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List of Abbreviations 

 
Amino acids are abbreviated according to their standard three-letter or single-letter codes. 

Other abbreviations are as follows: 

 
1H-B-SA   1H-benzimidazole-2-sulfonic acid  

Å    Ångström 

α-1AT    Alpha 1-antitrypsin 

Aβ    Amyloid beta 

Aβ40    Amyloid beta residues 1-40 

Aβ42    Amyloid beta residues 1-42 

AD    Alzheimer’s disease 

AFM    Atomic force microscopy 

ALS    Amyotrophic lateral sclerosis  

amp    Ampicillin 

APP    Amyloid precursor protein 

BACE1    Aspartyl protease β-site APP cleaving enzyme 

BBB    Blood-brain barrier 

bla    β-lactamase encoding gene 

bla    β-lactamase 

βla-Aβ40    β-lactamase-Aβ40  

βla-Aβ42    β-lactamase-Aβ42  

βla-Dp47d    β-lactamase-Dp47d 

βla-HEL4    β-lactamase-HEL4 

βla-hIAPP    β-lactamase-hIAPP 

βla-linker    β-lactamase containing a 64-residue GS-rich linker 

βla-linkerSHORT   β-lactamase containing a 28-residue GS-rich linker 

βla-rIAPP    β-lactamase-rIAPP 

bp    Base pair  
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BSA    Bovine serum albumin 

CDR    Complementary determining region 

CFTR    Cystic fibrosis transmembrane conductance regulator 

CJD    Creutzfeldt-Jakob disease 

Da, kDa    Dalton, kiloDalton 

dAb    Single-domain antibody 

ΔG°N-U    Free energy of folding 

DMSO    Dimethyl sulphoxide 

DNA    Deoxyribonucleic acid 

dNTP    Deoxyribonucleotide triphosphate 

DTT    1,2-dithiothreitol 

E. coli    Escherichia coli 

EDTA    Ethylenediaminetetraacetic acid 

EGCG    (-)-epigallocatechin 3-gallate 

ELISA    Enzyme-linked immunosorbent assay 

EM    Electron microscopy 

ER    Endoplasmic reticulum 

ESI-IMS-MS Electrospray ionisation-ion mobility spectrometry-mass 

spectrometry 

EtOH    Ethanol 

Fab    Antigen binding fragment 

FAP    Familial amyloid polyneuropathy 

Fc    Crystallisable fragment 

Fv    Variable fragment 

GAGs    Glycosaminoglycans 

GFP    Green fluorescent protein 

GlcNAc    N-acetyl glucosamine   

GRAS    Generally regarded as safe 
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GS linker   Glycine-serine linker 

GuHCl    Guanidine hydrochloride 

h    Hour 

HCAb    Heavy chain antibody 

HD    Huntington’s disease 

HDPs    Host defence peptides 

HEL    Hen egg lysozyme 

hIAPP    Human islet amyloid polypeptide 

HIV    Human immunodeficiency virus 

HSA    Human serum albumin 

rIAPP    Rat islet amyloid polypeptide 

IAPP    Islet amyloid polypeptide, or Amylin 

Ig    Immunoglobulin 

IPOD    Insoluble protein deposit 

IPTG    Isopropyl β-D-1-thiogalactopyranoside 

JUNQ    Juxtanuclear quality-control compartment 

kan    Kanamycin 

kb    Kilo bases 

kJ    Kilojoule  

LB    Luria-Bertani 

mA    Milliamp 

mAb    Monoclonal antibody 

MACGROWTH   Maximum ampicillin concentration at which growth occurs 

MBP    Maltose-binding protein 

MCS    Multiple Cloning Site 

MCDGROWTH   Maximal cell dilution allowing growth 

MIC    Minimal Inhibitory Concentration 

µg    Microgram 
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mg    Milligram 

mL    Millilitre 

mol    mole 

MWCO    Molecular weight cut off 

MTOC    Microtubule organising centre 

MurNAc   N-acetylmuramic acid  

NEB    New England Biolabs 

NMR    Nuclear magnetic resonance 

OD600    Optical density at 600 nm 

P. anserina   Podospora anserina 

PBP    Penicillin binding protein 

PCR    Polymerase Chain Reaction 

PG    Peptidoglycan 

PMSF    Phenylmethylsulphonyl fluoride 

POI    Protein of interest 

PrP    Prion protein 

psi    Pounds per square inch 

PTMs    Post-translational modifications 

RAGE    Receptor for advanced glycation end products 

RNA    Ribonucleic acid 

RNAi    RNA interference 

rpm    Rotations per minute 

S. coelicolor   Streptomyces coelicolor 

S. enteric   Salmonella enterica 

s, ms    Second, millisecond 

ScFV    Single chain variable fragment 

SDS    Sodium dodecyl sulphate 



 

23 
 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel 

electrophoresis 

SMMs Small molecule microarrays 

SOC    Super Optimal broth with catabolite repression  

SOD1    Superoxide dismutase 1 

TAE    Tris-acetate-EDTA 

TB    Terrific Broth 

TCA    Trichloroacetic acid 

TEM    Transmission electron microscopy 

TEMED    Tetramethylethylenediamine 

tet    Tetracycline 

ThT    Thioflavin T 

TNFα    Tumour necrosis factor alpha 

Tris    Tris (hydroxymethly)-aminomethane 

TTR    Transthyretin  

U    Units 

UPR    Unfolded protein response 

UV    Ultraviolet 

VH     Variable heavy domain 

VHH     Variable heavy domain from a camelid 

VL     Variable light chain 

v/v    volume:volume ratio 

w/v    weight:volume ratio 

X-Gal    Bromo-chloro-indolyl-galactopyranoside 

λ    Wavelength 

  

http://en.wikipedia.org/wiki/Catabolite_repression
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List of Amino Acid Abbreviations 

 

A   Ala   alanine 

C   Cys   cysteine 

D   Asp   aspartate 

E   Glu   glutamate 

F   Phe   phenylalanine 

G   Gly   glycine 

H   His   histidine 

I   Ile   isoleucine 

K   Lys   lysine 

L   Leu   leucine 

M   Met   methionine 

N   Asn   asparagine 

P   Pro   proline 

Q   Gln   glutamine 

R   Arg   arginine 

S   Ser   serine 

T   Thr   threonine 

V   Val   valine 

W   Trp   tryptophan 

Y   Tyr   tyrosine 
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Abstract 

 
Protein aggregation is the basis of a vast array of diseases and one of the most expensive 

problems to overcome during production of biopharmaceuticals. The tendency of proteins 

to aggregate ensures that demanding purification techniques are a pre-requisite to in vitro 

analysis of aggregation mechanisms and screening for aggregation inhibitors.  

In this thesis, a powerful new system was developed to identify aggregation-prone 

sequences in vivo, and to screen for inhibitors of aggregation. The screen is based on a 

β-lactamase-tripartite fusion system, where the minimal inhibitory concentration of 

antibiotic, conferred by the β-lactamase enzyme, is used to evaluate the level of test 

protein aggregation.  

Using this in vivo system, the aggregation propensity of the two disease-related proteins 

human islet amyloid polypeptide (hIAPP) and amyloid beta peptide (Aβ) was found to be 

significantly higher than non-aggregating controls. Importantly, this system provides a 

new approach to assess aggregation-propensity without the need for purified protein. 

The system was used to screen small molecules for their aggregation-inhibiting properties 

against hIAPP. It was found that many results correlated well with the published literature 

on these molecules, but notably, a number did not. In vitro analysis of hIAPP aggregation in 

the presence of these molecules validated the results from the in vivo assay, refuting a 

number of published studies and confirming the power of the tripartite system for 

identifying aggregation inhibitors. 

Finally, the system was used to differentiate between an aggregating and non-aggregating 

human VH antibody domain, to demonstrate the application of the screen to 

biopharmaceuticals. The in vivo system successfully identified the aggregating test protein, 

wherein the addition of excipients prevented its aggregation in vivo in a titratable manner. 

Overall the work presented herein describes a novel, and experimentally simple, in vivo 

system that provides rapid and accurate analysis of protein aggregation and its inhibition. 
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 “As our life expectancy increases, the chances of getting a degenerative disease also increase... caused 
by something conceptually quite simple... incorrect protein folding” 

- E. Reynaud, 20101  

 

1 Introduction 

1.1 Principles of protein folding 

 
In order to function, most proteins must fold into a specific three-dimensional 

conformation termed the native fold. In the early 1960s, Anfinsen demonstrated that the 

folding of ribonuclease-A is reversible, and that its native structure is the conformation 

with the lowest free energy (and therefore highest stability)2. The conclusion from this 

work was that all the information required for a protein to reach its native three-

dimensional conformation on a kinetically accessible timescale is contained in the 

polypeptide sequence. This notion seemed to give rise to a paradox: given the vast number 

of possible conformations available to the primary sequence of a protein, it is impossible 

for an exhaustive search for the global free energy minimum to occur on a biologically 

relevant timescale. Levinthal determined that this apparent paradox could be solved if 

protein folding is directed by specific pathways, guided by the rapid formation of local 

interactions, which determine the further folding of the polypeptide chain3.  

The first proposed mechanism of protein folding was the nucleation-growth model4. This 

simplified the folding process by breaking it down into subprocesses that occur stepwise5. 

It postulated that the tertiary structure propagates rapidly from an initial nucleus of local 

secondary structure. However, this theory predicted the absence of folding intermediates 

and subsequently fell out of favour after the first proteins to be studied were shown to fold 

through kinetically observable intermediates6, 7. Two alternative models were suggested: 

the framework model8, and the related diffusion-collision model9, 10. These predicted that 

secondary structures would form first, and then diffuse until they collide and coalesce into 

the tertiary structure. Subsequently, the hydrophobic collapse model was proposed. This 

predicted that sequestration of hydrophobic side chains from the surrounding aqueous 

environment would produce a molten globule intermediate, constraining the volume in 

which the conformational search for the native state occurred11, 12. However, extensive 

studies on the folding of chymotrypsin inhibitor-2 (CI2) showed that this protein folds via 

simple two-state kinetics and that no intermediate accumulates13. Further investigation of 

C12 by φ-value analysis, which probes the presence of stabilising interactions in 
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intermediate and transition states, showed that secondary and tertiary structures form in 

parallel14. These findings, coupled with the discovery of many proteins that fold with two-

state kinetics15, 16, resulted in the resurgence of a nucleation-based mechanism of folding 

in the form of the nucleation-condensation model17. This model proposed that a small 

nucleus of weak secondary structure forms, stabilised by long range tertiary interactions.  

After this slow initiation step, the protein rapidly collapses around the nucleus to form the 

native state18. The boundaries that define all these models are somewhat artificial, and in 

1993 the unified model of protein folding was proposed to combine the models in a 

continuum of mechanisms, depending on the relative strengths of secondary and tertiary 

interactions19. The framework and hydrophobic collapse models are the extremes of the 

nucleation-condensation model, with the relative stability of the secondary structure 

determining if the secondary and tertiary structural elements form in sequence or in 

parallel20. 

 

Recently, energy landscapes and folding funnels have provided a new view of protein 

folding21, 22. They describe the structural ensemble acquired en route from a high energy 

unfolded state to the low energy native state. Energy landscapes can be plotted as the free 

energy of the polypeptide chain against the number of intra- and inter-molecular contacts 

(Figure 1.1). Folding funnels illustrate the relationship between the internal free energy 

of the protein and the conformational entropy. Figure 1.2  shows an idealised folding 

funnel in which the internal free energy decreases concurrently with conformational 

entropy until the native state is reached at the energy minimum21. Realistic energy 

landscapes are likely to differ drastically from the idealised landscape. For proteins found 

to fold via a two-state transition, the energy landscape is relatively smooth. However the 

majority of proteins fold via the population of specific folding intermediates in order to 

reach their native conformation. These intermediate species give rise to a rough 

landscape, containing numerous high energy barriers and low energy kinetic traps. These 

‘on-pathway’ species, however, are not the only conformations available to a folding 

polypeptide chain. Kinetically stable misfolded conformations can be populated, which 

require substantial reorganisation before the native state can be reached12.   
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Figure 1.1. Energy landscape scheme of protein folding and aggregation. The unfolded 

conformations funnel to the low energy native state via intramolecular contacts. 

Conversely, conformations can move towards amorphous aggregates, oligomers, or 

amyloid fibrils via intermolecular contacts. Figure redrawn and adapted from 

Hartl, 200123. 
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Figure 1.2. An idealised funnel landscape. The vertical axis represents internal free 

energy. Conformational entropy is represented by the width of the funnel. Folding begins 

at the rim of the funnel, as the number of intramolecular contacts in the polypeptide 

increase, the internal free energy is lowered and conformational freedom reduced until 

the folded native state is reached. Figure redrawn and adapted from Bartlett, 200924. 

 

 

1.2 Protein misfolding and aggregation 

 
The native state of a protein is generally believed to correspond to the conformation that 

is most stable under physiological conditions25. However, native structures exhibit 

fluctuations around the minimal energy conformations, and may even undergo multiple 

localised unfolding reactions throughout the protein structure22. Indeed, many proteins 

adopt various other conformational states in addition to their native structure. These non-

native, partially unfolded forms may represent functional or on-pathway species, but may 

also represent off-pathway states22. All species on the energy landscape are in constant 

flux, and rare or unfavourable species can also be produced as a consequence of changes in 

the thermodynamic stability, or interconversion kinetics, of the species. These changes can 

arise from destabilising or denaturing factors such as mutations, lack of ligands, improper 

proteolysis, and pH or temperature alterations26. Significantly, as the functional native 

state often only reflects a local free energy minimum at physiological concentrations and 

conditions, misfolding in many cases may actually lower the global free energy27-29. In 
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these unfolded, partially folded, or incorrectly folded species, the hydrophobic core and 

regions normally buried in the native state can become exposed to the solvent. These 

regions are prone to undesirable contacts with other molecules and, as folding must occur 

in the presence of 300-400 grams per litre of cytosolic protein and other macromolecules 

within the cell30, it is unsurprising that this can lead to aggregation and adverse 

interactions between non-native protein molecules. 

 

1.2.1 Aggregated species 

 
Due to the heterogeneous nature of protein aggregation, a diverse variety of species can 

form, ranging widely in both morphology and size. They can contain proteins bound 

together non-covalently; for example, β-lactoglobulin-A has been shown to form distinct 

non-covalent aggregates of tetramer, octamer and dodecamer31. Other forms of aggregates 

involve proteins covalently bound by intermolecular disulfide bonds. This occurs in 

aggregates of  β-lactoglobulin-B and κ-casein-A during heat denaturation of milk32. The 

aggregation process is reversible in some cases, and irreversible in others. Reversible 

protein aggregation is commonly utilised in academic and industrial settings in the 

production of recombinant proteins in E. coli (see Section 1.8.2). Many proteins form 

inclusion bodies when over-expressed in bacteria, which can aid in purification as long as 

the protein can be resolubilised once extracted33. Protein aggregation in many 

neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease26, 34, is largely 

irreversible due to the very stable aggregate structures formed (see Section 1.4).                            

Protein aggregate composition and size varies greatly; from small soluble aggregates, to 

large oligomers, amorphous aggregates and amyloid fibrils (Figure 1.3)35. They also vary 

widely in their protein conformations. Some proteins, such as the human pancreatitis-

associated protein, form fibrillar aggregates with a native-like conformation36, whereas 

other proteins undergo significant and sometimes dramatic alterations in conformation 

when they aggregate (islet amyloid polypeptide (IAPP) aggregation in type II diabetes 

mellitus, for example37). Protein aggregates and amyloid fibrils often contain a range of 

other components, including other proteins and carbohydrates; Glycosaminoglycans 

(GAGs), serum amyloid P component, proteoglycans, and apolipoprotein E are believed to 

help in the formation and stabilisation of fibrils38. 
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Figure 1.3. A schematic representation of the protein aggregation pathway. The starting 

reactant could be the native protein, or it could instead be a misfolded or partially 

unfolded monomer. Amorphous aggregates may be on or off the amyloid formation 

pathway. 

 

It has been difficult to obtain high resolution structures of amyloid fibrils due to the 

insoluble and non-crystalline nature of these species. However, information from 

techniques such as chemical staining, hydrogen/deuterium exchange, electron microscopy 

(EM), atomic force microscopy, solid-state nuclear magnetic resonance (NMR), X-ray 

diffraction, circular dichroism, Fourier-transformed infrared spectroscopy, and electron 

paramagnetic resonance, has enabled the fibril structure to be deduced38. High resolution 

EM images show fibrils of different origin have similar morphology, consisting of 2-6 

unbranched protofibrils associated laterally or twisted together to form fibrils with a 4-13 

nm diameter (Figure 1.4)39.  X-ray diffraction and solid-state NMR suggest a core 

cross-β-sheet structure in which continuous β–sheets are formed, with the β-strands 

packed perpendicular to the fibril axis22. Furthermore, all amyloid fibrils stained with the 

diazo dye Congo red exhibit apple-green birefringence in cross-polarised light40. This 

characteristic, thought to occur through the linear arrangement of stacked dye molecules 

bound to the fibril40, is used as the diagnostic test for fibril presence. A shift in 

fluorescence after staining with thioflavin-T is also observed41. 
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The native fold of a protein is established through the unique way in which its amino acid 

side chains interact with each other. Conversely, amyloid fibrils are formed via hydrogen 

bonding between the main chains of multiple peptides42. As the main chain of the 

polypeptide is preserved as a common feature of all natural proteins, it is possible that 

every protein possesses the ability to revert to this ‘primordial’ structure43. This 

hypothesis is supported by the fact that proteins able to form amyloid structures generally 

do not share any sequence similarities. Indeed, the secondary structural features of these 

proteins are quite distinct, ranging from all α-helical through mixed α-helical/β-sheet, to 

all β-sheet44. Furthermore, their native structures, sizes and biological functions vary 

widely, as do the conditions under which they form amyloid fibrils. To date, there are 

thirty proteins known to form amyloid fibrils in humans under physiological conditions, 

with a further six known to form either amyloid-containing, or non-amyloid inclusion 

bodies45. Moreover, it was shown that the src homology domain of bovine 

phosphatidylinositol 3-kinase (a protein with no link to protein-deposition diseases) has 

the ability to aggregate into fibrils that are structurally indistinguishable from those 

associated with human disease, when subjected to an acid pH46. There have since been 

many similar reports of the formation of amyloid-like fibrils25, 27, 47, leading to the 

conclusion that the amyloid fold is the universal global free-energy minimum of all 

polypeptide chains48. 

 

Figure 1.4. Example of amyloid fibril morphology.  A twisted fibril as visualised by 

transmission electron microscopy is shown on the left (scale bar = 50 nm).  A cryo-EM 

reconstruction of an amyloid fibril, consisting of six ‘protofilaments’ winding around a 

hollow core, is shown in the centre. The constituent β-sheets shown in a ribbon 

representation, with the fibril density, indicated in yellow, is on the right.  From 

Fitzpatrick et al.49. 
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1.2.2 Mechanisms of protein aggregation 
 
 
Protein aggregation is generally proposed to occur via a nucleation-growth mechanism. 

Protein monomers are converted into fibrillar structures via a transiently populated 

aggregation nucleus, around which further deposition of monomers occurs (Figure 1.5)22. 

Nucleus formation is kinetically disfavoured, and hence the rate-limiting phase of the 

aggregation process. In vitro seeding experiments support this model by showing that 

addition of pre-formed fibril fragments greatly accelerates fibril formation (Figure 1.5)43. 

The addition of monomers to the existing aggregate is strongly favoured by the 

thermodynamic stability of the aggregate, and therefore the subsequent elongation of the 

fibril proceeds rapidly50. Amorphous aggregates and other prefibrillar species typically 

form faster than fibrils, via a nucleation-independent process, as there is no special 

conformational prerequisite; however, to date, there is no consensus as to whether these 

species are ‘on’ or ‘off’ the fibril formation pathway51.  

 

Figure 1.5. Nucleation-growth model for amyloid formation. Amyloid formation proceeds 

via two phases: (i) the lag (or ‘nucleation’) phase and (ii) the elongation phase. During the 

lag phase, the native protein misfolds into an aggregation-competent conformation. This 

can act as a nucleus or self-associate to form an oligomeric nucleus. The elongation phase 

involves the rapid growth of the nuclei, via the addition of more monomers, into large 

fibrillar structures. The addition of pre-formed nuclei to the beginning of the reaction can 

overcome the rate-limiting nucleation phase, resulting in a significant reduction in the 

lag-time (pink line).    
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Much research has been directed towards determining the propensity of proteins to 

aggregate. Folding of a protein into a stable globular structure sequesters the 

hydrophobic, aggregation-prone residues, thereby dramatically decreasing the protein’s 

overall propensity to aggregate52. Interestingly, natively unfolded and intrinsically 

unstructured proteins tend to have a lower propensity to aggregate than folded proteins 

(see Section 1.3.1)48. The reason for this appears to be due to the differences in mean net 

charge and mean hydrophobicity. Natively unstructured or unfolded proteins tend to have 

a higher net charge and lower hydrophobicity than folded proteins, thereby making 

aggregation thermodynamically less favourable53. Moreover, partially folded 

intermediates are more likely to aggregate that the unfolded species of the same protein25. 

This is because partial folding can bring together hydrophobic residues, creating an 

aggregation-prone hydrophobic surface. It has also been shown that helices with a high 

propensity for forming extended strand conformations are more likely to aggregate54. 

Many other factors that destabilise native proteins (thereby increasing the likelihood of 

aggregation) have been found. Mutations can kinetically favour the formation of 

aggregates by increasing the mean hydrophobicity, increasing the propensity to form 

β-structure, or even by reducing the net charge of the polypeptide chain. For example, 

point mutations in the gene for lysozyme are associated with the aggregation of the 

protein in hereditary systemic amyloidoses55. Similarly, variants of the protein 

transthyretin which are significantly less stable than the native structure are involved in 

familial amyloidogenic neuropathy56. In other cases, full-length wild-type proteins can be 

encouraged to aggregate through changes in the environment or protein concentration. An 

example of this is the accumulation of the protein β2 microglobulin in patients undergoing 

long-term haemodialysis57. In this disorder, an up to 60-fold increase in monomer 

concentration leads to an increase in the concentration of a partially folded intermediate, 

with a high propensity for aggregation. This results in the deposition of the protein in 

amyloid plaques58. Furthermore, a high population of partially folded intermediates also 

risks exhausting the availability of cellular chaperones for nascent polypeptide chains, 

increasing aggregation propensity further59. In fact, impairment of any part of the protein 

processing machinery, from biogenesis to degradation, could have severely detrimental 

effects on the proteostasis network, and thereby increase the risk of aggregation (see 

Section 1.4).  
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1.3 Preventing protein aggregation 

1.3.1 Intrinsic features that prevent aggregation 

 
For life to have evolved to the level of complexity witnessed today, evolution must have 

eliminated protein sequences with a high intrinsic propensity to aggregate. For example, 

sequences of alternating polar and non-polar residues, as well as sequences of consecutive 

hydrophobic residues within the polypeptide chain, are strongly disfavoured48. However, 

polypeptide chains are far from optimised in their ability to resist aggregation. Proteins 

require flexibility to carry out their functions. Indeed, for some proteins to be functional 

they must be intrinsically disordered, or natively unfolded39. Evolution has developed a 

balance between a protein’s propensity to aggregate and the dynamic requirements for 

biological function. All this must be encoded in the sequence, along with the ability to fold 

to the native state. Evolution will tend to produce sequences that improve an organism’s 

function during its reproductive lifespan, as these confer a competitive advantage. 

However, due to the rapid advancements in science, technology and medicine, the changes 

in our society are fast exceeding the rate of evolution. A poignant example of this is the 

increase in sporadic Creutzfeldt–Jakob disease (CJD), believed to be due to the ingestion of 

aggregated tissue from cows. This has been linked to the recent outbreak of bovine 

spongiform encephalopathy in the UK that resulted from the highly unnatural process of 

feeding young cows with the infected remains of others42. Similarly ‘unnatural’ modern 

medical practices have also been linked to the amyloid diseases (e.g. β2-microglobulin 

aggregation during long term haemodialysis)57. 

 

1.3.2 Cellular strategies for controlling aggregation 

 
Within every kingdom, life has evolved intricate systems to prevent or control the 

aberrant misfolding and accumulation of cellular proteins30, 60-63. This indispensable and 

unceasing task is principally carried out by a class of proteins known as chaperones. 

Chaperones are ancient and universally conserved machines that assist in all stages of a 

protein’s cellular life cycle; they aid in initial protein folding, assembly of multimeric 

complexes, inhibition of misfolding and aggregation, and final degradation of the protein 

into its constituent amino acids for recycling64, 65. The primary defence against protein 

aggregation is its prevention. However, with aggregation being inevitable in some cases, 

cells have evolved numerous ‘management’ systems to deal with the aggregate. 
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1.3.2.1  Aggregation prevention 

 
One of the most effective strategies used by the cell to control intracellular protein 

aggregation is to prevent the accumulation of misfolded conformers in the first place. The 

presence of misfolded proteins triggers a complex biological response; in the cytosol this 

is referred to as the ‘heat shock response’, and in the endoplasmic reticulum it is known as 

the ‘unfolded protein response’47.  

 

1.3.2.1.1 The cytosol and the heat shock response 

 
The heat shock response (HSR) is an ancient and universal mechanism to counter 

stress-induced aberrant interactions within the cell. This remarkably sensitive system can 

be triggered by a temperature increase of only a few degrees66. This is essential because 

cellular proteins require flexibility for their function; an increase in temperature, even a 

small one, can prompt unfolding66. Cells do not in fact recognise the temperature increase; 

it is believed that the trigger for the HSR is the appearance of the unfolding proteins.  

Despite what its name suggests, it is not just heat stress that triggers the HSR. Stresses 

including oxidative stress, heavy metals, or other toxic substances can activate this 

response mechanism67-69. From archaea to humans, studies have found that in order to 

tackle the cell-wide damage caused during times of stress, between 50 and 200 genes can 

be upregulated at any one time66. Expression of a wide variety of proteins is induced, 

however one class of proteins in particular is predominantly expressed: the heat shock 

proteins (Hsps). There are five major families of Hsps: Hsp100s, Hsp90s, Hsp70s, Hsp60s 

and small heat shock proteins (sHsps). Interestingly, many of these chaperones are also 

expressed under physiological conditions to aid the de novo folding of nascent polypeptide 

chains.  As all cellular proteins are at risk of misfolding and aggregating, all Hsps have 

evolved to interact with a broad range of unfolded proteins. They recognise the 

hydrophobic regions, specific peptide sequences or structural elements that are exposed 

when a protein begins to unfold70-72. Through the energy-driven binding and release of the 

misfolding protein, they prevent unwanted interactions from occurring (Figure 1.6 i)66. 

If the Hsp molecular chaperones alone are insufficient to promote correct folding of 

cytosolic proteins, the polypeptides can be transferred (via numerous cochaperone 

proteins) to a large, double ring complex known as a chaperonin (Figure 1.6 ii). Two 

groups of chaperonins exist: group I includes the seven-membered Hsp60s found in 

mitochondria, chloroplasts and bacteria (known as GroEL). Non-native protein chains (of 
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up to 60 kDa in GroEL73) can be bound in the central cavity of the chamber, closed in by 

the binding of another chaperone. This enables the chamber to close around the peptide 

chain and, in isolation from the rest of the cellular components, the protein can fold into its 

native state70, 74, 75. Interestingly, no group I chaperonin is found in the eukaryotic or 

archael cytosol. Instead, distantly related machines, denoted the group II chaperonins, 

carry out the same function76. These eight-membered rings, known as thermosomes in 

archaea, and TRiC or CCT in eukaryotes, have a similar architecture to the group I 

chaperonins, however the lid function is built in77. 

 

 

Figure 1.6. Controlling protein misfolding in the cell. Protein unfolding or misfolding 

instigates the heat shock response and unfolded protein response. Chaperones bind the 
unfolding protein to prevent further misfolding or aggregation, and aid in the refolding to 
the native conformation (i). If protein refolding is initially unsuccessful, it is transferred to 
the chaperonin, wherein protein folding can occur in the protected interior environment 
(ii). If the protein is unable to refold, or aggregation occurs, the protein is transferred to 
the proteasome for degradation (iii). Within the ER, protein misfolding is prevented from 
occurring by ER chaperones (iv). They bind to the nascent polypeptide chain as it 
cotranslates into the ER lumen, where folding can occur. If folding is unsuccessful, the 
polypeptide chain is retrotranslocated into the cytosol where it is degraded by the 
proteasome (v). If the level of misfolded protein exceeds the capacity of the ER 
chaperones, the unfolded protein response (UPR) is initiated (vi). 
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Countless other chaperones and chaperone-associated proteins exist to aid in the folding, 

refolding and stabilisation of cellular proteins. Indeed, the quality control mechanism is so 

robust that as much as 30 % of newly synthesised proteins are degraded due to ineffective 

folding (Figure 1.6  iii)78. 

 

1.3.2.1.2 The ER and the unfolded protein response 

 
Protein folding in the cell occurs either in the cytoplasm or within the secretory 

pathway79. Unlike in prokaryotes, where secretory proteins are secreted directly across 

the plasma membrane80, in eukaryotes transmembrane and secreted proteins are folded 

and assembled in the endoplasmic reticulum (ER). The ER provides a cellular ‘checkpoint’ 

for secretion, preventing export of proteins that are misfolded or modified incorrectly. The 

sheltered environment of the ER helps to spatially limit conformational freedom of the 

polypeptide chain, thereby reducing the risk of misfolding. Polypeptide chains are 

translocated into the lumen of the ER cotranslationally, where folding into the native 

structure (and assembly into multisubunit complexes, if required) is aided by ER 

chaperones (Figure 1.6 iv). The chaperones surround the translocon, thereby preventing 

the nascent polypeptide chain from interacting with neighbouring identical chains. This is 

vitally important in preventing protein aggregation, as the chance of aggregation is highest 

between partially folded proteins with identical sequences, often due to a process known 

as domain or strand swapping80-82. Proteins that fail to attain their native structure within 

the ER are retrotranslocated back into the cytoplasm for degradation by the proteasome 

(Figure 1.6 v).  When the flux of unfolded proteins entering the ER surpasses the capacity 

of the folding machinery, a network of intracellular signalling pathways is activated, 

collectively called the unfolded protein response (UPR). The UPR transduces information 

to the cytosol and nucleus to upregulate proteins involved in folding, quality control, 

trafficking, ER-associated degradation and macroautophagy (Figure 1.6 vi). In addition, a 

widespread transcriptional program decreases protein translation and initiates the 

degradation of select ER-bound mRNA, thereby reducing the load of unfolded proteins at 

the ER83. 

 

 

 



INTRODUCTION 

42 
 

1.3.2.2  Aggregation management 

 
The cellular quality control system adapts to the presence of misfolded proteins and 

works to clear them rapidly and efficiently from the cellular environment. However, when 

the generation of misfolded proteins exceeds the refolding and degradative capacity of the 

cell, protein aggregates can accumulate. It was initially believed that aggregation was the 

result of an uncontrolled, dead-end pathway; however mounting evidence suggests that it 

is, in fact, part of an organised response to imbalanced protein homeostasis84. It has been 

found, across all species, that protein aggregates are sequestered and deposited at specific 

cellular sites. It is believed that this protects the cellular environment from potentially 

dangerous species, such as the toxic soluble oligomers formed during aggregation 

(discussed in detail in Section 1.4.2). Indeed, it has been suggested that the formation of 

amyloid fibrils has a protective function through the sequestration of these toxic 

oligomers85-89.  This intracellular organisation of aggregates may also facilitate their 

removal from the cell, either through degradation90, 91, or asymmetric distribution into a 

single daughter cell during cell division92-96. 

 

1.3.2.2.1 Sequestration of aggregates 

 
The specific localisation site of sequestered protein aggregates differs between organisms, 

and depends on the particular aggregating protein, the cellular compartment and even the 

particular stress conditions that have caused the aggregation. In bacteria, for example, 

misfolded proteins accumulate in inclusion bodies, particularly during heat or oxidative 

stress97, 98. Typically, one or two inclusion bodies form at the cell poles, and, for reasons 

that are still unclear, they usually localise to the old cell pole (Figure 1.7a)92, 94.  The 

underlying mechanisms of how this localisation occurs remains controversial, with some 

studies suggesting it is an energy-driven process99, whereas others indicate that a passive 

mechanism of simple nucleoid occlusion is sufficient (Figure 1.7a)100.  

Unlike bacteria, eukaryotic cells possess distinct protein quality-control compartments. 

For example, in yeast cells there are two recently identified specialised quality-control 

compartments: the juxtanuclear quality-control compartment (JUNQ) and the insoluble 

protein deposit (IPOD)91. The JUNQ is adjacent to the nuclear membrane, and transiently 

accumulates ubiquitinated misfolded proteins (Figure 1.7b). Substrates at the JUNQ are 

still mobile, and can diffuse back into the cytoplasm if they have successfully 

disaggregated and refolded to a native conformation. Conversely, the IPOD, located 
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adjacent to the vacuole, sequesters and harbours terminally misfolded and aggregated 

proteins, such as amyloidogenic proteins and yeast prion proteins (Figure 1.7b)91. The 

fate of the aggregated proteins in the IPOD compartment, however, remains unclear84.  

Within mammalian cells, specialised inclusion bodies form in the ER and cytosol, known 

respectively as Russell bodies and aggresomes. Aggresome formation is initiated by the 

accumulation of smaller aggregates within the cell. These move in a dynein-based manner 

along the microtubule cytoskeleton to an indentation in the nuclear envelope called the 

microtubule organising centre (MTOC) (Figure 1.7c)101. Evidence suggests this 

mechanism prompts increased chaperone expression to counter the accumulation of 

aggregated species102. Similarly, Russell bodies are believed to form in order to sequester 

potentially toxic aggregating proteins in the ER, which might otherwise interfere with the 

secretory pathway (Figure 1.7c)103.  

 

 

 

Figure 1.7. Species-specific pathways for aggregate sequestration. (a) In bacteria, 

aggregates accumulate into inclusion bodies, and, by either an energy-driven process or 

nucleoid occlusion, they are localised to the cell pole.  (b) Yeast cells possess distinct 

compartments for the sequestration of misfolded or aggregated proteins. The juxtanuclear 

quality-control compartment (JUNQ) accumulates ubiquitinated misfolded proteins, which 

can diffuse back into the cytosol if refolding is successful. Aggregated proteins are 

sequestered in the insoluble protein deposit (IPOD), however their fate remains unclear. 

(c) In mammal cells, specialised inclusions of aggregated protein form in the cytosol and 

ER, known as aggresomes and Russell bodies, respectively. Aggresome formation requires 

the ubiquitinated protein aggregates to be transported along the microtubule to an 

indentation in the nuclear envelope called the microtubule organising centre. Figure 

redrawn from Tyedmers, 201084. 
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1.3.2.2.2 Reversal of protein aggregation 

 
Disaggregation and refolding of protein aggregates has been observed in a diverse range 

of cells.  This process is carried out by a bi-chaperone system, and has been demonstrated 

in the cytosol of bacteria, plants and several unicellular eukaryotes, and in mitochondria 

and chloroplasts. The aggregate is bound by Hsp70 (or its corresponding orthologue), 

which restricts the access of proteases to the aggregate. This enables the aggregate to be 

transferred to the second chaperone in this bichaperone system, the hexameric Hsp104 

(or ClpB)84, 104, 105. The precise mechanisms by which this occurs are not fully understood, 

however it is believed that the protein aggregate is in some way remodelled to expose an 

area that is recognised by Hsp104 or ClpB84. One-by-one, the misfolded proteins are 

extracted from the aggregate and threaded through the pore of the chaperone, enabling 

refolding of the protein106, 107. Hsp104 and ClpB homologues have only been found in the 

mitochondria and chloroplasts of higher eukaryotes. Nevertheless, protein aggregates can 

be disassembled in the cytosol of these species108, 109, although the characteristics of this 

activity are not yet clear.  

 

1.3.2.2.3 Clearance of aggregates 

 
The sequestration, and when possible the disaggregation, of protein aggregates has a clear 

protective role within the cell. Despite these actions, the presence of protein aggregates is 

inevitably damaging. Consequently, degradation and removal are alternative routes for the 

elimination of the protein aggregate. In eukaryotes, aggregates are degraded via 

macroautophagy or the ubiquitin proteasome system83. The 26S proteasome, the central 

degradation machine in the eukaryote cytosol, degrades aggregates that have been 

marked for degradation by specific ubiquitin ligases. Conversely, in macroautophagy, 

entire protein aggregates can be engulfed in a double membrane vesicle termed the 

autophagosome. They fuse to the lysosome, which leads to the degradation of the cargo via 

lysosomal enzymes83.  

A drastic approach to isolate a protein aggregate is the complete asymmetric 

sequestration of the aggregate into a single cell. This enables the generation of aggregate-

free daughter cells upon cell division (Figure 1.8). This ancient mechanism appears to be 

used by all organisms. Within bacterial cells, the inclusion body localises to the old cell 

pole, and consequently stays in the older cell during cell division84 (Figure 1.8a). 

Similarly, in yeast cells oxidatively damaged and aggregated proteins are partitioned to 



INTRODUCTION 

45 
 

the mother cell during cell division through tethering to the actin skeleton (Figure 1.8b)84, 

96. Yeast cells can only undergo a finite number of divisions before they die, and it is 

thought that the limiting factor in this process is the accumulation of damaged proteins in 

the mother cell96.   

 

 

 

Figure 1.8. Asymmetric partitioning of protein aggregates. (a) In bacterial cells, inclusion 

bodies are localised to the old cell pole, and remain, therefore, in the older cell during 

division. The older cell displays a reduction in growth rate. (b) In yeast cells, aggregates 

remain in the mother cell during cell division, and are even transported from the budding 

daughter cell back into the mother cell along the actin cable. Figure redrawn and adapted 

from Tyedmers, 201084. 
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1.4 Protein aggregation and disease 

 
A wide variety of diseases result from the incorrect folding of proteins. Many of the 

diseases are associated with the formation of extracellular amyloid fibrils (amyloidoses), 

or intramolecular inclusions with amyloid-like characteristics. These diseases range from 

neurodegenerative disorders such as Alzheimer’s and Huntington’s disease, to non-

neuropathic localised amyloidoses and systemic amyloidoses. In many cases the disease 

manifests sporadically in a population, however there are also numerous associated 

hereditary causes. Furthermore, cases of transmissible aggregation-based diseases, and 

medical intervention-associated amyloidoses, are known (see Table 1.1 for examples). 

The disease can arise from a loss of function of the protein, or a gain of toxic function. 

Moreover, additional complications that arise from the presence of misfolded and/or 

aggregated proteins can exacerbate the disease state further, as discussed below. 

 

1.4.1 Loss of function 

 
By definition, a misfolded protein is not in a functionally correct conformation, and is 

therefore incapable of performing its normal biological activity. Several diseases are 

caused by a loss of protein function because of misfolding, aggregation, or a general 

reduction in cellular levels of the protein. For example, cystic fibrosis (CF) is caused by a 

defect in the Cl- channel protein CFTR (cystic fibrosis transmembrane conductance 

regulator). More than a thousand mutants are known to lead to CF, but the most common 

(more than 70 %) is the deletion of the F508 residue110. This mutation results in the 

chaperone-mediated retention of the protein in the ER and subsequent degradation by the 

proteasome. What is greatly unfortunate is that the ∆F508 mutant could function correctly 

at the plasma membrane, if it were able to reach it110.   

Loss of function has also been hypothesised to account for the neurodegenerative 

disorders Huntington’s disease (HD) and amyotrophic lateral sclerosis (ALS) (Table 1.1). 

In ALS, the misfolded protein superoxide dismutase 1 (SOD1) is unable to catalyse the 

conversion of toxic superoxide anions into hydrogen peroxide, thereby resulting in a 

build-up of superoxide radicals111. Similarly, the huntingtin protein (the protein that 

aggregates in Huntington’s disease) is known to play a protective role in neurons against 

apoptosis112. It must be noted, however, that evidence against the loss of function 

hypothesis has also been found. Although mice homozygous for huntingtin die early in 

embryonic development112, patients that are heterozygous for huntingtin mutations have 
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similar clinical features to patients that are homozygous111. As for ALS, SOD1 knockout 

studies have shown no increase in neuronal degeneration113. The prominent theory in the 

field now proposes that protein misfolding diseases are a complex combination of loss of 

protein function, amplified through toxic gain of function and general cellular damage.  

 

Disease 
class 

Disease 
Protein 

involved 
Location of aggregates Clinical features Ref. 

Neuro-
degenerative 

Transmissible 
spongiform 

encephalopathies 

Prion 
protein 

Extracellular amyloid 
fibrils in CNS 

Dementia, ataxia, 
psychiatric problems 

114 

Alzheimer’s 
Amyloid-β 

and tau 

Extracellular amyloid 
plaques, cytoplasmic 
neurofibrillar tangles 

Progressive dementia 115 

Parkinson’s α-synuclein 
Cytoplasmic 
Lewy bodies 

Movement disorder 116 

Amyotrophic 
lateral sclerosis 

Superoxide 
dismutase 

Cytoplasmic and axon 
inclusions 

Movement disorder 117 

Huntington’s Huntingtin 
Intranuclear neuron 

inclusions 
Dementia, motor and 
psychiatric problems 

118 

Non-
neuropathic 

localised 
amyloidoses 

Type II diabetes 
mellitus 

hIAPP 
(amylin) 

Pancreatic amyloid 
plaques 

Hyperglycaemia, 
insulin deficiency and 

resistance 
119 

Injection-localised 
amyloidosis 

Insulin 
Injection localised 

plaques 
Sub-therapeutic levels 

of insulin 
120 

Apolipoprotein A1 
amyloidosis 

Apo A-1 
fragments 

Renal, hepatic, cardiac, 
laryngeal, or cutaneous 

fibrillar deposits 

Progressive renal 
and/or hepatic disease 

121 

Non-
neuropathic 

systemic 
amyloidosis 

Amyloid light 
chain amyloidosis 

Immuno-
globulin 

light chain 
fragments 

Fibrillar deposits in 
various organs, most 
commonly kidneys 

Kidney/renal failure 122 

Amyloid A 
amyloidosis 

Serum 
amyloid A1 

protein 
fragments 

Kidney, liver and spleen Renal failure 123 

Haemodialysis-
related 

amyloidosis 

β2-
microglobu

lin 

Amyloid plaques in 
joints 

Renal failure and 
paraplegia 

124 

Lysozyme 
amyloidosis 

Lysozyme 
Fibrillar deposits in 

leukocytes and 
macrophages 

Renal failure 125 

 

Table 1.1. The main human diseases associated with amyloid or amyloid-like deposits.  
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1.4.2 Gain of function 

 
Misfolded and aggregated proteins exhibiting partial or total loss of native structure can 

impair the health of an individual through a gain of toxic function26.  Indeed, there is 

significant evidence for this hypothesis. Animals transgenic for human misfolded proteins 

subsequently acquire neurodegeneration111, and, even more markedly, oligomerisation of 

non-disease related proteins is inherently cytotoxic126.  

The toxic activity of protein aggregates depends on both the location of the aggregate, and 

its morphology. Extracellular aggregation disorders are associated with the deposition of 

elongated, unbranched, fibrillar protein assemblies (Figure 1.9 i). These diseases can be 

acquired or hereditary, and affect a multitude of systems and organs including the brain, 

nervous system, liver or heart (Table 1.1). These extracellular aggregates can activate a 

signal transduction pathway that leads to apoptosis by interacting with specific cell 

surface receptors (Figure 1.9 ii). An example of this is RAGE (receptor for advanced 

glycation end products), a cell surface receptor that has been demonstrated to interact 

with amyloid fibrils made from amyloid β (Aβ), the prion protein (PrP), and human islet 

amyloid polypeptide (hIAPP). This interaction leads to the activation of cellular stress 

responses and the aberrant expression of NF-κB (a key regulator of the immune 

system)127. There is also significant evidence that these large fibrillar structures can 

disrupt membrane structure (Figure 1.9 iii)128-131. This perturbation can hinder normal 

cellular activity, and in some cases the cell will fully rupture (Figure 1.9 iv). 

Intracellular fibrils possess many of the same physical characteristics as extracellular 

amyloid fibrils and are therefore often referred to as amyloid-like fibrils (Figure 1.9 v)41. 

These aggregates can be localised in the cytoplasm, known as aggresomes, or as Lewy or 

Russell bodies in the nucleus and endoplasmic reticulum. Intracellular aggregates can 

damage cells via the recruitment of essential factors for cell viability. For example, 

components of the proteasome and numerous chaperones are recruited to the forming 

aggregates, thereby preventing them from carrying out their essential functions in other 

parts of the cell (Figure 1.9 vi)132, 133. As with extracellular fibrillar structures, 

intracellular amyloid-like fibrils can also damage cell component membranes131, 134, 135. An 

example of this is thalassaemia, a disease that is characterised by an excess of α- and 

β-globin subunits that do not associate into functional tetramers60. The excess subunits 

precipitate and distort erythrocyte shape, leading to their destruction by the spleen. This 

loss of red blood cells eventually leads to anaemia.   
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Figure 1.9. Mechanisms of protein aggregation toxicity. Extracellular fibrillar aggregates 

are known as amyloid plaques (i). These can cause cell toxicity through aberrant cellular 

signalling (ii), and membrane perturbation (iii) and rupturing (iv). Intracellular fibrils, 

known as amyloid-like fibrils (v), can sequester cellular components away from their 

required functions (vi). Aggregates on pathway to amyloid fibrils exert significant 

cytotoxic effects via pore formation (vii), cellular component damage (viii) and even non-

native interactions with other cellular components (ix).    

 

Until relatively recently, it was generally assumed that the most toxic form of protein 

aggregate was the mature amyloid fibril136-139. However, although aggregates are a typical 

feature of many neurodegenerative and systemic disease, the determination of whether or 

not they are directly involved in the pathogenesis of the disease has been difficult. Indeed, 

post-mortem studies have shown a poor correlation between plaque load and disease 

severity in Alzheimer’s disease111. Recently, much interest has focused on the 

characteristics and formation of the pre-fibrillar species (also known as oligomers, 

amorphous aggregates, protein micelles or protofibrils), as mounting evidence suggests 

these, rather than the mature amyloid fibrils, are the toxic species47, 140-143. This hypothesis 

helps to explain the lack of a direct correlation between fibrillar plaque load and disease 

severity. Furthermore, it has been found that the pre-fibrillar aggregates formed in vitro 
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by non-disease related proteins are severely toxic to cells, in contrast to the relatively 

harmless effects of the mature fibrils126. 

Part of the toxicity of these pre-fibrillar species appears to result from their ability to form 

‘pore-like’ structures in cellular membranes (Figure 1.9 vii). This can lead to an alteration 

in ion-homeostasis and dysregulation of cell signal transduction, eventually leading to 

apoptotic or necrotic cell death47, 144, 145. The toxicity of the early species on the aggregation 

pathway also appears to result from their aberrant interactions with cellular processes. 

The endocytosis of Aβ oligomers, for example, leads to their accumulation in lysosomes, 

which eventually leads to lysosomal damage (Figure 1.9 viii)146. Some protein aggregates 

have even been found to induce oxidative stress within cells, leading to lipid oxidation, 

elevation of intracellular calcium, and mitochondrial dysfunction111, 147, 148. 

The greater toxicity of the smaller oligomeric species relative to the larger fibrillar 

aggregates is not unexpected, since the smaller the constituents, the larger the 

surface area-to-volume ratio. As these misfolded oligomers display groups on their surface 

that would, under normal conditions, be inaccessible, the potential for aberrant 

interactions is greatly increased. These non-native surfaces have been found to interact 

inappropriately with a multitude of cellular components, ranging from other proteins, to 

nucleic acids and lipid membranes (Figure 1.9 ix).27, 130, 149. These observations have 

further fuelled the theory that the mature fibrils act as a reservoir of toxic species by 

reducing their surface-to-volume ratio, and thereby extent of hydrophobic region 

exposure150. These pre-fibrillar species are also of key interest in the study of amyloid 

disease transmissibility. It is believed that transmission of the prion group of diseases 

results from the ingestion of prion proteins that have already begun to aggregate, thereby 

‘seeding’ the formation of amyloid fibrils. Such a seeding mechanism could also explain the 

rapid progression of sporadic diseases such as Alzheimer’s disease42.  

 

1.4.3 Functional amyloid 

 
In the interest of completeness, it should be noted that functional aggregates do exist. 

Indeed, examples have been found in species ranging from bacteria through to insects and 

fish (Table 1.2). Fibril formation is now believed to be an evolutionarily conserved 

biological pathway used to generate natural, stable structures with novel biological 

functions151. The same qualities that make fibrils a useful biological material in these 

applications, make them a challenge in disease-states: they are robust and durable. The 
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production of functional amyloid is under strict cellular control, specifically by key 

chaperones that are expressed under the same promoter as the amyloid proteins152. 

Importantly, as the operons from different species are not related, and the chaperones are 

not homologous, it suggests that the controlled production of functional amyloid has 

evolved numerous times independently. Understanding the different mechanisms nature 

uses to control such a potentially dangerous cellular component could provide valuable 

insights into novel therapeutic avenues. 

 

Kingdom Class Protein  Role Mechanism 

Prokaryota 

Gram negative 
bacteria  

(e.g. E. coli and  
S. enterica) 

Curli153 
Protection, 

host invasion 

Environmental conditions control the 
production of extracellular fibrils which 

play a role in cell surface adhesion, 
biofilm formation and host invasion. 

Gram positive 
bacteria  

(e.g. S. coelicolor) 
 

Chaplin154 Sporing 

Form an insoluble mat of fibres at an air-
water interface to lower the surface 

tension, enabling filaments to grow out 
of water (sporing). 

Fungi 

Yeast  
(S. cerevisiae)  

Sup35; 
URE2p155 

Non-
Mendelian 
phenotypic 
inheritance; 

metabolic 
regulation 

Sup35 is a translation termination factor. 
Under times of stress it aggregates, 

which prevents translation termination. 
This generates phenotypic diversity. 
URE2p regulates nitrate catabolism; 
when nitrogen levels are low, URE2p 

aggregates, which leads to an 
upregulation in other nutrient 

catabolism. 

Sordariomycetes 
(e.g. P. anserine) 

HET-s156 
Prevention of 
unviable cell 

fusions 

Cellular fusion between genetically 
incompatible colonies is prevented if a 

cell expressing the prion HET-s attempts 
to fuse with a cell expressing the soluble 
HET-S. When coexpressed, cell death is 

induced, thereby preventing any further 
colony fusion. 

Animalia 

Arachnida (e.g. 
all spiders) 

Spidroin157 
Structural; 
protection 

Multiple forms of silk formed for various 
uses, including web building (structural) 

and drag lines (the strongest type of 
silk). 

Reptilia, 
amphibian, aves, 

insect 
Chorion158 

Structural 
protection 

Fibres in egg shell protect the egg from 
hazards such as proteases, 

microorganisms and physical stress.  

Mammalia 
Pmell7 
(Mα)159 

Sequestering 
toxic species 

Fibrils formed in melanosomes 
accelerate the polymerisation of the toxic 

monomers indolequinone into melanin 
by orientating the molecules along the 

fibre.  

 

Table 1.2. Examples of the diversity of functional amyloid. 
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1.5 Therapeutic approaches to protein aggregation 

 
Due to the complex mechanisms involved in aggregation-based diseases, there are 

currently alarmingly few therapies available. Indeed, as the toxic species in many of these 

disorders remains elusive, the commonly available therapies focus only on ameliorating 

the symptoms160. There are, however, a number of promising therapeutic avenues being 

intensively investigated, whose diversity demonstrates the multifactorial nature of these 

diseases. 

 

1.5.1 Early diagnosis 

 
The search for diagnostics that can identify sub-clinical manifestations of amyloid 

disorders is an active area of research as patients can be asymptomatic for a long period of 

time, so the damage caused is both extensive and currently irreversible. Early diagnosis, 

therefore, is vital for enabling intervention before extensive cellular damage has occurred. 

Furthermore, the identification of high-risk groups and individuals would enable targeted 

treatment. For example, roughly 500 families worldwide live with an inherited form of 

Alzheimer’s disease that strikes much earlier than the sporadic form of the disease161. As 

testing preventative treatment in the general population is neither feasible nor ethical, 

these families are the focus of a worldwide effort to understand, diagnose and prevent the 

disease at the earliest possible stage. Because the risk of Alzheimer’s disease is relatively 

low in the general population, and onset currently impossible to predict, such a trial would 

have to enrol thousands of people and would subject many who would never have 

developed the disease to the unknown long-term risks of taking novel therapeutics161. By 

studying these families, it is much easier to tell if the therapeutic is working early on. 

Furthermore, for a clinical trial to be balanced and unbiased, a placebo group must be 

included. For patients in the late stages of the disease, when fatality is inevitable, there is 

much debate on the placement of such individuals on placebo treatment. Through 

studying these families, it has been established that the concentration of amyloid β (Aβ) in 

cerebrospinal fluid decreases up to 25 years before the onset of Alzheimer’s disease162, 163. 

This is believed to indicate that the Aβ is being taken out of circulation as it begins to build 

up in the brain. This discovery will enable clinicians to identify patients at the earliest 

stage of the disease for prophylactic treatment.  
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1.5.2 Repairing cellular damage 

 
As there is a prominent lack of successful therapeutics against the amyloidosis group of 

disorders, a key avenue of research is the reversal of cellular damage caused during the 

disease lifetime. For example, embryonic stem cells164 and neuronal precursor cells165, 166 

can migrate within the brain to sites of injury (including neuronal degeneration167) and 

differentiate into various neuronal cell types. Unfortunately, however, the level of 

neuronal loss in neurodegenerative diseases is already severe by the time the symptoms 

have arisen (it can be ten years before the symptoms of Alzheimer’s disease show). 

Despite this, reversing the accumulated damage caused by these diseases will most likely 

play a complementary role in the treatment of patients, once successful prophylactics have 

been discovered. 

Similarly, it is becoming apparent that toxicity in these diseases is not only directly caused 

by protein aggregation. Oxidative damage, inflammation and mitochondrial impairments 

have all been observed in Alzheimer’s disease168-170, and as such, there has been significant 

research into slowing disease progression with antioxidants171, anti-inflammatory 

drugs172 or mitochondrial protectors173. It is widely suspected that these will play an 

important complementary role in any future prophylaxes for protein aggregation diseases.  

 

1.5.3 Inhibiting production of monomeric form 

 
One obvious therapeutic avenue to prevent protein aggregation is the direct reduction in 

the level of abnormal protein within the cell. RNA interference (RNAi), the use of small 

double-stranded RNA molecules to silence specific gene expression, is a powerful 

biotechnological tool. Interfering RNAs target specific messenger RNAs for degradation, 

thereby silencing their expression (Figure 1.10 i). Incorporation of these RNAs into 

replication-deficient viral vectors, and the integration of the virus into neuronal DNA, 

results in stable long-term expression of these RNA molecules174-177. Indeed, RNAi has 

shown promise against polyglutamine diseases178, 179, Alzheimer’s disease180 and prion 

diseases181. However, the delivery of such a therapeutic would have to overcome the 

formidable challenge of crossing the blood-brain barrier (BBB) to access the neurons 

affected by neurodegenerative disorders. This may be feasible in diseases such as 

Parkinson’s disease, which only effect a small region of the brain, as the viral vectors could 

be directly injected182.  
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Figure 1.10. Pre-aggregation therapeutic strategies against protein aggregation.  

Preventing production of the aggregation-prone peptide can be achieved by RNA 

interference (RNAi) (i) or through inhibition of precursor protein proteolysis (ii). The 

native monomer can also be stabilised to prevent unfolding or misfolding (iii). This has 

been achieved via upregulation of cellular chaperones and treatment with small molecule 

stabilisers and single chain antibody fragments. 

  

In about half of the human amyloidogenic diseases, the amyloidogenic component is 

produced by cleavage of a larger precursor protein183. A viable therapeutic strategy, 

therefore, is to inhibit the proteases that generate these fragments (Figure 1.10 ii). For 

example, there are inhibitors of both γ- and β-secretase to prevent the processing of the 

amyloid precursor protein (APP) into the Aβ peptide that is associated with Alzheimer’s 

disease184, 185. A challenge with this therapeutic avenue, however, is to develop a drug that 

specifically inhibits the cleavage of the amyloidogenic peptide without affecting the 

cleavage of alternative substrates. Indeed, a phase III clinical trial of a γ-secretase was 

recently stopped due to side effects including worsening of cognitive impairments. It is 

suspected that this was due to the prevention of alternative cleavage product formation170. 
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Consequently, another avenue of drug development focuses on modulating these 

proteases, rather than inhibiting them. In this vein, a compound that can decrease the level 

of the most amyloidogenic cleavage product in favour of less toxic species is currently 

being sought186. However, it has still not been excluded that these other peptides also 

contribute to the toxicity of Alzheimer’s disease. Furthermore, this strategy is inapplicable 

to many amyloid disorders, such as Creutzfeldt-Jakob disease, Parkinson’s disease and 

Huntington’s disease, in which the full length protein aggregates.  

Significantly, this form of therapeutic requires blocking or down-regulating the expression 

of a native protein that has evolved to carry out a particular biological function. As the 

function of many of the proteins and peptides involved in these diseases is still not fully 

understood, it may not be possible to identify inhibitors that are safe to use in vivo187. 

 

1.5.4 Stabilising the native protein conformation 

 
The use of chemical chaperones to bind to a protein and stabilise the folded state is one of 

the most promising therapeutic approaches to ameliorating aggregation-based diseases 

(Figure 1.10 iii). Indeed, the only regulatory-approved drug that can slow the progression 

of a human amyloid disease (familial amyloid polyneuropathy, FAP) is a chemical 

chaperone. In FAP, tetramer dissociation of the protein transthyretin (TTR) into a 

misfolded monomer leads to the formation of non-fibrillar and amyloid aggregates in the 

plasma79. Tetramer dissociation is the rate-limiting step, and all TTR mutations associated 

with the familial form of the disease decrease tetramer stability188. Using structure-based 

drug design, the Kelly lab discovered a compound (Tafamidis) that binds to the correctly 

folded tetramer and kinetically stabilises it (see Section 1.6.1)189-191 .  

Single-domain fragments of a camelid antibody have also been utilised to increase protein 

stability of an amyloidogenic lysozyme variant. The antibody functions by restoring the 

cooperativity between two structural domains within the native lysozyme fold, thereby 

reducing the probability of partially unfolded state formation192. Chemical chaperones that 

prevent misfolding of the prion protein PrP193 and Aβ194 have also been found.  

A less direct approach to stabilise the native protein is to target cellular components such 

as chaperones. Alpha 1-antitrypsin (α1-AT) is a member of the serpin family of protease 

inhibitors and is secreted by liver cells to control the proteolytic activity of circulating 

enzymes79. In α1-AT deficiency, a misfolded but otherwise functional mutant protein is 
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retained in the ER. Osmolytes such as 4-phenylbutyric acid and glycerol have been shown 

to increase the secretion of α1-AT mutant variants.  They do this without influencing the 

secretion efficiency of other proteins and, as they are known to not bind to α1-AT, it is 

speculated that they upregulate the chaperone system to bring about their effects195. 

 

1.5.5 Increasing degradation of misfolded or aggregated protein 

 
Efforts are being directed towards enhancing cellular defence mechanisms through the 

use of proteostasis regulators (Figure 1.11 i). Small molecule compounds have been 

developed that bind to intracellular targets in the endosomal-lysosomal pathway, and 

facilitate degradation of specific misfolded toxic proteins. Other compounds are currently 

under development to enhance cellular chaperone levels and to aid clearance of toxic 

protein aggregates. Geldanamycin, for example, can modulate and enhance chaperone 

levels in a defective heat shock response by stabilising functional heat shock factor 

trimers196. However, this compound, in its current form, exhibits substantial toxicity and 

cannot cross the blood-brain barrier34.  

There is also significant interest in increasing autophagy in cells containing protein 

aggregates. This relatively non-selective process for degrading aggregates (via portions of 

cytoplasm being engulfed and delivered to the lysosome) has the benefit of not requiring 

the protein aggregate to be disentangled prior to degradation197 (Figure 1.11 i). Finally, 

proteasome stimulation is also being considered as a potential therapeutic strategy. The 

phenothiazine methylene blue has been reported to decrease soluble Aβ concentration 

and reduce memory deficits in transgenic mice through augmentation of proteasome 

function198. However this could still be potentially dangerous as it may alter the turnover 

of other molecules normally regulated by proteasome degradation34. 

Another mechanism to increase clearance of amyloid fibrils in vivo is inhibiting amyloid-

stabilising proteins (Figure 1.11 ii). Accessory proteins, such as serum amyloid-P, 

apolipoprotein-E and glycosaminoglycans, bind to and stabilise amyloid fibrils22, 183. 

Sulphonated aromatics are known to interfere with this interaction, thereby accelerating 

the disassembly and clearance of the fibrils199. However, caution must be taken with this 

therapeutic approach as evidence strongly suggests that fibrils act as reservoirs for toxic 

species (see Section 1.3.2.2). 
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1.5.6   Accelerating fibril formation 

 
Controversially, another therapeutic strategy currently being investigated is the use of 

compounds to accelerate the aggregation of oligomers into the less toxic mature fibrils 

(Figure 1.11 iii)200. Indeed, peptides with recognition elements homologous to Aβ have 

been found that can accelerate Aβ aggregation kinetics, whilst simultaneously reducing 

toxicity in vivo201. However, the pathological consequences of amyloid fibril accumulation 

cannot be excluded; there is extensive evidence that fibrils can damage membranes (see 

Section 1.4.2), induce inflammatory reactions202, and even catalyse the formation of toxic 

oligomeric species203.  

 

 
 
 
 

Figure 1.11. Post-aggregation therapeutic strategies against protein aggregation.  Protein 

aggregation can be prevented via enhancement of proteostasis regulators (i). If fibrils have 

formed, further production can be destabilised, by targeting amyloid stabilising 

components (ii), or, controversially, enhanced using small molecules that accelerate 

fibrillation (iii). β-blocker peptides can disrupt the fibrillation process to prevent 

elongation (iv). Preventing multiple stages of oligomerisation can be achieved using small 

molecule inhibitors, binding proteins and therapeutic antibodies (v). 
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1.5.7  Inhibiting or reversing protein oligomerisation 

 
An attractive strategy for preventing protein aggregation disease is to target the 

aggregation pathway, in order to inhibit, or reverse, aggregation.  Initially, therapeutic 

strategies focused on inhibiting fibril formation, or initiating fibril disaggregation. Several 

groups have focused their attention on the inhibition of amyloidosis by the incorporation 

of synthetic peptide derivatives. N-terminal modifications, for example, have been 

demonstrated to be very effective in preventing fibril extension. By incorporating a 

peptide with a bulky group, such as a steroid, at its terminus, further Aβ association is 

hindered204 (Figure 1.11 iv). N-methyl amino acid incorporation is another successful 

strategy. The peptides correspond to the amyloidogenic region of the protein; one side of 

the peptide presents a hydrogen-bonding complementary face to the amyloidogenic 

protein, whilst the other side has N-methyl groups in place of backbone NH groups. This 

‘blocking’ face can prevent fibril formation205 and even break down preformed fibrils206.  

In a similar manner, the substitution of key residues with prolines has also been shown to 

reduce β-sheet propensity of numerous amyloidogenic proteins, including Aβ136 and 

PrP187. These ‘β-sheet breaker’ peptides, when produced as all-D amino acids, have the 

added benefit of increased protease resistance, allowing them sufficient stability in vivo to 

cross the blood-brain barrier207. Similar peptide-based inhibitors have also been found for 

PrP, α-synuclein, human islet amyloid polypeptide (hIAPP) and poly-Q using similar 

strategies208-212. 

Therapeutic antibodies and other binding proteins have also been developed for treating 

amyloidoses (Figure 1.11 v). A recent study engineered a small binding protein (known 

as an Affibody) that could bind to Aβ with nanomolar affinity, and subsequently prevent 

the initial association of Aβ monomers into oligomers by occluding the aggregating 

region213. Similarly, antibodies can specifically inhibit aggregation by traditional antigen-

antibody interactions214, 215. The antigen epitope can consist of a partial sequence of the 

amyloidogenic protein, or even amyloid-specific secondary or tertiary structures. 

Interestingly, an oligomer-specific antibody that can inhibit Aβ aggregation216 and Aβ 

induced neurotoxicity217 can also inhibit the toxicity attributed to other oligomers of 

amyloidogenic proteins, including α-synuclein, hIAPP, poly-Q and lysozyme214. This 

suggests that many oligomers contain a common conformational binding epitope. One of 

the major drawbacks with this therapeutic approach is that antibodies cannot cross the 

blood-brain barrier. However, as immunisation of transgenic Aβ mice can prevent the 

onset of Alzheimer’s disease218, 219, it is believed that peripheral antibodies can bind to Aβ 
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peptides in the blood, hence lowering the available Aβ in the brain for aggregation183. 

These findings demonstrate the potential for this therapeutic approach.  

As evidence accumulated for the toxicity of the pre-fibrillar species, focus shifted away 

from inhibiting amyloid formation and towards inhibiting accumulation of the smaller 

oligomeric species.  As the toxic species of many of these disorders are still unknown, by 

inhibiting the earliest possible stage in the aggregation pathway all potential toxic species 

will be prevented from forming (Figure 1.11 v). Recent clinical trials seem to support this 

hypothesis, as numerous drugs that inhibit Aβ fibril formation by sequestering monomeric 

Aβ peptides, such as cyclohexanehexol (Phase III)220 and curcumin (Phase II)221, 222, are at 

various stages of development222, 223. Although tramiprosate, one of the most promising 

drugs against Alzheimer’s disease, failed in phase III clinical trials (it was not significantly 

better than a placebo in improving cognitive function), the study proved that small 

molecule inhibitors of protofibril formation are capable of reaching late stage 

development and may still be of therapeutic value223.  

A related approach is to trap the aggregation-prone protein in an on-pathway 

intermediate state. For example, the polyphenol exifone can inhibit α-synuclein fibril 

formation by driving the aggregation pathway towards non-toxic oligomeric species, 

thereby preventing cytotoxicity224. Chaperones have also been targeted to developing 

protein aggregates in order to arrest any further aggregation. The molecule SLF-CR, for 

example, has been developed to recruit the FK506 binding protein family of chaperones to 

a developing Aβ aggregate and inhibit subsequent aggregation225. It was created by linking 

Congo red, a dye known to bind Aβ amyloid, and a synthetic ligand of FK binding 

protein 12 (SLF).  

 

1.5.7.1  Small molecule inhibitors 

 
Extensive work has been carried out using small molecules (low molecular weight organic 

compounds) to prevent or interfere with the aggregation pathway. Small molecule 

inhibitors of protein aggregation have some advantages over peptide inhibitors: they can 

more easily cross the blood-brain barrier, they can avoid an immunological response, and 

are more stable in biological fluids and tissues226. The small molecule inhibitor approach 

was initially based on the early observations that aromatic compounds such as thioflavin T 

and Congo red could bind to amyloid fibrils and, at high enough concentrations, inhibit 

their formation227-230. Since then, a vast array of compounds has been demonstrated to 
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interfere with single, or multiple, points in the aggregation pathways of many proteins. 

Table 1.3 contains select examples to highlight the diversity in structural and chemical 

properties, which suggests that they may be binding to different sites within protein 

aggregates or amyloid fibrils. 

Small 
Molecule 

Structure Protein Target 

Congo red 

 

Aβ228, 231, insulin232, Ig domain 233 

EGCG 

 

Aβ234, hIAPP235-237, TTR238, κ-

casein239, α-synuclein240 

Tramiprosate  Aβ222 

Hemin 

 

Aβ241, 242 

Curcumin 
 

Aβ243, 244, hIAPP245, 246, α-

synuclein247, lysozyme248 

Aspirin 
 

Aβ249 

 

Table 1.3. Select examples of small molecule inhibitors of protein aggregation.  
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The most common small-molecule inhibitors of aggregation belong to the family of 

polyphenol compounds and contain two functional moieties: aromatic rings, and polar 

groups on the rings250. These natural compounds are found in high concentrations in wine, 

tea, berries, cocoa and many other plants. Their physiological role is largely protective, 

from disease to exposure to ultraviolet radiation. Consequently, beneficial effects of 

polyphenol consumption have been linked to their possible antibacterial, antiviral, 

anticancer and neuroprotective properties214. Interest in this group of compounds has led 

to the discovery and isolation of more than 8000 polyphenolic compounds227. 

The anti-aggregation and anti-amyloid activities of polyphenols are believed to be due to 

competitive interactions with key residues in the amyloidogenic proteins. Stacking of 

aromatic residues (‘π-stacking’) is believed to play an important role in the formation of 

many amyloid fibrils. The aromatic rings of inhibitors can therefore competitively interact 

with aromatic residues in the proteins. This prevents π-π interactions, and subsequently 

blocks any further self-assembly (Figure 1.12)214, 251-253. Indeed, structural analysis has 

shown the polyphenol Congo red interacts with the aromatic moieties of insulin to prevent 

fibril formation232.  It must be noted, however, that recent evidence suggests that aromatic 

stacking is not the only feature that directs aggregation; replacing the aromatic side chains 

of the Aβ peptide with leucine or isoleucine actually leads to enhanced amyloid 

formation254. This suggests that there may be other therapeutic targets within 

amyloidogenic proteins rather than just the amyloidogenic aromatic residues. 

 

Figure 1.12. π-stacking theory of polyphenol anti-aggregation activity. π-stacking of 

aromatic groups is believed to play an important role in protein aggregation and fibril 

formation. Polyphenolic small molecules can competitively interact with the aromatic 

residues in amyloidogenic proteins, thereby preventing the π-π interaction and blocking 

self-assembly.  
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The phenolic hydroxyls are also believed to play a pivotal role in aggregation inhibition, 

potentially via hydrogen bonding to the peptide backbone of the amyloidogenic protein234, 

236. One of the most intensively studied small molecules, the tea-derived flavanol (-)-

epigallocatechin-3-gallate (EGCG), has the ability to prevent oligomerisation and 

fibrillation of a number of amyloidogenic peptides, and also to disaggregate preformed 

fibrils in vivo and in vitro227, 234, 235, 237, 239, 240, 255-257. The presence of numerous phenolic 

hydroxyl groups (Figure 1.13) is believed to be key to its anti-amyloidogenic properties; 

when these hydroxyl groups are removed sequentially, the anti-aggregation properties of 

the molecule correspondingly decrease236.  

 

 

 

Figure 1.13. Chemical structure of the polyphenol (-)-epigallocatechin-3-gallate (EGCG).  

The high number of phenolic hydroxyl groups is pivotal to its broad anti-amyloidogenic 

properties234, 236. 

  

One disadvantage of polyphenol compounds as aggregation inhibitors is their lack of 

specificity. The preserved features of amyloid fibrils mean that polyphenol compounds are 

able to bind to a very wide variety of amyloid fibrils. This could be problematic for 

functional amyloid, such as that found in mammalian melanocytes and related cell 

types258. Furthermore, the lack of understanding of the nature of the toxic species makes 

inhibitors of fibril formation potentially very dangerous. As every species on the 

aggregation pathway is inherently non-native, each one could potentially contribute 

towards the toxicity. The search for small molecule inhibitors has therefore shifted in 

favour of those that prevent the earliest stages of aggregation.  
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1.6 Screening for aggregation inhibitors 

 
Over the past decade, significant progress has been made in the development of small 

molecules that can inhibit the interaction between two proteins259. However, the 

difficulties encountered have been significant; the disparities in size, and geometry, of 

protein-protein interfaces and small molecules are immense. These interfaces are often 

relatively featureless (covering an area of 750 – 1500 Å2)259 and devoid of pockets in 

which a small molecule can bind. The major breakthrough in the development of small 

molecule inhibitors of protein-protein interactions was the discovery of ‘hotspots’ on the 

interface surface. Alanine scanning determined that there were particular areas that 

contributed disproportionately to the binding energy260, 261. Furthermore, these hotspots 

are often enriched in aromatic residues223, 260, thus providing key targets for the aromatic-

enriched polyphenol inhibitors of protein aggregation. Prediction software has since been 

developed to identify protein-protein interaction hotspots, based on data from 

crystallographic methods or alanine scanning262, 263.  

 

1.6.1 In vitro screening techniques 

 
For folded proteins, structure-based drug design has played a pivotal role in the search for 

inhibitors of protein aggregation187. Indeed, the only clinically-approved drug for an 

amyloid disease - familial amyloid polyneuropathy - was discovered using a combination 

of inhibitor screens and structure-based drug design. Several hundred small molecules, 

structurally similar to the ligand of the amyloidogenic protein TTR, were screened for 

their anti-aggregation abilities. Crystal structures of TTR-inhibitor complexes were then 

utilised to identify the mode of interaction. These crystal structures further indicated 

where substitutions could be made, that increase the small molecule affinity for TTR by 

increasing the surface area of van der Waals interactions264, 265. This combination of 

approaches led to the production of Tafamidis, a drug for the treatment of familial amyloid 

polyneuropathy.  

For aggregation-prone proteins that lack defined structure, however, structure-based drug 

design is unsuitable. Discovery of small molecule inhibitors of aggregation is limited, 

therefore, to screening using biophysical techniques or dye binding studies252. 

Traditionally, the extrinsic fluorescence of the benzothiazole dye thioflavin T (ThT) was 

used to quantify the extent of fibrillation in vitro266-268. ThT binds to β-sheet-rich 

structures, such as the cross-β-sheet found in amyloid fibrils, which causes it to fluoresce 
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strongly. Free ThT, conversely, shows only weak fluorescence. Although the mechanistic 

interaction between ThT and amyloid fibrils remains poorly understood, it is believed that 

it most probably involves intercalation of ThT molecules within grooves of the fibril269-271. 

This binding sterically restricts the ThT molecule, which prevents the formation of a less-

radiative conformation272. For many years, the ThT assay was used as the sole measure of 

the in vitro anti-aggregation activity of a variety of small molecules273-276. However, as 

many of the compounds are chromophoric and even intrinsically fluorescent277-279, false-

positive result reporting was inevitable280-283.  

Dye binding assays have been used to identify numerous small molecule inhibitors of fibril 

formation266, 284-286, however this is also a significant drawback of these assays: they rely 

on a reporter that only detects amyloid fibrils rather than then early, potentially toxic 

species. Consequently other biophysical techniques have been utilised, such as 

transmission electron microscopy (TEM)235, 240, 287 and atomic force microscopy (AFM)288-

291, to assess the effects of small molecules on aggregation as a whole. However, these 

techniques have, so far, not been converted into a high throughput methodology. 

Conversely, in vitro assays such as dynamic light scattering can be set up in 96- or 384-

well format and are therefore often utilised for semi- or high-throughput analysis of 

aggregation292, 293. Light scattering also provides a more quantitative analysis of the extent 

of aggregation in a sample, when compared to visual techniques such as TEM and AFM294. 

High-throughput identification of compounds that bind to specific proteins has also been 

accomplished using small molecule microarrays (SMMs). SMMs are glass slides on which 

libraries of small molecules are covalently immobilised in an array of microspots295. The 

slides are probed with a fluorophore- or epitope-tagged protein, and compounds that bind 

are detected by automated fluorescence read-out296.  

Although simple to perform, these, and other in vitro techniques, are significantly 

hampered by the need for substantial quantities of purified protein. This requires the 

in vivo expression, purification or expensive chemical synthesis of these challenging 

proteins, whose hydrophobic nature and tendency to form secondary structures, in 

particular β-sheet aggregates, hinders their isolation in significant yields297.  These 

difficulties result in labour intensive and expensive procedures to obtain sufficient 

quantities of pure protein, in the required aggregation state, for in vitro screening of 

potential aggregation-inhibiting small molecule therapeutics. Furthermore, the synthetic 

peptide samples are difficult to produce in a form that is free of oligomeric ‘seeds’ that can 

nucleate further aggregation297. The presence of these pre-existing oligomers during 
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inhibitor screening could lead to some of the most important inhibitors, those that prevent 

low molecular weight oligomer formation, being overlooked. 

 

1.6.2 In vivo screening techniques 

 
In contrast to in vitro biochemical assays, an in vivo assay allows the investigator to probe 

the effects of small molecules on the protein of interest (POI), without the prerequisite for 

purified protein. Furthermore, bacterial systems provide a more physiological 

environment in which to assess aggregation298. Arrays of screens and selections have been 

developed for detecting protein aggregation in the cytoplasm of living cells. These 

approaches commonly involve a genetic fusion between a protein of interest and a 

reporter protein. In such systems, if the POI misfolds or aggregates, the reporter protein to 

which it is fused is rendered inactive (Figure 1.14a). If the POI folds into a soluble 

conformation, the reporter protein is functional (Figure 1.14b). A significant benefit to 

these approaches is that they can be used even when structural or functional information 

about the target is lacking.  

Previous studies have shown the potential for utilising in vivo systems to study protein 

aggregation and its inhibition, however these have been solely confined to experiments 

within the cytosol299-303. The critical limitation of working in the cytosolic milieu is the 

restrictive nature of the inner membrane. This significantly limits the size and type of 

small molecule that can cross, potentially leading to the reporting of false negative results 

(Figure 1.14c).  Furthermore, these studies involved the fusion of the aggregation-prone 

peptide to a reporter protein such as green fluorescent protein (GFP)299, 302, 303. A 

disadvantage of this approach is that the folding of the reporter protein can be dependent 

on the solubility of the upstream sequence. A false-positive result could arise from a small 

molecule with the ability to stabilise soluble, low molecular weight oligomers as the 

reporter could, in principle, still fold next to this low molecular weight aggregate. 

Moreover, these assays require pre-screening at the reporter protein fluorescence 

wavelength, and the subsequent elimination of any molecule that fluoresces at this 

wavelength299.  
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Figure 1.14. Cytoplasmic-based screen for inhibitors of protein aggregation.  The protein 

of interest (POI) (green) is fused to a fluorescent reporter protein (purple) and expressed 

in the cytoplasm of bacteria. When grown in the presence of small molecules, if the 

molecule cannot prevent the POI aggregation (blue molecule), the reporter protein will 

not be able to fluoresce (a). If however, the molecule can bind and prevent POI 

aggregation (green molecule), reporter protein fluorescence is rescued (b). The molecules 

must, however, be able to traverse the inner membrane of the bacteria. If an inhibitor 

cannot cross this barrier a false-negative result will be observed (c). 

  

1.6.2.1  Enzyme activity-based screening techniques 

 
To overcome the disadvantages of using fluorescence-based screening assays, enzyme 

activity assays have more recently been utilised, particularly exploiting β-lactamase 

enzymes. β-lactamase has been used as a reporter system for many years due to its 

relatively small size (29 kDa) and monomeric nature. In addition, it has been expressed 

successfully in both prokaryotic and eukaryotic cells304. Initially, β-lactamases were used 

in assays based on the complementation of enzyme fragments. One simple example of this 

is the in vitro β-lactamase protein fragment complementation assay, in which protein-

protein interactions are probed305. The two domains of β-lactamase are genetically 

separated and each is attached to the gene of a POI. If these proteins interact with each 

other, the two domains of β-lactamase are brought together and can form an active 

complex able to cleave a fluorescent substrate305. A recent enzymatic-based approach for 
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screening inhibitors of protein aggregation is the in vivo colocalisation of β-lactamase and 

the POI to the periplasm. For example, a POI is sandwiched between β-lactamase and a 

periplasmic export signal protein, such as the twin arginine transport (Tat)-dependent 

export signal ssTorA301. The Tat signal peptide directs the complex to the twin arginine 

transport system which transports fully folded proteins into the periplasm306. If the POI 

does not fold correctly or aggregates in the cytoplasm, it cannot be transported into the 

periplasm where the β-lactamase enzyme is required to function (Figure 1.15a). 

Conversely, if the POI is prevented from aggregating by small molecule inhibitors, the 

tripartite fusion complex can be translocated into the periplasm, where β-lactamase 

confers antibiotic resistance (Figure 1.15b). This assay has been used to screen for 

aggregation inhibitors of the Alzheimer’s disease-related Aβ peptide301, however like the 

cytoplasmic-based screens, the inhibitors must still be permeable to the inner membrane 

of bacteria to be identified using this approach (Figure 1.15c). 

Although all of the approaches described above have been successfully used to select 

protein aggregation inhibitors, a generally applicable method that can additionally screen 

the multitude of small molecules that cannot enter the cytoplasmic space has yet to be 

established. 
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Figure 1.15. Cytoplasmic enzyme activity screen for inhibitors of protein aggregation.  

The protein of interest (POI) (green) is sandwiched between a periplasmic enzyme 

(purple) and a tat signal peptide (blue) and expressed in the cytoplasm of bacteria. When 

the bacteria are grown in the presence of small molecules unable to prevent POI 

aggregation (blue molecules), the tripartite construct cannot translocate into the 

periplasm and enzyme activity is not be reported (a). Conversely, if the molecules bind 

and prevent POI aggregation (green molecule), the tripartite construct folds correctly and 

translocates into the periplasm where the reporter enzyme is active (b). The molecules 

must, however, be able to traverse the inner membrane of the bacteria. If an inhibitor 

cannot cross this barrier a false-negative result will be observed (c). 
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1.7 The periplasmic system for identifying protein 

aggregation inhibitors 
 
 
In this work, a powerful and diversely applicable screening technique was developed for 

protein aggregation inhibitors. The assay is performed in the periplasm of E. coli, thereby 

avoiding the risk of false negative results produced through the limited access of small 

molecules to the target of interest in cytoplasmic screens. 

 

1.7.1 Background to screen development 

 
Due to the presence of outer membrane porins, the periplasm of E. coli (and other Gram 

negative bacteria)  is permeable to molecules smaller than ~ 600 Da307. This provides a 

significant advantage over cytoplasmic aggregation screens within eukaryotes300 or the 

cytosol of prokaryotes299, 301-303 as it includes the multitude of small molecules that can 

only enter the periplasmic space. Consequently, to overcome the disadvantage of 

screening for protein aggregation inhibitors within the cytoplasm, assaying for inhibitors 

of protein aggregation in the periplasmic space offers significant advantages. 

An assay developed by Foit et al.308 to analyse protein stability in vivo is different to 

previous β-lactamase reporter assays, as it takes advantage of the N-terminal 23 amino 

acid signal peptide of β-lactamase. This signal allows the unfolded β-lactamase 

polypeptide chain to be transported into the periplasm through the general secretory 

pathway. Unlike in the Tat system for protein translocation, in the general secretory 

pathway as soon as the N-terminus of the nascent polypeptide chain exits the ribosome, it 

associates with the cytosolic chaperones SecA and SecB306. These maintain β-lactamase in 

a partially unfolded, pre-protein state and target it to a multi-subunit Sec YEG translocon 

within the inner membrane306. The unfolded polypeptide chain is translocated in an ATP-

depended manner into the periplasm where the signal peptide is cleaved. The mature 

polypeptide is then able to fold (Figure 1.16).   
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Figure 1.16. β-lactamase tripartite fusion system to monitor protein stability. The protein 

of interest (POI, green) is cloned between the two domains of the periplasmic enzyme 

β-lactamase (purple and pink). The unfolded polypeptide chain is translocated into the 

periplasm via the sec-YEG-translocon. (a) If the POI is stable, the two domains of 

β-lactamase associate and enzyme activity is achieved. (b) if the test protein does not fold 

correctly, or is unstable, it will be degraded by periplasmic proteases and enzyme activity 

is lost.  

 

Foit et al.308 exploited the known tolerance of the antibiotic resistance enzyme TEM-1 

β-lactamase to host the insertion of a test protein in a loop on its surface309-311 in order to 

analyse protein stability in vivo. Upon correct folding of the test protein, the two halves of 

β-lactamase are be brought close enough together to associate and the bacteria will be 

resistant to β-lactam antibiotics (Figure 1.16a). If, however, protein stability is 

compromised (for example, by mutation), the two halves of β-lactamase separate, either 

through proteolytic cleavage or sequestration by periplasmic chaperones, resulting in 

reduced resistance of the bacterium to β-lactam antibiotics (Figure 1.16b)308. One 

advantage of this system is that it does not require any knowledge of the protein’s 

structure or function, and can in principle be performed with the primary sequence of the 

protein of interest as the only available information312. Furthermore, the oxidising milieu 

of the periplasm allows the formation of disulfide bonds, thereby providing another 

advantage over previous cytoplasmic assays. 
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This β-lactamase tripartite fusion system has been utilised to develop proteins with 

sequences that increase stability and expression yield308, and to identify chemical 

chaperones that aid protein folding in the periplasm313. The work described in this thesis 

aimed to determine whether this method could be further developed into a platform for 

screening for small molecule inhibitors of protein aggregation. Figure 1.17 illustrates how 

this screen would function. 

 

 

 

Figure 1.17. Principle of β-lactamase screen for inhibitors of protein aggregation.  The 

protein of interest (POI) is cloned between the two domains of the periplasmic enzyme 

β-lactamase (purple and pink). The unfolded polypeptide chain is translocated into the 

periplasm via the sec translocon. (a) If the POI aggregates, β-lactamase enzyme activity is 

lost. (b) If, however, the POI is prevented from aggregating by small molecule inhibitors, 

the two domains of β-lactamase associate and enzyme activity is rescued.   
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1.8 Biopharmaceuticals  

 
The subject of protein aggregation inhibition is not just limited to biological disorders.  

With the advent of commercial recombinant DNA technology in the mid-1970s it has 

become possible to produce vast quantities of proteins, from bacterial fermentation to 

mammalian cell cultures, to be used as therapeutic agents314, 315. Indeed, therapeutic 

proteins such as antibodies now constitute the most rapidly growing class of 

pharmaceuticals and are used as treatments in numerous clinical settings, from cancer 

treatment to kidney transplantation316. Unfortunately, the manufacturing process subjects 

the biologics to various environments and stresses that may modify their physical and 

chemical properties. These alterations increase the risk of protein misfolding, aggregation 

and degradation, which may compromise the quality, stability, and even safety of the drug 

product. The high concentrations required for many biologic drugs (such as monoclonal 

antibodies) also increases these risks, and as a consequence, control of protein 

aggregation during product development, storage, transportation, and patient 

administration is imperative. 

 

1.8.1 History of biopharmaceuticals 

 
Biopharmaceuticals are traditionally defined as pharmaceuticals with active agents 

biological in nature and manufactured using biotechnology317. The first part of this 

definition distinguishes biopharmaceuticals from small molecule drugs which are 

distinctively chemical in nature and manufactured using chemical methods317. 

Interpretation of the latter part of the definition is more complicated and depends on the 

country of origin or regulatory agency. Most regulatory agencies (including the United 

States of America Food and Drug Administration) have a ‘broad view’ of what constitutes a 

biopharmaceutical and classify them as anything manufactured by what is known as new 

technologies (e.g. monoclonal antibodies, and recombinant proteins) or old technologies 

(e.g. proteins and vaccines derived from non-engineered organisms as well as plasma-

derived products)317, 318.  Conversely, European Union regulations subscribe to the ‘new’ 

biotechnology view and define biopharmaceuticals as “a protein or nucleic acid-based 

pharmaceutical substance used for therapeutic or in vivo diagnostic purposes, which is 

produced by means other than direct extraction from a native (non-engineered) biological 

source”318. Europe consequently uses the broader term biotechnology medicines to denote 

“all pharmaceutical products produced in part or in full by biotechnological means, either 
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traditional or modern”319.  Despite the disagreement over what constitutes a 

biopharmaceutical, it has become largely synonymous with recombinant or engineered 

versions of eukaryote proteins as almost all the biopharmaceuticals available today are 

proteins or peptides317. These therapeutic proteins have had a major impact on health care 

and, as such, over the past ten years the market for biopharmaceuticals such as 

monoclonal antibodies has grown exponentially320. These biopharmaceuticals are subject 

to the same physical laws as natural proteins, and hence protein aggregation has become 

one of the greatest obstacles in protein therapeutic research and development.  

Based on the ‘broad’ view of what constitutes a biopharmaceutical, their use dates back 

over 200 years to 1798, when Edward Jenner developed the first vaccine for smallpox 

using live vaccinia virus from cows. By using a naturally weak form of the disease 

(cowpox), the severity and duration of illness was greatly reduced. This success was 

followed by Louis Pasteur’s breakthroughs in the principles of vaccination less than 100 

years later. Pasteur discovered that artificially weakening bacteria before infection lead to 

immunity. This discovery revolutionised the treatment of infections as a naturally weak 

form of the disease organism did not need to be found. Pasteur created rabies, anthrax and 

chicken cholera vaccinations, and gave them the generic name “vaccines” in honour of 

Edward Jenner. The dawn of bacteriology followed, in which large quantities of 

biopharmaceuticals could be produced, and by 1930 antitoxins and vaccines against 

tuberculosis, cholera, plague, typhoid, diphtheria and tetanus had been developed and 

were in mass production321.  

Production of biopharmaceuticals against non-bacterial diseases took longer to advance 

due to the complexity of isolating the constituents from animal sources. The first example 

of this was insulin. Its discovery and isolation from dogs in 1921 by Frederick Banting and 

Charles Best322, 323 led to the treatment of the first human patient only a year later324. The 

mass production of purified insulin required enormous quantities of porcine and bovine 

pancreas, a waste product from the meat industry. Unfortunately the availability of animal 

pancreases was limited, the process time-consuming and costly, and the treatment itself 

was dogged by compatibility issues. The single amino acid difference between human and 

porcine insulin, and the three amino acid difference between human and bovine insulin, 

led to a significant number of patients developing immune reactions over time325. A 

number of animal serum-derived products were developed over the next fifty years, 

however, with the advent of recombinant DNA technology in the late 1970s 

biopharmaceutical production was revolutionised. The utilisation of bacteria to express 

human genes resulted in abundant, inexpensive and low immunogenic proteins free from 
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other animal substances. The first licensed drug generated using this technology was 

human insulin in 1982326, 327, followed quickly by human growth hormone317. The 30 years 

since their approval have seen an enormous expansion in the therapeutic applications of 

proteins, ranging from enzymes and regulatory proteins to protein diagnostics (see 

Table 1.4 for select examples).  

 
Functional 

Classification 
Mechanism of 

Action 
Therapeutic 

(Trade Name) 
Function Clinical Use 

Protein 
therapeutics 

with enzymatic 
or regulatory 

activity 

Replacing a 
protein that is 

deficient or 
abnormal 

Insulin 
(Novolin)322, 326, 327 

Regulates blood 
glucose 

Diabetes mellitus 

Lactase 
(Lactaid)328 

Recombinant enzyme 
that digests lactose 

Lactose 
intolerance 

Augmenting an 
existing 
pathway 

Follicle -
stimulating 

hormone 
(Follistim)329 

Augments ovulation 
Assisted 

reproduction 

Factor VIIa 
(NovoSeven)330 

Initiates the 
coagulation cascade 

Haemorrhage in 
haemophilic 

patients 

Providing a 
novel function 

or activity 

Collagenase 
(Santyl)331 

Digests collagen in 
necrotic wounds 

Severe ulcers and 
burns 

Deoxyribonuclease 
(Pulmozyme)332 

Degrades DNA in 
purulent  secretions 

Respiratory tract 
infections (cystic 

fibrosis) 

Protein 
therapeutics 
with specific 

targeting 
activity 

Interfering with 
a molecule or 

organism 

Adalimumab 
(Humira)333, 334 

Humanised mAb that 
binds TNFα 

Rheumatoid 
arthritis 

Enfuvirtide 
(Fuzeon)335, 336 

Inhibits HIV entry 
into host cells 

Patients with 
advanced HIV 

infection 

Delivering other 
compounds or 

proteins 

Gemtuzumab 
ozogamicin 

(Mylotarg)337, 338 

Humanised mAb 
conjugated 

chemotherapeutic 
agent 

Acute myeloid 
leukaemia 

Protein vaccines 

Protecting 
against a 

deleterious 
foreign agent 

Hepatitis B surface 
antigen 

(Engerix) 

Non-infectious 
protein on surface of 

hepatitis B virus 

Hepatitis B 
vaccination 

Treating cancer 
Ipilimumab 

(Yervoy)339, 340 
Amplifies T cell 

response 
Late-stage 
melanoma 

Protein 
diagnostics 

In vivo 
diagnostics 

Growth hormone 
releasing hormone 

(Geref)341, 342 

Stimulates growth 
hormone release 

Diagnosis of 
defective growth 

hormone 
secretion 

Cancer imaging 
Satumomab 
pendetide 

(OncoScint)343 

Labelled mAb 
specific for tumour-

associated 
glycoprotein 

Colon and 
ovarian cancer 

detection 

 

Table 1.4. Functional classification of protein therapeutics. Data from Leader, 2008325  
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The biologics market today is worth over $50 billion344, 345 and is growing rapidly. 

Monoclonal antibodies (mAbs) are ranked as the highest selling class of 

biopharmaceutical, with four out of the top ten selling biologics of 2012 - 2013 (in the 

United States of America) belonging to this category (Figure 1.18). Small numbers of 

protein therapeutics are, however, still purified from human blood due to economic 

reasons. For example human serum albumin (HSA) can be produced in large quantities 

relatively inexpensively by direct extraction at a price no recombinant HSA product is 

likely to be able to compete with346. Despite this, the vast majority of therapeutic biologics 

on the market today are from recombinant sources, requiring efficient, reliable and high 

throughput cell-based production processes314.  

 

 

 

 

 

 

 

 

Figure 1.18.  Top nine categories of biologic drugs in terms of US sales 2012 - 2013. The 

chart shows US sales of these biologics in billions of US dollars. The table ranks the top ten 

selling drugs of 2012 - 2013 and their clinical use. Data obtained from Aggarwal347. 

Drug US 2012 Sales ($ Billions) Category Clinical Use 

Humira 4.6 mAb Rheumatoid arthritis 

Lantus 4.5 Hormone Diabetes 

Enbrel 3.9 Fusion protein Rheumatoid arthritis and psoriasis 

Remicade 3.6 mAb Rheumatoid arthritis and psoriasis 

Neulasta 3.5 Growth factor Neutropenia in breast cancer patients 

Rituxan 3.5 mAb Blood cancer and rheumatoid arthritis 

NovoLog 2.8 Hormone Diabetes 

Avastin 2.8 mAb Various cancers 

Humalog 2.1 Hormone Diabetes 

Epogen 1.9 Growth factor Chemotherapy-related anaemia 
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1.8.2 Protein biopharmaceutical production 

 
The expression of recombinant proteins in cells in which they do not naturally occur is 

termed ‘heterologous protein production’348. By far the most common microbial species 

used for recombinant protein production is E. coli, due to the high level of expression 

achieved and inexpensive fermentation technology required. A key feature of intracellular 

protein production is the inevitable accumulation of heterologous proteins in the cell 

cytoplasm as insoluble inclusion bodies. The separation of the inclusion bodies from 

homologous E. coli proteins is facilitated by their density; they sediment more rapidly than 

cellular debris during low-speed centrifugation348. The inclusion bodies are usually 

solubilised in strong denaturant (e.g. detergents, urea, solvents), after which the 

denaturant is removed by dialysis to enable refolding of the protein. The yield of natively-

refolded protein depends on the biophysical properties of the protein and a significant 

portion of time is spent optimising this process to maximise yields. Numerous other 

production systems are used for recombinant human pharmaceutical proteins, depending 

on the characteristics of the protein to be produced. A comparison of these systems is 

given in Table 1.5. 

Production 
System 

Overall 
Cost 

Production 
Timescale 

Glycosylation Comments 

Bacteria Low Short None Rapid and cheap production 

Yeast Medium Medium 
Usually 

incorrect 

Expression levels usually remain 
less than 5 % of total cellular 

protein 

Fungi Medium Medium 
Usually 

incorrect 

High expression levels, many 
proteins are secreted 

extracellulary 

Insect cell 
culture 

High Medium 
Minor 

differences 
Moderate expression levels and 

relatively rapid growth 

Mammalian cell 
culture 

High Long Correct 
Efficient folding of mammalian 

proteins 

Transgenic 
plants 

Low Long 
Minor 

differences 
Cheap production but  low yields 

Transgenic 
animals 

High Very long Correct 
Biologic  produced in milk of 

transgenic animal enables easy 
harvesting 

 

Table 1.5 Comparison of production systems for recombinant biopharmaceuticals. 

Information from Walsh348 and Ma et al.349. 
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The downstream processing of the protein biologic involves the recovery, purification, 

formulation and finish of the product (Figure 1.19). The biopharmaceutical must pass 

through each of these processing steps before the finished product is ready to enter the 

market. These steps, including freezing, thawing, formulation, filtration, filling, freeze-

drying and inspection, are known as "formulation and fill-finish operations". Formulation 

into the final drug product usually involves the addition of various excipients to stabilise 

the product, filtration of the product through a 0.22 µm filter for sterilisation, and 

lyophilisation if the product is to be marketed in a powder format348.  Each step poses 

challenges for protein stability which must be rigorously addressed.    

 

Figure 1.19 Overview of the production process for protein biopharmaceuticals. 

Information from Walsh348 . 

 

1.8.3 Biopharmaceutical stability and aggregation  

 
The manufacture of biopharmaceutical products is one of the most highly regulated and 

rigorously controlled manufacturing processes350. Owing to the biological origin and 

macromolecular structure of biologics (compared to small molecule drugs), much 

attention is focused on preventing contamination of biologics with other biological 

impurities (such as viruses), as well as conformational changes introduced during the 

production process351. As the therapeutic activity of protein biologics is highly dependent 

on their conformational structure, changes in this structure caused by external conditions 

throughout the production and formulation process must be minimised.  The product 

Production-scale  cell 
culture 

Cell harvesting and 
recovery of crude 

product 
(homogenisation and 

centrifugation) 

Initial purification (ion 
exchange or 

precipitation) 

Main purification 
(chromatography) 

Final product 
formulation (addition of 

excipients) 

Product filling, freeze-
drying (if required) and 

sealing 
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must not only survive the manufacturing process undamaged and biologically active, it 

must be stable enough in a given packaging system for its entire shelf life (an 18-month 

shelf life is usually the minimum requirement for protein-based drugs352). Furthermore, 

drugs destined for clinical trials require accurate quantification of protein aggregates 

throughout the manufacturing process to show they meet drug product specifications35.  

Each step in the purification and formulation of protein biologics poses challenges for 

protein stability. Almost every conceivable environmental factor (e.g. temperature, light, 

water, pH, shear, detergents, freeze-thawing, freeze-drying, presence of glass, rubber, 

plastic, or presence of salts and other solutes) can adversely affect protein drugs353. For 

example, freezing samples minimises the risk of microbial growth and eliminates agitation 

and therefore diffusive collisions during transportation. However, it also introduces 

complex physical and chemical changes. A matrix of protein and ice can result in protein 

adsorption on the ice surface and the alteration of protein conformation near the ice 

surface due to weakening of hydrophobic bonds354. Freezing can also change the pH of the 

solution through selective precipitation of buffer components. This can have a strong 

influence on the aggregation rate as the pH determines the electrostatic interactions 

through charge distribution on the protein’s surface355. Minute changes in conditions can 

also lead to aggregation. Small single domain proteins often require significant 

environmental changes to destabilise, however large multidomain proteins can contain 

‘weak links’ between domains that unravel under even the mildest of conditions351.  

After the drug has been formulated, it must go through filter sterilisation. This can 

introduce the protein to stress whilst it is pushed through the filter, risking alteration of 

the protein structure. Furthermore, stabilising components could get adsorbed onto the 

membrane surface, resulting in a decrease in their concentration and subsequent protein 

instability355. Once the drug product is ready, it is filled into the primary drug product 

containers. Much care is taken to limit the shear the drugs are subjected to, and also any 

interactions with, or leachables from, the container surface and components. Finally, to 

achieve an acceptable shelf life, the drugs are often lyophilised. This prevents most 

covalent degradation and also minimises diffusion, thereby decreasing the risk of 

aggregation. Although these general techniques are understood to reduce the protein’s 

propensity to aggregate, each and every protein biopharmaceutical is unique and each 

step in the manufacturing process must be individually tailored to suit their needs. 
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1.8.4 Techniques employed to prevent biopharmaceutical 

aggregation 
 
Most of the antibody-based biopharmaceuticals entering clinical trials are derived from 

phage display technology356, 357 or transgenic mice358. Lead optimisation during phage 

display involves cycles of selection to generate high affinity binders to a target antigen. 

Antigen affinity is improved through directed evolution and most often results in the 

accumulation of mutations in the complementary determining regions (CDRs) of the 

antibody fragments. These mutations may confer improved binding through increased 

hydrogen bonding, electrostatics or even hydrophobic interactions with the target antigen. 

Consequently, after isolation of the antibody fragments with the highest affinity, they need 

to be optimised for properties such as high stability, solubility and minimal aggregation 

propensity, particularly if the affinity is increased through greater hydrophobic 

interactions as this may result in patches of the antibody fragment that are prone to self-

associate.  

 

1.8.4.1   Protein engineering 

 
Historically, lead molecules were developed with very little pre-assessment into stability 

and aggregation, consequently resulting in significant issues further down the process. 

More recently, high throughput protein engineering techniques are utilised to 

dramatically improve protein aggregation. 

 

In silico computational techniques are used to predict protein aggregation359, 360 and are 

useful for predicting and preventing problems in protein production. For example, 

aggregation prediction models have been used to predict aggregation rates and the effect 

of different mutations, depending on hydrophobicity, patterns of alternating hydrophobic-

hydrophilic residues, pH and ionic strength351, 361 362, 363. By identifying aggregation hot 

spots, key ‘gatekeeper’ residues can be incorporated to reduce the aggregation propensity 

and maintain the molecule into the monomeric form361. Nevertheless, it remains a 

challenge to incorporate all the environmental factors that impinge protein stability 

during the manufacturing process, and as such, the complexity of the mechanisms leading 

to the aggregation has prevented other parameters, such as stirring, to as yet be 

incorporated into these models351. 
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Conversely, structure-based engineering is utilised to stabilise fragile or aggregation-

prone regions of a protein by either inserting extra stabilising interactions, such as salt 

bridges364 or disulfide bonds365, or reducing unfavourable interactions such as charged 

groups being buried in hydrophobic regions366. The new constructs are most often purified 

and assessed using in vitro biophysical techniques. Optimisation of thermal stability has 

largely benefited from the high throughput screening techniques such as differential 

scanning fluorimetry367. However, a similar high throughput approach has not yet been 

established for screening mutations affecting aggregation368. In these instances, low 

throughput HPLC technology is foremost utilised for quantifying protein aggregation368. 

 

1.8.4.2    Formulation screening 

 
Mutagenesis to reduce aggregation can be problematic, as it requires detailed analysis to 

certify no loss of function has occurred, and also extensive clinical trials to ensure no 

adverse effects develop. Consequently, a complementary approach is to alter the 

formulation of the drug product.  Formulation of the biologic involves the addition of 

excipients (pharmacologically inactive carriers) to protect the product during the fill-

finish steps of the production process. Initially, molecular chaperones from bacteria (such 

as DnaK-DnaJ-GrpE and GroEL-GroES) were used to inhibit protein aggregation during 

refolding, by alternately binding and releasing folding intermediates352. However, the cost 

of production, and the extra purification steps required, led to the exploration for more 

cost-effective additives such as stabilisers and cryoprotectants354. Stabilisers such as 

polyols, polyethylene glycols (PEGs) and other polymers are often used to sterically hinder 

protein-protein interactions and limit diffusion. As many therapeutic proteins are stored 

in very high doses, a key role for the excipients is to keep the biologics stably dissolved for 

extended periods of time at concentrations of tens of mg per mL351. Cyclodextrans, circular 

polymers of typically five to seven glucose rings, can also significantly reduce aggregation 

of therapeutic proteins, such as insulin351, 369-371 and growth hormone372. They function by 

binding to aromatic residues and stabilising the unfolded state351, 373, however its ability to 

extract biomembrane components has limited its use to only certain modified forms351. 

Stabilisers that are also effective cryoprotectants include disaccharides such as sucrose 

and trehalose374. Unlike some stabilisers that readily form crystals when frozen, these 

cryoprotectants remain in the same phase as the protein and are therefore able to exert 

their stabilising effects. 
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Small-scale characterisation studies are often conducted to evaluate protein stability 

under formulation conditions, however this typically involves time-consuming incubation 

of proteins under various conditions during long-term stability studies. Although 

numerous approaches for high-throughput techniques for formulation screening have 

been developed354, these still require purified protein. 

 

1.9 An in vivo platform for assessing protein aggregation 
and identifying inhibitors 

 

Utilising phage display, it is possible to obtain very large collections of antibodies for a 

particular target (such as the more than 1000-member group of antibodies that are 

specific for B-lymphocyte stimulator375), however in vitro analyses for aggregation 

propensity is both costly and time-consuming. For these reasons, the β-lactamase 

tripartite fusion system (described in Section 0) was also applied in this thesis to the 

assessment of biopharmaceutical aggregation. By enabling in vivo identification of 

aggregation-prone sequences, in vitro purification and biophysical analysis would not be 

required for a large selection pool of proteins. This would significantly decrease both the 

cost and time required for biopharmaceutical lead development; a major concern for the 

biopharmaceutical industry. 

To this end, the in vivo tripartite β-lactamase system was also utilised in this thesis to 

identify excipients that prevent protein aggregation, demonstrating the diverse 

applications of the periplasmic–based enzyme assay for analysing and inhibiting 

aggregation relevant to both disease and biopharmaceutical aggregation. 
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1.10 Aims of the current work 

 
The tendency of proteins to aggregate has severe consequences in both disease and 

biopharmaceutical production. Current screening techniques utilised in the search for 

inhibitors to prevent such aggregation are costly and time consuming, and require large 

quantities of these difficult-to-purify proteins. 

There is an urgent need for the rapid generation of a robust, sensitive, and cost-effective 

assay for inhibitors of protein aggregation. Therefore, the aim of this study is the 

development of an in vivo, periplasmic-based screen for inhibitors of protein aggregation, 

to be applicable to both disease-related and biopharmaceutically-relevant proteins. 

 
The system should: 

 quantitatively measure the extent of the aggregation of different constructs in vivo 

 enable the selection of small molecule inhibitors of protein aggregation 

 allow identification of excipients that can prevent protein aggregation 

 be applicable to a variety of proteins of different size, structure, function and 

aggregation propensity 

 have a low false positive and false negative rate (< 5 - 10 %) 

 be amenable to a diverse range of experimental conditions to suit each protein’s 

requirements 

 
These requirements are all been met using the β-lactamase tripartite fusion system for 

identifying protein aggregation inhibitors. In Chapter 3 the approach quantitatively 

correlates the extent of aggregation to a simple and easily selectable readout: bacterial 

growth in the presence of increasing concentrations of antibiotic. Chapter 4 describes the 

development of the system to differentiate between inhibitors and non-inhibitors of 

protein aggregation, with particular emphasis placed on assay optimisation. Finally, 

Chapter 5 highlights the application of the tripartite fusion system to biopharmaceutically 

relevant proteins and excipients, thereby demonstrating the diverse applications of the in 

vivo assay to both academic and industrial avenues of research.  
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2 Materials and methods 

 

2.1 Materials  

2.1.1 Technical equipment 

 
Equipment      Manufacturer 

Centrifuges 

Avanti J-26 XP Centrifuge    Beckman Coulter, Brea, CA, USA 
GenFuge 24D Centrifuge    Progen Scientific, London, UK 
MiniSpin plus F-45-12-11    Eppendorf, Hauppauge, NY, USA 
Contifuge Stratos Continuous-Flow Rotor  Heraeus, Hanau, Germany 
 

Incubators, mixers & shakers 

Gallenkamp Economy Incubator Size 1  Sanyo, Watford, UK 
ORBISAFE Orbital Incubator    Sanyo, Watford, UK 
Stuart Magnetic Stirrer SB161    CamLab, Cambridge, UK 
Stuart Orbital Incubator S150    Bibby Scientific, Stone, UK 
Stuart Vortex Mixer SA8    Bibby Scientific, Stone, UK 
 

Gel electrophoresis equipment 

Vari-Gel midi system     CamLab, Madingley, UK 
Slab Gel Electrophoresis Chamber AE-6200  ATTO, Tokyo, Japan 
Standard Power Pack P25    Biometra, Goettingen, Germany 
 

Protein purification equipment 

ÄKTAprime plus     GE healthcare, Little Chalfont, UK 
HiTrap Q HP 5 mL anion exchange column  GE healthcare, Little Chalfont, UK 
HiTrap SP HP 5 mL cation exchange column  GE healthcare, Little Chalfont, UK 
Superdex™ 75 GL 10/300 gel filtration column GE healthcare, Little Chalfont, UK 
Superdex™ 75 HR 10/30 gel filtration column GE healthcare, Little Chalfont, UK 
HiLoad Superdex™ 75 26/60 gel filtration column GE healthcare, Little Chalfont, UK 
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Fluorometer 

Photon Technology International fluorometer  Ford, West Sussex, UK 

 
Spectrophotometer 

UltroSpec 2100 pro UV/Visible Spectrophotometer GE healthcare, Little Chalfont, UK 

 
Microplate readers 

FLUOstar OPTIMA plate reader    BMG Labtech, Aylesbury, Bucks, UK 
NEPHELOstar Galaxy laser-based nephelometer  BMG Labtech, Aylesbury, Bucks, UK 
 

Electron microscope 

JEOL JEM-1400 transmission electron microscope  JEOL Ltd., Tokyo, Japan 

 
Mass spectrometer 

Synapt high definition mass spectrometry (HDMS) quadrupole-time-of-flight mass 

spectrometer (Micromass UK Ltd., Waters Corpn., Manchester, UK), equipped with a 

Triversa automated nano-electrospray ionisation (ESI) interface (Advion Biosciences, 

Ithaca, USA). 

 

Other equipment 

0.5 – 10 µL StarPet E 12-channel electronic pipette STARLAB, Milton Keynes, UK 
100 – 1200 µL StarPet E 8-channel electronic pipette STARLAB, Milton Keynes, UK 
Büchi Vac V-500 Vacuum Pump   Sigma Life Sciences, St. Louis, USA 
Corning Costar 3915 96-well plate    Corning Life Sci, The Netherlands 
Grant JB1 Unstirred Waterbath   Grant Instruments, Shepreth, UK 
InGenius Gel Documentation System   Syngene, Cambridge, UK 
Jenway 3020 Bench pH Meter    Bibby Scientific, Stone, UK 
PTC-100 Programmable Thermal Controller  GMI-Inc, Minneapolis, MN, USA 
Series 2100 Media Autoclave    Prestige Medical, Minworth, UK 
SnakeSkin Pleated Dialysis Tubing; 3,500 MWCO Thermo Scientific, Surrey, UK 
Techne Dri-Block Heater DB-2A   Bibby Scientific, Stone, UK 
BIO-RAD T100 Thermocycler    BIORAD Laboratories, Hercules, USA 
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2.1.2 Chemicals 

 
A  
Acetic acid, glacial     Fisher Scientific, Loughborough, UK 
Acid fuchsin       Fisher Scientific, Loughborough, UK 
Acridine orange     Fisher Scientific, Loughborough, UK 
Acrylamide, 30%     Severn Biotech, Kidderminster, UK 
Agar       Melford Laboratories, Suffolk, UK 
Agarose      Melford Laboratories, Suffolk, UK 
Ampicillin      Formedium, Norfolk, UK 
Arabinose      Sigma Life Sciences, St. Louis, USA 
D-arginine      Sigma Life Sciences, St. Louis, USA 
L-arginine      Sigma Life Sciences, St. Louis, USA 
Aspirin       Sigma Life Sciences, St. Louis, USA 
Azure A      Sigma Life Sciences, St. Louis, USA 
Azure C      Alfa Aesar, Heysham, UK 
 

B  
1H benzimidazole-2-sulfonic acid   Sigma Life Sciences, St. Louis, USA 
β-mercaptoethanol     Stratagene , Cambridge, UK 
Benzimidazole      Sigma Life Sciences, St. Louis, USA 
Bromophenol blue     Sigma Life Sciences, St. Louis, USA 
 

C  
Caffeic acid      Sigma Life Sciences, St. Louis, USA 
Chloramphenicol      Sigma Life Sciences, St. Louis, USA 
Congo red      Sigma Life Sciences, St. Louis, USA 
Curcumin      Sigma Life Sciences, St. Louis, USA 
  

D  
Dimethyl sulphoxide, DMSO    Sigma Life Sciences, St. Louis, USA 
1,2-Dithiothreitol, DTT     Formedium, Norfolk, UK 
 

E  
(-)-Epigallocatechin-3-gallate (EGCG)   Sigma Life Sciences, St. Louis, USA 
Ethanol      Fisher Scientific, Loughborough, UK 
Ethidium bromide, EtBr    Sigma Life Sciences, St. Louis, USA 
Ethylenediamine tetra acetic acid, EDTA  Sigma Life Sciences, St. Louis, USA 
 

F 
Fast Green FCF      Fisher Scientific, Loughborough, UK 
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G  
Glucose      Fisher Scientific, Loughborough, UK 
L-glutamate      Sigma Life Sciences, St. Louis, USA 
Glycerol      Fisher Scientific, Loughborough, UK 
 

H  
Hemin       Sigma Life Sciences, St. Louis, USA 
Hydrochloric acid, HCl     Fisher Scientific, Loughborough, UK 
 

I  
Instant Blue Stain     Expedeon, Harston, UK 
Isopropyl β-D-1-thiogalactopyranoside, IPTG  Melford Laboratories, Suffolk, UK 
 

K  
Kanamycin      Formedium, Norfolk, UK 
 

L  
LB broth, granulated     Melford Laboratories, Suffolk, UK 
 

M  
Magnesium sulphate, MgSO4    Fisher Scientific, Loughborough, UK 
Magnesium chloride, MgCl2    Sigma Life Sciences, St. Louis, USA 
Morin hydrate      Sigma Life Sciences, St. Louis, USA 
Myricetin      Sigma Life Sciences, St. Louis, USA

  

N  
Nitrocefin      Calbiochem, CA, USA 
 

O 
Orange G      Sigma Life Sciences, St. Louis, USA 
Orcein       Sigma Life Sciences, St. Louis, USA 
 

P  
Phenol red      Fisher Scientific, Loughborough, UK 
Polymyxin B sulfate     Sigma Life Sciences, St. Louis, USA 
Potassium phosphate dibasic, K2HPO4   Sigma Life Sciences, St. Louis, USA 
Potassium phosphate monobasic, KH2PO4  Sigma Life Sciences, St. Louis, USA 
 

R 
Resveratrol      Santa Cruz Biotech, Middlesex, UK 
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S  
Silibinin      Sigma Life Sciences, St. Louis, USA 
Sodium chloride, NaCl     Fisher Scientific, Loughborough, UK 
Sodium dodecyl sulphate, SDS    Sigma Life Sciences, St. Louis, USA 
Sodium hydroxide, NaOH    Fisher Scientific, Loughborough, UK 
Sodium phosphate dibasic, Na2HPO4   Sigma Life Sciences, St. Louis, USA 
Sodium phosphate dibasic, NaH2PO4   Sigma Life Sciences, St. Louis, USA 
D-Sorbitol       Sigma Life Sciences, St. Louis, USA 
Sucrose      Fisher Scientific, Loughborough, UK 
Super Optimal broth, granulated   Merck, Darmstadt, Germany  
 

T  
Tetracycline      Formedium, Norfolk, UK 
Tetramethylethylenediamine (TEMED)  Sigma Life Sciences, St. Louis, USA 
Thiabenzadole      Sigma Life Sciences, St. Louis, USA 
Thioflavin T 
Tramiprosate      Santa Cruz Biotech, Middlesex, UK 
Tris-(hydroxymethyl)-aminomethane, Tris  Melford Laboratories, Suffolk, UK 
Tryptone      Melford Laboratories, Suffolk, UK 
 

U 
Uranyl acetate      Sigma Life Sciences, St. Louis, USA 
 

Y  
Yeast extract      Melford Laboratories, Suffolk, UK 
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2.1.3  Antibiotics, markers and dyes 

 

Antibiotic Solvent 
Stock Solution 

(mg/mL) 
Working Concentration 

(μg/mL) 
Sterilisation 

Ampicillin 
Purite 18 MΩ 

H2O 
100 100 

Filter-
sterilised 
through 

0.2 µm filter 

Kanamycin 
Purite 18 MΩ 

H2O 
20 50 

Tetracycline 
70 % (v/v) 

ethanol 
5 12.5 

 
Table 2.1. Antibiotics used in this study.  
 

Marker Company 

Mark12TM Protein Standard Invitrogen, Paisley, UK 

Precision Plus ProteinTM Dual Xtra Standards Bio-Rad, Hemel Hempstead, UK 

100 bp DNA Ladder Promega, Southampton, UK 

1 kb DNA Ladder Promega, Southampton, UK 

 
Table 2.2. DNA and protein markers used in this study. 
 

Dye Company 

Gel Loading Dye, Blue (6x) for DNA Promega, Southampton, UK 

Orange G Loading Dye (10x) for DNA Sigma Life Sciences, St. Louis, MO, USA 

Instant Blue Stain Expedeon Protein Solutions, UK 

 
Table 2.3. Dyes used in this study. 

 

 

2.1.4 Kits 

 

Kit Company 

QIAprep Spin Miniprep Kit QIAGEN, Crawley, UK 

QIAquick Gel Extraction Kit QIAGEN, Crawley, UK 

QIAquick PCR Purification Kit QIAGEN, Crawley, UK 

QuikChange II Mutagenesis Kit Agilent Technologies, Wokingham, UK 

 
Table 2.4. Kits used in this study. 
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2.1.5 Enzymes for molecular biology 

 

Enzyme Company 

Antarctic phosphatise (5 U/µL) New England Biolabs, Hitchin, UK 

BamHI restriction endonuclease (20 U/µL) New England Biolabs, Hitchin, UK 

BamHI-HF restriction endonuclease (20 U/µL) New England Biolabs, Hitchin, UK 

NdeI restriction endonuclease (20 U/µL) New England Biolabs, Hitchin, UK 

T4 DNA ligase (Quick LigationTM Kit) New England Biolabs, Hitchin, UK 

Taq DNA polymerase (5 U/µL) New England Biolabs, Hitchin, UK 

Vent DNA polymerase (2 U/µL) New England Biolabs, Hitchin, UK 

XhoI restriction endonuclease (20 U/µL) New England Biolabs, Hitchin, UK 

Lysozyme Sigma Life Sciences, St. Louis, MO, USA 

 
Table 2.5. Enzymes for molecular biology used in this study. The buffers and additives of 

the corresponding enzymes, supplied by the manufacturer stated, were used. 

 

2.1.6 Buffers 

 

Buffer Reagents 

2× reducing SDS loading buffer 

50 mM Tris-HCl pH 6.8 

100 mM DTT 

2 % (w/v) SDS 

0.1 % (w/v) bromophenol blue 

10 % (v/v) glycerol 

Tris-acetate-EDTA (TAE) buffer 

40 mM Tris-HCl, pH 8 

20 mM acetic acid (glacial) 

1 mM EDTA, pH 7.5 

Tris-EDTA (TE buffer) 
10 mM Tris-HCl, pH 8 

1 mM EDTA, pH 8 

Electrophoresis cathode buffer 

200 mM Tris-HCl, pH 8.25 

200 mM tricine 

0.2 % (w/v) SDS 

Electrophoresis anode buffer 400 mM Tris-HCl, pH 8.8 

Polymyxin buffer 

50 mM Tris-HCl, pH 7.5 

5 mM EDTA 

50 mM NaCl 

1 mg/mL polymyxin B sulphate 

 
Table 2.6. Buffers used in this study. 



MATERIALS AND METHODS 

90 
 

2.1.7 Media 

 

Media Reagent Weight / Volume 

Luria-Bertani (LB) 
medium 

Bacto-tryptone 10 g 

Yeast extract 5 g 

NaCl 10 g 

Purite 18 MΩ H2O Make to 1 L 

Autoclave 20 min at 121 °C, 15 psi 

SOC medium 

Bacto-tryptone 2 g 

Yeast extract 0.5 g 

1 M NaCl 1 mL 

1 M KCl 0.25 mL 

Purite 18 MΩ H2O 98 mL 

Autoclave 20 min at 121 °C, 15 psi 

1 M Mg2+ stock  
(filter-sterilised through 0.2 µm filter) 

1 mL 

1 M Glucose  
(filter-sterilised through 0.2 µm filter) 

1 mL 

Terrific Broth (TB) 
medium 

Bacto-tryptone 12 g 

Yeast extract 24 g 

Glycerol 4 mL 

KH2PO4 (final concentration of 17 mM) 2.31 g 

K2HPO4 (final concentration of 72 mM) 12.54 g 

Purite 18 MΩ H2O Make to 1 L 

Autoclave 20 min at 121 °C, 15 psi 

 
Table 2.7. Media used in this study. 
 
 
Solid medium was prepared by adding 1.5 % (w/v) agar (Melford laboratories, UK) to the 

liquid medium prior to autoclaving. Filter-sterilised antibiotics were added to media once 

cooled to < 50 °C.  
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2.2 Molecular biology methods 

 

2.2.1 Bacterial strains 

 
E. coli XL1-Blue (Stratagene, Cambridge, UK) 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIqZΔM15 Tn10 (Tetr)]  

 
E. coli SCS1 (Stratagene, Cambridge, UK) 

recA1 endA1 gyrA96 thi-1 hsdR17 (rκ- mκ+) supE44 relA1  

 
E. coli DH5α (Invitrogen, Pailsey, UK) 

F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, mK+) phoA supE44 λ–

 thi-1 gyrA96 relA1  

 
E. coli JM109 (Stratagene, Cambridge, UK) 

e14-(McrA-) recA1 endA1 gyrA96 thi-1 hsdR17 (rK-mK+) supE44 relA1 Δ(lac-proAB) [F´ 

traD36 proAB lacIqZΔM15] 

 
E. coli BL21 (DE3) (Stratagene, Cambridge, UK) 

F- dcm ompT hsdS(rB– mB–) gal λ(DE3) 

 
E. coli BL21 (DE3) pLysS (Stratagene, Cambridge, UK) 

F- dcm ompT hsdS(rB– mB–) gal λ(DE3) [pLysS Camr] 

 

 

2.2.2 Polymerase chain reaction 

 
The polymerase chain reaction (PCR) was performed to selectively amplify modified DNA 

sequences in vitro.  The sequences and purpose of the oligonucleotide primers designed to 

amplify the desired genes from select plasmids are shown in (Table 2.8).  
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Primer Sequence Use 

IAPP Forward 
CGC ATT ACT TGT CTC GAG AAA ATG 

CAA CAC CGC GAC 

Addition of XhoI restriction site 5' 
of hIAPP gene  to clone it into 

β-lactamase linker 

IAPP Reverse 
CGC ATT ACT GTA GGA TCC ATA GGT 

GTT GCT GCC CAC 

Addition of BamH1 restriction site 
3' of hIAPP gene  to clone it into 

β-lactamase linker 

Aβ42 Forward 
CGC ATT ACT TGT CTC GAG A GAT GCG 

GAG TTC CGT CAT G 

Addition of XhoI restriction site 5' 
of  Aβ42 gene  to clone it into 

β-lactamase linker 

Aβ42 Reverse 
CGC ATT TCT GTA GGA TCC CGC TAT 

GAC AAC ACC ACC 

Addition of BamH1 restriction site 
3' of Aβ42 gene  to clone it into 

β-lactamase linker 

Aβ40 Forward GGA TCC GGG AGC GGT TCC 
Convert β-lactamase-Aβ42 gene 

into β-lactamase-Aβ40  

Aβ40 Reverse GAC AAC ACC ACC CAC CAT G 
Convert β-lactamase-Aβ42 gene 

into β-lactamase-Aβ40 

HEL4/Dp47d 
Forward 

CGC ATT ACT TGT CTC GAG A GAA GTG 
CAG CTG CTG GAA AGC 

Addition of XhoI restriction site 5' 
of HEL4 or Dp47d gene  to clone it 

into the β-lactamase linker 

HEL4/Dp47d 
Reverse 

CGC ATT AAT ATA GGA TCC GCT GCT 
CAC GGT CAC CAG 

Addition of BamH1 restriction site 
3' of HEL4 or Dp47d gene  to clone 

it into the β-lactamase linker 
β-lactamase 

Linker Forward 
CGG AGC TGA ATG AAG CCA TAC C Sequence the linker region of 

β-lactamase to ensure correct 
insertion of guest protein 

β-lactamase 
Linker Reverse 

TCA CCG GCT CCA GAT TTA TCA GC 

 
Table 2.8. Oligonucleotide primers used in this thesis.  The restriction enzyme recognition 
sites are highlighted in blue (XhoI) and red (BamH1).  

 

A typical polymerase chain reaction contained the following components: 

dsDNA template    100 ng 

Primers     100 pmol 

dNTPs      0.25 mM 

DMSO      1 µL 

MgSO4      2, 4 or 6 mM 

Vent DNA polymerase (2000 U mL-1)  1 U 

Vent DNA polymerase buffer    1x 

Nuclease-free deionised H2O   to 100 µL 

 

A solution lacking the dsDNA template was used as a negative control to determine if any 

non-specific interactions occur between the primers. 

 

The theoretical melting temperature (Tm) of the primers was calculated from 

Equation 2.1, where nAT corresponds to the number of AT nucleotide base pairs, and nGC 
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corresponds to the number of GC nucleotide base pairs. The temperature cycle for a 

typical reaction is shown in Table 2.9. 

𝑡𝑚 = (𝑛𝐴𝑇 × 2) + (𝑛𝐺𝐶 × 4)    Equation 2.1 

 

Step Temperature (°C) Time (s) 

Initial denaturation 95 300 

Denaturation 95 30 

Annealing 5 below Tm 30 

Elongation 72 90 

Repeat denaturation, annealing and elongation (x 29) 

Final elongation 72 300 

 
Table 2.9. Temperature cycle for a typical PCR reaction. 

 
 
The PCR products were visualised by agarose gel electrophoresis (Section 2.2.3) and 

excised from the gel using a scalpel. DNA extraction from the gel was performed using the 

QIAquick Gel Extraction Kit (QIAGEN, UK) as described in the manufacturer’s instructions. 

 

2.2.3 Agarose gel electrophoresis 

 
Agarose gel electrophoresis was carried out in Tris-acetate-EDTA (TAE) buffer 

(Table 2.6). Gels were made by dissolving 1.5 % (w/v) agarose in 1 x TAE buffer and 

heating the solution using a microwave until the agarose had dissolved fully. Once cooled 

to < 50 °C, 0.5 μg/mL of ethidium bromide was added and the solution mixed. The gel was 

then poured into a 12 x 15 cm gel tray with a comb and allowed to set before use. DNA 

samples were diluted in 6 x blue gel loading buffer or 10 x orange G loading buffer. 30 µL 

samples were loaded, and lanes containing 5 µL of 1 kb and 100 bp DNA ladders 

(Promega, UK) were included to allow size determination. Electrophoresis was carried out 

in 1 x TAE buffer at 100 V until DNA fragments were suitably resolved. Gels were 

visualised using ultra violet (UV) transillumination and photographed using a Syngene 

InGenius gel documentation system (Syngene, UK). 
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2.2.4 Restriction digest of plasmid DNA  

 
The site-specific restriction digestion of plasmids or PCR products was carried out using 

enzymes and buffers from New England Biolabs, USA (NEB) and typically contained the 

following components: 

Plasmid DNA or purified PCR product  1 μg 

10× NEB buffer 3 or 4     2.5 µL 

10× NEB Bovine Serum Albumin   2.5 µL 

Enzyme 1 (20 U/µL)    20 U 

Enzyme 2 (20 U/µL)    20 U 

Nuclease-free deionised H2O   to 25 µL 

 
All reactions were accompanied by the appropriate single enzyme and enzyme-free 

control samples. Reactions were incubated at 37 °C for 1 h, followed by enzyme 

inactivation at 65 °C for 20 min. 

The restriction enzymes, buffer components and unwanted by-products of the digestion 

were subsequently removed by separating the DNA fragments by agarose gel 

electrophoresis (Section 2.2.3). The required DNA fragments were excised using a scalpel 

and extracted from the agarose gel using the QIAquick Gel Extraction Kit (QIAGEN, UK) 

according to the manufacturer’s instructions. 

 

2.2.5 Dephosphorylation of restriction endonuclease digests 

 
In order to prevent plasmid re-ligation, the 5ʹ-ends were dephosphorylated with Antarctic 

Phosphatase (NEB, USA).  1/10 volume of 10× Antarctic Phosphatase Reaction 

Buffer (NEB, USA) and 0.01 U of enzyme per pmol DNA ends was added to the completed 

digest. The reaction mixture was incubated for 15 min at 37 °C. The enzyme was then heat 

inactivated at 65 °C for 5 min. 
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2.2.6 Ligation of DNA 

 
Ligation of DNA fragments was performed using the NEB Quick Ligation Kit. A typical 

ligation reaction contained the following components: 

 
Digested and dephosphorylated vector 100 ng 

2× NEB Quick Ligation Buffer   10 µL 

NEB T4 DNA Ligase (2000 U/µL)  2000 U 

Digested insert     to 20 µL 

 
Appropriate control reactions containing nuclease-free deionised water instead of a 

digested insert were carried out. Reactions were incubated at 25 °C for 15 min then kept 

on ice prior to transformation into SCS1 supercompetent cells (see Section 2.2.7). 

 

2.2.7 Transformation and cultivation of E. coli cells 

 
Plasmid DNA (50 – 200 ng) was added to 100 µL of competent cells (Section 2.2.1). If the 

DNA to be transformed was from a ligation reaction, the supercompetent cells were pre-

incubated with 0.8 µL of 0.42 M β-mercaptoethanol for 10 min. After incubation on ice for 

30 min, the mixture was heat shocked at 42 °C for 45 sec. The cells were incubated on ice 

for a further 2 min before the addition of 500 µL of sterile medium (SOC medium for 

supercompetent SCS1 cells and XL1-Blue cells, LB for all other strains) pre-warmed to 

37 °C. The cultures were incubated at 37 °C, 200 rpm, for 1 h to allow the transformed 

cells to express antibiotic resistance. 20 µL or 200 µL of cell culture was spread onto LB 

agar plates containing the appropriate antibiotic and incubated overnight at 37 °C. 

 

2.2.8 Preparation of plasmids 

 
Single colonies from transformation reactions were picked and grown overnight (37 °C, 

200 rpm) in 10 mL LB containing the appropriate antibiotic. Plasmid DNA was extracted 

using the QIAprep Spin Miniprep Kit (QIAGEN, UK), according to the manufacturer’s 

instructions. DNA required for subsequent biological experiments was eluted in sterile 

H2O. DNA for stock maintenance was eluted in TE buffer (Table 2.6). To determine DNA 
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concentrations, the absorbance was measured by spectrophotometry at 260 nm (A260). An 

A260 of 1 was assumed to be equivalent to 50 µg/mL of double stranded DNA (dsDNA). 

 

2.2.9  Sequencing, stock maintenance and storage of DNA 

 
DNA was sequenced by Beckman Coulter Genomics, UK. Sequencing of genes in pET 

vectors was carried out using universal T7 promoter and T7 terminator primers. 

Sequencing of the β-lactamase linker region in the pBR322 vectors was carried out using 

the primers in Table 2.8. Further stocks of the various constructs were produced in DH5α 

E. coli cells (Invitrogen, UK) (see Section 2.2.7 and Section 2.2.8) and the DNA stored 

at -80 °C in TE buffer. 

 

2.2.10 Plasmids 

 
Plasmids obtained during this project are summarised in Table 2.10. Plasmids containing 

the genes encoding wild-type β-lactamase (pET28a-βla-WT), β-lactamase with a 

28-residue GS linker (pMB1-βla-linkerSHORT) and β-lactamase with a 64-residue GS linker 

(pMB1-βla-linker) were kindly provided by Professor J. Bardwell (Department of 

Biological Chemistry, University of Michigan, USA).  

Plasmids pTXB1-hIAPP and pTXB1-rIAPP, encoding human IAPP (hIAPP) and rat IAPP 

(rIAPP) respectively, were a generous gift from Associate Professor A. Miranker 

(Department of Molecular Biophysics and Biochemistry, Yale University, USA). Plasmid 

pRSET-Aβ40/42, containing the gene encoding Alzheimer’s β1-40/42 (Aβ40/Aβ42), was a 

kind gift from Professor Rudolf Glockshuber (Swiss Federal Institute of Technology, 

Zurich, Switzerland).  

Plasmids pEX-HEL4 and pEX-Dp47d, containing the genes encoding HEL4 and Dp47d 

respectively, were synthesised by Eurofins MWG Operon, Ebersburg, Germany using the 

sequence from Jespers et al., 2004376.  

All DNA and protein sequences are given in Appendices 7.1 and 7.2. All plasmid maps are 

located in Appendix 7.3.  
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Plasmid Insert Promoter 
Vector 

Backbone 
Antibiotic 
Resistance 

Ref. 

pET28a-βla-WT WT βla T7 pBR322 Kanamycin 
308 

pMB1-βla-link-28 βla-linkerSHORT pBAD pMB1 Tetracycline 
308 

pMB1-βla-link-64 βla-linker pBAD pMB1 Tetracycline 
308 

pTXB1-hIAPP hIAPP T7 pMB1 Ampicillin 
377 

pTXB1-rIAPP rIAPP T7 pMB1 Ampicillin 
377 

pRSET-Aβ40/42 Aβ40/42 T7 pRSET Ampicillin 
377 

 
Table 2.10. Plasmids obtained for this thesis. 
 

 

2.2.11 Summary of plasmids created 

 
The plasmids created during this thesis were made using the techniques described in 

Sections 2.23 – 2.2.10 and are summarised in Table 2.11.   

 

 
Table 2.11. Plasmids created in this thesis. 
 

  

Plasmid Insert Promoter 
Vector 

Backbone 
Antibiotic 
Resistance 

βla-28-hIAPP βla-hIAPP pBAD pMB1 Tetracycline 

βla-28-rIAPP βla-rIAPP pBAD pMB1 Tetracycline 

βla-28-Aβ40 βla-Aβ40 pBAD pMB1 Tetracycline 

βla-28-Aβ42 βla-Aβ42 pBAD pMB1 Tetracycline 

βla-28-HEL4 βla-HEL4 pBAD pMB1 Tetracycline 

βla-28-Dp47d βla-Dp47d pBAD pMB1 Tetracycline 

pET-HEL4 HEL4 T7 pET23a Ampicillin 

pET-Dp47d Dp47d T7 pET23a Ampicillin 

pEX-HEL4 HEL4 T7 pEX-A Ampicillin 

pEX-Dp47d Dp47d T7 pEX-A Ampicillin 
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2.3 Protein expression and purification 

 

2.3.1 Purification of β-lactamase constructs 

2.3.1.1    Small-scale expression trials 

 
Small-scale expression trials were carried out to identify the optimal concentration of 

arabinose for expression of the β-lactamase constructs.  BL21 (DE3) cells were 

transformed with the relevant plasmid (see Table 2.11) as described in Section 2.2.7.  A 

single colony from a fresh transformation was used to inoculate 100 mL of LB medium 

containing 10 μg/mL tetracycline. Cultures were incubated overnight at 37 °C with 

shaking at 200 rpm. 1 mL of overnight culture was used to inoculate 100 mL sterile LB 

containing 10 μg/mL tetracycline. The culture was incubated at 37 °C with shaking 

(200 rpm) until an OD600 of 0.6 was reached. A 50 mL sample was taken before induction 

and stored at -20 °C. Protein expression in the remaining 50 mL culture was induced by 

the addition of filter-sterilised arabinose to a final concentration (w/v) of 0.002 %, 0.02 %, 

0.2 %, or 2 % for the βla-linker constructs, or 10, 100 or 1000 mM IPTG for the WT 

β-lactamase construct. Cultures were grown for a further 3 h (37 °C, 200 rpm). The 

uninduced and induced cell cultures were harvested by centrifugation (10 min, 4000 rpm, 

JS 5.3 Beckman-Coulter rotor, 4 °C) and the periplasmic fractions of the remaining cell 

pellet extracted as described in Section 2.3.1.2.  

 

2.3.1.2    Extraction of periplasmic fraction 

 
To assess the expression levels of the β-lactamase constructs in the periplasm of E. coli, a 

periplasmic extraction was performed. All steps were carried out in the cold room using 

chilled reagents. The cell pellet was carefully resuspended in 20 mM Tris-HCl pH 8.0, 20 % 

(w/v) sucrose (4 mL of solution per gram of wet cell pellet). 1/100 volume of 100× 

protease inhibitor cocktail (100 mM phenylmethylsulphonyl fluoride, 200 mM 

benzamidine, dissolved in EtOH) was added to prevent any unwanted degradation. 40 µL 

0.5 M EDTA and 40 µL hen egg white lysozyme (10 mg/mL) were added per gram of wet 

cell pellet, and the reaction left for 20 min on an shaker.  80 µL of 1 M MgCl2 (per gram of 

wet cell pellet) was added to the solution, and the cell suspension was centrifuged 
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(20 min, 12,000 rpm, F-45-12-11 Eppendorf USA rotor, or JA 25.50 Beckman-Coulter 

rotor, 4 °C) before the supernatant was collected.  

The following protocol was used if polymyxin was utilised in place of the lysozyme for the 

periplasmic extraction. The cell pellet was carefully resuspended in ice cold polymyxin 

buffer (Table 2.6) (4 mL of solution per gram of wet cell pellet) and left to shake for 

60 min at 4 °C. 1/100 volume of 100× protease inhibitor cocktail (100 mM 

phenylmethylsulphonyl fluoride, 200 mM benzamidine, dissolved in EtOH) was added to 

prevent any unwanted degradation. The cell suspension was centrifuged (20 min, 

10,000 rpm, F-45-12-11 Eppendorf USA rotor, or JA 25.50 Beckman-Coulter rotor, 4 °C) 

before the supernatant was collected. The resulting supernatant fractions were diluted 

two-fold in 2× reducing SDS loading buffer (Table 2.6), and analysed by SDS PAGE 

(Section 2.3.1.3). 

 

2.3.1.3 Sodium dodecyl sulphate polyacrylamide gel 

electrophoresis  

 
Tris-tricine buffered sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) was used to separate proteins according to their molecular weight to monitor 

over-expression and purification of the recombinantly expressed proteins. Two glass 

plates were assembled according to the manufacturer’s instructions using a 1.5 mm 

spacer. A two-layered gel system consisting of a stacking and resolving gel was made using 

the components in Table 2.12. The resolving gel mixture was rapidly poured to within 

2 cm of the top of the glass plates.  The required volume of ammonium persulphate was 

added to the stacking gel and immediately poured on top of the resolving gel. A comb was 

inserted to create wells for sample loading. The gels were left for a minimum of 1 h to set. 

Solution Component 
Resolving Gel 

(mL) 
Stacking Gel 

(mL) 

30 % (w/v) Acrylamide: 0.8 % (w/v) bis-acrylamide 7.50 0.83 

3 M Tris-HCl, 0.3 % (w/v) SDS pH 8.45 5.00 1.55 

H2O 0.44 3.72 

Glycerol 2.00 - 

10 % (w/v) ammonium persulphate 0.05 0.10 

Tetramethylethylenediamine (TEMED) 0.01 0.01 

 
Table 2.12. Components of a Tris-tricine buffered SDS-PAGE gel.  The volumes stated 
allow casting of two mini-gels (8 cm × 10 cm) using a 1.5 mm spacer.  
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Protein samples were diluted two-fold in 2× reducing loading buffer (Table 2.6) and 

boiled (5 min) prior to loading. Mark12TM Unstained Protein Standards (Invitrogen, UK) or 

Precision Plus ProteinTM Dual Xtra Standards (Bio-Rad, UK) were loaded into one lane to 

allow size determination and thus identification of protein bands. Gels were 

electrophoresed with the inner reservoir of the gel tank buffered with cathode buffer 

(Table 2.6) and the outer reservoir buffered with anode buffer (Table 2.6).  A constant 

current of 30 mA was applied until the samples entered the resolving gel, and then the 

current was adjusted to 65 mA until the dye front reached the bottom of the gel. Gels were 

stained using Instant Blue stain (Expedeon, UK) and visualised and recorded using a 

Syngene InGenius gel documentation system (Syngene, UK). 

 

2.3.1.4     Large-scale expression of β-lactamase constructs 

 
Large-scale expression of all constructs was carried out for in vitro analysis of aggregation. 

BL21 (DE3) cells were transformed with the relevant plasmid (see Table 2.11) as 

described in Section 2.2.7. A single colony from a fresh transformation was used to 

inoculate 250 mL of LB medium containing the relevant antibiotic and incubated 

overnight at 37 °C with shaking at 200 rpm. 25 mL of overnight culture was then used to 

inoculate 10× 1 L sterile LB containing antibiotic. The cultures were incubated at 37 °C 

with shaking (200 rpm) until an approximate OD600 of 0.6 was reached. Protein expression 

was induced by the addition of filter-sterilised arabinose to a final concentration of 

0.2 % (w/v). Cultures were incubated at 37 °C, 200 rpm, for 3 h. Cells were harvested in a 

Stratos continuous-flow rotor centrifuge at 15,000 rpm (HCT 22.300 Heraeus rotor) and 

the periplasmic fraction extracted as described in Section 2.3.1.2.  

 

2.3.1.5    Removal of sucrose from periplasmic preparation 

 
The periplasmic fraction containing the β-lactamase construct was dialysed overnight 

(3,500 MWCO) against 5 L of 20 mM Tris-HCl, pH 7.5 at 4 °C with stirring. This process 

was repeated 3 times to remove all sucrose from the periplasmic preparation. The solution 

was filtered through a 0.2 µm syringe filter (Sartorius Stedim Biotech, UK) to remove large 

contaminants. 
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2.3.1.6 Anion exchange chromatography 

 
The dialysed periplasmic fraction obtained from 10 L of cells was loaded onto a 5 mL 

Hi Trap Q HP anion exchange column connected to an ÄKTA prime (GE Healthcare, UK), 

equilibrated with five column volumes of 20 mM Tris-HCl, pH 7.5 (buffer A) at 4 °C. The 

column was washed with three column volumes of buffer A before the protein was eluted 

with a linear gradient of 0 - 0.5 M NaCl, 20 mM Tris-HCl, pH 7.5 (Buffer B), maintaining the 

flow rate at 5 mL/min for all steps (see Table 2.13 for programme details). 1.5 mL 

fractions were collected and the elution of protein monitored by absorbance at 280 nm. 

Fractions corresponding to the various peaks were analysed by SDS PAGE (see Section 

2.2.3). The fractions were also tested for enzyme activity (see Section 2.5.1) to confirm the 

location of β-lactamase. The fractions that contained the β-lactamase construct were 

pooled for further purification.  

 

Breakpoint 
(mL) 

Flow Rate 
(mL/min) 

Line  
Percentage 
Line B (%) 

Fraction Size 
(mL) 

Auto Zero 

0 5 A1 0 0 No 

15 5 A2 0 10 Yes 

50 5 A1 0 10 No 

60 5 A1 0 1.5 No 

100 5 A1 70 1.5 No 

102 5 A1 100 1.5 No 

120 5 A1 100 0 No 

 
 
Table 2.13. ÄKTA prime program for β-lactamase constructs and HEL4 purification. 

Purification was carried out using a Hi Trap Q HP anion exchange column.                          

Line A = Buffer A, Line A2 = protein sample, Line B = Buffer B.   
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2.3.1.7 Size exclusion column chromatography 

 
The fractions containing the desired β-lactamase construct were concentrated to a final 

volume of 5 mL using an Amicon Ultra Centrifugal filter (10,000 MWCO). The 5 mL sample 

was loaded onto a Superdex™ 75 GL 10/300 gel filtration column connected to an ÄKTA 

prime (GE Healthcare, UK), which had been equilibrated with 250 mL of 20 mM Tris-HCl, 

pH 7.5 at 4 °C. The protein was eluted from the column at a flow rate of 2 mL/min (see 

Table 2.14 for program details). 1.5 mL fractions were collected and the elution of protein 

monitored by absorbance at 280 nm. Fractions corresponding to the main peak were 

analysed by SDS PAGE (Section 2.2.3). 

 

Breakpoint 
(mL) 

Flow Rate 
(mL/min) 

Fraction Size 
(mL) 

Injection Valve 
Position 

Auto Zero 

0 2 0 Load No 

10 2 0 Inject Yes 

20 2 0 Load No 

90 2 1.5 Load No 

320 2 0 Load No 

 
 
Table 2.14. ÄKTA prime program for β-lactamase constructs and HEL4 purification. 

Purification was carried out using a Superdex™ 75 GL 10/300 gel filtration column. 
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2.3.2 Purification of HEL4 and Dp47d antibody domains 

 

2.3.2.1    Large-scale expression of antibody domains 

 
The antibody domains HEL4 and Dp47d were over-expressed using the following method 

adapted from Jespers et al., 2004376. BL21 (DE3) cells were transformed with either 

pET-HEL4 or pET-Dp47d (see Table 2.11) as described in Section 2.2.7.  A single colony 

from a fresh transformation was used to inoculate 250 mL of LB medium containing 

100 μg/mL ampicillin and incubated overnight at 37 °C with shaking at 200 rpm. 25 mL of 

overnight culture was then used to inoculate 10× 1 L of sterile LB containing 100 μg/mL 

ampicillin. The cultures were incubated at 37 °C with shaking (200 rpm) until an 

approximate OD600 of 0.6 was reached. Protein over-expression was induced by the 

addition of filter-sterilised IPTG to a final concentration of 100 µM. After 3 h further 

incubation (37 °C, 200 rpm), cells were harvested in a Stratos continuous-flow rotor 

centrifuge at 15,000 rpm (HCT 22.300 Heraeus rotor). 

 

2.3.2.2    Isolation of antibody domain inclusion bodies 

 
Cell pellets were resuspended in 50 – 100 mL lysis buffer (25 mM Tris-HCl, pH 8.0, or 

10 mM sodium phosphate, pH 7.0, lysozyme (100 µg/mL), PMSF (50 µg/mL), DNase 

(20 µg/mL), and 1 mM EDTA) and incubated at room temperature for 30 minutes with 

stirring. As the isoelectric point (pI) of Dp47d is 8.02, the lysis buffer was made using 

10 mM sodium phosphate buffer, pH 7.0 instead of the 25 mM Tris-HCl, pH 8.0 used for 

HEL4.  The insoluble fraction was pelleted by centrifugation (15,000 rpm, Beckman JLA 

16.250 rotor, 4 °C, 30 min). The cell pellet containing the protein as inclusion bodies was 

washed five times in 100 mL of 25 mM Tris-HCl, pH 8.0 (HEL4) or 10 mM sodium 

phosphate, pH 7.0 (Dp47d) with the inclusion bodies being pelleted by centrifugation after 

each resuspension. 
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2.3.2.3    Purification of HEL4 antibody domain 

 
Inclusion bodies containing the HEL4 antibody domain were solubilised in 200 mL of 8 M 

urea, 25 mM Tris-HCl, pH 8.0 overnight, then sealed in a piece of SnakeSkin pleated 

dialysis tubing (Thermo Scientific, UK; 3,500 MWCO). The protein was refolded by dialysis 

against 5 L of 25 mM Tris-HCl, pH 8.0. The buffer was exchanged for fresh buffer five times 

over two days, after which any precipitate was removed by filtering the solution through a 

0.2 µm syringe filter (Sartorius Stedim Biotech, UK). 

The dissolved HEL4 inclusion bodies were loaded onto a 5 mL Hi Trap Q HP anion 

exchange column connected to an ÄKTA prime (GE Healthcare, UK), equilibrated with five 

column volumes of 20 mM Tris-HCl, pH 8.0 (buffer A) at 4 °C. The column was washed 

with one column volume of buffer A before the protein was eluted with a linear gradient of 

0 - 0.5 M NaCl in 20 mM Tris-HCl, pH 8.0 (see Table 2.13 for program details). The flow 

rate was maintained at 5 mL/min for all steps. 1.5 mL fractions were collected and the 

elution of protein monitored by measuring the absorbance at 280 nm. Fractions 

corresponding to the various peaks were analysed by SDS PAGE (see Section 2.3.1.3). The 

fractions that contained HEL4 were pooled together and concentrated to a final volume of 

5 mL using an Amicon Ultra Centrifugal filter (3,000 MWCO). The protein was further 

purified by size exclusion chromatography using a Superdex™ 75 GL 10/300 gel filtration 

column connected to an ÄKTA prime chromatography system (GE Healthcare, UK). The 

column was equilibrated by washing with two column volumes 25 mM Tris-HCl, pH 8.0. 

For each gel filtration run, 3 mL of solubilised HEL4 was loaded into a 5 mL loop at a 

concentration of up to 10 mg/mL and eluted using the program detailed in Table 2.14. 

1.5 mL fractions were collected and the protein elution monitored by absorbance at 

280 nm. Fractions corresponding to the main peak were analysed by SDS PAGE (Section 

2.3.1.3) and purity was confirmed by mass spectrometry. Purified HEL4 was freeze-dried 

and stored at -80 °C. 

Analytical size exclusion chromatography was performed using a Superdex™ 75 

HR/10/30 analytical gel column connected to an ÄKTA prime chromatography system (GE 

Healthcare, UK). The column was equilibrated by washing with two column volumes 

25 mM Tris-HCl, pH 8.0. For each gel filtration run, 90 µL of solubilised HEL4 (50 µM) was 

loaded into a 100 µL loop and eluted at 0.5 mL/min. Protein elution was monitored by 

absorbance at 280 nm. 
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2.3.2.4 Purification of Dp47d antibody domain 

 
Inclusion bodies of the Dp47d antibody domain were solubilised in 10 mL of 4 M GuHCl, 

50 mM glycine, pH 9.5, overnight at 4 °C. Any precipitate was removed by filtering the 

solution through a 0.2 µm syringe filter (Sartorius Stedim Biotech, UK). 3 mL was loaded 

onto a Superdex™ 75 GL 10/300 connected to an ÄKTA prime (GE Healthcare, UK), 

equilibrated with two column volumes of 4 M GuHCl, 50 mM glycine, pH 9.5. The protein 

was eluted following the program detailed in Table 2.15. Fractions corresponding to the 

main peak were pooled and trichloroacetic acid (TCA) precipitation (Section 2.3.2.5) was 

used to remove GuHCl from protein samples to facilitate analysis by SDS-PAGE (see 

Section 2.3.1.3).  Purified Dp47d was refolded by dialysis (3,000 MWCO membrane) 

against 50 mM glycine, pH 9.5 and concentrated to a final concentration of 2 mg/mL using 

an Amicon Ultra Centrifugal filter (3,000 MWCO). Protein was frozen using liquid nitrogen 

and stored at – 80 °C.  

Analytical size exclusion chromatography was performed using a Superdex™ 75 HR 

10/30 analytical column connected to an ÄKTA prime chromatography system (GE 

Healthcare, UK). The column was equilibrated by washing with two column volumes 

25 mM Tris-HCl, pH 8.0. For each gel filtration run, 90 µL of solubilised HEL4 (50 µM) was 

loaded into a 100 µL loop and eluted at 0.5 mL/min. Protein elution was monitored by 

absorbance at 280 nm. 

 
Breakpoint 

(mL) 
Flow Rate 
(mL/min) 

Fraction Size 
(mL) 

Injection Valve 
Position 

Auto Zero 

0 1 0 Load No 

10 1 0 Inject Yes 

20 1 0 Load No 

90 1 1.5 Load No 

320 1 0 Load No 

 
Table 2.15. ÄKTA prime programme parameters for purification of Dp47d. Gel filtration 
was carried out using a Superdex™ 75 GL 10/300 in 4 M GuHCl, 50 mM glycine, pH 9.5. 
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2.3.2.5 Trichloroacetic acid precipitation 

 
TCA precipitation was used to remove GuHCl from Dp47d protein samples prior to SDS-

PAGE. An equal volume of 12.5 % (v/v) TCA was added to the sample, which was then 

incubated on ice for 20 min. The precipitated protein was collected by centrifugation in a 

microfuge (13,000 rpm, JS 5.3 Beckman-Coulter rotor, 10 min, 4 °C) and the supernatant 

discarded. The pellet was washed with 1 mL ice cold EtOH and collected by centrifugation 

as before. The supernatant was again discarded and any residual solvent was removed 

from the protein pellet by drying in a heat block at 95 °C. The dried pellet was 

resuspended in SDS-PAGE loading buffer and boiled for 5 min before loading onto the gel.  

 

2.3.3 Purification of amyloid-β40 

 
The amyloid-β40 purification protocol was developed and performed by Rachel A. Mahood 

(The Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, 

University of Leeds, UK). 

The plasmid containing amyloid-β1-40 (Aβ40) was kindly donated by Dominic Walsh 

(Brigham & Women's Hospital, Boston, USA) and Sara Linse (Lund University, Sweden)378.   

E. coli BL21 (DE3) pLysS cells expressing Aβ40 were grown in LB medium containing 

100 µg/mL ampicillin and 25 µg/mL chloramphenicol at 37 °C with shaking (200 rpm) 

until an approximate OD600 of 0.5 was reached. Protein expression was induced by the 

addition of filter-sterilised IPTG to a final concentration of 0.5 mM. Cells were incubated at 

37 °C for 3 h before being collected by centrifugation (6000 rpm, JLA 8.1000 Beckman-

Coulter rotor, 15 min, 4 ˚C). Purification was performed using a modified version of a 

protocol (provided by Walsh et al., 2009378) published in Saunders & Young et al., 2014379. 

Cells were disrupted in 10 mM Tris-HCl, 1 mM EDTA, pH 8.5, 20 µg/mL DNase, 1 mM 

PMSF, 2 mM benzamidine. The suspension was stirred at 4 °C for 1 h before 

homogenisation and sonication (Soniprep 150 sonicator, 9.5 nm probe (MSE, UK), 30 s, 

4 W). The extract was centrifuged (20,000 rpm, JA 25.50 Beckman-Coulter rotor, 15 min, 4 

˚C) and the pellet resuspended in 10 mM Tris-HCl, pH 8.5, 8 M urea. The suspension was 

sonicated to dissolve the inclusion bodies, and then centrifuged again. The supernatant 

was collected and diluted 1:4 in 10 mM Tris-HCl, pH 8.5 buffer and agitated gently with Q 

Sepharose Fast Flow resin (GE Healthcare, UK.) for 30 min. The resin was washed with 50 

mL of 10 mM Tris-HCl, pH 8 and then again with 10 mM Tris-HCl, 25 mM NaCl, pH 8. 



MATERIALS AND METHODS 

107 
 

Peptide-enriched fractions were then eluted with 4× 50 mL of 125 mM NaCl, dialysed into 

50 mM ammonium bicarbonate and lyophilised. Partially purified Aβ40 (~10 mg/mL) was 

resolubilised in  50 mM Tris-HCl, 7 M GuHCl, pH 8.5 and purified by size exclusion 

chromatography on a HiLoad Superdex™ 75 26/60 column (GE Healthcare, UK) into 

50 mM ammonium bicarbonate before being lyophilised and stored  at -20 °C. 

 

2.3.4 Acquisition of IAPP and Aβ42  

 
Human and rat islet amyloid polypeptide were synthesised and purified as described in 

Marek, 2010380 and kindly provided by Cynthia Tu and Professor Daniel Raleigh (Stony 

Brook University, New York, USA).  Synthetic Aβ42 was purchased from Invitrogen 

(Paisley, UK), catalogue number 03-112.   
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2.4 Minimal inhibitory concentration (MIC) of antibiotic 

assays 

 

2.4.1 MIC assay in absence of small molecules 

 
Spot titre tests were performed to determine the level of antibiotic resistance of cells 

expressing the β-lactamase tripartite fusions. A single colony from fresh E. coli BL21 (DE3) 

cells, transformed with the appropriate plasmid (Table 2.11), was used to inoculate 

100 mL sterile LB containing 10 µg/mL tetracycline (Section 2.2.7). Cultures were 

incubated overnight at 37 °C with shaking (200 rpm). 1 mL of overnight culture was used 

to inoculate 100 mL sterile LB containing 10 µg/mL tetracycline and grown at 37 °C 

(shaking at 200 rpm) until an OD600 of 0.6 was reached. Expression of the β-lactamase 

construct was induced by the addition of filter-sterilised arabinose to a final concentration 

of 0.02 % (w/v). Cultures were incubated for a further 1 h, when the OD600 of the cells was 

adjusted to 1.0 using sterile LB, and serially diluted in 10-fold increments into sterile 

170 mM NaCl solution. 2 µL of each dilution was then spotted onto LB agar plates 

supplemented with 10 µg/mL tetracycline, 0.02 % (w/v) arabinose, and increasing 

concentrations of ampicillin (0.0 – 140 µg/mL). The plates were incubated at 37 °C for 

18 h and the maximal cell dilution allowing cell growth was determined for each ampicillin 

concentration.   

 

2.4.2 MIC assay in presence of increasing small molecule 

concentrations 
 
Circular agar plates containing the small molecule of interest were prepared prior to the 

assay using the following technique. Tetracycline (final concentration of 10 μg/mL), filter 

sterilised arabinose (0.02 % w/v) and increasing volumes of 10 mM small molecule 

(dissolved in DMSO, H2O, or EtOH) or solvent were added to 25 mL of sterile LB agar 

cooled to < 50 °C, to give final concentrations of small molecule of 0, 0.2, 2, 20 or 200 µM. 

Ampicillin stock was added to give final ampicillin concentrations from 0 – 0.5 mg/mL. 

The plates were poured in a sterile environment.  

The same culture growth conditions as described above (Section 2.4.1) were used until 

cultures had reached an OD600 of 0.6. β-lactamase construct expression was induced by the 
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addition of filter-sterilised arabinose to a final concentration of 0.02 % (w/v). 10 mM small 

molecule stock (or solvent) was added to the cultures to give final concentrations of 0, 0.2, 

2, 20 or 200 µM. These cultures were incubated for a further 1 h after which the OD600 of 

the cells was adjusted to 1.0 using sterile LB and serially diluted in 10-fold increments into 

sterile 170 mM NaCl solution. 3 µL of each dilution was then spotted onto the agar plates 

supplemented with small molecule, 10 µg/mL tetracycline, 0.02 % (w/v) arabinose, and 

increasing concentrations of ampicillin (0.0 – 0.5 mg/mL). The plates were incubated at 

37 °C for 18 h and the maximal cell dilution allowing cell growth was determined for each 

ampicillin concentration.  

 

2.4.3 MIC assay with bacterial lawns 

 
To reduce the number of agar plates required to carry out the MIC assay over a wide range 

of small molecule concentrations, bacterial lawns in 8-well plates were utilised. Figure 4.5 

shows a summary schematic of this technique. Bottom agar was prepared by pipetting 

4 mL of 1.5 % (w/v) LB agar containing 10 μg/mL tetracycline, 0.02 % (w/v) arabinose 

and 10 mM small molecule (to give the final concentration required) into each well of a 

sterile 8-well dish (Nunc International). Single colonies of BL21 (DE3) cells transformed 

with the relevant plasmid (Table 2.11) were used to inoculate 100 mL LB overnight 

starter cultures, 1 mL of which in turn was used to inoculate 100 mL LB in 250 mL flasks. 

The cultures were grown at 37 °C until an OD600 of 0.6 was reached. 0.5 mL of culture was 

then used to inoculate 25 mL of sterile 0.7 % (w/v) LB agar containing 0.02 % (w/v) 

arabinose at < 40 °C. 400 µL of this culture was added to prepared small molecule aliquots 

(containing equal final concentrations of solvent: DMSO, H2O, or EtOH) ranging from 0.0 – 

200 µM. 350 µL of this was pipetted on top of the bottom agar in a single well in the 8-well 

dish. Top agar was allowed to set before 1 µL of increasing concentrations of ampicillin 

(0.0 – 0.5 mg/mL) was pipetted on top of each well. Plates were incubated for 18 h at 

37 °C. The maximum concentration of ampicillin at which the cells could grow was scored 

for each construct and each concentration of small molecule. Inhibition of growth was 

scored by the identification of zones of clearance in the bacterial lawn. 
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2.4.4 MIC assay in presence of constant small molecule 

 
Assays were performed in 48-well agar plates (Greiner Bio-One, Germany) using a 

constant concentration of small molecule (100 µM). Figure 4.7 shows a summary 

schematic of the technique.  

48-well agar plates containing the small molecule of interest were prepared prior to the 

assay using the following technique. Two plates were prepared for each small molecule of 

interest, one for bacteria expressing the βla-linker construct and one for bacteria 

expressing the βla-hIAPP construct. 3 µL of 10 mM small molecule (dissolved in DMSO, 

H2O, or EtOH) were added to each well of two 48-well plates. Tetracycline (10 μg/mL final 

concentration) and filter sterilised arabinose (0.02 % w/v) were added to 100 mL of 

sterile agar cooled to < 50 °C in a beaker. 297 µL of this solution was pipetted into each of 

the first 6 wells (first row) of both 48-well plates. Plates were shaken (manually) to ensure 

homogenous mixing of the agar and small molecule. Ampicillin (10 mg/mL stock) was 

added to the beaker of agar to give the required volume for the next row of wells (see 

Table 2.16). 297 µL of this agar was then pipetted into row two of each 48-well agar plate. 

This procedure was repeated until the plate contained 8 rows of agar containing 

concentrations of ampicillin from 0 – 140 µg/mL. Agar plates were left to set in a sterile 

environment. The same protocol was followed to produce an additional two plates 

containing no small molecule (3 µL of solvent was added to the wells in place of small 

molecule). 

[Ampicillin] 

required 

(µg/mL) 

Agar stock 

volume 

(mL) 

(X) 

Small 

molecule 

required in 

X 

(mg) 

Small 

molecule 

already in 

X  

(mg) 

Additional 

small 

molecule 

required in X 

(mg) 

10 mg/mL 

ampicillin to add 

to X 

(µL) 

0 100.0 0.00 0.00 0.00 0 

20 96.4 1.93 0.00 1.93 193 

40 92.8 3.71 1.86 1.86 186 

60 89.2 5.35 3.57 1.78 178 

80 85.6 6.85 5.14 1.71 171 

100 82.0 8.20 6.56 1.64 164 

120 78.4 9.41 7.84 1.57 157 

140 74.8 10.5 8.98 1.50 150 

 
Table 2.16. Protocol for titration of ampicillin into agar stock.  
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The same culture growth conditions as described above (Section 2.4.1) were used until 

cultures had reached an OD600 of 0.6. β-lactamase construct expression was induced by the 

addition of filter-sterilised arabinose to a final concentration of 0.02 % (w/v). 396 µL were 

removed and added to a 1.5 mL Eppendorf containing 4 µL of 10 mM small molecule (to 

give a final concentration of 100 µM). These cultures were incubated for a further 1 h 

when the OD600 of the cells was adjusted to 1.0 with LB media and serially diluted in 

10-fold increments into sterile 170 mM NaCl solution. 3 µL of each dilution was then 

spotted onto the agar plates supplemented with 100 µM small molecule, 10 µg/mL 

tetracycline, 0.02 % (w/v) arabinose, and increasing concentrations of ampicillin (0.0 – 

140 µg/mL). The plates were incubated at 37 °C for 18 h and the maximal cell dilution 

allowing cell growth was determined for each ampicillin concentration.  

 

2.4.5 MIC assay in presence of excipients 

 

2.4.5.1   Sorbitol and glycerol 

 
48-well agar plates containing the excipient of interest were prepared prior to the assay 

using the following technique. A 5 M stock solution of sorbitol and a 5 M stock solution of 

glycerol were prepared using LB media and sterilised by autoclave (20 min at 121 °C, 

15 psi). The solutions were cooled to < 50 °C then mixed, according to Table 2.17, with 

2× strength sterile agar (3 % w/v, cooled to < 50 °C) to give the required final 

concentration of excipient. Tetracycline (final concentration of 10 μg/mL) and filter 

sterilised arabinose (0.02 % w/v) were added to the agar solution, and the 48-well agar 

plates were prepared as described in Section 2.4.4 to give 8 rows of agar containing 

concentrations of ampicillin from 0 – 140 µg/mL (20 µg/mL increments). The plates were 

poured in a sterile environment.  

The same culture growth conditions as described in Section 2.4.1 were used, however the 

1.5 mL Eppendorfs contained 200 µL of sorbitol or glycerol stock solutions to give the final 

excipient concentrations required in a final volume of 400 µL. When cultures had reached 

an OD600 of 0.6, β-lactamase construct expression was induced by the addition of filter-

sterilised arabinose to a final concentration of 0.02 % (w/v). 200 µL were removed and 

added to the 1.5 mL Eppendorf tubes. The same protocol as described in Section 2.4.4 for 

addition of cultures to plates and incubation were followed. 
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[Excipient] Required 

(M) 

5 M Excipient Stock 

(mL) 

Sterile LB Medium 

(mL) 

2× Sterile Agar  

(3 % w/v) (mL) 

0.000 0.0 0.0 50.0 

0.250 5.0 45.0 50.0 

0.375 7.5 42.5 50.0 

0.500 10.0 40.0 50.0 

1.000 20.0 30.0 50.0 

1.500 30.0 20.0 50.0 

2.000 40.0 10.0 50.0 

 
Table 2.17. Protocol for preparation of sorbitol and glycerol agar plates. 

 

2.4.5.2   Arginine and glutamate 

 
The agar plates for the excipients arginine and glutamic acid were prepared in the same 

manner as described in Section 2.4.2, however the pH of the agar had to be adjusted prior 

to pouring the agar plates. A stock solution containing 200 mM L-arginine and 200 mM 

L-glutamate was prepared using LB medium and the pH reduced to 7 using 5 mM HCl. The 

solution was sterilised using a 0.2 µm filter. The solutions were cooled to < 50 °C then 

mixed, according to Table 2.18, with 2× strength sterile agar (3 % w/v, cooled to < 50 °C) 

to give the required final concentration of excipient. Stock solutions of 200 mM L-arginine 

or 200 mM D-arginine were utilised for the plates requiring only these excipients. The 

same protocol as described for the excipients sorbitol and glycerol in Section 2.4.5.2 was 

followed.   

  
[Excipient] Required 

(M) 

200 mM Arg:Glu 

Stock (mL) 

Sterile LB Medium 

(mL) 

2× Sterile Agar  

(3 % w/v) (mL) 

0 0.0 50.0 50.0 

25 12.5 37.5 50.0 

50 25.0 25.0 50.0 

100 50.0 0.0 50.0 

 

Table 2.18. Protocol for preparation of mixed L-arginine and L-glutamate agar plates. 

 

  



MATERIALS AND METHODS 

113 
 

2.5 In vitro techniques 

 
 

2.5.1 Identification of fractions containing β-lactamase during 

purification 

 
Nitrocefin was dissolved in DMSO (5 % (w/v), 0.1 M sodium phosphate buffer, pH 7.0 to 

make a stock solution of 1 mM. The solution was protected from light and stored in 10 µL 

aliquots at – 20 °C for a maximum of 2 months. 5 µL samples of each fraction were diluted 

200× or 400× in 20 mM Tris-HCl, pH 7.5. 90 µL of this dilution was added to 10 µL of 

nitrocefin stock solution and the solution left for 2 min. 90 µL of 20 mM Tris-HCl pH 7.5 

containing 10 µL of nitrocefin was used as a blank. The absorbance at 486 nm was 

measured after the 2 min incubation.  

 
 

2.5.2   Isoelectric point precipitation of WT β-lactamase  

 
The pH-dependence of wild-type (WT) β-lactamase was assessed at pH 3 – 10, using 0.1 M 

citrate-Na2HPO4 for the pH range 3 – 8, and 0.1 M glycine-NaOH for pH 10. A 50 µM 

solution of WT β-lactamase was buffer exchanged into the required buffers and the 

enzyme activity measured immediately using the following protocol. 5 µL of nitrocefin 

stock solution (see Section 2.5.1) was added to 45 µL WT β-lactamase solution (to give a 

final protein concentration of 10 µM) and the absorbance at 486 nm was measured over 

time (150 sec).  

The Beer-Lambert law (Equation 2.2) using a molar extinction coefficient (ε) of 

hydrolysed nitrocefin (20,500 M-1cm-1)381 was used to calculate the change in 

concentration over time. A plot of hydrolysed nitrocefin vs. time was created using the 

where A is the absorbance, ε corresponds to the molar extinction coefficient of nitrocefin 

(M-1cm-1), c is the concentration of nitrocefin (M), and l is the length of the light path (cm). 

 
𝐴 =  𝜀𝑐𝑙    Equation 2.2 

 

Percent activity was calculated by taking the activity at pH 7 as 100 %. 
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The activity of WT β-lactamase samples aggregated by isoelectric point precipitation was 

measured using the following protocol. The pH of a WT β-lactamase solution in 20 mM 

Tris-HCl, pH 7.5 was adjusted to 5.4 with concentrated hydrochloric acid. The solution was 

diluted to 50 µM and incubated at 37 °C, 200 rpm, for 0, 12 or 24 h before the activity was 

measured as described above. Sample turbidity at the end of each incubation time was 

measured as described in Section 2.5.5. 

 

2.5.3 Thermal denaturation of WT β-lactamase  

 
Tryptophan fluorescence emission spectra were acquired using a Photon Technology 

International fluorimeter (Ford, West Sussex, UK). Spectra were recorded using an 

excitation wavelength of 280 nm, and recording emission from 290 nm to 400 nm with 

excitation and emission slit widths set at 3 nm. A step size of 1 nm and resolution time 

of 1 s was used. Blank spectra were subtracted from the sample. 1 µM WT β-lactamase in 

50 mM sodium phosphate, pH 7 was incubated in a water bath at 20 °C for 20 min before 

measurements were taken. Thermal denaturation was carried out by raising the 

temperature from 20 °C – 80 °C at 3 °C increments at a ramp rate of 3 °C/min.  

 

2.5.4 Freeze-thaw precipitation of WT β-lactamase  

 
100 µL samples of 50 µM β-lactamase in 20 mM Tris-HCl buffer, pH 7.5 was subjected to 0, 

5 or 10 freeze-thaw cycles. Samples were placed in a –20 °C freezer for 20 min, before 

being thawed at room temperature. Samples were incubated at 44 °C for 1 h between each 

cycle. The enzyme activity of the samples was measured as described in Section 2.5.2. 

 

2.5.5 Nephelometry 

 
Nephelometry was used to determine the extent of aggregation in protein samples. 100 µL 

of 50 µM protein in appropriate buffer was added to the wells of a flat-bottomed 96-well 

plate (CoStar, UK). To avoid evaporation and condensation, the plates were sealed with 

transparent, hydrophobic and gas permeable plastic films (Breathe Easy, Sigma Aldrich) 

during incubation and measurement. Aggregation endpoint and time profiles were 

recorded by monitoring the turbidity of the sample using a NEPHELOstar Galaxy laser-
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based microplate nephelometer (BMG LABTECH, Germany). The laser intensity was 

adjusted to 90 % and the laser beam focus to 2.5 mm. For aggregation endpoint assays, 

single readings were taken after the plate was orbitally shaken with a shake width of 

2 mm for 30 s. For aggregation time profiles, incubation temperature was 37 °C, and 

between measurement cycles the plate was orbitally shaken with a shake width of 2 mm. 

These values were determined to be optimal by performing the assay in the presence of 

pre-aggregated protein. The turbidity in the absence of protein was measured and 

subtracted from all the protein measurements. 

 

2.5.6 Transmission electron microscopy 

 
Transmission electron microscope images were acquired on a JEOL JEM-1400 

transmission electron microscope (JEOL Ltd., Japan) equipped with a Gatan Orius camera 

after incubating 32 µM protein (βla-linker, βla-hIAPP, rIAPP, hIAPP, Aβ40, or Aβ42) 

solutions in the presence or absence of 320 µM small molecule for 5 days at 25 °C. Carbon 

grids were prepared by irradiating under UV light for 30 min and staining with 4 % (w/v) 

uranyl acetate solution.  

 

2.5.7 Thioflavin T fluorometry 

 
100 µL samples containing 100 µM thioflavin T and 32 µM protein in 200 mM ammonium 

acetate, pH 6.8 and a 1 % (v/v) final concentration of DMSO were prepared in a 96-well 

plate and sealed with clear sealing film. Plates were incubated in a FLUOstar OPTIMA plate 

reader for 5 days at 25 °C without agitation. Fluorescence was excited using a 440 ± 5 nm 

filter, and emission intensity was measured using a 485 ± 5 nm filter.  

 

2.5.8 Mass spectrometry 

 
All mass spectrometry was carried out by Lydia M. Young, under the supervision of 

Professor Alison A. Ashcroft (Astbury Centre for Structural Molecular Biology, Faculty of 

Biological Sciences, University of Leeds, UK). 
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2.5.8.1    Sample preparation 

 
Lyophilised hIAPP and rIAPP samples were dissolved in DMSO to a concentration of 

3.2 mM. After 24 h incubation at 25 °C, stock solutions were diluted in 200 mM ammonium 

acetate, pH 6.8, to give a final peptide concentration of 32 μM for mass spectrometry 

analysis. The final concentration of DMSO was 1 % (v/v). Lyophilised Aβ40 and Aβ42 were 

dissolved at 32 µM in 200 mM ammonium acetate, pH 6.8, 1 % DMSO (v/v). The Aβ40 and 

Aβ42 peptide samples were centrifuged at 13,000 rpm, 4 °C for 10 min before analysis. All 

samples were incubated at 25 °C in 96-well plates without agitation.  

 

2.5.8.2    ESI-(IMS)-MS analysis  

 
A Synapt HDMS quadrupole-time-of-flight mass spectrometer (Micromass UK Ltd., Waters 

Corpn., Manchester, UK), equipped with a Triversa (Advion Biosciences, Ithaca, NY, USA) 

automated nano-ESI interface, was used for the analyses. The instrument has a travelling-

wave IMS device situated between the quadrupole and the time-of-flight analysers, and 

has been described in detail elsewhere382. hIAPP, Aβ40 or Aβ42 samples were analysed 

using positive ionisation nanoESI (nESI) with a capillary voltage of 1.7 kV and a nitrogen 

nebulising gas pressure of 0.8 psi. The following instrumental parameters were used: cone 

voltage 30 V; source temperature 60 °C; backing pressure 1.6 mBar; ramped travelling 

wave height 7–20 V; travelling wave speed 300 m/s; IMS nitrogen gas flow 20 mL/min; 

IMS cell pressure 0.55 mBar. Data were processed by use of MassLynx v4.1 and Driftscope 

software supplied with the mass spectrometer. The m/z scale was calibrated with aq. CsI 

cluster ions.  

For ESI-IMS-MS time course experiments, 50 µM peptide samples were incubated in 

200 mM ammonium acetate buffer, pH 6.8, 1 % DMS) for 2 min or 24 h. 10 µL volumes 

were removed from each solution and infused into the mass spectrometer for analysis. 

 

2.5.8.3    Analysis of ligand binding to monomeric hIAPP  

 
hIAPP or Aβ40 (32 μM) were dissolved in 200 mM ammonium acetate (pH 6.8) containing 

32 μM or 320 μM of small molecule. For analysis of these samples by nESI-MS, a sampling 

cone voltage of 30 V was used to preserve protein-ligand interactions, and a backing 

pressure of 1.6 mbar was applied. Data were acquired over the range m/z 200–6,000, and 



MATERIALS AND METHODS 

117 
 

processed by use of MassLynx v4.1 and Driftscope software supplied with the mass 

spectrometer. The m/z scale was calibrated with aq. CsI cluster ions.  

 

2.5.9 Virtual screening for small molecules 

 
Virtual screening was performed by Charlotte H. Revill and Dr. Richard J. Foster 

(University of Leeds). The structure of each of the five query molecules (vanillin, 

resveratrol, curcumin, chloronaphthoquinine-tryptophan and epigallocatechin-3-gallate 

(EGCG)) was minimised to the lowest energy conformer using LigPrep383.  The minimised 

conformers were used as the query scaffold for virtual screening of an in-house library of 

50,000 structurally diverse, novel small molecules using Rapid Overlay of Chemical 

Structures (ROCS)384. ROCS is a 3D method that matches the shape of a molecule to the 

shape of the query molecule. ROCS also incorporates pharmacophoric features in 

assessing overlays such that the ROCS Combiscore in ROCS measures the similarity of the 

matched shapes as well as the matched pharmacophoric features. Virtual hits were pooled 

and ranked according to the ROCS Combiscore parameter and 20 of the top 100 

compounds selected for screening based on a qualitative assessment of structural 

diversity. 
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3 Demonstrating assay feasibility in vivo 

 

3.1 Objectives 

 
The preliminary objective of this thesis was to develop a periplasmic-based enzyme assay 

to identify protein aggregation in vivo. The assay requires the activity of the reporter 

protein to be modulated when in an aggregated state, induced by the insertion of an 

aggregation-prone sequence into a loop region separating the two enzyme domains. The 

reporter protein used in this assay is the periplasmic enzyme β-lactamase, inspired from 

previous studies using a tripartite β-lactamase construct308, 313.  

 

3.2 The reporter protein β-lactamase    

 
The production of β-lactamases is the most widespread defence mechanism of bacteria to 

β-lactam antibiotics such as the penams, cephalosporins and carbapenems (Figure 3.1). 

These chemical compounds interfere with the final step in the synthesis of peptidoglycan, 

a major component of bacterial cell walls. Peptidoglycan is a strong, yet flexible, cross-

linked polymer which gives structural strength to the bacteria and protects them from the 

osmotic pressure of the cytoplasm385. It is composed of linear glycan strands of repeating 

disaccharide units of N-acetyl glucosamine (GlcNac) and N-acetylmuramic acid (MurNAc), 

cross-linked via short peptides (Figure 3.2a).  

 

 

 
 
Figure 3.1. The core structures of β-lactam antibiotics. They all share a common β-lactam 

ring, shown in green. The arrows indicate where β-lactamase hydrolyses the amide bond 

of the β-lactam ring.   
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Figure 3.2. Biosynthesis of peptidoglycan and its inhibition by β-lactam antibiotics. (a) 

Schematic of peptidoglycan (PG) biosynthesis in gram negative bacteria. The PG 

precursors GlcNAc and MurNAc-pentapeptide are incorporated into the polymer by 

transglycosylation and transpeptidation, carried out by the activity of penicillin binding 

proteins (PBPs). (b) β-lactam antibiotics are structural analogues of the dipeptide 

terminus (D-Ala-D-Ala). (c) β-lactam antibiotics irreversibly bind to PBP active sites, 

thereby rendering the enzymes inactive and unable to synthesise further peptidoglycan.  
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The bactericidal effect of β-lactam antibiotics results from their inhibition of the penicillin 

binding proteins (PBPs) responsible for the cross-linking (via transpeptidation) of nascent 

peptidoglycan chains386. β-lactams are structural analogues of D-Ala-D-Ala, the dipeptide 

terminus of the peptide component of the peptidoglycan unit (Figure 3.2b). This 

structural similarity enables the β-lactam antibiotic to irreversibly bind the catalytic site of 

the transpeptidase PBP (Figure 3.2c)386. This process disrupts cell wall synthesis and, at 

high enough concentrations of β-lactam antibiotic, results in cell lysis387. 

β-lactamases prevent the irreversible inhibition of PBPs by catalysing the irreversible 

hydrolysis of the amide bond in β-lactam antibiotics (Figure 3.1). The enzymes are 

secreted either to the periplasm (Gram negative bacteria) or the outer membrane (Gram 

positive bacteria) and can be produced constitutively or induced by the presence of 

β-lactam agents388. The molecular classification of β-lactamases is based on the similarities 

in their amino acid sequences and the nature of their catalytic mechanism. There are four 

classes (A to D), three of which contain a serine as an active site residue (classes A, C and 

D). A small number (class B) require the presence of one or two Zn2+ ions in their active 

site for catalysis389. Interestingly, the enzymes that contain serine as an active site residue 

show significant structural similarities to the PBPs, suggesting that they are derived from 

the same ancestral protein390. 

The β-lactamase used in this study is the class A enzyme TEM-1 β-lactamase 

(E.C. 3.5.2.6)312. It is composed of 263 residues organised into two domains: the αβ-

domain and the α-domain (Figure 3.3). The αβ-domain is formed from a large 5-stranded 

β-sheet and 3 α-helices. The α-domain contains 8 α-helices and several loops. Together, 

the domains form a substrate binding cleft on the surface391. 
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Figure 3.3. Ribbon diagram of TEM-1 β-lactamase from E. coli.  Elements of secondary 

structure are coloured from the N-terminal to the C-terminal end in the order violet, blue, 

green, yellow, orange, red. The αβ-domain and the α-domain are labelled and are situated 

either side of the dashed line. The C terminus and N terminus are labelled, as is the active 

site Ser70. Protein DataBank (PDB) entry 1BTL, Jelsch et al., 1993392. Drawn using PyMOL 

Molecular Graphics System (Schrödinger, LLC).  
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3.3 Wild-type β-lactamase is rendered inactive when 
aggregated 

 
 
The split β-lactamase aggregation assay is based on the successful application of a 

β-lactamase tripartite fusion system to study protein stability in vivo308, 313 (see 

Section 1.7.1). The hypothesis of the assay is that if the test protein aggregates, the 

β-lactamase domains will either be prevented from associating, or drawn into the 

aggregate, leading to a loss of activity and a loss of bacterial resistance to the antibiotics. 

Consequently, a requirement to convert the split β-lactamase system from an assay of 

protein stability to one for protein aggregation is that the β-lactamase enzyme is rendered 

inactive when in an aggregated state. Previous studies have shown TEM-1 β-lactamase to 

be unable to function when denatured and aggregated393, 394. Furthermore, β-lactamase 

inclusion bodies have been shown to lack enzymatic activity until careful renaturation of 

the enzyme has occurred395. These results illustrate the potential for using the enzymatic 

activity of β-lactamase as a measure of its aggregated state. To verify these observations, it 

was necessary to first purify wild-type (WT) TEM-1 β-lactamase (βla-WT). The 

purification protocol, described below, was also used as the basis for future purification of 

the βla-test protein constructs.  

 

3.3.1 Purification of wild-type β-lactamase  

3.3.1.1   Protein expression trials 

 
The plasmid containing the gene encoding WT β-lactamase (pET28a-βla-WT, Table 2.11, 

Appendix 7.23) was transformed into E. coli strain BL21 (DE3) and grown on agar plates 

containing 50 μg/mL kanamycin (Section 2.2.7).  Single colonies were then used to 

inoculate 100 mL LB or TB media overnight starter cultures, 1 mL of which in turn were 

used to inoculate 100 mL cultures in 250 mL flasks. The cultures were grown at either 

25 °C or 37 °C. Once an OD600 of 0.6 was reached, protein expression was induced with 

IPTG to final concentrations of 25 µM, 100 µM, or 1 mM. The cells were then grown for a 

further 3 h before being pelleted by centrifugation (Section 2.3.1.1). As β-lactamase is a 

periplasmic protein, its expression was difficult to visualise on an SDS-PAGE gel due to the 

high abundance of cytoplasmic proteins (data not shown). Therefore, the periplasm was 

separated from the cytoplasm of the bacteria before analysis by SDS-PAGE 

(Section 2.3.1.3). The uninduced and induced cell pellets were resuspended in 20 mM 
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Tris-HCl pH 8.0, 20 % (w/v) sucrose. The outer membrane of the cells was disrupted by 

treatment with lysozyme and the fraction containing the soluble periplasmic proteins was 

collected by centrifugation. The samples were analysed by SDS PAGE, with comparative 

loading guaranteed by the addition of 100 µL SDS-loading buffer for each OD600 unit. The 

results revealed that the highest protein expression was observed in LB medium at 37 °C, 

with an IPTG concentration of 100 µM (Figure 3.4). 

 

 

Figure 3.4. βla-WT protein expression under pessimal and optimal conditions.  (a) Lowest 

expression of βla-WT was observed in LB medium at 37 °C, with an IPTG concentration of 

25 µM. (b) Highest expression of βla-WT was observed in LB medium at 37 °C, with an 

IPTG concentration of 100 µM. Periplasmic fractions extracted before and after induction 

were analysed. The size in kDa of the protein markers is indicated on the left. 
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3.3.1.2   WT β-lactamase purification 

 
Once the growth conditions had been optimised for maximal expression of wild-type 

β-lactamase, the protein preparation was scaled up to produce enough protein for the 

subsequent aggregation analyses in vitro. 

Briefly, single colonies of BL21 (DE3) competent cells transformed with plasmid 

pET28a-βla-WT were used to inoculate 250 mL of LB containing 50 μg/mL kanamycin in 

500 mL flasks. These starter cultures were incubated overnight before 25 mL was used to 

inoculate each of ten 1 L solutions of LB in 2 L flasks, containing sterile filtered antibiotic 

(50 μg/mL kanamycin). The flasks were incubated at 37 °C until the OD600 reached 0.6. 

Protein expression was then induced by the addition of IPTG to a final concentration of 

100 µM. The cultures were allowed to grow for 3 h after induction before being harvested 

in a continual action centrifuge. As the use of lysozyme during the periplasmic extraction 

adds another protein to the solution that requires purifying out, Polymyxin B was used 

instead to disrupt the outer membrane of the E. coli, as described in Section 2.3.1.2. 

In order to purify β-lactamase, the sucrose from the periplasmic preparation was first 

removed by dialysis. The periplasmic fraction was then loaded onto a Hi Trap anion 

exchange column. The column was washed with 20 mM Tris-HCl, pH 8.0, before protein 

elution using a linear gradient of 0.0 – 0.5 M NaCl over 300 mL (Section 2.3.1.6) 

(Figure 3.5a).  1.5 mL fractions were collected during elution, and those containing 

β-lactamase were identified by enzyme activity assay (Figure 3.5b) and SDS PAGE 

(Figure 3.5c). The activity assay uses a chromogenic β-lactamase substrate, nitrocefin. 

Nitrocefin undergoes a distinctive colour change from yellow (λmax = 390 nm at pH 7.0) to 

red (λmax = 486 nm at pH 7.0) as the amide bond in the β-lactam ring is hydrolysed by 

β-lactamase (Figure 3.6)381. 10 µL of 1 mM nitrocefin (in 5 % (w/v) DMSO, 0.1 M sodium 

phosphate buffer, pH 7.0) was added to 85 µL of 0.1 M sodium phosphate buffer, pH 7.0, 

and 5 µL of each fraction. The absorbance at 486 nm (relative to a control reaction 

containing 10 µL nitrocefin and 90 µL buffer) was recorded after 30 sec (Section 2.5.1) 

(Figure 3.5b). The fractions confirmed to contain β-lactamase were pooled prior to 

further purification using size exclusion chromatography.  
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Figure 3.5. Anion exchange purification of WT β-lactamase. (a) Typical WT β-lactamase 

elution profile from the anion exchange column. The 0.0 – 0.5 M NaCl gradient is indicated 

in purple, fractions collected are shown on the top x-axis. (b) β-lactamase enzyme activity 

assay of fractions collected during anion exchange chromatography. The colour change 

upon hydrolysis of nitrocefin was measured at 486 nm (see Figure 3.5). (c) SDS-PAGE gel 

of WT β-lactamase showing fractions collected during anion exchange (numbers denote 

fractions collected). The size in kiloDaltons (kDa) of the protein marker is indicated.  
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Figure 3.6. Schematic of nitrocefin hydrolysis by β-lactamase. The β-lactam ring in the 

centre is hydrolysed by β-lactamase, causing a distinctive colour change from yellow to 

red.  

 

The fractions containing the desired β-lactamase protein were concentrated to a final 

volume of 5 mL and then loaded onto a Superdex™ 75 GL 10/300 gel filtration column. The 

protein was eluted from the column in 20 mM Tris-HCl, pH 7.5 at a flow rate of 2 mL/min. 

1.5 mL fractions were collected and the elution of protein monitored by absorbance at 

280 nm (Figure 3.7a). Fractions corresponding to the main peak were assessed for 

enzyme activity (Figure 3.7b), and were subsequently pooled and analysed by SDS-PAGE 

(Figure 3.7c). Protein identity was confirmed by mass spectrometry (observed mass: 

28906.8 Da, expected mass: 28906.0 Da). 
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Figure 3.7. Size exclusion chromatography of WT β-lactamase. (a) Typical WT 

β-lactamase elution profile from the size exclusion column. Fractions collected are shown 

on the top x-axis. (b) β-lactamase enzyme activity assay of fractions collected during size 

exclusion chromatography. The colour change upon hydrolysis of nitrocefin was measured 

at 486 nm. (c) SDS-PAGE gel of WT β-lactamase after size exclusion chromatography. The 

size in kiloDaltons (kDa) of the protein marker is indicated.  
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3.3.2 Reduction in WT β-lactamase enzyme activity correlates 

with aggregation 

 
 
Two methods (isoelectric point (pI) precipitation and repeated freeze-thaw cycles) were 

employed to aggregate WT β-lactamase so that the utility of using the enzymatic activity of 

β-lactamase as an indication of its aggregated state could be assessed.  

The pI of a protein is the pH at which its net charge is zero. By placing a protein in a 

solution with a pH the same as its pI, protein solubility is at a minimum396. To determine 

whether the nitrocefin assay could be used to assay β-lactamase activity at pH 5.4 (the pI 

of WT β-lactamase is 5.4), the pH activity profile of the enzyme was assessed 

(Figure 3.8a). β-lactamase has ~ 40 % activity at pH 5.4, when compared to its activity at 

pH 7.0, confirming the assay can be used at this pH. The activity of 50 µM WT β-lactamase 

after various time periods at pH 5.4 (200 rpm, 37 °C) was measured (Section 2.5.2) 

(Figure 3.8b). The results indicate that β-lactamase activity decreases over time, in 

conjunction with increasing turbidity of the sample (Section 2.5.5) (Figure 3.8c).  

 

 

 
Figure 3.8. WT β-lactamase activity after isoelectric point precipitation. (a) pH activity 

profile of nitrocefin hydrolysis by WT β-lactamase. Activity at pH 7.0 is 100 %. (b) Enzyme 

activity assay of 50 µM WT β-lactamase after 0 h, 12 h, and 24 h incubation in 100 µM 

citrate-Na2HPO4, pH 5.4, at 37 °C, 200 rpm. Hydrolysis of nitrocefin was measured at 

486 nm over time. (c) Endpoint turbidity of the WT β-lactamase after isoelectric point 

precipitation. Turbidity was normalised to a sample left for 48 h at 37 °C, 200 rpm, pH 5.4. 
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 Analogous results were obtained during aggregation via repeated freeze-thaw-partial 

thermal denaturation cycles. Freeze-thaw cycles introduce physical and chemical changes, 

such as the creation of ice/solution interfaces, adsorption of the protein to the container 

surface and pH changes due to crystallisation of buffer components35. Briefly, 50 µM WT 

β-lactamase was frozen to –20 °C in a laboratory freezer for 20 min and then thawed at 

room temperature. Care was taken not to mix the sample during the thawing stage to 

ensure the creation of concentration and thermal gradients. Between each cycle, the 

protein was subjected to partial thermal denaturation, to aid the formation of non-native 

aggregates. A thermal denaturation curve of WT β-lactamase (following tryptophan 

fluorescence) was performed to find the temperature at which the protein begins to 

become unstable and unfolding begins (Figure 3.9a). 44 °C was chosen, and the protein 

was incubated for 1 h at this temperature between each freeze-thaw cycle. As with 

isoelectric point precipitation, the experiment revealed a decrease in β-lactamase enzyme 

activity concurred with increased sample turbidity (Figure 3.9b, c).  

 

 

 

 

Figure 3.9. WT β-lactamase activity after freeze-thaw-thermal denaturation cycling. (a) 

Thermal denaturation curve of 1 µM WT β-lactamase in 50 mM sodium phosphate, pH 7.0. 

Black dotted line indicates temperature selected for partial thermal denaturation. (b) 

Enzyme activity assay of 50 µM WT β-lactamase after 0, 5, and 10 cycles of freeze-thaw-

thermal denaturation in 50 mM sodium phosphate, pH 7.0. Hydrolysis of nitrocefin was 

measured at 486 nm over time. (c) Endpoint turbidity of the WT β-lactamase after each 

cycle. Turbidity was normalised to a sample left for 48 h at 37 °C, 200 rpm. 

 

It can be concluded that β-lactamase enzyme activity decreases in conjunction with 

aggregation, supporting the hypothesis that this may be used as a read-out of aggregation 

propensity of an inserted test protein. Furthermore, a purification protocol has been 

established which can be used as the basis for β-lactamase-test protein purification.  
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3.4 β-lactamase system allows identification of 
aggregation-prone proteins 

 
 
The split β-lactamase aggregation assay exploits the tolerance of the periplasmic antibiotic 

resistance enzyme TEM-1 β-lactamase to the insertion of a test protein into a glycine-

serine-rich loop on its surface308 (Figure 3.10a). The assumption of the assay described 

here is that upon correct folding of the test protein, the two halves of β-lactamase are 

brought close enough together to associate such that the bacteria will be resistant to 

β-lactam antibiotics (Figure 3.10b, c). If the test protein aggregates, the activity of the 

β-lactamase is reduced and the bacteria become more sensitive to β-lactam antibiotics 

(Figure 3.10d).  

 

3.4.1 Selection of test proteins 

 
To test whether the tripartite fusion system allows antibiotic resistance to be used to 

monitor protein aggregation in vivo, four test proteins with varying degrees of aggregation 

propensity were selected: hIAPP (human islet amyloid polypeptide), rIAPP (rat islet 

amyloid polypeptide), Aβ40 (amyloid β residues 1-40) and Aβ42 (amyloid β 

residues 1-42). 

 

3.4.1.1   Human and rat islet amyloid polypeptide 

 
Human islet amyloid polypeptide (hIAPP, also known as amylin) is a 37-residue hormone 

peptide belonging to the calcitonin gene-related peptide (CGRP) family397. It is produced 

and stored together with insulin in pancreatic islet β-cells398. hIAPP has a variety of 

physiological functions, including the regulation of glucose metabolism in conjunction 

with insulin and glucagon397. Under physiological concentrations of glucose, insulin and 

hIAPP are secreted by the islet β-cells. However, at elevated glucose concentrations, hIAPP 

is secreted at much higher levels and can form extensive extracellular β-sheet 

aggregates119. These proteinaceous deposits are found in approximately 95 % of patients 

suffering from type II diabetes mellitus399, a disease characterised by a failure to secrete 

sufficient insulin due to decreased β-cell mass and function. While the exact role of hIAPP 

in type II diabetes mellitus is unclear, there is strong evidence that the amyloid fibrils 

disrupt the integrity of the β-cell membranes, leading to cell death400. The amyloid formed  
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Figure 3.10. Schematic of the in vivo split β-lactamase assay for protein aggregation. (a) 

The test protein (green) is inserted into a glycine/serine rich linker (blue) within the loop 

region separating the two domains of the periplasmic enzyme TEM-1 β-lactamase (pink 

and purple). (b) Topology of TEM1 β-lactamase highlighting insertion point of the 

glycine/serine-rich linker between residues 196 and 197. Created using online database 

PDBsum401 and PDB entry 1BTL391. (c) Association of the two β-lactamase domains results 

in the formation of the enzyme active site. (d) If the test protein does not aggregate within 

the periplasm of E. coli, the bacteria will be resistant to β-lactam antibiotics. (e) If the test 

protein aggregates, the activity of β-lactamase is reduced and the bacteria become more 

sensitive to β-lactam antibiotics. 
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by hIAPP is restricted to the islet area of the pancreas and is not found systemically. The 

fibrils are not organised within the deposits, but close to β-cells there is often an 

orientation of bundles of fibrils towards the cell membrane397. It is believed that the very 

first amyloid formed is intracellular which leads to apoptosis of the cell37. Once the 

amyloid is in the extracellular milieu, it seeds further amyloid formation from exocytosed 

hIAPP397.   

Full length (37-residue) hIAPP is composed of multiple functional regions, including an 

N-terminal region (residues 1-19) involved in membrane binding, a primary 

amyloidogenic region (residues 20-29), and a C-terminal region (residues 30-37) that 

enhances amyloid formation402. Soluble hIAPP has been shown to have an essentially 

disordered conformation403, however it may also assume compact structures and 

transiently sample an α-helical conformation404. In contrast to other protein aggregation 

diseases such as Alzheimer’s disease, aberrant cleavage of hIAPP is not necessary for 

fibrillogenesis as only full length hIAPP has been identified in the pancreatic amyloid 

deposits37. However, evidence is mounting that aberrant cleavage of the hIAPP precursor 

protein, pro-IAPP, may start amyloid deposition by the formation of a nucleus405.  

hIAPP was selected for the assays described here primarily because of its rapid 

aggregation rates compared to other aggregation-prone proteins37. Furthermore, IAPP has 

the advantage of differing slightly from organism to organism406. For example, unlike 

hIAPP (human), rat IAPP (rIAPP) is non-amyloidogenic37, thereby providing a convenient 

control for the prospective aggregation screen.  A comparison of the peptide sequences of 

human and rat IAPP shows six amino acid substitutions (Figure 3.11). As five of these 

occur in region 20-29, this segment of the peptide is known as the amyloidogenic region. 

Further studies have identified residues 15-17 as also being important for the 

amyloidogenesis of hIAPP407.  

 

 

 
Figure 3.11. The amino acid sequences of human and rat IAPP. The residues in rIAPP that 

differ in hIAPP are highlighted in blue. The residues of hIAPP known to play an important 

role in amyloid fibril formation in vitro are highlighted in purple407. The intramolecular 

disulfide bond is indicated by a black line, and the amidated C terminal is shown.   
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3.4.1.2   Amyloid β  

 
The accumulation of amyloid β (Aβ) peptides into amyloid plaques is a central feature of 

the neurodegenerative disorder Alzheimer’s disease408, 409. Aβ is formed via the sequential 

proteolytic processing of the integral membrane amyloid precursor protein (APP) by the 

β- and γ-secretases410. APP is expressed in many cell types, however the full function of the 

protein and its subsequent cleavage products are not known. Within the central nervous 

system, evidence for functions associated with synaptogenesis, cell adhesion, neuronal 

mobility and transcriptional regulation has been found411, 412. APP processing can occur via 

the non-amyloidogenic pathway or the amyloidogenic pathway (Figure 3.12). The 

predominant pathway is non-amyloidogenic, whereby APP is initially cleaved by 

α-secretase and subsequently cleaved by γ-secretase leading to the formation of sAPPα, 

CTFα, AICD and p3 (Figure 3.12a). Conversely, the alternative amyloidogenic route 

involves initial cleavage by the β-secretase BACE1 enzyme (aspartyl protease β-site APP 

cleaving enzyme) (Figure 3.12b). A shorter variant of the extracellular domain is released  

 

Figure 3.12. The non-amyloidogenic and amyloidogenic pathways of APP processing.  (a) 

The majority of APP is processed via the non-amyloidogenic pathway. APP is sequentially 

cleaved by α- then γ-secretase, resulting in the formation of the non-amyloidogenic 

peptide fragments sAPPα, p3 and AICD. (b) During the amyloidogenic pathway, sequential 

cleavage by β-secreatase then γ-secretase leads to the production of the toxic Aβ peptide. 

Figure redrawn and adapted from Yates, 2008413. 
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(sAPPβ), and the longer transmembrane domain is cleaved by γ-secretase. The γ-secretase 

can cleave the resulting fragment at several sites, with a preference at positions 40 and 

42410. The resulting family of Aβ peptides are amphipathic, containing a central 

hydrophobic region (residues 17-21), a long hydrophobic C terminus, and a charged N 

terminus (Figure 3.13). The central hydrophobic region is known to be critical for 

amyloid formation414-417. The physiological role of the Aβ40 and Aβ42 peptides remains 

unclear, however Aβ40 has been proposed to regulate the activity of potassium ion 

channels418 and to modulate synaptic transmission419.  

Although Aβ40 is the predominant form produced during APP cleavage by γ-secretase, 

Aβ42 is the most abundant species in the neuritic plaques of Alzheimer’s disease. Aβ42 is 

much more prone to aggregation than Aβ40, and is also significantly more toxic to 

neuronal cells420, 421. In vitro forms of both Aβ peptides aggregate into well-ordered 

β-sheet rich structures422, in which the dimers and trimers are significantly more toxic 

than monomeric species423.  Evidence suggests that the peptides form fibrils via different 

pathways, demonstrated by the production of distinctly larger oligomeric species by Aβ42 

compared to Aβ40424. Furthermore, Aβ42 is able to sample significantly more β-rich states 

en-route to fibril formation425. Molecular dynamics simulations have also shown that the 

C terminus of Aβ42 is constrained to a β-hairpin structure, thereby increasing the amyloid 

propensity of the peptide426.  

The toxicity of Aβ peptides has been attributed to numerous mechanisms, including the 

production of reactive oxygen species427, the alteration of energy metabolism due to 

damaged mitochondria428, 429, the elevation of intracellular calcium levels via membrane 

damage144, 430, the modification of metal homeostasis431 and the ultimate loss of neurons 

via apoptotic pathways413, 432, 433.  

 
 

 

 
Figure 3.13. The amino acid sequences of amyloid β residues 1-40 and 1-42. The extra 

two residues in Aβ42 are highlighted in blue. The central hydrophobic region (residues 

17-21) is highlighted in purple.  
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3.4.2 Cloning test proteins into β-lactamase linker 

 
The four test proteins were cloned into the 28-residue glycine/serine-rich linker that had 

previously been inserted between residues 196 and 197 of TEM-1 β-lactamase308 

(Figure 3.10a,b). PCR was performed to amplify the hIAPP, rIAPP and Aβ42 genes from 

the pTXB1-hIAPP, pTXB1-rIAPP and pRSET-Aβ40/42 plasmids respectively (Table 2.10) 

in Section 2.2.10). Primers were designed (Table 2.8) to include an XhoI restriction site 5’ 

and a BamHI restriction site 3’ to the gene, as these are the restriction sites in the 

β-lactamase 28-residue glycine/serine-rich linker (denoted βla-linkerSHORT). The plasmid 

containing βla-linkerSHORT was digested with the same enzymes, and the PCR product 

encoding the test protein was ligated into it. The ligation products were transformed into 

E. coli JM109 cells (Section 2.2.7) and the cells grown on agar plates containing 10 μg/mL 

tetracycline. Successful ligation was identified by the resistance to tetracycline obtained 

from the β-lactamase vector. DNA was purified from a selection of colonies and was sent 

for sequencing to confirm that they contained the correct sequences (Section 2.2.9). 

Primers for the sequencing reactions were designed to bind upstream and downstream of 

the GS linker of β-lactamase (Table 2.8). The newly synthesised plasmids were named 

βla-28-hIAPP, βla-28-rIAPP and βla-28-Aβ42. The plasmid βla-28-Aβ40 was created using 

QuikChange mutagenesis (Agilent Technologies, UK) by deleting the last two residues of 

the Aβ42 sequence that had been inserted into the β-lactamase linker (primers in 

Table 2.8). Full gene and protein sequences are provided in Appendices 7.15 – 7.21. 

 

3.4.3 Split β-lactamase system is amenable to a variety of culture 

conditions 
 
 
A large number of parameters were examined for the optimisation of the minimal 

inhibitory concentration of antibiotic (MIC) assay; they are summarised in Table 3.1. The 

ability of the split β-lactamase system to discriminate between aggregating and non-

aggregating test proteins was found to be relatively insensitive to parameters such as 

cultivation media, level of induction, incubation time, or β-lactam antibiotic, thereby 

allowing flexible adaption of the system for any specific conditions required depending on 

the test protein.  Cells were pre-incubated for a range of times in the presence of 

0.02 % (w/v) arabinose to induce protein expression prior to spot titrations on the agar 

plates. Plates were incubated for a variety of incubation times (12 h, 16 h, 18 h, or 24 h) 

before the maximal cell dilution at which growth could occur was scored. The β-lactam 



DEMONSTRATING ASSAY FEASIBILITY IN VIVO 

137 
 

antibiotic penicillin V was also tested, along with the cultivation medium terrific broth. It 

was immediately evident that the cells required arabinose to be present in both the 

culture and agar medium for colonies to grow. Furthermore, a pre-incubation time of 1 h 

in the presence of arabinose was also essential for bacterial growth. This suggests 

β-lactamase induction is essential prior to bacterial exposure to β-lactam antibiotics. 

Different ampicillin concentrations were also investigated with the aim to find the 

concentration range that gave the clearest distinction between the aggregating and non-

aggregating constructs, while using the minimal number of agar plates (Figure 3.14). In 

summary, for the four test proteins selected, a pre-incubation time of 1 h in the presence 

of 0.02 % (w/v) arabinose in LB medium prior to incubation on agar plates containing 0-

140 µg/mL ampicillin (20 µg/mL increments) was chosen. 

 
Parameter Condition Score Conclusion 

Cultivation media 
Terrific broth *** Both produced positive results, however 

colonies are easier to visualise with LB. LB **** 

Location of 
arabinose 

Culture only ** Arabinose in the agar plates was essential for 
any bacterial growth. Addition of arabinose 
to both culture and the plate enables more 
colonies to grow, thereby aiding colony-
visualisation for scoring. 

Plate only * 

Culture and 
plate 

**** 

β-lactam antibiotic 
Ampicillin **** Both produced positive, reproducible results, 

however ampicillin is more economical to 
purchase. 

Penicillin V **** 

Range of ampicillin 
concentrations 
(µg/mL) 

0 – 500  ** 0–140 µg/mL enables clear resolution 
between the growth of bacteria expressing 
the aggregating and non-aggregating 
constructs. 0-500 µg/mL required a large 
number of agar plates, and the bacteria 
expressing the highly aggregating constructs 
could not grow above ~ 150 µg/mL 
ampicillin. 

0 – 140  **** 

Sample incubation 
time with arabinose 
prior to addition to 
agar plate  

0 h * Pre-incubation in the presence of arabinose 
was required for colonies to grow under 
selected growth conditions. Optimal time was 
1 h. 

1 h **** 
2 h *** 
3 h ** 

 
Table 3.1. Parameters optimised for MIC assay. Conditions are scored from the most (four 

stars) to the least (one star) favourable. 
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Figure 3.14. Comparison of MIC assays over two ranges of ampicillin concentration. 

Maximal cell dilution allowing growth (MCDGROWTH) over (a) a wide range (0-500 µg/mL), 

or (b) a restricted range (0-140 µg/mL), of ampicillin concentrations for bacteria 

expressing βla-linker ( ), βla-rIAPP ( ), βla-hIAPP ( ) βla-Aβ40 ( ) or βla-Aβ42 ( ) 

tripartite fusion constructs. Error bars represent the standard error from a minimum of 3 

replicates.     
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3.4.4 Antibiotic resistance correlates with aggregation-propensity 

 
To validate the hypothesis that the activity of β-lactamase will be reduced in vivo when 

fused to an aggregation-prone protein, the minimal inhibitory concentration of antibiotic 

was assessed for the split β-lactamase-test protein constructs. The concept of this assay 

was that on induction of expression of the β-lactamase-test protein, the bacteria would fail 

to grow in the presence of the β-lactam antibiotic ampicillin in a quantitative manner, 

depending on the aggregation-propensity of the test protein.  

In this assay, the optimal conditions as described in Section 3.4.3 were utilised. Briefly, 

cultures of BL21 (DE3) cells expressing each construct were grown until the OD600 = 0.6 

(37 °C, 200 rpm). Protein expression was then induced by the addition of 0.02 % (w/v) 

arabinose and bacteria were allowed to grow for a further 1 h (37 °C, 200 rpm), before 

sequential cell dilutions were pipetted onto six circular agar plates containing increasing 

concentrations of the β-lactam antibiotic ampicillin (0–0.5 mg/mL; 0.1 mg/mL 

increments). Plates were incubated at 37 °C for 18 h, after which they were scored for the 

maximal cell dilution at which cells could grow at each antibiotic concentration. To enable 

comparison of the test protein constructs to a non-aggregating control, growth of E. coli 

expressing a β-lactamase construct containing only a 64-residue glycine/serine linker (a 

similar length to the inserted test proteins, Table 3.2) was also analysed (βla-linker). The 

spot titre comparing the growth of the strains expressing the different constructs at 

80 µg/mL ampicillin is shown in Figure 3.15a. Over a wide range of antibiotic 

concentrations, the bacteria expressing the non-aggregating glycine-serine linker 

(βla-linker) and rIAPP (βla-rIAPP) constructs could grow at significantly higher 

concentrations of ampicillin than the strains expressing the aggregating constructs 

(βla-hIAPP, βla-Aβ40 or βla-Aβ42) (Figure 3.15b). As hIAPP, Aβ40 and Aβ42 are 

intrinsically disordered in solution before aggregation425, 426, 434, these results demonstrate 

that the reduced enzymatic activity of β-lactamase must be due to aggregation and not 

solely the presence of an extended loop region separating the two domains of β-lactamase.   

Construct 
Length of Test Protein 

(Residues) 

Length of GS-Linker 

(Residues) 

Total Length 

(Residues) 

βla-linker - 64 64 

βla-rIAPP 37 28 65 

βla-hIAPP 37 28 65 

βla-Aβ40 40 28 68 

βla-Aβ42 42 28 70 

 
Table 3.2. Comparison of β-lactamase construct linker lengths.  
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The in vitro aggregation propensity of the inserted test proteins in the absence of the 

tripartite fusion was assessed using transmission electron microscopy (TEM) and 

electrospray ionisation ion mobility mass spectrometry (ESI-IMS). Rachel A. Mahood 

purified the Aβ40 peptide and performed the transmission electron microscopy on the 

sample. The hIAPP and rIAPP peptides were kindly provided by Cynthia Tu and Professor 

Daniel Raleigh (Stony Brook, NY). Synthetic Aβ42 was purchased from Invitrogen, Paisley, 

UK (Catalogue Number 03-112). Lydia M. Young performed the transmission electron 

microscopy of hIAPP, rIAPP and Aβ42. 

TEM images of aggregates formed after 5 days incubation (quiescent, 33 µM peptide, 

200 mM ammonium acetate buffer, pH 6.8, 1 % (w/v) DMSO) (Section 2.5.6) show a 

striking correlation between the ability to form amyloid fibrils observed by TEM and the 

level of antibiotic resistance in vivo: the more prevalent the aggregates (Figure 3.15c-f), 

the lower the resulting antibiotic resistance (Figure 3.15b). Importantly rIAPP, which is 

known to not form amyloid fibrils237, only forms small oligomeric species, as observed by 

TEM (Figure 3.15c). Conversely, the three amyloidogenic proteins hIAPP, Aβ40 and Aβ42 

form long fibrils and amorphous aggregates (Figure 3.15d-f).   
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Figure 3.15. In vitro aggregation correlates with in vivo antibiotic resistance. Each 

tripartite fusion protein is denoted by a different colour. (a) Spot titre from a single plate 

containing 80 µg/mL ampicillin. (b) Maximal cell dilution allowing growth over a wide 

range of ampicillin concentrations for each of the tripartite fusion constructs. Error bars 

represent the standard error from a minimum of 3 replicates.  Negative stain TEM images 

of aggregates formed by 33 µM rIAPP (c), hIAPP (d), Aβ40 (e) or Aβ42 (f) after 5 days 

incubation at 25 °C, quiescent (scale bar = 100 nm). TEM images acquired by Lydia M. 

Young and Rachel A. Mahood.   
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The progress of aggregation of each of the four peptides was also compared using an 

ESI-IMS-MS time-course experiment. All mass spectrometry was performed by Lydia M. 

Young. Peptide samples were incubated in parallel (50 µM peptide, 200 mM ammonium 

acetate buffer, pH 6.8, 1 % (w/v) DMSO) and at specified time points (2 min and 24 h), 

10 µL volumes were removed from each solution and infused into the mass spectrometer 

for analysis (see Section 2.5.8). The Driftscope plots represent a snap shot of the species 

present in solution at any given point during the aggregation pathway. At t = 2 min, 

monomer through hexamer were observed for both hIAPP and rIAPP (Figure 3.16a, b). 

These same oligomers, albeit at a slightly lower intensity, were observed after 24 h, 

suggesting that although aggregation into fibrils is occurring, the reaction has not yet 

reached completion. In the case of Aβ40, at t = 2 min, monomer through pentamer were 

observed (Figure 3.16c). After 24 h, aggregation was occurring, resulting in the 

consumption of higher order species and all that remained observable by ESI-IMS-MS 

were the lower order species, monomer through trimer (Figure 3.16c). For Aβ42, the 

most aggregation prone of the four peptide sequences, aggregation occurred at such a rate 

that it was difficult to observe by ESI-IMS-MS. As early as t = 2 min (Figure 3.16d), no 

higher order oligomers were observed, suggesting that these higher order species exist 

briefly en route to aggregation into large oligomeric species. 
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Figure 3.16. In vitro aggregation correlates with in vivo antibiotic resistance. ESI-IMS-MS 

Driftscope plot of rIAPP (a), hIAPP (b), Aβ40 (c) and Aβ42 (d) present 2 min and 24 h 

after diluting the monomer to a final peptide concentration of 50 µM in 200 mM 

ammonium acetate, pH 6.8. Monomers (1) through to hexamers (6) are labelled. ESI-IMS-

MS Driftscope plots show IMS drift time versus m/z versus intensity (z = square root 

scale). Experiment performed by Lydia M. Young.  
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3.5 Discussion 

 
Understanding the underlying reasons why proteins aggregate requires challenging and 

costly purification prior to biophysical analyses in vitro. It is often necessary to purify a 

selection of mutational variants to begin to understand the extent to which each individual 

mutation affects protein stability and aggregation. Using an in vivo system to investigate 

aggregation propensity would circumvent the necessity to purify a large number of 

variants, thereby reducing both experimental time and costs.  

The decision to perform the assay on solid media rather than in liquid cultures was 

reached after extensive discussion with the collaborators who designed and performed 

the initial in vivo assay for protein stability308. The authors investigated monitoring 

bacterial growth (in the presence of the β-lactam antibiotic penicillin V) in liquid growth 

medium by measuring the change in sample optical density (OD) over time312. They found 

that a number of destabilising mutants caused an increase in lag time, when compared to a 

stable variant. However, the correlation between stability and the length of the lag time 

was weak. Furthermore, some variants increased the lag time, but after a sufficient time of 

incubation reached approximately the same final OD. As the correlation between variant 

and stability was so strong using the solid medium MIC assay, their advice was to develop 

the proof-of-principle aggregation assay on a solid medium.  

Performing the assay over a wide range of cell dilutions was necessary to obtain the 

sensitivity required to differentiate between the different aggregating constructs. 

Although the use of a single cell dilution would simplify the work required to perform the 

assay, it would not produce the fine distinction between proteins with varying aggregating 

propensities (see Figure 3.14). However, in attempts to produce a semi-high throughput 

screen, in Chapter 4 an alternative approach is described using a lawn of bacteria (in 

essence, a single cell dilution) to investigate whether removing a variable from the assay 

would aid in assay optimisation (see Section 4.2.2).  

Development of the in vivo β-lactamase tripartite fusion system progressed as a cycle. 

Variables were tested and the parameters that give the optimal ‘reading window’ were 

fixed, after which further parameters were tested under the prior fixed conditions. As the 

overall aim of this project was to develop a simple, usable assay, a criterion at each 

optimisation step was to utilise minimal reagents and reduce the number of steps 

required to perform the assay. One of the most critical steps was controlling protein 

induction. It was quickly apparent that protein induction must occur a minimum of 1 h 
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before the bacteria were exposed to antibiotic. Once this had been established, all other 

parameters were varied until conditions were found with which reproducible results 

could be obtained.  

The correlation of in vivo antibiotic resistance and in vitro aggregation extent was striking. 

The three test proteins that rapidly form amyloid fibrils in vitro all significantly reduced 

the bacteria’s ability to grow in the presence of antibiotics, when they were expressed as 

part of a β-lactamase tripartite fusion. Notably, however, the presence of rIAPP in the 

linker region of β-lactamase did not markedly reduce bacterial growth, compared to the 

non-aggregation βla-linker. This was vital for assay validation, as although only six 

residues distinguish rIAPP from hIAPP, the fact that it did not impede bacterial growth 

suggests the assay is sensitive to the aggregation-extent of the inserted test protein. 

Interestingly, the extent of bacterial growth impedance correlated with the initial 

progression of aggregation over 24 h, as observed by ESI-IMS-MS. Aβ42 oligomers were 

the fastest to disappear in the progression to larger oligomers, followed by Aβ40 then 

hIAPP. rIAPP oligomers, however, were still present after 24 h. This appears to correlate 

with the observation that growth of bacteria expressing βla-Aβ42 was lowest, followed by 

βla-Aβ40, βla-hIAPP then βla-rIAPP. Conversely, however, fibril formation, as observed by 

ThT, is fastest for hIAPP37, 237. Furthermore, when hIAPP and Aβ42 are mixed in equimolar 

ratios, the rate of fibril formation and membrane permeabilisation occurs at a rate 

intermediate of that observed for hIAPP or Aβ42 alone435. hIAPP-Aβ42 hetero-aggregates 

adsorb, aggregate, and permeabilise membranes significantly more slowly than pure 

hIAPP, but at a much faster rate than observed for pure Aβ42435. 

The disparity between the rate of oligomer disappearance (as observed by ESI-IMS-MS) 

and the appearance of amyloid fibrils (as observed by ThT fluorescence) of hIAPP and 

Aβ42 may be due to competing pathways en-route to fibril formation. A vast array of pre-

amyloid oligomeric species can be formed on- or off-pathway during amyloid formation, 

each of which is thermodynamically distinct436. The formation of more off-pathway 

oligomeric species during Aβ42 fibril formation may account for its longer fibrillation time 

as compared to hIAPP437. Conversely, differences in the rate of fibril formation may be due 

to the rate at which the high-energy oligomeric nucleus forms. The critical nucleus, 

defined as the least thermodynamically stable species, is the smallest oligomer capable of 

initiating further growth437, 438. Formation of this high-energy species acts as a bottleneck 

that limits the rate of fibril formation439, 440. Consequently, although initial Aβ42 

oligomerisation occurs much more rapidly than hIAPP, subsequent oligomerisation, 

including the formation of the Aβ42 critical oligomeric nucleus required for initialising 
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fibril formation, may be less thermodynamically favourable than formation of the nucleus 

for hIAPP fibril formation.  

In context of the in vivo assay for protein aggregation, the correlation between in vivo 

bacterial resistance and initial aggregation rates (but not fibrillation rates) in vitro 

suggests the assay is an accurate indicator for the initial stages of aggregation, but not the 

later formation of amyloid fibrils. However, comparisons between aggregation rates in 

vivo and in vitro are fraught with difficulties, as the formation of amyloid in vivo is 

complicated by molecular crowding effects, the presence of membrane surfaces, and even 

molecular chaperones. Furthermore, all the in vitro experiments were performed on the 

isolated aggregation-prone sequences. In vivo, these peptides are constrained within the 

linker of β-lactamase. As such, the question arises: can these peptides still form fibrils 

when expressed as a tripartite-fusion protein? It is possible that the disparity between the 

rate of fibril formation observed in vitro and the in vivo bacterial resistance may simply be 

due to the inability of the amyloidogenic peptides to fibrillate in vivo under the conditions 

they are subjected to in this assay. As such, the work in Chapter 4 aims to address this 

question by investigating whether fibrils are formed by a β-lactamase tripartite fusion 

protein in vitro. The purification protocol developed in this chapter was utilised as the 

basis for purifying the β-lactamase-linker constructs in vitro.  

A key difference between the in vivo screen described here, and previously developed in 

vivo screens for aggregation propensity, is the location of the assay in the periplasm of 

E. coli. The oxidising environment of the periplasm allows the formation of disulfide 

bonds, unlike the reducing environment of the cytosol of bacteria or the cytoplasm of 

eukaryotes. Previous cytoplasmic assays, for example using Aβ42 fused to GFP302, have 

successfully identified aggregation-enhancing mutations; however this assay would be 

redundant for proteins that require disulfide bond formation for successful folding. 

Disulfide bonds are present in 15 % of the human proteome and they are enriched in 

secreted proteins (65 %)441. This is presumed to be due to the need for greater protein 

stability in the absence of the quality control systems present within the cell. Notably, 

however, they are present in 55 % of proteins involved in pathologic amyloid formation442. 

Consequently, the cytoplasmic-based assays described previously299, 301, 303 would be 

limited to screening only those 45 % of amyloidogenic proteins that do not contain 

disulfide bonds. 

The reproducibility of the data demonstrates the application of the split β-lactamase 

system as a robust in vivo screen for aggregation propensity. As the test proteins used are 
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of a similar length and all are intrinsically disordered in solution, for this system to be a 

generic indicator of protein aggregation it would need to be applicable to a range of 

different proteins, varying in both structure and size. The previous studies using this 

system have demonstrated the ability to insert large proteins (maltose binding protein, 

43 kDa) into the linker region of β-lactamase. This suggests that screening for the 

aggregation-propensity of large and/or structured proteins would also be possible using 

the β-lactamase tripartite fusion system. This possibility is investigated in Chapter 5, when 

the aggregation-propensity of two human derived antibody domains is assessed.  

In summary, the data demonstrate the application of the split β-lactamase system as a 

robust in vivo screen for aggregation propensity of a variety of test proteins. The 

correlation of in vivo antibiotic resistance and in vitro aggregation rates of the aggregation-

prone sequences validate the suitability of this system to accurately assess the extent of 

protein aggregation. Furthermore, the assay works under a variety of conditions, thereby 

enabling flexibility in the experimental conditions, as required.    
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4 Developing a phenotypic small molecule screen 

 

4.1 Objectives 

 
In Chapter 3 it was demonstrated that, by using the β-lactamase tripartite fusion protein, 

bacterial resistance to antibiotics could be used to identify protein aggregation propensity.  

The next objective, therefore, was to develop an in vivo screen using this system to identify 

small molecule inhibitors of protein aggregation. The assay needs to be robust, 

reproducible, simple to perform and have potential to be converted to high throughput 

methodology.    

 
Developing a cell-based phenotypic assay for protein aggregation inhibitors requires a 

number of factors to be taken into account, compared with more simple in vitro-based 

assays.    

 
Questions to be addressed: 

 How robust is the assay? 

 Can off-phenotype effects be accounted for (e.g. cytotoxicity)? 

 How robust is the data analysis? 

 Is it amenable to miniaturisation for high throughput screening? 

 

4.2 Assay development 

 

4.2.1 Identification of positive and negative reference controls 

 
One of the first steps in any assay development is the identification of suitable positive and 

negative reference controls. Positive controls must give an assay signal which would be 

considered a ‘hit’, whereas the negative control must give no, or minimal, signal.  For this 

assay, the ideal positive reference control would be a potent small molecule inhibitor of 

aggregation, while the negative control would be the assay in the absence of an inhibitor, 

or a small molecule known not to have an effect. 

To examine the ability of the β-lactamase tripartite system as a screen to identify protein 

aggregation inhibitors, the assay was first carried out using the known inhibitors of Aβ42 
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and hIAPP aggregation: (-)-epigallocatechin gallate (EGCG) (Figure 4.1a) and curcumin 

(Figure 4.1b). Systematic IUPAC names, structures, molecular weights and LogP values of 

all small molecules used in this chapter are also given in Appendix 7.4. EGCG has been 

demonstrated to prevent aggregation of many amyloidogenic and aggregation-prone 

proteins, including Aβ, hIAPP, κ-casein, calcitonin, insulin, huntingtin and transthyretin227, 

234, 235, 237, 239, 240, 255, 256, 443. The small molecule binds to native disordered Aβ42 and 

promotes the formation of non-toxic oligomers240. EGCG inhibits hIAPP aggregation in 

vitro, and even disaggregates pre-formed fibrillar material235. Similarly, curcumin has also 

been shown to prevent the in vitro aggregation of multiple proteins, including Aβ, 

transthyretin, α-synuclein, lysozyme, and hIAPP238, 243-248, 444-446.  NMR studies indicate that 

curcumin binds to the β-sheet structure of Aβ fibrils and interrupts the aggregation 

process446. Conversely, curcumin modulates hIAPP self-assembly by binding to, and 

disassembling, non-native α-helices246.  

 

 
Figure 4.1. Structures of (-)-epigallocatechin gallate (EGCG) (a) and curcumin (b). 

 
Preliminary investigations using the in vivo assay determined that the small molecules 

were required to be present in the agar, and not only the cultures, prior to plating. If they 

were absent from the agar, no beneficial effect on bacterial growth was observed. 

Increasing concentrations of the compounds (0 – 200 µM) were mixed into agar plates 

containing ampicillin concentrations from 0 – 200 µg/mL. Sequential dilutions of cells 

expressing the aggregating constructs were then spotted on top (Section 2.4.2). The plates 

were incubated for 18 h at 37 °C and the maximal cell dilution at which cells could grow 

(MCDGROWTH) was assessed at each ampicillin concentration for each concentration of small 

molecule (Figure 4.2).   



DEVELOPING A PHENOTYPIC SMALL MOLECULE SCREEN 

151 
 

 

Figure 4.2. Bacterial growth in presence of small molecule inhibitors of aggregation. The 

maximal cell dilution allowing growth (MCDGROWTH) was scored at each ampicillin 

concentration for each concentration of (a-e) EGCG (βla-linker ( ), βla-hIAPP ( ), 

βla-Aβ42 ( )) and (f-j) curcumin (βla-linker ( ), βla-hIAPP( ), βla-Aβ42 ( )). βla-Aβ42 

experiments were performed with undergraduate student Joseph Casson. 
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An increase in EGCG concentration led to a significant decrease in the difference between 

the growth of bacteria expressing βla-hIAPP and bacteria expressing βla-linker. 

(Figure 4.2a-e). However at 200 µM EGCG, the compound begins to exhibit significant 

toxicity to cells, as shown by its effect on βla-linker (Figure 4.1e). A similar result was 

observed in the presence of increasing concentrations of curcumin (Figure 4.2f-j). 

Conversely, EGCG and curcumin appeared to have no positive effect (increased MIC) when 

administered to cells expressing the βla-Aβ42 construct (Figure 4.2a-j). 

It was hypothesised that extensive aggregation of the Aβ42 insert may have severely 

hindered cell growth. If the concentration of arabinose was reduced, Aβ42 levels would 

decrease and therefore cell survival should increase. This improvement would continue 

until the lack of β-lactamase enzyme becomes detrimental for cellular growth with 

antibiotic selection (Figure 4.3a). To examine whether this was the case, varied arabinose 

concentrations were used to induce construct expression to different levels and the 

relationship between protein expression level and cell survival was assessed. A much 

lower range of ampicillin concentrations was also used. As expected, at the lowest 

concentration of arabinose added (0.02 ⨯ 10-3 % (w/v), Figure 4.3b), neither bacteria 

expressing the βla-Aβ42 or βla-linker construct could survive. As the arabinose 

concentration was increased, growth of cells expressing the βla-linker construct increased 

in a titratable manner (Figure 4.3c-g), until a concentration of arabinose was reached at 

which cell survival decreased (Figure 4.3h). A similar, but less dramatic, effect was 

observed for cells expressing βla-Aβ42 (Figure 4.3c-h). Based on these results, a 

concentration of 0.015 % (w/v) arabinose was considered to produce the optimal growth 

conditions (Figure 4.3g), and this concentration was used subsequently to assay the effect 

of increasing concentrations of the small molecule curcumin on cell survival (Figure 4.4). 

In the presence of 200 µM curcumin, bacteria expressing βla-Aβ42 could grow at 

significantly higher concentrations of ampicillin when compared to growth in the absence 

of the curcumin (compare Figure 4.4a and 4.4e). All subsequent assays using the 

βla-Aβ42 construct were performed, therefore, using 0.015 % (w/v) arabinose.   
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Figure 4.3. Relationship between protein expression and bacterial growth. (a) 

Hypothesised relationship between cell survival and expression of βla-Aβ42 induced by 

different concentrations of arabinose. At lower [arabinose], the lack of β-lactamase 

expression hinders cell growth. Conversely, at higher [arabinose], the over-expression of 

Aβ42 leads to extensive aggregation and cell death. (b-h) MIC assays performed in the 

presence of increasing arabinose concentrations with βla-linker- ( ) and βla-Aβ42-

expressing cells ( ). This experiment was performed with undergraduate student Joseph 

Casson. 
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Figure 4.4. Bacterial growth in presence of curcumin with optimised conditions. (a-e) MIC 

assay performed in the presence of increasing concentrations of the small molecule 

curcumin. βla-Aβ42 expression was induced with the optimised concentration of 

arabinose of 0.015 % (w/v). This experiment was performed by undergraduate student 

Joseph Casson. 
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4.2.2 Reducing the number of assay variables 

 
Screening eight concentrations of a single compound, at six concentrations of ampicillin, 

would require 48 circular agar plates. To circumvent the large number of plates used 

(which would limit any development toward medium or high throughput studies), a 

bacterial lawn approach was investigated. Various sample plates were considered (8-, 12-, 

48-, 96-well), however a sterile 8-well rectangular petri provided the greatest ease for 

producing bacterial lawns within the wells, and also in identification of zones of clearance 

in the bacterial lawns (Figure 4.5a). 

 

Figure 4.5. Schematic of bacterial lawn-based assay. (a) Example of positive inhibitor of 

Aβ42 aggregation (azure C). (i) Agar plates containing increasing concentrations of the 

small molecule of interest are created. A bacterial culture is mixed with agar and spread 

on top of the plate. Increasing concentrations of ampicillin (0 – 200 µg/mL) are spotted on 

top of each well of the plate. (ii-iii) Plates are incubated at 37 °C for 18 h and the 

maximum ampicillin concentration at which growth occurs (MACGROWTH) is scored for each 

concentration of small molecule. (bi-iii) Example of a small molecule that does not inhibit 

Aβ42 aggregation (rhodamine B).  
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Utilisation of this format reduced the number of plates required to screen a single small 

molecule to just two. In the bacterial lawn methodology, a bacterial culture was mixed into 

a layer of soft agar (0.7 % w/v) on top of an agar plate containing increasing 

concentrations of the small molecule of interest (Figure 4.5ai, bi). Ampicillin was then 

spotted on top of the agar and the plates incubated at 37 °C for 18 h (Section 2.4.3). To 

score the plates, zones of clearance in the bacterial lawns were identified 

(Figure 4.5aii, bii). A zone of clearance means that concentration of ampicillin has 

prevented bacterial growth. Figure 4.5a gives an example of a positive inhibitor of Aβ42 

aggregation (azure C), and Figure 4.5b gives an example of a negative inhibitor 

(rhodamine B).  

The top agar technique was used to assay numerous known inhibitors and small 

molecules known not to inhibit Aβ42 aggregation (examples are given in Figure 4.6a-d).  

However, despite the initial success of the bacterial lawn assay, there were a number of 

disadvantages to this technique. Firstly, the methodology was difficult to carry out. The 

bacterial culture had to be pre-mixed into molten agar prior to pouring the plates. This 

required the agar to be at < 40 °C to ensure the cells did not experience heat shock447. At 

this temperature the agar begins to solidify, making stirring, pipetting, and production of a 

homogenous solution containing the small molecules difficult. These issues led to 

numerous failed assays or inconsistent scores (data not shown). Secondly, the amount of 

small molecule required for the assay is excessive, when compared to the amounts used 

for standard medium or high throughput assays (microgram quantities).  Originally the 

small molecule was only mixed in to the layer of top agar containing the bacterial lawn. 

However, it was found that many of the compounds dissipated into the bottom agar during 

the 18 h incubation (as shown by diffusion of the coloured small molecules). This led to a 

decrease in small molecule concentration experienced by the bacteria. To counter this 

issue, the small molecule was also added to the layer of bottom agar, resulting in a 

requirement of ~ 2 mg of small molecule per assay. This quantity was deemed too high for 

a successful screening assay. The final, but considerable, issue was the large error 

observed during scoring the zones of clearance in the bacterial lawns. As the clearance 

occurred over a gradient, rather than complete clearance, judgement of what constituted a 

clearance fell to the observer (Figure 4.7). Obtaining consistency over different 

experiments, and days, was not possible. Although this issue could possibly be 

circumvented by automating scoring, this would be difficult to implement and validate. It 

was decided, therefore, that the best course of action would be to return to the original 

plate set-up, where colony scoring was utilised. As the objective had originally been to 
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reduce the number of variables, and hence the number of agar plates required, the 

protocol was changed such that only one concentration of small molecule would be tested 

in the first instance. More detailed, concentration dependent assays could then be 

performed if required later, once initial hits had been identified.  

 

 

 

Figure 4.6. Identifying inhibitors of Aβ42 aggregation using bacterial lawn assay. Three 

known inhibitors of Aβ42 aggregation, curcumin (a), EGCG (b) and silibinin (c), were 

assayed using the top agar bacterial lawn technique. A small molecule known not to inhibit 

Aβ42 aggregation, melatonin (d), was also assayed as a negative control. The maximal 

ampicillin concentration allowing growth (MACGROWTH) was scored for both the βla-linker 

and βla-Aβ42 constructs at each concentration of small molecule (0 – 200 µg/mL).   
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Figure 4.7. Example of scoring discrepancies in the bacterial lawn assay. (a) Eight 

concentrations of ampicillin are spotted onto each well of the plate containing the 

bacterial culture suspended in agar. After 18 h incubation, the plates are recorded for 

analysis. (b) Example of the discrepancies in scoring by two individuals within the same 

laboratory. Scorer one (i) records no difference in the amount of clearance in the bacterial 

lawns for each concentration of small molecule. Scorer two (ii) records a decrease in lawn 

clearance as the concentration of small molecule increases.  
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4.2.3 Assay optimisation 

 
A high quality assay that required the minimal amount of time and reagents to perform 

(summarised in Table 4.1) was developed over time by optimising assay parameters. The 

final assay is described in Section 2.4.4 and illustrated in the schematic in Figure 4.10. 

 

4.2.3.1   Optimising choice of agar plate 

 
The primary task was to find a suitable plate that required the minimal amount of agar 

(and therefore small molecule) to perform the assay, while still allowing colony growth to 

be scored. The 8-well plates utilised for the bacterial lawn assay (Section 2.4.3) required 

~ 2 mg of small molecule (a 200 Da compound) per assay. Utilising a 12-well plate 

reduced the requirement of small molecule to ~ 1 mg per assay, however this was still 

deemed too high for a successful assay. Investigations with a 96 well plate (one well per 

cell dilution of culture) successfully reduced the necessity for large quantities of small 

molecule (only 144 µg/assay) by providing the absolute minimal volume required for 

agar. However, the small well size made scoring the presence of colonies near-impossible 

(Figure 4.8a). By increasing the well size a small fraction to 48-well agar plates, colonies 

could be visualised easily and recorded (Figure 4.8b). Investigations into the volume of 

agar to use in each well revealed that 300 µL was optimal. This was the lowest volume of 

agar that could be used that gave full well-bottom coverage and did not dry out during the 

18 h incubation at 37 °C (by contrast with 200 µL agar per well). This plate set-up 

required only 288 µg/assay for a 200 Da small molecule.  

Screening a small library of known inhibitors using the optimised 48-well plate 

methodology at a single concentration of ampicillin would allow the assay to be 

miniaturised further, thereby promoting further reduction in the quantity of small 

molecule required (to 48 µg of a 200 Da compound) (see Section 4.5). 
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Figure 4.8. Comparison of scoring growth within a 96-well and a 48-well plate.  

Photographs illustrating the difficulties imaging colonies within the wells of a 96-well 

plate (a) compared to the larger wells of a 48-well plate (b).    

 

 

4.2.3.2   Sample incubation with small molecule 

 
Initial experiments (Section 4.2.1) showed that the best results were obtained when the 

bacterial cultures were pre-incubated with the small molecule prior to exposure to 

antibiotic. If pre-incubation did not occur, and the bacteria were exposed to the small 

molecule and ampicillin in the agar plate simultaneously, no bacteria grew at ampicillin 

concentrations higher than 40 µg/mL (data not shown). For rapidly aggregating proteins 

such as hIAPP and Aβ42, these observations suggest that the small molecule must be 

present prior to the initial onset of aggregation for them to exert their most potent anti-

aggregation effects. This is supported by literature on in vitro aggregation in the presence 

of small molecules; only a small group of compounds have been demonstrated to 

disaggregate pre-formed fibrils or amorphous aggregates235, 448, 449. Extending the pre-

incubation time in the presence of small molecules from 1 h to 3 h had no significant effect 

on the ability of bacteria to grow in the presence of antibiotics. It may be that even longer 

incubation times would have had beneficial effects on bacterial growth, however it was 

decided to limit pre-incubation to 1 h to minimise the time taken to perform the assay.  
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4.2.3.3   Point of small molecule addition 

 
The initial assay optimisation experiments were performed using a large beaker of 100 mL 

molten ‘stock’ agar (Figure 4.9). The large volume was initially required to maintain the 

agar in a molten state and enable full submersion of the multichannel pipette tips into the 

liquid. The small molecule was mixed into this prior to pouring the plates, and although 

only a small amount of compound was required in each well, a large quantity of compound 

was needed to produce 100 mL of agar containing 100 µM small molecule. Two techniques 

were investigated to circumvent this problem: addition of small molecule to the agar plate 

after the agar had set, and addition of small molecule to the plate prior to agar pouring. 

The first technique involved spotting the small molecule on top of each agar well and 

leaving it to dissipate into the agar. This technique worked well for small molecules 

dissolved in water, however molecules in DMSO or ethanol did not fully dissipate 

throughout the agar (as shown by dissipation of coloured compounds). Furthermore, the 

successful dissipation could only be confirmed visually for coloured small molecules. The 

second technique attempted was the addition of the small molecule to the well prior to 

agar addition. The plate was then shaken to ensure homogenous dispersion of the small 

molecule throughout the agar. This method was much more successful, resulting in 

complete mixing of molecules dissolved in water, ethanol and DMSO in the agar. It also 

reduced the amount of small molecule required to 576 µg/assay (for a 200 Da compound). 

This quantity is further reduced during miniaturisation (see Section 4.5) to 72 µg/assay.  

 

Figure 4.9. Assay setup for pre-mixing of compound into the agar. A large beaker of 

molten agar (containing 100 µM of small molecule) acts as the stock while preparing the 

agar plates for the assay.  
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4.2.3.4   Concentration of small molecule 

 
Numerous concentrations of small molecule were investigated with the aim of reducing 

the cytotoxicity of the small molecules to the cells, without forfeiting their anti-

aggregation properties. It was found for a number of small molecules, that a concentration 

of 500 µM small molecule significantly rescued cellular growth, however a considerable 

number of small molecules were either partially or completely toxic at this concentration. 

Reducing the small molecule concentration to < 100 µM prevented any growth rescue, 

suggesting that this concentration of small molecule is below the concentration required 

to inhibit protein aggregation. For further screening of small molecules, therefore, a 

concentration of 100 µM small molecule was chosen to warrant minimal cell toxicity, 

while maintaining the chance of observing any anti-aggregation activity of the compound. 

Furthermore, it was believed this concentration would guarantee the selection of non-

colloidal inhibitors, often identified during other screening techniques using high 

concentrations of small molecule450, 451.  
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4.2.3.5   Summary of optimised in vivo assay 

 
Parameter Condition Score Conclusion 

Agar plate to be 
used to minimise 
volume of 
agar/small 
molecule 

8-well * 8- and 12- well plates required too much 
agar/small molecule. 96-well plates used a 
suitable amount of agar however the colonies 
were too difficult to visualise. 48-well plates 
circumvented both these issues successfully. 

12-well ** 

48-well **** 

96-well ** 

Volume of 
agar/well 

500 µl ** 
300 µL agar/well ensured the minimal amount 
of small molecule would be used. 200 µL was 
not enough to cover the base of the wells in a 
48-well plate. 

400 µl *** 

300 µl **** 

200 µl * 

Sample incubation 
with small 
molecule prior to 
addition to agar 
plate  

0 h * 
Pre-incubation in the presence of small 
molecule inhibitors was required for colonies 
to grow under selected growth conditions. 
Optimal time was 1 h. 

1 h **** 

2 h **** 

3 h **** 

Point of small 
molecule addition 

Spotted on top 
of agar 

* 
Small molecules could not dissipate fully into 
set agar. Pre-mixing into agar was easier to 
perform, however it required 2 mg of small 
molecule (a 200 Da compound). Addition of 
small molecule directly to well prior to 
addition of agar only required 288 µg of 
compound.  

In well prior to 
agar addition 

**** 

Pre-mixed into 
stock agar 

* 

Concentration of 
small molecule 

50 µM ** 

A small molecule concentration of 100 µM was 
most optimal, combining the highest hit rates 
with the lowest cytotoxicity. 

100 µM **** 

250 µM ** 

500 µM * 

 
Table 4.1. Parameters optimised for small molecule screen. Conditions are scored from 

the most (four stars) to the least (one star) favourable. 
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Figure 4.10. Schematic of optimised 48-well plate assay. (a) 48-well agar plates, 

containing the small molecule of interest or the relevant solvent, are prepared prior to 

performing the assay. (b) Colonies transformed with the required plasmid are selected 

and grown until an OD600 of 0.6 is reached. β-lactamase-fusion protein expression is 

induced with arabinose and cultures are pre-incubated in the presence or absence of small 

molecule for 1 h. (c) Cultures are serially diluted and 3 µL pipetted into each well of the 

prepared agar plates. Plates are incubated for 18 h at 37 °C. (d) The maximal cell dilution 

at which growth occurs (MCDGROWTH) in the presence and absence of small molecule is 

scored for each concentration of ampicillin. Control plates of bacteria expressing βla-linker 

are also examined for intrinsic effects of small molecule on growth. 
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4.2.4 Accounting for off-target effects  

 
The addition of small molecules to an in vivo system risks unwanted off-target effects. 

These could range from non-specific cytotoxicity to cell cycle arrest452. To account for 

these effects, a control plate was created in each experiment using bacteria expressing the 

βla-linker construct. Any aberrant effect a small molecule has on cellular growth can 

therefore be identified in these bacteria, and accounted for during the assay. As an 

example, the effects of the small molecules EGCG (Figure 4.11a) and 1H-benzimidazole-2-

sulfonic acid (1H-B-SA) (Figure 4.11b) on bacterial growth are calculated as described 

below. 

Any effect of the small molecule on bacterial growth attributed to the presence of the small 

molecule alone is first identified by comparing the growth of the βla-linker expressing 

bacteria in the presence and absence of the small molecule of interest (Figure 4.11c, d). 

For example, EGCG has a slightly adverse effect on bacterial growth, whereas 1H-B-SA 

promotes cell growth (Figure 4.11d). These effects are deducted from the βla-hIAPP 

assay (Figure 4.11e) to give a true representation of the small molecule’s ability to 

prevent βla-hIAPP aggregation (Figure 4.11f). 100 µM EGCG enabled greater cell dilutions 

of bacteria to grow at higher concentrations of ampicillin; at most concentrations of 

ampicillin a 10-fold improvement in growth is observed (Figure 4.11f). The presence of 

100 µM 1H-B-SA did not aid bacterial growth in the presence of ampicillin (Figure 4.11f), 

in agreement with in vitro analysis (see Section 4.3.3). The slight toxicity observed for the 

negative control 1H-B-SA at the highest concentrations of ampicillin could result from the 

synergistic toxic effects of protein aggregation and the presence of small molecule, 

although this remains speculation at this point in time.  
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Figure 4.11. Correcting for intrinsic effects of small molecules on bacterial growth. (a) 

Structure of (-)-epigallocatechin gallate (EGCG). (b) Structure of 1H-benzimidazole-2-

sulfonic acid (1H-B-SA) (c) Assay in absence of small molecules. Maximal cell dilution 

allowing growth (MCDGROWTH) was assessed at each ampicillin concentration. Bacteria 

expressing the non-aggregating βla-linker ( ) have a higher minimal inhibitory 

concentration (MIC) of antibiotic than bacteria expressing βla-hIAPP ( ). (d) The small 

molecule effect on cell growth (independent of aggregation) is assessed. 100 µM of EGCG   

( ) is detrimental to growth, whereas 100 µM of 1H-B-SA ( ) promotes cell growth. (e) 

The ability of EGCG and 1H-B-SA to prevent βla-hIAPP aggregation is assessed, 

uncorrected for intrinsic effects of the small molecule on growth (*) (Section 4.2.4). (f) 

Assay corrected for intrinsic effects of the small molecules on bacterial growth. Error bars 

represent the standard error from a minimum of 4 replicate experiments. 
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4.3 Assay validation 

 

4.3.1 Selection of known small molecule inhibitors 

 
After assay optimisation, the next stage was to validate the strategy by screening a small 

library of small molecules whose activity against protein aggregation is known. Six well-

characterised inhibitors of hIAPP aggregation were selected from the literature for 

screening (Table 4.2)234-237, 245, 284-287, 453.  

Small 
Molecule 

Mode of Inhibition 
Molecular 

Weight 
(Da) 

Structure 

Curcumin 

Significantly reduces hIAPP 
aggregation in vitro and 

alleviates some toxicity of 
pancreatic β-cells in vivo245 

368.4 

 

Fast Green 
FCF 

10:1 molar ratio of Fast Green 
FCF:hIAPP inhibits all 

aggregation284 
765.9 

 

Silibinin 

Results in amorphous 
aggregates at 5:1 molar ratio of 
silibinin:hIAPP287, and complete 
inhibition of aggregation at 10:1 

molar ratio237 

482.4 

 

Acid 
fuchsin 

Inhibits all amyloid formation at 
10:1 molar ratio of acid 

fuchsin:hIAPP284.  Arrests 
amyloid formation by trapping 

intermediate species285 

585.3 

 

EGCG 
Potent inhibitor of hIAPP 

aggregation234, 236, 237, 453; can 
disaggregate amyloid fibrils235

 

458.4 

 

Caffeic acid 
5:1 molar ratio of caffeic 

acid:hIAPP inhibits all 
aggregation286 

180.2 
 

 
Table 4.2. Known inhibitors of hIAPP aggregation. 
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As only one small molecule with no effect on hIAPP aggregation had been published to 

date (tramiprosate285), a selection of small molecules were assessed by a technique under 

development in the laboratory using electrospray ionisation-ion mobility spectrometry-

mass spectrometry (ESI-IMS-MS) to characterise the mode of protein aggregation 

inhibition by small molecules. ESI-MS spectra can be used to classify compounds that do 

not bind, and those that bind specifically, non-specifically or colloidally to the protein of 

interest (Figure 4.12). The mass spectrometry experiments were all performed by Lydia 

M. Young (University of Leeds) and have been submitted for publication379. 

 

 

 
Figure 4.12. Schematic of ESI-MS spectra for the various small molecule binding modes.    

Peptide monomer peaks are denoted ‘m’, oligomer peaks ‘o’ and bound ligand ‘m+𝑥L’. 

Charge states are in superscript. (a) A non-interacting small molecule will produce a 

spectrum the same as the peptide alone. (b) A small molecule that specifically interacts 

with the peptide will produce a binomial distribution of bound peaks (purple)454. (c) A 

non-specific ligand will bind but result in a Poisson distribution of bound peaks (green)454. 

(d) A colloidal inhibitor will produce overlapping peaks due to self-association of the small 

molecule (blue). Figure adapted from Saunders & Young, 2014379. 

 

Eight small molecules were identified from their ESI-MS spectra (Figure 4.13) and 

selected as negative reference controls for the in vivo screen validation. Five of the small 

molecules (benzimidazole, azure A, aspirin, thiabenzadole and hemin) did not bind hIAPP 

(Figure 4.13b-f), one (Orange G) was colloidal (Figure 4.13g), and two (tramiprosate and 

1H-B-SA) bound non-specifically to hIAPP (Figure 4.13h and Figure 4.13i).  
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Figure 4.13. ESI mass spectra of small molecule/hIAPP interaction. ESI-MS mass spectra 

of 32 µM hIAPP alone (a), or in the presence of 320 µM (b) benzimidazole, (c) azure A, (d) 

aspirin, (e) thiabenzadole, (f) hemin, (g) Orange G, (h) tramiprosate or (i) 1H-B-SA.  

Numbers above peaks denote oligomer order, with the positive charge state of ions in 

superscript. Peaks attributed to colloidal Orange G molecules are denoted in orange (g). 

Peaks attributed to non-specific binding of tramiprosate (h) and 1H-B-SA (i) are denoted 

in green and blue respectively. Experiments were performed in collaboration with Lydia 

M. Young (University of Leeds). 
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4.3.2 In vivo screening of known inhibitors and non-inhibitors 

 
The maximal cell dilution allowing growth at the various ampicillin concentrations was 

assessed for each of the 14 selected small molecules (in all cases, any intrinsic effect on 

cell growth by the small molecule alone was corrected for as described in Section 4.2.4). In 

order to obtain a single value from each MIC assay, illustrative of the small molecule’s 

effect on bacterial growth, the area under the MIC assay curves was calculated as a sum of 

the areas of 7 trapezia (Equation 4.1), where  𝐴𝑐𝑢𝑟𝑣𝑒 is the total area under the curve, and 

𝑥𝑖 and 𝑦𝑖  are the 𝑥-axis and 𝑦-axis values at each concentration of ampicillin (see 

Figure 4.14). 

 
                                  

𝐴𝑐𝑢𝑟𝑣𝑒 = ∑
𝑦𝑖 + 𝑦𝑖+1

2

7

𝑖=1

× (𝑥𝑖+1 − 𝑥𝑖) 

                 Equation 4.1 

 

 

 

Figure 4.14. Growth quantification of bacteria in the presence or absence of a small 

molecule. The area under the curve of the treated and untreated cells is calculated using 

Equation 4.1.  
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The area under the curve of cells treated with small molecule was compared with that of 

an untreated control (the absence of small molecule) (example in Figure 4.14). This was 

repeated for each small molecule on four different days. The fraction was plotted on a 

logarithm to base 2 graph, producing a graph that is symmetrical about zero 

(Figure 4.15). Any small molecule that has a positive effect on cell growth therefore 

produces a score greater than zero and is classified as a ‘hit’.  

 

 

 

 
Figure 4.15. In vivo classification of small molecule inhibitors of βla-hIAPP aggregation. 

Box plot (n=4) showing the effect on growth of each small molecule. Centre line = median; 

box limits indicate the 25th and 75th percentiles, with whiskers extending to ± 1.5 times the 

interquartile range. Dashed line through graph indicates separation of small molecules 

that have an effect (> 0), and those that do not (≤ 0). Compounds are coloured as known 

inhibitors ( ) or as molecules known to have no effect ( ) on hIAPP aggregation in vitro.  

 

 

The in vivo classification of small molecules as ‘hits’ or as no positive effect on cell growth 

showed a striking correlation with the published data (Table 4.2) and the mass 

spectrometry analysis (Figure 4.13). Importantly, all the molecules that were shown by 

mass spectrometry to not bind, or to bind non-specifically or colloidally to hIAPP 

(Figure 4.13), were classified as negatives in the in vivo screen (Figure 4.15). 

Furthermore, five out of six known inhibitors of hIAPP aggregation consistently aided 
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bacterial growth in the presence of antibiotics, resulting in their classification as ‘hits’ in 

the in vivo screen. The only inconsistency between the published data and the in vivo 

screen was for the small molecule silibinin (Figure 4.15). To investigate this anomaly, a 

dose-response experiment was performed which showed that when the concentration of 

silibinin was increased to > 500 µM (as compared to the 100 µM used previously), a 

positive score in the in vivo assay was achieved (Figure 4.16a). This is in contrast to the 

strongest inhibitor identified in the assay, curcumin, which induces a significant 

improvement in bacterial growth at 100 µM (Figure 4.16b). By performing the assay at 

100 µM small molecule, only strong, specific and non-colloidal inhibitors will be identified. 

The toxicity observed at 50 µM curcumin and 50-375 µM silibinin is most likely due to 

synergistic toxic effects of protein aggregation and the presence of the small molecule as, 

at this concentration, βla-hIAPP aggregation is not being prevented.  

 

 

 
Figure 4.16. In vivo dose-response relationship between bacterial growth and small 

molecule concentration. Effect on bacterial growth of increasing concentrations of (a) 

silibinin and (b) curcumin. Error bars represent the standard error from a minimum of 4 

replicates, dashed line indicates small molecule concentration utilised in standard MIC 

assay (100 µM). 
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4.3.3 Validating classification of hIAPP aggregation inhibitors  
 
 
In vitro analysis of the aggregation of hIAPP peptide in the presence and absence of the 

small molecule inhibitors was performed to validate the in vivo classification of ‘hits’. All 

data are summarised in Tables 4.3-4.7.  

 

4.3.3.1   Transmission electron microscopy  

 
Transmission electron microscopy (TEM) was carried out to analyse the nature of 

aggregates formed by hIAPP in the presence of the 14 small molecules screened. A 1:10 

molar ratio of peptide:small molecule was incubated for five days before TEM images were 

captured (Section 2.5.6.2). The five small molecules classified as ‘hits’ in the in vivo screen 

(curcumin, acid fuchsin, Fast green FCF, EGCG and caffeic acid) also prevented hIAPP 

amyloid formation in vitro, resulting either in very small oligomers or amorphous 

aggregates (Table 4.3, Table 4.4). Furthermore, eight of the nine small molecules that 

failed to prevent βla-hIAPP aggregation in vivo (at a concentration of 100 µM), also failed 

to prevent amyloid formation by hIAPP in vitro, resulting in amyloid fibrils or large 

amorphous aggregates (Table 4.5, Table 4.6, Table 4.7). The single false-negative in the 

in vivo screen, silibinin, resulted in the formation of small amorphous aggregates of hIAPP 

in vitro (Table 4.6).  
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4.3.3.2   Thioflavin T fluorescence 

 
The increase in extrinsic fluorescence of the benzothiazole dye thioflavin T (ThT), upon 

binding to β-sheet-rich structures, is commonly used to quantify the extent of fibrillation 

in vitro455. However, as discussed in detail in Section 1.6.1, as many potential small 

molecule inhibitors are intrinsically fluorescent and share the same binding site on the 

fibril as ThT277-279, there is a significant risk in using this technique as the sole method to 

assess fibril formation inhibition. To illustrate this issue further, the ThT fluorescence of 

hIAPP samples incubated in the presence and absence of each of the 14 small molecules 

was monitored over time (Figure 4.17). Using ThT fluorescence data alone, 12 molecules 

would be classified as ‘hits’ (preventing fibril formation) and only two small molecules 

(hemin and aspirin) would be classified as compounds that do not inhibit hIAPP fibril 

formation (Figure 4.17). However, when the ThT data is compared to TEM data 

(Tables 4.3-4.7), only six small molecules actually prevent hIAPP fibril formation in vitro, 

confirming that six small molecules create false-positive results in the ThT fluorescence 

assay (tramiprosate, benzimidazole, thiabenzadole, Orange G, 1H-B-SA and azure A) 

(Figure 4.17).  

 
 

 

 
Figure 4.17. ThT fluorescence intensity of hIAPP in presence or absence of small 

molecules.  hIAPP alone (32 µM peptide, 200 mM ammonium acetate buffer, pH 6.8, 25 °C, 

quiescent) or in the presence of each of the 14 small molecules screened (1:10 molar ratio 

of hIAPP:small molecule) was incubated at 25 °C for 25 h.  
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4.3.3.3   Mass spectrometry  

 
For a more quantitative analysis of hIAPP aggregation in the presence of small molecules, 

electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) was 

utilised (performed by Lydia M. Young). As described previously (Section 4.3.1; 

Figure 4.13), ESI-MS spectra can be used to classify compounds that do not bind, and 

those that bind specifically, non-specifically or colloidally379. Further information can be 

obtained from ESI-IMS-MS Driftscope plots to determine the oligomeric distribution 

within the sample237, 379, 456. Example Driftscope plots of specific (positive), non-specific, 

negative and colloidal binding are shown in Figure 4.18.  

In the absence of small molecule, hIAPP forms oligomers up to, and including, hexamers 

within two minutes of dilution into buffer (Figure 4.18a, Table 4.3). When the ‘hits’ from 

the in vivo screen were added at a 10-fold molar excess over hIAPP (32 µM hIAPP, 320 µM 

small molecule), the mass spectra revealed the in vivo ‘hits’ were, overall, specific binders 

to hIAPP in vitro, with trimers being the maximum size oligomers observed at a 1:10 molar 

excess of hIAPP:small molecule (Table 4.3, Table 4.4). Caffeic acid, previously published 

as a hIAPP aggregation inhibitor286, was the only ‘hit’ from the in vivo screen not identified 

to bind to hIAPP by ESI-MS, with oligomers up to pentamers being observed. Analysis of 

the TEM data (Tables 4.3-4.7) revealed the formation of small amorphous aggregates, and 

short fibrillar material. The previously published report on caffeic acid also only found 

small amorphous aggregates, formed at a 1:5 molar ratio, with no observable fibrils286. As 

the compound’s effect on the hIAPP aggregation pathway is not due to non-specific or 

colloidal inhibition (Table 4.4), the data suggest that caffeic acid must interact with higher 

ordered oligomeric species and not monomeric hIAPP. The positive result in the in vivo 

assay suggests that the oligomers formed must be of small enough size to allow sufficient 

βla-hIAPP activity. This illustrates, therefore, that not all aggregates of βla-hIAPP are 

sufficient to reduce antibiotic resistance.   

The small molecules classified as negatives in the in vivo screen were either non-binding, 

non-specific binding, or colloidal inhibitors as observed by mass spectrometry. Hemin, 

azure A, thiabenzadole, benzimidazole and aspirin did not bind to hIAPP, resulting in the 

formation of tetrameric to hexameric oligomers (Table 4.5, Table 4.6 and Table 4.7). 

Conversely, tramiprosate and 1H-B-SA both bound to hIAPP, but in a non-specific manner. 

Although the hIAPP oligomers were reduced to monomer and tetramer, in the presence of 

tramiprosate and 1H-B-SA respectively, an interaction of this type is largely based on 

charge and is not overly sensitive to structure457. Non-specific interactions are overcome 
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during the aggregation pathway, leading to a final formation of fibrillar species (Table 4.5 

and Table 4.6). The negative score in the in vivo assay demonstrates that initial non-

specific interactions with the aggregating protein are not enough to enable the bacteria to 

grow in the presence of antibiotics.  

ESI-IMS-MS analysis show that the single false negative observed in the in vivo screen, 

silibinin, binds specifically to hIAPP, with monomer being the only species observed 

(Table 4.6) at a 1:10 molar ratio of hIAPP:silibinin. Previous reports on the effects of a 1:1 

molar ratio of hIAPP:silibinin show a reduction in fibril formation (TEM and ThT data), 

albeit with no significant change on the lag time237 287. A 1:5287 or 1:10237 molar ratio of 

hIAPP:silibinin resulted in a dramatic reduction in ThT fluorescence (not abolition), with 

few or no fibrils observable by TEM. The formation of fibrils even at high molar ratios of 

hIAPP:silibinin suggests that the small molecule retards the aggregation process, rather 

than halting it or driving the formation of off-pathway species. This could potentially 

explain the negative result observed in the in vivo assay, as, although the small molecule 

specifically binds to hIAPP in vitro, the aggregates en route to fibril formation may 

potentially disrupt β-lactamase activity enough to inhibit bacterial growth in the presence 

of antibiotics.   
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Figure 4.18. ESI-IMS-MS demonstrates the mode of inhibition (specific/colloidal/non-

specific) or lack of inhibition of hIAPP amyloid formation by small molecules. ESI-IMS-MS 

Driftscope plots of hIAPP alone (a), or in the presence of 10-fold molar excess (320 µM 

small molecule to 32 µM hIAPP) of (b) Fast Green FCF (bound peaks denoted  (13+ 

bound) or  (12+ bound), number of circles represents number of ligands bound), (c) 

aspirin, (d) 1H-B-SA (bound peaks denoted ) or (e) Orange G. An example of a (b) 

positive, (c) negative (d) non-specific and (e) colloidal inhibitor are illustrated. The 

numbers on the Driftscope plots indicate the oligomer order and the adjacent 

superscripted numbers show the charge state of those ions. Experiment performed by 

Lydia M. Young (University of Leeds).  
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4.3.4 In vitro analysis of βla-hIAPP aggregation 

 
An assumption made during the development of the in vivo assay for inhibitors of protein 

aggregation was that the aggregating insert will still aggregate when in the β-lactamase 

construct. To validate this hypothesis, the βla-hIAPP and βla-linker constructs were 

purified for in vitro aggregation analysis. 

 

4.3.4.1   Purification of βla-linker and βla-hIAPP  

 
The purification protocol created for wild-type β-lactamase (Section 2.3.1) was used as a 

basis for the purification of both βla-linker and βla-hIAPP. As the βla-linker and βla-hIAPP 

constructs are expressed from a pBAD vector, expression trials using 2, 0.2, 0.02, or 

0.0002 % (w/v) arabinose were performed (Section 2.3.1.1). The results revealed that the 

highest protein expression was observed in LB medium at 37 °C with an arabinose 

concentration of 0.2 % (w/v) for the βla-linker construct (Figures 4.19a, b) and 0.02 % 

(w/v) for the βla-hIAPP construct (Figures 4.19c, d). Periplasmic purification of βla-linker 

and βla-hIAPP was carried out as described in Sections 2.4.14 – 2.3.17. Protein purity was 

confirmed by SDS-PAGE (Figures 4.19e, f) and protein identity was confirmed by mass 

spectrometry (observed mass of βla-linker: 33219.2 Da, expected mass of βla-linker: 

33219.5 Da;  observed mass of βla-hIAPP: 34789.7 Da, expected mass of βla-hIAPP: 

34789.1 Da). 
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Figure 4.19. βla-linker and βla-hIAPP protein expression and purification. βla-linker 

expression was minimal during induction with 0.0002 % (w/v) arabinose (a) and optimal 

with 0.2 % (w/v) arabinose (b). βla-hIAPP expression was also minimal under 0.0002 % 

(w/v) arabinose induction (c) but optimal under 0.2 % (w/v) arabinose (d). Periplasmic 

fractions extracted before and after induction were analysed. SDS-PAGE gels of (e) 

βla-linker and (f) βla-hIAPP after size exclusion chromatography. The size in kDa of the 

protein markers are indicated on the left. 
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4.3.4.2   In vitro aggregation of βla-linker and βla-hIAPP  

 
The βla-linker and βla-hIAPP constructs were incubated for 72 h in the presence or 

absence of four ‘hits’ from the in vivo screen (curcumin, Fast green FCF, EGCG and acid 

fuchsin) or the non-inhibitor thiabenzadole (Figure 4.20). Briefly, a 1:10 molar ratio of 

protein:small molecule (33:330 µM) was incubated at 37 °C for 72 h (Section 2.5.5), after 

which TEM images were recorded. Nephelometry revealed a clear difference between 

protein samples that contained inhibitors of hIAPP aggregation and those that did not 

(Figure 4.21a). TEM analysis corroborates this observation, with fibrils only being 

observed in the sample not containing any small molecule or the sample containing the 

non-inhibitor of hIAPP aggregation thiabenzadole (Figure 4.21b, c). The observation of 

fibrillar structures confirms that hIAPP incorporation as a β-lactamase tripartite fusion 

protein can proceed along an aggregation pathway at least similar to that observed by the 

hIAPP peptide alone. Furthermore, the aggregates produced by βla-hIAPP in the presence 

of the inhibitors of hIAPP aggregation (Figure 4.21d-g) are remarkably similar to those 

formed by hIAPP peptide in the presence of the same inhibitors (Table 4.3, Table 4.4). 

Conversely, when the βla-linker construct was subjected to the same conditions, turbidity 

was lower than samples of βla-hIAPP (Figure 4.22a), and TEM data revealed the presence 

of only sparse, small amorphous aggregates (Figure 4.22b i. ii.).       

 

Figure 4.20. Structures of small molecules used for in vitro analysis of βla-hIAPP 

aggregation. Curcumin (a), Fast green FCF (b), EGCG (c) acid fuchsin (d) and 

thiabenzadole (e). 
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Figure 4.21. In vitro aggregation of βla-hIAPP in the presence of different small molecules. 

(a) Aggregation reactions monitored using turbidity at 635 nm. hIAPP alone, ( ) or a 1:10 

molar ratio (33:330 µM) of hIAPP:small molecule (thiabenzadole ( ), EGCG ( ), Fast green 

FCF ( ), acid fuchsin ( ) or curcumin ( )), was incubated for 72 h at 37 °C. TEM data of 

aggregates present after 72 h in the absence (b) or presence of thiabenzadole (c), EGCG 

(d), Fast green FCF (e), acid fuchsin (f) or curcumin (g). Scale bars = 500 nm (i) and 

100 nm (ii).   
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Figure 4.22. In vitro aggregation of βla-linker. (a) Aggregation reaction of 33 µM 

βla-linker over 72 h at 37 °C monitored using turbidity at 635 nm. One example is shown 

(three replicates were measured). (b) TEM data of aggregates present after 72 h, scale bar 

= 500 nm (i) and 100 nm (ii).   
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4.4 Investigating ambiguous inhibitors 

 
To demonstrate the effectiveness of the in vivo assay, it was utilised to investigate the 

effects of six small molecules identified as inhibitors of hIAPP aggregation, but with either 

incomplete or inconclusive data due to conflicting results (Table 4.8)266, 288, 290, 458-462. The 

identification of specific small molecule inhibitors of protein aggregation is complicated by 

the behaviour of the compounds within the assays used. A traditional method for 

identifying inhibitors of fibrillation is the ThT assay. Several reports have given evidence 

of the high false-positive rates obtained using this assay, due to competitive binding of the 

small molecule to the ThT binding pocket on the amyloid fibril245, 283, 461. Indeed, as 

demonstrated here, ThT data alone cannot be relied on to provide an accurate account of 

the level of cross β-sheet structure of a sample in the presence of small molecules (Tables 

4.3-4.7). Despite these well documented disadvantages, some small molecules have been 

proposed as inhibitors of hIAPP aggregation using this technique alone266, 460.  

Identification of specific inhibitors of protein aggregation is also complicated by the high 

number of ‘colloidal’ inhibitors represented in this group450, 451. These promiscuous 

chemical aggregates are able to sequester proteins in a non-specific manner to prevent 

aggregation450, 451. Colloidal inhibitors are often differentiated from specific inhibitors by 

investigating their anti-aggregation properties against other target proteins450. However, 

as demonstrated in Sections 4.3.2 and 4.3.3, the in vivo screen, in conjunction with ESI-

IMS-MS, is able to identify colloidal inhibitors as ‘negatives’. 
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Small 
Molecule 

Mode of Inhibition 
MW 
(Da) 

Structure 

Acridine 

orange 

20-fold molar excess required for 

inhibition. Only ThT fluorescence 

data shown, no TEM data266 

265.4 
 

Phenol red 

10:1 molar ratio of phenol red:hIAPP 

leads to small reduction in fibril 

formation458, potentially binds and 

improves solubility of early 

protofibrils459 

354.4 

 

Myricetin 

Published as inhibitor due to lower 

ThT fluorescence observed in 

presence of myricetin, but no 

analyses of aggregates performed460. 

Another study found inhibition 

occurred for 45 min at a 10:1 molar 

ratio of myricetin:hIAPP by AFM 

imaging288, however no effect found 

in another study461 

318.2 

 

Resveratrol 

Formation of hIAPP amyloid is 

claimed to be suppressed by a 1:1462 

and 2:1290 molar ratio of 

resveratrol:hIAPP, however AFM 

images still show fibrils present 

228.2 

 

Morin 

hydrate 

10:1 molar ratio of morin 

hydrate:hIAPP leads to formation of 

short fibrils and amorphous 

aggregates461 

302.2 

 

Congo red 

Previously published as an inhibitor 

of hIAPP aggregation266, however 

recent work has demonstrated it 

inhibitors protein aggregation via a 

colloidal mechanism233, 450 

696.7 

 

 
Table 4.8. Published ambiguous inhibitors of hIAPP aggregation.  

 

In agreement with the previous report266, the in vivo assay confirmed the small molecule 

acridine orange as an inhibitor of hIAPP aggregation (Figure 4.23). ESI-IMS-MS data 

reveal acridine orange to be specific inhibitor of hIAPP aggregation, with trimers being the 

maximum number of oligomers observed at the beginning of the reaction (Table 4.9). 

When a 10-fold molar ratio of acridine orange was incubated with hIAPP for 5 days, only 

sparse amorphous aggregates are visible by TEM (Table 4.9).  
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Four of the ambiguous inhibitors of hIAPP aggregation were negative in the in vivo screen: 

myricetin, resveratrol, morin hydrate and Congo red (Figure 4.23). The small molecule 

phenol red was classified as a hit in only 50 % of the experiments (n=4). ESI-MS spectra 

confirm that phenol red, myricetin, resveratrol and morin hydrate bind hIAPP non-

specifically, whereas Congo red binds by a colloidal mechanism (Table 4.9 and 

Table 4.10). TEM data support the in vivo data, with fibrillar material visible after 5 days 

incubation of hIAPP with a 10–fold molar excess of phenol red, myricetin, resveratrol and 

morin hydrate (Table 4.9, Table 4.10). Similar to the aggregates of a 1:10 molar ratio of 

hIAPP:Orange G viewed previously (Table 4.7), incubation of hIAPP with the colloidal 

inhibitor Congo red also results in very large amorphous aggregates (Table 4.10).  

 

 

 

Figure 4.23. In vivo analysis of six ambiguous inhibitors of hIAPP aggregation. Box plot 

(n=4) showing the effect on growth of each small molecule as a comparison of treated 

versus untreated cell growth. Centre line = median; box limits indicate the 25th and 75th 

percentiles, with whiskers extending to ± 1.5 times the interquartile range. Dashed line 

through graph indicates separation of small molecules that have an effect (> 0),  and those 

that do not (< 0). Compounds are coloured as positive inhibitors ( ) or negative-inhibitors 

( ) of hIAPP aggregation in vitro. 
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A twenty-fold molar excess of Congo red was previously reported to prevent hIAPP 

aggregation in vitro266, however the data presented here clearly show that Congo red acts 

via a colloidal mechanism. The previous study only provided ThT data, with no 

visualisation of the aggregates by TEM or atomic force microscopy (AFM)266. In a similar 

vein, the small molecule myricetin was reported as an inhibitor of hIAPP aggregation 

based solely on ThT data460. A different study combined ThT data with AFM imaging to 

analyse the aggregates formed by hIAPP in the presence of a 10-fold molar ratio of 

myricetin, however the images were captured after only 45 min288. There is a slight 

decrease in aggregate load when compared to hIAPP in the absence of myricetin288, 

however, this is most likely due to non-specific interactions of myricetin with hIAPP. As 

clearly shown in the work presented here (Table 4.9), and in another published study461, 

myricetin does not prevent hIAPP fibril formation when incubated at a 10-fold molar ratio 

of small molecule.  

Morin hydrate was classified as a non-inhibitor of hIAPP both in vivo and in vitro. This is in 

stark contrast to a recent publication of morin hydrate as an inhibitor of hIAPP 

aggregation461. TEM data presented here show large amorphous aggregates, together with 

distinct fibrillar material (Table 4.10). Furthermore, ESI-IMS-MS shows that morin 

hydrate does not bind to hIAPP, with oligomers up to tetramer observed at the beginning 

of the incubation. The published study found morin hydrate reduced fibrillar sample load 

at 1:5 and 1:10 molar ratio of hIAPP:morin hydrate (as observed by TEM), however small 

plaques of shorter fibrils were still present461.  

Interestingly, resveratrol was also classified as a non-inhibitor of hIAPP aggregation, in 

disagreement with a number of published studies289, 290, 463. One study290 reported a 

decrease in oligomer number (at 18 h) and fibrillar load (at 96 h) when  a 1:0.5 molar ratio 

of hIAPP:resveratrol was incubated at 25 °C, as visualised by AFM. However, the decrease 

is negligible, and the fibril morphology appears identical. Conversely, other published 

studies demonstrated that the presence of resveratrol prevents hIAPP from forming fibrils 

on the surface of INS-1E (rat pancreas) cells for up to 48 h; small amorphous aggregates 

are all that are visible289, 463. It may be that resveratrol is able to slow hIAPP fibrillation 

significantly by some currently unknown method. The presence of dense fibrillar material 

after five days incubation presented here may be the result of slower accumulation of 

amyloid fibril in the presence of resveratrol. This hypothesis could be tested via a time-

point assay, with aggregated material removed at 12 h intervals and the aggregation 

process monitored by TEM.   
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4.5 Assay miniaturisation for high throughput screening 

 
One of the key stages in the development of a high throughput assay is miniaturisation, 

with the aim to reduce screening costs and increase speed, while not compromising data 

quality. In this context, as the current in vivo assay setup requires an excessive amount of 

small molecule (288 µg for a 200 Da compound), and requires two 48-well plates, 

miniaturisation was deemed a further important development. To achieve this, a single, or 

minimum of two, concentrations of ampicillin was searched for that could give the same 

reliable and reproducible results as the full plate of eight concentrations of ampicillin. The 

methodology as before was utilised, however instead of calculating the difference between 

the areas under the MIC assay curve in the presence and absence of small molecules, the 

difference between single scores was calculated. 

Using the data presented in Figure 4.15 (presented again in Figure 4.24b), for each of the 

14 original test molecules the number of false positive and false negative scores was 

tallied at each ampicillin concentration (rather than over all ampicillin concentrations 

used as described in Section 4.3.2). The total number of false positives and negatives, if 

only a single concentration of ampicillin would have been used, was determined 

(Figure 4.24a). For the full MIC assay, a false positive rate of 0 % and a false negative rate 

of 5.1 % was observed (Figure 4.24a). In any screen, a false positive is an unwanted 

result, as it increases both costs and time of the assay through determination of the nature 

of the false hit in subsequent analyses. However, false positive results can be detected and 

readily nullified by a second assay. For this reason a threshold maximum of 10 % false 

positives was set. The data obtained for concentrations of ampicillin from 2 ampicillin 

concentrations (20 and 100 µg/mL) and three ampicillin concentration ranges (80-100, 

100-120 and 120-140 µg/mL) fell below this threshold, with false positive rates ranging 

from 7.1 % - 8.2 % (Figure 4.24a). Reducing the number of false negative results in an 

assay is imperative as these cannot be determined at a later stage, therefore, the false 

negative rate threshold was set at 5 %. Six concentrations of ampicillin produced a false 

negative rate below the threshold, however only three simultaneously had a false positive 

rate of below 10 %: 100 µg/mL, 100-120 µg/mL and 120-140 µg/mL. An ampicillin 

concentration of 100 µg/mL produced no false negatives, and as this condition only 

requires one concentration of ampicillin (and therefore only one row of wells in a 48-well 

plate), it was selected as the concentration at which the miniaturised assay should be 

performed. Figures 4.24b-c show the comparison of the results of the full MIC assay 

(Figure 4.24b) and the miniaturised MIC assay at 100 µg/mL ampicillin (Figure 4.24c).  
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Figure 4.24. Comparison of false–positive and false-negative rates during assay 

miniaturisation. (a) The number of false-positive and false-negative rates were calculated 

at each concentration of ampicillin, and also over three ranges of ampicillin. The rates for 

the full MIC assay ( ) are included for comparison. 14 small molecules were assayed 

(n=4), with the rates calculated as a percentage of the total number of assays (n=56). The 

threshold maximum percentage, 5 % for false-negatives and 10 % for false-positives, is 

indicated as a dashed line. Box plots (n=4) show the effect on growth of each small 

molecule as a comparison of treated versus untreated cell growth. (b) Full MIC assay at 

eight concentrations of ampicillin. (c) MIC assay at only 100 µg/mL ampicillin. Centre 

line = median; box limits indicate the 25th and 75th percentiles, with whiskers extending to 

± 1.5 times the interquartile range. Dashed line through graph indicates separation of 

small molecules that have an effect (> 0),  and those that do not (≤ 0). Compounds are 

coloured as positive inhibitors ( ) or non-inhibitors ( ) of hIAPP aggregation in vitro.  
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4.6 Investigating unknown inhibitors 

 
Miniaturisation of the β-lactamase tripartite fusion assay for identifying inhibitors of 

hIAPP in vivo enabled a screen of a library of novel molecules (with structural similarity to 

the aggregation inhibitors previously reported) to be performed. Focused screening is a 

well-versed method to improve the hit-rate of a high throughput screen by seeding a 

screening library with compounds which have a higher probability to inhibit, or bind to, 

the target compared with random screening464. The screening method uses the structural 

information from known bio-active ligands to identify novel compounds with similar 

structure, and hence biological activity. Five known inhibitors of hIAPP and/or Aβ42 

aggregation (vanillin465, resveratrol466, curcumin445, chloronaphthoquinine-tryptophan467 

and EGCG468) were selected as queries to seed a focussed library of compounds for 

screening (Section 2.5.9). The seeding process involved an assessment of each of the 

inhibitors for structural similarity to an in-house, 50,000-member, structurally diverse 

library of lead-like small molecules using the programme Rapid Overlay of Chemical 

Structures (ROCS)384, followed by cherry-picking a subset of 20 compounds for ‘wet’ 

screening based on the default comparator (ROCS Combiscore) with consideration to 

maximal structural diversity of the proposed screening set. All seeding and molecule 

selection was performed by Dr Charlotte H. Revill and Dr Richard J. Foster (University of 

Leeds).  

The 20 novel compounds were first screened using ESI-IMS-MS (Section 2.5.8). One 

compound was found to specifically bind to hIAPP, three demonstrated non-specific 

binding to hIAPP, and the remainder did not bind in vitro (Table 4.11; data not shown). 

The three non-specific binders and one specific binder were blind-tested in vivo for their 

anti-aggregation properties at a single concentration of ampicillin (100 µg/mL). In 

agreement with the mass spectrometry data, only the specific binder (as determined by 

ESI-MS) prevented βla-hIAPP aggregation in vivo (Table 4.11). TEM data of hIAPP 

incubated for five days in the presence of the compounds corroborated the mass 

spectrometry and β-lactamase tripartite fusion system findings; only in the presence of a 

10-fold molar excess of the in vivo ‘hit’ molecule was fibril formation inhibited and the 

formation of amorphous aggregates resulted (Table 4.11). 
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4.7 Discussion 

 
Screening for small molecule inhibitors of protein aggregation often requires the 

laborious, and costly in vitro purification of protein for the initial rounds of screening. The 

use of an in vivo system circumvents the difficulties faced with the purification of these 

challenging proteins, and as such, it significantly reduces the time and cost of the analyses. 

In Chapter 3 it was demonstrated that the β-lactamase tripartite fusion system could be 

used successfully to differentiate between aggregating and non-aggregating test proteins. 

It was hypothesised that if the bacteria expressing the tripartite fusion protein were 

exposed to small molecule inhibitors of protein aggregation, the bacteria would grow at 

higher concentrations of the antibiotic ampicillin. 

 

4.7.1 Assay development 

 
The addition of another variable to the in vivo system (the small molecule) required 

significant consideration and optimisation to ensure the minimal level of unwanted side 

effects, false positives and false negatives occurred. Initial experiments with the βla-hIAPP  

construct were positive, with rescue of bacterial growth observed in the presence of select 

known inhibitors of hIAPP aggregation (curcumin and EGCG) (Figure 4.2). However, the 

assay was not successful under the same conditions using the βla-Aβ42 construct 

(Figure 4.2). It was hypothesised that the level of aggregation exhibited by Aβ42 was 

severely toxic to the cells, so the level of protein induction was optimised to reduce the 

concentration of Aβ42 present in the cell, without going below the concentration 

threshold of β-lactamase that the cells required to grow (Figure 4.3).  

One potential complication of the in vivo assay is the apparent toxicity of amyloidogenic 

proteins to bacteria. Initially it was believed that the significant growth difficulties 

experienced by bacteria expressing either the βla-Aβ40 (Chapter 3) or βla-Aβ42 

constructs could be attributable to the severe aggregation of the Aβ proteins hindering 

β-lactamase activity. Although this toxicity was alleviated somewhat by increasing 

β-lactamase activity (by increasing protein expression levels) while limiting Aβ 

production, even in the presence of numerous well-known inhibitors of Aβ aggregation, 

bacterial growth was not significantly improved. Furthermore, it became apparent that 

even when the bacteria were not subjected to high antibiotic concentrations, the presence 

of either βla-Aβ construct was deleterious. For example, Figure 4.25 shows the colonies 
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observed on a plate containing 20 µg/mL ampicillin and 100 µM of the known small 

molecule inhibitor of hIAPP and Aβ42 aggregation, curcumin244, 245, 446.  Although for both 

the βla-hIAPP and βla-Aβ42 constructs the maximal cell dilution at which colonies can be 

observed is 10-7, the size of the colonies differs drastically for the βla-Aβ42 expressing 

bacteria. These significantly smaller colonies were universally observed in all MIC assays 

performed with both the βla-Aβ40 and βla-Aβ42 constructs even in the presence of potent 

anti-aggregation small molecules.  

 

 

 

Figure 4.25. Example of disparity in colony size produced by different tripartite fusion 

proteins. Cell dilutions of bacteria expressing either (a) βla-linker or βla-hIAPP, or (b) 

βla-linker or βla-Aβ42, were spotted onto an agar plate containing 20 µg/mL ampicillin 

and 100 µM curcumin. After 18h incubation at 37 °C, the maximal cell dilution at which 

growth occurs (MCDGROWTH) for all construct-expressing cells is 10-7. Colonies of bacteria 

expressing βla-Aβ42 are significantly smaller than colonies of bacteria expressing either 

βla-linker or βla-hIAPP.  

 

A literature review revealed accumulating evidence that there may be a relationship 

between amyloid formation and antimicrobial activity469, 470. Host defence peptides (HDPs) 

are antimicrobial agents of the innate immune system, many of which are able to form 

amyloid fibrils469. Many of these small peptides are intrinsically disordered in solution but 

adopt α-helical structure at membrane interfaces, which leads to self-assembly and 

membrane insertion. These α-helical species undergo further conformational changes into 

β-sheet-rich structures, leading to further aggregation and amyloid-like fibril formation470. 
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These species disrupt cellular membranes (bacteria, fungi, enveloped viruses etc.), leading 

to membrane leakage and destruction of the microbe. The striking similarity between 

antimicrobial membrane damage and membrane damage attributed to disease-related 

amyloidogenic proteins raises the question: if antimicrobial peptides can form amyloid 

fibrils, can amyloid peptides also act as antimicrobials? The answer appears to be yes. A 

number of studies have shown that both Aβ42 and Aβ40 have potent antimicrobial 

activities471, 472. Brain tissue from patients with Alzheimer’s disease exhibits antimicrobial 

activity levels significantly higher than tissue from healthy subjects471. Furthermore, Aβ40 

and Aβ42 (at micromolar levels) can impede the growth of Streptococcus pneumonia, the 

organism responsible for the majority of cases of bacterial meningitis472. It has been 

suggested, therefore, that these peptides may actually serve as HDPs for the innate 

immune system469. Consistent with the mechanism by which HDPs interact with lipid 

membranes473, 474, Aβ40 and Aβ42 have been found to bind to and penetrate lipid mimics 

of bacterial membranes471. The peptides convert from an unstructured conformation to a 

β-sheet structure with amphiphilic characteristics when they interact with anionic 

membranes471, 475, 476.  So although the mechanism by which these peptides exert their 

antimicrobial activity remains unconfirmed, it can be suggested that it most probably 

involves membrane permeabilisation.  

In the context of the in vivo assay, the potential antimicrobial activity of Aβ40 and Aβ42 

raises a number of interesting questions. If the peptides are indeed antimicrobial, and 

interact with the anionic outer layer of bacterial membranes, how would they exert this 

activity from within the periplasm? The inner leaflet of the outer membrane of Gram 

negative bacteria does not contain the layer of negatively charged lipopolysaccharide 

(LPS) found on the outer leaflet. However, by expressing the Aβ peptides within the 

periplasmic space, the close proximity of peptide and membrane may be sufficient to 

trigger peptide:membrane interactions. Alternatively, lysis of any bacteria within the 

culture would result in the externalisation of the βla-Aβ constructs. This would enable the 

Aβ peptides to interact with the exterior membranes of other bacteria within the culture. 

Membrane disruption of these bacteria would result in the release of more βla-Aβ, 

potentially leading to a toxic cascade. 

A second question raised is how do the Aβ peptides insert into lipid membranes? It is well 

established that Aβ40 and Aβ42 oligomers form pores and ion-conducting channels in 

lipid membranes477, 478, but what is the peptide’s orientation during insertion? Molecular 

dynamics simulations suggest Aβ peptides insert into the hydrophobic region of the 

membrane via their C-terminal or central hydrophobic region479. Indeed, this is supported 
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by studies demonstrating that Aβ42 exhibits much higher levels of binding to anionic 

membranes and antimicrobial activity when compared with Aβ40471, 475. The additional 

C-terminal hydrophobic residues isoleucine and alanine in Aβ42, it seems, aid in this 

interaction. How, then, would these peptides insert or disrupt a lipid membrane when 

they are constrained as a tripartite fusion in the in vivo assay? It may be that full insertion 

is not necessary to disrupt the membrane. Interacting with, or aggregating on, the inner 

surface of the outer membrane may be sufficient for bacterial toxicity.  

To answer these questions, in vitro analysis of the effects of βla-Aβ on lipid micelle 

structure could be performed. If the addition of the tripartite fusion protein caused 

membrane leakage (monitored by dye release), whereas βla-linker did not, it would 

indeed suggest that the insertion of Aβ40 or Aβ42 into β-lactamase produces a membrane-

disrupting entity. Furthermore, small molecule Aβ channel blockers could be utilised to 

investigate whether the βla-Aβ constructs can form pores from within the periplasm480. 

Nevertheless, the ability of small molecule inhibitors of Aβ aggregation to rescue bacterial 

growth in the assay, albeit to a less extent to the level of rescue observed against 

βla-hIAPP, suggests that the assay is still applicable to potentially antimicrobial peptides.  

Assay setup and conditions were investigated to obtain an assay which was both simple 

and rapid to perform without sacrificing assay accuracy. Initially a bacterial lawn 

approach was investigated, however, despite some promising positive results, the setup 

and scoring method was deemed too laborious and error-prone.  By returning to the 

original MIC assay plates, scoring difficulties were eradicated, and the assay protocol was 

significantly simplified. Numerous assay conditions were optimised before a full screen of 

known positive and negative inhibitors of protein aggregation could be performed; 

Figure 4.10 shows a schematic of the final methodology developed. A significant step was 

accounting for any off-target effects of the small molecule on bacterial growth. By 

performing the assay with the non-aggregating βla-linker construct, any effects of the 

small molecule on growth could be quantified and accounted for. Interestingly, it was 

found that, particularly for the non-inhibitors of protein aggregation, there were 

additional toxic effects experienced by the bacteria expressing the aggregating constructs. 

This suggests that toxic effects originating from the presence of the small molecules is not 

independent of the toxicity induced by the presence of an aggregating protein. Together, 

they act synergistically, leading to a much more severe toxic profile than predicted. This 

synergistic toxicity is minimised in the presence of inhibitors of βla-hIAPP aggregation in 

vivo, and therefore does not interfere with the purpose of the assay, which is to identify 

positive inhibitors of protein aggregation. 
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4.7.2 The in vivo system as a screen for small molecules inhibitors 

of protein aggregation 

 
A primary stage in assay development is confirmation that the assay can differentiate 

between known positive and negative reference controls. To this end, six published 

inhibitors of hIAPP aggregation were selected from the literature as positive controls. A 

combination of TEM and ESI-IMS-MS was utilised to identify eight small molecules that do 

not inhibit hIAPP aggregation to use as negative reference controls in the in vivo screen. 

The in vivo results corroborated with the in vitro analyses; small molecules that did not 

bind, bound non-specifically or bound colloidally were all negative in the in vivo assay. The 

positive reference controls were all ‘hits’ except for the published inhibitor of hIAPP 

aggregation, silibinin. As discussed previously, the presence of low levels of ThT 

fluorescence even after incubation of 5- and 10-fold molar ratio of silibinin over hIAPP237, 

287 suggests the small molecule is only retarding the aggregation process, not inhibiting it. 

Increasing the concentration of silibinin to 500 µM in the in vivo assay produces a ‘hit’. 

Thus, by performing the assay at only 100 µM small molecule, only potent, specific 

inhibitors of aggregation will be selected for.    

The βla-linker and βla-hIAPP constructs were purified for in vitro analysis of the 

aggregates formed. βla-hIAPP formed fibrillar structures after 72 h incubation at 37 °C. As 

no fibrillar or amorphous aggregates were present when βla-linker was subjected to the 

same conditions, it can be concluded that hIAPP is able to fibrillate even when contained 

as a tripartite fusion protein. When βla-hIAPP was incubated separately with four 

inhibitors of hIAPP aggregation (curcumin, acid fuchsin, Fast green FCF or EGCG), sample 

turbidity was significantly reduced when compared to a sample of βla-hIAPP alone. 

Analysis of TEM images after 72 h showed a distinct lack of fibrillar material, with small 

amorphous aggregates being the only visible entities. In contrast, incubation with a small 

molecule that does not inhibit hIAPP aggregation (thiabenzadole) had no measurable 

effect. These data support the validity and utility of the in vivo tripartite fusion system as a 

screen for inhibitors of aggregation. As aggregation of the hIAPP test protein is able to 

progress along a fibrillation pathway, identity of both fibrillar and non-fibrillar 

aggregation inhibitors is possible.  

The success of the assay in differentiating between known inhibitors and compounds 

known to have no effect on hIAPP aggregation led to the assessment of six small molecule 

inhibitors with ambiguous effects. The in vivo assay, in conjunction with ESI-IMS-MS, 

identified five of these small molecules as negative, that is, they did not prevent protein 
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aggregation in vivo or in vitro. The disparity between the published work and the data 

presented here is due to the techniques employed to assess the ability of small molecules 

to inhibit aggregation. By only assaying low concentrations of the small molecule in vivo, 

the β-lactamase tripartite fusion system does not identify small molecules that prevent 

hIAPP aggregation in a colloidal manner. This is a key requirement of any small molecule 

screen as this type of interaction is undesirable as a therapeutic. 

 

4.7.3 Assay miniaturisation 

 
An imperative step in assay development is miniaturisation to enable high throughput 

screening. The advantage of miniaturisation is that it allows rapid, inexpensive scale-up to 

large scale assay formats.  The original format of the in vivo assay used two 48-well plates 

per small molecule screened. One plate was utilised to assess any intrinsic off-target 

effects that the small molecule had on bacterial growth, while the other was used to assess 

the anti-aggregation properties of the small molecule. The proof-of-principle of the assay 

required the analysis of bacterial growth at eight concentrations of antibiotic. However, 

the volume of small molecule and number of plates required is a disadvantage for 

development into a high throughput screen. A solution to this issue was to reduce the 

number of concentrations of ampicillin at which the assay was performed. The number of 

false positives and false negatives observed at each concentration of ampicillin was 

quantified, and it was found that a concentration of 100 µg/mL ampicillin only produced 

8.1 % false-positive and 0 % false-negative results. By performing the screen at a single 

ampicillin concentration, the amount of small molecule required is significantly reduced 

(48 µg of a 200 Da compound). This reduced requirement of small molecule was taken 

advantage of for screening a selection of small molecules whose effect on hIAPP 

aggregation was unknown. The in vivo β-lactamase tripartite fusion system, in conjunction 

with ESI-MS, successfully identified a novel inhibitor of hIAPP amyloid formation, using a 

fraction of the small molecule that would be required for other screens. 

The assay in the current form is still in its infancy, however industrial development and 

automation would significantly reduce the workload and increase the screening capacity 

of the assay. If the assay were maintained in the current agar plate format, a number of 

stages could be automated. For example, several automated agar plate-pouring systems 

are available, thereby reducing production time significantly. Furthermore, an integrated 

colony picking robotic system could be utilised to automate plate scoring (via the 



DEVELOPING A PHENOTYPIC SMALL MOLECULE SCREEN 

204 
 

identification of wells containing colonies). Alternatively, the bacterial strain used could be 

genetically modified to contain the gene for a fluorescent protein (e.g. green fluorescent 

protein, GFP) in the chromosomal DNA481. This would change the readout of the assay 

from the presence or absence of colonies to quantitative fluorescence.  

In summary, a robust and reproducible in vivo assay for small molecule inhibitors of 

protein aggregation has been successfully developed. A variety of conditions and 

experimental procedures were investigated to create an assay that was amenable to semi-

high throughput format. Figure 4.26 illustrates this timeline and highlights the successful 

conditions selected for the final screen. Small molecules that bind to proteins via a non-

specific or colloidal mechanism are negative in the screen, thereby enabling the selection 

of specific inhibitors of protein aggregation. Combined with the ESI-IMS-MS screening 

technique developed in parallel to the in vivo assay, inhibitors of protein aggregation can 

be rapidly identified and their binding mode characterised using a fraction of the protein 

required for traditional screening techniques. Assay optimisation has produced a 

miniaturised assay which, through industrial collaborations, has the potential to be 

converted into a successful high throughput screen. The final objective in this body of 

work was to investigate the potential application of the in vivo system to 

biopharmaceutical aggregation and its inhibition. Chapter 5 describes the progress made 

toward this goal. 

 

 

Figure 4.26. Summary of small molecule inhibitor of protein aggregation assay 

optimisation. The selected conditions are highlighted in green. 
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5 Applying the in vivo assay to biopharmaceutical 

aggregation 

 

5.1 Objectives 

 
The work described in Chapters 3 and 4 demonstrates that the in vivo β-lactamase 

tripartite fusion system can be used to identify amyloidogenic proteins and small molecule 

inhibitors of protein aggregation. The final phase of the project was to investigate the 

potential applications of the system developed to biopharmaceutical aggregation. The 

primary objective was to use the in vivo system to differentiate between aggregation-

prone and non-aggregation-prone biopharmaceutically-relevant proteins. Once the system 

had been validated for this use, known excipients (chemical chaperones) were screened 

for their anti-aggregation properties. Together, these data validate the in vivo tripartite 

system as a platform for the identification of protein aggregation inhibitors, and for use 

against disease- and biopharmaceutical-related protein aggregation. The test proteins 

selected were antibody domains (the aggregation-prone Dp47d, and the non-aggregating 

HEL4 domains376, 482), as antibodies constitute one of the fastest growing areas of 

biopharmaceuticals.   

 

5.2 Antibody biopharmaceuticals 

 
In 1975, César Milstein and Georges Kӧhler introduced monoclonal antibody (mAb) 

technology, in which mouse cells lines could be immortalised to secrete a single type of 

antibody483. This led to the first therapeutic antibody for human use (muromonab) being 

approved by the US Food and Drug Administration (FDA) for the treatment of acute 

transplant rejection in 1986320. In the nearly 40 years since the advent of mAbs, the 

market for mAbs and mAb fragments has grown exponentially484. mAbs are now ranked as 

the highest selling class of biopharmaceutical, with four out of the top ten selling biologics 

of 2012 - 2013 (in the United States of America) belonging to this category (see 

Section 1.8.1 and Figure 1.18). 
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5.2.1 Monoclonal antibodies 

 
Whole mAbs, (also known as conventional immunoglobulins, Ig) are large (~ 150 kDa) 

glycosylated globular plasma proteins. A mAb monomer is a ‘Y’ shaped molecule, 

consisting of four polypeptide chains connected via disulfide bonds: two identical ‘heavy 

chains’ and two identical ‘light chains’ (Figure 5.1a). Each polypeptide chain is arranged 

into consecutive structural domains (immunoglobulin domains), consisting of two 

β-sheets arranged in an immunoglobulin fold (Figure 5.1b). A full length mAb consists of 

the constant Fc (crystallisable fragment) domain and an antigen binding domain, the latter 

comprising the Fv (variable fragment) and the Fab (antibody binding fragment)485 

(Figure 5.1a). The Fv of an antibody is the region responsible for the interaction with 

antigens, specifically via their complementary determining region (CDR) loops. There are 

three CDRs in a variable domain (Figure 5.1b), and as the antigen binding site comprises 

two variable domains, there are six CDRs that can come into contact with a specific 

antigen. The variation within the sequences of the CDRs is responsible for the vast 

diversity in antigen-recognition by mAbs.   

The use of conventional mAbs in therapeutic and diagnostic applications was initially 

limited by a number of issues. Firstly, the necessity for the mAbs to be glycosylated 

restricted the constructs to production solely in mammalian expression systems. This 

vastly increased the cost (when compared with simpler bacterial expression systems) and 

limited yield486. Furthermore, there were significant immunogenicity issues when the 

mouse antibodies were administered to humans487. Advances in antibody design 

technology, combined with a fuller understanding of the action of therapeutic antibodies, 

has led to new and improved next-generations of mAb therapeutics320. Now, humanised 

smaller fragments of antibodies (Figure 5.1c-e) can be manufactured in high-volume 

bacterial or yeast cultures, thereby circumventing the previous limitations on this 

technology. 
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Figure 5.1. Structure of antibodies and their fragment-based therapeutics. (a) Structure of 

a monoclonal antibody (mAb, Ig). (b) Example of a single immunoglobulin domain. The 

complementary-determining region (CDR) loops are highlighted in pink. (c-e) Therapeutic 

fragments derived from mAbs, (c) antibody binding fragment (Fab), (d) single-chain 

variable fragment (scFv) and (e) single antibody domains (dAbs).   

 

5.2.2 Antibody fragments 

 
It was determined that a full-length glycosylated mAb was not necessary for antigen 

recognition, as paired N-terminal domains of the VH and VL chains (Fv region) were 

sufficient for antigen binding488. These fragments could be produced by joining the single 

VH and VL domains by a polypeptide linker489 (single-chain Fv, scFv, ~ 27 kDa490) 

(Figure 5.1d), or simply as isolated Fab regions (~ 57 kDa490) (Figure 5.1c). Despite this 

progress, major technical hurdles remained in implementing this technology on an 

industrial scale486. For example, the scFv molecules were found to have a reduced affinity 
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when compared with the parent antibody491, 492. Furthermore, the linker joining the two 

domains was susceptible to aggregation and was easily degraded by proteolysis493. These 

limitations led researchers to explore the use of single domain antibodies (Figure 5.1e). 

Initial research mainly focused on using the VH domain as, in contrast to the VL domain, VH 

domains often retain the antigen-specificity of the parental antibody, since their CDR3 is 

the major contributor to antigen binding486. In the late 1980s, the first functional murine 

VH domain, for binding to lysozyme, was isolated494. However, it quickly became clear that 

removal of the VL domain led to the exposure of a hydrophobic surface on the VH domain 

(at the VH-VL interface). These isolated VH molecules were therefore ‘sticky’ and extremely 

difficult to produce in a soluble form. A further issue with single VH domains was the 

significant loss of affinity when compared to the intact scFv domain (one to three orders of 

magnitude491).     

In 1993 it was discovered that camels, dromedaries and llamas produce a unique type of 

antibody devoid of the entire light chain, and the first heavy chain constant region (CH1) 

(Figure 5.2a)495. These heavy chain antibodies (HCAbs) are able to bind their antigen via 

the single variable domain, referred to as VHH to distinguish it from classic VH domains496 

(Figure 5.2b). Impressively, the absence of the light chain does not limit the diversity of 

the epitopes497. Antibodies similar to camelid HCAbs have also been found in wobbegong 

(carpet sharks), nurse sharks and spotted ratfish498. 

 

 

Figure 5.2. Structure of heavy chain antibodies and fragments derived from camelids. (a) 

The structure of a heavy chain antibody (HCAb) from a camelid. The light chain and the 

first heavy chain constant region (CH1) found in traditional antibodies are missing. (b) A 

single heavy chain variable fragment from a camelid antibody (VHH).  
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It was immediately apparent that VHH domains exhibit superior solubility and stability 

when compared to classical VH domains499. When compared to human VH domains, the VHH 

framework regions show a high sequence homology (> 80 %), and their three-dimensional 

structures can be superimposed486, 500. The most distinctive difference in VHH domains is 

amino acid substitutions (V37Y, G44E, L45R, W47G) at four positions that are conserved 

in conventional VH domains496, 501. This tetrad of conserved residues is involved in the 

formation of the hydrophobic interface with VL domains499. The substitutions increase the 

hydrophilicity of VHH domains by replacing large hydrophobic or non-polar residues with 

small hydrophobic or charged residues. Another key difference between VH and VHH 

domains is in the variable loop regions. The CDR3 loop of camelid VHH domains is on 

average much longer (17 residues) than human (12 residues) CDR3 loops496 502. This 

extended loop masks the hydrophobic interface that would normally form with a VL 

domain503, 504. The large variable region of the VHH enlarges the surface of the antigen 

binding site, thereby compensating for the absence of the antigen-binding surface 

provided by the VL domain in variable fragments505. Indeed, the CDR3 contributes between 

50 and 100 % of the antigen interacting surface486. Furthermore, the long CDR3 loop is 

often connected by a disulfide bond to the CDR1506. This bond restricts the conformational 

flexibility of the long CDR3 loop in the antigen-free form, so that the immobilisation of the 

loop upon antigen binding minimises the entropic penalty486. Some examples of the 

advantages of VHH domains over traditional antibody fragments are summarised in 

Table 5.1. 

 

 
Advantage Molecular Basis 

High physicochemical stability 
Efficient refolding due to increased hydrophilicity and 

single-domain nature507 

High solubility Increased hydrophilicity508 

Recognition of hidden antigenic sites Small size and extended flexible CDR3509 

Rapid tissue penetration, fast 

clearance 
Small size510 

Well expressed 
Efficient folding due to increased hydrophilicity and 

single-domain nature485 

 

Table 5.1. Advantages of single-domain antibody fragments compared to conventional 

antibody fragments. Table modified from Harmsen, 2007499.  
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5.2.3 Reducing the aggregation propensity of dAbs 

 
The discovery of highly stable and soluble VHH domains led to the idea of ‘camelisation’, in 

which the hydrophobic residues on the traditional VH:VL interface of dAbs were replaced 

with the hydrophilic amino acids frequently found in VHH domains490, 511. Similarly, 

extension and/or sequence variation within the CDRs has also been shown to increase dAb 

solubility and reduce aggregation-propensity512-514. These alterations could be either 

rationally designed515, or discovered through phage selection methods. For example, a 

phage library of human VH dAbs (1010 clones) was selected for binding to hen-egg 

lysozyme (HEL)376. From a total of 21 HEL-specific clones, one was selected (HEL4) that 

was significantly less aggregation-prone in vitro (determined by thermal unfolding and 

solubility experiments) compared with the highly aggregation prone Dp47d, a human VH 

dAb encoded by the same germline gene (Figure 5.3a, b). X-ray crystallography revealed 

that although the hydrophobic framework residues of the VH:VL interface were maintained, 

the side-chain of framework residue W47 is flipped into a cavity, thereby increasing the 

hydrophilicity of the VH:VL interface domain376 (Figure 5.3c).  

A significant technological advancement was made when a powerful technique, linking 

dAb thermal stability and phage display, was developed482. Multiple copies of individual 

dAbs were displayed on the surface of phage, which were subsequently heated to 80 °C to 

induce dAb unfolding and aggregation. After cooling the phage, any thermally unstable 

dAbs would not refold correctly, leaving any dAbs that could reversibly unfold to be 

selected and characterised. By simultaneously combining selection for thermal stability 

and antigen specificity, thermal-based aggregation-prone specific dAbs could be rapidly 

identified. However, a key disadvantage of this technique was that it involved full 

denaturation of dAbs. This therefore restricted the selection only to mutations that 

reduced the tendency of the unfolded state to aggregate. Indeed, it was found that the 

thermodynamic stability of the selected dAbs was no better than a typical 

aggregation-prone human dAb; although the selected dAbs could avoid irreversible 

aggregation at 80 °C, their average free energy of folding (ΔG°) at 25 °C was 

only -20 kJ/mol, whereas that of Dp47d and other human dAbs  was -35 kJ/mol514, 516. As 

the aggregation-resistance of these domains was therefore due to the properties of the 

denatured state, this selection technique gave little advantage for dAbs of greater 

thermodynamic stability. To counter this issue, the same group modulated the technique 

to only lead to partial unfolding of most of the dAb members on the phage surface517. By 

keeping the temperature below the melting temperature of the majority of dAbs, and 
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inducing partial acid unfolding (at pH 3.2), the selection process favoured domains that 

are thermodynamically stable (ΔG° = 27-34 kJ/mol), as well having aggregation-resistant 

denatured states (Tm = 58-68 °C)517.   

 

 

Figure 5.3. Sequence and structural comparisons of the VH dAbs Dp47d and HEL4.  

Sequence of (a) Dp47d and (b) HEL4. Residues numbered according to Kabat et al.518 

(standardised numbering of residues in an antibody). Residues that differ between the 

two dAbs are coloured pink. Residue W47 that is flipped into a hydrophobic cavity of 

HEL4 is highlighted in purple. Asterisk marks residues involved in the disulfide bond. (c) 

Crystal structure of HEL4 coloured according to sequences in (b). The key solubility-

determining factors (CDR3 and W47) are labelled. Created using Protein DataBank (PDB) 

entry 1OHQ376 and PyMOL Molecular Graphics System (Schrödinger, LLC).  
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5.3 Using the β-lactamase tripartite fusion system to 

identify dAb aggregation propensity   

 
Previous studies using the β-lactamase tripartite fusion system demonstrated its ability to 

identify stability-enhancing mutations and chemical additives that increase stability in 

vivo308, 313. As the data presented in Chapters 3 and 4 of this thesis established that the 

β-lactamase tripartite fusion system can determine the extent of aggregation of 37- to 42- 

residue peptides, it was hypothesised that the in vivo β-lactamase tripartite fusion system 

could also be used to differentiate soluble, stable dAbs from their aggregation-prone 

counterparts. By linking aggregation propensity to enzyme activity, a direct readout of 

dAb aggregation could be obtained without resorting to denaturing conditions such as 

increased temperature482 or low pH517.  

HEL4 and Dp47d were chosen as test proteins for the in vivo screen. A comparison of HEL4 

and Dp47d sequences revealed 22 residue differences (HEL4 is 120 and Dp47d is 116 

residues in length) (Figure 5.3a, b). Analysis of the X-ray crystal structure of HEL4376 

shows the N- and C-termini to be 40.9 Å apart, a similar length to the distance between the 

termini of the maltose binding protein (MBP, 40.7 Å)519 (Figure 5.4). MBP was utilised as 

a test protein in the original study using the β-lactamase tripartite system to evolve 

protein stability in vivo308, suggesting that incorporation of the dAbs into the β-lactamase 

GS-rich linker would be possible.  
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Figure 5.4. N- and C-termini distance between maltose-binding protein (MBP) and HEL4. 

The distance between the termini of (a) MBP is 40.7 Å and (b) HEL4 is 40.9 Å. Created 

using Protein DataBank (PDB) entries 1OMP (MBP)519 and 1OHQ (HEL4)376,  and PyMOL 

Molecular Graphics System (Schrödinger, LLC).  

 

5.3.1 Cloning dAbs into β-lactamase linker  

 
Using the protein sequences stated in Jespers et al., 2004376, plasmids containing the genes 

encoding HEL4 and Dp47d (pEX-HEL4 and pEX-Dp47d, respectively) were synthesised by 

Eurofins MWG Operon (Ebersburg, Germany) (Table 2.11). Plasmid maps are shown in 

Appendices 7.3.4 and 7.3.5. HEL4 and Dp47d were cloned into the 28-residue 

glycine/serine-rich linker between residues 196 and 197 of TEM-1 β-lactamase308, using 

primers designed to include an XhoI restriction site 5’ and a BamHI restriction site 3’ to the 

gene (Table 2.8). The plasmid containing βla-linkerSHORT was digested with the same 

enzymes, and the PCR product encoding the test protein was ligated into it. The ligation 

products were transformed into E. coli JM109 cells (Section 2.2.7) and the cells grown on 

agar plates containing 10 μg/mL tetracycline. Successful ligation was identified by the 

resistance to tetracycline obtained from the β-lactamase vector. DNA was purified from a 

selection of colonies and was sent for sequencing to confirm that they contained the 

correct sequences (Section 2.2.9). Primers for the sequencing reactions were designed to 

bind upstream and downstream of the GS-linker of β-lactamase (Table 2.8). The newly 

synthesised plasmids were named βla-28-HEL4 and βla-28-Dp47d; full DNA and protein 

sequences are provided in Appendices 7.1.8 and 7.1.9. 
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5.3.2 Antibiotic resistance correlates with dAb aggregation-

propensity 

 
The minimal inhibitory concentration of antibiotic (MIC) was determined for bacteria 

expressing the βla-HEL4 or the βla-Dp47d constructs, over a large range of ampicillin 

concentrations in order to determine the optimal antibiotic range to use for subsequent 

assays. Briefly, cultures of BL21 (DE3) cells expressing each construct were grown until 

the OD600 = 0.6 (37 °C, 200 rpm). Protein expression was then induced by the addition of 

0.02 % (w/v) arabinose and bacteria were allowed to grow for a further 1 h (37 °C, 

200 rpm), before sequential cell dilutions were pipetted onto 48-well agar plates 

containing increasing concentrations of the β-lactam antibiotic ampicillin (0 – 500 µg/mL; 

20 µg/mL increments). Plates were incubated at 37 °C for 18 h, after which they were 

scored for the maximal cell dilution at which cells could grow at each antibiotic 

concentration (Figure 5.5a).  As bacteria expressing the βla-Dp47d construct were unable 

to grow at ampicillin concentrations greater than 180 µg/mL, an ampicillin concentration 

range of 0 – 140 µg/mL ampicillin (20 µg/mL increments) was used for all subsequent 

MIC assays, to allow one assay/48-well plate (Figure 5.5b). The in vivo assay consistently 

differentiated between the aggregation-prone βla-Dp47d and the more soluble βla-HEL4 

(Figure 5.5c). These findings confirm that the β-lactamase tripartite fusion system is 

amenable to a variety of test proteins with different structures and sizes. Furthermore, it 

is applicable for disulfide bond-containing immunoglobulin domains, something that has 

not been shown before, either in this study or the previous studies308, 313.   
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Figure 5.5. In vivo antibiotic resistance correlates with dAb aggregation propensity. (a) 

Maximal cell dilution allowing growth (MCDGROWTH) over a wide range of ampicillin 

concentrations for βla-HEL4 ( ) and βla-Dp47d ( ) tripartite fusion constructs. (b) 

Example agar plates of MCDGROWTH over the restricted ampicillin range of 0-140 µg/mL 

(βla-HEL4 ( ) and βla-Dp47d ( )). (c) MCDGROWTH over the restricted ampicillin range of 0-

140 µg/mL. Error bars represent the standard error from a minimum of 3 replicates.    
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5.4 In vivo screening of excipients for anti-aggregation 

properties 

 
The stability and solubility of proteins are routinely enhanced during biopharmaceutical 

production and storage by the addition of excipients (pharmacologically inactive chemical 

chaperones)351, 354, 516. Assessing the suitability of various excipients often requires the in 

vitro purification and incubation of the protein of interest (POI) in various solution 

conditions under several stresses303, 520-522. Furthermore, if the POI is inherently unstable 

and aggregation-prone, initial purification can be costly and laborious to carry out. 

Whether the in vivo β-lactamase tripartite fusion system could be used to screening 

excipients for the ability to stabilise and/or prevent the aggregation of the inserted test 

protein was next tested, therefore, with a view to providing valuable information to aid 

the selection of co-solvents that benefit purification.     

 

5.4.1 Dp47d purification in the absence of co-solvents  

 
To demonstrate the aggregation-propensity of Dp47d in the absence of any co-solvent (as 

compared to its non-aggregating counterpart HEL4), purification of both domains was 

attempted. The plasmids containing HEL4 or Dp47d were digested with the restriction 

enzymes XhoI and NdeI and the genes ligated into a pET23a vector digested with the same 

enzymes (Section 2.2). Plasmids, named pET-HEL4 and pET-Dp47d are detailed in 

Table 2.11 and plasmid maps are shown in Appendices 7.3.7 and 7.3.8.  HEL4 and 

Dp47d were over-expressed using a method adapted from Jespers et al., 2004376 

(Section 2.3.2.1) and the inclusion bodies isolated as described in Section 2.3.2.2. 

As expected, HEL4 purification was a relatively simple process; the inclusion bodies were 

solubilised and dialysed into 25 mM Tris-HCl, pH 8.0 (see Section 2.3.2.3), before 

purification by anion exchange chromatography followed by size exclusion 

chromatography (full details in Section 2.3.2.3). Protein purity was confirmed by SDS 

PAGE (Figure 5.6a) and identity was confirmed by mass spectrometry (observed mass: 

12979.2 Da, expected mass: 12979.5 Da). The monomeric nature of purified HEL4 was 

confirmed by analytical gel filtration (Figure 5.6b). The yield was 56.3 mg per litre of 

culture and the protein was lyophilised and stored at -80 °C. 
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Figure 5.6. Purification of the dAbs HEL4 and Dp47d. (a) SDS-PAGE gel of purified HEL4.  

(b) HEL4 elution profile from the Superdex™ 75 HR 10/30 analytical gel filtration column. 

Column calibration confirms peak position corresponds to a ~ 13 kDa protein. (c) SDS-

PAGE gel of Dp47d purified in a denatured state. The GuHCl in the protein sample was 

removed by trichloroacetic acid precipitation prior to SDS-PAGE analysis. The size in kDa 

of the protein marker is indicated.   

 

Consistent with previous publications376, 517, the Dp47d VH domain was significantly more 

difficult to purify in soluble form. Using the same protocol as used for HEL4 purification 

(Section 2.3.2.1) resulted in complete aggregation of Dp47d on the size-exclusion gel 

filtration column, and recovery of no soluble protein. Purifying Dp47d in a denatured 

form, using 4 M guanidine hydrochloride (GuHCl) before refolding into buffer, was also 

tested as a purification route. Briefly, the Dp47d inclusion bodies from 10 L of culture 

were solubilised in 10 mL of 4 M GuHCl, 50 mM glycine, pH 9.5, overnight at 4 °C. Any 

precipitate was removed by filtering the solution through a 0.2 µm syringe filter. 3 mL/run 
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was then loaded onto a Superdex™ 75 GL 10/300 gel filtration column equilibrated with 

two column volumes of 4 M GuHCl, 50 mM glycine, pH 9.5. The protein was eluted from 

the column in 20 mM Tris-HCl, pH 7.5 at a flow rate of 1 mL/min. 1.5 mL fractions were 

collected and protein elution monitored by absorbance at 280 nm (Section 2.3.2.4). 

Trichloroacetic acid (TCA) precipitation (Section 2.3.2.5) was used to remove GuHCl from 

an aliquot of the protein sample prior to purity analysis by SDS-PAGE (Figure 5.6c). The 

sample was confirmed to be pure, so subsequent refolding of the denatured Dp47d was 

attempted. Dialysis (3,000 MWCO membrane) against 50 mM glycine, pH 9.5 was 

attempted, however this resulted in rapid precipitation of the protein. Refolding by rapid 

dilution (dropwise addition of solubilised Dp47d into 50 mM glycine, pH 9.5 with rapid 

stirring) also resulted in complete precipitation of Dp47d.  

The data highlight the difficulties faced when dealing with an aggregation-prone protein in 

vitro. As such, a number of excipients were next screened to assess their ability to prevent 

βla-Dp47d aggregation in vivo (Sections 5.4.4 and 5.4.6), to allow selection of those that 

aid in the purification of soluble Dp47d in vitro (Section 5.4.7).  

 

5.4.2 Selection of protein stabilisers 

 
Osmolytes are ancient members of in vivo stress responses, used by plants and 

microorganisms to protect proteins in response to heat, cold, water or salt stress516, 520. 

These low molecular weight, uncharged or zwitterionic molecules can be present at high 

concentrations (> 1 M) in vivo in order to raise intracellular osmotic pressure523, yet they 

do not interfere with protein function516. This compatibility with proteins is attributable to 

the fact that osmolytes do not physically interact with proteins524-526. Rather, they are 

excluded from the protein surface in preference for water (Figure 5.7a). This ‘excluded-

volume effect’ leads to the preferential hydration of the protein surface, and as the 

unfolded or partially unfolded state has a greater solvent-exposed surface area than that 

of the folded state, more osmolytes molecules are excluded in the unfolded state520. As this 

would lead to greater hydration of the protein by the water molecules, and therefore more 

ordered water molecules, it is entropically more favourable for the protein to be in its 

folded state. By limiting the access to partially or fully unfolded states, protein 

aggregation, attributed to exposure of hydrophobic regions normally buried within the 

protein interior, is minimised516. 
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Figure 5.7. Schematic representation of preferential hydration of protein versus 

preferential binding of co-solute to protein. (a) Preferential hydration of the protein. More 

water molecules are in the protein solution than in the bulk phase (outside the dialysis 

membrane). (b) Preferential binding of co-solute. The co-solute is present in excess in the 

protein solution relative to its concentration in the bulk phase. Figure redrawn from 

Arakawa et al., 2006516.  

 

Polyols are some of the most widely used co-solvents used to stabilise proteins and 

prevent protein aggregation during purification and refolding of proteins via the excluded 

volume effect527-531. Two of the best studied are glycerol352, 527 and sorbitol531-534 (Figure 

5.8). These molecules were selected for analysis of their ability to rescue the growth of 

bacteria expressing the aggregation-prone βla-Dp47d construct (Section 5.4.4).   

 

 

 
Figure 5.8. Structure of the polyols (a) glycerol and (b) sorbitol. 
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5.4.3 Selection of aggregation suppressors 

 
Increasing the thermodynamic stability of the native state can prevent protein unfolding 

which can lead to aggregation (Section 5.4.1). However, aggregation can still occur, even 

when conditions thermodynamically favour the native conformation, if electrostatic 

interactions between protein molecules are strong535. Co-solutes that prevent these 

interactions function by preferentially binding to the protein (unlike co-solutes that lead 

to preferential hydration) (Figure 5.7b), thereby masking areas of the protein prone to 

inter-molecular interactions. A combination of free L-arginine (Arg) and L-glutamate (Glu) 

(Figure 5.9) has been demonstrated to prevent the aggregation of six unrelated proteins 

by a combination of neutralising opposite charges (which would otherwise lead to 

intermolecular association) and masking adjoining hydrophobic areas with their aliphatic 

tails536. Indeed, one study has demonstrated that L-arginine strongly binds to tryptophan 

(Trp) residues during refolding assays and decreases the extent of aggregation537. As the 

improved solubility of HEL4 (as compared to Dp47d) is attributed to the burial of a Trp 

residue (W47) in a hydrophobic pocket in HEL4, this suggests addition of L-Arg to could 

prevent βla-Dp47d aggregation in vivo. Due to the reported success of a combination of 

L-arginine and L-glutamate in preventing protein aggregation536, these were selected to 

investigate the ability to screen for the anti-aggregation ability of these free amino acids in 

the tripartite in vivo  system.   

 

 

 

Figure 5.9. Structure of (a) L-arginine and (b) L-glutamate at neutral pH. 
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5.4.4 Glycerol and sorbitol rescue bacterial growth in the 

presence of ampicillin 

 
48-well agar plates were created containing 0, 0.25 0.375, 0.5 or 1 M sorbitol, or 0, 1, 1.5 

or 2 M glycerol as described in Section 2.4.5.1. A similar protocol as used for screening of 

small molecule inhibitors of protein aggregation was performed. Briefly, cultures of 

BL21 (DE3) cells expressing each construct were grown until the OD600 = 0.6 (37 °C, 

200 rpm). Protein expression was then induced by the addition of 0.02 % (w/v) arabinose. 

200 µL were removed and added to 1.5 mL Eppendorf tubes containing 200 µL of sorbitol 

or glycerol stock (warmed to 37 °C) to give the final concentration of excipient required 

(see Section 2.4.5.1). These cultures were incubated for a further 1 h (37 °C, 200 rpm), 

before sequential cell dilutions were pipetted onto the prepared 48-well agar plates 

containing excipients and increasing concentrations of ampicillin (0 – 140 µg/mL; 

20 µg/mL increments). Plates were incubated at 37 °C for 18 h, after which they were 

scored for the maximal cell dilution at which cells could grow at each antibiotic 

concentration.  

In all experiments, any intrinsic effect that the excipients had on bacterial growth was 

accounted for as described previously (Section 4.2.4). The addition of sorbitol and glycerol 

to the growth medium was found to rescue bacterial growth in a quantitative manner 

(Figure 5.10 and Figure 5.11 respectively). In fact, the presence of 1 M sorbitol in the 

agar enabled βla-Dp47d-expressing bacteria to grow at the same concentration of 

ampicillin as bacteria expressing the non-aggregating construct βla-HEL4 (compare 

Figure 5.10a and Figure 5.10e). Conversely, 2 M of glycerol was required for a similar 

effect to be observed with this excipient (Figure 5.11d). The data confirm that osmolyte 

excipients can be assayed in vivo for their anti-aggregation properties. The data suggest 

that sorbitol is superior to glycerol in its ability to prevent Dp47d aggregation in vivo. 

Consequently, the ability of sorbitol and glycerol to prevent Dp47d aggregation in vitro is 

assessed in Section 5.4.7.  
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Figure 5.10. Bacterial growth in presence of sorbitol. (a) MIC assay in the absence of 

sorbitol. βla-HEL4 ( ) is included as an example of a non-aggregating construct. The 

maximal cell dilution allowing growth (MCDGROWTH) was scored at each ampicillin 

concentration in the presence of (b) 0.25 M sorbitol, (c) 0.375 M sorbitol, (d) 0.5 M 

sorbitol and (e) 1 M sorbitol. In each case, any intrinsic effect that sorbitol had on bacterial 

growth was accounted for as described in Section 4.2.4. (f) Bacterial growth in the 

presence (treated) versus the absence (untreated) of a range of sorbitol concentrations 

(calculated using Equation 4.1). Error bars represent the standard error from a minimum 

of 3 replicates. Experiments were performed with undergraduate student Oliver Holman. 
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Figure 5.11. Bacterial growth in presence of glycerol. (a) MIC assay in the absence of 

glycerol. βla-HEL4 ( ) is included as an example of a non-aggregating construct. The 

maximal cell dilution allowing growth (MCDGROWTH) was scored at each ampicillin 

concentration in the presence of (b) 1.0 M glycerol, (c) 1.5 M glycerol and (d) 2.0 M 

glycerol. In each case, any intrinsic effect that glycerol had on bacterial growth was 

accounted for as described in Section 4.2.4. (e) Bacterial growth in the presence (treated) 

versus the absence (untreated) of a range of glycerol concentrations (calculated using 

Equation 4.1). Error bars represent the standard error from a minimum of 3 replicates. 

Experiments were performed with undergraduate student Oliver Holman. 
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5.4.5 L-Arginine and L-glutamate elicit minimal rescue of 

bacterial growth  

 
Golovanov et al.536 demonstrated that an equimolar (50 mM) combination of L-arginine 

(L-Arg) and L-glutamate (L-Glu) could increase the solubility limit of six unrelated 

proteins by up to a factor of 8.7 (from 0.1 to 1.3 mM). Consequently, equimolar 

concentrations of L-Arg and L-Glu were utilised to investigate whether these free amino 

acids could also improve the solubility of Dp47d in the β-lactamase tripartite fusion 

system. Agar plates were created containing 25:25 mM, 50:50 mM or 100:100 mM 

L-Arg:L-Glu (Section 2.4.5.2). The pH of the agar was corrected to pH 7 prior to pouring 

the plates (see Section 2.4.5.2). The same protocol utilised to investigate the effects of the 

excipients glycerol and sorbitol was applied to assay the effects of these amino acids, 

however the Eppendorf tubes contained 200 µL of L-Arg or L-Glu stock (prepared with LB 

medium, warmed to 37 °C) to give the final concentration of excipient required. After 18 h 

incubation at 37 °C the plates were scored for the maximal cell dilution at which growth 

could occur (Figure 5.12). The ability of these excipients to rescue growth of the bacteria 

expressing the aggregating construct βla-Dp47d was limited, especially in comparison to 

the significant growth improvement in the presence of the excipients sorbitol and glycerol 

(Figure 5.10 and Figure 5.11). As L-amino acids are key substituents and metabolites for 

bacterial growth, it was hypothesised that the addition of high concentrations of these free 

amino acids may induce toxicity by interfering with normal cellular metabolic pathways. It 

was hypothesised that D-amino acids may circumvent these issues as they are minimally 

utilised by E. coli (as compared to L-amino acids).    
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Figure 5.12. Bacterial growth in presence of equimolar L-Arg and L-Glu. (a) MIC assay in 

the absence of free amino acids. βla-HEL4 ( ) is included as an example of a non-

aggregating construct. The maximal cell dilution allowing growth (MCDGROWTH) was scored 

at each ampicillin concentration in the presence of (b) 25:25 mM, (c) 50:50 mM and (d) 

100:100 mM L-Arg:L-Glu. In each case, any intrinsic effect that addition of L-Arg and L-Glu 

had on bacterial growth was accounted for as described in Section 4.2.4. (e) Bacterial 

growth in the presence (treated) versus the absence (untreated) of equimolar mixtures of 

L-Arg:L-Glu (calculated using Equation 4.1). Error bars represent the standard error from 

a minimum of 3 replicates. Experiments were performed with undergraduate student 

Oliver Holman. 
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5.4.6 D-arginine is less toxic than L-arginine to bacterial growth 

 
As substantial research demonstrates that exogenic addition of D-Glu has adverse effects 

on bacterial growth538-540, the possibility of utilising D-Arg (Figure 5.13) as a protein 

aggregation inhibitor was investigated. The aim was to reduce the toxicity, as compared to 

the addition of L-Arg, while retaining the anti-aggregation properties. 48-well agar plates 

were created containing either 50 mM L-Arg or 50 mM D-Arg, and the same MIC assay 

technique as described for the addition of L-Arg/L-Glu mixtures was followed 

(Section 2.4.5.2). After the intrinsic toxicity attributed to the addition of L-Arg or D-Arg 

was accounted for, the ability of the two isomers to rescue growth of bacterial expressing 

the aggregating construct βla-Dp47d was remarkably similar (Figure 5.14a, b). However, 

the toxicity induced by these free amino acids was significantly different. L-Arg 

(Figure 5.14c) was considerably more toxic to bacteria expressing the non-aggregating 

βla-HEL4 construct than D-Arg (Figure 5.14d). The bacterial colonies in the presence of L-

Arg were small and faint, making them very difficult to score. Conversely, in the presence 

of D-Arg, the bacterial colonies were of a comparative size and shape to colonies in the 

absence of excipient addition. These data suggests that use of D-amino acids in place of 

their L- counterparts may be beneficial in screening for their anti-aggregation properties 

in vivo.  

 
 

 

 
Figure 5.13. Structure of D-arginine at neutral pH. 
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Figure 5.14. Comparison of bacterial growth in presence of L-Arg or D-Arg. (a) Growth of 

bacteria expressing the βla-Dp47d in the absence ( ) or presence of 50 mM (a) L-Arg ( ) 

or (b) D-Arg ( ). The maximal cell dilution allowing growth (MCDGROWTH) was scored at 

each ampicillin concentration. In each case, any intrinsic effect that addition of 50 mM 

L-Arg or D-Arg had on bacterial growth was accounted for as described in Section 4.2.4. 

(c-d) Toxic effect on the growth of bacteria expressing the non-aggregating βla-HEL4 

construct in the absence ( ) or presence of 50 mM (c) L-Arg ( ) or (d) D-Arg ( ). Error 

bars represent the standard error from a minimum of 3 replicates. Experiments were 

performed with undergraduate student Oliver Holman. 
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5.4.7 Addition of in vivo ‘hit’ excipients aid purification of Dp47d 

 
As demonstrated in Section 5.4.1, the dAb Dp47d cannot be purified in a soluble form in 

vitro. Due to the success of the MIC assay in the presence of sorbitol and glycerol, the 

ability of these ‘hit’ excipients to prevent aggregation of Dp47d in vitro was investigated. 

The same purification protocol as detailed above (Section 5.4.1) was utilised to purify 

Dp47d in a denatured state. Refolding by dialysis was attempted in the presence of 0.5 M 

sorbitol (50 mM glycine, pH 9.5), and 0.5 M glycerol (50 mM glycine, pH 9.5). The presence 

of sorbitol prevented precipitation of Dp47d, and analytical size exclusion 

chromatography revealed the presence of mainly monomeric Dp47d (Figure 5.15). The 

identity of the protein was confirmed by mass spectrometry (observed mass: 12509.2 Da, 

expected mass: 12508.9 Da). 0.5 M glycerol was not able to solubilise Dp47d, with protein 

precipitation visibly identified. Due to time constraints, no further analyses of the effects 

of the excipients on Dp47d aggregation in vitro were performed. 

 

 

Figure 5.15. Refolding of Dp47d using the excipient sorbitol. Dp47d elution profile from 

the Superdex™ 75 HR 10/30 analytical gel filtration column in the presence of 0.5 M 

sorbitol (50 mM glycine, pH 9.5). Column calibration confirms the main peak position 

corresponds to a ~ 13 kDa protein and the small peak position corresponds to a ~ 26 kDa 

protein.  
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5.5 Discussion 

 
Protein-based pharmaceuticals are among the fastest growing category of therapeutic 

agents541, with significant emphasis on monoclonal antibodies and their isolated variable 

domains (dAbs). The small, monomeric size of dAbs makes them ideal candidates for 

therapeutics, imaging agents and diagnostics542. Unlike their larger parent molecules 

(mAbs), dAbs can cross the blood-brain-barrier543, penetrate tumour cells510, 544, and even 

inactivate target enzymes by binding within the active site509, 545. However, removing the 

native interacting partner domain exposes a large hydrophobic surface of the VH domain 

to solvent, so that these isolated molecules become severely aggregation-prone. As with all 

biopharmaceutical aggregation, this increases the risk of reduced efficacy, bioavailability 

and stability, leading to unwanted and potentially dangerous host immune responses546, 

547.  

Researchers are able to engineer antibodies on a rational basis, resulting in the production 

of more stable molecules with enhanced specificity and solubility320. However, protein 

design is much more complex than simply eliminating aggregation-prone sequences; the 

elimination of large stretches of hydrophobic residues, or even single residues, can 

significantly disrupt folding541. As such, in vitro purification of proteins containing various 

mutations can be required for biophysical analysis of their stability and solubility. A 

technique was developed to link phage display with the selection of thermally482 (or 

thermodynamically517) stable dAbs, thereby providing a rapid and high throughput 

method to identify promising lead candidates.  

It was hypothesised that the in vivo β-lactamase tripartite fusion system could also be used 

to identify aggregation-prone dAbs, and as such, may be of potential use to the 

biopharmaceutical industry. By linking the in vivo aggregation of the dAb to the enzymatic 

activity of β-lactamase, aggregation propensity could be characterised without the need 

for destabilising conditions such as increased temperature482 or low pH517. As shown in 

Section 5.3.2 above, the in vivo assay successfully differentiated between the aggregation-

prone human VH domain Dp47d and the highly stable dAb HEL4376. As the β-lactamase 

tripartite fusion system has successfully been used before to identify stabilising mutations 

in a number of test proteins308, the potential for this system to identify stabilising and/or 

aggregation-preventing mutations in biopharmaceutically relevant dAbs is promising. 

As only a proof-of-principle has been demonstrated in this body of work, developing this 

system for practical use would require a number of considerations. Firstly, the inhibition 
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of in vivo aggregation must be linked to dAb function, as any mutation that decreases 

aggregation cannot significantly reduce antigen affinity or specificity. This could be 

achieved by coupling the MIC assay with a detection method such as the enzyme-linked 

immunosorbent assay (ELISA). For example, random mutagenesis could be used to create 

a library of mutants. These mutants would be cloned into the linker region of β-lactamase 

and transformed into E. coli cells. In a similar manner to phage display, each E. coli cell 

would then express a different mutant, thereby increasing the throughput of the assay. As 

the final readout of the assay is a highly sensitive immunodetection assay (ELISA), 

theoretically a traditional full MIC assay would not be required. Single colonies (or even 

liquid cultures) could be grown in the presence of one (optimised) concentration of 

antibiotic and any colonies present after 18 h incubation at 37 °C could be resuspended in 

a gentle lysis buffer to remove the outer membrane of the cells548. ELISA would allow 

direct detection of antigen binding by any non-aggregated constructs. Identical control 

plates could be used to extract and sequence the required mutant. In summary, the 

mutants would first be screened for aggregation propensity (by the MIC) and then for 

antigen affinity and specificity (by ELISA).     

The approach described above could be tested using published Dp47d mutants with well 

characterised aggregation and stability properties376, 482. For example, mutating a key 

tryptophan residue residing in the VH:VL interface (W47R) results in an increase in protein 

recovery during purification from 5 % to > 80 % 376. In vitro analyses showed that over 

90 % of the protein was now in monomeric form, in contrast to WT Dp47d with which the 

authors could not obtain any data due to the rapid aggregation376. Theoretically, this 

mutation would result in more monomeric βla-Dp47d in the in vivo assay, which would be 

identifiable by ELISA (using hen-egg lysozyme376). 

The ability of the in vivo assay to identify excipients, known to increase protein stability 

and prevent aggregation in vitro, was also investigated. Purification of soluble Dp47d in 

the absence of any additives that aid in maintaining protein solubility was not possible 

(Section 5.4.1).  Consequently, a number of excipients were screened for their ability to 

prevent βla-Dp47d aggregation in vivo. The well-known protein stabilising osmolytes 

sorbitol and glycerol were able to rescue bacterial growth in a quantitative manner 

(Section 5.4.4).  When grown in the presence of > 0.5 M sorbitol, bacteria expressing the 

aggregating construct βla-Dp47d grew at the same level of antibiotic as bacteria 

expressing the non-aggregating βla-HEL4. A similar extent of growth recovery was 

obtained using 1.5 M glycerol. In vitro purification of Dp47d in the presence of these 

osmolytes corroborated the in vivo findings, with monomeric Dp47d only obtained when 
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0.5 M sorbitol was present in the refolding buffer. 0.5 M glycerol did not prevent the rapid 

precipitation of Dp47d.  

The effects of charged amino acids on the stability and aggregation propensities of Dp47d 

were subsequently assessed in vivo. In contrast to the powerful stabilising properties 

observed with the osmolytes sorbitol and glycerol, L-Arg and L-Glu had only a small 

positive effect on the aggregation of βla-Dp47d in vivo. The concentrations chosen for the 

experiments (25, 50 and 100 mM) may have been too low to prevent aggregation; Arg 

concentrations greater than 500 mM are one of the most common additives known to 

assist refolding of recombinant proteins from inclusion bodies549-552. However, the 

properties of the colonies observed suggested that the presence of L-Arg and L-Glu were 

detrimental to the cells. In all cases, even in the absence of ampicillin, the colonies were 

small and faint. The presence of exogenous amino acids is known to regulate a number of 

genes via the enhancement or reversal of transcription factor expression553-555. These 

transcription factor responses make these amino acids not only nutrients but also 

signalling molecules556. Consequently, the presence of high concentrations of these amino 

acids is most likely interfering with cellular homeostasis.  

Charged amino acids cannot diffuse across cellular membranes, and therefore must be 

internalised via specific transporter systems. E. coli cells have two L-Arg transporters, one 

with high affinity but low specificity for L-Arg, and one with low affinity but high 

specificity for L-Arg557. The low affinity transporter is down-regulated by the presence of 

excess L-Arg, however, conversely, the high affinity transporter, also responsible for the 

transport of other basic amino acids into the cell, is not inhibited by the presence of excess 

exogenous concentrations of L-Arg557, 558. Due to the significant importance of glutamate as 

a substrate in E. coli (~ 88 % of cellular nitrogen is obtained from glutamate559), there are 

three glutamate transporters. These transporters are regulated by the level of L-Glu 

present, however, similarly to L-Arg transporters, a high excess of L-Glu does not lead to 

complete down-regulation. In the context of the in vivo screen, the high concentrations of 

L-Arg and L-Glu utilised (25 – 100 mM) most likely resulted in significantly high 

concentrations of these amino acids within the cytoplasm.  

The excess of charged amino acids can induce toxicity via a number of mechanisms. High 

concentrations of substrate can interfere with metabolic pathways. For example, 

metabolism of both L-Arg and L-Glu result in the eventual production of ammonia, which 

is reported, at concentrations above 100 mM, to inhibit cytosolic enzymes of some 

methanogenic bacteria559. A second mechanism is via pH-based growth inhibition. L-Arg 
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and L-Glu are key substrates utilised in the protection of bacteria from low environmental 

pH. Gastric acidity is a barrier through which all microbial food-borne pathogens must 

pass, with a pH value as low as 1.5 – 2.5, the mammalian stomach is one of the most 

inhospitable environments mammalian pathogens face560 561. Surprisingly, E. coli can 

survive at pH 2 for hours562, thanks to a number of acid-resistance systems. Two of these 

systems involve the decarboxylation of Arg and Glu, in which the α-carboxyl group of the 

amino acid is replaced with a proton that is recruited from the cytoplasm563. The 

decarboxylated products are expelled from the cell in exchange for the import of new 

amino acid substrates560. The removal of intracellular protons by this mechanism causes 

the internal pH to increase to levels that are less toxic to the bacteria. The pH optima of the 

decarboxylases that carry out this function is pH 4 (for glutamate decarboxylases) and 

pH 5 (for arginine decarboxylases)564. As such, the enzyme’s activity decreases as the 

internal pH of the bacteria is returned to normal. Critically, however, these enzymes are 

still able to function at neutral and higher pH, albeit with a slower activity565. 

Consequently, the addition of very high exogenous concentrations of L-Arg and L-Glu 

could be increasing the internal pH of the E. coli through the slow decarboxylation of the 

amino acids. A third possible route of toxicity could be via the inhibition of protein-protein 

interactions by L-Arg and L-Glu. As discussed previously, these charged amino acids can 

prevent protein aggregation by masking and neutralising opposite charges. However, this 

could pose a significant risk for endogenous protein-protein interactions within E. coli as 

the presence of such high concentrations of charged amino acids could prevent key 

cellular interactions from occurring.  

It was hypothesised that the use of D-amino acids may circumvent at least some of the 

toxicity issues attributed to L-amino acids. L-amino acids are the predominant building 

blocks of proteins, as D-amino acids cannot be incorporated into proteins via ribosomal 

synthesis538. The majority of enzymes display marked L-amino acid substrate selectivity, 

and as a consequence, D-amino acids are not substrates in the majority of cellular 

processes. It was hypothesised that D-amino acids, therefore, may not interfere with 

cellular processes to the extent of their L-counterparts. However, even though L-amino 

acids are the dominant substrates for ribosome-based protein synthesis, D-amino acids do 

play a role in some other biological processes, in particular in bacteria538. In most bacteria, 

only D-Ala and D-Glu, which are incorporated into the peptidoglycan layer of the cell wall, 

are produced in significant quantities539. It was therefore hypothesised that addition of 

D-Glu to the growth media in excess would be equally detrimental to bacterial growth as 

excess addition of L-Glu. For this reason, MIC assays were only performed in the presence 
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or absence of 50 mM L-Arg or D-Arg. The level of growth rescue attributed to the presence 

of these two amino acids was consistently similar. This was to be expected, as the 

aggregation-inhibiting property of these molecules, specifically their positively charged 

side chain, is identical. Conversely, the toxicity exhibited by these two amino acids was 

markedly different. The presence of L-Arg consistently produced weak and faint colonies 

of bacteria, whereas the presence of D-Arg produced colonies with similar properties to 

those in the absence of any additive.  

On the surface, the reduced toxicity from D-Arg compared to L-Arg appears to corroborate 

the possibility of utilising D-amino acids in place of L-amino acids during the in vivo 

screen. However, data from other studies suggest caution with this assumption. 

Racemases are enzymes responsible for the conversion of L-amino acid substrate into 

their D-counterparts. It has recently been discovered that, although D-Ala and D-Glu are by 

far the most commonly used D-amino acids in bacteria, most bacterial genomes encode 

one or more amino acid racemases in addition to the enzymes required to produce D-Glu 

and D-Ala539. The conservation of such systems across bacterial species suggests an 

important physiological role. Remarkably, it has been discovered that bacteria convert 

L-amino acids into their D-isomers during stationary growth phase539. The accumulation 

of D-amino acids leads to down-regulation of peptidoglycan synthesis (by a currently 

unknown mechanism) and overall metabolic slowing of the bacteria. It has been suggested 

that the rapid expression and diffusion of these small molecule regulators enables a quick 

and synchronised response from the whole bacterial population in times of scarce 

nutrients (when they enter stationary phase)538. Furthermore, studies have reported that 

exogenous addition of D-amino acids in combination with β-lactam antibiotic leads to an 

even stronger and synergistic reduction in bacterial growth539, 566.  

Although some inhibition of βla-Dp47d aggregation was observed in the presence of each 

of the amino acids screened, the findings discussed above, along with other studies which 

demonstrate that D-amino acids can also be used as nutrients under some conditions567, 

568, are evidence that further attempts to assess D-amino acid propensity as anti-

aggregation excipients in vivo would be unwise. Within the biopharmaceutical industry, 

protein aggregation is controlled or minimised by optimising solution conditions such as 

pH, ionic strength, and/or added excipients. Optimisation of each of these parameters is 

often complicated due to the interactions between them. As such, high throughput 

screening approaches are used to evaluate large matrices of possible combinations of 

conditions521, 522, 569. Optical density, extrinsic and intrinsic fluorescence, dynamic and 

static light scattering and particle count can be assessed in 96- or even 384-well plate 
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format521, 522, 569. Screening such complex combinations of additives in vivo would be 

fraught with difficulties, due to the unknown effects each of the additives would have on 

bacterial growth. Furthermore, excipients are often only required to aid the stability of 

biopharmaceuticals during production, as biopharmaceuticals are expected to be of high 

enough stability to resist aggregation/degradation in vivo long enough to exert their 

therapeutic effects355. As such, the identification of excipients that prevent aggregation in 

the in vivo assay may not be relevant or suitable to prevent in vitro aggregation during 

production. For example, some biopharmaceuticals are produced and formulated at a pH 

drastically different to the optimal growth pH of E. coli.     

In conclusion, the in vivo β-lactamase tripartite fusion system developed here was shown 

successfully to differentiate between aggregating and non-aggregating dAbs inserted into 

the β-lactamase linker. This provides a potential new method for assessing 

biopharmaceutical aggregation propensity without the necessity to purify large numbers 

of potential lead compounds for in vitro analysis. Furthermore, the system is also able to 

identify excipients that can stabilise proteins and prevent unwanted protein-protein 

interactions during purification in vitro.  

 

 

  



CONCLUDING REMARKS AND FUTURE DIRECTIONS 

235 
 

6 Concluding remarks and future directions 

 
Preventing protein aggregation is of paramount importance in the mission to alleviate 

some of the prevalent diseases in the developed world, from the neurodegenerative 

disorders Alzheimer’s disease and Parkinson’s disease, to the systemic disease type II 

diabetes mellitus. The key pathological hallmark of these amyloid diseases is the 

accumulation of aggregated proteins into large fibrillated structures known as amyloid 

plaques397, 413. The majority of studies of these aggregation-based diseases posit that low 

molecular weight soluble oligomers, or high molecular weight prefibrillar intermediates 

en-route to amyloid fibrils, account for their toxicity119, 217, 570, 571.  

One approach to prevent protein oligomerisation is the use of small molecules to bind 

specifically to the protein of interest, and inhibit the initial stages of misfolding or 

aggregation290, 572, 573. Unfortunately, as many aggregation-prone proteins are intrinsically 

disordered, and we currently lack understanding of the intricate details of the aggregation 

process, screening against the monomer is not always possible574. Identification of 

aggregation-prone proteins and inhibitors which can prevent their aggregation often 

requires the demanding purification of these proteins, to permit in vitro biophysical 

analyses. However, their hydrophobic nature and tendency to aggregate result in 

laborious and expensive purification protocols. In vivo systems have recently been utilised 

to circumvent the issues associated with purifying these challenging proteins301, 303, 575, 576, 

however these have been limited to experiments within the cytosol or extracellular milieu. 

As such, any inhibitor screen is limited to those molecules that can traverse the restrictive 

nature of the inner membrane. The work described herein differs from these approaches 

by basing the screen within the periplasmic space of E. coli. The presence of outer 

membrane porins allows diffusive access to any molecule smaller than ~ 600 Da 577. 

Furthermore, the oxidising milieu of the periplasm allows the formation of disulfide 

bonds, something that is prevented in the reducing environment of the cytoplasm of 

eukaryotes, or the cytosol of prokaryotes, unless they are specifically engineered to be 

oxidising578. 

This thesis details the development of a generally applicable system that directly links the 

aggregation-propensity of a test protein to a simple phenotypic readout: antibiotic 

resistance. The test protein is inserted between two domains of the periplasmic-based 

reporter enzyme TEM-1 β-lactamase. Upon correct folding of the test protein in the 

periplasm of E. coli, the two halves of β-lactamase are brought close enough together to 

associate, such that the bacteria are resistant to β-lactam antibiotics. If the test protein 
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aggregates, however, the β-lactamase domains will be prevented from associating and the 

bacteria lose their resistance to the antibiotics. In Chapter 3, four test proteins with 

varying degrees of aggregation-propensity were cloned into the linker region of 

β-lactamase: rIAPP, hIAPP, Aβ40 and Aβ42. In remarkable agreement with previous in 

vitro analyses237, 407, 414, 415, the level of antibiotic resistance conferred to the bacteria 

expressing each construct correlated with the susceptibility of each test protein to 

aggregate. Furthermore, an ESI-IMS-MS time-course experiment revealed that the 

oligomeric species present 2 min into the aggregation reaction of the three aggregation-

prone peptides (hIAPP, Aβ40 and Aβ42) are rapidly converted into higher order species as 

the reaction proceeds. Conversely, the small number of low molecular weight oligomers of 

rIAPP, the non-amyloidogenic construct, are still present after 24 h. Despite the extensive 

breadth of work on the sequence54, 262, 361, 363 and structural41, 150, 402, 404, 411, 579 causes of 

aggregation, there is still a significant amount to learn about these complex relationships. 

In this vein, the ability to distinguish aggregation-prone variants from their non-

aggregating counterparts in vivo offers the opportunity to study the aggregation 

propensity of mutational variants of aggregation-prone proteins, without the requirement 

to purify each variant. Consequently, mutational work on mouse β2-microglobulin (β2m, 

another disulfide bond-containing immunoglobulin domain580, 581) is soon to be 

undertaken within the laboratory to investigate why a protein that is 70 % identical and 

shares 90 % sequence homology with human β2m is so resistant to aggregation582-584, 

whereas amyloid formation by human β2m is the underlying basis of the disease 

haemodialysis-related amyloidosis58, 583-585.  

The ability to use the β-lactamase tripartite fusion system as an in vivo screen for small 

molecule inhibitors of protein aggregation was demonstrated in Chapter 4. Notably, not 

only did the assay correctly identify known inhibitors of hIAPP aggregation, it also refuted 

a number of published studies288, 290, 458, 459, 461, 462. The discrepancies in conclusions from 

this thesis and the literature are due to the choice of experimental techniques used to 

study protein aggregation. As extensively discussed in Chapter 1, a number of techniques 

are inappropriate to use alone in the search for small molecules with the capability to 

disrupt the aggregation pathway. By relying too heavily on methods such as dye binding 

studies, a number of studies presumptively identified ‘inhibitors’ of aggregation, whereby 

in fact, they were only inhibitors of the dye binding to the fibril266, 459. The tripartite fusion 

system developed here, coupled with ESI-IMS-MS (Chapter 4), clearly shows that a 

number of these claimed inhibitors did not, in fact, have any effect on protein aggregation. 

Importantly, the in vivo assay is also able to discriminate between specific inhibitors of 
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protein aggregation, and non-specific and colloidal interacting molecules (as determined 

by ESI-MS). This is a key requirement of an inhibitor screen, as any molecule that 

erroneously and non-specifically interacts with the protein of interest is undesirable as a 

therapeutic. Some studies that, albeit it correctly, reported inhibitors of protein 

aggregation, used upward of 20-fold molar excess of inhibitor to protein ratios266, 458, 459. 

The presence of such high concentrations of small molecule physically prevents protein 

from aggregating, however only in a colloidal manner. These types of inhibitors are ruled 

out in the in vivo screen, due to the low concentration of small molecule used, thereby 

minimising further downstream analyses of all potential ‘hits’.          

The inherent ability of proteins to aggregate underlies more than fifty human diseases45 

and, with an increasingly ageing population, the social and economic burdens on patients 

and society are expected to grow dramatically over the coming years. As such, it is 

imperative to be able to screen large pools of potential aggregation inhibitors against a 

diverse range of protein targets. Importantly, as the readout of the in vivo assay developed 

is independent of the activity of the inserted test protein, it obviates the need to develop 

individual assays for different test proteins to determine their aggregation-levels. 

Furthermore, the data in Chapter 4 illustrate that the in vivo assay is amenable to 

miniaturisation, which results in reduced small molecule requirements (~ 50 µg) and 

increased throughput. Further automation of the in vivo assay is crucial to exploiting its 

full potential, in particular for screening large libraries of protein variants for aggregation 

propensity. As such, this is to be investigated within the laboratory, in conjunction with 

industrial partners, over the coming year.  

The assay described herein has advantages beyond the study of disease-related protein 

aggregation and its inhibition. The work in Chapter 5 is concerned with the control of 

protein-based pharmaceutical aggregation, one of the most demanding and costly 

elements in biopharmaceutical production and formulation. The ability of the assay to 

differentiate between an aggregation-prone and non-aggregating human dAb was 

investigated, and in accordance with the prior success utilising disease-related proteins 

(Chapter 3), the in vivo β-lactamase tripartite fusion system successfully distinguished the 

proteins by their aggregation-propensity. Furthermore, the addition of the well-known 

protein-stabilising excipients, sorbitol and glycerol, to the assay rescued bacterial growth 

in a titratable manner. Although similar results were not achieved using L/D-Arg or L-Glu, 

the success using polyols demonstrates that some classes of excipients are amenable to 

screening in such a manner.  
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The discovery that many, if not all, proteins could potentially form amyloid fibrils in vitro, 

indistinguishable from those extracted from patients, suggests that the ability to form 

amyloid is a generic, inherent property of all proteins42. Conversion of soluble proteins 

into amyloid fibrils is accelerated by a number of factors; mutation, transmissibility or 

even intracellular loss of environmental controls can lead to the accumulation of these 

molecular structures in a large variety of diseases47, 84, 111, 586. Indeed, that so many of these 

diseases are associated with old age suggests that as the population ages, not only will 

more cases of these diseases emerge, but more diseases caused by the aberrant 

aggregation of proteins may yet emerge. To date, only one successful small molecule 

therapeutic targeting a protein aggregation disease has been developed189-191. 

Nevertheless, the resources and effort currently being directed towards the detection of 

compounds means that new therapeutics, with the potential to arrest some of the most 

debilitating diseases in the world, may become available in the future. However, the future 

challenges of developing these drugs are not limited solely to the identification of 

molecules with the ability to prevent the underlying aggregation. Once identified, these 

compounds must be developed into potent, stable drug formulations that, in the case of 

neurodegenerative diseases, have the formidable task of crossing the blood-brain-barrier. 

Furthermore, many anti-amyloid therapies disappoint in clinical trials because the 

patients are given them too late161. If the diseases could be detected before symptoms 

manifest, these same therapies could be administered before irreversible damage has 

occurred, and perhaps the disease could be prevented. The complex multifaceted nature of 

these diseases demands a multi-pronged therapeutic attack. Rapid identification of 

potential protein aggregation inhibitors may not be the silver bullet, however it is a first, 

and important step to therapeutic alleviation of an ever growing class of devastating 

diseases. The system developed here may prove to be useful in these goals, either by direct 

identification of novel small molecules, or through its potential benefits in the context of 

biopharmaceuticals and the biopharmaceutical industry. 



APPENDICES 

239 
 

7 Appendices 

 

7.1 DNA and protein sequences of all peptides and 

constructs 

 

7.1.1 Wild-type TEM-1 β-lactamase  

 

ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 

GTTTTTGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA 

CGAGTGGGTT ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC 

GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC 

CGTGTTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG 

GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA 

TGCAGTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC 

GGAGGACCGA AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT 

GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG 

CCTGCAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTATT GACTCTAGCT 

AGCCGGCAGC AGCTCATAGA CTGGATGGAG GCGGATAAAG TTGCAGGACC ACTTCTGCGC 

TCGGCCCTTC CGGCTGGCTG GTTTATTGCT GATAAATCTG GAGCCGGTGA GCGTGGGTCT 

CGCGGTATCA TTGCAGCACT GGGGCCAGAT GGTAAGCCCT CCCGTATCGT AGTTATCTAC 

ACGACGGGGA GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC 

TCACTGATTA AGCATTGGTA A 

Appendix 7.1. DNA sequence of wild-type TEM-1 β-lactamase. The periplasmic signal 
sequence is in purple. The start and stop codons are underlined 
 

 

 

MSIQHFRVAL IPFFAAFCLP VFAHPETLVK VKDAEDQLGA RVGYIELDLN 

SGKILESFRP EERFPMMSTF KVLLCGAVLS RVDAGQEQLG RRIHYSQNDL 

VEYSPVTEKH LTDGMTVREL CSAAITMSDN TAANLLLTTI GGPKELTAFL 

HNMGDHVTRL DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELLTLA 

SRQQLIDWME ADKVAGPLLR SALPAGWFIA DKSGAGERGS RGIIAALGPD 

GKPSRIVVIY TTGSQATMDE RNRQIAEIGA SLIKHW  

Molecular weight after signal sequence cleavage: 28.9 kDa 

Appendix 7.2. Protein sequence of wild-type TEM-1 β-lactamase. Signal sequence is 
highlighted in purple. The signal sequence is cleaved off after translocation into the 
periplasm. 
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7.1.2 βla-linkerSHORT 

 

ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 

GTTTTTGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA 

CGAGTGGGTT ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC 

GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC 

CGTGTTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG 

GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA 

TGCAGTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC 

GGAGGACCGA AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT 

GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG 

CCTGCAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTAGG TGGTGGTGGT 

TCTGGTGGTG GTGGCTCGAG CTCAGGATCC GGGAGCGGTT CCGGAAGCGG AGGAGGTGGT 

TCAGGCGGAG GTGGAAGCTT GACTCTAGCT AGCCGGCAGC AGCTCATAGA CTGGATGGAG 

GCGGATAAAG TTGCAGGACC ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG GTTTATTGCT 

GATAAATCTG GAGCCGGTGA GCGTGGGTCT CGCGGTATCA TTGCAGCACT GGGGCCAGAT 

GGTAAGCCCT CCCGTATCGT AGTTATCTAC ACGACGGGGA GTCAGGCAAC TATGGATGAA 

CGAAATAGAC AGATCGCTGA GATAGGTGCC TCACTGATTA AGCATTGGTA A 

Appendix 7.3. DNA sequence of βla-linkerSHORT. The 28 residue GS linker is shown in bold. 
The restriction sites for XhoI and BamH1 restriction enzymes are shown in blue and red 
respectively. The periplasmic signal sequence is in purple. The start and stop codons are 
underlined.  
 

 

MSIQHFRVAL IPFFAAFCLP VFAHPETLVK VKDAEDQLGA RVGYIELDLN 

SGKILESFRP EERFPMMSTF KVLLCGAVLS RVDAGQEQLG RRIHYSQNDL 

VEYSPVTEKH LTDGMTVREL CSAAITMSDN TAANLLLTTI GGPKELTAFL 

HNMGDHVTRL DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELGGGG 

SGGGGSSSGS GSGSGSGGGG SGGGGSLTLA SRQQLIDWME ADKVAGPLLR 

SALPAGWFIA DKSGAGERGS RGIIAALGPD GKPSRIVVIY TTGSQATMDE  

RNRQIAEIGA SLIKHW 

Molecular weight after signal sequence cleavage: 30.9 kDa 

Appendix 7.4. Protein sequence of βla-linkerSHORT. The signal sequence is shown in purple 
and the GS linker is in bold. The signal sequence is cleaved off after translocation into the 
periplasm. 
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7.1.3 βla-linker 

 

ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 

GTTTTTGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA 

CGAGTGGGTT ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC 

GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC 

CGTGTTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG 

GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA 

TGCAGTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC 

GGAGGACCGA AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT 

GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG 

CCTGCAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTAGG TGGTGGTGGT 

TCTGGTGGTG GTGGTTCTTC CTCAGGTTCA GGTGGCGGGG GATCTGGTGG TGGTGGCTCA 

GGATCCGGTG GCTCGAGTTC CGGGAGCGGG AGCTCTTCTG GTTCCGGAGG CGGTGGAGGA 

TCAGGCGGTG GCGGATCAGG AAGTGGGAGC GGAGGCGGCG GATCAGGCGG AGGTGGAAGC 

TTGACTCTAG CTAGCCGGCA GCAGCTCATA GACTGGATGG AGGCGGATAA AGTTGCAGGA 

CCACTTCTGC GCTCGGCCCT TCCGGCTGGC TGGTTTATTG CTGATAAATC TGGAGCCGGT 

GAGCGTGGGT CTCGCGGTAT CATTGCAGCA CTGGGGCCAG ATGGTAAGCC CTCCCGTATC 

GTAGTTATCT ACACGACGGG GAGTCAGGCA ACTATGGATG AACGAAATAG ACAGATCGCT 

GAGATAGGTG CCTCACTGAT TAAGCATTGG TAA 

 

Appendix 7.5. DNA sequence of βla-linker. The signal sequence is highlighted in purple. 
The 64-residue GS linker is shown in bold. The restriction sites for BamH1 and XhoI 
restriction enzymes are shown in red and blue respectively. The start and stop codons are 
underlined.  
 

 

MSIQHFRVAL IPFFAAFCLP VFAHPETLVK VKDAEDQLGA RVGYIELDLN 

SGKILESFRP EERFPMMSTF KVLLCGAVLS RVDAGQEQLG RRIHYSQNDL 

VEYSPVTEKH LTDGMTVREL CSAAITMSDN TAANLLLTTI GGPKELTAFL 

HNMGDHVTRL DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELGGGG 

SGGGGSSSGS GGGGSGGGGS GSGGSSSGSG SSSGSGGGGG SGGGGSGSGS 

GGGGSGGGGS LTLASRQQLI DWMEADKVAG PLLRSALPAG WFIADKSGAG 

ERGSRGIIAA LGPDGKPSRI VVIYTTGSQA TMDERNRQIA EIGASLIKHW 

Molecular weight after signal sequence cleavage: 33.2 kDa 

Appendix 7.6. Protein sequence of βla-linker. The signal peptide is highlighted in purple. 
And the 64-residue GS linker is shown in bold. The signal sequence is cleaved off after 
translocation into the periplasm. 
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7.1.4 βla-hIAPP 

 

ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 

GTTTTTGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA 

CGAGTGGGTT ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC 

GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC 

CGTGTTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG 

GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA 

TGCAGTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC 

GGAGGACCGA AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT 

GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG 

CCTGCAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTAGG TGGTGGTGGT 

TCTGGTGGTG GTGGCTCGAG AAAATGCAAC ACCGCGACCT GCGCGACCCA GCGCCTGGCG 

AACTTTCTGG TGCATAGCAG CAACAACTTT GGCGCGATTC TGAGCAGCAC CAACGTGGGC 

AGCAACACCT ATGGATCCGG GAGCGGTTCC GGAAGCGGAG GAGGTGGTTC AGGCGGAGGT 

GGAAGCTTGA CTCTAGCTAG CCGGCAGCAG CTCATAGACT GGATGGAGGC GGATAAAGTT 

GCAGGACCAC TTCTGCGCTC GGCCCTTCCG GCTGGCTGGT TTATTGCTGA TAAATCTGGA 

GCCGGTGAGC GTGGGTCTCG CGGTATCATT GCAGCACTGG GGCCAGATGG TAAGCCCTCC 

CGTATCGTAG TTATCTACAC GACGGGGAGT CAGGCAACTA TGGATGAACG AAATAGACAG 

ATCGCTGAGA TAGGTGCCTC ACTGATTAAG CATTGGTAA 

 

Appendix 7.7. DNA sequence of βla-hIAPP. The signal peptide is shown in purple and the 
GS linker is shown in bold. The restriction sites for XhoI and BamH1 restriction enzymes 
are shown in blue and red respectively. hIAPP is indicated in orange. The start and stop 
codons are underlined. 
 

 

 

MSIQHFRVAL IPFFAAFCLP VFAHPETLVK VKDAEDQLGA RVGYIELDLN 

SGKILESFRP EERFPMMSTF KVLLCGAVLS RVDAGQEQLG RRIHYSQNDL 

VEYSPVTEKH LTDGMTVREL CSAAITMSDN TAANLLLTTI GGPKELTAFL 

HNMGDHVTRL DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELGGGG 

SGGGGSRKCN TATCATQRLA NFLVHSSNNF GAILSSTNVG SNTYGSGSGS 

GSGGGGSGGG GSLTLASRQQ LIDWMEADKV AGPLLRSALP AGWFIADKSG  

AGERGSRGII AALGPDGKPS RIVVIYTTGS QATMDERNRQ IAEIGASLIK  

HW 

 

Molecular weight after signal sequence cleavage: 34.8 kDa 

Appendix 7.8. Protein sequence of βla-hIAPP. The signal peptide is shown in purple and 
the GS linker is shown in bold. hIAPP is indicated in orange. The signal sequence is cleaved 
off after translocation into the periplasm. 
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7.1.5 βla-rIAPP 

 

ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 

GTTTTTGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA 

CGAGTGGGTT ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC 

GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC 

CGTGTTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG 

GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA 

TGCAGTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC 

GGAGGACCGA AGGAGCTAAC CGCTTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT 

GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG 

CCTGCAGCAA TGGCAACAAC GTTGCGCAAA CTATTAACTG GCGAACTAGG TGGTGGTGGT 

TCTGGTGGTG GTGGCTCGAG AAAATGCAAC ACCGCGACCT GCGCGACCCA GCGCCTGGCG 

AACTTTCTGG TGCGCAGCAG CAACAACCTG GGCCCGGTGC TGAGCAGCAC CAACGTGGGC 

AGCAACACCT ATGGATCCGG GAGCGGTTCC GGAAGCGGAG GAGGTGGTTC AGGCGGAGGT 

GGAAGCTTGA CTCTAGCTAG CCGGCAGCAG CTCATAGACT GGATGGAGGC GGATAAAGTT 

GCAGGACCAC TTCTGCGCTC GGCCCTTCCG GCTGGCTGGT TTATTGCTGA TAAATCTGGA 

GCCGGTGAGC GTGGGTCTCG CGGTATCATT GCAGCACTGG GGCCAGATGG TAAGCCCTCC 

CGTATCGTAG TTATCTACAC GACGGGGAGT CAGGCAACTA TGGATGAACG AAATAGACAG 

ATCGCTGAGA TAGGTGCCTC ACTGATTAAG CATTGGTAA 

 
Appendix 7.9. DNA sequence of βla-rIAPP. The signal peptide is shown in purple and the 
GS linker is shown in bold. The restriction sites for XhoI and BamH1 restriction enzymes 
are shown in blue and red respectively. rIAPP is indicated in orange. The start and stop 
codons are underlined. 
 

 
 
MSIQHFRVAL IPFFAAFCLP VFAHPETLVK VKDAEDQLGA RVGYIELDLN 

SGKILESFRP EERFPMMSTF KVLLCGAVLS RVDAGQEQLG RRIHYSQNDL 

VEYSPVTEKH LTDGMTVREL CSAAITMSDN TAANLLLTTI GGPKELTAFL 

HNMGDHVTRL DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELGGGG 

SGGGGSRKCN TATCATQRLA NFLVRSSNNL GPVLPPTNVG SNTYGSGSGS 

GSGGGGSGGG GSLTLASRQQ LIDWMEADKV AGPLLRSALP AGWFIADKSG  

AGERGSRGII AALGPDGKPS RIVVIYTTGS QATMDERNRQ IAEIGASLIK  

HW 

 
Molecular weight after signal sequence cleavage: 34.8 kDa 

Appendix 7.10. Protein sequence of βla-rIAPP. The signal peptide is shown in purple and 
the GS linker is shown in bold. rIAPP is indicated in orange. The signal sequence is cleaved 
off after translocation into the periplasm. 
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7.1.6 βla-Aβ40 

 

ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 

GTTTTTGCTC ACCCAGAAA CGCTGGTGA AAGTAAAAG ATGCTGAAG ATCAGTTGG 

GTGCACGAG TGGGTTACA TCGAACTGG ATCTCAACA GCGGTAAGA TCCTTGAGA 

GTTTTCGCC CCGAAGAAC GTTTTCCAA TGATGAGCA CTTTTAAAG TTCTGCTAT 

GTGGCGCGG TATTATCCC GTGTTGACG CCGGGCAAG AGCAACTCG GTCGCCGCA 

TACACTATT CTCAGAATG ACTTGGTTG AGTACTCAC CAGTCACAG AAAAGCATC 

TTACGGATG GCATGACAG TAAGAGAAT TATGCAGTG CTGCCATAA CCATGAGTG 

ATAACACTG CGGCCAACT TACTTCTGA CAACGATCG GAGGACCGA AGGAGCTAA 

CCGCTTTTT TGCACAACA TGGGGGATC ATGTAACTC GCCTTGATC GTTGGGAAC 

CGGAGCTGA ATGAAGCCA TACCAAACG ACGAGCGTG ACACCACGA TGCCTGCAG 

CAATGGCAA CAACGTTGC GCAAACTAT TAACTGGCG AACTAGGTG GTGGTGGTT 

CTGGTGGTG GTGGCTCGA GAGATGCGG AGTTCCGTC ATGATTCAG GCTATGAAG 

TCCACCATC AAAAACTGG TGTTCTTTG CAGAAGATG TGGGTTCAA ACAAAGGTG 

CCATCATTG GACTCATGG TGGGTGGTG TTGTCGGAT CCGGGAGCG GTTCCGGAA 

GCGGAGGAG GTGGTTCAG GCGGAGGTG GAAGCTTGA CTCTAGCTA GCCGGCAGC 

AGCTCATAG ACTGGATGG AGGCGGATA AAGTTGCAG GACCACTTC TGCGCTCGG 

CCCTTCCGG CTGGCTGGT TTATTGCTG ATAAATCTG GAGCCGGTG AGCGTGGGT 

CTCGCGGTA TCATTGCAG CACTGGGGC CAGATGGTA AGCCCTCCC GTATCGTAG 

TTATCTACA CGACGGGGA GTCAGGCAA CTATGGATG AACGAAATA GACAGATCG 

CTGAGATAG GTGCCTCAC TGATTAAGC ATTGGTAA 

 

Appendix 7.11. DNA sequence of βla-Aβ40. The signal peptide is shown in purple and the 
GS linker is shown in bold. The restriction sites for XhoI and BamH1 restriction enzymes 
are shown in blue and red respectively. Aβ40 is indicated in pink. The start and stop 
codons are underlined. 
 

 

 

MSIQHFRVAL IPFFAAFCLP VFAHPETLVK VKDAEDQLGA RVGYIELDLN 

SGKILESFRP EERFPMMSTF KVLLCGAVLS RVDAGQEQLG RRIHYSQNDL 

VEYSPVTEKH LTDGMTVREL CSAAITMSDN TAANLLLTTI GGPKELTAFL 

HNMGDHVTRL DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELGGGG 

SGGGGSRDAE FRHDSGYEVH HQKLVFFAED VGSNKGAIIG LMVGGVVGSG 

SGSGSGGGGS GGGGSLTLAS RQQLIDWMEA DKVAGPLLRS ALPAGWFIAD 

KSGAGERGSR GIIAALGPDG KPSRIVVIYTT GSQATMDERN RQIAEIGAS      

LIKHW       

Molecular weight after signal sequence cleavage: 35.2 kDa 

Appendix 7.12. Protein sequence of βla-Aβ40.The signal peptide is shown in purple and 
the GS linker is shown in bold. Aβ40 is indicated in pink. 
 

 

  



APPENDICES 

245 
 

7.1.7 βla-Aβ42 

 

ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 

GTTTTTGCTC ACCCAGAAA CGCTGGTGA AAGTAAAAG ATGCTGAAG ATCAGTTGG 

GTGCACGAG TGGGTTACA TCGAACTGG ATCTCAACA GCGGTAAGA TCCTTGAGA 

GTTTTCGCC CCGAAGAAC GTTTTCCAA TGATGAGCA CTTTTAAAG TTCTGCTAT 

GTGGCGCGG TATTATCCC GTGTTGACG CCGGGCAAG AGCAACTCG GTCGCCGCA 

TACACTATT CTCAGAATG ACTTGGTTG AGTACTCAC CAGTCACAG AAAAGCATC 

TTACGGATG GCATGACAG TAAGAGAAT TATGCAGTG CTGCCATAA CCATGAGTG 

ATAACACTG CGGCCAACT TACTTCTGA CAACGATCG GAGGACCGA AGGAGCTAA 

CCGCTTTTT TGCACAACA TGGGGGATC ATGTAACTC GCCTTGATC GTTGGGAAC 

CGGAGCTGA ATGAAGCCA TACCAAACG ACGAGCGTG ACACCACGA TGCCTGCAG 

CAATGGCAA CAACGTTGC GCAAACTAT TAACTGGCG AACTAGGTG GTGGTGGTT 

CTGGTGGTG GTGGCTCGA GAGATGCGG AGTTCCGTC ATGATTCAG GCTATGAAG 

TCCACCATC AAAAACTGG TGTTCTTTG CAGAAGATG TGGGTTCAA ACAAAGGTG 

CCATCATTG GACTCATGG TGGGTGGTG TTGTCATAG CGGGATCCG GGAGCGGTT 

CCGGAAGCG GAGGAGGTG GTTCAGGCG GAGGTGGAA GCTTGACTC TAGCTAGCC 

GGCAGCAGC TCATAGACT GGATGGAGG CGGATAAAG TTGCAGGAC CACTTCTGC 

GCTCGGCCC TTCCGGCTG GCTGGTTTA TTGCTGATA AATCTGGAG CCGGTGAGC 

GTGGGTCTC GCGGTATCA TTGCAGCAC TGGGGCCAG ATGGTAAGC CCTCCCGTA 

TCGTAGTTA TCTACACGA CGGGGAGTC AGGCAACTA TGGATGAAC GAAATAGAC 

AGATCGCTG AGATAGGTG CCTCACTGA TTAAGCATT GGTAA 

 

Appendix 7.13. DNA sequence of βla-Aβ42 The signal peptide is shown in purple and the 
GS linker is shown in bold. The restriction sites for XhoI and BamH1 restriction enzymes 
are shown in blue and red respectively. Aβ42 is indicated in pink. The start and stop 
codons are underlined. 
 

 

 

MSIQHFRVAL IPFFAAFCLP VFAHPETLVK VKDAEDQLGA RVGYIELDLN 

SGKILESFRP EERFPMMSTF KVLLCGAVLS RVDAGQEQLG RRIHYSQNDL 

VEYSPVTEKH LTDGMTVREL CSAAITMSDN TAANLLLTTI GGPKELTAFL 

HNMGDHVTRL DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELGGGG 

SGGGGSRDAE FRHDSGYEVH HQKLVFFAED VGSNKGAIIG LMVGGVVIAG 

SGSGSGSGGG GSGGGGSLTL ASRQQLIDWM EADKVAGPLL RSALPAGWFI 

ADKSGAGERG SRGIIAALGP DGKPSRIVVIY TTGSQATMDE RNRQIAEIGA     

SLIKHW       

Molecular weight after signal sequence cleavage: 35.4 kDa 

Appendix 7.14. Protein sequence of βla-Aβ42.The signal peptide is shown in purple and 
the GS linker is shown in bold. Aβ42 is indicated in pink. 
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7.1.8 βla-HEL4 

 

ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 

GTTTTTGCTC ACCCAGAAA CGCTGGTGA AAGTAAAAG ATGCTGAAG ATCAGTTGG 

GTGCACGAG TGGGTTACA TCGAACTGG ATCTCAACA GCGGTAAGA TCCTTGAGA 

GTTTTCGCC CCGAAGAAC GTTTTCCAA TGATGAGCA CTTTTAAAG TTCTGCTAT 

GTGGCGCGG TATTATCCC GTGTTGACG CCGGGCAAG AGCAACTCG GTCGCCGCA 

TACACTATT CTCAGAATG ACTTGGTTG AGTACTCAC CAGTCACAG AAAAGCATC 

TTACGGATG GCATGACAG TAAGAGAAT TATGCAGTG CTGCCATAA CCATGAGTG 

ATAACACTG CGGCCAACT TACTTCTGA CAACGATCG GAGGACCGA AGGAGCTAA 

CCGCTTTTT TGCACAACA TGGGGGATC ATGTAACTC GCCTTGATC GTTGGGAAC 

CGGAGCTGA ATGAAGCCA TACCAAACG ACGAGCGTG ACACCACGA TGCCTGCAG 

CAATGGCAA CAACGTTGC GCAAACTAT TAACTGGCG AACTAGGTG GTGGTGGTT 

GTGGTGGTT CTGGTGGTG GTGGCTCGA GAGAAGTGC AGCTGCTGG AAAGCGGCG 

GCGGCCTGG TGCAGCCGG GCGGCAGCC TGCGCCTGA GCTGCGCGG CGAGCGGCT 

TTCGCATTA GCGATGAAG ATATGGGCT GGGTGCGCC AGGCGCCGG GCAAAGGCC 

TGGAATGGG TGAGCAGCA TTTATGGCC CGAGCGGCA GCACCTATT ATGCGGATA 

GCGTGAAAG GCCGCTTTA CCATTAGCC GCGATAACA GCAAAAACA CCCTGTATC 

TGCAGATGA ACAGCCTGC GCGCGGAAG ATACCGCGG TGTATTATT GCGCGAGCG 

CGCTGGAAC CGCTGAGCG AACCGCTGG GCTTTTGGG GCCAGGGCA CCCTGGTGA 

CCGTGAGCA GCGGATCCG GGAGCGGTT CCGGAAGCG GAGGAGGTG GTTCAGGCG 

GAGGTGGAA GCTTGACTC TAGCTAGCC GGCAGCAGC TCATAGACT GGATGGAGG 

CGGATAAAG TTGCAGGAC CACTTCTGC GCTCGGCCC TTCCGGCTG GCTGGTTTA 

TTGCTGATA AATCTGGAG CCGGTGAGC GTGGGTCTC GCGGTATCA TTGCAGCAC 

TGGGGCCAG ATGGTAAGC CCTCCCGTA TCGTAGTTA TCTACACGA CGGGGAGTC 

AGGCAACTA TGGATGAAC GAAATAGAC AGATCGCTG AGATAGGTG CCTCACTGA 

TTAAGCATT GGTAA 

 

Appendix 7.15. DNA sequence of βla-HEL4. The signal peptide is shown in purple and the 
GS linker is shown in bold. The restriction sites for XhoI and BamH1 restriction enzymes 
are shown in blue and red respectively. HEL4 is indicated in green. The start and stop 
codons are underlined. 
 

 

MSIQHFRVAL IPFFAAFCLP VFAHPETLVK VKDAEDQLGA RVGYIELDLN 

SGKILESFRP EERFPMMSTF KVLLCGAVLS RVDAGQEQLG RRIHYSQNDL 

VEYSPVTEKH LTDGMTVREL CSAAITMSDN TAANLLLTTI GGPKELTAFL 

HNMGDHVTRL DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELGGGG 

SGGGGSREVQ LLESGGGLVQ PGGSLRLSCA ASGFRISDED MGWVRQAPGK 

GLEWVSSIYG PSGSTYYADS VKGRFTISRD NSKNTLYLQM NSLRAEDTAV 

YYCASALEPL SEPLGFWGQG TLVTVSSGSG SGSGSGGGGS GGGGSLTLAS 

RQQLIDWMEA DKVAGPLLRS ALPAGWFIAD KSGAGERGSR GIIAALGPDG 

KPSRIVVIYT TGSQATMDER NRQIAEIGAS LIKHW 

Molecular weight after signal sequence cleavage: 43.7 kDa 

Appendix 7.16. Protein sequence of βla-HEL4.The signal peptide is shown in purple and 
the GS linker is shown in bold. HEL4 is indicated in green. 
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7.1.9 βla-Dp47d 

 

ATGAGTATTC AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCCTTCCT 

GTTTTTGCTC ACCCAGAAA CGCTGGTGA AAGTAAAAG ATGCTGAAG ATCAGTTGG 

GTGCACGAG TGGGTTACA TCGAACTGG ATCTCAACA GCGGTAAGA TCCTTGAGA 

GTTTTCGCC CCGAAGAAC GTTTTCCAA TGATGAGCA CTTTTAAAG TTCTGCTAT 

GTGGCGCGG TATTATCCC GTGTTGACG CCGGGCAAG AGCAACTCG GTCGCCGCA 

TACACTATT CTCAGAATG ACTTGGTTG AGTACTCAC CAGTCACAG AAAAGCATC 

TTACGGATG GCATGACAG TAAGAGAAT TATGCAGTG CTGCCATAA CCATGAGTG 

ATAACACTG CGGCCAACT TACTTCTGA CAACGATCG GAGGACCGA AGGAGCTAA 

CCGCTTTTT TGCACAACA TGGGGGATC ATGTAACTC GCCTTGATC GTTGGGAAC 

CGGAGCTGA ATGAAGCCA TACCAAACG ACGAGCGTG ACACCACGA TGCCTGCAG 

CAATGGCAA CAACGTTGC GCAAACTAT TAACTGGCG AACTAGGTG GTGGTGGTT 

GTGGTGGTT CTGGTGGTG GTGGCTCGA GAGAAGTGC AGCTGCTGG AAAGCGGCG 

GCGGCCTGG TGCAGCCGG GCGGCAGCC TGCGCCTGA GCTGCGCGG CGAGCGGCT 

TTACCTTTA GCAGCTATG CGATGAGCT GGGTGCGCC AGGCGCCGG GCAAAGGCC 

TGGAATGGG TGAGCGCGA TTAGCGGCA GCGGCGGCA GCACCTATT ATGCGGATA 

GCGTGAAAG GCCGCTTTA CCATTAGCC GCGATAACA GCAAAAACA CCCTGTATC 

TGCAGATGA ACAGCCTGC GCGCGGAAG ATACCGCGG TGTATTATT GCGCGAAAA 

GCTATGGCG CGTTTGATT ATTGGGGCC AGGGCACCC TGGTGACCG TGAGCAGCG 

GATCCGGGA GCGGTTCCG GAAGCGGAG GAGGTGGTT CAGGCGGAG GTGGAAGCT 

TGACTCTAG CTAGCCGGC AGCAGCTCA TAGACTGGA TGGAGGCGG ATAAAGTTG 

CAGGACCAC TTCTGCGCT CGGCCCTTC CGGCTGGCT GGTTTATTG CTGATAAAT 

CTGGAGCCG GTGAGCGTG GGTCTCGCG GTATCATTG CAGCACTGG GGCCAGATG 

GTAAGCCCT CCCGTATCG TAGTTATCT ACACGACGG GGAGTCAGG CAACTATGG 

ATGAACGAA ATAGACAGA TCGCTGAGA TAGGTGCCT CACTGATTA AGCATTGGT    

AA 

 
Appendix 7.17. DNA sequence of βla-Dp47d. The signal peptide is shown in purple and 
the GS linker is shown in bold. The restriction sites for XhoI and BamH1 restriction 
enzymes are shown in blue and red respectively. Dp47d is indicated in green. The start 
and stop codons are underlined. 
 

 

MSIQHFRVAL IPFFAAFCLP VFAHPETLVK VKDAEDQLGA RVGYIELDLN 

SGKILESFRP EERFPMMSTF KVLLCGAVLS RVDAGQEQLG RRIHYSQNDL 

VEYSPVTEKH LTDGMTVREL CSAAITMSDN TAANLLLTTI GGPKELTAFL 

HNMGDHVTRL DRWEPELNEA IPNDERDTTM PAAMATTLRK LLTGELGGGG 

SGGGGSREVQ LLESGGGLVQ PGGSLRLSCA ASGFTFSSYA MSWVRQAPGK 

GLEWVSAISG SGGSTYYADS VKGRFTISRD NSKNTLYLQM NSLRAEDTAV 

YYCAKSYGAF DYWGQGTLVT VSSGSGSGSG SGGGGSGGGG SLTLASRQQL 

IDWMEADKVA GPLLRSALPA GWFIADKSGA GERGSRGIIA ALGPDGKPSR 

IVVIYTTGSQ ATMDERNRQI AEIGASLIKH W 

Molecular weight after signal sequence cleavage: 43.3 kDa 

Appendix 7.18. Protein sequence of βla-Dp47d.The signal peptide is shown in purple and 
the GS linker is shown in bold. Dp47d is indicated in green. 
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7.2 Genes from which test proteins were cloned 

 

7.2.1 hIAPP 

ATGAAAATTG AAGAAGGCAA CGCGAACCCG AACGCGAACC CGAACGCGAA CCCGGAAAAA 

TGCAACACCG CGACCTGCGC GACCCAGCGC CTGGCGAACT TTCTGGTGCA TAGCAGCAAC 

AACTTTGGCG CGATTCTGAG CAGCACCAAC GTGGGCAGCA ACACCTATTG CATCACGGGA 

GATGCACTAG TTGCCCTACC CGAGGGCGAG TCGGTACGCA TCGCCGACAT CGTGCCGGGT 

GCGCGGCCCA ACAGTGACAA CGCCATCGAC CTGAAAGTCC TTGACCGGCA TGGCAATCCC 

GTGCTCGCCG ACCGGCTGTT CCACTCCGGC GAGCATCCGG TGTACACGGT GCGTACGGTC 

GAAGGTCTGC GTGTGACGGG CACCGCGAAC CACCCGTTGT TGTGTTTGGT CGACGTCGCC 

GGGGTGCCGA CCCTGCTGTG GAAGCTGATC GACGAAATCA AGCCGGGCGA TTACGCGGTG 

ATTCAACGCA GCGCATTCAG CGTCGACTGT GCAGGTTTTG CCCGCGGAAA ACCCGAATTT 

GCGCCCACAA CCTACACAGT CGGCGTCCCT GGACTGGTGC GTTTCTTGGA AGCACACCAC 

CGAGACCCGG ACGCCCAAGC TATCGCCGAC GAGCTGACCG ACGGGCGGTT CTACTACGCG 

AAAGTCGCCA GTGTCACCGA CGCCGGCGTG CAGCCGGTGT ATAGCCTTCG TGTCGACACG 

GCAGACCACG CGTTTATCAC GAACGGGTTC GTCAGCCACG CTACTGGCCT CACCGGTCTG 

AACTCAGGCC TCACGACAAA TCCTGGTGTA TCCGCTTGGC AGGTCAACAC AGCTTATACT 

GCGGGACAAT TGGTCACATA TAACGGCAAG ACGTATAAAT GTTTGCAGCC CCACACCTCC 

TTGGCAGGAT GGGAACCATC CAACGTTCCT GCCTTGTGGC AGCTTCAATG A                                      

Appendix 7.19. DNA sequence of the gene from which hIAPP is cloned for insertion into 
β-lactamase. The signal peptide is shown in purple, hIAPP is in orange, the Mxe GyrA 
intein is blue and the chitin binding domain is red. Nucleotide differences between hIAPP 
and rIAPP are indicated in bold. The start and stop codons are underlined. 
 

7.2.2 rIAPP 

 

ATGAAAATTG AAGAAGGCAA CGCGAACCCG AACGCGAACC CGAACGCGAA CCCGGAAAAA 

TGCAACACCG CGACCTGCGC GACCCAGCGC CTGGCGAACT TTCTGGTGCG CAGCAGCAAC 

AACCTGGGCC CGGTGCTGCC GCCGACCAAC GTGGGCAGCA ACACCTATTG CATCACGGGA 

GATGCACTAG TTGCCCTACC CGAGGGCGAG TCGGTACGCA TCGCCGACAT CGTGCCGGGT 

GCGCGGCCCA ACAGTGACAA CGCCATCGAC CTGAAAGTCC TTGACCGGCA TGGCAATCCC 

GTGCTCGCCG ACCGGCTGTT CCACTCCGGC GAGCATCCGG TGTACACGGT GCGTACGGTC 

GAAGGTCTGC GTGTGACGGG CACCGCGAAC CACCCGTTGT TGTGTTTGGT CGACGTCGCC 

GGGGTGCCGA CCCTGCTGTG GAAGCTGATC GACGAAATCA AGCCGGGCGA TTACGCGGTG 

ATTCAACGCA GCGCATTCAG CGTCGACTGT GCAGGTTTTG CCCGCGGAAA ACCCGAATTT 

GCGCCCACAA CCTACACAGT CGGCGTCCCT GGACTGGTGC GTTTCTTGGA AGCACACCAC 

CGAGACCCGG ACGCCCAAGC TATCGCCGAC GAGCTGACCG ACGGGCGGTT CTACTACGCG 

AAAGTCGCCA GTGTCACCGA CGCCGGCGTG CAGCCGGTGT ATAGCCTTCG TGTCGACACG 

GCAGACCACG CGTTTATCAC GAACGGGTTC GTCAGCCACG CTACTGGCCT CACCGGTCTG 

AACTCAGGCC TCACGACAAA TCCTGGTGTA TCCGCTTGGC AGGTCAACAC AGCTTATACT 

GCGGGACAAT TGGTCACATA TAACGGCAAG ACGTATAAAT GTTTGCAGCC CCACACCTCC 

TTGGCAGGAT GGGAACCATC CAACGTTCCT GCCTTGTGGC AGCTTCAATG A                                      

Appendix 7.20. DNA sequence of the gene from which rIAPP is cloned for insertion into 
β-lactamase. The signal peptide is shown in purple, rIAPP is in orange, the Mxe GyrA intein 
is blue and the CBD is red. Nucleotide differences between hIAPP and rIAPP are indicated 
in bold. The start and stop codons are underlined. 
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7.2.3 Aβ40 and Aβ42   

ATGAGAGGAT CGCATCACCA TCACCATCNC GGNTCTAACG CGAACCCGAA CGCGAACCCG 

AACGCGAACC CGAACGCGAA CCCGAACGCG AACCCGAACG CGAACCCGAA CGCGAACCCG 

AACGCGAACC CGAACGCGAA CCCGAACGCG AACCCGAACG CGAACCCGAA CGCGAACCCG 

AACGCGAACC CGAACGCGAA CCCGAACGCG AACCCGAACG CGAACCCGAA CGCGAACCCG 

AACGCGAACC CGAACGCGAA CCCGAGATCT GAAAACCTGT ATTTCCAGGA TGCGGAGTTC 

CGTCATGATT CAGGCTATGA AGTCCACCAT CAAAAACTGG TGTTCTTTGC AGAAGATGTG 

GGTTCAAACA AAGGTGCCAT CATTGGACTC ATGGTGGGTG GTGTTGTCAT AGCGTAA 

Appendix 7.21. DNA sequence of the gene from which Aβ40 and Aβ42 were cloned. The 
beginning of the gene encodes His6-(NANP)19-TEV: a His-tag and a self-cleavage site to aid 
in purification. The Aβ40 and Aβ42 sequences are in blue, with the extra 6 nucleotides for 
Aβ42 highlighted in bold. The start and stop codons are underlined. 
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7.3 Plasmid maps of all plasmids obtained for this project 

 

7.3.1 pET28a-βla-WT 

 

 

 

 

 

Appendix 7.22. Plasmid map of pET28a-βla-WT, kindly provided by Professor J. Bardwell 

(Department of Biological Chemistry, University of Michigan, USA)308. 
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7.3.2 pBM1-βla-link-28 

 

 

 

 

 

Appendix 7.23. Plasmid map of pMB1-βla-link-28, kindly provided by Professor J. 

Bardwell (Department of Biological Chemistry, University of Michigan, USA)308. 
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7.3.3 pBM1-βla-link-64 

 

 

 

 

Appendix 7.24. Plasmid map of pMB1-βla-link-64, kindly provided by Professor J. 

Bardwell (Department of Biological Chemistry, University of Michigan, USA)308. 
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7.3.4 pTXB1-hIAPP 

 

 

 

 

 

Appendix 7.25. Plasmid map of pTXB1-hIAPP, kindly donated by Associate Professor A. 

Miranker (Department of Molecular Biophysics and Biochemistry, Yale University, USA)377. 
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7.3.5 pTXB1-rIAPP 

 

 

 

 

 

Appendix 7.26. Plasmid map of pTXB1-rIAPP, kindly donated by Associate Professor A. 

Miranker (Department of Molecular Biophysics and Biochemistry, Yale University, USA)377. 
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7.3.6 pRSET-Aβ42 

 

 

 

Appendix 7.27. Plasmid map of pRSET-Aβ40/42, kindly donated by Dominic Walsh 

(Brigham & Women's Hospital, Boston, USA) and Sara Linse (Lund University, Sweden)378.    
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7.3.7 pEX-HEL4 

 

 

 

Appendix 7.28. Plasmid map of pEX-Hel4, synthesised by Eurofins MWG Operon 

(Ebersburg, Germany) using the sequence from Jespers et al., 2004376.  
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7.3.8 pEX-Dp47d 

 

 

 

Appendix 7.29. Plasmid map of pEX-Dp47d, synthesised by Eurofins MWG Operon 

(Ebersburg, Germany) using the sequence from Jespers et al., 2004376.  
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7.4 Small molecule compounds used in this study 

 

 

Table 7.1. Molecular weight, LogP value and structure of small molecules used in this 

thesis. LogP values (the log of the aqueous/hydrophobic partition coefficient) were 
calculated using www.molinspiration.com software, which determines the hydrophobic 
parameters of the substituents. Molecules with high LogP values have high 
hydrophobicity.  
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Table 7.2. Molecular weight, LogP value and structure of small molecules used in this 

thesis continued. LogP values (the log of the aqueous/hydrophobic partition coefficient) 

were calculated using www.molinspiration.com software, which determines the 

hydrophobic parameters of the substituents. Molecules with high LogP values have high 

hydrophobicity.  
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Table 7.3. Molecular weight, LogP value and structure of small molecules used in this 

thesis continued. LogP values (the log of the aqueous/hydrophobic partition coefficient) 

were calculated using www.molinspiration.com software, which determines the 

hydrophobic parameters of the substituents. Molecules with high LogP values have high 

hydrophobicity. 
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