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A B S T R A C T

Due to major advances in silicon photonics technology and the importance

of having a silicon-compatible laser operating in the 1.3 - 1.55 micron com-

munications wavelength window. There is currently an intense interest in

the optical properties of germanium, which has a direct band gap transi-

tion in this wavelength range. The Ge band structure can be engineered

using biaxial or uniaxial strain in order to achieve optical gain. Recently,

both optically pumped and electrical injection pumped lasing have been

reported in Ge-on-Si devices. This work aims to perform gain modeling in

a germanium laser grown on a silicon substrate which operates in the near

infrared wavelength communications band.

A description of the background theory of the variation of the relevant

electronic band structure properties of Ge with the applied strain is given.

Shifts of the conduction and valence band edges with strain (biaxial and

uniaxial) applied to Ge grown on substrates of different orientations has

been investigated using the linear deformation potential and k.p methods.

In order to make Ge behave as a direct band gap material, and to have a

good electron injection efficiency, an investigation of the combination of the

applied strain and doping density on direct band gap and injected carrier

efficiency were carried out at 0 K, for both bulk Ge and Ge quantum wells.

At finite temperatures, the k.p method and effective mass approximation

were used to calculate the energy bands for [001] bulk Ge, the quasi-Fermi

levels for given values of carrier densities, and then the interband gain and

IVBA were calculated for biaxially tensile strained [001] bulk Ge. Further-

more, a detailed description of the free carrier absorption coefficient calcu-
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lation, accounting for both intervalley and intravalley scattering in strained

[001] Ge is given. The effect of unequal electron and hole densities, which

are required to achieve the interband gain and reduce the absorption co-

efficient due to IVBA and FCA in order to obtain the net gain, has been

investigated for strained bulk n+ Ge at room and typical device tempera-

tures.

vii





L I S T O F P U B L I C AT I O N S A N D C O N F E R E N C E S :
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1
I N T R O D U C T I O N

Silicon and germanium are indirect band gap semiconductor materials. For

indirect band gap materials, it is not possible to have a light transition with-

out a photon-assisted process, due to the difference in momentum between

the electron in conduction band and holes in the valence band, which gives

rise to inefficient radiative recombination from the indirect valleys, fig. (1.1).

However, the direct band transition in Ge, which is possible, has an impor-

tant feature because the emitted light has a wavelength within the 1550 nm

communications band at room temperature [25]. Also, the direct band tran-

sition in Ge has a fast recombination rate as efficient as in III-V semicon-

ductor materials, and Ge is thus expected to be the primary candidate for

laser operation, fully compatible with Si technology [26]. The Ge (or SiGe

alloy) layers maybe grown epitaxially on a Si substrate to make photonic de-

vices [27, 28]. The III-V semiconductors laser on Si, which has been demon-

strated, has has its limitation for technical growth issues, the large-scale

electronic–photonic integration and system temperature [29]. The CMOS

integration of III-V on Si is difficult due to a thick buffer layer is required to

epitaxial grow III-V semiconductors on Si. Also the chip bounding method

to integrate III-V lasers on Si is another issue due to the small III-V wafer

diameter comparing to the Si wafers that used in CMOS electronics [29].

1
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Figure 1.1: Schematic of electron-hole recombination in the electronic band struc-
ture for (a) GaAs as direct band gap, and (b) Ge as indirect band gap
semiconductor materials, after Refs. [1, 2, 3].

1.1 silicon photonics

The term photonics covers the phenomena and applications in which pho-

tons are used to transmit or process information. This includes fibre op-

tics, optical data storage, optical sensors, photon emitters and receivers.

The light wavelengths involved normally belong to the range between near

ultraviolet and near the infrared part of the spectrum. Silicon photonics

tends to combine the photonics concepts with silicon technology. Silicon is

the dominant material for semiconductor electronics and has become the

preferred material for photonics, because of its high thermal conductivity,

abundance, availability of a good oxide and low cost compared to other

semiconductor materials [30]. The possibility of integrating electronic and

optical components on the same silicon chip is the principal advantage

of Si photonics. Si-based modulators and photodetectors have undergone

substantial development in recent years, see refs. [31, 32, 33, 34]. At room

temperature, a monolithically integrated continuous wavelength (CW) III-V

(GaAs/AlGaAs) quantum well laser on a Si substrate has been demon-

strated, where the Si substrate was grown on relaxed graded GeSi buffer
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layers [29]. Fang et.al. also demonstrated an electrically pumped hybrid

III-V laser on a silicon substrate [35].

1.2 si-based laser

A Si-based laser is the missing part in electronic-photonic integrated cir-

cuits, considering the domination of Si in the semiconductor industry. Such

devices would have a smaller fabrication cost than III-V lasers on a Si sub-

strate, due to the possibility of monolithic integration [8, 36].

High stacking density of Si nanocrystals embedded in a layer of SiO2 to

obtain light amplification has been demonstrated [37]. Further optimiza-

tion of highly luminescent light emitting diodes (LEDs) fabricated from Si

nanocrystals embedded in SiO2 has been modelled and photoluminescence

(PL) measurements has been demonstrated [38].

A gain medium of a Si waveguide was used to demonstrated a pulsed Si

Raman laser at 1675 nm, and this is the first Si laser [39, 40]. The pulsed

pumping overcame two photon absorption, which is the main loss due to

the free carrier accumulation in the case of CW pumping if used [41].

1.3 techniques of growing ge and sige on si

The word "Epitaxy" means organized crystal growth. The two mostly used

technologies for growing a new crystal of one material epitaxially on a Si

substrate to make layers or films for a semiconductor device are molecular

beam epitaxy (MBE), which was originally used to grow epitaxial SiGe lay-

ers, and chemical vapour deposition (CVD) [30]. In the MBE technique,

crystal growth on the surface of a Si substrate proceeds from the inter-

action of molecular or atomic beams that comes from evaporation effusion



4 introduction

cells which contain the solid source materials. The (Si) substrate is heated

to the required temperature and rotated continuously to achieve homoge-

neous growth in an ultra high vacuum (UHV) environment. Using this tech-

nique gives very thin layers with precise compositions at low temperatures

(600− 800 ◦C), but with low growth rates. On the other hand, CVD needs

high temperatures (1000 °C), which is a disadvantage, but the growth rate

is high, with easier composition control. UHV CVD and low pressure (LP)

CVD have been developed to reduce the growth temperature in CVD, with

pressures of around 10 Pa and from 10 to 100 Pa, respectively [30, 42]. The

low-energy plasma-enhanced CVD were used as an epitaxial growth of

Ge/Si0.15Ge0.85 multiple quantum wells on (111) Si substrates, to obtain

moderate threading dislocation density comparing to Ge-rich heterostruc-

tures grown on (001) Si through a much thicker graded virtual substrate

[43].

1.4 effects of different strain conditions on the ge direct

transition

The applied biaxial tensile strain on semiconductor material moves the

conduction band (C.B.) minima at Γ and L points downward with respect

to the vacuum level [44], and this reduction can be calculated using defor-

mation potential theory [45]. Furthermore, under tensile strain the valence

band (V.B.) top splits into heavy hole (HH) and light hole (LH) bands [26]

and the k.p method is used to calculate the top of the valence band [19, 46].

It has been proved theoretically (using deformation potential and 6× 6 k.p

methods) and experimentally that the direct PL of (100) Ge under biaxial

tensile strain is enhanced due to the reduction in energy difference between

the G and indirect (L) valleys, and the enhancement factor is 1.8 for 0.37 %

biaxial tensile strain [47]. Fischetti et.al. presented theoretical work in 1996
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on strained Ge which shows that [001] Ge becomes a direct band gap ma-

terial with about 1.75 % biaxial tensile strain [48]. El Kurdi et. al. used a

30 band k.p method to calculate the band structure which shows that Ge

becomes a direct bandgap semiconductor with around 1.9 % tensile strain

and the bandgap shrinks to 530 meV [49]. On a tensile strained nanomem-

branes, PL of Ge the direct band gap was observed for different values of

applied strain values [50].

Experimentally, biaxial and uniaxial strains enhance the carrier mobility

in bulk MOSFETs grown in different orientations owing to highly altered

band structures [51]. Selective ion implantation was used to introduce uni-

axial strain in various Si/Ge heterostructures [52]. Yu et.al. used four-point

bending structures to achieve uniaxial tensile and compressive strain in the

<110> direction in a Ge p-i-n photodiode integrated on Si, which showed

an increase of the responsivity at the direct bandgap with the tensile strain,

toward longer wavelengths, and a decrease with the compressive strain, to-

wards shorter wavelengths [53] . The fracture strengths of Si and Ge are

large, for the crystalline <100> direction the maximum and uniaxial tensile

strains and stresses are reported to be 20.6 % and 21.4 GPa in Si and 18.3 %

and 14.7 GPa in Ge, respectively, [54]. While for corresponding <111> ten-

sile strain the maximum values are 17 % at 22 GPa stress for Si and 20 %

at 14 GPa stress for Ge [55]. Theoretical study predicted that a GeSn alloy

can become a direct band gap material due to the lattice mismatch [56]. A

top-down fabrication approach to obtain 3.1 % uniaxial tensile strain on Ge

microbridges structure has been modelled and demonstrated [57].

A Silicon-Nitride (Si3N4) film stressor was deposited on a Ge wire to pro-

duce 0.4 % tensile strain [58]. With a 120 nm shift from bulk Ge, an en-

hanced room temperature luminescence using CW optical pumping source

was exhibited. A biaxial tensile strain larger than 0.6 % was achieved using

a thin (1µm) Ge membrane fabricated using Ge that is epitaxially grown

on a Si substrate [59]. Up to 1.13 % biaxial tensile strain has been measured
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using Raman spectroscopy, for an integrated thin layer Ge membrane on

a Si substrate. A large enhancement in PL was observed with 100 meV re-

duction in the direct band gap [60]. Recently, even higher value of tensile

strain has been demonstrated, about 1 and 1.5 % biaxial tensile strain on

Ge microdisks using an all-around deposition Si3N4 stresser [61, 62].

1.5 direct gap emission and photoluminescence in ge

Despite the indirect bandgap in Ge, the efficiency of the direct band transi-

tion can be increased using tensile strain and heavy doping [63]. Theoreti-

cally, with 0.25 % tensile-strained and an n+ (phosphorous) doping density

of 7.6× 1019 cm−3 , it has been predicted that Ge can achieve an efficient

light emission with a significant net gain of ∼ 400 cm−1[8] and the PL is

50 times larger than in undoped strained Ge [64]. The probability of direct

PL increases because the energy difference between the direct and indi-

rect bandgaps reduces with tensile strain [44, 65]. In addition, with heavy

n-type doping the Fermi level increases due to higher concentration of elec-

trons , the excess electrons in the conduction band first fill the indirect L

band and then fill the direct Γ band of Ge. With higher temperature, there

is more possibility for electrons to thermally distribute in the Γ valley of the

conduction band [26]. Due to the high free carrier absorption and the low

internal quantum efficiency achieve an electrically pump laser is difficult

[26].

Experiments have been performed to obtain direct PL from heavily doped

strained Ge-on-Si using an optical pumping source to achieve population

inversion and to investigate the net gain of strained Ge-on-Si [66, 67]. At

room temperature, an optical pumping source has been used to study the

photoluminescence of n+-type in-plane biaxially 0.22 % tensile-strained epi-

taxial Ge-on-Si (in 110 growth direction), and the photoluminescence peak
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was observed at 1590 nm. The direct PL of n-type tensile-strained Ge-on-Si

increases with doping density (from 1017 to 1019 cm−3), and with the tem-

perature increase from 221 to 300 K; PL could not be observed under 200 K

[26]. Lan et. al. have observed an enhancement of direct PL transition on

n-type (100), (110), and p-type (111) Ge under 0.315 % biaxial tensile strain

[68]. Experimentally, room temperature PL intensity (at ∼ 1590 nm) in n+

bulk Ge and Ge-on-insulator increases with doping, using a gas immersion

laser doping process, and a redshift is observed due to the impurities. The

direct transition in low-resistivity Ge is stronger than in high-resistivity Ge

due to increase of the electron concentration in the Γ-valley with respect

to the L-valleys [69]. The direct and indirect photoluminescence increases

with laser pumping power, but only the direct PL was enhanced at ele-

vated temperature (and near room temperature) in a [100] Ge n+-p junc-

tion [70]. On InGaAs/GaAs buffer layers, MBE was used to grow biaxially

tensile-strained Ge layers up to 2.3 %, which showed a dramatic increase

in direct PL but at much larger λ for tensile strain greater than 2 % at low-

temperature [71].

El Kurdi et. al. reported that for 3 % tensile-strained Ge the optical gain

increases with the injected carrier density (4× 1018 cm−3) up to 3000 cm−1

at low-temperatures (4 and 80 K). The experiments showed that the PL of

Ge on insulator was enhanced by factor of 20 with heavy electron doping

(4× 1019 cm−3) at room temperature [49]. Recent study of the PL of direct

gap gain of optically pumped Ge-on-Si shows that the optical amplification

is not possible due to the carrier absorption, which is not the case of parallel

demonstration of III-V layers [72]. The life time of the excess carrier is

depending on the doping profile, which can be increased by using Ge on

insulator substrate or built-in fields to keep them away from the interface

[73].
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1.6 direct gap emission and electroluminescence in ge

Doped Germanium is capable of behaving like a direct band gap material

[8]. In this approach, Ge was grown on Si in a CVD system, and 0.2 %

tensile strain was achieved due to the different thermal expansion coeffi-

cient of germanium compared to that of silicon. Different in-situ doping

and ion implantation techniques were applied to provide n+ doping in the

Ge layer. Room temperature LEDs have been demonstrated with an inter-

nal quantum efficiency of 10−3 [74]. Calculations have been performed to

study the direct optical gain and net gain relative to n-type doping density,

the injected carrier density on relaxed Ge and 0.25 % tensile strained Ge.

Furthermore, calculations of the dependence of the net gain on the excess

carrier density of n+ Ge showed a decrease in the net gain for > 1019 cm−3

carrier density. The internal quantum efficiency of a Si-Ge p-i-n heterojunc-

tion has been calculated and it was pointed out that it can be enhanced

by doping the Si-Ge heterojunction to become p+-n+-n+. The optical loss

can be reduced by controlling the doping concentration of both p and n

Si without affecting the properties of the emitted light [66]. It has been

reported that a Ge metal-insulator semiconductor light-emitting diode un-

der 0.32 % biaxial tensile strain has shown an electroluminescence peak at

1813 nm at 65 K [75], and the direct bandgap narrowing reported in ref.

[76]. The direct bandgap electroluminescence in the communication band

from SiGe heterojunction LED at room temperature was reported where

Ge was under 0.2 % tensile biaxial strain. Experimentally, the Interband

electroluminescence (EL) of the tensile strained Ge/Si p-i-n diode increases

with the applied electrical current, Higher EL is obtained at higher tempera-

tures [63]. At forward bias, the direct and indirect electroluminescence both

increase with current injection level. The enhancement of direct transition

peak is prominent at > 400 mA and the redshift and spectral broadening

are mainly due to the junction temperature [70].
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1.7 ge laser

Liu et. al. modelled ∼ 400 cm−1 gain from the direct transition in 0.25 %

tensile strained heavily doped Ge (7.9× 1019cm−3) with ∼ 6 kA threshold

current density for an edge-emitting double heterojunction (n-Si/n-Ge/p-

Si) laser device structure [8]. Experimentally, lasing at room temperature

has been produced using a coupled laser source from highly n+ doped Ge

with moderate tensile strain, epitaxially grown on Si [77].

An optical gain coefficient of ∼ 50 cm−1 at 1605 nm has been reported in

n+ (1019 cm−3) tensile strained (0.25 %) Ge (with an area of 500 µm−2) on Si

under steady-state optical pumping at room temperature. The maximum

gain coefficient of 56± 25 cm−1 was observed at 1605 nm, (> 100 dB cm−1)

which is much greater than the waveguide loss in Si photonics [25].

Liu et.al. demonstrated experimentally lasing spectrum with gain at 1590

– 1610 nm from an optically pumped edge-emitting multimode Ge-on-Si

laser operating, at room temperature [67]. Using a Fabry-Perot (F.P.) cavity

a 1 mW gain around 200 cm−1 from an electrically pumped Ge on Si laser at

room temperature was observed [78], where the emission wavelength was

around 1520 nm. The Ge layers were n-type doped using a delta doping

process and chemical-mechanical polishing (CMP) to achieve a density of

> 4× 1019 cm−3 [79, 80]. Such high n-type doping lead to band gap energy

narrowing which will redshift the optical gain peak and affect its value as

well [81].

1.8 thesis structure

Following an introduction to Ge as semiconductor material and background

theory about the electronic band structure, two methods to obtain the band

structure are described. Then, the theory of the effect of strain and differ-
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ently grown crystal orientations is described. Chapter 3 investigates the

effect of different strain conditions on the direct band gap energy, and the

doping requirements, of bulk Ge and Ge quantum wells grown on [001],

[110] and [111] oriented substrates and subjected to different types of ten-

sile strain to achieve a direct band gap. Also, the fraction of the injected car-

riers (the injection efficiency ) is calculated in order to find optimum strain

conditions, suitable for bulk or quantum well active layers of near infrared

Ge lasers. Chapter 4 demonstrates the difference between the inter-band

gain and the intervalence band absorption (IVBA). Then the effect of carrier

density and temperature for strained bulk Ge material is studied. Chapter

5 investigates the effect of different free carrier absorption (FCA) processes

on bulk Ge and then presents their effect on the net gain. Chapter 6 sum-

marises the results of previous chapters together and lists possible research

directions for future work.
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G E R M A N I U M

Germanium is one of the important semiconductor materials with an indi-

rect band gap. For indirect band gap materials, it is not possible to have a

light transition without phonon-assisted process, due to the difference in

momentum between the electron in the lowest indirect conduction band

and holes in the valence band, which gives rise to inefficient radiative re-

combination from the indirect valleys. However, the direct band transition

in Ge, which is possible, has an important feature because the emitted

light has 1550 nm wavelength, which is within the communications band

at room temperature [25]. Also, the direct band transition in Ge has a fast

recombination rate, as efficient as in III-V semiconductor materials, and

Ge is thus expected to be a possible candidate for laser operation, fully

compatible with Si technology [26].

This chapter will give an introduction to Ge as a semiconductor material,

background theory about the electronic band structure, and two methods

to obtain the E− k diagram. This is followed by the theory of the effect of

strain and different grown crystal orientations on the energy of the conduc-

tion bands minima and valence band top.

11
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2.1 ge properties

Germanium has a face-centred cubic ( f cc) Bravais lattice structure, with a

lattice constant al. An extra atom is placed at 1
4(a1 + a2 + a3) from each

atom of the f cc. For such structure if all atoms are of the same material,

like in Germanium, it is called the diamond crystal structure, fig. (2.1).

al

Figure 2.1: The diamond crystal lattice structure with al as the lattice constant [4].

Table (2.1) gives some of basic material parameters for Germanium, like the

lattice and elastic constants, the deformation potentials and the spin orbit

splitting.
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Table 2.1: List of some basic material parameters for Germanium and their units.
The lattice constant al ; the elastic constant C11, C12 and C44; the deforma-
tion potentials Xk

d and X
k
u for valley k; the spin-orbit splitting ∆ [6, 16, 17].

Constant value Unit Constant value Unit

al 5.65 Å ΞΓ
d −8.24

C11 1.315
×1012 dyn

cm2

ΞL
d −6.58

C12 0.494 ΞX
d −0.59 eV

C44 0.684 ΞL
u 15.13

∆ 0.296 eV ΞX
u 9.42

2.1.1 Brillouin zone for diamond crystal structure

The reciprocal lattice for an f cc real-space lattice has a body centred cubic

(bcc) structure and the first Brillouin zone (BZ) has a truncated octahedron

shape. This shape has a number of important symmetry points and direc-

tions. Figure (2.2) shows the Brillouin zone of the f cc Bravais lattice. In the

Ge case there are three important symmetry points: the Γ point which is lo-

cated at (0, 0, 0), eight L points located at
(
p
al

, p
al

, p
al

)
, and six points labelled

as X at 2π
al
(1, 0, 0) in k-space [5].
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Γ

L

X

kz

kykx

Figure 2.2: The f cc lattice first Brillouin zone in the reciprocal space, and three
important symmetry points (Γ, L and X) in Ge After ref. [5].

2.2 bulk ge band structure

In solid state physics, the electronic energy levels are generally determined

by solving the time-dependent Schrodinger equation:

[
−h̄2

2m
∇2 + V (~r)

]
ψ~k (~r) = E

(
~k
)

ψ~k (~r) , (2.1)
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Schrodinger equation

S.O.

HH

LH

Figure 2.3: The electronic band structure of intrinsic bulk Ge, where energy is a
function of wavevector between the important symmetry points in the
reciprocal space. Adapted from ref. [6].

where V (~r) is the periodic potential of the atoms,~k is the Bloch wavevector

in the first B.Z., and ψ~k (~r) is the eigenfunction (Bloch function) [82].

For any bulk semiconductor crystal the electron energy as a function of

wavevector can be determined using methods like the k.p method [6] or the

non local pseudo-potential method [83]. Figure (2.3) shows the energy band

structure of intrinsic bulk Ge, where the energy of electrons ( in eV unit) is

shown as a function of the wavevector between the previously mentioned

symmetry points in the reciprocal space.
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At absolute zero (0 K) temperature, every electronic band higher than the

valence band is entirely empty, these bands are called conduction bands

(C.B.). The lower electronic bands are completely filled with electrons, they

are called the valence bands (V.B.).

Germanium is an indirect band gap semiconductor material. The maxi-

mum energy of the valence band is located at the Γ point, and the mini-

mum energy of the conduction band is located at the L point for Ge. Since

electrons tend to populate the lowest conduction band valley the direct

transition (light emission) in Ge is difficult.

2.2.1 The valence band

At finite temperature, the valence bands are highly occupied by electrons.

For Ge, the three highest valence bands are: the heavy-hole (HH), the light-

hole (LH), and the spin-orbit split-off (SO) band. At the Γ-point, where

the maximum of the V.B. is located, the HH and the LH bands are both

degenerate, but the SO band has a lower energy, fig. (2.3) [83]. The energy

of the valence band maximum is:

Ev = Ev
avg +

D

3
, (2.2)

where Ev
avg is the average energy of the three valence bands and D is the

spin-orbit splitting [20].

2.2.2 The conduction band

The minimum of the conduction band energy (Ec,ki) of a particular symme-

try - G, L or X - point, called a valley, (k) is calculated with reference to the

maximum of the valence band energy Ev from:



2.3 the effective mass method 17

Ec,ki = Eg,ki + Ev, (2.3)

where i is the index of the conduction band minimum at that k-point [20].

At the bulk Ge, the conduction band minima (L-points) only half of the

eight valleys are inside the first Brillouin zone, since they are located at the

Brillouin zone edge, unlike the six valleys near the X-points [5].

The band structure can be determined by solving the Schrodinger equation.

The effective mass method gives a good approximation to the relation of

the energy-momentum of around that band bottom. While with more than

one band with close energy to each other such approximation is not good.

Because the envelope wave function does not contain the true wavefunc-

tion. So in this work, near the Γ-point the k.p method is used to calculate

the band structure for the conduction and valence bands, and the effective

mass method is used to calculate the band structure for the conduction

band for indirect valleys. These two methods will be described in the fol-

lowing sections [84].

2.3 the effective mass method

In a periodic crystal, when an electric field ξ applied the electron acceler-

ates as

dv
dt

= − eξ

m∗
, (2.4)

where e is the electron charge and me is the electron mass [82]. So the elec-

tron behaves like its mass is different from the free electron mass m0. The

kinetic energy (E) of a free electron as a function of the electron momentum

(p) is
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E =
p2

2m∗
=

h̄2k2

2m∗
. (2.5)

Therefore, the energy-momentum (E− p) relationship has a parabolic de-

pendence such as that of a classical free electron [82].

When an external force is applied, the electron acceleration can be inter-

preted in the Newton equation form, the effective mass principle may be

presented:

m∗ = h̄2 1
d2E
dk2

. (2.6)

2.3.1 The effective mass tensor

In a three dimensional crystal the effective mass tensor is defined as

1
m∗

=


m−1

xx m−1
xy m−1

xz

m−1
yx m−1

yy m−1
yz

m−1
zx m−1

zy m−1
zz

 , (2.7)

E = kT
(

1
m∗

)
k. (2.8)

For a parabolic E− k dependence all non-diagonal elements in the tensor

will vanish, and the effective mass for a conduction band becomes a scalar

m∗ in this approximation [15, 85].
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2.3.2 The parabolic band approximation model

In this approximation model for parabolic bands, the electron moves as a

free particle with mass m∗, which is related to the curvature of the band.

For non-parabolic bands, the electron effective mass is not constant and

the slope at some point of the E–k curvature relationship must be used to

obtain the velocity and acceleration of the particle with energy E.

For a single band and near the valley bottom (top) for conduction (valence)

bands, the E–k dependence can be approximated by parabola that results

in a constant effective mass value. The valence band energy in eq. (2.2) will

be used to obtain the valence band E–k diagram

Ev (k) = Ev (0) +
h̄2k2,

2mh
(2.9)

where mh here is negative, and the conduction band from eq. (2.3) also will

be used to determine E–k relation for k-valley as

Ec,ki (k) = Ec,ki (0) +
h̄2k2

2me
. (2.10)

2.4 the k.p method

The valence band energy shifts under the strain, and can be calculated

using the k.p method. This involves finding the eigenvalues (Ψ) and the

eigenvectors (E) of the 8× 8 Luttinger-Kohn Hamiltonian with spin-orbit

interaction (H) and with no strain, then by adding the strain-dependant

Hamiltonian (Hs):

(H+Hs (r))Ψ (r) = EΨ (r) , (2.11)
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where H is

H8×8 =



A 0 T∗ + V∗ 0

0 A
√

2 (W −U) −
√

3 (T∗ + V∗)

T + V
√

2 (W∗ −U) −P + Q −S∗

0 −
√

3 (T + V) −S −P−Q

−
√

3 (T∗ −V∗) 0 R∗ 0
√

2 (W∗ −U) T∗ −V∗ 0 R∗

W∗ −U −
√

2 (T∗ −V∗)
√

3
2 S∗ −

√
2R∗

√
2 (T + V) W + U −

√
2Q S∗/

√
2

−
√

3 (T −V)
√

2 (W −U) W −U
√

2 (T∗ −V∗)

0 T −V −
√

2 (T −V) W∗ + U

R 0
√

3
2 S −

√
2Q

0 R −
√

2R S/
√

2

−P−Q S∗ S∗/
√

2
√

2R∗

S −P + Q
√

2Q
√

3
2 S∗

S/
√

2
√

2R −P− ∆ 0

−
√

2R
√

3
2 S 0 −P− ∆



,

(2.12)

where:

A = Ec,ki +
[

A′ + h̄2

2m0

] (
k2

x + k2
y + k2

z

)
,

T = 1√
6

Bkz
(
kx + iky

)
,

V = 1√
6

P0
(
kx − iky

)
,

W = i 1√
3

Bkxky,

U = 1√
3

P0kz,

P = −Ev + h̄2

2m0
γ1

(
k2

x + k2
y + k2

z

)
,
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Q = h̄2

2m0
γ2

(
k2

x + k2
y − 2k2

z

)
,

S =
√

3h̄2

m0
γ3kz

(
kx − iky

)
,

R = −
√

3
2

h̄2

m0

[
γ2

(
k2

x + k2
y

)
− 2iγ3kxky

]
[86, 18].

The strain-dependent Hamiltonian (Hs8×8) is

Hs8×8 =



a′e 0 t∗ − υ∗ 0

0 a′e
√

2 (w + u) −
√

3 (t∗ − υ∗)

t− υ
√

2 (w∗ + u) −p + q −s∗

0 −
√

3 (t− υ) −s −p− q

−
√

3 (t∗ + υ∗) 0 r∗ 0
√

2 (w∗ + u) t∗ + υ∗ 0 r∗

w∗ + u −
√

3 (t∗ + υ∗)
√

3
2 s∗ −

√
2r∗

√
2 (t− υ) w− u −

√
2q s∗/

√
2

−
√

3 (t + υ)
√

2 (w + u) w + u
√

2 (t∗ − υ∗)

0 t + υ −
√

2 (t + υ) w∗ − u

r 0
√

3
2 s −

√
2q

0 r −
√

2r s/
√

2

−p− q s∗ s∗/
√

2
√

2r∗

s −p + q
√

2q
√

3
2 s∗

s/
√

2
√

2r −p 0

−
√

2r
√

3
2 s 0 −p



,

(2.13)

where:

e = εxx + εyy + εzz,

t = 1√
6
b′
(
εxz + iεyz

)
,

υ = 1√
6

P0 ∑j
(
εxj − iεyj

)
k j,
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w = i 1√
3
b′εxy,

u = 1√
3

P0 ∑j εzjk j,

p = ae,

q = b
[
εzz − 1

2

(
εxx + εyy

)]
,

s = −d
(
εxz − iεyz

)
,

r =
√

3
2 b
(
εxx + εyy

)
− idεxy,

and A′, B are the Kane parameters (= 0 for diamond crystal structure),

a,b,d, a′ and b′ are the deformation potential constants, γ1,γ2,γ3 are the

Luttinger parameters [86, 18].

The modified Luttinger parameters can be calculated form

γ1 = γL
1 −

EP
3Eg+∆ ,

γ2,3 = γL
2,3 − 1

2
EP

3Eg+∆ ,

where Eg is the direct band gap, EP = 2m0
h̄2 P2

0 [18].

Table (2.2) lists the constant values for Ge which were used in the calcula-

tions.

Table 2.2: The values of deformation potentials a,b,d and a′, b′ in (eV), the modified
Luttinger parameters γL

1 ,γL
2 ,γL

3 [18, 19, 20] .

Constant a b d a′ b′ γL
1 γL

2 γL
3

value 1.24 −2.90 −5.30 −8.24 0.0 13.38 4.24 5.69
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2.5 strain effect

To obtain any semiconductor device, a semiconductor material or alloy will

be grown on another layer. If their lattice constants are different, the mis-

match between the two layers will induce stress in the top material. In an

elastic solid, the strain is directly proportional to the stress, as given by

Hooke’s law. Consider a mechanical force acting on a crystal lattice and

changing the positions of the atoms, which leads to changing of the prim-

itive cell size and shape [5]. When a semiconductor material is grown on

another semiconductor substrate, such as Ge or SiGe alloy layer on Si sub-

strate, there will be a lattice mismatch between these two materials [5, 87].

In this part, the physics of strain will be introduced, which will then it

affect the band structure.

2.5.1 Strain tensor

When the lattice is under stress it becomes strained. The deformation is

described as elastic if the primitive cell returns to its original status after

the force is removed. When an elastic deformation of a primitive cell takes

place then new axes x′, y′and z′ describe the new positions of the deformed

primitive cell in terms of the original three orthogonal vectors of unit length

in the Cartesian coordinate system x̂, ŷ and ẑ as follows:

x′ = (1 + εxx)x̂ + εxyŷ + εxzẑ, (2.14)

y′ = εyxx̂ + (1 + εyy)ŷ + εyzẑ, (2.15)

z′ = εzxx̂ + εzyŷ + (1 + εzz)ẑ, (2.16)
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where εab are dimensionless coefficients of the deformation and have values

� 1 for elastic strain [87]. If the original position of an atom located at

r = xx̂ + yŷ + zẑ becomes after deformation, r′ = xx′ + yy′ + zz′, then the

deformation R is defined by

R (r) = r′ − r = u (r) x̂ + ν (r) ŷ + w (r) ẑ, (2.17)

where

u (r) = εxx + εxy + εxz,

ν (r) = εyx + εyy + εyz,

w (r) = εzx + εzy + εzz,

Using the Taylor series expansion of R the strain components are defined

as [5]:

εxx ≡ εxx =
∂u
∂x

; εyy ≡ εyy =
∂ν

∂y
; εzz ≡ εzz =

∂w
∂z

. (2.18)

The rest of strain components represent the angles between the deformed

axes:

εab ≡ a
′
� b
′ ∼= εba + εby =

∂ua
∂b

+
∂ub
∂a

, a,b = x′, y′ and z′, (2.19)

and εab = εba and they are dimensionless. The dilation d (the fractional

increase of volume of the cube) [5] can be written as

d ≡ V
′ −V
V

∼= εxx + εyy + εzz. (2.20)

Nine stress components (σab) represent the applied force acting on unit

area of the cube. They are σxx , σxy , σxz, σyx , σyy , σyz , σzx, σzy and σzz,

with a indicating the direction of the force and b indicating the axis perpen-

dicular to the plane which the force acts on. Because the body is in static
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equilibrium, the sum of the forces in any direction is zero, so there are only

six independent stress components, listed below, which are related to the

strain components as:



σxx

σyy

σzz

σyz

σzx

σxy


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





εxx

εyy

εzz

εyz

εzx

εxy


. (2.21)

The quantities Cmn are the elastic stiffness constants [87]. The elastic stiff-

ness (C) matrix is represented by [5]:

C6×6 =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


. (2.22)

There are only three independent stiffness constants C11, C12 and C44 due to

the crystal symmetry. the C44 is defined as a link between the "engineering"

shear strain with the stress components [where the engineering shear strain

(2εab) is the change of the angle between previously orthogonal axes], so the

6× 1 representations of strain (ε6×1) and stress(σ6×1) are used and linked

with the conventional C6×6 matrix. However, the 3 × 3 representation of

ε3×3 which would contain these 2εab terms is not a tensor, so rotations of

coordinate system cannot be applied to it. Instead, the 3× 3 representation
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of epsilon, which contains just εab off the main diagonal, is a tensor, and

rotations can be applied to this form [88].

Therefore, the strain (ε) matrix in the crystal coordinate system can be writ-

ten as:

ε3×3 =


εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 , (2.23)

where the diagonal strain elements are the relative displacements in the

three coordinate directions x̂, ŷ, ẑ and the other elements are one-half of

the changes in the angle between the two perpendicular axes [87]. Also, the

strain can be represented in 6× 1 matrix form as:

ε6×1 =

[
εxx εyy εzz 2εxy 2εyz 2εxz

]T
. (2.24)

The stress component matrix for a cubic crystal as in eq.(2.21) can be writ-

ten as

sv6×1 = C6×6 � e6×1, (2.25)

where the stress matrix in (6× 1) form and in (3× 3) form in the crystal

coordinate system are [87]:

σ6×1 =

[
σxx σyy σzz σxy σyz σxz

]T
, (2.26)

σ3×3 =


σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 , (2.27)
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The grown layer with lattice constant (al) undergoes a compressive or ten-

sile strain in order to match the lattice constant of the substrate (as). The

compressive or tensile strain depends on whether the lattice constant of the

grown material is larger or smaller than the lattice constant of the substrate.

The substrate remains unstrained owing to its large thickness. Furthermore,

if, during growth the lattice undergoes tensile strain in the in-plane direc-

tion, there will be an orthogonal compressive strain and vice versa [89]. The

in-plane strain e||is calculated from:

e|| =
as − al

al
, (2.28)

2.5.2 Deformation potential method

After determining the strain, it is possible to find the change in the conduc-

tion band energy various for valleys (ki) by:

DEki = Ξk
dTr(ε) + Ξk

uaT
ki

ε aki , (2.29)

where the deformation potential of pure dilations (Ξd) and pure shears (Ξu),

for valley k. Where k = Γ, X or L, and i goes over all equivalent valleys [90].

Theaki is the unit vector pointing to that valley [20, 89]. The unit vectors of

X and L equivalent valleys are:

aX1 =


1

0

0

 , aX2 =


0

1

0

 , aX3 =


0

0

1

 , (2.30)
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aL1 =
1√
3


1

1

1

 , aL2 =
1√
3


1

1

−1

 ,

(2.31)

aL3 =
1√
3


−1

1

1

 , aL4 =
1√
3


1

−1

1

 .

Note that the Γ valley does not have a shear deformation potential. The

new minimum conduction band energy of a particular valley (k) , eq. (2.3),

is calculated by adding the energy change of the minimum in the presence

of strain (∆Eki) to the conduction band minimum with no strain (Eg,ki)

of a particular valley (k), plus the energy of the valence band maximum

(because Eg,ki is measured from Ev ) as follows:

Ec,ki = ∆Eki + Eg,ki + Ev. (2.32)

The top of the valence band energy can be calculated from eq. (2.2). The

energy of valence band top (Ev) in the absence of strain is set to zero [89].

2.6 growth orientation effect

When a layer is grown with a particular orientation ([001], [110] or [111]

plane) of the crystal coordinate system, x′, y′ and z′ are chosen so that z′

is perpendicular to the growth plane. The coordinate transformation can

be made to find the strain and stress in the new layer (growth) coordinate

system.
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ε
′
3×3 = U � ε3×3 �UT, (2.33)

σ
′
3×3 = U � σ3×3 �UT, (2.34)

or vice versa from

ε3×3 = UT � ε
′
3×3 �U, (2.35)

where U is the transformation matrix. For the growth direction [001], in

this case U[001] is just the unity matrix I.

2.6.1 The transformation matrix

For other growth directions the crystal lattice will not be aligned with the

crystal layer (R 6= R′), then a transformation matrix U is needed to trans-

form from one Cartesian coordinate system to another as in eq. (2.35). The

transformation is performed first by clockwise rotation through an angle (θ)

around the ẑ-axis, then by clockwise rotation through an angle (ϕ ) around

the new y′-axis. These angles are called Euler angles. The transformation

matrix is defined as [89]:

U =


cos θ cos ϕ − sin θ cos θ sin ϕ

sin θ cos ϕ cos θ sin θ sin ϕ

− sin ϕ 0 cos ϕ

 , (2.36)

For the [110] and [111] growth directions the transformation matrices are

U[110] and U[111] respectively, as



30 germanium

(a) z’: [110], y’: [-110], x’: [00-1] (b) z′: [111], x′ : [−110], y′: [−1− 12]

Figure 2.4: Scheme of the crystal coordinate system and for the new layer coordi-
nate system, for [110] growth (left) and for [111] growth (right), after
ref. [7].

U[110] =


0 0 −1

− 1√
2

1√
2

0

1√
2

1√
2

0

 , U[111] =


1√
2
− 1√

2
0

1√
6

1√
6
− 2√

6

1√
3

1√
3

1√
3

 . (2.37)

Figure (2.4) illustrates the transformation of the original coordinate system

to the new coordinate system in case of [110] and [111] growth orientations.

2.6.2 Effective masses

There are six X-valleys, located at (1, 0, 0), (0, 1, 0), (0, 0, 1) and (−1, 0, 0),

(0,−1, 0), (0, 0,−1), in the crystal coordinate system. The effective masses

describing X-valleys (ellipsoidal constant energy surfaces) are m` (longitu-

dinal mass, along the direction pointing from the Γ point to that X-valley),

and mt (transverse mass, in the other two directions). For the X-valley at

(1, 0, 0) the reciprocal effective mass matrix is
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m−1
X1

=


m−1

`

m−1
t

m−1
t

 , (2.38)

and it transforms in the new coordinate system (of the layer) according to

m−1′
X1

= U � m−1
X1

�UT. (2.39)

Similarly, the valleys located at (0, 1, 0) and (0, 0, 1) have

m−1
X2

=


m−1

t

m−1
`

m−1
t

 m−1
X3

=


m−1

t

m−1
t

m−1
`

 , (2.40)

and they also transform using eq. (2.39) [85].

There are four L-valleys, located at (1, 1, 1), (1, 1,−1), (−1, 1, 1) and (1,−1, 1).

Each L-valley also has a longitudinal mass m` in the direction pointing

from Γ to that L point, and a transverse mass mt in the other two directions.

However, the difference from the X-valleys is that none of these directions

is along the x̂, ŷ and ẑ axes of the crystal coordinate system. To find the

reciprocal mass matrix for an L-valley in the new layer (growth) coordinate

system, first convert that L-valley from its own coordinate system to the

crystal coordinate system using

m−1
L1(cryst) = UT

111�m
−1
L1
�U111, (2.41)

then from the crystal coordinate system to the layer coordinate system us-

ing the eq. (2.39) but with changing correspondence.

The reciprocal mass matrix for all L-valleys [85] is
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m−1
L =


m−1

t

m−1
t

m−1
`

 , (2.42)

but the transformation matrices for the rest of the four L-valleys, at (1, 1, 1),

(1, 1,−1), (−1, 1, 1) and (1,−1, 1) are

UL1
[111] =


1√
2
− 1√

2
0

1√
6

1√
6
− 2√

6

1√
3

1√
3

1√
3

 , UL2
[111] =


1√
2
− 1√

2
0

− 1√
6
− 1√

6
− 2√

6

1√
3

1√
3
− 1√

3

 ,

UL3
[111] =


1√
2
− 1√

2
0

− 1√
6

1√
6
− 2√

6

− 1√
3

1√
3

1√
3

 , UL4
[111] =


1√
2

1√
2

0

− 1√
6

1√
6

2√
6

1√
3
− 1√

3
1√
3

 ,

respectively.

2.7 results and discussion

Using the coordinate transformation mentioned previously, the strain ten-

sor was determined for (001), (110) and (111) growth directions for the

semiconductor material undergoing biaxial strain (B). Then, using the de-

formation potential method an investigation was carried out to study the

strain effects on the conduction band valley minima for bulk-like Ge.

Then, for bulk-like Ge, the two bands k.p method was used to find the

variation of the energy of the valence band maximum with different types

of applied strain in the before mentioned three growth directions.
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2.7.1 Strain tensor

The energy shift of the bottom of the three valleys of the conduction and

the top of the valence band for bulk Ge has been investigated, for different

strain conditions and the various growth orientations, by following the pre-

viously mentioned methodology. The strain conditions are biaxial compres-

sive and tensile strain. The three growth orientations are the conventional

[001], [110] and [111] substrates.

2.7.1.1 Biaxial strain effect

When a biaxial strain is applied to a bulk semiconductor material, known

values of in-plane strain (e||) are applied along two axes (e
′
xx,e

′
yy), with an

unknown value along the perpendicular axis (e
′
zz), and with no shear strain

components (e
′
xy,e

′
yz,e

′
xz). The perpendicular stress element (sv

′
zz) equals zero,

and the other tensor elements can be calculated from eq. (2.25). Then, the

unknown strain tensor elements can be determined by applying these con-

ditions in different growth directions ([001], [110] and [111]). The energy

shifts of all valleys can be calculated using eq. (2.32).

Biaxial strain in the [001] growth direction

The resultant strain tensor in the [001] growth orientation is

ε [001]B = ε ||


1 0 0

0 1 0

0 0 −2C12
C11

 . (2.43)

The shift in the energy of the Γ valley is

DEΓ
[001]B = 2ΞΓ

d
C11 − C12

C11
ε ||. (2.44)
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All of the L valleys will be shifted according to

DEL
[001]B =

2
3

C11 − C12

C11

(
3ΞL

d + ΞL
u

)
ε ||. (2.45)

But the degeneracy will be lifted for X-valleys, and their shifts in energy

are

DEX1,3
[001]B = 2

(
C11 − C12

C11
ΞX

d + ΞX
u

)
ε ||, (2.46)

DEX2
[001]B =

2
C11

(
(C11 − C12)ΞX

d + C12ΞX
u

)
ε ||. (2.47)

The energy shifts for conduction band valleys minimum and the valence

band top in the case of a Ge layer grown in the [001] crystal orientation are

shown in fig. (2.5). The degeneracy of the X valleys is lifted and they split

into four fold degenerate X1,2 valleys, and double degenerate X3 valleys,

which they behave differently with the applied strain.

Biaxial strain in the [110] growth direction

The resultant strain tensor in the [110] growth orientation is

ε [110]B =
ε ||

C11 + C12 + 2C44
2C44 − C12 −C11 − 2C12 0

−C11 − 2C12 2C44 − C12 0

0 0 C11 + C12 + 2C44

 . (2.48)

The shift in the energy of the Γ valley is
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Figure 2.5: The energy of the conduction bands bottom of k-valley (Ec,ki) and the
top of the valence band (EV.B.top) of biaxially strained [001] bulk Ge.

DEΓ
[110]B = ΞΓ

d
C11 − C12 + 6C44

C11 + C12 + 2C44
ε ||. (2.49)

All of the degenerate L valleys will be shifted according to

DEL1,2
[110]B =

12C44ΞL
d − 2 (C11 + 2C12 − 2C44)ΞL

u

C11 + 2C12 + 4C44
ε ||, (2.50)

DEL3,4
[110]B =

2
3
(C11 + 2C12 + 6C44)ΞL

d + 18C44ΞL
u

C11 + 2C12 + 4C44
ε ||. (2.51)

But the degeneracy will be lifted for X-valleys, and their shifts of energy

are
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DEX1,2
[110]B =

(C11 − C12 + 6C44)ΞX
d − (C12 − 2C44)ΞX

u

C11 + C12 + 2C44
ε ||, (2.52)

DEX3
[110]B =

(
C11 − C12 + 6C44

C11 + C12 + 2C44
ΞX

d + ΞX
u

)
ε ||. (2.53)

The energy shift for conduction band valleys bottom and the valence band

top dependence as a function of biaxial strain for Ge grown in [110] crystal

orientation are shown in fig. (2.6). The degeneracy is lifted in the indirect

C.B. valleys L and X. The L valleys split into two double folded degenerate

L1,2 and L3,4. The X valleys split into four fold degenerate X1,2 valleys, and

double degenerate X3 valleys. The split valleys behave differently with the

applied strain.

Biaxial strain in the [111] growth direction

The resultant strain tensor in the [111] growth orientation is

ε [110]B =
ε ||

C11 + C12 + 2C44
2C44 − C12 −C11 − 2C12 0

−C11 − 2C12 2C44 − C12 0

0 0 C11 + C12 + 2C44

 . (2.54)

The shift in the energy of the Γ valley is

DEΓ
[111]B =

12C44

C11 + C12 + 4C44
ΞΓ

dε ||, (2.55)

The shift in energy of the X-valleys is
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Figure 2.6: For biaxially strained [110] bulk Ge, The energy of the conduction band
bottom of k-valley (Ec,ki) and the top of the valence band (EV.B.top) as a
function of (tensile and compressive) strain.

DEX
[111]B = 4C44

3ΞX
d + ΞX

u

C11 + 2C12 + 4C44
ε ||. (2.56)

The degenerate L valleys will be shifted according to

DEL1
[111]B =

12C44ΞL
d − 2 (C11 + 2C12 − 2C44)ΞL

u

C11 + 2C12 + 4C44
ε ||, (2.57)

DEL2,3,4
[111]B =

2
3

18C44ΞL
d + (C11 + 2C12 + 6C44)ΞL

u

C11 + 2C12 + 4C44
ε ||. (2.58)
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For Ge grown in the [111] crystal direction, fig (2.7) shows the energy shift

for the conduction band valleys minimum and the valence band top. The

X-valleys remain degenerate while it is lifted in the L-valleys.
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Figure 2.7: For biaxially strained [111] bulk Ge, The energy of the bottom of the
conduction bands of k-valley (Ec,ki) and the top of the valence band
(EV.B.top) as a function of applied tensile and compressive.

2.7.2 The V.B. top

The calculations of the V.B. maximum have been performed for bulk Ge un-

der the same applied strain condition mentioned above in this section. The
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blue line in figures (2.5, 2.6 and 2.7) shows the energy of the top of the V.B.

as a function of strain for Ge grown in [001], [110] and [111] orientations,

respectively.

2.8 discussion

For bulk-like Ge, the conduction band bottom of valley (k) and the top of

the valence band change when biaxial strain is applied in [001], [110], and

[111] growth directions. When [001] Ge is subject to biaxial strain (compres-

sive and tensile), the conduction band at Γ, the four degenerate L-valleys,

and the twofold degenerate X-valleys (X2) have negative slope (the energy

decreases with tensile and increase with compressive strain) but the four-

fold degenerate X-valleys along X1,3 have positive slope (the energy in-

creases with tensile and decreases with compressive strain) as shown in fig.

2.5 .

The Γ-valley has the largest negative slope in [001] Ge, and has the largest

energy with more than 1 % compressive strain in [110] and [111] Ge. Ge

becomes direct band gap at biaxial tensile strain 1.7 % in [001] Ge. The de-

generate L-valleys split in [110] Ge into two fourfold groups, L1,2 with neg-

ative slope and L3,4 with positive slope, and in [111] Ge split into twofold

degenerate L1 with negative slope and sixfold degenerate L2,3,4 with pos-

itive slope. The degenerate X-valleys split in [110] Ge as in [001] Ge, all

X-valleys have positive slope; they do not split in [111] Ge and have posi-

tive slope, see figs. (2.5-2.7). Ge has zero band gap in [110] and [111] Ge for

around 4.3 and 3.1 % tensile strain, respectively.

The degeneracy of HH and LH is lifted when biaxial strain is applied. The

LH (HH) is the highest in biaxially tensile (compressive) strained [001] bulk

Ge, while the HH (LH) is the highest in the other cases with applied tensile

(compressive) strain for [110] and [111] Ge. Since they have the opposite



40 germanium

behaviour with the applied strain a broken line of the energy shift of the

valence band maximum can be seen, in figures 2.5 - 2.7. The top of the

valence band increases more for compressive than for tensile strain for all

cases ([001], [110] and [111] Ge). However, the rate of increase for both types

of strain is larger in [110] than in [111] and [001] bulk Ge.

2.9 conclusion

In this chapter, a concise background theory has been given about the

properties of Ge as semiconductor material. Two methods to obtain the

E− k relation for Ge have been described. The effects of strain calculations

were then performed to investigate the variation of the energy bands for

Ge grown in different orientations, and under different strain conditions.

Our calculations show that the direct C.B. edge energy increases with the

applied compressive strain and decreases with tensile strain for bulk Ge

grown in all three orientations. The [001] orientation has moderate energy

shift for the applied biaxial tensile strain than the [110] and [111], for bulk

Ge. The degeneracy of the indirect C.B. valleys (L and X) is lifted with ap-

plied strain for certain growth orientations of the Ge layer. The energy shifts

of non-degenerate indirect valleys have different behaviour with strain. The

1.7 % biaxially tensile strained [100] Ge is best for achieving a direct band

gap amongst the three growth orientations. The rate of change of the va-

lence band maximum is different for each growth direction. The valence

band maximum increases more with both compressive than with tensile

strain.
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I N J E C T I O N E F F I C I E N C Y O F B U L K G E A N D G E

Q U A N T U M W E L L

3.1 introduction

Ge is the most interesting group IV semiconductor material for light emit-

ting processes. Emitted light from direct band gap (Γ-valley) transitions in

Ge is in the near infrared wavelength range. Achieving this process from

the direct band gap in Ge is difficult due to the fact that the direct band

gap is ∼ 140 meV above the indirect band gap at room temperature [25].

As mentioned in chapter (2), the band structure of Ge can be engineered

by varying strain conditions. Strain can result in changes to the direct band

gap energy. Shifting and splitting of degenerate equivalent indirect val-

leys (X and L), and also shifting of the valence band top can occur. These

changes depend on the type of applied strain and its direction, as well as

the substrate orientation [25, 68], see figures (3.1a and 3.1b). The n-type

doping for bulk or strain Ge can reduce the energy separation between the

direct and the indirect conduction band valleys [8]. These methods which

have been proposed to tune the Ge band structure to achieve a direct band

gap material will be introduced briefly and discussed in the following sec-

tions.

41
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This chapter investigates the effect, at low temperature, of the different

tensile strain conditions (biaxial, or uniaxial along particular axes) on the

direct band gap energy reduction. Detailed expressions for the strain tensor

and the C.B and V.B. valleys shifts with the applied uniaxial strain along

particular axes at Appendix A. Then the doping requirements, of bulk Ge

and Ge quantum wells grown on [001], [110] and [111] oriented substrates

and subjected to different types of tensile strain. After that, the fraction

of the injected carriers (the injection efficiency) which reside in the direct

valley and therefore contribute to direct transitions and optical gain is cal-

culated, in order to find optimum strain conditions for bulk or quantum

well active layers of near infrared Ge lasers.

3.2 ge as direct band gap material

Two methods have been proposed to tune the Ge band structure to achieve

a direct band gap material. Introduce optimized strain condition for a given

growth orientation in choosing growth orientation. The second method is

to introduce heavy n-type doping to fill all indirect valleys has energy be-

low the energy of the Γ-point in Ge, at low temperature.

3.2.1 Tensile strained Ge

In chapter 2, calculation shows that at about 1.7 % biaxial tensile strain

[001] Ge becomes a direct band gap material. That leads to more electrons

populating the Γ valley of the conduction band. Therefore, the direct band

recombination transition becomes more efficient which is a major advan-

tage of strained germanium. Yet the direct band gap in Ge shrinks due

to the increase in the valence band top and decrease in the Γ valley with

tensile strain.
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3.2.2 Heavily n-type doped Ge

For n-type doped semiconductor material, the excess electrons populate

the lowest conduction band valley first at low temperature. In n-type bulk

Ge the indirect L valleys will be filled first before the direct Γ valley. By

filling all indirect valleys below the bottom of the Γ-valley Ge can behave

like a direct band gap semiconductor. Any further electrons injected into

the material will have a significant probability of occupying Γ valley state,

depending on the relative densities of states in the Γ and L valleys at the

relevant electron energy. Figure (3.1a) shows a schematic diagram of the

band structure for bulk Ge and how the heavy n-type doping makes Ge

effectively a direct band gap material, fig. (3.1c). At finite temperatures, the

electrons have more possibility to be thermally distributed in the L valleys

of the conduction band, and hence the effect is less strong.

Combining moderate tensile strain and n-type doping will result in less

doping required to fill all the indirect valleys below the Γ valley minimum,

at low temperature [8]. Further detailed discussion later on in this chapter

is about obtaining Ge as direct band gap material for bulk like and quan-

tum well structure.

3.3 theory

Because of the indirect gap an amount of electrons must be supplied by

doping to enhance the direct transitions. After applying a strain to the semi-

conductor material (Ge), the energy shifts of each valley can be calculated

as described in chapter 2, and then used to determine the electron density

in different valleys. In this section a background theory is given about cal-

culating the electron doping density required to fill all the energy states of

indirect valleys below the energy bottom of Γ-valley, and about finding the
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Ge, (b) Tensile strained intrinsic [001] Ge, (c) n+-type doped Ge, and
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excess effective injected carrier density that populate the Γ-valley for bulk

Ge and Ge QW, at low temperature.

3.3.1 The doping density and the Fermi level in semiconductors

A bulk-like layer and a very thin layer were considered in this investigation,

both at very low temperature.

3.3.1.1 Bulk case (3D)

For bulk-like layers, the relation between the electron density (n3D) in a

valley and the Fermi level (EF) measured from the conduction band bottom

of valley (k) is:

EF =
h̄2 (3π2n3D

)2/3

2m3D
, (3.1)

at very low temperatures (T ≈ 0 K), where m3D is the 3-dimensional density

of states effective mass [82]. In thermal equilibrium, EF is the same for all

valleys. Under strain, the energy of the Γ, X and L valleys may change

differently. For strained bulk Ge, the electron density in the presence of

strain for valley k, in low temperature limit [90], is:

nk
3D =

23/2

3π2h̄3

`

∑
i=1

[
mk

3D

(
EF − Ec,ki

)
· θ
(

EF − Ec,ki
)]3/2

, (3.2)

where ` is the number of equivalent valleys and θ (x) is the Heaviside

function:

θ (x) =

 = 1 for x ≥ 0

= 0 for x < 0
. (3.3)
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The 3D density of states mass (mk
3D ) of valley (k) depends on the longitu-

dinal and transverse masses for valley k as:

mk
3D = 3

√
mk

l ·m
k
t

2, (3.4)

where mk
l and mk

t are the longitudinal and transverse mass for valley (k)

[90, 82], see Table (3.1).

Table 3.1: The longitudinal and transverse mass values of valley (k) in Ge in terms
of the free electron mass [21, 22].

k ml mt

Γ 0.041 0.041
L 1.64 0.08
X 0.95 0.20

Setting the Fermi level equal to the Γ-valley bottom (Ec,Γ) in eq. (3.2), gives

the electron density (N3D) in bulk Ge that is required to fill all indirect

valleys up to the lowest available energy in the Γ-valley, for the particular

strain condition and growth orientation:

N3D =
Γ,L,X

∑
k

nk
3D. (3.5)

3.3.1.2 Quantum well case (2D)

In the case of a very thin layer, with width d, embedded in high barriers

(strong quantization), the energies of the quantized states, measured from

the bottom of a valley (k) in the thin layer (quantum well) material, are:

Ej =
p2h̄2

2mzd2 � j2, j = 1, 2, 3. . . .; (3.6)
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so each valley has its own set of quantized states, their energy depending

on the effective mass component mz [90]. For a particular valley, for a quan-

tized state j (with energy Ej) the relation between the 2D electron density

and Fermi level (EF) is

n2D =
m2DkBT

πh̄2 ln
(

1 + exp
(

EF − Ej

kBT

))
≈

T→0

m2D

πh̄2 ·
(
EF − Ej

)
· θ
(
EF − Ej

)
. (3.7)

In thermal equilibrium, the electron density for a very thin layer in all

quantized states of valley k, in the low-temperature limit, is given by:

nk
2D =

1
πh̄2

`

∑
i

∑
j

[
mki

2D

(
EF − Ec,ki

j

)
· θ
(

EF − Ec,ki
j

)]3/2
, (3.8)

where m2D is the density of states mass for that valley [90], which depends

on the orientation of a particular valley (ki) in respect to the layer orienta-

tion for X and L-valleys and it is given by:

mki
2D =

√√√√√(mki
3D

)3

mki
z

. (3.9)

Unlike m3D which depends on the type of valley (k), the mz and m2D de-

pend on the orientation of a particular valley (ki) in respect to the layer

orientation. Only in the case of the Γ valley is it independent of orientation

(the Γ-valley only has one scalar effective mass, mG = ml = mt) [82, 90]. The

effective mass (mz) perpendicular in the direction to the crystal surface, for

the L and X valleys for different growth directions shown in Table (3.2).

In this work the modelling does not take into account the case when the

conduction band minimum overlaps with the valence band maximum.
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Table 3.2: The effective mass mz perpendicular in the direction to the crystal sur-
face, for the L and X valleys for different orientations [23, 24].

Growth orientation mLi
z Li mXi

z Xi

[001] 3mtml
mt+2ml

Lall
ml X3

mt X1,2

[110]
3mtml

mt+2ml
L1,2

2mtml
mt+ml

X1,2

mt L3,4 ml X3

[111] ml L1 3mtml
mt+2ml

Xall9mtml
mt+8ml

L2,3,4

Setting the Fermi level equal to the energy of the lowest quantized state of

a Ge quantum well (Ec,Γ
1 ) in eq. (3.8), gives the electron density (N2D) in

a Ge quantum well required to fill all indirect quantized state in valleys

up to the lowest available energy in the Γ-valley, for the particular strain

conditions:

N2D =
Γ,L,X

∑
k=1

nk
2D. (3.10)

3.3.2 Injection efficiency

For the two cases of heavily doped tensile strained Ge (bulk-like or quan-

tum well), any excess injected electrons will then populate both the L and

Γ valleys, according to the (energy-dependent) distribution of the density

of states. The efficiency with which the injected electrons populate the Γ-

valley, for n+ doped strained bulk Ge under quasi-equilibrium conditions,

is given by:

σΓ
bulk =

4nΓ
3D

4nΓ
3D +4nL

3D +4nX
3D

, (3.11)
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where 4nk
3D is the portion of the total excess (injected) electron density

which resides in valley k of the strained doped bulk Ge. An equivalent

expression is used for the case of Ge quantum wells (with 4nk
3D replaced

by 4nk
2D) [10].
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3.4 result and discussion

Biaxial and uniaxial tensile strained Ge layers, grown in the conventional

[001], [110] and [111] directions have been considered in this calculation.

For the uniaxial strain case, the strain was directed along the [100] crys-

tallographic axis for [001] growth, along the x′ = [001] or y′ = [1̄10] crys-

tallographic axes for [110] growth, and along the x′ = [1̄10] or y′ = [112̄]

crystallographic directions for [111] growth, see Appendix A. The neces-

sary material parameters were obtained from refs. [20, 45, 91].

3.4.1 The Γ-point band gap shrinkage

It has been shown previously how the conduction band valleys behave

under different strain conditions and since the energy of the top of the

valence band increases with the applied strain (compressive and tensile).

The overall change of the band gap at the Γ-point with tensile strain for

different substrate orientations is shown in fig. (3.2).

The Γ-point direct band gap of biaxially tensile strained [110] and [111]

Ge shows a stronger dependence on strain than in other cases, yet the bi-

axial tensile strain for [001] Ge growth is clearly the best choice, and can

be achieved epitaxially, or by tunable (e.g. membrane deformation) tech-

niques.

In contrast, uniaxial strain is less effective, especially for [110] Ge along the

x′axis, although it is easier to achieve in its tunable variant, e.g. by plate

or beam bending. In either case, however, the required strain is quite large,

and can be applied only to very thin Ge layers, below the critical thickness

for elastic deformation.
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Figure 3.2: The variation of the direct band gap with the applied biaxial (bi), or
uniaxial strain along x′- (u-x′) and y′axis (u-y′), for Ge grown in dif-
ferent orientations. The black arrows indicate the critical strain values
where Ge becomes direct band gap [9, 10].
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3.4.2 The required n-type doping density to compensate the energy difference

For moderate values of strain, while Ge still has an indirect gap, appropri-

ate doping can be used to fill all indirect-valley states up to the Γ-valley

minimum, in order to enable a population inversion based on additionally

injected electrons. This required n-type doping density will be calculated

for the previous mentioned cases of growing bulk like Ge and Ge quantum

wells in different directions and under variant tensile strain cases.

3.4.2.1 Bulk like Ge

The doping density required to fill the indirect valleys up to the Γ valley

minimum , at low temperature is shown in fig. (3.3). Results are shown for

biaxially and uniaxially strained bulk Ge grown on [001], [110] and [111]

orientations. Clearly, the [001] growth is no longer the best option in this

approach for moderate values of tensile strain (likely to be achievable in

most realistic structures). Biaxially strained [110] and [111] Ge require a

lower n-type doping density than other cases, especially compared to the

[001] case.

3.4.2.2 Ge quantum wells

At low temperature and in the strong quantization limit, the strain-dependent

doping density required to fill all indirect valley quantized states up to the

lowest Γ-valley quantized state in d = 10 nm and 20 nm wide Ge quantum

wells was calculated for the same previous strain conditions and substrate

orientations. As shown in figs. (3.4) and (3.5), biaxial tensile strain again

requires a lower doping density than uniaxial tensile strain. The [111] Ge

performs better than the other orientations at strain values less than 1.4 %.
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Figure 3.3: The variation of the doping density required for band-filling up to the
Γ minimum (N3D) with the applied tensile (biaxial and uniaxial along
x′ and y′axis) strain: [001], [110] and [111] grown bulk Ge [9, 10].
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The variation of the minimum doping density with applied strain is a re-

sult of the interplay of various four effects mentioned before. Therefore, the

[111] grown 20 nm wide Ge well requires the lowest doping at ∼ 1 % biaxial

tensile strain, an almost fivefold reduction compared to the unstrained sys-

tem, and a twofold reduction compared to the [001] case. Some other cases

of strain conditions have their own optimum strain values, as observed in

figs. (3.4 and3.5).
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Figure 3.4: The variation of the required doping density (N2D) with applied biaxial
tensile strain for [001], [110] and [111] grown 10 and 20 nm thick Ge
quantum wells [9, 10].
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Figure 3.5: The variation of the required doping density (N2D) with applied uniax-
ial tensile strain along the x′axis for [001], [110] and [111] grown 10 and
20 nm thick Ge quantum wells [9, 10].

3.4.3 Injection efficiency

For a strained Ge system which is doped with the required electron density

to compensate for the energy difference up to Γ lowest energy state, any

additional injected electrons will populate both the L and Γ-valleys, accord-

ing to the distribution of the density of states. The fraction of the injected

electrons residing the Γ-valley may be called the injection efficiency, and

increasing its value clearly increases the gain, i.e. reduces the threshold cur-

rent. To assess the injection efficiency behavior in direct band gap doped

Ge, the Fermi level in this calculation was set at 10 and 20 meV above the

Ec,Γ and Ec,Γ1 for both bulk like Ge and Ge quantum wells, respectively.
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3.4.3.1 Bulk Ge

The effective mass of density of states of the L-valley is larger than the Γ-

valley’s in Ge. When Ge becomes direct band gap by introducing proper

strain and n-type doping, a small number of states slightly above the bot-

tom of the Γ-valley compete with the much larger number of states of L-

valleys at the same energy.

Figure (3.6) illustrates the injection efficiency for doped Ge under different

strain conditions for different growth orientations. Biaxially strained Ge

is generally more efficient than uniaxially strained Ge; despite the strong

shrinkage of the direct band gap mentioned before, [110] and [111] Ge

performs better than other cases (and in particular better than [001] Ge)

for < 1.3 % biaxial tensile strain. When bulk [001] Ge becomes a direct

band gap material due to the applied biaxial strain, it acquires the best

injection efficiency. For large values of uniaxial strain (> 3.4 %), which can

be achieved practically, the [001] Ge is more efficient than other uniaxially

strained cases.

3.4.3.2 Ge quantum wells

In contrast to the bulk like case, the case of Ge quantum wells is more

favourable for the injection efficiency, because of the step-like energy de-

pendence of the density of states. For 10 and 20 nm wide doped Ge quan-

tum wells the injection efficiency calculations were performed as a function

of applied tensile strain. Despite the growth direction, the biaxial strain

cases have higher injection efficiency than the uniaxial strain conditions for

10 nm quantum wells. The biaxially strained [111] doped Ge QW generally

shows the best efficiency for moderate strain values. The biaxially strained

[110] Ge QW has the advantage in the range from 0.25 to 0.44 % for the
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Figure 3.6: Dependence of the electron injection efficiency into Γ-valley of n+ ten-
sile strained bulk Ge [10].

smaller quantum well width. The efficiency of the biaxially strained [001]

Ge QW increases sharply when Ge becomes a direct band gap material.

In the 20 nm QW the uniaxial along y′axis gives larger efficiency for very

moderate strain values than the biaxially strained [111] Ge QW of the same

width.
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Figure 3.7: Dependence of the electron injection efficiency into Γ-valley of n+ ten-
sile strained 10 nm wide Ge quantum well [10].

From the calculations performed, for a range of moderate strain the in-

jection efficiency in quantum wells is much larger than for bulk Ge, even

though it is still small. Exceeding the doping density required to fill the

indirect valleys up to the direct band energy bottom might improve the in-

jection efficiency to Γ-valley, yet that doping is already quite hard to obtain

by standards of the present technology.

Furthermore, it should be noted that a small injection efficiency does not

necessarily imply a small power efficiency of Ge lasers. Electron recombi-

nation lifetime in indirect valleys is orders of magnitude larger than the

intervalley scattering time, and if care is taken to prevent escape of indi-

rect electrons to the active layer they will readily refill the Γ-valley states



3.4 result and discussion 59

0 0.005 0.01 0.015 0.02 0.025 0.03
0

2

4

6

8

10

ε
||

σ q
.w

. %

 

 

bi [001] Ge
bi [110] Ge
bi [111] Ge
u−x’  [001] Ge
u−x’  [111] Ge
u−y’  [110] Ge
u−y’  [111] Ge

Figure 3.8: Dependence of the electron injection efficiency into Γ-valley of n+ ten-
sile strained 20 nm wide Ge quantum well [10].

as these become available due to stimulated emission. Therefore, the active

layer saturation intensity may be unaffected, but the gain (and threshold

current) of Ge laser will clearly be affected by limited injection efficiency.
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3.5 conclusion

After finding the required strain conditions for bulk Ge grown in different

substrates to make Ge a direct band gap material using the deformation

potential method, the doping density required to compensate the energy

difference was also obtained using the effective mass method. Calculations

have been carried out to investigate the combination of the applied strain

and doping density to make Ge behave as a direct band gap of the injection

efficiency for both bulk like Ge and Ge quantum wells in forms of different

widths.

Despite the fact that the 1.7 % biaxially tensile strained [100] Ge is the best

choice for achieving a direct band gap among all the substrate and strain

orientations considered, biaxially tensile strained [111] and [110] bulk Ge

perform better than [001] grown Ge for moderate strain values (< 0.8 %

strain) where some doping is required to fill the indirect valleys below

the Γ-valley energy bottom. Similarly, for Ge quantum wells, [111] growth

is the best option, with an even larger reduction of the required doping

density than is achievable in bulk Ge in the range of 1.4 % < ε < 2 %

uniaxial strain, relative to the zero strain case. The shrinkage of the direct

band gap is smallest for uniaxially strained [110] Ge, which is therefore the

best choice for keeping the emitted wavelength within the communications

band. However it requires much larger doping density and large value of

uniaxial strain in bulk Ge. The electron injection efficiency into the Γ-valley

is much larger for Ge quantum wells than for bulk Ge, and the biaxially

strained [111] Ge is generally better in this respect than other cases, but the

[110] Ge has the advantage between 0.25 to 0.44% biaxial stain.

The required doping level is found to vary considerably (and generally

non-monotonically) with the value of strain, its type and direction. Thus
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the electron injection efficiency will vary too. Such behaviour is caused by

an interplay of various effects:

1. The degeneracy lifting partially or fully for indirect band gap val-

leys which were equivalent under no-strain conditions, depending on

their orientation in respect to characteristic directions of the system.

2. The energies of new non-degenerate indirect valleys have different

dependence on the increasing strain.

3. Only the states below the Γ-valley minimum are relevant, at low tem-

perature.

4. The inequality in the quantization and density of states effective masses

for various valley orientations for quantum wells case.





4
G A I N A N D I N T E RVA L E N C E B A N D A B S O R P T I O N F O R

B U L K G e

After obtaining the engineered Ge band structure by strain, introducing the

injection efficiency as a figure of merit (combining the heavy n-type doping

and different strain conditions as a guideline parameter in order to find the

optimum conditions for Ge laser operation), and calculating the injection

efficiency of bulk Ge and Ge quantum wells at low temperature, in this

chapter the optical gain and the intervalley band absorption are calculated

and their dependence on strain and carrier density are investigated at finite

temperature. Whilst the light-emitting layer in a Ge laser is expected to be

n-type doped, to achieve direct-gap-like behaviour, both excess electrons

and holes will be injected to operate the device, and the holes will give rise

to intervalence band absorption, which can be a significant loss process.

4.1 introduction

At finite temperature and under tensile strain, energy bands were calcu-

lated using the 8 × 8 k . p method for the conduction and valence bands

at the Γ-point, while the effective mass approximation was used for indi-

rect valleys. The quasi-Fermi level was then obtained for specified carrier

densities in the conduction and valence bands, E F c and E F v respectively,

63
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k

Figure 4.1: Band structure scheme of bulk Ge with transitions between states, lead-
ing to interband gain and inter-valence band absorption.

where the carrier density for the bands contains the injected carrier density

as well as carriers due to doping. The interband gain spectrum and the

inter-valence band absorption (IVBA) were then calculated for this model.

These calculations were performed to find the effect of strain conditions,

electron and hole densities and temperature on the interband gain and

IVBA, and hence on the total gain achievable in n + bulk Ge. Figure (4.1)

shows a schematic of the interband gain and the IVBA coming from a num-

ber of transitions in the band structure of bulk Ge.

The fraction of photons absorbed per unit distance at a photon energy h̄ω is

defined as the absorption spectrum α(h̄ω); the optical gain spectrum g(h̄ω)

is the negative of the absorption spectrum. For an engineered band struc-

ture obtained using the k.p method, the electron promotion or demotion

transitions are accompanied by photon emission or absorption.
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4.2 the hamiltonian of electron-photon interaction

Perturbation theory can be used to calculate the rate of absorption and

emission of photons, as the coupling term perturbs the band structure. As

discussed previously, the band structure can be obtained for zinc blende

crystal structures by solving [84]:

Hψnk(x) = En(k)ψnk(x). (4.1)

In time-dependent perturbation theory, the Schrodinger equation becomes:

Hψ(r, t) = − h̄
i

∂

∂t
ψ(r, t), (4.2)

where the Hamiltonian (H) here is expanded to an unperturbed time inde-

pendent Hamiltonian (H0) and a time dependent perturbation Hamiltonian

(H′) as

H = H0 + H′(r, t). (4.3)

The solution for

H0 =
p2

2m0
+ V(r), (4.4)

has continuous eigenstates, while the perturbation term is

H′ = − e
m0

A(r, t).p, (4.5)

where (A) is the assumed vector potential of the electric field, which can

be written as
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A(r, t) = êA0cos(k · r−ωt)

= ê
A0

2

(
ei(k·r−ωt) + e−i(k·r−ωt)

)
, (4.6)

where k is the wave vector, ω is the optical angular frequency, ê is a unit

vector in the direction of the electric field, and the momentum vector is

p = −ih̄∇. The interaction Hamiltonian may be written as:

H′(r, t) = H′(r, t)e−iωt + H′+(r, t)e+iωt, (4.7)

where the ’+’ subscript indicates the Hermitian adjoint operator [84].

4.3 electron-photon interaction transition rate

Between initial and final electron states a and b with energies Ea and Eb

respectively, the transition rate T, according to Fermi’s golden rule, is given

by:

T =
2π

h̄
∣∣〈b ∣∣H′(r)∣∣ a

〉∣∣2 δ (Eb − Ea − h̄ω) . (4.8)

In the steady-state, consider the electron transition rate between a state in

the valence band a of energy Ea, and a state in the conduction band b of

energy Eb due to absorbing photons with energy h̄ω, see fig. (4.2) [84]. Each

band a and b has a probability of occupancy fa and fb respectively, which

is been assumed here to be represented by a Fermi-Dirac distribution. For

an electron promotion from state a to state b due to photon absorption,

the transition rate is proportional to the probability of occupancy fa of

the valence band state, and the probability of a vacancy (1 − fb) in the
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Figure 4.2: The electron transitions due to photon absorption (right) and emission
(left), after [11].

conduction band state. The rate of absorption transitions will be therefore

given by:

Wabs =
2π

h̄
∣∣〈b ∣∣H′(r)∣∣ a

〉∣∣2 δ (Eb − Ea − h̄ω) fa (1− fb) . (4.9)

The total transition rate per unit crystal volume from occupied lower state

a to empty upper state b is

Ra→b =
2
V ∑

ka

∑
kb

2π

h̄
∣∣H′ba

∣∣2 δ (Eb − Ea − h̄ω) fa (1− fb) . (4.10)

The sum here is over all the possible initial and final states, while summing

over spin degeneracy has been considered by including the prefactor 2 [84].

The matrix element H′ba is given by

H′ba =
〈
b
∣∣H′(r)∣∣ a

〉
=
∫

Ψ∗b (r) H′ (r)Ψa (r) d3r. (4.11)
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For an electron initially at the upper state b, the photon emission transition

rate between states b and a is given by:

Wemission =
2π

h̄
∣∣H′ba

∣∣2 δ (Ea − Eb + h̄ω) fb (1− fa) . (4.12)

And the total downward transition rate per crystal unit volume in this case

is [84]:

Rb→a =
2
V ∑

ka

∑
kb

2π

h̄
∣∣H′+ab

∣∣2 δ (Ea − Eb − h̄ω) fb (1− fa) . (4.13)

The net rate of photon transitions between b and a [84] is:

W (h̄ω) = Wabsorb −Wemission

=
2π

h̄
∣∣H′ba

∣∣2 δ (Eb − Ea − h̄ω) ( fa − fb) . (4.14)

And the net transition rate per unit volume can be written as:

R (h̄ω) =
2
V ∑

a,b

2π

h̄
∣∣H′ba

∣∣2 δ (Eb − Ea − h̄ω) ( fa − fb) , (4.15)

using the delta function even-ness property, as δ (x) = δ (−x) and H′ab =

H′+ab [84].

The crystal optical absorption coefficient α is given by:

α =
R

(P/h̄ω)
, (4.16)

where R is the number of photons absorbed per unit volume per second, P

is the optical intensity and P/h̄ω represents the number of injected photons

per unit area per second, given by the optical intensity divided by the

photon energy [84]. The optical intensity is P = 1
2 nrcε0ωA2

0. Thus:
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α (h̄ω) =
2h̄ωR

nrcε0ωA2
0

. (4.17)

The matrix elements can be written in terms of the momentum matrix ele-

ment [84] as:

H′ba = −
e

m0
A • 〈b |p| a〉 = − eA0

2m0
ê • pba. (4.18)

So the optical absorption coefficient [84] is:

α (h̄ω) =
πe2

nrcε0m0ω

2
V ∑

a
∑
b
|ê • pba|2 δ (Eb − Ea − h̄ω) ( fa − fb) . (4.19)

4.4 interband absorption and gain for bulk semiconductor

material

The optical matrix element for interband transition between the valence

band and conduction band in semiconductor material [84] is given by:

H′ba =

〈
b
∣∣∣∣− e

m0
A (r) • p

∣∣∣∣ a
〉

. (4.20)

The vector potential for the optical field is:

A (r) = Aeikop·r = ê
A0

2
eikop·r. (4.21)

The Bloch functions for electrons in the valence band Ea and the conduction

band Eb are given by:

ψa (r) = uv (r)
eikv·r
√

V
, (4.22)
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ψb (r) = uc (r)
eikc·r
√

V
, (4.23)

where uv (r) and uc (r) are the periodic parts of the Bloch function, and the

exponentials are the envelope functions for free electrons [84]. The momen-

tum matrix element can be derived as:

H′ba = − eA0

2m0
ê •
∫

ψ∗b eikop·rpψad3r (4.24)

= − eA0

2m0
ê •
∫

u∗c (r) e−ikc·reikop·r[(
h̄
i
∇uv (r)

)
eikv·r + h̄kvuv (r) eikv·r

]
ψa

d3r
V

, (4.25)

using the approximation

∫
V

[
u∗c (r)

h̄
i
∇uv (r)

]
F (r) d3r '

∫
V

F (r) d3r
∫

Ω
u∗c (r)

h̄
i
∇uv (r)

d3r
Ω

,

where the integral over d3r can be calculated as the product of two integrals,

one over the unit cell Ω for the periodic part (u∗c (r)
h̄
i∇uv (r)) and one over

the slowly varying part (F (r)) [84].

Then:

H′ba ' − eA0

2m0
ê •
∫

Ω
u∗c (r)

h̄
i
∇uv (r)

d3r
Ω

∫
V

ei(−kc+kop+kv)·r d3r
V

= − eA0

2m0
ê • pcvδkc,kv+kop (4.26)

where the interband momentum matrix element pcv [84] is given by:
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pcv =
∫

Ω
u∗c (r)

h̄
i
∇uv (r)

d3r
Ω

. (4.27)

4.4.1 k-selection rule

Due to conservation of momentum, the crystal momentum of an electron

in a final state is equal to its initial momentum, plus the photon momen-

tum, is h̄kc = h̄kv + h̄kop. Since the initial and final electron state momenta

are of the order 2πa−1
0 (where a0 is the lattice constant, and the photon’s

wavevector magnitude ∼ 2πλ−1
0 can be ignored) the equation (4.26) may

be written as:

H′ba ' −
eA0

2m0
ê • pcvδkc,kv , (4.28)

which is the k-selection rule that restricts the summation to vertical transi-

tions only, for interband optical transitions, see figure (4.3) [84].

The interband momentum matrix element (pcv) depends only on the pe-

riodic parts (uc and uv) of the Bloch functions and is derived from the

optical momentum matrix element (pba), which in contrast depends on the

full wave function [84].

4.4.2 Optical absorption coefficient

The absorption coefficient for a bulk semiconductor material, eq. (4.19),

using the k-selection rule of the matrix element, eq. (4.28), will be
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Figure 4.3: Schematic of the permitted and excluded electron-photon transitions
between the conduction and valence bands due to the k-selection rule.
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α (h̄ω) =
πe2

nrcε0m0ω

2
V ∑

k
|ê • pcv|2 δ (Ec − Ev − h̄ω) ( fv − fc) . (4.29)

The momentum matrix element |ê.pcv|2 can be determined from the Hamil-

tonian in the 8× 8 k.p method for any interband transition.

4.4.3 Intraband relaxation function

The delta function can be replaced by a Lorentzian function when the in-

traband relaxation is included in the absorption spectrum [84], where the

Lorentzian function with a Full-width at half-maximum (FWHM) or line

width 2γ is

δ (Eb − Ea − h̄ω)⇒

L (Eb − Ea − h̄ω) =
γ

π
[
(Eb − Ea − h̄ω)2 + (γ)2

] . (4.30)

4.4.4 The distribution function

The occupation probability in both the conduction and the valence bands

can be described by a Fermi-Dirac distribution function, given, respectively,

as:
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fc (k) =

[
exp

(
E (k)− EFc

kBT

)
+ 1
]−1

,

(4.31)

fv (k) =

[
exp

(
E (k)− EFv

kBT

)
+ 1
]−1

.

Here, the quasi-Fermi levels EFc and EFv for the conduction and valence

bands depend on the doping and carrier injection concentrations. The exci-

tation source, which excites carriers up into the conduction bands (and thus

holes into the valence bands), is assumed to be time-independent [92, 84].

4.4.5 The carrier densities

The carrier density in a semiconductor material includes the thermal equi-

librium carrier density and the excess injected carrier density from external

sources, for both electrons and holes, over all conduction and valence bands

respectively. The thermal equilibrium electron volume density (n0) is equal

to the thermal hole volume density (p0) for intrinsic semiconductors and

both are equal to the intrinsic carrier volume density (ni). For n-type and

p-type doped semiconductors the carrier densities are equilibrium given

by:

n0 ≈ N+
D − N−A � p0 =

n2
i

n0
, (4.32)

p0 ≈ N−A − N+
D � n0 =

n2
i

p0
, (4.33)

respectively, where N+
D and N−A are the ionized donor and acceptor con-

centrations [82]. Any excess injected carriers will have the same volume
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concentration for electrons (δn) and holes (δp). Therefore the total concen-

trations for electrons and holes in bulk semiconductor are:

n = n0 + δn , p = p0 + δp. (4.34)

For bulk Ge, the injected electrons will populate the three conduction band

valleys Γ, L, and X, depending on the quasi-Fermi level [82]. The electron

concentration for one conduction band valley (k) is expressed as:

nk =
2

(2π)3

∫ [
exp

(
Ec,k (k)− EFc

kBT

)
+ 1

]−1

dk. (4.35)

Since there are four (six) equivalent L (X) valleys for bulk Ge, then the total

electron volume density for bulk Ge can be written as:

n = nΓ + nL + nX =
2

(2π)3 ∑
k

∑
i

∫ [
exp

(
Ec,ki (k)− EFc

kBT

)
+ 1

]−1

dk.

(4.36)

where (i) indicates the number of equivalent valleys [90].

Similarly, the total hole concentration in the valence band (which has three

bands in the case of bulk Ge) is:

p = pHH + pLH + pSO =
2

(2π)3 ∑
i

∫ [
exp

(
EFv − Ev,i (k)

kBT

)
+ 1
]−1

dk.

(4.37)

The quasi-Fermi level can be determined for given total carrier densities

using eq. (4.36) and eq. (4.37) [90].
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4.5 optical gain coefficient

In strained bulk Ge (which may be grown in different substrate orienta-

tions) the final expression of the direct interband absorption coefficient can

be written as:

α (h̄ω) =
πe2

nrcε0ωm2
0

2

(2π)3 ∑
i

∫
|ê.pcvi |

2 ( fvi (k)− fc (k)) Lz (Ec − Evi − h̄ω)dk.

(4.38)

The optical gain spectrum g (h̄ω) is the inverse of the absorption coefficient

[84].:

g (h̄ω) = −α (h̄ω) . (4.39)

The intervalence band absorption can be calculating using the same for-

mula as for interband absorption, simply by applying the following equa-

tion:

αIVBA (h̄ω) =
πe2

nrcε0ωm2
0

2

(2π)3 ∑
j

∑
i

∫ ∣∣∣ê.pvjvi

∣∣∣2(
fvi (k)− fvj (k)

)
Lz

(
Evj − Evi − h̄ω

)
dk, (4.40)

where j here represents the summation over heavy holes, light holes and

spin-orbit split off holes, while i is the number of remaining valence bands:

i = 2 when j = 1 and i = 1 when j = 2 [84, 90].
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4.6 interband gain calculations

The interband gain spectra at room temperature were calculated for un-

strained bulk Ge for a range of carrier densities, ranging from ninj = pinj =

1017 to 1020 cm−3. The FWHM line width of the Lorentzian lineshape for

bulk Ge at room temperature was taken as γ = 6.43 meV [93]. Since Ge

has an indirect band gap, and the injected carrier efficiency calculation

shows that only a small ratio of carriers populate the direct valley in the

unstrained case, bulk Ge is expected to have no interband gain. However

for high carrier density (about 1020 cm−3), from such a point where the in-

jected carrier densities compensates for the energy difference between the

direct Γ valley and the indirect L valleys, the carrier population in the Γ-

valley is sufficiently high for interband gain to occur, fig. (4.4). The peak

gain occurs at a photon energy of 820 meV indicating that the participating

carriers lie just above and below the C.B. and V.B. edges.
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Figure 4.4: Interband gain spectra of bulk Ge for a range of injected carrier densi-
ties from n in j = p in j = 1017 to 1020 cm−3, at room temperature.
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The dependence of interband gain on carrier density and strain will be

addressed next.

4.6.1 Interband gain dependence on strain

In the conventional [001] growth direction, the direct band gap reduces

faster with the applied tensile strain than does the indirect (L-valley) band

gap. As a result the energy difference between them decreases, and less

n-type doping is required to compensate for this energy gap.

The chosen biaxial tensile strain values for discussion here are the cases

of moderate strain at 0.5 %, at 1.0 %, the case of 1.5 % strain which is just

insufficient for Ge to acquire a direct band gap and direct band gap Ge at

2.0 % strain. The interband spectra for different carrier injection densities

for bulk Ge under 0.5 % biaxial tensile strain are shown in figure (4.5). Such

values of strain double the interband gain for a carrier density of 1020 cm−3

at 775 meV, and additionally the optical gain appears at a lower injected

carrier density of 5× 1019 cm−3 at 750 meV. Interband gain also increases

for these two doping densities when the strain is increased to 1.0 %, fig.

(4.6). By increasing the biaxial tensile strain to a value of 1.5 %, just before

bulk Ge becomes a direct band gap material (where the four equivalent

L-valleys are very close to the Γ-valley) an interband gain appears at a in-

jected carrier density of 580 meV for 1019 cm−3, fig. (4.7). After [001] bulk Ge

becomes direct band gap at 2.0 % tensile strain, the interband gain signifi-

cantly increases for the above mentioned injected carrier density and also

for n = 5× 1018 cm−3 when the peak gain occurs at 500 meV, see figure

(4.8).Among the studied cases the zigzag behaviour shown in interband

gain, IVBA and as a result in net gain figures is a numerical behaviour not

a real physical reason, such can be improved by increasing the resolution

in the numerical procedure in k-space.
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Figure 4.5: Room temperature Interband gain spectra of 0.5 % tensile strained [001]
bulk Ge for a range of injected carrier densities from ninj = pinj = 1017

to 1020 cm−3.
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Figure 4.6: Room temperature Interband gain spectra of 1.0 % tensile strained [001]
bulk Ge for a range of injected carrier densities from ninj = pinj = 1017

to 1020 cm−3.
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Figure 4.7: Room temperature Interband gain spectra of 1.5 % tensile strained [001]
bulk Ge for a range of injected carrier densities from ninj = pinj = 1017

to 1020 cm−3. The zigzag line behaviour is a result of limitations of
numerical modelling used.
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Figure 4.8: Room temperature Interband gain spectra of 2.0 % tensile strained [001]
bulk Ge for a range of injected carrier densities from ninj = pinj = 1017

to 1020 cm−3.
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4.6.2 Interband gain dependence on carrier density

Achieving a very high carrier electron density is essential for producing

interband gain in [001] bulk Ge, however applying tensile strain will re-

duce this required carrier density. Figures (4.9 - 4.12) illustrate the effect of

increasing the biaxial tensile strain on the interband gain of strained bulk

Ge, with an injection carrier density of ninj = pinj = 5× 1018, 1019, 5× 1019

and 1020 cm−3, respectively at room temperature. The shift of the interband

gain peak is caused by the reduction in the direct band gap due to applied

tensile strain.
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Figure 4.9: The interband gain of bulk [001] Ge for various biaxial tensile strain val-
ues, ε || = 0.0, 0.5, 1.0, 1.5, and 2.0 %, at room temperature, an injected
carrier density of n = p = 5× 1018 cm−3.



82 gain and intervalence band absorption for bulk ge

400 500 600 700 800 900
−20000

−15000

−10000

−5000

0

5000

In
te

rb
an

d 
ga

in
 (

cm
−

1 )

E
ph

 (meV)

 

 

0.0 %
0.5 %
1.0 %
1.5 %
2.0 %

Figure 4.10: The interband gain of bulk [001] Ge for various biaxial tensile strain
values, ε || = 0.0, 0.5, 1.0, 1.5, and 2.0 %, at room temperature, an in-
jected carrier density of n = p = 1019 cm−3.
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Figure 4.11: The interband gain of bulk [001] Ge for various biaxial tensile strain
values, ε || = 0.0, 0.5, 1.0, 1.5, and 2.0 %, at room temperature, an in-
jected carrier density of n = p = 5× 1019 cm−3.
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Figure 4.12: The interband gain of bulk [001] Ge for various biaxial tensile strain
values, ε || = 0.0, 0.5, 1.0, 1.5, and 2.0 %, at room temperature, an in-
jected carrier density of n = p = 1020 cm−3.

4.7 intervalence band absorption results

The effect of varying carrier injection under different tensile strain condi-

tions, at room temperature has been investigated for [001] bulk Ge. The

intervalence band absorption has been calculated, and it was found that an

increase in injected holes increases the IVB absorption dramatically, mainly

due to absorption between the HH and other valence bands (LH and SO)

for a given photon energy. Figure (4.13) illustrates this for hole densities of

1017 to 1020 cm−3.
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Figure 4.13: The intervalence band absorption spectra of [001] bulk Ge for a range
of hole carrier densities from 1017 to 1020 cm−3, at 300 K.

4.7.1 Intervalence band absorption variation with applied strain

The degeneracy between HH and LH is lifted when bulk Ge is under bi-

axial tensile (or compressive) strain conditions. The top of the LH band

increases with the applied biaxial tensile strain and the HH band maxi-

mum decreases, with the opposite effect in the case of biaxial compressive

strain. Following the interband gain calculations, the chosen biaxial tensile

strain values here are 0.5, 1.0, 1.5 and 2.0 % applied for [001] bulk Ge.

The calculated intervalence band absorption spectra for 0.5 % biaxial tensile

strained bulk-like Ge with a range of hole densities (1017 to 1020 cm−3) is

shown in Figure (4.14). Following the same trend as in unstrained bulk Ge,

the IVB absorption increases faster as the carrier density increases.

Applying a larger biaxial tensile strain will increase the IVB absorption

as the separation between the LH and HH bands and the SO increases, see
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figures (4.15,4.16 and 4.17). Notice here from the interband gain and IVB ab-

sorption calculations, that the intervalence band absorption will dominate

the interband gain given the same strain and carrier density conditions.
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Figure 4.14: The intervalence band absorption spectra for 0.5 % biaxially tensile
strained [001 ] bulk Ge for a range of hole carrier densities from 1017

to 1020 cm−3, at 300 K.
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Figure 4.15: The intervalence band absorption spectra for 1.0 % biaxially tensile
strained [001 ] bulk Ge for a range of hole carrier densities from 1017

to 1020 cm−3, at 300 K.
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Figure 4.16: The intervalence band absorption spectra for 1.5 % biaxially tensile
strained [001 ] bulk Ge for a range of hole carrier densities from 1017

to 1020 cm−3, at 300 K.
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Figure 4.17: The intervalence band absorption spectra for 2.0 % biaxially tensile
strained [001 ] bulk Ge for a range of hole carrier densities from 1017

to 1020 cm−3, at 300 K.

4.7.2 Dependence of carrier density quasi-Fermi level on strain

The quasi-Fermi level as a function of carrier concentration under various

biaxial tensile strain values has been extracted, along with the interband

gain and IVB absorption calculations. At 300 K, [001] bulk Ge needs about

1020 cm−3 of electron concentration to set the conduction band quasi-Fermi

level to the bottom of Γ-valley, and a hole density of 6× 1018 cm−3 to set

the valence band quasi-Fermi level to the top of the valence band, fig. (4.18).

The conduction band quasi-Fermi level decreases (for a fixed electron den-

sity) as the applied biaxial tensile strain increases. Such behavior arises

since the shrinkage of the direct band gap is faster than that of the indirect

band gap, which with its four equivalent valleys has much larger effective

mass than the Γ-valley. This explains why, even with the energy separation

between Γ and L valleys reduced, and even when Ge becomes direct band

gap material, most of the electrons will populate L-valleys.
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Figure 4.18: The quasi-Fermi levels of the conduction band (solid lines) and va-
lence band (dashed lines) as a function of carrier concentration of un-
strained [001] bulk Ge and under different biaxial tensile strain values,
ε || = 0.5, 1, 1.5, 2 %.

The valence band quasi-Fermi level as a function of hole concentration

decreases with the tensile strain because the energy separation between

the LH and HH bands increases, and the HH band sinks, with the applied

tensile strain.
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4.8 the gain

Since there is a tradeoff between increasing the injected carrier concentra-

tion and applying biaxial tensile strain for [001] bulk Ge in order to obtain

interband gain, and the fact that with such high injected carriers the inter-

valence band absorption is very large, one must control the n-type doping

and the injected carrier densities in both conduction and valence bands in

order to find the optimum case for gain. The gain here is the sum of the

interband gain and IVB absorption. Control is achieved by introducing n-

type doping to strained bulk Ge to compensate the partial of the energy

difference between Γ-L, and then injecting carriers to achieve the required

electron concentration in the conduction band, while keeping the hole con-

centration in the valence band low. The electron density (n) is the sum of

the n-type doping density and injected carrier density, see fig. (4.19). Previ-

ous results of the interband gain and IVBA shows that in case of bulk Ge

with only injected carriers form an external source will leave the Ge either

with no interband gain due to the small number of electron density, or with

domination of the IVBA over the interband gain. Therefore, the effect of the

electron and hole concentrations control for doped strained bulk Ge under

1 % and 2 % biaxial tensile strain at room temperature will be discussed

next.

4.8.1 Dependence of gain on electron density

The interband gain and IVB absorption calculations were performed for 1

and 2 % biaxial tensile strained n-type doped bulk Ge to investigate the

variation of the interband gain and IVB with changing n-type doping den-

sity, while keeping injected carrier density value fixed. The total electron
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Figure 4.19: Scheme of Ge band structure, with injected carriers only (left) and
the case of combine n-type doping and carriers injected form external
source (right) [8, 12].

density has the values of n = 1018, 5× 1018, 1019 and 5× 1019 cm−3, while

the injected carrier densities are ninj = pinj = 1018 cm−3.

Figure (4.20) illustrates the interband gain spectra for 1 % biaxial tensile

strained bulk Ge in this range of carrier densities. There is no interband

gain but the different interband behavior with varying electron density is

shown. Such behavior becomes clearer as the tensile strain increases to 2 %,

and the n-type doped strained bulk Ge shows interband gain at electron

densities larger than 1019 cm−3 as the injected carrier density is 1018 cm−3,

Figure (4.22).

The IVB absorption will remain the same for a given strain condition, since

the valence band quasi-Fermi level does not change for a given hole con-

centration. Figures (4.21 and 4.23), show the IVB absorption spectra for 1

and 2 % biaxial tensile strain applied to bulk Ge with 1018 cm−3 injected

carrier density, at 300 K. These results suggest that the net gain is unlikely
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to occur in tensile strained bulk Ge in such cases, due to suppression of

interband gain and the IVB absorption.
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Figure 4.20: The interband gain spectra for 1 % tensile strained [001 ] bulk Ge
with 1018 cm−3 injected carriers, and a total of electron density of
n = 1018, 5 × 1018, 1019 and 5 × 1019 cm−3, at room temperature.

400 450 500 550 600 650 700 750 800
−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

0

E
ph

 (meV)

IV
B

 (
cm

−
1 )

 

 

Figure 4.21: Room temperature IVB absorption spectrum for 1 % tensile strained
[001 ] bulk Ge with 1018 cm−3 injected carriers.
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Figure 4.22: The interband gain spectra for 2 % tensile strained [001 ] bulk Ge with
1018 cm−3 injected carriers, and total electron density of n = 1018,
5 × 1018, 1019 and 5 × 1019 cm−3, at room temperature.
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Figure 4.23: Room temperature IVB absorption spectrum for 2 % tensile strained
[001 ] bulk Ge with 1018 cm−3 injected carriers.
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4.8.2 Dependence of gain on hole density

In this section, the optimum n-type doping and carrier injection, under

variable strain conditions, for tensile strained bulk Ge, will be discussed.

The total electron density is fixed at 5× 1019 cm−3, while the injected carrier

densities have values of ninj = pinj = 1018, 5× 1018, 1019 and 5× 1019 cm−3.

As the injected hole concentration varies the valence band quasi-Fermi level

will take different values. This results in different IVB absorption and in-

terband gain, despite the fixed electron density, since the valence band

quasi-Fermi level is a factor in the interband gain equation.

The variation of IVB absorption with different injected carrier concentra-

tions for 1 and 2 % biaxially tensile strained bulk Ge is shown in Figures

(4.24) and (4.25), respectively. Both results show that the IVB absorption

increases as the hole concentration increases, with some shift with larger

strain.

The interband gain peak increases as the hole concentration increases, while

the electron concentration remains fixed, Figures (4.26). As the tensile strain

increases the interband peak becomes larger with an energy shift due to the

direct band gap shrinkage with strain, see Figure (4.27).
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Figure 4.24: Room temperature IVB absorption spectra of 1 % tensile strained [001]
bulk Ge with range of injected carriers, ninj = pinj = 1018, 5× 1018,
1019 and 5× 1019 cm−3, with 5× 1019cm−3 electron density.
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Figure 4.25: Room temperature IVB absorption spectra of 2 % tensile strained [001]
bulk Ge with range of injected carriers, ninj = pinj = 1018, 5× 1018,
1019 and 5× 1019 cm−3, with 5× 1019cm−3 electron density.



96 gain and intervalence band absorption for bulk ge

400 450 500 550 600 650 700 750 800
−2

−1.5

−1

−0.5

0

0.5

1
x 10

4

E
ph

 (meV)

In
te

rb
an

d 
ga

in
 (

cm
−

1 )

 

 

 p = 5e+19 (cm−3)
        1e+19
        5e+18
        1e+18

Figure 4.26: The interband gain spectra of 1 % tensile strained [001] bulk Ge with
5× 1019 cm−3 electron density, and range of injected carriers ninj =

pinj = 1018, 5× 1018, 1019 and 5× 1019 cm−3, at room temperature.
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Figure 4.27: The interband gain spectra of 2 % tensile strained [001] bulk Ge with
5× 1019 cm−3 electron density, and range of injected carriers ninj =

pinj = 1018, 5× 1018, 1019 and 5× 1019 cm−3, at room temperature.
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4.8.3 Gain as a function of the applied tensile strain

As the IVBA dominate the interband gain for the tensile strained [001] bulk

Ge cases of increasing the injected carriers densities in order to obtain inter-

band gain, see 4.6 and 4.7. Also, previously in this section result shows the

tradeoff between the IVBA and interband gain for dependently controlled

electron and hole densities for only two values of tensile strain. Here, a

closer look to the interband gain and tradeoff of the sum of the interband

gain and IVBA as a function of the applied tensile strain at 300 K for the

same cases of fixing the total electron density while the hole density vary

and vice versa.

Figures 4.28 and 4.29 summarize the interband gain peak results as a func-

tion of the tensile strain for [001] Ge, for the above mentioned cases of dif-

ferent electron and hole concentrations. The tensile strain takes five values

as 0.0, 0.5, 1.0, 1.5 and 2%. It shows that for fixed electron density, a large

injected carrier density will provide a large interband gain peak. Small in-

jected carrier densities require large tensile strain for interband gain peak

to occur.

Considering gain, figure (4.30 and 4.31 ) illustrate the sum of the interband

gain peak and the corresponding IVB absorption as a function of applied

tensile strain for [001] bulk Ge, under different electron and hole densities.

The results show a tradeoff between the interband gain and the IVB ab-

sorption for larger carrier concentrations. This also shows the importance

of applied tensile strain in creating gain for bulk-like Ge.
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Figure 4.28: The interband gain peak as a function of applied tensile strain for [001]
bulk Ge with 5× 1019 cm−3 total electron density, and range of injected
carriers ninj = pinj = 1018, 5× 1018, 1019, 5× 1019 and 1020 cm−3, at
room temperature.
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Figure 4.29: The interband gain peak as a function of applied tensile strain for
[001] bulk Ge with injected carriers as ninj = pinj = 1018 cm−3, and
total electron density has range of n = 1018, 5× 1018, 1019, 5× 1019and
1020 cm−3, at room temperature.
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Figure 4.30: The peak gain as a function of applied tensile strain for [001] bulk
Ge with 5 × 1019 cm−3 total electron density, and range of injected
carriers ninj = pinj = 1018, 5× 1018, 1019, 5× 1019 and 1020 cm−3, at
room temperature.
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Figure 4.31: The peak gain as a function of applied tensile strain for [001] bulk Ge
with injected carriers as ninj = pinj = 1018 cm−3, and total electron
density has range of n = 1018, 5× 1018, 1019, 5× 1019and 1020 cm−3, at
room temperature.
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4.9 temperature and gain dependence

Temperature is another important factor to be considered in gain calcula-

tions, as it is known that as temperature rises the direct and indirect band

gaps shrink [93, 94]. In reality, the Ge laser will operate at about 353 K,

hence the gain calculations were performed for 2 % tensile strained bulk

Ge at 353 K for the same electron and hole concentrations as in the previ-

ous section.

Figure (4.32) and (4.33) shows the gain spectra of 2 % tensile strained bulk

Ge, with 5× 1019 cm−3 electrons and a range of p = 1018, 5× 1018, 1019 and

5× 1019 cm−3, at 300 and 353 K, respectively. The results show that the gain

spectrum varies with electron and hole concentrations, but overall is only

weakly dependent on the system temperature, that difference dependent

vary from one case to another depending on the electron and hole densities

(between 7-20%). The gain peak is red shifted due to the fact that the band

gap decreases with temperature.
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Figure 4.32: The room temperature gain spectra of 2 % tensile strained for [001]
bulk Ge with 5 × 1019 cm−3 electron density, and range of injected
carriers ninj = pinj = 1018, 5× 1018, 1019 and 5× 1019 cm−3.
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Figure 4.33: The gain spectra at 353 K of 2 % tensile strained [001] bulk Ge with
5× 1019 cm−3 electron density, and range of injected carriers ninj =

pinj = 1018, 5× 1018, 1019 and 5× 1019 cm−3.



102 gain and intervalence band absorption for bulk ge

4.10 conclusion

Energy bands were calculated using the 8×8 k.p method for direct valley,

and the effective mass approximation for indirect valleys, for bulk Ge under

tensile strain. At finite temperatures, the carrier population of states was

described by the quasi-Fermi levels. Then the interband gain spectra, and

IVB absorption were both calculated. These calculations were performed

to investigate the effect of strain conditions, electron and hole densities,

and temperature on the interband gain and IVBA, and hence on the gain

achievable in n+ bulk Ge. These results suggest that population inversion

is achievable in [001] bulk Ge with large tensile strain (ε || > 1 %) for suc-

cessful operation of mid-infrared Ge lasers. Independent control of electron

and hole densities (via doping and carrier injection) is important to optim-

ise the gain in a Ge laser. In general, high hole densities result in very

strong IVB absorption. The gain spectrum is only weakly dependent on

temperature in the 300-353 K temperature range. However, these observa-

tions do not account for additional free carrier absorption processes which

may occur in the conduction bands. These will be investigated in the next

chapter.



5
F R E E C A R R I E R A B S O R P T I O N

Free carrier absorption (FCA) is known to be a significant loss process in

semiconductor materials and optical devices under conditions of high car-

rier densities. The simple Drude model of FCA predicts a parabolic depen-

dence on photon wavelength, which is a good approximation for long wave-

lengths, corresponding to small photon energies which are comparable to

the lifetime broadening for the electronic states. However, for the much

larger photon energies involved in Ge lasers, this approximation does not

hold, and a more accurate calculation is required, which accounts for the

details of the Ge band structure and the electron scattering processes which

give rise to FCA transitions [95]. This chapter shows the general method

for calculating free carrier absorption types in doped tensile strained bulk

Ge case and then investigate its effect on the total gain.

For a parabolic band structure, Tsai et.al. presented a general derivation of

free carrier absorption coefficient for both intravalley and intervalley tran-

sitions considering a degenerate carrier distribution and the state-filling

effect [13]. Following their model, in this chapter the intravalley and in-

tervalley FCA coefficients will be calculated for bulk [001] Ge under var-

ious strain conditions and different doping concentrations. Furthermore,

the temperature dependence in those cases will be considered.

103
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5.1 free carrier absorption in semiconductors

A carrier transits to a state | f 〉 with higher energy (E f ) from a state |i〉

with initial energy (Ei) when it absorbs a photon (h̄ωt). When this physical

process occurs in the conduction band it is called free carrier absorption,

it is referred to as the FCA [96]. If it happens within one conduction band

valley, it is known as intravalley FCA, whilst intervalley FCA refers to the

process which happens between two different valleys in the conduction

band, fig. (5.1).

k

hv
hv

Figure 5.1: Intervalley and intravalley free carrier absorption in the bulk Ge con-
duction band.

FCA is a two-step process where the carrier needs adequate momentum

to scatter to a higher state. Optical or acoustic phonon (h̄ωq) will provide

the shift in carrier momentum. Charged impurity scattering can also pro-

vide the necessary momentum shift. The classical Drude model conven-

tionally describes FCA as depending on λ2, which is the case in the long-

wavelength region [97]. The free carrier absorption coefficient is
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αFCA =
e2λ2nc

4π2c3nrε0m∗τc
, (5.1)

where m∗ is the carrier effective mass, τc is the effective scattering time,

which can be determined by the carrier mobility (µc) as in τc =
m∗
e µc, and

nc is the carrier density [92].

Second-order perturbation theory of quantum mechanics gives the scatter-

ing rate as

Wi→ f =
2π

h̄ ∑
n

∣∣∣∣∣
〈

f
∣∣Hper

∣∣ n
〉 〈

n
∣∣Hper

∣∣ i
〉

Ei − En

∣∣∣∣∣
2

δ
(
E f − Ei

)
, (5.2)

where |n〉 is the intermediate state, and the interaction Hamiltonian (Hper)

is the total of the four Hamiltonians for electron-photon absorption (Ha
ct)

and emission (He
ct), and electron-phonon absorption (Ha

cn) and emission

(He
cn) [84]. Figure 5.2 presents all the eight possible electron-phonon inter-

actions to start from initial wavevector (~ki) to final one (~k f = ~ki ± q ) in

intravalley free carrier scattering, which is the same case for intervalley

free carrier absorption [84]. Then the scattering rate is

Wk→k±q =
2π

h̄ ∑
n
|S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8|2

×δ
(
Ek − Ek±q ± h̄ωq ± h̄ωt

)
. (5.3)

Based on common initial and common final states for these eight routes, the

eight terms can be grouped into four terms as: S++ = S1 + S3, S−+ = S2 +

S4, S+− = S5 + S7, and S−− = S6 + S8. Then the energy conservation in the

delta function implies that the square of the whole sum can be written as∣∣∣∑8
i=1 Si

∣∣∣2 = |S++|2 + |S−+|2 + |S+−|2 + |S−−|2, where
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Figure 5.2: All possible electron-phonon plus photon intravalley scatterings, after
[13, 14].

|S++|2 = |S+−|2 =
∣∣Mq

∣∣2 Nq
h̄se2

2εω2
t m∗2

(ê.q)2 , (5.4)

|S−+|2 = |S−−|2 =
∣∣Mq

∣∣2 (Nq + 1
) h̄se2

2εω2
t m∗2

(ê.q)2 , (5.5)

where s is the photon density. The plus (+) and minus (−) signs refer

to emission and absorption processes, respectively, for both phonon and

photon in the subscripts [13]. The phonon number (Nq) is given by the

Bose-Einstein distribution function

Nq =

[
exp

(
h̄ωq

kBTL

)
− 1
]−1

, (5.6)

where TL is the lattice temperature, and
∣∣Mq

∣∣2 is the carrier-phonon inter-

action [92].
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The FCA coefficient can be expressed in terms of the scattering rate as

αFCA =
1

νgsVc
∑
k

Wk→k±q fk
(
1− fk±q

)
, (5.7)

where νg is the photon group velocity and Vn is the phonon normalisation

volume [13]. Using eq. (5.3) the FCA coefficient can be written as

αFCA =
1

vgsVc
∑
k,q

2π

h̄[
|S++|2 fk(1− fk+q)δ(Ek − Ek+q + h̄ωq + h̄ωt)

+ |S−+|2 fk(1− fk−q)δ(Ek − Ek−q − h̄ωq + h̄ωt)

− |S+−|2 fk(1− fk+q)δ(Ek − Ek+q + h̄ωq − h̄ωt)

− |S−−|2 fk(1− fk−q)δ(Ek − Ek−q − h̄ωq − h̄ωt)
]

, (5.8)

h̄ωt is the photon energy and h̄ωq is the phonon energy [13]. The Fermi-

Dirac distribution function ( fk ) of carriers

fk =

[
exp

(
Ek − EFc

kBTc

)
+ 1
]−1

, (5.9)

where Tc is the temperature of carriers [92]. In this chapter, the lattice tem-

perature and carrier temperature are assumed to be the same (TL = Tc).

Also, the thermal equilibrium condition for both carriers and phonons is

assumed for the calculations of this chapter.



108 free carrier absorption

5.2 intervalley fca phonon scattering

By acoustic and optical phonons, a carrier can be scattered from one valley

to another one [98]. The intervalley free carrier absorption expression can

be derived from eq. (5.8) as

α
i→ f
interFCA =

e2kBTc

12π3nrcε0ω3
t h̄4

∞∫
qmin

dq q3 Vn |Mq|2

×
{

Nq

exp(−εq − εt)− 1
× ln

[
exp(−η + εq + εt) + exp(−εmin

−−)

exp(−η + εq + εt) + exp(−εmax
−− )

×
exp(−η) + exp(−εmax

−− )

exp(−η) + exp(−εmin
−−)

]

+
Nq + 1

exp( εq − εt)− 1
× ln

[
exp(−η − εq + εt) + exp(−εmin

+−)

exp(−η − εq + εt) + exp(−εmax
+− )

×
exp(−η) + exp(−εmax

+− )

exp(−η) + exp(−εmin
+−)

]

−
Nq

exp(−εq + εt)− 1
× ln

[
exp(−η + εq − εt) + exp(−εmin

−+)

exp(−η + εq − εt) + exp(−εmax
−+ )

×
exp(−η) + exp(−εmax

−+ )

exp(−η) + exp(−εmin
−+)

]

−
Nq + 1

exp( εq + εt)− 1
× ln

[
exp(−η + εq + εt) + exp(−εmin

++)

exp(−η + εq + εt) + exp(−εmax
++ )

×
exp(−η) + exp(−εmax

++ )

exp(−η) + exp(−εmin
++)

]}
, (5.10)

where

the phonon energy is εq =
h̄ωq
kBTc

,

the photon energy is εt =
h̄ωt
kBTc

,

εmax
±± =

(h̄kmax
±± )

2

2mckBTc
,
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εmin
±± =

(h̄kmin
±±)

2

2mckBTc
,

kmax
±± =

∣∣∣ 1
2a
(
1 +
√

1− 4ab±±
)∣∣∣,

kmin
±± =

∣∣∣ 1
2a
(
1−
√

1− 4ab±±
)∣∣∣,

a =
1−(m f/mi)

2q ,

b±± =

(
q
2 +

m f E f i
±±

h̄2q

)
,

E f i
±± = E f − Ei ± h̄ωq ± h̄ωt,

η = EF−Ei
kBTc

[13].

The quasi-Fermi level is EF, which can be found for given value of electron

density using numerical integration and the root finding method [99]. The

total electron density is given by

n = ∑
ki

2
(

m0kBTc

2πh̄2

)3/2

F1
2

(
EF − Eki

kBTc

)
(5.11)

The Fermi-Dirac integral expression can be found in refs [100, 101, 102].

The lower integral limit should fulfil the condition that

q2
min = max

(
0,
(

2h̄−2E f i(mi −m f )
))

. (5.12)

For the intervalley free carrier absorption the carrier-phonon interaction is

given by

∣∣Mq
∣∣2 =

h̄2D2
i f

2ρVnh̄ωi f
, (5.13)

where ρ is the Ge density, Di f is the corresponding deformation potential

constant for (i) as the initial valley and the destination valley ( f ) for a

phonon with energy h̄ωi f [13].
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5.2.1 Direct to indirect intervalley scattering

In bulk Ge, there is one direct Γ-valley and two indirect valleys (L and X).

In zero strain case, the four pairs of L-valleys have identical distance in

the reciprocal space and three equivalent X-valleys with same distance be-

tween each pair and different distance between the two valleys in the same

pair. The intervalley scattering from direct to indirect valleys therefore can

happen between Γ 
 L and Γ 
 X valleys, in both directions.

5.2.1.1 Γ
L intervalley scattering

In case of unstrained or [001] strained bulk Ge, the L valley pairs remain

degenerate. There are four intervalley scattering process from the Γ valley

to the L valleys and vice versa. The interaction phonon has energy h̄ωΓL =

27.56 meV and a deformation potential of DΓL = 2.0× 108 eV/cm. Those

values are used in eq. (5.13) [103, 104]. Thus, by changing the corresponding

index the Γ
L intervalley scattering can be analytically integrated from eq.

(5.10) as

αΓ
L
interFCA = ∑

i=1:4
α

Γ
Li
interFCA

= 4×
(

αΓ→L1
interFCA + αL1→Γ

interFCA

)
, (5.14)

because all L valleys are identical (degenerate).

5.2.1.2 Γ
X intervalley scattering

For [001] bulk Ge, there are six X valleys which gives rise to three pairs

of identical intervalley scattering process from the Γ valley to the X valleys

and vice versa. A deformation potential of DΓX = 109 eV/cm and a phonon
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energy of h̄ωΓX = 27.56 meV are used in eq. (5.13) [103, 104]. The Γ
X

intervalley scattering can be obtained from eq. (5.10) as

αΓ
X
interFCA = 2× ∑

i=1:3
α

Γ
Xi
interFCA

= 2×
(

αΓ→2X
interFCA + α

2X→Γ
interFCA + 2αΓ→4X

interFCA + 2α
4X→Γ
interFCA

)
.(5.15)

5.2.2 Indirect intervalley scattering

Calculations shows that the most of the carriers will occupy the L valleys,

and because of the different energy shifts which occur in the indirect val-

leys when Ge is strained, studying the scattering from one indirect valley

to another is needed to make the intervalley FCA calculation more realistic.

5.2.2.1 L
X intervalley scattering

As mentioned before, the energy of the four L valleys in bulk Ge shifts

down when tensile strain is applied, but not as fast as the X2 valley (which

is different from X1,3 valleys which shift upwards with tensile strain).

The L
X intervalley phonon scattering can be determined from the rela-

tion (5.13), using an interaction phonon energy h̄ωLX = 27.56 meV and a

deformation potential DLX = 4.1× 108 eV/cm [103, 104].

The intervalley FCA coefficient is then

αL
X
interFCA = 2 × ∑

i=1:4
∑

j=1:3
α

Li
Xj
interFCA

= 8
(

αL1→2X
interFCA + α

2X→L1
interFCA + 2αL1→4X

interFCA + 2α
4X→L1
interFCA

)
.(5.16)
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5.3 intervalley fca modelling results

The intervalley FCA between the three conduction band valleys (Γ, L and

X) were modelled for n-type doped bulk Ge at room temperature to in-

vestigate their intervalley absorption behaviour. Figure (5.3) shows the cal-

culated intervalley FCA dependence on the absorbed photon wavelength

for bulk Ge with 1019 cm−3 n-type doping. The intervalley FCA coefficients

show resonant behaviour when the photon energy corresponds to the sep-

aration between different conduction band minima in Ge, in contrast with

the classical Drude model, which describes that the FCA coefficient de-

pends on the square of the photon wavelength for Ge material [105].
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Figure 5.3: The free carrier absorption coefficient for intervalley electron scattering
between three conduction band valleys (Γ, L and X) transition as a
function of the photon wavelength for 1019 cm−3 n-type doped bulk
Ge, at 300 K.

The intervalley absorption between the X-valley and the other valleys is

diminished when the photon energy becomes smaller than the energy sep-

aration between the X valley and other valleys (EX − EΓ = 0.4 eV(3.1µm)
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and EX − EL = 0.54 eV(2.3µm)). A photon with such energy is not able

to transfer electrons to the other valleys. The L
X scattering induced ab-

sorption dominates for shorter wavelengths, whilst the Γ 
 L scattering

induced absorption dominates at long wavelengths.

The effect of different tensile strain and n-type doping conditions on the

intervalley FCA will be discussed next for [001] bulk Ge.

5.3.1 Strain effect

By fixing the n-type doping density and applying different strain condi-

tions one can investigate how the intervalley FCA behaves for bulk Ge.

When tensile strain is applied to the [001] bulk Ge, one of the three X val-

ley pairs is perpendicular to the tensile strain plane which results in partial

lifting of degeneracy; i.e. splitting these two valleys 2X from the remaining

four valleys 4X. Increasing the tensile strain shifts the energy of the 2X val-

leys down but not as fast as the Γ valley, and the 4X valleys shift up, which

indicates that the intervalley FCA will change with applied strain.

Figure (5.4) shows the intervalley scattering based absorption spectra be-

tween the three conduction band valleys of bulk Ge doped with 1019 cm−3

and with an applied biaxial tensile strain varying from 0.5 to 2 %. The de-

pendance of the intervalley FCA on Figure (5.3 and 5.4) is nonmonotonic

on the photon wavelength, that comes from the resonance terms in the de-

nominator of the second perturbation expression in eq.(5.10). A portion of

the electron density will populate Γ and X valleys, which is very small

for zero strain compared to the L-valley electron density. As the strain in-

creases, the Γ valley population increases, and hence the largest increase

in FCA is observed for the Γ
X processes, at short wavelengths, because

of X-valley large density of states and the fact that two fold2X is move

downward with strain.
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Figure 5.4: For different tensile strain conditions, the free carrier absorption co-
efficient for intervalley electron transitions between three conduction
band valleys (Γ, L and X) as a function of the photon wavelength for
1019 cm−3 n-type doped strained bulk Ge at 300 K.
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(c) n = 5× 1019 cm−3
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Figure 5.5: The free carrier absorption coefficient for intervalley electron transi-
tions between the three conduction band valleys (Γ, L and X) as a func-
tion of the photon wavelength of doped bulk Ge with n-type concen-
tration varying from 1018 to 1020 cm−3, at 300 K.

5.3.2 The n-type doping density effect

In n-type bulk Ge, the majority of electrons will populate L-valleys because

it is the lowest conduction band valley and it has larger effective mass

than other conduction band valleys. Figure (5.5) illustrates the intervalley

coefficients of the conduction band valleys for bulk Ge, in which the n-type

doping concentration varies between 1018 and 1020 cm−3.
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As the doping density increases more electrons will populate Γ and X val-

leys. Therefore, one can say that by increasing the doping density for bulk

Ge, all the intervalley absorption coefficients increase, but the transition be-

tween Γ and X shows the largest increase in the near infrared wavelength

range.

The large relative change of Γ
X scattering-induced absorption happens

mostly for larger values of electron density, and arises from the strong

increase of the Γ-valley population (whilst the population of the X state

remains small). In contrast, the Γ
L scattering-induced absorption mostly

arises from electrons in the lowest, L valleys: this is where the majority of

electrons reside and hence this absorption is expected to increase approxi-

mately linearly with electron density.
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5.4 intravalley free carrier absorption

When an electron absorbs a photon and both initial and final states belong

to the same valley, the free carrier absorption is of the intravalley type. The

intravalley FCA coefficient can be derived from the intervalley eq. (5.10) by

putting E f = Ei, m f = mi, and can thus be expressed as

αFCA =
e2kBTc

12π3nrcε0ω3
t h̄4

∞∫
0

dq q3 Vn |Mq|2

×
{

Nq

exp(−εq − εt)− 1
× ln

[
1 + exp(η − εq − εt − εmin

−−)

1 + exp(η − εmin
−−)

]

+
Nq + 1

exp( εq − εt)− 1
× ln

[
1 + exp(η + εq − εt − εmin

+−)

1 + exp(η − εmin
+−)

]

−
Nq

exp(−εq + εt)− 1
× ln

[
1 + exp(η − εq + εt − εmin

−+)

1 + exp(η − εmin
−+)

]

−
Nq + 1

exp( εq + εt)− 1
× ln

[
1 + exp(η + εq + εt − εmin

++)

1 + exp(η − εmin
++)

]}
(5.17)

where

kmin
±± =

∣∣∣q/2 + mcE±±/h̄2q
∣∣∣

E±± = ±h̄ωq ± h̄ωt.

In this process, two types of phonons (acoustic and optical) can contribute

to the intravalley FCA, as well as charged impurity scattering [13].

5.4.1 Acoustic Phonon intravalley absorption

The acoustic phonon model used here is valid for low wavevector acoustic

phonons, with the linear dispersion expression ωq = q × νs. The sound
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velocity in Ge (νs) has transverse (νt) and longitudinal (νl) components,

which have values of 3.61× 105 cm/sec and 5.31× 105 cm/sec, respectively.

The average velocity of sound is calculated from νs =
(
2νt + νl

)
/3 [103].

The interaction matrix element between carriers and acoustic phonons in

eq. (5.17) is defined as

|Mq|2 =
D2

Ah̄q2

2ρωqVn
, (5.18)

where DA is the deformation potential of the acoustic phonons for the

corresponding valley [13].

5.4.2 Optical Phonon intravalley absorption

The intravalley optical phonon scattering is only allowed in the L valley

and is forbidden in the X and Γ valleys in Ge due to the symmetry of the

system [106].

The carrier-optical phonon interaction element from eq. (5.17) is given by

|Mq|2 =
h̄2D2

opt

2ρVnh̄ωopt
, (5.19)

where Dopt is the optical phonon deformation potential for the L valley [13].

In Ge, DL
opt = 5.5 × 108 eV/cm, with a respective optical phonon energy

h̄ωopt = 37.04 meV [104].

5.4.3 Charged impurity Intravalley absorption

The interaction matrix element for electron-charged impurity scattering is
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|Mq|2 =
Z2

i e4ni
e

ε2
sVn (q2 + q2

s )
2 , (5.20)

where Zi is the ionized impurity charge, ni
e is the impurity density, the

static permittivity is εs = ε0Ks, Ks is the static dielectric constant and the

static screening wavevector is qs =
(

e2

εs
∂ne
∂EF

)1/2
[13].

5.4.4 Intravalley absorption results

Since the intravalley transitions occur between states in the same valley,

the variation of the doping density is the only effect in this case, while the

strain condition does not affect the intravalley FCA coefficient. Figure (5.6)

shows the acoustic phonon, optical phonon and charged impurity contribu-

tions to intravalley absorption in bulk Ge at room temperature. Similarly

to the intervalley cases, the intravalley absorption increases with increas-

ing carrier density in the conduction band. The impurity-based absorption

has a much stronger dependence on carrier density than the other phonon

absorption types, because increasing the number of dopants increases num-

ber of ’scatterers’, i.e. the total strength of the interaction, and also increases

the number of electrons which these dopants released and which give rise

to absorption. The acoustic phonons give a larger absorption coefficient

than the optical phonons for n-type bulk Ge. The applied strain has no

effect on the intravalley FCA coefficient for doped bulk Ge.
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Figure 5.6: The acoustic, optical phonon and charged impurity intravalley FCA for
bulk Ge at 300 K.
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5.5 the total fca

The relative importance of different processes, and the dependence of ab-

sorption on electron density and strain, is decided by a complicated inter-

play of variable populations of different valleys due to their relative energy

positions and Fermi-Dirac population effects, changes of screening length

for impurity scattering, etc. Therefore only numerical calculations can iden-

tify the significant processes that determine the absorption for a particular

wavelength.

From the previous discussion, carrier concentration plays a more signifi-

cant role for the intravalley and intervalley absorption transitions; the ap-

plied strain has effect only on the intervalley absorption transitions. Sum-

ming the intervalley and intravalley absorption FCA coefficients will give

the total free carrier absorption coefficient, which can give the full picture

of the bulk Ge FCA spectrum dependence on the biaxial tensile strain con-

dition, carrier concentration and temperature.

Figure (5.7) summarises the variation of the total FCA coefficient for [001]

bulk Ge with n-type doping of n = 1018, 5 × 1018, 1019, 5 × 1019 and

1020 cm−3, and biaxial tensile strain with ε || = 0, 0.5, 1.5 and 2 %. The

FCA coefficient increases approximately linearly with the n-type doping

increase, whilst it is only weakly dependent on the applied strain. Increas-

ing the temperature from room temperature to a typical device temperature

(about 353 K) does not affect the FCA coefficient much for any case with

the same doping and strain condition. Figure 5.7 the solid (dashed) lines

represent the FCA coefficient at 300 K (353 K). The absorption is generally

expected to increase with temperature because of increasing phonon popu-

lation, and also because of broadening of the electron distribution, meaning

that more final states become available at higher temperatures.
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Figure 5.7: The total free carrier absorption coefficient spectra for n-type doped
strained bulk Ge at 300 (solid lines) and 353 K (dashed lines), the dop-
ing density varies from 1018 to 1020 cm−3, and the biaxial tensile strain
values are ε || = 0, 0.5, 1.5 and 2 %.
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5.6 the net gain

The interband gain and intervalence band absorption have been presented

for [001] bulk Ge in the previous chapter 4. The effect of introduce different

n-type doping and injected carrier densities on the total gain for strained

bulk Ge have also been performed and discussed. The total gain which

has been presented earlier is the sum of the interband gain and IVBA only.

Here in this section the result of the net gain - the sum of the interband

gain, IVBA and FCA - will be discussed for the similar conditions of carrier

density and applied strain. Previous results showed that the interband gain

and the IVBA increase with carrier density and the applied tensile strain.

The interband gain (IVBA) peaks show red (blue) shifts with the applied

strain. Adding the FCA to the calculations will give results for the overall

net gain of bulk Ge under such controlled conditions of doping and tensile

strain, at room and typical device temperatures.

5.6.1 Dependence of the net gain on electron density

The net gain calculations were performed for 1 and 2 % biaxial tensile

strained n-type bulk Ge to investigate the variation of the net gain with dif-

ferent electron and hole concentrations in the conduction and valence band,

respectively. The total electron density has values of n = 1018, 5 × 1018,

1019, 5 × 1019 and 1020 cm−3, while the injected carriers remain fixed at

ninj = 1018 cm−3 in tensile strained bulk Ge.

The calculated net gain spectra for 1 and 2 % biaxial tensile strained Ge

in the mentioned range of electron and injected concentrations is shown

in figures (5.8) and (5.9), respectively. These results show that the inverse

relation of FCA with photon energy diminishes the net gain peak. However,

a significant net gain is still predicted for 2 % strain.
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Figure 5.8: The net gain spectra for 1 % tensile strained [001] Ge with 1018 cm−3

injected carriers, and the total electron density varying from n = 1018

to 1020 cm−3, at room temperature.
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Figure 5.9: The net gain spectra for 2 % tensile strained [001] Ge with 1018 cm−3

injected carriers, and the total electron density varying from n = 1018

to 1020 cm−3, at room temperature.
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5.6.2 Dependence of the net gain on hole density

In this section, the net gain spectra were calculated for biaxially tensile

strained bulk Ge with the total electron density in the C.B. fixed at 5 ×

1019 cm−3. The injected carriers vary and the hole concentration has values

p = 1018, 5× 1018, 1019, 5× 1019 and 1020 cm−3.

Figures (5.10) and (5.11) show the calculated net gain spectra for 1 and 2 %

biaxial tensile strained Ge for the above mentioned fixed total electron and

injected carrier concentrations, respectively. The net gain decreases as the

injected carrier density increases generally in this case as the C.B. is heavily

populated with electron, and so increasing the injected carriers concentra-

tion mainly increases the IVBA.

400 450 500 550 600 650 700 750 800
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5x 10
4

N
et

 g
ai

n 
(c

m
−

1 )

E
ph

 (meV)

 

 

p = 1e+20 cm−3

       5e+19
       1e+19
       5e+18
       1e+18

Figure 5.10: The net gain spectra for 1 % tensile strained [001] Ge with 5 ×
1019 cm−3 total electron density, and the injected carriers varying from
n = 1018 to 1020 cm−3, at room temperature.
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Figure 5.11: The net gain spectra for 2 % tensile strained [001] Ge with 5 ×
1019 cm−3 total electron density, and the injected carriers varying from
n = 1018 to 1020 cm−3, at room temperature.

5.6.3 Bulk Ge net gain as a function of the applied tensile strain

The net gain calculations show that there is no net gain peak for [001]

Ge when the total electron and hole concentrations are the same, which is

the case of having injected carriers only. In section (5.6.1) and (5.6.2), the

net gain appears for controlled, unequal electron and hole concentrations

for (1 and) 2 % tensile strain bulk Ge. In order to study the variation of

the net gain from the applied strain perspective, the net gain spectra were

calculated for a number of strain values, for the same controlled carrier

concentrations. The applied biaxial tensile strain has values of ε || = 0.0, 0.5

and 1.5 %, at room temperature.

Figure (5.12) summarizes the peak value of the net gain as a function of the

applied tensile strain for [001] Ge, for a low fixed injected carrier concentra-

tion (1018 cm−3) while the total electron concentration varies. Positive net

gain occurs for high electron densities (≥ 5× 1019 cm−3). Furthermore, the
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Figure 5.12: The net gain peak for [001] Ge as a function of the applied strain for
a total electron varying density from 1018 to 1020cm−3, and 1018cm−3

injected carriers, at 300 K.

total electron density pushes the net gain to smaller tensile strain values

for [001] Ge. In figure (5.13), the net gain is shown as a function of applied

strain for [001] Ge with a fixed total electron density (≥ 5 × 1019 cm−3)

and a varying injected carrier density. Figure (5.13) shows that net gain is

impossible for large injected carrier densities, due to the large IVBA.
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Figure 5.13: The net gain peak for [001] Ge as a function of the applied strain for
fixed total electron density at 5× 1019cm−3, and a hole density varying
from 1018-1020cm−3 injected carriers, at 300 K.

5.6.4 Net gain and temperature dependence

Realistic device temperature (as 353 K) have also been considered in the net

gain calculation. Figure (5.14) and (5.15) show the net gain as a function of

the applied tensile strain for [001] Ge for the above-mentioned carrier den-

sities. The net gain has an inverse dependence on the temperature. More

strain is required to have net gain for [001] Ge under the same conditions,

as the direct band gap energy decreases with increasing temperature.
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Figure 5.14: The net gain peak for [001] Ge as a function of the applied strain for
a total electron density varying from 1018 to 1020cm−3, and 1018cm−3

injected carriers, at 353 K.
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Figure 5.15: The net gain peak for [001] Ge as a function of the applied strain for a
fixed total electron density of 5× 1019cm−3 and a hole density varying
from 1018-1020cm−3 as injected carriers, at 353 K.
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5.7 conclusion

A theory of free carrier absorption in semiconductors has been presented.

The methodology of free carrier absorption coefficient calculation for both

intervalley and intravalley in [001] Ge has been demonstrated. The inter-

valley FCA calculation shows the importance of including the X-valleys in

FCA at short wavelengths. The charged impurities dominate the FCA spec-

tra in the case of large n-type doping density, and has its minima in the

case of carriers in Ge coming from injection only. The intravalley FCA is

larger than the intervalley FCA for Ge over the wavelength range consid-

ered here. The applied strain engineers the band structure which changes

the FCA between different valleys, yet the total FCA for [001] Ge is not

affected much by the applied tensile strain. A large total electron density is

essential for [001] Ge interband gain for any tensile strain value. There are

two ways to obtain such a large electron density: the first one is by n-type

doping which has the disadvantage that the FCA increases. The second

method is by injected carriers but the IVBA dominates the interband gain

spectra for Ge for large injected carrier densities. Both the n-type doping

and injected carriers can be varied independently to find the optimum net

gain for strained Ge. The net gain calculation shows that a low injected

carrier densities (about 1018cm−3) and high n-type doping (≥ 1020cm−3) is

required to have net gain for biaxial tensile strain larger than ε || = 0.9 %.

The FCA is only weakly dependent on temperature. Increasing the temper-

ature leads to larger strain required to obtain the net gain for [001] Ge for

any given electron and hole densities.



6
C O N C L U S I O N

Literature review shows that an electrically pumped Ge laser is the missing

link in Si technology, where the need exists for optoelectronic integrated

circuits. Ge may be used as an optical semiconductor material because of

its CMOS compatibility and because it has a fast radiative recombination

rate from its direct band transition, with the emitted light wavelength being

within the communications band at room temperature. Despite the fact that

Ge has an indirect band gap, applying strain can engineer the Ge band

structure [8, 12].

The effect of applying biaxial compressive and tensile strain on conduc-

tion and valence band edges of Ge grown in different orientations, [001],

[110] and [111] has been analysed. The direct band gap energy increases

with the applied compressive strain and decreases with tensile strain for

bulk Ge grown in all three orientations. The different response of the indi-

rect conduction and the valence band edges and lifting of their degeneracy

according to the applied strain conditions can be used to make Ge a di-

rect band gap semiconductor material. The effect of uniaxial compressive

and tensile strain on the band structure energy for Ge layers grown on

the three orientations has also been addressed. The biaxially strained [100]

Ge requires the smallest tensile strain value (about 1.7 %) for achieving a

131
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direct band gap amongst the investigated strain and growth orientation

conditions.

An investigation of the combination of the applied strain and doping den-

sity to make Ge behave as a direct band gap material, and have a good

injection efficiency, was carried out at 0 K, for both bulk like Ge and Ge

quantum wells of different widths. Such calculations are essential to estab-

lish a background understanding for the behaviour of Ge under different

strain and growth orientation conditions. For moderate tensile strain val-

ues, bulk Ge and Ge quantum wells on [111] substrates have the advantage

over other cases, due to the lifting the degeneracy of the four L-valleys

which will pull more quantized states upwards with tensile strain. Apply-

ing uniaxial strain for [110] Ge is the best choice for keeping the emitted

wavelength within the communications band. The electron injection effi-

ciency into the Γ-valley is much larger for Ge quantum wells than for bulk

Ge. Yet, it is not the case at finite temperature, as further calculations, using

the same procedure, show that bulk Ge has larger injection efficiency than

Ge quantum wells.

At finite temperatures, the 8× 8 k.p method and effective mass approxi-

mation were used to calculate the energy bands for [001] bulk Ge and the

quasi-Fermi levels for given values of carrier densities, and then the inter-

band gain and IVBA were calculated for biaxially tensile strained [001] bulk

Ge. The effect of unequal electron and hole densities required to achieve

the interband gain and reduce the IVBA has been investigated for strained

bulk n+ Ge at room and typical device temperatures.

A detailed description of the free carrier absorption (FCA) coefficient calcu-

lation, accounting for both intervalley and intravalley scattering in strained

[001] Ge has been given. The dependence of FCA on the biaxial tensile

strain, on the electron and hole densities and on temperature has been cal-

culated for [001] Ge. The intervalley FCA calculation shows the importance
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of including the X-valleys in FCA at short wavelengths. Higher n-type dop-

ing is not desirable due to the domination of charged impurity mediated

absorption in this case.

This work finds that, in order to obtain net gain in [001] bulk Ge subjected

to different strain conditions, grown on different substrate orientations and

at finite temperatures, the following points must be considered:

1. The degeneracy lifting, partial or full, for indirect valleys which were

equivalent under no-strain conditions, depending on their orientation

in respect to characteristic directions of the system.

2. Their different energy dependence on the increasing strain.

3. The distribution of electron and hole densities over bands and valleys

is found to vary considerably with the value of strain, its type and

growth direction.

4. The L-valleys will be populated by the majority of electrons.

5. Even with a small occupancy, the X-valleys must not be neglected.

6. A large total electron density (via doping and carrier injection) is es-

sential for [001] Ge interband gain for any tensile strain value.

7. A relatively small density of injected (carriers) holes is essential to

keep the IVBA low.

8. The FCA may be very large for high values of n-type doping.

Positive net gain can be obtained in Ge only if the total electron and hole

densities are independently controlled and Ge is under sufficiently large

biaxial tensile strain (ε || > 1 % ), and a suitable combination of these may

be used to find the optimum balance of interband gain, IVBA, FCA. A

small strain value ε || = 0.25 %, which has been reported in ref. [107], is

not sufficient to obtain net gain. Such conclusion is consistent with the

experimental investigations that have been carried out recently and gives

an explanation of their observations [72, 73]. They have reported that the
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net gain did not appear in moderately strained (0.25 %) bulk Ge for neither

low nor high injected carriers densities [72, 73]. Based on that, Ge laser can

be achieve by introducing a suitable combination of a large enough tensile

strain and independently controlled large electron and relatively small hole

density.

6.1 further work

Knowledge of the effects of various strain conditions on the band structure

of Ge, which may be grown in different substrate orientations, enables the

model to be used for investigation of practical conditions for growth of Ge

on Si, GeSi alloy, GeSn and any III-V alloy buffer layer. Then, this whole

method can be implemented on different substrate orientations. Further

investigations may be performed for different SiGe alloys (with a small

percentage of Si), which should enable achieving somewhat shorter emis-

sion wavelengths than pure Ge can provide. This should produce the best

alloy designs for a specified emission wavelength.

A further investigation of Auger recombination in Ge under the various

carrier densities and strain conditions can be performed. Auger recombina-

tion does not have a direct influence on the gain (it depends only on carrier

densities), but it affects the injection current required to achieve these den-

sities.

The conditions required to achieve high carrier densities in a Ge pn hetero-

junction , which has a couple of layers with different doping or different

alloy compositions, can be investigated in order to deliver structures with

threshold currents as low as possible, find the spatial distribution of gain

under non-uniform carrier densities conditions, etc.

In order to find the gain available for lasing (modal gain), waveguide mod-

elling of heterostructure designed for large material gain should also be
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performed, to design structures with good mode overlap between the laser

optical mode and the active, amplifying part of the structure.

To improve the accuracy of modeling, some secondary effects such as indi-

rect interband absorption/gain can be added.





Part I

A P P E N D I X





A
U N I A X I A L S T R A I N E D G e

Bending or stretching a wafer of a semiconductor material along one axis

(uniaxial strain) of the in-plane coordinates (x or y ), an in-plane strain

(ε | | ) takes place along the axis where the bending is applied (ε
′
x x or ε

′
y y ),

with two unknown strain tensor elements in the layer coordinate system

[108]. One is the out-of-plane axis (ε
′
z z ), and the element of the other in-

plane axis (ε
′
y y or ε

′
x x ). Again, there are no shear strain elements (ε

′
x y ,

ε
′
y z , ε

′
x z ). Two of the stress tensor elements equal zero: the other in-plane

stress element (σ
′
y y or σ

′
x x ) and the out-of-plane element (σ

′
z z ), while the

other tensor elements can be calculated. As in the case of biaxial strain, the

unknown strain tensor diagonal elements can be determined by applying

these conditions in different growth directions ( [ 0 0 1 ] , [ 1 1 0 ] and [ 1 1 1 ])

along the x and y axis. The energy shifts of all valleys will be determined.

The strain, in this appendix, was directed along the [ 1 0 0 ] crystallographic

axis for [ 0 0 1 ] growth, along the x ′ = [ 0 0 1 ] and y ′ = [ 1 1 0 ] crystallo-

graphic axes for [ 1 1 0 ] growth, and along the x ′ = [ 1 1 0 ] or y ′ = [ 1 1 2 ]

crystallographic directions for [ 1 1 1 ] growth, see fig. (A.1). The calcula-

tion of strain tensors and the energy shifts in the case of uniaxial strain

along the x - and y-axes in the three growth directions ( [ 0 0 1 ] , [ 1 1 0 ] and

[ 1 1 1 ]) will be summarised next.
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(a) Bending along x’ or y’.z’: [110], y’: [-
110], x’: [00-1]

(b) Bending along x′ or y′.z′: [111], x′ :
[−110], y′: [−1− 12]

Figure A.1: Scheme of the crystal coordinate system and for the new layer coor-
dinate system, for [110] growth (left) and for [111] growth (right) and
the bending axis of the applied uniaxial strain [15].

a.1 uniaxial strain along x -axis .

The initial conditions of Uniaxial strain (U) and stress along x-axis (Ux)

for Ge (or a semiconductor material has the zinc blende structure) [001 ],

[110 ] and [111 ] growth directions are:

ε
′
xx = ε ||; ε

′
xy = ε

′
xz = ε

′
yz = 0; σ

′
yy = σ

′
zz = 0. (A.1)

The strain tensor for the [001] growth direction is:

ε [001]Ux = ε ||


1 0 0

0 − C12
C11+C12

0

0 0 − C12
C11+C12

 , (A.2)

for the [110] growth direction is:
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ε [110]Ux = ε ||


− C12

C11+C12
0 0

0 − C12
C11+C12

0

0 0 1

 , (A.3)

and for the (111) growth direction:

ε [111]Ux =
ε ||
$


$xx −$xi $xi

−$xi $yy $xi

$xi $xi $zz

 , (A.4)

where

$ = C2
11 − 2C2

12 + 16C2
44 + 40C12C44 + C11 (C12 + 26C44) , (A.5)

$xx = $yy = 2C44 (5C11 + 4C12 + 8C44) , (A.6)

$zz = 4C44 (2C11 + 7C12 − 4C44) , (A.7)

$xi = (C11 + 2C12) (C11 − C12 + 16C44) , (A.8)

For uniaxial strain along x-axis the energy shift for the growth direction

[001] for the Γ-valley is:

DEΓ
[001]Ux = ΞΓ

d
C11 − C12

C11 + C12
ε ||, (A.9)

for the degenerate X-valleys the energy shifts are:

DEX1
[001]Ux =

(
C11 − C12

C11 + C12
ΞX

d + ΞX
u

)
ε ||, (A.10)
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DEX2,3
[001]Ux =

(C11 − C12)ΞX
d − C12ΞX

u

C11 + C12
ε ||, (A.11)

and for the degenerate L-valleys:

DEL
[001]Ux =

1
3
(C11 − C12)

(
3ΞL

d + ΞL
u
)

C11 + C12
ε ||. (A.12)

In the case of the [110] growth direction along x-axis, the energy shift of

G-valley is:

DEΓ
[110]Ux = DEΓ

[001]Ux, (A.13)

for the degenerate X-valleys:

DEX1,2
[110]Ux = DEX2,3

[001]Ux, (A.14)

DEX3
[110]Ux = DEX1

[001]Ux, (A.15)

and for the degenerate L-valleys:

DEL
[001]Ux = DEL

[001]Ux. (A.16)

In the case of the [111] growth direction, the energy shift of G-valley is:

DEΓ
[111]Ux = 12ΞΓ

d
C44 (C11 − C12 + 4C44)

$
ε ||, (A.17)

for the degenerate X-valleys:

DEX1,2
[111]Ux = 2C44

(6C11 − 6C12 + 24C44)ΞX
d + (5C11 + 4C12 + 8C44)ΞX

u

$
ε ||,

(A.18)
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DEX3
[111]Ux = 4C44

(3C11 − 3C12 + 12C44)ΞX
d + (2C11 + 7C12 + 4C44)ΞX

u

$
ε ||,

(A.19)

and for the degenerate L-valleys:

DEL1
[111]Ux = 2 (C11 − C12 + 4C44)

C44ΞL
d − (C11 + 2C12 − 2C44)ΞL

u

$
ε ||,

(A.20)

DEL2
[111]Ux =

(
2ΞL

u
3
− 4C44

9 (C12 − 4C44 − C11)ΞL
d + (43C12 − 4C44 + 20C11)ΞL

u

3$

)
ε ||,

(A.21)

DEL3,4
[111]Ux =

(
2ΞL

u
3
− 4C44

9 (C12 − 4C44 − C11)ΞL
d + (7C12 − 4C44 + 2C11)ΞL

u

3$

)
ε ||.

(A.22)

a.2 uniaxial strain along y-axis .

The initial conditions of uniaxial strain and stress along y-axis (Uy) in [001],

[110] and [111] growth directions are:

ε
′
yy = ε ||; ε

′
xy = ε

′
xz = ε

′
yz = 0; σ

′
xx = σ

′
zz = 0. (A.23)

The strain tensor for the [001] growth direction:
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ε [001]Uy = ε ||


− C12

C11+C12
0 0

0 1 0

0 0 − C12
C11+C12

 , (A.24)

and for the [001] growth direction:

ε [110]Uy =
ε ||
ς


2C11C44 ςxy 0

ςxy 2C11C44 0

0 0 −4C11C44

 , (A.25)

where

ςxy = −C2
11 + 2C2

12 − C11C12, (A.26)

ς = −ςxy + 2C11C44, (A.27)

and for the [111] growth direction:

ε [111]Uy =
ε ||
ι


ιxx ιxy ιiz

ιxy ιxx ιiz

ιiz ιiz ιzz

 , (A.28)

where

ι = C2
11 − 2C2

12 + 16C2
44 + 40C12C44 + C11 (C12 + 26C44) , (A.29)

ιxx = −2C2
44 (C11 + 8C12 − 8C44) , (A.30)
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ιzz = 4C2
44 (4C11 + 5C12 − 4C44) , (A.31)

ιxy = (C11 + 2C12) (C12 − C11 + 8C44) , (A.32)

ιiz = (C11 + 2C12) (C11 − C12 + 10C44) . (A.33)

For uniaxial strain along y-axis the energy shift for the [001] growth direc-

tion for the G-valley is:

DEΓ
[001]Uy = DEΓ

[110]Ux, (A.34)

for the degenerate X-valleys:

DEX1,3
[001]Uy = DEX1,2

[110]Ux, (A.35)

DEX2
[001]Uy = DEX3

[110]Ux, (A.36)

and for the degenerate L-valleys:

DEL
[001]Uy = DEL

[110]Ux. (A.37)

In the case of the [110] growth direction, the energy shift of the G-valley is:

DEΓ
[110]Uy =

4C44 (C11 − C12)

ς
ΞΓ

dε ||, (A.38)

for the degenerate X-valleys:

DEX1,2
[110]Ux = 4C44

2 (C11 − C12)ΞX
d + C11ΞX

u

ς
ε ||, (A.39)
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DEX3
[110]Ux = 4C44

(C11 − C12)ΞX
d + C12ΞX

u

ς
ε ||, (A.40)

and for the degenerate L-valleys:

DEL1,2
[110]Uy = 2 (C11 − C12)

6C44ΞL
d − (C11 + 2C12 − 2C44)ΞL

u

3ς
ε ||, (A.41)

DEL3,4
[110]Uy =

2
3
(ς− 2C12C44)ΞL

d − 6C44 (C11 + C12)ΞL
u

3ς
ε ||. (A.42)

In the case of the [111] growth direction, the energy shift of the G-valley is:

DEΓ
[111]Uy = DEΓ

[111]Ux, (A.43)

for the degenerate X-valleys:

DEX1,2
[111]Uy =

2C44 (6C11 − 6C12 + 24C44)ΞX
d + ιxxΞX

u

ς
ε ||, (A.44)

DEX3
[111]Uy = 4C44

(3C11 − 3C12 + 12C44)ΞX
d + (4C11 + 5C12 + 4C44)ΞX

u

ς
ε ||,

(A.45)

and for the degenerate L-valleys:

DEL1
[111]Uy = 2 (C11 − C12 + 4C44)

6C44ΞL
d − (C11 + 2C12 − 2C44)ΞL

u

ς
ε ||,

(A.46)
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DEL2
[111]Uy =

(
2ΞL

u
3

+ 4C44
(5C12 + 4C44 + 4C11)ΞL

u + (9C11 − 9C12 + 36C44)ΞL
d

3ς

)
ε ||,

(A.47)

DEL3,4
[111]Uy =

(
2ΞL

u
3
− 4C44

(40C12 − 36C44 − 9C11)ΞL
u + (14C12 − 4C44)ΞL

d
3ς

)
ε ||.

(A.48)

a.3 the c .b . and v.b . valley edges and uniaxial strain

In the case of applying uniaxial strain along the x-axis of [001], and [110]

bulk Ge and along the y-axis of [001] bulk Ge the conduction band be-

haves in the same way. The conduction band energy at G, the fourfold X-

valleys, and the eight half L-valleys decrease with tensile and increase with

compressive strain. The energy of the fourfold X-valleys is shifted slightly

more than the eight half L-valleys, and less than the G-valley. On the other

hand, the non-degenerate X-valley has a positive slope, which changes sig-

nificantly with the applied strain. Germanium becomes a direct band gap

semiconductor at 4.6% tensile strain in these cases, as shown in fig. (A.2).

They are two main differences between these three cases. Firstly, the twofold

X-valleys in case of [001], and [110] Ge uniaxially strained along x-axis and

[001] Ge uniaxially along y-axis are X1, X3 and X2 respectively. Secondly,

the top of the valence band increases more rapidly in the order of [001]

direction along y-axis (compressive strain only), [110] and the [001] growth

direction along x-axis for both signs of strain. However, under uniaxial

tensile strain in [001] Ge along x-axis the top of the valence band has the
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Figure A.2: The energy of the bottom of the conduction bands of k-valley (Ec,ki)
and the top of the valence band (EV.B) of uniaxial strain along x-axis
for [001] and [110] and along y-axis of [001] bulk Ge.
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highest increasing rate among the others. This is the only case that the

change rate in the top of the valence band is larger for tensile than for the

compressive strain.

In the third case of uniaxial strain along x-axis is for Ge grown on [111]

direction, the conduction energy of all X-valleys increase with tensile and

decrease with compressive strain, and the same is true for the fourfold L-

valleys (L3 and L4) but with higher sensitivity to strain. The conduction

energy of G-valley and the rest of L-valleys, which split into two twofold

(L1 and L2) valleys, have opposite behaviour. Moreover, the sensitivity of

L1 to strain is larger than that of G and less than that of L2. The valence

band energy top increases with both signs of strain, but with a larger rate

for compressive strain, fig. (A.3).

The conduction bands and valence band energies in uniaxial strain [001]

Ge along y-axis is same as [001], and [110] Ge along y-axis with some dif-

ferences mentioned before. For uniaxial strain along y-axis of [110] Ge the

conduction band energy of fourfold X-valleys (X1 and X2) and fourfold

L-valleys (L3 and L4) increase with tensile and decrease with compres-

sive strain with almost similar rate. In contrast, the bottom energy of the

twofold X-valleys (X3) valleys, G-valley, and the fourfold L-valleys (L1 and

L2), have the opposite behaviour, and the linear change is higher for the

G-valley than for twofold X-valleys and less than for the fourfold L-valleys.

The valence band top increase rate for compressive strain is 2.5 higher than

the rate when tensile strain is applied, fig. (A.3).

For the [111] Ge uniaxially strained along y-axis, see fig. (A.4), the conduc-

tion band minimum energy of the fourfold L-valleys (L3,4) increase and de-

crease significantly with tensile and compressive strain, respectively, while

the fourfold X-valleys (X1 and X2) have the same behaviour but with less
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Figure A.3: The energy of the bottom of the conduction bands of k-valley (Ec,ki)
and the top of the valence band (EV.B) of uniaxial strain along x-axis
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and the top of the valence band (EV.B) of uniaxial strain along x-axis
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significant change. Conversely, the twofold X-valleys (X3), G-valley, and the

fourfold L-valleys (L3 and L4) have the opposite behaviour, and show more

sensitive change in energy with the applied strain in that order. The maxi-

mum valence band energy increases with the two kinds of strain, and the

rate for the compressive strain is double the rate in case of tensile strain.





B
E X P R E S S I O N F O R T H E M O M E N T U M M AT R I X E L E M E N T

U S I N G T H E 8 - B A N D k . p M E T H O D

For an optical transition between two bands (e.g. a-band and b-band) the

momentum matrix elements (〈ψ a | p̂ | ψ b 〉 ) can be found from the compo-

nents of k . p wavefunctions (eigenvectors) in them

ψ a = ∑



[
a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8

]
×



u Γ 6
− 1

2

u Γ 6
+ 1

2

u Γ 8
− 3

2

u Γ 8
− 1

2

u Γ 8
+ 1

2

u Γ 8
+ 3

2

u Γ 7
− 1

2

u Γ 7
+ 1

2





(B.1)

where a 1 , a 2 ...a 8are the eigenvectors of 8 × 8 Hamiltonian for state a , and

u are basis functions of the Hamiltonian as [18]:

u Γ 6
− 1

2
= | s 〉 χ ↓ ,
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u Γ 6
+ 1

2
= | s 〉 χ ↑ ,

uΓ8
− 2

3
= − i√

6
(|x〉+ i |y〉) χ↓ + i

√
2
3 |z〉 χ↑,

uΓ8
− 1

2
= i√

2
(|x〉+ i |y〉) χ↑,

uΓ8
+ 1

2
= − i√

2
(|x〉 − i |y〉) χ↑,

uΓ8
+ 2

3
= i√

6
(|x〉 − i |y〉) χ↑ + i

√
2
3 |z〉 χ↓,

uΓ7
− 1

2
= − i√

3
(|x〉 − i |y〉) χ↑ +

i√
3
|z〉 χ↓,

uΓ7
− 1

2
= − i√

3
(|x〉+ i |y〉) χ↓ − i√

3
|z〉 χ↑.

where χ↑=

 1

0

 and χ↓=

 0

1

 are the eigenspinors, and

χ↑χ↓ = χ↓χ↑ = 0,

χ↑χ↑ = χ↓χ↓ = 0,〈
s
∣∣px,y,z

∣∣ x, y, z
〉
= +i m0

h̄ P0,〈
x, y, z

∣∣px,y,z
∣∣ s
〉
= conj

(〈
s
∣∣px,y,z

∣∣ x, y, z
〉)

= −m0
ih̄ P0,〈

s
∣∣px,y,z

∣∣ s
〉
=
〈
s
∣∣px,y,z

∣∣ (y, z) , (x, z) , (x, y)
〉
=
〈
(y, z) , (x, z) , (x, y)

∣∣px,y,z
∣∣ s
〉
=

0.

The following results apply:

〈x |px| x〉 =
〈
y
∣∣py
∣∣ y
〉
= 〈z |pz| z〉 = 0,〈

x
∣∣py,z

∣∣ x
〉
= 〈y |px,z| y〉 =

〈
z
∣∣px,y

∣∣ z
〉
= 0,

〈x |px| y, z〉 = 〈y, z |px| x〉 =
〈
y
∣∣py
∣∣ x, z

〉
=
〈

x, z
∣∣py
∣∣ y
〉
= 〈z |pz| x, y〉 =

〈x, y |pz| z〉 = 0.

See ref. [18] for more details.

The final full expression for matrix elements using 8× 8 k.p wavefunctions

is
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〈ψa | p̂|ψb〉 = P0
m0

h̄(
− −→

i
[

1√
2
(a1b5 − a2b4 − a4b2 + a5b1)

+
1√
3
(a1b8 + a2b7 + a7b2 + a8b1)

+
1√
6
(a1b3 + a3b1 − a2b6 − a6b2)

]
−i

−→
j
[

1√
2
(a1b5 − a2b4 − a4b2 + a5b1)

+
1√
3
(−a1b8 + a2b7 − a7b2 + a8b1)

+
1√
6
(−a1b3 + a3b1 − a2b6 + a6b2)

]
+
−→
k

[
√

3(a1b7 + a7b1)

+
1√
3
(−a2b8 − a8b2)

+

√
2
3
(a2b3 + a3b2 + a1b6 + a6b1)

])
. (B.2)
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