Oh =

0.122 and A* = 9. The nozzle aspect ratio is I' = 2.

Hours | Minutes | Seconds
One-Dimensional Splice 2 31 20
axisymmetric input 1 48 55
one-dimensional model 0 42 25
Full Axisymmetric Model 55 08 12

Table 5.4: Computation time taken for the full axisymmetric model compared to the
one-dimensional splice model on a Dell workstation with 2.40GHz processor for a fixed

simulation time, for parameters used in Figure 5.50.
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case; however, as we have seen previously (see Figure 5.45), at ¢ = 0.1 the free surface
forms bulges and the velocity of the filament regions relaxes before that of the bulges.

We find that splice position z; = 20 is a suitable choice; at this point the velocity
at the axis of symmetric is within 10% of the velocity at the free surface. On the other
hand, at z; = 10 the cross-sectional velocity profile is non-uniform and the data does not
capture the fully elongated shape of the free surface. Further downstream at z; = 30 gives
an equivalent result but for a longer computation time.

The radius and cross-section-averaged velocity at z; = 20 is smoothed by fitting a
Fourier series containing three harmonic components, as in equation (5.20). The ax-
isymmetric driving signal is then employed at the nozzle boundary condition of our one-

dimensional model such that

3
Unoz(t) = ap + Z a; cos(2mift) + b; sin(2mi ft),

i=1
3
hnoz(t) = do + » _ a; cos(2mift) + by sin(2mift).
i=1
This creates both a height and velocity perturbation at the inlet of the one-dimensional
model that mimic the effects of flow through a nozzle.

Figure 5.50 compares the free-surface profiles predicted by the full axisymmetric simu-
lation and our one-dimensional splice model. We are now able to reproduce, qualitatively
and quantitatively, the elongated droplet shape caused by the nozzle geometry in agree-
ment with the axisymmetric simulation. This is in contrast to the differences observed
in Figure 5.41. Furthermore, Figure 5.51 shows that the one-dimensional splice is able to
predict the longer break-up lengths generated when full nozzle geometry is incorporated.
Thus, we are able to mimic the reduced growth rate of the Poiseuille flow caused by flow
through the nozzle, which consequently stabilises the jet.

Table 5.4 summarises the computation time used by the one-dimensional splice and
the full axisymmetric simulation. For the one-dimensional splice, the computation time is
broken down into the time taken to generate the input data via the axisymmetric simu-
lation and the time taken to run the one-dimensional model. Evidently, the computation
time is significantly reduced by using this splice model; for the same simulation time, the
full axisymmetric simulation is approximately 52 hours longer. Thus, by combining the
form of the perturbation at z; = 20 from the full simulation into the boundary condition
of our one-dimensional model, we are able to incorporate nozzle effects in a simpler form,

for a greatly reduced computation time.

5.7 Concluding Remarks

In this chapter, we have developed a bespoke adaptive numerical procedure for solving
the Newtonian slender-jet equations, in order to simulate CIJ printing conditions. By

using this adaptive procedure, we have been able to significantly reduce — by comparison
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with existing regular-mesh methods — the computational resources required to simulate
complex CIJ phenomena.

Although Rayleigh’s theory asserts that \* = 9 is the fastest growing wavelength, due
to large finite-amplitude modulations in the driving velocity profile, we have identified
a non-linear regime for which the most unstable jets are generated at frequencies that
are larger than the classic Rayleigh mode. In this non-linear regime, our one-dimensional
model has exhibited a switch from downstream to upstream (inverted) break-up behaviour,
which is considered to be desirable for the elimination of satellite drops. Additionally, we
have discovered that this preferable upstream break-up is restricted to a small window
in the driving-velocity amplitude. Because of the significant reduction in computational
resources offered by our adaptive procedure, we have been able to extend the parameter
space considered in previous studies, by which extension we have been able to show that
inverted pinching is sensitive to frequency, driving speed and viscosity. Moreover, our
Fourier analysis has revealed that this switch from downstream to upstream break-up
originates from the growth of a second-harmonic component, which arises due to the
increase of non-linear interactions at sufficiently large amplitudes. Consequently, we have
demonstrated that the addition of a second-harmonic component to the driving signal
can artificially induce inverted pinching, in jets which are modulated at small amplitudes,
outside the original window for inversion.

Finally, by comparing our results with those of full axisymmetric simulations, we have
been able to explore the effects of nozzle geometry on jet stability. We have been able to
incorporate these nozzle effects with demonstrable success (see Figure 5.50), by develop-
ing a hybrid ‘spliced’ model that inputs into our one-dimensional model a driving signal
delivered by the full simulation. In this way, the computation time has effectively been
reduced (see Table 5.4) from the 55.1 hours required by the axisymmetric simulation to
the 2.5 hours taken by our ‘spliced’ algorithm, which therefore offers a speed-up factor
of approximately 22. That is, using less that 5% of the original CPU resources, we have
been able to reproduce, both qualitatively and quantitatively, the free-surface profile and

break-up length predicted by the full axisymmetric simulation.
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Chapter 6

Conclusions and Future Work

6.1 A Concluding Overview

Can inkjet technology revolutionise manufacturing processes as we know them?

Advancing inkjet technology requires understanding the formation of small liquid
droplets, particularly from jets containing complex additives. Thus, in the quest to
broaden our knowledge of complex inkjets, in this thesis we have discussed the follow-

ing problems:
e the effect that particles have on established Newtonian break-up regimes;

e the effects of viscoelasticity in DoD jetting, including the maximum polymer concen-
tration that can be jetted at the desired print speed and the possibility of polymer

degradation due to flow-induced scission;

e the effects of non-linear driving in Newtonian CIJ printing and the generation of a

secondary instability wave that induces ‘inverted’ break-up.

Using a combination of one-dimensional modelling and full axisymmetric simulations, we
have been able to explore these problems and, in some cases, validate our results against
experimental data. Here we summarise our findings.

Experimentally, the presence of particles in a Newtonian solvent has previously been
observed to accelerate break-up in comparison to the corresponding Newtonian fluid with
the same zero-shear-rate viscosity. In order to identify the mechanism for this acceleration,
we have developed a one-dimensional model to describe the surface-tension-driven thinning
of a liquid bridge, where the viscosity is determined by the local particle density via
the well-known Krieger-Dougherty relation. Our model has demonstrated three distinct
thinning regimes for particulate suspensions. Initially, we observe continuum dynamics
dominate and this Newtonian behaviour is described by Papageorgiou’s thinning law for
the bulk viscosity. This initial thinning process amplifies fluctuations in the initially
uniform particle-density distribution, which are mirrored in the viscosity profile. The

development of low-viscosity regions allows the fluid to thin more easily and the thinning
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therefore enters an accelerated regime, with a thinning rate faster than that of the bulk
fluid and the solvent. Eventually, regions develop that contain no particles at all and the
thinning enters a solvent regime, which can be described by Papageorgiou’s law for the
solvent viscosity. We have shown that our model results are in quantitative agreement

with experimental data measured using a capillary-thinning rheometer.

On the other hand, the presence of viscoelasticity in a fluid retards the thinning process
and polymeric filaments are seen to decay exponentially at an inverse rate that is three
times the relaxation time. In DoD printing, although the addition of polymers can be
used to eliminate unwanted satellite drops, resistive forces can significantly compromise
jetting speed. Three DoD jetting regimes have previously been described, defined by the
dominant mechanisms that limit the jet speed; regime 1 is restricted by zero-shear-rate
viscosity, regime 2 by viscoelasticity and regime 3 by high-strain-rate extensional viscosity.
In order to test these predictions, we have developed a simple jetting model to predict the
maximum jettable polymer concentration, such that the desired print speed is achieved,
for two polystyrene-solvent systems. For a low-viscosity solvent and slow jetting speed, our
model is able to identify the three asymptotic regimes and our results are in quantitative
agreement with the experimental data. However, for a high-viscosity solvent and fast
jetting speed, we have observed a new behaviour where regime 2 does not fully develop.
In this case, we found a significant discrepancy from the experimental data, which we
have attributed to three factors. First, the Zimm model under-predicts the relaxation
time at concentrations close to ¢*. Second, we have identified a pre-stretch mechanism
induced by an abrupt contraction in the nozzle geometry. When this effect is included,
the model predictions are in better agreement with full axisymmetric simulations and the
experimental data. Third, we found that polymers may undergo flow-induced scission due

to high strain rates at the nozzle exit.

In CIJ printing, the inks used are predominantly Newtonian and satellite drops are
eliminated by exploiting finite-amplitude modulations in the driving velocity profile. How-
ever, due to the non-linear nature of the driving profile, complex wave patterns are ob-
served. To explore this non-linear behaviour, we have developed an adaptive mesh tech-
nique alongside a one-dimensional model to simulate CI1J jet break-up more computation-
ally efficiently than a full Navier-Stokes simulation. We have found that, for sufficiently
large modulations in the velocity profile, jet instability can no longer be described by lin-
ear stability analysis and the most unstable jets are generated by driving frequencies that
are larger than the Rayleigh mode. Furthermore, different types of break-up behaviour
are observed, depending on the driving profile and fluid properties. Our model is able
to identify the desired ‘inverted’ pinching, where break-up occurs upstream of connecting
filaments, which prevents satellite drop formation. We have found that the optimum oper-
ation window for inverted break-up is restricted to a small range of driving amplitudes and
is sensitive to frequency, driving speed and viscosity. A harmonic analysis has revealed

that the mechanism for inversion is the growth of a secondary instability wave, and conse-
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quently, the addition of a second harmonic component to the driving signal can artificially
induce inverted pinching outside the optimum window. We compared our results to full
axisymmetric simulations in order to incorporate nozzle effects into the one-dimensional
model.

In this thesis, we have made progress in creating a numerical toolbox for simulating
complex inkjets under both DoD and CIJ conditions. Pushing the boundaries of print
speed and material diversity is key to transforming inkjet into a mainstream process and
these simple tools provide a method to test jettability for a wide range of fluid and jetting
parameters. The revolution of inkjet technology may be drawing near, however, numerous
open questions remain. In this final chapter, we consider some future problems for which

our simple models would provide an ideal foundation.

6.2 Future Problem: Star Polymers in DoD Printing

6.2.1 Problem Outline

The behaviour of star polymers in drop-on-demand jetting conditions is considerably dif-
ferent from that of linear chains, even in a dilute non-entangled regime. In particular, de
Gans et al. [43] investigate the influence of polymer architecture on the jettability of a
solution by comparing dilute linear and 6-arm star polymers at comparable concentrations
and molecular weights. The jettability of the solution is determined by the behaviour of
the ligament produced during the DoD jetting process.

As we know from Chapter 4, for high-molecular-weight polymers, it is the formation of
a very long, sustained ligament that significantly limits the jetting speed in DoD printing.
However, de Gans et al. find that the life-time of the ligament is significantly reduced
when the polymer configuration is branched rather than linear. Thus, for an equivalent
molecular weight, higher concentrations of star polymers may be jetted at the optimum
print speed, compared to the linear case. Hence, if a high-molecular-weight component is
required, star polymers may be a valuable additive to inkjet inks. However, there is very

little known about branched polymer behaviour during the jetting process.

6.2.2 A Simple Jetting Model®

In Chapter 4, we establish the maximum possible concentration that can be jetted at a
desired print speed for two linear polystyrene solutions. We use a simple single-mode
FENE model, where the parameters are chosen to fit Zimm theory. In this way, the
jettable concentration can easily be related to molecular weight. To extend our simple
jetting model to explore the effects that a star configuration has on DoD jetting behaviour,
we need a description of how the relaxation time and extensibility of a star polymer vary

with molecular weight and concentration.

!Thanks to Laurence Hawke, University of Leeds for helpful discussions deriving this model.
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Figure 6.1: Schematic figure showing a f = 4 arm star polymer compared to a f =2 arm

linear polymer.

For unentangled polymers, the effects of different branching topologies on the rheology
can be determined from Rouse theory, in which the polymer is subdivided into sections
that are sufficiently long to demonstrate elastic properties [46], as described in Chapter 1.
Each section is represented by a spherical bead with friction coefficient & and connected
by a linear spring with spring constant kgT'/b?, appropriate for a Gaussian subsection of

size b2.

Rouse Relaxation Time of a Star Polymer

A star polymer consists of a single branch point from which multiple arms stem. We assume
that a star has f identical arms stemming from the branch point, with N, monomers on
each, so that the total number of monomers is N = N, f. A schematic of a star polymer
with four arms and a linear polymer (f = 2) is shown in Figure 6.1. Each arm is similar to a
linear chain such that each section of the arm may relax at a different rate. Furthermore, an
individual arm may relax at a different rate from other arms. Consequently, the relaxation
time of a star polymer is defined by a modal spectrum [7].

Taking an average over all the modes yields the relaxation time of the entire star

polymer
star  EN2V? (3f —2
kT 12

For f = 2, this reduces to the Rouse time for a linear polymer

§N2b2
kgT ’

linear
~

derived in Chapter 1. We write the relaxation time in terms of molecular weight by

substituting
jsin(0/2)2M,,
N = (122 Pw
( CooMu ’

where M, is the monomer molecular weight, 6 is the carbon-carbon bond angle and j is

the number of bonds. Thus, the longest Rouse relaxation time of a star polymer is given
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by

Tstar ~ £b2 jSin(9/2)2Mw 2 3f —2 )
R kBT CooMu f2

Extensibility of a Star Polymer

The maximum end-to-end length and equilibrium length of a linear polymer are defined
to be
L2

max

1
= N?0® and R, = _Nb*,
6
respectively, and so the extensibility is given by the ratio

2
(LQ)linear — Lmax — 3N
2R2 U
For a star polymer, on the other hand, the equivalent maximum end-to-end distance is

the length of the number of monomers spanning two arms so that

2
Lmax

= (2N,)?p?,
and the radius of gyration is defined to be
2 1/2
Ry = CN.f'?,

for some constant C'. Thus, the extensibility of a star polymer is given by
2\st L; 3/2
(L7)%F = ggxzﬁ\@]\ff .
g
where f = 2 reduces to the linear case. Thus, in terms of molecular weight, the finite
extensibility of a star polymer is given by

(L2)star — 6\/§ <] Sinée/]@QMw) f73/2‘
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Figure 6.2: Maximum jettable polymer concentration (wt%) against molecular weight M,

for different numbers of arms f in a star polymer. The linear case corresponds to f = 2.
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In theory, our simple jetting model described in Chapter 4 can be modified to account
for the architecture of a star polymer by modifying the relaxation time and extensibility
as above to account for number of arms f. Figure 6.2 shows the maximum jettable
polymer concentration predicted by our simple model for an increasing number of arms,
with parameters equivalent to the polystyrene in ATP case jetted from a micropipette
described in Chapter 4. As observed by de Gans et al., we see qualitatively that increasing
the number of arms allows more polymer to be ejected at the desired print speed . However,
there are a number of limitations to this simple strategy that must be considered further

in order to obtain quantitative results.

6.2.3 Further Considerations

First, the Rouse model described above does not account for hydrodynamic interactions or
the excluded volume effect included in the Zimm model for dilute solutions. These extra
interactions can further restrict the amount of polymer that can be ejected from a nozzle.

Second, in our simple jetting model described in Chapter 4, we use the Mark-Houwink

relation for the intrinsic viscosity given by
(] = KMy,

where K is a constant that depends upon the polymer system and ¢ = 3v — 1 for a
linear polymer in a good solvent. The Mark-Houwink parameters are well described for
polystyrene in a number of different solvents [136]. For the case of star polymers, it has
been suggested by Zimm & Kilb [146] that, since branched polymers are more dense at

any given molecular weight, the intrinsic viscosity will be lowered such that
(] = KM

where K’ < K. However, the value of K’ for star polymers is not well documented in the
literature.

Third, we currently employ a single-mode FENE model, which calculates only the
longest Zimm time to describe the relaxation of the polymer. Although it is thought that
the behaviour of a star-arm should be equivalent to that of a linear chain, it has been
shown experimentally [137] that the relaxation mode distribution is a lot broader for star
chains than it is for linear chains. Furthermore, each arm may relax at different rates
meaning that the configuration of the molecule will change during the relaxation process.

A multiple-mode relaxation model may be required in order to capture these dynamics.

6.3 Future Problem: The Reversal Phenomenon in CI1J

6.3.1 Problem Outline

As we have seen in Chapter 5, the behaviour of even Newtonian fluids during continuous

inkjetting is far from simple. Due to the fast jetting speeds and highly modulated velocity
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Figure 6.3: Breakup length/nozzle diameter (mm) compared to modulation amplitude
e (%) predicted by experiments, the one-dimensional CIJ model and the axisymmetric

simulations for We = 338, Oh = 0.122, A* = 9 and nozzle aspect ratio is I' = 1.

profiles, the flow is dominated by non-linearity making it difficult to predict the inverted
break-up behaviour we have observed. Moreover, large-scale experiments,? exploring the
characteristics of CIJ printing, observe a further phenomenon that we are currently unable
to explain with either our one-dimensional model or full axisymmetric simulation.

Figure 6.3 compares the normalised break-up length predicted by these experiments to
the results of our one-dimensional model and full axisymmetric simulations for increasing
velocity-modulation amplitude €. In this case, the Weber number is We = 338, the Ohne-
sorge number is Oh = 0.122, the wavelength is A* = 9 and the nozzle aspect ratio is set to
I' = 1. As we have discussed in Chapter 5, the discrepancy between the one-dimensional
model and the axisymmetric simulations is attributed to the Poiseuille flow generated by
flow through the nozzle. However, despite including these nozzle effects, the axisymmetric
simulations significantly overestimate the break-up length measured experimentally. Fur-
thermore, at € ~ 5% the experimental data demonstrates a sharp increase in the break-up
length, contrary to the plateau we observe numerically, where the jet length appears to
‘reverse’ to that of a smaller-amplitude perturbation; we call this phenomenon ‘reversal’
of the break-up behaviour. This behaviour has also been observed experimentally, but not
commented on, by Kalaaji et al. [75].

It has been suggested that this behaviour is in fact cyclic and repeats at higher modu-
lations during industrial practice [129], however, repeated reversal has not been observed
in the large-scale experiments of Castrejon-Pita. Nevertheless, jet length dependence that
repeats cyclically is reminiscent of a Hopf-type bifurcation and limit-cycle stability. To
understand this phenomenon, it is necessary to consider further factors, not yet included in

the full axisymmetric simulations, that may affect jet stability. The most obvious negation

2Not yet published. Thanks to Rafa Castrejon-Pita, University of Cambridge.
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is the effect of an ambient atmosphere.

6.3.2 Aerodynamic Effects

There are two existing theories that are relevant for describing aerodynamic effects. First,
Weber [138] examined the capillary stability of a Newtonian jet ejected into an inviscid
atmosphere, so that only the effect of a density gradient is considered. It is found that,
for large jet velocities, the aerodynamic interaction between the jet and the surrounding
medium leads to an enhanced growth rate of the disturbance wave. This instability at
the interface between two horizontal parallel streams of different velocities and densities
is usually called the Kelvin-Helmholtz instability. Although large density gradients are
a stabilising influence, the flow is always unstable for sufficiently fast jets, as discussed
below.

Second, there is the effect of an ambient fluid viscosity. Tomotika [128] examined the
stability of a stationary jet surrounded by a second viscous liquid, however, this study did
not account for the effect of viscous drag. The viscous drag effect was properly treated
by Sterling & Slicer [122], who found that the aerodynamic effects discussed in Weber’s
analysis are over-estimated by the exclusion of viscosity due to the presence of a protective
boundary layer. Their analysis yields a semi-empirical modification to Weber’s theory,
which is in excellent agreement with experimental results. Nevertheless, the thickness of

this boundary layer depends on the jet speed and length, as discussed below.

The Kelvin-Helmholtz Instability

Here we consider the jetting conditions under which a Kelvin-Helmholtz instability is
possible. We assume that the Reynolds’ number is sufficiently large so that an inviscid
analysis is applicable. Thus, Euler’s equation for an inviscid fluid with speed u is given
by
0 (2‘; +(u- v>u) — .

where p is the fluid density and p is pressure. Rather than analyse an axisymmetric jet,
we consider a jet confined to the z — z plane, since this is analytically easier and the
mechanism is similar.

Let U; and p; be the velocity and density in the upper layer, corresponding to the
surrounding air. Similarly, let Us and po be the velocity and density in the lower layer,
corresponding to the jet. A schematic of this planar set-up is shown in Figure 6.4. For

small perturbations of the form
a(x, z,t) = u exp(ik(x — ct)),

with wave number k£ and wave speed ¢, which may be complex, a linear stability analysis

readily yields the dispersion relation

Us + ;U Uy — Us)? 12
e= P22 1j:<—kp1p2< 1 2) —|—k27> )
p2 + p1 p2 + p1
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Figure 6.4: Schematic figure illustrating the planar z — z set-up.

For instability, we require Im(c) > 0. Thus, if

kp1p2(Ur — U2)* > k*y(pa + p1),

then the flow is unstable, with surface tension  resisting the Kelvin-Helmholtz instability.
Assuming po > p1, we can find the minimum jet speed Us required to drive Kelvin-
Helmholtz waves at the fluid-air interface. When the surrounding air is at rest, U; = 0

and for instability we require

kvp2 < p1paU3.

Thus, for a jet driven at the Rayleigh wave number k* = 27/9R and density ratio p =
103,09, we require

P
We > 22 700,
9 pg

in order to drive the Kelvin-Helmholtz instability, which corresponds to jet speeds much
faster than printing speeds. Thus, we conclude that continuous inkjets are not affected by

Kelvin-Helmholtz waves.

The Effect of Viscous Drag

Ambient viscosity creates a viscous boundary layer between the liquid jet and the sur-
rounding atmosphere due to the non-slip boundary condition at the liquid-air interface.
This exerts a drag force on the jet reducing the jet velocity, but also generates a wake that
reduces aerodynamic effects. Here we consider the size of the force corresponding to this
viscous drag and the effect of the boundary layer thickness.

The drag equation is given by
1
Fp = 5ng2CFR2,

where p, denotes the air density, U is the relative jet velocity and R is the jet radius. The

skin friction coefficient C'z is determined by

g

Cr=+—=,
%ngQ

where o is the shear stress. During jetting, the shear stress imparted due to the surround-

ing air is given by
U
7= Moy
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where p, is the viscosity of the air and H denotes the thickness of the boundary layer.

Thus, the viscous drag force can be written as

U
2
FD = 2[Lgh ﬁ,
for free surface height h(z,t) and is clearly small for sufficiently large boundary layers.

The thickness of the boundary layer for some time ¢ can be determined by

H = \/y,t,

where v, is the dynamic viscosity of the surrounding air. Thus, for time ¢t = (L — 2)/U,

the boundary layer is

= |teE=2)
pg U
where L is the break-up length of the jet and z is the axial position measured from the
nozzle. Clearly, at the end of the jet z = L there is no boundary layer, whereas upstream
the thickness increases due to the shielding effect of the front drop.

However, the boundary layer decreases for shorter jet lengths L, as well as faster jet
speeds U. Thus, slow velocities and small-amplitude perturbations that create long jets
are more stable to aerodynamic effects due to the protective boundary layer. In contrast,

modulated high-Weber number jets, such as those found in CIJ, are more susceptible to

the destabilising influence of aerodynamics.

6.3.3 Further Considerations

As discussed earlier, the predictions of break-up length arising from Weber’s original the-
ory fail to agree with experimental data, for example see Fenn & Middleman [56]. The
discrepancy between Weber’s theory and experiments is not only a result of the ambient
viscosity, but is also due to the interaction of a Poiseuille flow induced by long nozzle

length [122]. This poses the question:

Does the reversal phenomenon result from an interaction between aerodynamics and the

Poiseuille flow generated by the nozzle geometry?

As we have seen in Chapter 5, there exists a critical relaxation length Lp beyond
which the nozzle geometry does not affect jet stability. Also, we have seen that increasing
the modulation amplitude decreases break-up length, so that the jet length becomes less
than the relaxation length; when L < Lp, the effects of Poiseuille flow are considered
important. However, we find that the scaling law

@_\/We
2R Oh’

overpredicts the relaxation length of the velocity profile in our axisymmetric simulations
(see Figure 5.41 where Lr = 330) because the nozzle length is too short for Poiseuille flow

to fully develop. Since this length is shorter than Lp, we shall denote it be z*.
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Figure 6.5: Schematic figure to show how aerodynamic effects may be required to generate
L = 2z* within the range of critical amplitudes where a non-uniform velocity profile is

important.

Nonetheless, decreasing jet length by increasing the driving amplitude causes break-up
to occur closer to the nozzle, so that, if L = z*, then break-up will occur in the region
where the velocity profile has not yet relaxed. This behaviour could cause a reversal in

the jet length due to the increased stability caused by a non-uniform velocity profile.

Yet, we must note that z* is dependent on the modulation amplitude. In particular,
for large amplitudes, we observe that the velocity profile is smoothed out by variations in
the height profile caused by non-linear bulging (see Figure 5.45). Thus, there exists only
a small range of modulation amplitudes for which the relaxation length z* can affect the
jet stability. Hence, reversal can only occur if L = z* within the critical modulation range
where a non-uniform velocity profile affects the dynamics. In order to achieve this critical
jet length, within the critical modulation range, we propose that the destabilising effect

of aerodynamics is required. Figure 6.5 schematically illustrates this idea.

For example, consider Figure 6.3 and suppose that z* = 40. From the experimental
data we have L = z* at ¢ = 5% and reversal is observed. At this modulation amplitude,
the parabolic velocity profile is not restricted by the non-linear bulging instability (see
Figure 5.45). In contrast, the axisymmetric simulation predicts L = z* at a much larger
amplitude, e = 12%, where we have observed smoothed velocity profiles (see Figure 5.45).
Thus, L = z* does not occur within the critical modulation range where a non-uniform
velocity affects the dynamics. We attribute the difference between the axisymmetric sim-
ulation and experimental data to the destabilising effect of aerodynamics, which is not

incorporated in the simulation.

To summarise, we propose that aerodynamic effects are required to produce the critical
jet length L = z* within the critical modulation range where a non-uniform velocity profile
is important. In the future, we hope to add both nozzle effects and aerodynamics to our
one-dimensional model in order to explain this reversal phenomenon. Experimentally, it

would be interesting to study break-up lengths of jets ejected into a vacuum.
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6.4 Future Problem: Using Jets as Rheometers

6.4.1 Problem Outline

Filament-stretching rheometers have proved unsuccessful in predicting inkjet printing be-
haviour [70], because they are unable to access the high extension rates found in inkjet
printing. Thus, inkjet fluid assessment methods need to provide a full characterisation
including both linear and non-linear properties at the high frequencies and shear rates
found in inkjet printing. A possible way to achieve this is to use either a DoD jet or a CIJ
jet as a rheometrical device.

Since a thin filament is produced via both techniques, in principle the relaxation time 7

can be extracted from the minimum-filament-thinning data via the well-known exponential
homin (t) t
; ~exp|——
min p 37_

However, recent experiments® have suggested that this thinning law is not achieved under

law

Rayleigh jetting conditions. Figure 6.6 shows that there is a significant difference from
the 37-decay rate measured in a capillary-thinning rheometer (CaBER) compared to the
decay rate measured in a free jet without a forced disturbance. Instead of thinning with

a characteristic time of 37, the decay rate appears to follow a 27 time scale.

T T T T
\
) ® CaBER 0.05 wt%
\ ® CaBER 0.075 wt%
¢ v CaBER 0.1 wt%
— 100 F "0"'v ® Jetting 0.05 wt% -
€ [ G, v, ®  Jetting 0.075 wt% 1
= ! vv‘:”."'v v Jetting 0.1 wt% ]
£ : ® "v". 'vvv
0'%g Yo %o Vy.
'CJE : '.’:VV.’ vv'v
| P "y" Vv,
| ® %o Yy % vy
] 9 < *, Vv.
[ % S vy,
: g * Vv
10 |||||||||I||||I||||I||||I||||I||||I||||I||
-2 0 2 4 6 8 10 12 14

t-tp [ms]

Figure 6.6: Comparing the thinning data of a range of PEO solution measured in a

capillary-thinning rheometer (CaBER) and a free jet.

A viscoelastic filament will thin with a 27-thinning rate if the force on the filament is

a constant. The viscoelastic force F' is given by the stress across the cross-sectional area

such that
F= 7Th2(0'zz — Opp)-
For the Oldroyd-B model, the axial stress is given by 0,, = G(A,,—1), for elastic modulus

(, and the axial conformation satisfies

dAzz . 1
:2Azz_* Azz_l )
dt ¢ 7‘( )

3Not yet published. Thanks to Christian Clasen and Wouter Matteus, University of Leuven.
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for strain rate é = —%%. Thus assuming A, > 1, integrating gives

ho\* t
Azz - <h> €xp <_’T> )

for some constant hg and, for o, < 1, the force across the filament is

1 t
F~ ﬁexp <_7'> .

Hence, if h ~ exp(—t/37), then the force decays exponentially. But, if h ~ exp(—t/27),
then the force is constant. We have conducted some preliminary simulations using both
our one-dimensional model and the full axisymmetric model to test if such a scenario can

arise.

6.4.2 Preliminary Simulations

We have simulated both the capillary-thinning technique and the infinite-jet case using our
one-dimensional viscoelastic model developed in Chapter 3 and compared our results with
full axisymmetric simulations for the Oldroyd-B constitutive model. The non-dimensional
fluid parameters are: Ohnesorge number Oh = 0.15, Deborah number De = 4.94 and con-
centration ¢ = 0.5. For capillary-thinning conditions, the one-dimensional model and ax-
isymmetric simulation are in agreement, with both models demonstrating the 37-thinning
law, as expected.

For the infinite-jet case, we have tested a range of wavelengths )\, including the Rayleigh
wavelength A* = 9 that is achieved during the free-jet experiments. Our one-dimensional
model demonstrates 37-thinning for all wavelengths, including A\*, suggesting that the
elasto-capillary balance is always established. The axisymmetric simulations are in agree-
ment with the one-dimensional approximation for small wavelengths A < \*, as we have

seen in Chapter 3. However, we do observe differences for the longer-wavelength cases.

(a) Long Jet (b) Short Jet
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Figure 6.7: Axisymmetric infinite-jet results for (a) A = 15; (b) A = 7.5. The fluid
parameters are Oh = 0.15, De = 4.94 and ¢ = 0.5.
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Figure 6.8: Viscoelastic force predicted by the axisymmetric infinite jet for a short (A =

7.5) and long (A = 15) wavelength for fluid parameters Oh = 0.15, De = 4.94 and ¢ = 0.5.

For A > \*, including the Rayleigh wavelength A*, the axisymmetric simulation demon-
strates a necking instability, where the jet pinches in near to the end drops, before a fully
developed exponential thinning regime can be achieved. Figure 6.7 shows how this neck-
ing instability is characterised by a divergence in the mid and minimum filament radii.
Although 27-thinning can be fitted in the region of this necking instability, the rate is
found to increase with wavelength and is not equal to 27 at A*, as observed in the free-jet
experiments. This behaviour is in contrast to the short-wavelength case, also shown in

Figure 6.7, which shows fully developed 37-thinning, before the onset of necking.

It is notable that the the free-surface profiles for small wavelengths A < A\* are found
to be self-similar, as predicted by the elasto-capillary balance, whereas the profiles are

not self-similar for the long-wavelength cases. Furthermore, the viscoelastic force on the

(a) Comparing Constitutive Models (b) Comparing Extensibility
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Figure 6.9: (a) Axisymmetric infinite-jet results for the Oldroyd and FENE (L = 1000)
constitutive models; (b) the FENE model with extensibility L = 1000 and L = 10. The
fluid parameters Oh = 0.15, De = 4.94 and ¢ = 0.5 and the wavelength is A = \*.
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filament is found to depend on the jet wavelength. For example, Figure 6.8 shows the
viscoelastic force measured for short wavelength A = 7.5 and long wavelength A = 15. In
the short case, we observe a sharp increase in the force when the elasto-capillary balance
is established. On the other hand, we do not observe a significant growth in the force for
the long-wavelength case. However, it does not appear to be constant, as suggested by
the theoretical analysis.

At the Rayleigh wavelength A = A\*, we find that the necking instability can be elimi-
nated by choosing the FENE constitutive model, which incorporates finite extensibility L
of the polymer. Somewhat surprisingly, Figure 6.9 demonstrates how the FENE solution
for L = 1000 does not neck and the exponential thinning regime becomes fully developed,
in contrast with the Oldroyd-B solution. However, the 27 time scale seen in the free-jet
experiments is only observed for polymers with small extension length L = 10, as shown in
Figure 6.9. This result does not agree with the experimental data, where the extensibility
is significantly larger (L = 114).

The thinning dynamics observed in these preliminary simulations are clearly complex
and are sensitive to a number of parameters including wavelength, finite extensibility and
the addition of multiple modes. Further work is required to identify the parameter range

for which 27-thinning is observed.

6.4.3 Further Considerations

The effects of nozzle geometry should also be considered. Indeed, in Chapter 5 we have
seen that the interaction of Poiseuille flow can influence the break-up length of a simple
Newtonian jet. Furthermore, we have also established that the deformation rates produced
at the nozzle in DoD jetting can deform polymers prior to ejection. However, the effect
of pre-stretch on the exponential thinning regime is not well understood [4]. In order to
explore the possibility of pre-stretch in continuous inkjetting, as well as the effects that
this mechanism has on the thinning dynamics, the hybrid model discussed in Chapter 5,

with the addition of viscoelasticity, would be ideal.

6.5 Future Problem: Printing Biological Materials

Extending the range of fluids containing functional materials, which can be jetted using
inkjet technology, is one key aspect for transforming inkjet into a mainstream process.
Here we briefly discuss the printability of cellular material and high-molecular-weight
polymers.

Bioprinting is an aspiring technology with the goal of building tissues in the laboratory;
one ultimate application is implantable organs, such as the heart or liver. As well as cellular
material having highly non-Newtonian properties that affect jetting, one important issue
is what happens to cells as they pass through the inkjet nozzle. As we have seen, high

strain rates at the nozzle exit are able to pre-stretch and fracture simple polystyrene
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molecules. Thus, cell damage due to shear and extension during the drop ejection process
is a concern for the inkjet printing of cellular material. Consequently, the development of
simple models to assess critical strain rates for cell rupture compared to inkjet conditions
would be beneficial.

Often biological materials, in particular proteins, contain high-molecular-weight poly-
mers. In Chapter 4 we discuss the printability of long-chain polystyrene and find that the
maximum jettable concentration is dramatically restricted by the effects of viscoelasticity.
Hence, a method for eliminating the transition between jetting regimes 1 and 2 is highly
desirable for a number of biological applications. It has recently been observed that this
effect can be achieved by encasing a polymer molecule within an emulsion drop [37]. Strain
rates produced by DoD jetting are not sufficient to distort an emulsion drop, thus the en-
cased polymers remain coiled in their equilibrium state. As a result, the jetting problems
associated with non-linear rheology can be eradicated by the extension of jetting regime 1.
Consequently, it is possible to jet higher concentrations of high-molecular-weight polymer

than predicted by both viscoelasticity and finite extensibility.

6.6 Inkjet Status for Digital Fabrication

Inkjet technology has key advantages for digital fabrication, including being flexible and
non-contact. A review of current technology and emerging trends can be found in Hutch-
ings & Martin [74]. The ongoing direction in inkjet graphics printing is to focus on
achieving high resolution and high reliability, both of which are desirable attributes to the
digital fabrication industry. However, in summary, there are three major improvements

required to transform inkjet into a mainstream process:

e Range of fluids. Although such flexibility is not required in graphics printing, there
will be a greater market uptake for digital fabrication when inkjet is capable of

handling a wider variety of fluids.

e Drop Size. A further breakthrough will occur when smaller drop sizes are possible,

particularly in the manufacture of conductive tracks.

e Cost. Although the costs of inkjet may be small compared to an overall production

system, the technology needs to become more accessible.

Most importantly, digital fabrication industries require technology specifically designed for
the manufacturing processes, so that the focus can be on the application of inkjet rather

than the development of existing systems.



Appendix:
Elastic Effects in

Non-Axisymmetric Flow Down a
Fibre

A.1 Problem Outline*

Coatings are frequently required to provide functional, protective or decorative surfaces,
and many fibre-coating processes demand coatings that exhibit viscoelastic properties, e.g.
in the industrially widespread polymer coating of both power cables and fibre-optic com-
munication cables. Being able to control the thickness and uniformity of thin-film coatings
is important, as variations can affect properties, and therefore performance, of the final
product. Hence, effective coating requires an understanding of how non-Newtonian prop-
erties affect the structure of the flow, the appearance of instabilities and the morphology
of forming patterns.

The Rayleigh-Plateau instability describes the surface-tension-driven thinning and
break-up of a liquid cylinder into droplets. For a liquid film coating a fibre, this break-up
mechanism is restricted: rather than break up, the liquid film forms bulges along the fibre.
In the case of vertical geometry, gravity causes these bulges to propagate downwards and
for Newtonian fluids, the dynamics of these bulges is well-modelled [76].

Polymeric additives have a profound effect on surface-tension driven instabilities. Since
the fibre-coating flow is dominated by shear, it is a combination of shear thinning and nor-
mal stresses present that affect the flow dynamics and therefore the free-surface evolution
of viscoelastic coatings. In particular, in the absence of normal stresses, the front profile
of the falling bulges is notably steeper [16]. In this chapter, we are interested in axially
unsymmetric conformations observed experimentally by Boulogne et al. [17], where non-
symmetrical drops form on one side of the fibre. We propose that this instability is driven
by the existence of a second normal stress difference.

Instabilities driven by second normal stresses have been previously studied. In par-

4Research undertaken during the David Crighton Fellowship 2014, University of Cambridge under the
supervision of Prof. John Hinch
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ticular, Hinch et al. [69] describe the instability mechanism for two elastic liquids being
co-extruded and find that, although the second normal stress difference is usually small, it
may drive a stronger non-axisymmetric instability than the first normal stress difference.
Details of the mechanism depend on the specific flow and the nature of the complex fluid
and have been demonstrated for Couette flow [19], [112], [58], shear-banded micro-channel

flow [98] and falling film flows [19].

In this chapter, we consider the flow of a thin viscoelastic film coating a vertical fibre.
A linear stability analysis shows that, for materials possessing a second normal stress,
there exists an azimuthal mode that is unconditionally unstable to small perturbations in
the vorticity direction. In other words, a viscoelastic coating is unstable if it is aligned
non-concentrically with the fibre. This instability drives the fluid to flow around the fibre,
so that the coating shifts sideways about the fibre. Consequently, the coating becomes
much thicker on one side than the other. This shifting mechanism can be described
analytically by decomposing the solution into a series of harmonics and initially describes
the numerical solution. However, as the thickness tends to zero on the the thinly-coated
side, we propose that a draining mechanism prevails, causing a deceleration of the initial

shifting instability.

A.2 Newtonian Flow Down a Fibre

Consider a solid vertical fibre of radius R coated by a thin film of viscous liquid of thickness
h(6,z,t) such that h < R and variations in both the z and € directions are small. Note
that we assume the positive z-direction is ‘up’. Thus, under a thin-film approximation,
the radial coordinate is written as r = R + y for small parameter y such that 0 < y < h.
Consequently, for fluid velocity u = (u,, ug, u,) and gravity g = (0,0, —g) conservation of
mass reduces to

ou, 4 l% . ou,
dy R 00 0z

=0, (A1)

and for u, < 1, Stokes’ equations for viscous flow yield

op
oy~

1 ap o 8211,9
Op 0%u,

Oz =H 8y2 - PY,

for density p and dynamic viscosity p. In this way the pressure p is assumed to be constant

across the film thickness and is equal to the Laplace pressure
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for surface tension . Assuming no-slip on the fibre and zero stress at the free surface,
integrating (A.2) with respect to y finds velocities

ug =

—TMR?J(% - y)@-

(0, (A.3)
U= =5y w5, tra)

Finally, integrating conservation of mass (A.1) between y = 0 and y = h gives the evolution

equation for the film height

oh 2 [1 0 (,30p 0 (.3(0p
Oh 2110 (50p) 0 9p . Ad
o~ 3 [R?ae <h 80>+az (h (8z+pg))} .

Consider perturbing the initial film thickness hg such that h = hg + ﬁ(@, z,t), where
the perturbation takes the form

h = eexp(i(kz +mb) + at).
The amplitude of the perturbation is denoted €, k is the longitudinal wavelength and m
is the azimuthal mode. The growth rate of the disturbance wave is denoted «. Hence,
substituting the perturbed state into equation (A.4) and linearising yields the dispersion

relation

2 2 3 2 2 4 2 21.2
a:%gZOk+ Xh0<m k _m_mk_k4>‘

R + -
3u \R* R?2 R* R2
The imaginary part of a corresponds to the downward propagation of the wave due to
gravity. For axisymmetric disturbances, m = 0, we have
_ 2xh‘8 k2
- 3u R2

Re(a) (1 - k2R?). (A.5)

Thus, we recover the surface-tension driven instability, first proposed by Rayleigh [110],
where growth of the disturbance wave requires long wave lengths such that kR < 1.

We are interested in the m = 1 mode, which corresponds to perturbing the coating so
that it remains cylindrical in shape, but is aligned non-concentrically with the fibre. In
this case, we have .
—2§20 %(1 +E2R2) <0, (A.6)

indicating a decaying disturbance and thus stability for all wavelengths. However, if the

Re(a) =

fluid is uniform in the z-direction so that & = 0, then Re(«) = 0 and the disturbance does
not decay. Since there is no contribution to the curvature for this ‘shifted’ deformation,
the cylindrical coating remains in its perturbed state, aligned non-concentrically with the
fibre.

A.3 A Second-Order Fluid

For a second-order fluid, the flow is considered to be split into a Newtonian part plus a

perturbation so that the pressure, velocity and stress can be written as

P=p+p ; U=u+u ; X=0+o,
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respectively, where the ‘tilde’ denotes the non-Newtonian contribution. In particular, the

stress is defined by the constitutive model
v
Y=—(p+pI+2uE —-20E+ U3E - E,

where W1 and ¥, are the first and second normal stress coefficients, the strain-rate tensor

is

1 0
E = i(K +K7), where K = 8—::

and the upper-convective derivative is

2 T

E=-K-E-E:-K".
In this way, the non-Newtonian stress is simply

4
=-2VE+UE-E. (A.7)

For a thin-film approximation, conservation of mass for a second-order fluid is given
by

s, _ 10 _ 0 _
8—y(ur +a,) + E%(u@ + Ug) + %(uz +1u,) =0, (A.8)

and Stokes’ equations for the non-Newtonian flow are

b= 5-7“1%
0%y _ 10N,
"o TR 00 (A-9)
Pa,  IN
Foy = "oz

for first Ny = 6., — 6, and second Ny = &, — Ggg normal stresses. The diagonal stress

components are found from equation (A.7) to be
- ‘1’2 aUQ 2 3uz 2
Opp = —//— - + y
4 oy oy
_ Wy dug \ >
=201+ — | | =
o= (%) ()
~ \112 8’&2 2
22 = (20 — )
s (%) (5)

where ug and u, are the Newtonian velocities given by equation (A.3). As in the Newtonian

case, integrating Stokes’ equations (A.9) subject to no-slip and zero stress at the free
surface finds velocities @y and @, and integrating conservation of mass (A.8) between

y = 0 and y = h gives the evolution equation

Oh 2 [1 0 (,39p\ 0 (,5(0p
ot~ 3u [RQ 20 (h ae) s (h (az +pg>>]
L L (20 (0p\ W (0p N
15 | R? 962 R? \ 90 4 \oz "M (A.10)
1 0% (s Ap 2 Wy [(Op\?
T 158 [m (h (2‘1“1 (az“’g) _4R2(80) '




A.4. A One-Dimensional Approximation 187

The Newtonian case (A.4) is recovered by setting Uy = ¥y = 0.

Recall that the dispersion relation describing the Newtonian flow is given by

2xhd (m? k2 om*  2mPk?
Re(aV) = XM — - - ),
3u \R*  R?> R? R?
where oV denotes the Newtonian growth rate. A similar linear stability analysis shows
that the non-Newtonian contribution to evolution equation yields the dispersion relation

v (p9)*hg o Wom?
Re(oz):TLg 20y k7 — iz )

for non-Newtonian growth rate &. Thus, the full dispersion relation for a second-order
fluid is given by
Re(a) = Re(a + @&).

For the axisymmetric mode, m = 0, the disturbance wave is unstable provided that

2(pg)°hyy
21— k2R2) + 2L D0y g2
30 R2( R*) + 38 1k% >0,

2xhiy k?
Re(a) = X

indicating that the first normal stress coefficient ¥; > 0 is a destabilising influence com-
pared the Newtonian axisymmetric case (A.5).
For m =1, the dispersion relation reduces to

2xh3 k? 2pd G
Re(a) = — guoﬁ(l + k*R?) + <p§L3 0 <2\I!1k2 — 4R22> .

Since we assume Vg < 0, both the first and second normal stresses are destabilising factors
in this case. Moreover, if the fluid coating is uniform in the z-direction so that k£ = 0, then

we have growth of the disturbance wave provided that

Thus, the flow is always unstable when there exists a second normal stress. Furthermore,
this non-axisymmetric mode grows more rapidly than the symmetric instability, which is
unconditionally stable for £ = 0. Similar behaviour has been observed in co-extrusion due
to elastic stratification [69].

The origin of this instability is the stress gradient imposed by the initially non-uniform
coating; the thickly-coated side has a larger second normal stress, which generates velocity
in the vorticity direction. Consequently, the fluid flows around the fibre, causing the
thickness of the coating to decrease on the thinly-coated side, and therefore increase on
the other, so that the coating becomes progressively non-uniform in the vorticity direction.
This is in contrast to the Newtonian case (A.6) where shifting the fluid coating about the

fibre is unconditionally stable.

A.4 A One-Dimensional Approximation

For azimuthal disturbances such that % = (0, we assume tension in the vorticity lines

only so that W; can be neglected. Thus, the evolution equation (A.10) reduces to the
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Figure A.1: (a) Evolution of m = 1 perturbation for hy = 1 and R = 10; (b) h(2m,1)
compared to linear stability solution given by equation (A.13) for C; = 1,Cy = —0.02.

one-dimensional form

oh 0 30 H? 5
— = —-C{— — — A1l
where we have the coefficients
o 2 _ Us(pg)?
1= 5 2= ——o 5.
3uR 60u° R

The ratio C'1/|Cs| sets the time scale of the flow. We assume that the second normal
stress coefficient is small so that C; > |Cs| and for Cy = 0, the evolution equation reduces
to the one-dimensional Newtonian case. This governing equation can be solved via the
Lax-Wendroff finite-difference scheme.

Consider a thin coating with initial thickness hg = 1 and m = 1 perturbation of the
form

h(6,0) = ho(1 + ag cosb), (A.12)

for ag = 0.01. For fluid parameters C7 = 1,Cy = —0.02, Figure A.1 demonstrates how
the perturbed free surface shifts sideways, creating a non-uniform coating that is much
thicker on one side of the fibre.

The addition of an axial perturbation deforms the free surface in the z-direction also.
Thus, a series of droplets is expected to form along one side of the fibre and propagate
downwards due to gravity. This morphology of non-axisymmetrical droplets has been
observed experimentally by Boulogne et al. [17] in the study of polymer solutions coating
a fibre.

According to linear stability, the evolution of the m = 1,k = 0 instability is described
by

h(6,t) = hg + ag exp(—5Cahg), (A.13)
and Figure A.1 shows that our numerical solution h(27,t) is in agreement at early times

0 <t < 30. However, the deformation begins to depart from the linear solution when

non-linear terms become important.

100
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Figure A.2: Fourier decomposition of numerical solution for Cq; =1 and Cy = —0.02.
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Figure A.3: Second harmonic amplitude ay for a range of surface tension parameter Cp
with Cy = —0.02
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To understand this free surface deformation, we decompose our solution into Fourier

components such that

h(6,t) = % + Zai cos(i6),

where the Fourier coefficients are defined as
1 [2r
a;(t) = — h(6) cos(i6).d6.
T Jo
As shown in Figure A.2, the amplitude a; is the largest and bounded such that 0 < a; <1,
as prescribed by the initial condition (A.12). This first harmonic component corresponds
to the dominant shifting mechanism demonstrated in Figure A.1.

Although the thick side of the coating tends to remain cylindrical in shape due to
surface tension, the pressure becomes large in the thin layer, which can deform the coating
from a circle. Thus, higher-order harmonics ¢ > 1 correspond to localised deformations
in the free surface and are much smaller, increasing as h — 0. The second and third
harmonic amplitude, ao and as, respectively, are shown in Figure A.2.

Local deformations are of course dampened by surface tension, which acts to maintain
the cylindrical profile. Figure A.3 shows how the amplitude of the second harmonic a9 is
reduced for increasing values of the surface tension parameter C'1. In fact, we find that the
amplitude of the second harmonic ay is directly proportional to 1/C1, as shown in Figure
A 4 for sample time a1 = 0.4

In light of our numerical results, we write the free-surface evolution as
1
h(6,t) = ho(1 + a(t) cos ) + Hf(e, t), (A.14)
1

where a(t) represents the dominant shifting mechanism determined numerically by a; and
f(0,t) represents the higher-order harmonics as, as, . . ., etc, which are assumed to be small
O(C3). Without loss of generality we set hg = 1 and seek an analytic representation of

a(t) and f(6,t).

A.5 The Shifting Mechanism

First, we seek an analytic solution to the first-harmonic component a(t) by neglecting the

higher-order harmonics from equation (A.14). Thus, substituting
h(0,t) =1+ a(t) cos¥,

into the evolution equation (A.11) and integrating with respect to 6 twice yields

a
2a(1 4 acos 0)

5
Cl(h + h,gg) = — 3 + 502(1 + COS@)Q,

where @ = 9. Since h+hgg = g(0) is periodic on [0, 27] for know function g(f), we require

27
/ g(0) cosB.dd = 0,
0
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Figure A.5: Amplitude of first harmonic a;(t) compared to analytic solution a(t) from

equation (A.15) for C; = 1,Cy = —0.02.

which is solved to yield the evolution equation
a(t) = —5Cha(1 — a?)3/2 (A.15)

The amplitude a(t) of the disturbance can be found by finite differencing. Comparing the
amplitude of the first harmonic a; () to our prediction found from equation (A.15), Figure
A.5 shows excellent agreement for time 0 < t < 40. This behaviour is independent of C
provided C; > |Cs|.

We now include the higher-order harmonics denoted by f(6,t). Assuming 1/C; < 1,
substituting equation (A.14) into the evolution equation (A.11) and integrating twice

yields
a
2a(1 + acosf)?
By binomial expansion, this can be solved to give

f+ foo =~ + ZCga2 cos 26.

a a? a’ ) 5
fr——|(——=cos20 + —cos30+... | — —Caa” cos 20, (A.16)
2a 2 8 12
(a) Early Time (b) Late Time
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Figure A.6: Numerical solution compared to analytic solution (A.14) at times (a) t = 30;
(b) t =60 for C; = 1,Cy = —0.02.
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Figure A.7: Amplitude of the growth on the thin side ( = 7) and the thick side (0 = 27)

for Cl = 1,02 = —0.02.
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Figure A.8: Numerical solution (A.11) at time ¢ = 150 compared to analytic solution
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where @ is given by equation (A.15). When the binomial expansion is taken to order O(a5),
Figure A.6 shows that the finite-difference solution is in excellent agreement with the full
analytic solution (A.14) for time ¢ = 30.

However, we see significantly different behaviour at time ¢ = 60 due to a(t) not describ-
ing the numerical solution well at late times, as shown in Figure A.5. This discrepancy is
due to the analytic solution not taking into account the curvature of the free-surface as
h — 0. As the pressure becomes large in the thinly coated region, higher-order harmonics,

although remain small, become comparable to 1 — a; at around ¢ ~ 60.

A.6 The Draining Mechanism

Although the second normal stress always drives the flow around the fibre, as the coating
becomes increasingly thin it becomes more difficult to squeeze the fluid out of the confined
layer. Consequently, the dynamics evolve into a much slower draining flow governed by
the pressure in the thinly-coated region. To illustrate this mechanism, Figure A.7 shows
the amplitude of the growth on the thin side of the coating (6 = 7) compared to the thick
side of the coating (0 = 27). It is clear that the evolution of the thinly-coated side is
decelerated first due to the reduced flow. The growth of the thick side is then restricted
as a result.

At later time ¢ = 150, Figure A.8 shows that the numerical solution is much flatter
in the thin region than the profile predicted by equation (A.14), suggesting that the fluid
slowly wraps around the fibre. Furthermore, the free-surface height h(r,t) is seen to enter
an exponentially thinning regime at this late time, as shown in Figure A.9. This is in
contrast to the analytic solution, which reaches a steady state comparatively the early.
Similar thinning behaviour has been observed for a thin film of polymer solution separating
an approaching bubble from bulk air [44] and is typical of polymer solutions in extensional
flow [54], [35].

A.7 Concluding Remarks

In the case of a viscoelastic fluid coating a vertical fibre, we have established a non-
axisymmetric instability driven by a second normal stress. For small perturbations in
the vorticity direction, the flow is unconditionally unstable so that the thickness of the
coating becomes progressively non-uniform. The formation of thinly-coated regions leads
to weaknesses in the coating, which is highly undesirable for industrial applications. Yet,
this instability can easily be induced through uneven wetting of the fibre during the coating
process.

Initially, the growth of the instability can be explained by a shifting mechanism that
describes the overall flow of the fluid around the fibre, along with localised deformations in
the free-surface that are dampened by surface tension. However, the flow dynamics at late

times appear more complicated than we originally thought; the growth of the instability
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is found to be significantly slower than that predicted by a simple Fourier decomposition.

We attribute this discrepancy to a more complex draining flow decelerating the instability.
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